
N
ovem

ber 2013
R

onald Tögl
O

n Trusted C
om

puting Interfaces

A PhD Thesis Presented to the Faculty of Computer Science in
Fulfillment of the Requirements for the PhD Degree

by

Ronald Tögl

Assessors:
Prof. Roderick Bloem, PhD
Dr. Andrew Martin

Graz University of Technology
Faculty of Computer Science
Institute for Applied Information
Processing and Communications
IAIK

On Trusted Computing Interfaces

November 2013

On Trusted Computing Interfaces

by
Ronald Gregor Tögl

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Roderick Paul Bloem, PhD (Graz University of Technology, Austria)
Dr. Andrew Martin (University of Oxford, United Kingdom)

November 2013

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

Trusted Computing platforms are general purpose computers augmented with
hardware-based security mechanisms such as the Trusted Platform Module to
protect software services. The objective of this thesis was to study the interac-
tions of security mechanisms and services, developers and users and the Internet
by focusing on the interfaces that connect them.

First, a Trusted Computing Application Programming Interface is proposed
to allow Java programmers easy access to the features of the Trusted Platform
Module. Based on specific requirements and goals, a high-level design is derived.
The Application Programming Interface has been standardized as JSR 321 in the
Java Community Process. Standardization itself has been performed in an open,
transparent way and supported by implementations and intensive testing.

Second, a wireless interface is proposed for the Trusted Platform Module to
serve as direct communication channel to the user. Through Near Field Commu-
nications, the trustworthiness of public kiosk computers can be queried with the
help of a commodity smart phone. A protocol and modifications to the Trusted
Platform Module are proposed and evaluated in a series of experiments and
prototypes. Alternative approaches and potential improvements are discussed.

Third, formal methods are applied to services that build upon the Trusted
Platform Module to investigate the security of cryptographic protocols and of a
virtual security module. A protocol that leverages Trusted Computing is studied
through model checking, unveiling a potential security issue. Through a rigorous
model and security specifications a proposed improvement is proved to be cor-
rect. Further, a Trusted virtual Security Module is presented and integrated into
a virtualization platform which offers integrity protection and runtime isolation
on commodity PC platforms. The module’s Security Application Programming
Interface is rigorously specified and designed to protect cryptographic key ma-
terial, especially signature keys. The interface is verified to be robust against
logical attacks. The module’s implementation is described and benchmarks pro-
vided.

The principal result is that by studying the interfaces of Trusted Computing
platforms, the overall security can be improved while making programming less
complex, user interaction more intuitive and key protection more affordable.

iii

Acknowledgements

This thesis would not have been possible without the encouragement and dedi-
cation of many people. I am indebted to all colleagues, co-authors and friends
who supported me during the work for this thesis.

I would like to express my deep gratitude to Roderick Bloem who I greatly
appreciate for many a thing, among them being the adviser of this thesis. I am
very thankful to Andrew Martin for welcoming me to a visit to Oxford and for
being the external assessor of this thesis. I thank all past and present members
of the Secure and Correct Systems Group at IAIK for countless, both fruitful
and enjoyable discussions. Special thanks go to Martin Pirker for many years of
joint work and research.

A googol thanks go to my family, especially Angelika, Daniel, Gero, Lennart,
Reinhard, and Thea. Without them, this work would not have been possible at
all. Finally, I would like to thank my girlfriend Sabine for her encouragement,
love and faith.

Ronald Toegl
Graz, November 2013

v

Table of Contents

Abstract iii

Acknowledgements v

List of Tables xi

List of Figures xiii

Acronyms xv

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Research Challenges . 3
1.4 Contribution . 5
1.5 Outline . 7

2 Background 11
2.1 Introduction . 11
2.2 Of Security and Trust in Computing 12

2.2.1 Secure Computing . 12
2.2.2 Hardware Security Modules 13
2.2.3 ‘Trusted’ Computing . 14

2.3 TCG Hardware Architecture . 16
2.3.1 Trusted Platform Components 16
2.3.2 Cryptographic Methods used by the TCG 17
2.3.3 Trusted Platform Module and Core Concepts 18

2.4 TCG Software Architecture . 21
2.5 Trusted System Architectures . 23

2.5.1 Static Chain-of-Trust . 24
2.5.2 Platform Virtualization 25
2.5.3 Dynamic Chain-of-Trust 27

2.6 Security Protocols and their Analysis 29
2.6.1 Cryptographic Protocols and Protocol Failures 29
2.6.2 Protocol Analysis . 32

2.7 Vulnerabilities of Trusted Platforms 35
2.8 Summary . 36

vii

viii Table of Contents

3 Design and Standardization of a Trusted Computing API 39
3.1 Introduction . 39
3.2 Trusted Computing in the Java Environment 41

3.2.1 Emerging Fields of Use 41
3.2.2 Review of Existing Java Libraries 42
3.2.3 Other Trusted Computing Interfaces 44
3.2.4 Findings . 45

3.3 API Design . 46
3.3.1 The Java Community Process 47
3.3.2 Goals for a Novel API . 47
3.3.3 Expected Developer Knowledge 49
3.3.4 API Scope Considerations 50
3.3.5 Process Implementation: Transparency and Agility 51
3.3.6 Selected Features . 53

3.4 Outline of the API . 53
3.5 Implementation and Integration Aspects 63

3.5.1 Java Libraries and Services for Trusted Computing 63
3.5.2 Reference Implementation 66
3.5.3 Technology Compatibility Kit 67

3.6 Experience . 69
3.6.1 Third Party Implementation and Teaching Experience . . 69
3.6.2 Case Study: Attestation in the Cloud 70

3.7 Summary and Outlook . 72

4 A Proximity Interface for Attestation 75
4.1 Introduction . 75

4.1.1 Motivation and Background 76
4.1.2 From Remote to Local Attestation 78
4.1.3 Near Field Communication 79

4.2 Attestation Of Local Platforms 80
4.2.1 Open Challenges . 82
4.2.2 Scenario: Kiosk Computing 83

4.3 Mobile Attestation Token . 84
4.3.1 The MAT Protocol . 84
4.3.2 An NFC Interface for the TPM 88
4.3.3 Integration of NFC with the MAT Protocol 91

4.4 Implementation and Validation 92
4.4.1 Mobile Attestation Token and Kiosk Software Platform . 92
4.4.2 NFC Demonstrator . 93
4.4.3 NFC Robustness against Man-in-the-Middle Attacks . . . 95
4.4.4 Validation . 96

4.5 Extensions and further Experiments 96
4.5.1 Touch‘n’ Trust . 96
4.5.2 Local Attestation with a Dedicated Hardware Device . . . 98
4.5.3 Isolation and Integrity Protection on the Mobile Device . 99

4.6 Summary . 101

Table of Contents ix

5 Rigorous Design of Trusted Services 103
5.1 Introduction . 103
5.2 Formal Analysis of a Secret Distribution Scheme 105

5.2.1 Protocol . 106
5.2.2 Model Checking . 107

5.3 Modeling the Protocol . 108
5.3.1 Assumptions . 109
5.3.2 Model Details . 109
5.3.3 Security Targets . 110

5.4 Protocol Analysis Results . 111
5.4.1 Model Checking . 111
5.4.2 Enhancements . 112

5.5 Conclusions on Protocol Analysis 112
5.6 A Trusted Virtual Security Module 114
5.7 TvSM Background . 115

5.7.1 Intel TXT as DRTM . 115
5.7.2 Challenges and Tools for API Analysis 116

5.8 Architecture . 117
5.8.1 Virtual Security Module 117
5.8.2 Trusted Virtualization Platform Integration 120

5.9 API Design . 121
5.9.1 Considerations and Notation 121
5.9.2 Abstract Presentation of the API 123

5.10 API Model and Practical Verification 125
5.10.1 The Verification Tool . 125
5.10.2 The Executable Model . 127

5.11 Validation of Method and Verification Results 131
5.11.1 Example Attacks . 131
5.11.2 Conclusions from Analysis and Validation 133

5.12 Implementation . 134
5.12.1 Software Design . 134
5.12.2 Performance and Results 134
5.12.3 Security Discussion . 136

5.13 Conclusions on the TvSM . 137
5.14 Summary . 137

6 Conclusions 139
6.1 A Look Back . 139
6.2 Contribution . 139
6.3 A Look Forward . 141
6.4 Conclusions . 142

A Appendix 1 - The JSR 321 API 143
A.1 The API . 143

x Table of Contents

B Appendix - List of Publications 151
B.1 Journals . 151
B.2 Conference and Workshop Proceedings 152

Bibliography 157

Author Index 191

List of Tables

3.1 Coverage Results of the JSR 321 TCK. 68

4.1 The TPM establishNonce NFC Ordinal for the TPM. 89

5.1 Valid Key Policies in the TvSM. 126
5.2 TvSM Implementation Performance. 136
5.3 TPM Performance on RSA 1024 bit Keys. 136

xi

List of Figures

1.1 Sketch of a Trusted Computing-enabled Computer System. . . . 4
1.2 Outline of the Structure of this Thesis. 7

2.1 A Trusted Platform. 17
2.2 The TCG Software Stack. 22
2.3 The Simplified Needham-Schroeder Public Key Protocol. 30
2.4 Lowe’s Attack. 32
2.5 The Improved Needham-Schroeder-Lowe Public Key Protocol. . 32

3.1 Development and Specification Time-line for JSR 321. 52
3.2 Mapping of TSS Functions to the JSR 321 API (part 1). 54
3.3 Mapping of TSS Functions to the JSR 321 API (part 2). 55
3.4 Mapping of TSS Functions to the JSR 321 API (part 3). 56
3.5 Mapping of TSS Functions to the JSR 321 API (part 4). 57
3.6 Mapping of TSS Functions to the JSR 321 API (part 5). 58
3.7 Mapping of TSS Functions to the JSR 321 API (part 6). 59
3.8 Mapping of TSS Functions to the JSR 321 API (part 7). 60
3.9 The Relationship Between the APIs Core Components. 61
3.10 Example of JSR 321 Code that Performs Binding of Data. . . . 62
3.11 Integration Possibilities for the JSR 321 High-Level API. 64
3.12 The TCK Graphical User Interface Provided by JT Harness. . . 68
3.13 Example of Code Annotation in Cloud Computing Experiments. 71

4.1 Description of the Motivating Usecase. 85
4.2 Ticket-based Local Attestation Scheme. 87
4.3 NFC Nonce-Agreement Protocol. 91
4.4 The TPM NFC DH PARMS Data Structure. 91
4.5 The Mobile Attestation Token Software Informs the User. . . . 93
4.6 NFC Demonstrator Printed Circuit Board. 94

5.1 The Key Distribution Protocol of [292]. 106
5.2 The TvSM Protects Keys Through a Security API. 118
5.3 The Key Hierarchy. 119
5.4 Abstract TvSM Maintenance API. 123
5.5 Abstract TvSM Operating API. 124
5.6 Sample Key Generation Rule. 129

xiii

xiv List of Figures

5.7 Model Rules for Key Export. 130
5.8 API Attack Example 1. 132
5.9 API Attack Example 2. 133
5.10 Outline of the TvSM Implementation. 135

Acronyms

ACM Authenticated Code Module
ARM Acorn RISC Machine, a micro-architecture
AES Advanced Encryption Standard
AIK Attestation Identity Key
API Application Programming Interface
BIOS Basic Input/Output System
CPU Central Processing Unit
DAA Direct Anonymous Attestation
DH Diffie-Hellman(-Merkle) key exchange
DMA Direct Memory Accesses
DRTM Dynamic RTM
EAL Evaluation Assurance Level
EC Executive Committee (of the JCP)
ECC Elliptic-Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EG Expert Group (of the JSR)
EK Endorsement Key
EM Electromagnetic
FSM Finite State Machine
HMAC Keyed-Hash Message Authentication Code
HSM Hardware Security Module
I2C Inter-Integrated Circuit (a computer bus)
IDE Integrated Development Environment
IT Information Technology
JCP Java Community Process
JIT compiler Just-In-Time compiler
JNI Java Native Interface
JRE Java Runtime Environment
JSR Java Specification Request
JVM Java Virtual Machine
KVM Kernel-based Virtual Machine
LCP Launch Control Policy
LOC Lines Of Code
LPC Low Pin Count bus
MAT Mobile Attestation Token
MLE Measured Launch Environment

xv

xvi Acronyms

MTM Mobile Trusted Module
NFC Near Field Communication
NIST National Institute of Standards and Technology (of the USA)
OS Operating System
PAL Piece of Application Logic
PCB Printed Circuit Board
PCR Platform Configuration Register
PDA Personal Digital Assistant
PDF Portable Document Format
PKCS Public-Key Cryptography Standards
PKI Public Key Infrastructure
RAM Random Access Memory
RF Radio Frequency
RI Reference Implementation (of the JSR)
RPC Remote-Procedure Call
RSA Rivest, Shamir and Adleman (crytographic algorithm)
RTM Root of Trust for Measurement
RTR Root of Trust for Reporting
RTS Root of Trust for Storage
SHA-1 Secure Hash Algorithm 1 (a NIST standard)
SML Stored Measurement Log
SOAP Simple Object Access Protocol
SoC System-on-Chip
SRK Storage Root Key
SRTM Static RTM
SVM AMD Secure Virtual Machine
TBS TPM Base Services
TC Trusted Computing
TCB Trusted Computing Base
TCG Trusted Computing Group
TCK Technology Compatibility Kit (of the JSR)
TCP Transmission Control Protocol
TCPA Trusted Computing Platform Alliance
TCS TCG Core Services (of the TSS)
TDDL TCG Device Driver Library (of the TSS)
TIS TPM Interface Specification
TLS Transport Layer Security
TPM Trusted Platform Module
TSP TCG Service Provider (of the TSS)
TSS TCG Software Stack
TvSM Trusted virtual Security Module
TXT Intel Trusted eXecution Technology
USB Universal Serial Bus
UUID Universally Unique Identifier
VLP Verified Launch Policy

Acronyms xvii

VM Virtual Machine
vTPM virtual TPM
x86 Intel 8086-compatible micro-architecture
XML Extensible Markup Language

1
Introduction

1.1 Introduction

The open and flexible design of today’s computers has been the driver of the in-
formation age. Yet, these computers often lack security, and countless successful
attacks result in loss of users’ data, severe damage to enterprises and failure of
critical infrastructures.

In Trusted Computing, specialized mechanisms are added to computer sys-
tems to improve their security. These security features are either integrated
into existing hardware components, added through extra hardware devices, or
programmed into the operating system and the software it supports.

Trusted Computing mechanisms are therefore embedded into conventional,
feature-rich and vulnerable systems. The isolation of these mechanisms from the
surrounding ‘sea’ of features creates small ‘islands’ of security, which may well be
trusted with a high level of confidence. However, unlike to geographical islands,
there has until now been only limited interest in the ‘beaches’, the interfaces that
separate the Trusted Computing mechanisms from the encompassing platform,
the outside network and the users.

This thesis examines these interfaces in the light of computer security re-
search, while being based on prototypes and experiments. We initially present
the state of the art of Trusted Computing and then move on to study three
distinct aspects of interfaces for Trusted Computing. First, we present an inno-
vative application programming interface which serves as gateway for application
software and ultimately the human developer. Second, we propose mechanisms
that help in the interaction with the user, so that he can decide to trust public
computer terminals, or not. Third, we study how a software’s interface towards

1

2 Chapter 1. Introduction

Declarations
The curriculum for doctoral studies in technical sciences of Graz Uni-
versity of Technology requires each dissertation to contain a commented
list of publications.

A list of relevant scientific publications by the author is provided
in Appendix B starting on page 151.
Furthermore, each chapter is accompanied by a grey box explaining
the chapter’s relation to the previous publications of the author. Also,
the contribution of co-authors, co-workers and supervised students are
declared in those sections.

This chapter extensively adapts, cites and reuses previously pub-
lished material from the author, especially

[91] K. Dietrich, T. Vejda, R. Toegl, M. Pirker, and P. Lipp.
Can you Really Trust your Computer Today? — Emerging architec-
tures for Trusted Computing. ENISA Quarterly, 3(3):8–9, Jul–Sep 2007.

The front page illustration is copyright (c) Natascha Eibl and
Moritz Lipp, 2013. Used with permission.

the Internet can be designed to guarantee an expected behavior. A discussion
of the results concludes the thesis.

In this chapter we introduce our thesis. First, we motivate the basic idea
of Trusted Computing and sketch out a Trusted Platform. Second, we identify
open research challenges, based on the literature. Third, we discuss what is
achievable and present the contributions of this thesis. Fourth, we present the
structure of this thesis and give an outlook on the remaining chapters.

1.2 Motivation
Computer and Communications Security is a field as old as (electronic) com-
puting [210] and has made great strides forward over the last decades, towards
the provision of confidentiality, integrity and authenticity of data and code for
users, enterprises and organizations. Unfortunately, also the complexity and in-
terconnectivity of systems has increased, thus making it ever harder to protect
them against a multitude of threats. Overall, the chances of breaching security
on a general purpose computing system appear to be higher than ever before.

Instead of pursuing perfect security, major players in the industry have moved
to modify the existing system architecture to provide a gradual improvement on
platform security. The idea is to create the mechanisms that allow one to find out
whether a given platform can be trusted for an intended purpose. This approach,
which will discuss in much more detail in Chapter 2, is called Trusted Computing

1.3. Research Challenges 3

[211]. To amend systems accordingly, a set of functionalities which can give
assurance on their configuration and indication of their expected behavior has
been added. The most significant of the created technologies is the Trusted
Platform Module (TPM) [345], specified by the Trusted Computing Group (TCG)
[346] industry consortium.

The TPM is a small cryptography co-processor, physically bound to a desk-
top PC, server or mobile device. It is designed to protect selected, critical
material from malicious software or remote attackers. The TPM is a passive
device, a receiver of external commands. It thus depends on a set of system
software that manages its resources and provides well-defined interface for soft-
ware that intends to use it. One characteristic way to use the TPM is to build
a chain-of-trust: here, all software on a platform is broken down into smaller
pieces and starting with power-on, all software is examined before it is executed.
The so gathered measurement values are stored inside the TPM and can then be
reported by the TPM. Analysis of this report will allow another party to decide
whether a software service executed is considered secure for an intended task
and therefore whether the overall platform can be used securely for this pur-
pose. Alternatively, access to selected data can be restricted to such a trusted
configuration.

The basic idea of such a Trusted Computing platform is sketched out in
Figure 1.1. In this simplified perspective, we can identify three parties: the user,
the Internet which represents any number of other platforms, and one specific
Trusted Computing-enabled platform. This platform consists of its hardware
assembly, which includes the TPM, and a software configuration, which includes
the Operating System (OS) and a potentially productive software service. This
service needs capabilities to access the TPM to make use of its features such
as measurement and reporting. The service will then use the TPM to gather
a report on its configuration which it will then present, if challenged, via a
network protocol to other services on the Internet. The report should prove
the good intentions of the service. Likewise, users wishing to interact with the
Trusted Computing platform will need a similar report, in a form that allows
them to make a sound trust decision.

Overall, the vision of Trusted Computing promises [32] a number of benefits.
Users will be able to authenticate platforms, to have confidence in behavioral
integrity and to trust a system which is not under their control. Companies will
profit from enhanced security, will have a technological foundation for privacy
and will be able to give feedback of this security to the users and to employ
trustworthy digital signatures.

1.3 Research Challenges
Proposed a decade ago, Trusted Computing had a slow start. Realizing a Trusted
Computing platform is not simple, despite commercial availability of many com-
ponents and compatible hardware being widely sold [296]. Also, early in the

4 Chapter 1. Introduction

TPM Hardware

 Operating System

A Service

The Internet

A User

Software Configuration

Figure 1.1: A simplified sketch of a Trusted Computing-enabled Computer System
with a selection of interfaces highlighted.

development of the Trusted Computing approach, there were a number of gen-
eral concerns [14] on privacy and on economical and political sincereness, which
might have slowed down the deployment.

Even considering this, Trusted Computing has seen such slow an adoption,
that suggests that also a number of more technical issues exist. A number of
concrete challenges for the Trusted Computing technology have been set out by
Balfe et al. [34], and Vishik et al. [354]. A subset of those are that Trusted Com-
puting mechanisms suffer from a low usability, there is a lack of specifications
and standards, especially for the interaction between heterogeneous devices and,
that digital evidence provided to gain trust should be consumable both by digital
entities and human beings.

More specifically, we have identified the following specific challenges from the
literature.

• There is a notorious lack of software that actually uses [291] the TPM tech-
nology. One reason may be the relatively high complexity of the accom-

1.4. Contribution 5

panying technical specifications for programming interfaces, which causes
a steep learning curve for programmers and leads to “complicated” [308]
programs. Furthermore, there has been a lack of established, standards-
compliant interfaces for other programming languages than C.

• Applying the TPM to help users decide whether a public computing device
can be trusted with confidential information is difficult, and the user needs
another device to help her perform the cryptographic protocols with the
TPM. A perfectly trustworthy hardware token as proposed by McCune et
al. [216] could perform this task, yet remains an unattainable ideal. Among
the open issues here are the challenges of universal physical connectivity
while offering resistance against relay attacks and how to decide on the
trustworthiness of the highly variable software configurations [105, 149] in
today’s PCs.

• While for general purpose cryptographic protocols promising automatic
tools are emerging [1, 198, 217, 219] that allow protocol designers to find
potential attacks, protocols involving Trusted Computing commands are
notoriously difficult to assess for their security. For instance, TPM opera-
tions might give different results, depending on whether the platform is in
a trusted state or not.

• Hardware Security Modules are devices designed to provide maximum
security to cryptographic materials, by handling them in a physically
shielded environment and only through a software interface that enforces
strict security policies. While these specialized modules are typically very
expensive, the technology to implement them converges with that of Trusted
Computing-enabled general purpose PCs [300]. A software implementation
on a modern PC platform thus would be cheaper and still could, to some
degree, rely on hardware-based security.

• The Application Programming Interfaces (APIs) of hardware security mod-
ules, TPMs and Trusted Computing-protected software services should be
designed with formal rigor: yet tools to reason formally on stateful com-
ponents [145] are only emerging and the verification of a full security ap-
plication programming interface has not been demonstrated yet.

1.4 Contribution
Clearly, there is a need for improvement and novel solutions to these shortcom-
ings and challenges. Yet, in the industry-driven context of Trusted Computing
an academic thesis can only do so much; most technologies have to be accepted
as they are. The complexities of real-world systems and the economical environ-
ment make short-term modification to most of the system components unlikely.
However, the way technologies are used can be modified, and the ways they

6 Chapter 1. Introduction

should be applied improved and furthermore, it is the role of academia to pro-
pose futuristic concepts, which may or may not find commercial acceptance in
the longer term.

Consequently, we do not desire to re-invent the general computer architecture
and, instead of re-designing hardly modifiable components, we focus on the
gateways between those components, the interfaces that connect them.

Trusted Computing system can profit by novel interfaces, through platform-
independent programming interfaces that make using the TPM more effective
and efficient, by directly and physically connecting the TPM to a trustworthy
user device, and by rigorously defining software service interfaces such that their
behavior meets security specifications.

In this thesis, we report on the author’s main results achieved in the years
2007–2013, through our participation in several national and international re-
search projects and individual research. Over the course of those years, most of
the results have been published in peer-reviewed journals and conference pro-
ceedings. We present our contributions from these publications, including ex-
tensions and added details in three chapters.

Overall, this thesis presents the following main contributions.

• The design of an easy-to-use, high-level API for the TPM, which is tar-
geting the Java language. The result is a small, compact interface that
offers access to the core concepts that together enact Trusted Computing.
The API integrates well in the Java environment and takes the needs of
application developers into account. It has been shown to be effective in
teaching, developing Cloud applications and embedded systems.

• The release of this API as an open industry standard. We not only designed
the “Trusted Computing API for Java”, but also turned it into a standard
by completing the difference phases of the Java Community Process. The
standardization was done in an innovative way, incorporating elements of
agile software development and striving to be as open and transparent as
possible. Also, a reference implementation and a thorough test suite were
created.

• A protocol and concept for attestation between public computer terminals
and smartphones, using a short-range only radio technology. We show,
how flexible off-loading of trust decisions to a remote server can benefit the
users’ right to self-determination in their decision to trust a device. We
further show that TPMs could be equipped with a very short range radio
interface, by proposing suitable integration in the TPM and an evaluation
of the expected over-the-air performance.

• The formal analysis of a cryptographic protocol which uses the TPM to
distribute secrets. As convenient push-button tools do not support the
stateful TPM API, we apply model checking. We are able to show a

1.5. Outline 7

potential weakness. Furthermore, we prove that a proposed improvement
prevents that protocol failure.

• We present the design and realization of a virtual hardware security mod-
ule which can be implemented in software only, thus being cheap and
fast. Even on commercial-off-the-shelf PCs, its integrity is protected at
boot-time and at runtime: we leverage a complete, uninterrupted chain
of measurements of the complete software configuration, from firmware to
user-mode service; a virtualization platform provides isolation from other
services on the same machine.

• The complete security API of this virtual security module is formally ver-
ified to provide a comprehensive, correct key policy. We precisely define
the API signatures, set key policies and specify which data must remain
private. An executive model on a model checker optimized for security
analysis allows experiments on API definitions, so that we can exactly de-
termine which policy checks need to be done where in an implementation
of the API.

1.5 Outline
The following chapters group these contributions and integrate them into a
many-sided account. Figure 1.2 presents the structural outline of this thesis,
which consists of five chapters, starting with this introduction. It is followed by
a background chapter that serves as basis for the three distinct technical chap-
ters in which we have grouped our contributions. A final chapter presents the
conclusions.

1. Introduction

3. Design and
Standardization

of a Trusted
Computing API

2. Background

4. A Proximity
Interface for
Attestation

5. Behavioural
Assurance for

Trusted Services

6. Conclusions

Figure 1.2: Outline of the Structure of this Thesis.

In Chapter 2, we will lay the technological groundwork for all following chap-
ters. The discussion of background will set Trusted Computing in context with
computer security and its history, and discuss the very term “trust” in more de-
tail. Then Trusted Computing technologies are introduced, especially the TPM
and the TCG Software Stack. We then present system architectures that leverage

8 Chapter 1. Introduction

these mechanisms, and categorize them by the initial measuring component and
the use of virtualization. Going from a single platform to a computer network,
we give an overview of cryptographic protocols. We continue with a review of
methods for the rigorous analysis of protocols especially using automated tools.
Thus the state of the art is presented.

Chapter 3 presents the design of an API for the Java language that allows
programmers to use the TPM. The need for a novel interface is motivated, es-
pecially with regards to the extensive Java environment. We present a review
of existing proposals that stem from the TCG Software Stack and high-level
alternatives. From this, we derive requirements for a new, high level API. We
set technological goals and assumptions on developers using and technologies
for implementing the API, with the desire for ease-of-use being paramount. The
design itself is influenced by a formal process, as one of the goals of the API is
official standardization in the Java Community Process. Our approach to stan-
dardization as such is also reported as an attempt in transparency and openness,
together with a time-line of events. The chapter then outlines the API’s classes
and methods and gives a code example. Implementation and testing aspects
complete the technical presentation. We report on experiences with the API,
including its use in a networked Cloud environment. The chapter concludes with
a summary of the process which lead to the successful standardization of this
API called Java Standardization Request #321 (JSR 321).

In the next Chapter, 4, we consider a novel physical interface for interaction
between the TPM and a user through a token, i.e. a small mobile device. The
idea is to allow users to determine whether a physically present, local machine
fulfills their security policy, using their smart phone. After a motivation, we in-
troduce Near Field Communication, a wireless industry-standard interface which
we use for our purposes. We then study the literature on attestation in scenarios
that consider locality and identify open challenges and propose a possible usage
scenario. We then present our concept for a token for attestation which consists
of a protocol, of a set of changes to the TPM, and of the integration of the
solution. We then report on our validation of selected aspects of the concept,
such as implementations of mobile and stationary software, and air interface
performance assessments. Several related research results help complement the
picture and underline the viability of our proposal: under other performance as-
sumptions, our scheme can be simplified; the attestation token software can also
be replaced by a specialized hardware device; mobile phone security mechanisms
can be employed to optimize our scheme further.

The work in Chapter 5 has its foundations in the insight that Trusted Com-
puting mechanisms alone cannot guarantee a secure behavior of software services.
However, by rigorously applying formal methods on the interfaces of the service,
we can then specify a service, that cannot behave maliciously if implemented
correctly. We study two cases: First, an existing cryptographic protocol [292]
that uses the TPM to distribute secrets to trusted platforms. As available auto-
mated tools find their limitations in the stateful definition of trust, we present a
manually tailored model of the protocol, and show the existence of a flaw. We

1.5. Outline 9

suggest an improved version and show it to be correct.
Second, we present the full design of a virtual security module, which replaces —
on commodity desktop hardware — specialized hardware security modules with
an isolated and integrity protected software component for handling key mate-
rial. Our architecture is based on a trusted virtualization platform specifically
designed for this purpose and a security module designed for correct behavior.
To achieve this, we i) specify the modules API formally, and ii) verify that the
API cannot, by accident or manipulation, disclose private key material. This
verification is achieved through model checking the key policies of the API. Im-
plementation aspects and performance results are provided as well.

In Chapter 6 we summarize and synthesize the results of the previous chap-
ters. A number of directions for future work is suggested. Finally, we conclude.

2
Background

2.1 Introduction

This chapter provides the technical background for the remainder of this the-
sis. At first we will put computer security in a historical perspective and study
definitions of ‘trust’. The subsequent topic will be trusted platform technolo-
gies proposed by the industry, such as the Trusted Platform Module and the
TCG Software Stack. We will then study different proposed Trusted Computing
platforms that seek to apply these technologies, often together with platform
virtualization. The chapter then moves on from individual platforms to commu-
nicating systems by introducing security protocols in general and their analysis
using symbolic formal methods in particular.

11

12 Chapter 2. Background

Declarations

This chapter extensively adapts, cites and reuses previously pub-
lished material from the author, especially

[325] R. Toegl, G. Hofferek, K. Greimel, A. H. Y. Leung, R.-W.
Phan, and R. Bloem. Formal analysis of a TPM-based secrets dis-
tribution and storage scheme. In Proceedings TRUSTCOM 2008, in:
Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for, pages 2289–2294. IEEE Computer Society, 2008.

[153] M. Hutter and R. Toegl. Touch‘n’ Trust: An NFC-enabled
trusted platform module. The International Journal on Advances in
Security, 4(1 & 2):131–141, 2011.

[333] R. Toegl, M. Pirker, and M. Gissing. acTvSM: A dynamic
virtualization platform for enforcement of application integrity. In
L. Chen and M. Yung, editors, Trusted Systems, volume 6802 of
Lecture Notes in Computer Science, pages 326–345. Springer Berlin /
Heidelberg, 2011.

[339] R. Toegl, T. Winkler, M. Nauman, and T. W. Hong. Specification
and Standardization of a Java Trusted Computing API. Softw. Pract.
Exper., 42(8):945–965, 2012.

2.2 Of Security and Trust in Computing

2.2.1 Secure Computing
Computer security has been a growing concern ever since the first computing ma-
chines were created with mostly military applications during the Second World
War. Early installations were protected against espionage and sabotage by phys-
ical security such as guards and organizational measures like strict confidential-
ity regulations imposed on the people working there. After the war, early batch
processing devices could still be protected with similar measures, even in com-
mercial environments. Yet, with the introduction of time-sharing [306] in the
1950s and 60s, several users would process different data on the same machine at
the same time. Consequently, computer systems were extended with hardware
and software features that restrict access to data, discern between supervisors
and non-privileged users and protect the operating system from manipulations.
Saltzer and Schroeder [280] provide an interesting overview of the 1970s’ state
of the art in system security.

In 1976, Harrison, Ruzzo and Ullman [139] proved desirable security prop-
erties, the non-leakage of rights in access control systems, to be undecidable

2.2. Of Security and Trust in Computing 13

problems. Determining the security of a generic piece of software may therefore
be undecidable too.

On a more practical level, the so-called Orange book [77,78] provided classifi-
cation guidelines for the security assessment of system architectures. It has now
been superseded by ISO 15408, Common Criteria for Information Technology
Security Evaluation [76]. In the same decade, also cryptography turned from
black magic (secret spy-craft) into an open science with the advent of public
standards such as DES [231] and public-key algorithms [92,103,272].

For several decades, more and more security features have now been inte-
grated in systems to provide what is traditionally called the “CIA” triad: Confi-
dentiality, Integrity and Authenticity as well as Non-Repudiation and Availability
to computer systems, programs, data and ultimately the user. Textbooks like
those by Anderson [15] or Bishop [44] provide a broad introduction of current
IT security.

Alas, also the complexity of individual systems has grown exponentially over
the last decades [229, 285] and as well as their inter-connectivity with the rise
of the Internet. A short look at the level of security currently achieved may be
warranted. In 2011, around 2.2 billion people, 32.7% of the world’s population,
were using the Internet [225]. Despite of all its positive effects, this global net-
work offers the possibility of abuse and malicious exploitation. The Symantec
Internet Security Threat Report [113] reports that more than 286 million unique
variants of malware were encountered by Symantec products in 2010, and 6253
new vulnerabilities were recorded. In that year, Symantec held less than 9% of
the world market of anti-virus products [241], but still recorded an overall of 3
billion malware attacks. These numbers, which hint that on average every user
is attacked at least once per year, seem to suggest that after decades of research,
computer security on is still an important problem that affects essentially ev-
eryone and every general purpose system on the Internet and which is far from
solved.

2.2.2 Hardware Security Modules

Software alone is vulnerable to viruses, inadvertent erasing, malicious hackers,
and complications from system failures. Physical barriers, such as vaults, and
secured entrances are (in most cases) cost-prohibitive due to the expense of the
initial investment and the on-going maintenance costs and do not adequately
protect against insider attacks. Thus, for security critical purposes, specialized
devices that offer relatively high, certified levels of security and assurance are
used. Such a Hardware Security Module (HSM) is a physical device in form of
a plug-in card or an external security device that can be attached to general
purpose computers and servers. The goals of a HSM are the secure genera-
tion, secure storage, and secure use of cryptographic and sensitive data mate-
rial. Hardware security modules are separate computing entities, and are often

14 Chapter 2. Background

shielded, and able to detect physical manipulation1 or even feature active coun-
termeasures. HSMs in addition provide logical protection of these materials from
non-authorized access.

HSMs can enable an institution to support controlled access to the activation
and use of important cryptographic keys. The foremost field of applications is
the protection of cryptographic keys that are used to create digital signatures,
a cryptographic scheme to demonstrate the authenticity of digital content (see
Section 2.3.2). Typically, the content of a hardware module can be backed up
to other hardware devices. In case one device is attacked or destroyed, a backup
remains either on a duplicate hardware device, in a spare token or smart card.

Anderson presents a concise survey of hardware security co-processors [16]
with the market offering a wide variety of functions and performances. The
performance achieved often determines the price of a module. A typical smart
card based HSM can sign data in a few seconds; some high speed HSMs with
cryptographic hardware acceleration reach more than 10 000 signature creations
per second. Well-documented commercial designs are those of the IBM 4758
[96,301] and IBM 4764 series [25]. A less commercial, rather open hardware and
software design was proposed by Gutmann [136].

HSMs do not offer generic computing services, but are accessed through
an Application Programming Interfaces (API), which either follows established
standards, or provides custom-built functionality.

2.2.3 ‘Trusted’ Computing
For general purpose, interconnected computers and networks, absolute security
seems to be unreachable in theory and practice. Yet, people, businesses and
organizations still need to rely on, indeed to trust in their computing devices
day by day.

So what does ‘trust’ mean? And how can this concept mostly encountered
in social interactions be mapped onto computer technology? In the brief defini-
tion of the Merriam-Webster On-line Dictionary [221] “trust” is 1) the “assured
reliance on the character, ability, strength, or truth of someone or something”
and 2) “dependence on something future”, or a “hope”. Rousseau et al. [274],
suggest a cross-disciplinary definition, that “trust is a psychological state com-
prising the intention to accept vulnerability based upon positive expectations of
the intentions or behavior of another.” Even less optimistic, but at least easier
to falsify, the US National Security Agency (NSA) defines (reported by [15]) a
trusted entity as one “whose failure can break the security policy”, as opposed
to a trustworthy entity “that will not fail”.

Accordingly, ‘trust’ does not depend on or even promise perfect assurance
in all cases. This is especially true for computer security. Here ’trust’ should
be seen as a certain acceptance of dependence, or technologically, as a gradual
improvement on platform security. In this spirit, major industry vendors have

1For instance, all data in a HSM may be automatically destroyed if the case is opened or
an inside sensor detects some light, suggesting manipulation.

2.2. Of Security and Trust in Computing 15

decided to modify general purpose computers to contain a security hardware
anchor. As a standardization body, the Trusted Computing Platform Alliance
(TCPA) was founded in 1999 with the mission of “enhancing trust” [317] in the
PC platform. Trusted Computing in the TCPA’s sense is to provide platforms
with “a declaration by a known authority that the platform can be trusted for
an intended purpose” [317]. This implies that, to the user, perfect security is
not necessarily guaranteed by the platform, but rather that certain expectations
should be fulfilled and evidence or reliable statements of this provided. In this
context Pearson et al. [250] identified trust as a synthesis of social and techno-
logical means of providing assurance in the process of forming an opinion. They
differentiate between persistent trust, which represents long-built confidence in
institutions and technologies, and dynamic trust, which is formed in the short
term depending on ad hoc information on context or configurations. According
to [250], a computer system may then be dynamically trusted if it is designed
and certified by persistently trusted authorities and if the deciding entity accepts
any provided evidence of this as credible and sufficient for the current situation
and environment.

Thus, Trusted Computing (TC) is a practical approach that adds function-
ality to hardware and software and provides certification schemes to improve
platform security. Describing the technological mechanisms needed for this,
the TCPA declared that “a trusted platform should provide at least three ba-
sic features: protected capabilities, integrity measurement and integrity report-
ing” [317]. Protected capabilities are operations with exclusive access to shielded
locations in the system, for instance inside a security co-processor. The integrity
of software can be measured by calculating a cryptographic check-sum over pieces
of binary code. Finally, integrity reporting of such a measurement can consist
of a statement about a list of measurements that is vouched for by a suitable
entity. The TCPA derived a basic set of specifications and its members started
the development of hardware and software.

Yet, this endeavor did not last for long. Incomplete privacy protection and
the general fear that Digital Rights Management (DRM) would be widely en-
forced, soon lead to extensive discussions and harsh criticism in the media and
also in academic discourse [14, 352]. The perceived risk was that some of the
technologies involved might be used to limit a user’s right of self-determination
on the software she executes on a platform. In 2003, apparently after losing the
public’s (persistent) trust, the TCPA dissolved. Its activities were subsequently
picked up by the Trusted Computing Group (TCG) [346] under a more open
and transparent management. More recent TPM specifications have been de-
signed to protect the privacy of users by hiding their platform identifiers through
sound cryptographic mechanisms. This unlinking of platform and trust services
protects against many types of misuse, but only if the services used follow rights-
protecting guidelines.

Today, the Trusted Computing Group defines most relevant technologies and
specifications for Trusted Computing. In its current technical specifications (and
the TCG glossary [346]), “trust is the expectation that a device will behave in

16 Chapter 2. Background

a particular manner for a specific purpose”. This is an appealing and quite
popular, but still unfortunate definition. First, the statement itself is so vague
that is is almost meaningless. Second, the determination of any behavior or non-
trivial property of software is just another undecidable problem [271] as difficult
as creating perfectly secure programs to begin with.

Yet, the impact of these specifications is significant. Most of the major com-
puter manufacturers are producing desktop and notebook computers containing
TCG specified hardware extensions, and the market research company IDC has
estimated that nearly 100 million TPM-equipped computers have been shipped
in 2010 [296]. Major technology providers like Intel, AMD and ARM also of-
fer vendor-specific mechanisms that build upon, and extend TCG standards or
provide competing security features for a wide choice of platforms.

2.3 TCG Hardware Architecture

2.3.1 Trusted Platform Components
The TCG proposes to extend the general purpose x86 PCs, mobile devices and
network components with a security subsystem to turn it into a Trusted Platform
[32, 346]. The case of a PC is depicted in Figure 2.1, where the components of
this subsystem are indicated. The most prominent one is the Trusted Platform
Module (TPM), a security co-processor. The Trusted Platform Module offers
trusted functionality to the BIOS and operating systems. The TPM acts as Root
of Trust for Storage (RTS), by offering a set of protected memory registers and
contains a Root of Trust for Reporting (RTR), a unique cryptographic identity
that can be used to vouch for security reports. The TPM is accompanied by
a Root of Trust for Measurement (RTM), which is a trustworthy functionality
provided either by the BIOS or the chip-set to establish integrity of software. An
essential third technical component is a set of trusted computing software that
integrates the hardware with the operating system, services and applications.

The cooperation of these technical components creates improved security and
can help establish dynamic trust in a platform. Persistent trust is provided by
following a set of public standards and specifications by trusted authorities such
as the TCG. Yet, it is arguably difficult to assess the security of a system, unless
all code and even the compile tool chain can be inspected. Thompson, in his
Turing award lecture [318], pointed out, that the sheer size of modern systems
makes full code inspection practically impossible. Instead, in real-world systems,
such assurance is provided by trusted, possibly third, parties that perform a best-
effort analysis and then give evidence in form of cryptographic certificates. Thus,
a persistently trusted and capable entity vouches for a certain level of, or rather
effort spent on the assessment of, security.

While not a part of the TCG-specified security subsystem, modern trusted
platforms often include another important technology: system virtualization,
which allows for the sharing of the hardware resources between different operat-
ing system instances. Virtualization has become a key technology for extending

2.3. TCG Hardware Architecture 17

Figure 2.1: A Trusted Platform includes a TCG-specified subsystem containing a
Trusted Platform Module, a Root of Trust for Measurement and a TCG
Software Stack.

TPM-based security guarantees to operating systems and applications.
The remainder of this subsection is dedicated to the introduction of the most

prominent technical components for Trusted Computing and to the security
mechanisms they introduce.

2.3.2 Cryptographic Methods used by the TCG
In this section, we will make a brief excursion to the basic cryptographic mech-
anisms used by the TCG. We will only summarize the basic ideas and will not
go further into the cryptological and cryptanalytic aspects, as this would be out
of scope for this thesis. Starting points for further reading may be [220,298].

In symmetric-key cryptography two parties share the same key k. Symmetric
key ciphers can be implemented as block ciphers, over a fixed block-length of
bits, or stream ciphers, which process bit-streams. The most important exam-
ples for block ciphers are the Data Encryption Standard (DES) [231] and the
Advanced Encryption Standard (AES) [234]. Block ciphers can be used in differ-
ent modes of operation, which results in different characteristics in performance
and achievable security goals.

The main drawback of symmetric cryptography is key management, as for
each pair of parties a fresh key needs to be agreed upon. Asymmetric key
cryptography [92] overcomes this limitation by introducing a public and a private
key for each party. While the public key is made known to (arbitrary many)
other parties, the private part is kept secret. Only this private key can then
perform certain operations. In the RSA [272] cryptographic system, keys are
generated by choosing two large primes p, q, computing the modulus N = p · q,
and choosing an exponent e, gcd(e, (p− 1)(q − 1)) = 1. (N, e) is the public key.
A second exponent d, e · d ≡ 1(mod(p − 1)(q − 1)) is calculated, and forms the

18 Chapter 2. Background

private key (d, p, q). For large p, q, it is computationally infeasible to learn d
without knowing the factors of N .
The encryption of a message m is the ciphertext c, c = me(modN); it can be
done by any party in possession of the public key. Only the holder of the private
key can then recover the cleartext m = cd(modN).

RSA signatures are created analogously to encryption/decryption; the signa-
ture s on message m is s = md(modN), which can only be done by the holder of
the private key. (m, s) is the signed message. The message m′ can be recovered
by anyone in possession of the public key: m′ = se(modN). The signature is
verified by checking if m = m′. For real world applications, cryptographic hash
functions are applied on m to ensure m < N and the integrity of m.

A cryptographic hash function H maps an arbitrarily long message m on a
fixed-size hash value h, h = H(m). It should be computationally unfeasible for
an attacker to find a pre-image m′ for a given h, a second pre-image m′ : h =
H(m) = H(m′),m′ 6= m for for given h,m or any collision h, h = H(m) =
H(m′),m 6= m′. One important example for a cryptographic hash function is
SHA-1 [232].

2.3.3 Trusted Platform Module and Core Concepts
In the TCG approach, security is bootstrapped from a small dedicated piece of
secure hardware called the Trusted Platform Module (TPM). Its specifications,
currently at version 1.2 [345], are developed by the TPM Working Group within
the TCG.

The TPM hardware component contains a tamper-resilient integrated cir-
cuit that implements RSA [272] public-key cryptography, key generation, secure
hashing, and random-number generation. Using these elements, the TPM can
enforce security policies on hierarchies of secret keys to protect them from soft-
ware attacks by a remote attacker. As a consequence, the cryptographic keys
are only controlled through handles, and never directly exposed to the host plat-
form. One of these keys it the Endorsement Key (EK) which provides it with
a unique identity, and which is injected by the TPM manufacturer, or created
upon machine deployment.

At the time of creation, TPM keys are assigned an internal policy which
restricts their use to specific operations. There are key types that discern keys
for storage, signature and identity management operations as well as legacy
tasks. Keys can also be marked migratable, which indicates the possibility to
back them up. Migration of keys has the characteristic that private, ’migratable’
keys can be sent in encrypted form from one TCG-compliant TPM to another.
Still, the key will never be available in clear for anyone but the receiving TPM.
For ‘non-migratable’ keys however, no entity but the creating TPM will be able
to access the private key.

Thus, a TPM can be used to perform cryptographic operations, like signa-
tures and encryption on user-provided data using hardware-protected private
keys. However, due to limited TPM memory, keys have to be swapped out of
the TPM when not in use. To protect these keys, a parent storage key specified

2.3. TCG Hardware Architecture 19

upon key creation is used to wrap (encrypt) the private part of the child key
when it is exported from the TPM. This implicitly creates an hierarchy of keys,
where the different storage keys can be assigned for instance to groups of users
thus representing and enforcing organizational structures.

At the top of the key hierarchy is the Storage Root Key (SRK), created when
the platform’s owner initially sets up the TPM. Three Boolean flags control
the initialization state of the TPM: Enabled, Activated, Owned. Only after
enabling, activating and taking ownership, the full functionality of the TPM is
available. Clearing ownership is a non-reversible mechanism to revoke all user-
created keys by deleting the SRK. At creation time, keys are assigned two user-
supplied secrets for the purpose of authentication and backup, and optionally
a system state that must be attained before using the key for cryptographic
operations.

The capability to record the current system state is another main feature of
the TPM. This is achieved by cryptographically hashing a software component
and storing the resulting measurement value in a specially-protected Platform
Configuration Register (PCR). PCRs are reset at platform boot2. PCRs can
only be written to via the non-invertible, non-commutative extend operation.
For each call, a PCR with index i in state t is extended with measurement x by
setting

PCRt+1
i = SHA-1(PCRt

i ||x). (2.1)

Thus the TPM’s PCRs can potentially be used to exactly describe the soft-
ware executed on a machine by following a transitive trust model, in which
each software component is responsible for measuring its successor before hand-
ing over control [121]. For the TCG’s technical realization to work, each caller
needs to compute a hash value of the expected next executable code and to
extend a PCR with the result, before control is passed to that subsequent, and
thus measured code. In the simplest case, this is done starting from the BIOS,
covering boot loader, kernel, and system libraries etc., up to application code.
Ultimately, the exact configuration of the platform is mapped to a set of PCR
values; a so-called chain-of-trust is established.

To evaluate a system state, a snapshot of the current PCR contents is not
enough. Whenever a PCR is extended, an entry is written into a Stored Mea-
surement Log (SML). This log then contains all individual steps steps that led
to the current PCR values, and represents the software configuration on the
system. The TPM-protected PCR-values can prove that the SML is correct.

If such a PCR configuration fulfills the given security or policy requirements,
we refer to the system state as a trusted state. In the Quote operation, the
TPM signs these values, thus enabling more complex protocols such as Remote
Attestation [64, 75, 121, 278, 311]. Here, a remote verifier can analyze the result
and decide whether to trust the configuration for a given purpose or not.

A drawback of this scheme is the potential privacy loss, if the same key is
used in several Quote signatures which are provided to different service providers.

2On more modern platforms (cf. Section 2.5.3) there are more ways to reset PCRs. We
will discuss this in more detail in Section 5.7.1.

20 Chapter 2. Background

Collaborating providers might then find undesirable links between different user
accounts, if they are used from the same hardware platform. This is especially
critical, as each (sufficiently initialized) TPM contains a strong identifier, the
cryptographically unique EK. On the one hand, to protect the platform owner’s
privacy in such a scenario, the EK must not be directly used for the Quote
signature. On the other hand, any Quote signature is worthless, if there is no
proof that the PCR values signed are protected by a real, TCG-compliant TPM.
To this end, a Public Key Infrastructure (PKI) [6] is needed to link private to
public keys, and to establish the identities of stakeholders, such as the TPM
manufacturers.

For users’ keys, however, a special pseudonym is used, which nonetheless cer-
tifies that the signing key is protected by some, yet actual TPM: an Attestation
Identity Key (AIK). AIKs are highly restricted and can only be used to sign
TPM internal data structures. The authenticity of an AIK can be certified by
an on-line trusted third party, called PrivacyCA (see [255] for more details). An
alternative to the PrivacyCA protocol is the the more complex group-signature
based DAA [52] scheme.

This protocol allows a TPM to prove that it is within a group of TCG-
compliant TPMs without revealing its precise identity, the EK. However, the
scheme described in the TPM and TSS specifications has been found to be
complex to use and very slow in practical implementations [89]. AIKs can also
be used to certify that another TPM-based key is actually under the protection
of the TPM and confirming to its key policy.

Data can be encrypted by the TPM mainly using two mechanisms, binding
and sealing. Binding, which is done in software, potentially even on a remote
host, is the encryption of a limited amount of data with a public RSA key using
either PKCS #1 version 1.5 [172] or OAEP [40] paddings. If the corresponding
private key is unique and held by a TPM this implies that only this TPM can
decrypt the data. In an even stronger mechanism called sealing, the encryption
is performed on-chip incorporating a unique secret3 and a set of PCR registers.
Sealed data can only be unsealed by precisely the same TPM in the desired
PCR configuration. Data may be sealed to a specific, but also possible future
set of values of the PCRs. Thus, access to the data can be restricted to a single
trusted state of the TPM’s host computer. Overall, the TPM 1.2 API feature
125 ordinals which discern the different function calls, for example TPM Quote().

Further useful features of the TPM are a true random number generator, a
tick counter that can potentially be correlated with real-time, and a monotonic
counter mechanism.

Currently the TCG is considering4 new or updated features for the next
generation of TPMs, such as cryptographic algorithm agility, higher performance
and simplified support for virtualization. Further modifications may be made
to TPM lifetime management, the key hierarchy and the privacy protecting

3The internal tpmProof random number is freshly generated at taking ownership, and only
known to the TPM.

4The author is member of the TCG’s TPM working group and therefore obliged not to
disclose further details.

2.4. TCG Software Architecture 21

mechanisms. Chen and Ryan [66] recently proposed an improved authentication
protocol which will also be part of future specifications.

For mobile platforms, the Mobile Trusted Module (MTM) [343] has been
specified. The MTM standard is more flexible as it allows defines different sets
of features (profiles) that implementers can choose from. All of these profiles
cover the same core concepts as explained above.

TPM 1.2 are intended as distinct security co-processor hardware, and there
are rather well protected (cf. 2.7), Common Criteria EAL-4 certified and tested
products on the market from vendors of different geopolitical origins. For MTM
and TPM 2.0 different implementation approaches are permissible. They range
from discrete security controllers, over simulation in the chipset to pure soft-
ware constructs protected by secure CPU modes (In Section 4.5.3 we will briefly
discuss a possible implementation technology.).

2.4 TCG Software Architecture
The working groups of the TCG intended the TPM to be implemented in a
cost effective way, for instance on smart card architectures with very restricted
resources. Consequently, the functionality of the TPM is restricted to a pre-
defined set of operations; the TPM is not able to execute user code, and even
most of the mechanisms offered require auxiliary functionality to be implemented
in the software of the host platform.

The TCG Software Stack (TSS) [342] is responsible to access and manage
the TPM and also to provide a programming interface for TC applications. The
standard document is accompanied with C header and WSDL interface definition
files. The target language for the standard is the C programming language [167].

The TSS offers a set of function calls that help perform a number of opera-
tions. These functionalities cover the setup and administration of the TPM, such
as taking ownership, setting of configurations or querying properties. With re-
gards to the chain-of-trust, it is the task of the TSS to record the SML for tracing
the measurements that led to the current PCR values. The life cycle of crypto-
graphic keys is also controlled through the TSS, starting with the triggering of
the creation of public-private key pairs inside the TPM. The limited resources of
the TPM necessitate external, encrypted storage of the cryptographic material,
either at runtime by swapping out keys from the limited hardware key slots into
main memory or filing in persistent storage on the hard disk. Furthermore, the
TSS supports different mechanisms of key certification and the key migration
protocols.

The TSS is also specified to facilitate the Identity Management operations.
AIKs are created in a process that involves the TPM and the trusted third party
PrivacyCA. Here, the TSS is the entity that collects all required information
and certificates to assemble the appropriate data structures for communication
between the local TPM chip and the remote PrivacyCA service. In [255] we,
together with Pirker, present more details on the scheme and an implementation
of this service. The alternative protocol of Direct Anonymous Attestation [52],

22 Chapter 2. Background

Application

Trusted Service Provider (TSP)

Trusted Core Services (TCS)

TDDL - Trusted Device Driver Library

TPM Driver

TPM

Inter-process communications

U
se

r s
pa

ce

Ke
rn

el
 sp

ac
e

System
 Service

Application process
 TCG

 Softw
are Stack (TSS)

Figure 2.2: The TCG Software Stack (TSS) architecture consists of several software
layers within a trusted platform.

is also mainly performed by the TSS, with only a small, yet critical subset of
operations being performed by the TPM.

