
Cryptanalysis of

AES-Based Hash Functions

by

Martin Schläffer

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Dr. Ir. Vincent Rijmen (TU Graz, Austria)
Prof. Dr. Lars Ramkilde Knudsen (DTU, Denmark)

March 2011

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

In this thesis we analyze the security of cryptographic hash functions. We fo-
cus on AES-based designs submitted to the NIST SHA-3 competition. For most
AES-based designs, proofs against differential and linear attacks exist. For exam-
ple, the maximum differential probability of any 8-round differential trail of the
AES is 2−300. Therefore, any standard differential attack is out of scope. How-
ever, truncated differences can be used for simple AES-based round functions
which has been shown in the attack on the hash function proposal Grindahl.

For larger permutation- or block cipher-based hash functions, standard trun-
cated differential attacks do not work either. Therefore, we proposed a new
attack strategy to analyze AES-based hash functions: the rebound attack. The
idea of the rebound attack is to use the available freedom in a collision attack
to efficiently bypass the low probability parts of a (truncated) differential trail.
The rebound attack consists of an inbound phase which exploits the available
freedom, and a subsequent probabilistic outbound phase. Using this attack we
are able to efficiently find right pairs for an 8-round truncated differential trail
of the AES in known-key setting.

The rebound attack has been invented during the design of the permutation-
based SHA-3 finalist Grøstl. Since the available freedom in the Grøstl design
are very limited, we can only get collisions for the hash function on 3 out of
10 rounds. When attacking the wide-pipe compression function, we are able to
construct semi-free-start collisions for 6 out of 10 rounds since in this case, the
freedom is essentially doubled. We also analyze the security of the initial sub-
mission Grøstl-0. Additionally, we discuss different implementation techniques
of Grøstl and show how to efficiently implement Grøstl using the new Intel
AES instruction set extensions.

For some hash functions, sparse truncated differential paths can be con-
structed, additional degrees of freedom are available, or parts of the state can
be controlled independently. In these cases, the rebound attack can be extended
by multiple inbound and multiple outbound phases. Using these techniques, we
can find right pairs for longer truncated differential paths more efficiently. We
show how to get such attacks in detail for the SHA-3 candidates ECHO and Lane.
In the case of ECHO, we get collisions for 5 out of 8 rounds of the hash function,
and distinguishing attacks on 7 out of 8 rounds of the compression function. For
Lane, we are able to construct collisions for the full compression function of
both versions Lane-256 and Lane-512.

iii

Acknowledgements

First of all, I would like to thank my supervisor Vincent Rijmen for his excel-
lent guidance throughout my whole PhD studies. Most important, thank you
for integrating me into the Krypto group while I was still looking for research
directions at the beginning of my PhD. Many thanks also for providing interest-
ing research topics, for your support while I was working on my own ideas, for
numerous scientific discussions and for our always entertaining Krypto meetings.

I would also like to thank Lars R. Knudsen for being my external reviewer
and especially for inviting me into the Grøstl team. It is a special honor to be
part of such a prominent team and also the competition is more exciting with an
own submission. Thank you for your hospitality at the Mathematics department
at DTU in Denmark, for playing football together, and for sharpening my mind
in keeping my emails short.

During my studies, I had the pleasure to work in the IAIK Krypto group.
Thank you all for introducing me to the secrets of cryptanalysis and for the great
research atmosphere. Without the deep knowledge in this team, many new at-
tacks would not have been possible. Especially, I would like to thank Florian
Mendel for sharing many research ideas and for showing me his efficiency in per-
forming daily tasks. Special thanks also go to Mario Lamberger, Tomislav Nad,
Norbert Pramstaller and Christian Rechberger for many interesting discussions
on cryptography, mathematics, implementations, and life.

I would also like to thank all guests who have visited the Krypto group during
my studies. Special thanks go to Kazumaro Aoki for introducing me to the fine
details of assembly optimizations, and to Sebastiaan Indesteege and Søren S.
Thomsen for lots of discussions and their help while I was visiting their groups.
Many thanks go to all members of COSIC at K.U.Leuven and the Mathematics
department at DTU, who took care of me during my numerous visits in Leuven
and while I was staying in Copenhagen.

Special thanks go to Elisabeth Oswald for introducing me to cryptography
and to all members of the IAIK VLSI group, who hosted me during my Master’s
thesis and at the beginning of my PhD studies. Thank you all for patiently
answering all my questions on implementation security.

I would also like to thank all people with whom I had many interesting
research discussions. Especially, thanks go to all my coauthors: Jean-Philippe
Aumasson, Praveen Gauravaram, Sebastiaan Indesteege, Emilia Käsper, Dmitry
Khovratovich, ChangKyun Kim, Lars R. Knudsen, Mario Lamberger, Gaëtan
Leurent, Krystian Matusiewicz, Florian Mendel, SangJae Moon, Tomislav Nad,
Maŕıa Naya-Plasencia, Ivica Nikolic, Svetla Nikova, Rune S. Ødeg̊ard, Elisabeth

v

vi Acknowledgements

Oswald, Thomas Peyrin, Bart Preneel, Christian Rechberger, Vincent Rijmen,
Andrea Röck, Günther Roland, Yu Sasaki, and Søren S. Thomsen.

Finally, I would also like to thank all my friends for their welcome distractions
in my spare time. This important distance allowed me to focus on research
without losing the fun of it. Most of all, I want to thank my parents, my brothers,
and my girlfriend Andrea for their continuous support, their understanding and
simply, for everything.

Martin Schläffer
Graz, March 2011

Table of Contents

Abstract iii

Acknowledgements v

List of Tables xi

List of Figures xiii

Notation xv

1 Introduction 1
1.1 Cryptographic Hash Functions 1
1.2 Cryptanalysis of Hash Functions 2
1.3 The NIST SHA-3 Competition 3
1.4 Outline of this Thesis . 5
1.5 Main Contributions . 6

2 Analysis of Cryptographic Hash Functions 9
2.1 Cryptographic Hash Functions 9

2.1.1 Main Security Requirements 10
2.1.2 Hash Function Constructions 11
2.1.3 Compression Function Constructions 13
2.1.4 Reduced Hash Function and Building Block Attacks . . . 14

2.2 Generic Attack Methods . 16
2.2.1 Birthday Attack . 17
2.2.2 Meet-in-the-Middle Attack 18
2.2.3 Merging Lists . 18
2.2.4 Generalized Birthday Attack 19

2.3 Differential Cryptanalysis . 20
2.3.1 Overview . 20
2.3.2 Preliminaries . 21
2.3.3 Application to Hash Functions 26
2.3.4 Truncated Differential Analysis 27

2.4 The Rebound Attack . 28
2.4.1 Overview . 28
2.4.2 Constructing a Trail . 29
2.4.3 Inbound Phase . 29

vii

viii Table of Contents

2.4.4 Outbound Phase . 30
2.4.5 Multiple Inbound Phases 30
2.4.6 Multiple Outbound Phases 31

3 The Rebound Attack on AES-Based Permutations 33
3.1 The AES Block Cipher . 34

3.1.1 State Update . 34
3.1.2 Key Schedule . 34
3.1.3 Decryption . 34
3.1.4 The Wide Trail Design Strategy 35

3.2 Differential Properties of AES Round Transformations 35
3.2.1 SubBytes . 35
3.2.2 ShiftRows . 36
3.2.3 MixColumns . 36

3.3 Combined AES Round Transformations 38
3.3.1 Single AES Round . 38
3.3.2 SuperBoxes . 38

3.4 Finding Good Differential Trails 39
3.4.1 Minimum Truncated Differential Trails 39
3.4.2 Computing the Expected Number of Right Pairs 41

3.5 The Basic Rebound Attack . 41
3.5.1 Constructing a Truncated Differential Trail 42
3.5.2 The Inbound Phase . 43
3.5.3 The Outbound Phase . 44

3.6 Solving Linearly for Pairs . 45
3.6.1 Filtering for Differential Trails 45
3.6.2 Solving for Conforming State Pairs 48

3.7 Time-Memory Trade-Offs using SuperBoxes 49
3.7.1 Extending the Truncated Differential Trail 49
3.7.2 Using the Differential Distribution Table 49
3.7.3 A Time-Memory Trade-Off with Memory 232 50
3.7.4 Non-Full Active SuperBoxes 51

3.8 Summary . 52

4 Design, Security and Implementation of Grøstl 55
4.1 Description of Grøstl . 55

4.1.1 The Hash Function . 56
4.1.2 The Compression Function 56
4.1.3 The Output Transformation 56
4.1.4 The Permutations . 57

4.2 Security . 59
4.2.1 Hash Function . 60
4.2.2 Compression Function . 60
4.2.3 Permutations . 61

4.3 Efficient Implementation Techniques 62
4.3.1 Table-Based . 63

Table of Contents ix

4.3.2 Byte Slicing . 66
4.3.3 Bit Slicing . 71

4.4 Summary . 71

5 Applying the Rebound Attack to Grøstl 73
5.1 The Rebound Attack on the Grøstl-256 Permutation 74

5.1.1 Constructing Truncated Differential Paths 75
5.1.2 The Inbound Phase . 78
5.1.3 The Outbound Phase . 81
5.1.4 Distinguishers for the Permutation 81
5.1.5 Distinguisher for the Output Transformation 82

5.2 Attacks on the Compression function of Grøstl-256 82
5.2.1 The Rebound Attack on the Compression Function 83
5.2.2 Constructing Colliding Truncated Differential Paths . . . 84
5.2.3 Semi-Free-Start Collisions for 6 Rounds of Grøstl-256 . . 85

5.3 Rebound Attack on the Grøstl Hash Function 87
5.3.1 Inbound Phase between P and Q 88
5.3.2 Collisions for 3 Rounds of Grøstl-256 88

5.4 Application to Grøstl-512 . 91
5.4.1 Constructing Truncated Differential Paths for Grøstl-512 92
5.4.2 Semi-Free-Start Collisions for 6 Rounds of Grøstl-512 . . 94
5.4.3 Collisions for 3 Rounds of Grøstl-512 95

5.5 Summary . 96

6 Multiple Inbound and Multiple Outbound Phases in ECHO 97
6.1 Description of ECHO . 98
6.2 Truncated Differential Analysis of ECHO 99

6.2.1 Sparse Truncated Differential Paths for ECHO 99
6.2.2 An Equivalent ECHO Round Description 101
6.2.3 SuperBox . 101
6.2.4 SuperMixColumns . 102
6.2.5 The Inbound Phase in ECHO 103
6.2.6 Expected Number of Right Pairs 104

6.3 Attacks on the ECHO-256 Hash Function 104
6.3.1 The Rebound Attack on ECHO 105
6.3.2 Subspace Distinguisher for 5 Rounds 112
6.3.3 Collisions for 5 Rounds 114

6.4 Attacks on the ECHO Compression Function 115
6.4.1 The Truncated Differential Path 116
6.4.2 Outline of the Attack . 116
6.4.3 Finding Right Pairs for Sparse Paths of the Permutation . 116
6.4.4 Collisions for 6 Rounds with Chosen Salt 120
6.4.5 Subspace Distinguisher for 7 Rounds with Chosen Salt . . 120

6.5 Summary . 121

x Table of Contents

7 Collisions for the Full Compression Function of LANE 123
7.1 Description of Lane . 123

7.1.1 The Compression Function 124
7.1.2 The Message Expansion 124
7.1.3 The Permutations . 125

7.2 The Rebound Attack on Lane 126
7.2.1 Outline of the Rebound Attack 126
7.2.2 The Inbound Phase . 127
7.2.3 The Outbound Phase . 128

7.3 Compression Function Attacks on Lane 129
7.3.1 Semi-Free-Start Collision for Lane-256 130
7.3.2 Semi-Free-Start Collision for Lane-512 135

7.4 Summary . 141

8 Conclusions 143

A Analysis of Grøstl-0 145
A.1 Using the Same Truncated Differential Path 145

A.1.1 Semi-Free-Start Collisions for 7 Rounds of Grøstl-0-256 . 146
A.1.2 Semi-Free-Start Collision for 7 Rounds of Grøstl-0-512 . 147
A.1.3 Collisions for 4 Rounds of Grøstl-0-256 148
A.1.4 Collisions for 5 Rounds of Grøstl-0-512 150

A.2 Considering Differences between P and Q 151
A.2.1 Semi-Free-Start Collisions for 7 Rounds of Grøstl-0-256 . 152
A.2.2 Collisions for 6 Rounds of Grøstl-0-256 153

Bibliography 155

Author Index 171

List of Publications 175

List of Tables

3.1 Differential Distribution table of the AES S-box. 36
3.2 Truncated differential probability of MixColumns. 37
3.3 Number of possible differences in the linear solving technique. . . 47
3.4 Overview of different 3-round inbound phase techniques. 52

4.1 Software performance of Grøstl on current desktop processors. . 63
4.2 8-bit implementations of Grøstl on an ATMega163 processor. . . 63
4.3 MixBytes computation using temporary results. 69
4.4 MixBytes computation separated for factors 1, 2 and 4. 70

xi

List of Figures

1.1 Collisions, second-preimages and preimages of a hash function. . 2

2.1 Iterated hash function construction. 11
2.2 Block cipher modes to construct compression functions. 13
2.3 Compression function constructions of the SHA-3 finalists. . . . 15
2.4 The birthday effect. 17
2.5 A schematic view of the rebound attack. 29
2.6 Multiple inbound and multiple outbound phases 30

3.1 A minimum 4-round truncated differential trail. 40
3.2 Rebound attack on 7 rounds of AES. 42
3.3 Inbound phase using S-box matches. 43
3.4 Filtering for differential trails. 46
3.5 Rebound attack on 8 rounds of AES. 49
3.6 Inbound phase using SuperBox matches. 50
3.7 Inbound phase using non-full active SuperBox matches. 51

4.1 The compression function of Grøstl. 56
4.2 The output transformation of Grøstl. 57
4.3 One round of one Grøstl-256 permutation. 57
4.4 The AddRoundConstant transformation of Grøstl. 58
4.5 The SubBytes transformation of Grøstl. 58
4.6 The ShiftBytes transformation of Grøstl. 59
4.7 The MixBytes transformation of Grøstl. 59
4.8 Storing the Grøstl state in column-ordering. 65
4.9 Storing the Grøstl state in row-ordering. 67

5.1 Minimum truncated differential path for 7 rounds of Grøstl. . . 75
5.2 An 8-round truncated differential path for Grøstl. 76
5.3 Alternative truncated differential paths for Grøstl. 77
5.4 Inbound phase using S-box matches. 78
5.5 Inbound phase using SuperBox matches. 80
5.6 Outline of the compression function attacks on Grøstl. 83
5.7 Truncated differential path for the compression function. 84
5.8 Semi-free-start collisions for 7 rounds of Grøstl-256 (Path 1). . 86
5.9 Semi-free-start collisions for 7 rounds of Grøstl-256 (Path 2). . 87

xiii

xiv List of Figures

5.10 Inbound phase between P and Q. 88
5.11 Details of the inbound phase of the hash function attack. 89
5.12 Collisions for 3 rounds of Grøstl-256 (Path 1). 90
5.13 Collisions for 3 rounds of Grøstl-256 (Path 2). 91
5.14 Impossible path for the Grøstl-512 compression function. . . . 93
5.15 Possible path for the Grøstl-512 compression function. 93
5.16 Impossible path for the Grøstl-512 hash function. 93
5.17 Semi-free-start collisions for 6 rounds of Grøstl-512. 94
5.18 Collisions for 3 rounds of Grøstl-512. 96

6.1 Sparse 4-round truncated differential path of ECHO. 100
6.2 The two super-round transformations of ECHO. 101
6.3 Rebound attack on 5 rounds of the ECHO hash function. 106
6.4 Merging the inbound phases. 111
6.5 Rebound attack on 7 rounds of the ECHO compression function. 117

7.1 Overview of the compression funtion of Lane. 124
7.2 Pseudocode for the round transformations of Lane. 124
7.3 Outline of the rebound attack on Lane. 127
7.4 The inbound phase for Lane-256 and Lane-512. 128
7.5 The truncated differential path for 6 rounds of Lane-256. . . . 131
7.6 The truncated differential path for 8 rounds of Lane-512. . . . 137

A.1 An impossible truncated differential path for Grøstl-256. 146
A.2 Semi-free-start collisions for 7 rounds of Grøstl-256. 147
A.3 Semi-free-start collisions for 7 rounds of Grøstl-512. 148
A.4 Collisions for 4 rounds of Grøstl-256. 149
A.5 Inbound phase of the hash function in Grøstl-0. 149
A.6 Collisions for 5 rounds of Grøstl-512. 150
A.7 Truncated differential path between P and Q of Grøstl-0. . . . 151
A.8 Semi-free-start collisions for 7 rounds of Grøstl-0-256. 152
A.9 Collisions for 6 rounds of Grøstl-0-256. 153

Notation

List of Abbreviations

AES Advanced Encryption Standard
AES-NI Intel AES new instructions
ARM Advanced RISC Machine
DM Davies-Meyer mode of operation
MD Merkle-Damg̊ard
MP Miyagichi-Preneel mode of operation
MMO Matyas-Meyer-Oseas mode of operation
MMX Multi Media Extension
NEON ARM Advanced SIMD extension
NIST National Institute of Standards and Technology
SHA Secure Hash Algorithm
SSE Streaming SIMD Extensions
AVX Advanced Vector Extensions

List of Mathematical Symbols

a⊕ b exclusive-or (XOR) or bitwise addition modulo 2
a‖b concatenation of two strings
a+ b integer addition
|a| bit length of a variable a
truncn(a) truncation of a to its least significant n bits
GF (q) finite field (Galois field) of q elements
aT transposition of a matrix or vector a
a[i] the i’th element of vector a
a[i, j] the element in row i and column j of matrix a
a⊗ b Kronecker product of two matrices
a ./n b joining (merging) lists a and b on n equal bits
∆a XOR difference in variable a
∆a→ ∆b XOR differential from difference ∆a to difference ∆b
a→ b truncated differential from a active bytes to b active bytes

xv

1
Introduction

Historically, cryptography has been the art of hiding information. Secret in-
formation is usually protected using symmetric encryption algorithms such as
block ciphers or stream ciphers. Next to secrecy (confidentiality), three other
fundamental security goals are provided by cryptography: data integrity, authen-
tication and non-repudiation. In early years, it has been believed that encryption
algorithms can also provide data integrity and authentication, which is not the
case in general. For a detailed treatment of these security goals we refer to the
Handbook of Applied Cryptography [MvOV96].

In this thesis we analyze cryptographic hash functions. These primitives are
used to provide data integrity and authentication. More specifically, using cryp-
tographic hash functions, the problem of data integrity and authentication of a
long message can be reduced to that of a much shorter hash value. Instead of
protecting the integrity or authenticating the (sometimes) very long message,
only the hash value needs to be protected which is usually much more efficient.
Therefore, hash functions are used in a large number of applications and crypto-
graphic protocols. For example, when used with digital signatures only a short
hash value needs to be signed instead of the full message.

1.1 Cryptographic Hash Functions

Informally, a cryptographic hash function maps an (almost) arbitrary long mes-
sage to a fixed-length hash value. The hash value is sometimes also called mes-
sage digest, fingerprint or simply the hash of a message. For a hash function to
be secure it should not be possible to find two messages which result in the same
hash value, nor should it be possible to find a message for a given hash value.

1

2 Chapter 1. Introduction

More specifically, Merkle [Mer79] has defined three main security requirements
for hash functions: collision resistance, second-preimage resistance and preim-
age resistance. Figure 1.1 illustrates these requirements. Despite being secure,
a hash function should also be very efficiently computable.

?

?

{0, 1}∗

{0, 1}n

(a) Collision.

?

{0, 1}∗

{0, 1}n

(b) Second Preimage.

?

{0, 1}∗

{0, 1}n

(c) Preimage.

Figure 1.1: Collisions, second-preimages and preimages of a hash function H :
{0, 1}∗ → {0, 1}n.

The size of the hash value is usually denoted by n and the output space of
a hash function has therefore a size of 2n. Due to the compressing structure of
a hash function we cannot avoid messages which result in the same hash value.
For an ideal hash function with ideal security we can find (second-) preimages
by trying out about 2n input messages. Due to the birthday paradox, collisions
can be found using only 2n/2 distinct input messages. Therefore, common hash
sizes range between n = 128 and n = 512 bits. In this case, it is impossible to
find collisions or preimages by exhaustive search. Nevertheless, a hash function
is considered broken if these ideal requirements are not met.

1.2 Cryptanalysis of Hash Functions

Although some provable secure hash function constructions have been published
[CLS06, DKT08], the security of all commonly used cryptographic hash func-
tions can not be proved. Provably secure hash functions are based on hard
mathematical problems and are usually not efficiently computable. Most com-
monly used and fast hash functions are ad-hoc designs. For these hash functions,
the security is based on extensive, years-long cryptanalysis without breaking a
design.

Cryptanalysis is the science of analyzing cryptographic primitives. It is very
closely related to cryptology, the design and construction of cryptographic prim-
itives. Newly proposed designs are getting analyzed for a long period of time in
which new cryptographic attacks are invented. If these attacks can break many
designs, new primitives are proposed to resist all known attacks. This game
continues while both the cryptographic primitives and attacks evolve over time.
In the following, we give a brief history of a commonly used hash function design
family.

1.3. The NIST SHA-3 Competition 3

Today’s most popular hash functions have originated from the MD4 fam-
ily of hash functions. These designs are based on the three simple operations
ADD, ROTATE and XOR (ARX), which are repeated for a large number of
rounds. The first member of this family, MD4 [Riv92a] was proposed by Rivest
in 1990 and weaknesses have been found already one year later by den Boer and
Bosselaers in [dBB91], and later by Dobbertin in [Dob96a, Dob98]. Shortly after
MD4, Rivest proposed a strengthened version MD5 [Riv92b] in 1991. Both hash
functions have a rather small hash value size of 128 bits. Also for MD5, small
weaknesses have been found early by den Boer and Bosselaers in [dBB93] and
Dobbertin in [Dob96c]. Despite these weaknesses, both MD4 and MD5 could
not be broken for a surprisingly long time (until 2004) and MD5 is still used in
many applications.

Probably due to these early discovered weaknesses and the small hash size,
the National Institute of Standards and Technology (NIST) proposed a new
Secure Hash Algorithm SHA-0 (initially called SHA) in 1993 [Nat93]. Two years
later, a strengthened version SHA-1 was published and standardized [Nat95]. In
these two hash functions, the hash size has been increased to 160 bits. The first
results on SHA-0 have been published by Chabaud and Joux in 1998 [CJ98].
In this work, new techniques and a collision attack on the full SHA-0 with a
complexity of 261 has been published. It took 6 more years to improve this attack
and apply it also to other hash functions. In the meanwhile, NIST proposed
another new ARX-based hash function family SHA-2 with hash sizes between
224 and 512 bits.

At the Crypto 2004 rump session, Wang et al. suddenly announced practical
collisions for MD4 [WLF+05], MD5 [WY05] and SHA-0 [WYY05c], as well as
a collision attack with complexity 269 for SHA-1 [WYY05b]. Wang et al. have
used several new and powerful techniques to break these hash functions. After
publishing their ground-breaking attacks, a run on hash function cryptanalysis
has been started. The results of Wang et al. have been improved, extended and
applied to other hash functions in many publications. However, a practical colli-
sion (a real colliding message pair) is still missing for the full SHA-1. Currently,
the claimed complexity is about 263 [WYY05a] and practical collisions have been
published for 73 out of 80 steps [Gre10].

For SHA-2, (practical) collision attacks are still known on only 24 out of 64
steps [IMPS09, SS08]. Furthermore, theoretical preimages for 43 out of 64 steps
can be constructed for SHA-256 with a very high complexity of 2254.9 [AGM+09].
Nevertheless, it is possible that an extension of the attacks of Wang et al. can
also be used to break SHA-2 in the near future. Therefore, NIST decided this
time to find the next SHA-3 standard using an open competition, similarly to
the AES competition.

1.3 The NIST SHA-3 Competition

In 2007, the National Institute of Standards and Technology (NIST) announced
a public competition to develop a new cryptographic hash function standard

4 Chapter 1. Introduction

SHA-3. [Nat07b]. The new SHA-3 should replace SHA-1 and be used in ad-
dition to SHA-2. The competition is held similarly to the AES competition,
in which Rijndael [DR99a] was selected as the new block cipher standard AES
[Nat01]. The deadline for submissions was October 31st, 2008 and the minimum
requirements have been published in [Nat07a]. The main concern is of course
security, but the future SHA-3 standard should also be as fast as SHA-2 on most
current and future platforms to get a high acceptance rate in industry.

NIST received 64 submissions and some hash functions have been broken
quickly, the first one already within 24 hours [Wil08]. 51 candidates have been
selected for Round 1 in December 2008 [Nat08] and the cryptographic commu-
nity has published many new and interesting attacks on these hash functions
since then. At the end of Round 1, about one half of the candidates were bro-
ken or serious weaknesses were found. To focus the cryptanalysis effort on a
small number of candidates, NIST selected 14 SHA-3 candidates to advance into
Round 2 in July 2009 [Nat09].

Among these 14 Round 2 candidates many different design strategies are
present. Some designs are ARX-based or AES-based, or use small 4-bit S-
boxes or Boolean functions. There are block cipher-based and permutation-
based hash functions with very different properties and requirements for their
building blocks. The 14 Round 2 candidates are Blake, Blue Midnight Wish,
CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-
3, SIMD and Skein. Some of these hash functions have been analyzed thoroughly
and for others almost no results have been published. At the end of Round 2,
no remaining candidate has been broken or has shown really serious weaknesses.
Most results have been published only on building blocks and only in some cases
round-reduced hash function attacks have been shown.

Nevertheless, NIST had to reduce the number of candidates further and has
chosen 5 finalists in December 2010 [Nat10]. The finalists are Blake [AHMP11],
Grøstl [GKM+11], JH [Wu11], Keccak [BDPV11b] and Skein [FLS+11]. At the
beginning of Round 3, small tweaks were allowed and for all finalists changes
have been made. NIST did not choose candidates with questionable security
nor really slow hash functions. Furthermore, NIST tried to choose a balanced
set of finalists such that a single new attack is not likely to break many of the
finalists. Small tweaks on the finalists were allowed and after another year of
focused analysis, NIST intends to choose the final SHA-3 algorithm in the middle
of 2012 and standardize SHA-3 at the end of 2012.

For an overview of all publicly known SHA-3 candidates and cryptanalysis
results we refer to the SHA-3 Zoo 1 which is maintained by the ECRYPT II
project. Since a good future SHA-3 standard should also have good performance,
automatic software benchmark are given through the eBASH framework 2 of the
ECRYPT II project. Everybody can submit new optimized code for any SHA-3
candidate which will then be benchmarked on a large number of machines.

1http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
2http://bench.cr.yp.to/ebash.html

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://bench.cr.yp.to/ebash.html

1.4. Outline of this Thesis 5

1.4 Outline of this Thesis

In Chapter 2, we give a more detailed definition of cryptographic hash functions
and their specific requirements. The main security requirements are collision
resistance, second preimage resistance and preimage resistance. Moreover, newly
design hash functions should behave similar as a random oracle. Next, we discuss
different hash function and compression function constructions based on block
ciphers and permutations. We continue with an overview of different round-
reduced hash function and building block attacks and generic attack methods on
hash functions. Since the main focus of this thesis is on differential cryptanalysis,
we also give a brief introduction to this important topic. Finally, we give a high-
level and general description of the rebound attack which will be used in the
attacks of the subsequent chapters.

In Chapter 3, the rebound attack is applied to the Advanced Encryption
Standard (AES) in the known key setting. After a description of the AES, the
basic differential properties of the round transformations are recalled. Next,
differential properties of combined round transformations, the wide-trail design
strategy and minimum truncated differential path are given for the AES state
update. We first describe the basic rebound attack in detail and then, show
how to improve the complexity and extend the number of rounds of the rebound
attack. We also describe different time-memory trade-offs and summarize all
known techniques at the end of the chapter.

In Chapter 4, we give a detailed description of the SHA-3 finalist Grøstl.
Then, we briefly discuss the security of the hash function Grøstl, its compres-
sion function construction and the underlying AES-based permutations. Fur-
thermore, we describe three different techniques to get efficient software imple-
mentations of Grøstl. Using byte-slicing, the Intel AES-NI instruction and a
minimum number of XORs for the MixBytes computation, we show how to get
the fastest known implementation of Grøstl so far. We summarize the chapter
with ideas on future work to improve the software speed of Grøstl.

The rebound attack is applied to the Grøstl hash function in Chapter 5.
Since the rebound attack was invented during the design of Grøstl, the results
are limited to collision attacks on 6 out of 10 rounds of the compression function
and 3 out of 10 rounds of the hash function. We first describe the rebound attack
on the Grøstl permutations and show how to apply it to the compression and
hash function. We give results for both Grøstl-256 and Grøstl-512, and finally,
discuss the rebound attack on Grøstl-0, the initial submission of Grøstl without
tweak.

In Chapter 6, we analyze the AES based Round 2 candidate ECHO in detail.
AES rounds are used inside AES rounds in two levels. The large state and this
structure allows to separate the workload of the rebound attack into several
independent parts. We use multiple inbound and multiple outbound phases
the get collision attacks on 5 out of 8 rounds on the ECHO hash function and
distinguishers for 7 out of 8 rounds of the ECHO compression function.

In Chapter 7, we show compression function collisions for the full 6 round
compression function of the Round 1 candidate Lane. Lane is a permutation-

6 Chapter 1. Introduction

based hash function with 6 parallel AES based permutations and a linear message
expansion. Since the AES round transformations are directly used in permuta-
tions with a larger size than the AES state, the diffusion is not optimal. Similar
as in the case of ECHO, a rebound attack with multiple inbound phases and
outbound phases can be applied. However, until today no hash function attack
on Lane has been published.

In Chapter 8, we give a brief summary of the rebound attacks on AES based
hash functions covered in this thesis and on other AES based hash functions.
We also discuss in which cases multiple inbound or multiple outbound phases
are possible. Since the same attack strategy also applies to other hash function
designs, we briefly discuss this extension. Finally, we discuss open problems,
future work and further interesting research directions.

1.5 Main Contributions

In this thesis we describe parts of the work done by the author during his PhD
studies. The main contribution has been made in the cryptanalysis of AES based
hash functions with a focus on SHA-3 candidates. Prior to the work shown in
this thesis, only a few attacks on AES based hash functions were known. An
example is the attack on the hash function proposal Grindahl [Pey07]. With
the publication of the rebound attack in [MRST09], the cryptanalysis of AES
based hash functions has made a major step forward. Subsequent improvements
have been made to the rebound attack which resulted in the best known attacks
on the SHA-3 candidates Grøstl [MRST10], ECHO [Sch10a, Sch10b] and LANE
[MNPN+09]. Additionally, the ISO standard Whirlpool [LMR+09] has been
analyzed, as well as the AES based SHA-3 candidates SHAMATA [IMPS09],
SHAvite-3 [GLM+10], Twister [MRS09a] and the AES block cipher in the known
key setting [MPRS09].

In parallel, also the cryptanalysis of ARX based hash functions has been im-
proved. Early work on MD4 [SO06, Sch06] has been applied to the hash function
proposal Lake in [MS08b], which is a predecessor of the SHA-3 finalist BLAKE.
Furthermore, the differential path search techniques of De Cannière and Rech-
berger [DR06b] have been applied to get new results on MD5 in [MRS09b].
These automatic path search tools have been improved, extended and are cur-
rently used to attack SHA-2 and the remaining ARX based SHA-3 finalists.
While good (truncated) differential paths and attacks can be constructed by
hand for AES based designs, automatic tools are needed for ARX designs. As
already shown in the case of SHA-1, the development of these tools takes many
years and will hopefully lead to results on SHA-3 finalists before the competition
is finished.

Additionally, the author has also contributed to the analysis of the following
SHA-3 candidates. For Sarmal, attacks on the construction have been shown
[MS08a]. Practical collisions have been published for Boole in [MNS09] and
collisions for the 3-bit S-box based hash function TIB3 in [MS09]. Attacks on
building blocks of the 4-bit S-box based Round 2 candidates Hamsi and Luffa

1.5. Main Contributions 7

are given in [AKK+10] and [KNPRS10]. Most of the results have been published
at international conferences.

The author was also involved in the design of the hash function Grøstl
[GKM+11] which was selected as one of the 5 finalists in the SHA-3 competition.
Grøstl is one of those SHA-3 candidates which have been analyzed most exten-
sively. This is due to the early cryptanalysis results of the design team which has
been extended by external cryptanalysis. Additionally, the fastest known Grøstl
implementation has been developed in [RS11] using the Intel AES-NI instruction
and new optimized implementation techniques.

Finally, also the provable side-channel resistant threshold implementation
technique of Nikova et al. [NRR06] has been analyzed and improved. In [NRS08],
the first formulas for the glitch-free and efficient implementation of a block cipher
have been shown. The results have been extended and published in the Jour-
nal of Cryptology [NRS11] which led to increasing interest in the side-channel
community. In the meanwhile, very secure threshold implementations have been
published by other groups for the block cipher Present [PMK+11] and AES
[MPL+11].

2
Analysis of Cryptographic Hash

Functions

In this chapter, we give a brief introduction to cryptographic hash functions,
discuss their requirements and provide some important attack strategies. In
Section 2.1, we define cryptographic hash functions and discuss their main se-
curity requirements. Furthermore, we present the most commonly used design
strategies for hash functions and compression functions, and discuss attacks on
these important building blocks. In Section 2.2, we provide some generic attack
methods which can be applied to any hash function.

Probably the most powerful attacks on hash functions are differential attacks.
Wang et al. have broken MD5 and SHA-1 using differential attacks and also the
main focus of this thesis are differential attacks. Therefore, we give a detailed
introduction to this powerful tool for the analysis of cryptographic primitives in
Section 2.3. Finally, in Section 2.4 we describe a new tool for the differential
analysis of cryptographic hash functions, the rebound attack [MRST09]. Using
the rebound attack, especially the cryptanalysis of AES-based hash functions
has been improved significantly in recent years [MPRS09, LMR+09, MNPN+09,
GP10, MRST10, Pey10, SLW+10, ITP10].

2.1 Cryptographic Hash Functions

A hash function H : {0, 1}∗ → {0, 1}n maps an input message M of arbitrary
length to a fixed-length hash value h = H(M) of size n. A cryptographic hash
function should be efficiently computable and each hash value or fingerprint h
should be a unique and randomly looking representation of the input message.

9

10 Chapter 2. Analysis of Cryptographic Hash Functions

In Section 2.1.1 we give a more detailed treatment of the security requirements
of a cryptographic hash function.

The first informal definitions of cryptographic hash functions have been given
in [Rab78, Mer79] and at the beginning, mainly block ciphers have been used
to construct hash functions (for more details we refer to [Pre93]). With the
design of the very fast and thus, very popular hash functions MD4 [Riv92a] and
MD5 [Riv92b], cryptographic hash functions have been used more extensively in
various areas of information security. Hash functions are used for data integrity,
message authentication, digital signatures, password protection, pseudo-random
number generation, key derivation, malicious code detection, for the construc-
tion of block ciphers and stream ciphers and in many other applications and
cryptographic protocols.

In the last 30 years, constructions and requirements of cryptographic hash
functions have changed. Especially during the NIST SHA-3 competition
[Nat07b], a large number of new hash function designs with different require-
ments have been proposed. In the following sections, we first discuss the security
requirements of hash functions and show some common construction methods for
hash functions. We also discuss compression functions, a main building block
of (almost) every hash function. Finally, we show and discuss some common
attacks on the underlying building blocks of hash functions and compression
functions.

2.1.1 Main Security Requirements

Since cryptographic hash functions are used in so many diverse applications,
many different properties are expected. Historically, the following three main
security requirements have evolved (for a more formal treatment of these and
related requirements we refer to [RS04]):

� Collision resistance: it should be computationally infeasible to find two
messages M and M ′ with M 6= M ′, which result in the same hash value
H(M) = H(M ′).

� Second preimage resistance: for a given message M , it should be compu-
tationally infeasible to find a second message M ′ with M 6= M ′, which
results in the same hash value H(M) = H(M ′).

� Preimage resistance: for a given hash value h, it should be computationally
infeasible to find any message M , which results in the given hash value
H(M) = h.

These three requirements are usually set in relation to the bit length n of the
hash value h. For any hash function, we can always find preimages or second
preimages by trying out approximately 2n random input messages. Finding col-
lisions requires only 2n/2 calls to the hash function due to the birthday paradox
(see Section 2.2.1). Therefore, the hash size n is usually chosen large enough
to make such generic attacks computationally infeasible. Since these generic

2.1. Cryptographic Hash Functions 11

attacks work for any function, a cryptographic hash function is said to be ideal
(regarding these three requirements) if the generic bounds are met.

Unfortunately, these three requirements are not enough for a cryptographic
hash function to be secure in any application. For example, length extension
attacks and also near-collisions [MvOV96] are possible, even if these requirements
are met. There are several other important properties. To cover them all, the
random oracle model has been introduced in [BR93]. A random oracle is a
function which outputs a random hash value for any new input message. If
the same message is used again, it outputs the previously used corresponding
hash value. Due to the limited internal state of a practical hash function it
can never be a random oracle. However, it should be infeasible to distinguish a
cryptographic hash function from a random oracle up to the generic bound for
any attack.

2.1.2 Hash Function Constructions

Almost every commonly used hash function is based on some kind of iterated
construction. A different, rarely used method to construct hash functions is
the tree-based construction [Mer80]. In general, any hash function construction
needs to make calls to some compression function f which maps a finite length
input of size v to a finite length output of size w with v ≥ w. Figure 2.1 shows
an iterated hash function construction using the same compression function call
in each iteration. In each compression function call, a small part of the message
Mi is used as an input and compressed into a chaining value Hi. Iterated hash
functions also consist of a final output transformation g. The output transfor-
mation could be the identity function, a simple truncation from w to n bits, or
something more complicated like one or many compression function calls.

f

M1
(s,ci,ti)

f

M2
(s,ci,ti)

f

M3
(s,ci,ti)

f

Mt
(s,ci,ti)

IV
w w n

g H(M)

Figure 2.1: Iterated hash function construction.

More formally, let H : {0, 1}∗ → {0, 1}n be an iterated hash function based
on a compression function f : {0, 1}v → {0, 1}w and an output transformation
g : {0, 1}w → {0, 1}n. Then, we split the message M into t equally sized
message blocks M1||M2|| . . . ||Mt of size m. To ensure that the message length is
a multiple of m, an unambiguous padding rule is applied to M . Sometimes, other
additional inputs to the compression function are used in iterated constructions
such as a salt s, counter ci or tweak input ti. Then, the hash value h = H(M)

12 Chapter 2. Analysis of Cryptographic Hash Functions

is computed as follows:

H0 = IV

Hi = f(Hi−1,Mi, ci, ti, s) for 1 ≤ i ≤ t (2.1)

h = g(Ht).

The w-bit intermediate variable Hi is called the chaining value and is initialized
with a predefined initial value IV . Together, all inputs to the compression
function have size v and if no salt, counter and tweak input is used, we have
v = m+ w.

The security of such an iterated hash function depends on the bitsize w of
the intermediate chaining values Hi, on the security of the compression function
f and on the output transformation g. Informally, we need a more secure com-
pression function for smaller chaining values, but at least w ≥ n to avoid trivial
(collision) attacks. The most commonly used strategy is the Merkle-Damg̊ard
design principle [Dam89, Mer89]. In this case, the chaining value can be as small
as the final hash size (w = n) but the compression function should be designed
more securely. To be more precise, the Merkle-Damg̊ard reduction proof states
that if a compression function is collision resistant, also the resulting iterated
hash function is collision resistant. The Merkle-Damg̊ard strengthening [LM92]
further requires that the length of the message is included in the padding and
the initial value IV is fixed to some predefined constant to avoid some simple
long-message attacks [LM92, Win84] and fixed-point attacks [Pre93].

The Merkle-Damg̊ard design principle still has some non-ideal properties
for chaining values of size w = n without output transformation. The most
important weaknesses are the length extension property [Dam89, Mer89], mul-
ticollision attacks [Jou04], long message second-preimage attacks [KS05] and
herding attacks [KK06]. In recent years, many proposals and extensions to the
Merkle-Damg̊ard construction have been made to reduce these problems. Some
examples are wide-pipe constructions [Luc05] which increase the chaining value
size to w > n such as Chop-MD [CDMP05], the HAIFA framework [BD07]
which includes additional inputs (salt, counter) to the compression function, or
the ROX [ANPS07] and EMD [BR06] construction, which are multi-property
preserving constructions [CDMP05].

Another approach is to increase the size of the internal chaining value even
further to w > 2n. In this case, the compression function is allowed to be
invertible and does not need to be collision resistant anymore. The security
and reduction proofs are based on the large size of the chaining value and other
(ideal) properties of the compressing part of the hash function. Bertoni, Daemen,
Peeters, and Van Assche have defined and formalized the sponge construction
[BDPV07, BDPV08]. In that work, also reduction proofs for the sponge con-
struction are given. For example, the construction cannot be distinguished from
a random oracle if the underlying permutation is a random permutation.

2.1. Cryptographic Hash Functions 13

2.1.3 Compression Function Constructions

We can classify compression function constructions into three main categories:
block cipher based, dedicated compression functions and permutation based.
Historically, the majority of constructions have been block cipher based. In
recent years, permutation-based designs have gained more attention, for example
to reduce the effectiveness of message modification through a key schedule.

2.1.3.1 Block Cipher-Based Constructions

At the beginning, compression functions have been constructed from block ci-
phers. There are many good reasons to base a compression function on a block
cipher. For example, block ciphers are well studied cryptographic primitives
and very good implementations for various block ciphers exist. Also if a block
cipher has already been implemented for a device or in an application, a block
cipher-based hash function can be added to the system with very little addi-
tional costs. Preneel et al. [PGV93] have systematically analyzed the security of
different single-length constructions, turning a block cipher into a compression
function. Later, Black et al. [BRS02] published security proofs in the ideal cipher
model [Bla06]. The three most frequently used modes are Davies-Meyer (DM),
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) [MvOV96] which are
shown in Figure 2.2. Recently, the new UBI mode of operation to construct a
provable secure compression function was used in Skein [FLS+11], one of the five
SHA-3 finalists (see Figure 2.3e).

Hi−1 Hi

Mi

E

f

(a) Davies-Meyer.

Mi Hi

Hi−1

E

f

(b) Matyas-Meyer-Oseas.

Mi Hi

Hi−1

E

f

(c) Miyaguchi-Preneel.

Figure 2.2: Three main block cipher modes to construct compression functions.

2.1.3.2 Dedicated Constructions

One drawback in constructing hash functions from (standard) block ciphers is
that usually, the block size of a block cipher needs to be quite large to avoid
finding collisions in less than 2n/2. For this and other efficiency reasons, ded-
icated hash functions have been designed. The most important ones are the
members of the MD-family, such as MD5 [Riv92b], SHA-1 [Nat95] and SHA-2
[Nat02], but also Whirlpool [BR00] and Tiger [AB96]. Although these hash
functions are called dedicated hash functions they are actually also based on a
special, sometimes weaker, block cipher. The most commonly used construction

14 Chapter 2. Analysis of Cryptographic Hash Functions

is Davies-Meyer since it allows different chaining value and message block sizes.
Also BLAKE [AHMP11], one of the five SHA-3 finalists can be considered as a
dedicated hash function based on a weak block cipher (see Figure 2.3a).

2.1.3.3 Permutation-Based Constructions

In parallel, compression function (or hash function) constructions based on per-
mutations have evolved to reduce the influence of a key schedule. The most revo-
lutionary construction is the already mentioned sponge construction [BDPV07].
In this case the “compression function” consists only of one large invertible
permutation. The security is not based on an ideal compression function, but
on an ideal permutation together with a large chaining value size of w > 2n
[BDPV08]. The SHA-3 finalist Keccak [BDPV11b] is such a sponge function
and its compression function is shown in Figure 2.3d.

There are very detailed requirements for the sponge construction and many
recently proposed hash functions do not fulfill these requirements. There-
fore, these hash functions are called sponge-like constructions. Some exam-
ples of sponge-like functions which use their own constructions are Radiogatún
[BDVP06], Grindahl [KRT07], Fugue [HHJ09] and Cubehash [Ber09]

Recently, other constructions with provable properties which are based on a
small number of ideal permutations have been published in [RS08, Sta08, FSZ08].
One such construction with two permutations has been used in the SHA-3 fi-
nalist Grøstl [GKM+11] (see Figure 2.3b). Many other permutation-based or
sponge-like constructions have been proposed shortly before or submitted to
the SHA-3 competition. The fifth remaining SHA-3 finalist JH [Wu11] (see
Figure 2.3c) or the second round candidates Luffa [DSW08] are other exam-
ples of permutation-based compression functions. Furthermore, we will analyze
two more permutation-based SHA-3 candidates, ECHO [BBG+08] and LANE
[Ind08], in detail in Chapter 6 and Chapter 7.

2.1.4 Reduced Hash Function and Building Block Attacks

For most commonly used or newly designed hash functions it is not possible
to attack the full function. Therefore, it is common to analyze round-reduced
variants or even just isolated building blocks of a hash function.

2.1.4.1 Round-Reduced Hash Function Attacks

Most commonly, the number of rounds of a hash function is reduced and this
variant is analyzed according to its collision or (second-) preimage resistance.
Everything else in the hash function is kept the same. However, it is almost
impossible to estimate how the round-reduced results extend to the full-round
version. It depends very much on the design and it is very difficult to compare
round-reduced attacks of different hash functions. Nevertheless, one requirement
of the NIST SHA-3 call [Nat07a] is a tunable security parameter and almost

2.1. Cryptographic Hash Functions 15

Hi−1
Hi

Mi

n

m

n2n 2n

cnt, salt

E

f

(a) Blake.

Hi−1 HiP

QMi

f

2n

2n 2n

(b) Grøstl.

Hi−1 Hi

Mi

m

m

m

m

m

(≥ 2n)

P

f

(c) JH.

Hi−1

c
(≥ 2n)

r

r

c

r
Hi

Mi

P

f

(d) Keccak.

Hi−1 Hi

Mi
m

n n
E

tweak

f

(e) Skein.

Figure 2.3: Schematic view on the iterated compression function of the five
SHA-3 finalists. The main building blocks are either a block cipher E or 1-2
permutations P , Q. Other parts of the construction are XORs (⊕) and concate-
nations ||.

every submitted hash function provides an easy way to reduce (or increase) the
number of rounds in the hash function.

2.1.4.2 Compression Function Attacks

The existence of proofs which reduce properties of the hash function to prop-
erties of the compression function has directed the cryptanalytic attention to
the compression function as well. Especially, the collision resistance is an inter-
esting target due to the reduction proof of Merkle and Damg̊ard. However, a
collision attack on the compression function rarely leads to a collision attack on
the hash function, especially for wide-pipe constructions. In this sense, (second-)
preimage attacks on a single-pipe compression function (w = n) could be more
important since the attack can often be extended to the hash function as well
[LM92]. On the other hand, preimage and collision attacks for the compression
function of sponge constructions are trivial due to the invertible permutation
and usually not important due to the large chaining value (w > 2n).

The impact of a compression function attack can be measured by the size of
the chaining value, and by the number of bits fixed in the input chaining value
due to the attack. If many bits are determined by the attack, an extension to
the hash function gets more difficult. For collision attacks, two main types of
compression function attacks are considered: semi-free-start collision attacks and
free-start collision attacks [LM92] (for an overview on additional types we refer

16 Chapter 2. Analysis of Cryptographic Hash Functions

to [Rec09]). In free-start collision attacks, both the messages and the chaining
values are allowed to be different and we have f(Hi−1,Mi) = f(H∗i−1,M

∗
i). In

semi-free-start collision attacks, both chaining values need to be equal and we
have f(Hi−1,Mi) = f(Hi−1,M

∗
i). Note that semi-free-start collision attacks are

more difficult attacks and also not trivial for sponge or sponge-like constructions.
Additionally, near-collisions or other distinguishers of the compression func-

tion can be of some interest. Some hash function designs use proofs which require
an ideal compression function. In turn, many (recent) cryptanalytic attempts
are to distinguish a compression function from an ideal compression function.
However, for many newly designed hash functions and SHA-3 candidates near-
collisions or distinguishers of the compression function are less import. The out-
put transformation (or a subsequent compression function call) destroys these
properties and the used proofs do not require an ideal compression function.