The TSS also provides interfaces to sign user data using TPM-protected keys,
which were generated with type information that allows them to perform RSA-
signature operations. The TSS also supports binding and sealing by marshalling
the payload data into the appropriate TPM data structures.

From a software engineering perspective, the TSS specification define a lay-
ered architecture shown in Figure 2.2. Just below the TSS, and not part of it,
is the TPM driver. The TPM driver can be either vendor specific or follow the
TPM Interface Specification (TIS) standard [344]. It is the task of the lowest
layer of the TSS to abstract this driver and expose an Operating System (OS)
and vendor independent set of functions that allows the upper layer basic inter-
actions with the TPM. This lowest layer is called the TCG Device Driver Library
(TDDL). The TDDL serves as a single-instance, single-threaded component and
allows for sending commands as byte streams to the TPM and receiving the
responses.

The next layer up, the TCG Core Services (TCS), should be implemented as
a singleton system service or daemon. It is the single instance that manages the
TPM’s resources and accesses it. It generates synchronized command streams
from concurrent API commands to be transferred through the TDDL. The TCS
takes care of the management of TPM key slots as well as permanent storage of
TPM key material. Keys are assigned a Universally Unique Identifier (UUID)
[189] that is used to identify stored keys. The TCS also maintains the SML where

2.5. Trusted System Architectures 23

all PCR extend operations are recorded. The upper layers of the software stack
may access the TCS via inter-process communications according to the platform-
independent Simple Object Access Protocol (SOAP) [355] interface. The SOAP
interface is standardized in the form of a Web Service Description Language
(WSDL) [355] by the TCG.

The highest layer, the TCG Service Provider (TSP) provides Trusted Com-
puting services to applications in the form a shared library. The TSP interface
is defined as grouped function signatures and data structures in the C program-
ming language. The TSS was also designed to allow partial integration with
existing high-level API libraries, such as PKCS #11 [275]. This enables the use
of the cryptographic primitives provided by the TPM by legacy software. A lim-
itation of this approach is that these legacy cryptographic APIs do not account
for advanced Trusted Computing concepts such as sealing. Also the TCG’s key
typing and padding policies need to be considered [63] and might not match all
application areas.

Recent years have seen successful integration of generic TPM 1.2 hardware
drivers into major operating systems. Several proprietary implementations and
one open source implementation, IBM’s TrouSerS [156], of the TSS in C exist.

2.5 Trusted System Architectures
In this section we will review how trust can be established in software, especially
considering the TCG mechanisms. More specifically, we will consider how trust
can be provided to processes or even whole operating system instances including
application services. In the nomenclature of the Orange Book [77, 276], each
service has an individual Trusted Computing Base (TCB), which is defined as
the sum of all hardware, firmware and software which influences the service’s
integrity and behavior. The TCB can consist of previously executed and cur-
rently active components. Ideally, the TCB should be as small as possible as a
smaller code size might happen to contain fewer bugs, be easier to inspect and
pave the way towards formal verification. Yet in practice, the TCB is rather
large in many general purpose systems, and not likely to offer strong guarantees
on security. Instead, the “TCB” often becomes a nebulous collection of millions
of lines-of-code, executed in nearly random order.

On Trusted Computing platforms, the TPM can potentially serve as measur-
ing device to collect information on a TCB: The complete TCB can be put into
the chain-of-trust collected at load-time with the help of the PCRs. The PCRs
will then represent a software configuration that can be analyzed and potentially
be trusted for selected purposes. Given dynamically trusted software running
on top of an actually trusted computing base in isolation from other pieces of
software, it may be plausible to assume the expected behavior. We will now
review the literature on system architectures proposed to achieve such trusted
software.

The TPM’s PCR mechanism will exactly document the software executed, if
applied rigorously. This allows one to widen the trust in a dedicated, trustworthy

24 Chapter 2. Background

hardware security module (the TPM) onto the operating system and services of a
general purpose platform. A trustworthy Root of Trust for Measurement (RTM)
serves as initial starting point for this process. RTMs are either a component
of the static BIOS software or the result of a dynamically invoked special CPU
instruction. Remember, that from the root onwards, the measurement process
then needs to continually cover the complete boot procedure across the operating
system and into the application layer. To create a software architecture for
achieving such a full coverage while maintaining a meaningful state in the PCRs
a non-trivial challenge that has lead to several generations of experiments and
prototypes.

2.5.1 Static Chain-of-Trust

The first code entity that starts the measurement chain is called the Static
Root of Trust for Measurement (SRTM). This first piece of software executed
after power-on is typically a component of the BIOS, which will measure and
initialize other BIOS modules, and which will in turn prepare the execution of
the bootloader; of course, the bootloader is measured as well. When control
is passed over from the BIOS to to the boot loader, the bootloader takes over
the responsibility to measure the next component, i.e., the operating system
kernel. By implementing the measurement mechanism in each following software
component, a continuous chain-of-trust can be forged.

Hardware manufacturers provide BIOS support to measure the first phases
of system boot into the TPM. Boot loaders such as TrustedGrub [185] demon-
strate TPM integration. Ideally, the bootloader should pass control over to an
Operating System (OS) that establishes at least a partial chain-of-trust.

There have been several attempts to achieve such a coverage. A historical
example of extending the trust from dedicated hardware security modules into
applications on a custom microkernel is given in the Dyad System [348] of 1991-
4. AEGIS [19] is an early mechanism to support secure boot on PC platforms
for conventional OSes, assuming a trusted BIOS. After the introduction of the
TPM, the Enforcer platform [209] showed integrity protection mechanisms that
can be applied as basis for possible security applications such as the Bear software
security processor [205]. Similarly, IBM’s Integrity Measurement Architecture
[279] integrates PCR measurements of file accesses in a Linux environment.

This first generation of trusted has experimented with hardware-guaranteed
integrity measurement, and it is possible to collect precise, bit-wise information
on a system configuration. Yet there is a number of practical problems that
prevent to use the gather data and preclude the widespread use for real-world
applications.

• Different services are only separated on the operating system-level, through
process separation and memory protection. A single implementation error,
in the OS kernel or other privileged components, could potentially open
an attack path from one process (or the network) to others.

2.5. Trusted System Architectures 25

• Measurements are taken file-by-file, whenever they happen to be accessed.
This often results in a large number of individual hashes in no particular
order. Using the sealing mechanism then becomes almost impossible, as
the same configuration of software elements may hash to different values
according to external factors such as user inputs, platform temperature
(affecting the CPU speed, thus timing of events), or network events.

• Measuring a large number of files also causes problems with remote attes-
tation, as the number of possibly good configurations becomes very high.
Keeping track of known good system PCR configurations is a challenge
and reaching a trust decision by using only the quote result and SML is
a tedious and complex task, especially as there is no data available on
which configurations are actually, and in general “good”. The number of
possible combinations of white-listed secure software configurations in to-
day’s open system architectures is very large and quickly growing [105] in
general purpose systems. However, for specific use cases such as servers
for Web-services Lyle and Martin point out that only a limited number of
combinations need to be considered [203].

• Firmware code influences the static chain-of-trust as the individual hard-
ware’s BIOS, including option ROM, is part of the PCR state. Replacing
a hardware component or updating its firmware will influence the PCR
configuration. This precludes the definition of trusted configurations, for
instance when sealing to a future state through software running on a
platform prior to the hardware upgrade. Also a perfectly fine software
configuration can be rendered untrusted when a failing hardware compo-
nents is replaced.

2.5.2 Platform Virtualization
A technology that helps to reduce the length and complexity of the chain-of-trust
and therefore eases analysis of system states is platform virtualization. Virtual-
ization is a methodology of dividing the resources of a computer into multiple
execution environments, by applying concepts such as time-sharing [306], hard-
ware and software partitioning, machine simulation or emulation. Hardware
architectures can be designed to offer complete virtualization [263] in hardware
and then host multiple unmodified operating systems in parallel. Since 2005,
the PC platform has been modified accordingly. Adams et al. [7] provide an
overview of x86 virtualization approaches.

Commonly, virtualization is controlled by a singleton hypervisor, a superior
control entity which directly runs on the hardware and manages it exclusively. It
enables the creation, execution and hibernation of isolated compartments, each
hosting a guest operating system and the applications building on it. Often, a
specific application is combined together with a trimmed down OS into a pre-
configured virtual appliance. Virtual appliances are eliminate the installation,
configuration and maintenance overhead which results from managing individual
configurations.

26 Chapter 2. Background

A hypervisor-based system provides multiple isolation layers: Conventional
processor privilege rings and memory paging protect processes executing within a
compartment. Hardware support for monitoring all privileged CPU instructions
enables the hypervisor to transparently isolate virtualization instances from each
other. Finally, the chip-set is able to block direct memory accesses (DMA) of
devices to defined physical memory areas, thus allowing the hypervisor to control
device I/O and assign devices exclusively to individual virtual machines.

Early demonstration of systems that make use of virtualization for secu-
rity and trust are PERSEUS [251] and Terra [119]. The Nizza virtualization
architecture [297] extracts security critical modules out of legacy applications,
transferring them into a separate, trusted partition with a small TCB. Those
early platforms did not actually use TPM features, thus an attestation whether
the isolation mechanisms are configured correctly or are actually in use at all is
not possible.

The advantages of combing a static chain-of-trust with virtualization are
rather reflected in a number of later platforms which form a second generation of
trusted platforms. Microsoft had plans for a Next-Generation Secure Computing
Base [106], with the trusted Nexus kernel providing an environment for security
critical services, while running a legacy OS in parallel. Actually commercially
available from Sirrix AG is the EMSCB [104] TURAYA platform showcasing
TPM-based Trusted Computing on an L4-based [192] virtualization platform.

Another research project, Open TC [239], demonstrated a system based on a
static chain-of-trust from the BIOS to the boot-loader via Trusted Grub to Xen
[36] or L4 hypervisors, and into application partitions measured and loaded from
CD images. The similar platform of Clair et al. [68] also considers deployment
processes of platforms. Coker et al. [75] describe a Xen-based platform which
is more focused on Remote Attestation than secure boot. Schiffman et al. [286]
describe an all-layer (Xen hypervisor to application) integrity enforcement and
reporting architecture for distributed systems. Cabuk et al. [56] propose to use
a software-based root of trust for measurement to enforce application integrity
in federated virtual platforms, i.e., Trusted Virtual Domains [60]. Instead of
individual files, file system images have been used to transport user software
and data with SoulPads [57] or Secure Virtual Disk Images in grid services [124]
between virtualized platforms.

These platforms alleviate several issues, as the isolation between services can
be improved by placing them in different compartments. The possible attack
surface, the hypervisor, then becomes potentially much smaller and thus easier
to construct correct and robustly. This containment of services therefore helps
in building secure systems. Also, it becomes feasible to measure specialized soft-
ware in separate compartments; the general purpose operating system needs not
be trusted. Depending on how many services use the TPM, it may need to be
shared or virtualized (We will briefly revisit this topic in Section 3.5.1.). Other
challenges, such as hardware-dependence of the configurations measurement val-
ues, remain.

2.5. Trusted System Architectures 27

2.5.3 Dynamic Chain-of-Trust
When hardware platforms [8, 132, 133] were introduced that provide strong iso-
lation of compartments on commodity hardware, also more advanced security
mechanisms were added. Those platforms also extend the basic TCG model of
a static chain-of-trust from hardware reboot onwards. In addition, they provide
the option of a dynamic switch to a trusted system state. A special CPU in-
struction allows the system to switch into a well-defined secure state and then
to measure and to prepare the launch of a piece of software. This is typically a
hypervisor, and it can be given full control over the system. Close, hard-wired
cooperation of CPU, chip-set and TPM guarantees that the result is accurate.
Thus, influences from boot-time-only components such as the BIOS can be pre-
vented.

This is a massive change in the PC architecture, as it introduces completely
new CPU modes, different levels of machine (re-)boot and new security aspects
in memory management, buses and device management. Consequently, the tech-
nology has not been immediately taken up by mainstream operating systems.
Instead, there has been a limited number of academic experiments with the
technology. Also, from our experience, it has been a challenge for PC system
manufacturers to integrate the hardware features correctly into their platforms
and for years it has been difficult to obtain hardware that would allow the use
of the DRTM without problems5.

The first experiments were concerned with how to activate the DRTM mech-
anism. The Open Secure Loader (OSLO) [174] is an OS loader module which
implements a dynamic switch to a measured state in the OS boot-chain on AMD
Secure Virtual Machine (SVM) [8] systems, whereas Trusted Boot (tboot) [160]
is a loader which achieves this on Intel TXT platforms. This more complex boot
process has the advantage to exclude BIOS and firmware-related code from the
chain of trust. BIND [295] uses AMD’s SVM protection features to collect fine
grained measurements on both input and the code modules that operate on it so
that the computation results can be attested to. Flicker [214] isolates sensitive
code by halting the main OS, switching into AMD SVM, and executing with a
minimal TCB small, short-lived Pieces of Application Logic (PALs). PALs may
use the TPM to document their execution and handle results.

Such mechanisms have lead to the creation of a third generation of trusted
platforms, where the DRTM allows to gain full control over a chain-of-trust
and virtualization allows the execution of real-world applications. Vasudevan
et al. [350] discuss general requirements for such systems. TrustVisor [213] is a
small hypervisor initiated via the DRTM process. It assumes full control and
allows to manage, run and attest multiple PALs in its protection mode, however
without the repeated DRTM mode switch costs incurred by the Flicker approach.
Intel’s P-MAPS [266] launches a tiny hypervisor parallel to a running OS to
protect process integrity, hidden from the OS. The hypervisor authenticates
code and data areas, which are protected in-place and can only be accessed via

5For instance we were faced with platforms where a call to the DRTM would trap the device
in a permanent, non-recoverable error state.

28 Chapter 2. Background

well-defined interfaces. LaLa [123] performs a late launch from an instant-on
application to boot a fully fledged OS in the background. BottleCap [179] uses
the TPM to securely store capability data for authentication and restricts access
to them to isolated, small-TCB Flicker sessions. Vasudevan et al. [351] present
the Lockdown platform. It separates untrusted and trusted software in space
and time; platform memory is statically split and (software) side channel attacks
hindered by executing only either trusted or untrusted code within a time frame.
When a secure service is needed, untrusted OSes are suspended through ACPI
and control passed on to the trusted environment.

With acTvSM, Pirker and Toegl [253, 254, 333] provide a platform which
enforces integrity guarantees to itself as a software platform and the applications
and the services it hosts. acTvSM takes advantage of the Linux Kernel-based
Virtual Machine (KVM) hypervisor, which is operated in a non-trivial security
configuration started through tboot on TXT hardware. System components and
applications are measured at file system granularity. Administrators achieve full
control over current and future updated [126] system configurations. We will
explain the acTvSM platform and its interaction with Intel’s TXT mechanism
in more detail in Section 5.8.2.

When compared to previous generations, the DRTM mechanism offers excel-
lent improvements to the concept of a chain of trust. First, BIOS and hardware
firmware components need not be considered, as the can be called at any time
after the platform has booted. Second, the TCB can be minimal, as the DRTM
can be configured to measure and execute a well-defined piece of code in system
memory, irrespective of any other previous or later software configuration on the
platform. Third, while in previous generations the chain of trust must consider
a large number of fine-grained measurements of individual components such as
binary files, with virtualization in place, the hypervisor can instead perform a
single measurement of an entire compartment image file.

As we will see in Section 5.8.2, these improvements make it possible to achieve
deterministic PCR values and offers the chance to calculate the PCR configura-
tions of future trusted states, for instance after a planned hardware or software
update. This makes the application of the sealing mechanism feasible for practi-
cal scenarios, as the updates that are necessary in practice can be implemented
without circumventing the TPM’s mechanism. The well-defined PCR values also
simplify the comparison against known good values in a Remote Attestation sce-
nario.

However, several open issues with Remote Attestation remain [149]. There
is currently no business case for offering a whitelist of trusted software, and even
if secure states are enforced, there is the risk of locking the platform into a state
that may be desirable to some service provider, or to the user, but potentially
not to both of them. There also remains the semantic gap [264] between binary
hashes and (provable) security properties. Instead of bit-wise comparison, the
attestation of abstract properties would be more desirable [265,278].

2.6. Security Protocols and their Analysis 29

2.6 Security Protocols and their Analysis
In many use cases, establishing a trusted system state on a local host is not
enough; trusted endpoints rather serve as precondition to secure communica-
tions. In general, achieving a protected information exchange or agreement re-
quires the execution of a multi-party algorithm, a cryptographic protocol between
two or more hosts on a network.

2.6.1 Cryptographic Protocols and Protocol Failures

Cryptographic protocols [1, 95, 207, 220, 298] use cryptographic mechanisms to
achieve one or more security goals such as key agreement or exchange, en-
tity authentication, confidentiality, integrity protection, authentication and non-
repudiation of messages.

Authentication protocols serve to establish the identity of an entity across a
communication channel and are often used to control access to a resource. The
security of an authentication protocol derives from the basis of identification,
which can be 1) something known, like a password or Personal Identification
Number (PIN), 2) something possessed like a cryptographic key, a smart card,
or a digital passport, or 3) something inherent, for instance biometric features.
Building on a single or multiple of these authentication factors, the protocols
follow the goal of either accepting the identity of a claimant as authentic or
terminating the protocol run with rejection. Conventional schemes built on
time-invariant passwords are considered to provide only weak authentication,
while interactive challenge-response protocols demonstrate the knowledge of a
secret depending on a fresh, random challenge, without actually revealing the
secret. As the secret does not leak, it cannot be maliciously replicated and this
type of authentication is therefore commonly referred to as strong authentication.

Authentication can be unilateral or mutual, i.e., ensuring the identity of all
involved parties. Key establishment protocols allow two or more parties to agree
on cryptographic secrets. Such a secret can either be created by one party and
then be transported to the others, or be agreed on through a function of the
protocol participants’ information6. A special case is the off-line pre-distribution
of key materials which involves operational and administrative, and possibly
manual, processes.

Cryptographic protocols can be application specific, such as remote attesta-
tion, or establish a generic secure channel. Secure channels can be established
on various layers of the Open Systems Interconnection (OSI) model [244] such as
Internet Protocol Security (IPsec) [175], Secure Shell (SSH) [370] or Transport
Layer Security (TLS) [88] for applications.

6For instance, in the Diffie-Hellman-Merkle key exchange [92], two parties agree upon a
public base g and a large prime p and each choose a secret exponent a, resp. b. After
exponentiation, ga mod p, gb mod p, the resulting integers are exchanged. It is easy for the
parties to calculate the shared secret key s, s = (ga)b mod p = (gb)a mod p, but infeasible for
an attacker without knowledge of a or b.

30 Chapter 2. Background

A popular way to describe cryptographic protocols in computer security en-
gineering is the “Alice and Bob” notation. There, a set of principals — by
tradition called Alice (abbreviated A), Bob (B), Charlie (C), etc. — wish to
communicate. In our notation, we concatenate protocol elements by a dot ‘.’.

Other such elements could be keys K, timestamps T , nonces N (random
numbers intended for one time use) or messages m. For a public-private key pair
(KA,K

−1
A), we assume that all parties know the public key KA and that they

expect principal A to be in possession of the private part K−1
A . For encryption

of m under key KA we write E(m)KA
. For the cryptographic signature with the

private key we write7 S(m)K−1
A

. Communication between two parties A, B is
written A→ B.

As an instructive example, we will consider the simplified and reduced version
[200] of the classical Needham-Schroeder public-key authentication protocol [236]
shown in Figure 2.3. The protocol’s goal is to establish mutual authentication
between the initiator A and an responder B who each possess their public-
private key pairs (KA,K

−1
A), (KB ,K

−1
B). For each run of the protocol, A selects

a unique, fresh nonce NA and sends it and her identity encrypted under B’s
public key (Message 1) to B. Only B is able to decrypt this message, and returns
NA together with a nonce NB of its choice, encrypted under KA (Message 2).
If A receives this message, she assumes that only B has received NA, as it was
protected by KB . Finally, A returns NB to B (Message 3) to assure B that A
did receive NB . This last step should assure B of A’s identity and thus seems
to complete the mutual authentication. We will, however, revisit this example
in a little while.

1. A→ B : A.B.EKB
(A.NA)

2. A← B : B.A.EKA
(NA.NB)

3. A→ B : A.B.EKB
(NB)

Figure 2.3: The Simplified Needham-Schroeder Public Key Protocol.

As we have seen, the Alice and Bob notation represents the intended trace
of a protocol run in a compact, human-readable way. Naturally, this notation
is a high-level abstraction from the cryptographic primitives and does not cover
all assumptions and requirements of the individual steps. Even though many
protocols can be described in only a few lines, the creation and analysis of proto-
cols is an error-prone task as attackers may exploit even the most subtle failure
or oversight in the specification, design or implementation. A sufficient number
of vulnerabilities has been discovered in published cryptographic protocols to
cause survey work in this field. Building on Clark and Jacobs’ extensive liter-
ature review [69], the Security Protocols Open Repository (SPORE) [187] lists
50 protocols, 52% of which have known failures [198]. The AVISPA consortium

7Note that RSA encryption and signing are structurally the same operation. Consequently,
the (usually public) signature verification would effect in decryption of private messages. The
same key pair must therefore not be used for both operations. However, even if they are,
attacks might not be straightforward due to different hashing and padding schemes.

2.6. Security Protocols and their Analysis 31

formalized a library [29] of 70 cryptographic protocols of which 24% show secu-
rity failures [198]. Given this record, it is hardly remarkably that considering all
aspects of a cryptographic protocol has been compared in difficulty to dealing
with a mephistophelian opponent [17].

For more earthly applications, a concrete attacker model may be warranted.
The intruder model proposed in 1983 by Dolev and Yao [94] is very powerful,
yet it offers a practical abstraction that is frequently used [217]. The particular
strength of the Dolay-Yao intruder is that it is in full control over the network:
she is not only has the means to listen to any message sent from any party, but
also to prevent messages from being received and capable of injecting messages
of its choice. Still, complexity is reduced by the assumption that the underly-
ing cryptographic primitives are perfect and that keys and message fields are
atomic: The model does not cover attacks like statistical analysis or differen-
tial cryptanalysis [206], nor attacks through number-theory or on mathematical,
stochastic properties of bit-streams generated by the underlying cryptographic
algorithms. Thus the intruder is not able to learn partial information of a secret
key or message, and the intruder either knows it completely or not at all. It is
further assumed that all parties know all public keys. The intruder can read an
encrypted message if and only if she knows the correct key. Without the key, no
information can be learned about the plain text. Similarly, an intruder can only
create signed or encrypted messages with signature or encryption keys it knows.
The Dolev-Yao model paves the way for the symbolic treatment of protocols.

In general, an attacker can follow different strategies to exploit a crypto-
graphic protocol, of which we now discuss a selection from the literature [220].
In replay attacks, a message previously sent out by Alice is re-used at a later
point in time, for instance to answer a challenge. A possible reason for a protocol
being susceptible to this attack is if there is no time-variant component in the
message to guarantee freshness. Two or more concurrent protocol runs can be
exploited in parallel session attacks, where the intruder uses the messages of one
session to meet the challenges in another protocol run. With only one session,
this strategy is referred to as reflection attack; if the same challenge-response
protocol is used in both directions, the attacker can exploit the challenger as or-
acle by asking the challenger for the expected answers. In a man-in-the-middle
attack the intruder makes two honest participants believe that they are talking
directly to each other, while in fact the entire protocol run is under the control
of the attacker. The intruder exploit both parties to gather knowledge and facts
to assemble the expected responses.

A famous example of vulnerability against a man-in-the-middle is Lowe’s
attack [199, 200] on the protocol in Figure 2.3, which was only discovered 17
years after the original proposal was published. The attack is given in Figure
2.4. In this trace, we can observe the following: A tries to establish a session
with intruder I, who then moves on to impersonate A in contacting B. In
our notation, an intruder I might pretend to B to be another party A, e.g.
I(A)→ B, which cannot be detected by B. B answers with the correct response
for A, which I forwards to A. A then decrypts B’s challenge and encrypts it

32 Chapter 2. Background

1.1 A→ I : A.I.EKI
(A.NA)

1.2 I(A)→ B : A.B.EKB
(A.NA)

2.1 I(A)← B : B.A.EKA
(NA.NB)

2.2 A← I : I.A.EKA
(NA.NB)

3.1 A→ I : A.I.EKI
(A.NA.NB)

3.2 I(A)→ B : A.B.EKB
(NB)

Figure 2.4: Lowe’s Attack on the Simplified Needham-Schroeder Public Key Proto-
col.

with I’s public key KI . I uses its own private key K−1
I to learn NB and can then

assemble the expected answer for B. Thus, A believes to have authenticated I,
while B believes that the has successfully completed a protocol run with A. This
breaks the goal of mutual authentication between A and B.

The fix provided by Lowe to prevent this failure is remarkable simple; it is
sufficient that B explicitly states the sender of the reply (Message 2 in Figure
2.5). This prevents the intruder from forging Message 2.2 (in Figure 2.4) of the
attack as A will notice that the identifier in the encrypted part is different from
the claimed identity.

1. A→ B : A.B.EKB
(A.NA)

2. A← B : B.A.EKA
(NA.NB .B)

3. A→ B : A.B.EKB
(NB)

Figure 2.5: The Improved Needham-Schroeder-Lowe Public Key Protocol.

The resulting protocol is referred to as Needham-Schroeder-Lowe protocol
and widely used. Lowe also gave strong assertions that the fix is indeed effective.
To this end, he provides a formal proof of correctness of the revised protocol.

2.6.2 Protocol Analysis
Formal methods have been a major driving factor for analyzing and designing
cryptographic protocols and have evolved considerably over the last decades.
The general idea is that an effective procedure allows to ascertain that a mathe-
matical or logical model of a system meets its security requirements. For broader
surveys see [1, 198, 217, 219], but we will now briefly discuss a selection of influ-
ential proposals.

Stemming from modal logics, Burrows, Abadi and Needham (BAN) [54] pro-
posed a belief logic where the pedigree and freshness of keys match the authenti-
cation goals. The BAN security proofs tend to be compact, but it can be a subtle
task to consider all assumptions of the proof. Later proof techniques, based on
model checking, have unveiled attacks in BAN-verified protocols; for instance,
a replay attack has been identified [313] in a version of the Yahalom protocol
that was developed as example for security analysis and improvement in the
original publication of the BAN approach [54]. Several extensions to BAN have

2.6. Security Protocols and their Analysis 33

been proposed, but factors like increasing complexity have been a hindrance for
widespread success.

An abstraction for security protocols different from the Alice and Bob no-
tation is provided in the SPI calculus [2]. It considers protocols as a number
of interacting processes and allows models where the provenance of message
components can be defined precisely. Security properties can be performed as
equivalence checks. The SPI formalism allows quite insightful pen-and-paper
analyses of small protocols.

Instead of reasoning by hand about protocol security, automated formal
methods attempt to identify unintended traces, that can by created based on
the protocol definition. The main idea is to create an symbolic opponent that
performs attacks using the Dolev-Yao model to either construct protocol fail-
ures, or prove their absence through search space exhaustion. Formal methods
have been subject to automation with efficient implementations appearing over
the last fifteen years, with varying success in terms of complexity of protocols
that can be modeled, of (known and unknown) attacks that can be found, and
runtime performance.

To this end, theorem provers have been used to derive proofs from logical
statements that model protocols and adversaries. This way it is possible to show
that protocols fulfill certain properties, for instance as that an intruder never
learns a secret message, or a private key. Of historical interest are early proposals
to mechanize the analysis of security protocols, such as Interrogator [224] and
the NRL protocol Analyzer [218]. Both are GUI-driven toolkits, written in
Prolog [305], that apply (incomplete) heuristics or user interactions to explore
the state space of protocols definitions and try to find suitable paths in the
message sequence that represent attack strategies.

Paulson [249] proposes an approach to protocol analysis, where protocols are
inductively defined sets of traces on which the correctness of security properties
can be proven by induction. Thus the security guarantees can be established for
all possible traces. The approach uses the Isabelle/HOL [238] theorem prover,
but requires significant human expertise and interactions (“as little as a week or
two”) for concrete analyzes.

Blanchet has developed ProVerif [45,46] a fully automatic tool that uses the
deduction mechanism of Prolog to prove secrecy properties of protocols. Pro-
tocols are expressed from the attacker’s perspective as Horn-clauses, which are
disjunctions of literals with at most one unnegated literal. Optimizations, such
as unification of non-attacker rules leads to an efficient and terminating solving
algorithm. Verification is achieved by querying a fact that represents an attack;
if this can be derived through a trace of the protocol, there is an attack; else the
corresponding security property holds. ProVerif has been extended for several
years and now provides support for different cryptographic primitives, including
shared- and public-key cryptography and hash functions as well as several secu-
rity properties. Through approximations, it can handle an unbounded number
of sessions of even parallel protocols and an unbounded message space, albeit

34 Chapter 2. Background

with the possibility of finding false positives (attacks).
Another competing method of proving the correctness of a system is model

checking [70]. Model checking is used to formally prove or disprove that certain
properties hold for a given model. A model checker is a tool that takes a finite
model and a specification (set of properties) as input and returns true if and
only if the model satisfies the specification. If the model does not satisfy the
specification the model checker returns false. Most model checkers are able
to give a counterexample showing why the model does not satisfy the specifi-
cation. In the case of a security protocol, the model should define all possible,
intended and unintended traces and the counterexample a flow of messages that
constitute a possible attack. However, a generic Dolev-Yao attacker can create
many complex, even encrypted messages in any order. This can easily let the
number of possible states grow too large for a full coverage. This challenge has
been taken up in an active research field, with several proposals on how security
verification can be achieved for practically sized protocols.

Lowe’s early use of the FDR model checker in his discussion of the Needham-
Schroeder protocol [200] inspired further research [219] both on applying existing
model checkers and designing specialized algorithms and tools. Mitchell et al.
apply the Murϕ [226] model checker to explore the state space of cryptographic
protocols. The Casper tool [201] translates high-level, Alice and Bob protocol
specifications into FDR. Zhang et al. [374] model check the basic Needham-
Schroeder public-key authentication protocol in the SMV tool. In these early
experiments, even with rather small protocols, the size of possible state com-
binations has a tendency towards explosion, restricting the size and number of
parallel runs of the protocols that can be inspected.

To overcome this problem, the specifics of cryptographic protocols need to be
considered for optimization purposes. Song [302] applies a strand-space model
[110]: A strand is a sequence of events and represents the sequence of actions
by either a legitimate party or by an attacker. A strand space is a collection of
strands, where causal interactions (e.g. sending/receiving of messages) generate
a graph structure. Correctness may be expressed by the connections between
different strands. Strand spaces thus contain the causal relations, which helps
reduce the search space for the tool.

Basin et al. [37] propose the On-The-Fly Model-Checker (OFMC) symbolic
model checker that combines the lazy data types of Haskell with symbolic tech-
niques to reduce the search space for attacks. OFMC is one of the back-ends
of the AVISPA [22] platform. Recently, extended versions of OFMC have been
renamed Open-Source Fixed-Point Model Checker [228] for the AVANTSSAR
project [27]. Another AVISPA tool, SATMC [23] decides the security of a model
against specifications by converting it through multi-set rewriting, linearizion
and various logical optimizations into a finite satisfiability problem which is then
fed into a SAT solver. Other modern tools that are able to perform unbounded
verification are Scyther [81,82] and Tamarind [289].

While there are differences in performance [83], these specialized tools for
the analysis, falsification and verification of security protocols are not restricted

2.7. Vulnerabilities of Trusted Platforms 35

to only small and simple protocols. Even complex protocols in parallel and
modern production-grade authentication mechanisms can be studied. While
graphical user interfaces are available, these tools still represent academic proof-
of-concepts and expertise is needed in the specification of the models and the
security goals.

Unfortunately, even these specialized protocol tools do not offer convenient
support for the cryptographic mechanisms encountered in Trusted Computing
scenarios, such as models for complex TPM instructions or distinction of trusted
and untrusted platform states. We will revisit this problem, from the more
general view of the analysis of (stateful) security APIs, in Section 5.7.2.

2.7 Vulnerabilities of Trusted Platforms
As security technology with potential high societal impact, Trusted Computing
has been an attractive goal for studying vulnerabilities in the academic com-
munity.In this section we briefly outline a selection of relevant attacks from the
literature, but for this thesis we restrict our scope on identifying rather general
security boundaries.

Regarding software-based or logical attacks, a small number of weaknesses in
the TPM API have been discovered by formal analysis. Gürgens et al. [135] show
how the authentication protocols of the TPM can be confused, and manipulate
the key certification mechanism to certify a different key than intended. Chen
and Ryan [65] show a risk when using weak authentication secrets. An attacker
can then guess the authentication secret off-line, thus bypassing the TPMs time-
out based defenses against on-line dictionary attacks. In a follow-up attack
[66], the authors show that if several users share the authentication secret to a
TPM storage key8, the storage capabilities (with regard to keys created after
the attack) of the TPM can be faked. An improved authentication protocol is
proposed as remedy. Bruschi et al. [53] claim a man-in-the-middle attack that
keeps a session with the TPM open, which the user believes had been terminated.
Lin [193] points out three potential weaknesses in the TPM’s API specification,
including one which could lead to an attack if the ambiguities in the specification
documents were interpreted clumsily by a TPM implementor. Ables [3] showed
that the attack fails on real TPM chips.

In 2005, the SHA-1 hash algorithm [358] has been shown not to be as collision-
resilient as intended; while there is no direct risk to compromise the TPM mech-
anisms [129], this discovery has driven forward the design of generation 2.0
TPMs to feature more and more agile cryptographic algorithms. Also for Intel
TXT, there have been flaws in earlier versions of the System Management Mode
(SMM) software [365] and the SINIT software modules [366] (cf. Section 5.7.1)
that implement the late launch mechanism that can be exploited to circumvent
the protection of the hypervisor; the known critical security flaws in Intel TXT
software components have been fixed.

8This is common practice for the SRK.

36 Chapter 2. Background

Hardware attacks are even more dangerous. While some TPM vendors
base their implementation on high-end security microcontrollers that offer a
high degree of protection against even well-equipped physical attacks, several
main contributors to the standard intended the TPM to prevent only software-
based attacks, especially when attempted remotely over the Internet [132, 133].
Grawrock, as original author of the TPM specifications assumes only resilience
against very simple hardware attacks9 [133].

It is therefore important to experimentally determine which kind of vulnera-
bilities can be expected. Winter and Dietrich [363] discuss a number of successful
attacks, which we only briefly summarize here: Kauer [174] and Sparks [303] have
independently shown an attack, where the TPM is reset by a short circuit10 of
the Low Pin Count (LPC) bus [159], which connects the TPM to the chip-set
on PC main boards. The main CPU will continue uninterrupted and malicious
software can then measure a fresh, fake state into the TPM. The LPC bus can
also be eavesdropped [133,186], which allows the attacker to read sensitive data,
such as the results of the unseal operation. Winter demonstrates more passive
and active attacks on the LPC and I2C buses [363] that can also break the
chain-of-trust on TXT equipped platforms.

These simple hardware attacks are however not able to uncover private key
material and internal data from within the TPM chip. Some selected TPM
implementations have been based on resilient Smart Card architectures and cer-
tified according to Common Criteria EAL 4+ and provide a robust security
against all but the most sophisticated hardware attacks. However, those at-
tacks are possible with sufficient effort. Such a successful attack has achieved
exactly that [315] despite the TPM being implemented on a high-end security
controller. Still, this attack is very resource (focused ion beam microscope) and
time (6 months) intensive.

In summary, there are logical, i.e. remotely exploitable, flaws in the TPM
which, while interesting, do not appear to break the core security features. TPM
1.2 and TXT-based systems seem to offer resilience against software attacks and
the known vulnerabilities do not appear to be a major threat to the overall
concept. The platforms’ robustness against hardware attacks is small, and the
specific risks depend on what mechanisms the attacker is targeting and how
much resources she is willing to invest. In practice, most Trusted Computing
mechanisms should be considered vulnerable to a physically present attacker.
Against those, additional physical and organizational protection is needed.

2.8 Summary
After decades of progress, the security of computers is far from perfect, yet they
need to be trusted in daily live. Trusted Computing improves on the current
situation by taking an unconventional approach; highly-secure hardware features

9A simple hardware attack requires only an attacker with physical access who is able to
open the system’s casing and who is equipped with 20 USD worth of hardware [133].

10The attack can be done with just some wire as tool.

2.8. Summary 37

are added to otherwise unprotected general purpose machines. This allows the
mapping of a certain level of security onto selected software components. The
Trusted Platform Module is the most important component in this this respect,
but it relies on a TCG Software Stack to operate it. To support applications,
complex system architectures are needed, which have slowly matured through
several generations. It is now possibly to enforce a software’s integrity at boot
time and provide isolation at run-time. While a single host can be booted to a
trusted configuration, it still needs to use risky Internet communications. Cryp-
tographic protocols serve this purpose, but are difficult to design and prone for
security failures. Rigorous analysis is warranted, but not easy to do correctly
either. The field of formal methods offers several promising approaches to au-
tomate the detection of weaknesses in protocols. Yet challenges remain, such as
the consideration of Trusted Computing components that interact in protocols.
Overall, Trusted Platforms offer effective improvements to security, but remain
vulnerable to hardware attacks.

3
Design and Standardization of a Trusted

Computing API

3.1 Introduction

In the Trusted Computing approach, security is bootstrapped from a small ded-
icated piece of secure hardware, the Trusted Platform Module (TPM). Most of
the major computer manufacturers ship servers, desktop and notebook comput-
ers containing TPM’s and several hundreds of million of machines provide this
hardware device [296]. Despite this widespread penetration, however, operating
system and application support for Trusted Computing remains limited. Major
obstacles to the development of Trusted Computing enabled software have been
the high complexity of the specification of the software stack that is used to
manage the TPM and limited support for programming languages other than
C [291,308].

39

40 Chapter 3. Design and Standardization of a Trusted Computing API

Declarations
This chapter extensively adapts, cites and reuses previously published
material from the author, especially

[327] R. Toegl, P. Lipp, J. Nisewanger, D. D. Rao, T. Winkler,
W. Keil, T. Hong, M. Nauman, B. Gungoren, and K. M. Graf. JSR 321
Trusted Computing API for Java. Java Community Process Specifi-
cation Final Release http://jcp.org/en/jsr/detail?id=321, 12 2011.
Java Specification Request # 321. Website accessed October 31, 2012.

[339] R. Toegl, T. Winkler, M. Nauman, and T. W. Hong. Specification
and Standardization of a Java Trusted Computing API. Softw. Pract.
Exper., 42(8):945–965, 2012.

[338] R. Toegl, T. Winkler, M. Nauman, and T. Hong. Towards
platform-independent trusted computing. In Proceedings of the 2009
ACM workshop on Scalable Trusted Computing, pages 61–66, Chicago,
Illinois, USA, 2009. ACM.

[330] R. Toegl and M. Pirker. An ongoing Game of Tetris: Inte-
grating Trusted Computing in Java, block-by-block. In D. Grawrock,
H. Reimer, A.-R. Sadeghi, and C. Vishik, editors, Future of Trust in
Computing, pages 60–67. Vieweg+Teubner, 2009.

[262] S. Podesser and R. Toegl. A software architecture for in-
troducing trust in Java-based clouds. In J. Park, J. Lopez, S.-S.
Yeo, T. Shon, and D. Taniar, editors, Communications in Computer
and Information Science, volume 186, pages 45–53. Springer Berlin
Heidelberg, 2011.

The API was designed together with the JSR 321 Expert Group,
assembled, lead and moderated by the author. Parts of the Technology
Compatibility Kit were done by Johannes Zlattinger in his bachelor
project [377] supervised by the author. The Cloud computing case study
was implemented by Siegfried Podesser in his Master’s thesis [261],
which was supervised by the author. The Technology Compatibility Kit
and the Reference Implementation was created by the author together
with the summer interns Michael Gissing, Siegfried Podesser, Josef
Sabongui, and Robert Stoegbuchner.

In particular, there is insufficient support for platform-independent runtime
environments like .NET [222], Android or Java. Such environments are par-
ticularly useful for implementing modern distributed computer systems, which
require deployment of code and data across heterogeneous environments [125].
For instance, several billions of devices support Java, and Oracle claims [243]

http://jcp.org/en/jsr/detail?id=321

3.2. Trusted Computing in the Java Environment 41

that the Java developer community, with nine million members, is the largest of
its kind. It is of little surprise that there have been a number of attempts to pro-
vide TPM libraries that target the Java programming language. However, none
of them have yet been established as a generally-accepted standard Application
Programming Interface (API) for TPM access.

We now describe the design of a high-level Java API for Trusted Computing,
which has been published as an official Java standard in [327]. Our goal in
designing this API is to provide a simpler, high-level interface to the TPM while
still adhering to the concepts and standards defined by the Trusted Computing
Group. The creation of this Java Specification Request No. 321 (JSR 321) has
been an open, transparent process.

This chapter describes an approach to integrate Trusted Computing func-
tionalities in the Java environment. Starting with a motivation of the research
presented we will move on to discuss others’ proposals for Trusted Computing
APIs and our conclusions on those. We will then present our approach which
goes considerably further and endeavors standardization in the Java Community
Process which develops the Java platform. This chapter presents design choices,
reports on implementations and testing and discusses related work. The result
of this endeavor is the official industry standard JSR 321, which was released in
2012.

3.2 Trusted Computing in the Java Environment

3.2.1 Emerging Fields of Use

At the application layer, the Java programming environment has seen broad
adoption ranging from large-scale business applications hosted in dedicated data
centers to resource constrained environments found in mobile phones or Personal
Digital Assistants (PDAs). By default, Java program code [131] is not compiled
to native machine code but to a special form of intermediate code, called byte
code. This byte code is then executed1 by the Java Virtual Machine (JVM) [194].
This characteristic makes Java an excellent choice for development aiming at het-
erogeneous environments. In contrast to conventional programming languages
such as C or C++, Java is equipped with inherent security features supporting
the development of more secure software. Among those features are automatic
array-bounds checking, garbage collection and access control mechanisms. Ad-
ditional aspects that distinguish Java from other environments are code-signing
mechanisms and the verification of byte code when it is loaded. The class-loading
mechanism separates privileged code and creates a sandbox for remotely fetched
classes [130].

Over time, Java has become one of the major development environments for
business applications, especially in fields that highly depend on the security and

1In the JVM, bytecode is either interpreted, or “just-in-time“ compiled to native code on
demand.

42 Chapter 3. Design and Standardization of a Trusted Computing API

trustworthiness of computer systems, e.g., financial service providers. Such com-
mercial business environments are among the fields where Trusted Computing
technologies is very attractive. Another area of application is network-based soft-
ware, where Java is a logical choice for highly distributed applications that are
deployed in heterogeneous environments. Java is also the programming language
used in the Google Android environment which is especially popular on mobile
phones and tablet computers. Here also, Trusted Computing is very promising
to further improve security. While generic cryptography is well supported by
the Java Security Architecture, there is currently no established standard API
for Trusted Computing available.

Still, a large number of Java-based use cases have been demonstrated for
Trusted Computing, using several existing approaches for Trusted Computing
integration in Java.

3.2.2 Review of Existing Java Libraries
This section presents an overview of existing libraries and APIs that provide first,
experimental support for Trusted Computing to Java developers. Additionally,
we discuss strengths and weaknesses of the individual approaches.

Trusted Computing for the Java Platform and jTSS

In the Open TC project [239], a team from IAIK has developed a number of
Trusted Computing components for Java and have since made the results avail-
able in the open source “Trusted Computing for the Java Platform” project. The
central component is an implementation of the Trusted Software Stack (TSS)
for Java programs called jTSS [258]. It is a large library that provides Java
programs with the TSS functionality that C programs currently enjoy.

Overall, the project offers two flavors of TSS implementations. See Figures
2.2 (p. 22) for an overview of the TSS layers and Figure 3.11 (p. 64) for an
overview of how the individual layers can be combined. We will now discuss
both alternative implementations, the jTSS Wrapper and jTSS.

jTSS Wrapper provides Java programs access to C-based stacks through an
object-oriented API, which forwards calls to the native TSS. A thin C-
back-end integrates the TCG Service Provider (TSP) system library. The
Java Native Interface (JNI) [242] is a mechanism of the JVM to link into
C-libraries. For jTSS Wrapper, JNI maps the constants and functions
of the C-based TSP into a Java front-end. There, several aspects of the
underlying library, such as memory management, the conversion of er-
ror codes to exceptions and data-type abstractions, are implemented. All
other operations are then performed by a native TSS installed in the sys-
tem. Unfortunately, this wrapping approach results in complex component
interactions. Debugging across language barriers is a challenging task and
thus increases the efforts needed to implement TC applications. In our
experience, another major drawback is that implementation errors in the

3.2. Trusted Computing in the Java Environment 43

C-based components seriously affect JVM stability. Also, different na-
tive TSSes behave slightly differently, making integration in available sys-
tem services more difficult and rendering jTSS Wrapper rather arduous to
maintain and use.

jTSS is a native implementation of the TCG Software Stack written completely
in the Java language. It offers seamless support for Linux operating sys-
tems and all Windows versions later than Vista, demonstrating platform
independence. The Java TCS also synchronizes access from multiple Java
applications. Such a full Java TSS implementation clearly reduces the
number of involved components and dependencies. Consequently, this ap-
proach results in fewer side-effects as it does not rely on third parties’
possibly incompatible TSS implementations or their different interpreta-
tions of the TSS specification. Moreover, a pure Java stack can easily be
ported to other operating systems and platforms.

The API exposed by both variants is the same, enabling Java application
programmers to switch between the two seamlessly, with the choice of the back-
end implementation depending on the surrounding platform. The API definition
covers data types, exceptions and abstract methods — we refer to it as the jTSS
API [340]. The jTSS API closely follows the original TSS C interface, permitting
the user to stay close to the originally-intended command flows and providing
the complete feature set of the underlying library. jTSS covers almost all of
the functions specified by the TCG for communicating with the TPM at the
fine granularity of TSS commands. As with every TSS, a complex sequence of
commands is required to achieve functionality such as sealing, binding, attes-
tation and key generation for application software. The project also provides
jTpmTools (jTT), which is a sample implementation of the high-level programs
that can be written using the jTSS API.

Of both libraries the first release was authored by Thomas Winkler, while the
subsequent releases, maintenance and support activities have been done by the
author. jTSS has since become a popular choice for Trusted Computing related
research activities [10, 12, 33, 35, 50, 51, 61, 80, 90, 109, 126, 142, 148, 169, 171, 178,
180,202,203,247,248,255,288,307,314,320,326,330,333,367–369,376]. It is one of
the most widely used, supported and regularly updated TSSes available today.

While jTSS does allow programmers the use of the TPM from Java, it still
involves a significant learning curve for the average Java programmer, who may
not be familiar with the procedural programming style that stems from the C-
based TSS legacy. Overall, it is still a complicated API that requires a large
amount of training and cross-language experience before it can be used in real-
world projects.

TPM/J

Sarmenta et al. present TPM/J [282, 283], a high-level API that allows Java
applications to communicate with the TPM. It is compatible with the Linux,

44 Chapter 3. Design and Standardization of a Trusted Computing API

Windows XP and Windows Vista and Mac OS X2 operating systems thus living
up to the promise of platform independence.

For the Java language, following the TSS specifications might not be ideal.
Accordingly, TPM/J intentionally deviates from the design of TCG. From the
point of Java developers this is an advantage, since the TSS specifications provide
details specific to the structural programming paradigm and cannot be ported
elegantly to the object-oriented perspective. A drawback of TPM/J is that the
library does not feature a layered architecture. Therefore, the JVM must run
with elevated privileges to access the TPM hardware resource. Moreover, a
major concern for users of TPM/J is that it is not regularly maintained, thus
making it unsuitable for large-scale adoption in the community. It has however
been used to study monotonic counters [283], and an attack on the TPM [3].

TPM4JAVA

TPM4JAVA [144] is a Java library that provides an easy-to-use API to Java
programmers for communicating with the TPM. Its design is based on three
levels of abstractions:

1. High-level: It provides developers with conveniently usable functionality
to execute selected commands such as taking ownership, computing hashes
and generate random numbers.

2. Low-level: This is a less user-friendly approach that allows programmers
to execute any of the commands supported by the TPM.

3. Back-end: This layer is used internally for communicating with the TPM
device driver library.

While the high-level API makes several functions easily accessible, some op-
erations, such as performing a quote during attestation, require several lines of
code and a low-level understanding of the actual functioning of the TPM. This
makes ‘high-level’ a misnomer and breaks the consistency when using the API.
The project has not been maintained for several years. Finally, TPM4JAVA
shares the limitation of the other approaches of not adhering to the TCG’s spec-
ifications.

3.2.3 Other Trusted Computing Interfaces
In the process that has been employed to conceive the original TSS specifica-
tion by the TCG, a working group devised a set of APIs to form an industry
specification. TSS not only covers a user-oriented API (the TSP Interface), but
also architectural and internal details clearly intended for developers who plan
to build a full TSS. Still, the actual functionality is not elaborated in detail;
in particular, the relationship between different commands in different layers

2At the time of writing, the inclusion of TPMs in Mac OS X compatible platforms has been
discontinued.

3.2. Trusted Computing in the Java Environment 45

(TSP, TCS, TDDL, and TPM) is neither sufficiently documented nor obvious
by naming conventions. Unfortunately, implementors are not required to obey
the complete specifications and no reference implementation is offered as guide-
line by the TCG. As a result, to the best knowledge of the author, no currently
available implementation covers the complete specification. Indeed, several of
the highly complex functions specified have not been successfully implemented
nor tested in the years since the TSS standards were released. There are no test
suites, or compliance tests supplied for the software components.

From a developer’s point of view, the TSS design suffers from several draw-
backs. It is challenging to develop applications with it, as even straightforward
mechanisms of the TPM correspond to complicated instruction flows in the TSS
API. There is little documentation, and the API’s nomenclature is neither in-
tuitive, nor well assisted by code completion IDE tools. Also, a lot of function-
ality specified in the API is not relevant for many typical use cases of Trusted
Computing. This is especially true for heterogeneous environments or embedded
platforms. Based on these insights, which we first brought forward in 2009 [338],
several other proposals for higher level interfaces have recently been made for
non-Java environments.

Stüble and Zaerin [308] propose a simplified trusted software stack (µTSS)
for the C++ language. It mimics the TCG layered architecture (in the form
of object-oriented oTDDL, oTCS and oTSP layers), with oTSP providing high
level abstractions of selected functionality. It is noteworthy that oTCS offers
access to all TPM instructions.

Also for C++, Cabbidu et al. [55] present the Trusted Platform Agent, a
library that aggregates TSS functions into a higher-level API and also inte-
grates other features missing in the language’s standard library like cryptogra-
phy and network communications. It therefore provides selected building blocks
for trusted applications that can be applied with a low learning curve.

Reiter et al. [270] describe an alternative stack design that integrates in an
open source cryptography API for Microsoft .NET.

Beneath the TCS layer of the TSS, the TPM Base Services (TBS) [223] in
Windows Vista or later, virtualize the TPM for concurrent access and also offer
a small set of management features to scripting languages.

However, each of these proposals needs to focus, based on the programming
language, on a separate developer clientèle, different fields of application and
other norms and conventions than we do in JSR 321.

3.2.4 Findings
While the aforementioned APIs all share the common goal of providing Trusted
Computing functionality to developers, to date none of them has seen widespread
adoption beyond research and academia.

One of the main reasons is that the interfaces exposed by the libraries often
are difficult to learn and understand. This stems from several facts:

1. Trusted Computing by itself is a complex technology. The specifications

46 Chapter 3. Design and Standardization of a Trusted Computing API

defining the two major components — the TPM and the TSS [342, 345]
— together consist of about 1500 pages. The concepts are often not well
presented for novice users and details have to be looked up in several
different places. So it comes as little surprise that very few actual software
products make use of the original C-based TSS to access the TPM. Indeed,
a 2008 study [291] on the TSS concludes that, “it is apparent that, until
now, no application exists that makes use of this technology. Even the
simplest applications [...] have not been applied yet.”

2. Implementations like jTSS try to mimic the interface defined by the TSS
specification. This interface, however, was developed for procedural pro-
gramming languages like C. Even though jTSS tries to map the TSS con-
cepts to an object oriented API, it still does not fit well into the Java
ecosystem and feels unnatural to developers familiar with other Java APIs.
Furthermore, large and complex amounts of code are required to set up
and perform basic Trusted Computing functions. This stems from the
fact that in the original C-based TSS API, functions take long lists of pa-
rameters with many potentially illegal combinations. This makes the API
error prone and complex to use for developers without detailed Trusted
Computing knowledge.

3. Implementations like TPM/J and TPM4JAVA provide alternative inter-
faces to Trusted Computing functionality. While in the first case, the
interface is at a very low level, the second one offers some higher level
abstraction, but is neither consistent with Java or TCG conventions nor
functionally complete.

4. A full-fledged TSS is a very flexible and powerful library, but practical
experience has shown that its full capabilities are not actually required for
the vast majority of typical Trusted Computing applications.
From our experience of maintaining jTSS and supporting its users stems
the insight that most adopters only follow existing code examples and test
code. Few experiments create fresh functionality, and if so tend to follow
a steep and tedious learning curve. Not only users are affected, but also
developers of the TSS as such. The specifications have too much leeway,
causing incompatibilities and implementations of the various TSS layers
themselves are often difficult to maintain.

Therefore, a novel design is needed that improves on the identified shortcom-
ings and provides a programming interface suitable for Java developers while
considering the specifics of trusted hardware platforms, legacy software archi-
tectures, and, obviously, the Java environment.

3.3 API Design
We can now move on to describe the major influences on our specification and
our resulting design decisions. Based on defined goals (Section 3.3.2) and clear

3.3. API Design 47

assumptions on the developers (Section 3.3.3) that we target, we consider the
restrictions imposed by the surrounding environment and discuss how the stan-
dardization process has influenced our proposal. From these constrains, we have
implemented an agile specification process which enables us to derive the design
of the JSR 321 API.