2.1.4.3 Attacks on other Building Blocks

Recently, the focus on analyzing hash functions has been moved from the round-
reduced hash function to the (round-reduced) compression function and further
to other (round-reduced) building blocks. One of the main reasons is the short
amount of time to analyze candidates submitted to the NIST SHA-3 competition.
Another reason are security claims of the designers or once more security proofs
which base properties of the hash function on properties of the underlying low-
level building blocks. Furthermore, the cryptanalysis of building blocks may
provide additional insights for the analysis of the compression function or hash
function.

Different hash function constructions have different requirements on their
building blocks. For some designs [BBG+08], the permutation is allowed to
be non-ideal but the compression function should be ideal. For other designs
[GKM+11], the opposite might be the case. For permutation-based designs, the
permutation is usually tried to be distinguished from an ideal permutation. If
a block cipher is the basic building block, standard block cipher attacks, but
also known-key, chosen-key or related-key attacks are applied. However, in most
cases such attacks on building blocks do not lead to attacks on higher-level
building blocks or on the hash function. Also the complexity of an attack needs
to be considered. A permutation distinguisher with a complexity of 21200 can
never be a problem for a 256-bit hash function (for a proof see [BDPV11a]).
However, it may serve as an additional assurance for the security of a design if
no distinguisher or attack below 2n is possible for its building blocks.

2.2 Generic Attack Methods

In this section we describe three important attack methods on hash functions
or parts of hash functions. These methods are also used extensively in the
rebound attacks on the three AES-based hash functions Grøstl [GKM+11],
ECHO [BBG+08] and LANE [Ind08] of Chapter 5, 6 and 7.

2.2. Generic Attack Methods 17

2.2.1 Birthday Attack

The birthday attack can be used to find collisions with an optimal complexity of
2n/2 for any function f with output size n. In more detail, choosing N randomly
distributed, distinct inputs to the function f , the probability that two outputs
are equal and collide can be approximated by [FO89]:

P(N) ≈ 1− e− N2

2n+1 . (2.2)

The resulting function P(N) is shown in Figure 2.4. To find a collision with a
probability of at least P(N) >= 50% for a function f with n-bit output size, we
need to evaluate f about

N ≈
√

2 · ln 2 · 2n
2

times. In the remainder of this thesis, we will usually omit the constant factor
and use the asymptotic complexity Θ(2n/2) or simply 2n/2 instead.

N

P(N)

n
4

n
2

3n
4

0%

25%

50%

75%

100%

Figure 2.4: The probability to get a collision for 2n = 365.

A straightforward implementation [Yuv79] of the birthday attack chooses
random inputs xi for f(x), computes f(xi) and stores the results in a sorted list
L. If a result f(xi) is already a member of the list L, we have found a collision.
To avoid the additional complexity of sorting the list L, we can use a hash table
(or another appropriate data structure) to find entries in L efficiently. The time
complexity of this implementation of the birthday attack is 2n/2 evaluations of
the function f . The memory complexity is determined by the size of the list L
which is also 2n/2.

The memory complexity of the birthday attack can be reduced significantly
using cycle finding algorithms [QD89a]. In this case, the output of one function
call is used as an input to the next call using

xi+1 = g(f(xi)),

18 Chapter 2. Analysis of Cryptographic Hash Functions

where g is a function mapping an n-bit output of f to a suitable input of f
(usually the identity function is used for g). For example, using Floyd’s cycle
finding algorithm [Flo67, Knu81], the time complexity increases only by a con-
stant factor and we still get Θ(2n/2). The memory requirements are negligible.
The drawback of this variant is that the inputs to f are determined by the cycle
finding algorithm and cannot be chosen by the attacker, computed in advance
or in parallel.

Another variant of the birthday attack can be implemented efficiently in
parallel on c processors using distinguished points [vOW94, vOW99]. On each
processor, a memory less variant of the birthday attack with a different starting
point is computed. A small number of distinguished points are used to detect
collisions on the different processors. The memory requirements, except for using
c processors, are negligible and the time complexity reduces to 1

c · 2n/2.

2.2.2 Meet-in-the-Middle Attack

The meet-in-the-middle attack is a variant of the birthday attack using two
different and independent functions f1 and f2 with output size n. The goal is to
find inputs to these functions such that their outputs are equal:

f1(x1) = f2(x2)

Using a birthday attack, we get a time complexity of approximately 2n/2 evalu-
ations of f1 and f2 with memory requirements of 2n/2.

The attack can be implemented by first computing about 2n/2 outputs for
f1 and storing the results in a list L (sorted or using a hash table). Then, about
2n/2 outputs for f2 are computed and compared with the entries in L. If a value
exists already in L, a collision between f1 and f2 has been found. Also for this
meet-in-the-middle attack memoryless variants with birthday complexity exist
[QD89b]. Furthermore, if the complexity of evaluating f1 and f2 are different,
an unbalanced meet-in-the-middle attack can be used [LM92] to optimize the
overall complexity.

2.2.3 Merging Lists

The previous attacks can be used to efficiently merge two lists to find elements
which are common in both lists. We define a merge operation ./ on two lists
L1 and L2 such that L12 = L1 ./ L2 gives all these common elements (also see
[Wag02]). There are several known efficient algorithms to compute the merge
operation, for example by sorting the lists or using hash tables. Furthermore,
if L1 and L2 can be generated online by some functions f1 and f2, only the
smaller of the two lists needs to be stored in memory. Assuming |L1| < |L2| we
only store the output (and corresponding input) values of f1 in list L1. Then,
we can compute the output values for the second list L2 using f2 and check for
matching entries in L1 (and store the results in a new list L12 if needed).

Let truncl(x) be the truncation to the least significant l bits of x. Then, we
can define a merge operation L1 ./l L2 to denote that only the l least significant

2.2. Generic Attack Methods 19

bits of xi ∈ L1 and yi ∈ L2 need to be equal. Note that we can match on any
l bits by reordering the bits of each value accordingly. Two randomly chosen
values from the two lists are equal on l bits with a probability of Pl = 2−l.
Assuming that L1 has 2r entries and L2 has 2s entries, the expected number of
solutions of L12 = L1 ./l L2 is given by

|L12| ≈ |L1| × |L2| × Pl = 2r × 2s × 2−l = 2t. (2.3)

and the needed time and memory complexity is given by the following Lemma:

Lemma 2.1 (Merging Lists). Let L1 and L2 be two lists of size |L1| = 2r

and |L2| = 2s. Then, the complexity to compute and store all 2t solutions of
L12 = L1 ./l L2 with 2t = 2r+s−l is given as follows:

time: max(2r, 2s, 2t) memory: max(min(2r, 2s), 2t))

using 2r evaluations of f1 and 2s evaluations of f2.

We get the minimum overall time complexity for r = s. If t > r, s we get 2t

solutions with a complexity of 2t, which corresponds to an average complexity of
1. If we do not need to store the solutions in L12, the memory requirements are
given by min(2r, 2s). For example, this is the case if the solutions of L1 ./l L2

are used immediately to merge with another list.

2.2.4 Generalized Birthday Attack

The birthday problem can be generalized to the k-sum problem which is defined
as follows:

Definition 2.1 (k-sum problem [Wag02]). Given k lists L1, . . . , Lk of ele-
ments drawn uniformly and independently at random from {0, 1}n, find x1 ∈
L1, . . . , xk ∈ Lk such that x1 ⊕ x2 ⊕ · · · ⊕ xk = 0.

If the number of all elements |L1| · |L2| · · · · · |Lk| is greater than 2n, there
exists a solution with good probability. By balancing the lists to have size 2n/k,
one might expect that a solution to the k-sum problem can be found efficiently
with a complexity of k · 2n/k. Unfortunately, no generic algorithm is known to
solve the k-sum problem with that complexity for k > 2. Note that for k = 2,
the k-sum problem is the birthday problem and can be solved using the birthday
attack with an optimal complexity of 2n/2.

In [Wag02], Wagner describes a generalized birthday attack with time com-
plexity 2n/(1+lg k) and memory requirements of k · 2n/(1+lg k), if k is a power of
2. Similarly as for the birthday attack, we can start the attack with larger lists
to get more solutions with a lower average complexity. If we start with k lists of
size α · 2n/(1+lg k), we get α1+blg kc) solutions to the k-sum problem with a total
complexity of α · 2n/(1+lg k) in time and memory. For α > 2n/(blg kc)·(1+blg kc)

the complexity increases due to the larger sizes of the intermediate lists but for
α ≥ 2n/(1+lg k), the average complexity to find one solution is 1.

20 Chapter 2. Analysis of Cryptographic Hash Functions

In the following, we briefly describe the attack for k = 3. We start with 4
lists L1, L2, L3, and L4 of size 2n/3. Then, we search for all entries in L1 and L2

which match on e.g. the last n/3 bits and store the XOR of the matching values
in a new list L12. Note that this corresponds to merging two lists as shown in the
previous section. We repeat the same for lists L3 and L4 and store the results
in L34. Finally, we need to find a match on the remaining 22n/3 bits using the
two lists L12 and L34 of size 2n/3. To summarize, we have 3 merge operations
and get the following number of results:

L1 ./n
3
L2 : 2

n
3 × 2

n
3 × 2−

n
3 = 2

n
3

L3 ./n
3
L4 : 2

n
3 × 2

n
3 × 2−

n
3 = 2

n
3

L12 ./ 2n
3
L34 : 2

n
3 × 2

n
3 × 2−

2n
3 = 1.

Using Lemma 2.1, the total complexity is 2n/3 in time and memory. If we
increase the size of the initial lists to 2n/2 we can find 2n/2 solutions with a time
and memory complexity of 2n/2, or with an average complexity of 1:

L1 ./n
2
L2 : 2

n
2 × 2

n
2 × 2−

n
2 = 2

n
2

L3 ./n
2
L4 : 2

n
2 × 2

n
2 × 2−

n
2 = 2

n
2

L12 ./n
2
L34 : 2

n
2 × 2

n
2 × 2−

n
2 = 2

n
2 .

2.3 Differential Cryptanalysis

Differential cryptanalysis is one of the most powerful attack strategies in analyz-
ing block ciphers and hash functions. The main idea is to predict the propagation
of differences with a high probability, but without knowing the actual values. In
the following, we first give a brief introduction to differential cryptanalysis and
provide the basic definition and properties needed for differential cryptanalysis
in general. After a short outline of the differential cryptanalysis of hash func-
tions we introduce truncated differences which are the most important type of
differences used in the attacks of the following chapters.

2.3.1 Overview

Differential cryptanalysis was first published by Biham and Shamir for the block
cipher DES in 1990 [BS90, BS91]. Their results led to differential attacks on the
full DES [BS92] and was applied to many other block ciphers, stream ciphers and
also hash functions. The first results on hash functions have been published by
den Boer and Bosselars on MD5 [dBB93], Dobbertin on MD4 [Dob96a, Dob98]
and Chabaud and Joux on SHA-0 [CJ98]. A very natural target for differential
attacks is the collision resistance of a hash function. In this case, a non-zero
input difference should result in a zero output difference. To the surprise of
the cryptographic community, Wang et al. was even able to show attacks on

2.3. Differential Cryptanalysis 21

the full hash functions MD4, RIPEMD, MD5 and SHA-1 by presenting colli-
sion attacks using differential cryptanalysis [WLF+05, WY05, WYY05b] (also
see Section 2.3.3). Today, the designers of every newly proposed cryptographic
primitive have to argue or better prove that their design is secure against differ-
ential cryptanalysis.

Differential attacks are dedicated attacks, usually very specialized by ex-
ploiting the internal structure of a design. The main idea is to consider the
propagation of differences between a pair of inputs without knowing the actual
values of the pairs. The propagation of differences is usually predicted over a
multiple number of rounds. The sequence of differences in each round is then
called the (differential) characteristic, differential trail or differential path. The
probability of a characteristic is the fraction of input pairs which conform to,
follow or show the differences of a characteristic. A cryptanalyst is trying to con-
struct high probability characteristics for a cryptographic primitive since then,
many right pairs exist. In this case, it is expected to be easier to find one or
more right pairs, which is usually the final goal of an attack.

In the last 20 years, differential cryptanalysis has improved in several ways.
Many types of differences have been invented and customized to fit the prim-
itive under attack. Some important types of differences are XOR differences
[BS90], modular differences [Dob96a], signed bit differences [WY05, WYY05b]
and truncated differences [Knu94]. Additionally, new types of attacks have been
invented and/or combined with differential cryptanalysis, for example linear-
differential attacks [CJ98], differential-linear attacks [LH94], impossible differ-
ential attacks [BKR97, BBS99], the boomerang attack [Wag99] or the rectangle
attack [BDK01]. Especially for hash functions, new clever techniques have been
developed, refined and extended to find differential characteristics and right
pairs more efficiently. Examples are automated differential path search tech-
niques [SO06, DR06b], advanced message modification [WY05, WYY05b] or the
rebound attack [MRST09].

2.3.2 Preliminaries

In the differential analysis of cryptographic primitives, the most common dif-
ferences to consider are XOR (bitwise) differences. Then, we get the following
definition of a difference:

Definition 2.2 (XOR Difference). Let a and a∗ be two n-bit vectors. Then the
n-bit XOR difference is defined by

∆a = ∆(a, a∗) = a⊕ a∗. (2.4)

If it is not clear from the context, we sometimes write ∆⊕ instead of ∆ to denote
an XOR difference.

22 Chapter 2. Analysis of Cryptographic Hash Functions

2.3.2.1 Differentials

In the differential cryptanalysis, we consider the propagation of differences
through (sub-)functions of a cryptographic primitive and we get the following
basic definitions:

Definition 2.3 (Differential). A differential D for an n to m bit function f
consists of an n-bit input difference ∆a and an m-bit output difference ∆b. The
differential is denoted by

∆a→ ∆b,

or if the function is not clear from the context by

∆a
f−→ ∆b.

Definition 2.4 (Number of Right Pairs). The number of right pairs (or cardi-
nality [DR07b]) Nf (∆a → ∆b) of a differential D = ∆a → ∆b is the number
of pairs with input difference ∆a and output difference ∆b (#S denotes the
number of elements in a set S):

Nf (∆a→ ∆b) = #{(a, a∗) | a⊕ a∗ = ∆a and f(a)⊕ f(a∗) = ∆b} (2.5)

When analyzing cryptographic functions, we are often interested in the num-
ber of right pairs for all possible input and output differences. For functions with
small n,m we can simply list all combinations using the differential distribution
table.

Definition 2.5 (Differential Distribution Table (DDT)). Let f be an n to m
bit function. The differential distribution table of f is an 2n × 2m table whose
entries are the number of right pairs Nf (∆a→ ∆b) for all differentials ∆a→ ∆b.
The rows of the table are indexed by the input difference ∆a and the columns
are indexed by the output difference ∆b.

The top row of the differential distribution table always contains the elements
2n, 0, 0, . . . , 0 and the sum of each row is always 2n. Since XOR differences
are symmetric (∆a = a ⊕ a∗ = a∗ ⊕ a), only even values occur in the table.
Furthermore, there are 2n−1 possible non-zero input differences and for each of
these differences, 2n−1 pairs exist. In [DR07b], Daemen and Rijmen have further
analyzed the distribution of the number of right pairs for a random function and
have proven the following theorem and corollary:

Theorem 2.2 ([DR07b]). For a random n-bit to m-bit function, the number of
right pairs Nf (∆a → ∆b) of a differential ∆a → ∆b is a random variable with
binomial distribution B(2n−1, 2−m).

Corollary. For n ≥ 5 and |n − m| small, the number of right pairs can be
approximated by a Poisson distribution with λ = 2n−m−1.

For each differential ∆a → ∆b only a fraction of all pairs (a, a∗) with input
difference ∆a are right pairs. This fraction is called the differential probability
(DP) or difference propagation probability of a differential ∆a→ ∆b and defined
as follows:

2.3. Differential Cryptanalysis 23

Definition 2.6 (Differential Probability (DP)). The differential probability
Pf (∆a→ ∆b) of an n to m bit function f is defined as

Pf (∆a→ ∆b) =
1

2n
·#{a | f(a⊕∆a) = f(a)⊕∆b}. (2.6)

For a pair chosen uniformly at random from the set of all pairs (a, a∗) with
a ⊕ a∗ = ∆a, Pf (∆a → ∆b) is the probability that f(a) ⊕ f(a∗) = ∆b. The
differential probability lies in the range [0, 1] and we have:

Pf (∆a→ ∆b) =
Nf (∆a→ ∆b)

2n
(2.7)

Furthermore, we always get:∑
∆b

Pf (∆a→ ∆b) = 1. (2.8)

Definition 2.7 (Impossible Differential). A differential with a differential prob-
ability of 0 is called an impossible differential.

Definition 2.8 (Trivial Differential). A differential with a zero input difference
and a zero output difference is called the trivial differential.

The trivial differential has a differential probability of 1 and thus, 2n right
pairs. The differential 0→ ∆b with b 6= 0 is an impossible differential. If f is a
permutation, the differential ∆a → 0 with ∆a 6= 0 is an impossible differential.
Furthermore, the differential probability of any XOR differential is always a
multiple of 2−n+1 due to the symmetry of XOR differences. For a linear (or
affine) function L, the difference ∆a at the input completely determines the
difference ∆b at the output of the function since we have

L(a⊕∆a)⊕ L(a) = L(∆a) = ∆b.

Therefore, the difference propagation probability for a linear function is
Pf (∆a,∆b) = 1 if the differential (∆a,∆b) is possible and 0 otherwise.

2.3.2.2 Differential Characteristics

In general, we can only determine the exact number of right pairs or the dif-
ferential probability for functions f : {0, 1}n → {0, 1}m with n,m small. For
larger functions, we can only estimate these values under reasonable assump-
tions. One common possibility is to split a function into smaller sub-functions
and base the estimate for the whole function on the differential probabilities of
these sub-functions. The sequence of differences in these sub-functions is usually
called a (differential) characteristic, path or trail.

Definition 2.9 (Differential Characteristic). A differential characteristic C

through a function f with r sub-functions fi and f = fr ◦ fr−1 ◦ · · · ◦ f2 ◦ f1

consists of r + 1 differences ∆ai:

∆a0
f1−−−→ ∆a1

f2−−−→ ∆a2
f3−−−→ . . .

fr−1−−−→ ∆ar−1
fr−−−→ ∆ar

24 Chapter 2. Analysis of Cryptographic Hash Functions

A characteristic is a sequence of r differentials ∆ai−1 → ∆ai. A pair that
shows the differences of a characteristic is called a right pair or a pair that follows
that characteristic. For each differential, we can count the number of right pairs
and compute the probability of a differential characteristic:

Definition 2.10 (Number of Right Pairs). The number of right pairsNf (∆a0 →
∆a1 → · · · → ∆ar) of a differential characteristic through a function f is the
number of pairs with input difference ∆a0, output difference ∆ar and interme-
diate differences ∆a1, . . . ,∆ar−1:

Nf (∆a0
f1−→ ∆a1

f2−→ . . .
fr−→ ∆ar) =

#{a0 | f1(a0 ⊕∆a0) = f1(a0)⊕∆a1 and

f2(a1 ⊕∆a1) = f2(a1)⊕∆a2 and (2.9)

. . .

fr(ar−1 ⊕∆ar−1) = fr(ar−1)⊕∆ar}.

The differential probability of a differential characteristic can again be com-
puted using the number of right pairs:

Pf (∆a0
f1−→ ∆a1

f2−→ . . .
fr−→ ∆ar) =

Nf (∆a0
f1−→ ∆a1

f2−→ . . .
fr−→ ∆ar)

2n
(2.10)

Note that the intermediate differences of a characteristic are restrictions on
the full differential ∆a0 → ∆ar of the function f . Hence, a differential contains
many characteristics and the differential probability of the differential is the sum
of the differential probabilities of all characteristics:

Pf (∆a
f−→ ∆b) =

∑
a1,a2,...,ar−1

Pf (∆a0
f1−→ ∆a1

f2−→ . . .
fr−→ ∆ar) (2.11)

with a0 = a and ar = b. The differential probability of a differential is therefore
higher than the probability of a characteristic.

2.3.2.3 Expected Number of Right Pairs

For functions with n,m large, it is not possible to count the number of right
pairs and compute the exact probability of a characteristic. Since the input
pairs of the sequence of differentials are not independent, it is usually very
difficult to compute the number of right pairs and the differential probability
of a characteristic. However, it is common to estimate the probability of a
differential characteristic by assuming that the differential probabilities of the
individual differentials are independent:

Lemma 2.3 (Approximate Differential Probability). Assume that the differen-
tial probabilities of all sub-differentials are independent. Then, we can approxi-
mate the differential probability Pf (C) of a differential characteristic C = ∆a0 →

2.3. Differential Cryptanalysis 25

∆a1 → . . .→ ∆ar) through a function f as follows:

Pf (∆a0
f1−→ ∆a1

f2−→ . . .
fr−→ ∆ar) ≈

Pf1(∆a0
f1−→ ∆a1) · Pf2(∆a1

f2−→ ∆a2) · . . . · Pfr (∆ar−1
fr−→ ∆ar)

Note that the independence assumptions of sub-functions is not the case in
practice. However, it has been shown in [DR05] that for cryptographic primitives
the approximation of Lemma 2.3 can be a good approximation if the differential
probability of a characteristic is significantly above 2−n+1.

Using the approximate differential probability, we can also compute the ex-
pected number of right pairs of a differential characteristics. Note that the
expected number of right pairs is not a discrete value. If the expected number
of right pairs of a differential characteristic is below 1, it is unlikely that a right
pair exists.

Lemma 2.4 (Expected Number of Right Pairs). The expected number of right
pairs E[Nf (C)] of a differential characteristic C through a function f can be
approximated using the approximate differential probability of C:

E[Nf (C)] ≈ 2n · Pf (C)

In an attack on a cryptographic primitive, we are searching for differential
characteristics with a high probability. In this case, it is assumed to be easier to
find one or more right pairs. As a consequence, high-probability characteristics
are commonly considered to be a potential weakness of a cryptographic primitive.
However, it is also important to show that an approximation is valid and a
proposed differential characteristic is not impossible. A commonly used method
is to present a right pair for a round-reduced characteristic.

2.3.2.4 Conditions

For each differential with differential probability not equal to 1 or 0 we can derive
a set of equations which can be used to describe the right pairs. We call such
an equation a condition of a differential or characteristic. For example, a simple
condition is to list all right pairs.

The main advantage of conditions is that they can usually be derived easily
for differentials on small sub-functions. Using these conditions, we can approx-
imate the differential probability and the expected number of right pairs. By
multiplying these probabilities of the sub-functions, we can get a quite good
approximation for the differential probability of the whole characteristic. Fur-
thermore, conditions can be especially useful when finding right message pairs
for a colliding differential characteristic of a hash function.

2.3.2.5 Degrees of Freedom

Throughout a differential attack it is important to keep the expected number of
right pairs above 1 in every step. The larger the expected number of right pairs,

26 Chapter 2. Analysis of Cryptographic Hash Functions

the more freedom an attacker has in executing the attack. For this reason, we
often talk about degrees of freedom in an attack. The degrees of freedom (or
simply called freedom) is defined as follows:

Definition 2.11 (Degrees of Freedom). The degrees of freedom F of a differen-
tial (or characteristic) is defined by the binary logarithm of the number of right
pairs:

F(∆a→ ∆b) = log2(Nf (∆a→ ∆b)) (2.12)

If the degrees of freedom of any (sub-) differential is 0 (or below), an attacker
cannot choose right pairs anymore to continue the attack. On the other hand if
the degrees of freedom are high, an attacker has the opportunity to choose from
many pairs and can select those which improve the efficiency of subsequent steps
or the whole attack.

2.3.3 Application to Hash Functions

The idea of differential cryptanalysis is to consider the propagation of differences
through a cipher or hash function. Especially when considering collision attacks
on hash functions, this seems to be very intuitive since this corresponds to finding
a zero output difference of two hash function calls:

H(M1) = H(M2) ⇔ H(M1)⊕H(M2) = 0

with M1⊕M2 = ∆M 6= 0. We call ∆M the input difference of the hash function
and the output difference is zero. The pair (∆M, 0) is called a differential of the
hash function.

2.3.3.1 Constructing a Differential Characteristic

Probably the most important step in the differential analysis of hash functions
is to find a “good” differential characteristic. This is also the most difficult part.
An attacker needs to find a characteristic with a reasonable high probability. In
many cases, the Hamming weight of the differences of a characteristic can be
used to roughly estimate the probability [CJ98]. Since a small Hamming weight
results in a high probability we usually search for sparse characteristics.

The first good and long differential characteristics for hash functions were
iterative [BS92]. A differential of the form ∆a → ∆a with good probability
is concatenated over many sub-functions or rounds of a hash function. For a
very long time, differential characteristics where constructed mostly by hand.
Chabaud and Joux used linear-differentials to search for characteristics using
automated tools of linear algebra and coding theory [CJ98]. De Cannière and
Rechberger used a more complex tool to search for non-linear differential char-
acteristics [DR06b]. A more detailed analysis of currently used techniques and
tools is given in [Rec09].

2.3. Differential Cryptanalysis 27

2.3.3.2 Searching for Right Pairs

In the case of block ciphers, the complexity of finding a right pair is usually
determined by the inverse of the probability of a characteristic. We can only
choose random input pairs and check at the output if the characteristic was
followed. The secret key avoids further optimizations to construct right pairs
more efficiently. This is not the case for hash functions since in most attacks, the
message can be chosen freely. We do not need to take random input pairs but
can choose right message pairs according to a given (low-probability) differential
characteristic [CJ98]. Furthermore, we can check after each sub-function or
round if the given pair follows the characteristic. Most importantly, as long as
we can choose or modify message or input pairs, we do not mind about the
probability of a differential characteristic.

In many cases, it is easier to construct a high-probability characteristic if we
allow a low probability in some other parts of the characteristic. Usually, we
can freely choose the message in the first few rounds of a hash or compression
function. As a consequence, a good differential characteristics for hash function
attacks has a low probability at the beginning and a high probability near the
end. Wang et al. used such differential characteristics together with (advanced)
message modification techniques in their attacks on MD5 and SHA-1 [WY05,
WYY05b]. Since then, many results have been published to further improve
message modification and characteristic search techniques to find right pairs
more efficiently. For a more detailed treatment of these techniques, we refer to
[Rec09] again.

2.3.4 Truncated Differential Analysis

In many cases, it is not necessary to predict all bits of a differential. It is sufficient
to know only parts of the difference to continue the propagation or find right
pairs. Differences that specify only parts of a difference are called truncated
differences [Knu94].

For SPN (substitution-permutation-network) functions or more specifically
AES-based functions, it is particularly useful to consider only truncated differ-
ences which are aligned according to the used S-boxes. In this case, we get the
following more specific definition of a truncated difference:

Definition 2.12 (Truncated Difference [SKA02]). For any difference ∆a ∈
{0, 1}n, a function χ : {0, 1}n → {0, 1} is defined as follows:

χ(∆a) =

{
0 if ∆a = 0

1 if ∆a 6= 0
(2.13)

Then, for any differential vector

∆a = (∆a1,∆a2, . . . ,∆am),∆ai ∈ {0, 1}n,
the truncated difference of ∆a is defined as

χ(∆a) = (χ(∆a1), χ(∆a2), . . . , χ(∆am)).

28 Chapter 2. Analysis of Cryptographic Hash Functions

Similarly as for any type of differences, we can also define the (approximate)
differential probability and the (expected) number of right pairs for truncated
differences. Note that a truncated differential is a collection of many differentials
and the truncated differential probability is the sum of the probabilities of all
its differentials.

Truncated differentials are particularly useful if they fit the structure of a
cryptographic primitive. For example, byte-wise truncated differentials can be
very useful in the analysis of byte-oriented primitives. Also the AES-based hash
function Grindahl [KRT07] has been broken using truncated differentials [Pey07].
For S-box based, byte-wise functions, is is common to consider only two types
of differences. The difference of a particular S-box or byte is either non-zero or
zero and we define:

Definition 2.13 (Active S-box). An S-box (or byte) with non-zero (input)
difference is called active and otherwise, non-active.

This simplification makes the construction of truncated differential charac-
teristics much easier. In the case of less complex AES-based primitives this
can be done easily by hand. Furthermore, in general the resulting truncated
differential probability of a truncated differential characteristic is higher. The
drawback of truncated differential analysis is that the construction of pairs fol-
lowing a characteristic can be more difficult, since also the differences are not
known in advance. Therefore, a large part of this thesis covers this topic. More
specifically, we use the rebound attack to efficiently find pairs (differences and
values) for truncated differential paths of AES-based hash functions.

2.4 The Rebound Attack

In this section, we give a brief introduction to the rebound attack. The attack has
first been published by Mendel et al. [MRST09] in the analysis of the AES-based
hash functions Whirlpool [BR00] and Grøstl[GKM+08]. The rebound attack
has first been applied to AES-based primitives due to the simple construction
of good truncated differential paths, but is in general applicable to any other
design strategy as well. For example, the rebound attack has been applied to
the ARX based hash function Skein [FLS+09] in [KNR10] and to the 4-bit S-box
based design Luffa [DSW09] in [KNPRS10].

2.4.1 Overview

The basic rebound attack consists of two main phases, called inbound and out-
bound phase, as shown in Figure 2.5. According to these phases, the compres-
sion function, internal block cipher or permutation of a hash function is split
into three sub-parts. Let E be a block cipher, then we get E = Efw ◦Ein ◦Ebw.
Hence, the part of the inbound phase is placed in the middle of the cipher and
the two parts of the outbound phase are placed next to the inbound part. In

2.4. The Rebound Attack 29

the outbound phase, two high-probability (truncated) differential trails are con-
structed, which are then connected in the inbound phase. Similar to message
modification, the freedom in the message, key-inputs or (internal) state variables
is used to efficiently fulfill many conditions of a differential trail.

The idea of placing the most expensive part of the differential trail in the
middle was previously used in the cryptanalysis of the compression function of
MD5 [Dob96b] and the hash function Tiger [KL06, MPR+06, MR07]. Also,
inside-out techniques have been used by Wagner as an application of second
order differentials in the cryptanalysis of block ciphers in the Boomerang attack
[Wag99].

inbound

outbound outbound

Figure 2.5: A schematic view of the rebound attack. The attack consists of an
inbound and two outbound phases.

2.4.2 Constructing a Trail

As in all differential attacks we first need to construct a “good” (truncated)
differential trail. A good trail used for a rebound attack should have a high
probability in the outbound phases and can have a rather low probability in the
inbound phase. Two properties are important here: First, the system of equa-
tions that determines whether a pair follows the differential trail in the inbound
phase, should be under-determined. Then, many solutions (starting points for
the outbound phase) can be found efficiently by using clever guess-and-determine
strategies. Second, the outbound phases need to have high probabilities in the
outward direction.

2.4.3 Inbound Phase

The inbound part of a trail is defined such that the corresponding system of
equations is under-determined. When searching for solutions, we first guess
some variables such that the remaining system is easier to solve. Hence, the
inbound phase of the attack is similar to message modification in an attack
on the hash function. The available freedom in terms of the actual values of

30 Chapter 2. Analysis of Cryptographic Hash Functions

the internal variables is used to find a solution deterministically or with a high
probability. Hence, also a differential trail with a high Hamming weight (and
hence a low probability) can be used in the inbound phase.

2.4.4 Outbound Phase

In the outbound phase, we verify whether the solutions of the inbound phase also
follow the differential trail in the outbound parts. Note that in the outbound
phase, there are usually only a few or no free variables left. Hence, a solution
of the inbound phase will lead to a solution of the outbound phase only with a
certain probability. Therefore, we aim for sparse (truncated) differential trails in
the outbound parts, which can be fulfilled with a probability as high as possible
(in the outward directions). The advantage of using an inbound phase in the
middle and two outbound phases at the beginning and end is that one can
construct differential trails with a higher probability in the outbound phase.

2.4.5 Multiple Inbound Phases

Sometimes, not all available freedom is used in the rebound attack. This is
usually the case if the used (truncated) differential path is sparse. Then, some
parts of the internal state (or the key schedule) are not needed to find a solution
for the inbound phase. In this case, the attack can often be extended by having
more independent inbound phases which can be solved independently [LMR+09,
MNPN+09, Sch10b, Sch10a]. The solutions of the inbound phases are then
connected (merged) efficiently which is usually not a trivial task. Using multiple
inbound phases the number of attacked rounds used for a single inbound phase
are usually multiplied by the number of inbound phases (see Figure 2.6).

merge inbound

1st inbound

2nd inbound

1st outbound

1st outbound
2nd outbound

2nd outbound

Figure 2.6: Schematic of the rebound attack with multiple inbound and multiple
outbound phases.

2.4. The Rebound Attack 31

2.4.6 Multiple Outbound Phases

To improve the complexity of the outbound phase we can use multiple indepen-
dent outbound phases in an attack as well [MNPN+09, Sch10b, Sch10a]. See
Figure 2.6 for a schematic overview. Again, this is particularly useful if only
parts of the state have been chosen during the inbound phase(s). Then, we
separate the conditions in the outbound phase into two or more sets, each set
corresponding to one of the outbound phases. For example, the conditions in
the first set could ensure the propagation according to a given truncated differ-
ential path, while the conditions in the second set only modify the differences
of this truncated differential path, but do not change the truncated differences
anymore.

The important point here is that the conditions are independent and one set
is determined by those parts of the state which have already been chosen. After
the conditions in this first outbound phase are fulfilled, we use the free variables
(not yet chosen parts of the state) to fulfill the conditions in the second set. The
two sets are chosen such that the conditions of the multiple outbound phases
are independent. In this case we can add complexities of the multiple outbound
phases instead of multiplying them. This greatly improves the total complexity
of some attacks.

3
The Rebound Attack on AES-Based

Permutations

In this section, we show how to apply the rebound attack [MRST09] to AES-
based primitives. In AES-based hash functions, the key input is known and can
either be chosen or is fixed to some constant. We use the AES block cipher
[Nat01] in the known key setting [KR07] to demonstrate the attacks, since this
setting is very similar to AES-based permutations with fixed constants. After a
description of the AES in Section 3.1, we discuss many well known (truncated)
differential properties of the AES round transformations in Section 3.2. In some
cases, we get slightly different properties than for a block cipher with secret keys.
Furthermore, we analyze important combinations of AES round transformations
in Section 3.3.

Using the rebound attack, we are able to find right pairs for truncated differ-
ential trails on a large number of rounds. The main advantage of the rebound
attack is its efficiency and simplicity when applied to AES based primitives.
The truncated differential trails can be found easily by hand and are usually
very similar to the best known trails according to the wide-trail design strat-
egy [DR01, DR02]. In Section 3.4, we show how to find such good truncated
differential trails. We describe the rebound attack in Section 3.5, and show a
number of techniques which can be used to improve the efficiency of the attacks
in Section 3.6 and Section 3.7. Using these techniques, we are able to find right
pairs for up to three rounds of a trail with an average complexity of one. Finally,
in Section 3.8, we give a summary of the techniques and generalize them to other
AES-based designs.

33

34 Chapter 3. The Rebound Attack on AES-Based Permutations

3.1 The AES Block Cipher

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [Nat01]. The AES
follows the wide-trail design strategy [DR01, DR02] and consists of a key schedule
and state update transformation. In the following, we give a brief description of
the AES and for a more detailed description we refer to [Nat01].

3.1.1 State Update

The block size of AES is 128 bits which are organized in a 4×4 state of 16 bytes.
This AES state is updated using the following 4 round transformations with 10
rounds for AES-128, 12 rounds for AES-192, and 14 rounds for AES-256:

� the non-linear layer SubBytes (SB) applies the 8-bit AES S-Box to each
byte of the state independently

� the cyclical permutation ShiftRows (SR) rotates the bytes of row r to the
left by r positions with r = {0, ..., 3}

� the linear diffusion layer MixColumns (MC) multiplies each column of the
state by a constant MDS matrix

� in round i, AddRoundKey (AK) adds the 128-bit round key Ki to the AES
state

A round key K0 is added prior to the first round and the MixColumns transfor-
mation is omitted in the last round of AES.

3.1.2 Key Schedule

The key schedule of AES recursively generates a new 128-bit round key Ki from
the previous round key. In the case of AES-128, the first round key K0 is the
128-bit master key of AES-128. Each round of the key schedule consists of a
linear part using XOR operations and a nonlinear function Fi using a one-byte
constant addition, 4 AES S-box lookups and a rotation of 4 bytes. For more
details of the key schedule we refer to [Nat01].

3.1.3 Decryption

For the AES decryption, inverse round transformations in reverse order are ap-
plied. Also the round keys have to be computed in reverse order. InvShiftRows
rotates right instead of left and since the AES S-box is based on the inversion
in GF (28), only the affine transformation needs to be changed to its inverse
in InvSubBytes. Also the coefficients of the InvMixColumns transformation are
different.

3.2. Differential Properties of AES Round Transformations 35

3.1.4 The Wide Trail Design Strategy

The wide trail design strategy has been proposed by Daemen and Rijmen in
[DR01, DR02] and is a method to counter differential and linear attacks. Using
this strategy, one can easily prove upper bounds for the probability of any differ-
ential or linear trail. To achieve this, the wide trail design strategy ensures that
no sparse (or narrow) trails exist. In the case of AES, the minimum number of
active S-boxes of any 4-round trail is 25. For more details we refer to Section 3.4
or [DR02].

3.2 Differential Properties of AES Round
Transformations

In this section, we describe some important differential properties of the AES
round transformations. Since all transformations except SubBytes are linear,
usually XOR differences are used to analyze AES based round transformations.
However, due to the strongly byte-oriented structure of AES, also byte-wise trun-
cated differences have turned out to be very useful. We will analyze properties
and conditions for the propagation of these differences as well. We will show
that for XOR differences, only SubBytes behaves probabilistically, whereas for
truncated differences, MixColumns (and also the XOR in AddRoundKey) behaves
probabilistically.

3.2.1 SubBytes

Many differential properties of an S-box S can be derived from its differential
distribution table (DDT) [BS91] (also see Section 2.3.2). For each of the 216

input/output differentials (∆x,∆y), the differential distribution table gives the
number of solutions x or right pairs (x,∆y) for the equation

S(x⊕∆x) = S(x)⊕∆y. (3.1)

The partial differential distribution table of the AES S-box is shown in Table 3.1.
For a good S-box, the non-uniformity of the DDT and hence, the non-zero entries
in the table should be small and evenly distributed. In the DDT of the AES
S-box only the values 0, 2, 4, 256 occur with frequency 33150, 32130, 255 and
1. The last value corresponds to the zero differential (∆x,∆y) = (0, 0), for
which any x is a solution. In the majority of all cases, there are either no or
exactly two right pairs. If there is no right pair, the corresponding differential
is called an impossible differential. If there are two right pairs, the differential
probability for the respective differential (∆x,∆y) is PS = 2 · 2−8 = 2−7. In
some rare cases, exactly 4 solutions exist and these differentials have a maximum
differential probability of Pmax

S = 4 · 2−8 = 2−6.
Further properties of the AES S-box (and its inverse), which can be deduced

from the differential distribution table are:

36 Chapter 3. The Rebound Attack on AES-Based Permutations

Table 3.1: An excerpt of the differential distribution table (DDT) for the AES
Sbox in hexadecimal basis.

∆x \∆y 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ...
00 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
01 0 2 0 0 2 0 2 0 2 2 2 2 2 2 2 2 ...
02 0 0 0 2 2 2 2 2 0 0 0 2 2 2 0 2 ...
03 0 0 2 0 2 2 0 0 2 0 2 2 2 0 0 0 ...
04 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 ...
05 0 0 0 0 2 0 0 0 4 2 0 0 2 2 0 0 ...
06 0 2 0 0 2 2 0 0 0 2 0 2 4 0 2 0 ...
07 0 2 0 0 0 0 2 0 2 2 2 0 0 0 0 0 ...
08 0 0 2 2 0 0 0 0 0 2 0 2 2 0 0 2 ...
09 0 0 2 2 0 0 2 2 0 0 0 0 2 0 2 0 ...
0A 0 0 2 2 4 0 2 2 0 2 2 0 2 0 0 2 ...
0B 0 2 0 0 0 0 0 2 2 2 0 0 2 2 2 2 ...
0C 0 0 2 2 0 0 2 2 2 2 2 0 0 2 0 2 ...
0D 0 2 2 0 0 0 2 2 2 2 2 2 0 0 0 2 ...
0E 0 0 2 2 2 2 0 2 2 0 2 2 0 0 0 0 ...
0F 0 0 2 2 2 0 0 0 2 0 2 0 2 0 0 2 ...
...

� for a given non-zero input (output) difference of the S-box, the number of
possible output (input) differences is 127.

� for each possible non-zero differential (∆x,∆y), the number of solutions is
either 2 or 4.

� for a fixed possible differential (∆x,∆y), the AES S-box and its inverse
always behave linearly, since there are only 2 or 4 right pairs possible (see
[DR07a] and Section 3.6.2 for more details).

3.2.2 ShiftRows

The ShiftRows transformation moves bytes and thus, differences to different po-
sitions of a row but does not change their value. Due to its good diffusion
property, ShiftRows moves 4 active bytes of a full active column to 4 different
columns of the state. Hence, ShiftRows ensures that 4 active bytes (or differ-
ences) of one column are processed independently by the subsequent MixColumns
transformation.

3.2.3 MixColumns

MixColumns consists of 4 parallel transformations which are applied to each col-
umn of the state. When we talk about properties of MixColumns, we usually refer
to a single column transformation. Since MixColumns is a linear transformation,
the propagation of XOR differences through MixColumns is deterministic. The
propagation of an input (or output) difference ∆x = x⊕x∗ only depends on the
difference ∆x and is independent of the values x and x∗. Additionally, for every
n × n MDS mapping, choosing any n bytes of the input and output uniquely

3.2. Differential Properties of AES Round Transformations 37

determines the remaining n bytes. Hence, for one MixColumns transformation,
choosing any 4 bytes uniquely determines the remaining 4 bytes.

Probably the most important property of the MixColumns transformation is
its branch number of 5 (see [DR02]). It follows that, the minimum number of
non-zero active bytes at the input and output of MixColumns is 5. More formally,
let a 6= 0 be the number of active bytes at the input and b 6= 0 be the number
of active bytes at the output of MixColumns. Then, the total number of active
bytes at input and output is:

a+ b ≥ 5 (3.2)

Contrary to standard differences, the propagation of truncated differences
through MixColumns is probabilistic and depends on the direction of propagation
(forward or backward). A truncated differential, which violates Equation (3.2)
is called an impossible truncated differential. For all other cases, the probability
depends only on the number of conditions at the output in the direction of prop-
agation. Since we use byte-oriented truncated differences, we usually consider
conditions on bytes. For each zero or non-active byte we get an 8-bit condition.
Hence, the probability of a transition from 4→ b active bytes with 1 ≤ b ≤ 4 of
one column in MixColumns is:

P[4→ b] =

(
4

b

)
· 2−8·(4−b) (3.3)

Table 3.2 shows the differential probability for the propagation of truncated
differences from a to b active bytes for fixed positions. For example, a truncated
difference with exactly one active byte will propagate to a truncated difference
with 4 active bytes with a probability of 1. On the other hand, a truncated
difference with 4 active bytes can result in any truncated difference between 1
and 4 active bytes after MixColumns. The probability of a transition from 4 to
1 active byte with fixed position is approximately 2−24, since we need 3 out of
8 bytes to be zero.

Table 3.2: Approximated probabilities for the propagation of truncated differ-
ences through MixColumns with fixed positions [Pey07]. We denote by a the
number of active bytes at the input and by b at the output of MixColumns in the
direction of propagation.

a \ b 0 1 2 3 4
0 1 0 0 0 0
1 0 0 0 0 1
2 0 0 0 2−8 0.996
3 0 0 2−16 2−8 0.996
4 0 2−24 2−16 2−8 0.996

38 Chapter 3. The Rebound Attack on AES-Based Permutations

3.3 Differential Properties of Combined AES
Round Transformations

In some cases it is useful to study the differential properties of combined AES
round transformations. Note that also some SHA-3 candidates use a single or
two rounds of AES as a building block. For hash functions or permutations
which use more rounds, the decomposition of AES rounds into linear parts and
4 independent 32-bit AES SuperBoxes [DR06a] can also lead to improved results.

3.3.1 Single AES Round

In this section we analyze some differential properties of a single AES round.
For one round, we can impose conditions on the input such that the same input
difference ∆ also results in the same output difference ∆. Under this condition,
the whole AES round function behaves linearly for XOR differences which has
been used in the linear-differential attack on the SHA-3 candidate SHAMATA
[AKKM08] in [IMPS09] and also ARIRANG [CHK+08] in [GMK+09]. Similar
properties have also been used in the attacks on the Round 2 candidate SHAvite-
3 [BD08] in [GLM+10].

The linear-differential property does not hold for any difference but is pos-
sible for differences ∆ with equal differences δ in all 16 bytes. If all bytes are
equal, ShiftRows does not change the differences and also for the MixColumns
transformation we get (δ, δ, δ, δ)→ (δ, δ, δ, δ) [DR02]. To improve the differential
probability, we have examined all S-box differentials of the form δ → δ. Only
δ = 0xc5 results in an optimal differential probability of 2−6 and this difference
passes through the S-box unchanged for input values {0x00, 0x1d, 0xc5, 0xd8}.
Using these 4 input values in each byte we get 416 possible values for the input
to the AES round transformation. The resulting differential probability is 2−96.

If no constant or key is added in between two rounds, the same property can
be observed for two rounds of AES. To examine the optimal difference in each
byte we can no longer view each S-box independently. Without linear steps at the
input and output, two rounds of AES reduce to SubBytes followed by MixColumns
and another SubBytes operation. Note that each column is still independent in
this case. We have performed an exhaustive search to find the best difference
consisting of 16 equal bytes that passes through two rounds unchanged. The
best choice is a difference of 0x18 in each byte, which keeps unchanged for (22)4

values, corresponding to a differential probability of 2−110.16.

3.3.2 SuperBoxes

In the previous section, we have determined conditions for two rounds of AES by
analyzing independent 32-bit chunks of SubBytes followed by MixColumns and
another SubBytes operation. This sequence of operations is called a SuperBox
and allows to independently analyze parts of two AES rounds. Differential prop-
erties of the AES SuperBox have been analyzed in detail in [DR06a]. However,

3.4. Finding Good Differential Trails 39

in that work, the addition of a secret key is considered in between the non-linear
SubBytes layers.

In hash function cryptanalysis, the key is usually not secret and often con-
stant. In this case, a SuperBox is a non-linear 32-bit S-box with fixed differential
properties. However, the DDT is to big to evaluate completely. In the following,
we describe some techniques which can be used to efficiently find right pairs for
a given SuperBox differential. Some techniques have special requirements, for
example they need a list of many differences on one side of the SuperBox, or
some (byte) differences need to be zero.

The most simple and straightforward technique is to exhaustive search
through all 232 input values of a SuperBox. In this case we will find all so-
lutions with a complexity of 232. Note that each differential is only possible
with a probability of about 2−4, but similar as for the S-boxes, we get about 24

pairs for each valid differential (see Section 3.5.2). However, during an attack it
is sometimes desired to reduce the complexity as much as possible at the cost of
more memory requirements and precomputation steps. Note that in a theoretical
attack on hash functions, we can usually still precompute the whole differential
distribution table (DDT) of the AES SuperBox. The memory requirements are
264 but we can lookup whether a differential is possible and also retrieve the
corresponding input pairs with a complexity of one table lookup.

3.4 Finding Good Differential Trails

Due to the design of the AES, constructing good truncated differential trails is
rather simple, as long as there are no differences inserted from the key schedule.
This allows us to construct good differential trails by hand as shown in this
section. We will use the following notation to specify the number of active bytes
in two subsequent states in the state update:

a
ri−→ b,

with a the number of active bytes in the first state, b the number of active bytes
in the second state and ri the i-th round of AES. Due to the MDS property of
MixColumns, we either get a + b ≥ 5 or a = b = 0, for one round ri of AES.
Note that the same holds for every column of MixColumns. Hence, for a = 1 we
always get:

1
ri−→ 4.

3.4.1 Minimum Truncated Differential Trails

It follows from the wide trail design strategy and the properties of the ShiftRows
and MixColumns transformations, that any 4-round differential trail has at least
z = 25 active S-boxes. Hence, (Pmax

S)z = (2−6)25 = 2−150 upper bounds the
expected differential probability of any 4-round differential trail [DR01, DR02].
However, the probability of a trail can be improved by using truncated differ-
ences.

40 Chapter 3. The Rebound Attack on AES-Based Permutations

S0 S1 S2 S3 S4

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

Figure 3.1: An example of a 4-round (truncated) differential trail with a mini-
mum number of 25 active S-boxes.