3.3.1 The Java Community Process
We now introduce the design and standardization process for the Trusted Com-
puting API for Java, known as Java Specification Request #321 (JSR 321) within
the Java Community Process (JCP) [170]. The Java Community Process aims
to produce specifications using an inclusive, consensus-based approach. It is
controlled by an elected Executive Committee (EC), which represents most ma-
jor players in the Java industry. The central element of the JCP is to gather
a group of industry experts who have a deep understanding of the technology
in question and then have a technical lead work with that group to create a
first draft. Consensus on the form and content of the draft is then built using
an iterative review process that allows an ever-widening audience to review and
comment on the document. While the JCP provides a formal framework with
different phases and deliverables, an Expert Group (EG) may freely decide on
its working style.

There are a number of phases in the process. First, a new specification is
initiated by a community member and approved for development by the (ap-
propriate3) EC. Then, a group of experts is formed to develop a preliminary
draft of the specification. Feedback from early reviews is used to revise and
refine the draft. Once considered complete, the draft goes out again for public
review. Now, the EC decides whether the draft should proceed. If approved by
the EC, a proposed final draft of the specification is published and the leader
of the expert group sees that the reference implementation and its associated
technology compatibility kit are completed. Then the EC decides on its final
approval. Completed specifications are maintained and updated.

The process also requires a Reference Implementation (RI). Its purpose is
to show that the specified API can be implemented and is indeed viable. With
the Technology Compatibility Kit (TCK) a suite of tests, tools, and documenta-
tion that is used to test implementations for compliance with the specification
has to be provided as well. This enables third parties to build their own, com-
patible implementations. The TCK must achieve 100% coverage over all the
API’s method signatures, i.e., the combinations of each method name and all its
parameter lists.

3.3.2 Goals for a Novel API
As outlined in Section 3.2.4, the different existing Trusted Computing libraries
do not fulfill all the desirable features of a standard specification for applied

3In the period of time when JSR 321 was standardized, there were two ECs. An EC for
Java Standard Edition and an EC for Java Micro Edition, which have since merged.

48 Chapter 3. Design and Standardization of a Trusted Computing API

usage of Trusted Computing. We therefore propose a new API and, in this
section, present a set of goals the Expert Group has decided on.

Integration with Existing Trusted Computing Platforms. To the OS,
the JVM appears just as an ordinary user process. Therefore, the TPM
access mechanisms need to integrate with the surrounding environment, be
it virtualized or not, and management services. The access should be pos-
sible with suitable privileges and not block other services and applications
that might contest for the TPM resource.

User-Centric Design. An application programming interface is directed to-
wards the programmer. A Trusted Computing API should therefore be
designed to aid developers in writing security applications and the design
should strive to be easy to use for as many developers as possible. How-
ever, TC is not a trivial technology and cannot be used naively; we believe
that some appropriate knowledge can be expected of the developers. We
will define this in the next Section 3.3.3.

Simplified Interface. We believe that, to make the new API fit into the Java
ecosystem, a completely new and fully object-oriented interface is needed.
For instance, generic entities (e.g., cryptographic keys, policy objects, etc.)
in the TSS should be replaced with specific classes that represent the differ-
ent types (e.g., a dedicated class for each type of key). This allows the set
of offered operations to be limited to those actually applicable for a certain
object type, thus enhancing usability and reducing the risk of errors.

Reduced Overhead. The TSS API requires a substantial amount of boiler-
plate code for routine tasks, such as key creation, data encryption or pass-
word management. The proposed API should attempt to replace these
lengthy code fragments with simple calls using sensible default parameters
where required.

Conceptual Consistency. Names in the API should be consistent not only
within the API but also with the nomenclature used by the TCG and in
Trusted Computing literature. If this goal is fulfilled, developers will be
able to easily switch from other environments to the proposed API. Still,
naming conventions of Java must be adhered to.

Testable and Implementable Specifications. The API design should tar-
get a small core set of functionality, based on the essential use cases of
Trusted Computing. This restriction in size will allow for complete im-
plementations and functional testing thereof. Also, limiting the functional
scope makes it possible for all implementations to cover the full proposed
API, a key requisite for true platform independence.

Extendability. The API should allow implementers and vendors to add func-
tionality which is optional or dependent on the capabilities of the surround-
ing platform. This can be achieved through a modular, object-oriented
design.

3.3. API Design 49

Standards Compliance. Having an industry-wide standard of accessing the
TPM from software is indispensable for widespread use and for enabling
code mobility between platforms. In the opinion of the EG, the TSS API
is unfit for the Java environment. Thus a novel, independent industry
standard is needed and the newly proposed API should be designed also
considering the standardization process.

3.3.3 Expected Developer Knowledge
A major goal of the proposed JSR 321 API is to simplify Trusted Computing
and make it accessible to a larger group of software developers. To achieve this,
it is essential to understand the target audience and their skills before we can
move on to create a programming interface for them. In the following we define
which skills and knowledge we expect of a developer in order to make full use of
the API.

In general, a developer using JSR 321 should be familiar with the crypto-
graphic mechanisms provided in the Java Security Architecture [130, 196]. The
concepts of data encryption, decryption and the creation of message digests us-
ing hash algorithms should be familiar. The algorithms in particular include
SHA-1 and RSA (see Section 2.3.2) as used by current TPM implementations.
Moreover, a general understanding of Trusted Computing concepts and the func-
tionality provided by a TPM is required. This at least should include knowledge
about the following topics:

TPM Life-cycle. Starting with its manufacture, a TPM goes through a num-
ber of different states. A developer must understand this life-cycle, for
instance that the TPM is shipped in an unowned state and its owner must
explicitly take ownership, activate, and enable it. When the machine con-
taining the TPM reaches its end of life, the TPM may be cleared to ensure
that any TPM protected data can no longer be accessed. To avoid data
loss, appropriate mechanisms like key backup or migration must be exe-
cuted beforehand. Also the implications of a transfer of ownership of a
platform need to be considered.

TPM Key Management. A TPM supports a range of different key types,
including storage, binding and signature keys. The developer is responsible
for building and maintaining a consistent hierarchy. For instance, if certain
keys are created as non-migratable this may rule out any backup of them.

Root- and Chain-of-Trust. Ideally a consistent chain-of-trust would be es-
tablished by the operating system as described in Section 2.5. However,
today’s mainstream platforms fail to do so. Security architects and devel-
opers need to take extra care to consider the security level represented by
the PCR values.

Trusted Storage. Care must be taken when the binding and especially sealing
mechanisms are applied to data or user supplied key material. Again, the

50 Chapter 3. Design and Standardization of a Trusted Computing API

problem of backup arises, especially considering state changes which can
render sealed data permanently inaccessible4.

Attestation. A number of different protocols have been proposed to perform
attestation to a remote verifier [64, 75, 278, 311]. An API can offer the
means to create TPM quotes, but there is no established method and in-
frastructure for attestation. Therefore, architects and developers intending
to leverage attestation will need to understand how to specify and im-
plement appropriate communication protocols and also how to interpret
measurement hashes.

3.3.4 API Scope Considerations
JSR 321 aims to be a simplified, compact and user-friendly API that should
integrate in the complex ecosystem of today’s Trusted Computing infrastructures
and be consistent and viable. It it therefore essential to clearly focus the scope
of functionality offered by the interface.

A natural starting point to derive a Trusted Computing API is from the
complete TSS specifications. However, TSS is a system interface, while JSR 321
(and all Java code) is focused on applications and services. As a consequence,
JSR 321 is not planned to and cannot fully replace the TSS in all its tasks.
Instead, and as required by the nature of the JVM as a user process, it builds on
and extends the TSS services offered by the operating system environment. As
we will see in Section 3.5, a TSS can be used to implement the JSR 321 high-level
API. Also, significantly different requirements stem from the regulations of the
design processes and the targeted developer audiences.

By contrast to the process that lead to the creation of TSS (see. Section
3.2.3), in the standardization process of JSR 321 (see Section 3.3.1) the speci-
fication of APIs and functionality must come with implementations and tests.
As any Java integration must rely on the TSS-based services of the operating
system surrounding the JVM, this imposes natural restrictions to the functional
scope of the JSR 321 API: only those parts of the TSS specification which are
available and thoroughly tested in existing TSS implementations can be used to
implement JSR 321.

Also, JSR 321 provides functionality focused on applications and middle-
ware, rather than providing support for the low level BIOS or OS features of
the TPM. This restriction matches the field of use of Java and permits a signif-
icant reduction in complexity; JSR 321 does not duplicate elements of the Java
Cryptography Architecture, thus fitting into the existing library framework.

Finally, many TSS-specified functions are simply not needed in Java APIs:
management of memory and other resources can and should be hidden from
application developers; object initialization and destruction are natural features

4The chain-of-trust could even change in a way outside of the control of the operator, e.g.
by hardware repairs, automatic software updates, random measurements, clearing ownership,
etc.

3.3. API Design 51

of object-oriented languages; cryptographic primitives like hash functions are
already well-supported in the Java Cryptography Extension.

3.3.5 Process Implementation: Transparency and Agility
As discussed in Section 2.2.3, it is important that a Trusted Computing library
does not limit the users’ right of self-determination on the software executed
on a platform. To warrant persistent trust in a standard, is should not cause
privacy concerns or even fear of back-doors.

In many cases, only the ability to check the blueprints of a platform will give
interested parties the opportunity to evaluate and eventually certify the security
level of an architecture. To allow evaluation from the widest possible audience,
the release of code under open-source licenses is an important first step. Also,
it has long been known that obscuring implementation details does not aid the
design of cryptographic systems [176]. We believe that transparency is critical
for the general success of Trusted Computing. Going even beyond that, the next
step in providing transparent specification is to also perform the design process
in a transparent way.

The JSR 321 Expert Group has committed itself to devise and follow a trans-
parent process for developing the specifications. Besides industry representa-
tives, the JSR 321 Expert Group has many members from academia and indi-
vidual professional Java engineers who contribute their spare time. The EG
endorses the principle of open research and open source software and strives to
give as much transparency to the public as possible.

The JCP program requires that every Java Specification Request (JSR) be
published and reviewed several times as Early Draft, Public Draft, Proposed
Final Draft, and Final Release. Still, drafts might be made available more reg-
ularly than required. This also aids interaction with the community, as the
examination of drafts helps contributors to make well-informed suggestions, rec-
ommendations or corrections. Also the incorporation of contributions can be
traced better.

On the official web site [327] we have explained the JSR proposal, updated
the current status in the process, and offered downloads for each review cycle,
including the final release. Besides these obligatory information, more services
are offered to the public in the JSR 321 project of the java.net community:
http://jsr321.java.net/. One of the many services offered is a public Subversion
(SVN) repository to enable collaboration between the experts as well as anyone
who registers (for free) at java.net. Everyone can check out a documents from
the repository and access the latest version of the source code, independent of
the JCP program’s stages.

Many industry standards, including TSS [342], follow the classical specify-
first, implement-later approach. However, for JSR 321 we chose to implement
first and specify later, much in the spirit of the Extreme Programming paradigm
[38]. This approach allows us to operate with as much as agility as possible.
Agility provides an efficient use of resources, short feedback cycles, and a chance
to consider different approaches while still moving forward. This flexibility is

http://jsr321.java.net/
java.net

52 Chapter 3. Design and Standardization of a Trusted Computing API

10/2007 3,2,1 Go!
12/2007 JSR Review
 & EC Vote

8/2008 First running code
 against internal API draft
7/2009 Early Draft Review
9/2009 First internal
 implementation of API

2/2011 Public Review & EC vote
4/2011 Proposed Final Draft
8/2011 TCK reaches 100% coverage
11/2011 Final Approval Ballot
12/2011 Final Release

Expert Group Formation

2007 2008 2009 2010 2011 2012

Initiation Early Draft Public Draft &
 Review

Maintenance

Specification Refinement

Reference Implementation

Technology Compatibility Kit Development

Figure 3.1: Development and Specification Time-line for JSR 321.

important as no comprehensive solution to the design challenge existed previ-
ously. It also allows the Expert Group to take small, easy-to-reach steps. For
instance, we did not start with writing text, but worked with Java code from the
beginning. We consider it the perfect medium to develop an API and modern
refactoring tools make it possible to develop such drafts into high quality APIs.
Then specification documents can be automatically derived from it. One other
benefit this approach has for the team is that it builds more enjoyment into the
process, as software engineers prefer writing code to describing specifications in
prose.

We outline the overall time-line and milestones of the design, implementation
and specification in Figure 3.1. Agility ideally supported the design process,
as early implementation and several implementation iterations lead directly to
the specification documents: After agreeing on the basic flavor of the API, the
JSR 321 Expert Group developed a minimal prototype. This allowed us to learn
more about the approach and its implementability. When, after several tweaks,
we were satisfied with the behavior and usability of the prototype, it was easy
to extract Java interface definitions from it. After only slight modifications we
were able to release this as an Early Draft. In the next iteration, the interfaces
were implemented and test cases created. Feedback, in the form of e-mails and
reports from reviewers and implementations experiences lead to improvements
of the API that were directly addressed in the Java code or comments in the
generated documentation.

While we did not have the resources available for empirical testing of the
usability of the API in a formal lab setting with different groups of developers,
we did start out with a characterization of users [71] (Section 3.3.3) and the agile
process together with its implicit peer reviews [111] has assisted us in creating
an easy-to-use API. Test were done at the same time as the implementation, or
sometimes created before making the implementation. Operating in this fashion
allowed the group to make headway with the API design, implementation, and

3.4. Outline of the API 53

test kit all at the same time. The different versions of written specifications
submitted are therefore snapshots of the API’s Java code.

Our efforts for a innovative and smooth standardization were honored in the
JCP through the 2010 ”Outstanding Spec Lead“ award.

3.3.6 Selected Features
We have now discussed our considerations on what the API should contain, who
we intend to use it.To derive the functional scope of the API, the EG considered
the commented complete list of TCG-specified TSP functions [63]. Based on the
criteria and principles laid out previously, the EG selected those features that are
required for core use cases that have high importance for practical applications.
Figures 3.2–3.8 show the resulting mapping and represent the final decisions
made by the JSR 321 Expert Group [327]. In the first column the original TSS
C-function is named, and elaborated (by [63]) in the second column. Next, a
brief assessment of its role is given followed by the design decision on whether
to include it in the form of a public method in JSR 321. Finally, the Java class
that contains this function, visibly or just internally, is given.

In summary, the design focuses on the most important core concepts of
Trusted Computing. The second main goal is to provide high usability. At
the same time, the API is designed to remain modular enough to be extensible
with future developments.

3.4 Outline of the API
The unique name-space officially assigned to the JSR 321 API is
javax.trustedcomputing. Within this name-space, a number of packages is
specified, each representing a well defined set of functionality. These packages
are:

javax.trustedcomputing.tpm This package contains all relevant functionality
for connecting to a TPM. A TPM connection is represented by the central
TPMContext object that acts as a factory for other objects specified by
the API such as the KeyManager or the Sealer. The TPM interface is also
defined in this package, which provides general TPM related information
such as its version and manufacturer. Additionally, it allows PCR registers
to be read and extended, as well it provides the Quote operation required
for platform attestation.

javax.trustedcomputing.tpm.keys In contrast to the TSS specification,
JSR 321 introduces specific interfaces for the individual key types sup-
ported by the TPM. This includes interfaces for storage, sealing and bind-
ing keys. Compared to having one generic key object, this approach reduces
ambiguities in the API and allows the appropriate key usage, as it is hard-
coded in the TPM, to be enforced already at the programming interface
level. This also enables modern software engineering tools to offer sensible

54 Chapter 3. Design and Standardization of a Trusted Computing API

TSS C-Function Description Reason for
Removal or
Inclusion

Visible
in API

Assigned
JSR321 Class

Tspi_GetAttribUint32 Find out the value of an
integer attribute of an
object.

Access to basic
information on TSS

No TPM

Tspi_GetAttribData Get a non-integer
attribute of an object.

Access to basic
information on TSS

No TPM

Tspi_GetPolicyObject Find out the current
authorization policy
associated with the
context.

Essential for
processing
commands

Yes Hidden.
Configured using
Secret class

Tspi_Context_Close Close a context. Context Sessions
are essential to
TPM

Yes TPMContext

Tspi_Context_Connect Connect to a context
after it is created.

Context Sessions
are essential to
TPM

Yes TPMContext

Tspi_Context_Create Create a context. Context Sessions
are essential to
TPM

Yes TPMContext

Tspi_Context_Free
Memory

Free memory allocated
by a Tspi-level function.

Java hides Memory
Management

- -

Tspi_Context_Get
DefaultPolicy

Use the default
authorization policy for
the creation of an object.

Essential No Hidden.
Configured using
Secret class

Tspi_Context_Create
Object

Create an object, such as
a key object. After
creating the object, the
fields in the object need
to be set.

TPM object live in
Contexts

Yes TPMContext

Tspi_Context_Close
Object

Destroy an object. Java manages
resources

No -

Tspi_Context_Get
Capability

Get the current
capabilities of the
context.

Configuration of
Context

No TPMContext

Tspi_Context_GetTPM
Object

Get the TPM object
associated with a
context.

Essential Yes TPMContext

Tspi_Policy_Flush
Secret

Remove the
authorization data from
memory.

Desirable for
security.

Yes Secret destruction
could be difficult in
actual
implementations
(delayed garbage
collection)

Tspi_Policy_Assign
ToObject

How one assigns a policy
to an object—for
example, a key.

Essential for
processing
commands

No Hidden.
Configured using
Secret object

Tspi_TPM_GetCapability Get the set of
capabilities of the TPM.

Access to basic
information on
TPM

No TPM

Tspi_TPM_SetCapability Set capabilities of the
TPM.

Access to basic
information on
TPM

No TPM

Figure 3.2: Mapping of TSS Functions to the JSR 321 API and its Classes (part 1).

3.4. Outline of the API 55

Tspi_TPM_GetRandom Return a random
number of the specified
size.

Useful feature Yes TPM

Tspi_TPM_StirRandom A means of adding
entropy to the internal
random number
generator. It is a good
habit to call it with the
current time. (Because it
only adds entropy, it can
never hurt.)

Useful feature Yes TPM

Tspi_Key_GetPubKey Get the public key of a
key pair.

Vital Feature Yes TPMKey

Tspi_Hash_Sign Hashes and signs data
with a given key.

Useful feature No Signer

Tspi_Hash_VerifySignat
ure

Verifies the signature of
given data.

Useful feature No RemoteSigner

Tspi_Hash_SetHashValue Set a particular hash
value if you don't
happen to want to use
SHA-1.

Standard feature in
JCE

- -

Tspi_Hash_GetHashValue Determine the current
value of a hash object.

Standard feature in
JCE

- -

Tspi_Hash_UpdateHash
Value

Add new data into a
hash object, which
continues the hash in
the way defined by the
hash algorithm.
Currently only SHA-1 is
supported.

Standard feature in
JCE

- -

Tspi_Data_Unbind Unbind data by
decrypting with a private
storage key. This takes
place inside the TPM.

Useful feature Yes Binder

Tspi_Data_Unseal Decrypt data sealed to a
TPM when PCRs are in a
determined state (and
optional authorization
data is present).

Useful feature Yes Sealer

Tspi_PcrComposite_
SelectPcrIndex

Select a particular set of
PCRs in a PcrComposite
object.

Vital Feature Yes PCRInfo

Tspi_PcrComposite_
SetPcrValue

Set what values the PCRs
in a PcrComposite object
should have. This is
preparation for doing a
seal.

Vital Feature Yes PCRInfo

Tspi_PcrComposite_
GetPcrValue

Returns the current
value of a PCR in a
PcrComposite object.

Vital Feature Yes PCRInfo

Tspip_CallbackHMACAuth Configurable mechanism
for creating an HMAC for
authorization data.

C-style callback
functions are not
needed in Java

- -

Figure 3.3: Mapping of TSS Functions to the JSR 321 API and its Classes (part 2).

56 Chapter 3. Design and Standardization of a Trusted Computing API

Tspip_CallbackXorEnc Used to provide a means
of inserting a secret to a
TPM object (such as
when doing a change
auth) without allowing
sniffing software to see
what the new
authorization is as it
goes by.

C-style callback
functions are not
needed in Java

- -

Tspip_CallbackTake
Ownership

Take ownership of a
TPM using a callback
mechanism.

C-style callback
functions are not
needed in Java

- -

Tspip_CallbackChange
AuthAsym

Use a callback
mechanism to change
authorization.

C-style callback
functions are not
needed in Java

- -

Tspi_Data_SealX Just like Seal, except that
it can also use locality
and record historical PCR
values for PCRs other
than the ones it is
locking to.

Nice to have No -

Tspi_TPM_Quote2 Provide more
information (including
locality stuff) than
Tspi_TPM_Quote does.

Vital Feature Yes Attestor

Tspi_PcrComposite_
SetPcrLocality

Set the locality settings
for a PcrComposite
structure.

Nice to have No PCRInfo

Tspi_PcrComposite_
GetPcrLocality

Return the locality
settings of a
PcrComposite structure.

Nice to have No PCRInfo

Tspi_PcrComposite_
GetCompositeHash

Return the Composite
hash of the
PcrComposite structure.

Vital Feature No PCRInfo

Tspi_PcrComposite_
SelectPcrIndexEx

Because the new
Pcr_long structure
independently sets
which PCRs to record
historically and which to
use for release, this
command was needed
to set them individually.

Hidden
implementation
detail

No PCRInfo

Tspi_TPM_ReadCurrent
Counter

Read the value of the
current counter.

Nice to have,
monotonic
counters not
supported in OSes

No -

Tspi_TPM_ReadCurrent
Ticks

Read the current tick
value (which
corresponds loosely to
time) of the TPM.

Useful, but TCG
specifications on
time correlation are
ambiguous

No -

Tspi_Hash_TickStamp
Blob

Sign data together with
the current tick value
and tick nonce.

Useful, but TCG
specifications are
ambiguous

No -

Figure 3.4: Mapping of TSS Functions to the JSR 321 API and its Classes (part 3).

3.4. Outline of the API 57

Tspi_NV_DefineSpace Create a section of
NVRAM and associates it
with specific
authorization (such as
authorization data, PCR
values, locality, or once
per power on).

NV RAM Access is
not needed for
applications

- -

Tspi_NV_ReleaseSpace Put NVRAM space
previously allocated back
into the pool.

NV RAM Access is
not needed for
applications

- -

Tspi_NV_WriteValue Write a value to the
NVRAM space previously
allocated.

NV RAM Access is
not needed for
applications

- -

Tspi_NV_ReadValue Read a value from
NVRAM space previously
allocated.

NV RAM Access is
not needed for
applications

- -

Tspi_TPM_DAA_Sign Use a DAA credential to
verify either a message
or an AIK.

NV RAM Access is
not needed for
applications

- -

Tspi_TPM_GetAudit
Digest

Get the current audit
digest of the TPM.

TPM
Implementations
do not support
Audits

- -

Tspi_TPM_SetOrdinal
AuditStatus

Set an ordinal to be
audited.

TPM
Implementations
do not support
Audits

- -

Tspicb_CallbackSealx
Mask

Used when masking or
unmasking data sent or
returned with
Data_SealX or
Tspi_Data_Unseal
operations.

C-style callback
functions are not
needed in Java

No Sealer

Tspicb_CollateIdentity Because it isn't clear
what encryption
algorithms will be
required by a certificate
authority, this command
can be used to encrypt
the collated information
with any encryption
algorithm.

Optional
functionality for AIK
Cycle

No -

Tspicb_Activate
Identity

Similarly, when a
certificate is encrypted
by the certificate
authority, the decryption
will be done entirely in
software, so this
command allows any
decryption algorithm
trusted by the certificate
authority to be used.

Optional
functionality for AIK
Cycle

No -

Figure 3.5: Mapping of TSS Functions to the JSR 321 API and its Classes (part 4).

58 Chapter 3. Design and Standardization of a Trusted Computing API

Tspicb_DAA_Sign Extend properties of the
DAA protocol.

No DAA reference
implementations
available

- -

Tspicb_DAA_Verify
Signature

Extend the usefulness of
the DAA protocol.

No DAA reference
implementations
available

- -

Tspi_Key_LoadKey Load a particular key
into the TPM.

Vital Feature No TPMKey

Tspi_ChangeAuth Create a new object with
a different authorization.

Vital Feature Yes TPMKey

Tspi_ChangeAuthAsym Create a new object with
a different authorization
(but the same other
internal parameters)
without revealing
knowledge of the new
authorization to the
parent key.

Implementation
Detail

No -

Tspi_Context_LoadKey
Blob

Load an encrypted key
blob into the TPM, used
when you have the key
blob file.

Implementation
Detail

No KeyManager

Tspi_Context_LoadKeyBy
UUID

Load a key into the TPM
when you know its UUID.

Vital Key
Management
Feature

Yes KeyManager

Tspi_Context_
UnregisterKey

Remove a key from a
user or system key store.

Vital Key
Management
Feature

Yes KeyManager

Tspi_Context_DeleteKey
ByUUID

Remove a key from the
TPM referenced by
UUID.

Vital Key
Management
Feature

Yes KeyManager

Tspi_Context_GetKeyBy
UUID

Search for a key by its
UUID, and returns a
handle to it.

Vital Key
Management
Feature

Yes KeyManager

Tspi_Context_GetKey
ByPublicInfo

Search for a key by its
public data and returns a
handle to it.

Vital Key
Management
Feature

Yes KeyManager

Tspi_Context_Get
Registered KeysByUUID

Return a list of all the
registered keys in a
registry with their UUID.

Vital Key
Management
Feature

Yes KeyManager

Tspi_TPM_GetStatus Find out how bits in the
TPM are set.

Basic TPM feature Yes TPM

Tspi_TPM_Quote Uses an ID to sign the
PCRs currently in the
TPM. A nonce is used to
guarantee freshness.

Vital Feature Yes Attestor

Tspi_Key_Convert
MigrationBlob

Import a migration blob
from a migratable key.

Migration is
optional

No -

Tspi_TPM_CertifySelf
Test

Tells the TPM to use an
AIK to certify the self-
test results.

Not useful for
applications

No -

Tspi_TPM_GetTestResult Get the self test result,
unsigned.

Not useful for
applications

No -

Figure 3.6: Mapping of TSS Functions to the JSR 321 API and its Classes (part 5).

3.4. Outline of the API 59

Tspi_SetAttribUint32 Set an integer attribute
of an object.

Implementation
Detail

No -

Tspi_SetAttribData Set a non-integer
attribute of an object.

Implementation
Detail

No -

Tspi_Policy_SetSecret How one associates
authorization data with a
policy, to be used, for
example, in creating or
using a key.

Key Feature No Hidden using
Secret

Tspi_TPM_PcrExtend Extend a particular PCR. Vital Feature Yes TPM

Tspi_Data_Bind Bind data to a TPM by
encrypting it with a
public storage key. This
takes place outside the
TPM.

Vital feature Yes RemoteBinder

Tspi_Data_Seal Encrypt data to a TPM
key and PCR values. It
can be done only inside
the TPM because it also
registers historical data
as to the PCR values in
the TPM when the
command is done.

Useful feature Yes Sealer

Tspi_Context_Register
Key

Register a key into either
a user's key store or a
system's key store and
returns the UUID.

Vital Key
Management
Feature

Yes KeyManager

Tspi_TPM_GetPub
EndorsementKey

Return the public
portion of the
endorsement key.

Optional
functionality for AIK
Cycle

No -

Tspi_TPM_Collate
IdentityRequest

Gather all the
information a certificate
authority will need in
order to provide a
certificate for an AIK.

Optional
functionality for AIK
Cycle

No -

Tspi_TPM_Activate
Identity

Take the encrypted
returned data from the
certificate authority, and
use it to determine the
decryption key used to
return the certificate for
an AIK to the owner.

Optional
functionality for AIK
Cycle

No -

Tspi_TPM_SetStatus Set bits in the TPM. Not useful for
applications

- -

Tspi_TPM_SelfTestFull Tells the TPM to execute
a full self test.

Not useful for
applications

- -

Tspi_TPM_PcrRead Read a particular PCR. Useful Feature Yes TPM

Tspi_Key_CertifyKey Create a certificate of a
non-migratable key by
signing it and its
characteristics with an
AIK (ID).

Useful Feature Yes TPMKey

Figure 3.7: Mapping of TSS Functions to the JSR 321 API and its Classes (part 6).

60 Chapter 3. Design and Standardization of a Trusted Computing API

Tspi_Key_CreateKey Create a new RSA key. Vital Key
Management
Feature

Yes KeyManager

Tspi_Key_WrapKey Wrap an already extant
RSA private key.

Vital Key
Management
Feature

Yes KeyManger

Tspi_Key_Create
MigrationBlob

Create a migration blob
from a migratable key.

Migration is
optional

Yes -

Tspi_Key_UnloadKey Remove a key in the
TPM.

Vital Key
Management
Feature

Yes TPMKey

Figure 3.8: Mapping of TSS Functions to the JSR 321 API and its Classes (part 7).

options for auto-completion. Using strong key types also relates well to
results in formal API design and analysis research.

javax.trustedcomputing.tpm.structures This package holds data structures
required for certain TPM operations. They include the PCREvent structure
required for operations on the measurement log, PCRInfo used as part of
platform attestation and ValidationData as returned by the TPM quote
operation.

javax.trustedcomputing.tpm.tools In this package, there are interface def-
initions for helpers classes to perform TPM operations such as binding,
sealing, signing and time stamping.
The javax.trustedcomputing.tpm.tools.remote sub-package offers ab-
stract classes that allow a remote host without TPM to participate in
Trusted Computing protocols. It provides the functionality to validate
and verify signatures on TC data types.

For error handling, a single TrustedComputingException communicates the
error codes of all lower layers. It offers the original TPM/TSS error codes, but
also a human readable text representation, which is a great step forward in terms
of usability. Despite using only a single exception class, implementations of the
API should forward as much error information as possible. For illegal inputs to
the JSR 321 API, default Java runtime exceptions are used. Finally, functions
offering bit-wise access to status and capability flags are replaced by specific
Boolean methods that allow developers easy access to application-relevant flags.

In JSR 321, the KeyManager interface defines methods for creating new TPM
keys. Upon creation, a secret for key usage and an optional secret for key mi-
gration have to be passed as parameters. After a key is created, the KeyManager
allows the key, wrapped by its parent, to be stored in persistent storage. As
required, the KeyManager allows keys to be reloaded into the TPM, provided
that the key chain up to the storage root key has been established (i.e., each
parent key is already loaded into the TPM). Every time a new key is created or
loaded from permanent storage, a usage secret has to be provided. This secret
is represented by an instance of a dedicated class Secret that is attached to the

3.4. Outline of the API 61

Keys
KeyManagerTPMRSAKey

BindingKeyIdentityKey SigningKey

StorageRootKey

StorageKey

Tools & Remote Tools

Binder

Sealer

Attestor

…

Structures

DigestPCREvent
Validation

Data PCRInfo Secret

TPM

TPMContext TPM

Figure 3.9: Illustration of the Relationship Between the Core Components, including
the TPMContext, KeyManager, and Key Classes and the Tools.

key object upon construction. Secret also encapsulates and handles details such
as string encoding, which are often a source of incompatibility between different
TPM-based applications.

The extend-able tools package implements various core concepts of Trusted
Computing. As each tool that accesses the TPM is already linked to a
TPMContext at creation, there are few or no configuration settings required be-
fore using the tool. Each tool provides a small group of methods that offer
closed functionality. For example, a Binder allows the caller to bind data un-
der a BindingKey and a Secret, and returns the encrypted byte array. Usage
complexity is minimal as no further parameters need to be configured and the
call to unbind encrypted data is completely symmetric. Besides the core set of
tools (Signer, Binder, Sealer, Attestor, Certifier, Signer), implementers
of JSR 321 may add further sets of functionality. An example might be the tool
Initializer which manages TPM ownership, if the Java library is implemented
on an OS without tools for doing so. For a full reference and interactive outline
of the API, the reader is referred to the original standard [327] and the JavaDoc
contained therein. An uncommented list of classes and methods is provided in
Appendix A.

62 Chapter 3. Design and Standardization of a Trusted Computing API

1 try {
2
3 TPMContext context = TPMContext.getInstance();
4 context.connect(null);
5
6 KeyManager keyManager = context.getKeyManager();
7
8 StorageRootKey srk = keyManager
9 .loadStorageRootKey(Secret.WELL_KNOWN_SECRET);

10
11 Binder binder = context.getBinder();
12
13 Secret keyUsageSecret = context.getSecret("Passphrase for using the

key.".toCharArray());

14
15 BindingKey bindingKey = keyManager.createBindingKey(srk,
16 keyUsageSecret , null, false, true, true, 2048, null);
17
18 byte[] plainData = new String("Data to be encrypted and

bound.").getBytes();

19
20 byte[] boundData = binder.bind(plainData ,
21 bindingKey.getPublicKey());

22
23 context.close();

24
25 } catch (Exception e) {
26 // Handle errors..

27 }

Figure 3.10: Example of JSR 321 Code that Performs Binding of Data.

In Figure 3.10 we list source code that demonstrates the API. The example
shows Java code that first opens a TPM context session, creates a non-migratable
cryptographic key with the following key policy: the key is a child of the Storage
Root Key, its usage authenticated with keyUsageSecret; there is no migration
secret set as the key is non-migratable; it’s volatile, requires authentication, is
a 2048 bit RSA key and is not restricted to a PCR configuration. Finally, the
program binds data to the platform where the code is executed. This example
also allows us to evaluate the expressiveness and complexity of writing code.
In [309], Stüble and Zaerin use the number of Lines of Code (LOC) of code
examples as measure to compare different Trusted Computing APIs. They com-
pare implementations of the very same binding use case. According to them,
achieving the same functionality requires 146 LOC with TSS, 30 with jTSS and
18 using µTSS. The JSR 321 program we present takes only 15 LOC. Besides
this obvious reduction of code size, especially when compared to TSS, the nam-
ing conventions used throughout the API allow programmers the effective use of
code-completion mechanisms found in modern Integrated Development Environ-
ments (IDE) such as Eclipse. In many cases, the IDE will automatically suggest
a suitable parameter for method calls, thus considerably speeding up the de-

3.5. Implementation and Integration Aspects 63

velopment of Trusted Computing applications. JSR 321 programs are therefore
shorter, and faster to write than TSS programs.

3.5 Implementation and Integration Aspects
For the specification of an interface, it should be enough to provide the complete
specifications of classes and method signatures. However, experience suggests
that implementation might provide valuable feedback to the design. The design
of JSR 321 is implementation driven, and so in this section, we discuss three
important aspects that have influenced the design of the standard’s API: inte-
gration with the operating system for TPM access, technologies for a reference
implementation and the design of a test suite that supports our design process.

3.5.1 Java Libraries and Services for Trusted Computing

In all major operating systems direct access to the TPM hardware device re-
quires higher privileges. However, the Java Virtual Machine (JVM) appears as
just another user mode process to the OS. It is the task of libraries to bridge
the gap between the JVM and the specific operating system’s Trusted Comput-
ing services. Depending on the surrounding environment, such a Java library
will have to accommodate different levels of hardware access and handle differ-
ent management tasks. At the same time it should maintain a high degree of
platform independence.

An implementation of JSR 321 requires its support library to handle the fol-
lowing challenges. First, in the complex architectures that are typical in modern
Trusted Computing Platforms, the TPM might actually be a virtualization or
even only emulation of a hardware chip. Second, while the TPM has only lim-
ited resources that need to be managed by a Singleton [118] software component,
several applications should be able to access it at the same time. Third, in most
OSes, access to the TPM hardware requires root or administrator privileges.
JSR 321 applications, or the JVM in general, should not have elevated system
privileges. This would be a breach of the general security assumptions for a Java
runtime environment.

In the following we outline the layers that may exist between a Trusted
Computing-enabled Java Application and the hardware TPM. Figure 3.11 shows
a selection of different library architectures that could be realized with the tech-
nologies currently available. The intention of the figure is to provide an overview
of possible building blocks that can be combined by an implementor of the API.
In most cases there are different ways to solve a problem and different available
components in a deployment scenario.

For instance, sharing of the TPM capability may occur at different layers of
the software stack for Java applications. This creates different requirements for
the software that provides TPM access, resulting in different layered architec-
tures. Still, a uniform API should be available at the top layer.

64 Chapter 3. Design and Standardization of a Trusted Computing API

Hardware TPM

Hypervisor

vTPM

OS

OS

TDDL

OS-based TPM Virtualization

TSP

JNI Wrapper

TCSTCS

Inter Process Communications

TSPTSP

TSP

JSR 321 API

Trusted Computing-enabled Java Application

Proprietary
TPM access

library

JS
R

 3
2

1

La
ye

r
H

ar
d

w
ar

e
La

ye
r

O
S

La
ye

r

Hardware Native Java XMLLegend:

Optional

A
p

p
lic

at
io

n

La
ye

r

TPM Driver

TS
S

La
ye

r

JSR 321 Impl. JSR 321 Implementation

Figure 3.11: Integration Possibilities for the JSR 321 High-Level API in Selected Soft-
ware Configurations.

3.5. Implementation and Integration Aspects 65

In all cases we assume the existence of a hardware TPM. The operating
system runs either directly on the hardware platform (left side of the OS layer
in Figure 3.11) or within a virtual compartment. With virtualization (right
side of the OS layer in Figure 3.11), a single hypervisor controls all hardware
resources. It could forward the TPM device interface to its guests, but then
only one compartment could access the TPM at any given time. Of course,
such a limitation should be avoided as it restricts the ability to provide trusted
applications. One possible solution is to let the hypervisor provide a separate
virtual TPM (vTPM) [42, 43, 284, 310] for each compartment. Such a vTPM
could be implemented in the hypervisor itself, in one separate compartment for
all other compartments, in an extra compartment for each guest compartment
and probably in several different ways more.

A similar indirection may occur within the operating system; it is desirable
to allow several applications concurrent TPM access within a single instance of
an OS. For instance, Windows TBS [223] provide OS-based virtualization by
abstracting resource handles and blocking critical TPM commands. To prevent
uncoordinated extends by different applications, the current TBS implementa-
tion blocks all PCR accesses by default. As an extension, [107] propose TPM
para-virtualization where the OS is aware of being virtualized. It is then able to
manage e.g. PCR access accordingly in cooperation with the hypervisor. Virtual
or real, the TPM will then be available via a native driver interface.

In many cases, a managing component such as the TCS of TSS takes con-
trol over the TPM and manages its resources. This component also multiplexes
accesses by non-privileged applications over some inter-process communication
mechanism. Such two-tier libraries, with one layer managing the hardware and
another linking to applications, strictly separate the required privileges. For the
purpose of a Java library, such a managing component may either be imple-
mented as native code, pure Java components or a combination of both.

Considering these different abstraction layers, and our experience with Java-
based TPM-accessing applications, have we identified four suitable pathways to
connect the application process to the TPM. These pathways are only a subset of
the possible combination of components, but serve here as examples so that we
can discuss the several important implications that follow from design choices.
Figure 3.11 does not intend to be a visualization of these specific pathways, but
may still offer useful guidance to the interested reader.

We discern the following implementation pathways by the way they share
access between services running in parallel to the restricted TPM resource.

1. No multiplex. The application’s JVM process may access and manage
the hardware TPM directly and exclusively. As a consequence, all other
system and application accesses are blocked. This is sufficient for testing
and development purposes, but not suitable for wide deployments.

2. Library Multiplex. If exclusive access to the hardware TPM cannot be
guaranteed5, the Java environment needs to be integrated with existing

5For instance, if the OS or native applications might access the TPM in parallel.

66 Chapter 3. Design and Standardization of a Trusted Computing API

TPM services, such as a TSS. The TCS will synchronize all TPM accesses.

3. OS Multiplex. With OS-based TPM virtualization, all processes are
given multiplexed and equal access to the TPM without the need for full
TCS functionality. Thus, a Java library may again access its TPM device
instance freely.

4. Hypervisor Multiplex. In the special case of virtual applications respec-
tively virtual appliances, where the JVM is the only application within a
compartment, no other services will interfere. A Java library may then
handle its vTPM or assigned hardware TPM exclusively.

Depending on the intended use case, implementers of high-level Java APIs
such as JSR 321 have a considerable choice of implementation architectures. We
now map these scenarios to the available libraries outlined in Sections 2.4 and
3.2.2.

Scenarios one and four have the most relaxed requirements. No special con-
siderations for shared access need to be taken as no other application will inter-
fere. Exclusive access rights can be granted to the device. Therefore, all library
architectures are suitable.

In scenario two, integration with existing system services is needed for non-
blocking TPM access, specifically in Linux where there is no OS-based TPM
virtualization. Of the reviewed libraries (cf. Section 3.2.2), the jTSS Wrapper
software package accomplishes this. While a TCS may be implemented as either
native code or Java, a hybrid mode with native TCS and Java TSP is currently
not available. This is because different TSS implementations are incompatible
due to subtle implementation differences stemming from varying interpretations
of the TSS specifications.

Scenario three represents the presence of Windows TBS which require Ad-
ministrator privileges. Here, only split architectures can be used. Currently, only
jTSS offers Java interfaces and fully implements split processes with a separate
system background service in Windows.

3.5.2 Reference Implementation
Every JSR needs to supply a Reference Implementation (RI) in order to com-
plete standardization and we have released ours under the “GNU General Public
License, version 2, with the Class-path Exception” open source license. Open
source availability of the reference implementation provides other implementors
of the API access to the source code. We expect this to be a valuable guidance to
implementors as this provides a precise mapping to the underlying TPM-related
command flows and helps understanding the intended functionality of the API
at a fine level of detail.

The discussion in Section 3.5.1 of implementation pathways allows us to make
a design decision on the general architecture of the RI and to select a suitable
implementation technology from the libraries discussed in 3.2.2. We conclude
that jTSS is well suited to our needs. It is able to manage the TPM on its own,

3.5. Implementation and Integration Aspects 67

but also integrates with OS-based TPM virtualization. A further advantage is
that it implements everything in pure Java, making the software architecture
understandable and debuggable for Java developers. This corresponds to the
scenarios 1, 3 and 4 discussed in the previous section.

Our RI is based on jTSS and therefore is fully platform-independent. Com-
pared to the other Java libraries discussed, the command flow of jTSS remains
intelligible for programmers that are already familiar with any other TSS-like
library. The jTSS API is designed to stay very close to the original C-based TSS
API and does not modify the logical flow of programs. As a direct consequence
there is a high similarity of code structure, and developers can use our JSR 321
RI as a blueprint even if they target a different programming language. We
expect that this will reduce the effort for implementations by the industry or
open source community.

3.5.3 Technology Compatibility Kit
To allow different vendors the creation of independent implementations of the
JSR API, a measure to verify whether or not a library meets the given spec-
ification is needed. The JCP calls for a Technology Compatibility Kit (TCK)
to do this. The motivation for this is that end users should be able to switch
between different API implementations transparently, for example because of
performance differences or security certifications. A TCK is a set of automatic
test cases that should be easy to run by a potential implementer. A JSR im-
plementation needs to pass all of the tests specified by a TCK to be considered
compatible with the reference implementation and therefore to meet the API
specification of the corresponding JSR.

The importance of the test suite results in stringent requirements. The first
one is that there must be a 100% method (signature) coverage, i.e., every public
method of the API must be called at least once from within the TCK. The next
rule is that it should be simple to run the test suite on supported platforms.
The TCK Project Planning and Development Guide [312] contains guidelines on
how to create such test suites.

In our TCK, we extend on this and combine a number of tools and tech-
nologies. We identify and execute test cases using the JUnit [39] framework.
To define dependencies between tests and manage the overall suite we use JT
Harness [146]. It provides a GUI to create, manage and execute test suites.
A TestFinder component collects our JUnit test cases and combines them to-
gether with collected meta-data to a suite. After a set of classes containing tests
is found by a test finder, it is executed by a TestScript which is responsible for
running the tests and processing the test results. Additional parameters, such as
which Java Runtime Environment to use, can be specified. When the test suite
is fully loaded and configured it can be executed with reports being created in
different formats like HTML, plain text and XML.

A challenge when writing software tests is to assess the quality of a test suite.
A practical way to answer that question is to analyze what code is executed
during a test run, i.e., to measure the code coverage of the test suite. We include

68 Chapter 3. Design and Standardization of a Trusted Computing API

Figure 3.12: The TCK Graphical User Interface Provided by JT Harness.

the coverage analysis tool EMMA [273] to transparently measure the test class,
method and basic block coverage while executing the test suite. In Table 3.1
we outline the measurement results of the TCK’s coverage of our Reference
Implementation. The requirement of full method coverage is met. Note that the
basic block coverage does not reach 100%, as the API and TCK do not specify
all error behaviors or execution branches.

Package Coverage by

Class Method Basic Blocks

javax.trustedcomputing 100% (1/1) 100% (7/7) 100% (63/63)
*.tpm 100% (2/2) 100% (39/39) 73% (692/948)
*.tpm.keys 100% (10/10) 100% (40/40) 87% (1496/1715)
*.tpm.structures 100% (5/5) 100% (18/18) 92% (250/272)
*.tpm.tools 100% (6/6) 100% (31/31) 83% (828/997)
*.tpm.tools.remote 100% (4/4) 100% (20/20) 73% (537/735)

Table 3.1: Coverage Results of the JSR 321 TCK.

3.6. Experience 69

3.6 Experience

3.6.1 Third Party Implementation and Teaching Experi-
ence

Our API design has already been adopted by a third party, indicating the vi-
ability of the JSR 321 approach: Atego, as member of the TECOM research
project [316] has independently created an implementation based on the Early
Draft version of the specification in order to satisfy their need for a high-level
Trusted Computing API for Java-based embedded systems. Their implementa-
tion was built on top of the previously described µTSS in C++ and Java. The
feedback [290] from this external implementation effort has been very positive
and helpful. Aside from minor ambiguities in the specification and small feature
requests, no major difficulties were reported. TECOM concluded that JSR 321
“provides most functionality that the majority of users would probably need”
and that the single interface layer and low level of background knowledge re-
quired gave it an advantage over other APIs for their use case of implementing
a trusted smart meter.

Together with Winter, Wiegele, and Pirker [364] we demonstrated JSR 321 on
an Android platform, with a hardware-protected TPM-emulator. While we refer
to Section 4.5.3 for more details on how this can be implemented, we would like
to point out that our API is thus compatible with Android-based mobile systems
and smartphones.

In summer 2010, JSR 321 was used for teaching the 5th European Trusted
Infrastructure Summer School (ETISS), at Royal Holloway, University of Lon-
don. In a 90-minute ‘TPM Lab’ we provided an introduction to the central
component of Trusted Computing, the Trusted Platform Module (TPM). The
lab explained TPM activation control, basic operations, and high-level program-
ming of the TPM with JSR 321. The concept of chain-of-trust was explored in
a practical sealing experiment. We pre-configured HP desktop machines with
Infineon TPMs for Ubuntu Linux and Eclipse as development environment. Al-
though many of the participants had either no experience with TPMs or with
Java, about two thirds of them were able to complete the implementation of
an unsealing program within one hour. This clearly underlines the low initial
threshold for using the JSR 321 API. JSR 321 was also used in two practicals for
courses taught at Graz University of Technology. In the third year bachelor-class
“Security Aspects in Software Development“ of 2011, students were given the
choice of implementing the signature component of a CA service either through
JavaCard (using Oracle’s API) or the TPM (using JSR 321). The three groups
that chose JSR 321 did not require more supervision or advise than those choos-
ing the more conventional technology. In the master-level “Selected Topics IT
Security 1” class, in the summer term 2012 students were given the task to
demonstrate remote attestation of an Android environment. To this end, they
employed a software emulation of the TPM and accessed it through JSR 321.
As the Android environment is source compatible with Java, this caused no
additional complexity.

70 Chapter 3. Design and Standardization of a Trusted Computing API

In a recent publication, Othman et al. [245] report on a JSR 321-derivate
design on Android, without describing potential changes or improvements. The
availability of a compatible TPM respectively MTM is assumed by the authors.

Thus, JSR 321 has proven that the specifications are fit for implementation
by third parties not involved in the design process and that it is not restricted
to jTSS technology as a basis. Also, from our experience, the API can be used
in academic teaching much like other existing security technologies.

3.6.2 Case Study: Attestation in the Cloud
In the following brief excursus we will study how JSR 321 can be applied in an
important, emerging scenario: the Cloud.

In our age of information, computing has joined the traditional utilities of
water, power and communications, thus making computing a tradeable service.
Previously named the Grid [114], its trading place is now commonly referred to
as the Cloud [24, 373].

Typically, Cloud service offers can be characterized as offerings of either In-
frastructure- (virtual hosts), Platform- (networked development frameworks),
and Software- (domain-specific applications) -as-a-Service (IaaS, PaaS, SaaS).
The services can be deployed in the public Cloud, somewhere on the Internet,
in a private Cloud, which is physically located in-house at the user, and in hy-
brid installments which contain both public and private nodes. In essence, the
Cloud offers scalable computing resources on demand. This is enabled through
broadband networks, resource pooling, workload multiplexing, and virtualiza-
tion on multi-tenancy platforms which are operated in datacenter by third party
service providers. Together with automated self-service and billing mechanisms,
the economies of scale have lowered the prices for computing considerably, espe-
cially when compared to conventional, ‘private’ data centers. Thus, the Cloud
can lift the burden of technically operating a computing infrastructure, by out-
sourcing it to a third party. Indeed, Cloud computing can be regarded as a
matter of “gracefully losing control” [72] over one’s programs and data.

An extra challenge of information security then becomes “maintaining ac-
countability even if the operational responsibility falls upon one or more third
parties” [72] and many cloud users see6 loosing control of security sensitive or
private data or of processing such confidential digital assets as a dilemma.

A number of concrete security challenges occur in Cloud systems [212]. A
report of ENISA [59] lists several security risks, many of those are still not solved.
A very promising line of research [5, 41, 79, 177, 182, 183, 197, 204, 208, 277, 281,
287, 294, 299, 353, 357, 373] to overcome the security limitations of distributed
computation networks is to incorporate Trusted Computing based on the TPM.

As reported in [262] and implemented in a Master’s Thesis [261] by Siegfried
Podesser, we have specifically studied the risk that code may not execute as
intended. For instance, a remote node might accidentally [304] or even deliber-
ately report wrong answers back. Code distributed could be compromised or, if

6Or are required to do so by the law.

3.6. Experience 71

1 public final class compute_secLevelC {
2
3 @Gridify(taskClass = GridifyTask_secLevelC.class)
4 public static Long compute(long x)
5 {

6 //compute...

7 }

Figure 3.13: Example of Code Annotation in Cloud Computing Experiments.

it contains precious intellectual property, stolen. Data need to be secured and
handled according to data protection requirements. It is especially important to
prove that security facilities, such as role based access control, are actually used
and not circumvented by malicious software.

Remote Attestation is a promising approach to convince the Cloud user that
such security features are present. In our approach we further desire to include
Remote Attestation seamlessly and transparently into the development of dis-
tributed applications, while keeping the process as developer friendly as possible.

The proposed architecture is realized in the Java programming environment;
we choose GridGain [168] as cloud- and grid-computing framework, Permis [62]
as authorization framework and JSR 321 to handle the TPM’s Quote function-
ality. Java Annotations are used to tag individual functions with trusted state
descriptors for deployment. GridGain’s task is to distribute the workload to
different nodes and aggregate the results. We employ remote attestation to
determine for each node whether it is in a trustworthy configuration. The inte-
gration with Permis allows Cloud operators to define non-trivial policies, which
may also cover the geographic location or the network operator.

With regards to the technical realization, JSR 321 offers the functionality for
facilitating remote attestation in this Java middleware through the quote(int[]
PCRindices, IdentityKey key, Digest nonce) method in
javax.trustedcomputing.tpm.tools.Attestor.

Based on an AIK, created in a proprietary PKI, of the node, the identity of
the node can be established. In the prototype described in [261], three exemplary
security levels (A,B,C) are defined based on the location and organizational
control of nodes. This leads to the distribution of tasks and data to nodes which
are at least of the required level. Therefore, developers only need to write a
simple Java annotation (as shown in Figure 3.13) for a task to guarantee that a
piece of code and its arguments are only deployed on remote nodes which follow
the specified policy, even when using a hybrid Cloud topology.

It should be noted that a large amount of complexity is introduced into the
overall system architecture by applying TC mechanisms, especially in using the
TPM and collecting a meaningful chain-of-trust. These issues can only be solved
by changes to the system beneath the middleware-layer; Podesser’s prototype
implementation therefore leverages the acTvSM [126, 253, 254, 333] approach in
much the same way as we will outline later in Section 5.8.2.

72 Chapter 3. Design and Standardization of a Trusted Computing API

These experiments have shown that JSR 321 can provide the remote attes-
tation mechanism in the context of Java-based Cloud software, given a robust
chain-of-trust.

3.7 Summary and Outlook
In this chapter we outlined the current status of software libraries for TPM
access and application-level integration of Trusted Computing. To date, several
commercial and some free implementations of the TCG Software Stack have
been published with varying levels of completeness and standard compliance.

As a basis for the work presented in this chapter, we reviewed and discussed
the state of the art of available Trusted Computing software libraries. For native
applications several native TSS and alternative approaches which intentionally
provide a reduced and simplified interface exist.

Java is an important environment for the implementation of Trusted Com-
puting applications. This is emphasized by the existence of several different
libraries (cf. Section 3.5.1) and frameworks that have been proposed or pro-
totyped for this language. Our review of existing approaches has uncovered
a number of drawbacks including high complexity, inconsistent APIs, limited
object-orientation or lack of features.

Despite the availability of libraries and tools, Trusted Computing is not yet
widely used and has not found its way into commercial applications [291]. We
and other designers of TC APIs [308] attribute this fact primarily to the high
complexity of and developer expertise required by existing standards and APIs.
We believe that a lower learning curve for the software interfaces can attribute
to a more widespread use in the future.

Based on these findings, we have specified goals for a novel high-level Java
API that aims to overcome these limitations. Specifically, we have focused on
a simple interface for access to commonly used TPM functionality and define
the technical knowledge expected of programmers using it. In contrast to the
original TSS design, we propose an object-oriented approach that hides low-level
details and provides additional guidance for developers by providing solid default
configurations. Results from the reference implementations are encouraging and
demonstrate the feasibility of the proposed approach. We also describe how im-
plementations of the API can be integrated in virtualized systems and provided
with access to the hardware TPM and how such implementations can be tested.