An example of such a 4-round truncated differential trail with 25 active S-
boxes is given in Figure 3.1. Note that the single active byte in state S0 and state
S4 can be placed at any position and state S1 and S3 change accordingly. All
these trails are equivalent and can be defined by the number of active S-boxes
in each state and we get:

T4 = 1
r1−→ 4

r2−→ 16
r3−→ 4

r4−→ 1 (3.4)

According to Section 2.3.2, we can approximate the differential probability of
this truncated differential trail by multiplying the differential probabilities of
each single round (see Table 3.2) and we get:

P(T4) ≈P(1→ 4) · P(4→ 16) · P(16→ 4) · P(4→ 1) =

1 · 1 · 2−24·4 · 2−24 = 2−120 (3.5)

The main advantage of using truncated differential trails in AES is, that
there are truncated differential trails with a differential probability of 1. For
example, the following truncated differential trail is fulfilled with probability 1
for any random input pair with one active byte:

1
r1−→ 4

r2−→ 16

Furthermore, since the differential probability depends on the direction of the
propagation, we can also construct a trail with differential probability 1 in back-
ward direction:

16
r1←− 4

r2←− 1

Of course, also the truncated differential trail with only full active states has a
differential probability of 1:

16
r1−→ 16

r2−→ 16

Such truncated differential properties are used in the rebound attack (see
Section 3.5). Note that for a truncated differential trail to be useful in an
attack, we need to observe some non-random property at the input and output.
This is usually the case if the input and output states are not fully active. For
example, we can extend the (minimum) 4-round truncated differential trail to a
(minimum) 7-round trail as follows (note that the last MixColumns is omitted in
AES):

T7 = 4
r1−→ 1

r2−→ 4
r3−→ 16

r4−→ 4
r5−→ 1

r6−→ 4
r7−→ 4 (3.6)

3.5. The Basic Rebound Attack 41

In the following sections, we will use the rebound attack and variants of this
(minimum) truncated differential trail to get attacks on AES based hash func-
tions, permutations, or block ciphers.

3.4.2 Computing the Expected Number of Right Pairs

For the 7-round truncated differential trail T7 we can already compute the ex-
pected number of right pairs to verify its validity. We first compute the approx-
imate differential probability of T7 and get

P(T7) ≈ 2−24 · 1 · 1 · 2−24·4 · 2−24 · 1 · 1 = 2−144. (3.7)

In the known-key setting [KR07] or in many AES based hash functions, the
key input is known and constant. In this case, the number of possible inputs
is limited by the block size and by the truncated difference at the input of the
state update. For T7, the total number of input pairs is 2128 · 2554 ≈ 2160. It
follows from Lemma 2.4 of Section 2.3.2 that the expected number of right pairs
is only:

E[Nf (T7)] = 2160 · 2−144 = 216 (3.8)

Note that for a 4-round differential trail with 25 active S-boxes (Sec-
tion 3.4.1), the expected number of right pairs is 2128 · 2−150 = 2−22 and thus,
a right pair most likely does not exist. A similar situation occurs if we try to
extend the 7-round truncated differential trail in the middle. Even if we reduce
only twice from 16 to 4 active bytes, the expected number of right pairs for the
trail

4
r1−→ 16

r2−→ 4
r3−→ 16

r4−→ 4

is only 2160 · 1 · 2−24·4 · 1 · 2−24·4 = 2−32. Therefore, such a (sub-)trail cannot
be used in an attack, unless an additional input (e.g. a non-constant key or salt
value) is added in the middle.

3.5 The Basic Rebound Attack

In this section, we present the basic rebound attack [MRST09]. The main idea
is to use high-differential sub-trails and connect these trails in the middle using
the available freedom by choosing the values of the state. Also other sources of
freedom can be used to connect the trails, such as a key or message input of a
block cipher-based hash function [LMR+09]. The rebound attack consists of the
following 3 main parts:

1. Constructing a truncated different trail: Usually, we start with a
truncated differential trail which has only a small number of active S-
boxes. Sometimes, the trail is adapted such that the two following main
phases result in a lower overall attack complexity.

42 Chapter 3. The Rebound Attack on AES-Based Permutations

2. The inbound phase: In the inbound phase, we construct solutions (right
pairs) for the middle part of the truncated differential trail. For a good
trail, we should be able to construct many solutions for the inbound phase
with a low average complexity (ideally with average complexity 1).

3. The outbound phase: In the outbound phase we propagate each so-
lution of the inbound phase outwards in both directions. In this phase,
we usually have no control over the pairs anymore and each pair follows
the trail probabilistically. Therefore, we aim for a sparse trail with a high
differential probability in the outbound phase.

S0 S1 S2 S3 S4 S5 S6 S7

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
AK

1 224 average 1 224 1 1

Figure 3.2: We apply the basic rebound attack to this minimum 7-round trun-
cated differential trail (black bytes are active). We start the attack in the mid-
dle with the inbound phase (red) and proceed outwards in the outbound phase
(blue).

3.5.1 Constructing a Truncated Differential Trail

We have constructed the minimum 7-round truncated differential trail already in
the Section 3.4.1. The trail has a high number of active bytes in the middle and
a low number of active bytes near the input and output. Due to the wide-trail
design strategy, such a trail can be constructed easily. The trail is shown in
Figure 3.2. The expected number of right pairs is 216 (see Section 3.4.2).

For a random pair with 4 active bytes at the input, the probability to get
4 active bytes at the output (with fixed position) is 2−8·12 = 2−96. The same
is true in backward direction. The generic complexity of finding such a pair is
determined by the birthday attack (see Section 2.2.1). However, since we require
an input difference with 4 active bytes, we have only 232 starting differences for
the birthday attack. These inputs can be used to find a zero difference in 8 bytes.
By repeating the birthday attack 232 times we get a zero difference in all 12
bytes with a complexity of 264. According to the limited birthday distinguisher
published in [GP10], this is the best known generic attack.

Using the basic rebound attack, the complexity to find an according pair
can be reduced to 248. In the inbound phase, we construct pairs for the middle
rounds according to the truncated differential trail from r3 to r4. We can use
the available freedom in the state values and differences find solutions for the in-
bound phase very efficiently. The resulting pairs are propagated outwards in the
outbound phase and result in the right truncated differences with a probability

3.5. The Basic Rebound Attack 43

of 2−48. The complexity can be further reduced using the improved rebound
techniques of Section 3.6 and Section 3.7.

3.5.2 The Inbound Phase

In the basic inbound phase, we construct a right input pair for a 2-round trun-
cated differential trail according to the following sequence of active bytes:

4
r3−→ 16

r4−→ 4

The differential probability of this truncated differential trail is 2−8·12 = 2−96.
However, if we have the freedom to choose any values and differences, the com-
plexity to find a right pair can be reduced to only 24 round transformations.
Furthermore, if we construct at least 24 pairs, the average complexity for each
found pair is about one round transformation.

SSR
3 S3 SSB

4 SMC
4

MC
AK

SB
SR
MC

average 1

Figure 3.3: Detailed round transformations for the 2-round truncated differential
trail of the inbound phase.

Of course there are many techniques to find solutions for the inbound phase
efficiently, but one simple approach is as follows: We start the inbound phase
with differences in state SSR

3 and SMC
4 (see Figure 3.3). Remember that the

probability of propagation from 4 → 16 active bytes through MixColumns is 1.
In other words, any choice of a non-zero differences in SSR

3 and SMC
4 results in

a state with full active bytes at S3 and SSB
4 . Then, we just need to find S-box

differentials such that the whole trail of the inbound phase is satisfied. In detail,
we get one valid pair as follows:

1. Precompute the differential distribution table (DDT) of the AES S-box.
Also compute and store the according values for each S-box differential.

2. Choose random differences for the 4 active bytes in state SMC
4 .

3. Deterministically propagate the differences backward through the linear
MixColumns and ShiftRows transformations to get 16 active bytes in state
SSB

4 .

4. For each column c = {0, . . . , 3} of state SSR
3 :

(a) Choose a random difference for the active byte(s) in column c of state
SSR

3 .

44 Chapter 3. The Rebound Attack on AES-Based Permutations

(b) Deterministically propagate this difference forward through the first
column of the linear MixColumns and AddRoundKey transformations
to get 4 active bytes for column c in state SSB

4 .

(c) For each S-box in column c, check if the input/output differential

is possible. The total probability for all 4 S-boxes is (2−
32385
65281)4 ∼

(0.496)4 ∼ 2−4.046 ∼ 2−4 and we have to repeat from Step 4a for
about 16.52 times to find a solution.

5. For each input byte of the S-boxes, we can choose from at least two (some-
times 4) values such that the whole truncated differential trail is satisfied.

6. Hence, we get at least 216 valid pairs for state SSB
4 at no additional cost.

For the exact number of pairs see Equation (3.9).

7. For each choice of state SSR
3 , compute the values further outwards to S2

and S4 to get the resulting input and output pair for the whole trail of the
2-round inbound phase.

The complexity to finish Step 6 is about 4 · 24 MixColumns computations
and about 4 · 24 · 4 lookups in the DDT of the S-box, which correspond to
approximately 24 AES round transformations. The memory requirements are
about 216 bytes or 212 AES states. Since we can immediately compute

1

32130 + 255
· (2 · 32130 + 4 · 255) = 2.01616 = 216.18 ∼ 216 (3.9)

solutions for state SSB
4 , the average complexity for one valid pair is about

24/216 = 2−12 AES round transformations. However, since we usually need
to compute each input and/or output pair as well (complexity 216), the aver-
age complexity to find one right pair for the inbound phase is about 1 round
transformation.

We can further repeat the inbound phase for all differences according to the
active bytes in states SSR

3 and SMC
4 . The algorithm for the inbound phase finds

all right pairs according to the given truncated differential trail. The exact num-
ber of solutions depends on the detailed properties of the round transformations.
In the case of AES, the number of right pairs for the given trail of Figure 3.3 is
about

2558 · 16.18

16.52
= 263.9 ≈ 264. (3.10)

In general, we can also estimate the expected number of right pairs by multiply-
ing the total number of input pairs with the differential probability of the trail
and get

2160 · 2−96 = 264. (3.11)

3.5.3 The Outbound Phase

In the outbound phase, we probabilistically propagate the resulting pairs of the
inbound phase outwards. The probability for the propagation depends on the

3.6. Solving Linearly for Pairs 45

number of active bytes of the trail in the outbound phase. In the truncated
differential trail of Figure 3.2 we get 4 ← 1 ← 4 in backward direction and
4 → 1 → 4 → 4 in forward direction. The differential probability of these
truncated differential trails is given as follows:

P(4
r1←− 1

r2←− 4) = 1 · 2−24 = 2−24

P(4
r5−→ 1

r6−→ 4
r7−→ 4) = 2−24 · 1 · 1 = 2−24

Note that we have only two probabilistic MixColumns transformations with a
total probability of 2−48. Hence, we can find a right pair for the whole 7-round
truncated differential trail by constructing 248 pairs for the inbound phase and
propagating them outwards in the outbound phase. The total complexity is
about 248 evaluations of the AES state update.

3.6 Solving Linearly for Pairs

In this section, we describe a method by Joan Daemen [Dae09] which allows us
to find a state pair with differences according to the truncated differential trail of
Figure 3.2 with a complexity of about 236 and negligible memory requirements
[MPRS09]. This method has also been used and extended in the attack on the
SHA-3 candidate Luffa in [KNPRS10].

The main idea is to first filter for differences according to the 4-round trail
int the middle and then, linearly solve for the values:

1
r1−→ 4

r2−→ 16
r3−→ 4

r4−→ 1

We first construct a 4-round differential trail and then solve for right pairs,
similar as in a standard differential attack. We can find a differential trail with
a complexity of about 1 by guess and determine (see Section 3.6.1). Since the
differential of each S-box is fixed we get either 2 or 4 possible values for the AES
S-box (see Section 3.2.1). In these cases, the S-box behaves linearly and we can
find the correct values by setting up and solving a linear system of equations
(see Section 3.6.2). Note that we need to repeat the linear solving phase a few
times if the system is over-defined.

3.6.1 Filtering for Differential Trails

In this section, we filter for candidate differences which follow the 4-round dif-
ferential trail of Figure 3.2 with a high probability. Figure 3.4 shows the corre-
sponding round transformations and the differential trail in detail. In the attack,
we use properties of the SubBytes and MixColumns transformations to filter for
differential trails. Hence, we are interested in the input and output of these
transformations. The first and second column show differences at the input and
output of the S-boxes (SBin

i and SBout
i), and column three and four show dif-

ferences at the input and output of the MixColumns transformations (MCin
i and

MCout
i). To determine possible input and output differences of the SubBytes

transformation, we precompute the DDT of the AES S-box.

46 Chapter 3. The Rebound Attack on AES-Based Permutations

1

1

1

1

3

3

3

3

5

5

5

5

1

1

1

1

3

3

3

3

5

5

5

5

1

1

1

1

3

3

3

3

5

5

5

5

1

1

1

1

3

3

3

3

5

5

5

5

1

1

1

1

3

3

3

3

5

5

5

5

1

1

1

1

3

3

3

3

5

5

5

5

2

2

2

2

4

4

4

4

6

6

6

6

2

2

2

2

4

4

4

4

6

6

6

6

2

2

2

2

4

4

4

4

6

6

6

6

2

2

2

2

4

4

4

4

6

6

6

6

2

2

2

2

4

4

4

4

6

6

6

6

2

2

2

2

4

4

4

4

6

6

6

6

SBin
1 SBout

1 MCin
1 MCout

1

SB1 SR1 MC1

SBin
2 SBout

2 MCin
2 MCout

2

SB2 SR2 MC2

SBin
3 SBout

3 MCin
3 MCout

3

SB3 SR3 MC3

SBin
4 SBout

4 MCin
4 MCout

4

SB4 SR4 MC4

Figure 3.4: Filtering for differential trails.

Column 1. We start with the differences of the first column (marked by “1”
in state MCin

2 and MCout
2) of the MixColumns operation of round 2 (MC2). Since

3 input byte differences are required to be zero, choosing one of the remaining 5
non-zero differences, uniquely determines all other differences of MC2. Since the
SubBytes and AddRoundKey operations are linear, we get the same differences
for the bytes marked by “1” in states SBout

2 and SBin
3 . It follows that we can

choose from 255 non-zero differences for the first byte of SBin
3 , and this choice

determines all differences marked by “1” between state SBout
2 and SBin

3 .

Column 2. Next, we continue with the differences of the first column of MC3

(marked by “2” in states MCin
3 and MCout

3). Again, 3 differences of MC3 are zero
and choosing one byte determines all differences of the first column of MC3. Note
that the input of the first column of SB3 and thus, the difference of SBin

3 [0, 0], has
already been fixed in the previous step. Due to the differential behavior of the
AES S-box (see Section 3.2.1), we can choose from only 127 differences for the
corresponding output byte of SB3 (SBout

3 [0, 0]). Choosing one of these possible
127 differences uniquely determines all differences marked by “2” between states
SBout

3 and SBin
4 .

3.6. Solving Linearly for Pairs 47

Column 3. Then, we continue with the second column of MC2 (marked by
“3” in states MCin

2 and MCout
3). Again, 3 bytes of the input differences are

required to be zero. Additionally, one output difference of SB3 (SBout
3 [1, 1]) has

already been fixed due to Column 2. Again, we can only choose from 127
possible input differences for SB3 (SBin

3 [1, 1]) and get 127 possible differences for
the bytes marked by “3” between SBin

3 and SBout
2 .

Column 4-5. We proceed with the second column of MC3, marked by “4” in
states MCin

3 and MCout
3 . Note that the input bytes of two S-boxes (SBin

3 [0, 1] and
SBin

3 [3, 0]) have already been fixed due to Column 1 and Column 3. These two
input differences restrict the number of possible differences for the output of SB3

(bytes marked by “4”) to about 256/22 = 64 values. We continue with the third
column of MC2 (marked by “5”). Two output differences of the corresponding S-
box SB3 have already been fixed and thus, we can choose from about 64 possible
differences for the input bytes marked by “5” in SBin

3 as well.

Column 6-8. This procedure continues for all 4 columns of each of the
two MixColumns transformations MC2 and MC3. The approximate number
of possible S-box differences for SBin

3 and SBout
3 are halved for each additional

MixColumns column and are shown in Table 3.3.

MC1 and MC4. Until now, we have determined differences for the states SBout
2 ,

SBin
3 , SBout

3 and SBin
4 . Since all differences in SBout

2 and SBin
4 have already been

determined, we have only about 255/28 ∼ 1 difference left for SBin
2 and SBout

4 .
Note that choosing the difference for one byte determines all other differences
as well due to the restrictions by MixColumns.

Note that we can find one possible differential characteristic with a complex-
ity of about one, since we filter through each MixColumns and S-box transforma-
tion only once. The total number of possible differential trails can be determined
by considering the number of choices we have at the input and output of S-box
SB3, the input of S-box SB2 and the output of S-box SB4. The approximate
number of choices are listed in Table 3.3 and by multiplying these numbers we
can get up to ∼ 264 possible differential trails or starting points for the next
phase.

Table 3.3: The approximate number of possible choices for the differences at the
input and output of the 3 S-boxes SB2, SB3 and SB4.

SBin
2 SBin

3 SBout
3 SBout

4

16 255 127 8
8 127 64 4
4 64 32 2
2 32 16 1

48 Chapter 3. The Rebound Attack on AES-Based Permutations

3.6.2 Solving for Conforming State Pairs

After we have found a differential trail we need to search for a right pair. Since
the differential of each active S-box is fixed there are only either 2 or 4 input
pairs possible. In these cases, an S-box behaves linearly [DR07a] and hence, we
can solve the resulting linear system of equations to find a right pair. In the
following description we assume that we have only 2 possible input pairs for each
active S-box.

Consider the diagonal of SBout
3 respectively the first column of MCin

3 (denoted
by “2” in Figure 3.4). For each S-box we have 2 possible inputs ki and k′i for
0 ≤ i < 4 such that the differential trail holds. In other words, we have 24

possible inputs for the diagonal of SBout
3 . Let x ∈ {0, 1}4. Then, the possible

values for the diagonal of SBout
3 are given by:

k ⊕ x · (k ⊕ k′)

where k = [k0, . . . , k3] and k′ = [k′0, . . . , k
′
3].

Next, we compute the first byte of SBin
4 by going forward through ShiftRows,

MixColumns and AddRoundKey.

SBin
4 [0, 0] = (k ⊕ x · (k ⊕ k′)) · L

where L denotes the composition of ShiftRows, MixColumns and AddRoundKey.
Since these transformations are all linear, L is a linear transformation as well.

Further, we have 2 possible values a and a′ for SBin
4 [0, 0] such that the differ-

ential trail holds and the following equation with y ∈ {0, 1} has to be fulfilled.

(k ⊕ x · (k ⊕ k′)) · L = a⊕ y · (a⊕ a′)

By doing the same for the other diagonals (corresponding to columns 2-4 of
MCin

3) we get a system of 16 equations in 16+4=20 variables which has to be
fulfilled to guarantee that the differential trail holds in the forward direction. In
a similar way we also get a system of 16 linear equations in 20 variables by going
backward from SBin

3 to SBout
2 . However, since the values of SBin

3 and SBout
3 are

related, we get in total a system of 64 equations in 24 variables by combining
them. In other words, to find a valid pair, we have to backtrack and try about
240 differential trails and thus, solve the linear system of equations 240 times.
Since we can start with up to 264 differential trails, we can only find about
264−40 = 216 pairs after the linear solving step.

In the case of AES, we get a better complexity if we first fix the differential
trail for rounds 1-3 (1 → 4 → 16 → 4) and then, solve for right pairs. In this
case, we get only 32 conditions and the complexity to solve for one pair is about
212. Since we need to repeat the attack 224 times to fulfill the last MixColumns
operation we get a total complexity of only 236 in this case.

Note that the attack works similar if we use 4 possible input pairs for the
S-box. By choosing the differences in the previous step (Section 3.6.1) in a
way, to maximize the number of differentials with 4 possible pairs for the S-box,
the overall complexity can be reduced slightly (by about 22 to 25). The total

3.7. Time-Memory Trade-Offs using SuperBoxes 49

complexity of the attack is given by the number of times we need to solve the
resulting linear system of equations. We assume here that this corresponds to
about one call to the AES. Hence, the complexity is approximately 236 to find
a right pair and thus, a distinguisher for the 7-round path.

3.7 Time-Memory Trade-Offs using SuperBoxes

In this section, we describe another improvement for the inbound phase of the
rebound attack which requires more memory. In Section 3.3.2 we have already
shown that the non-linear part of two rounds of AES can be viewed as 4 parallel
independent 32-bit SuperBoxes. Instead of S-box differentials, we can simply
match SuperBox differentials. This idea has first been applied in the improved
attack on the Whirlpool hash function by Lamberger et al. [LMR+09, Appendix
A] and applied to the Grøstl compression and hash function by Mendel et
al. [MRST10]. The SuperBox technique has also independently been used by
Gilbert and Peyrin [GP10].

3.7.1 Extending the Truncated Differential Trail

The main advantage of using SuperBoxes in the rebound attack is that the
truncated differential trail can be extended by one full active state in the middle.
The average complexity for the differential SuperBox matches is still 1, only the
memory requirements increase. Using the second technique shown below, we can
find a right pair for the 8-round truncated differential trail of Figure 3.5 with
a complexity of 248 and memory requirements of 232. This result has also been
published as an 8-round known-key distinguisher for the AES in [GP10]. Note
that for this truncated differential trail the approximate differential probability
is the same as for the 7-round trail:

P(C8) ≈ 2−24 · 1 · 1 · 1 · 2−24·4 · 2−24 · 1 · 1 = 2−144.

Hence, also the expected number of right pairs is 2160 · 2−144 = 216 again.

S0 S1 S2 S3 S4 S5 S6 S7 S8

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
AK

1 224 average 1 224 1 1

Figure 3.5: The truncated differential path to get a known-key or permutation
distinguisher for 8 rounds of the AES.

3.7.2 Using the Differential Distribution Table

The first and straightforward method is to build a differential distribution table
(DDT) for the whole SuperBox and repeat the basic inbound phase of Sec-

50 Chapter 3. The Rebound Attack on AES-Based Permutations

tion 3.5.2 with SuperBoxes instead of S-boxes. The inbound phase using Super-
Box matches is shown in Figure 3.6. The order of the SubBytes and ShiftRows
transformation in r4 has been swapped to get a better view on the SuperBox. In
the case of AES, this table has a size of about 264. For SHA-3 candidates which
use the AES round transformations as a building block, this time and memory
complexity is still beyond any generic attacks on the hash function. The pre-
computation complexity to build the DDT is 264. Once the table has been built,
the average complexity to find one right pair is 1.

As shown in Section 3.5.2, a random column or SuperBox differential is possi-
ble with a probability of about 2−4. Hence, we need to try about 216 differentials
in the inbound phase to find a possible differential between state S3

′ and SSB
5 .

The main advantage of this method is that we need only one possible differential
to find a right pair. This fact can be quite important in some restricted attacks.

SSR
3 S∗

3 SSB
5 SMC

5

MC
AK
SR

SB
MC
AK
SB

SR
MC

average 1

Figure 3.6: The 3-round truncated differential trail and the inbound phase using
SuperBoxes.

3.7.3 A Time-Memory Trade-Off with Memory 232

In the second method, we use a different time-memory trade-off to improve the
memory complexity of the inbound phase. In this case, we only need a precom-
putation step with complexity 232 and memory requirements of 232. Then, the
complexity to compute one right pair for the inbound phase is 1. We start the
inbound phase at state SSR

3 and SMC
5 (see Figure 3.6) and proceed as follows:

1. Start with all 232 differences in state SSR
3 , compute forwards through

MixBytes to state S∗3 , and store the resulting differences in a list L1.

2. Choose a random difference for state SMC
5 and compute backward through

MixBytes and ShiftBytes to state SSB
5 .

3. We connect the single difference of state SSB
5 with the 232 differences of

state S∗3 using 4 parallel SuperBoxes matches. For each SuperBox column
c = {0, 1, 2, 3} we proceed as follows:

(a) For column c at state SSB
5 , we take all 232 possible values and compute

both values and differences backward to state S∗3 .

(b) We get 232 differences for each SuperBox in state S∗3 and store the
resulting differences and values in a list L2.

3.7. Time-Memory Trade-Offs using SuperBoxes 51

(c) To find a solution for column c, we match the 4-byte differences in
list L2 with the corresponding differences of list L1 and update L1

accordingly:
L1 ← L1 ./32 L2

Since both lists have 232 entries and we have a condition on 32 bits,
we get 232 × 232 × 2−32 = 232 right pairs for column c.

(d) We repeat from step 3a for every SuperBox column of state SSB
5 and

in each case we get 232 solutions again.

4. For each column and thus, for the whole inbound phase the expected num-
ber of pairs is 232 with a total complexity of 232 in time and memory.

Hence, we can find one solution for the inbound phase with an average com-
plexity of one. We can choose from about 232 starting differences in state SMC

5

can get all possible 264 right pairs for the extended inbound phase with an
average complexity of 1. A disadvantage of this method is that we first need
to construct 232 differences at one side of the SuperBoxes which is not always
possible in every attack.

3.7.4 Non-Full Active SuperBoxes

If not all bytes of a SuperBox are active, the memory complexity can be reduced
further. In this case, the truncated differential trail for each SuperBox is given
by x → y with x + y 6= 8. Two examples of such truncated differential trails
are shown in Figure 3.7. Various efficient methods have been proposed in recent
years to find pairs according to such 3-round inbound phases.

S0 S1 S2 S3

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

average 1

(a) 4
r2−−→ 1 (memory 28).

S0 S1 S2 S3

SB
SR
MC
AK

SB
SR
MC
AK

SB
SR
MC
AK

average 1

(b) 4
r2−−→ 3 (memory 224).

Figure 3.7: Two 3-round truncated differential trails with non-full active Super-
Box matches in the inbound phase.

For 4 → 1, a start-from-the-middle technique has been published in
[MPRS09] and a similar, simplified technique has been used in [LMR+10]. Also
the linear solving technique presented in Section 3.6 can be used to efficiently
find right pairs in this case. All these techniques can find right pairs for the
3-round truncated differential trail of Figure 3.7a with an average complexity of
1 and negligible memory requirements.

A general non-full active SuperBox technique for x → y active bytes with
x + y ≥ 5 has been published in [SLW+10]. In that work, 28·min{x,y} starting

52 Chapter 3. The Rebound Attack on AES-Based Permutations

points are needed to find right pairs with an average complexity of 1 and memory
requirements of 28·min{x,y}. Recently, another technique has been published and
implemented which can find values for x→ 4 active bytes with complexity 24+7·x

in the case of AES [JF11]. The memory complexity in this case is 216.

3.8 Summary

In this chapter, we have applied the rebound attack to the AES in the known-
key setting which corresponds to the permutation setting of many AES-based
hash functions. We have analyzed the differential properties of the round trans-
formations in detail, discussed how to find good truncated differential trails and
computed the expected number of right pairs of a trail.

The rebound attack consists of two main phases, the inbound and outbound
phase. In the outbound phase, the propagation is probabilistic through the
MixColumns transformation and the probability can easily be deduced from the
truncated differential trail. In the inbound phase, we can use the available
freedom in choosing the values of the state. Various techniques have been shown
with slightly different requirements. An overview of the techniques for generic
state sizes of r × c with s-bit S-boxes and SuperBoxes matches of size r · s bits
with x→ y active bytes is given in Table 3.4. We assume that a random S-box
differential is possible with probability 2−1. In general, we can find one right pair
with an average complexity of one for any valid 3-round truncated differential
trail with most of these techniques. Details vary in memory requirements or the
complexity of finding the first right pair.

Table 3.4: Overview of different techniques to find right pairs for the 3-round
inbound phase with average complexity 1. The number of active bytes are the
same for each SuperBox and given for one SuperBox. (1) Differential distribu-
tion table. (2) Time-memory trade-off [LMR+09, GP10]. (3) Non-full active
SuperBoxes with x+ y ≥ r+ 1 [SLW+10]. (4) Start-from-the-middle techniques
[MPRS09, LMR+10]. (5) Linear solving technique [MPRS09].

type #active #start diff. #pairs time memory precomp. avg.

(1) r → r 2r·c 2r·c 2r 22·s·r 22·s·r 1

(2) r → r 2s·r 2s·r 2s·r 2s·r - 1

(3) x→ y 2s·min(x,y) 2s·min(x,y) 2s·min(x,y) 2s·min(x,y) - 1

(4) r → 1 1 1 1 216 216 1

(5) r → 1 1 1 1 216 216 1

The simplification that the inbound phase can be solved with an average
complexity of 1 for 3 rounds significantly improves the description of a rebound
attack. In this case, the complexity of an attack can be derived almost imme-
diately from a given truncated differential path (for example, see Figure 3.5).
However, one should of course be careful if all requirements of an attack are
met. The number of starting points, the conditions and the complexity to find
the first pair need to be considered. Furthermore, the truncated differential trail

3.8. Summary 53

should be valid and have enough freedom such that right pairs in every phase
of the attack can be found. Nevertheless, the rebound attack simplifies and im-
proves the analysis of AES-based primitives, which is shown in the attacks of
the following chapters.

Future work is to improve and extend the inbound phase. This is especially
possible for permutations with a less optimal diffusion than in the AES. First at-
tempts have been published by Naya-Plasencia in [Nay10] and other techniques
have been applied to the SHA-3 candidates Luffa [DSW09] in [KNPRS10] and
JH [Wu08] in [RTV10]. By using multiple inbound phases (see Section 2.4.5
and Chapter 6 and Chapter 7), the 8-round known-key distinguisher could be
extended to a 9-round chosen-key distinguisher, similar as in the attack on the
compression function of Whirlpool [LMR+09]. Also the application of the re-
bound attack to other primitives and the provable resistance against the rebound
attack is an open problem.

4
Design, Security and Implementation of

the Hash Function Grøstl

Since December 2010, the hash function Grøstl [GKM+11] is one of 5 final-
ists in the NIST SHA-3 competition [Nat07b]. Grøstl is an iterated wide-pipe
design with a permutation-based compression function. The permutations are
constructed using similar design principles as in the AES. We describe Grøstl

in detail in Section 4.1. We briefly discuss the security of the Grøstl hash func-
tion and its components in Section 4.2. Since the permutations in Grøstl are
based on AES, similar implementation techniques apply and are described in
Section 4.3. In that section, we also present a new byte-slicing technique which
allows us to implement Grøstl efficiently using the new Intel AES and AVX
instructions. More details of this implementations are given in [RS11].

4.1 Description of Grøstl

The hash function Grøstl has been designed in 2008 as a candidate for the
SHA-3 competition [Nat07b]. In 2010, Grøstl has been selected as one of 5 fi-
nalists in the competition. Grøstl is a wide pipe design (see Section 2.1.2) with
security proofs for the collision and preimage resistance of the compression func-
tion [FSZ08]. The compression function and output transformation are based on
permutations using round transformations similar to those of the AES [Nat01].
For the final round of the competition, Grøstl hash been tweaked to increase
its security margin. The initial submission is called Grøstl-0. In the following,
we describe the components of the Grøstl hash function in more detail.

55

56 Chapter 4. Design, Security and Implementation of Grøstl

4.1.1 The Hash Function

The input message M is padded and split into blocks M1,M2, . . . ,Mt of ` bits
with ` = 512 for Grøstl-256 and ` = 1024 for Grøstl-512. The initial value
H0, the intermediate hash values Hi, and the permutations P and Q are of
size ` as well. The message blocks are processed via the compression function
f(Hi−1,Mi), which accepts two `-bit inputs and outputs an `-bit value. After
all t message blocks have been processed, an output transformation Ω(Ht) is
applied which outputs the final n-bit hash value h:

H0 = IV

Hi = f(Hi−1,Mi) for 1 ≤ i ≤ t
h = Ω(Ht).

4.1.2 The Compression Function

The compression function f is based on two `-bit permutations P and Q with
` ≥ 2n. The compression function is defined as follows:

f(Hi−1,Mi) = P (Hi−1 ⊕Mi)⊕Q(Mi)⊕Hi−1.

The construction of the compression function of Grøstl is shown in Figure 4.1.

f

Hi−1 HiP

QMi

Figure 4.1: The compression function f of Grøstl. The permutations P and Q
are of size ` ≥ 2n bits.

4.1.3 The Output Transformation

After the last call to the compression function, an output transformation Ω is
applied to Ht to give the final hash value of size n

Ω(Ht) = truncn(P (Ht)⊕Ht),

where truncn(x) discards all but the least significant n bits of x. The output
transformation is also shown in Figure 4.2.

4.1. Description of Grøstl 57

Ht P

Figure 4.2: The output transformation Ω of Grøstl. The permutation P is of
size ` ≥ 2n bits and only the last n bits are returned.

4.1.4 The Permutations

Two permutations P and Q are defined for Grøstl. To distinguish between the
permutations of Grøstl-256 and Grøstl-512 we sometimes write P` or Q` where
` is the size of the permutations. In each permutation, the four AES-like round
transformations AddRoundConstant (AC), SubBytes (SB), ShiftBytes (SH), and
MixBytes (MB) are applied to the state in the given order. The permutations
differ only in the used constants of AddRoundConstant and ShiftBytes.

Grøstl-256 has 10 rounds and the 512-bit state of permutation P512 and
Q512 is viewed as an 8 × 8 matrix of bytes. One round of one permutation of
Grøstl-256 is shown in Figure 4.3. For Grøstl-512, 14 rounds are used and the
1024-bit state of the two permutations P1024 and Q1024 is viewed as an 8 × 16
matrix of bytes.

AC
SB
SH
MB

Figure 4.3: One round of one permutation of the Grøstl-256 hash function.

4.1.4.1 AddRoundConstant

The AddRoundConstant (AC) transformation XORs a round-dependent constant
to one row of the state. The constant and the row is different for P and Q.
Additionally, a round-independent constant 0xff is XORed to every byte in Q.
The XOR constants for round i are shown in Figure 4.4.

4.1.4.2 SubBytes

The SubBytes (SB) transformation applies the AES S-box to each byte of the
state.

4.1.4.3 ShiftBytes

ShiftBytes (SH) cyclically rotates the bytes of row r to the left by σ[r] positions
with different values for P and Q in Grøstl-256 and Grøstl-512. We get the

58 Chapter 4. Design, Security and Implementation of Grøstl

0i 1i 2i 3i 4i 5i 6i 7i

(a) P512

0i 1i 2i 3i 4i 5i 6i 7i 8i 9i ai bi ci di ei fi

(b) P1024

fi ei di ci bi ai 9i 8i

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

(c) Q512

fi ei di ci bi ai 9i 8i 7i 6i 5i 4i 3i 2i 1i 0i

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

(d) Q1024

Figure 4.4: The XOR constants added by the AddRoundConstant transformation.

S(x)

Figure 4.5: SubBytes substitutes each byte of the state using the AES S-box.

following rotation values:

σ = {0, 1, 2, 3, 4, 5, 6, 7} for P in Grøstl-256

σ = {1, 3, 5, 7, 0, 2, 4, 6} for Q in Grøstl-256

σ = {0, 1, 2, 3, 4, 5, 6, 11} for P in Grøstl-512

σ = {1, 3, 5, 11, 0, 2, 4, 6} for Q in Grøstl-512

4.1.4.4 MixBytes

MixBytes (MB) is a linear diffusion layer, which multiplies each column A of the
state with a constant, circulant 8× 8 MDS matrix B with branch number 9:

A = B ×A

where

4.2. Security 59

(a) P512 (b) P1024

(c) Q512 (d) Q1024

Figure 4.6: The shift values used by the ShiftBytes transformation.

B

Figure 4.7: The MixBytes transformation multiplies each column of the state by
a constant MDS matrix B with branch number 9.

B =



2 2 3 4 5 3 5 7
7 2 2 3 4 5 3 5
5 7 2 2 3 4 5 3
3 5 7 2 2 3 4 5
5 3 5 7 2 2 3 4
4 5 3 5 7 2 2 3
3 4 5 3 5 7 2 2
2 3 4 5 3 5 7 2


.

4.2 Security

Grøstl is a design with security proofs on the hash function, compression func-
tion and permutation. These proofs show that the construction of these com-
ponents is sound. Additionally, Grøstl is a failure-tolerant design. A distin-
guishing attack on the permutation most likely does not lead to an attack on
the compression function. Similarly, attacks on the (full) compression function

60 Chapter 4. Design, Security and Implementation of Grøstl

do not lead to attacks on the hash function due to the wide-pipe design. In
the following, we give a brief overview of the security of the building blocks in
Grøstl. For more details, we refer to the Grøstl specification [GKM+11]. All
details about rebound attacks on Grøstl are given in Chapter 5.

4.2.1 Hash Function

The Grøstl hash function is a wide-pipe construction where the intermediate
chaining value is at least twice as large as the hash function output size. There-
fore, generic attacks on Merkle-Damg̊ard designs such as length extension attacks
[Dam89, Mer89], multi-collisions attacks [Jou04], long message second preimages
attacks [KS05] or herding attacks [KK06] do not apply to the Grøstl hash func-
tion. Security proofs for the Grøstl hash function based on ideal permutations
have been published in [AMP10a, AMP10b].

The Grøstl hash function iterates a non-ideal compression function with
specific requirements. The construction of the compression function is provable
collision and preimage resistant up to the generic attacks on the hash function
[FSZ08]. The output transformation construction is based on the Davies-Meyer
construction which is collision resistant and one-way when instantiated with an
ideal block cipher or permutation (see [BRS02]).

4.2.2 Compression Function

Although attacks on the wide-pipe compression function do not necessarily trans-
late to the hash function, the Grøstl compression function is claimed to be colli-
sion and (second) preimage resistant up to the level needed for the hash function.
This claim is confirmed by proofs for the collision and preimage resistance of the
permutation-based construction. The proofs show that the construction is sound
when instantiated with independent and ideal permutations [FSZ08]. Neverthe-
less, the Grøstl permutations do not need to be ideal for Grøstl to be secure.
Most non-random properties of the permutation do not translate into collision
or preimage attacks on the compression function.

4.2.2.1 Collision Resistance

For the Grøstl compression function with output size ` and assuming that P
and Q are ideal permutations, at least 2`/4 permutation calls are needed to
get a collision [FSZ08]. However, no attack is known with that complexity.
The best known attack to get collisions on the Grøstl compression function
is using Wagner’s generalized birthday attack (Section 2.2.4). We rewrite the
compression function of Grøstl as follows:

f(h,m) =P (h⊕m)⊕Q(m)⊕ h =

P (h⊕m)⊕ (h⊕m)⊕Q(m)⊕m =

P (x)⊕ x⊕Q(y)⊕ y =

f1(x)⊕ f2(y), (4.1)

4.2. Security 61

with x = h ⊕ m, y = m and f1(x) = P (x) ⊕ x, f2(x) = Q(x) ⊕ x. Then, we
can find collisions for the compression function with complexity 2`/3 by finding
a solution for

f1(x)⊕ f2(y) = f1(x′)⊕ f2(y′). (4.2)

4.2.2.2 Preimage Resistance

Similarly, at least 2`/2 permutation calls are needed to get a preimage for
the compression function of Grøstl with output size ` and ideal permutations
[FSZ08]. The best known attack is a birthday attack on Equation 4.1:

t = f1(x)⊕ f2(y) (4.3)

with complexity 2`/2. Note that using cycle finding algorithms, preimages for
the compression can also be found in a memoryless way.

4.2.2.3 Non-Random Properties

Since Grøstl is a wide-pipe design with a strong output transformation, non-
random properties of the compression function are allowed. For example, effi-
cient distinguishers using k-sums or differential q-multicollisions are easy to find.
A simple example of a k-sum for the compression function is given as follows.
Let H1 ⊕H2 ⊕H3 ⊕H4 = 0 and H1 ⊕H2 = M1 ⊕M2, then

f(H1,M1)⊕ f(H2,M2)⊕ f(H3,M1)⊕ f(H4,M2) = 0

which is a 4-sum of value zero. Note that this also implies that H1 ⊕ H2 =
H3 ⊕H4 = ∆1 and we get

f(H1,M1)⊕ f(H2,M2) = f(H3,M1)⊕ f(H4,M2) = ∆2.

Note that such a differential is also called a differential 2-multicollision in
[BKN09]. Furthermore, fixed-points can easily be constructed, and Kelsey has
made some observations that the message can be used to control the chaining in-
put [Kel09]. Also Peyrin has shown non-random properties for the compression
function of the initial version Grøstl-0 in [Pey10].

4.2.3 Permutations

The AES-based permutations in Grøstl have been designed strictly according
to the wide-trail design strategy [DR02]. In both Grøstl-256 and Grøstl-512,
the branch number of MixBytes is 9 and ShiftBytes moves bytes of each column
to 8 different columns. It follows from [DR02, Theorem 9.5.1] that in any 4-
round differential or linear trail at least 92 = 81 S-boxes are active. Hence,
(Pmax

S)z = (2−6)81 = 2−486 upper bounds the expected differential probability
of any 4-round differential trail (2−972 for any 8-round trail) and there is very
little chance that a classical differential (or linear) attack can be successful.

62 Chapter 4. Design, Security and Implementation of Grøstl

Integrals for up to 7 rounds of Grøstl-256 and up to 9 round of Grøstl-512,
as well as zero-sum partitions of size 2509 for 10 rounds of Grøstl-256 and of
size 21023 for 12 rounds of Grøstl-512 are mentioned in [BCD11]. However, it is
unknown whether these properties can ever be used to get an attack on the hash
function or to find collision or preimages for the compression function. Moreover,
properties with a complexity above 2n with n the hash function output size are
of little interest which has also been shown in [BDPV11a].

Additionally, the permutation-based design limits the degrees of freedom
in a hash function (or compression function) attack. The permutations can
only be accessed from the input or output since no key schedule exists. This
significantly limits the freedom of an attacker to control different parts in an
attack. Therefore, the full-round attacks on Whirlpool [LMR+09] or on the
AES [BK09] do not apply to Grøstl. The best known attacks on Grøstl which
also extend to the hash and compression function are rebound attacks which are
discussed in detail in Chapter 5.

4.3 Efficient Implementation Techniques

Similarly as the AES, Grøstl can be implemented efficiently on a wide range of
platforms and for register sizes from 8 to 256 bits. Many different implementation
techniques are possible and efficient variants developed for the AES can also
be used for Grøstl. This includes the T-table approach [DR99b] and bit-slice
implementations [KS09]. Note that bit-slice AES implementations result in the
fastest known AES code if no dedicated AES instructions like the Intel AES
new instruction set (AES-NI) [Int11a] are available. These techniques are briefly
discussed and applied to Grøstl in the following.

Since Grøstl uses a different MDS transformation than the AES, we can-
not use the AESENC instruction which computes one round of the AES with a
throughput of only 1 CPU cycle. Contrary to the findings in [BBGR09], it is still
possible to implement Grøstl very efficiently using the AESENCLAST instruction
which computes only SubBytes and ShiftRows of the AES [RS11]. In this case, the
MixBytes transformation of Grøstl has to be computed separately using XORs
and multiplications by 2 in GF (28). For wide register sizes we can compute
many MixBytes transformations in parallel using a byte-slice implementation of
Grøstl. The byte-slice approach also leads to efficient Grøstl implementations
if no AES instructions are available. In this case, the vperm approach [Ham09]
can be used to compute many S-box lookups in parallel.

To summarize, the design of Grøstl provides many possibilities for in-register
parallelism. We can compute rows in parallel (T-table approach), columns in
parallel (byte-slicing) or bits in parallel (bit-slicing). Table 4.1 shows benchmark
results of these Grøstl implementation techniques on current desktop proces-
sors. Additionally, the byte-slice implementation technique can be used without
parallelism in 8-bit implementations of Grøstl. Table 4.2 shows some time-
memory trade-offs for 8-bit implementations of Grøstl.

4.3. Efficient Implementation Techniques 63

Table 4.1: Grøstl software performance on current desktop processors sorted by
their speed in cycles/byte (c/b). The byte-slice implementations using AES-NI
or vperm outperform table-based implementations on processors with 128-bit
registers.

Hash function Processor Speed (c/b) Technique

Grøstl-256

Intel Core i7 620LM 13.2 AES-NI
Intel Core2 Duo L9400 20.4 vperm
Intel Core2 Duo L9400 22.5 T-tables

Intel Core i7 620LM 23.3 vperm
Intel Core i7 620LM 24.0 T-tables

Grøstl-0-256 Intel Core2 Duo L9400 29.7 bitslicing

Grøstl-512

Intel Core i7 620LM 18.3 AES-NI
Intel Core2 Duo L9400 28.9 vperm

Intel Core i7 620LM 33.4 vperm
Intel Core2 Duo L9400 37.4 T-tables

Intel Core i7 620LM 37.7 T-tables

Table 4.2: Speed of three different Grøstl-256 8-bit AVR implementations in
cycles/byte on an ATMega163. The last line shows the RAM usage in bytes.

HighSpeed Balanced LowMem
Grøstl 469 530 -
Grøstl-0 456 517 738
RAM 994 226 164

4.3.1 Table-Based

For the AES, a table-based approach to efficiently compute the combined
SubBytes and MixColumns has been proposed in [DR99b]. The same approach
can also be applied to Grøstl. Using this technique, at least one table lookup is
needed for each S-box. The MixBytes transformation is computed in parallel for
rows of the state and can be combined with the S-box lookup. This approach
is most efficient if the column size matches the register size. This is the case
on 32-bit platforms for AES and on 64-bits platforms for Grøstl. Since many
current and future small-scale 32-bit processors also provide 64-bit instructions
(MMX, NEON), Grøstl can also be implemented efficiently on these platforms.

4.3.1.1 The T-table Approach for Grøstl

For the T-table approach, the state of Grøstl is stored in 64-bit registers in
column ordering (see Figure 4.8). The AddRoundConstant transformation can
be computed separately using 64-bit XORs. The computation of the SubBytes,
ShiftBytes and MixBytes transformations are combined to efficiently compute one

64 Chapter 4. Design, Security and Implementation of Grøstl

64-bit column (e.g. column 0) of Grøstl as follows:

b00
b10
b20
b30
b40
b50
b60
b70


=



2 2 3 4 5 3 5 7
7 2 2 3 4 5 3 5
5 7 2 2 3 4 5 3
3 5 7 2 2 3 4 5
5 3 5 7 2 2 3 4
4 5 3 5 7 2 2 3
3 4 5 3 5 7 2 2
2 3 4 5 3 5 7 2


·



S(a00)
S(a11)
S(a22)
S(a33)
S(a44)
S(a55)
S(a66)
S(a77)


where b0 = [b00, b10, · · · , b70]T is the resulting 64-bit value of the first column
computation. The input bytes aij are extracted from the state according to
the ShiftBytes transformation and the S-box S(x) is applied to these bytes prior
to the matrix multiplication of MixBytes. Expanding the matrix multiplication
then gives:

b00
b10
b20
b30
b40
b50
b60
b70


=



2 · S(a00)
7 · S(a00)
5 · S(a00)
3 · S(a00)
5 · S(a00)
4 · S(a00)
3 · S(a00)
2 · S(a00)


⊕



2 · S(a11)
2 · S(a11)
7 · S(a11)
5 · S(a11)
3 · S(a11)
5 · S(a11)
4 · S(a11)
3 · S(a11)


⊕



3 · S(a22)
2 · S(a22)
2 · S(a22)
7 · S(a22)
5 · S(a22)
3 · S(a22)
5 · S(a22)
4 · S(a22)


⊕



4 · S(a33)
3 · S(a33)
2 · S(a33)
2 · S(a33)
7 · S(a33)
5 · S(a33)
3 · S(a33)
5 · S(a33)


⊕



5 · S(a44)
4 · S(a44)
3 · S(a44)
2 · S(a44)
2 · S(a44)
7 · S(a44)
5 · S(a44)
3 · S(a44)


⊕



3 · S(a55)
5 · S(a55)
4 · S(a55)
3 · S(a55)
2 · S(a55)
2 · S(a55)
7 · S(a55)
5 · S(a55)


⊕



5 · S(a66)
3 · S(a66)
5 · S(a66)
4 · S(a66)
3 · S(a66)
2 · S(a66)
2 · S(a66)
7 · S(a66)


⊕



7 · S(a77)
5 · S(a77)
3 · S(a77)
5 · S(a77)
4 · S(a77)
3 · S(a77)
2 · S(a77)
2 · S(a77)


which simplifies to

b0 =T0(a00)⊕ T1(a11)⊕ T2(a22)⊕ T3(a33)⊕
T4(a44)⊕ T5(a55)⊕ T6(a66)⊕ T7(a77)

where the tables y = Ti(x) contain 8 to 64-bit lookups of the S-box together
with the 8 multipliers of MixBytes. For example, for the first table T0 we get:

T0(x) = 2·S(x) ‖ 7·S(x) ‖ 5·S(x) ‖ 3·S(x) ‖ 5·S(x) ‖ 4·S(x) ‖ 3·S(x) ‖ 2·S(x)

Extracting a single byte from a word can be implemented using one bit-
shift and one masking (logical and) instruction. Many processors also provide
instructions to directly access a single byte of a word. Then, the computation of
one column consists of only 8 table-lookups, 8 XORs (7 XORs for MB, 1 XOR
for AC), and 8 SHIFTs with 8 ANDs if no instruction to extract single bytes aij
from the 64-bit column values aj = [a00, a10, . . . , a70]T are available.