The aim of our API design was the release as the official Java standard API
for Trusted Computing. Therefore, we have adopted an agile and transparent
working style within the Java Community Process. The desirable set of API
features has been selected based on open discussions. Feedback received from
external reviewers and independent implementers has helped to adapt and ex-
tend the design. The API has been used in teaching and research and successfully
applied in embedded, mobile and Cloud scenarios. After two publicly announced
reviews and several votes within the Java Community Process, the standard was
published [327]. Furthermore, the author has been awarded as “Outstanding

3.7. Summary and Outlook 73

Spec-Lead” in 2010.
We believe that our basic approach of providing a high-level abstraction of

core concepts of Trusted Computing will remain valid for future versions of the
TPM specification. Any necessary changes to the API, which could become
opportune by revisions of the TPM can be supported through updates in the
Maintenance phase of the Java Community Process. In addition, we believe
that the results of the JSR 321 specification could itself serve to help guide
the specification of other Trusted Computing APIs. The author has received
encouraging feedback from the TCG that a high-level Trusted Computing API
approach as pioneered in the presented work would be highly desirable for future
TCG specifications.

We believe that this effort towards an open, simple and consistent program-
ming interface can considerably contribute to the future adoption of Trusted
Computing. Even though the proposed JSR 321 API is designed for the Java
programming language, we anticipate that the contribution of this work will not
be limited to Java. Due to the clear and lightweight design of the API, imple-
mentations in other object-oriented programming languages should be possible
with only minor adaptations.

4
A Proximity Interface for Attestation

4.1 Introduction

Trusted Computing introduces advanced security mechanisms into terminal hard-
ware, yet there is often no convenient way to help users decide on the trustwor-
thiness of a device. Especially, instant and ubiquitous access to devices such as
public terminals raises several security concerns in terms of confidentiality and
trust. A direct communication channel between the TPM and the user would
appear to be very useful and would be an immediate improvement to the concept
of remote attestation.

In this chapter, we propose a TPM-based architecture that includes Near
Field Communication (NFC) and allows users to verify the security status of
public terminals or kiosk computers. For this, we introduce an autonomic and
low-cost NFC-compatible interface to the TPM to create a direct trusted chan-
nel. Here, NFC enables users to intuitively establish a communication between
local devices. Users can access the TPM with NFC-enabled devices, which have
become widely available in the form of smart phones.

This scheme helps users protect against malicious software in public kiosk
computers, for instance ATMs or PCs in Internet cafés. While there is no defense
against a deliberately malicious kiosk operator who would be able to mount
any kind of hardware attack, our scheme is intended to protect against walk-
in attackers who try to modify the installed software configuration, or even to
confuse platform identities, for instance by manipulation of labels.

75

76 Chapter 4. A Proximity Interface for Attestation

Declarations
This chapter extensively adapts, cites and reuses previously published
material from the author, especially

[320] R. Toegl. Tagging the turtle: Local attestation for kiosk
computing. In J. H. Park, H.-H. Chen, M. Atiquzzaman, C. Lee, T.-H.
Kim, and S.-S. Yeo, editors, Advances in Information Security and
Assurance, volume 5576 of Lecture Notes in Computer Science, pages
60–69. Springer Berlin / Heidelberg, 2009.

[326] R. Toegl and M. Hutter. R. Toegl and M. Hutter. An ap-
proach to introducing locality in remote attestation using near field
communications. The Journal of Supercomputing, 55(2):207–227, 2011.

[152] M. Hutter and R. Toegl. A trusted platform module for
near field communication. In Systems and Networks Communications
(ICSNC), 2010 Fifth International Conference on, pages 136–141.
IEEE, 2010.

[153] M. Hutter and R. Toegl. Touch‘n’ Trust: An NFC-enabled
trusted platform module. The International Journal on Advances in
Security, 4(1 & 2):131–141, 2011.

[341] R. Toegl, J. Winter, and M. Pirker. A path towards ubiq-
uitous protection of media. In J. Lyle, S. Faily, and M. Winandy,
editors, Proceedings of the Workshop on Web Applications and Secure
Hardware (WASH), Co-located with the 6th International Conference
on Trust and Trustworthy Computing (TRUST 2013), volume 1011 of
CEUR Workshop Proceedings, pages 32–38, London, United Kingdom,
6 2013. Sun SITE Central Europe, RWTH Aachen University. Position
Paper.

Parts of the, originally Bluetooth-based, software framework for
the mobile attestation token was implemented by Manuel Schallar
and Herwig Guggi [134] in a master-level class project supervised
by the author together with Martin Pirker and Tobias Vejda. The
NFC transmission design, performance measurements and hardware
experiments that help validating our approach were performed by
Michael Hutter.

4.1.1 Motivation and Background
Security enforced by software can be manipulated by software based attacks.
To overcome this dilemma, the Trusted Computing Group (TCG) [345] has
defined a set of specifications of which the Trusted Platform Module (TPM)

4.1. Introduction 77

is the central component. It is a system component deeply embedded in a
machine’s hardware and software architecture. One of its mechanisms, called
Remote Attestation, reports the platform’s state to another host on the Internet.
This helps to establish cryptographically qualified and tamper-evident assurance
on the software configuration of a machine.

As attestation allows one to determine the absence of malicious software, it
is desirable for a user to perform it prior to providing sensitive or confidential
data to a computer system. This is especially interesting for computers openly
available in public places where users simply walk up to such machines when
they need the services offered. Currently, such computers are highly exposed
and threatened by a variety of software-based attacks in the form of viruses,
key-loggers and root kits. Therefore, public systems for ad-hoc use cannot be
trusted to handle sensitive information such as account logins, passwords or
other private data – unless their configuration were properly attested and found
secure for the user’s purposes. However, several additional challenges need to be
overcome to achieve a telling indication of trustworthiness in a usage scenario
where the user physically confronts the system.

While the TPM may be trusted to perform securely as specified, it does not
offer a secure local interface to display the gathered results to a user. Therefore,
the need for a trusted display or an indicative token arises, lest a malicious
public machine fakes reports on its state. As McCune et al. [216] point out, it
would be desirable to equip the user with an ideal, axiomatically trustworthy
device, which they call iTurtle. It would then indicate the security of a device
to the user. A more practical implementation of attestation in kiosk scenarios
using off-the-shelf smart phones is demonstrated by Garris et al. [120]. Still, the
TCG’s attestation protocol does not guarantee that the TPM is located within
the machine the user faces. Following this insight, Parno [246] proposes a direct
link between the user and the TPM, so that human inter-actors can themselves
establish the proximity of the attesting machine.

In this chapter we build on these previous results and introduce two novel
improvements. First, considering the resource limitations of mobile devices, cur-
rently proposed schemes are not flexible and scalable enough. We demonstrate
an efficient, user-friendly solution that combines smart phones with a trusted
third party. Second, to include a proof-of-locality in the process, we propose to
introduce Near Field Communication (NFC) technology in the TCG’s security
architecture and present a proof-of-concept implementation.

The remainder of this chapter is organized as follows. We next outline Lo-
cal Attestation and NFC technology. We discuss related work and present the
locality-aware scenario we consider, followed by an introduction to our approach,
in Section 4.2. In Section 4.3, our Mobile Attestation Token Architecture is pre-
sented, and we discuss the integration of NFC in the TPM, introduce new TPM
commands, and present the definition of an air-interface protocol between the
TPM and a mobile NFC device. Section 4.4 gives implementation details and
we discuss a number of possible extensions and related experiments in Section
4.5. We summarize in Section 4.6.

78 Chapter 4. A Proximity Interface for Attestation

4.1.2 From Remote to Local Attestation

As discussed throughout Sections 2.3-2.5, the TCG remote attestation architec-
ture requires that the host sends a very detailed description of its system state
to a verifier, which is signed by the TPM. For privacy protection, only pseudony-
mous AIKs are used. An AIK key can be used one or several times, whenever an
attester requests the attestation of the trusted platform. Verifiers can determine
the correctness of the signature after confirming the validity of the certificate
and querying a revocation service.

Essential to the overall attestation process is to collect and later analyze a
complete and meaningful set of state information, either based on a static or dy-
namic RTM. Still, using only the quote result and measurement log, coming to
a trust decision remains a tedious and complex task and the number of possible
combinations of secure software configurations in today’s open system architec-
tures is often quite large. Alternative concepts to reach meaningful conclusions
at state analysis include Property-based Attestation [64,185,278], where the state
analysis is delegated to a specialized Trusted Third Party (TTP) which issues
certificates for specific properties.

Attestation is useful to improve the security for a number of computing
services, including not only remote but, as we believe, also physically present
systems. In general various types of systems may be encountered in different
usage scenarios.

For instance, a user might want to learn if a public general purpose desktop
computer is secure for ad-hoc use. Customers would like to be assured that the
software of a point-of-sales terminal in a shop will not collect their PIN together
with the information on the magnetic stripe of their credit card for later frauds.
The same holds true for other types of Automatic Teller Machines (ATMs) and
payment terminals. For instance, according to a 2009 report by ENISA [108],
the real-world theft of card details and PINs had been performed on Russian
ATMs infected with malware.

Vending machines’ software could be reconfigured by attackers to collect cash
but not to release their goods; local attestation could prevent this too. Other
security critical applications may also be found in embedded systems or even
peripherals like printers or access points. Here, a service technician might find
a method to identify the exact software configuration and its integrity to be
useful. Giving voters a method to validate that electronic voting machines have
not been tampered might assist to add trust to a poll’s outcome.

For easier illustration of our approach in the remainder of this chapter, we
will limit our description to just one specific and instructive scenario, kiosk
computers, which we will describe in Section 4.2.2. Our solution does not follow
assumptions defined for confidential architectures as found in banking applica-
tions or strict legal requirements as required for eVoting solutions. We believe
that the proposed approach can be modified to specific needs of such other, more
specialized scenarios with reasonable effort.

4.1. Introduction 79

4.1.3 Near Field Communication

Near Field Communication (NFC) is a wireless communication technology [9,
359] that provides a platform for many applications such as mobile ticketing,
contact-less payment, and interactive smart posters. One key feature of NFC
is the simple data acquisition just by touching an object with an NFC-enabled
reader. NFC readers might be integrated in mobile phones or digital cameras
that transfer information to another device in their proximity. There exist two
different modes for a communication between a reader (initiator) and a target
device. In passive communication mode, the initiator provides an electromag-
netic (EM) field which is used to power the target device and which allows both
parties a bidirectional communication. In active communication mode, both the
initiator and the target device provide alternately1 generated EM fields so that
both devices require an active power supply.

NFC is based on the Radio Frequency Identification (RFID) [112] technology
that operates at 13.56 [MHz] frequency. As opposed to RFID, NFC follows sev-
eral specifications that have been standardized by the International Organization
for Standardization (ISO) and the European Computer Manufacturers Associa-
tion (ECMA). These standards specify the used data modulation, coding, frame
formats, data rates, and also the application-specific transport protocol. The
NFC interface and protocol (NFCIP-1) is standardized in ISO/IEC 18092 and
ECMA 340 and also in ISO/IEC 21481 and ECMA 352 (NFCIP-2). In addi-
tion to these specifications, there are additional definitions from the NFC Forum
which is a non-profit organization that promotes the use of NFC in electronic
devices. Among many other definitions, they defined a common frame format for
transmitting different media types such as Multipurpose Internet Mail Extension
(MIME) objects and Uniform Resource Locators (URL). This frame format is
called NFC Data Exchange Format (NDEF) and can be used to automatically
start an application on a mobile phone or to display a message after touching a
target object.

In contrast to other wireless communication technologies which are designed
for a large communication range, NFC enables short-distance communication
between electronic devices. The typical operating distance between two NFC
devices is only a few centimeters (up to 10 cm). Thus, a fixed location of an NFC
tag (passively or actively powered) can provide evidence whether a mobile NFC
device (or its user) is at that location. Besides this evidence, NFC offers a very
intuitive way for the user to communicate with a target object by simply bringing
the devices close together (touching). It follows the very natural principle for
communication between only two locally present entities.

NFC offers a wide range of new applications with a key focus on easy-to-use
products and touch-based solutions. Since 2004, NXP Semiconductors, Nokia,
and Sony invited many other global leading companies from mobile industry,
electronics, payment services, and multimedia enterprises to join the NFC Forum
which, as of 2013, has more than 170 members. Around 150 million NFC-devices

1A device will deactivate its field while waiting for data.

80 Chapter 4. A Proximity Interface for Attestation

were shipped in 2012, which corresponds to around 15% of the smartphone
market [31].

4.2 Attestation Of Local Platforms
Remote Attestation, as devised by the TCG industry consortium, achieves trust
decisions between different network hosts. However it cannot be applied in an
important field of application — the identification of physically encountered
computer platforms and their security status to the human user. The cryp-
tographic protocols that actually perform the attestation do not provide for
human-intelligible trust status analysis, easily graspable conveyance of results
nor the intuitive identification of the computer platform involved. Therefore,
the user needs a small portable device, a token, to interact with local computer
platforms. It can perform an attestation protocol, report the result to the user,
even if the display the user faces cannot be trusted and may be connected to the
platform under test.

In recognition of this, McCune et al. [216] propose the idealistic concept of an
iTurtle device which should by design be trusted axiomatically. To achieve such
self-evident, yet user-observable verification it should be as simple as possible,
even without support for cryptography, and thus easy to understand and cer-
tify. The authors envision an USB device with a mere two red and green LEDs
indicating the trust status. Regarding integration in the TCG’s cryptographic
schemes, the authors argue that this would be too complex for such a reduced
device and point out the challenge of state analysis on a restricted device.

In a more practical approach, together with Daniel Hein et al. we studied
a scenario-specific, special-purposes cryptographically plug-in token that will
release a cryptographic key to a trusted host only (see Section 4.5.2).

Alternatively to special hardware tokens, powerful PDAs and smart phones
have demonstrated [240, 293] their applicability as trusted portable device to
work in conjunction with a trusted server and an untrusted public terminal to
act as a secure keyboard and GUI to the user, but without performing remote
attestation.

In a first combination with the TCG architecture, McCune et al. [215] demon-
strate a mobile phone application which uses 2-D barcodes on stickers to identify
a public key of devices like printers or IEEE 802.11 access points. The authors
also consider integration in TPM-based attestation protocols. This early archi-
tecture does not guarantee the identity and standard-conformance of the TPM,
i.e., it lacks the proper use of the AIK credentials.

The specific case of attesting a public kiosk computer as available in lobbies
or transportation terminals been studied in detail by Garris et al. [120], also
using a mobile phone. A user wishing to use a kiosk first uses the camera of
her smartphone to scan the barcode containing the hash of the AIK certificate
of the kiosk. The phone then connects to the kiosk using Bluetooth. The kiosk
now transmits the set of configurations it supports. The set is pre-defined and
signed by the kiosk’s operator, which has to be trusted. Now the user chooses

4.2. Attestation Of Local Platforms 81

a configuration and the kiosk reboots to build a fresh chain-of-trust. After it is
on-line again, the phone performs an attestation protocol, compares the reported
configuration against the chosen one and validates that the TPM Quote result is
indeed signed with the same AIK to make sure that the quote comes from the
same physical terminal. The user is informed of the result, i.e., the trust status
is displayed on her phone. She can then use the kiosk’s applications or even take
advantage of the virtualized kiosk software architecture. Here, the user may
supply a private virtual machine image containing her choice of software and
data, cf. [57]. In the end, the user logs out.

Thus remote attestation can be used in Kiosk scenarios. However, the TPM
mechanisms do not prevent a relevant class of attacks, “platform-in-the-middle
attacks”. Parno [246], who analyzed these attacks, calls them Cuckoo-attacks.
These schemes are sometimes also known as Mafia fraud attack [87] or chess
grandmaster problem. In essence, an attacker uses an honest entity as oracle
to solve the challenges of her target. Malware on a compromised local machine
relays TPM messages to another TPM on a remote machine which is in a trusted
state. The author concludes that a local binding between user and TPM is
needed. If the user is in possession of a trusted hand-held device, this may
be achieved physically via a special hard-wired interface or cryptographically
by providing users with a key by means of a sticker on the machine casing.
Regarding to wire-interfaces, Li et al. [191] describe adding a serial interface to
the TPM to access protected data for backup and also for providing authorization
to a few restricted operations that require the physical presence of the TPM
owner. No additional functionality is offered to users.

An approach for the kiosk scenario is presented by Bangerter et al. [35].
They coin the term “Ad-hoc Attestation” for their scheme which is based on a
commercially available token equipped with an optical sensor and a display. It
generates a nonce which is manually entered into the kiosk by the user. Due to
the restricted hardware resources of the token, the state analysis is performed
on a server. The server is operated and controlled by the token vendor. Once
the server has made a trust decision, it then binds the result to the kiosk’s
TPM. To complete the protocol, the user needs to point the token’s sensor to
the kiosk display. The kiosk then unbinds and communicates the trust result
via flickering black-and-white images to the token. Thus, the server is able
to remotely trigger the token to display the cryptographically protected result.
Note, that the user is restricted in his choice of trustworthy configurations, as he
has to trust in the commercial token vendor and server operator who performs
the decisions in his stead. Due to the combination of the attestation protocol
with the binding mechanism this scheme achieves protection against platform-
in-the-middle attacks.

Winkler and Rinner present and interactive scheme [360] for visual user-based
attestation of a smart camera which features a TPM: A smart phone displays an
attestation request as QR-code which is shown to the camera by the user. The
camera device then attests itself via a wire-less communication link. The mobile
phone may consult a trusted third party to analyze the quote. If successful,

82 Chapter 4. A Proximity Interface for Attestation

this phase shows that the quote is processed by a TPM-equipped camera in a
trusted state. In a second round, a second image is generated by the phone
and the camera has to sign it with a key derived from the same AIK as before.
This shows that the image was taken and processed by the same camera, which
is known to be in a trusted state, and thus will not forward the challenge to
another device. This achieves resilience against Cuckoo attacks. Note, that the
authors did not consider a visual relay attack, where both phases of the protocol
are captured by a malicious camera and then relayed through a display mounted
in front of a trustworthy camera2.

An orthogonal challenge to asserting the user of a trustworthy software con-
figuration on the host platform of the TPM is to establish a trusted channel from
software to input and output devices. Zhou et al. [375] demonstrate in a first
prototype on x86 systems how an ASCII channel can be established from key-
board to the graphics adapter. They however also assume the initial TPM-based
attestation of the hypervisor that creates that channel through a hand-held de-
vice.

4.2.1 Open Challenges
Based on the presented literature we identify the following additional challenges
for the ad-hoc attestation of physically present public computer terminals.

Flexible and Scalable Trust decisions. The display of a public computer
must not be trusted to securely show the trust decision as malware display a
fake statement. To convey the trust status to a user, a mobile attestation token
is a suitable mechanism to provide a direct display and a secure communication
channel to the TPM. Several existing implementations not only display the re-
sult, but also perform the trust decision on the mobile attestation device. How
the collection of meaningful measurement values on the public computer can be
achieved is discussed in Section 2.5. Note that the performance of mobile devices
may limit the size of the known-good-value repository and the complexity of the
state analysis needed for the trust decision. Also, if only a small set of possible
configurations is provided, none of them might match the specific security re-
quirements of the user. A priori stored reference values also limit the flexibility
in case of system updates, or when encountering terminals from unexpected op-
erators. The same holds true for proprietary servers, which force a user to trust
in their operator and his policies.

Direct, Local Channel between User Token and TPM. Practical pro-
posals have so far considered different interfaces such as Bluetooth or USB.
However, as outlined in [246], both technologies require an honest software stack
to forward their messages to the passive TPM device. A direct, wired physical
channel would require extensive changes to the TPM design and new standard

2We recognize that performing this hypothetical attack scheme might, in most scenarios be
relatively easy to detect and prevent.

4.2. Attestation Of Local Platforms 83

plugs, both being expensive and impractical. Flickering displays provide only
one-way communications and require users to obtain and trust a special propose
token. Displaying and scanning QR-codes or taking images in multiple phases
requires lengthy, time-consuming interactions between the user and the device
which is challenged. Bluetooth has a long radio range and thus it could also
connect to a neighboring kiosk. To prevent this, current proposals introduce
stickers that identify TPM keys to link attestation to a physical machine. How-
ever, stickers are easy to manipulate [195]: Foremost, it is extremely easy to
copy and print them (with the attacker posing as a legitimate user, taking the
photo with his mobile phone camera). The manipulated sticker can easily be
placed on top of the original one within seconds by a casual attacker and thus
fake the identity of another kiosk. This is exactly the setting for the cuckoo
attack we wish to prevent.

4.2.2 Scenario: Kiosk Computing
Kiosk computers are often found at shops, in hotel lobbies, transportation ter-
minals or Internet cafés; they are public terminals to provide applications like
Web browsers or ticket-vending services. Such kiosks are rarely deployed alone;
in most cases several similar devices are operated in close vicinity. We assume
that the kiosk are equipped with persistent storage like a hard drive and can
therefore store data and programs over power cycles. We also assume that the
Kiosk operator offers the infrastructure for attestation, such as the hardware
interfaces and the necessary software services.

As the kiosk is in a public location, also attackers can visit the kiosk repeat-
edly during operation hours and pretend to be legitimate users. In our scenario,
Attackers are assumed to potentially have full control over the software running
on the kiosk, thus software cannot be trusted at all and key-loggers and fake se-
curity tools must be assumed. We further assume that wireless communications
can be eavesdropped.

With TPM-based attestation we desire to provide the user with means to
establish trust in such a device, but of course we have to consider the limitations
of the TCG’s architecture: it is not designed to protect against hardware attacks
(see Section 2.7). We assume that this is compensated by operational measures,
i.e., even if the devices may be unattended, they will be physically protected, i.e.,
by robust casings fixed to the ground, integrated keyboards and displays that
prevent hardware based attacks. Also, we assume that the operator performs
hardware and software maintenance on a regular basis, thus making most hard-
ware attack schemes like adding malicious devices to the casing impractical. As
a natural consequence, the service technician, much like any computer systems
administrator, must be trusted.

Figure 4.1 further illustrates the scenario we envision. It shows the following
four situations.

1. When a user encounters several terminals available in a room he has no
means to establish the trustworthiness of a single device. Therefore he

84 Chapter 4. A Proximity Interface for Attestation

might choose a malicious kiosk computer for his task, unintentionally ex-
posing private information to an attacker.

2. In this case we illustrate a successful attestation of a trustworthy kiosk.
The user is equipped with a smart phone which serves as attestation token,
similar the scheme that has been demonstrated by [120, 215]. Note that
the individual kiosks are identified by barcode tags attached to them.

3. In this situation, only one of the kiosks has not been manipulated. On
the others, the attacker installed malware that fakes a trusted behavior
and the unprotected kiosk identification tags have been manipulated: they
were copied from the untampered machine (on the right side). Due to
the long range of Bluetooth communications, this attack compromises the
scheme of [120]: each time the user identifies a kiosk with his smartphone,
he communicates with the same (secure) platform, while he in fact faces a
maliciously modified machine.

4. The last situation illustrates our proposal. NFC is used to establish which
is the kiosk that actually performs the attestation. With this mechanism
in place, the user can recognize that the first, closest machine is not secure
and will refrain from performing any critical task on it.

In the next section we will show how this local attestation with machine-in-
the-middle resistance can be achieved. The result is a trust decision, which is
reported to the user. Which assets a user will choose to expose to the so attested
kiosk computer depends on the user alone and his choice of security policies.

4.3 Mobile Attestation Token
We now present two improvements. First, we outline a kiosk attestation archi-
tecture which is designed to be user-controlled, flexible and scalable with regard
to kiosk state analysis. This first protocol, however, will not be resistant against
machine-in-the-middle attacks. Then, in Section 4.3.2, we will detail how NFC
can be integrated in attestation, thus providing for direct user token to TPM
communications. This effects the desired attack resilience, under the restrictions
discussed in Section 4.4.3.

4.3.1 The MAT Protocol
We now present a first version of a protocol that allows the attestation of a kiosk
computer using a smartphone. This version does not yet utilize the NFC link.

In our scheme, three parties collaborate to perform a cryptographic protocol.
We assume that the Kiosk contains a TPM and an operating system that offers
a complete chain-of-trust and measurement services that allow a verifier the
extraction of meaningful properties and allow to make a sound trust decision.
Secondly, the Mobile Attestation Token (MAT) is the client the user installs on
his mobile phone. Finally, we introduce a trusted third party, the Verification

4.3. Mobile Attestation Token 85

1

4

3

2

Figure 4.1: Description of the Motivating Usecase (1), Proposed Solutions by [120,
215] (2), a Possible Attack Scenario (3), and our Proposed Solution (4).

86 Chapter 4. A Proximity Interface for Attestation

Server. For better illustration, the protocol flow is shown in Figure 4.2. The
figure also includes additions, which will be explained in Section 4.3.3. These
additions, which represent direct NFC communications are shown in dotted lines.
Our initial protocol proposal follows. We assume that an appropriate PKI has
been set up and that the kiosk operator has provides the necessary certificate
chain on each kiosk or on-line.

0. In an initial setup step, the user chooses the Verification Server she trusts
and configures it with policies according to her preferences and needs. She
then transfers the public key certificates and the URL of the Verification
Server to the MAT.

1. When, at some later point of time, encountering a public computer the user
connects the MAT to the attestation service installed on the kiosk.

2. In the beginning of the attestation protocol, the MAT generates a nonce Na

to provide fresh data for replay protection.

3. With the first message to the kiosk, the user initiates the attestation with
her MAT, transmitting the URL of the Verification Server she intends to
use and Na.

4. The kiosk will then ask a quote of its recorded system state from the TPM
in the kiosk.

5. The quote PCR .SAIK−1(VPCR, Na), i.e., the current PCR values and the
signature over all PCR registers under an Attestation Identity Key (AIK),
is created within the TPM and passed on to the attestation service of the
kiosk.

6. Now, the kiosk establishes a secure TLS connection to the Verification Server
via the URL provided by the MAT. It transmits the quote together with
the AIK certificate and the stored measurement log SML which documents
the chain-of-trust of the kiosk in detail.

7. With the so collated information, the Verification Server analyzes the quote
and decides the trustworthiness according to the detailed requirements of
the user, using its local or other suitable known-good-value services3 or
property extraction methods. It also validates that AIK is indeed a TPM
protected key and asserts that the PrivacyCA did not revoke the certificate.

8. Once a trust decision is made, the Verification Server assembles and re-
turns a ticket to the kiosk: SVS−1(trusted.Na, SAIK−1(VPCR.Na), text).
It contains a binary trust decisions (the trusted-bit) and a free text for
additional messages and is signed by the Verification Server’s private key
VS-1.

3Depending on the market environment of the Kiosk operator, these might exist or not.

4.3. Mobile Attestation Token 87

3a
. E

sta
bli

sh
 vi

a N
FC

TPM_NFC_NONCE

Verification

Server

Kiosk
Mobile

Attestation

Token

0
. C

ertifica
tes o

f V
S

3. Request Attestation, VS URL,

4
.

T
P

M
_

Q
u

o
t

e
(A

IK
,

) 5
. P

C
R

.
(P

C
R

,
)

6.

(PCR.
(PCR.

).
.SML)

8. Ticket:
(trusted,

,
AIK (PCR.

), text)

10. Ticket

1. Establish connection

2. Generate nonce

11. Verify Ticket

12. Display trust status

7. Analyse configuration

9. Verify Ticket

3b. (TPM_NFC_NONCE)

6a.
(TPM_NFC_NONCE)

TPM

Figure 4.2: Ticket-based Local Attestation Scheme with MAT and Trusted Verifica-
tion Server. The optional steps 3a, 3b, and 6a are only performed with
the NFC extension as described in Section 4.3.3.

9. The ticket is validated on the Verification Server before being passed on to
the MAT. This allows a kiosk operator to gather statistics on how much
acceptance the offered configuration finds.

10. The unmodified ticket is passed on to the MAT.

11. The MAT verifies the signature using the pre-installed Verification Server
certificate and also that Na is from the same session.

12. If this succeeds, it can then proceed to finally display the result to the user.
Here, intelligible icons can be used to illustrate the trusted-bit.

The protocol attests the kiosk configuration to the Mobile Attestation To-
ken. The central design decision is to source out the complex state analysis and
decision procedure to the Verification Server. Thus we delegate [74] the anal-
ysis of the attestation information to a proxy [64] chosen by the user. Thus,
the capability to decide on the trustworthiness of the kiosk is not limited by
the restricted resources on the mobile device. Therefore the number of kiosk
configurations and the complexity of analysis (i.e., hash-based comparisons or
property extraction) considered will not influence the local performance of the
protocol. The on-line Verification Server will also be able to check the valid-
ity of AIK certificates on-line, so that kiosk identities need not be specified by

88 Chapter 4. A Proximity Interface for Attestation

the user beforehand. Indeed, as many attestation identities may be used as a
trusted PrivacyCA vouches for. With all this performed remotely, our scheme
requires the MAT only to validate the signature of the ticket, the nonce and the
trusted bit. The protocol therefore scales with the number of kiosks and their
configurations.

Also our protocol does not require any vendor specific operations or tokens
— it can be implemented on any device capable of the small set of cryptographic
functions and the necessary communication interfaces. In addition, there are no
limitations on who operates the Verification Server. It could be the kiosk oper-
ator as well as the user or any commercial or open institution. The Verification
Server might even consult other services to help it decide on a reported system
state. This flexibility not only allows user to make sound trust decisions, but
also provides easy adaption to changing profiles.

Thus, our proposal is not only a scalable and flexible technical solution, but
at the same time it also protects the users’ right of self-determination in their
trust decisions.

4.3.2 An NFC Interface for the TPM
We now outline how the TPM could be extended with an NFC interface to cre-
ate a direct channel to the MAT. We believe that this will not require extensive
changes to the TPM design. NFC has been designed to be integrated in small
hardware solutions like smart cards which are very similar to many TPM imple-
mentations. Furthermore, many of the challenges that have to be overcome in
the design of passive NFC tags are not an issue with the TPM. For instance, the
TPM has an active power supply and full cryptographic capabilities. Only a sim-
ple, passive Radio Frequency (RF) interface is needed, and the antenna circuit
could be printed on the mainboard of the host machine4. We believe that this
NFC interface is potentially cheaper than a proprietary wired interface, which
would require modifications to TPM, board, casing and MAT.

In this way it is possible to establish a direct link from the attestation device
to the TPM. Note that in our approach any software on the kiosk is circumvented,
thus preventing any kind of software-based attacks on the communication link5.

We now describe how the MAT and the kiosk can agree on a nonce over
the NFC and how we integrate this nonce in step 5 of the MAT protocol, thus
creating an implicit proof of locality.

New TPM Commands

To introduce NFC-based nonce agreement, changes to the TPM itself should be
limited to a minimum. As a special purpose trusted component, the TPM should
not provide more features than necessary to perform its tasks and therefore
should not operate as a full flexible NFC reader to the host. Also, changes to
the TPM API should be minimal and not affect normal operations. The TPM

4Assuming a non-shielded casing.
5Except for denial-of-service.

4.3. Mobile Attestation Token 89

Incoming Parameters
Parameter

[byte] Type Name Description
1 2 TPM TAG tag TPM TAG RQU COMMAND

2 4 UINT32 paramSize Total number of input bytes
including paramSize and tag

3 4 TPM COMMAND CODE ordinal Command ordinal:
TPM ORD establishNonce NFC

Outgoing Parameters
Parameter

[byte] Type Name Description
1 2 TPM TAG tag TPM TAG RSP COMMAND

2 4 UINT32 paramSize Total number of input bytes
including paramSize and tag

3 4 TPM RESULT ret. Result code of the operation
4 4 TPM COMMAND CODE ordinal Command ordinal:

TPM ORD establishNonce NFC

Table 4.1: The TPM establishNonce NFC command establishes a shared nonce be-
tween remote NFC reader and TPM. The resulting nonce is not returned
to the host machine but retained in the protection of the TPM.

specifications describe the mechanism of creating a quote comprehensively and
authoritatively. Here, we only present the proposed changes to the TCG TPM
1.2 specification [345] in this section.

The RF interface is to be activated only in the Enabled-Activated-Owned
state of the TPM life-cycle (see Section 2.3.3) and an owner-authorized call to
TPM SetCapability is needed to activate the permanent flag
enableNFCInterface that enables the following operations.

We introduce a new command that allows the NFC reader and the TPM,
which have no prior knowledge of each other’s identity, nor a shared key, to jointly
establish a shared secret over the NFC channel. This secret can then be used
as nonce in a single subsequent TPM operation. The TPM establishNonce NFC
command is described in Table 4.1. It is important to notice that if the com-
mand returns with TPM SUCCESS, the nonce is not returned to the TPM’s host
machine but retained in a special volatile and protected register TPM NFC NONCE
inside the TPM. This register can be read-accessed as if it were an additional
PCR, but with one exception: it is always reset to zero after a read opera-
tion. If the protocol fails, or times out, appropriate error codes are returned.
TPM establishNonce NFC does not require authorization, as it only stores the

90 Chapter 4. A Proximity Interface for Attestation

nonce. All commands that use its result must be properly authenticated. The
command itself performs a standard Diffie-Hellman-Merkle key-agreement oper-
ation which is described in detail in the next section.

Minor changes are now needed for TPM commands that utilize this nonce, for
instance, TPM Quote. It is called with a TPM PCR SELECTION that indicates the
PCR registers to consider. The behavior is extended as follows: TPM NFC NONCE
is selected like other PCRs with index: number of normal PCRs + 1. If
TPM NFC NONCE is zero, the command terminates with error code
TPM NO NFC NONCE, else its value is, as in the unmodified TPM, hashed in the
TPM PCR COMPOSITE together with the PCRs and finally signed with the pro-
vided AIK. The values of all used registers are also returned to the host. The
TPM NFC NONCE register is then set to zero.

This way, the quote result depends on the TPM NFC NONCE that was previously
agreed upon by the NFC reader (i.e., the Mobile Attestation Token) and the
TPM. As the quote result is signed with an AIK, this links TPM NFC NONCE to an
authentic TPM. Each nonce can only be used once, thus guaranteeing freshness.
Other commands which access PCRs can be adapted in a similar way6, without
changing their signature.

The NFC Nonce-Agreement Protocol

Essentially, the security of NFC is based on the physical characteristics of the
electromagnetic near field, which limit the operational range to about 10 [cm].
Still, eavesdropping attacks remain a threat in NFC applications that can be
performed even at a distance [138].

In order to establish a shared nonce between the TPM and the NFC-enabled
reader, we propose to use a classical key-agreement scheme according to Diffie-
Hellman-Merkle [92] (DH). This scheme is quite simple to implement on both
embedded devices and provides two major advantages. First, a nonce is estab-
lished within a two-way communication process. The TPM and the NFC reader
(e.g. a mobile phone) agree on a shared nonce without the need of installing any
a priori secrets on the device. Second, the nonce is never transmitted in plaintext
so that a potential attacker cannot extract the nonce by simply eavesdropping
the communication.

We base our NFC nonce-agreement protocol, developed together with Michael
Hutter, on two NFC standards: the ECMA 385 [98] and ECMA 386 [99]. These
standards define security services and protocols for NFC communication. The
standards specify several schemes for a secure communication channel and a
shared secret service for ECMA 340-enabled [97] devices. These standards define
cryptographic mechanisms that use the Elliptic Curves Diffie-Hellman (ECDH)
protocol for key agreement and the AES algorithm for data encryption and in-
tegrity. However, for the TPM, can we only assume the cryptographic abilities
which can be found in TPM version 1.2 [345], i.e., RSA but neither Elliptic-Curve
Cryptography (ECC) nor AES. Therefore, we implemented a non-elliptic-curve

6The TPM NFC NONCE must be reset to zero after every kind of read.

4.3. Mobile Attestation Token 91

0.1 MAT : QA = ga mod p
0.2 TPM : QB = gb mod p
1 MAT→ TPM : ACT REQ(QA)
2 TPM→ MAT : ACT REQ(QB)
3.1 MAT : Z = Qa

B mod p
3.2 TPM : Z = Qb

A mod p

Figure 4.3: NFC Nonce-Agreement Protocol between Mobile Attestation Token and
TPM.

version of DH for our NFC demonstrator. Note that the protocol domain pa-
rameters such the prime p, and the primitive root g need to be known by both
entities.

In Figure 4.3, the NFC nonce-agreement protocol is shown. The TPM and
the mobile phone agree on a shared secret key Z as follows. First, each entity
calculates a public number (QA and QB). Second, the mobile phone sends its
number QA plus the required parameters p and g to the TPM using the ACT REQ
command according to the ECMA 386 standard. The data is encoded in a byte
structure (TPM NFC DH PARMS) which is shown in Figure 4.4. Third, the TPM
sends the similarly encoded number QB to the mobile phone using the ACT RES
command. In the last step of the key agreement protocol, both entities compute
the shared secret Z according to the DH primitive as specified in IEEE 1363 [157]
(6.2.1 DLSVDP-DH), with SHA-1(Z) being the value of TPM NFC NONCE.

TPM_NFC_DH_PARMS

TPM_STRUCTURE_TAG tag;

UNIT32 root;

UINT32 keyLength;

BYTE* key;

UINT32 primeLength;

BYTE* prime;

Figure 4.4: The TPM NFC DH PARMS data structure holds the information transmitted
in the DH scheme.

4.3.3 Integration of NFC with the MAT Protocol
We now present the modifications necessary to the MAT protocol to achieve
resilience against machine-in-the-middle attacks, based on the described TPM
modifications.

The protocol can be easily integrated into the MAT protocol described in
Section 4.3.1. The following steps have to be added. The complete protocol flow
including the additional NFC steps is shown in Figure 4.2. The additions are
drawn in dotted lines.

92 Chapter 4. A Proximity Interface for Attestation

3. (a) When the MAT and the kiosk’s TPM touch, the key-agreement proto-
col as described above is executed and both entities share knowledge
of TPM NFC NONCE.

(b) The secret nonce is encrypted by the MAT under the public key of
Verification Server and forwarded to the kiosk.

4. Note that TPM NFC NONCE is implicitly included in the quote result by the
TPM.

6. (a) The Kiosk passes the encrypted nonce on to Verification Server.

7. The trusted bit is only true, if the same TPM NFC NONCE was received from
the MAT, because it is contained in the TPM quote. Note that the TPM
with its AIK implicitly guarantees for the authenticity of the nonce origin.

With these changes, our attestation protocol first performs a secure and
eaves-dropping resistant nonce exchange between TPM and MAT. It then uses
this nonce in the quote operation. Therefore the physical proof-of-locality is
implicitly guaranteed after completion of the protocol.

4.4 Implementation and Validation
In this section we report on a series of experiments that validate the concept
and protocol of a Mobile Attestation Token that employs a proximity interface.

4.4.1 Mobile Attestation Token and Kiosk Software Plat-
form

An initial software-prototype implementing attestation validation was created by
Manuel Schallar and Herwig Guggi under supervision of the author. The MAT
prototype implementation is based on commodity hardware and on platform-
independent software. On the Verification Server, Java SE is used. The Verifica-
tion Server stores reference known-good-values in a relational MySQL database,
which is accessed using Hibernate. A GUI tool allows the user to collect reference
measurements. The Mobile Attestation Token is built as applet for Java ME,
MIDP 2.0, extended with JSR 82 (Bluetooth/OBEX support), JSR 75 (PDA
profile) and JSR 257 (NFC support). For cryptographic support we use IAIK
JCE ME on all hosts. The MAT software is thus compatible to NFC-enabled
phones such as the Nokia 6212. Figure 4.5 shows typical screenshots on the
MAT. As no NFC-enabled TPM is currently available in hardware, we simulate
the high level MAT protocol communications using Bluetooth and separately
demonstrate the NFC interface.

On the Kiosk, we currently collect binary measurements, and accept plug-ins
for further analysis. The TPM can be accessed from Java SE using IAIK jTSS
(see Section 3.2.2).

4.4. Implementation and Validation 93

Figure 4.5: The Mobile Attestation Token Software Informs the User on the Result
of the Attestation Process in a Comprehensible way.

The complexity of a typical Kiosk system can be assumed to be comparable
to that of a Linux installation with graphical user interface. An experiment to
this end was made by Martin Pirker, on a customized Linux system. Based
on November 2009 source files from the Gentoo distribution, a restricted base
system, including the fvwm2 X-Window Manager and the Firefox web browser
are covered. The kernel includes the IMA [279] Linux Security Module (LSM)
which performs measurements of all accessed files. The platform performs a
measured boot and launches the browser afterwards. The chain-of-trust created
by this typically consists of around 520 different IMA measurements. Note that
the exact order and number of programs and libraries loaded depends on external
factors like network services or user interactions.

This result is of comparable magnitude to the complexity assessment by Lyle
and Martin [203], who identified 277 different measurements for a basic web
service and about five time as many security-relevant updates over a three-year
period. Based on this we believe that several thousand of known-good-values
will need to be managed for each kiosk software platform and its updates.

4.4.2 NFC Demonstrator
In order to demonstrate an autonomic and NFC-compatible interface for a TPM,
Michael Hutter performed experiments based on the IAIK HF DemoTag device7.

The prototype represents a TPM that is assembled on a Printed Circuit
Board (PCB). As TPMs available on the market cannot be freely programmed
or extended with additional communication interfaces, a we use an 8-bit micro-
controller in our experiments. Moreover, the DemoTag integrates an antenna
into the PCB as an easy access point that can be touched with an NFC-enabled
mobile phone. The antenna has been designed according to ISO/IEC 7810 [164]
and has a size of a conventional smart card (ID-1 format). Besides the micro-
controller and the NFC antenna, the prototype consists of an analog front-end,
a clock oscillator, a serial interface, a Joint Test Action Group (JTAG) interface,

7http://www.iaik.tugraz.at/content/research/rfid/tag_emulators/

http://www.iaik.tugraz.at/content/research/rfid/tag_emulators/

94 Chapter 4. A Proximity Interface for Attestation

Analog front-endSerial interface Antenna
Microcontroller
(ATMega128)

Figure 4.6: NFC Demonstrator Printed Circuit Board.

and a power-supply connector. It operates at 13.56 MHz and has been assembled
using discrete components. In Figure 4.6, a picture of our prototype is shown.

As a microcontroller, the ATmega128 [26] has been used, which is responsible
for managing NFC-reader requests and target responses by following the speci-
fication of the NFC Forum. Next to the air interface, the microcontroller is able
to communicate with a PC over a serial interface. The JTAG interface enables
debug control and system programming. The NFC prototype is semi-passive
which means that the microcontroller is powered by an external power source
while the RF communication is done passively without any signal amplification.

The analog front-end is responsible to transform the analog signals of the
NFC reader into digital signals used for the microcontroller. Note that in produ-
tion devices, the analog front-end and the digital circuit are typically integrated
into one piece of silicon like in passive RFID tags. The analog front-end is mainly
composed of an antenna matching circuit, a rectifier, a voltage regulation unit,
a demodulation and a modulation circuit.

The NFC prototype can communicate using several protocol standards. It
implements several RFID protocols such as ISO/IEC 15693, ISO/IEC 14443
(type A and B), ISO/IEC 14443-4 and also ISO/IEC 18092. The software is
written in C while parts have been implemented in assembly language due to
timing constraints. Moreover, it implements a user-command interface that
allows one easy administration over the serial interface. For our experiments,
we have used the ISO/IEC 14443-A [163] protocol standard up to layer 4 using
ISO/IEC 7816-4 [162] Application Protocol Data Units (APDU) according to
the NFC Forum type 4 tag operation specification [237].

For our experiments, we implemented the key-agreement protocol described
in Section 4.3.2 on our NFC prototype and also on an NFC-compatible mobile
phone (Nokia 6212). Both devices are capable of transmitting NDEF messages,
which enables an automatic key-agreement between the NFC prototype and the
mobile phone by simply touching the antenna of the prototype with the mobile
phone. After that, the running time of the proposed NFC protocol was measured

4.4. Implementation and Validation 95

using an 8-bit oscilloscope. First, the mobile phone sends a request command
(REQA) to the NFC prototype which answers with its unique ID (UID) number
after an anti-collision and initialization phase. This phase takes about 22.5 [ms]
in our experiments. Second, the mobile phone calculates the public key using
a private key and prime size of 768 bits. After that, it sends the generated
TPM NFC DH PARAMS structure as a payload of the ACT REQ command to the NFC
prototype. The size of the payload is 1648 bits which take about 141.8 [ms] to
transmit. The time between the first bit transmitted and the last bit received
is measured. Third, the same computation is performed by the NFC prototype
which answers with an ACT RES command using the same payload size in 141.8
[ms]. In the experiments, the entire key-agreement protocol can be performed
within one second.

4.4.3 NFC Robustness against Man-in-the-Middle Attacks

The security of NFC is mainly based on the physical characteristics of the elec-
tromagnetic near field: the field strength for inductive coupling degrades cubi-
cally with the distance, which results in a typical range of about 10 [cm]. It
should be noted, especially as the physical layer is typically not encrypted, that
eavesdropping might be possible, even at a distance [138]. Classical man-in-
the-middle attacks can be prevented due to the characteristics of transmission
parameters, which allow the reader to sense manipulations in the field [140].
However, there exist also the threat of relay attacks on RFID and NFC devices
using custom built [137] or even commercial-off-the-shelf [115] RF-hardware de-
vices. Relay attacks are related to man-in-the-middle attacks where the data of
a trusted device is simply forwarded by an adversary so that the local presence
of the trusted device is not ensured anymore.

Alpár and Hoepman [11] point out that this attack would also affect our
scheme and propose two generic additions to increase security, by including
either i) location-based information, distance-bounding or multi-channel com-
munications or ii) involving the TPM during the whole communication session,
or iii) both. The second proposal is not straightforward, as the TPM does not
offer support for continuous encryption, such as in TLS, which led us to create
the piggyback scheme of adding the nonce as ‘virtual PCR’ in the first place.
Regarding the author’s first proposal, the possibility of physical relay attacks
was already mentioned in our initial publication [320], together with a possible
research direction, distance bounding protocols. These distance bounding pro-
tocols are an approach to prevent relay attacks [4,30,49,230,267,347]. However,
in NFC the distance itself is very small, making distance bounding protocols
a challenge to implement. Achieving effective and efficient distance bounding
is still an active research topic [30] and implementations are are not generally8

available yet.

8According to [4], the NXP Mifare Plus product range already offers distance bounding in
contact-less tokens.

96 Chapter 4. A Proximity Interface for Attestation

4.4.4 Validation
Based on the Experiments described above we have shown that

• A Mobile Attestation Token Software application can be implemented on
Java-enabled mobile phones, even in the low-performance feature-phone
class.

• The expected configuration of Kiosk computers can be described in a few
hundreds, or in case of updates, a few thousand known-good-values. This
amount of information can be handled on any Desktop-class Verification
Server.

• The nonce-exchange introduced in Section 4.3.3, can be physically trans-
mitted using standards-compliant NFC protocols in less than one second.

• NFC effectively prevents man-in-the-middle attacks that happen on the
protocol or network layer. Protection against relay attacks on the physical
layer is currently an emerging but promising technology.

Thus, the approach can be realized on consumer mobile devices and offers
a consumer-friendly reaction time, making it suitable to the scenario outlined
previously. Our scheme extends on what TPMs are capable of today and in
the near future. While Dmitrienko et al. [93] see it as a disadvantage that our
proposed interface is not commercially available in certified TPM implementa-
tions, we would like to point out that this would clearly be desirable, but it is
also a matter of economical feasibility in the global semiconductor and systems
market.

4.5 Extensions and further Experiments
We now outline future research we conducted on the fringes of the work so
far presented in this chapter, which had been largely based on our 2009 pub-
lication [326]. We now present an optimization of the NFC-based attestation
protocols, discuss attestation against even smaller systems and outline advances
on platform security in mobile devices.

4.5.1 Touch‘n’ Trust
In two additional publications [152,153] we have explored together with Hutter a
second, different point in the design space for NFC-based attestation. The main
difference is that the trust decision is moved into the mobile device. This is en-
abled by substantial optimizations that include an advanced terminal hardware
and software platform and a more efficient cryptographic protocol.

The terminal platform is improved by implementing the acTvSM (see Section
5.8.2) approach on it, resulting in a simpler comparison of known-good-values.
Consequently, the space of acceptable values is much smaller, as structured file

4.5. Extensions and further Experiments 97

systems allow the booting platform a complete measurement of the overall sys-
tem configurations within only a few hashes and can therefore be compared
easily with reference values in recent, powerful smart phones. This step can be
performed with the mobile device alone, without the Verification Server.

The second idea is to omit the Nonce-agreement phase of the NFC-enabled
MAT protocol, but instead to make the quote data structure more compact, and
thus reduce time needed for the over-the-air communication of the full quote. To
achieve this improvement, we propose to use elliptic curve cryptography (ECC)
to increase the computation and communication performance.

The first step in the alternative attestation protocol is to generate a nonce N0
with the NFC-enabled mobile phone which again acts as a reader device (initia-
tor). As soon as the mobile phone touches the RF antenna of the terminal, the
nonce is transmitted over the air interface within a configuration challenge (the
nonce serves as fresh data to avoid replay attacks). After that, the public ter-
minal (target) responds with the Quote of its currently recorded terminal state.
A modified9 Quote data structure which contains the nonce, the current PCR
values, and the signature over the selected PCR registers under an Attestation
Identity Key AIK of the TPM, is then returned to the mobile phone.

As the over-the-air transmission time is the limiting factor of using NFC, we
propose the use of elliptic curve cryptography (ECC) for signing the PCRs. In
contrast to other public-key primitives like RSA, ECC has gathered much atten-
tion due to the use of shorter key sizes. The computation time and especially
the communication time over the air interface can be significantly improved
by providing the same cryptographic strength. For instance, the strength of a
2048-bit RSA key can be compared to that of a 224-bit ECC key. ECC has been
widely standardized, for instance by ANSI [13], IEEE [158], NIST [233], and
ISO/IEC [165]. Also, there already exist public-key infrastructures that support
this algorithm for signing and verifying data and X.509 certificates [166]. In
order to sign the PCRs we propose to use Elliptic Curve Digital Signature Al-
gorithm (ECDSA) according to the recommendations of the National Institute
of Standards and Technology (NIST) [233]. We use the smallest recommended
elliptic curve, that is 192-bits, for prime-field arithmetic.

A number of arithmetic optimizations for ECC, which are detailed in [153]
facilitate the efficient implementation on resource-constrained micro controllers
while supporting reliance to side-channel attacks [206].

The digital-signature generation of the 8-bit ATmega128 microcontroller that
takes the TPM’s role in our experiments, takes about 31 million clock cycles.
Due to the characteristics of our scenario it is sufficient to consider only the
performance of a single session. Running at 13.56 [MHz] this results in a running
time of about 2.31 [s] to generate the signature. The verification of the signed
message on the mobile phone takes 33 [ms]. The anti-collision and initialization
phase of the NFC protocol needs about 22 [ms]. Second, the challenge N0 and
the Quote response are transmitted. For this, we assumed a typical number

9Static elements need not be transmitted over the air, and would only incur longer trans-
mission times.

98 Chapter 4. A Proximity Interface for Attestation

of different PCR values, viz., 6 in our experiments, resulting in a payload of
160 + 6 ∗ 160 + 192 = 1312 bits. The transmission takes about 140 [ms] using a
fixed RFID/NFC data rate of 106 [kbit/s].

Existing 1.2 TPMs already include cryptographic services such as RSA, where
significantly more bits would have to be transmitted in contrast to elliptic curve
implementations. As a comparison, the transmission of a 1024-bit RSA-based
signature (comparable with a 160-bit ECC implementation) alone would need
2192 bits, or roughly 240 [ms] transmission time which is almost twice as high as
the elliptic-curve based attestation protocol. This motivated our design decision,
as we desire to keep the time the user needs to touch the public terminal as short
as possible.

If the signature is validated successfully, the Quote information is compared
to a list of known-good PCR values. A quote is only accepted if the state report
contains only trusted values.

Thus, this optimized scheme achieves the attestation without the need of an
external verification service, but against only a smaller set of possible public
computing terminals. Depending on the organizational measures taken before-
hand, it can be applied off-line, without Internet connection. Ideally, though,
the phone should validate the AIK certificate in the context of a trusted comput-
ing PKI [255] and confirm that it has not been revoked. The entire attestation
process can be performed within three seconds, without hardware cryptography
accelerator. The presentation of this scheme in [152] has been recognized with
a “best paper award” to Hutter and Toegl at ICSNC 2010.

Still, which scheme is better suited for a concrete scenario depends on the
specific organizational requirements.

4.5.2 Local Attestation with a Dedicated Hardware Device
It may appear difficult to come to a practical repository of acceptable trusted
states such that a meaningful trust decision can be made locally inside the mobile
phone.

Together with Hein et al., we proved the viability for one specific scenario,
the protection of a software framework for disaster relief support, in [141–143]
by showing attestation against an even smaller embedded system: a dedicated
single-chip token. The Autonomous Attestation Token (AAT) is a small, user-
owned token to attach to or to plug into any available device, be it a laptop
computer or a mobile phone. As a hardware security token the AAT could
potentially provide various cryptographic services. Based a the close cooperation
of TPM and AAT, we define a new mechanism, which we refer to as Local
Attestation. Users, in our example emergency service workers, are issued [84]
an AAT which identifies them. When it is plugged in an mobile device, the
platforms state will be conveyed via the TPM’s standard quote operation, but
only to the directly connected token. Of course, the platform software needs
to trigger measurements and reporting to the AAT. The AAT will validate the
signature and compare the PCR values to a set of known good configurations.
If the platform is deemed trustworthy, the AAT signals this to the user and

4.5. Extensions and further Experiments 99

she can authorize an operation. In [142] we describe a basic use case where
a network master access key is only revealed by the AAT if the host platform
and the user are trusted and authentic. Local attestation implements a true,
decentralized trust decision process, which does not rely on on-line third parties
such as a PrivacyCA. It can easily accommodate different platforms with varying
valid configurations. The AAT, in addition to performing the platform state
verification, also serves as a proof of possession in authentication protocols.
Therefore, local attestation not only ensures a specific state of the platform, but
also provides strong evidence of the identity of the owner. The AAT has been
implemented by Daniel Hein on a tamper-resilient Infineon security controller,
and demonstrated attestation of a mobile agent framework optimized for disaster
response [143]. Again, the attestation was facilitated through structuring the
software configuration according to the acTvSM approach that will be explained
in more detail in the next chapter (Section 5.8.2).