4.3. Efficient Implementation Techniques 65

P Q

m
m
x
0

m
m
x
0

m
m
x
1

m
m
x
1

m
m
x
2

m
m
x
2

m
m
x
3

m
m
x
3

m
m
x
4

m
m
x
4

m
m
x
5

m
m
x
5

m
m
x
6

m
m
x
6

m
m
x
7

m
m
x
7

Figure 4.8: For the T-table approach, the Grøstl-256 state is stored column-wise
in 64-bit registers.

The same T-table approach can also be used for efficient implementations
on 32-bit processors. In this case, we split up the computation into an upper
part and lower part. We need to split up the tables Ti into one table T ′i storing
the upper 32 bits and one table T ′′i storing the lower 32 bits. Due to the cyclic
structure of the MixBytes transformation matrix, the tables T ′i can be reused to
lookup also the lower 32 bits since we have T ′′i = T ′(i+4)mod8. Hence, we get

b′0 =T ′0(a00)⊕ T ′1(a11)⊕ T ′2(a22)⊕ T ′3(a33)⊕
T ′4(a44)⊕ T ′5(a55)⊕ T ′6(a66)⊕ T ′7(a77)

b′′0 =T ′4(a00)⊕ T ′5(a11)⊕ T ′6(a22)⊕ T ′7(a33)⊕
T ′0(a44)⊕ T ′1(a55)⊕ T ′2(a66)⊕ T ′3(a77)

with b0 = b′0‖b′′0 .

4.3.1.2 Application to Current Processors

Current desktop processors have 1 LOAD/STORE unit and 3 ALUs. This im-
plies that the LOAD/STORE instructions are dominant, the minimal through-
put is 1 cylce/byte for each round of Grøstl. This results in 20 cylces/byte for
Grøstl-256 and 28 cycles/byte for Grøstl-512. The results given in Table 4.1
show that the speed of Grøstl is very close to this bound on the Intel Core2
Duo processor.

Since AMD processors have 2 LOAD/STORE units, up to two parallel table-
lookups are possible within each CPU cycle. Assuming that single bytes can be
extracted efficiently using one instruction, we get 0.5 cycles/byte for the LOADs
and 0.67 cycles/byte for the ALU instructions. Hence, the ALU instructions are
dominant and we get a lower bound of 13.3 cylces/byte for Grøstl-256 and 18.7
cycles/byte for Grøstl-512.

66 Chapter 4. Design, Security and Implementation of Grøstl

Since the number of table-lookups and XORs double for the 32-bit T-table
implementation, we get a lower bound of 40 cycles/byte for Grøstl-256 and
56 cycles/byte for Grøstl-512 if no parallel table-lookups are possible. However,
many current and future 32-bit processors have 64-bit instruction set extensions
such as MMX for Intel/AMD processors [Int11b] and NEON for ARM processors
[ARM11].

Future work is to reduce the number of ALU instructions, for example us-
ing 128-bit registers to half the number of XORs. This could be particularly
useful for the AMD implementation with parallel table-lookups since the ALU
instructions are the bottleneck of the attack.

4.3.2 Byte Slicing

Another option to implement Grøstl is the byte-wise parallel computation of
columns. All round transformations except ShiftBytes apply exactly the same
computation to each column of the Grøstl state. We call this a byte-slice
implementation [RS11] since the Grøstl state is cut into column slices of bytes.
The state is stored in row ordering and using w-bit registers, w/8 columns can
be computed in parallel.

A byte-slice implementation of Grøstl is very efficient if all round transfor-
mations can be implemented w/8 times in parallel using only a few instructions.
If this requirement is fulfilled, we gain the best speed-up using 128-bit regis-
ters for Grøstl-256 and using 256-bit registers for Grøstl-512. In this case,
all columns of both P and Q are computed in parallel. The same algorithm to
compute the result of one Grøstl column can also be used for 8-bit processors
where each column is computed separately [Rol09].

The fastest Grøstl implementation so far [BL11] is a byte-slice implementa-
tion using the Intel AES new instruction set (AES-NI) [Int11a]. This instruction
set allows the parallel computation of 16 AES S-box table lookups. All other
Grøstl transformations are implemented using 128-bit XMM registers and cor-
responding SIMD instructions. When describing the principles of byte-slicing,
we will refer to this implementation in the following subsections.

4.3.2.1 Row-Ordering of the Grøstl State

The input bytes of the message are mapped to the Grøstl state in column-
ordering (see Figure 4.9). This is a benefit for T-table based implementations
but a drawback for byte-slice implementations where row-ordering is needed.
However, if we keep the internal state in row-ordering throughout the whole
computation, we only need to reorder each message block input and the hash
function output (the IV is stored in row-ordering).

Transforming the input message from column-ordering into row-ordering cor-
responds to transposing the input message block. Many algorithms for trans-
posing a matrix are known and a square matrix can be transposed using only a
few PUNPCK instructions [Int96]. If we store the Grøstl state in 128-bit registers

4.3. Efficient Implementation Techniques 67

P Q

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

Figure 4.9: For the AES-NI implementation, the Grøstl-256 state is stored
row-wise in xmm registers to compute each column 16 times in parallel.

we get an 8x16 rectangular matrix and additional byte-shuffling (PSHUFB) and
move (MOV) instructions are needed to transpose the input message [RS11].

4.3.2.2 AddRoundConstant

The AddRoundConstant transformation XORs a round-dependent row-wise con-
stant to the first row in P and the last row in Q, and a round-independent
constant to each row of Q. Since the Grøstl state is stored in row-ordering,
these constants can be added efficiently in parallel to each column of the state.

4.3.2.3 SubBytes

SubBytes is usually the most difficult transformation to implement efficiently in
a byte-slice implementation. As already mentioned, for w-bit registers we need
an efficient method to compute w/8 parallel AES S-box lookups. This results
in only one (parallel) table lookup in the case of 8-bit implementations (w = 8).
Unfortunately, for larger register sizes, parallel table-lookups are usually non-
trivial.

Although Grøstl does not use the same MDS matrix as the AES, Grøstl
can still take advantage of the Intel AES new instruction set extension (AES-
NI). Since no MixColumns transformation is applied in the last round of the
AES, Intel also provides an AESENCLAST instruction. This instruction is able to
compute 16 AES S-boxes with a throughput of only 1 cycle and a latency of 4
cycles. The byte-shuffling of the AESENCLAST instruction can be reversed and
computed together with the ShiftBytes transformation (see Section 4.3.2.4).

For processors without AES instruction, another method to efficiently com-
pute many AES S-box lookups in parallel has been published by Mike Hamburg
in [Ham09] and first implemented for Grøstl by Çağdaş Çalik in [Çal10]. This
vperm implementation uses small log tables of the finite field GF (24) to effi-
ciently compute the inverse in GF (28) of the AES S-box. The log-tables for the
multiplication and inverse in GF (24) consist of 4-bit table lookups which can be
implemented efficiently using 128-bit registers and byte-shuffling operations (e.g.
using the PSHUFB instruction). Using the vperm implementation, we can com-

68 Chapter 4. Design, Security and Implementation of Grøstl

pute 16 AES S-box lookups within less than 10 cycles. An additional advantage
of the vperm implemenation is that we can multiply the resulting output by a
constant in GF (28) for free, which is useful for the MixBytes transformation.

4.3.2.4 ShiftBytes

Since ShiftBytes just moves bytes within one row of Grøstl, this transformation
can be implemented only using byte-shuffling instructions. If AESENCLAST is used
to compute the S-box lookups, we need to correct the ShiftRows transformation
of the last round in AES. These two byte-shufflings can be combined into a single
PSHUFB instruction. Note that any ShiftBytes rotation constants could be used
for P and Q at no additional cost.

4.3.2.5 MixBytes

The MixBytes transformation is the most costly transformation in a byte-slice
implementation of Grøstl. We need to combine the 8 rows of the Grøstl state
according to the MixBytes matrix multiplication. A naive approach needs to
multiply the bytes of all 8 rows by the 5 occurring multipliers. Then, we need
5 · 8 = 40 multiplications by 2 and 7 · 8 = 56 XORs to compute MixBytes.
Usually, the multiplication is between 3 (ATmega163) and 5 (Intel Core) times
as expensive as a simple XOR. Therefore, we usually use only the multipliers 1,
2, and 4. The resulting multiplication matrix is given in Table 4.3.

In this case, we need 14 · 8 = 112 XORs but only 16 multiplications by 2.
Note that the hash function Whirlpool needs 80 XORs and 24 multiplications by
2 to compute its 8× 8 MDS matrix multiplication which results in a higher cost
on desktop processors. Furthermore, the MixBytes transformation in Grøstl

has been designed to reduce the number of XORs by increasing the Hamming
weight for the constants in the MDS matrix. This allows the computation of
many temporary results to save XOR operations. In the following, we show
two optimized variants to compute MixBytes efficiently. Note that the total
cost depends on the target platform different variants can be more efficient on
different platforms.

Reusing Temporary Results. Since many terms (ai, 2 · ai, 4 · ai) in the
computation are added to more than one result, we can save XORs by computing
temporary results (see Table 4.3). For example, the term

t = 2 · a0 + 2 · a2 + a5 + 4 · a7 + a7 (4.4)

needs to be added to b0, b1 and b3. This has a total cost of 3 · 5 = 15 XORs
using the naive approach. If we first compute the temporary result t and then
add t to each of b0, b1 and b3, we can save 15− (4 + 3) = 8 XORs.

There are many possibilities to compute temporary results and we have used
a greedy approach to find a good sequence. In each step of this approach, we try
out all possible temporary results and compute the maximum number of XORs
we can save. In the first step, the number of XORs we can save is 8. After

4.3. Efficient Implementation Techniques 69

T
ab

le
4.

3:
M
ix
B
yt
es

co
m

p
u

ta
ti

on
w

it
h

66
X

O
R

s.
A

“
•”

d
en

ot
es

th
o
se

in
p

u
ts

(a
i,

2
·a

i,
4
·a

i)
w

h
ic

h
a
re

a
d

d
ed

to
g
et

th
e

re
su

lt
s
b i

.
S

u
p

er
sc

ri
p

ts
d

en
ot

e
th

e
or

d
er

in
w

h
ic

h
th

e
te

m
p

or
ar

y
re

su
lt

s
a
re

co
m

p
u

te
d

(1
co

rr
es

p
o
n

d
s

to
th

e
te

m
p

o
ra

ry
re

su
lt

s
of

E
q
u

at
io

n
4.

4)
.

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

4
2

1
4

2
1

4
2

1
4

2
1

4
2

1
4

2
1

4
2

1
4

2
1

b 0
−

•1
−

−
•2

−
−

•1
•9

•d
−

−
•d

−
•2

−
•9

•1
•2

−
•2

•1
•2

•1
b 1

•5
•1

•5
−

•a
−

−
•1

−
−

•5
•b

•d
−

−
•5

−
•1

−
•b

•a
•1

−
•1

b 2
•5

−
•5

•7
•2

•7
−

•c
−

−
•5

−
−

•7
•2

•5
−

−
•2

−
•2

−
•2

•c
b 3

−
•1

•3
•7

−
•7

•3
•1

•3
−

•3
−

−
•7

−
−

•3
•1

•d
−

−
•1

−
•1

b 4
•d

−
•3

−
•a

•4
•3

−
•3

•4
•3

•4
−

•4
−

−
•3

−
−

•4
•a

•d
−

−
b 5

•d
−

−
•6

−
•4

•d
•c

•9
•4

−
•4

•6
•4

•6
−

•9
−

−
•4

−
−

•6
•c

b 6
−

•8
•3

•6
−

−
•3

−
•3

−
•3

•b
•6

−
•6

•8
•3

•8
−

•b
−

−
•6

−
b 7

−
•8

−
−

•2
•4

−
−

−
•4

−
•4

−
•4

•2
•8

−
•8

•2
•4

•2
−

•2
−

70 Chapter 4. Design, Security and Implementation of Grøstl

Table 4.4: The MixBytes computation separated for factors 1, 2 and 4. ai denote
the input bytes and bi = bi,1 ⊕ bi,2 ⊕ bi,4 are the output bytes. A “•” marks
those inputs (ai, 2 · ai, 4 · ai) which are added to get the intermediate results
bi,j . Superscripts denote the order in which temporary values are computed.
The results for factor 2 are computed by multiplying the results of factor 1 by 2
where bi,2 = 2 · bi+3mod8,1.

1a0 1a1 1a2 1a3 1a4 1a5 1a6 1a7

b0,1 − − •0 − •2 •0 •2 •
b1,1 •1 − − •1 − • •a •
b2,1 •b •3 − − •2 − •2 •3
b3,1 •b •3 •0 − − •0 − •3
b4,1 •1 • • •1 − − •a −
b5,1 − •3 • • • − − •3
b6,1 •1 − •0 •1 • •0 − −
b7,1 − • − • •2 • •2 −

2a0 2a1 2a2 2a3 2a4 2a5 2a6 2a7 =

b0,2 • • • − − • − • 2 · b3,1
b1,2 • • • • − − • − 2 · b4,1
b2,2 − • • • • − − • 2 · b5,1
b3,2 • − • • • • − − 2 · b6,1
b4,2 − • − • • • • − 2 · b7,1
b5,2 − − • − • • • • 2 · b0,1
b6,2 • − − • − • • • 2 · b1,1
b7,2 • • − − • − • • 2 · b2,1

4a0 4a1 4a2 4a3 4a4 4a5 4a6 4a7

b0,4 − − − •0 •1 − •0 •1
b1,4 •2 − − − •1 •2 − •1
b2,4 •2 •3 − − − •2 •3 −
b3,4 − •3 •4 − − − •3 •4
b4,4 •5 − •4 •5 − − − •4
b5,4 •5 •6 − •5 •6 − − −
b6,4 − •6 •7 − •6 •7 − −
b7,4 − − •7 •0 − •7 •0 −

we remove the already added terms, we continue with the greedy approach until
only single terms are left. Using this approach we found a sequence of computing
MixBytes which requires only 66 XORs and 16 multiplications by two. This
sequence is shown in Table 4.3 using superscript numbers to denote the order
of computing temporary results. It is still an open problem to find the smallest
number of XORs needed to compute MixBytes in Grøstl.

4.4. Summary 71

Reusing Results of Multiplier 1. If more registers are available and mul-
tiplications by 2 are cheap, a different implementation of MixBytes using less
XORs but more multiplications by 2 can be more efficient. This is the case in
the 8-bit AVR implementation of Grøstl on an ATmega163 [Rol09]. In this
variant, we compute the results of each multiplier separately. We start with
multiplier 1 and use temporary results again to minimize the number of XORs.
However, we can get the results for multiplier 2 without XORs from the results
of multiplier 1 since bi,2 = 2 ·bi+3mod8,1 (also see Table 4.4). The results for mul-
tiplier 4 are computed using temporary results again. While this significantly
reduces the number of XORs to 47, we need in total 24 multiplications by 2.

Exploiting XOR Parallelism. For processors with more than one ALU, a
MixBytes computation with the minimum number of instructions does not need
to result in the fastest implementation. For example, modern desktop CPUs
contain 3 ALUs which can compute 3 independent XORs in parallel. Currently,
the MixBytes computation contains many dependencies such that the ALU par-
allelism cannot be fully exploited. Additionally, parallel XOR computation can
also be used if even wider registers are available, for example using the Intel
AVX extension. Hence, there is still room for improvements since about 70% of
the time is spent for the computation of MixBytes.

Using a Different Basis. Another optimization to reduce the number of
XORs has been used in the vperm implementation of Grøstl by Çağdaş Çalik
in [Çal10]. Since we can get any multiplier out of the vperm implementation
at no additional cost, we can use different basis vectors for the MixBytes matrix
multiplication. If the basis (3, 5, 7) is used, the Hamming weight of the multipli-
cation constants reduces significantly. Unfortunately, this basis does not result
in less XORs than using the standard basis and reusing temporary results.

4.3.3 Bit Slicing

The fastest AES software implementations are bit-slice implementations running
at 7.6 cycles/byte on an Intel Core2 if multiple blocks are encrypted in parallel
in counter mode [KS09]. Also the hash function Whirlpool which shares some
similarities to Grøstl has been implemented efficiently using bit-slicing tech-
niques in [Sch07]. Preliminary assembly implementations of Grøstl-0 show a
speed of 29.7 cycles/byte on an Intel Core2 Duo processor for the computation
of a single message [Til08]. Additionally, bit-slice implementations of Grøstl-0
get even more efficient if two or more messages are hashed in parallel [Çal10].

4.4 Summary

In this chapter, we have presented the SHA-3 finalist Grøstl. Since Grøstl

is based on the AES, many cryptanalysis and implementation results can be
reused and applied also to Grøstl. Grøstl has proofs for the construction

72 Chapter 4. Design, Security and Implementation of Grøstl

and the permutations are provably resistant against standard differential and
linear attacks. Furthermore, since Grøstl has no key schedule, the freedom of
an attacker are limited and for example, related-key or similar attacks are not
possible. We have also discussed three efficient implementation techniques and
shown that Grøstl can also be implemented efficiently using the new Intel AES
and AVX instructions.

5
Applying the Rebound Attack to Grøstl

In this chapter we apply the rebound attack to the hash function Grøstl

[GKM+11], which is one of the 5 finalists of the SHA-3 competition. The it-
erated hash function Grøstl is based on a wide-pipe compression function and
has a non-invertible output transformation. Since the wide-pipe compression
function of Grøstl is known to be non-random, many distinguishers exist and
the hash function has been designed with this fact in mind. With ` denot-
ing the output size of the compression function for example, collision attacks
in 2`/3 time or 2`/4 permutation queries, memoryless preimage attacks in time
2`/2, and very efficient distinguishers are known [GKM+11]. Hence, the strong
output transformation with truncation is an important part of the design.

The rebound attack [MRST09] has been developed together with the design
of Grøstl. Both the rebound attack and the Grøstl design simplify the use of
the available freedom. While the goal of the rebound attack is to efficiently use
all available freedom, Grøstl has been designed to limit the freedom that can
be used in an attack. For example, Grøstl consists only of two permutations
without key schedule inputs and each permutation strictly follows the wide-trail
design strategy. Hence, no complicated attacks are needed which use freedom of
a key schedule and no sparse paths exist which may provide additional freedom
for an attacker.

The clean design of Grøstl and the simple application of the rebound attack
provide additional assurance to the security of Grøstl. Once the basics of
the rebound attack are known (see Chapter 3), one can quickly understand
the rebound attacks on Grøstl by just looking at the figures in the following
sections. Moreover, one can determine the complexity of the attack and think
of extensions or variants without the need of complicated tools.

In Section 5.1, we first apply the basic rebound attack on AES (see Sec-

73

74 Chapter 5. Applying the Rebound Attack to Grøstl

tion 3.5) to the Grøstl-256 permutation and describe each step in detail. We
also analyze the various time-memory trade-offs (see Section 3.7) to efficiently
find pairs for the permutation. The results are distinguishers for up to 8 rounds
of the Grøstl-256 permutation and output transformation. In Section 5.2 show
how to use these results to get semi-free-start collisions for 6 rounds of the com-
pression function of Grøstl-256. In Section 5.3, we apply the rebound attack to
the Grøstl hash function and get collisions for 3 rounds, since only one half of
the freedom is available in an attack on the hash function. In Section 5.4 we also
apply all rebound attacks to Grøstl-512. Finally, we summarize the analysis of
Grøstl in Section 5.5.

Note that in the last round of the competition, Grøstl has been tweaked
to increase its security margin. The initial submission without tweak is called
Grøstl-0 and various rebound attacks on round-reduced versions of Grøstl-
0 have been presented in a series of papers. In Appendix A, we briefly
present the results on Grøstl-0 which can be viewed as a slightly simpli-
fied variant of Grøstl. The results of this chapter have been published in
[MRST09, MPRS09, MRST10]. External cryptanalysis of Grøstl has been pub-
lished in [GP09, Pey10, SLW+10, ITP10].

5.1 The Rebound Attack on the Grøstl-256 Per-
mutation

In this section we apply the rebound attacks on AES (see Chapter 3) to the
permutation of Grøstl-256. The attacks and the results are very similar but
applied to the 8× 8 state of Grøstl-256 instead of the 4× 4 state of AES. Most
parts of the attack are simply scaled up to the larger state and are still valid.
However, the complexity of some techniques gets too big for an 8× 8 state and
cannot be used in an attack on the hash or compression function anymore.

The outline of the rebound attack is the same as for AES and consists of the
following four main parts:

1. Constructing a truncated different path: Also for Grøstl, we use
truncated differential paths which have a high number of active S-boxes
in the middle and a low number of active S-boxes near both ends of the
path. For each path, we also compute the expected number of right pairs
to verify if the truncated differential path is valid.

2. The inbound phase: In this phase we construct solutions (pairs) for
the middle part of the truncated differential path. For a good path, we
should be able to construct many solutions for the inbound phase with a
low average complexity (ideally with average complexity 1).

3. The outbound phase: In the outbound phase, we propagate each so-
lution of the inbound phase outwards in both directions. In this phase,
we usually have no control over the pairs anymore and each pair follows

5.1. The Rebound Attack on the Grøstl-256 Permutation 75

the path probabilistically. Therefore, we aim for a sparse path with a high
probability in the outbound phase.

In the following subsections, we briefly describe how to construct good trun-
cated differential paths for the Grøstl-256 permutation and compute their ex-
pected number of pairs. We then use these paths in the rebound attack on the
permutation and apply 3 different inbound phases to the 8× 8 state of Grøstl-
256. Finally, we discuss the outbound phase and present the best known rebound
attacks on the Grøstl-256 permutation and output transformation.

5.1.1 Constructing Truncated Differential Paths

In this section we show how to construct good truncated differential paths for
Grøstl-256 and briefly explain what good means. We start with a minimum
7-round truncated differential path which can be extended to 8 rounds by using
two full active states in the middle of the permutation.

5.1.1.1 A Minimum 7 Round Path

A truncated differential path with a minimum number of active S-boxes can
easily be constructed due to the wide-trail design strategy of Grøstl. The path
looks similar as for the AES and is simply scaled up to an 8 × 8 state. The
number of active bytes for the minimum 7-round path is given as follows:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 8
r5−→ 1

r6−→ 8
r7−→ 64

The truncated differential path is also shown in Figure 5.1 Note that for an at-
tack on the permutation we need to observe some non-random property at the
input and at the output. The path has a non-full active state at the input but
contrary to the AES, the MixBytes transformation in the last round of Grøstl is
not omitted. Since MixBytes is a linear transformation, some non-random prop-
erties can still also be observed at the output of the permutation if the number
of active bytes is small prior to the last MixBytes transformation. Such non-
random properties have been analyzed in detail using the subspace distinguisher
in [LMR+09].

P0 P1 P2 P3 P4 P5 P6 P7

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Figure 5.1: A minimum truncated differential path for 7 rounds of Grøstl-256.
For this path, the expected number of right pairs is 216.

76 Chapter 5. Applying the Rebound Attack to Grøstl

5.1.1.2 An 8-Round Path with 2 Full Active States

In Section 3.3.2 we have shown that we can efficiently find pairs for a truncated
differential path which has two fully active states in the middle. The number of
active bytes for this path are given as follows and the whole path is shown in
Figure 5.2:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 64
r5−→ 8

r6−→ 1
r7−→ 8

r8−→ 64

We can efficiently find pairs for this path by extending the inbound phase by one
round using SuperBox matches instead of S-box matches (also see Section 3.3.2).
Of course, also for Grøstl different time-memory trade-offs are possible but
the memory complexity is in general higher due to the larger MixBytes trans-
formation. We describe the different techniques for Grøstl in more detail in
Section 5.1.2.3.

P0 P1 P2 P3 P4 P5 P6 P7 P8

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Figure 5.2: Extending the minimum truncated differential path by one more fully
active state in the middle. Also for this 8-round path, the expected number of
right pairs is only 216.

5.1.1.3 Computing the Expected Number of Pairs

For the two previously shown truncated differential path we can compute the
expected number of right pairs. We start with the total number of possible
input pairs which are approximately 2512+64 = 2576 pairs. Since we do not
specify actual differences throughout the whole path a reduction in pairs only
occurs if the number of active bytes gets reduced. For the 7-round path, this is
the case in the MixBytes transformation of round r1, r4 and r5. Since we reduce
from 8 to 1 active byte in r1, we get a probability of 2−56 in this case. For the
reduction of 64 to 8 active bytes in r4 we get a probability of 2−8·56 = 2−448,
and for the reduction of 8 to 1 we get 2−56. Hence, the expected number of right
pairs for the truncated differential path of Figure 5.1 is:

2512+64 · 2−56 · 2−448 · 2−56 = 216

Note that we get the same probabilities for the 8-round path in rounds r1, r5

and r6 since we reduce by the same number of active bytes. Therefore, also the
expected number of pairs for the 8-round path is 216.

5.1.1.4 Considering Variants of the Path

The previous two truncated differential paths can be used in attacks on the
permutation, and in slightly modified form also for compression function and

5.1. The Rebound Attack on the Grøstl-256 Permutation 77

P0 P1 P2 P3 P4 P5 P6 P7

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

(a) A 7-round truncated differential path with an expected number of 272

right pairs.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

(b) A 9-round truncated differential path which is most likely impossible. The probability that
at least one right pair exists is only 2−432.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

(c) A 9-round truncated differential path with an expected number of 216 right pairs. It is
unknown how to efficiently find pairs for this path.

Figure 5.3: Shows three alternative truncated differential paths for the permu-
tation P of Grøstl-256. The middle path is an impossible truncated differential
path.

even hash function attacks. However, one might also consider other truncated
differential paths which could be used to extend the number of rounds, improve
the complexity, or find more solutions in an attack on Grøstl-256. Figure 5.3
shows 3 such truncated differential paths and in the following, we analyze which
paths can or cannot be used for an attack.

For many attacks, we need to be able to efficiently construct more than 216

pairs for one permutation. This is the case for compression function collisions on
Grøstl-0 (see Section A.1.1) but may also happen for distinguishers, depending
on the property observed at the input and output. Figure 5.3a shows a 7-round
path for the permutation P where we can find more than 216 right pairs. For
this path, the MixBytes transformations in round r1 and r5 are probabilistic and
the expected number of right pairs is then:

2576 · 2−56 · 2−448 = 272

Figure 5.3b shows an extension of the 8-round path to 9 rounds. Note that
a similar path has been successfully used in the compression function attacks on
Whirlpool [LMR+09]. However, this path is not possible in the case of Grøstl.
In Whirlpool, the freedom in the inputs of the key-schedule has been used to
control the propagation of truncated differences according to such a path. In
Grøstl, no key-schedule inputs exists and the truncated differential path can
only be controlled indirectly by the permutation input. However, for this path
the expected number of right pairs is far below one. The probability that a right

78 Chapter 5. Applying the Rebound Attack to Grøstl

pair even exists is only about:

2512+64 · 2−56 · 2−448 · 2−448 · 2−56 = 2−432

Finally, Figure 5.3c shows a third 9-round path which could be used to get
a distinguisher for the reduced Grøstl-256 permutation. This path has three
fully active states in the middle and the expected number of right pairs is 216.
However, it is still an open problem to find a right pair for this path with a
complexity smaller than in the generic case.

5.1.2 The Inbound Phase

After we have found a suitable truncated differential path, we continue the re-
bound attack with the inbound phase. In Chapter 3 we have shown many tech-
niques to efficiently find right pairs for the inbound phase. In the following, we
apply some of these techniques to Grøstl and give their respective complexities.

5.1.2.1 Inbound Phase with S-box Matches

Since the inbound phase with S-box matches is the most basic case, we briefly
describe it for Grøstl again. This basic inbound phase with S-box matches
can be applied to the 7-round truncated differential path (Figure 5.1). In this
case, we start the inbound phase in round r3 and r4. Similarly as in the case
of AES (see Section 3.5.2), we need to find differences and values conforming
to the truncated differential path shown in Figure 5.4. Since we still have the
freedom to choose any value for the state, we can solve the inbound phase almost
deterministically, or at least with an average complexity of 1.

We first choose random, non-zero differences for the 8 active bytes in P4.
These differences are computed linearly backward to 64 active bytes at the out-
put of the previous SubBytes layer (PSB

4). Then, we choose arbitrary differences
for each active byte prior to the MixBytes transformation in PSH

3 and linearly
compute forward to the full active input of SubBytes (P3). Note that we can
compute each column independently. Next, we need to check whether the in-
put/output differentials of all 64 active S-boxes are possible.

P SH
3 PAC

4 P SB
4 P4

SH
MB
AC

SB
SH
MB

AC

average 1

Figure 5.4: The inbound phase of the attack on the Grøstl-256 compression
function using 8-bit S-box matches. The input and output of one S-box is
highlighted.

5.1. The Rebound Attack on the Grøstl-256 Permutation 79

For a single S-box, the probability that a random S-box differential exists is
about one half, which can be verified by computing the difference distribution
table (DDT) of the AES S-box (see Section 3.2.1 for more details). For one
column, we get a valid differential with a probability of about 2−8. Hence, we
need to try all 255 non-zero differences for each active byte in PSH

3 to get a
valid differential for all 8 S-boxes of each column. If no match is found, we need
to restart from the beginning. Remember that for each valid S-box differential,
we get at least two (in some cases 4) right byte values such that the differential
holds.

We get at least 264 right pairs for the whole inbound phase with a complexity
of about 8 · 28 column operations. Furthermore, we can choose and start from
about 264 differences for the active bytes in P4. Hence, we can construct up
to 2128 pairs that follow the truncated differential path of the inbound phase
between state PSH

3 and P4 with an average complexity of 1. The memory com-
plexity is only 216 and the minimum complexity to find the first pair is only
about 28 Grøstl round transformations.

5.1.2.2 Solving Linearly for Pairs

Using the technique presented in Section 3.6 and published in [MPRS09], we can
find pairs for 3 rounds (round r2 to r4 or round r3 to r5) with a complexity of
one, or even pairs for the 4 middle rounds (round r2 to r5 with a complexity of
248 and negligible memory. The main idea is to first filter for a differential path
and then, find right pairs by solving a linear system of equations.

In the 3-round case, we can find one solution with a complexity of one and
negligible memory requirements, similar as in the case for AES. Assume we are
searching for pairs of the following part of the truncated differential path:

1
r2−→ 8

r3−→ 64
r4−→ 8

Filtering for the differential path fixes the input and output differences of the
active S-boxes in round r3 and r4. We get a 7-bit conditions for each of these
8+64 active S-boxes which results in a 504-bit condition (also see Section 3.6.2).
Since we have 512 free bits for the state, the linear system of equations is under-
defined and we expect to find a solution by solving the linear system of equations
only once.

In the 4-round case, we solve for pairs according to the following part of the
truncated differential path:

1
r2−→ 8

r3−→ 64
r4−→ 8

r5−→ 1

In this case, we get 7-bit conditions for 8 + 64 + 8 active S-box which results in a
560-bit condition. Since we have only 512 free bits for the state, the linear system
of equations is over-defined and we do not immediately get a solution. Instead,
we need to solve the system about for about 248 differential paths which results
in a complexity of approximately 248 with negligible memory requirements.

80 Chapter 5. Applying the Rebound Attack to Grøstl

5.1.2.3 Extended Inbound Phase with SuperBox Matches

As shown in Section 5.1.1 we can extend the truncated differential path to 8
rounds by adding one more fully active state in the middle of the path. If we
consider SuperBoxes instead of S-boxes we can match differences over two fully
active states. Hence, we can extend the inbound phase of the rebound attack to
find right pairs for a truncated differential path with the following sequence of
active bytes (prior: 8→ 64→ 8):

8→ 64→ 64→ 8

A SuperBox in Grøstl is defined similar to a SuperBox in the AES [DR06a].
For Grøstl, one SuperBox consists of 8 parallel S-boxes, followed by one
MixBytes transformation and another 8 parallel S-boxes: SB - MB - SB . Note
that the SubBytes and ShiftBytes transformations can be interchanged. Hence, a
SuperBox behaves like a non-linear 64-bit S-box. Unfortunately, the differential
distribution table (DDT) of the SuperBox has 2128 entries. The complexity to
build this table is too big to be considered in collision attacks on Grøstl-256
(but could be used for Grøstl-512). However, as shown in Section 3.7.3, there
are other time-memory trade-offs which can be used to improve the minimum
time and memory requirements of the attack.

P SH
3 P ′

4
SH P SB

5 P5

SH
MB
AC
SH

SB
MB
AC
SB

SH
MB

AC

average 1

Figure 5.5: The inbound phase on the Grøstl-256 compression function using
64-bit matches with one SuperBox being highlighted.

We get the best time-memory trade-off for Grøstl using the technique of
Section 3.7.3 which has first been published in [LMR+09], applied to Grøstl in
[MRST10] and independently been found in [GP10]. This technique is explained
in detail in Section 3.7.3 for the case of the AES SuperBox (32 bits) and scales up
to the Grøstl SuperBox (64 bits). Using this technique the inbound phase has
a time and memory complexity of 264 to find 264 solutions. Hence, the average
complexity is 1 if 264 or more pairs are computed. Note that this technique
only works if we are able to construct about 264 differences for one side of the
SuperBox. This is possible for the given path of the permutation since we have
8 active bytes in state PSH

3 as well as P5.
To summarize, we can find one pair for the given 3-round inbound phase with

an average complexity of one. Note that two times 8 active bytes are active at
the input and output of the inbound phase and we expect to get one right pair
for each starting difference (also see Section 3.5.2 and Section 3.7. Hence, we

5.1. The Rebound Attack on the Grøstl-256 Permutation 81

can construct up to 2128 pairs according to the 3-round truncated differential of
the inbound phase.

5.1.2.4 Non-full Active SuperBoxes

If not all bytes of a SuperBox are active, additional time-memory trade-offs
are possible and the memory complexity can be reduced further. For a list of
techniques we refer to Section 3.7.4. In any case, the average complexity to
compute one right pair for the inbound phase is 1. The memory complexity is
determined by the number of active bytes in the SuperBox matches. Assume we
have c SuperBoxes matches with xi → yi active bytes, where i = {0, ..., c−1} and
xi +yi ≥ 9. The memory complexity of each SuperBox match i is determined by
28·min(xi,yi) and the total memory requirements are given by max(28·min(xi,yi))
(also see [SLW+10]).

5.1.3 The Outbound Phase

In the outbound phase, we probabilistically propagate the pairs of the inbound
phase outwards according to the truncated differential path of Figure 5.2. Re-
member that we generate pairs with average complexity one for the 3 middle
rounds in the inbound phase. Then, the probability for the propagation from 8
to 1 active byte through the MixBytes transformation in round r2 is 2−56 and in
round r5 is 2−56. In all other transformations, the truncated differential path is
followed with probability 1. Hence, we can construct one pair conforming to the
whole 8-round truncated differential path of the permutation with a complexity
of about 2120. Remember that we can construct only up to 216 pairs for the
given truncated differential paths of Figure 5.2.

5.1.4 Distinguishers for the Permutation

We can use the rebound attack on the permutation of Grøstl-256 to get a
distinguisher for 8 rounds of the permutation. Since the output difference at the
permutation is fully active, we cannot use the same distinguisher as for the AES
permutation. However, the differences at the output are restricted to a vector
space of dimension 64 due to the linear MixBytes transformation. In this case,
we can use a subspace distinguisher as proposed in [LMR+10] to distinguish the
8-round Grøstl-256 permutation from an ideal permutation.

We use [LMR+10, Corollary 4] to compute the query complexity Q of a
generic subspace distinguishing attack on the Grøstl-256 permutation. We get
the parameters N = 512 (permutation output size), n = 64 (dimension of vector
space) and t = 28 (number of outputs in the vector space) for the subspace
distinguisher. Then, the generic complexity to construct 28 elements in a vector
space of dimension 64 is about Q = 2231.1 queries of the permutation. To get
the same number of differences at the output of the Grøstl-256 permutation,
we need to construct 28 right pairs in the rebound attack (remember that we

82 Chapter 5. Applying the Rebound Attack to Grøstl

can construct at most 216 right pairs). Hence, the complexity to distinguish 8
rounds of the permutation is about 2120 permutation evaluations.

In [SLW+10] another truncated differential path has been proposed to ana-
lyze the Grøstl permutation. In that work, the truncated differential path has
no single fully active state but many half-active states in the middle rounds. This
gives slightly more freedom in the middle of the path to reduce the complexity
of a distinguishing attack on the permutation to 248 with memory requirements
of 28. The drawback of this method is, that such a path has also more active
bytes at the input and output of the permutation. Hence, also the complexity of
an equivalent generic attack reduces. Moreover, it is less likely that these larger
truncated differences can be used to extend the distinguisher to an attack on
the compression or hash function.

5.1.5 Distinguisher for the Output Transformation

The distinguisher of the permutation can be extended to the output transforma-
tion, although trivial generic distinguishers for the output transformation exist
[GKM+11]. We use the same 8-round truncated differential path as for the per-
mutation distinguisher (see Figure 5.2). The size of the vector space doubles
due to the feed-forward but halves again since 4 columns are truncated at the
output. Hence, we get a vector space dimension of n = 64 again. The output size
of the output transformation is N = 256. To compute the generic complexity
of a subspace distinguisher of a random function with unrestricted input differ-
ences we can use [LMR+10, Corollary 1]. By setting t = 216 we get a generic
complexity of 2103.7 while the rebound attack has a complexity of 2128. How-
ever, in the attack on the output transformation also the input differences are
restricted to a subspace of dimension 64. Due to the restrictions at the input,
the generic complexity of the subspace distinguisher increases to 2232.6. Similar
arguments are given in the permutation distinguisher of [LMR+10] and in the
limited birthday distinguisher of [GP10].

5.2 Attacks on the Compression function of
Grøstl-256

The rebound attack can be applied to the Grøstl compression function as well.
In the following section, we first show how to use the results of the permutation
to get collision attacks on the compression function. Then we present a collision
attack on 6 out of 10 rounds for Grøstl-256 which is the best known result so
far. We only analyze the collision resistance of the compression function since
Grøstl consists of an output transformation which destroys near-collisions or
non-random properties of the compression function. It is possible to use the
permutation results to construct such properties for the compression function.

5.2. Attacks on the Compression function of Grøstl-256 83

5.2.1 The Rebound Attack on the Compression Function

In general, we have 3 options to get a collision attack on the compression function
of Grøstl. We can have differences only in Mi, only in Hi−1 or in both, Mi

and Hi−1. The best option for an attacker is to use differences only in the
message input Mi. This way, the same difference enters each permutation. The
goal is then to find pairs such that also the difference at the output of each
permutation is the same (see Figure 5.6). Note that there are no differences
in the feed-forward, and we can freely choose the input chaining value Hi−1.
Hence, this setting results in a semi-free-start collision attack.

Hi−1 Hi

∆Mi

P

Q

Figure 5.6: Active permutations and inputs (red) to get semi-free-start collisions
for the compression function of Grøstl.

Due to the construction of the Grøstl compression function, we can search
for pairs in each permutation independently and match only the differences at
the input and output. We do not care about the input and output values of the
permutations since we can freely choose Hi−1 and Hi (and of course Mi) in the
attack:

Pin ⊕Qin = Hi−1

Pout ⊕Qout ⊕Hi−1 = Hi

Qin = Mi

Hence, we only need to ensure that the following condition on the differences
holds which can be fulfill using the birthday effect:

∆Pin = ∆Qin(= ∆Mi)

∆Pout = ∆Qout = 0,

To get a valid collision attack on the compression function, the complexity
needs to be below 2`/2, with ` = 2n the output size of the compression function.
However, for the Grøstl construction a generalized birthday attack results in
compression function collisions with a complexity of 2`/3. Moreover, the claimed
complexity of collision attacks on the Grøstl compression function is 2`/4 = 2n/2

(see Section 4.2.2). This is also the complexity of a generic collision attack on
the hash function. Hence, we only consider collision attacks with a complexity
below 2n/2 in the following.

84 Chapter 5. Applying the Rebound Attack to Grøstl

5.2.2 Constructing Colliding Truncated Differential Paths

In the following, we use variants of the truncated differential paths for the permu-
tations P and Q of the previous section to get collisions for the Grøstl compres-
sion function. Furthermore, we use the rebound attack to find pairs conforming
to these truncated differential paths. We cannot determine the input or output
differences of the permutations but only their truncated differences. However,
as mentioned before we use the birthday effect to get colliding differences for the
two permutations at both the input and output. Nevertheless, the size of the
input and output difference has to be small to get a reasonable complexity.

The most simple case is to have only a single active byte at the input and
output of each permutation. In this case, the complexity to match the differ-
ences at input and output is 2(8+8)/2. However, the last transformation of each
permutation prior to the combining XOR is the linear MixBytes transformation.
Since we can move this linear MixBytes transformation after the combining XOR
we only need to match the differences after the ShiftBytes transformation. In
other words, we can extend the truncated differential path by one more round.
The resulting 6-round truncated differential path is shown in Figure 5.7. Note
that the position of the single active byte is not the same in P5 and Q5 due to the
different ShiftBytes values of P and Q. However, prior to the last MixBytes trans-
formation the pattern has to be the same to get a collision for the compression
function.

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Hi−1

Mi

Hi

Figure 5.7: A truncated differential path to get collisions for the compression
function. The number of active bytes at the input and prior to the last MixBytes
transformation is 1.

Extending this truncated differential path is difficult for three reasons. First,
the pattern of active bytes needs to be the same at the input and output of each
permutation. This is not the case if we extend the path by one round in any
direction. Second, extending the path also reduces the expected number of right
pairs and the degrees of freedom and an attack is often not possible anymore.
In Appendix A, we present an analysis of Grøstl-0 which has the same rotation
constants in both P and Q. In this case the second effect is indeed the limiting
factor of an attack. The third reason is the complexity of an attack which gets
too high if we want to extend the number of rounds.

5.2. Attacks on the Compression function of Grøstl-256 85

5.2.3 Semi-Free-Start Collisions for 6 Rounds of Grøstl-
256

In this section, we apply the rebound attack to the 6-round Grøstl-256 com-
pression function. We show two 6-round truncated differential paths which lead
to two collision attacks on the compression function with the same attack com-
plexity. The first path is the sparse path shown in the previous section and the
second path has more active bytes is less straightforward but could be interesting
in the future analysis of Grøstl.

5.2.3.1 Path 1

The most straightforward approach is to consider only one active byte prior to
the first and after the last SubBytes layer. This way, the ShiftBytes transforma-
tions do not change the pattern of active bytes in the first and last round and
we can get a collision at the output of the compression function. The number
of active bytes for each round in both P and Q is then given as follows:

1
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 1

r6−→ 8

The truncated differential path is shown in Figure 5.8. Note that the path and
also the pattern of active bytes is still similar in P and Q.

Next, we verify if the truncated differential path is valid, i.e. if the expected
number of right pairs is at least 1. This number can be computed by multiplying
the total number of input pairs by the probability that the truncated differential
path is followed for each input pair. The given path is only probabilistic in the
MixBytes transformations of round r4 and r5, and in the XOR at the output.
Hence, the expected number of pairs is given as follows:

28·(64+1)︸ ︷︷ ︸
Mi

· 28·64︸︷︷︸
Hi−1

· 2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r4)

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r5)

· 2−8·1︸ ︷︷ ︸
XOR

= 216

In the compression function attack, we first compute pairs for each permu-
tation independently and then, match the input and output differences using
a birthday attack. By computing the inbound phase with SuperBox matches,
we can find pairs for the three middle rounds r2, r3 and r4 with an average
complexity of 1 and memory requirements of 264. For each permutation, we
independently propagate the resulting pairs outwards and get one active byte at
the input (P0, Q0) and one active byte after round r5 (P5, Q5) with a complexity
of 22·56 = 2112. To get a semi-free-start collision, the 1-byte differences at the
input, and the 1-byte differences prior to the last MixBytes transformation need
to be equal. This 16-bit condition can be fulfilled with a complexity of 28 using
the birthday effect. In total, the complexity to get a semi-free-start collision for
6 rounds of Grøstl-256 is 2112 · 28 = 2120 in time with memory requirements of
264.

86 Chapter 5. Applying the Rebound Attack to Grøstl

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Hi−1

Mi

Hi

24
256

256

average 1

average 1

256

256
24

Figure 5.8: The truncated differential path to get a semi-free-start collision
attack for 6 out of 10 rounds of the compression function of Grøstl-256. The
inbound phase (red) can be solved with average complexity 1, and the outbound
phase (blue) with a total complexity of about 24 ·256 ·256 ·24 = 2120 compression
function evaluations. The first SuperBox in the inbound phase is shown by red
rectangles.

5.2.3.2 Path 2

Note that also another path with more active bytes can be used to get a semi-
free-start collisions for 6 rounds and with the same complexity. This time, we
use two truncated differential paths in P and Q where the full active state does
not occur in the same round. Hence, the number of active bytes in P and Q are
different and given as follows:

Q : 8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 56
r5−→ 8

r6−→ 64

P : 8
r1−→ 56

r2−→ 64
r3−→ 8

r4−→ 1
r5−→ 8

r6−→ 64

The respective truncated differential path is shown in Figure 5.9. Remember
that we need the same pattern of active bytes at the input and prior to the
last MixBytes transformation to get a semi-free-start collision. For the given
truncated differential path, we use 8 active bytes in these states. Due to the
different shift values, we cannot use a single active byte near the input or end in
both permutations at the same time. A single active byte in round r2 of P results
in 8 active bytes at the input of the permutation (see Figure 5.9). However, this
input pattern results in at least 7 active columns in round r2 of permutation Q.
We get the opposite behavior in backward direction in states P4 (single active
byte) and Q4 (almost full active state). Nevertheless, this truncated differential
path can be used to efficiently find collisions for the compression function of
Grøstl-256.

Again, we verify if the truncated differential path is valid and compute the ex-
pected number of right pairs. This time, the path is probabilistic in the MixBytes
transformations of round r1, r4 and r5 of Q, in the MixBytes transformations
of round r3 and r4 of P , and in the XOR at the output. Hence, the expected

5.3. Rebound Attack on the Grøstl Hash Function 87

number of pairs is given as follows:

28·(64+8)︸ ︷︷ ︸
Mi

· 28·64︸︷︷︸
Hi−1

· 2−8·7︸ ︷︷ ︸
MB(r1)

· 2−8·56︸ ︷︷ ︸
MB(r3)

· 2−8·8 · 2−8·7︸ ︷︷ ︸
MB(r4)

· 2−8·49︸ ︷︷ ︸
MB(r5)

· 2−8·8︸ ︷︷ ︸
XOR

= 28

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Hi−1

Mi

Hi

232
1 256

average 1

average 1

256 1
232

Figure 5.9: Another truncated differential path to get a semi-free-start collision
attack for 6 out of 10 rounds of the compression function of Grøstl-256. The
inbound phase (red) can be solved with average complexity 1, and the outbound
phase (blue) with a total complexity of about 232 · 256 · 232 = 2120 compression
function evaluations. The first SuperBox in the inbound phase is shown by red
rectangles.

When applying the rebound attack to this path, we can solve the inbound
phase for rounds r1, r2 and r3 in permutation P , and for rounds r3, r4 and r5

in permutation Q independently and with average complexity 1. The memory
requirements are 264 again. In each permutation, we have one propagation
through MixBytes from 8 to 1 active byte which has a complexity of 256 in each
case. This time, we get a 128-bit condition such that the differences of the 8
active bytes at the input and output (prior to MixBytes) cancel each other. Using
a birthday attack we can match the differences with a complexity of 264 in time
and memory. In total, the complexity for this semi-free-start collision attack on
6 rounds is again 256 · 264 = 2120 in time with memory requirements of 264.