4.5.3 Isolation and Integrity Protection on the Mobile De-
vice

In the approach we have described so far, we have in essence moved the user
interface of the trust decision one device closer to the user, onto her personal
mobile phone. Basically, using the phone as attestation respectively authenti-
cation device to other machines introduces it as a second authentication factor
besides the user, making the process more resilient.

However, modern smart phones have reached a level of richness in features
that is comparable to those of the public computing terminals we intend to
secure. As a consequence, smart phones can also be attacked on a software
level [154], recreating the initial challenge [216]. Still, we would like to argue
that the ecosystem of mobile operating systems is better controlled and thus
offers a higher chance of warranting a degree of trust in them. This is especially
plausible, as there is a very promising line of research on how to increase the
security of mobile platforms by circumventing the consumer operating system on
them altogether. The solution currently followed by large parts of the industry
is to offer a highly reliable, secure computation environments. To us, these en-
vironments appear to be very well suited for attestation token implementations.

One of the dominant processor architectures employed in current mobile and
embedded devices is the ARM architecture. Current ARM-based processor de-
signs span a wide range of application fields, ranging from tiny embedded devices
(e.g. ARM Cortex-M3) to powerful multi-core systems (e.g. ARM Cortex-A9
MPCore). ARM introduced a set of hardware-based security extensions called
TrustZone [21] to ARM processor cores and on-chip components. For cost rea-
sons integrated into the CPU core, ARM TrustZone is an emerging technology
to provide security features without the need of extra hardware chips.

The key foundation of ARM TrustZone is the introduction of a secure world
and a non-secure world operating mode. This secure world and non-secure world
mode split is an orthogonal concept to the privileged/unprivileged modes already

100 Chapter 4. A Proximity Interface for Attestation

found on earlier ARM cores. On a typical ARM TrustZone core, secure world
and non-secure world versions of all privileged and unprivileged processor modes
co-exist. A number of System Control Coprocessor registers, including all regis-
ters relevant to virtual memory, exist in separate banked secure and non-secure
world versions. Security critical processor core status bits (interrupt flags) and
System Control Coprocessor registers are either totally inaccessible to non-secure
world or access permissions are strictly under the control of secure world. For
the purpose of interfacing between secure and non-secure world a special Secure
Monitor Mode together with a Secure Monitor Call instruction exists. Depend-
ing on the register settings of the processor core, interrupts are routed to Secure
Monitor Mode handlers. Apart from the extensions to the processor core it-
self, The AMBA AXI bus in a TrustZone enabled system carries extra signals
to indicate the originating world for any bus cycles. Thus, TrustZone aware
System-On-Chip (SoC) peripherals can interpret those extra signals to restrict
access to secure world only; a secure world executive can closely monitor any
non-secure world attempts to access secure world peripherals. In essence, an
ARM TrustZone CPU core can be seen as two virtual CPU cores with different
privileges and a strictly controlled communication interface.

The realization of the two-worlds paradigm in both security- and consumer-
operating-system software is largely vendor specific. Still, there are specifications
and standards available. Previously, ARM had published its own TrustZone soft-
ware API specification [20]. Together with Trusted Logic, ARM has developed a
closed-source TrustZone software stack, complementing the TrustZone hardware
extensions. ARM has since donated its TrustZone API to the GlobalPlatform
industry association and this has developed into the Trusted Execution Envi-
ronment (TEE) Client API [127]. It allows an application in the “non-secure
world”, which typically runs a rich-OS such as Google Android or Microsoft
Windows Mobile 8, to communicate with the “secure world”. ARM has also
been working with other companies to develop the TEE Internal API [128] that
interfaces between a Trusted OS, running in the secure world, and a Trusted
Application.

Today, many modern ARM-based Smartphones (with Cortex-A CPU) in-
clude a TEE based on SoCs by manufacturers like Qualcomm, Samsung, Nvidia,
and Texas Instruments. Accordingly, TEEs have already been deployed for sev-
eral years, featuring Trusted OSes currently made by TrustedLogic/Gemalto
(Trusted Foundation) or Giesecke & Devrient (Mobicore). Moreover, ARM,
Gemalto and Giesecke & Devrient and others have recently created the
TRUSTONIC Joint Venture on TEE Trusted OS and its ecosystem of services.

Within a TEE, a Trusted OS is the basis to execute use-case specific Trusted
Applications. Several scientific publications deal with proposals for secure mo-
bile and embedded system designs based on the ARM TrustZone security ex-
tensions [101,102,102,181] and their possible applications for instance in digital
rights management [150], cryptographic protocols [356], mobile ticketing [151]
or wireless sensor networks [372]. Aspects of virtualization based on TrustZone
are discussed by [116,188,361]. A TrustZone protected, next generation TPM is

4.6. Summary 101

reportedly shipping in Windows 8 RT devices.
Together with Winter et al. [364] we showcase an experimental open-source

software environment for experiments with ARM TrustZone. The software
framework offers a prototype kernel running within a trusted environment and
features a software based Trusted Platform Module hosted in a TrustZone pro-
tected runtime environment and an Android operating system accessing it through
the high-level, JSR 321 Trusted Computing API (see Chapter 3). The joint work
received the “Best Paper Award” at INTRUST 2011 conference.

Overall, TrustZone based TEEs seem suitable for local attestation with phys-
ical devices and there are various proposals on how to create a direct visual
channel from the TEE to the user [349]. This ongoing development towards
higher security in mobile devices thus supports the Mobile Attestation Token
approach, as a reliable execution environment and also channel to the user is
becoming realizable in real-world, consumer devices.

4.6 Summary
In this chapter we consider challenges that arise in Remote Attestation scenar-
ios with locally present computer systems. We conclude that a trusted mobile
device, the Mobile Attestation Token, is a suitable instrument to interact with
local computer platforms. It will perform an attestation protocol, report the
result to the user, even if the display the user faces cannot be trusted and may
be connected to the platform under test.

We extend on previous proposals in this field to provide more scalability
considering the limited computational power and memory of mobile devices,
and add flexibility by moving the complex state analysis to a trusted third party.
Our scheme can be implemented without special purpose hardware and is not
restricted to specific operators. While it does not overcome all complexities of
attestation, our scheme gives users full control which verification server to use.
Thus security requirements and trust policies can be defined individually and to
maintain the users’ full self-determination in their trust decisions.

Furthermore, we describe how to add a direct, affordable interface to the
TPM. With Near Field Communication, a proof of locality is embedded in the
attestation process. The presented extension allows us to completely circumvent
any malicious software and thus prevent software-based platform-in-the-middle
attacks on public available computers and other devices.

The chapter also presents collaborative research results on the fringes of the
original protocol, which describe performance improvements, single-chip local
attestation and inclusion of TEEs on the mobile device.

5
Rigorous Design of Trusted Services

5.1 Introduction

Trusted Computing mechanisms that enforce binary integrity and runtime iso-
lation do not per se guarantee a secure and correct behavior of a service. Yet, all
(meaningful) services need to communicate, and they do so through well-defined
interfaces. These interfaces expose software services to the network to other
hosts, or to the Internet in general and any (software) attack will and must pass
through them. These interfaces are security protocols, or, if they allow remote
parties more persistent operations, security APIs. These interfaces, however,
can be restricted to enforce precise specification compliance and thus prevent
malicious behavior.

One way to achieve assurance on a security behavior is to design and im-
plement systems, interfaces and protocols rigorously, proving and verifying their
correctness and robustness against attacks. In this chapter, we investigate how
formal methods can be applied in the context of two different services that are
protected by Trusted Computing mechanisms such as the TPM and Intel TXT.

In the first part, Sections 5.2-5.5, we study a secrets distribution protocol
that employs the binding mechanism of the TPM to ensure that only trusted
hosts have access to a secret. We apply formal methods to highlight a subtle,
yet potentially relevant security issue and propose an improvement.

In the second part, Sections 5.6-5.13, we report on our design of a virtual
security module that deeply integrates trusted computing mechanisms. Our ap-
proach uses commodity personal computer hardware to offer integrity protection
and strong isolation to a security module which offers signature services. The
module provides only a compact, yet proven secure API.

103

104 Chapter 5. Rigorous Design of Trusted Services

Declarations
This chapter extensively adapts, cites and reuses previously published
material from the author, especially

[325] R. Toegl, G. Hofferek, K. Greimel, A. H. Y. Leung, R.-W.
Phan, and R. Bloem. Formal analysis of a TPM-based secrets dis-
tribution and storage scheme. In Proceedings TRUSTCOM 2008, in:
Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for, pages 2289–2294. IEEE Computer Society, 2008.

[336] R. Toegl, F. Reimair, and M. Pirker. Waltzing the Bear,
or: A Trusted Virtual Security Module. In S. Capitani di Vimercati
and C. Mitchell, editors, Public Key Infrastructures, Services and
Applications, 9th European Workshop, EuroPKI 2012, Pisa, Italy,
September 2012, Revised Selected Papers, volume 7868 of Lecture Notes
in Computer Science, pages 145–160. Springer Berlin Heidelberg, 2013.

[323] R. Toegl. Verification of a trusted virtual security module.
In M. Bond, R. Focardi, F. Sibylle, and G. Steel, editors, Analysis
of Security APIs (Dagstuhl Seminar 12482), Dagstuhl Reports, page
166. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. Abstract.

Besides these publications, this chapter also adapts, cites and reuses
material from internal deliverables [256, 257, 269, 322, 332, 335] of the
acTvSM project, co-authored with Martin Pirker, Georg Lindsberger,
Andreas Niederl, Gerhard Fliess, and Florian Reimair.

The vulnerability of the protocol described in 5.4.1 was originally
discovered by Adrian Leung and later described in his PhD thesis [190].
The model for the protocol described in 5.2.1 was programmed by
Georg Hofferek and Karin Greimel as part of class practicals supervised
by the author.
The security module prototype was programmed and its performance
measured by Florian Reimair [268] as his master’s thesis, supervised by
the author.
The acTvSM platform has been designed and implemented by Martin
Pirker, Michael Gissing, Andreas Niederl, Michael Gebetsroither and
the author and it is detailed in [126,253,254,333].

5.2. Formal Analysis of a Secret Distribution Scheme 105

5.2 Formal Analysis of a Secret Distribution Scheme

As previously outlined in Section 2.6, the design of cryptographic protocols is a
demanding task and many vulnerabilities have been discovered in various pro-
tocols. With the advent of Trusted Computing came the temptation to rely on
the TPM’s security mechanisms to achieve goals like authenticity and confiden-
tiality in communication protocols. However, even with hardware security in
place, similar logical problems as with conventional protocols may still occur,
for instance failure to mutually authenticate two parties. While general purpose
cryptographic protocols have been the subject of formal analysis for many years,
the field of Trusted Computing has seen only limited use of this.

Specific to Trusted Computing, Bruschi et al. [53] model the authentication
session that is performed between the local application and the TPM module
in the Spin model checker [147]. Lin [193] formally analyses parts of the TPM
API in the theorem prover Otter. Gürgens et al. [135] perform a systematic
security evaluation of the TPM specification the SH-verification tool (SHVT) to
model several TPM-based protocols and consequently suggested clarifications in
the TPM 1.2 specification. Chen and Ryan [66] study the authentication proto-
cols of TPM command discovering a security issue with shared authentication
data and propose an improved protocol verified with ProVerif. Coker et al. [74]
propose a multi-party attestation protocol and perform an analysis applying the
Cryptographic Protocol Shapes Analyzer (CPSA). Recently, Delaune et al. [85]
introduce a way to model protocols including the TPM PCRs through a formal
Horn-clause-based framework, which allows analysts the application of ProVerif
even on such stateful behaviors. Beyond stateful protocols, security APIs are
also a target for rigorous analysis, as we will see in Section 5.7.2.

We now describe a formal analysis of a protocol proposed by Sevinç et al.
[292] for “securely distributing and storing secrets”, “independent of a specific
usage-control application”. The protocol “ensures that the server only distributes
given secret data to trusted clients.” It does not, however, ensure that the
secret received by the client does indeed come from the server. This latter
property is not mentioned in [292], but we argue that it is important in some
applications, such as when decisions are based on the contents of the secret. We
show the absence of this mutual authentication property using a model checker
and suggest an improvement of the protocol which does not suffer from the same
drawback.

In the remainder of this section, we introduce the protocol we analyze, and
outline the fundamentals of Model Checking. In Section 5.3, we describe our
model of the protocol and the attacker in the NuSMV model checker. As pre-
sented in Section 5.4, our model unveils a security flaw which illustrates the risks
of integrating complex TPM operations such as Binding in network protocols.
We also discuss how the design can be improved and how this can be verified
with our model. The discussion of the protocol concludes in Section 5.5.

106 Chapter 5. Rigorous Design of Trusted Services

5.2.1 Protocol
Sevinç et al. propose a scheme to securely distribute a secret using trusted
computing functionalities [292]. The setting is that the server does not trust the
client platform but only the TPM residing at the client’s end. It is possible for
the server to ascertain with the help of the PCRs that the client platform is in
a trusted state. Then, the server can expect the client platform to function in
the desired manner, rather than (intentionally or unintentionally) running some
malicious activity.

Protocol Flow. The table in Figure 5.1 shows the flow of the protocol. We
stick to the numbering used in [292], but use a slightly different notation.

1. C → S REQ
2. C ← S VPCR.N
3. TPM ← C TPM CreateWrapKey(A,h(P),...)
4. TPM fresh (K,K−1) with policy

A = {VPCR, non-migratable, binding}
5. TPM → C K.EP (A.K−1)
6. TPM ← C TPM LoadKey2(h(P),K.EP (A.K−1),...)
7. TPM → C h(K)
8. TPM ← C TPM CertifyKey(h(K),h(AIK), N)
9. TPM → C SAIK−1(A, N,K)

10. C → S SAIK−1(A, N,K).SCA−1(AIK,KAIK)
11. S check certificates and A of K
12. C ← S EK(SECRET)
13. TPM ← C EK(SECRET)
14. TPM assert current trusted state V ′PCR ⊇ VPCR ∈ A
15. TPM → C SECRET

Figure 5.1: The Key Distribution Protocol of [292].

There are three participants in the protocol, the client’s TPM, the client, and
the server. The TPM is assumed to provide a non-migratable storage key P ,
and some certified and readily loaded AIK, both available through their handles
h(P),h(AIK). First the client sends an initial request (REQ) to the server. The
server replies by sending desired values for PCRs (VPCR) which define the trusted
state, and a nonce N . In the third step, the client asks the TPM to create a key
pair (K,K−1) which the TPM restricts with the policy A of being typed as a
non-migratable binding key with its use further restricted to VPCR.

After generating the key, the TPM returns the public key part K; the private
part K−1 is encrypted together with its policy under P as P is the parent key of
K in the TPM key hierarchy of the client. After the encrypted key data structure
has been provided to the client, the client requests the TPM in step 6 to load
the key pair into a key slot. As a result, in step 7, the TPM returns a handle
h(K) to the key, which can now be used in cryptographic operations. Next, the

5.2. Formal Analysis of a Secret Distribution Scheme 107

client asks the TPM to certify key K (step 8). The TPM subsequently signs
the public key K together with its policy and the nonce N under an AIK. This
certificate is sent to the server (step 10). Now the server verifies the certificate
for K and asserts the policy A that the key K is non-migratable and sealed
to the correct PCR values (step 11). The server also needs to verify the AIK’s
certificate, which we assume given here. Subsequently, in step 12, the server
encrypts the secret under K. The encrypted message is then sent to the client
which asks the TPM to decrypt it (step 13). The TPM checks if the client is
in the trusted state defined as the VPCR ∈ A. If and only if so, the secret is
revealed to the client in plaintext.

Security Targets. We identify the following three security targets:

1. An intruder never learns the secret.

2. The client learns the secret only if it is in a trusted state.

3. A client in the trusted state either learns the (real) secret, or discovers
that an attack has taken place.

Sevinç et al. state that the main goal of the protocol is to ensure the confidential-
ity of the secret, i.e., neither an intruder nor a client in an untrusted state may
learn the secret. This corresponds to our first two security targets. The third
target, not mentioned in [292], ensures that one of the following cases always
occurs: (1) An honest client is capable of successfully completing the protocol
and thus learns the secret, or (2) the client is able to detect that some malicious
activity occurred.

Below, we formalize these security targets and verify them using a model
checker.

5.2.2 Model Checking
Model checking is used to formally prove or disprove that certain properties hold
for a given model. For example, we prove that given security properties hold
for a protocol. A model checker tool takes a finite model and a specification, a
set of properties, as input and returns true if and only if the model satisfies the
specification. If the model does not satisfy the specification the model checker
returns false. Most model checkers are able to give a counterexample showing
why the model does not satisfy the specification.

In the following, we will shortly describe the models, the specification lan-
guage, and the model checker we use.

Models. Our models are Finite State Machines (FSMs) or more formally
Kripke structures. Let AP be a set of atomic propositions. A Kripke struc-
ture is a tuple K = (S, T, S0, A, L), where S is the finite set of states, T ⊆ S×S
is the complete transition relation, S0 ⊆ S is the set of initial states, A = 2AP

is the alphabet and L : S → A is the labeling function, which associates with

108 Chapter 5. Rigorous Design of Trusted Services

every state the set of propositions that hold in that state. An infinite sequence
of states π = s0s1s2 . . . is a path of K if ∀i. (si, si+1) ∈ T . A path is a run
of K if additionally, it starts with an initial state. The corresponding word
σ = L(s0)L(s1)L(s2) . . . is an infinite sequence of letters from the alphabet A,
defined by the labeling function. In order to reason about properties of the set
of words a Kripke structure defines a specification language is needed.

Specifications. The specification language we use is Computation Tree Logic
(CTL) [70]. The logic is defined over a finite set of propositions, AP, the same set
we used to define the labeling of Kripke structures. If we fix a Kripke structure,
a CTL formula is satisfied by a set of states. We now define the syntax of CTL
inductively and give a brief overview of its semantics. Let s be a state. If p is
an atomic proposition, and ϕ and ψ are CTL formulas, the following are also
CTL formulas: p (meaning that p ∈ L(s)), AXϕ (meaning that ϕ holds for
all successors of s), AFϕ (meaning that for every path starting in s, ϕ holds
eventually), AGϕ (meaning that for all paths starting in s, ϕ holds in all states),
and AϕUψ (meaning that on all paths starting in s, ψ holds eventually and ϕ
holds in all prior states). We can use Boolean connectives to obtain ϕ∧ψ, ϕ∨ψ,
and ¬ϕ, with the usual meaning. We say that a formula holds for a Kripke
structure if the formula is satisfied by all initial states.

Model Checker. We use the NuSMV model checker [67] by Cimatti et al.
Given a Kripke structure and a CTL specification, it is able to decide if the
specification holds for the Kripke structure. The NuSMV modeling language al-
lows for a very easy description of Kripke structures and the CTL model checking
functionality is based on a fast symbolic algorithm. For the subset of CTL that
interests us, NuSMV produces a counterexample whenever the model violates a
formula. For instance, a counterexample for an AGϕ formula consists of a single
run of the model where ϕ does not always hold. A counterexample for an AFϕ
formula consists of a run of the model where ϕ never holds.

5.3 Modeling the Protocol
In order to model-check the protocol,we need a model that represents the proto-
col flow. We model the protocol actors in four FSMs, one for each party of the
protocol: client, TPM, server, and intruder. The states of these FSMs represent
the steps of the protocol and the content of the messages, modeled as shared
variables. Thus, the state of the overall system determines (1) the current step
of the protocol for each party, (2) the content of the messages sent so far, and
(3) the current knowledge of each party.

As the protocol outcome depends on VPCR, we need to include the TPM’s
PCR state into our model; this statefulness is not supported in the high-level
modeling languages of specialized security protocol analysis tools (see Section
2.6.2). To overcome this, we use a general purpose model checker instead.

5.3. Modeling the Protocol 109

In order to describe the model of the intruder, we will first lay down some
assumptions on the capabilities of the intruder.

5.3.1 Assumptions
Cryptography. Our assumptions on security and intruder capabilities are
based on the considerations of Dolev and Yao [94], which we restate here from
Section 2.6.1. We assume that the underlying cryptographic primitives are per-
fect and that keys and message fields are atomic. Thus, an intruder can read an
encrypted message if and only if it knows the correct key. Similarly, an intruder
can only create signed messages with signature keys it knows. An intruder is not
able to learn partial information of a secret key or message, thus the intruder
either knows it completely or not at all. Our model therefore does not cover
attacks like statistical analysis or differential cryptanalysis, nor attacks based on
mathematical or number-theoretic properties of the underlying cryptographic
systems. We further assume that all parties know all public keys.

Model Restrictions. Our model introduces some further restrictions. First,
we only model one run of the protocol. Thus, we do not consider replay or
interleaving attacks. The model is further restricted in that it allows only for
limited fresh data. Such restrictions have been, for stateless protocols, overcome
by more specialized tools (see Section 2.6.2). Furthermore, since the server
trusts only the client’s TPM but not the client itself, our model includes some
malicious client behavior. We do not model the complex API of the TPM. We
thus assume that it is impossible to circumvent the TPM’s security policies by
abusing the API. We, however, allow the client to pass arbitrary values from its
knowledge to the TPM during the protocol run. Due to these restrictions, our
model cannot be used to obtain a proof that the protocol under investigation is
secure under all circumstances.

Apart from these restrictions, our model of the intruder is quite powerful.
We assume the intruder to be a classical man in the middle: the intruder can
intercept all messages between the client and the server. Messages between the
client and the TPM cannot1 be intercepted by the intruder. If the intruder
knows the correct key, it learns the content of the message and adds it to its
knowledge. The intruder can also alter messages or introduce new messages
which are composed of items in its knowledge.

5.3.2 Model Details
The models of the client, the server, and the TPM are a straightforward imple-
mentation of the protocol. Whenever a party is supposed to send a message,
it fills the fields of the corresponding (global) variable and then sets a flag that

1Eavesdropping on this channel would require i) physical access to the client’s machine or
ii) access to the inter-process communication on it. In case i), the TPM cannot be assumed
to offer much security (see Section 2.7) anyway. In case ii), the attestation will reveal that the
platform is not trusted and the protocol will abort.

110 Chapter 5. Rigorous Design of Trusted Services

the message has been sent. Then the sender remains in an inactive state until
the received flag of the response message becomes true. When the receiver has
received the message (possibly after the intruder has changed it), it can perform
checks such as whether all expected fields in the message are non-empty, whether
the message is signed with the expected key, etc. If all checks pass, the protocol
continues until the state COMPLETED is reached. If a check fails, the party enters
a state ATTACK DETECTED and remains there forever.

We observe that the number of keys and other interesting items such as
nonces in the protocol is limited. Thus, we represent them by a finite number
of symbolic constants (NONCE, CLIENT KEY, SECRET, etc.), in addition to the
constant ARBITRARY, which represents “any other value”.

While we do not trust the client in all cases, the purpose of the protocol is to
determine whether it can be trusted, even with an attacker present. Therefore,
we mode the intruder separately. he knowledge of the intruder is stored as an
array of Boolean values, where each entry corresponds to one symbolic constant.
The entry is true if and only if the intruder knows the information represented
by the corresponding constant.

An encrypted message simply contains a field which stores the key with which
the message should be decrypted. When the intruder sees the message, it checks
whether it knows the key. If not, it cannot perform any actions that require
knowledge of the key. For example, without the key it cannot add the content
of the message to its knowledge. The same goes for signatures. If an intruder
does not know the signature key of a message, it cannot change the content of
the message. However, note that the intruder is allowed to create a completely
new message, either unsigned or signed with another, known key.

The actions of the intruder are modeled according to the restrictions outlined
above. Whenever the sent flag of a message is true, the intruder can start to
operate on the message. It nondeterministically chooses to either leave the mes-
sage as it is, or to construct a new one based on its current knowledge. When
constructing a new message, the actual values of the fields are also chosen nonde-
terministically from the overall intruder’s knowledge. The CTL model checker
analyses all possible (nondeterministic) combinations. Thus, without explic-
itly modeling all choices in the state machine, they are all taken into account
when checking the specification. After the intruder has dealt with a particu-
lar message, it sets its received flag to true. This indicates that the receiving
party may continue its operation. It also prevents the intruder from making any
more changes to the message. The intruder still has read access to the message,
which allows it to decrypt and use a message if it learns the corresponding key
later on. Notice that our model, especially the model of the intruder would be
straightforward to adapt to other protocols.

5.3.3 Security Targets

When formalizing the security targets given in Section 5.2.1 we obtain the fol-
lowing CTL properties:

5.4. Protocol Analysis Results 111

1. AG(¬IntruderKnowledge[SECRET])
The intruder never knows the secret.

2. AG((Client.state 6= VPCR)→ ¬ClientKnowledge[SECRET])
If the client is not in the trusted state, which is described by the PCR
values VPCR then it does not know the secret.

3. AG((Client.state = VPCR) ∧ ¬AttackDetected)→
AF(ClientKnowledge[SECRET]))
If the client is in the trusted state and no attack has been detected then
the client should eventually know the (real) secret.

5.4 Protocol Analysis Results
5.4.1 Model Checking
We feed our model and these properties to the NuSMV model checker. Within
just a few seconds NuSMV finds the first two properties true and thus satisfies
the specification given in [292]. The third property, however, is found to be false.
An examination of the counterexample reveals a potential security issue.

Security Issues. The intruder is able to replace the last message from the
server to the client. This message only consists of the encrypted secret. Thus the
intruder can choose any arbitrary content it knows, encrypt it with the client’s
public key, and send it to the client. The client has no means of knowing whether
the message has been altered or not. It can correctly decrypt the message, but
instead of the secret it only learns the arbitrary content chosen by the intruder.

This prevents the two parties from establishing a shared secret. The secret
value should not only remain confidential to just the server and the client, but
it should also be assured that the client and server share the same secret in the
end; yet this is no longer the case due to the aforementioned possibility of the
intruder.

In certain scenarios this weakness does not cause a problem. Imagine a
scenario in which the SECRET is a key to access some intellectual property (like
a movie). If the client receives a faked secret, it will be unable to perform the
necessary decryption operation, but otherwise no harm is done. This is no more
dangerous than a denial-of-service attack.

Consider, however, another setting. Suppose the SECRET is a symmetric ses-
sion key, which client and server want to use for confidential communication.
After the protocol has been completed, the client uses the session key to encrypt
confidential information (i.e. bulk data) and send it to the server. The client
would think that (except for itself) only the server knows the session key. How-
ever, the session key is actually a faked one, sent by the intruder. Thus, the
intruder is able to decrypt the message and learn the confidential content. The
server would detect this attack, because the client’s message is not encrypted

112 Chapter 5. Rigorous Design of Trusted Services

with the expected session key2. However, at this point it is too late: confiden-
tiality has already been compromised.

In the appendix of [292], the potential application of sending confidential
documents to the director of a secret service is given as illustrative and illustrious
scenario for the protocol. It is true that confidentiality will be protected by the
protocol. But, as we have shown, it is also true that any fake intelligence could
be sent to the director, possibly a manipulated list of double agents.

5.4.2 Enhancements
The underlying problem is that the scheme only considers the security from the
server’s point of view. Indeed there is no authentication from the server to the
client, neither in message 2 nor message 12. In fact, the message EncK(SECRET)
cannot be linked to the other messages nor to any value representing the current
protocol session. The message in step 12 is publicly computable and totally
independent of prior messages, except that it can only be unbound by C.

The aforementioned attack can be prevented if the server signs the message
in step 12 with its own private key S−1. We also suggest to include the nonce
N into message 12, so that it is uniquely linked to a particular protocol session:

12. C ← S SS−1 (EK(SECRET), N)

Now, if the intruder changes the content of the message the client can detect
this, because the signature would be invalid. After this modification, NuSMV
proved all three of our security properties to be true. However, we caution that
the model checker cannot prove overall correctness of the protocol. It can only
prove the correctness of the model of the protocol (with its limitations) with
respect to the specified security properties.

5.5 Conclusions on Protocol Analysis
We have formally modeled and analyzed a scheme for the distribution of secrets
with the NuSMV model checker. The main design goal of the scheme is to
securely distribute a secret. Our rigorous model shows that despite TPM-based
encryption of secrets, the lack of mutual authentication leads to a weakness
in the cryptographic protocol, allowing an attacker to supply the client with a
secret of its choice. We have modified the protocol and prove that the problem
does not occur in our enhanced version.

The inclusion of Trusted Computing devices like the TPM leads to the intro-
duction of a notion of state such that push-buttons tools for protocol analysis
cannot be applied directly. This required us to create a model and specifications
for a general purpose model checker. Later, in 2011, Delaune et al. [85] found
a method to create PCR-dependent models for a specialized security protocols
verifier.

2Actually, an intruder might also deny the connection to the server, preventing detection.

5.5. Conclusions on Protocol Analysis 113

The TPM is no silver bullet for protocols security and it does not magically
remove or resolve security issues. Actually, we found that its inclusion does make
reasoning and verification of protocols more complicated and requires higher
effort. Thus best practices for protocol design must still be adhered to, otherwise
vulnerabilities in protocols may be introduced.

114 Chapter 5. Rigorous Design of Trusted Services

5.6 A Trusted Virtual Security Module
In the previous sections we have studied how one specialized security module,
the TPM, and the interface it offers can be used correctly in network protocols.
We now move on to look into how such a security module can be designed that
justifies the trust in it.

In public key infrastructures the secure handling of private key material is of
critical importance. Current mass-market implementations of secure key stores
are either pure software based solutions or dedicated hardware implementations.

In most cases, simple software key stores are used due to their flexibility and
low costs. Such software security modules are, by concept, rather simple software
libraries. A typical client application will access them via the industry standard
PKCS #11 [275] interface. Software security modules perform cryptographic
operations in software on the main CPU and store sensitive data such as private
keys protected, typically with a password. Some modules take care to zero
sensitive data after usage, some may not. Due to their operation within platform
system RAM a malware-prone platform such as the common industry standard
PC platform cannot effectively prevent the access to private key material in a
software security module [136].

On the other end of the market spectrum, Hardware Security Modules (HSMs)
(see [16,96] and Section 2.2.2) offer isolated and protected secure processing en-
vironments hardened against a wide range of software and hardware attacks.
Naturally, these devices tend to be expensive.

Both types of security modules do not offer generic computing services, but
are accessed through a Security API. Often, those APIs are HSM-specific imple-
mentations of general-purpose cryptographic API standards such as Microsoft
Crypto API, PKCS #11 or JCE. Within the HSM, a special security policy must
be enforced. It determines which operations are valid considering the authen-
tication of the caller and her authorization to operate on the relevant entities.
The minimally required policy is a separation between the access rights of sys-
tem administrators and those of users. Modern security policies provide support
for much more elaborate elements such as key typing. The literature contains a
number of API attacks on such interfaces [47,73]. Often, the critical operations
are concerned with the handling of secrets, especially the sharing, backup, and
migration of keys. One characteristic of this class of attacks is that they consist
of valid statements, but in unexpected combinations and sequences. Put differ-
ently, the implemented security policy does not cover all degrees of freedom the
security API offers. Accordingly, such vulnerabilities are difficult to discover or
to prevent using a best-practices engineering approach, which is still the state-
of-the-art in security API design. The design of such a security API is difficult
and attacks have been found that allow for the extraction of secret key material
not only in theory, but also in practice for commercial HSMs [48].

The technological convergence of Trusted Computing platforms with HSMs,
as noted by Smith [300], allows for improved security levels on commodity
general-purpose systems and thus offers a compromise between the two con-

5.7. TvSM Background 115

tradictory goals of minimizing costs and maximizing security. Building on these
emerging technologies, we have studied the design and implementation of such
a hybrid security module.

In the remainder of this section we present the design and implementation of
a Trusted Virtual Security Module (TvSM) that offers a restricted set of security
critical operations and manages cryptographic keys. A hardware-supported vir-
tualization platform on commodity PC hardware with Intel Trusted eXecution
Technology (TXT) [133] extensions offers protection against insecure applica-
tions running on the same system and further ensures the integrity of the module
through the Trusted Platform Module (TPM). Within the TvSM, a flexible key
hierarchy allows operators to support different use cases. As even for commer-
cially available HSMs logical API flaws have opened the way for attacks [48],
we perform a formal security verification of the module’s API. The prototype
implementation we present suggests that the cryptographic performance is com-
parable to medium-sized HSMs and a significant speedup when compared to the
TPM.

5.7 TvSM Background
In this section we first revisit Trusted Computing platforms and give a more
detailed explanation of how Intel TXT implements a DRTM. Second, we discuss
the state of the art for API analysis.

5.7.1 Intel TXT as DRTM
We now give more details on one of the DRTM technologies, we first discussed
in Section 2.5.3. A secure boot process using Intel’s TXT be be used to ensure
execution of a known-good hypervisor configuration. The GETSEC[SENTER] CPU
instruction provides a well-defined, trusted system state. During boot, a chain-
of-trust is established by measuring software components into the TPM’s PCRs.
A measurement m in this context is a 160 bit SHA-1 hash which is stored in
PCRi using the one-way extend operation, which we introduced in Section 2.3.3.
We now extend the notation and define the behavior on platforms with an Intel
TXT DRTM. On version 1.2 TPMs, a PCR with index i, i ≥ 0 in state t may
then be extended with m by setting

extendi(m) : PCRt+1
i = SHA-1(PCRt

i ||m). (5.1)

Each PCR can hold 20 bytes which reset to either all zero (denoted as 0xFF20)
or the inverse. For the PCRs’ initial state (t = 0) we write initiali

initiali : PCRt0
i =


0xFF20 17 ≤ i ≤ 22 with static boot
0x0020 17 ≤ i ≤ 22 after dynamic (re-)boot
0x0020 else.

(5.2)

For several mj , j = 1..n we simply write extendi{mj , ..,mn}. Note that after
platform power-on, this operation and the CPU’s DRTM call are the only way

116 Chapter 5. Rigorous Design of Trusted Services

to alter the content of a PCR; extend always depends on the previous value. To
achieve a certain value in a PCR the same measurements have to be extended
in the same order.

The TPM also serves as access-controlled, autonomous storage for two poli-
cies which are enforced. First, a Launch Control Policy (LCP), which is evalu-
ated by an Authenticated Code Module (ACM) provided by Intel, defines which
secure boot loader is allowed to run as a so called Measured Launch Environment
(MLE) [161]. Second, a Verified Launch Policy (VLP), which is evaluated by
the secure boot loader, defines which subsequent kernel, initrd are allowed to
be loaded and executed. Furthermore, mechanisms in the Intel TXT chip set
offer isolated partitions of main memory and restrict Direct Memory Accesses
(DMA) I/O to defined areas.

5.7.2 Challenges and Tools for API Analysis
The correct handling of key material through a security API is a complex chal-
lenge that has lead to the discovery of several theoretical attacks [47,58,86,371].
Clulow [73] presents the following categorization of attacks on the PKCS#11
key management API. Key conjuring is the unauthorized generation of keys.
Attacks on the key integrity can ease cryptanalysis based on parts of the key
or allow for the introduction of faults or targeted modification of private keys.
Insufficient checks in the import and export mechanisms may allow for the in-
troduction of “Trojan” keys under the control of the attacker, possibly also as
key wrapping keys. A key separation attack allows attackers to disassociate a
key from its attribute policy. In weaker key attacks, a strong key is wrapped
with a cryptographically weaker one. Bit-wise API operations on key material
may allow for several other, typically brute-force, attacks.

Even for some commercial HSMs it has been shown that key material can be
extracted [48] through the software interfaces concerning the creation, import
and export of cryptographic keys. Important issues are the incompleteness of
security policies and implementations lacking checks and verifications of all pre-
conditions and policies at all times and in all API functions.

At a first glance, the problem appears to be similar to that of security protocol
security, as APIs are often the building blocks of non-trivial protocols. Indeed, it
would be convenient to use existing push-button tools to reason on the security of
an API. Ideally, such a tool receives a simple-to-write model of the system under
test and a number of security specifications (e.g. that secrets should remain
confidential from a Dolev-Yao style attacker). The tool would then either prove
the security or describe a possible attack (message trace). With protocols, as
we have seen in Section 2.6.2, this can be achieved with good performance, since
most cryptographic protocols are linear and restarted with every fresh session
or run.

Unfortunately, this does not hold for APIs [145], as the following example
will illustrate. A simple protocol performed through the API could be to 1) open
a session, 2) create a key, 3) use it to encrypt a message and 4) close the session.
From the protocol point of view, this is a linear process, where the outcome of

5.8. Architecture 117

one session does not influence any other session at any other time. However,
consider for example that the API, much like that of the TPM, allows users to
create key pairs which are stored on an external storage for later use3. While
each session of a protocol creating a key will be similar, it will not be the same.
Each newly created key will alter the global state of all players. An intruder
could for instance encrypt a message under a key that was created in an earlier
previous session. Thus each API call in the protocol will lead to a monotonic
growth of the overall system state information. This mutable global state leads
to a state-space explosion in the models under test and requires a more power-
ful abstraction that currently goes beyond the capabilities of common protocol
analysis toolkits.

However, a first generation of tools that are able to model the mutable global
state is approaching. In [117], Fröschle and Steel describe the analysis of a subset
of the PKCS#11 [275] API considering a model that allows for an unbounded
amount of fresh data (i.e. generated fresh keys). A special focus is on the
design and verification of attribute policies for keys, which describe the type
of operations a key may be used for. Accordingly, well-designed policies can
be shown to be secure using the SAT-based security protocol model checker
SATMC [23].

Arapinis et al. extend ProVerif to become StatVerif [18], which allows for
the expression of stateful processes and translates them to clauses that can be
subject to verification.

Mödersheim [227] introduces the AIF language as extension to the back-
end language of the AVISPA toolkits. It allows for the declaration not only
of persistent, but also non-persistent states. AIF can be translated to Horn
clauses and has been integrated with ProVerif and the SPASS theorem prover.
Experiments show the applicability to API analysis.

5.8 Architecture
Our architecture can be characterized by the integration of two components:
A software security module which implements a compact security API and a
robust base software platform build on Trusted Computing enhanced commodity
hardware. Together, they are designed to offer a flexible service that still exposes
only a minimal attack surface.

5.8.1 Virtual Security Module
We now describe the design of a cryptographic software module, which we outline
visually in Figure 5.2.

Our TvSM shares many of the typical functionalities found in other crypto-
graphic modules. Connections are managed in sessions and authentication pro-
tocols ensure that only authorized roles can perform critical operations. This

3Actually, the TPM has no control at all over the external key store [173].

118 Chapter 5. Rigorous Design of Trusted Services

Security
Module

Trusted and
Untrusted Services

Security API

Command flow
violation

prevented

Protected
Key Material

Well-
defined

operations
on handles

Management
Interface

Protected
Operations

Access
Authentication

Application
InterfaceUnauthorized

access denied

Figure 5.2: The TvSM Protects Keys Through a Security API.

especially applies on initialization, backup and handling of key material. RSA
keys can be used to perform cryptographic signatures within the module, but
only if their creation-time defined restrictions support these operation. Finally,
the module supports the creation of key hierarchies which are rooted in a sin-
gle, so-called master key. Other keys, or a hierarchy of storage keys, can be
wrapped with it. This architecture allows for external storage, back-up of keys
and scalability.

In addition to this generic design, we provide two enhancements to ensure
that the presented Trusted virtual Security Module does warrant trust in it.

First, we apply recent advances in the field of Analysis of Security APIs
already in the creation of the module’s security API. To this end, we propose
a set of operations that is specifically tailored to fit exactly the use case of
performing cryptographic signatures and to protect the private key material
needed for this task. Assuming that the design is correct, the module’s behavior
should protect the key material at all times and it is the security API’s task to
ensure that private keys remain under control of their authorized owner.

Second, we integrate the TvSM with the virtualization platform and build

5.8. Architecture 119

upon functionality that is protected by an actual hardware security module,
namely the TPM. For instance, the module takes advantage of the hardware
cryptographic random number generator of the TPM as seed in key generation.

TvSM
Identitiy Key

TvSM
Master Key

TPM

TvSM

wraps

TPM
Binding

wraps

wraps

Figure 5.3: The Key Hierarchy.

We also root the key hierarchy of each instance of the TvSM in a unique
TPM-key, which we refer to as identity key from now on. The overall key
hierarchy structure is illustrated in Figure 5.3. We use the identity key to protect
the master key, as well as for TvSM identification. Being non-migratable, the
identity key identifies the TvSM uniquely. During setup we associate the TvSM
instance to the identity key. The same key also protects the module’s master
key by binding it to the hardware platform. We choose the binding mechanism,
as it does not enforce a trusted state for the key, which would preclude updates
of any part of the chain-of-trust after the module is deployed. Instead, the lock
to a trusted state is achieved by storing the key blob of the identity key in an
encrypted file system that is sealed to a well defined state (Sservice, which we
will define in the next Section 5.8.2) but can be re-sealed to future trusted states.

Previous work by Berger et al. [42] on the virtualization of the TPM recom-

120 Chapter 5. Rigorous Design of Trusted Services

mended a similar coupling of hardware-to-virtual module key hierarchies. The
integration with our third-generation virtualization platform now allows us to
leverage the strong TPM sealing to this end, even in the face of updates of the
chain-of-trust.

5.8.2 Trusted Virtualization Platform Integration
The acTvSM platform [126,253,254,333] is a third generation (see Section 2.5.3)
Trusted Computing architecture, which has been specifically designed by Martin
Pirker and the author to host software security modules. It enforces integrity of
the virtualization platform, the applications and services it hosts while applying
strong hardware-based memory separation of partitions. The platform takes
advantage of the Linux Kernel-based Virtual Machine (KVM) hypervisor, which
is operated in a non-trivial configuration, which we call Base System. While we
discuss the secure boot mechanism, the file system layout [333] and application
management and update [126] processes in separate publications, we now show
the integration with the security module, for which the platform was designed
for in the first place.

An important novel aspect of our architecture is that the measurements are
predictable so the PCR values can be calculated a priori and data can be sealed
to a future, trusted state after a planned configuration update.

Based on PCR measurements, access to data can be restricted to a known-
good platform state. This can be achieved using the TPM’s ability to seal data.
Remember, that sealing and unsealing means to encrypt — respectively decrypt
— data inside the TPM with a key that is only available inside the TPM and
where usage of the key is restricted to a defined PCR configuration. Under the
assumption that the TPM is a tamper-resistant device this is a robust way to
guarantee that sealed data can only be accessed under a predefined platform
state.

One of the platform’s peculiarities is a structured set of file systems. For
instance, measurements of the base system are made over its whole file system.
To achieve the same measurement on every boot we use a read-only file sys-
tem. As with a live CD, an in-memory file system is merged with the read-only
image to form the runtime file system. Services and applications are stored on
encrypted logical volumes. Images can be read-only (therefore deterministically
measurable) or mutable.

Beginning from power on, the system performs a conventional boot and then
calls GETSEC[SENTER]. After returning from that call, the system continues to
transit between system trusted states we refer to as Sboot, Supdate, Sapplication,
Supdate and Sservice. The state Sboot is reached where ACM and MLE have
been measured, the secure boot loader has already launched the kernel, and
the code contained in the initial ram-disk executing. In Supdate, the platform
has measured the full code base of the base system and accepts maintenance
operations4 by the platform administrator, who needs to be in possession of the

4In [126] we describe an update process that does not require the system to enter an

5.9. API Design 121

TPM Owner authentication. Sapplication differs from Supdate by an arbitrary
token that indicates that changes to the persistent state are prohibited and
applications can now be offered. Finally, the chain-of-trust includes the security
module service by a measurement of the module’s software image before it is
mounted. More formally,

Sboot :=
{
initial14, initial15,

extend18{secure boot loader, linux kernel},
extend19{initrd}

}
Supdate :=

{
Sboot, extend14{base system}

}
Sapplication :=

{
Supdate, extend15{token}

}
Sservice :=

{
Sapplication, extend13{security module image}

}
.

This definition of the expected and trusted system state describes a integrity-
guaranteed boot of the platform up to the security module service. Following the
so defined steps, the acTvSM platform can compute the expected PCR values
from the binary code and file systems installed and consequently seal data to.
With it the TPM’s sealing mechanism is used to restrict access to the file system
access keys for the security module image to Sservice only. Thus we achieve
integrity protection and enforcement at boot-time.

At runtime, however, the hardware assisted memory isolation of the chip-set
provides runtime isolation. Note that TXT also enforces DMA restrictions and
memory zeroization upon boot cycles. Thus the virtualization platform ensures
the protected operation of the virtual security module.

5.9 API Design
This section describes the design of the TvSM security API by motivating design
choices, presenting a notation and describing the API functions and key policies.

5.9.1 Considerations and Notation
The API has been designed to provide the necessary functionality while at the
same time to allow us a rigorous reasoning about its security.

We decided against implementing a full PKCS#11 [275] interface. This would
have increased implementation complexity, and would have precluded a concise,
full-scope security analysis on the level of detail we desire.

Instead, we decided to create a new design that supports a single use case:
the management and use of asymmetric keys for cryptographic signatures. This
focus allows us to reduce the attack surface and to design the actually needed
functionality with full formal rigor. A number of contributions influenced the

untrusted state.

122 Chapter 5. Rigorous Design of Trusted Services

design. For instance, we avoid arithmetic operations like XOR on API data struc-
tures [371], clearly group related API functionalities to avoid side effects, use
static types for keys according to their use [117, 345], apply the (already) veri-
fied authentication protocol SKAP [66], store exported keys and their attributes
together [48], and offer an easy to program, typed, and object-oriented interface
definition.

To provide an abstract description of individual commands that together
compose the API, we extend our syntax for cryptographic protocols. We use
the following notation which is derived by the notation and semantics defined
for API rules in [117] and which helps us describe the stateful behavior of APIs.
Fröschle and Steel [117] define a rewriting system over a typed term algebra
which also covers the notion of handles bindings of cryptographic keys through
an API and also provide a formal semantic. We use our notation as rather more
informal abstraction of the original API [335], which is defined in about 40 pages
of JavaDoc. Still, it helps us discuss the elements of the interface in compact
definitions and also simplifies the creation of the executable model in the analysis
tool. In our notation:

A handle, which identifies an object behind the module’s security boundary,
is the binding of a nonce ni to key Kj : h(ni,Kj). Keyed integrity is denoted by
HMACK−1(m). An attribute a is element in attribute set A belonging to key
K is written a ∈ AK . We write {a, b} ⊆ AK , if both attributes a, b hold for K,
with |AK | ≥ 2.

We describe the signature of API functions from the external Dolev-Yao [94]
view, and augment this with parameter conditions checked internally and ele-
ments freshly created, always assuming successful authorization:

function : preconditions conditions checked−−−−−−−−−−−−→
fresh variables

postconditions.

Intuitively, on the left of the arrow are the input parameters of an API
function, and the return values are on the right side. The function’s body must
check the conditions on top of the arrow, and create fresh data under the arrow.
Only fresh data which is visible to the intruder is given, but no implementation
details specified.

Slightly more formal, a function (or API rule, or API step) can only be
triggered in our model if the precondition and the conditions checked both hold.
Then the postconditions hold for the next state the model will transit to. Such
functions may generate new objects, which will extend the state of the security
module. An intruder will only learn the facts input and output, but not the
internal state changes. The conditions checked is an addition introduced in our
notation to allow a compact description of important security preconditions; in
implementations, these checks can easily be coded as IF-THEN-ELSE statements
in the beginning of the functions that implement the API. It is important to
notice that for our abstraction we do not define all changes to the internal state
- as the internal state is clearly implementation dependent. We further assume
that API functions can be called in arbitrary order.

5.9. API Design 123

createMasterKey : A A⊇{MST,STO}−−−−−−−−−−−−→
new nM ,KM ,K−1

M

h(nM ,KM) (5.3)

migrateMasterKey :

KID2
AKM

⊇{MIG,MST}
−−−−−−−−−−−−−→ TPM BOUND DATAKID2(KM ,AKM

) (5.4)

importMasterKey :

TPM BOUND DATAKID2(KM ,AKM
)

AKM
⊇{MIG,MST}

−−−−−−−−−−−−−→
new nM

h(nM ,KM) (5.5)

getMasterKey : −→ KM (5.6)

Figure 5.4: Abstract TvSM Maintenance API.

Cryptographic keys are typed with a set of attributes from the set {MST,MIG,
SIG,STO,EXT} and size and algorithm information for the respective key type
descriptors master, migratable, signature, storage and exportable. Intuitively,
the MST key attribute defines the master key, the root of the key hierarchy;
storage keys (STO) keys may wrap other keys, and thus allow the creation of
branches in the hierarchy; keys with the attribute MIG may transfer from one
storage key to another (defined at creation time), even across TvSM instances.
Only signature keys may sign messages. Finally, a key is flagged EXT, if it
was created outside the TvSM. Attributes cannot be changed at any time after
creation.

5.9.2 Abstract Presentation of the API
Overall, the API consists of two Java interfaces, MaintenanceSession and
OperatingSession.The MaintenanceSession is concerned with initialization of
a fresh module with a user-specific key hierarchy beneath the unique Identity
Key pair KID. KID is created when installing the module’s software image and
non-migratably bound to the TPM. A Client in the MaintenanceSession uses
KID in the SKAP protocol to authenticate the session.

Within the session, a singleton master key KM can be freshly created calling
API function 5.3. Here, the desired set of attributes A is passed on to the
API method, and parsed to fulfill the necessary policy, i.e. a master key needs
to carry the MST flag and be a storage (STO) key5. The method will then

5As we will later see in the discussion of Table 5.1, there is no security rule against having as
MST key which is not STO in general, but it would be rather useless which is why we restrict
it here in the generation method. This example also demonstrates how widely distributed

124 Chapter 5. Rigorous Design of Trusted Services

createKey : h(n1,K1),A
AK1⊇{STO}⊕AK1⊇{SIG}
−−−−−−−−−−−−−−−−−→

new K2,K−1
2

KBLOB(K2,K1) (5.7)

loadKey :

KBLOB(K2,K1), h(n1,K1)
AK1⊇{STO}& HMAC valid
−−−−−−−−−−−−−−−−−−→

new n2
h(n2,K2) (5.8)

migrateKey :

h(n1,K1),h(n2,K2)
AK 2⊇{MIG}&AK1⊇{STO}
−−−−−−−−−−−−−−−−−−→ KBLOB(K2,K1) (5.9)

importKey :

K2,h(n1,K1),AK2

AK1⊇{STO}&AK2 ={SIG,EXT}
−−−−−−−−−−−−−−−−−−−−−→

new n2
KBLOB(K2,K1) (5.10)

textttexportKey : h(n,K) AK⊇{EXT}−−−−−−−−→ K,K−1 (5.11)

sign : m,h(n,K) AK⊇{SIG}−−−−−−−→ SK−1(m) (5.12)

getMasterKeyHandle : −→ h(nM ,KM) (5.13)

unloadKey : h(n,K) −→ ⊥ (5.14)

Figure 5.5: Abstract TvSM Operating API.

generate a fresh key pair, assigns the attribute set to it, store and use the new
private master key K−1

M internally. Finally a nonce nM is generated, stored as
handle value h(nM ,KM) and returned to the caller.

If a master key is created with attribute MIG set and if the necessary autho-
rization is provided, it may be migrated (5.4) to another identity key KID2 by
using the TPM binding mechanism. Inversely, it can be imported (5.5) to allow
for scalability by having several parallel instances of the TvSM with the same
key hierarchy. This scheme can also serve to establish a back-up process. KM is
world readable (5.6) and a TvSM instance can also be instructed to delete the
hierarchy root key.

Once a master key is established, it can be used to authenticate an
OperatingSession. Here, the master key is accessible by its handle (5.13).
The key hierarchy is built by creating (5.7) a fresh key pair (K2,K

−1
2) under

an existing storage key K1 or KM . The return value of this creation process
is a data structure that holds the private key and the policy assigned to it.

security policy-relevant aspects often are in security APIs.

5.10. API Model and Practical Verification 125

Confidentiality is protected by encryption with parent key K1 and integrity by
incorporating a keyed cryptographic hash sum:

KBLOB(K2,K1) = {K1.K2.EK1(K−1
2).EK1(AUTHK2).AK2 .

HMACK−1
1

(K2||K−1
2 ||AUTHK2 ||AK2 ||..)} (5.15)

The TvSM is actually oblivious to the number of keys it can protect by
leaving the actual storage location of key blobs at the discretion of its clients.
Thus keys need to be loaded into a key slot before they can be used. Keys can be
loaded (5.8) only, if the parent key has been previously loaded for decryption, as
this operation first unwraps the key blob. Slots may also be freed (5.14). Thus
a hierarchy of keys is created. Application keys can be migrated (5.9) to other
storage keys, if the attribute MIG and a migration authorization secret was set
at creation. Migration essentially means the re-wrapping of a key previously
wrapped under K1 to the new parent K2. A different mechanisms is the import
(5.10) of externally created keys. This allows the TvSM to hold legacy keys and
enforce that they are only used if the correct credentials, i.e. authentication
passwords are provided. Since the private part of the key has been created
externally, this has to be noted in the attribute set. Only for this type of key, an
export of the private key is allowed (5.11). Finally, SIG keys can perform RSA
signatures (5.12).

We consider the selection of key policies as the most important part of the
design of an API, because most practical attacks have been found in this context.
We therefore choose the following security rules 5.16, 5.17 and 5.18 for the key
policies, which supplement the abstract API operations given in figures 5.4 and
5.5.

No MST key is EXT. (5.16)
STO keys are never EXT. (5.17)

A key must not have the attributes SIG and STO at the same time. (5.18)
From these statements we derive the truth table presented in Table 5.1 of

valid key policies, which are the only ones allowed to be created within the
TvSM. Note that these valid policies are not sensible or secure per se, but must
be considered together with the full API definition.