5.3 Rebound Attack on the Grøstl Hash Func-
tion

Due to the clean permutation-based structure of Grøstl without key inputs, the
rebound attack on the compression function can easily be applied to the hash
function. Similar as e.g. in the attacks on SHA-1 [WYY05b], the path can be
very dense at the input but needs to be sparse with a high probability at the
output. In SHA-1, complicated message modification techniques have been used
and it is still rather unclear how much freedom is left in the attacks. On the other
hand, the rebound attack on Grøstl efficiently uses almost all available freedom

88 Chapter 5. Applying the Rebound Attack to Grøstl

due to the message input in a straightforward way. In the following sections, we
first show how the rebound attack can be applied to the hash function and then
provide two collision attacks for 3 out of 10 rounds of Grøstl-256.

5.3.1 Inbound Phase between P and Q

The main idea of the rebound attack on the Grøstl hash function is to do
one half of the inbound phase in each of P and Q. We then need to match
the differences over the input of the two permutations in the inbound phase.
The truncated differential path is similar to the one used for the compression
function in the previous section, but “wraps around” the input of P and Q (see
Figure 5.10). In this case, the chaining input or IV acts like a predefined constant
and the message input (values and differences) is defined by the attack. Note
that the two SubBytes layers at the input of the permutation can be viewed as
one non-linear S-box layer, keyed by the chaining input Hi−1 and the first round
constants of P and Q.

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

P0 Q0P1 Q1P2 Q2P3 Q3

IV
M1

H1

outbound inbound outbound

Figure 5.10: The truncated differential path to get a collision for the hash func-
tion of Grøstl. The permutations are shown next to each other. This way,
the rebound attack on the hash function is viewed very similar to the rebound
attack on the compression function.

The rebound attack on the hash function of Grøstl is actually quite similar
to the attack on the compression function. We can do a basic inbound phase
again since the S-boxes of the first round in P and Q are completely independent.
Furthermore, we can add one more round in either P or Q to do independent
64-bit matches in the inbound phase as well. In this case, the resulting sequence
of transformations is similar as for the Grøstl SuperBox. The 64-bit matches of
the hash function attack consists of an additional inverse SubBytes layer which
results in a (keyed) differential match on SB−1 - SB - MB - SB instead of SB
- MB - SB . Figure 5.10 and Figure 5.11 show these round transformations and
the first column of the 64-bit matches in more detail.

5.3.2 Collisions for 3 Rounds of Grøstl-256

When attacking the hash function, we need to ensure that the pattern of active
bytes prior to the last round is the same in each permutation. Furthermore, we

5.3. Rebound Attack on the Grøstl Hash Function 89

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB

SH
MB

AC
SB

SH
MB

AC
SB
SH
MB

P0 P2

Q0 Q2Q1 QSB
2

P SB
1 P1IV

M1

average 1 inbound
outbound

outbound

Figure 5.11: The inbound phase of the attack on the hash function Grøstl-256.
The first 64-bit match is highlighted.

need a small number of active bytes at the output such that the complexity of
the attack is low. Due to the different shift values of ShiftBytes, it is difficult
to construct good truncated differential paths for both, P and Q such that the
output patterns are the same. However, in the following we present two such
truncated differential paths which lead to a collision attack for 3 out of 10 rounds
of the hash function.

5.3.2.1 Path 1

The most simple case is to consider only one active byte prior to MixBytes in
the last round of each permutation. Then we immediately get the minimum
3-round truncated differential path given in Figure 5.12, with full active states
at the input of each permutation.

Next, we need to verify if the truncated differential path is valid, i.e. if we
have enough freedom such that the expected number of right pairs is at least 1.
The expected number of right pairs can be computed by multiplying the total
number of input pairs by the probability that the truncated differential path is
followed for each input pair. For the truncated differential path of Figure 5.12,
the total number of input pairs depends on the number of pairs for the message
Mi and for the chaining input Hi−1 or initial value (IV). The probability of the
given truncated differential path is determined by the probabilistic propagation
in the MixBytes transformations of round r1 and r2 and in the final XOR at the
output. For example, in the MixBytes transformation of round r2 in permutation
Q, the path reduces from 8 → 1 active bytes which happens with a probability
of about 2−56. Hence, the expected number of right pairs of the truncated
differential path given in Figure 5.12 can be computed as follows:

28·(64+64)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

· 2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r1)

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r2)

· 2−8·1︸ ︷︷ ︸
XOR

= 28

We use the rebound attack to find pairs for the truncated differential paths

90 Chapter 5. Applying the Rebound Attack to Grøstl

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3IV

M1

H1

256
average 1 28

Figure 5.12: The truncated differential path to get a collision attack on 3 out
of 10 rounds for the hash function of Grøstl-256. The inbound phase (red) can
be solved with average complexity 1, the outbound phase (blue) with a total
complexity of about 256 · 28 = 264. The first SuperBox in the inbound phase is
shown by red rectangles.

in P and Q. First, we compute pairs for the inbound phase between rounds
r1 and r2 in Q and round r1 in P . Note that in this path, the SuperBoxes
are not fully active. In this case, the memory complexity of the attack can
be reduced significantly. Both techniques of [MPRS09] and [SLW+10] can be
applied with negligible memory requirements (for more details, see Section 3.7.4
and Section 5.1.2.4). In any case, the complexity to find a conforming input pair
according to the truncated differential path until state Q2 in permutation Q,
and until state P1 in permutation P is 1 on average. We compute 264 such pairs
and propagate them outwards. With a probability of 2−56 we get one active
byte in P2 and with a probability of 2−8 also the 1-byte differences in the last
round prior to MixBytes are equal. Hence, we get a collision for 3 rounds of
the hash function with a total complexity of 264 in time and negligible memory
requirements.

5.3.2.2 Path 2

Again we can use a second truncated differential path which has the same time
complexity, but higher memory complexities. We still mention this path here
since it could be interesting in future analysis of the Grøstl-256 hash function.
The path is constructed in a similar way as the second path of the compression
function attacks on Grøstl-256 and given in Figure 5.13. Note that the pattern
of active bytes in Q2 can be determined from the pattern in P2 by the relation

Q2 ← ShiftBytes−1Q ◦ ShiftBytesP ◦ P2

which results in the following left-shift values (mod 8):

{0, 1, 2, 3, 4, 5, 6, 7} − {1, 3, 5, 7, 0, 2, 4, 6} = {7, 6, 5, 4, 4, 3, 2, 1}

5.4. Application to Grøstl-512 91

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3IV

M1

H1

1
average 1 264

Figure 5.13: Another truncated differential path to get a collision attack on 3
out of 10 rounds for the hash function of Grøstl-256. The inbound phase (red)
can be solved with average complexity 1, the outbound phase (blue) with a total
complexity of about 1 · 264 = 264. The first SuperBox in the inbound phase is
shown by red rectangles.

Again, we first verify if the truncated differential path is valid and compute
the expected number of right pairs. The path is probabilistic in the MixBytes
transformations of round r1 and r2 in Q, in the MixBytes transformations of
round r1 in P , and in the XOR at the output. Hence, the expected number of
pairs is given as follows:

28·(64+64)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

· 2−8·8 · 2−8·56︸ ︷︷ ︸
MB(r1)

· 2−8·49︸ ︷︷ ︸
MB(r2)

· 2−8·8︸ ︷︷ ︸
XOR

= 256

In the inbound phase, we can do a standard SuperBox match with memory
complexity 264, or use the non-full active SuperBox techniques of [SLW+10] with
a memory complexity of 256 since only 7 bytes are active. We get one pair on
average for the inbound phase, such that the truncated differential path until
states Q2 and P1 is fulfilled. Furthermore, each of these pairs also follows the
truncated differential path until the end of each permutation with a probability
of almost 1. We get a collision if the 8-byte differences prior to the last MixBytes
transformation are equal which happens with a probability of 2−64. Hence, the
total complexity to get a collision for 3 rounds of the Grøstl-256 hash function
using this path is 264 with memory requirements of 256.

5.4 Application to Grøstl-512

The Grøstl-512 permutation consists of a rectangular state with 8 × 16 bytes.
Although the wide-trail design strategy applies to this structure as well it is
slightly more difficult to find good truncated differential paths. In the following,
we show some simple strategies to quickly find good paths and collision attacks
for the reduced compression and hash function. However, there might be more

92 Chapter 5. Applying the Rebound Attack to Grøstl

optimal truncated differential paths which balance the complexity and available
freedom of an attack slightly better. Due to the higher security level, Grøstl-
512 has 14 instead of 10 rounds, although the best currently known attacks are
on the same number of rounds as for Grøstl-256.

5.4.1 Constructing Truncated Differential Paths for
Grøstl-512

The difficult part of the rebound attack on Grøstl-512 is to find a “good”
truncated differential path. The complexity of the rebound attack is determined
by the outbound phase. Hence, we need a truncated differential path with only a
few active bytes in the outbound phase. Similar to Grøstl-256, a straightforward
approach to construct a truncated differential path is to start with single active
bytes, or single active columns and and try to connect this truncated differential
path. In the following, we show that this is usually not enough. To get a working
and colliding truncated differential path, we need 2 active bytes (or columns) in
the compression function attack and 3 active bytes in the hash function attack.

5.4.1.1 The Compression Function

The straightforward approach to get a colliding path for the compression function
of Grøstl-512 is to start with a single active byte at the input, and with a
single active byte prior to the output. The resulting middle part of this 6-
round truncated differential path is shown in Figure 5.14. However, for most
columns of the MixBytes transition in the middle round r3, the sum of active
bytes at input and output is below 9, which is not possible according to the
MDS property of MixBytes. With only 1 active byte in state P0 and P5 we do
not get enough active bytes for a valid MixBytes transformation in round r3. Also
rotating the position of active bytes in state P0 and P5 (or diagonals in state
PSH

2 and P4) does not give a valid truncated differential path. The solution is
to add a second active diagonal in state P4 at the output of the inbound phase
(see Figure 5.15), which corresponds to a second active byte in P5. This results
in an almost full active state in round r4 and the truncated differential path
gets valid. For the permutation Q, we use the equivalent truncated differential
path with a single active byte at the input and two active bytes prior to the
MixBytes transformation in the last round. The final path for the attack on the
Grøstl-512 compression function is shown in Figure 5.17.

5.4.1.2 The Hash Function

For the rebound attack on the Grøstl-512 hash function, we need the same
pattern of active bytes in P and Q at the output of each permutation. We know
already that one active byte is not enough, so we use two instead. The resulting
truncated differential path is shown in Figure 5.16. However, in this case it is
still not possible to get a full active state at the input of each permutation. No
matter how we position the two active bytes in round r3, we will always get a

5.4. Application to Grøstl-512 93

P
0

P
1

P
2

P
S
H

3
P
3

P
S
H

4
P
4

P
5

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

im
p
o
ss
ib
le

F
ig

u
re

5.
14

:
Im

p
os

si
b

le
tr

u
n

ca
te

d
d

iff
er

en
ti

al
p

a
th

fo
r

a
n

a
tt

ac
k

o
n

th
e
G
r
ø
s
t
l
-5

1
2

co
m

p
re

ss
io

n
fu

n
ct

io
n

.
T

h
e

n
u

m
b

er
o
f

ac
ti

ve
b
y
te

s
in

th
e
M
ix
B
yt
es

tr
a
n

sf
or

m
a
ti

o
n

o
f

ro
u

n
d
r 3

is
b

el
ow

9
fo

r
m

o
st

co
lu

m
n

s.
F

o
r

th
e

h
ig

h
li

g
h
te

d
co

lu
m

n
(o

r
S

u
p

er
B

ox
),

th
e

n
u
m

b
er

of
ac

ti
ve

b
y
te

s
a
t

th
e

in
p

u
t

a
n

d
o
u

tp
u

t
of

M
ix
B
yt
es

is
o
n

ly
5
.

P
0

P
1

P
2

P
S
H

3
P
3

P
S
H

4
P
4

P
5

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

F
ig

u
re

5.
15

:
T

o
ge

t
a

p
os

si
b

le
tr

u
n

ca
te

d
d

iff
er

en
ti

a
l

p
a
th

fo
r

th
e
G
r
ø
s
t
l
-5

1
2

co
m

p
re

ss
io

n
fu

n
ct

io
n

,
w

e
n

ee
d

a
t

le
a
st

2
a
ct

iv
e

b
y
te

s
in

ei
th

er
st

at
e
P

0
o
r
P

5
.

N
ot

e
th

at
th

e
n
u

m
b

er
of

a
ct

iv
e

b
y
te

s
a
t

th
e
M
ix
B
yt
es

la
ye

r
in

ro
u

n
d
r 3

is
a
t

le
a
st

9
fo

r
ev

er
y

co
lu

m
n

.
O

n
e

co
lu

m
n

in
cl

u
d

in
g

th
e

6
4-

b
it

S
u

p
er

B
ox

m
a
tc

h
is

h
ig

h
li

g
h
te

d
.

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

A
C

S
B

S
H

M
B

Q
0

P
0

Q
2

P
2

Q
3

P
3

Q
4

P
4

Q
S
H

1

P
S
H

1

I
V

M
1

H
1

im
p
o
ss
ib
le

F
ig

u
re

5.
16

:
Im

p
os

si
b

le
tr

u
n

ca
te

d
d

iff
er

en
ti

a
l

p
at

h
fo

r
a
n

a
tt

ac
k

on
th

e
G
r
ø
s
t
l
-5

1
2

h
a
sh

fu
n

ct
io

n
.

F
o
r

a
p

o
ss

ib
le

tr
u

n
ca

te
d

d
iff

er
en

ti
al

p
at

h
,

th
e

p
a
tt

er
n

of
ac

ti
ve

b
y
te

s
h

as
to

b
e

th
e

sa
m

e
in

st
a
te
P

0
a
n

d
Q

0
.

T
o

g
et

a
va

li
d

tr
u

n
ca

te
d

d
iff

er
en

ti
a
l

p
a
th

,
w

e
n

ee
d

at
le

as
t

3
ac

ti
ve

b
y
te

s
in

st
at

e
P

3
an

d
Q

3
su

ch
th

a
t

b
ot

h
P

0
a
n

d
Q

0
a
re

fu
ll

y
a
ct

iv
e

(a
ls

o
se

e
F

ig
u

re
5
.1

8
).

94 Chapter 5. Applying the Rebound Attack to Grøstl

non-active column in state P1 and Q1. These two non-active columns cannot
result in the same truncated difference pattern at the input in states P0 and Q0

due to the different shift values of P and Q. In general, it is very difficult to
construct a valid truncated differential path which does not have at least one full
active state. We can get a full active state at the input of each permutation by
using 3 active bytes in the last round. The resulting valid truncated differential
path is shown in Figure 5.18.

5.4.2 Semi-Free-Start Collisions for 6 Rounds of Grøstl-
512

To get a semi-free-start collision for the compression function of Grøstl-512, we
use a similar path as in [MRST10]. Due to the different shift values in P and Q
we need to reduce this path by one round to get a colliding truncated difference
pattern at the input and output. This gets much easier if the number of active
bytes at the input and output is very low. The truncated differential path is
shown in Figure 5.17.

Next, we verify if the truncated differential path is valid and compute the
expected number of solutions. The path is probabilistic in the MixBytes trans-
formations of round r3, r4 and r5, and in the XOR at the output. The expected
number of pairs is given as follows:

28·(128+1)︸ ︷︷ ︸
Mi

· 28·(128)︸ ︷︷ ︸
Hi−1

· 2−8·16 · 2−8·16︸ ︷︷ ︸
MB(r3)

· 2−8·96 · 2−8·96︸ ︷︷ ︸
MB(r4)

· 2−8·14 · 2−8·14︸ ︷︷ ︸
MB(r5)

· 2−8·2︸ ︷︷ ︸
XOR

= 224

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Hi−1

Mi

Hi

24
256

256

average 1

average 1

2112

2112
28

Figure 5.17: The truncated differential path to get a semi-free-start collision
attack for 6 out of 14 rounds of the compression function of Grøstl-512. The
inbound phase (red) can be solved with average complexity 1, and the outbound
phase (blue) with a total complexity of about 24 ·256 ·2112 ·28 = 2180 compression
function evaluations. The first SuperBox in the inbound phase is shown by red
rectangles.

Again, we use the rebound attack to find pairs for each truncated differential
path in P and Q. We compute pairs for each permutation independently and
match the input and output differences using a birthday attack. By computing
the inbound phase with SuperBox matches, we can find pairs for the three middle
rounds r2, r3 and r4 with an average complexity of 1 and memory requirements
of 264. For each permutation, we independently propagate the resulting pairs

5.4. Application to Grøstl-512 95

outwards and get one active byte at the input (P0, Q0) and one active byte after
round r5 (P5, Q5) with a complexity of 23·56 = 2168. To get a semi-free-start
collision, the 1-byte differences at the input, and the 2-byte differences prior
to the last MixBytes transformation need to be equal. This 24-bit condition
can be fulfilled with a complexity of 212 using the birthday effect. In total,
the complexity to get a semi-free-start collision for 6 rounds of Grøstl-512 is
2168 · 212 = 2180 in time with memory requirements of 264.

5.4.3 Collisions for 3 Rounds of Grøstl-512

When analyzing the hash function of Grøstl-512, we first need to construct a
colliding and valid truncated differential path. Similar as for the compression
function, we need an (almost) full active state at least once in the path due to
the wide-trail design strategy.

The used truncated differential path is shown in Figure 5.18. As mentioned
before, due to the slower diffusion in Grøstl-512 we cannot use a single active
byte in the last round. However, we can use a path with 3 active bytes in P2 and
Q2. This path is similar as Path 1 in the hash function attack on Grøstl-256.
Note that the pattern of active bytes in Q2 can be determined from the pattern
in P2 by the relation

Q2 ← ShiftBytes−1Q ◦ ShiftBytesP ◦ P2

which results in the following left-shift values (mod 16):

{0, 1, 2, 3, 4, 5, 6, 11} − {1, 3, 5, 11, 0, 2, 4, 6} = {15, 14, 13, 8, 4, 3, 2, 5}.

We also verify if this truncated differential path is valid and compute the
expected number of right pairs. The path is probabilistic in the MixBytes trans-
formations of round r1 and r2 of both P and Q, and in the XOR at the output.
Hence, the expected number of right pairs is given as follows:

28·(128+128)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

· 2−8·104 · 2−8·104︸ ︷︷ ︸
MB(r1)

· 2−8·21 · 2−8·21︸ ︷︷ ︸
MB(r2)

· 2−8·3︸ ︷︷ ︸
XOR

= 224

Again we use the rebound attack to find right pairs according to this trun-
cated differential path. First, we compute pairs for the inbound phase between
rounds r1 and r2 in Q and round r1 in P . The complexity to find a solution for
the truncated differential path until state Q2 in permutation Q, and until state
P1 in permutation P is 1 on average with memory requirements of 264 for a stan-
dard SuperBox match. Using non-full active SuperBox matches or by solving
linearly for pairs, we can significantly reduce the memory requirements to 216.
We compute 2192 such pairs and propagate them outwards. With a probability
of 2−168 we get 3 active bytes in state P2 and with a probability of 2−24 the
3-byte differences in the last round prior to MixBytes are equal. Hence, we get
a collision for 3 rounds of the hash function with a total complexity of 2192 in
time with negligible memory requirements.

96 Chapter 5. Applying the Rebound Attack to Grøstl

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

IV

M1

H1

2168
average 1 224

Figure 5.18: The truncated differential path to get a collision attack on 3 out
of 14 rounds for the hash function of Grøstl-512. The inbound phase (red) can
be solved with average complexity 1, the outbound phase (blue) with a total
complexity of about 23·56 · 23·8 = 2192. The first SuperBox in the inbound phase
is shown by red rectangles.

5.5 Summary

In this chapter, we have analyzed the SHA-3 finalist Grøstl in detail. We have
applied various rebound attacks to different versions of Grøstl. For the final
round version (with tweak) we get hash function collisions for 3 rounds and
compression function collisions for 6 rounds for both, Grøstl-256 (10 rounds)
and Grøstl-512 (14 rounds). Using the rebound attack, distinguishers for 8
rounds of the permutation and output transformation can be constructed. Also
the initial submission Grøstl-0 has been analyzed in detail. All these results
show that Grøstl still has a high security margin.

Grøstl consists of two permutations which strictly follow the wide-trail de-
sign strategy. Hence, no sparse (truncated) differential paths exist for Grøstl.
Furthermore, in block cipher-based designs the freedom in round keys can be
used to control the internal state. This is not possible in a permutation-based
design such as Grøstl. Both effects limit the degrees of freedom which can
be used in an attack. Due to this limited freedom, no rebound attack with
multiple inbound and outbound phases is possible. Note that such attacks are
possible for the block cipher-based hash function Whirlpool (see [LMR+09]), of
for permutation-based hash functions where sparse truncated differential paths
exist, such as the SHA-3 candidates ECHO (see Chapter 6) and LANE (see
Chapter 7).

6
Multiple Inbound and Multiple

Outbound Phases in ECHO

In this chapter, we analyze the hash function ECHO [BBG+08] which is one of
the 14 second round candidates of the NIST SHA-3 competition. ECHO is a
wide-pipe, AES based design which transforms 128-bit words similarly as AES
transforms bytes. Inside these 128-bit words, two AES rounds are used. The
compression function of ECHO consists of one large 2048-bit permutation with
feed-forward and a simple compressing finalization function. Prior to the work
described in this chapter, most cryptanalytic results of ECHO were limited to
the internal permutation [GP10, MPRS09] and to reduced variants of the wide-
pipe compression function [Pey10]. The compression function results have been
published by the designers of ECHO and cover up to 4 out of 8 rounds of ECHO-256
and 6 out of 10 rounds of ECHO-512.

In the following, we extend the analysis to the hash function of ECHO and
present collisions for up to 5 out of 8 rounds in the case of ECHO-256. Fur-
thermore, we provide improved attacks on the compression function for up to
7 out of 8 rounds of ECHO-256 and 7 out of 10 with chosen salt. The main
improvement is to construct a new type of sparse truncated differential paths
where at most one fourth of each ECHO state is active. In all previous paths,
at least one state was fully active. The construction of sparse paths is possi-
ble by combining the last MixColumns transformation of the second AES round
with the BigMixColumns transformation of an ECHO round and analyzing the re-
sulting SuperMixColumns transformation. The attack itself is a rebound attack
[MRST09] with multiple inbound phases and multiple outbound phases. Similar
attacks have been applied to the SHA-3 candidate LANE [MNPN+09] and the
hash function Whirlpool [LMR+09].

97

98 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

Since the truncated differential paths are very sparse, we have enough free-
dom to merge the solutions of multiple inbound phases. Using multiple in-
bound phases, we can control more distant parts of much longer truncated dif-
ferential paths than in a standard rebound attack including SuperBox analy-
sis [GP10, LMR+09, MRST10] or the techniques proposed in [MPRS09]. Al-
though ECHO has a rather good diffusion, the 4 big ECHO columns, the 64
SuperBoxes or the 16 SuperMixColumns transformations within one round are
always independent. We can exploit this property and apply even general-
ized birthday techniques [Wag02] to efficiently merge independent solutions of
multiple inbound phases. The results of this chapter have been published in
[Sch10b, Sch10c, Sch10a].

6.1 Description of ECHO

In this section, we briefly describe the AES based SHA-3 candidate ECHO. For
a detailed description of ECHO we refer to [BBG+08]. ECHO is a double-pipe,
iterated hash function and uses the HAIFA [BD07] domain extension algorithm.
More precisely, a padded t-block message M and a salt s are hashed using the
compression function f(Hi−1,Mi, ci, s), where ci is a bit counter, IV the initial
value and trunc(Ht) a truncation to the final output hash size of n bits:

H0 = IV

Hi = f(Hi−1,Mi, ci, s) for 1 ≤ i ≤ t
h = truncn(Ht).

The message block size is 1536 bits for ECHO-256 and 1024 bits for ECHO-512, and
the message is padded by adding a single 1 followed by zeros to fill up the block
size. Note that the last 18 bytes of the last message block always contain the
2-byte hash output size, followed by the 16-byte message length.

The compression function of ECHO uses one internal 2048-bit permutation
P which manipulates 128-bit words similar as AES manipulates bytes. The
permutation consists of 8 rounds in the case of ECHO-256 and has 10 rounds for
ECHO-512. The internal state of the permutation P can be modeled as a 4 × 4
matrix of 128-bit words. We denote one ECHO state by Si. Each 128-bit word (or
AES state) is indexed by [r, c], with rows r ∈ {0, ..., 3} and columns c ∈ {0, ..., 3}
of the ECHO state.

The 2048-bit input of the permutation (which is also tweaked by the counter
ci and the salt s) are the previous chaining variableHi−1 and the current message
block Mi, concatenated to each other. After the last round of the permutation,
a feed-forward (FF) is applied to get the preliminary output V :

V = Pci,s(Hi−1||Mi)⊕ (Hi−1||Mi). (6.1)

To get the 512-bit chaining variable Hi for ECHO-256, all columns of the ECHO

output state V are XORed. In the case of ECHO-512, the 1024-bit chaining
variable Hi is the XOR of the two left and the two right columns of V . The

6.2. Truncated Differential Analysis of ECHO 99

feed-forward together with the compression of columns is called the BigFinal
(BF) operation. To get the final output of the hash function, the lower half is
truncated in the case of ECHO-256 and the right half is truncated for ECHO-512.

The round transformations of the ECHO permutation are very similar to AES
rounds, except that 128-bit words are used instead of bytes. One round is the
composition of the following three transformations in the given order:

� The non-linear layer BigSubWords (BSW) applies two AES rounds to each
of the 16 128-bit words of the internal state. The first round key addition
(AC) consists of a counter value initialized by ci and increased for every
AES state and round of ECHO. The second round key addition (AS) consists
of the 128-bit salt s.

� The cyclical permutation BigShiftRows (BSR) rotates the 128-bit words of
row j to the left by j words.

� The linear diffusion layer BigMixColumns (BMC) mixes the AES states of
each ECHO column by the same MDS matrix MMC but applied to those
bytes with equal position inside the AES states.

6.2 Truncated Differential Analysis of ECHO

In the following, we describe the main concepts used to attack the ECHO hash
function. We first describe new improved truncated differential paths which
have a very low number of active S-boxes. These sparse truncated differential
paths are the core of all subsequent attacks. For a better description of the
attacks, we reorder the ECHO round transformations. This reordering gives two
combined main building blocks of ECHO, the SuperBox and SuperMixColumns
transformations. Furthermore, we show how to efficiently find both differences
and values through these transformations for a given truncated differential path.

6.2.1 Sparse Truncated Differential Paths for ECHO

In this section, we show how to construct truncated differential paths with a low
number of active bytes. Since ECHO has the same properties for words as AES
has for bytes, at least 25 AES states are active in each 4-round differential path
of ECHO. However, we can reduce the number of active S-boxes in each AES state
to get a sparse 4-round truncated differential path with only 245 active S-boxes.
A trivial lower bound [BBG+08] of active S-boxes for 4 rounds is 125. Recently,
this bound has been improved by the designers of ECHO to 200 in an updated
version of the ECHO specification.

The AES structure of ECHO ensures that the minimum number of active AES
states (or words) for 4 rounds has the following sequence of active AES states:

1
r1−→ 4

r2−→ 16
r3−→ 4

r4−→ 1

100 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

D 1 C C C

C

C

C

C

C

C

C

F

F

F

F

D

D

D

D

D

D

D

D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C

C

C

C

C

C

C

C

F

F

F

F

D

D

D

D

D

D

D

D

D

S0 SAES
0 SBSB

0 SBSR
0 SBMC

0

AES AES BSR BMC

S1 SAES
1 SBSB

1 SBSR
1 SBMC

1

AES AES BSR BMC

S2 SAES
2 SBSB

2 SBSR
2 SBMC

2

AES AES BSR BMC

S3 SAES
3 SBSB

3 SBSR
3 SBMC

3

AES AES BSR BMC

Figure 6.1: The sparse truncated differential path for 4 rounds of ECHO. By 1,
D, C, F we denote the pattern and number of active bytes in each AES state
(also see [GP10]). A 1 denotes an AES state with only one active byte, a D an
active diagonal (4 active bytes), a C an active column (4 active bytes) and an F
denotes a full active state (16 active bytes). Note that a maximum of 64 bytes
are active in each single ECHO state.

Also, the same sequence of active bytes holds for 4 rounds of each AES state. In
previous analysis of ECHO, truncated differential paths have been used with 16
active bytes in those AES states where the ECHO state has also 16 active words.
In these attacks always one full active state with 256 active S-boxes was used.
In the following, we show how to construct sparse truncated differential paths
with a maximum of 64 active bytes in each single ECHO state.

The main idea is to place AES states with only one active S-box into those
ECHO rounds with 16 active words. This way, the number of total active bytes (or
S-boxes) can be greatly reduced. The resulting 4-round truncated differential
path of ECHO is given in Figure 6.1 and consists of only 245 active S-boxes.
Since one round of ECHO consists of two AES rounds, it follows that the full
active AES states result in those rounds of ECHO with 4 active words. The
ECHO state with only one active AES state contains only one active byte. Note
that in the attacks on ECHO, we use this truncated differential path with small
modifications to improve the overall complexity of the attacks.

6.2. Truncated Differential Analysis of ECHO 101

S
hi
ft
R
ow
s

S
ub
B
yt
es

M
ix
C
ol
u
m
ns

S
u
bB
yt
es

S
hi
ft
R
ow
s

S
hi
ft
R
ow
s

B
ig
S
hi
ft
R
ow
s

M
ix
C
ol
u
m
ns

B
ig
M
ix
C
ol
um
n
s

S
hi
ft
R
ow
s

Figure 6.2: The two super-round transformations of ECHO: SuperBox (top, red)
and SuperMixColumns (bottom, green) with adjacent byte shuffling operations
(ShiftRows and BigShiftRows).

6.2.2 An Equivalent ECHO Round Description

For an easier description of the attack, we use an equivalent description of
one ECHO round. First, we swap the BigShiftRows transformation with the
MixColumns transformation of the second AES round. Second, we swap SubBytes
with ShiftRows of the first AES round. Swapping these operations does not
change the computational result of ECHO and similar alternative descriptions
have already been used in the analysis of AES. This way, we get two new super-
round transformations separated just by byte shuffling operations: SuperBox and
SuperMixColumns. These functions with adjacent byte shuffling operations are
shown in Figure 6.2 and one round of ECHO is given as follows:

SR− SB−MC− AC− SB︸ ︷︷ ︸
SuperBox

−SR− BSR− AS− MC− BMC︸ ︷︷ ︸
SuperMixColumns

In the following subsections, we describe these transformations and show how
to efficiently find right pairs according to a given truncated differential path for
both transformations.

6.2.3 SuperBox

The properties of the AES SuperBox [DR06a] have already been discussed in
Section 3.3.2. Since one round of ECHO consists of two consecutive AES rounds
we use SuperBoxes in our analysis as well. Using SuperBoxes, we can represent
the two AES rounds of ECHO using a single non-linear layer and two adjacent
byte shuffling layers. The second MixColumns transformation is moved to the
SuperMixColumns transformation. Then, the only non-linear part of one ECHO

round consists of 64 parallel and independent 32-bit SuperBox transformations
(see Figure 6.2).

This separation of AES rounds into parallel 32-bit SuperBoxes allows to ef-
ficiently find right pairs for a given (truncated) differential path. If we do not

102 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

care about memory, we can simply pre-compute and store the whole differential
distribution table (DDT) of the AES SuperBox with a time and memory com-
plexity of 264 as described in Section 3.3.2. Remember that the DDT stores
which input/output differentials of the SuperBox are possible. Furthermore, all
input values for a given valid differential are stored in the table. Note that
in ECHO, each SuperBox is keyed in the middle by the counter value. Hence,
we need different DDTs for all SuperBoxes with different keys. To reduce the
memory requirements and the maximum time to find values for given SuperBox
differentials, also other time-memory trade-offs as given in Section 3.7 can be
used.

6.2.4 SuperMixColumns

The SuperMixColumns transformation combines four MixColumns transfor-
mations of the second AES round with 4 MixColumns transformations of
BigMixColumns in the same 1 × 16 column slice of the ECHO state (see Fig-
ure 6.2). We denote by a column slice the 16 bytes of the same 1-byte wide
column of the 16× 16 ECHO state. Note that the BigMixColumns transformation
consists of 16×4 parallel MixColumns transformations. Each of these MixColumns
transformations mixes those four bytes of an ECHO column, which have the same
position in the four AES states. Using the alternative description of ECHO (see
Figure 6.2), it is easy to see that four MixColumns operations of the second
AES round work on the same column slice as four MixColumns operations of
BigMixColumns. We combine these eight MixColumns transformations to get a
SuperMixColumns transformation on a 1-byte wide column slice of ECHO.

We have determined the 16 × 16 matrix MSMC of the SuperMixColumns
transformation which is applied to the ECHO state instead of MixColumns and
BigMixColumns. This matrix can be computed by the Kronecker product of two
AES MixColumns matrices MMC:

MSMC = MMC ⊗MMC =

[
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
⊗
[

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
=



4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4


Note that the optimal branch number of a 16× 16 matrix is 17, which could

6.2. Truncated Differential Analysis of ECHO 103

be achieved by an MDS matrix. Using Magma 1 we have computed the branch
number of SuperMixColumns which is 8. Hence, it is possible to find differential
paths in SuperMixColumns such that the sum of active bytes at input and output
is only 8. An according truncated differential path through MixColumns and
BigMixColumns has the following sequence of active bytes:

4
MC−−→ 16

BMC−−−→ 4

An example for a valid SuperMixColumns differential according to this trun-
cated differential path is given as follows:

SMC([E000 9000 D000 B000]T) = [2113 0000 0000 0000]T

The differential probability for a truncated differential path from 4 → 16 → 4
active bytes (with fixed position) through SuperMixColumns is 2−24 and only
28 (out of 232) differentials for the given position of active bytes exist. In the
sparse truncated differential path of Figure 6.1, this 4 → 16 → 4 transition
through SuperMixColumns occurs in the second and forth round. Of course also
a truncated differential path of the form 4 → 1 → 4 is possible. However, this
path results in a less optimal pattern of active bytes and cannot be used to
construct long sparse truncated differential paths.

6.2.5 The Inbound Phase in ECHO

In the inbound phases of the following attacks on ECHO we compute right pairs
for the following sequence of transformations:

MC− BMC︸ ︷︷ ︸
SuperMixColumns

−SR− SB−MC− AC− SB︸ ︷︷ ︸
SuperBox

−SR− BSR− MC− BMC︸ ︷︷ ︸
SuperMixColumns

For these transformations, we can find right pairs for any valid truncated differ-
ential path with an average complexity of 1. Note that not all differentials of a
truncated differential path are possible differentials (see Section 3.2 and 3.3.2).
Therefore, we usually need to try many starting differentials such that a right
pair can be constructed. For each SuperBox, a differential is possible with a
probability of about 2−4. Hence, for each active SuperBox we need to try about
24 differentials to find the first right pair. However, for each possible differential,
the expected number of right pairs is 24. We can generalize this for the whole
state and for x active SuperBoxes, we need to construct 24·x starting differentials
and then get 24·x right pairs.

Again, we can use many different techniques to find these right pairs (see Ta-
ble 3.4 of Section 3.8). In all subsequent attacks on ECHO, the memory complexity
of the final phase is at least 264. Therefore, using the DDT of the SuperBox does
not increase the total memory requirements. The advantage of using the DDT
is that we only need the minimum number of starting points to find the first

1http://magma.maths.usyd.edu.au/magma/

http://magma.maths.usyd.edu.au/magma/

104 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

right pair. On the other hand, for a practical implementation of the attacks
a slightly higher time complexity but less memory requirements could be more
appropriate [JF11]. Nevertheless, in the following attacks we assume that one
right pair can be computed with average complexity one and the complexity to
find the first right pair is 24·x for an inbound phase with x active SuperBoxes.

6.2.6 Expected Number of Right Pairs

At this point, we can already compute the expected number of right pairs con-
forming to the 4-round truncated differential path given in Figure 6.1. The
resulting number of right pairs determines the degrees of freedom we have in
an attack. At the input of the path, we have a 2048-bit value and differences
in 4 bytes. Therefore, the total number of possible inputs pairs (excluding the
128-bit salt) is about

22048 · 28·4 = 28·260 = 22080.

In general, the differential probability of a truncated differential path from
a to b active bytes (with a + b ≥ 5) through MixColumns is 2−8·(4−b) (see Sec-
tion 3.2.3). An exception is the propagation from 4 → 16 → 4 bytes through
SuperMixColumns, which has a probability of 2−24 (see Section 6.2.4). Mul-
tiplying all probabilities through MixColumns and SuperMixColumns gives the
approximate differential probability for the whole truncated differential path.
Note that we get a probability significantly less than one for MixColumns and
SuperMixColumns transformation only where a reduction in the number of active
bytes occurs. For the path given in Figure 6.1, this happens in the 1st MC of
round 1 (D – 1), the 2nd MC of round 2 (4 × F – D), the 1st MC (16 × D – 1)
and SMC (4 × 1111 – FFFF – F000) of round 3, and the 2nd MC (4 × F – D)
and BMC (3 × D – 0) of round 4. We then get for the total probability of the
truncated differential path (in base 2 logarithm):

−8 · (3 + 4 · 12 + 16 · 3 + 4 · 3 + 4 · 12 + 3 · 4) = −8 · 171

Hence, the expected number of right pairs is

28·260 · 2−8·171 = 28·89 = 2712

and we get about 712 degrees of freedom for this 4-round truncated differential
path.

6.3 Attacks on the ECHO-256 Hash Function

Next, we use the sparse truncated differential path and properties of
SuperMixColumns to get attacks for 5 rounds of the ECHO-256 hash function. We
first describe the truncated differential path and show how to find conforming
input pairs. Then, we use these results to get a subspace distinguisher [LMR+09]
and a collision attack for 5 rounds.

6.3. Attacks on the ECHO-256 Hash Function 105

6.3.1 The Rebound Attack on ECHO

Due to the sparse truncated differential paths we are able to apply a rebound
attack with multiple inbound phases to ECHO. Since at most one fourth of each
ECHO state is active, we have enough freedom for 2 inbound phases and are also
able to fully control the chaining input of the hash function. Note that the
truncated differential path and rebound attack given in this section is the core
of all subsequent attacks.

6.3.1.1 The Truncated Differential Path

In the hash function attack we use two message blocks where the first block
does not contain differences. For the second (and last) message block, we use
the truncated differential path given in Figure 6.3. We use colors (red, yellow,
green, blue, cyan) to describe different phases of the attack and to denote their
resulting solutions. Active bytes are denoted by black color and all AES states
are active which contain at least one active byte. Hence, the sequence of active
AES states for each round of ECHO is as follows:

5
r1−→ 16

r2−→ 4
r3−→ 1

r4−→ 4
r5−→ 16

Note that in this path we keep the number of active bytes low as described in
Section 6.2.1. Except for the beginning and end, at most one fourth of the ECHO

state is active and therefore, we have enough freedom to find many solutions.
We do not allow differences in the chaining input (blue) and in the padding
(cyan). The last 16 bytes (one AES state) of the padding contain the message
length, and the two bytes above contain the 2-byte value with the hash size.
Note that the AES states containing the chaining values (blue) and padding
(cyan) do not get mixed with other AES states until the first BigMixColumns
transformation. Since the lower half of the state (row 2 and 3) is truncated, we
force all differences to be in the lower half of the message as well.

6.3.1.2 Attack Outline

To find input pairs according to the truncated differential path given in Fig-
ure 6.3, we use a rebound attack [MRST09] with multiple inbound phases
[LMR+09, MNPN+09, Sch10b]. The main advantage of multiple inbound phases
is that we can first find pairs for each inbound phase independently and then,
connect (or merge) the results.

For the attack on 5 rounds of ECHO-256 we use an inbound phase in round
2 (red) and another inbound phase in round 3 (yellow). In the yellow inbound
and green outbound phase we construct (partial) pairs such that the truncated
differential path in round 3, 4 and 5 is fulfilled. In the red inbound phase we
search for many pairs conforming to the red part.

Then, we merge (connect) the resulting pairs of the red inbound phase with
the chaining input (blue) and padding (cyan). Additionally, we ensure the 128-
bit condition such that the yellow and red part can be connected. Finally, we

106 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO
H

M
S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
24

S
25

S
26

S
27

S
28

S
29

S
30

S
31

S
32

S
32

S
33

S
34

S
35

S
36

S
37

S
38

S
39

S
40

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

BigFinal

Trunc

F
igu

re
6.3

:
T

h
e

tru
n

cated
d

iff
eren

tial
p

ath
to

get
a

collision
fo

r
5

rou
n

d
s

o
f
E
C
H
O
-2

5
6
.

B
la

ck
b
y
tes

a
re

active,
b

lu
e

an
d

cyan
b
y
tes

are
d

eterm
in

ed
b
y

th
e

ch
ain

in
g

in
p

u
t

an
d

p
ad

d
in

g,
red

b
y
tes

are
va

lu
es

co
m

p
u

ted
in

th
e

red
in

b
o
u

n
d

p
h

ase,
yellow

b
y
tes

in
th

e
yellow

in
b

ou
n

d
p
h

ase
an

d
green

b
y
tes

in
th

e
ou

tb
ou

n
d

p
h
ase.

6.3. Attacks on the ECHO-256 Hash Function 107

merge the solutions of the two inbound phases by determining the remaining
(white) values using a generalized birthday attack on 4 independent columns of
the state. Note that in some cases, the probability to find one solution is only
close to one. However, for the sake of simplicity we assume it is one, since we
have enough freedom in the attack to repeat all phases with different starting
points to get one solution on average.

6.3.1.3 Yellow Inbound

In the yellow inbound phase, we search for right pairs according to the truncated
differential path in round 3 (yellow and black bytes). We start the attack by
choosing a difference for the active bytes in state S16 such that the truncated
differential path of SuperMixColumns between state S14 and S16 is fulfilled. We
compute this difference forward to state S17.

We continue with 264 differences for state S24 and compute backwards to
state S20, the output of the SuperBoxes. Note that we have 16 independent
SuperBoxes for the yellow AES states between state S17 and S20. We use the
DDT of the SuperBoxes to get all right pairs for each differential. For 16 active
SuperBoxes, the probability that a differential is possible is about 2−4·16 and we
need 264 starting points for the inbound phase.

We get find 264 right pairs with a complexity of 264 and memory requirements
of 264. Since we can choose about 2128 difference in state S24, we can find up
to 2128 right pairs for the yellow inbound phase with average complexity 1. For
each of these pairs, differences and values of all yellow and black bytes in round
3 are determined.

6.3.1.4 Green Outbound

In the green outbound phase, we ensure the propagation in round 4 of the
truncated differential path by propagating the right pairs of the yellow inbound
phase forwards to state S31. With a probability of 2−96 we get 4 active bytes
after MixColumns in state S31. Hence, we need to generate 296 right pairs in
the yellow inbound phase to get one right pair according to the green outbound
phase.

The total complexity is 296 to get one right pair for the green outbound
phase. Note that for this pair, we can compute the values and differences of the
yellow, green and black bytes between state S16 and state S31. Furthermore, for
any choice of the remaining bytes, the truncated differential path in backward
direction until state S40 is fulfilled.

6.3.1.5 Red Inbound

In the red inbound phase, we search for many right pairs according to the trun-
cated differential path between state S7 and S14. Note that we can independently
search for pairs of each BigColumn of state S7, since the four BigColumns stay
independent until they are mixed by the following BigMixColumns transforma-
tion between state S15 and S16. For each column, 4 SuperBoxes are active and

108 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

we need at least 216 starting differentials for each column to find the first right
pair.

The difference in S14 is already fixed due to the yellow inbound phase but we
can still choose from 232 differences for each active AES state in S7. As shown
in Section 6.2.5, we can find one pair on average for each starting difference in
the inbound phase. We independently iterate through all 232 starting differences
for the 1st, 2nd and 3rd column, and through all 264 starting differences for the
4th column of state S7. We get 232 right pairs for each of the first three columns
and 264 pairs for the 4th column. The total complexity to find all these pairs is
264 in time and memory.

For each resulting right pair, the values and differences of the red and black
bytes between state S7 and S14 can be computed. Furthermore, the truncated
differential path in backward direction, except for two cyan bytes in the first
states, is fulfilled. In the next phase, we partially merge the right pairs of the
yellow and red inbound phase, but first we determine the conditions for this
merge.

6.3.1.6 Additional Conditions at SuperMixColumns

For each pair of the previous two phases, the values of the red, yellow and black
bytes of state S14 and S16 are fixed. These two states are separated by the
linear SuperMixColumns transformation and we get for the first column slice the
relation

MSMC · [A0 x0 x1 x2 A1 x3 x4 x5 A2 x6 x7 x8 A3 x9 x10 x11]T

[B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]T

where MSMC is the SuperMixColumns transformation matrix, Ai the input bytes
determined by the red inbound phase and Bi the output bytes determined by
the yellow inbound phase. All bytes xi and yi are free to choose. As shown by
Jean and Fouque [JF11], we only get a solution with probability 2−8 for each
column slice due to the low rank of the MSMC matrix.

Since the values yi on the right side are free to choose, we can remove their
respective equations. We also move terms which do not depend on xi to the
right side and get the following linear system with 4 equations and 12 variables
xi with X = [x0 x1 . . . x11]T :

6 2 2 5 3 3 3 1 1 3 1 1
4 6 2 6 5 3 2 3 1 2 3 1
2 4 6 3 6 5 1 2 3 1 2 3
2 2 4 3 3 6 1 1 2 1 1 2

 ·X =


c0
c1
c2
c3

 (6.2)

On the right side, we have the constant values c0, c1, c2, c3 which are determined
by A0, A1, A2, A3 and B0, B1, B2, B3 and we get for example:

c0 = B0 + 4A0 + 6A1 + 2A0 + 2A1

6.3. Attacks on the ECHO-256 Hash Function 109

The matrix of this linear system has rank 3 (instead of 4) and therefore, we
only get a solution with a probability of 2−8 for given Ai, Bi. We can solve this
system of equations by transforming the system into echelon form. We get:

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

 ·X =


c′0
c′1
c′2
c′3

 (6.3)

where the values c′0, c′1, c′2, c′3 are a linear combination of c0, c1, c2, c3. From the
last equation, we get the 8-bit condition c′3 = 0. In [JF11], this 8-bit condition
has been derived and is given as follows:

2 ·A0 + 3 ·A1 +A2 +A3 = 14 ·B0 + 11 ·B1 + 13 ·B2 + 9 ·B3. (6.4)

Similar 8-bit conditions exist for all 16 columns slices. In total, each right pair
of the red and yellow inbound phases results in a 128-bit condition on the whole
SuperMixColumns transformation between state S14 and S16.

6.3.1.7 1st Part of the Merge Inbound Phase

At this point, we have constructed one pair for the yellow inbound phase and in
total, 232 ·232 ·232 ·264 = 2160 pairs for the red inbound phase. Among these 2160

pairs we expect to find 232 right pairs which also satisfy the 128-bit condition
on SuperMixColumns between state S14 and S16. In the following, we show how
to find all these 232 pairs with a complexity of 296.

First, we combine the 232 ·232 = 264 pairs determined by the first two columns
of state S7 in a list L1, and the 232 · 264 = 296 pairs determined by the last
two columns of state S7 in a list L2. Note that the pairs in these two lists
are independent. Then, we can simply merge (join) these lists to find those
pairs which satisfy the 128-bit condition imposed by SuperMixColumns and store
these results in list L3 = L1 ./128 L2. This way, we get 264 × 296 × 2−128 = 232

right pairs with a total complexity of 296 (see Section 2.2.3). The memory
requirements can be reduced to 264 if we do not store the elements of L2 but
compute them online.

In more detail, we first separate Equation 6.4 into terms determined by L1

and terms determined by L2:

2 ·A0 + 3 ·A1 = A2 +A3 + 14 ·B0 + 11 ·B1 + 13 ·B2 + 9 ·B3. (6.5)

Then, we apply the left-hand side to the elements of L1 and the right-hand side
to elements of L2 and sort L1 according to the bytes to be matched. Finally, we
just iterate through all elements of L2 and collect the 232 pairs which satisfy the
128-bit condition. These 232 pairs are then partial right pairs for the combined
red and yellow inbound phase. The complexity of this part can probably be
further reduced using the techniques proposed in [JF11].