5.10 API Model and Practical Verification
In this section we first describe the tools and methods used to analyze the API
and then describe the executable model in detail, at source code level.

5.10.1 The Verification Tool
We have verified the key security policies of the TvSM against a formal model
of the API presented above. We created a machine-readable model based on

126 Chapter 5. Rigorous Design of Trusted Services

Key Policies
Key Attributes Rules Valid

MST MIG SIG STO EXT (5.16) (5.17) (5.18)

0 1 1 1 1 1 0 0 0 0
1 0 1 1 1 1 1 0 0 0
2 1 0 1 1 1 0 0 0 0
3 0 0 1 1 1 1 0 0 0
4 1 1 0 1 1 0 0 1 0
5 0 1 0 1 1 1 0 1 0
6 1 0 0 1 1 0 0 1 0
7 0 0 0 1 1 1 0 1 0
8 1 1 1 0 1 0 1 1 0
9 0 1 1 0 1 1 1 1 1

10 1 0 1 0 1 0 1 1 0
11 0 0 1 0 1 1 1 1 1
12 1 1 0 0 1 0 1 1 0
13 0 1 0 0 1 1 1 1 1
14 1 0 0 0 1 0 1 1 0
15 0 0 0 0 1 1 1 1 1
16 1 1 1 1 0 1 1 0 0
17 0 1 1 1 0 1 1 0 0
18 1 0 1 1 0 1 1 0 0
19 0 0 1 1 0 1 1 0 0
20 1 1 0 1 0 1 1 1 1
21 0 1 0 1 0 1 1 1 1
22 1 0 0 1 0 1 1 1 1
23 0 0 0 1 0 1 1 1 1
24 1 1 1 0 0 1 1 1 1
25 0 1 1 0 0 1 1 1 1
26 1 0 1 0 0 1 1 1 1
27 0 0 1 0 0 1 1 1 1
28 1 1 0 0 0 1 1 1 1
29 0 1 0 0 0 1 1 1 1
30 1 0 0 0 0 1 1 1 1
31 0 0 0 0 0 1 1 1 1

Table 5.1: Valid Key Policies in the TvSM.

5.10. API Model and Practical Verification 127

the API analysis method presented by [117] and which was later refined for the
results of Bortolozzo et al. [48] on commercial HSMs.

For our TvSM, the behavior of the API is modeled in the AVISPA inter-
mediate format (IF), a language originally designed as machine-generated input
format to the different back-ends of the AVISPA [28] protocol analysis push-
button tool kit. Of the different AVISPA back-ends, we use SATMC [23] as
engine for our experiments. SATMC decides the security of a model against
specifications by converting it through multi-set rewriting, lineralization and
various logical optimizations into a finite satisfiability problem which is then fed
into a SAT solver. In our case, the MINISAT [100] solver is used for this task.
As with other model checkers, SATMC will either report a concrete attack trace
or conclude that no attack could be found. SATMC is used because it can con-
sider different system states in its analysis, a feature not available in most other
protocol-oriented verification tools. However, this capability of SATMC is not
available through the user-friendly AVISPA High Level Protocol Specification
Language, which extends the Alice and Bob notation.

5.10.2 The Executable Model
The AVISPA Intermediate Format (IF) model of the TvSM API is structured
in several sections, which we will now review. It is worth discussing the source
code [322] of our model in some detail, as the input and output language was
not designed for human programmers; therefore interpreting the results requires
some background knowledge and also helps understanding the applicability of
the approach.

Sections Signature and Type The initial section Signature describes func-
tions that are specific to this model. Here, a function state generation()
is declared that represents the transition from one system model state to an-
other, based on sets of input variables. The Type section declares variables’
and constants (without concrete value). For understanding the source code, it
is important to note that variables’ first letters are always in upper case, while
constants start with a lower case. The basic and abstract data types used are
either defined in the IF language definition or in a prelude file. For our model, we
define two agents the intruder i and the security module theVSM, key pairs kp1,
kp2, kpi, Kp1 etc., nonces n0,n1,n2,. . . , key attributes and various helping
elements such as sets that store the state information.

Section Inits Here, constants are assigned to variables to define the initial
(starting) state of the model. The SATMC engine will later perform set rewriting
of these terms in the course of automatic analysis. Note that the dot . represents
the logical AND operation.

Initially, the intruder knows its public and also its private key (denoted as the
inverse inv() of the public key). It also knows the public key of migrationkey
which serves as abstraction of all keys that may be specified as keys to migrate

128 Chapter 5. Rigorous Design of Trusted Services

TvSM keys to. Therefore, we assume that keys which are specified as migration
keys at key creation are trusted and not accessible to the intruder by definining
in the AVISPA IF language:

initial_state init1 :=

iknows(kpi).

iknows(inv(kpi)).

iknows(migrationkey).

The following commented-out line would allow us to test what happens if the
intruder had learned this key by an out-of-band/model attack.

%iknows(inv(migrationkey)).

We now define which elements are under the protection of the TvSM, i.e. the
goal is that they are not accessed by the intruder at any time.

contains(theVMS, protected_data).

secret(inv(kp1),new_asym_Key,protected_data).

Finally, we define the initial state of the module by assigning the concrete
instances to the variable definitions in the signature of the state generation
function.

state_generation(theVSM,keyAttributes,handleMapping,

privatekeys,pubkeys,nonces,pnonces,0,12)

Section Rules This code section defines all state transitions specific to our
model. For example, a generic transition would be defined as:

step step_name (Variables) :=
state_generation(Variables).

preconditions.

=[optional fresh Variables]=>
state_generation(Variables).

preconditions.

new facts

Every step (a rule with a given name) for a set of variables has to fulfill the
preconditions before it can be triggered. The preconditions are defined as pred-
icates such as contains(element, set) or iknow(...) which represents the
intruder knowledge, i.e. all information that is transmitted in clear through the
API. To create a stateful model of our module, we always require the previously
declared state generation() with its sets of data. Only if all preconditions
are met, the step may be performed. The transition may include the creation
of a fresh variable; infinitely many fresh variable instances may be created. The
preconditions should always be included in the results part of the statement so
that existing information is copied to the new state. The effect of the step is
then again expressed as concatenation of predicates.

5.10. API Model and Practical Verification 129

The most important task of the TvSM is to manage the key life-cycle cor-
rectly. As [48, 86, 117] have shown for PKCS#11, a wrong configuration of key
policies can directly lead to practical attacks. Therefore, key policies must be
permanently linked to the RSA key pairs. To this end, the TvSM attaches an
integrity-protected attribute policy to the swapped KBLOB (5.15). The module
implementation must then check the integrity with every swap-in (i.e. loadKey()
(5.8)) operation. However, for our model, this level of detail is not needed; in-
stead we just store the policy for each public key in the set KeyAttributes.

step step_generate_asym_Key_TFFTF (VSM,KeyAttributes,
HandleMapping,PrivateKeys,

PubKeys,Nonces,Pnonces,Kp1,

N1,SID)

:=
state_generation(VSM,..).

contains(N1,Pnonces).

contains(Kp1,PubKeys).

contains(pair(pair(storage,true),Kp1),KeyAttributes).

iknows(hand(N1,inv(Kp1)))

=[exists Kp2]=>
state_generation(VSM,..).

contains(Kp1,PubKeys).

contains(pair(pair(storage,true),Kp1),KeyAttributes).

iknows(hand(N1,inv(Kp1))).

secret(inv(Kp2),new_asym_Key,protected_data).
contains(pair(pair(storage,true),Kp2),KeyAttributes).
contains(pair(pair(signing,false),Kp2),KeyAttributes).
contains(pair(pair(master,false),Kp2),KeyAttributes).
contains(pair(pair(migratable,true),Kp2),KeyAttributes).
contains(pair(pair(exportable,false),Kp2),KeyAttributes).
contains(Kp2,PubKeys).

contains(inv(Kp2),PrivateKeys).

iknows(crypt(Kp1,inv(Kp2))).
iknows(Kp2)

Figure 5.6: Sample Key Generation Rule.

As previously explained, there are, according to the TvSM specifications, 16
valid combinations of key attribute policies. The allowed key policies are used
to define the key generation functions in the model so that we create only valid
policies. For each other operation in the API, the appropriate pre-conditions
with regard to these key policies are modeled. We will now present the imple-
mentation of one of the key generation rules (Figure 5.6). Remember that every
key (except for Identity and MasterKey) must have a storage key as parent. This
precondition is modeled by requiring that parent key Kp1 has been created by

130 Chapter 5. Rigorous Design of Trusted Services

the TvSM (N1, Kp1 are known), so that there exists a handle and also that Kp1
has been assigned the policy attribute STO. If and only if so, a fresh key pair
Kp2 is created. For this fresh key, Kp2 is stored in the list of created keys, and
a policy is defined and stored in the model state. Furthermore, the private part
of the key is declared as secret (i.e. a potential goal for the attacker). Finally,
the intruder learns the public part (for simplicity we also include the public key
getter functionality here), and the private part encrypted under the parent. To-
gether with the globally stored policy, this last piece of knowledge represents the
KBLOB.

Let us consider another example for a model of a typical and critical func-
tion of the TvSM. In Figure 5.7, the export key function (5.11) is given. It is
straightforward to read: the rule is only fired for the given input, if the following
facts are true: The key Kp1 must be loaded and a handle available. Its attribute
policy must ensure that the EXT flag was set at key creation, respectively key
import. If these preconditions hold, the existing state is copied and the action
performed: releasing the private key inv(Kp1) over the network channel. Note
that checking the policy in common programming languages can typically be
achieved by a simple IF-THEN-ELSE construct using Boolean statements which
are trivially analogous to the statements encoded in the model.

step step_exportKey(VSM,..):=
state_generation(VSM,..).

contains(pair(hand(N1,inv(Kp1)),Kp1),HandleMapping).

contains(pair(pair(exportable,true),Kp1),KeyAttributes).
iknows(hand(N1,inv(Kp1)))

=>
state_generation(VSM,..).

contains(pair(hand(N1,inv(Kp1)),Kp1),HandleMapping).

contains(pair(pair(exportable,true),Kp1),KeyAttributes).

iknows(hand(N1,inv(Kp1))).

iknows(inv(Kp1))

Figure 5.7: Model Rules for Key Export.

Section Properties and Attack States As with any other model checker
tool, the model is verified against a set of specifications. In the case of a security
API, the specification should be security properties regarding the handling of
private keys.

In a formalization, these security properties are the goals of an attack on the
API and describe what knowledge a Dolev-Yao intruder [94] will attempt to gain.
Again, we assume that the underlying cryptographic primitives are perfect and
that keys and message fields are atomic. The intruder can encrypt and decrypt,
given that she knows the necessary keys. We further assume that the intruder
starts with her public/private key pair and can easily attain a handle to the

5.11. Validation of Method and Verification Results 131

Master-key through the API. When a fresh key pair is created, all parties learn
its public key. The private key however should stay confidential. For SATMC
this can be expressed by declaring new private keys as secret and defining that
the attacker must not learn them. Thus, it is the attacker’s goal to learn one of
the secret elements. Our security specification becomes:

The intruder must not learn any further private keys. (5.19)

This is achieved in the model by declaring that a successful attack state has been
found, if the attacker learns a private key that has been declared as secret based
on the property secrecy of new asym Key.

5.11 Validation of Method and Verification Re-
sults

We will now illustrate the verification undertaken with two example results from
our experiments. To this end we introduce subtle errors in the API specification
and observe if the model checker will detect attacks.

5.11.1 Example Attacks
In this section we introduce two deliberate mistakes in the API and discuss the
results and give performance data on the analysis.

Example Attack 1 Let us assume that due to some oversight in implementing
the security policy of the module the following mistake has been introduced: The
export key function (5.11), when it is applied to a key handle, does not check
whether the key policy of the key has the EXT flag set. This is the equivalent
of removing line 4 of Figure 5.7. The SATMC tool automatically detects this
case and provides an easy-to-read trace containing the API calls so that we
can observe in Figure 5.8 how an attack could be performed. In the beginning
a master key must be present; it is created (5.3) as kp10 and a handle to it
requested (5.13). In the next step, some other key K (i.e. kp20) with its security
policy configuration is created (5.7) under KM . Note that SATMC chooses one
of several possible configurations; for this example it only matters that K is not
exportable, i.e. EXT set to false. Next in the trace, this key is loaded (5.8).
Finally, the compromised operation of exporting a key (5.11) can be called on
K. This should never have occurred, as the key is not EXT. This last step
breaks the security goal, as the intruder learns the private key. The attack trace
is found by SatMC 3.4 in just 0.57 [s] on a HP DC7800 PC with a 2.33 [GHz]
Intel E6550 CPU running Ubuntu Linux 12.04 LTS.

When we insert the missing check of the EXT attribute in the such corrected
model, no attacks are found.

132 Chapter 5. Rigorous Design of Trusted Services

GOALS: [secrecy_of_new_asym_Key(inv(pk(fpk(kp20,mr(theVSM),12))),
protected_data)]

Step 0: [sc_step_createMasterKey_1(theVSM,keyAttributes,
handleMapping,privatekeys,pubkeys,nonces,pnonces,12)]

Step 1: [sc_step_getMasterKeyHandle_1(theVSM,keyAttributes,
handleMapping,privatekeys,pubkeys,nonces,pnonces,

kp10(theVSM,12),12)]
Step 2: [sc_step_generate_asym_Key_FFFFF_1(theVSM,keyAttributes,

handleMapping,privatekeys,pubkeys,nonces,pnonces,

kp10(theVSM,12),n10(theVSM,12),12)]
Step 3: [sc_step_loadKey_1(theVSM,keyAttributes,handleMapping,

privatekeys,pubkeys,nonces,pnonces,kp10(theVSM,12),

kp20(theVSM,12),12)]
Step 4: [sc_step_exportKey_1(theVSM,keyAttributes,handleMapping,

privatekeys,pubkeys,nonces,pnonces,n20(theVSM,12),

kp20(theVSM,12),12)]

Figure 5.8: API Attack Example 1.

Example Attack 2 As a second example, consider a wrong definition of the
key import functionality (5.10) allowing for an illegal key policy:

importKey’ :

K2,h(n1,K1),AK2

AK1⊇{STO}&AK2⊇{SIG,EXT}
−−−−−−−−−−−−−−−−−−−−−→

new n2
KBLOB(K2,K1)

Here, an attribute set AK2 = {SIG,EXT, STO}⊇{SIG,EXT} is valid, thus
allowing for the usage of an imported key as storage key. The effect of this
allowed key policy is illustrated in Figure 5.9. Again a master key is created
(5.3) as kp10 and a handle to it requested (5.13). The intruder then imports
5.10 a key pair kpi as storage key beneath the master key (pk10). Now, the
imported key can be loaded (5.8) as any other key and used to wrap some other
freshly generated key (kp20). As the attacker knows the private key kpi, he
can, under the Dolev-Yao assumptions, unwrap the key and learn the private
kp20. This clearly breaks the intended security goal, namely that keys protected
through the TvSM must not be accessible to an attacker. This attack trace takes
marginally longer to find, namely 0.72 [s] on the some configuration as above.
With the definition for as provided in the original importKey (see Equation
5.10), no attack is found.

Exploiting this weakness in practice might not be straightforward, but po-
tentially very harmful. One possible approach would be to uproot future key
hierarchies by confusing the key handles or KBLOBS within an application. As
an application that accesses the TvSM cannot expected to be of TPM-enforced

5.11. Validation of Method and Verification Results 133

binary integrity, it could be manipulated persistently while apparently still cre-
ating seemingly secure and well-protected keys using the TvSM.

GOALS: [secrecy_of_new_asym_Key(inv(pk(fpk(kp20,mr(theVSM),12))),
protected_data)]

Step 0: [sc_step_createMasterKey_1(theVSM,keyAttributes,
handleMapping,privatekeys,pubkeys,nonces,pnonces,12)]

Step 1: [sc_step_getMasterKeyHandle_1(theVSM,keyAttributes,
handleMapping,privatekeys,pubkeys,nonces,pnonces,

kp10(theVSM,12),12)]

Step 2: [sc_step_importKey_1(theVSM,keyAttributes,
handleMapping,privatekeys,pubkeys,nonces,pnonces,

n10(theVSM,12),kp10(theVSM,12),kpi,12),

sc_step_loadKey_2(theVSM,keyAttributes,handleMapping,
privatekeys,pubkeys,nonces,pnonces,kp10(theVSM,12),
kpi,12)]

Step 3: [sc_step_generate_asym_Key_FFFFF_1(theVSM,keyAttributes,
handleMapping,privatekeys,pubkeys,nonces,pnonces,kpi,
n20(theVSM,12),12)]

Step 4: [decrypt_public_key_2(kpi,kp20(theVSM,12))]

Figure 5.9: API Attack Example 2.

5.11.2 Conclusions from Analysis and Validation
For the TvSM model we presented, without deliberately introduced errors, no
attack traces can be found given the described method. Note that the model
checker tests all possible command flows under the restrictions of the model.
Therefore, for the presented API this verifies, under those restrictions, that the
API is correct and secure.

Attack traces are easy to ready and clearly show malicious command flows.
It therefore becomes easy to single out the elements of the API that need to
be fixed in oder to prevent each attack. We especially note that the structure
of the model is very close to imperative programming languages like C or Java.
The model therefore clearly indicates which security checks, especially on key
policies, need to be made in witch function of the API, both in the model and in
possible implementations. The model can therefore serve as direct guideline for
implementors of the API definition. This is a significant improvement, since se-
curity modules are notoriously hard to implement as security relevant operations
are typically widely scattered in the source code.

We conclude that our approach can be used to analyze the key policy of the
TvSM and that it also allows us to verify that the right checks are made and even
that they are made in the right places of the code. These results can therefore
be directly incorporated in the API specification and the TvSM implementation.

134 Chapter 5. Rigorous Design of Trusted Services

5.12 Implementation
5.12.1 Software Design
The general architecture of the TvSM prototypical implementation and its inte-
gration in the acTvSM virtualization platform (see Section 5.8.2) is illustrated
in Figure 5.10.

On the left hand side, we see the example of a Java-based client application
to the TvSM. In the acTvSM research project, this application has been the
commercial XiTrust Business Server solution6 that provides advanced signature
services in the sense of EU Directive 1999/93/EC for electronic processes in large
enterprises. This business application can access the the TvSM through the a
KeyStore interface, which builds upon the Jave JCE and connects to different
proprietary security modules, as for instance the TvSM. A client application can
use the TvSM API through the TvSM client library which hides the communi-
cation overhead. In general, a client may run on the same platform but confined
in a different compartment or on a remote host platform.

The TvSM server on the right hand side of the figure is a boot-able binary im-
age which includes the core executable, libraries, a Java Virtual Machine (JVM)
and a Linux host operating system. The image can be loaded into an isolated
compartment on the acTvSM platform. Compartments are installed, managed
and updated through the acTvSM libraries and tools. The platform provides the
TvSM with secure boot, resource isolation, off-line image encryption and TPM
forwarding. It is based on Debian Linux with KVM and several specialized
Trusted Computing libraries, such as IAIK jTSS and jTT (see Section 3.2.2).
The DRTM late launch is performed at start-up as described in Section 5.8.2
and enables a secure boot that insures software integrity. At runtime, the Intel-
VT mechanism is employed by KVM ensuring isolation of memory areas. The
API of our TvSM is accessible via the network interface using the Java Remote
Method Invocation protocol.

5.12.2 Performance and Results
In this section, we briefly summarize the performance results reported by Reimair
in his Master’s thesis [268] on the fully functional TvSM prototype. The TvSM
server as well as the client application benchmarks ran on a TXT-compatible In-
tel VPro platform with a Intel Core 2 Duo P9500 CPU at 2.54 [GHz], with Linux
kernel 2.6.35-22 in 64-bit mode and Java JRE 1.6.0.22. Cryptographic operations
are performed by the Cryptography Provider of the SIC Crypto Toolkit [155].

The results for the TvSM are listed in the table in Table 5.2 and measured
from a Java environment, thus include all software initialization and communica-
tion overheads, with means calculated over 100 repetitions. The session opening
in the SKAP protocol takes about 750 [ms], including a random number gener-
ation procedure for session secret creation. Creating a 1024-bit RSA key pair
takes a mean time of about 60 [ms]. It takes about 15 [ms] to load a key into

6http://www.xitrust.com/

http://www.xitrust.com/

5.12. Implementation 135

Hypervisor
(Virtual Machine Monitor)

Isolated Compartment

Operating System

Java Virtual Machine

JCE

KeyStore Interface

Business Application

Isolated Compartment

Operating System

Security Module
Implementation

Java Virtual Machine

TvSM API

KeyStore Implementation
for TvSM JCE jTSS

Remote Invocation Service

Physical Host Hardware TPM

Figure 5.10: Outline of the TvSM Implementation.

the TvSM. With a time of 7 [ms] per operation, the TvSM is capable of cre-
ating about 150 signatures per second using a 1024-bit RSA key pair. Session
shutdown is done in about 2 [ms].

To put this in context with the performance that the built-in HSM of the
hardware platform, the TPM, is able to offer we took a number of measurements
on the actual performance of different TPM implementations. Again we include
all overhead introduced from a Java environment and use the jTSS library for
TPM access. We give a brief comparison of a selection of available TPMs in the
table in Table 5.3. A typical TPM chip is capable of creating about one key in
three seconds and calculating about four to five signatures per second. However,
the hardware random number generators limit the number of fresh keys that
can be created as entropy needs to be gathered, literally, over time. Creating a
1024-bit key can take up to 15 [s]. The mean durations for this test series are
calculated over 15 repetitions.

In single threaded operation, our TvSM prototype implementation is capable
of creating continuously about 17 1024-bit RSA keys per second and calculating
about 150 signatures per second; in the signature creation task it equals about

136 Chapter 5. Rigorous Design of Trusted Services

TvSM Operation Duration [ms]

Minimum Maximum Mean

Session initialization 708 814 766
RSA Key Generation 21 378 62
Key Loading 12 21 13
Signing 6 9 7
Close Session 1 11 2

Table 5.2: TvSM Implementation Performance.

TPM Operation Duration [ms]

Key Generation Signature Creation

Manufacturer Version Mean Max Mean

Atmel v1.2.13.9 2756 6700 145
Broadcom v1.2.6.77 1698 3538 300
Infineon v1.2.3.16 3342 7773 200
Intel v1.2.5.2 4564 15058 158
STM v1.2.8.16 2228 8308 288

Table 5.3: TPM Performance on RSA 1024 bit Keys.

30 times the throughput of a TPM, while in the key creation task this equals an
speedup of 50 on average and up to 700 in extremis. A higher speedup can be
expected with parallel sessions on multiple CPU cores. Reimair has compared
[268] the reported performance results to several available and industrial HSMs.
The processing speed of our TvSM prototype seems to be in league with medium-
sized HSMs, which typically cost around e5000-e15000 per piece.

5.12.3 Security Discussion
Attackers will attempt either to modify system states and their measurements,
extract cryptographic materials, manipulate code execution, or attempt to con-
trol the base platform or the applications executing on top of it.

As discussed in Section 2.7, some selected TPM implementations have been
based on resilient SmartCard architectures and provide a relatively robust secu-
rity against all but the most sophisticated hardware attacks. Yet, our platform
cannot store all critical data in the TPM at all times, except for the Identity
Key. All other data and key material is processed on the host platform and
stored on the hard-drive, albeit in encrypted file systems.

5.13. Conclusions on the TvSM 137

We leverage TPM and TXT to provide a certain level of modification resis-
tance, required by many applications and also by the FIPS 140 Security Level
2 standard [235], for the software executed. Here, we are restricted to the secu-
rity level that can be achieved by these chip-set features. Commodity devices
can only be assumed to protect against very simple hardware attacks [133].
Hardware security therefore depends on physical access control and diligent op-
erational procedures in data-centers and other deployment scenarios. We need
to caution that not much effort, i.e. less than 100e, is needed to break the
security guarantees of TXT if an attacker has physical access [362].

However, the TPM protects the sensitive cryptographic data (keys) that the
platform uses to guarantee the integrity of itself and of the TvSM application.
The platform fully utilizes the hardware-based PCR-mechanisms that protect
measurements in the chain-of-trust.Thus, a malicious boot with a following at-
tempt to start a virtual application will fail if any part in the chain-of-trust
was modified. Therefore, our platform can ensure that a trusted system state is
reached after boot. Once booted, the TvSM API will be isolated via TXT and
only provide the API specified. The formal analysis shows, under the limitations
that come with abstraction, that private key material cannot be exposed using
the instructions of the API offered. This will ensure a trustworthy behavior of
the overall TvSM, assuming that there is no exploitable implementation bug and
no physical attack.

5.13 Conclusions on the TvSM
We present a practical approach to leverage the security provided by the Trusted
Platform Module through hardware virtualization and isolation for a virtual se-
curity module. Our TvSM offers a restricted set of security critical operations,
i.e., cryptographic key management and signatures. It provides for high op-
erational flexibility and fast cryptographic operations without extra hardware.
The correctness of a formal model of the security API is verified through model
checking.

This Trusted virtual Security Module offers improved software attack re-
silience when compared to software key stores and better performance when
compared to the TPM. Thus, while our approach does not achieve the same
high level security as dedicated, tamper-resilient hardware modules, it offers
an attractive cost-security-performance balance. Note that similar, specialized
modules could in parallel implement other, totally isolated sets of functionality
on the same platform.

5.14 Summary
In this section, we studied two challenges in practically applying formal methods
to Trusted Computing scenarios.

First, we analyzed a TPM-based security protocol and where able to prove a

138 Chapter 5. Rigorous Design of Trusted Services

potential vulnerability, i.e. the delivery of unauthenticated data to a client. As
no convenient formal software tool was available at the time, we used a general
purpose model checker to express the different behavior of the protocol in case
that a client is in a trusted state or not.

In the second part, we presented the creation of a Trusted virtual Security
Module. It is based on a virtualization platform that was specifically designed
to protect a software security module. The software security module is designed
to avoid logical API flaws that are a present danger in many current commer-
cial products. Together this demonstrates a significant reduction of the attack
surface and thus suggests a higher attack tolerance than conventional software
security modules.

6
Conclusions

6.1 A Look Back
This thesis set out to study the interfaces found in Trusted Computing platforms
based on the Trusted Platform Module (TPM). Trusted Computing is an influ-
ential attempt by key members of the IT industry to improve system security
and offering assurance that a computing platform may be trusted for a specific
purpose. As a technology focused on operating system security, there has been
no initial support for managed software environments, few considerations of how
to communicate results securely to users and a large gap between code identity
and promised behavior.

This study has sought to improve different kind of interfaces, directed at
different parties: application programmers, users and the network. The first
result is a programming interface for the TPM, which is suitable for the Java
language. Secondly, we proposed a wireless communication channel for the TPM
that allows users a more direct interaction. Finally, we studied how verifiable
correct network interfaces for services can be designed, either for cryptographic
protocols that include a TPM or for purpose-built security APIs in general.

We will now present a synthesis of our main contributions, propose future
research directions and finally formulate a conclusion.

6.2 Contribution
The main findings are specific to Chapters 3, 4 and 5 and we now summarize
and synthesize them, starting, however, with Chapter 2.

139

140 Chapter 6. Conclusions

In the background provided through Chapter 2, we began with a short his-
tory of computer security to see that perfect security is hard to achieve, but also
that, for many purposes, computing platforms need to be trusted. Assurance
can be provided by the Trusted Platform Module, which is a compact, special-
ized, but affordable Hardware Security Module. The TPM relies on a set of
system software, the TCG Software Stack. Together with a platform’s root of
trust for measurement, the TPM can be used to protect private keys, to collect
measurements of the software configuration, and to attest of doing so according
to its specifications to other hosts. However, for robust measurements hardware
virtualization and a Dynamic Root of Trust for Measurement (DRTM) should
be employed. Cryptographic protocols enable the communication between hosts
to reach defined security goals. Unfortunately, protocol design is a challenging
task; a fact which has caused automated tools, based on formal methods, to
emerge. We have noted, that protocol analysis tools are often restricted in their
abilities, especially when including non-trivial, or stateful security mechanisms
as offered by the TPM. Also, trusted platforms are in many cases vulnerable to
hardware attacks.

The first main contribution is presented in Chapter 3. It is JSR 321, an API
targeted at developers who wish to use the TPM in their Java applications.
Java is one of the most important development environments, and used in mo-
bile devices as well as in data-centers. Several proposals for TPM-libraries have
been made, but previously to our design, no standardization was attempted.
Our design is based on an analysis of existing proposals, defined goals and clear
assumptions on the expected developers. It can be implemented in different
software architectures as is shown through a reference implementation with ac-
companying test suite. Besides achieving the design and the implementation, we
took an innovative, collaborative approach on how to realize the standardiza-
tion in the Java Community Process, which was awarded with the “Outstanding
Spec-Lead” award. The open design facilitates even skeptical developers to build
persistent trust in the specifications. Also, the API has been tried and tested by
industrial and academic reviews, a third party implementation, teaching, and
experiments with the Cloud and mobile systems. The demonstration of JSR 321
on an Android platform with a TrustZone-protected TPM emulator has been
rewarded the “best paper award” at INTRUST 2011.

Chapter 4 presents our second contribution, the proposal of a NFC-interface
for the TPM. The challenge we respond to with this proposal is to inform the
user of the security state of a public computing platform she faces physically.
We believe a conventional smart phone to be a user-friendly way to perform
such an attestation. There has been a number of other proposals to achieve this,
but we argue that our choice of interface would be better suited to achieve re-
sistance against platform-in-the-middle attacks. We propose to include an NFC
interface in the TPM; the characteristics of the electromagnetic near field in-
herently reduce the working range of this radio scheme, thus implicitly assuring
the proximity of the attesting device. We describe the necessary changes to
the TPM’s software API, and combine this with a protocol for remote attes-

6.3. A Look Forward 141

tation. In our scheme, the decision on an attestation report is delegated to a
third party of the user’s choice. Experiments on implementing the public com-
puting platform, the mobile phone application which serves as attestation token,
and the performance of a physical NFC interface support the viability our pro-
posal. Furthermore, a number of variations can be applied to the scheme. More
compact cryptographic protocols and DRTM-based platforms lead to potential
optimizations, which have been recognized with a “best paper” award at ICSNC
2010. The chapter also outlines further related results on local attestation using
a specialized token and outlines platform security for mobile devices.

The third main contribution is presented in Chapter 5. The motivation is to
design the interfaces of a service in such a way that no malicious behavior can
be triggered remotely. Here, we first present an analysis of a TPM-based cryp-
tographic protocol. For the analysis we use a general purpose model checker, as
more specialized tools do not support the TPM’s API. Through a formal model
and a set of specifications, we can prove the existence of a potential security
issue, the lack of sender authentication in a secrets distribution system. An
improvement is proposed and shown to be secure in the model. Thus, we have
shown how a protocol can be analyzed that contains complex mechanisms from
a security module. The second contribution on service behavior is the design
of a virtual security module. We introduce two novelties: the co-design with a
DRTM-based platform and the verification of the full API. For the verification,
we extended on recent advanced in API analysis to cover the complete security
API in our model for the SATMC model checker. We validate the verification
by introducing bugs in our design which are promptly uncovered by the tool.
Our trusted virtual security module solution provides effective, fully controlled
integrity protection, runtime isolation and strong assurance on the secure han-
dling of key material. Implementation and benchmarks results suggest that this
contribution fills a gap in today’s available solutions for security modules.

6.3 A Look Forward
In systems as complex and quickly developing like today’s computing platforms,
countless research directions can be suggested. Still, starting from the results of
this thesis, a number of future challenges can be identified.

First, new hardware mechanisms for Trusted Computing are appearing. For
instance, TPM version 2.0 will come with much more powerful policies that
can be assigned to keys and other objects; this needs to be made available in
protocols, or APIs and also warrants a scrutinizing analysis.

Second, we have assumed that NFC implies the immediate, physical proxim-
ity, while noting that relay attacks might be possible with some effort. Amongst
other possible approaches, an effective and efficient distance bounding protocol
for NFC-enabled TPMs would prevent that.

Third, the features of high-level Trusted Computing APIs would also be
useful on systems, where no actual hardware TPM is available, for instance in
mobile phones. Implementing JSR 321 in a TrustZone environment with a TPM

142 Chapter 6. Conclusions

emulator was only the first step in this direction; more powerful and flexible
mechanisms can be imagined with TrustZone. Besides mobile systems, also
embedded system developers can profit from high level security APIs1.

Fourth, for the automated analysis of security APIs, more powerful and easier
to use tools and the according theories are needed. An interesting starting point
would be a common language for the description of security APIs, much in
the way the “Alice and Bob” notation is commonly understood in the security
protocol community.

6.4 Conclusions
This thesis has studied and improved interfaces in Trusted Computing. The
contributions include the verified correct design of a virtual security module
and the study of a Trusted Computing protocol. Furthermore we propose to
include NFC-based proximity services in Remote Attestation. The design of a
Java API for Trusted Computing that has been released as an official standard.
This thesis presents a selection of the author’s contributions to some 30 scientific
publications.

To conclude, the novel and improved interfaces described can help advance
the technology of trusted computing platforms and trusted services, which will
ultimately lead to more secure systems.

1We are currently researching this in the EC-funded STREP STANCE.

A
Appendix 1 - The JSR 321 API

A.1 The API
In this section we present the full Application Programming Interface Specifica-
tions of JSR 321 in a very short notation without comments. For a full reference
and interactive outline of the API, the reader is referred to the original stan-
dard [327] and the JavaDoc contained therein.

1
2 package javax.trustedcomputing;
3
4 public abstract class TrustedComputingException extends Exception{
5 public static final long HIGH_LEVEL_API_LAYER_ERROR;
6 public TrustedComputingException();
7 public abstract Throwable getCause();
8 public abstract long getLowLevelErrorCode();
9 public abstract String getMessage();

10 public abstract String getShortMessage();
11 }
12
13 public class tpm.PCRsNotAccessibleException extends

java.lang.RuntimeException{

14 public tpm.PCRsNotAccessibleException(java.lang.String string);
15 }
16
17 public interface tpm.TPM{
18 public static final java.lang.String PROPERTY_TPM_MANUFACTURER;
19 public static final java.lang.String PROPERTY_TPM_VERSION;
20 public static final java.lang.String PROPERTY_TPM_FIRMWARE_VERSION;
21 public static final java.lang.String PROPERTY_TSS_VENDOR;
22 public static final java.lang.String PROPERTY_TSS_VERSION;
23 public static final java.lang.String PROPERTY_JSR_REVISION;

143

144 Appendix A. Appendix 1 - The JSR 321 API

24 public static final java.lang.String PROPERTY_JSR_VERSION;
25 public abstract byte[] getRandom(int length) throws

TrustedComputingException;
26 public abstract boolean isActivated() throws

TrustedComputingException;
27 public abstract boolean isEnabled() throws

TrustedComputingException;
28 public abstract boolean isOwned() throws

TrustedComputingException;
29 public abstract int getNumberPCR() throws

TrustedComputingException;
30 public abstract void extendPCR(int PCRindex , tpm.structures.Digest

data) throws TrustedComputingException ,
tpm.PCRsNotAccessibleException;

31 public abstract void extendPCR(int PCRindex ,
tpm.structures.PCREvent event) throws
TrustedComputingException;

32 public abstract tpm.structures.PCRInfo readPCR(int[] PCRindices)
throws TrustedComputingException;

33 public abstract void stirRandom(byte[] entropy) throws
TrustedComputingException;

34 public abstract java.lang.Object getProperty(java.lang.String
property) throws TrustedComputingException ,
java.lang.IllegalArgumentException;

35 }
36
37 public abstract class tpm.TPMContext extends java.lang.Object{
38 public abstract void close() throws TrustedComputingException;
39 public abstract void connect(java.net.URL remoteAdress)

throws TrustedComputingException;
40 protected void finalize() throws java.lang.Throwable;
41 public static tpm.TPMContext getInstance() throws

java.lang.ClassCastException , java.lang.ClassNotFoundException ,

java.lang.InstantiationException ,

java.lang.IllegalAccessException;

42 public static tpm.TPMContext getInstance(java.lang.String)
throws java.lang.ClassCastException ,
java.lang.ClassNotFoundException ,

java.lang.InstantiationException ,

java.lang.IllegalAccessException;

43 protected tpm.TPMContext();
44 public abstract tpm.TPM getTPMInstance() throws

TrustedComputingException;
45 public abstract boolean isConnected() throws

TrustedComputingException;
46 public abstract tpm.keys.KeyManager getKeyManager() throws

TrustedComputingException;
47 public abstract tpm.tools.Sealer getSealer() throws

TrustedComputingException;
48 public abstract tpm.tools.Binder getBinder() throws

TrustedComputingException;
49 public abstract tpm.tools.Signer getSigner() throws

TrustedComputingException;
50 public abstract tpm.structures.Digest getDigest(byte[] digest);
51 public abstract tpm.structures.PCRInfo getPCRInfo();
52 public abstract tpm.structures.PCRInfo getPCRInfo(int numberOfPCRs);

A.1. The API 145

53 public abstract tpm.structures.Secret
getSecret(tpm.structures.Digest hashedSecret);

54 public abstract tpm.structures.Secret getSecret(char[] password);
55 public abstract tpm.structures.Secret getSecret(char[] password ,

boolean addNullTermination , java.nio.charset.Charset encoding)
throws java.nio.charset.CharacterCodingException;

56 public abstract tpm.structures.PCREvent getPCREvent(long eventType ,
tpm.structures.Digest data, java.lang.String eventDescription);

57 public abstract tpm.tools.Initializer getInitializer() throws
TrustedComputingException ,
java.lang.UnsupportedOperationException;

58 public abstract tpm.tools.Attestor getAttestor() throws
TrustedComputingException;

59 public abstract tpm.tools.Certifier getCertifier() throws
TrustedComputingException ,
java.lang.UnsupportedOperationException;

60 public abstract tpm.tools.remote.RemoteAttestor getRemoteAttestor();
61 public abstract tpm.tools.remote.RemoteBinder getRemoteBinder();
62 public abstract tpm.tools.remote.RemoteCertifier

getRemoteCertifier();

63 public abstract tpm.tools.remote.RemoteSigner getRemoteSigner();
64 }
65
66 public interface tpm.keys.BindingKey extends

tpm.keys.TPMKey,tpm.keys.TPMRSAKey{
67 }
68
69 public interface tpm.keys.IdentityKey extends

tpm.keys.TPMKey,tpm.keys.TPMRSAKey{
70 }
71
72 public abstract class tpm.keys.KeyManager extends java.lang.Object{
73 protected tpm.keys.KeyManager();
74 public abstract tpm.keys.BindingKey

createBindingKey(tpm.keys.StorageKey parent,
tpm.structures.Secret usageSecret , tpm.structures.Secret
migrationSecret , boolean isMigratable , boolean isVolatile ,
boolean needsAuthorization , int RSAKeyLength ,
tpm.structures.PCRInfo pcrInfo) throws
TrustedComputingException;

75 public abstract tpm.keys.SigningKey
createSigningKey(tpm.keys.StorageKey parent,
tpm.structures.Secret usageSecret , tpm.structures.Secret
migrationSecret , boolean isMigratable , boolean isVolatile ,
boolean needsAuthorization , int RSAKeyLength ,
tpm.structures.PCRInfo pcrInfo) throws
TrustedComputingException;

76 public abstract tpm.keys.StorageKey
createStorageKey(tpm.keys.StorageKey parent,
tpm.structures.Secret usageSecret , tpm.structures.Secret
migrationSecret , boolean isMigratable , boolean isVolatile ,
boolean needsAuthorization , tpm.structures.PCRInfo pcrInfo)

throws TrustedComputingException;
77 public abstract void deleteTPMKey(java.util.UUID identifier)

throws TrustedComputingException;
78 public abstract void deleteTPMSystemKey(java.util.UUID identifier)

throws TrustedComputingException;

146 Appendix A. Appendix 1 - The JSR 321 API

79 public abstract tpm.keys.LegacyKey
importLegacyKey(tpm.keys.StorageKey parent,
java.security.KeyPair keyPair, tpm.structures.Secret keySecret)

throws TrustedComputingException;
80 public abstract tpm.keys.StorageRootKey

loadStorageRootKey(tpm.structures.Secret srkSecret)
throws TrustedComputingException;

81 public abstract tpm.keys.TPMKey
loadTPMSystemKey(tpm.keys.StorageKey parent,
java.security.interfaces.RSAPublicKey pubKey,

tpm.structures.Secret usageSecret) throws
TrustedComputingException;

82 public abstract tpm.keys.TPMKey loadTPMKey(tpm.keys.StorageKey
parent, java.security.interfaces.RSAPublicKey pubKey,

tpm.structures.Secret usageSecret) throws
TrustedComputingException;

83 public abstract tpm.keys.TPMKey loadTPMKey(tpm.keys.StorageKey
parent, java.util.UUID identifier , tpm.structures.Secret
usageSecret) throws TrustedComputingException;

84 public abstract tpm.keys.TPMKey
loadTPMSystemKey(tpm.keys.StorageKey parent, java.util.UUID
identifier , tpm.structures.Secret usageSecret) throws
TrustedComputingException;

85 public abstract void storeTPMKey(tpm.keys.StorageKey parent,
tpm.keys.TPMKey key, java.util.UUID identifier) throws
TrustedComputingException;

86 public abstract void storeTPMSystemKey(tpm.keys.StorageKey parent,
tpm.keys.TPMKey key, java.util.UUID identifier) throws
TrustedComputingException;

87 public abstract java.util.UUID[] getStoredTPMKeys() throws
TrustedComputingException;

88 public abstract java.util.UUID[] getStoredTPMSystemKeys()
throws TrustedComputingException;

89 }
90
91 public class tpm.keys.KeyNotMigratableException extends

java.lang.RuntimeException{

92 public tpm.keys.KeyNotMigratableException(java.lang.String string);
93 }
94
95 public interface tpm.keys.LegacyKey extends

tpm.keys.TPMKey,tpm.keys.TPMRSAKey{
96 }
97
98 public interface tpm.keys.SigningKey extends

tpm.keys.TPMKey,tpm.keys.TPMRSAKey{
99 }

100
101 public interface tpm.keys.StorageKey extends

tpm.keys.TPMKey,tpm.keys.TPMRSAKey{
102 }
103
104 public interface tpm.keys.StorageRootKey extends tpm.keys.StorageKey{
105 public static final java.util.UUID SRK_UUID;
106 public abstract void changeUsageSecret(tpm.structures.Secret

ownerSecret , tpm.structures.Secret newSecret) throws
TrustedComputingException;

A.1. The API 147

107 static {};
108 }
109
110 public interface tpm.keys.TPMKey{
111 public abstract void changeMigrationSecret(tpm.keys.StorageKey

parent, tpm.structures.Secret oldSecret , tpm.structures.Secret
newSecret) throws TrustedComputingException ,
tpm.keys.KeyNotMigratableException;

112 public abstract void changeUsageSecret(tpm.keys.StorageKey
parent,tpm.structures.Secret oldSecret , tpm.structures.Secret
newSecret) throws TrustedComputingException;

113 public abstract void unload() throws
TrustedComputingException;

114 public abstract void setUUID(java.util.UUID keyIdentifier);
115 public abstract java.util.UUID getUUID();
116 }
117
118 public interface tpm.keys.TPMRSAKey extends

java.security.interfaces.RSAKey{

119 public abstract java.math.BigInteger getModulus();
120 public abstract java.security.interfaces.RSAPublicKey

getPublicKey() throws TrustedComputingException;
121 }
122
123 public abstract class tpm.structures.Digest extends java.lang.Object{
124 protected tpm.structures.Digest();
125 public tpm.structures.Digest(byte[] digest);
126 public abstract byte[] getBytes();
127 public abstract boolean equals(java.lang.Object other);
128 public abstract int hashCode();
129 }
130
131 public class tpm.structures.PCREvent extends java.lang.Object{
132 protected final tpm.structures.Digest dataDigest_;
133 protected final java.lang.String eventDescription_;
134 protected final long eventType_;
135 public tpm.structures.PCREvent(long eventType ,

tpm.structures.Digest data, java.lang.String eventDescription);
136 public tpm.structures.Digest getDataDigest();
137 public java.lang.String getEventDescription();
138 public long getEventType();
139 }
140
141 public abstract class tpm.structures.PCRInfo extends java.lang.Object{
142 public tpm.structures.PCRInfo();
143 public tpm.structures.PCRInfo(int numberOfPCRs) throws

java.lang.IllegalArgumentException;

144 public abstract tpm.structures.Digest getPCRValue(int index);
145 public abstract int[] getValueIndices();
146 public abstract void setPCRValue(int index, tpm.structures.Digest

value);

147 public abstract int getNumberOfPCRs();
148 }
149
150 public abstract class tpm.structures.Secret extends java.lang.Object{
151 public static tpm.structures.Secret WELL_KNOWN_SECRET;
152 protected tpm.structures.Secret();

148 Appendix A. Appendix 1 - The JSR 321 API

153 public tpm.structures.Secret(tpm.structures.Digest hashedSecret);
154 public tpm.structures.Secret(char[] password);
155 public tpm.structures.Secret(char[] password , boolean

addNullTermination , java.nio.charset.Charset encoding) ;

156 public abstract void flushSecret();
157 public abstract byte[] getBytes();
158 }
159
160 public class tpm.structures.ValidationData extends java.lang.Object

implements java.io.Serializable{
161 protected final byte[] data_;
162 protected final byte[] nonce_;
163 protected final byte[] validationData_;
164 public tpm.structures.ValidationData(byte[] nonce, byte[] data,

byte[] validationData);
165 public byte[] getData();
166 public byte[] getNonce();
167 public byte[] getValidationData();
168 }
169
170 public abstract class tpm.tools.Attestor extends

tpm.tools.remote.RemoteAttestor{
171 public tpm.tools.Attestor(tpm.TPMContext context);
172 public abstract tpm.structures.ValidationData quote(int[]

PCRindices , tpm.keys.IdentityKey key, tpm.structures.Digest
nonce) throws TrustedComputingException ,
tpm.PCRsNotAccessibleException;

173 public abstract tpm.structures.ValidationData quote(int[]
PCRindices , tpm.keys.IdentityKey key, tpm.structures.Digest
nonce) throws TrustedComputingException ,
tpm.PCRsNotAccessibleException;

174 }
175
176 public abstract class tpm.tools.Binder extends

tpm.tools.remote.RemoteBinder{
177 public tpm.tools.Binder(tpm.TPMContext context);
178 public abstract byte[] unbind(byte[] encryptedData ,

tpm.keys.BindingKey key) throws TrustedComputingException;
179 }
180
181 public abstract class tpm.tools.Certifier extends

tpm.tools.remote.RemoteCertifier{
182 public tpm.tools.Certifier(tpm.TPMContext context);
183 public abstract tpm.structures.ValidationData

certifyKey(tpm.keys.TPMKey toBeCertified , tpm.keys.IdentityKey
certifyingKey , tpm.structures.Digest nonce) throws
TrustedComputingException , java.lang.IllegalArgumentException;

184 public abstract tpm.structures.ValidationData
certifyKey(tpm.keys.TPMKey toBeCertified , tpm.keys.SigningKey
certifyingKey , tpm.structures.Digest nonce) throws
TrustedComputingException;

185 public abstract tpm.structures.ValidationData
certifyKey(tpm.keys.TPMKey toBeCertified certifyingKey ,
tpm.keys.LegacyKey , tpm.structures.Digest nonce) throws
TrustedComputingException;

186 }
187

A.1. The API 149

188 public abstract class tpm.tools.Initializer extends java.lang.Object{
189 public tpm.tools.Initializer(tpm.TPMContext context);
190 public abstract void takeOwnership(tpm.structures.Secret

ownerSecret , tpm.structures.Secret srkSecret) throws
TrustedComputingException;

191 public abstract void clearOwnership(tpm.structures.Secret
ownerSecret) throws TrustedComputingException;

192 }
193
194 public abstract class tpm.tools.Sealer extends java.lang.Object{
195 public tpm.tools.Sealer(tpm.TPMContext context);
196 public abstract byte[] seal(byte[] plainData ,

tpm.structures.PCRInfo targetState , tpm.keys.StorageKey
storageKey , tpm.structures.Secret dataSecret) throws
TrustedComputingException , tpm.PCRsNotAccessibleException;

197 public abstract byte[] unseal(byte[] encrytedData ,
tpm.keys.StorageKey key, tpm.structures.Secret dataSecret)

throws TrustedComputingException ,
tpm.PCRsNotAccessibleException;

198 }
199
200 public abstract class tpm.tools.Signer extends

tpm.tools.remote.RemoteSigner{
201 public tpm.tools.Signer(tpm.TPMContext context);
202 public abstract byte[] sign(byte[] plainData , tpm.keys.LegacyKey

key) throws TrustedComputingException;
203 public abstract byte[] sign(byte[] plainData , tpm.keys.SigningKey

key) throws TrustedComputingException;
204 }
205
206 public abstract class tpm.tools.remote.RemoteAttestor extends

java.lang.Object{

207 public tpm.tools.remote.RemoteAttestor();
208 public abstract boolean validateQuote(tpm.structures.ValidationData

dataToValidate , java.security.interfaces.RSAPublicKey

identityKey , tpm.structures.Digest nonce,
tpm.structures.PCRInfo expectedValues) throws
java.security.GeneralSecurityException ,

TrustedComputingException;
209 }
210
211 public abstract class tpm.tools.remote.RemoteBinder extends

java.lang.Object{

212 public tpm.tools.remote.RemoteBinder();
213 public abstract byte[] bind(byte[] plainData ,

java.security.interfaces.RSAPublicKey bindingKey) throws
TrustedComputingException;

214 }
215
216 public abstract class tpm.tools.remote.RemoteCertifier extends

java.lang.Object{

217 public tpm.tools.remote.RemoteCertifier();
218 public abstract boolean validate(tpm.structures.ValidationData

dataToValidate , java.security.interfaces.RSAPublicKey

certifiedKey , java.security.interfaces.RSAPublicKey

certifyingKey , tpm.structures.Digest nonce) throws
java.security.GeneralSecurityException;

150 Appendix A. Appendix 1 - The JSR 321 API

219 public abstract boolean
containsPCRInfo(tpm.structures.ValidationData certifiedKeyInfo ,
tpm.structures.PCRInfo desiredPCRInfo);

220 public abstract boolean isBindingKey(tpm.structures.ValidationData
certifiedKeyInfo);

221 public abstract boolean isKeyOfLength(tpm.structures.ValidationData
certifiedKeyInfo , int desiredKeyLength);

222 public abstract boolean isLegacyKey(tpm.structures.ValidationData
certifiedKeyInfo);

223 public abstract boolean isMigratable(tpm.structures.ValidationData
certifiedKeyInfo);

224 public abstract boolean isSigningKey(tpm.structures.ValidationData
certifiedKeyInfo);

225 public abstract boolean isStorageKey(tpm.structures.ValidationData
certifiedKeyInfo);

226 public abstract boolean isVolatile(tpm.structures.ValidationData
certifiedKeyInfo);

227 public abstract boolean
needsAuthorization(tpm.structures.ValidationData
certifiedKeyInfo);

228 }
229
230 public abstract class tpm.tools.remote.RemoteSigner extends

java.lang.Object{

231 public tpm.tools.remote.RemoteSigner();
232 public abstract boolean validate(byte[] signature , byte[] data,

java.security.interfaces.RSAPublicKey key) throws
java.security.GeneralSecurityException;

233 }

B
Appendix - List of Publications

This appendix lists, in accordance with the statutes of the doctoral school of
Computer Science at Graz University of Technology, the publications of the
author.

B.1 Journals
This section presents journal publications by the author in reversed chronologi-
cal order.

[122] E. Gatial, Z. Balogh, D. Hein, L. Hluchý, M. Pirker, and R. Toegl. Secur-
ing agents using secure docking module. Techn. Sc., 15(1), 2012.

[339] R. Toegl, T. Winkler, M. Nauman, and T. W. Hong. Specification and
Standardization of a Java Trusted Computing API. Softw. Pract. Exper.,
42(8):945–965, 2012.

[326] R. Toegl and M. Hutter. An approach to introducing locality in remote
attestation using near field communications. The Journal of Supercomputing,
55(2):207–227, 2011.

[153] M. Hutter and R. Toegl. Touch‘n’ Trust: An NFC-enabled trusted platform
module. The International Journal on Advances in Security, 4(1 & 2):131–141,
2011.

[253] M. Pirker and R. Toegl. Towards a virtual trusted platform. Jour-

151

152 Appendix B. Appendix - List of Publications

nal of Universal Computer Science, 16(4):531–542, 2010. http://www.jucs.org/
jucs_16_4/towards_a_virtual_trusted.

[142] D. Hein, R. Toegl, and S. Kraxberger. An autonomous attestation to-
ken to secure mobile agents in disaster response. Security and Communication
Networks, 3(5):421–438, 2010.

[91] K. Dietrich, T. Vejda, R. Toegl, M. Pirker, and P. Lipp. Can you Really
Trust your Computer Today? — Emerging architectures for Trusted Comput-
ing. ENISA Quarterly, 3(3):8–9, Jul–Sep 2007.

B.2 Conference and Workshop Proceedings
This section presents publications in workshop and conference proceedings by
the author in reversed chronological order.

[184] S. Kraxberger, R. Toegl, M. Pirker, E. P. Guijarro, and G. G. Millan.
Trusted identity management for overlay networks. In R. H. Deng and T. Feng,
editors, Information Security Practice and Experience. 9th International Con-
ference, ISPEC 2013, Lanzhou, China, May 12-14, 2013. Proceedings, volume
7863 of Lecture Notes in Computer Science, pages 16–30. Springer Berlin Hei-
delberg, 2013.

[323] R. Toegl. Verification of a trusted virtual security module. In M. Bond,
R. Focardi, F. Sibylle, and G. Steel, editors, Analysis of Security APIs (Dagstuhl
Seminar 12482), Dagstuhl Reports, page 166. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2013. Abstract.