110 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

6.3.1.8 Merge Chaining Input

Next, we need to merge the 232 results of the previous phase with the chaining
input (blue) and the bytes fixed by the padding (cyan). The chaining input and
padding overlap with the red inbound phase in state S7 on 5 ·4 = 20 bytes. This
results in a 160-bit conditions on the overlapping blue/cyan/red bytes. To find
a pair according to this condition, we first generate 2112 random first message
blocks, compute the blue bytes of state S7 and store the results in a list L4.

Additionally, we repeat 216 times from the yellow inbound phase but with
other starting points in state S24. Remember that we have chosen only 296 out
of 2128 differences for this state yet. This way, we get 216 · 232 = 248 right pairs
for the combined yellow and red inbound phases which also satisfy the 128-bit
condition of SuperMixColumns between state S14 and S16. The complexity is
216 · 296 = 2112. We store the resulting 248 pairs in list L3.

Next, we merge the lists according to the overlapping 160-bits (L3 ./160 L4)
and get 248×2112×2−160 = 1 right pair. If we compute the 2112 message blocks
of list L4 online, the time complexity of this merging step is 2112 with memory
requirements of 248. For the resulting pair, all differences (black) between state
S4 and state S33, and all colored byte values (blue, cyan, red, yellow, green and
black) between state S0 and state S31 can be determined.

6.3.1.9 2nd Part of the Merge Inbound Phase

To completely merge the two inbound phases, we need to find according values
for the white bytes. We use Figure 6.4 to illustrate this second part of the merge
inbound phase. In this figure, we only consider values and therefore, do not show
active (black) bytes. Furthermore, all brown and cyan bytes have already been
chosen in one of the previous phases. In the second part of the merge inbound
phase, we only choose value for the gray and lightgray bytes. All other colored
bytes show steps of the following merging phase.

We first choose random values for all remaining bytes of the first two columns
in state S7 (gray and lightgray) and independently compute the columns forward
to state S14. Note that we need to try 22·8+1 values for AES state S7[2, 1] to also
match the 2-byte (cyan) and 1-bit padding at the input in AES state S0[2, 3].
Then, all gray, lightgray, cyan and brown bytes have already been determined
either by an inbound phase, chaining value, padding or just by choosing random
values for the remaining free bytes of the first two columns of S7. However, all
white, red, green, yellow and blue bytes are still free to choose.

By taking a look at the linear SuperMixColumns transformation, we observe
that in each column slice, 14 out of 32 input/output bytes are already fixed
and 2 bytes are still free to choose. Hence, we expect to get 216 solutions for
this linear system of equations. Unfortunately, also for the given position of
already determined 14 bytes, the linear system of equations does not have a full
rank. Again, we can determine the resulting system using the matrix MSMC of

6.3. Attacks on the ECHO-256 Hash Function 111

S7 S8 S14 S16

S
R

S

B

M
C

S

B

S
R

B

S
R

B
M

C

M
C

B

M
C

Figure 6.4: States used to merge the two inbound phases with the chaining
values. The merge inbound phase consists of three parts. Brown bytes show
values already determined (1st part) and gray values are chosen at random (2nd
part). Green, blue, yellow and red bytes show independent values used in the
generalized birthday attack (3rd part) and cyan bytes represent values with the
target conditions.

SuperMixColumns. For the first column slice, the system is given as follows:

MSMC · [A0 L0 L1 L2 A1 L
′
0 L
′
1 L
′
2 A2 x6 x7 x8 A3 x9 x10 x11]T

[B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]T

The free variables in this system are x6, . . . , x11 (green). The values A0, A1,
A2, A3, B0, B1, B2, B3 (brown) have been determined by the first or second
inbound phase, and the values L0, L1, L2 (lightgray) and L′0, L′1, L′2 (gray)
are determined by the choice of arbitrary values in state S7. Also this resulting
linear system of equations has rank 3 and we can proceed as in the 1st part of
the merge inbound phase and we get:


3 1 1 3 1 1
2 3 1 2 3 1
1 2 3 1 2 3
1 1 2 1 1 2

 ·

x6

x7

x8

x9

x10

x11

 =


c0
c1
c2
c3

 (6.6)

The resulting linear 8-bit equation to get a solution for this system can be
separated into terms depending on values of Li and on L′i, and we get

f1(Li) + f2(L′i) + f3(ai, bi) = 0.

For all other 16 column slices and fixed positions of gray bytes, we get matrices
of rank 3 as well. In total, we get 16 8-bit conditions and the probability to
find a solution for a given choice of gray and lightgray values in state S14 and
S16 is 2−128. However, we can find a solution to these linear equations using
the birthday effect and a meet-in-the-middle attack (see Section 2.2.2) with a
complexity of 264 in time and memory.

112 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

We start by choosing 264 values for each of the big first (gray) and second
(lightgray) column in state S7. We compute these values independently forward
to state S14 and store them in two lists L and L′. We also separate all equations
of the 128-bit condition into parts depending only on values of L and L′. We
apply the resulting functions f1, f2, f3 to the elements of lists Li and L′i, and
merge two lists L ./128 L

′ using the birthday effect (see Section 2.2.3).

6.3.1.10 3rd part of the Merge Inbound Phase

We continue with a generalized birthday match to find values for all remaining
bytes of the state (blue, red, green, yellow, cyan and white). For each column
in state S14, we independently choose 264 values for the green, blue, yellow and
red columns, and compute them independently backward to S8. We need to
match the values of the cyan bytes of state S7, which results in a condition on
24 bytes or 192 bits. Since we have 4 independent lists with 264 values in state
S8, we can use the generalized birthday attack [Wag02] (also see Section 2.2.4)
to find one solution with a complexity of 2192/3 = 264 in time and memory.
In detail, we need to match values after the BigMixColumns transformation in
backward direction. Hence, we first multiply each byte of the 4 independent
lists by the 4 multipliers of the InvMixColumns transformation. Then, we get
24 equations containing only XOR conditions on bytes between the target value
and elements of the 4 independent lists. This can be solved using a generalized
birthday attack.

After this step, all values and differences are determined. We can compute
the input message pair, as well as the output differences for ECHO-256 reduced
to 5 rounds. By simply repeating just the merge inbound phase 232 times, we
can find at least 232 right pairs for the whole truncated differential path without
increasing the total complexity. Overall, we can get up to 232 right pairs with
a complexity of 296 compression function evaluations and memory requirements
of 264.

6.3.2 Subspace Distinguisher for 5 Rounds

In this section, we show that the resulting output differences after 5 rounds lie
in a vector space of reduced dimension. This can be used to construct a distin-
guisher for 5 rounds of the ECHO-256 hash function. As shown in the analysis of
Whirlpool [LMR+09], one message pair resulting in one output differences does
not give a distinguisher. We need to find many output differences in a subspace
with a complexity less than in the generic case.

To determine the generic complexity of finding output differences in a vector
space and the resulting advantage of our attack we use the subspace distin-
guisher. In general, the size of the output vector space is defined by the number
of active bytes prior to the linear transformations in the last round (16 active
bytes after the last SubBytes), combined with the number of active bytes at the
input due to the feed-forward (0 active bytes in our case). This would results
in a vector space dimension of (16 + 0) · 8 = 128. However, a weakness in the

6.3. Attacks on the ECHO-256 Hash Function 113

combined transformations SuperMixColumns, BigFinal and the output truncation
reduces the vector space to a dimension of 64 at the output of the hash function
(for the given truncated differential path).

Note that we can move the BigFinal function prior to SuperMixColumns, since
BigFinal is a linear transformation and the same linear transformation MSMC is
applied to all columns in SuperMixColumns. Then, we get 4 active bytes at the
same position in each AES state of the 4 resulting column slices. To each (active)
column slice C16, we first apply the SuperMixColumns multiplication with MSMC

and then, a matrix multiplication using Mtrunc which truncates the lower 8 rows.
Since only 4 bytes are active in C16, these transformations can be combined into
a transformation using a reduced 4×8 matrix Mcomb applied to the reduce input
C4, which contains only the 4 active bytes of C16:

Mtrunc ·MSMC · C16 = Mcomb · C4

The multiplication with zero differences of C16 removes 12 columns of MSMC

while the truncation removes 8 rows of MSMC. An example for the first active
column slice is given as follows:


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

·


4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4


·



a
0
0
0
b
0
0
0
c
0
0
0
d
0
0
0


=


4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3
2 4 6 2
1 2 3 1
1 2 3 1
3 6 5 3

 ·
[

a
b
c
d

]

Analyzing the resulting matrix Mcomb for all 4 active column slices shows that
in each case, the rank of Mcomb is 2 instead of 4. This reduces the dimension
of the vector space in each active column slice from 32 to 16. Since we have 4
active columns, the total dimension of the vector space at the output of the hash
function is 64.

114 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

We use [LMR+09, Equation 19] to compute the complexity of a generic distin-
guishing attack on the ECHO-256 hash function. We get the parameters N = 256
(hash function output size), n = 64 (dimension of vector space) and t = 232

(number of outputs in vector space) for the subspace distinguisher. Then, the
generic complexity to construct 232 elements in a vector space of dimension 64
is about 2111.8 compression function evaluations. Remember that in our attack
on ECHO we also get 232 pairs in a vector space of the same dimension. Hence,
the total complexity for the subspace distinguisher on 5 rounds of the ECHO-256
hash function is about 296 compression function evaluations with memory re-
quirements of 264.

6.3.3 Collisions for 5 Rounds

Due to the low dimension of the output vector space, we can extend the Subspace
Distinguisher for 5 rounds of the previous section to a collision attack on 5 rounds
of the hash function. The first parts of the attack are exactly the same as for
the subspace distinguisher. Hence, also the whole truncated differential path is
exactly the same as for the subspace distinguisher on 5 rounds, except that we
get a collision at the output (see Figure 6.3).

Two improvements are needed to get a collision for 5 rounds. First, we show
that the resulting differences in the output subspace collide with a probability
of 2−64. Secondly, we improve the merge inbound phase which determines the
remaining white bytes to get an average complexity of 221.3 to compute one
right pair. Then, the total complexity to get a collision for 5 rounds of ECHO-256
is about 296 + 264+21.3 = 296 compression function evaluations with memory
requirements of about 285.3.

6.3.3.1 Colliding Subspace Differences

As shown in Section 6.3.2, we can combine the linear MixColumns and
BigMixColumns transformations with the BigFinal function and the final out-
put truncation. Note that in all these transformations, the resulting one-byte
columns of the output hash value can be computed independently of each other.
Further, column i ∈ {0, 1, 2, 3} of the output hash value depends only on columns
i · 4 of state S38. It follows that the output difference in the first column i = 0
of the output hash value depends only on the 4 active differences in columns 0,
4, 8, and 12 of state S38 which we denote by a, b, c, d. Using Mcomb of the first
output column, we get the following linear system of equations:

4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3
2 4 6 2
1 2 3 1
1 2 3 1
3 6 5 3


·


a
b
c
d

 =



0
0
0
0
0
0
0
0



6.4. Attacks on the ECHO Compression Function 115

Since we cannot control the differences a, b, c, d in the attack, we need to find
a solution for this system of equations by brute-force. However, the brute-force
complexity is less than expected due to the reduced rank of the given matrix.
Since the rank is 2, 216 solutions exist and a random difference results in a
collision with a probability of 2−16 instead of 2−32 for the first output column.
Since the rank of all 4 output column matrices is 2, we get a collision at the
output of the hash function with a total probability of 2−64.

6.3.3.2 Improved Merge Inbound Phase (3rd Part)

To get a collision attack with a complexity below 2128 for 5 rounds, we need to
improve the merge inbound phase further. Therefore, we need to find according
values for the white bytes with an average complexity below 264. The first two
parts of the merge inbound phase, where the linear system of equations are
solved are exactly the same as in the previous sections. Only the 3rd part of
the merge inbound phase changes. Then, all gray, lightgray and brown values of
Figure 6.4 are determined and we know that for these values a solution according
to SuperMixColumns exists.

In the 3rd part of the merge inbound phase, we do a generalized birthday
attack to find values which also match the 24 cyan bytes (a 192-bit condition)
in state S7 of Figure 6.4. To improve the average complexity of this generalized
birthday attack, we can start with 285.3 values for the green, blue, yellow and red
columns in state S14. Since we need to match a 192-bit condition, we get 23·85.3×
2−192 = 264 solutions with a time and memory complexity of 285.3, or with an
average complexity of 221.3 per solution (see [Wag02] or Section 2.2.4 for more
details). Note that we could even find solutions with an average complexity of 1
using lists of size 296. Each of the 264 solution of the generalized birthday match
results in a valid pair conforming to the whole 5-round truncated differential
path. According to the previous section, among these 264 pairs we expect to find
one pair which collides at the output of the hash function. The time complexity
is determined by merging the chaining input, and the memory requirements by
the generalized birthday attack. In total, the complexity to find a collision for
5 rounds of the ECHO-256 hash function is 2112 compression function evaluations
with memory requirements of 285.3.

6.4 Attacks on the ECHO Compression Function

In this section we show how to get a collision attack for 6 and a subspace dis-
tinguisher for 7-rounds of the ECHO-256 compression function, both with chosen
salt. For both attacks we get a complexity of 2160 with memory requirements of
2128.

The attacks on the hash functions of ECHO can be extended to the compression
function almost in a straightforward way. In this case, instead of the chaining
value a 512-bit value of another inbound phase is merged with the 1st inbound
phase. In fact we can continue with a similar 3-round path in backward direction

116 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

as we have in the hash function case in forward direction. Then, the full active
ECHO state is located in the middle round and we can construct attacks for up
to 7 rounds for the compression functions of ECHO-256 (see Figure 6.5).

6.4.1 The Truncated Differential Path

We use the 7-round truncated differential path given in Figure 6.5. Black bytes
are active and colored bytes show the different inbound and outbound phases.
Since this path is sparse, we are able to find many right pairs for to the path.
Again, we can already compute the expected number of right pairs by considering
the MixColumns and SuperMixColumns transformations. At the input, we can
freely choose 256 byte values, the 16 byte difference and the 128-bit salt. We
get a reduction of pairs at the 1st MC and SMC of round 1, the 2nd MC of
round 3, the 1st MC and SMC of round 4, the BMC of round 5 and the 2nd
MC of round 6. The differential probability (in base 2 logarithm) for the path
is given as follows:

8 · (−12− 3− 48− 48− 12− 48− 12) = −8 · 183

To summarize, the expected number of pairs conforming to this 7-round trun-
cated differential path is

28·(256+16+16) · 2−8·183 = 2800,

which corresponds to 800 degrees of freedom. Note that this is much more than
for the paths given in [MPRS09] and [Pey10].

6.4.2 Outline of the Attack

The main idea of the attack is to find solutions for the forward and backward
part independently for fixed differences between state S30 and S32. For the
yellow/purple part, we can find 2128 pairs with a complexity of 2128 by choosing
the salt value. For the green/blue/red part, we can also find 2128 pairs but with
a complexity of 2160 and chosen salt. Then, we just need to match the 128-bit
salt value of the forward and backward part and fulfill the 128-bit condition on
the input (red) and output (yellow) values of SuperMixColumns. Since we get
2128 independent pairs for both the forward and backward part, we can fulfill
the resulting 256-bit condition by merging the two resulting lists.

6.4.3 Finding Right Pairs for Sparse Paths of the Permu-
tation

In this section, we show how to find a pair for the first 6 rounds of the 7-round
truncated differential path. The complexity to find one such right pair is 2160

in time with 2128 memory. We use this path to get a collision for 6 rounds and
a distinguisher for 7 rounds of the ECHO-256 compression function with chosen
salt.

6.4. Attacks on the ECHO Compression Function 117

H
M

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

S
R

M
C

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

S
R

M
C

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

S
R

M
C

S
2
4

S
2
5

S
2
6

S
2
7

S
2
8

S
2
9

S
3
0

S
3
1

S
3
2

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

S
R

M
C

S
3
2

S
3
3

S
3
4

S
3
5

S
3
6

S
3
7

S
3
8

S
3
9

S
4
0

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

S
R

M
C

S
4
0

S
4
1

S
4
2

S
4
3

S
4
4

S
4
5

S
4
6

S
4
7

S
4
8

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

S
R

M
C

S
4
8

S
4
9

S
5
0

S
5
1

S
5
2

S
5
3

S
5
4

S
5
5

S
5
6

B
IG

B
IG

S
R

S
B

M
C

S
B

S
R

M
C

B
F

S
R

M
C

Figure 6.5: The truncated differential path to get collisions for 6 rounds and
near-collisions for 7 rounds of the ECHO-256 compression function. Black bytes
are active, red bytes are values computed in the 1st inbound phase, yellow bytes
in the 2nd, blue bytes in the 3rd and green bytes in the 4th inbound or 2nd
outbound phase, and cyan bytes in the 3rd outbound phase. Purple bytes are
determined in the 1st outbound phase and gray bytes are chosen in the merge
inbound phase.

118 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

6.4.3.1 Yellow Inbound Phase

We start the attack with the SuperMixColumns transformation between the yel-
low and red part. We choose a difference for state S32 such that the truncated
differential path of SuperMixColumns between state S30 and S32 is fulfilled. Then,
for each of the 2128 differences in state S40 we do an inbound phase between state
S32 and S40. Since we get one solution on average and with average complexity
one, we can compute 2128 pairs for the yellow inbound phase with complexity
2128. We store these pairs sorted by their difference of state S40 in list L1.

6.4.3.2 Purple Outbound Phase

We continue to find pairs which also satisfy the truncated differential path until
state S47. We choose 2128 random pairs for the AES state in S47 (according to
the given truncated differential path) and compute backwards to state S40. For
each resulting difference in S40 we lookup the matching difference in list L1. To
match also the values, we can choose the 128-bit salt value accordingly. Hence,
we get 2128 pairs with complexity 2128 according to the truncated differential
path from state S32 to S48.

6.4.3.3 Red Inbound Phase

The red inbound phase is the same as in the hash function attack. We start with
the difference between state S30 and S32, which has been chosen in the yellow
inbound phase. Then, we do 4 independent inbound phases for each BigColumn
in state S23. Since we can start with 232 differences for each column in S23, we
also get 232 pairs for each column with a total complexity of 232.

6.4.3.4 Blue Inbound Phase

In the blue inbound phase, we start with a fixed difference in state S15 and
compute this difference forward to state S17. Again, we can choose all 232

differences for each BigColumn of state S23 and do the blue inbound phases
independently for each active AES state in backward direction. For each column,
we get 232 pairs with a complexity of 232.

6.4.3.5 Merge Blue and Red Inbound Phase

When merging the solutions of the blue and red inbound phase, we want to get
one pair with average complexity one. Note that for each inbound phase and
each column of state S23 we have 232 right pairs. Furthermore, we can choose
the salt value again. We start by matching the differences in the overlapping
4 bytes of each column. Since we have 232 solutions for each of the blue and
the red part, we get 232 × 232 × 2−32 = 232 pairs with matching differences but
non-matching values.

To match also these 4-byte values, we choose (only) the diagonal 4 bytes of
the salt value. For each of the 232 pairs with matching difference, we compute

6.4. Attacks on the ECHO Compression Function 119

the diagonal bytes of the salt such that the values match. We sort the resulting
list according to the 4-byte salt value and repeat the same for all 4 BigColumns
of state S23. Then, we just need to iterate through all 4 lists and search for
matching salt values. Note that for some salt values, we will get no solution, but
for some we will get more than one solution. On average, we expect to get 232

matching pairs with a complexity of 232 with chosen diagonal bytes of the salt.

6.4.3.6 Green Inbound Phase

To find a pair also for the green part, we first choose a difference according to
the truncated differential path between state S6 and S8. The second starting
point for the green inbound phase is the difference of state S15, which has been
chosen in the blue inbound phase. Again, we get one pair on average for each
starting differential. This pair needs to be connected with the solutions of the
blue inbound phase. First, we match the values in the diagonal bytes of state
S15. Remember that in the previous phases, we have constructed 232 pairs for
a single difference in state S15. Among these pairs, we expect to find one pair
such that the diagonal 4-byte values between the green and blue inbound phase
match. To match the other 12 bytes, we can simply choose the remaining 12
bytes of the salt value. Hence, we get one solution for the combined green, blue
and red part with an average complexity of 232.

6.4.3.7 1st Part of the Merge Inbound Phase

To merge the inbound phases, we first compute 2128 pairs for the yellow/purple
part with a total complexity of 2128 and store these pairs in a list L2. We also
compute 2128 pairs for the green/blue/red part. Since the complexity to compute
one solution for this part is 232, the total complexity to compute all 2128 pairs
is 2160. To connect the resulting pairs between state S30 and S32 we need to
satisfy two 128-bit conditions. First of all, we need to satisfy the linear 128-bit
SuperMixColumns condition observed by Jean and Fouque in [JF11]. Since each
solution of the yellow/purple and green/blue/red part has also a different salt
value, we need to match the 128-bit salt as well. In total, this gives a 256-bit
condition which we can satisfy by merging the two lists L1 ./256 L2 and we get
2128 × 2128 × 2−256 = 1 right pair which satisfies the whole 6-round truncated
differential path. The time complexity is 2160 and with memory requirements of
2128.

6.4.3.8 2nd Part of the Merge Inbound Phase.

In the second part of the merge inbound phase, we need to find values for the
first two columns of Figure 6.4. This part of the attack is the same as in the
hash function attack on ECHO-256 (see Section 6.3.1.9).

120 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

6.4.3.9 3rd Part of the Merge Inbound Phase.

The only difference in the third part of the merge inbound phase is, that we
change the time-memory trade-off slightly to get an average complexity of 1
for each solution. Again, we do a generalized birthday attack but this time, we
start with 296 independent values for each column of state S30 (also compare with
Figure 6.4). Since we have a 192-bit condition in state S23, we get 23·96×2−192 =
296 solutions with a complexity of 296 in time and memory, or with an average
complexity of 1 per solution [Wag02]. It follows, that we can find up to 2160

right pairs for the 6-round truncated differential path with a total complexity of
2160 and memory requirements of 2128 with chosen salt.

6.4.4 Collisions for 6 Rounds with Chosen Salt

To get a collision for 6 rounds of the 512-bit compression function of ECHO-256
with chosen salt we need to ensure that the differences in the feed-forward cancel
the output differences of the permutation. This happens with a probability of
2−128. Since we can find 2160 pairs for the truncated differential path with a
complexity of 2160, we can get 232 collisions at the output of the compression
function after 6 rounds with a complexity of 2160 and memory requirements of
2128 with chosen salt.

6.4.5 Subspace Distinguisher for 7 Rounds with Chosen
Salt

To get a distinguisher for 7 rounds of the compression function of ECHO-256 with
chosen salt, we use the truncated differential path given in Figure 6.5. Note that
the truncated differential path in the last round is followed with a probability
of 2−96. Furthermore, with an additional 32-bit condition on the active bytes
in state S52 we can fix the difference at the output of the permutation, prior to
the feed-forward. In this case, only the 16-byte differences in the diagonal bytes
of the output of the compression function change for each additional found pair.
In other words, the difference vector space at the output of the compression
function reduces to a dimension of 128. We use a 3rd outbound phase to satisfy
these conditions in the last round. Since we can find one solution for the white
bytes of the 6-round path with an average complexity of 1, we can find one pair
which also satisfies the conditions in the last round with a complexity of 2128

in time and memory. Note that we can find up to 232 such pairs with a total
complexity of 2160 in time and 2128 memory.

Again, we use [LMR+09, Equation 19] to compute the complexity of a generic
distinguishing attack on the ECHO-256 compression function. We get the param-
eters N = 512 (compression function output size), n = 128 (dimension of output
difference vector space) and t = 232 (number of outputs in vector space) for the
subspace distinguisher. Then, the generic complexity to construct 232 elements
in a vector space of dimension 128 is about 2207.8 compression function evalua-
tions. Hence, we get a distinguisher for 7 rounds of the ECHO-256 compression

6.5. Summary 121

function with a complexity of 2160 in time and 2128 memory and with chosen
salt.

Note that we can use almost the same attack to construct 232 near-collisions
with a zero difference in the same 320 bits. Again we need to satisfy the 96-bit
condition in the cyan bytes in the last round. However, this time we require that
the overlapping 4-byte differences in the feed-forward cancel each other. This
32-bit condition ensures that we get only 4× 6 = 24 active bytes at the output
of the compression function for 232 pairs with a total complexity of 2160 in time
and 2128 memory and with chosen salt.

6.5 Summary

In this chapter, we have presented a detailed analysis of the ECHO hash function.
We provide collision attacks for up to 5 out of 8 rounds of the ECHO-256 hash
function. Furthermore, we have improved the analysis of the ECHO compression
functions to get attacks for up to 7 (out of 8) rounds of ECHO-256. We expect
that similar compression function results can also be obtained for ECHO-512.

In our improved attacks we combine the MixColumns transformation of the
second AES round with the subsequent BigMixColumns transformation to a com-
bined SuperMixColumns transformation. This allows us to construct very sparse
truncated differential paths. In these paths, at most one fourth of the bytes
are active throughout the whole computation of ECHO. Note that truncated dif-
ferential paths with non-full active states have also been used in the full com-
pression function attacks on Whirlpool and Lane. However, the rather good
diffusion in the single permutation in ECHO does not provide completely inde-
pendent parts covering more than one round. Nevertheless, we are able to ap-
ply a rebound attack with multiple inbound phases to ECHO. Using generalized
birthday techniques applied to the 4 independent columns or the 16 independent
SuperMixColumns transformations we are able to efficiently merge these inbound
phases.

Note that in the given attacks on ECHO, the available freedom in the compres-
sion and hash function attacks are not yet fully used. As a rough estimation,
we need the freedom of about 1/4 of the 2048-bit ECHO state for each inbound
phase. The hash function attack on 5 rounds consists of 2 inbound phases and
1/4 of the state is determined by the chaining input. The compression function
attack on 7 rounds consists of 3 big and one small inbound phase which together,
need about 3/4 of the freedom. Hence, in both attacks about 3/4 of the degrees
of freedom are used. However, it is unknown how the remaining freedom could
be used in attacks on more rounds.

Future work includes the search for even sparser truncated differential paths
and the improvement of the given attacks by using the available freedom. Also
the separate search for differences and values as proposed in [MPRS09] and
[KNPRS10] may be used to improve the complexity of additional inbound phases.
Finally, an improvement of the low complexity, full round distinguisher published

122 Chapter 6. Multiple Inbound and Multiple Outbound Phases in ECHO

in [SLW+10] using a rebound attack with multiple inbound phases my lead to a
distinguisher on the full 8 round compression function of ECHO-256.

7
Semi-Free-Start Collisions for the Full

Compression Function of Lane

In this chapter, we apply the rebound attack to the SHA-3 candidate Lane.
Lane [Ind08] is a single-pipe, iterative hash function based on the Merkle-
Damg̊ard design principle [Dam89, Mer89]. The permutation-based compression
function consists of 6 parallel lanes and a linear message expansion. The permu-
tations of each lane are based on the round transformations of the AES. Lane
has been first analyzed in [WFW09] using the rebound attack. In that work,
semi-free-start collisions for 3 rounds of Lane-256 and 4 rounds of Lane-512
are proposed. Also, a hash function attack for 3 rounds of Lane-512 is given.

In this chapter, we use sparser truncated differential paths and are able to
apply a rebound attack with multiple inbound phases. The results are semi-
free-start collisions for the full 6 rounds of Lane-256, and for the full 8 rounds
of Lane-512. Beside multiple inbound phases, the main idea of this improved
rebound attack on Lane is to search for solutions of each lane independently.
Furthermore, we use a truncated differential path such that a collision at the end,
and a valid expanded message at the input can be found mostly independently
as well. This allows us to use the birthday effect at multiple levels and find
collisions for the full compression function with a relatively low complexity. The
results of this chapter have been published in [MNPN+09].

7.1 Description of Lane

The cryptographic hash function Lane [Ind08] is a Round 1 candidate of the
NIST SHA-3 competition [Nat07b]. It is a single-pipe, iterated hash function

123

124 Chapter 7. Collisions for the Full Compression Function of LANE

that supports four digest sizes (224, 256, 384 and 512 bits) and the use of a salt.
Since Lane-224 and Lane-256 are rather similar except for truncation, we write
Lane-256 whenever we refer to both of them. The same holds for Lane-384 and
Lane-512.

The hashing of a message proceeds as follows. First, the initial chaining value
H−1, of size 256 bits for Lane-256, and 512 bits for Lane-512, is set to an initial
value that depends on the digest size n and the optional salt value S. At the same
time, the message is padded and split into message blocks Mi of length 512 bits
for Lane-256, and 1024 bits for Lane-512. Then, a compression function f is
applied iteratively to process message blocks one by one as Hi = f(Hi−1,Mi, Ci),
where Ci is a counter that indicates the number of message bits processed so far.
Finally, after all message blocks are processed, the final digest is derived from
the last chaining value, the message length and the salt by an additional call to
the compression function.

7.1.1 The Compression Function

The compression function of Lane-256 transforms 256 bits (512 in the case of
Lane-512) of the chaining value and 512 bits (resp. 1024 bits) of the message
block into a new chaining value of 256 bits (512 bits). It uses a 64-bit counter
value Ci. The structure of the compression function is given in Figure 7.1. First,
the chaining value and the message block are processed by a message expansion
that produces an expanded state with doubled size. Then, this expanded state
is processed in two layers. The first layer is composed of six permutation lanes
P0,. . . ,P5 in parallel, and the second layer of two parallel lanes Q0, Q1.

P2P1P0

f f- �? - �?

? ? ? ? ? ?

? ?

f- �
?

? ?

Hi−1 Mi

Hi

P3 P4 P5

Q0 Q1

Message Expansion

Figure 7.1: Overview of the
compression funtion of Lane.

function Round(r,X)
X ← SubBytes(X)
X ← ShiftRows(X)
X ← MixColumns(X)
X ← AddConstant(r,X)
X ← AddCounter(r,X)
X ← SwapColumns(X)

end function

Figure 7.2: Pseudocode for the round trans-
formations used in the Lane permutations.

7.1.2 The Message Expansion

The message expansion of Lane takes a message block Mi and a chaining value
Hi−1 and produces the input to six permutations P0,. . . ,P5. The message ex-

7.1. Description of Lane 125

pansion of Lane ensures that in a differential attack at least 4 lanes are active.
In Lane-256, the 512-bit message block Mi is split into four 128-bit blocks m0,
m1, m2, m3 and the 256-bit chaining value Hi−1 is split into two 128-bit words
h0, h1 as follows m0||m1||m2||m3 ←Mi, h0||h1 ← Hi−1. Then, six more 128-bit
words a0, a1, b0, b1, c0, c1 are computed

a0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 , a1 = h1 ⊕m0 ⊕m2 ,

b0 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3 , b1 = h0 ⊕m1 ⊕m2 ,

c0 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2 , c1 = h0 ⊕m0 ⊕m3 .

(7.1)

Each of these 128-bit values, as in AES, can be seen as 4 × 4 matrix of bytes.
In the following, we will use the notion x[i, j] when we refer to the byte of the
matrix x with row index i and column index j, starting from 0.

The values a0||a1, b0||b1, c0||c1, h0||h1, m0||m1, m2||m3 become inputs to the
six permutations P0, . . . , P5 described below. The message expansion for larger
variants of Lane is identical but all the values are doubled in size.

7.1.3 The Permutations

Each permutation lane Pi operates on a state that can be seen as a double AES
state (2× 128-bits) in the case of Lane-256, or quadruple AES state (4× 128-
bits) for Lane-512. The permutation reuses the transformations SubBytes (SB),
ShiftRows (SR) and MixColumns (MC) of the AES with the only exception, that
due to the larger state size, they are applied twice or four times in parallel.

Additionally, there are three new round transformations introduced in Lane.
AddConstant adds a different value to each column of the lane state and
AddCounter adds parts of the counter Ci to the state. Since our attacks do
not depend on these functions, we skip their details here. The third transforma-
tion SwapColumns (SW) is used for mixing parallel AES states. In Lane-256,
SwapColumns swaps the two right columns of the left half-state with the two
left columns of the right half-state, and in Lane-512, SwapColumns ensures that
each column of an AES state gets swapped to a different AES state. Let xi be
a column of a lane state, then SwapColumns is defined as follows:

SC256(x0||x1|| . . . ||x7) = x0||x1||x4||x5||x2||x3||x6||x7

SC512(x0||x1|| . . . ||x15) = x0||x4||x8||x12||x1||x5||x9||x13||
x2||x6||x10||x14||x3||x7||x11||x15 .

The complete round transformation consists of the sequential application of all
these transformations in the given order. The last round omits AddConstant and
AddCounter. Each of the permutations Pj consists of six rounds in the case of
Lane-256 and eight rounds for Lane-512.

The permutations Q0 and Q1 are similar to Pi but consist of less rounds.
However, these permutations are irrelevant to our attack since we aim for col-
lisions before these permutations. A detailed description of Q0 and Q1 is given
in the specification of Lane [Ind08].

126 Chapter 7. Collisions for the Full Compression Function of LANE

7.2 The Rebound Attack on Lane

We use the rebound attack to get a semi-free-start collision for both full versions
of Lane. In this section we first give a general overview of this rebound attack
and then, briefly describe its inbound and outbound phases.

7.2.1 Outline of the Rebound Attack

Due to the message expansion of Lane, at least 4 lanes are active in a differential
attack. Since we aim for a semi-free-start collision attack, we require that the
differences in (h0, h1) are zero. Hence, lane P3 is not active and we choose P1

and thus, (b0, b1) to be not active as well. Then, the active lanes in our attack
are P0, P2, P4 and P5. The corresponding truncated differential path for the
P -lanes of Lane-256 is shown in Figure 7.5. This path is very similar to the
truncated differential path for Lane-256 shown in the Lane specification [Ind08,
page 33, Figure 4.2]. The main difference is that the path in our attack is turned
upside-down. The truncated differential path used in the attack on Lane-512
is the same as in the Lane specification [Ind08, page 34, Figure 4.3] and shown
in Figure 7.6. Note that in these paths, only about one half of the state is
active throughout the permutations. Note that this part without differences
gives us additional freedom which can be used in the attack. Since we search for
a collision after the P -lanes, we do not need to consider the Q-lanes.

The attack on Lane is a rebound attack with multiple inbound phases. We
can apply more than one efficient inbound phase since the truncated differential
path is not fully active. Further, the diffusion is relatively slow due to the simple
SwapColumns transformation of 2 (or 4) parallel AES states of Lane-256 (or
Lane-512). In the truncated differential path, the positions of the active bytes
of two consecutive inbound phases are chosen such that the number of common
active bytes are as small as possible. Then, we can find many independent
solutions for these inbound phases, store them in some lists and merge the results
such that the overlapping bytes match. In the outbound phase of the attack we
use the results of the inbound phases and merge the results of all active P -lanes.
Note that we can efficiently merge two independent, equally sized lists with
square-root complexity in time and memory.

The main idea in the rebound attack on Lane is to merge independent lists
in a clever order to keep the complexity low (see Figure 7.3). In more detail, we
first use multiple inbound phases in each P -lane and merge the results of these
inbound phases. Then, we satisfy some conditions on the message expansion by
merging solutions of the 4 independent lanes. We use the remaining degrees of
freedom in the non-active AES states to get a collision after the P -lanes. Finally,
we filter these results such that the conditions on the whole message expansion
are fulfilled. In the attack, we try to keep the size of the intermediate results at
a reasonable size. We need to ensure, that the complexity of generating the lists
is below 2n/2, but still get enough solutions in each phase to continue with the
attack.

7.2. The Rebound Attack on Lane 127

Hi−1 ∆Mi

message expansion

Figure 7.3: Outline of the rebound attack on Lane. In the attack we first find
partial inputs such that the truncate differential path is satisfied (red) and fulfill
the first half of the message expansion (green). Then, we search for colliding
differences at the output of the P -lanes (cyan) and fulfill the second half of the
message expansion (yellow).

7.2.2 The Inbound Phase

In the rebound attack on Lane, we first apply the inbound phase for a number
of times. Therefore, we will explain this phase and the corresponding probabil-
ities in detail here. In the inbound phase, we search for differences and values
conforming to the truncated differential path for Lane-256 or Lane-512 shown
in Figure 7.4, with active bytes marked by black bytes. We only describe the
application of one inbound phase here. In the example of Figure 7.4, we have
16 active S-boxes between state #4 and state #5. It follows from the MDS
property of MixColumns, that this path has at least one active byte in each of
the 4 corresponding columns prior to the first, and after the second MixColumns
transformation (state #2 and state #7). Note that the active bytes in state
#2 and state #7 can also be at any position marked by gray bytes. Using the
techniques explained in Section 3.5.2, we can find one solution for the inbound
phase with an average complexity of 1 and negligible memory requirements.

128 Chapter 7. Collisions for the Full Compression Function of LANE

0 0

SB SB SB SB SB SB

1 1

SR SR SR SR SR SR

2 2

MC MC MC MC MC MC

3 3

SC SC

4 4

SB SB SB SB SB SB

5 5

SR SR SR SR SR SR

6 6

MC MC MC MC MC MC

7 7

SC SC

8 8

SB SB SB SB SB SB

9 9

SR SR SR SR SR SR

10 10

Figure 7.4: The inbound phase for Lane-256 (left) and Lane-512 (right). Black
bytes are active, gray bytes fixed by solutions of the inbound phase.

7.2.3 The Outbound Phase

After we have found differences and values for each inbound phase of the active
lanes, we need to connect these results and propagate them outwards in the
outbound phase. In backward direction, we need to match the message expansion
at the input of each lane. In forward direction, we need to match the differences
of two P -lanes on each side to get a collision. We describe the conditions for
these two parts according to our truncated differential path in the following.

7.2.3.1 The Message Expansion.

After the inbound phases, we get values and differences at the input and output
of the 4 active lanes P0, P2, P4 and P5. Using Equation (7.1) for the message
expansion of lane P1, and zero differences in (h0, h1) and (b0, b1) due to inactive
lanes, we get:

∆b0 = 0 = ∆m0 ⊕∆m2 ⊕∆m3 , ∆b1 = 0 = ∆m1 ⊕∆m2

Hence, we get the following relation for the message differences in m0, m1, m2,
and m3:

∆m1 = ∆m2 = ∆m0 ⊕∆m3 (7.2)

7.3. Compression Function Attacks on Lane 129

Furthermore, Equation (7.1) gives for the differences in the expanded message
words (a0, a1) and (c0, c1):

∆a0 = ∆m1 , ∆a1 = ∆m3 , ∆c0 = ∆m0 , ∆c1 = ∆m2 (7.3)

and thus, the following relations between a0, a1, c0, and c1:

∆a0 = ∆c1 = ∆a1 ⊕∆c0 (7.4)

Beside the differences, we also need to match the values in the message
expansion. Since we aim for a semi-free-start collision, we can freely choose the
chaining value (h0, h1) such that the conditions on (a0, a1) are satisfied:

h0 = a0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 , h1 = a1 ⊕m0 ⊕m2

That means we have conditions on the input (c0, c1) left, which we need to match
with the message words m0, m1, m2 and m3. Since we can vary lanes P0,P2 and
P4,P5 independently in the following attacks, we can satisfy these conditions by
merging the results of both sides. Using the equations of the message expansion,
we get for (c0, c1) using the values of (a0, a1):

c0 = a0 ⊕ a1 ⊕m0 ⊕m2 ⊕m3 , c1 = a0 ⊕m1 ⊕m2

We can rearrange these equations in order to have all terms corresponding to
P0,P2 on the left side and all terms of P4,P5 on the right side:

m0 ⊕m2 ⊕m3 = c0 ⊕ a0 ⊕ a1 , m1 ⊕m2 = c1 ⊕ a0 (7.5)

To merge the two sides, we will compute, store and compare the following values
using independent lists:

v1 = c0 ⊕ a0 ⊕ a1 , v2 = c1 ⊕ a0 , v3 = m0 ⊕m2 ⊕m3 , v4 = m1 ⊕m2

7.2.3.2 Colliding P -Lanes.

In the forward direction, we need to find a collision for the differences in P0

and P2, such that ∆P0 ⊕ ∆P2 = 0 and for the differences in P4 and P5, such
that ∆P4 ⊕∆P5 = 0. Note that we can swap the order of the last MixColumns
with the XOR operation of the P -lanes since both transformations are equal and
linear. Hence, we only need to match the differences after the last SubBytes layer
in each of the two active lanes. The blue bytes in Figure 7.5 of Lane-256, or
the red, blue and yellow bytes in Figure 7.6 of Lane-512 are independent of the
inbound phase. Hence, we can use the freedom in these bytes to find a collision
after the P -lanes.

7.3 Compression Function Attacks on Lane

In this section, we describe how to find collisions for the full compression function
of both Lane-256 and Lane-512. In the given attacks, the memory requirements

130 Chapter 7. Collisions for the Full Compression Function of LANE

are quite high. We assume that the time and memory complexities can be
reduced by a more careful merging process of the different lists and by using
better time-memory trade-offs as given in Section 3.7. Furthermore, collision
attacks on the hash function might be possible for at least half the number of
rounds.

7.3.1 Semi-Free-Start Collision for Lane-256

In the rebound attack on Lane-256, we construct a semi-free-start collision for
the full compression function using 296 compression function evaluations and
memory requirements of 288. We will use the 6-round truncated differential
path given in Figure 7.5 which is very similar to the one shown in the Lane
specification [Ind08, page 33, Figure 4.2]. We search for a collision after the
P -lanes of Lane and use the same truncated differential path in the 4 active
lanes P0, P2, P4 and P5. Since we do not consider differences in h0 and h1, but
we fix their values, the result will be a semi-free-start collision. The attack on
Lane-256 consists basically of the following parts:

1. First Inbound Phase: Apply the inbound phase at the beginning of the
truncated differential path (state #2 to state #7) for each lane P0, P2, P4,
P5 independently.

2. Second Inbound Phase: Apply the inbound phase in the middle of each
lane again (state #10 to state #15).

3. Merge Inbound Phases: Merge the results of the two inbound phases
(state #7 to state #10).

4. Merge Lanes: Merge the two neighboring lanes P0,P2 and P4,P5 and
satisfy according differences of the message expansion.

5. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and
satisfy the remaining conditions on the message expansion (differences and
values).

6. Find Collisions: Choose remaining free values (neutral bytes) to find a
collision for each side (P0, P2) and (P4, P5) independently.

7. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and
satisfy the conditions on the message expansion of the remaining bytes.

7.3.1.1 First Inbound Phase

We start the attack on Lane-256 by applying the first inbound phase to each
of the 4 active lanes P0, P2, P4, P5 independently. In each lane, we start with 5
active bytes in state #2 and 8 active bytes in state #7 and choose 296 random
non-zero differences for these 13 bytes (note that we could choose up to 2104

differences). We propagate backward and forward to 16 active bytes at the

7.3. Compression Function Attacks on Lane 131

0:

SB SB SB SB SB SB SB SB SB SB SB SB

1:

SR SR SR SR SR SR SR SR SR SR SR SR

2:

MC MC MC MC MC MC MC MC MC MC MC MC

3:

SC SC SC SC SC SC

4:

SB SB SB SB SB SB SB SB SB SB SB SB

5:

SR SR SR SR SR SR SR SR SR SR SR SR

6:

MC MC MC MC MC MC MC MC MC MC MC MC

7:

SC SC SC SC SC SC

8:

SB SB SB SB SB SB SB SB SB SB SB SB

9:

SR SR SR SR SR SR SR SR SR SR SR SR

10:

MC MC MC MC MC MC MC MC MC MC MC MC

11:

SC SC SC SC SC SC

12:

SB SB SB SB SB SB SB SB SB SB SB SB

13:

SR SR SR SR SR SR SR SR SR SR SR SR

14:

MC MC MC MC MC MC MC MC MC MC MC MC

15:

SC SC SC SC SC SC

16:

SB SB SB SB SB SB SB SB SB SB SB SB

17:

SR SR SR SR SR SR SR SR SR SR SR SR

18:

MC MC MC MC MC MC MC MC MC MC MC MC

19:

SC SC SC SC SC SC

20:

SB SB SB SB SB SB SB SB SB SB SB SB

21:

SR SR SR SR SR SR SR SR SR SR SR SR

22:

MC MC MC MC MC MC MC MC MC MC MC MC

23:

SC SC SC SC SC SC

24:

P
0

P
1

P
2

P
3

P
4

P
5

a
0

a
1

b
0

b
1

c
0

c
1

h
0

h
1

m
0

m
1 0

m
20 0

m
30

F
ir

st
 I

nb
ou

nd
S

ec
on

d
In

bo
un

d

Find Collision Find Collision

M
er

ge
 I

nb
ou

nd

Merge Lanes Merge Lanes
Message Expansion

F
ig

u
re

7.
5:

T
h

e
tr

u
n

ca
te

d
d

iff
er

en
ti

al
p

at
h

fo
r

6
ro

u
n

d
s

of
L
a
n
e

-2
5
6
.

B
la

ck
b
y
te

s
a
re

a
ct

iv
e,

re
d

(g
ra

y
)

b
y
te

s
co

rr
es

p
o
n

d
to

th
e

fi
rs

t
in

b
ou

n
d

p
h

as
e,

gr
ay

(d
ar

k
gr

ay
)

b
y
te

s
to

th
e

se
co

n
d

in
b

o
u

n
d

p
h

a
se

a
n

d
b
lu

e
(l

ig
h
t

g
ra

y
)

b
y
te

s
a
re

u
se

d
to

fi
n

d
co

ll
is

io
n

s
in

th
e
P

-l
an

es
(c

ol
or

s
in

b
ra

ck
et

s
co

rr
es

p
on

d
to

gr
ay

sc
al

e
p

ri
n
ti

n
g
).

132 Chapter 7. Collisions for the Full Compression Function of LANE

input (state #4) and output (state #5) of the SubBytes layer in between. We
get at least 296 solutions for the inbound phase with a complexity of 296 (see
Section 7.2.2). For each result, only the red and black bytes in Figure 7.5 are
determined, i.e. the differences as well as the actual values of the bytes are found.
Note that we have chosen the position of active bytes in state #0, such that at
least one term of Equation (7.2) or (7.4) is zero for each byte. At this point, we
can compute backwards to state #0 and independently verify the condition on
one byte of the input differences:

P0 : ∆a0[0, 0] = ∆a1[0, 0] , P4 : ∆m0[2, 3] = ∆m1[2, 3]

P2 : ∆c0[2, 3] = ∆c1[2, 3] , P5 : ∆m2[0, 0] = ∆m3[0, 0]

The condition on each of these bytes is fulfilled with a probability of 2−8 and we
store the 288 valid results of each lane P0, P2, P4 and P5 in the corresponding
lists L0, L2, L4 and L5. Note that we store the values and differences of state
#10 (red and black bytes) in these lists, since we need to merge these bytes with
the second inbound phase in the following. For an efficient merging step, the
lists are stored in hash tables (or sorted) according to the bytes to be merged
(diffences and values of active bytes in state #10).

7.3.1.2 Second Inbound Phase

Next, we apply the inbound phase again to match the differences at SubBytes
between state #12 and state #13. We start with 264 differences in the 8 active
bytes of state #10 and 232 differences in the 4 active bytes of state #15. Hence,
we get about 296 solutions for the second inbound phase with a complexity of
296. For each result, the gray and black values in Figure 7.5 between state #7
and state #18 are determined. Again, this means we fix the actual values of
these bytes. The results of the second inbound phase for each lane are stored in
lists L′0, L′2, L′4 and L′5. A node of each lists holds the values and differences of
state #10 (gray and black bytes). Again, the lists are stored in hash tables (or
sorted) according to the bytes (black bytes) to be merged.

7.3.1.3 Merge Inbound Phases

The two previous inbound phases overlap in 8 active bytes (state #7 to state
#10). We connect the two inbound phases by checking the conditions on the
overlapping bytes of state #10. Since both values and differences need to match,
we get a condition on 128 bits. We merge the 288 results of the first inbound
phase and 296 results of the second inbound phase to get 288×296×2−128 = 256

differential paths for each lane. A pair connecting both inbound phases is found
trivially. For each node of the first list (for example L0), we check the overlapping
bytes against the values of the second list (L′0). Since the second list is a hash
table, the effort for producing all 256 valid pairs is 288 hash table lookups.

Note that for each pair which satisfies and connects both inbound phases,
the differences and values between state #0 and state #18 (black, red and

7.3. Compression Function Attacks on Lane 133

gray bytes) are determined. We compute and store the 256 input values and
differences of state #0 in lists L0, L2, L4 and L5. Altough we still do not know
half of the state, each of these input pairs conforms to the whole truncated
differential path from state #0 to state #24 with a probability of 1. In other
words, we know that in state #24, there are at most the given bytes active.

7.3.1.4 Merge Lanes

Next, we continue with merging the solutions of each lane by considering the
message expansion. We first combine the inputs of lane P0 and P2 by merging
lists L0 and L2. When merging these lists, we need to satisfy the conditions
on the differences of the message expansion. We have conditions on 5 active
bytes of state #0 in lane P0 and P2 (see Figure 7.5). Remember that we have
chosen the position of these active bytes, such that at least one term of Equa-
tion (7.2) or (7.4) is zero. Hence, we only need to check if two corresponding
byte differences are equal. Since we have already verified one byte difference (see
Section 7.3.1.1), we have 4 byte condition left:

∆a0[0, 0] = ∆c1[0, 0] , ∆a1[0, 1] = ∆c0[0, 1] (7.6)

∆a1[1, 1] = ∆c0[1, 1] , ∆a0[2, 3] = ∆c0[2, 3] (7.7)

These conditions are fulfilled with a probability of 2−32 and by merging two lists
(L0 and L2) of size 256, we get 256 × 256 × 2−32 = 280 valid matches which we
store in list L02. We repeat the same for lane P4 and P5 by merging lists L4 and
L5. We get 280 matches for list L45 as well, since we need to fulfill the 32-bit
conditions on the differences of the following 4 bytes:

∆m1[0, 0] = ∆m2[0, 0] , ∆m0[0, 1] = ∆m3[0, 1] (7.8)

∆m0[1, 1] = ∆m3[1, 1] , ∆m0[2, 3] = ∆m2[2, 3] (7.9)

Again, if we use hash tables or the previous lists are sorted according to the
bytes to match, the merge operation can be performed very efficiently. Hence,
the total complexity to produce the lists L02 and L45 is determined by their final
size and requires an effort of around 280 computations.

7.3.1.5 Message Expansion

For all entries of the lists L02 and L45, the values in 32 bytes and differences
in 10 bytes of each of (a0, a1, c0, c1) and (m0,m1,m2,m3) have been fixed (red
and black bytes in state #0 of Figure 7.5). Note that the conditions on the
differences of each side on its own have already been fulfilled (P0 ↔ P2 and
P4 ↔ P5). Hence, if we just fulfill the conditions on the remaining differences
between P0 ↔ P4, then the conditions on P2 ↔ P5 are satisfied as well. Using
Equations (7.2)-(7.4), the position of active bytes in Figure 7.5 and the already
matched differences of Section 7.3.1.1 and Section 7.3.1.4, we only have the

134 Chapter 7. Collisions for the Full Compression Function of LANE

following 4 byte conditions left:

∆a0[0, 0] = ∆m1[0, 0] , ∆a1[0, 1] = ∆m0[0, 1]

∆a1[1, 1] = ∆m0[1, 1] , ∆a0[2, 3] = ∆m0[2, 3]

Note that we also need to fulfill the conditions on the values of the states.
Remember that we can freely choose the chaining values (h0, h1) to satisfy the
values in the first 16 bytes of the message expansion (a0, a1). To fulfill the
conditions on the 16 bytes of (c0, c1) we need to satisfy Equation (7.5) using the
corresponding values v1, v2, v3 and v4. Hence, we need to find a match for the
following values and differences by merging lists L02 and L45:

� 8 bytes of v1 from L02 with v3 from L45,

� 8 bytes of v2 from L02 with v4 from L45,

� 4 bytes of differences in L02 and in L45.

Since we have 280 elements in each list and conditions on 160 bits, we expect to
find 280 × 280 × 2−160 = 1 result. This result satisfies the message expansion for
all lanes and is a solution for the truncated differential path of each active lane
between state #0 and state #24. However, we do not get a collision at the end
of the P -lanes yet, since we do not know the differences of state #24.

7.3.1.6 Find Collisions

In this phase of the attack, we search for a collision at the end of the P -lanes
(P0, P2) and (P4, P5) using the remaining freedom in the second half of the state.
Note that the 16-byte difference in state #24 is obtained from 8-byte difference
in state #22 with the linear transforms MixColumns and SwapColumns. Hence,
the collision space (the 16 bytes where the two lanes differ) has only 264 distinct
elements. If we take a look at Figure 7.5, we get for the values in state #7:

� The black, red and gray bytes represent values which have already been
determined by the previous parts of the attack.

� The blue bytes represent values not yet determined and can be used to
vary the differences in state #22.

To find a collision between two lanes, we can still choose 264 values for the blue
bytes in state #7 of each lane and store these results in lists L0, L2, L4 and
L5. Note that for these 264 values, we get only 232 different values for the two
free bytes in the first and fifth column of state #18. Hence, we can only iterate
through 232 differences in state #22 for each lane. However, this is enough to
find one colliding difference for each side, since 232×232×2−64 = 1. By repeating
this step 232 times for each side, we expect 264 × 264 × 2−64 = 264 results for
each merged list L02 and L45.

7.3. Compression Function Attacks on Lane 135

7.3.1.7 Message Expansion

Finally, we need to match the message expansion for the remaining 32 bytes
of each side. Hence, we just repeat the same procedure as we did for the first
half of state #0, except that we only need to match the values of 32 bytes but
no differences. Again, we can use the remaining bytes of (h0, h1) to fulfill the
conditions on 16 bytes of (a0, a1). Since, we have 264 solutions in each list L02

and L45, we expect to find 264 × 264 × 2−128 = 1 colliding pair for (c0, c1) and
thus, a collision for the full compression function of Lane-256.

7.3.1.8 Complexity

Let us find the complexity of the whole attack. The first inbound phase requires
296 computations and 288 memory, the second inbound requires 296 computations
and 296 memory, and the merging of the inbound phases requires 288 hash table
lookups and 256 memory. Obviously, the second inbound phase and the merge
inbound phases can be united to lower the memory requirement of these three
steps. Namely, we create the lists L0, L2, L4 and L5 in the first inbound phase.
Then, for each differential path of the second inbound phase, instead of storing
it in a list, we immediately check if it can be merged with some differential from
the lists. Only if it can be merged, we do the outbound phase and compute state
#0. Hence, the first three steps of our attack require around 296 computations
and 288 memory. The merge lanes step requires 280 computations and memory.
The message expansion steps require 280 computations, while the find collisions
steps require 232 computations. Hence, the total attack complexity is around
296 computations and 288 memory. Note that the cost of each computation is
never greater than the cost of one compression function evaluation. Therefore,
the complexity to find a semi-free-start collision for all 6 rounds of Lane-256 is
about 296 compression function evaluations and 288 memory.

7.3.2 Semi-Free-Start Collision for Lane-512

In the rebound attack on Lane-512, we construct a semi-free-start collision for
the full, 8-round compression function using 2224 compression function evalua-
tions and memory requirements of 2128. We use the same iterative truncated
differential path as shown in the specification of Lane-512 [Ind08, page 34, Fig-
ure 4.3], which is also given in Figure 7.6. Similar to the attack on Lane-256, we
search for a collision after the P -lanes and use the same truncated differential
path in the 4 active lanes P0, P2, P4 and P5. The attack on Lane-512 consists
basically of the following parts:

1. First Inbound Phase: Apply the inbound phase at the beginning of the
truncated differential path (state #2 to state #7) for each lane P0, P2, P4,
P5 independently.

2. Merge Lanes: Merge the two neighboring lanes P0,P2 and P4,P5 and
satisfy according differences of the message expansion.

136 Chapter 7. Collisions for the Full Compression Function of LANE

3. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and
satisfy the remaining conditions on the message expansion (differences and
values).

4. Second Inbound Phase: Apply the inbound phase in the middle of each
lane again (state #10 to state #15).

5. Merge Inbound Phases: Merge the results of the two inbound phases.

6. Starting Points: Choose random values for the brown bytes in state #7
to get enough starting points for the subsequent phases.

7. Merge Lanes: Merge the values of the starting points for the two neigh-
boring lanes P0,P2 and P4,P5 and satisfy the according differences of the
message expansion.

8. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and
satisfy the remaining conditions on the message expansion (differences and
values) for the starting points.

9. Third Inbound Phase: Apply the inbound phase at the end of each lane
for a third time (state #18 to state #23).

10. Merge Inbound Phases: Merge the results of the three inbound phases
and use the remaining freedom in between.

11. Find Collisions: Merge the corresponding two lanes to find a collision
for each side (P0, P2) and (P4, P5) independently.

12. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and
satisfy the conditions on the message expansion of the remaining bytes.

7.3.2.1 First Inbound Phase

We start the attack on Lane-512 by applying the first inbound phase to each
of the 4 active lanes P0, P2, P4, P5 independently. In each lane, we start with 8
active bytes in state #2 and 4 active bytes in state #7 and choose 284 random
non-zero differences for these 12 bytes (note that we could choose up to 296

differences). We propagate backward and forward to 16 active bytes at the
input (state #4) and output (state #5) of the SubBytes layer in between. We
get at least 284 matches for the inbound phase with a complexity of 284 (see
Section 7.2.2). For each result, the gray and black bytes in Figure 7.6 are
determined. Hence, we can already verify the condition on one byte of the
input differences for each lane by computing backwards to state #0:

P0 : ∆a0[2, 2] = ∆a1[2, 2] , P0 : ∆a0[2, 6] = ∆a1[2, 6]

P2 : ∆c0[1, 1] = ∆c1[1, 1] , P2 : ∆c0[1, 5] = ∆c1[1, 5]

P4 : ∆m0[1, 1] = ∆m1[1, 1] , P4 : ∆m0[1, 5] = ∆m1[1, 5]

P5 : ∆m2[2, 2] = ∆m3[2, 2] , P5 : ∆m2[2, 6] = ∆m3[2, 6]

7.3. Compression Function Attacks on Lane 137

0:

SB SB

1:

SR SR

2:

MC MC

3:

SC SC SC SC SC SC

4:

SB SB

5:

SR SR

6:

MC MC

7:

SC SC SC SC SC SC

8:

SB SB

9:

SR SR

10:

MC MC

11:

SC SC SC SC SC SC

12:

SB SB

13:

SR SR

14:

MC MC

15:

SC SC SC SC SC SC

16:

SB SB

17:

SR SR

18:

MC MC

19:

SC SC SC SC SC SC

20:

SB SB

21:

SR SR

22:

MC MC

23:

SC SC SC SC SC SC

24:

SB SB

25:

SR SR

26:

MC MC

27:

SC SC SC SC SC SC

28:

SB SB

29:

SR SR

30:

MC MC

31:

SC SC SC SC SC SC

32:

a
0

a
1

b
0

b
1

c
0

c
1

h
0

h
1

m
0

m
1 0

m
20 0

m
30

Figure 7.6: The truncated differential path for 8 rounds of Lane-512. Lane P0

shows the plain truncated differential path, lane P2 other possible truncated
differential paths and lane P4 and P5 are used to describe the attack.

138 Chapter 7. Collisions for the Full Compression Function of LANE

The conditions on each of the lanes are fulfilled with a probability of 2−16 and we
store the 268 valid matches of each lane P0, P2, P4 and P5 in the corresponding
lists L0, L2, L4 and L5.

7.3.2.2 Merge Lanes

Next, we continue with merging the solutions of each lane by considering the
message expansion. We first combine the results of lane P0 and P2 by merging
lists L0 and L2. When merging these lists, we need to satisfy the conditions on
the differences of the message expansion for the following 6 bytes:

∆a1[0, 0] = ∆c0[0, 0] , ∆a1[0, 4] = ∆c0[0, 4]

∆a0[1, 1] = ∆c0[1, 1] , ∆a0[1, 5] = ∆c0[1, 5]

∆a0[2, 2] = ∆c1[2, 2] , ∆a0[2, 6] = ∆c1[2, 6]

Since this match is fulfilled with a probability of 2−48 and we merge two lists of
size 268, we get 268 × 268 × 2−48 = 288 valid matches which we store in L02. We
repeat the same for lane P4 and P5 merge lists L4 and L5. We get 288 matches
for list L45, since we need to fulfill conditions on differences of 6 bytes as well:

∆m0[0, 0] = ∆m3[0, 0] , ∆m0[0, 4] = ∆m3[0, 4]

∆m0[1, 1] = ∆m2[1, 1] , ∆m0[1, 5] = ∆m2[1, 5]

∆m1[2, 2] = ∆m2[2, 2] , ∆m1[2, 6] = ∆m2[2, 6]

7.3.2.3 Message Expansion

For all entries of lists L02 and L45, the values in 32 bytes and differences in 16
bytes of each of (a0, a1, c0, c1) and (m0,m1,m2,m3) have been fixed (gray and
black bytes in state #0 of Figure 7.6). Since the conditions on the differences
of each side on its own have already been fulfilled, we just need to match the
conditions on the remaining 6-byte differences between each side (P0, P2) and
(P4, P5):

∆a1[0, 0] = ∆m0[0, 0] , ∆a1[0, 4] = ∆m0[0, 4]

∆a0[1, 1] = ∆m0[1, 1] , ∆a0[1, 5] = ∆m0[1, 5]

∆a0[2, 2] = ∆m1[2, 2] , ∆a0[2, 6] = ∆m1[2, 6]

Remember that we can freely choose the chaining values (h0, h1) to satisfy the
values in the first 16 bytes of the message expansion (a0, a1). To fulfill the
conditions on the 16 bytes of (c0, c1) we need to find matches for the following
values and differences using lists L02 and L45:

� 8 bytes of v1 from L02 with v3 from L45,

� 8 bytes of v2 from L02 with v4 from L45,

� 6 bytes of differences in L02 and in L45.

7.3. Compression Function Attacks on Lane 139

Since we have 288 elements in each list and conditions on 176 bits, we expect to
find 288 × 288 × 2−176 = 1 result. This result satisfies the message expansion for
all lanes and is a solution for the truncated differential path of each active lane
between state #0 and state #10.

7.3.2.4 Second Inbound Phase

Next, we apply the inbound phase again to match the differences at SubBytes
between state #12 and state #13. After the first inbound phase, the values of
16 bytes in state #10 (black and gray bytes), and the difference in 16 bytes (1st
AES-block) of state #12 (black bytes) have already been fixed. Hence we can
start with 232 possible 4-byte differences in state #15, compute backwards to
state #13 and need to match the differences in the SubBytes layer. We expect
to find at least 232 solutions for the second inbound phase (see Section 7.2.2).

7.3.2.5 Merge Inbound Phases

The result of the second inbound phase are 232 values for the 16 bytes in state
#10 (green and black bytes). From the first inbound phase, we have obtained
one solution for 16 bytes in state #10 (gray and black bytes) as well. In these
16 bytes, the values of the 4 active bytes (black) overlap between both inbound
phases and the probability for a successful match is 2−32. Among the 232 results
of the second inbound phase, we expect to find one solution to match the values
of state #10. Once we have found a match, we can compute the values of the
newly determined 12 bytes in state #7, marked by green bytes in Figure 7.6.

7.3.2.6 Starting Points

In this phase of the attack, we will compute a number of starting points which
we will need for the subsequent steps. For each lane, we choose random values
for the 12 bytes in state #7 (marked by brown bytes in Figure 7.6) and compute
the corresponding 16-byte values in state #0. We repeat this step 264 times and
store the results in the corresponding lists L′0, L′2, L′4 or L′5.

7.3.2.7 Merge Lanes

Next, we merge lists L′0 and L′2 to get the list L′02, consisting of 2128 values for
the 32 newly determined bytes of (m0,m1,m2,m3) (brown bytes of state #0 in
lane P0 and P2). Further, we merge lists L′4 and L′5 to get the list L′45 of size
2128 containing the 32 byte values of (a0, a1, c0, c1).

7.3.2.8 Message Expansion

Finally, we satisfy the conditions of the message expansion on (a0, a1) using the
values of (h0, h1), and use the two lists L′02 and L′45 to satisfy the conditions on
(c0, c1). Since we need to match 16 bytes of (c0, c1) and have 2128 elements in

140 Chapter 7. Collisions for the Full Compression Function of LANE

both lists, we expect 2128 × 2128 × 2−128 = 2128 matching pairs which we store
in list Ls. We will use these values in a later phase of the attack.

7.3.2.9 Third Inbound Phase

Now, we extend the truncated differential path by applying a third inbound
phase between state #18 and state #23 for each active lane. Note that the
values in 16 bytes of state #18 (black and green bytes), and the differences in 16
bytes (1st AES-block) of state #20 (black bytes) have already been fixed due to
the second inbound phase. Similar to the second inbound phase, we start with
232 4-byte differences in state #23 and compute backwards to state #21 to get a
match for the SubBytes layer. Since we have 232 starting differences, we expect
to find 232 results for the third inbound phase, with fixed values and differences
for the 16 bytes in state #15 (purple and black bytes).

7.3.2.10 Merge Inbound Phases

The values of the second and the third inbound phase overlap in 4 active bytes
(black) of state #18. Since we have 232 results of the third inbound phase, we
expect to find one solution after merging the two phases. Once we have found
a match, we can compute the values of the newly determined 12 bytes in state
#15, marked by purple bytes in Figure 7.6. Next, we need to connect all three
inbound phases. For all possible 8-byte values of state #10 marked by red bytes,
we compute the 16 corresponding bytes in state #15 (2nd AES-block). If the
computed values satisfy the 4 bytes in state #15 marked by purple, we store the
result of each lane in the corresponding lists La

0 , La
2 , La

4 and La
5 . In total, we

obtain 264 · 2−32 = 232 entries in each list. We repeat the same for the bytes
marked by blue and yellow, and generate the lists Lb

i and Lc
i for each of the

active lanes with index i ∈ {0, 2, 4, 5}. For each lane, we merge the three lists
La
i , Lb

i and Lc
i and store the 296 results in lists L∗i . Note that for each entry

in these lists, we can determine all values and differences of the corresponding
lane.

7.3.2.11 Find Collisions

In this phase of the attack, we finally search for a collision at the end of the P -
lanes (P0, P2) and (P4, P5) using the elements of lists L∗i . To find a collision at
the end of the P -lanes, we need to match the 16 byte differences in state #32 of
the two corresponding active lanes such that ∆(P0⊕P2) = 0 and ∆(P4⊕P5) = 0.
Note that we can satisfy these conditions independently for each side (P0, P2)
and (P4, P5). Since we need to match 128 bits and we have 296 elements in each
list L∗i , we expect to find 296 · 296 · 2−128 = 264 collisions for each side. We store
the corresponding inputs (a0, a1, c0, c1) for the collisions between lane P0 and
P2 in list L∗02 and the inputs (m0,m1,m2,m3) for the collisions between lane P4

and P5 in list L∗45.

7.4. Summary 141

7.3.2.12 Message Expansion

Finally, we need to match the message expansion for the remaining 32 bytes
of each side. Hence, we just repeat the same procedure as we did for the first
part of state #0, except that we only need to match the values of 32 bytes but
no differences. Again, we use the values of (h0, h1) to satisfy the conditions on
(a0, a1) first. Then, we match the values of the 32 bytes in (c0, c1). Since we
only have 264 entries in both of L∗02 and L∗45, the success probability for a match
is 264 · 264 · 2−256 = 2−128. However, we can still repeat from Section 7.3.2.6
using a different starting point stored in list Ls. Since we have 2128 elements in
list Ls, we can repeat the previous steps up to 2128 times. Hence, we expect to
find one valid match for the message expansion and thus, a collision for the full
compression function of Lane-512.

7.3.2.13 Complexity

The total complexity of the rebound attack on Lane-512 is determined by the
merging step after the third inbound phase. This step has a complexity of
296 compression function evaluations and is repeated 2128 times. The memory
requirements are determined by the largest lists, which are L′02 and L′45 (or Ls)
with a size of 2128. Hence, the total complexity to find a semi-free-start collision
for Lane-512 is about 2128 · 296 = 2224 compression function evaluations and
2128 in memory.

7.4 Summary

In this chapter, we have applied the rebound attack to the hash function Lane.
In the attack we use a truncated differential path with differences concentrating
mostly in one half (or quarter) of the lanes. Due to the relatively slow diffusion
of the parallel AES rounds, we are able to solve parts of the lanes independently.
First, we search for differences and values (for parts of the state) according to
the truncated differential path and also satisfy the message expansion. Then,
we choose values which can be changed such that the truncated differential path
and according message expansion still holds. The freedom in these values is
then used to search for a collision at the end of the lanes without violating the
differential path or message expansion.

In the case of Lane-256 we can merge two inbound phases since at most
one half of the state is active. In Lane-512, only one quarter of the states is
active and we are able to merge 3 inbound phases. Note that in theory there is
enough freedom to merge 4 inbound phases in Lane-512. However, this seems
to be difficult since the diffusion gets better the more rounds are covered in an
attack. Another option to improve the attacks is to consider differential paths
with two subsequent full active AES states and use SuperBox techniques (see
Section 3.7) to find conforming pairs. However, this results in more dense paths
and it is more difficult to merge multiple inbound phases.

142 Chapter 7. Collisions for the Full Compression Function of LANE

To summarize, we are able to construct semi-free-start collisions for the full
6-round compression functions of Lane-224 and Lane-256 with 296 compression
function evaluations and memory of 280, and for the full 8-round compression
functions of Lane-512 with complexity of 2224 compression function evaluations
and memory of 2128 (also see [MNPN+09]). Although these collisions on the
compression function do not imply an attack on the hash functions, they violate
the reduction proofs of Merkle and Damg̊ard, or Andreeva [And08] in the case
of Lane. However, due to less degrees of freedom, a collision attack on the full
hash function seems to be difficult for Lane. Furthermore, adapted security
proofs might still be valid [Ind10, Chapter 3.3].

8
Conclusions

In this thesis, we have focused on the cryptanalysis of AES-based hash functions.
Prior to the work described here, only very few results on AES-based hash
functions have been published. Because of proofs using the wide-trail design
strategy, any standard differential or linear attack is out of scope. As shown in
the attack on the hash function proposal Grindahl, at least truncated differences
are needed to attack AES based designs.

We have proposed the rebound attack which is a new and efficient tool to
analyze AES-based hash functions. The rebound attack consists of inbound and
outbound phases. Using the techniques described in this thesis, we can find
right pairs for a given (minimum) truncated differential path very efficiently. In
more detail, we are able to find right pairs for 3 AES rounds with an average
complexity of 1 in the inbound phase. Furthermore, we can use multiple inbound
phases to extend the attacks, if we can construct sparse truncated differential
paths or if additional freedom is available (for example due to a key-schedule or
message expansion input). Similarly, we can use multiple outbound phases to
reduce the overall complexity of an attack, if we can identify independent parts
inside a hash function.

The rebound attack has been developed during the design of the AES-based
SHA-3 candidate Grøstl. Grøstl uses two strong permutations which strictly
follow the wide-trail design strategy. Since no sparse truncated differential paths
and no key-schedule exist, the available freedom in the design is very limited.
Hence, only single inbound and outbound phases are possible in the rebound
attack on Grøstl. We get collision attacks for the wide-pipe hash function
reduced to 3 out of 10 rounds. For the compression function, we are able to
construct semi-free-start collisions for 6 out of 10 rounds since in this case, the
freedom is essentially doubled.

143

144 Chapter 8. Conclusions

For comparison, a similar hash function to Grøstl is the ISO standard
Whirlpool. Whirlpool is block cipher-based and we can use the freedom of
the key inputs in the rebound attack. The results are near-collision attacks on
the hash function for up to 7.5 out of 10 rounds and on the compression function
for 9.5 rounds. Another AES-based hash function with similar structure is the
block cipher-based SHA-3 candidate Cheetah. Since the key-schedule is twice as
large as the state update, we expect that even more rounds of the compression
function can be attacked.

A second source of freedom are sparse truncated differential paths. Such
paths can also be used to extend the rebound attack using multiple inbound and
outbound phases. For the SHA-3 candidate ECHO, we have been able to construct
very sparse truncated differential paths where at most 1/4 of the state is active
in each round. One inbound phase uses about 1/4 of the freedom of the state.
Since we are able to construct rebound attacks with up to three inbound phases,
the attacks use about 3/4 of the freedom. However, due to the good diffusion
in ECHO it is unknown how the remaining freedom can be used in an attack on
more rounds. We get collisions for 5 out of 8 rounds of the ECHO hash function
and distinguishing attacks for 7 out of 8 rounds of the compression function.

Sparse truncated differential paths also exist for the SHA-3 candidate Lane.
This results in collision attacks on the full compression function of both variants
of Lane. In the case of Lane-256 we can use two inbound phases since at
most one half of the state is active. In Lane-512, only one quarter of the state
is active and we are able to merge 3 inbound phases. Again, there would be
enough freedom to use 4 inbound phases in Lane-512. However, it is an open
problem how to merge many inbound phases over a large number of rounds.

To summarize, the more freedom is available in an attack and the sparser
the paths are, the more likely are attacks on a larger number of rounds. It is an
open problem (and probably impossible) to use all available freedom over a large
number of rounds, especially if the diffusion is good. Another open problem is
to extend the (efficient) inbound phase from 3 to 4 rounds, or to prove an upper
bound for the number of rounds which can be solved efficiently. Grøstl has been
designed to reduce the uncertainties of too much available freedom which also
facilitates such a proof.

Finally, the rebound attacks and techniques presented in this thesis also apply
to non-AES based primitives. For example, the rebound attack has already been
applied to the 4-bit S-box based SHA-3 candidate Luffa and JH, and the ARX-
based SHA-3 candidate Skein. For these hash functions, it is much harder to
construct (truncated) differential paths. Therefore, designing any (rebound)
attack also takes much longer since specialized automatic path search tools are
needed. Furthermore, also independent parts of ARX based designs can be an
interesting target for rebound attacks with multiple inbound and/or outbound
phases.

A
Analysis of Grøstl-0

In this chapter, we apply the techniques and rebound attack presented in the
previous sections to round-reduced versions of Grøstl-0. This version of Grøstl
is the initial submission to the NIST SHA-3 competition without the tweak. In
Grøstl-0, the permutations P and Q are more similar and differ only in a 1-
byte constant in each round of P and Q. Therefore, we use exactly the same
truncated differential path in both permutations in Section A.1. Furthermore, in
this version of Grøstl it is possible to track differences between P and Q in the
internal differential attack (see Section A.2). Nevertheless, in the following we
show that also this slightly simplified Grøstl version has a high security margin.
We first apply the compression and hash function attacks of the previous section
to Grøstl-0 and then show how the internal differential attack can be used to
increase the number of rounds of the collision attack on the hash function.

A.1 Using the Same Truncated Differential Path

If we use the same truncated differential path in both permutations P and Q
we will always get the same input and output difference pattern. Furthermore,
if the values of the differences at the input and output are equal, we get a semi-
free-start collision for the compression function. Since the last transformation
in each permutation is still MixBytes, we get a collision at the output of the
compression function if the differences prior to MixBytes in P and Q are equal.
Since we can use the same path in both permutations, we can match 8-byte
differences instead of 1-byte differences (see Section 5.2) in the first and last
round and still use sparse truncated differential paths in both P and Q.

145

146 Appendix A. Analysis of Grøstl-0

A.1.1 Semi-Free-Start Collisions for 7 Rounds of Grøstl-
0-256

The straightforward approach to get a collision attack for the compression func-
tion is to extend the truncated differential path (see Figure 5.8) of the attack on
Grøstl-256 in Section 5.2.3. We could use the path of permutation P in both
permutations and extend it by two rounds to match 8-byte differences at the
input and prior to the last MixBytes transformation. The resulting truncated
differential path for the compression function is shown in Figure A.1 and has
the following sequence of active bytes in each permutation:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 64
r5−→ 8

r6−→ 1
r7−→ 8

r8−→ 64

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Q7

P7

Q8

P8

Hi−1

Mi

Hi

Figure A.1: An impossible truncated differential path to get semi-free-start col-
lisions for 8 rounds of the compression function of Grøstl-0-256.

However, the expected number of solutions for this path is far below 1. Again,
this can be verified by multiplying the total number of input pairs and the proba-
bility of the path. The 8-round path is probabilistic in the MixBytes transforma-
tions of round r1, r4, r5, and in the XOR at the output. Hence, the probability
that a right pair for this truncated differential path exist is very small and given
as follows:

28·(64+8)︸ ︷︷ ︸
Mi

· 28·64︸︷︷︸
Hi−1

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r1)

· 2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r5)

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r6)

· 2−8·8︸ ︷︷ ︸
XOR

= 2−96

Note that also removing the last round gives an invalid truncated differential
path.

We only get a valid truncated differential path if we reduce from 8 → 1
active byte only once in each permutation. This results in an attack on 7 rounds
of the Grøstl-0-256 compression function. We use a truncated differential path
with two full active states in the middle, as in the attack on Grøstl-256. We can
extend the path by one round in backward direction and match 8-byte differences
at the input. In forward direction we can only reduce the path to 8 active bytes
(but for two rounds) and get a full active state at the output. The detailed path
is given in Figure A.2 and the sequence of active bytes in each round ri of each
permutation is given as follows:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 64
r5−→ 8

r6−→ 8
r7−→ 64

A.1. Using the Same Truncated Differential Path 147

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Q7

P7

Hi−1

Mi

Hi

232
1

1

256

256

average 1

average 1

1

1
232

Figure A.2: The truncated differential path for the semi-free-start collision on 7
rounds of the compression function of Grøstl-256.

For this 7-round colliding truncated differential path we first compute the
expected number of right pairs. The path is probabilistic in the MixBytes trans-
formation of round r1 and r4 in each of P and Q, as well as in the XOR operation
at the output of the compression function. Hence, the expected number of semi-
free-start collisions we can get for the truncated differential path of Figure A.2
is:

28·(64+8)︸ ︷︷ ︸
Mi

· 28·64︸︷︷︸
Hi−1

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r2)

· 2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r5)

· 2−8·8︸ ︷︷ ︸
XOR

= 216

Also for Grøstl-0 we first find pairs for each permutations independently and
use the birthday effect to get colliding differences at the input and output of the
compression function. The inbound phase of the attack is the same as for Grøstl-
256 (see Section 5.2.3) and we can get one pair with an average complexity of
one and memory requirements of 264. The solutions of the inbound phase are
propagated outwards in the outbound phase. Note that the propagation in the
two rounds r1 and r6 are for free. We need to fulfill one 8→ 1 MixBytes transition
in round r2 with probability 2−56, and a birthday match on 2 · 64 = 128 bits
at the input and output with complexity 264. Hence, the total complexity to
get semi-free-start collisions for 7-rounds of Grøstl-0-256 is 264 · 256 = 2120

compression function evaluations with memory requirements of 264 due to the
SuperBox match in the inbound phase and the birthday match in the outbound
phase.

A.1.2 Semi-Free-Start Collision for 7 Rounds of Grøstl-0-
512

The truncated differential path for the inbound phase of the rebound attack
on the Grøstl-512 compression function has 8 active bytes in round r3 and 16
active bytes in round r5. The resulting 7-round truncated differential path is
similar to the Grøstl-256 case (see Figure A.3) and the sequence of active bytes
is given as follows:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 110
r5−→ 16

r6−→ 16
r7−→ 110

148 Appendix A. Analysis of Grøstl-0

and we get for the expected number of right pairs:

28·(128+8)︸ ︷︷ ︸
Mi

· 28·128︸ ︷︷ ︸
Hi−1

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r1)

· 2−8·14·8 · 2−8·14·8︸ ︷︷ ︸
MB(r5)

· 2−8·16︸ ︷︷ ︸
XOR

= 280

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

Q6

P6

Q7

P7

232
1

1

256

256

average 1

average 1

1

1
264

Figure A.3: Truncated differential path for the semi-free-start collision on 7
rounds of Grøstl-512.

In the inbound phase, we connect the differences between the input of
SubBytes of round r4 and the output of SubBytes of round r5 by using SuperBox
matches again. We get one solution with an average complexity of one. The
complexity of the attack is determined by the outbound phase. We have one
probabilistic 8→ 1 MixBytes transition in round r2, and do a birthday match in
8 active bytes at the beginning and 16 active bytes at the end of the path. Hence,
the total complexity for the collision attack on 7 rounds is 256+32+64 = 2152 with
memory requirements of 264 due to the inbound phase and birthday match.

Although we could construct an 8-round truncated differential path with the
following number of active bytes, we cannot find enough right pairs to get a
collision attack on the compression function.

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 110
r5−→ 16

r6−→ 2
r7−→ 8

r8−→ 64

The path can be constructed by carefully placing the positions of active bytes
in round r6 such that the two active bytes are shifted into the same column in
round r7. However, the expected number of right pairs for such a path is only

28·(128+8)︸ ︷︷ ︸
Mi

· 28·128︸ ︷︷ ︸
Hi−1

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r1)

· 2−8·14·8 · 2−8·14·8︸ ︷︷ ︸
MB(r5)

· 2−8·48 · 2−8·48︸ ︷︷ ︸
MB(r6)

· 2−8·16︸ ︷︷ ︸
XOR

= 2−16

Hence, an 8-round collision attack on the Grøstl-0-512 compression function
using this path does not work.

A.1.3 Collisions for 4 Rounds of Grøstl-0-256

The complete truncated differential path for the collision attack on 4 rounds of
the Grøstl-0-256 hash function is given in Figure A.4. The sequence of active
bytes in each round for both, P and Q are given as follows:

64
r1−→ 64

r2−→ 8
r3−→ 8

r4−→ 64

A.1. Using the Same Truncated Differential Path 149

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4IV

M1

H1

1

1
average 1 28

Figure A.4: Truncated differential path for the collision attack on 4 rounds of
the Grøstl-0-256 hash function.

Note that for Grøstl-0 we can use two full active states in each of P and Q
since the first ShiftBytes in P and Q cancel out when going around the input.
Hence, the columns of almost two rounds can be solved independently in the in-
bound phase (see Figure A.5). The technique is similar to the SuperBox match,
since we just do independent 64-bit matches again. These two consecutive Su-
perBoxes (in both P and in Q) are completely independent between state QSB

2

and PSB
2 . In other words, this time we have a longer non-linear 64-bit SuperBox

with the following sequence of transformations (starting from Q):

SB−1 −MB−1 − SB−1 − SB−MB− SB

Also for this construction, we can find one right pair for the inbound phase with
an average complexity of one and memory requirements of 264.

AC
SH

SB
MC
AC
SB

SH
MB

AC
SB
SH
MC

AC
SH

SB
MC
AC
SB

SH
MB

AC
SB
SH
MC

P0 P ′SH
1 P SB

2 P2

Q0 Q′SH
1 QSB

2 Q2

IV

M1

inboundindependent 64-bit matches outbound

Figure A.5: The inbound phase of the attack on the hash function Grøstl-0-256
with one 64-bit match (two SuperBoxes) being highlighted.

In the outbound phase, each of the pairs constructed in the inbound phase
are propagate to the output of each permutation with a probability of one. To

150 Appendix A. Analysis of Grøstl-0

get a zero output difference for the hash function, the 8-byte differences prior
to the last MixBytes need to be the same which happens with a probability of
2−64. Hence, the complexity of this collision attack on the Grøstl-0-256 hash
function is 264 in both time and memory.

Note that using the previous techniques a collision attack on 5 rounds ac-
cording to the following truncated differential path for both, P and Q is not
possible:

64
r1−→ 64

r2−→ 8
r3−→ 1

r4−→ 8
r5−→ 64

Each of the two 8→ 1 transitions of MixBytes in round r3 have a probability of
2−56. Together with the probabilistic match on 64 bits at the end of the path,
the total complexity is 256+56+64 = 2176 which exceeds the generic complexity
for a collision attack on Grøstl-0-256.

A.1.4 Collisions for 5 Rounds of Grøstl-0-512

Contrary to the collision attack on Grøstl-0-256 we can extend the truncated
differential path for Grøstl-0-512 to 5 rounds, with the following number of
active bytes in each, P and Q:

128
r1−→ 64

r2−→ 8
r3−→ 1

r4−→ 8
r5−→ 64

The complexity of the outbound phase is given by the two probabilistic 8 → 1
transitions of MixBytes in round r3 of P and Q, and the match of the 64-bit
differences prior to the last MixBytes transformation in round r5. Hence, the total
complexity of the attack is 256+56+64 = 2176 compression function evaluations.
Note that we need to construct 2176 solutions in the inbound phase for the attack
to succeed. However, we can only find up to 2128 pairs for the inbound phase.

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Q0

P0

Q1

P1

Q2

P2

Q3

P3

Q4

P4

Q5

P5

256

256

1

1
average 1 264

Figure A.6: Truncated differential path for the collision attack on 5 rounds of the
Grøstl-512 hash function. An additional first block is used to generate enough
freedom for the attack to succeed.

We can get the needed additional freedom for a 5 round collision attack by
prepending a first message block. The collision attack works as follows. First we
choose an arbitrary first message block. Then, we repeat the inbound phase for
all 2128 possible starting points to get 2128 solutions. Since the probability of the
outbound phase is 2−176 we need to repeat the inbound phase with 248 different

A.2. Considering Differences between P and Q 151

first message blocks to find a collision for 5 rounds. The total complexity of
the attack is about 264+56+56 = 2176 compression function evaluations and 264

memory.

A.2 Considering Differences between P and Q

The propagation of (truncated) differences between P and Q in the compression
function of the Round 1 version Grøstl-0 has been considered by Peyrin in
[Pey10]. In Grøstl-0, the permutations differ only in the used XOR constants
of AddRoundConstant. Starting from an all equal state, a difference is added in
two bytes of every round. Such a difference between P and Q propagates similar
to a difference in one permutation. Hence, similar truncated differential paths
can be constructed and the same rebound techniques as shown previously in this
chapter can be used to find right pairs.

The 10-round truncated differential path of [Pey10] with difference ∆i =
Pi ⊕Qi between P and Q is shown in Figure A.7. Note that in every round, a
difference at position ∆i[0, 0] and ∆i[0, 7] is added by AddRoundConstant. Two
additional rounds can be added with zero differences, which means that the
values of P and Q in these rounds are equal. In more detail, the differences in
∆2 and ∆8 are zero and we get P2 = Q2 and P8 = Q8. Furthermore, we get

Mi = Q0

Hi−1 = P0 ⊕Q0 = ∆0 (A.1)

Hi = P10 ⊕Q10 ⊕Hi−1 = ∆0 ⊕∆10.

For this truncated differential path between P and Q we also compute the ex-
pected number of right input pairs (Hi−1,Mi). Note that pairs are actually input
values to the compression function. Additionally to the probabilistic MixBytes
propagation, we also need to match the exact values of the XOR constants in
round r3, r7 and r8. Hence, for the given path the expected number of right
inputs (Hi−1,Mi) is only 1:

28·64 · 28·8 · 2−8·8 · 1 · 1 · 1 · 1 · 2−8·56 · 2−8·8 · 1 · 1 · 1 = 1

∆0 ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

1 1 MB : 2112

AC : 216
average 1 MB : 248 AC : 216 1 1

Figure A.7: The 10 round truncated differential path which considers differences
between P and Q.

The attack to find this right input is similar as in the case of a single permu-
tation (see Section 5.1). The complexity increases since two columns are active

152 Appendix A. Analysis of Grøstl-0

in ∆3 and we also need to match the exact values added by AddRoundConstant in
round r3 and r8. Hence, the total complexity to find one right input (Hi−1,Mi)
is about 2192 with memory requirements of 264. The input has the property that
56 bytes are zero and the subspace of the output value is reduced to dimension
192. Since only one such right input is likely to be found, this attack cannot be
extended to find collisions or preimages of the compression function. However,
in [Pey10] distinguishers for the full compression function and permutations are
deduced from this property.

A.2.1 Semi-Free-Start Collisions for 7 Rounds of Grøstl-
0-256

Ideguchi et al. have published an attack [ITP10] which finds collisions using
differences between P and Q for 7 rounds of the compression function. The
number of attacked rounds is the same as in the rebound attack of Section A.1.1
but with a better complexity. Their truncated differential path is shown in
Figure A.8. To get a collision for the compression function, we need to find two
distinct inputs such that Hi = H ′i. With Hi = ∆0 ⊕∆10 and H ′i = ∆′0 ⊕∆′10,
this is the case if

∆0 = ∆′0 and ∆10 = ∆′10. (A.2)

This condition can be fulfilled using a birthday attack. Hence, we need to find
two solutions for the truncated differential path of Figure A.8 with distinct values
Q0, Q

′
0.

∆0 ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

Coll: 232 1

AC: 216
average 1 1 Coll: 232

Figure A.8: Truncated differential path which considers differences between P
and Q.

We need to match an 8-byte difference at the input and an 8-byte difference
at the output prior to the last MixBytes transformation. The complexity for this
birthday attack on 128-bit is 264. Additionally, we need to match the 2-byte
difference of AddRoundConstant in round r3 with complexity 216. Hence, the
total complexity of the attack is about 280 with memory requirements of 264.
Note that for this truncated differential path, the expected number of input pairs
is actually only 1:

28·64 · 28·8 · 2−8·8 · 2−8·56 · 2−8·8 · 2−8·8 = 1 (A.3)

Note that this approximation is quite inaccurate so the attack might as well
not work. Therefore, in [ITP10] an adapted path with enough right pairs is

A.2. Considering Differences between P and Q 153

mentioned with a collision attack complexity of 2112 and memory requirements
of 296. Additionally, a compression function collision attack for 8 rounds with a
complexity of 2192 and memory requirements of 264 is presented. However, this
complexity is far above the collision bound for the hash function and even above
the generic complexity to find collisions for the Grøstl compression function.

A.2.2 Collisions for 6 Rounds of Grøstl-0-256

Furthermore, Ideguchi et al. have extended the collision attack on the compres-
sion function to a 6-round collision attack on the hash function [ITP10]. We
briefly describe the attack in the following. For a hash function attack, the
input chaining value Hi−1 needs to match the initial value IV . Since we have
IV = Hi−1 = ∆0, the input difference is determined by the non-zero bytes of
the IV . In the initial value of Grøstl-256, only byte IV [6, 7] is non-zero. The
resulting truncated differential path is shown in Figure A.9. Since the difference
added in AddRoundConstant of the first round of P is zero, only one difference
is added in byte Q0[7, 0] of AddRoundConstant. This difference lines-up with the
difference in the IV and we get only one active column for difference ∆1.

∆0 ∆1 ∆2 ∆3 ∆4 ∆5 ∆6

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

MB : 248

AC /IV: 216 AC: 216
average 1 1 Coll: 232

Figure A.9: Truncated differential path which considers differences between P
and Q.

The complexity of the attack is determined by matching the 1-byte non-zero
value of the IV and the 1-byte constant in r1, by the MixBytes propagation from
8→ 2 active bytes in r2, and by the birthday match on 8 bytes to get a collision
at the output. Hence, the total complexity of the attack is 280 with memory
requirements of 232 due to the non-full active SuperBoxes in round r3. We also
compute the expected number of right input pairs which is

28·64 · 2−8·32 · 2−8·28 · 2−8·8 = 1. (A.4)

However, in this attack we can place all active diagonals except the first of ∆3

in any of the 7 positions which results in
(

7
3

)
= 35 possible paths to get more

freedom for the attack.

Bibliography

[AB96] Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Func-
tion. In Dieter Gollmann, editor, FSE, volume 1039 of LNCS, pages
89–97. Springer, 1996.

[AGM+09] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and
Lei Wang. Preimages for Step-Reduced SHA-2. In Mitsuru Mat-
sui, editor, ASIACRYPT, volume 5912 of LNCS, pages 578–597.
Springer, 2009.

[AHMP11] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael
C.-W. Phan. SHA-3 proposal BLAKE. Submission to NIST
(Round 3), January 2011. Available online: http://csrc.nist.

gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html.

[AKK+10] Jean-Philippe Aumasson, Emilia Käsper, Lars R. Knudsen, Krys-
tian Matusiewicz, Rune Steinsmo Ødeg̊ard, Thomas Peyrin, and
Martin Schläffer. Distinguishers for the Compression Function and
Output Transformation of Hamsi-256. In Ron Steinfeld and Philip
Hawkes, editors, ACISP, volume 6168 of LNCS, pages 87–103.
Springer, 2010.

[AKKM08] Adem Atalay, Orhun Kara, Ferhat Karakoç, and Cevat
Manap. SHAMATA Hash Function Algorithm Specifications.
Submission to NIST (Round 1), December 2008. Avail-
able online: http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

submissions_rnd1.html.

[AMP10a] Elena Andreeva, Bart Mennink, and Bart Preneel. On the Indif-
ferentiability of the Grøstl Hash Function. In Juan A. Garay and
Roberto De Prisco, editors, SCN, volume 6280 of LNCS, pages
88–105. Springer, 2010.

[AMP10b] Elena Andreeva, Bart Mennink, and Bart Preneel. Security Reduc-
tions of the Second Round SHA-3 Candidates. In Mike Burmester,
Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, ISC,
volume 6531 of LNCS, pages 39–53. Springer, 2010.

[And08] Elena Andreeva. On LANE Modes of Operation. Technical report,
COSIC, Katholieke Universiteit Leuven, 2008.

155

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

156 Bibliography

[ANPS07] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas
Shrimpton. Seven-Property-Preserving Iterated Hashing: ROX.
In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS,
pages 130–146. Springer, 2007.

[ARM11] ARM Limited. NEON, March 2011. Available online: http://www.

arm.com/products/processors/technologies/neon.php.

[BBG+08] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat,
Thomas Peyrin, Matthew J. B. Robshaw, and Yannick Seurin.
SHA-3 Proposal: ECHO. Submission to NIST (Round 1), De-
cember 2008. Available online: http://csrc.nist.gov/groups/ST/

hash/sha-3/Round1/submissions_rnd1.html.

[BBGR09] Ryad Benadjila, Olivier Billet, Shay Gueron, and Matthew J. B.
Robshaw. The Intel AES Instructions Set and the SHA-3 Candi-
dates. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of
LNCS, pages 162–178. Springer, 2009.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skip-
jack Reduced to 31 Rounds Using Impossible Differentials. In EU-
ROCRYPT, pages 12–23, 1999.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière.
Higher-order differential properties of Keccak and Luffa. In Fast
Software Encryption, 2011. To appear.

[BD07] Eli Biham and Orr Dunkelman. A Framework for Iterative Hash
Functions - HAIFA. Cryptology ePrint Archive, Report 2007/278,
2007. http://eprint.iacr.org/.

[BD08] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Func-
tion. Submission to NIST (Round 1), December 2008. Avail-
able online: http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

submissions_rnd1.html.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle
Attack - Rectangling the Serpent. In Birgit Pfitzmann, editor,
EUROCRYPT, volume 2045 of LNCS, pages 340–357. Springer,
2001.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. Sponge functions. ECRYPT Hash Workshop, Barcelona,
Spain, May 24-25, 2007. Available online: http://sponge.noekeon.

org/SpongeFunctions.pdf.

[BDPV08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Ass-
che. On the Indifferentiability of the Sponge Construction. In
Nigel P. Smart, editor, EUROCRYPT, volume 4965 of LNCS, pages
181–197. Springer, 2008.

http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf

Bibliography 157

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. Cryptographic Sponge Functions, January 2011. Available
online: http://sponge.noekeon.org/CSF-0.1.pdf.

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. The Keccak reference. Submission to NIST (Round 3),
January 2011. Available online: http://csrc.nist.gov/groups/ST/

hash/sha-3/Round3/submissions_rnd3.html.

[BDVP06] Guido Bertoni, Joan Daemen, Gilles Van Assche, and Michaël
Peeters. RadioGatún, a Belt-and-Mill Hash Function. NIST - Sec-
ond Cryptographic Hash Workshop, August 24-25, 2006. Avail-
able online: http://csrc.nist.gov/groups/ST/hash/documents/

VANASSCHE_RadioGatun_0720.pdf.

[Ber09] Daniel J. Bernstein. CubeHash specification (2.B.1). Submission to
NIST (Round 2), September 2009. Available online: http://csrc.

nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanal-
ysis of the Full AES-192 and AES-256. In Mitsuru Matsui, editor,
ASIACRYPT, volume 5912 of LNCS, pages 1–18. Springer, 2009.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distin-
guisher and Related-Key Attack on the Full AES-256. In Shai
Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 231–249.
Springer, 2009.

[BKR97] Johan Borst, Lars R. Knudsen, and Vincent Rijmen. Two Attacks
on Reduced IDEA. In EUROCRYPT, pages 1–13, 1997.

[BL11] Daniel J. Bernstein and Tanja Lange. eBASH: ECRYPT Bench-
marking of All Submitted Hashes, January 2011. Available online:
http://bench.cr.yp.to/ebash.html.

[Bla06] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable
Blockcipher-Based Hash Function. In Matthew J. B. Robshaw,
editor, FSE, volume 4047 of LNCS, pages 328–340. Springer, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols. In ACM Conference
on Computer and Communications Security, pages 62–73, 1993.