[341] R. Toegl, J. Winter, and M. Pirker. A path towards ubiquitous protection
of media. In J. Lyle, S. Faily, and M. Winandy, editors, Proceedings of the Work-
shop on Web Applications and Secure Hardware (WASH), Co-located with the 6th
International Conference on Trust and Trustworthy Computing (TRUST 2013),
volume 1011 of CEUR Workshop Proceedings, pages 32–38, London, United
Kingdom, 6 2013. Sun SITE Central Europe, RWTH Aachen University. Posi-
tion Paper.

[259] M. Pirker, J. Winter, and R. Toegl. Lightweight distributed attestation
for the cloud. In F. Leymann, I. Ivanov, M. van Sinderen, and T. Shan, editors,
CLOSER, pages 580–585. SciTePress, 2012.

[364] J. Winter, P. Wiegele, M. Pirker, and R. Toegl. A flexible software devel-
opment and emulation framework for ARM TrustZone. In Proceedings of the
Third international conference on Trusted Systems, pages 1–15, Beijing, China,

http://www.jucs.org/jucs_16_4/towards_a_virtual_trusted
http://www.jucs.org/jucs_16_4/towards_a_virtual_trusted

B.2. Conference and Workshop Proceedings 153

2012. Springer-Verlag.

[260] M. Pirker, J. Winter, and R. Toegl. Lightweight distributed attestation
for the cloud. In F. Leymann, I. Ivanov, M. van Sinderen, and T. Shan, editors,
CLOSER, pages 580–585. SciTePress, 2012.

[143] D. Hein, R. Toegl, M. Pirker, E. Gatial, Z. Balogh, H. Brandl, and L. Hluchý.
Securing mobile agents for crisis management support. In Proceedings of the sev-
enth ACM workshop on Scalable Trusted Computing, STC ’12, pages 85–90, New
York, NY, USA, 2012. ACM.

[336] R. Toegl, F. Reimair, and M. Pirker. Waltzing the Bear, or: A trusted
virtual security module. In S. Capitani di Vimercati and C. Mitchell, editors,
Public Key Infrastructures, Services and Applications, 9th European Workshop,
EuroPKI 2012, Pisa, Italy, September 2012, Revised Selected Papers, volume
7868 of Lecture Notes in Computer Science, pages 145–160. Springer Berlin Hei-
delberg, 2013.

[262] S. Podesser and R. Toegl. A software architecture for introducing trust
in Java-based clouds. In J. Park, J. Lopez, S.-S. Yeo, T. Shon, and D. Taniar,
editors, Communications in Computer and Information Science, volume 186,
pages 45–53. Springer Berlin Heidelberg, 2011.

[333] R. Toegl, M. Pirker, and M. Gissing. acTvSM: A dynamic virtualiza-
tion platform for enforcement of application integrity. In L. Chen and M. Yung,
editors, Trusted Systems, volume 6802 of Lecture Notes in Computer Science,
pages 326–345. Springer Berlin / Heidelberg, 2011.

[126] M. Gissing, R. Toegl, and M. Pirker. Management of integrity-enforced
virtual applications. In C. Lee, J.-M. Seigneur, J. J. Park, and R. R. Wag-
ner, editors, Secure and Trust Computing, Data Management, and Applications,
volume 187 of Communications in Computer and Information Science, pages
138–145. Springer Berlin Heidelberg, 2011.

[152] M. Hutter and R. Toegl. A trusted platform module for near field com-
munication. In Systems and Networks Communications (ICSNC), 2010 Fifth
International Conference on, pages 136–141. IEEE, 2010.

[254] M. Pirker, R. Toegl, and M. Gissing. Dynamic enforcement of platform
integrity (a short paper). In A. Acquisti, S. W. Smith, and A.-R. Sadeghi, ed-
itors, Trust ’10: Proceedings of the 3rd International Conference on Trust and
Trustworthy Computing, volume 6101 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2010.

[320] R. Toegl. Tagging the turtle: Local attestation for kiosk computing.

154 Appendix B. Appendix - List of Publications

In J. H. Park, H.-H. Chen, M. Atiquzzaman, C. Lee, T. hoon Kim, and S.-S.
Yeo, editors, Advances in Information Security and Assurance, volume 5576 of
Lecture Notes in Computer Science, pages 60–69. Springer Berlin / Heidelberg,
2009.

[255]M. Pirker, R. Toegl, D. Hein, and P. Danner. A PrivacyCA for anonymity
and trust. In L. Chen, C. J. Mitchell, and A. Martin, editors, TRUST 2009:
Proceedings of the 2nd International Conference on Trusted Computing, volume
5471 of Lecture Notes in Computer Science, pages 101–119. Springer Berlin /
Heidelberg, 2009. [330] R. Toegl and M. Pirker. An ongoing game of Tetris: Inte-
grating trusted computing in Java, block-by-block. In D. Grawrock, H. Reimer,
A.-R. Sadeghi, and C. Vishik, editors, Future of Trust in Computing, pages 60–
67.
Vieweg+Teubner, 2009.

[338] R. Toegl, T. Winkler, M. Nauman, and T. Hong. Towards platform-
independent trusted computing. In Proceedings of the 2009 ACM workshop on
Scalable Trusted Computing, pages 61–66, Chicago, Illinois, USA, 2009. ACM.

[141] D. Hein and R. Toegl. An autonomous attestation token to secure mobile
agents in disaster response. In A. Schmidt and S. Lian, editors, Security and
Privacy in Mobile Information and Communication Systems (MobiSec 2009),
volume 17 of Lecture Notes of the Institute for Computer Sciences, Social In-
formatics and Telecommunications Engineering, pages 46–57, Turin, Italy, June
2009. Springer Berlin/Heidelberg.

[252] M. Pirker and R. Toegl. Sichere Softwaremodule durch Einsatz von Vir-
tualisierung und Trusted Computing. In W. Seböck and E. Huber, editors,
Tagungsband der 7. Information Security Konferenz. Österreichische Computer
Gesellschaft, 2009. ISBN 978-3-85403-257-1. In German.

[90] K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp. A
practical approach for establishing trust relationships between remote platforms
using trusted computing. In G. Barthe and C. Fournet, editors, Trustworthy
Global Computing, Proceedings, volume 4912 of Lecture Notes in Computer Sci-
ence, pages 156–168. Springer Verlag, 2008. ISBN 978-3-540-78662-7.

[353] T. Vejda, R. Toegl, M. Pirker, and T. Winkler. Towards trust services for
language-based virtual machines for grid computing. In P. Lipp, A.-R. Sadeghi,
and K.-M. Koch, editors, Trusted Computing âĂŞ Challenges and Applications
First International Conference on Trusted Computing and Trust in Information
Technologies, TRUST 2008 Villach, Austria, March 11-12, 2008 Proceedings,
volume 4968 of Lecture Notes in Computer Science. Springer Verlag, 2008.

[325] R. Toegl, G. Hofferek, K. Greimel, A. H. Y. Leung, R.-W. Phan, and

B.2. Conference and Workshop Proceedings 155

R. Bloem. Formal analysis of a TPM-based secrets distribution and storage
scheme. In Proceedings TRUSTCOM 2008, in: Young Computer Scientists,
2008. ICYCS 2008. The 9th International Conference for, pages 2289–2294.
IEEE Computer Society, 2008.

[328] R. Toegl, C. Parraga Niebla, and U. Birnbacher. Framing efficiency opti-
mization for DVB-S2 systems. In Global Telecommunications Conference, 2006.
GLOBECOM ’06. IEEE, 2006.

[329] R. Toegl, C. Parraga Niebla, and U. Birnbacher. Framing efficiency opti-
mization for DVB-S2 systems with QoS guarantees. In Ka-band Conference
2006. Ka and Broadband Communications Conference, Proceedings, Naples,
Italy, 2006.

[324] R. Toegl, U. Birnbacher, and O. Koudelka. Deploying IP telephony over
satellite links. In Wireless Communication Systems, 2005. 2nd International
Symposium on, pages 624–628, 2005.

Bibliography

[1] M. Abadi. Security protocols: principles and calculi tutorial notes. In
A. Aldini and R. Gorrieri, editors, Foundations of security analysis and
design IV, pages 1–23. Springer-Verlag, 2007.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the
Spi calculus. In Proceedings of the 4th ACM conference on Computer and
communications security, pages 36–47, Zurich, Switzerland, 1997. ACM.

[3] K. Ables. An alleged attack on key delegation in the trusted platform
module. MSc Advanced Computer Science First semester mini-project,
University of Birmingham, http://www.computer-science.birmingham.ac.
uk/˜mdr/research/papers/pdf/09-ables-3.pdf, 2009. Website accessed
November 15, 2012.

[4] A. Abu-Mahfouz and G. Hancke. Distance bounding: A practical secu-
rity solution for real-time location systems. Industrial Informatics, IEEE
Transactions on, 9(1):16–27, 2013.

[5] M. Achemlal, S. Gharout, and C. Gaber. Trusted platform module as
an enabler for security in cloud computing. In Network and Information
Systems Security (SAR-SSI), 2011 Conference on, pages 1–6, 2011.

[6] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and
Deployment Considerations. Addison-Wesley Professional, 2 edition, 2002.
ISBN-13: 978-0321743091.

[7] K. Adams and O. Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. In Proceedings of the 12th international con-
ference on Architectural support for programming languages and operating
systems, pages 2–13, San Jose, California, USA, 2006. ACM.

[8] Advanced Micro Devices. AMD64 Virtualization: Secure Virtual Machine
Architecture Reference Manual, May 2005. Publication No. 33047; Rev.
3.01.

[9] M. Aigner, S. Dominikus, and M. Feldhofer. A system of secure virtual
coupons using NFC technology. In Pervasive Computing and Commu-
nications Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE
International Conference on, pages 362–366, 2007.

157

http://www.computer-science.birmingham.ac.uk/~mdr/research/papers/pdf/09-ables-3.pdf
http://www.computer-science.birmingham.ac.uk/~mdr/research/papers/pdf/09-ables-3.pdf

158 Bibliography

[10] M. Alam, X. Zhang, M. Nauman, and T. Ali. Behavioral attestation for
web services (ba4ws). In Proceedings of the 2008 ACM workshop on Secure
web services, pages 21–28, Alexandria, Virginia, USA, 2008. ACM.

[11] G. Alpár and J.-H. Hoepman. Avoiding man-in-the-middle attacks when
verifying public terminals. In J. Camenisch, B. Crispo, S. Fischer-Hübner,
R. Leenes, and G. Russello, editors, IFIP Advances in Information and
Communication Technology, volume 375, pages 261–273. Springer Berlin
Heidelberg, 2012.

[12] S. Alsouri, O. Dagdelen, and S. Katzenbeisser. Group-based attestation:
Enhancing privacy and management in remote attestation. In A. Acquisti,
S. Smith, and A.-R. Sadeghi, editors, Lecture Notes in Computer Science,
volume 6101, pages 63–77. Springer Berlin Heidelberg, 2010.

[13] American National Standards Institute (ANSI). AMERICAN NATIONAL
STANDARD X9.62-2005. Public Key Cryptography for the Financial Ser-
vices Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA),
2005.

[14] R. Anderson. ‘Trusted Computing’ Frequently Asked Questions - TC /
TCG / LaGrande / NGSCB / Longhorn / Palladium / TCPA. http://
www.cl.cam.ac.uk/˜rja14/tcpa-faq.html, 8 2003. Website visited October
30, 2012.

[15] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley Publishing, 2nd edition, April 2008. ISBN: 978-
0-470-06852-6.

[16] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryp-
tographic processors-a survey. Proceedings of the IEEE DOI -
10.1109/JPROC.2005.862423, 94(2):357–369, 2006.

[17] R. Anderson and R. Needham. Programming satan’s computer. In J. van
Leeuwen, editor, Computer Science Today, volume 1000 of Lecture Notes
in Computer Science, pages 426–440. Springer, 1995.

[18] M. Arapinis, E. Ritter, and M. Ryan. Statverif: Verification of stateful
processes. In Computer Security Foundations Symposium (CSF), 2011
IEEE 24th, pages 33–47, 2011.

[19] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable
bootstrap architecture. In Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pages 65–71. IEEE Computer Society, 1997.

[20] ARM Limited. TrustZone API Specification v2.0, June 2006. PRD29-
USGC-000089.

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

Bibliography 159

[21] ARM Limited. ARM Security Technology Building a Secure System
using TrustZone Technology. http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_

whitepaper.pdf Website accessed July 24, 2013, 2009. PRD29-GENC-
009492C.

[22] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. H. Drielsma, P.-C. Heám, O. Kouchnarenko, J. Mantovani, S. Möder-
sheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vi-
ganò, and L. Vigneron. The AVISPA tool for the automated valida-
tion of internet security protocols and applications. In Proceedings of
CAV’2005, number 3576 in Lecture Notes in Computer Science, pages
281–285. Springer-Verlag, 2005.

[23] A. Armando and L. Compagna. SAT-based model-checking for security
protocols analysis. Int. J. Inf. Secur., 7(1):3–32, 2008.

[24] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, 2010.

[25] T. W. Arnold and L. van Doorn. The IBM PCIXCC: a new cryptographic
coprocessor for the IBM eServer. IBM J. Res. Dev., 48(3-4):475–487, 2004.

[26] Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-
System Programmable Flash. Available online at http://www.atmel.com/
dyn/resources/prod_documents/doc2467.pdf, August 2007.

[27] AVANTSSAR Consortium. http://www.avantssar.eu/. Website accessed
August 27, 2013.

[28] AVISPA Consortium. The AVISPA project. http://www.avispa-project.
org/, 2002-2005. Website accessed August 22, 2012.

[29] AVISPA Consortium. The AVISPA library. http://www.avispa-project.
org/library/avispa-library-index.html, 2005. Website accessed August
22, 2012.

[30] G. Avoine, M. A. Bingöl, S. Kardaş, C. Lauradoux, and B. Martin. A
Framework for Analyzing RFID Distance Bounding Protocols. Journal of
Computer Security – Special Issue on RFID System Security, 19(2):289–
317, March 2011.

[31] D. Balaban. NFC smartphone chip shipments in
2012 surge past projections. http://nfctimes.com/news/

nfc-smartphone-chip-shipments-2012-surge-past-projections Web-
site accessed October 22, 2013, 3 2013. NFC Times.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.avantssar.eu/
http://www.avispa-project.org/
http://www.avispa-project.org/
http://www.avispa-project.org/library/avispa-library-index.html
http://www.avispa-project.org/library/avispa-library-index.html
http://nfctimes.com/news/nfc-smartphone-chip-shipments-2012-surge-past-projections
http://nfctimes.com/news/nfc-smartphone-chip-shipments-2012-surge-past-projections

160 Bibliography

[32] B. Balacheff, L. Chen, D. Plaquin, and G. Proudler. Trusted Computing
Platforms: TCPA Technology in Context. Prentice Hall, 2002. ISBN-13:
978-0-13-009220-5.

[33] A. Baldwin, C. Dalton, S. Shiu, K. Kostienko, and Q. Rajpoot. Providing
secure services for a virtual infrastructure. SIGOPS Oper. Syst. Rev.,
43(1):44–51, 2009.

[34] S. Balfe, E. Gallery, C. Mitchell, and K. Paterson. Challenges for trusted
computing. Security & Privacy, IEEE, 6(6):60–66, 2008.

[35] E. Bangerter, M. Djackov, and A.-R. Sadeghi. A demonstrative ad hoc
attestation system. In T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee,
editors, Lecture Notes in Computer Science, volume 5222, pages 17–30.
Springer Berlin Heidelberg, 2008.

[36] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 164–177, New York, NY, USA, 2003. ACM.

[37] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. International Journal of Information Secu-
rity, 4(3):181–208, June 2005. Published online December 2004.

[38] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman, 1st edition, 1999. ISBN-13: 978-0201616415.

[39] K. Beck. JUnit Pocket Guide. O’Reilly Media, 1st edition, 2004. ISBN
978-0-596-00743-0.

[40] M. Bellare and P. Rogaway. Optimal asymmetric encryption – How to
encrypt with RSA. In A. D. Santis, editor, Eurocrypt 94 Proceedings,
volume 950 of Lecture Notes in Computer Science. Springer Verlag, 1995.

[41] S. Berger, R. Cáceres, K. Goldman, D. Pendarakis, R. Perez, J. R. Rao,
E. Rom, R. Sailer, W. Schildhauer, D. Srinivasan, S. Tal, and E. Valdez.
Security for the cloud infrastructure: trusted virtual data center imple-
mentation. IBM J. Res. Dev., 53(4):560–571, 2009.

[42] S. Berger, R. Cáceres, K. Goldman, R. Perez, R. Sailer, and L. van Doorn.
vTPM: virtualizing the trusted platform module. In USENIX-SS’06: Pro-
ceedings of the 15th conference on USENIX Security Symposium, pages
305–320. USENIX, 2006.

[43] S. Berger, R. Cáceres, D. Pendarakis, R. Sailer, E. Valdez, R. Perez,
W. Schildhauer, and D. Srinivasan. TVDc: managing security in the
trusted virtual datacenter. SIGOPS Oper. Syst. Rev., 42(1):40–47, 2008.

Bibliography 161

[44] M. Bishop. Computer Security: Art and Science. Addison-Wesley Profes-
sional, Dec. 2002.

[45] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-
14), pages 82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE
Computer Society.

[46] B. Blanchet, V. Cheval, X. Allamigeon, and B. Smyth. Proverif: Crypto-
graphic protocol verifier in the formal model. http://proverif.inria.fr/.
Website accessed October 30, 2012.

[47] M. Bond and R. Anderson. API-level attacks on embedded systems. Com-
puter, 34(10):67–75, 2001. IEEE.

[48] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and
fixing PKCS#11 security tokens. In Proceedings of the 17th ACM confer-
ence on Computer and Communications Security, pages 260–269, Chicago,
Illinois, USA, 2010. ACM.

[49] S. Brands and D. Chaum. Distance-bounding protocols. In Workshop
on the theory and application of cryptographic techniques on Advances in
cryptology, pages 344–359, Lofthus, Norway, 1994. Springer-Verlag New
York, Inc.

[50] A. Brett, N. Kuntze, and A. Schmidt. Trusted watermarks. In Broadband
Multimedia Systems and Broadcasting, 2009. BMSB ’09. IEEE Interna-
tional Symposium on, pages 1–7, 2009.

[51] A. Brett and A. Leicher. Ethemba trusted host environment mainly
based on attestation. http://ethemba.novalyst.de/wordpress/wp-content/
uploads/2009/11/ethemba1.pdf, 3 2009. Website accessed November 15,
2012.

[52] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In
Proceedings of the 11th ACM conference on Computer and communications
security, pages 132–145, Washington DC, USA, 2004. ACM.

[53] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. Replay attack in TCG
specification and solution. In Proceedings of the 21st Annual Computer
Security Applications Conference, pages 127–137. IEEE Computer Society,
2005.

[54] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Trans. Comput. Syst., 8(1):18–36, 1990.

[55] G. Cabiddu, E. Cesena, R. Sassu, D. Vernizzi, G. Ramunno, and A. Lioy.
The trusted platform agent. IEEE Software, 28:35–41, 2011.

http://proverif.inria.fr/
http://ethemba.novalyst.de/wordpress/wp-content/uploads/2009/11/ethemba1.pdf
http://ethemba.novalyst.de/wordpress/wp-content/uploads/2009/11/ethemba1.pdf

162 Bibliography

[56] S. Cabuk, L. Chen, D. Plaquin, and M. Ryan. Trusted integrity measure-
ment and reporting for virtualized platforms. In L. Chen and M. Yung,
editors, INTRUST 2009, volume 6163 of Lecture Notes in Computer Sci-
ence, pages 180–196. Springer, 2009.

[57] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath. Rein-
carnating PCs with portable SoulPads. In Proceedings of the 3rd inter-
national conference on Mobile systems, applications, and services, pages
65–78, Seattle, Washington, 2005. ACM.

[58] C. Cachin and N. Chandran. A secure cryptographic token interface. In
Computer Security Foundations Symposium, 2009. CSF ’09. 22nd IEEE,
pages 141–153, 2009.

[59] D. Catteddu and G. Hogben. Cloud Computing benefits, risks and recom-
mendations for information security. Technical report, European Network
and Information Security Agency (ENISA), 2009.

[60] L. Catuogno, A. Dmitrienko, K. Eriksson, D. Kuhlmann, G. Ramunno,
A.-R. Sadeghi, S. Schulz, M. Schunter, M. Winandy, and J. Zhan. Trusted
virtual domains - design, implementation and lessons learned. In L. Chen
and M. Yung, editors, INTRUST 2009, volume 6163 of Lecture Notes in
Computer Science, pages 156–179. Springer, 2010.

[61] A. Celesti, A. Salici, M. Villari, and A. Puliafito. A remote attestation
approach for a secure virtual machine migration in federated cloud envi-
ronments. In Network Cloud Computing and Applications (NCCA), 2011
First International Symposium on, pages 99–106, 2011.

[62] D. W. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and T. A.
Nguyen. Permis a modular authorization infrastructure. Concurrency and
Computation: Practice and Experience, 20(11):1341–1357, 2008.

[63] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. van Doorn.
A Practical Guide to Trusted Computing. IBM Press, 1st edition, 2008.
ISBN-13: 978-0132398428.

[64] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi, and C. Stüble.
A protocol for property-based attestation. In Proceedings of the First ACM
Workshop on Scalable Trusted Computing, STC ’06, pages 7–16, New York,
NY, USA, 2006. ACM.

[65] L. Chen and M. Ryan. Offline dictionary attack on TCG TPM weak au-
thorisation data, and solution. In D. Gawrock, H. Reimer, A.-R. Sadeghi,
and C. Vishik, editors, Future of Trust in Computing, pages 193–196.
Vieweg+Teubner, 2009.

[66] L. Chen and M. Ryan. Attack, solution and verification for shared autho-
risation data in TCG TPM. In P. Degano and J. D. Guttman, editors,

Bibliography 163

Proceedings of Sixth International Workshop on Formal Aspects in Security
and Trust (FAST’09), volume 5983 of Lecture Notes in Computer Science,
Eindhoven, The Netherlands, 2010. Springer.

[67] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource
tool for symbolic model checking. In E. Brinksma and K. Larsen, editors,
Lecture Notes in Computer Science, volume 2404, pages 359–364. Springer
Berlin Heidelberg, 2002.

[68] L. S. Clair, J. Schiffman, T. Jaeger, and P. McDaniel. Establishing and
sustaining system integrity via root of trust installation. Computer Secu-
rity Applications Conference, Annual, 0:19–29, 2007.

[69] J. Clark and J. Jacob. A survey of authentication protocol lit-
erature: Version 1.0. http://web.cs.wpi.edu/˜guttman/cs559_website/

clarkjacob97survey.pdf Website accessed June 25, 2013, 1997.

[70] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999. ISBN: 9780262032704.

[71] S. Clarke. Measuring API usability. Dr. Dobbs Journal, 2004.

[72] Cloud Security Alliance. Security Guidance for Critical Areas of Focus
in Cloud Computing V2.1. https://cloudsecurityalliance.org/csaguide.
pdf Website accessed June 19, 2013, 12 2009.

[73] J. Clulow. On the security of PKCS#11. In C. D. Walter, C. K. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2003, volume 2779 of Lecture Notes in Computer Science, pages 411–425.
Springer Berlin Heidelberg, 2003.

[74] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen. Principles of remote
attestation. Int. J. Inf. Secur., 10(2):63–81, 2011.

[75] G. Coker, J. Guttman, P. Loscocco, J. Sheehy, and B. Sniffen. Attesta-
tion: Evidence and trust. In L. Chen, M. Ryan, and G. Wang, editors,
Lecture Notes in Computer Science, volume 5308, pages 1–18. Springer
Berlin Heidelberg, 2008.

[76] Common Criteria Recognition Arrangement. Common criteria for infor-
mation technology security evaluation. http://www.commoncriteriaportal.
org/cc/, 2009. Website visited March 14, 2012.

[77] Computer Security Center. Trusted Computer System Evaluation Criteria.
Department of Defense, 1983. CSC-STD-00l-83 AKA ’Orange Book’.

[78] Computer Security Center. Trusted Computer System Evaluation Criteria.
Department of Defense, 1985. DoD 5200.28-STD.

http://web.cs.wpi.edu/~guttman/cs559_website/clarkjacob97survey.pdf
http://web.cs.wpi.edu/~guttman/cs559_website/clarkjacob97survey.pdf
https://cloudsecurityalliance.org/csaguide.pdf
https://cloudsecurityalliance.org/csaguide.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/

164 Bibliography

[79] A. Cooper and A. Martin. Towards a secure, tamper-proof grid plat-
form. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth
IEEE International Symposium on, volume 1, 2006. DOI - 10.1109/C-
CGRID.2006.103.

[80] L. Coppolino, M. Jäger, N. Kuntze, and R. Rieke. A trusted information
agent for security information and event management. In Proc. ICONS
2012, The Seventh International Conference on Systems. Think MInd,
2012.

[81] C. Cremers. The Scyther tool: Verification, falsification, and analysis
of security protocols - tool paper. In A. Gupta and S. Malik, editors,
Computer Aided Verification, volume 5123 of Lecture Notes in Computer
Science, pages 414–418. Springer Berlin / Heidelberg, 2008.

[82] C. Cremers. Unbounded verification, falsification, and characterization
of security protocols by pattern refinement. In Proceedings of the 15th
ACM conference on Computer and communications security, pages 119–
128, Alexandria, Virginia, USA, 2008. ACM.

[83] C. Cremers, P. Lafourcade, and P. Nadeau. Comparing state spaces in au-
tomatic security protocol analysis. In V. Cortier, C. Kirchner, M. Okada,
and H. Sakurada, editors, Formal to Practical Security, volume 5458 of
Lecture Notes in Computer Science, pages 70–94. Springer Berlin / Hei-
delberg, 2009.

[84] P. Danner and D. Hein. A trusted computing identity collation protocol to
simplify deployment of new disaster response devices. Journal of Universal
Computer Science, 16(9):1139–1151, may 2010.

[85] S. Delaune, S. Kremer, M. Ryan, and G. Steel. Formal analysis of pro-
tocols based on tpm state registers. In Computer Security Foundations
Symposium (CSF), 2011 IEEE 24th, pages 66–80, 2011.

[86] S. Delaune, S. Kremer, and G. Steel. Formal security analysis of PKCS#11
and proprietary extensions. Journal of Computer Security, 18(6):1211–
1245, Jan. 2010.

[87] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the Fiat-
Shamir passport protocol (extended abstract). In C. Pomerance, editor,
Lecture Notes in Computer Science, volume 293, pages 21–39–. Springer
Berlin Heidelberg, 1988.

[88] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), Aug. 2008. Updated by
RFCs 5746, 5878, 6176.

[89] K. Dietrich. Anonymous client authentication for transport layer security.
In B. De Decker and I. Schaumüller-Bichl, editors, Communications and

Bibliography 165

Multimedia Security, volume 6109 of Lecture Notes in Computer Science,
pages 268–280. Springer Berlin / Heidelberg, 2010.

[90] K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp.
A practical approach for establishing trust relationships between remote
platforms using trusted computing. In G. Barthe and C. Fournet, editors,
Trustworthy Global Computing, Proceedings, volume 4912 of Lecture Notes
in Computer Science, pages 156–168. Springer Verlag, 2008. ISBN 978-3-
540-78662-7.

[91] K. Dietrich, T. Vejda, R. Toegl, M. Pirker, and P. Lipp. Can you Re-
ally Trust your Computer Today? — Emerging architectures for Trusted
Computing. ENISA Quarterly, 3(3):8–9, Jul–Sep 2007.

[92] W. Diffie and M. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644–654, 1976.

[93] A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and C. Wachsmann. Smart-
tokens: Delegable access control with NFC-enabled smartphones. In
S. Katzenbeisser, E. Weippl, L. Camp, M. Volkamer, M. Reiter, and
X. Zhang, editors, Lecture Notes in Computer Science, volume 7344, pages
219–238. Springer Berlin Heidelberg, 2012.

[94] D. Dolev and A. Yao. On the security of public key protocols. Information
Theory, IEEE Transactions on, 29(2):198–208, 1983.

[95] L. Dong and K. Chen. Cryptographic Protocol - Security Analysis Based
on Trusted Freshness. Springer, 2011. ISBN 978-3-642-24072-0.

[96] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. Smith,
and S. Weingart. Building the IBM 4758 secure coprocessor. Computer,
34(10):57–66, 2001.

[97] ECMA. ECMA-340: Near Field Communication — Interface and Protocol
(NFCIP-1). ECMA (European Association for Standardizing Information
and Communication Systems), Geneva, Switzerland, Dec. 2004.

[98] ECMA International. ECMA Standard 385-2008: NFC-SEC: NFCIP-1
Security Services and Protocol, December 2008.

[99] ECMA International. ECMA Standard 386-2008: NFC-SEC-01: NFC-
SEC Cryptography Standard using ECDH and AES, December 2008.

[100] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia
and A. Tacchella, editors, Lecture Notes in Computer Science, volume
2919, pages 502–518–. Springer Berlin Heidelberg, 2004.

[101] J.-E. Ekberg, N. Asokan, K. Kostiainen, and A. Rantala. Scheduling exe-
cution of credentials in constrained secure environments. In Proceedings of
the 3rd ACM workshop on Scalable Trusted Computing (STC), ACM CCS
Workshop Proceedings, pages 61–70, New York, NY, USA, 2008. ACM.

166 Bibliography

[102] J.-E. Ekberg and S. Bugiel. Trust in a small package: minimized MRTM
software implementation for mobile secure environments. In Proceedings of
the 2009 ACM workshop on Scalable Trusted Computing (STC), ACM CCS
Workshop Proceedings, pages 9–18, New York, NY, USA, 2009. ACM.

[103] J. Ellis. The story of non-secret encryption. Published on GCHQ Web-
site in 1997. Currently available only through http://web.archive.org/
web/20030610193721/http://jya.com/ellisdoc.htm, 1987. Website accessed
October 30, 2012.

[104] EMSCB Project Consortium. The European Multilaterally Secure Com-
puting Base (EMSCB) project. http://www.emscb.com/, 2004–2007. Web-
site accessed January 29, 2013.

[105] P. England. Practical techniques for operating system attestation. In
P. Lipp, A.-R. Sadeghi, and K.-M. Koch, editors, Lecture Notes in Com-
puter Science, volume 4968, pages 1–13. Springer Berlin Heidelberg, 2008.

[106] P. England, B. Lampson, J. Manferdelli, and B. Willman. A trusted open
platform. Computer, 36(7):55–62, July 2003.

[107] P. England and J. Loeser. Para-virtualized TPM sharing. In P. Lipp, A.-
R. Sadeghi, and K.-M. Koch, editors, Lecture Notes in Computer Science,
volume 4968, pages 119–132. Springer Berlin Heidelberg, 2008.

[108] ENISA. ATM Crime: Overview of the European situation and golden
rules on how to avoid it. Technical Report ISBN-13 978-92-9204-
023-9, European Network and Information Security Agency (ENISA),
9 2009. http://www.enisa.europa.eu/activities/cert/security-month/

deliverables/2009/atmcrime Website accessed July 30, 2013.

[109] F. Fabbri. Progetto e realizzazione di un protocollo di verifica
dell’affidabilita’ di un terminale remoto. Tesi di laurea specialistica, Uni-
versità di Pisa, 2007. In Italian.

[110] F. Fabrega, J. Herzog, and J. Guttman. Strand spaces: why is a security
protocol correct? In Security and Privacy, 1998. Proceedings. 1998 IEEE
Symposium on, pages 160–171, 1998.

[111] U. Farooq and D. Zirkler. API peer reviews: a method for evaluating
usability of application programming interfaces. In Proceedings of the 2010
ACM conference on Computer supported cooperative work, pages 207–210,
Savannah, Georgia, USA, 2010. ACM.

[112] K. Finkenzeller. RFID Handbuch. Carl Hanser Verlag, 6th edition, 2012.
ISBN: 978-3-446-42992-5. In German.

[113] M. Fossi et al. Symantec internet security threat report - trends for 2010.
Technical Report 16, Symantec Corporation, April 2011.

http://web.archive.org/web/20030610193721/http://jya.com/ellisdoc.htm
http://web.archive.org/web/20030610193721/http://jya.com/ellisdoc.htm
http://www.emscb.com/
http://www.enisa.europa.eu/activities/cert/security-month/deliverables/2009/atmcrime
http://www.enisa.europa.eu/activities/cert/security-month/deliverables/2009/atmcrime

Bibliography 167

[114] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: En-
abling scalable virtual organizations. Int. J. High Perform. Comput. Appl.,
15(3):200–222, 2001.

[115] L. Francis, G. Hancke, K. Mayes, and K. Markantonakis. Practical NFC
peer-to-peer relay attack using mobile phones. In S. Ors Yalcin, editor,
Lecture Notes in Computer Science, volume 6370, pages 35–49. Springer
Berlin Heidelberg, 2010.

[116] T. Frenzel, A. Lackorzynski, A. Warg, and H. Härtig. ARM TrustZone
as a virtualization technique in embedded systems. In Proceedigns of
the Twelfth Real-Time Linux Workshop, October 2010. http://os.inf.
tu-dresden.de/papers_ps/rtlws2010_armtrustzone.pdf Website accessed
July 23,2013.

[117] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with
unbounded fresh data. In P. Degano and L. ViganÃš, editors, Lecture
Notes in Computer Science, volume 5511, pages 92–106. Springer Berlin
Heidelberg, 2009.

[118] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns. El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman,
Amsterdam, 1994.

[119] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A
virtual machine-based platform for trusted computing. In Proceedings of
the 19th Symposium on Operating System Principles(SOSP 2003), pages
193–206. ACM New York, NY, USA, October 2003.

[120] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and X. Zhang.
Trustworthy and personalized computing on public kiosks. In D. Grunwald,
R. Han, E. de Lara, and C. S. Ellis, editors, MobiSys, pages 199–210. ACM,
2008.

[121] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital dis-
tributed system security architecture. In Proc. 12th National Computer
Security Conf., pages 305–319, Baltimore, 1989. NIST/NCSC.

[122] E. Gatial, Z. Balogh, D. Hein, L. Hluchý, M. Pirker, and R. Toegl. Securing
agents using secure docking module. Techn. Sc., 15(1), 2012.

[123] C. Gebhardt and C. Dalton. Lala: a late launch application. In Proceed-
ings of the 2009 ACM workshop on Scalable trusted computing, pages 1–8,
Chicago, Illinois, USA, 2009. ACM.

[124] C. Gebhardt and A. Tomlinson. Secure Virtual Disk Images for Grid Com-
puting. In 3rd Asia-Pacific Trusted Infrastructure Technologies Conference
(APTC 2008). IEEE Computer Society, October 2008.

http://os.inf.tu-dresden.de/papers_ps/rtlws2010_armtrustzone.pdf
http://os.inf.tu-dresden.de/papers_ps/rtlws2010_armtrustzone.pdf

168 Bibliography

[125] V. Getov, G. von Laszewski, M. Philippsen, and I. Foster. Multiparadigm
communications in Java for grid computing. Commun. ACM, 44(10):118–
125, 2001.

[126] M. Gissing, R. Toegl, and M. Pirker. Management of integrity-enforced
virtual applications. In C. Lee, J.-M. Seigneur, J. J. Park, and R. R.
Wagner, editors, Secure and Trust Computing, Data Management, and
Applications, volume 187 of Communications in Computer and Informa-
tion Science, pages 138–145. Springer Berlin Heidelberg, 2011.

[127] GlobalPlatform. TEE Client API Specification v1.0. http://www.

globalplatform.org/specificationsdevice.asp Website accessed Jula 23,
2013, July 2011.

[128] GlobalPlatform. TEE Internal API Specification v1.0. http://www.

globalplatform.org/specificationsdevice.asp Website accessed Jula 23,
2013, December 2011.

[129] K. Goldman and S. Potter. SHA-1 uses in TPM v1.2.
http://www.trustedcomputinggroup.org/files/resource_files/

72563193-1A4B-B294-D07815857DD45716/SHA1-Impact_V2.0.pdf Website
accessed September 25, 2013, 4 2010.

[130] L. Gong, M. Mueller, and H. Prafullch. Going beyond the sandbox: An
overview of the new security architecture in the Java development kit 1.2.
In In Proceedings of the USENIX Symposium on Internet Technologies and
Systems, pages 103–112, 1997.

[131] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java
Language Specification Java SE 7 Edition. JSR 901, 7 2011. http:

//docs.oracle.com/javase/specs/index.html Website accessed November
2, 2012.

[132] D. Grawrock. The Intel Safer Computing Initiative. Intel Press, 1 edition,
2006. ISBN 0-9764832-6-2.

[133] D. Grawrock. Dynamics of a Trusted Platform: A Building Block Ap-
proach. Intel Press, February 2009. ISBN 978-1934053171.

[134] H. Guggi and M. Schallar. Trusted computing - mobile attestation token.
Class Project Report, Graz University of Technology, 2008.

[135] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security
evaluation of scenarios based on the TCG’s TPM specification. In Proceed-
ings of the 12th European conference on Research in Computer Security,
pages 438–453, Dresden, Germany, 2007. Springer-Verlag.

[136] P. Gutmann. An open-source cryptographic coprocessor. In Proceedings
of the 9th conference on USENIX Security Symposium - Volume 9, pages
8–8, Denver, Colorado, 2000. USENIX Association.

http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.trustedcomputinggroup.org/files/resource_files/72563193-1A4B-B294-D07815857DD45716/SHA1-Impact_V2.0.pdf
http://www.trustedcomputinggroup.org/files/resource_files/72563193-1A4B-B294-D07815857DD45716/SHA1-Impact_V2.0.pdf
http://docs.oracle.com/javase/specs/index.html
http://docs.oracle.com/javase/specs/index.html

Bibliography 169

[137] G. Hancke. A practical relay attack on ISO 14443 proximity card. Technical
report, University of Cambridge, 2005.

[138] G. Hancke. Eavesdropping Attacks on High-Frequency RFID Tokens.
In Workshop on RFID Security 2008 (RFIDSec08), July 9-11, Budapest,
Hungary, volume RFIDsec 2008, pages 100–113, July 2008.

[139] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating
systems. Commun. ACM, 19(8):461–471, 1976.

[140] E. Haselsteiner and K. Breitfuss. Security in near field communication
(NFC). In Workshop on RFID Security, 2006.

[141] D. Hein and R. Toegl. An autonomous attestation token to secure mo-
bile agents in disaster response. In A. Schmidt and S. Lian, editors, Se-
curity and Privacy in Mobile Information and Communication Systems
(MobiSec 2009), volume 17 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages
46–57, Turin, Italy, June 2009. Springer Berlin/Heidelberg.

[142] D. Hein, R. Toegl, and S. Kraxberger. An autonomous attestation token
to secure mobile agents in disaster response. Security and Communication
Networks, 3(5):421–438, 2010.

[143] D. Hein, R. Toegl, M. Pirker, E. Gatial, Z. Balogh, H. Brandl, and
L. Hluchý. Securing mobile agents for crisis management support. In
Proceedings of the seventh ACM workshop on Scalable Trusted Computing,
STC ’12, pages 85–90, New York, NY, USA, 2012. ACM.

[144] M. Hermanowski and E. Tews. TPM4JAVA. Currently only
available through http://web.archive.org/web/20090510093615/http://

tpm4java.datenzone.de/trac, 2009. Website accessed November 6, 2012.

[145] J. Herzog. Applying protocol analysis to security device interfaces. Security
& Privacy, IEEE, 4(4):84–87, 2006.

[146] L. Hoffman and J. Gibbons. JT Harness. http://java.net/downloads/
jtharness/jt_whitepaper.pdf, 11 2006. Website accessed November 9,
2012.

[147] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

[148] J. H. Huh. Trustworthy Logging for Virtual Organisations. PhD thesis,
University of Oxford, 2009.

[149] J. H. Huh, H. Kim, J. Lyle, and A. Martin. Achieving attestation with
less effort: an indirect and configurable approach to integrity reporting.
In Proceedings of the sixth ACM workshop on Scalable trusted computing,
pages 31–36, Chicago, Illinois, USA, 2011. ACM.

http://web.archive.org/web/20090510093615/http://tpm4java.datenzone.de/trac
http://web.archive.org/web/20090510093615/http://tpm4java.datenzone.de/trac
http://java.net/downloads/jtharness/jt_whitepaper.pdf
http://java.net/downloads/jtharness/jt_whitepaper.pdf

170 Bibliography

[150] W. H. Hussin. E-pass using DRM in Symbian v8 OS and TrustZone:
Securing vital data on mobile devices. In R. Edwards and P. Coulton,
editors, Mobile Business, International Conference on, volume 0, pages
14–14, June 2006.

[151] W. H. Hussin, P. Coulton, and R. Edwards. Mobile ticketing system em-
ploying trustzone technology. In Mobile Business, 2005. ICMB 2005. In-
ternational Conference on, pages 651–654, 2005.

[152] M. Hutter and R. Toegl. A trusted platform module for near field commu-
nication. In Systems and Networks Communications (ICSNC), 2010 Fifth
International Conference on, pages 136–141. IEEE, 2010.

[153] M. Hutter and R. Toegl. Touch‘n’ Trust: An NFC-enabled trusted plat-
form module. The International Journal on Advances in Security, 4(1 &
2):131–141, 2011.

[154] M. Hypponen. Malware Goes Mobile. Scientific American, 295:70–77,
2006.

[155] IAIK/Stiftung SIC. IAIK Provider for the Java Cryptogra-
phy Extension (IAIK-JCE). http://jce.iaik.tugraz.at/sic/Products/

Core-Crypto-Toolkits/JCA-JCE (23 February 2011), 2011. Website accessed
February 18, 2013.

[156] IBM Corp. TrouSerS - an open-source TCG software stack implementa-
tion. http://trousers.sourceforge.net/. Website accessed October 30,
2012.

[157] IEEE. IEEE Standard 1363-2000: IEEE Standard Specifications for
Public-Key Cryptography. Available online at http://ieeexplore.ieee.
org/servlet/opac?punumber=7168, 2000.

[158] IEEE. IEEE Standard 1363a-2004: IEEE Standard Specifications for
Public-Key Cryptography, Amendment 1: Additional Techniques. Avail-
able online at http://ieeexplore.ieee.org/servlet/opac?punumber=9276,
September 2004.

[159] Intel Corporation. Intel low pin count (LPC) interface specification - revi-
sion 1.1. http://www.intel.com/design/chipsets/industry/lpc.htm Web-
site accessed August 22,2013, 8 2002.

[160] Intel Corporation. Trusted Boot. http://sourceforge.net/projects/

tboot/, 2008. Website accessed January 29, 2013.

[161] Intel Corporation. Intel Trusted Execution Technology Software Develop-
ment Guide. http://download.intel.com/technology/security/downloads/
315168.pdf, March 2011. Website accessed February 18, 2013.

http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/JCA-JCE
http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/JCA-JCE
http://trousers.sourceforge.net/
http://ieeexplore.ieee.org/servlet/opac?punumber=7168
http://ieeexplore.ieee.org/servlet/opac?punumber=7168
http://ieeexplore.ieee.org/servlet/opac?punumber=9276
http://www.intel.com/design/chipsets/industry/lpc.htm
http://sourceforge.net/projects/tboot/
http://sourceforge.net/projects/tboot/
http://download.intel.com/technology/security/downloads/315168.pdf
http://download.intel.com/technology/security/downloads/315168.pdf

Bibliography 171

[162] International Organization for Standardization (ISO). ISO/IEC 7816-4:
Information technology - Identification cards - Integrated circuit(s) cards
with contacts - Part 4: Interindustry commands for interchange. Available
online at http://www.iso.org, 1995.

[163] International Organization for Standardization (ISO). ISO/IEC 14443:
Identification Cards - Contactless Integrated Circuit(s) Cards - Proximity
Cards, 2000.

[164] International Organization for Standardization (ISO). ISO/IEC 7810:
Identification cards – Physical characteristics, 2003.

[165] International Organization for Standardization (ISO). ISO/IEC 14888-
3: Information technology – Security techniques – Digital signatures with
appendix – Part 3: Discrete logarithm based mechanisms, 2006.

[166] International Organization for Standardization (ISO). ISO/IEC 9594-
8:2008: Information technology – Open Systems Interconnection – The
Directory: Public-key and attribute certificate frameworks, 2008.

[167] International Organization for Standardization (ISO). ISO/IEC 9899:2011
Information technology — Programming languages — C, December 2011.

[168] N. Ivanov and D. Setrakyan. GridGain. http://www.gridgain.com Website
accessed June 20, 2013, 2010.

[169] J. Jang, S. Nepal, and J. Zic. A trust enhanced email application using
trusted computing. In Ubiquitous, Autonomic and Trusted Computing,
2009. UIC-ATC ’09. Symposia and Workshops on, pages 502–507, 2009.

[170] Java Community Process. JCP procedures overview. http://jcp.org/en/
procedures/overview. (N.B. For JSR 321, version 2.6 applied.) Website
accessed November 12, 2012.

[171] Y. Jianhong and P. Xinguang. Protocol for dynamic component-property
attestation in trusted computing. In Networks Security Wireless Commu-
nications and Trusted Computing (NSWCTC), 2010 Second International
Conference on, volume 2, pages 369–372, 2010.

[172] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1. RFC 3447 (Informa-
tional), Feb. 2003.

[173] S. Katzenbeisser, K. Kursawe, and F. Stumpf. Revocation of TPM keys. In
L. Chen, C. Mitchell, and A. Martin, editors, Lecture Notes in Computer
Science, volume 5471, pages 120–132. Springer Berlin Heidelberg, 2009.

[174] B. Kauer. OSLO: improving the security of trusted computing. In SS’07:
Proceedings of 16th USENIX Security Symposium on USENIX Security
Symposium, pages 1–9, Berkeley, CA, USA, 2007. USENIX Association.

http://www.iso.org
http://www.gridgain.com
http://jcp.org/en/procedures/overview
http://jcp.org/en/procedures/overview

172 Bibliography

[175] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard), Dec. 2005. Updated by RFC 6040.

[176] A. Kerckhoffs. La cryptographie militaire. In Journal des sciences mili-
taires, volume IX, 1883.

[177] I. Khan, H. Rehman, and Z. Anwar. Design and deployment of a trusted
eucalyptus cloud. In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 380–387, 2011.

[178] Z. Khattak, S. Sulaiman, and J. Manan. Security, trust and privacy (STP)
framework for federated single sign-on environment. In Information Tech-
nology and Multimedia (ICIM), 2011 International Conference on, pages
1–6, 2011.

[179] J. King-Lacroix and A. Martin. Bottlecap: a credential manager for ca-
pability systems. In Proceedings of the seventh ACM workshop on Scal-
able trusted computing, pages 45–54, Raleigh, North Carolina, USA, 2012.
ACM.

[180] R. Korn, N. Kuntze, and J. Repp. Performance evaluation in trust en-
hanced decentralised content distribution networks. In Communications
Quality and Reliability (CQR), 2011 IEEE International Workshop Tech-
nical Committee on, pages 1–6, 2011.

[181] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board creden-
tials with open provisioning. In Proceedings of the 4th International Sym-
posium on Information, Computer, and Communications Security, ASI-
ACCS ’09, pages 104–115, New York, NY, USA, 2009. ACM.

[182] F. J. Krautheim. Private virtual infrastructure for cloud computing. In
Proceedings of the 2009 conference on Hot topics in cloud computing, pages
5–5. USENIX Association, 2009.

[183] F. J. Krautheim, D. Phatak, and A. Sherman. Introducing the trusted
virtual environment module: A new mechanism for rooting trust in cloud
computing. In A. Acquisti, S. Smith, and A.-R. Sadeghi, editors, Lecture
Notes in Computer Science, volume 6101, pages 211–227. Springer Berlin
Heidelberg, 2010.

[184] S. Kraxberger, R. Toegl, M. Pirker, E. P. Guijarro, and G. G. Millan.
Trusted identity management for overlay networks. In R. H. Deng and
T. Feng, editors, Information Security Practice and Experience. 9th In-
ternational Conference, ISPEC 2013, Lanzhou, China, May 12-14, 2013.
Proceedings, volume 7863 of Lecture Notes in Computer Science, pages
16–30. Springer Berlin Heidelberg, 2013.

[185] U. Kühn, M. Selhorst, and C. Stüble. Realizing property-based attestation
and sealing with commonly available hard- and software. In Proceedings

Bibliography 173

of the 2007 ACM workshop on Scalable Trusted Computing, pages 50–57,
Alexandria, Virginia, USA, 2007. ACM.

[186] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing trusted plat-
form communication. In In: ECRYPT Workshop, CRASH âĂŞ CRyp-
tographic Advances in Secure Hardware, page 8, 2005. http://www.cosic.
esat.kuleuven.be/publications/article-591.pdf Website accessed Octo-
ber 18, 2013.

[187] Laboratoire Spécification et Vérification. SPORE - Security Protocols
Open Repository. http://www.lsv.ens-cachan.fr/Software/spore/index.
html, 2003. Website accessed August 22, 2012.

[188] A. Lackorzynski, T. Frenzel, and M. Roitzsch. D2.6 first initial proof of
concept for trust-enhanced virtualisation system. TECOM Project, 23
June 2009.

[189] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace. RFC 4122 (Proposed Standard), July 2005.

[190] A. H. Y. Leung. Securing Mobile Ubiquitous Services using Trusted Com-
puting. PhD thesis, also published as technical report RHUL-MA-2009-17,
Royal Holloway, University of London, 2009. http://www.ma.rhul.ac.uk/
static/techrep/2009/RHUL-MA-2009-17.pdf.

[191] F. Li, W. Wang, J. Ma, and Z. Ding. Enhanced architecture of TPM.
In Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for, pages 1532–1537, 2008.

[192] J. Liedtke. On micro-kernel construction. SIGOPS Oper. Syst. Rev.,
29(5):237–250, 1995.

[193] A. Lin. Automated analysis of security APIs. Master’s thesis, Mas-
sachusetts Institute of Technology, 2005. http://groups.csail.mit.edu/
cis/theses/amerson-masters.ps.

[194] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual
Machine Specification Java SE 7 Edition. JSR 924, 7 2011. http://docs.
oracle.com/javase/specs/index.html Website accessed November 2, 2012.

[195] F. Lindner. Toying with barcodes. 24th Chaos Communication
Congress, 2007. http://events.ccc.de/congress/2007/Fahrplan/events/

2273.en.html Website accessed October 18, 2013.

[196] P. Lipp, J. Farmer, D. Bratko, W. Platzer, and A. Sterbenz. Sicherheit und
Kryptographie in Java. Addison-Wesley Verlag, 2000. ISBN 3827315670.
In German.

http://www.cosic.esat.kuleuven.be/publications/article-591.pdf
http://www.cosic.esat.kuleuven.be/publications/article-591.pdf
http://www.lsv.ens-cachan.fr/Software/spore/index.html
http://www.lsv.ens-cachan.fr/Software/spore/index.html
http://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-17.pdf
http://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-17.pdf
http://groups.csail.mit.edu/cis/theses/amerson-masters.ps
http://groups.csail.mit.edu/cis/theses/amerson-masters.ps
http://docs.oracle.com/javase/specs/index.html
http://docs.oracle.com/javase/specs/index.html
http://events.ccc.de/congress/2007/Fahrplan/events/2273.en.html
http://events.ccc.de/congress/2007/Fahrplan/events/2273.en.html

174 Bibliography

[197] H. Löhr, H. Ramasamy, A.-R. Sadeghi, S. Schulz, M. Schunter, and
C. Stüble. Enhancing grid security using trusted virtualization. In In
4th International Conference on Autonomic and Trusted Computing (ATC
2007), Hong Kong, China, July 11-13, 2007, Proceedings, volume 4610 of
Lecture Notes in Computer Science, pages 372–384. Springer, 2007.

[198] J. C. López Pimentel and R. Monroy. Formal support to security protocol
development: A survey. ComputaciÃşn y Sistemas, 12:89–108, 2008.

[199] G. Lowe. An attack on the needham-schroeder public-key authentication
protocol. Inf. Process. Lett., 56(3):131–133, 1995.

[200] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol
using FDR. In Proceedings of the Second International Workshop on Tools
and Algorithms for Construction and Analysis of Systems, pages 147–166.
Springer-Verlag, 1996.

[201] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal
of Computer Security, 6(1):53–84, Jan. 1998.

[202] J. Lyle. Trustworthy Services Through Attestation. PhD thesis, University
of Oxford, 2009.

[203] J. Lyle and A. Martin. On the feasibility of remote attestation for web
services. In Proceedings of the 2009 International Conference on Com-
putational Science and Engineering - Volume 03, pages 283–288. IEEE
Computer Society, 2009.

[204] J. Lyle and A. Martin. Trusted computing and provenance: Better to-
gether. In Proceedings of the 2nd conference on Theory and practice of
provenance. USENIX Association, 2010.

[205] R. MacDonald, S. Smith, J. Marchesini, and O. Wild. Bear: An Open-
Source Virtual Secure Coprocessor based on TCPA. Technical Report
TR2003-471, Dartmouth College, 2003.

[206] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing
the Secrets of Smart Cards. Springer, 2007. ISBN 978-0-387-30857-9.

[207] W. Mao. Modern Cryptography - Theory and Practice. Prentice Hall, 1
edition, 2004. ISBN 0-13-066943-1.

[208] W. Mao, A. Martin, H. Jin, and H. Zhang. Innovations for grid security
from trusted computing. In B. Christianson, B. Crispo, J. A. Malcolm, and
M. Roe, editors, Security Protocols. 14th International Workshop, Cam-
bridge, UK, March 27-29, 2006, Revised Selected Papers, volume 5087 of
Lecture Notes in Computer Science, pages 132–149. Springer-Verlag Berlin,
Heidelberg, 2009.

Bibliography 175

[209] J. Marchesini, S. Smith, O. Wild, and R. MacDonald. Experimenting with
TCPA/TCG Hardware, Or: How I Learned to Stop Worrying and Love
The Bear. Technical report, Department of Computer Science/Dartmouth
PKI Lab, Dartmouth College, 2003.