[BR00] Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool
Hashing Function. Submitted to NESSIE, September 2000, re-
vised May 2003, 2000. Available online: http://www.larc.usp.br/

~pbarreto/WhirlpoolPage.html.

http://sponge.noekeon.org/CSF-0.1.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/documents/VANASSCHE_RadioGatun_0720.pdf
http://csrc.nist.gov/groups/ST/hash/documents/VANASSCHE_RadioGatun_0720.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://bench.cr.yp.to/ebash.html
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

158 Bibliography

[BR06] Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving
Hash Domain Extension and the EMD Transform. In Xuejia Lai
and Kefei Chen, editors, ASIACRYPT, volume 4284 of LNCS,
pages 299–314. Springer, 2006.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box
Analysis of the Block-Cipher-Based Hash-Function Constructions
from PGV. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS,
pages 320–335. Springer, 2002.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like
Cryptosystems. In Alfred Menezes and Scott A. Vanstone, editors,
CRYPTO, volume 537 of LNCS, pages 2–21. Springer, 1990.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like
Cryptosystems. J. Cryptology, 4(1):3–72, 1991.

[BS92] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full
16-Round DES. In Ernest F. Brickell, editor, CRYPTO, volume
740 of LNCS, pages 487–496. Springer, 1992.

[Çal10] Çağdaş Çalik. Multi-stream and Constant-time SHA-3 Implemen-
tations. NIST hash function mailing list, December 2010. Available
online: http://www.metu.edu.tr/~ccalik/software.html#sha3.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. Merkle-Damg̊ard Revisited: How to Construct
a Hash Function. In Victor Shoup, editor, CRYPTO, volume 3621
of LNCS, pages 430–448. Springer, 2005.

[CHK+08] Donghoon Chang, Seokhie Hong, Changheon Kang, Jinkeon
Kang, Jongsung Kim, Changhoon Lee, Jesang Lee, Jongtae Lee,
Sangjin Lee, Yuseop Lee, Jongin Lim, and Jaechul Sung. Ari-
rang. Submission to NIST (Round 1), December 2008. Avail-
able online: http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

submissions_rnd1.html.

[CJ98] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-
0. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of LNCS,
pages 56–71. Springer, 1998.

[CLS06] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an Effi-
cient and Provable Collision-Resistant Hash Function. In Serge
Vaudenay, editor, EUROCRYPT, volume 4004 of LNCS, pages
165–182. Springer, 2006.

[Dae09] Joan Daemen. FSE, 2009. personal communication.

http://www.metu.edu.tr/~ccalik/software.html#sha3
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

Bibliography 159

[Dam89] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles
Brassard, editor, CRYPTO, volume 435 of LNCS, pages 416–427.
Springer, 1989.

[dBB91] Bert den Boer and Antoon Bosselaers. An Attack on the Last Two
Rounds of MD4. In Joan Feigenbaum, editor, CRYPTO, volume
576 of LNCS, pages 194–203. Springer, 1991.

[dBB93] Bert den Boer and Antoon Bosselaers. Collisions for the Com-
pressin Function of MD5. In Tor Helleseth, editor, EUROCRYPT,
volume 765 of LNCS, pages 293–304. Springer, 1993.

[DKT08] Ivan Damg̊ard, Lars R. Knudsen, and Søren S. Thomsen. Dakota-
Hashing from a Combination of Modular Arithmetic and Symmet-
ric Cryptography. In Steven M. Bellovin, Rosario Gennaro, Ange-
los D. Keromytis, and Moti Yung, editors, ACNS, volume 5037 of
LNCS, pages 144–155, 2008.

[Dob96a] Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, edi-
tor, FSE, volume 1039 of LNCS, pages 53–69. Springer, 1996.

[Dob96b] Hans Dobbertin. Cryptanalysis of MD5 Compress. Technical re-
port, German Information Security Agency, May 1996.

[Dob96c] Hans Dobbertin. The Status of MD5 After a Recent Attack. Cryp-
toBytes, 2(2):1–6, 1996.

[Dob98] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–
271, 1998.

[DR99a] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. AES
Algorithm Submission, September 1999. Available online: http:

//csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf.

[DR99b] Joan Daemen and Vincent Rijmen. AES Proposal: Rijn-
dael. NIST AES Algorithm Submission, September 1999.
Available online: http://csrc.nist.gov/archive/aes/rijndael/

Rijndael-ammended.pdf.

[DR01] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strat-
egy. In Bahram Honary, editor, IMA Int. Conf., volume 2260 of
LNCS, pages 222–238. Springer, 2001.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES
- The Advanced Encryption Standard. Springer, 2002.

[DR05] Joan Daemen and Vincent Rijmen. Probability distributions of
Correlation and Differentials in Block Ciphers. Cryptology ePrint
Archive, Report 2005/212, 2005. http://eprint.iacr.org/.

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://eprint.iacr.org/

160 Bibliography

[DR06a] Joan Daemen and Vincent Rijmen. Understanding Two-Round
Differentials in AES. In Roberto De Prisco and Moti Yung, editors,
SCN, volume 4116 of LNCS, pages 78–94. Springer, 2006.

[DR06b] Christophe De Cannière and Christian Rechberger. Finding SHA-
1 Characteristics: General Results and Applications. In Xuejia
Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of LNCS,
pages 1–20. Springer, 2006.

[DR07a] Joan Daemen and Vincent Rijmen. Plateau characteristics. IET
Information Security, 1(1):11–17, March 2007.

[DR07b] Joan Daemen and Vincent Rijmen. Probability distributions of
correlations and differentials in block ciphers. Journal of Mathe-
matical Cryptology, 1(3):221–242, 2007.

[DSW08] Christophe De Cannière, Hisayoshi Sato, and Dai Watanabe.
Hash Function Luffa. Submission to NIST (Round 1), Decem-
ber 2008. Available online: http://csrc.nist.gov/groups/ST/hash/

sha-3/Round1/submissions_rnd1.html.

[DSW09] Christophe De Cannière, Hisayoshi Sato, and Dai Watanabe.
Hash Function Luffa. Submission to NIST (Round 2), Septem-
ber 2009. Available online: http://csrc.nist.gov/groups/ST/hash/

sha-3/Round2/submissions_rnd2.html.

[Flo67] Robert W. Floyd. Nondeterministic Algorithms. J. ACM, 14:636–
644, October 1967.

[FLS+09] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir
Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein
Hash Function Family. Submission to NIST (Round 2), Septem-
ber 2009. Available online: http://csrc.nist.gov/groups/ST/hash/

sha-3/Round2/submissions_rnd2.html.

[FLS+11] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mi-
hir Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. The
Skein Hash Function Family. Submission to NIST (Round 3),
January 2011. Available online: http://csrc.nist.gov/groups/ST/

hash/sha-3/Round3/submissions_rnd3.html.

[FO89] Philippe Flajolet and Andrew M. Odlyzko. Random Mapping
Statistics. In EUROCRYPT, pages 329–354, 1989.

[FSZ08] Pierre-Alain Fouque, Jacques Stern, and Sébastien Zimmer. Crypt-
analysis of Tweaked Versions of SMASH and Reparation. In
Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors,
Selected Areas in Cryptography, volume 5381 of LNCS, pages 136–
150. Springer, 2008.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html

Bibliography 161

[GKM+08] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz,
Florian Mendel, Christian Rechberger, Martin Schläffer, and
Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission to
NIST (Round 1), December 2008. Available online: http://csrc.

nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html.

[GKM+11] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz,
Florian Mendel, Christian Rechberger, Martin Schläffer, and
Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission to
NIST (Round 3), January 2011. Available online: http://csrc.

nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html.

[GLM+10] Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, Maŕıa
Naya-Plasencia, Thomas Peyrin, Christian Rechberger, and Mar-
tin Schläffer. Cryptanalysis of the 10-Round Hash and Full Com-
pression Function of SHAvite-3-512. In Daniel J. Bernstein and
Tanja Lange, editors, AFRICACRYPT, volume 6055 of LNCS,
pages 419–436. Springer, 2010.

[GMK+09] Jian Guo, Krystian Matusiewicz, Lars R. Knudsen, San Ling, and
Huaxiong Wang. Practical Pseudo-collisions for Hash Functions
ARIRANG-224/384. In Michael J. Jacobson Jr., Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptogra-
phy, volume 5867 of LNCS, pages 141–156. Springer, 2009.

[GP09] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis:
Improved Attacks for AES-like permutations. Cryptology ePrint
Archive, Report 2009/531, 2009. http://eprint.iacr.org/.

[GP10] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Im-
proved Attacks for AES-Like Permutations. In Seokhie Hong and
Tetsu Iwata, editors, FSE, volume 6147 of LNCS, pages 365–383.
Springer, 2010.

[Gre10] E.A. Grechnikov. Collisions for 72-step and 73-step SHA-1: Im-
provements in the Method of Characteristics. Cryptology ePrint
Archive, Report 2010/413, 2010. http://eprint.iacr.org/.

[Ham09] Mike Hamburg. Accelerating AES with Vector Permute Instruc-
tions. In Christophe Clavier and Kris Gaj, editors, CHES, volume
5747 of LNCS, pages 18–32. Springer, 2009.

[HHJ09] Shai Halevi, William E. Hall, and Charanjit S. Jutla. The Hash
Function Fugue. Submission to NIST (Round 2), September
2009. Available online: http://csrc.nist.gov/groups/ST/hash/

sha-3/Round2/submissions_rnd2.html.

[IMPS09] Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Mar-
tin Schläffer. Practical Collisions for SHAMATA-256. In Michael

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html

162 Bibliography

J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, edi-
tors, Selected Areas in Cryptography, volume 5867 of LNCS, pages
1–15. Springer, 2009.

[Ind08] Sebastiaan Indesteege. The LANE Hash Function. Submission to
NIST (Round 1), December 2008. Available online: http://csrc.

nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html.

[Ind10] Sebastiaan Indesteege. Analysis and Design of Cryptographic Hash
Functions. PhD thesis, Katholieke Universiteit Leuven, Belgium,
2010.

[Int96] Intel Corporation. Using MMX Instructions to Transpose a Matrix,
1996. Available online: ftp://download.intel.com/ids/mmx/MMX_

App_Transpose_Matrix.pdf.

[Int11a] Intel Corporation. Intel Advanced Encryption Stan-
dard Instructions (AES-NI), March 2011. Avail-
able online: http://software.intel.com/en-us/articles/

intel-advanced-encryption-standard-instructions-aes-ni/.

[Int11b] Intel Corporation. Pentium Processors with MMX Technology,
March 2011. Available online: http://edc.intel.com/Platforms/

Previous/Processors/Pentium-MMX/.

[ITP10] Kota Ideguchi, Elmar Tischhauser, and Bart Preneel. Improved
Collision Attacks on the Reduced-Round Grøstl Hash Function.
In Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana
Ilic, editors, ISC, volume 6531 of LNCS, pages 1–16. Springer, 2010.

[JF11] Jérémy Jean and Pierre-Alain Fouque. Practical Near-Collisions
and Collisions on Round-Reduced ECHO-256 Compression Func-
tion. In Fast Software Encryption, 2011. To appear.

[Jou04] Antoine Joux. Multicollisions in Iterated Hash Functions. Applica-
tion to Cascaded Constructions. In Matthew K. Franklin, editor,
CRYPTO, volume 3152 of LNCS, pages 306–316. Springer, 2004.

[Kel09] John Kelsey. Some notes on Grøstl. NIST hash function mailing
list, April 2009. Available online: http://ehash.iaik.tugraz.at/

uploads/d/d0/Grostl-comment-april28.pdf.

[KK06] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and
the Nostradamus Attack. In Serge Vaudenay, editor, EURO-
CRYPT, volume 4004 of LNCS, pages 183–200. Springer, 2006.

[KL06] John Kelsey and Stefan Lucks. Collisions and Near-Collisions for
Reduced-Round Tiger. In Matthew J. B. Robshaw, editor, FSE,
volume 4047 of LNCS, pages 111–125. Springer, 2006.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
ftp://download.intel.com/ids/mmx/MMX_App_Transpose_Matrix.pdf
ftp://download.intel.com/ids/mmx/MMX_App_Transpose_Matrix.pdf
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://edc.intel.com/Platforms/Previous/Processors/Pentium-MMX/
http://edc.intel.com/Platforms/Previous/Processors/Pentium-MMX/
http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf
http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf

Bibliography 163

[KNPRS10] Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and
Martin Schläffer. Cryptanalysis of Luffa v2 Components. In Alex
Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected
Areas in Cryptography, volume 6544 of LNCS, pages 388–409.
Springer, 2010.

[KNR10] Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. Ro-
tational Rebound Attacks on Reduced Skein. In Masayuki Abe,
editor, ASIACRYPT, volume 6477 of LNCS, pages 1–19. Springer,
2010.

[Knu81] Donald E. Knuth. The Art of Computer Programming, Volume II:
Seminumerical Algorithms, 2nd Edition. Addison-Wesley, 1981.

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In
Bart Preneel, editor, FSE, volume 1008 of LNCS, pages 196–211.
Springer, 1994.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers
for Some Block Ciphers. In Kaoru Kurosawa, editor, ASIACRYPT,
volume 4833 of LNCS, pages 315–324. Springer, 2007.

[KRT07] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen.
The Grindahl Hash Functions. In Alex Biryukov, editor, FSE,
volume 4593 of LNCS, pages 39–57. Springer, 2007.

[KS05] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash
Functions for Much Less than 2n Work. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of LNCS, pages 474–490. Springer,
2005.

[KS09] Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Re-
sistant AES-GCM. In Christophe Clavier and Kris Gaj, editors,
CHES, volume 5747 of LNCS, pages 1–17. Springer, 2009.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-Linear
Cryptanalysis. In Yvo Desmedt, editor, CRYPTO, volume 839 of
LNCS, pages 17–25. Springer, 1994.

[LM92] Xuejia Lai and James L. Massey. Hash Function Based on Block
Ciphers. In Rainer A. Rueppel, editor, EUROCRYPT, volume 658
of LNCS, pages 55–70. Springer, 1992.

[LMR+09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent
Rijmen, and Martin Schläffer. Rebound Distinguishers: Results on
the Full Whirlpool Compression Function. In Mitsuru Matsui, edi-
tor, ASIACRYPT, volume 5912 of LNCS, pages 126–143. Springer,
2009.

164 Bibliography

[LMR+10] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent
Rijmen, and Martin Schläffer. The Rebound Attack and Sub-
space Distinguishers: Application to Whirlpool. Cryptology ePrint
Archive, Report 2010/198, 2010. http://eprint.iacr.org/.

[Luc05] Stefan Lucks. A Failure-Friendly Design Principle for Hash Func-
tions. In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of
LNCS, pages 474–494. Springer, 2005.

[Mer79] Ralph C. Merkle. Secrecy, authentication, and public key systems.
PhD thesis, Stanford University, 1979.

[Mer80] Ralph C. Merkle. Protocols for Public Key Cryptosystems. In
IEEE Symposium on Security and Privacy, pages 122–134, 1980.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles
Brassard, editor, CRYPTO, volume 435 of LNCS, pages 428–446.
Springer, 1989.

[MNPN+09] Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolić,
Yu Sasaki, and Martin Schläffer. Rebound Attack on the Full Lane
Compression Function. In Mitsuru Matsui, editor, ASIACRYPT,
volume 5912 of LNCS, pages 106–125. Springer, 2009.

[MNS09] Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision
Attack on Boole. In Michel Abdalla, David Pointcheval, Pierre-
Alain Fouque, and Damien Vergnaud, editors, ACNS, volume 5536
of LNCS, pages 369–381, 2009.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and
Huaxiong Wang. Pushing the Limits: A Very Compact and a
Threshold Implementation of AES. In EUROCRYPT, 2011. To
appear.

[MPR+06] Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida,
and Dai Watanabe. Update on Tiger. In Rana Barua and Tanja
Lange, editors, INDOCRYPT, volume 4329 of LNCS, pages 63–79.
Springer, 2006.

[MPRS09] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Mar-
tin Schläffer. Improved Cryptanalysis of the Reduced Grøstl Com-
pression Function, ECHO Permutation and AES Block Cipher. In
Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-
Naini, editors, Selected Areas in Cryptography, volume 5867 of
LNCS, pages 16–35. Springer, 2009.

[MR07] Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger
Hash Function. In Kaoru Kurosawa, editor, ASIACRYPT, volume
4833 of LNCS, pages 536–550. Springer, 2007.

http://eprint.iacr.org/

Bibliography 165

[MRS09a] Florian Mendel, Christian Rechberger, and Martin Schläffer.
Cryptanalysis of Twister. In Michel Abdalla, David Pointcheval,
Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS, vol-
ume 5536 of LNCS, pages 342–353, 2009.

[MRS09b] Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5
Is Weaker Than Weak: Attacks on Concatenated Combiners. In
Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages
144–161. Springer, 2009.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and
Søren S. Thomsen. The Rebound Attack: Cryptanalysis of Re-
duced Whirlpool and Grøstl. In Orr Dunkelman, editor, FSE, vol-
ume 5665 of LNCS, pages 260–276. Springer, 2009.

[MRST10] Florian Mendel, Christian Rechberger, Martin Schläffer, and
Søren S. Thomsen. Rebound Attacks on the Reduced Grøstl Hash
Function. In Josef Pieprzyk, editor, CT-RSA, volume 5985 of
LNCS, pages 350–365. Springer, 2010.

[MS08a] Florian Mendel and Martin Schläffer. Collisions and Preim-
ages for Sarmal. NIST hash function mailing list, December
2008. Available online: http://ehash.iaik.tugraz.at/uploads/d/

d1/Salt-collision.pdf.

[MS08b] Florian Mendel and Martin Schläffer. Collisions for Round-
Reduced LAKE. In Yi Mu, Willy Susilo, and Jennifer Seberry,
editors, ACISP, volume 5107 of LNCS, pages 267–281. Springer,
2008.

[MS09] Florian Mendel and Martin Schläffer. On Free-Start Collisions and
Collisions for TIB3. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio Agostino Ardagna, editors, ISC, volume
5735 of LNCS, pages 95–106. Springer, 2009.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[Nat93] National Institute of Standards and Technology. FIPS PUB 180:
Secure Hash Standard. Federal Information Processing Standards
Publication 180, U.S. Department of Commerce, 1993. Available
online: http://www.itl.nist.gov/fipspubs.

[Nat95] National Institute of Standards and Technology. FIPS PUB 180-
1: Secure Hash Standard. Federal Information Processing Stan-
dards Publication 180-1, U.S. Department of Commerce, April
1995. Available online: http://www.itl.nist.gov/fipspubs.

http://ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf
http://ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf
http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs

166 Bibliography

[Nat01] National Institute of Standards and Technology. FIPS PUB
197: Advanced Encryption Standard. Federal Information Pro-
cessing Standards Publication 197, U.S. Department of Com-
merce, November 2001. Available online: http://www.itl.nist.

gov/fipspubs.

[Nat02] National Institute of Standards and Technology. FIPS PUB 180-2:
Secure Hash Standard. Federal Information Processing Standards
Publication 180-2, U.S. Department of Commerce, August 2002.
Available online: http://www.itl.nist.gov/fipspubs.

[Nat07a] National Institute of Standards and Technology. Announcing Re-
quest for Candidate Algorithm Nominations for a New Cryp-
tographic Hash Algorithm (SHA-3) Family. Federal Register,
27(212):62212–62220, November 2007. Available online: http:

//csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

[Nat07b] National Institute of Standards and Technology. Cryptographic
Hash Algorithm Competition, November 2007. Available online:
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[Nat08] National Institute of Standards and Technology. First Round Can-
didates. Official notification from NIST, December 2008. Avail-
able online: http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

index.html.

[Nat09] National Institute of Standards and Technology. Second Round
Candidates. Official notification from NIST, July 2009. Avail-
able online: http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/

index.html.

[Nat10] National Institute of Standards and Technology. Third (Final)
Round Candidates. Official notification from NIST, December
2010. Available online: http://csrc.nist.gov/groups/ST/hash/

sha-3/Round3/index.html.

[Nay10] Maŕıa Naya-Plasencia. Scrutinizing rebound attacks: new algo-
rithms for improving the complexities. Cryptology ePrint Archive,
Report 2010/607, 2010. http://eprint.iacr.org/.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Thresh-
old Implementations Against Side-Channel Attacks and Glitches.
In Peng Ning, Sihan Qing, and Ninghui Li, editors, ICICS, volume
4307 of LNCS, pages 529–545. Springer, 2006.

[NRS08] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hard-
ware Implementation of Non-linear Functions in the Presence of
Glitches. In Pil Joong Lee and Jung Hee Cheon, editors, ICISC,
volume 5461 of LNCS, pages 218–234. Springer, 2008.

http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/index.html
http://eprint.iacr.org/

Bibliography 167

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hard-
ware Implementation of Nonlinear Functions in the Presence of
Glitches. J. Cryptology, 24(2):292–321, 2011.

[Pey07] Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kuro-
sawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 551–567.
Springer, 2007.

[Pey10] Thomas Peyrin. Improved Differential Attacks for ECHO and
Grøstl. In Tal Rabin, editor, CRYPTO, volume 6223 of LNCS,
pages 370–392. Springer, 2010.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions
Based on Block Ciphers: A Synthetic Approach. In Douglas R.
Stinson, editor, CRYPTO, volume 773 of LNCS, pages 368–378.
Springer, 1993.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim,
Huaxiong Wang, and San Ling. Side-Channel Resistant Crypto for
less than 2,300 GE. J. Cryptology, 24(2):322–345, 2011.

[Pre93] Bart Preneel. Analysis and Design of Cryptographic Hash Func-
tions. PhD thesis, Katholieke Universiteit Leuven, Belgium, 1993.

[QD89a] Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is
Collision Search? Application to DES (Extended Summary). In
Jean-Jacques Quisquater and Joos Vandewalle, editors, EURO-
CRYPT, volume 434 of LNCS, pages 429–434. Springer, 1989.

[QD89b] Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is
Collision Search. New Results and Applications to DES. In Gilles
Brassard, editor, CRYPTO, volume 435 of LNCS, pages 408–413.
Springer, 1989.

[Rab78] Michael O. Rabin. Digitalized Signatures. Foundations of Secure
Computation, pages 155–168, 1978.

[Rec09] Christian Rechberger. Cryptanalysis of Hash Functions. PhD the-
sis, Graz University of Technology, Austria, 2009.

[Riv92a] Ronald L. Rivest. The MD4 Message-Digest Algorithm. IETF
Request for Comments (RFC) 1320, 1992. Available online at http:
//www.ietf.org/rfc/rfc1320.html.

[Riv92b] Ronald L. Rivest. The MD5 Message-Digest Algorithm. IETF
Request for Comments (RFC) 1321, 1992. Available online at:
http://www.faqs.org/rfcs/rfc1321.html.

[Rol09] Günther A. Roland. Efficient Implementation of the Grøstl-256
Hash Function on an ATmega163 Microcontroller. Bachelor’s the-
sis, Graz University of Technology, Austria, 2009.

http://www.ietf.org/rfc/rfc1320.html
http://www.ietf.org/rfc/rfc1320.html
http://www.faqs.org/rfcs/rfc1321.html

168 Bibliography

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Collision
Resistance. In Bimal K. Roy and Willi Meier, editors, FSE, vol-
ume 3017 of LNCS, pages 371–388. Springer, 2004.

[RS08] Phillip Rogaway and John P. Steinberger. Constructing Crypto-
graphic Hash Functions from Fixed-Key Blockciphers. In David
Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 433–450.
Springer, 2008.

[RS11] Günther A. Roland and Martin Schläffer. Byteslicing Groestl -
Optimized Intel AES-NI and 8-bit Implementations of the SHA-3
Finalist Groestl, 2011. In submission.

[RTV10] Vincent Rijmen, Deniz Toz, and Kerem Varici. Rebound Attack on
Reduced-Round Versions of JH. In Seokhie Hong and Tetsu Iwata,
editors, FSE, volume 6147 of LNCS, pages 286–303. Springer, 2010.

[Sch06] Martin Schläffer. Cryptanalysis of MD4. Master’s thesis, Graz
University of Technology, Austria, February 2006. Available
online: http://www.iaik.tugraz.at/aboutus/people/schlaeffer/

MasterThesis_Schlaeffer.pdf.

[Sch07] Karl Scheibelhofer. A Bit-Slice Implementation of the Whirlpool
Hash Function. In Masayuki Abe, editor, CT-RSA, volume 4377
of LNCS, pages 385–401. Springer, 2007.

[Sch10a] Martin Schläffer. Improved Collisions for Reduced ECHO-256.
Cryptology ePrint Archive, Report 2010/588, 2010. http://eprint.
iacr.org/.

[Sch10b] Martin Schläffer. Subspace Distinguisher for 5/8 Rounds of the
ECHO-256 Hash Function. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, Selected Areas in Cryptography, vol-
ume 6544 of LNCS, pages 369–387. Springer, 2010.

[Sch10c] Martin Schläffer. Subspace Distinguisher for 5/8 Rounds of the
ECHO-256 Hash Function. Cryptology ePrint Archive, Report
2010/321, 2010. http://eprint.iacr.org/.

[SKA02] Taizo Shirai, Shoji Kanamaru, and George Abe. Improved Upper
Bounds of Differential and Linear Characteristic Probability for
Camellia. In Joan Daemen and Vincent Rijmen, editors, FSE,
volume 2365 of LNCS, pages 128–142. Springer, 2002.

[SLW+10] Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta.
Non-full-active Super-Sbox Analysis: Applications to ECHO and
Grøstl. In Masayuki Abe, editor, ASIACRYPT, volume 6477 of
LNCS, pages 38–55. Springer, 2010.

http://www.iaik.tugraz.at/aboutus/people/schlaeffer/MasterThesis_Schlaeffer.pdf
http://www.iaik.tugraz.at/aboutus/people/schlaeffer/MasterThesis_Schlaeffer.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography 169

[SO06] Martin Schläffer and Elisabeth Oswald. Searching for Differential
Paths in MD4. In Matthew J. B. Robshaw, editor, FSE, volume
4047 of LNCS, pages 242–261. Springer, 2006.

[SS08] Somitra Kumar Sanadhya and Palash Sarkar. New Collision At-
tacks against Up to 24-Step SHA-2. In Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume
5365 of LNCS, pages 91–103. Springer, 2008.

[Sta08] Martijn Stam. Beyond Uniformity: Better Security/Efficiency
Tradeoffs for Compression Functions. In David Wagner, editor,
CRYPTO, volume 5157 of LNCS, pages 397–412. Springer, 2008.

[Til08] Stefan Tillich. Bitsliced Implementation of Grøstl-0-256, 2008.
Personal communication, implementation written by Stefan Tillich
and benchmarked in eBash.

[vOW94] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision
Search with Application to Hash Functions and Discrete Loga-
rithms. In ACM Conference on Computer and Communications
Security, pages 210–218, 1994.

[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision
Search with Cryptanalytic Applications. J. Cryptology, 12(1):1–
28, 1999.

[Wag99] David Wagner. The Boomerang Attack. In Lars R. Knudsen,
editor, FSE, volume 1636 of LNCS, pages 156–170. Springer, 1999.

[Wag02] David Wagner. A Generalized Birthday Problem. In Moti Yung,
editor, CRYPTO, volume 2442 of LNCS, pages 288–303. Springer,
2002. Extended version available online at http://www.eecs.

berkeley.edu/~daw/papers/genbday.html.

[WFW09] Shuang Wu, Dengguo Feng, and Wenling Wu. Cryptanalysis of the
LANE Hash Function. In Michael J. Jacobson Jr., Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptogra-
phy, volume 5867 of LNCS, pages 126–140. Springer, 2009.

[Wil08] David A. Wilson. Constructing Second Preimages in the WaMM
Hash Algorithms. NIST hash function mailing list, November
2008. Available online: http://web.mit.edu/dwilson/www/hash/

wamm.html.

[Win84] Robert S. Winternitz. A Secure One-Way Hash Function Built
from DES. In IEEE Symposium on Security and Privacy, pages
88–90, 1984.

http://www.eecs.berkeley.edu/~daw/papers/genbday.html
http://www.eecs.berkeley.edu/~daw/papers/genbday.html
http://web.mit.edu/dwilson/www/hash/wamm.html
http://web.mit.edu/dwilson/www/hash/wamm.html

170 Bibliography

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan
Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS,
pages 1–18. Springer, 2005.

[Wu08] Hongjun Wu. The Hash Function JH. Submission to NIST
(Round 1), December 2008. Available online: http://csrc.nist.

gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html.

[Wu11] Hongjun Wu. The Hash Function JH. Submission to NIST (Round
3), January 2011. Available online: http://csrc.nist.gov/groups/

ST/hash/sha-3/Round3/submissions_rnd3.html.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other
Hash Functions. In Ronald Cramer, editor, EUROCRYPT, volume
3494 of LNCS, pages 19–35. Springer, 2005.

[WYY05a] Xiaoyun Wang, Andrew C. Yao, and Frances Yao. Cryptanalysis
on SHA-1. NIST - First Cryptographic Hash Workshop, October
31-November 1, 2005. Available online: http://csrc.nist.gov/

groups/ST/hash/documents/Wang_SHA1-New-Result.pdf.

[WYY05b] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions
in the Full SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621
of LNCS, pages 17–36. Springer, 2005.

[WYY05c] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision
Search Attacks on SHA-0. In Victor Shoup, editor, CRYPTO,
volume 3621 of LNCS, pages 1–16. Springer, 2005.

[Yuv79] Gideon Yuval. How to swindle Rabin? Cryptologia, 3(3):187–191,
1979.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf

Author Index

Abe, George 27
Anderson, Ross J. 13
Andreeva, Elena 12, 60, 142
Aoki, Kazumaro 3
ARM Limited 66
Atalay, Adem 38
Aumasson, Jean-Philippe 4, 6, 14

Barreto, Paulo S. L. M. 13, 28
Bellare, Mihir 4, 11–13, 28
Benadjila, Ryad 14, 16, 62, 97–99
Bernstein, Daniel J. 14, 66
Bertoni, Guido 4, 12, 14, 16, 62
Biham, Eli 12, 13, 20, 21, 26, 35, 38,

98
Billet, Olivier 14, 16, 62, 97–99
Biryukov, Alex 21, 61, 62
Black, John 13, 60
Borst, Johan 21
Bosselaers, Antoon 3, 20
Boura, Christina 62

Çalik, Çağdaş 67, 71
Callas, Jon 4, 13, 28
Canteaut, Anne 62
Chabaud, Florent 3, 20, 21, 26, 27
Chang, Donghoon 38
Chen, Hui 3, 21
Contini, Scott 2
Coron, Jean-Sébastien 12

Daemen, Joan 4, 12, 14, 16, 22, 25,
33–39, 45, 48, 61–63, 80, 101

Damg̊ard, Ivan 2, 12, 60, 123
De Cannière, Christophe 6, 21, 26, 62
Delescaille, Jean-Paul 17, 18

den Boer, Bert 3, 20
Dobbertin, Hans 3, 20, 21, 29
Dodis, Yevgeniy 12
Dunkelman, Orr 12, 21, 38, 98

Feng, Dengguo 3, 21, 123
Ferguson, Niels 4, 13, 28
Flajolet, Philippe 17
Floyd, Robert W. 18
Fouque, Pierre-Alain 14, 52, 55, 60,

61, 104, 108, 109, 119

Gauravaram, Praveen 4, 6, 7, 14, 16,
28, 38, 55, 60, 73, 82

Gilbert, Henri 9, 14, 16, 42, 49, 52, 74,
80, 82, 97–100

Govaerts, René 13
Grechnikov, E.A. 3
Gueron, Shay 62
Guo, Jian 3, 38

Halevi, Shai 14
Hall, William E. 14
Hamburg, Mike 62, 67
Hellman, Martin E. 21
Henzen, Luca 4, 14
Hong, Seokhie 38

Ideguchi, Kota 9, 74, 152, 153
Indesteege, Sebastiaan 3, 6, 14, 16, 38,

123, 125, 126, 130, 135, 142
Intel Corporation 62, 66

Jean, Jérémy 52, 104, 108, 109, 119
Joux, Antoine 3, 12, 20, 21, 26, 27, 60
Jutla, Charanjit S. 14

171

172 Author Index

Kanamaru, Shoji 27
Kang, Changheon 38
Kang, Jinkeon 38
Kara, Orhun 38
Karakoç, Ferhat 38
Käsper, Emilia 6, 62, 71
Keller, Nathan 21
Kelsey, John 12, 29, 60, 61
Khoo, Khoongming 7
Khovratovich, Dmitry 6, 28, 45, 53,

61, 62, 121
Kim, Jongsung 38
Knudsen, Lars R. 2, 4, 6, 7, 14, 16, 21,

27, 28, 33, 38, 41, 55, 60, 73, 82
Knuth, Donald E. 18
Kohno, Tadayoshi 4, 12, 13, 28, 60

Lai, Xuejia 3, 12, 15, 18, 21
Lamberger, Mario 6, 9, 30, 41, 49,

51–53, 62, 75, 77, 80–82, 96–98, 104,
105, 112, 114, 120

Lange, Tanja 66
Langford, Susan K. 21
Lee, Changhoon 38
Lee, Jesang 38
Lee, Jongtae 38
Lee, Sangjin 38
Lee, Yuseop 38
Lenstra, Arjen K. 2
Leurent, Gaëtan 6, 38
Li, Yang 9, 51, 52, 74, 81, 82, 90, 91,

122
Lim, Chu-Wee 7
Lim, Jongin 38
Ling, San 7, 38
Lucks, Stefan 4, 12, 13, 28, 29

Macario-Rat, Gilles 14, 16, 97–99
Malinaud, Cécile 12
Manap, Cevat 38
Massey, James L. 12, 15, 18
Matusiewicz, Krystian 3, 4, 6, 7, 9, 14,

16, 28, 30, 31, 38, 55, 60, 73, 82, 97,
105, 123, 142

Meier, Willi 4, 14

Mendel, Florian 3, 4, 6, 7, 9, 14, 16,
21, 28–30, 33, 38, 41, 45, 49, 51–53,
55, 60, 62, 73–75, 77, 79–82, 90, 94,
96–98, 104, 105, 112, 114, 116, 120,
121

Menezes, Alfred 1, 11, 13
Mennink, Bart 60
Merkle, Ralph C. 2, 10–12, 60, 123
Moradi, Amir 7

Nad, Tomislav 6
National Institute of Standards and

Technology 3, 4, 10, 13, 14, 33, 34,
55, 123

Naya-Plasencia, Maŕıa 53
Neven, Gregory 12
Nikolić, Ivica 6, 9, 28, 30, 31, 61, 97,

105, 123, 142
Nikova, Svetla 7

Ødeg̊ard, Rune Steinsmo 6
Odlyzko, Andrew M. 17
Ohta, Kazuo 9, 51, 52, 74, 81, 82, 90,

91, 122
Oswald, Elisabeth 6, 21

Paar, Christof 7
Peeters, Michaël 4, 14, 16, 62
Peyrin, Thomas 6, 9, 14, 16, 28, 37,

38, 42, 45, 49, 51, 52, 61, 74, 79, 80,
82, 90, 97–100, 116, 121, 151, 152

Phan, Raphael C.-W. 4, 14
Poschmann, Axel 7
Preneel, Bart 3, 6, 9, 10, 12, 13, 29,

38, 60, 74, 152, 153
Puniya, Prashant 12

Quisquater, Jean-Jacques 17, 18

Rabin, Michael O. 10
Rechberger, Christian 4, 6, 7, 9, 14,

16, 21, 26–28, 30, 33, 38, 41, 45, 49,
51–53, 55, 60, 62, 73–75, 77, 79–82,
90, 94, 96–98, 104, 105, 112, 114,
116, 120, 121

Rijmen, Vincent 4, 6, 7, 9, 13, 21, 22,
25, 28–30, 33–39, 41, 48, 49, 51–53,

Author Index 173

61–63, 75, 77, 80–82, 96–98, 101,
104, 105, 112, 114, 120

Ristenpart, Thomas 12
Rivest, Ronald L. 3, 10, 13
Robshaw, Matthew J. B. 14, 16, 62,

97–99
Röck, Andrea 6, 28, 45, 53, 121
Rogaway, Phillip 10, 11, 13, 14, 60
Roland, Günther A. 66, 71

Sakiyama, Kazuo 9, 51, 52, 74, 81, 82,
90, 91, 122

Sanadhya, Somitra Kumar 3
Sarkar, Palash 3
Sasaki, Yu 3, 6, 9, 30, 31, 51, 52, 74,

81, 82, 90, 91, 97, 105, 122, 123, 142
Sato, Hisayoshi 14, 28, 53
Scheibelhofer, Karl 71
Schläffer, Martin 3, 4, 6, 7, 9, 14, 16,

21, 28, 30, 31, 33, 38, 41, 45, 49,
51–53, 55, 60, 62, 66, 67, 73–75, 77,
79–82, 90, 94, 96–98, 104, 105, 112,
114, 116, 120, 121, 123, 142

Schneier, Bruce 4, 12, 13, 28, 60
Schwabe, Peter 62, 71
Seurin, Yannick 14, 16, 97–99
Shamir, Adi 20, 21, 26, 35
Shirai, Taizo 27
Shrimpton, Thomas 10, 12, 13, 60
Stam, Martijn 14
Steinberger, John P. 14
Steinfeld, Ron 2
Stern, Jacques 14, 55, 60, 61
Sung, Jaechul 38

Thomsen, Søren S. 2, 4, 6, 7, 9, 14,

16, 21, 28, 33, 41, 49, 55, 60, 73, 74,
80, 82, 94, 97, 98, 105

Tillich, Stefan 71
Tischhauser, Elmar 9, 74, 152, 153
Toz, Deniz 53

Van Assche, Gilles 4, 12, 14, 16, 62
van Oorschot, Paul C. 1, 11, 13, 18
Vandewalle, Joos 13
Vanstone, Scott A. 1, 11, 13
Varici, Kerem 53

Wagner, David 18, 19, 21, 29, 98, 112,
115, 120

Walker, Jesse 4, 13, 28
Wang, Huaxiong 7, 38
Wang, Lei 3, 9, 51, 52, 74, 81, 82, 90,

91, 122
Wang, Xiaoyun 3, 21, 27, 87
Watanabe, Dai 14, 28, 29, 53
Whiting, Doug 4, 13, 28
Wiener, Michael J. 18
Wilson, David A. 4
Winternitz, Robert S. 12
Wu, Hongjun 4, 14, 53
Wu, Shuang 123
Wu, Wenling 123

Yao, Andrew C. 3
Yao, Frances 3
Yin, Yiqun Lisa 3, 21, 27, 87
Yoshida, Hirotaka 29
Yu, Hongbo 3, 21, 27, 87
Yu, Xiuyuan 3, 21
Yuval, Gideon 17

Zimmer, Sébastien 14, 55, 60, 61

List of Publications

International Journals

1. ChangKyun Kim, Martin Schläffer, and SangJae Moon. Differential Side
Channel Analysis Attacks on FPGA Implementations of ARIA. Electronics
and Telecommunications Research Institute (ETRI), 30(2):315–325, April
2008.

2. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware
Implementation of Nonlinear Functions in the Presence of Glitches. J.
Cryptology, 24(2):292–321, 2011.

Refereed Conference Proceedings

1. Jean-Philippe Aumasson, Emilia Käsper, Lars R. Knudsen, Krystian Ma-
tusiewicz, Rune Steinsmo Ødeg̊ard, Thomas Peyrin, and Martin Schläffer.
Distinguishers for the Compression Function and Output Transformation
of Hamsi-256. In Ron Steinfeld and Philip Hawkes, editors, ACISP, vol-
ume 6168 of LNCS, pages 87–103. Springer, 2010.

2. Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, Maŕıa Naya-
Plasencia, Thomas Peyrin, Christian Rechberger, and Martin Schläffer.
Cryptanalysis of the 10-Round Hash and Full Compression Function
of SHAvite-3-512. In Daniel J. Bernstein and Tanja Lange, editors,
AFRICACRYPT, volume 6055 of LNCS, pages 419–436. Springer, 2010.

3. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Martin Schläffer.
Practical Collisions for SHAMATA-256. In Michael J. Jacobson Jr., Vin-
cent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryp-
tography, volume 5867 of LNCS, pages 1–15. Springer, 2009.

4. Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and Martin
Schläffer. Cryptanalysis of uffa v2 Components. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography,
volume 6544 of LNCS, pages 388–409. Springer, 2010.

5. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rij-
men, and Martin Schläffer. Rebound Distinguishers: Results on the

175

176 List of Publications

Full Whirlpool Compression Function. In Mitsuru Matsui, editor, ASI-
ACRYPT, volume 5912 of LNCS, pages 126–143. Springer, 2009.

6. Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolić, Yu Sasaki, and
Martin Schläffer. Rebound Attack on the Full Lane Compression Function.
In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages
106–125. Springer, 2009.

7. Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision Attack on
Boole. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 369–381,
2009.

8. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin
Schläffer. Improved Cryptanalysis of the Reduced Grøstl Compression
Function, ECHO Permutation and AES Block Cipher. In Michael J. Ja-
cobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected
Areas in Cryptography, volume 5867 of LNCS, pages 16–35. Springer, 2009.

9. Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanaly-
sis of Twister. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,
and Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages 342–
353, 2009.

10. Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5 Is
Weaker Than Weak: Attacks on Concatenated Combiners. In Mit-
suru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 144–161.
Springer, 2009.

11. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. The Rebound Attack: Cryptanalysis of Reduced Whirlpool
and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS, pages
260–276. Springer, 2009.

12. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S.
Thomsen. Rebound Attacks on the Reduced Grøstl Hash Function. In
Josef Pieprzyk, editor, CT-RSA, volume 5985 of LNCS, pages 350–365.
Springer, 2010.

13. Florian Mendel and Martin Schläffer. Collisions for Round-Reduced
LAKE. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP,
volume 5107 of LNCS, pages 267–281. Springer, 2008.

14. Florian Mendel and Martin Schläffer. On Free-Start Collisions and Col-
lisions for TIB3. In Pierangela Samarati, Moti Yung, Fabio Martinelli,
and Claudio Agostino Ardagna, editors, ISC, volume 5735 of LNCS, pages
95–106. Springer, 2009.

List of Publications 177

15. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware
Implementation of Non-linear Functions in the Presence of Glitches. In
Pil Joong Lee and Jung Hee Cheon, editors, ICISC, volume 5461 of LNCS,
pages 218–234. Springer, 2008.

16. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Using Normal Bases
for Compact Hardware Implementations of the AES S-Box. In Rafail
Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN, volume
5229 of LNCS, pages 236–245. Springer, 2008.

17. Martin Schläffer. Subspace Distinguisher for 5/8 Rounds of the ECHO-
256 Hash Function. In Alex Biryukov, Guang Gong, and Douglas R.
Stinson, editors, Selected Areas in Cryptography, volume 6544 of LNCS,
pages 369–387. Springer, 2010.

18. Martin Schläffer and Elisabeth Oswald. Searching for Differential Paths
in MD4. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS,
pages 242–261. Springer, 2006.

Preprints

1. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl – a SHA-3 candidate. Submission to NIST, December 2008. Avail-
able online: http://groestl.info/.

2. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. The Rebound Attack and Subspace Distinguishers:
Application to Whirlpool. Cryptology ePrint Archive, Report 2010/198,
2010. http://eprint.iacr.org/.

3. Florian Mendel and Martin Schläffer. Collisions and Preimages for Sarmal.
NIST hash function mailing list, December 2008. Available online: http:

//ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf.

4. Günther A. Roland and Martin Schläffer. Byteslicing Groestl - Optimized
Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Groestl,
2011.

5. Martin Schläffer. Improved Collisions for Reduced ECHO-256. Cryptology
ePrint Archive, Report 2010/588, 2010. http://eprint.iacr.org/.

http://groestl.info/
http://eprint.iacr.org/
http://ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf
http://ehash.iaik.tugraz.at/uploads/d/d1/Salt-collision.pdf
http://eprint.iacr.org/

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Notation
	Introduction
	Cryptographic Hash Functions
	Cryptanalysis of Hash Functions
	The NIST SHA-3 Competition
	Outline of this Thesis
	Main Contributions

	Analysis of Cryptographic Hash Functions
	Cryptographic Hash Functions
	Main Security Requirements
	Hash Function Constructions
	Compression Function Constructions
	Reduced Hash Function and Building Block Attacks

	Generic Attack Methods
	Birthday Attack
	Meet-in-the-Middle Attack
	Merging Lists
	Generalized Birthday Attack

	Differential Cryptanalysis
	Overview
	Preliminaries
	Application to Hash Functions
	Truncated Differential Analysis

	The Rebound Attack
	Overview
	Constructing a Trail
	Inbound Phase
	Outbound Phase
	Multiple Inbound Phases
	Multiple Outbound Phases

	The Rebound Attack on AES-Based Permutations
	The AES Block Cipher
	State Update
	Key Schedule
	Decryption
	The Wide Trail Design Strategy

	Differential Properties of AES Round Transformations
	SubBytes
	ShiftRows
	MixColumns

	Combined AES Round Transformations
	Single AES Round
	SuperBoxes

	Finding Good Differential Trails
	Minimum Truncated Differential Trails
	Computing the Expected Number of Right Pairs

	The Basic Rebound Attack
	Constructing a Truncated Differential Trail
	The Inbound Phase
	The Outbound Phase

	Solving Linearly for Pairs
	Filtering for Differential Trails
	Solving for Conforming State Pairs

	Time-Memory Trade-Offs using SuperBoxes
	Extending the Truncated Differential Trail
	Using the Differential Distribution Table
	A Time-Memory Trade-Off with Memory 232
	Non-Full Active SuperBoxes

	Summary

	Design, Security and Implementation of Grøstl
	Description of Grøstl
	The Hash Function
	The Compression Function
	The Output Transformation
	The Permutations

	Security
	Hash Function
	Compression Function
	Permutations

	Efficient Implementation Techniques
	Table-Based
	Byte Slicing
	Bit Slicing

	Summary

	Applying the Rebound Attack to Grøstl
	The Rebound Attack on the Grøstl-256 Permutation
	Constructing Truncated Differential Paths
	The Inbound Phase
	The Outbound Phase
	Distinguishers for the Permutation
	Distinguisher for the Output Transformation

	Attacks on the Compression function of Grøstl-256
	The Rebound Attack on the Compression Function
	Constructing Colliding Truncated Differential Paths
	Semi-Free-Start Collisions for 6 Rounds of Grøstl-256

	Rebound Attack on the Grøstl Hash Function
	Inbound Phase between P and Q
	Collisions for 3 Rounds of Grøstl-256

	Application to Grøstl-512
	Constructing Truncated Differential Paths for Grøstl-512
	Semi-Free-Start Collisions for 6 Rounds of Grøstl-512
	Collisions for 3 Rounds of Grøstl-512

	Summary

	Multiple Inbound and Multiple Outbound Phases in ECHO
	Description of ECHO
	Truncated Differential Analysis of ECHO
	Sparse Truncated Differential Paths for ECHO
	An Equivalent ECHO Round Description
	SuperBox
	SuperMixColumns
	The Inbound Phase in ECHO
	Expected Number of Right Pairs

	Attacks on the ECHO-256 Hash Function
	The Rebound Attack on ECHO
	Subspace Distinguisher for 5 Rounds
	Collisions for 5 Rounds

	Attacks on the ECHO Compression Function
	The Truncated Differential Path
	Outline of the Attack
	Finding Right Pairs for Sparse Paths of the Permutation
	Collisions for 6 Rounds with Chosen Salt
	Subspace Distinguisher for 7 Rounds with Chosen Salt

	Summary

	Collisions for the Full Compression Function of LANE
	Description of Lane
	The Compression Function
	The Message Expansion
	The Permutations

	The Rebound Attack on Lane
	Outline of the Rebound Attack
	The Inbound Phase
	The Outbound Phase

	Compression Function Attacks on Lane
	Semi-Free-Start Collision for Lane-256
	Semi-Free-Start Collision for Lane-512

	Summary

	Conclusions
	Analysis of Grøstl-0
	Using the Same Truncated Differential Path
	Semi-Free-Start Collisions for 7 Rounds of Grøstl-0-256
	Semi-Free-Start Collision for 7 Rounds of Grøstl-0-512
	Collisions for 4 Rounds of Grøstl-0-256
	Collisions for 5 Rounds of Grøstl-0-512

	Considering Differences between P and Q
	Semi-Free-Start Collisions for 7 Rounds of Grøstl-0-256
	Collisions for 6 Rounds of Grøstl-0-256

	Bibliography
	Author Index
	List of Publications