[210] P. Marks. Dot-dash-diss: The gentleman hacker’s 1903 lulz. NewScientist,
2844, 2011.

[211] A. Martin. The ten page introduction to trusted computing. Technical
Report RR-08-11, OUCL, December 2008.

[212] T. Mather, S. Kumaraswamy, and S. Latif. Cloud Security and Privacy:
An Enterprise Perspective on Risks and Compliance. O’Reilly, 2009. ISBN:
978-0-596-80276-9.

[213] J. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
TrustVisor: Efficient TCB reduction and attestation. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2010.

[214] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: an
execution infrastructure for TCBminimization. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2008,
pages 315–328, Glasgow, Scotland UK, 2008. ACM.

[215] J. McCune, A. Perrig, and M. Reiter. Seeing-is-believing: using camera
phones for human-verifiable authentication. In Security and Privacy, 2005
IEEE Symposium on, pages 110–124, 2005.

[216] J. McCune, A. Perrig, A. Seshadri, and L. van Doorn. Turtles all the way
down: Research challenges in user-based attestation. In Proceedings of the
Workshop on Hot Topics in Security (HotSec), August 2007.

[217] C. Meadows. Formal verification of cryptographic protocols: A survey. In
Proceedings of the 4th International Conference on the Theory and Appli-
cations of Cryptology: Advances in Cryptology, pages 135–150. Springer-
Verlag, 1995.

[218] C. Meadows. The NRL protocol analyzer: An overview. The Journal of
Logic Programming, 26(2):113–131, Feb. 1996.

[219] C. Meadows. Formal methods for cryptographic protocol analysis: emerg-
ing issues and trends. Selected Areas in Communications, IEEE Journal
on, 21(1):44–54, 2003.

[220] A. J. Menezes, S. A. Vanstone, and P. C. van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., 1996.

[221] Merriam-Webster. On-line dictionary. http://www.merriam-
webster.com/. Website accessed March 8, 2012.

176 Bibliography

[222] Microsoft Developer Network. Overview of the .NET framework. http:
//msdn.microsoft.com/en-us/library/zw4w595w.aspx. Website accessed
November 1, 2012.

[223] Microsoft Developer Network. TPM Base Services. http://msdn.

microsoft.com/en-us/library/aa446796(VS.85).aspx. Website accessed
October 30, 2012.

[224] J. Millen, S. C. Clark, and S. B. Freeman. The interrogator: Protocol
security analysis. IEEE Trans. Softw. Eng., 13(2):274–288, 1987.

[225] Miniwatts Marketing Group. Internet world stats. http://www.

internetworldstats.com/stats.htm, 2012. Website accessed March 8, 2012.

[226] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-
graphic protocols using Murphi. Security and Privacy, 1997. Proc., 1997
IEEE Symposium on, pages 141–151, May 1997.

[227] S. Mödersheim. Abstraction by set-membership: verifying security proto-
cols and web services with databases. In Proceedings of the 17th ACM
conference on Computer and communications security, pages 351–360,
Chicago, Illinois, USA, 2010. ACM.

[228] S. Mödersheim and L. Viganò. The open-source fixed-point model checker
for symbolic analysis of security protocols. In A. Aldini, G. Barthe, and
R. Gorrieri, editors, Foundations of Security Analysis and Design V, Lec-
ture Notes in Computer Science, pages 166–194. Springer-Verlag, 2009.

[229] G. E. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics, 38(8):114–117, Apr. 1965.

[230] J. Munilla and A. Peinado. Distance bounding protocols for rfid enhanced
by using void-challenges and analysis in noisy channels. Wirel. Commun.
Mob. Comput., 8(9):1227–1232, 2008.

[231] National Bureau of Standards. Data Encryption Standard. FIPS-Pub.46.,
1 1977.

[232] National Institute of Standards and Technology (NIST). Secure hash stan-
dard. FIPS PUB 180-1, 4 1995.

[233] National Institute of Standards and Technology (NIST). FIPS-186-2: Dig-
ital Signature Standard (DSS), January 2000.

[234] National Institute of Standards and Technology (NIST). FIPS-197: AD-
VANCED ENCRYPTION STANDARD (AES), November 2001.

[235] National Institute of Standards and Technology (NIST). Security require-
ments for cryptographic modules. FIPS PUB 140-3, 9 2009. Draft.

http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/aa446796(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa446796(VS.85).aspx
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

Bibliography 177

[236] R. Needham and M. D. Schroeder. Using encryption for authentication in
large networks of computers. Commun. ACM, 21(12):993–999, 1978.

[237] NFC Forum. NFC Forum Type 4 Tag Operation - Technical Specification,
March 2007.

[238] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[239] Open TC Consortium. The Open Trusted Computing project
(Open TC). Currently available only through http://web.archive.org/
web/20110723233118/http://www.opentc.net/, 2005-2009. Archived website
accessed October 30, 2012.

[240] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a remote
terminal application with a mobile trusted device. In Proceedings of the
20th Annual Computer Security Applications Conference, pages 438–447.
IEEE Computer Society, 2004.

[241] OPSWAT. Security industry market share analysis. Technical report,
OPSWAT Inc., June 2011.

[242] Oracle. Java Native Interface Specification. http://docs.oracle.com/

javase/6/docs/technotes/guides/jni/spec/jniTOC.html Website accessed
August 23, 2013, 2011.

[243] Oracle. About Java. http://www.java.com/en/about/, 2012. Website ac-
cessed November 14, 2012.

[244] OSI. Information Technology — Open Systems Interconnection — Basic
Reference Model: The Basic Model. ISO/IEC 7498-1:1994, ISO, Geneva,
Switzerland, Nov. 1994.

[245] A. T. Othman, S. Khan, M. Nauman, and S. Musa. Towards a high-level
trusted computing API for android software stack. In Proceedings of the
7th International Conference on Ubiquitous Information Management and
Communication, pages 1–9, Kota Kinabalu, Malaysia, 2013. ACM.

[246] B. Parno. Bootstrapping trust in a ”trusted” platform. In Proceedings
of the 3rd conference on Hot topics in security, pages 1–6, San Jose, CA,
2008. USENIX Association.

[247] B. Parno, J. Lorch, J. Douceur, J. Mickens, and J. McCune. Memoir:
Practical state continuity for protected modules. In Security and Privacy
(SP), 2011 IEEE Symposium on, pages 379–394, 2011.

[248] B. Parno, J. McCune, and A. Perrig. Bootstrapping Trust in Modern
Computers. Springer Publishing Company, Incorporated, 2011.

http://web.archive.org/web/20110723233118/http://www.opentc.net/
http://web.archive.org/web/20110723233118/http://www.opentc.net/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html
http://www.java.com/en/about/

178 Bibliography

[249] L. C. Paulson. The inductive approach to verifying cryptographic proto-
cols. J. Comput. Secur., 6(1-2):85–128, 1998.

[250] S. Pearson, M. Mont, and S. Crane. Persistent and dynamic trust: Anal-
ysis and the related impact of trusted platforms: Trust management. In
P. Herrmann, V. Issarny, and S. Shiu, editors, Trust Management, Third
International Conference, iTrust 2005, Paris, France, May 23-26, 2005.
Proceedings, volume 3477 of Lecture Notes in Computer Science, pages
407–412. Springer Berlin / Heidelberg, 2005.

[251] B. Pfitzmann, J. Riordan, C. Stueble, M. Waidner, and A. Weber. The
perseus system architecture. Technical Report RZ 3335 (#93381), IBM
Research Division, 2001.

[252] M. Pirker and R. Toegl. Sichere Softwaremodule durch Einsatz von Virtu-
alisierung und Trusted Computing. In W. Seböck and E. Huber, editors,
Tagungsband der 7. Information Security Konferenz. Österreichische Com-
puter Gesellschaft, 2009. ISBN 978-3-85403-257-1. In German.

[253] M. Pirker and R. Toegl. Towards a virtual trusted platform. Journal of
Universal Computer Science, 16(4):531–542, 2010. http://www.jucs.org/
jucs_16_4/towards_a_virtual_trusted.

[254] M. Pirker, R. Toegl, and M. Gissing. Dynamic enforcement of platform
integrity (a short paper). In A. Acquisti, S. Smith, and A.-R. Sadeghi, ed-
itors, Trust ’10: Proceedings of the 3rd International Conference on Trust
and Trustworthy Computing, volume 6101 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2010.

[255] M. Pirker, R. Toegl, D. Hein, and P. Danner. A PrivacyCA for anonymity
and trust. In L. Chen, C. J. Mitchell, and A. Martin, editors, TRUST
2009: Proceedings of the 2nd International Conference on Trusted Com-
puting, volume 5471 of Lecture Notes in Computer Science, pages 101–119.
Springer Berlin / Heidelberg, 2009.

[256] M. Pirker, R. Toegl, and G. Lindsberger. acTvSM Deliverable 2.1: Require-
ments Specification Report. Technical report, Graz University of Technol-
ogy, 2010.

[257] M. Pirker, R. Toegl, and A. Niederl. acTvSM Deliverable 3.1: Virtual Plat-
form Prototype. Technical report, Graz University of Technology, 2010.

[258] M. Pirker, R. Toegl, T. Winkler, and T. Vejda. Trusted computing for the
Java™ platform, 2009. Website accessed January 29, 2013.

[259] M. Pirker, J. Winter, and R. Toegl. Lightweight distributed attestation
for the cloud. In F. Leymann, I. Ivanov, M. van Sinderen, and T. Shan,
editors, CLOSER, pages 580–585. SciTePress, 2012.

http://www.jucs.org/jucs_16_4/towards_a_virtual_trusted
http://www.jucs.org/jucs_16_4/towards_a_virtual_trusted

Bibliography 179

[260] M. Pirker, J. Winter, and R. Toegl. Lightweight distributed heteroge-
neous attested android clouds. In S. Katzenbeisser, E. Weippl, L. Camp,
M. Volkamer, M. Reiter, and X. Zhang, editors, Lecture Notes in Com-
puter Science, volume 7344, pages 122–141. Springer Berlin Heidelberg,
2012.

[261] S. Podesser. Trust in distributed networks. Master’s thesis, Graz Univer-
sity of Technology, 2012.

[262] S. Podesser and R. Toegl. A software architecture for introducing trust in
Java-based clouds. In J. Park, J. Lopez, S.-S. Yeo, T. Shon, and D. Taniar,
editors, Communications in Computer and Information Science, volume
186, pages 45–53. Springer Berlin Heidelberg, 2011.

[263] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable
third generation architectures. Commun. ACM, 17(7):412–421, 1974.

[264] J. Poritz. Trust[ed in] computing, signed code and the heat death of the in-
ternet. In Proceedings of the 2006 ACM symposium on Applied computing,
pages 1855–1859, Dijon, France, 2006. ACM.

[265] J. Poritz, M. Schunter, E. Herreweghen, and M. Waidner. Property attes-
tation: Scalable and privacy-friendly security assessment of peer comput-
ers. Technical report, IBM Research, 2004.

[266] U. W. Ravi Sahita and P. Dewan. Dynamic software application protec-
tion. Technical report, Intel Corporation, 2009.

[267] J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji. Detecting relay attacks
with timing-based protocols. In Proceedings of the 2nd ACM symposium
on Information, computer and communications security, pages 204–213,
Singapore, 2007. ACM.

[268] F. Reimair. Trusted virtual security module - design and implementation.
Master’s thesis, Graz, University of Technology, 2011.

[269] F. Reimair and R. Toegl. acTvSM Deliverable 5.1: TvSM Prototype.
Technical report, Graz University of Technology, 2011.

[270] A. Reiter, G. Neubauer, M. Kapfenberger, J. Winter, and K. Dietrich.
Seamless integration of trusted computing into standard cryptographic
frameworks. In Proceedings of the Second international conference on
Trusted Systems, pages 1–25, Beijing, China, 2011. Springer-Verlag.

[271] H. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[272] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

180 Bibliography

[273] V. Roubtsov. EMMA User Guide, 2006. http://emma.sourceforge.net/
userguide/userguide.htmlWebsite accessed November 9, 2012.

[274] D. Rousseau, S. Sitkin, R. Burt, and C. Camerer. Not so different after
all: a cross-discipline view of trust. Academy of Management Review,
23(3):393–404, July 1998.

[275] RSA Laboratories. PKCS #11 v2.20: Cryptographic Token Inter-
face Standard. RSA Security Inc. Public-Key Cryptography Standards
(PKCS), June 2004. ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/
pkcs-11v2-20.pdf Website accessed January 29, 2013.

[276] J. Rushby. Design and verification of secure systems. ACM Operating
Systems Review, 15(5):12–21, 12 1981.

[277] M. Ryan. Cloud computing privacy concerns on our doorstep. Commun.
ACM, 54(1):36–38, 2011.

[278] A.-R. Sadeghi and C. Stüble. Property-based attestation for computing
platforms: Caring about properties, not mechanisms. In Proceedings of
the 2004 Workshop on New Security Paradigms, NSPW ’04, pages 67–77,
New York, NY, USA, 2004. ACM.

[279] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementa-
tion of a TCG-based integrity measurement architecture. In Proceedings of
the 13th conference on USENIX Security Symposium - Volume 13, pages
16–16, San Diego, CA, 2004. USENIX Association.

[280] J. H. Saltzer and M. D. Schroeder. The protection of information in com-
puter systems. Proc. IEEE, 63(9):1278–1308, 1975.

[281] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted cloud
computing. In Proceedings of the 2009 conference on Hot topics in cloud
computing, pages 3–3. USENIX, 2009. https://www.usenix.org/legacy/
event/hotcloud09/tech/ Website accessed June 24, 2013.

[282] L. Sarmenta, J. Rhodes, and T. Müller. TPM/J Java-based API for
the Trusted Platform Module. http://projects.csail.mit.edu/tc/tpmj/,
4 2007. Website accessed October 30, 2012.

[283] L. Sarmenta, M. van Dijk, C. O’Donnell, J. Rhodes, and S. Devadas. Vir-
tual monotonic counters and count-limited objects using a TPM without
a trusted OS. In STC ’06: Proceedings of the first ACM workshop on
Scalable trusted computing, pages 27–42. ACM, 2006.

[284] V. Scarlata, C. Rozas, M. Wiseman, D. Grawrock, and C. Vishik. TPM vir-
tualization: Building a general framework. In N. Pohlmann and H. Reimer,
editors, Trusted Computing, pages 43–56. Vieweg+Teubner, 2008.

http://emma.sourceforge.net/userguide/userguide.html
http://emma.sourceforge.net/userguide/userguide.html
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
https://www.usenix.org/legacy/event/hotcloud09/tech/
https://www.usenix.org/legacy/event/hotcloud09/tech/
http://projects.csail.mit.edu/tc/tpmj/

Bibliography 181

[285] R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE DOI
- 10.1109/6.591665, 34(6):52–59, 1997.

[286] J. Schiffman, T. Moyer, C. Shal, T. Jaeger, and P. McDaniel. Justifying
integrity using a virtual machine verifier. In ACSAC ’09: Proceedings of
the 2009 Annual Computer Security Applications Conference, pages 83–92,
Washington, DC, USA, 2009. IEEE Computer Society.

[287] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel.
Seeding clouds with trust anchors. In Proceedings of the 2010 ACM work-
shop on Cloud computing security workshop, pages 43–46, Chicago, Illinois,
USA, 2010. ACM.

[288] M. Schlüter. Realisierung einer mobilen, vertrauenswürdigen Geschäft-
splattform auf Basis von Trusted Computing zur gesicherten Datenerfas-
sung. Master’s thesis, Technischen Hochschule Mittelhessen, 2012. In
German.

[289] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of
diffie-hellman protocols and advanced security properties. In Computer
Security Foundations Symposium (CSF), 2012 IEEE 25th, pages 78–94,
2012.

[290] I. Schnepp, S. Panenka, and M. Richard-Foy. JSR 321 feed-back from
TECOM-FP7âĂŹs implementation. Technical report, Atego, 2010. Rev.
2.1.

[291] M. Selhorst, C. Stueble, and F. Teerkorn. TSS Study. Study on behalf of
the german federal office for information security (BSI), Sirrix AG security
technologies, May 2008. http://www.sirrix.com/media/downloads/57653.
pdf,download Website accessed November 1, 2012.

[292] P. E. Sevinç, M. Strasser, and D. Basin. Securing the distribution and
storage of secrets with trusted platform modules. In Proceedings of the 1st
IFIP TC6 /WG8.8 /WG11.2 international conference on Information se-
curity theory and practices: smart cards, mobile and ubiquitous computing
systems, pages 53–66, Heraklion, Crete, Greece, 2007. Springer-Verlag.

[293] R. Sharp, J. Scott, and A. R. Beresford. Secure mobile computing via pub-
lic terminals. In Proceedings of the 4th international conference on Perva-
sive Computing, pages 238–253, Dublin, Ireland, 2006. Springer-Verlag.

[294] Z. Shen, L. Li, F. Yan, and X. Wu. Cloud computing system based on
trusted computing platform. In Intelligent Computation Technology and
Automation (ICICTA), 2010 International Conference on, volume 1, pages
942–945, 2010.

[295] E. Shi, A. Perrig, and L. van Doorn. BIND: a fine-grained attestation ser-
vice for secure distributed systems. In 2005 IEEE Symposium on Security
and Privacy, pages 154–168, 2005.

http://www.sirrix.com/media/downloads/57653.pdf,download
http://www.sirrix.com/media/downloads/57653.pdf,download

182 Bibliography

[296] R. Shim, T. Mainelli, B. O’Donnell, C. Chute, F. Pulskamp, and S. Rau.
Worldwide interfaces and technologies embedded in PCs 2010-âĂŞ2014
forecast. Technical report, IDC, 2010.

[297] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB com-
plexity for security-sensitive applications: three case studies. In EuroSys
’06: Proceedings of the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, pages 161–174, New York, NY, USA, 2006. ACM.

[298] N. Smart. Cryptography, An Introduction. Published by the author at
http://www.cs.bris.ac.uk/˜nigel/Crypto_Book/ Website accessed August
21, 2013., 3rd edition, 2013.

[299] M. Smith, T. Friese, M. Engel, and B. Freisleben. Countering secu-
rity threats in service-oriented on-demand grid computing using sand-
boxing and trusted computing techniques. J. Parallel Distrib. Comput.,
66(9):1189–1204, 2006.

[300] S. Smith. Trusted Computing Platforms: Design and Applications.
Springer Verlag, 2005.

[301] S. Smith and S. Weingart. Building a high-performance, programmable
secure coprocessor. Comput. Netw., 31:831–860, April 1999.

[302] D. X. Song. Athena: a new efficient automatic checker for security protocol
analysis. In Computer Security Foundations Workshop, 1999. Proceedings
of the 12th IEEE, pages 192–202, 1999.

[303] E. Sparks. TPM reset attack. http://www.cs.dartmouth.edu/˜pkilab/

sparks/ Website accessed August 23, 2013, 2007.

[304] D. A. Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, D. J.
Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Pi-
ani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe, and M. R. Allen.
Uncertainty in predictions of the climate response to rising levels of green-
house gases. Nature, 433(7024):403–406, Jan. 2005.

[305] L. Sterling and E. Shapiro. The art of Prolog (2nd ed.): advanced pro-
gramming techniques. MIT Press, 1994.

[306] C. Strachey. Time sharing in large, fast computers. In IFIP Congress,
1959.

[307] M. Strasser and H. Stamer. A software-based trusted platform module
emulator. In P. Lipp, A.-R. Sadeghi, and K.-M. Koch, editors, Lecture
Notes in Computer Science, volume 4968, pages 33–47. Springer Berlin
Heidelberg, 2008.

[308] C. Stueble and A. Zaerin. µTSS - a simplified trusted software stack. In
Proc. 3rd International Conference on Trust and Trustworthy Computing
(TRUST 2010), number 6101 in LNCS. Springer Verlag, 2010.

http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.cs.dartmouth.edu/~pkilab/sparks/

Bibliography 183

[309] C. Stueble and A. Zaerin. µTSS - a simplified trusted software stack.
Technical report, Sirrix AG, 2010.

[310] F. Stumpf, M. Benz, M. Hermanowski, and C. Eckert. An approach to a
trustworthy system architecture using virtualization. In B. Xiao, L. Yang,
J. Ma, C. Muller-Schloer, and Y. Hua, editors, Lecture Notes in Computer
Science, volume 4610, pages 191–202–. Springer Berlin Heidelberg, 2007.

[311] F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert. A robust integrity
reporting protocol for remote attestation. In Proceedings of the Second
Workshop on Advances in Trusted Computing, 2006.

[312] Sun Microsystems. TCK Project Planning and Development
Guide. http://docs.oracle.com/javame/test-tools/jctt/tck_project_

planning_guide.pdf, 8 2003. Website accessed November 9, 2012.

[313] P. Syverson. A taxonomy of replay attacks [cryptographic protocols]. In
Computer Security Foundations Workshop VII, 1994. CSFW 7. Proceed-
ings, pages 187–191, 1994.

[314] T. Tanveer, M. Alam, and M. Nauman. Scalable remote attestation with
privacy protection. In L. Chen and M. Yung, editors, Lecture Notes in
Computer Science, volume 6163, pages 73–87. Springer Berlin Heidelberg,
2010.

[315] C. Tarnovsky. Hacking the smartcard chip. http://www.blackhat.com/
html/bh-dc-10/bh-dc-10-archives.html, 2010.

[316] TECOM Consortium. Trusted Embedded Computing project
(TECOM). Currently available only through http://web.archive.

org/web/20100625044259/http://www.tecom-project.eu/, 2008-2010.
Website accessed November 9, 2012.

[317] The Trusted Computing Platform Alliance. Building a foundation of trust
in the pc. TCPA, 1 2000. http://perso.telecom-paristech.fr/˜guilley/
enseignement/projets/crypto_ethique/tcpa/TCPA_first_WP.pdf Website
accessed October 18, 2013.

[318] K. Thompson. Reflections on trusting trust. Communications of the ACM,
27:761–763, 1984.

[319] R. Toegl. OpenTC WP3 Report: Java-API Standardization. Technical Re-
port D03.d7, Graz University of Technology, 2009. www.opentc.netWebsite
accessed March 13, 2013.

[320] R. Toegl. Tagging the turtle: Local attestation for kiosk computing. In
J. H. Park, H.-H. Chen, M. Atiquzzaman, C. Lee, T.-H. Kim, and S.-
S. Yeo, editors, Advances in Information Security and Assurance, volume
5576 of Lecture Notes in Computer Science, pages 60–69. Springer Berlin
/ Heidelberg, 2009.

http://docs.oracle.com/javame/test-tools/jctt/tck_project_planning_guide.pdf
http://docs.oracle.com/javame/test-tools/jctt/tck_project_planning_guide.pdf
http://www.blackhat.com/html/bh-dc-10/bh-dc-10-archives.html
http://www.blackhat.com/html/bh-dc-10/bh-dc-10-archives.html
http://web.archive.org/web/20100625044259/http://www.tecom-project.eu/
http://web.archive.org/web/20100625044259/http://www.tecom-project.eu/
http://perso.telecom-paristech.fr/~guilley/enseignement/projets/crypto_ethique/tcpa/TCPA_first_WP.pdf
http://perso.telecom-paristech.fr/~guilley/enseignement/projets/crypto_ethique/tcpa/TCPA_first_WP.pdf
www.opentc.net

184 Bibliography

[321] R. Toegl. acTvSM Deliverable 4.1.1: API Analysis Scope. Technical report,
Graz University of Technology, 2010.

[322] R. Toegl. acTvSM Deliverable 4.3: Verification Report. Technical report,
Graz University of Technology, 2011.

[323] R. Toegl. Verification of a trusted virtual security module. In M. Bond,
R. Focardi, F. Sibylle, and G. Steel, editors, Analysis of Security APIs
(Dagstuhl Seminar 12482), Dagstuhl Reports, page 166. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2013. Abstract.

[324] R. Toegl, U. Birnbacher, and O. Koudelka. Deploying IP telephony over
satellite links. In Wireless Communication Systems, 2005. 2nd Interna-
tional Symposium on, pages 624–628, 2005.

[325] R. Toegl, G. Hofferek, K. Greimel, A. H. Y. Leung, R.-W. Phan, and
R. Bloem. Formal analysis of a TPM-based secrets distribution and stor-
age scheme. In Proceedings TRUSTCOM 2008, in: Young Computer Sci-
entists, 2008. ICYCS 2008. The 9th International Conference for, pages
2289–2294. IEEE Computer Society, 2008.

[326] R. Toegl and M. Hutter. An approach to introducing locality in remote
attestation using near field communications. The Journal of Supercomput-
ing, 55(2):207–227, 2011.

[327] R. Toegl, P. Lipp, J. Nisewanger, D. D. Rao, T. Winkler, W. Keil, T. Hong,
M. Nauman, B. Gungoren, and K. M. Graf. JSR 321 Trusted Computing
API for Java. Java Community Process Specification Final Release http:
//jcp.org/en/jsr/detail?id=321, 12 2011. Java Specification Request #
321. Website accessed October 31, 2012.

[328] R. Toegl, C. Parraga Niebla, and U. Birnbacher. Framing efficiency opti-
mization for DVB-S2 systems. In Global Telecommunications Conference,
2006. GLOBECOM ’06. IEEE, 2006.

[329] R. Toegl, C. Parraga Niebla, and U. Birnbacher. Framing efficiency opti-
mization for DVB-S2 systems with QoS guarantees. In Ka-band Confer-
ence 2006. Ka and Broadband Communications Conference, Proceedings,
Naples, Italy, 2006.

[330] R. Toegl and M. Pirker. An ongoing game of Tetris: Integrating trusted
computing in Java, block-by-block. In D. Grawrock, H. Reimer, A.-R.
Sadeghi, and C. Vishik, editors, Future of Trust in Computing, pages 60–
67. Vieweg+Teubner, 2009.

[331] R. Toegl, M. Pirker, R. Bloem, G. Lindsberger, and S. Posch. acTvSM
Deliverable 6.1: Business Model and Product Roadmap. Technical report,
Graz University of Technology, 2011.

http://jcp.org/en/jsr/detail?id=321
http://jcp.org/en/jsr/detail?id=321

Bibliography 185

[332] R. Toegl, M. Pirker, and G. Fliess. acTvSM Deliverable 4.1: Draft API
Design. Technical report, Graz University of Technology, 2010.

[333] R. Toegl, M. Pirker, and M. Gissing. acTvSM: A dynamic virtualization
platform for enforcement of application integrity. In L. Chen and M. Yung,
editors, Trusted Systems, volume 6802 of Lecture Notes in Computer Sci-
ence, pages 326–345. Springer Berlin / Heidelberg, 2011.

[334] R. Toegl, M. Pirker, A. Niederl, and M. Gissing. acTvSM Deliverable 3.2:
Virtual Trusted Platform Prototype. Technical report, Graz University of
Technology, 2010.

[335] R. Toegl and F. Reimair. acTvSM Deliverable 4.2: Revised API Design.
Technical report, Graz University of Technology, 2011.

[336] R. Toegl, F. Reimair, and M. Pirker. Waltzing the Bear, or: A trusted
virtual security module. In S. Capitani di Vimercati and C. Mitchell, edi-
tors, Public Key Infrastructures, Services and Applications, 9th European
Workshop, EuroPKI 2012, Pisa, Italy, September 2012, Revised Selected
Papers, volume 7868 of Lecture Notes in Computer Science, pages 145–160.
Springer Berlin Heidelberg, 2013.

[337] R. Toegl and M. Steurer. Open TC WP3 report: Java API and library
implementation. Technical Report D03.d5, Graz University of Technology,
2008. www.opentc.net Website accessed March 13, 2013.

[338] R. Toegl, T. Winkler, M. Nauman, and T. Hong. Towards platform-
independent trusted computing. In Proceedings of the 2009 ACM workshop
on Scalable Trusted Computing, pages 61–66, Chicago, Illinois, USA, 2009.
ACM.

[339] R. Toegl, T. Winkler, M. Nauman, and T. W. Hong. Specification and
Standardization of a Java Trusted Computing API. Softw. Pract. Exper.,
42(8):945–965, 2012.

[340] R. Toegl, T. Winkler, M. Pirker, M. Steurer, and R. Stoegbuchner. IAIK
Java TCG Software Stack - jTSS API Tutorial. http://trustedjava.sf.
net, 2011. Website accessed November 14, 2012.

[341] R. Toegl, J. Winter, and M. Pirker. A path towards ubiquitous protection
of media. In J. Lyle, S. Faily, and M. Winandy, editors, Proceedings of
the Workshop on Web Applications and Secure Hardware (WASH), Co-
located with the 6th International Conference on Trust and Trustworthy
Computing (TRUST 2013), volume 1011 of CEUR Workshop Proceedings,
pages 32–38, London, United Kingdom, 6 2013. Sun SITE Central Europe,
RWTH Aachen University. Position Paper.

[342] Trusted Computing Group. TCG Software Stack (TSS) Specification
Version 1.2 Level 1 Errata A. http://www.trustedcomputinggroup.org/

www.opentc.net
http://trustedjava.sf.net
http://trustedjava.sf.net
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification

186 Bibliography

resources/tcg_software_stack_tss_specification, 3 2007. Website ac-
cessed January 29, 2013.

[343] Trusted Computing Group. TCG Mobile Trusted Module Specifica-
tion version 1.0 revision 7.02. http://www.trustedcomputinggroup.org/

developers/mobile/specifications, 4 2010. Website accessed January 29,
2013.

[344] Trusted Computing Group. TCG PC Client Specific TPM In-
terface Specification (TIS) specification version 1.21 revision 1.00.
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_

pc_client_specific_tpm_interface_specification_tis, 4 2011. Website
accessed January 29, 2013.

[345] Trusted Computing Group. TCG TPM specification version 1.2 re-
vision 116. http://www.trustedcomputinggroup.org/resources/tpm_main_
specification, 3 2011. Website accessed January 29, 2013.

[346] Trusted Computing Group. TCG Website. https://www.

trustedcomputinggroup.org/, 2013. Website accessed October 30,
2012.

[347] Y.-J. Tu and S. Piramuthu. RFID distance bounding protocols. In
First International EURASIP Workshop on RFID Technology, 2007.
http://www.eurasip.org/Proceedings/Ext/RFID2007/pdf/s5p2.pdf Website
accessed October 18, 2013.

[348] J. Tygar and B. Yee. Dyad: A system for using physically secure co-
processors. In Technological Strategies for the Protection of Intellectual
Property in the Networked Multimedia Environment, pages 121–152. In-
teractive Multimedia Association, 1994.

[349] R. van Rijswijk-Deij and E. Poll. Using trusted execution environment in
two-factor authentication: comparing approaches. In Open Identity Sum-
mit 2013 (OID2013), Kloster Banz, Germany, September 2013. Accepted
for publication. Draft available from http://www.cs.ru.nl/˜rijswijk/pub/
TrEE-oids13.pdf.

[350] A. Vasudevan, J. McCune, N. Qu, L. van Doorn, and A. Perrig. Require-
ments for an Integrity-Protected Hypervisor on the x86 Hardware Virtu-
alized Architecture. In A. Acquisti, S. Smith, and A.-R. Sadeghi, editors,
Proceedings of the 3rd International Conference on Trust and Trustwor-
thy Computing (Trust 2010), volume 6101 of Lecture Notes in Computer
Science. Springer-Verlag Berlin Heidelberg, June 2010.

[351] A. Vasudevan, B. Parno, N. Qu, V. Gligor, and A. Perrig. Lockdown:
Towards a safe and practical architecture for security applications on com-
modity platforms. In TRUST, volume 7344 of Lecture Notes in Computer
Science, pages 34–54. Springer, 2012.

http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/developers/mobile/specifications
http://www.trustedcomputinggroup.org/developers/mobile/specifications
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/
http://www.eurasip.org/Proceedings/Ext/RFID2007/pdf/s5p2.pdf
http://www.cs.ru.nl/~rijswijk/pub/TrEE-oids13.pdf
http://www.cs.ru.nl/~rijswijk/pub/TrEE-oids13.pdf

Bibliography 187

[352] S. Vaughan-Nichols. How trustworthy is trusted computing? Computer,
36(3):18–20, 2003. IEEE.

[353] T. Vejda, R. Toegl, M. Pirker, and T. Winkler. Towards trust services
for language-based virtual machines for grid computing. In P. Lipp, A.-
R. Sadeghi, and K.-M. Koch, editors, Trusted Computing âĂŞ Challenges
and Applications First International Conference on Trusted Computing
and Trust in Information Technologies, TRUST 2008 Villach, Austria,
March 11-12, 2008 Proceedings, volume 4968 of Lecture Notes in Computer
Science. Springer Verlag, 2008.

[354] C. Vishik, A. Rajan, C. Ramming, D. Grawrock, and J. Walker. Defining
trust evidence: research directions. In Proceedings of the Seventh Annual
Workshop on Cyber Security and Information Intelligence Research, pages
1–1, Oak Ridge, Tennessee, 2011. ACM.

[355] W3C XML Protocol Working Group. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation, W3C, 2007.

[356] C. Wachsmann, L. Chen, K. Dietrich, H. Löhr, A.-R. Sadeghi, and J. Win-
ter. Lightweight anonymous authentication with tls and daa for embedded
mobile devices. In M. Burmester, G. Tsudik, S. Magliveras, and I. Ilic, ed-
itors, Information Security, volume 6531 of Lecture Notes in Computer
Science, pages 84–98. Springer Berlin / Heidelberg, 2011.

[357] D. Wallom, M. Turilli, G. Taylor, N. Hargreaves, A. Martin, A. Raun, and
A. McMoran. mytrustedcloud: Trusted cloud infrastructure for security-
critical computation and data managment. In Cloud Computing Technol-
ogy and Science (CloudCom), 2011 IEEE Third International Conference
on, pages 247–254, 2011.

[358] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In
V. Shoup, editor, Lecture Notes in Computer Science, volume 3621, pages
17–36. Springer Berlin Heidelberg, 2005.

[359] R. Want. Near field communication. Pervasive Computing, IEEE, 10(3):4–
7, 2011.

[360] T. Winkler and B. Rinner. User-based attestation for trustworthy visual
sensor networks. In Sensor Networks, Ubiquitous, and Trustworthy Com-
puting (SUTC), 2010 IEEE International Conference on, pages 74–81,
2010.

[361] J. Winter. Trusted computing building blocks for embedded linux-based
ARM TrustZone platforms. In Proceedings of the 3rd ACM workshop
on Scalable Trusted Computing, pages 21–30, Alexandria, Virginia, USA,
2008. ACM.

188 Bibliography

[362] J. Winter and K. Dietrich. A hijacker’s guide to the LPC bus. In
S. Petkova-Nikova, A. Pashalidis, and G. Pernul, editors, EuroPKI, vol-
ume 7163 of Lecture Notes in Computer Science, pages 176–193. Springer,
2011.

[363] J. Winter and K. Dietrich. A hijackerâĂŹs guide to communication in-
terfaces of the trusted platform module. Computers & Mathematics with
Applications, 65(5):748–761, Mar. 2013.

[364] J. Winter, P. Wiegele, M. Pirker, and R. Toegl. A flexible software develop-
ment and emulation framework for ARM TrustZone. In Proceedings of the
Third international conference on Trusted Systems, pages 1–15, Beijing,
China, 2012. Springer-Verlag.

[365] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted Execution Tech-
nology. Technical report, Invisible Things Lab, 2009.

[366] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way to circum-
vent Intel Trusted Execution Technology technology: Tricking SENTER
into misconfiguring VT-d via SINIT bug exploitation. Technical report,
Invisible Things Lab, 2009.

[367] W. Xingkui and P. Xinguang. The trusted computing environment con-
struction based on jTSS. In Mechatronic Science, Electric Engineering and
Computer (MEC), 2011 International Conference on, pages 2252–2256.
IEEE, 2011.

[368] P. Xinguang and J. Wei. Filter-based trusted remote attestation for web
services. In Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on, volume 3, pages 5–9, 7 2010.

[369] J. Yan and X. Peng. Security strategy of DRM based on trusted computing.
Journal of Computational Information Systems, 9(7):3226–3234, 2011.

[370] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture.
RFC 4251 (Proposed Standard), Jan. 2006.

[371] P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. L. Rivest,
and R. Anderson. Robbing the bank with a theorem prover. Technical
report, University of Cambridge, 2005.

[372] Y. M. Yussoff and H. Hashim. Trusted wireless sensor node platform. In
S. I. Ao, L. Gelman, D. W. Hukins, A. Hunter, and A. M. Korsunsky, edi-
tors, Proceedings of the World Congress on Engineering 2010 Vol I, WCE
’10, June 30 - July 2, 2010, London, U.K., Lecture Notes in Engineer-
ing and Computer Science, pages 774–779. International Association of
Engineers, Newswood Limited, 2010.

Bibliography 189

[373] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications,
1(1):7–18–, 2010.

[374] Y. Zhang, C. Wang, J. Wu, and X. Li. Using SMV for cryptographic
protocol analysis: a case study. SIGOPS Oper. Syst. Rev., pages 43–50,
2001.

[375] Z. Zhou, V. Gligor, J. Newsome, and J. McCune. Building verifiable
trusted path on commodity x86 computers. In 2012 IEEE Symposium
on Security and Privacy, volume 0, pages 616–630, May 2012.

[376] J. Zic and S. Nepal. Implementing a portable trusted environment. In
D. Gawrock, H. Reimer, A.-R. Sadeghi, and C. Vishik, editors, Future of
Trust in Computing, pages 17–29. Vieweg+Teubner, 2009.

[377] J. Zlattinger. Randomized software testing. Bachelor Project, Graz Uni-
versity of Technology, 2009.

Author Index

Abadi, M. 5, 29, 32, 33
Ables, K. 35, 44
Abu-Mahfouz, A. 95
Achemlal, M. 70
Adams, C. 20
Adams, K. 25
Adida, B. 116, 122
Adleman, L. 13, 17, 18
Advanced Micro Devices 27
Agesen, O. 25
Aigner, M. 79
Aina, T. 70
Alam, M. 43
Ali, T. 43
Allamigeon, X. 33
Allen, M. R. 70
Alpár, G. 95
Alsouri, S. 43
American National Standards

Institute (ANSI) 97
Anderson, R. 4, 13–15, 31, 114, 116,

122
Anwar, Z. 70
Arapinis, M. 117
Arbaugh, W. A. 24
ARM Limited 99, 100
Armando, A. 34, 117, 127
Armbrust, M. 70
Arnold, T. W. 14
Asokan, N. 100
Atmel Corporation 94
Atts, M. 35, 105
AVANTSSAR Consortium 34
AVISPA Consortium 31, 127
Avoine, G. 95

Balaban, D. 80
Balacheff, B. 3, 16
Baldwin, A. 43
Balfanz, D. 80
Balfe, S. 4
Balogh, Z. 98, 99, 151, 153
Bangerter, E. 43, 81
Barham, P. 26
Basin, D. xiii, 8, 34, 105–107, 111, 112
Beck, K. 51, 67
Bellare, M. 20
Bengio, S. 81
Benz, M. 65
Beresford, A. R. 80
Berger, S. 65, 70, 77, 80, 84, 85, 119
Bingöl, M. A. 95
Birnbacher, U. 155
Bishop, M. 13
Blanchet, B. 33
Bloem, R. 12, 104, 154
Boichut, Y. 34
Bond, M. 14, 114, 116, 122
Boneh, D. 26
Bortolozzo, M. 114–116, 122, 127, 129
Boutaba, R. 70
Bracha, G. 41
Brandl, H. 98, 99, 153
Brands, S. 95
Bratko, D. 49
Breitfuss, K. 95
Brett, A. 43
Brickell, E. 20, 21
Bruschi, D. 35, 105
Buckley, A. 41
Bugiel, S. 100
Burrows, M. 32

191

192 Author Index

Burt, R. 14

Cabiddu, G. 45
Cabuk, S. 26
Cáceres, R. 26, 70, 77, 80, 81, 84, 85
Cachin, C. 116
Camenisch, J. 20, 21
Camerer, C. 14
Carter, C. 26, 81
Catherman, R. 23, 53
Catteddu, D. 70
Catuogno, L. 26
Cavallaro, L. 35, 105
Celesti, A. 43
Centenaro, M. 114–116, 122, 127, 129
Cesena, E. 45
Chadwick, D. W. 71
Challener, D. 23, 53
Chandran, N. 116
Chaum, D. 95
Chen, K. 29
Chen, L. 3, 16, 19–21, 26, 35, 50, 78,

87, 100, 105, 122
Cheng, L. 70
Cheval, V. 33
Chevalier, Y. 34
Chow, J. 26
Christensen, C. 70
Chute, C. 3, 16, 39
Cimatti, A. 108
Clair, L. S. 26
Clark, J. 30
Clark, S. C. 33
Clarke, E. 34, 108
Clarke, S. 52
Cloud Security Alliance 70
Clulow, J. 14, 114, 116, 122
Coker, G. 19, 26, 50, 87, 105
Collins, M. 70
Common Criteria Recognition

Arrangement 13
Compagna, L. 34, 117, 127
Computer Security Center 13, 23
Cooper, A. 70
Coppolino, L. 43
Coulton, P. 100

Crane, S. 15
Cremers, C. 34
Cuellar, J. 34

Dagdelen, O. 43
Dalton, C. 28, 43
Danner, P. 20, 21, 43, 98, 154
Datta, A. 27
Delaune, S. 105, 112, 116, 129
Desmedt, Y. 81
Devadas, S. 43, 44
Dewan, P. 27
Dierks, T. 29
Dietrich, K. 2, 20, 36, 43, 45, 100, 137,

152, 154
Diffie, W. 13, 17, 29, 90
Ding, Z. 81
Djackov, M. 43, 81
Dmitrienko, A. 26, 96
Dolev, D. 31, 109, 122, 130
Dominikus, S. 79
Dong, L. 29
Douceur, J. 43
Dragovic, B. 26
Drielsma, P. H. 34
Durfee, G. 80
Dyer, J. G. 14, 114

Eckert, C. 19, 50, 65
ECMA 90
ECMA International 90
Edwards, R. 100
Eén, N. 127
Ekberg, J.-E. 100
Ellis, J. 13
EMSCB Project Consortium 26
Engel, M. 70
England, P. 5, 25, 26, 65
ENISA 78
Eriksson, K. 26

Fabbri, F. 43
Fabrega, F. 34
Farber, D. J. 24
Farmer, J. 49
Farooq, U. 52

Author Index 193

Faull, N. 70
Feldhofer, M. 79
Finkenzeller, K. 79
Fliess, G. 104
Focardi, R. 114–116, 122, 127, 129
Fossi, M. 13
Foster, I. 40, 70
Fox, A. 70
Frame, D. J. 70
Francis, L. 95
Fraser, K. 26
Freeman, S. B. 33
Freisleben, B. 70
Frenzel, T. 100
Friese, T. 70
Fröschle, S. 117, 122, 127, 129

Gaber, C. 70
Gallery, E. 4
Gamma, E. 63
Garfinkel, T. 26
Garriss, S. 77, 80, 84, 85
Gasser, M. 19
Gatial, E. 98, 99, 151, 153
Gebhardt, C. 26, 28
Getov, V. 40
Gharout, S. 70
Gibbons, J. 67
Gissing, M. 12, 28, 43, 71, 104, 120,

121, 153
Giunchiglia, E. 108
Giunchiglia, F. 108
Gligor, V. 27, 28, 82
GlobalPlatform 100
Goldberg, R. P. 25
Goldman, K. 35, 65, 70, 119
Goldstein, A. 19
Gong, L. 41, 49
Gordon, A. D. 33
Gosling, J. 41
Goutier, C. 81
Graf, K. M. 40, 41, 51, 53, 61, 72, 143
Grawrock, D. 4, 27, 36, 65, 115, 137
Greimel, K. 12, 104, 154
Griffith, R. 70
Grumberg, O. 34, 108

Guggi, H. 76
Guijarro, E. P. 152
Gummadi, K. P. 70
Gungoren, B. 40, 41, 51, 53, 61, 72,

143
Gürgens, S. 35, 105
Gutmann, P. 14, 114
Guttman, J. 19, 26, 34, 50, 87, 105

Hancke, G. 90, 95
Hand, S. 26
Hargreaves, N. 70
Harris, T. 26
Harrison, M. A. 12
Härtig, H. 100
Haselsteiner, E. 95
Hashim, H. 100
Heám, P.-C. 34
Hein, D. 20, 21, 43, 98, 99, 151–154
Hellman, M. 13, 17, 29, 90
Helm, R. 63
Helmuth, C. 26
Hermanowski, M. 44, 65
Herreweghen, E. 28
Herzog, A. 87, 105
Herzog, J. 5, 34, 116, 122
Hluchý, L. 98, 99, 151, 153
Ho, A. 26
Hoepman, J.-H. 95
Hofferek, G. 12, 104, 154
Hoffman, L. 67
Hogben, G. 70
Holzmann, G. J. 105
Hong, T. 40, 41, 45, 51, 53, 61, 72,

143, 154
Hong, T. W. 12, 40, 151
Huh, J. H. 5, 28, 43
Hussin, W. H. 100
Hutter, M. 12, 43, 76, 96–98, 151, 153
Hypponen, M. 99

IAIK/Stiftung SIC 134
IBM Corp. 23
IEEE 91, 97
Intel Corporation 27, 36, 116

194 Author Index

International Organization for
Standardization (ISO) 21, 93, 94, 97

Isozaki, H. 27
Ivanov, N. 71

Jacob, J. 30
Jaeger, T. 24, 26, 70, 93
Jäger, M. 43
Jang, J. 43
Java Community Process 47
Jianhong, Y. 43
Jin, H. 70
Johnson, R. E. 63
Jonsson, J. 20
Joseph, A. D. 70
Joy, B. 41

Kaliski, B. 20
Kapfenberger, M. 45
Kardaş, S. 95
Katz, R. 70
Katzenbeisser, S. 43, 117
Kauer, B. 27, 36
Kaufman, C. 19
Keil, W. 40, 41, 51, 53, 61, 72, 143
Kent, S. 29
Kerckhoffs, A. 51
Kesselman, C. 70
Kettleborough, J. A. 70
Khan, I. 70
Khan, S. 70
Khattak, Z. 43
Kim, H. 5, 28
King-Lacroix, J. 28
Knight, S. 70
Konwinski, A. 70
Korn, R. 43
Kostiainen, K. 100
Kostienko, K. 43
Kouchnarenko, O. 34
Koudelka, O. 155
Krautheim, F. J. 70
Kraxberger, S. 43, 98, 99, 152
Kremer, S. 105, 112, 116, 129
Kuhlmann, D. 26
Kühn, U. 24, 78

Kumaraswamy, S. 70
Kuntze, N. 43
Kursawe, K. 36, 117

Laboratoire Spécification et
Vérification 30

Laborde, R. 71
Lackorzynski, A. 100
Lafourcade, P. 34
Lampson, B. 19, 26
Landfermann, R. 19, 50, 78, 87
Lanzi, A. 35, 105
Latif, S. 70
Lauradoux, C. 95
Leach, P. 22
Lee, G. 70
Leicher, A. 43
Leung, A. H. Y. 12, 104, 154
Li, F. 81
Li, L. 70
Li, X. 34
Li, Y. 27
Liedtke, J. 26
Lin, A. 35, 105, 116, 122
Lindemann, M. 14, 114
Lindholm, T. 41
Lindner, F. 83
Lindsberger, G. 104
Lioy, A. 45
Lipp, P. 2, 40, 41, 43, 49, 51, 53, 61,

72, 143, 152, 154
Lloyd, S. 20
Loeser, J. 65
Löhr, H. 100
Lonvick, C. 29
López Pimentel, J. C. 5, 30–32
Lorch, J. 43
Loscocco, P. 19, 26, 50, 87, 105
Lowe, G. 30, 32, 34
Lyle, J. 5, 25, 28, 43, 70, 93

Ma, J. 81
MacDonald, R. 24
Mainelli, T. 3, 16, 39
Manan, J. 43
Manferdelli, J. 26

Author Index 195

Mangard, S. 31, 97
Mantovani, J. 34
Mao, W. 29, 70
Marchesini, J. 24
Markantonakis, K. 95
Marks, P. 2
Martin, A. 3, 5, 25, 28, 43, 70, 93
Martin, B. 95
Mather, T. 70
Mayes, K. 95
McCune, J. 5, 27, 43, 77, 80, 82, 84,

85, 99
McDaniel, P. 26, 70
McMoran, A. 70
Meadows, C. 5, 31–34
Mealling, M. 22
Meier, S. 34
Menezes, A. J. 17, 29, 31
Merriam-Webster 14
Mickens, J. 43
Microsoft Developer Network 40, 45,

65
Millan, G. G. 152
Millen, J. 33, 87, 105
Miniwatts Marketing Group 13
Mitchell, C. 4
Mitchell, J. 34
Mitchell, M. 34
Mödersheim, S. 117
Monga, M. 35, 105
Monroy, R. 5, 30–32
Mont, M. 15
Moore, G. E. 13
Moyer, T. 26, 70
Mueller, M. 41, 49
Müller, T. 43
Munilla, J. 95
Murphy, J. M. 70
Musa, S. 70

Nadeau, P. 34
Narayanaswami, C. 26, 81
National Bureau of Standards 13, 17
National Institute of Standards and

Technology (NIST) 17, 18, 97, 137

Nauman, M. 12, 40, 41, 43, 45, 51, 53,
61, 70, 72, 143, 151, 154

Needham, R. 30–32
Nepal, S. 43
Neubauer, G. 45
Neugebauer, R. 26
Newsome, J. 82
NFC Forum 94
Nguyen, T. A. 71
Niederl, A. 104
Nieto, J. M. G. 95
Nipkow, T. 33
Nisewanger, J. 40, 41, 51, 53, 61, 72,

143

O’Donnell, B. 3, 16, 39
O’Donnell, C. 43, 44
O’Hanlon, B. 87, 105
Open TC Consortium 26, 42
Oprea, A. 80
OPSWAT 13
Oracle 40, 42
OSI 29
Oswald, E. 31, 97
Otenko, S. 71
Othman, A. T. 70

Panenka, S. 69
Parno, B. 27, 28, 43, 77, 81, 82
Parraga Niebla, C. 155
Paterson, K. 4
Patterson, D. 70
Paulson, L. C. 33
Pearson, S. 15
Peinado, A. 95
Peled, D. A. 34, 108
Pendarakis, D. 65, 70
Peng, X. 43
Perez, R. 14, 65, 70, 114, 119
Perrig, A. 5, 27, 28, 43, 77, 80, 84, 85,

99
Pfaff, B. 26
Pfitzmann, B. 26
Phan, R.-W. 12, 104, 154
Phatak, D. 70
Philippsen, M. 40

196 Author Index

Piani, C. 70
Piramuthu, S. 95
Pirker, M. 2, 12, 20, 21, 28, 40, 42, 43,

69–71, 76, 98, 99, 101, 104, 120,
121, 151–154

Pistore, M. 108
Plaga, R. 35, 105
Plaquin, D. 3, 16, 26
Platzer, W. 49
Podesser, S. 40, 70, 71, 153
Poll, E. 101
Popek, G. J. 25
Popp, T. 31, 97
Poritz, J. 28
Potter, S. 35
Prafullch, H. 41, 49
Pratt, I. 26
Preneel, B. 36
Proudler, G. 3, 16
Pu, C. 26
Puliafito, A. 43
Pulskamp, F. 3, 16, 39

Qu, N. 27, 28

Rabkin, A. 70
Raghunath, M. 26, 81
Rajan, A. 4
Rajpoot, Q. 43
Ramasamy, H. 70
Ramming, C. 4
Ramsdell, J. 87, 105
Ramunno, G. 26, 45
Rantala, A. 100
Rao, D. D. 40, 41, 51, 53, 61, 72, 143
Rao, J. R. 70
Rau, S. 3, 16, 39
Raun, A. 70
Ravi Sahita, U. W. 27
Rehman, H. 70
Reid, J. 95
Reimair, F. 104, 122, 134, 136, 153
Reiter, A. 45
Reiter, M. 27, 80, 84, 85
Repp, J. 43
Rescorla, E. 29

Rhodes, J. 43, 44
Rice, H. 16
Richard-Foy, M. 69
Rieke, R. 43
Rinner, B. 81
Riordan, J. 26
Ritter, E. 117
Rivest, R. L. 13, 17, 18, 116, 122
Röder, P. 19, 50
Rodrigues, R. 70
Rogaway, P. 20
Rohe, M. 19, 50, 78, 87
Roitzsch, M. 100
Rom, E. 70
Rosenblum, M. 26
Roubtsov, V. 68
Rousseau, D. 14
Roveri, M. 108
Rozas, C. 65
RSA Laboratories 23, 114, 117, 121
Rudolph, C. 35, 105
Rushby, J. 23
Rusinowitch, M. 34
Rutkowska, J. 35
Ruzzo, W. L. 12
Ryan, M. 21, 26, 35, 70, 105, 112, 117,

122

Sadeghi, A.-R. 19, 26, 28, 43, 50, 70,
78, 81, 87, 96, 100

Safford, D. 23, 53
Sailer, R. 14, 24, 65, 70, 77, 80, 84, 85,

93, 114, 119
Salici, A. 43
Saltzer, J. H. 12
Salz, R. 22
Santiago, J. 34
Santos, N. 70
Sarmenta, L. 43, 44
Sassu, R. 45
Scarlata, V. 65
Schallar, M. 76
Schaller, R. 13
Schellekens, D. 36
Scheuermann, D. 35, 105
Schiffman, J. 26, 70

Author Index 197

Schildhauer, W. 65, 70
Schlüter, M. 43
Schmidt, A. 43
Schmidt, B. 34
Schnepp, I. 69
Schroeder, M. D. 12, 30
Schulz, S. 26, 70
Schunter, M. 26, 28, 70
Scott, J. 80
Sebastiani, R. 108
Segall, A. 87, 105
Selhorst, M. 4, 24, 39, 46, 72, 78
Senadji, B. 95
Seo, K. 29
Seshadri, A. 5, 77, 80, 99
Setrakyan, D. 71
Sevinç, P. E. xiii, 8, 105–107, 111, 112
Sexton, D. 70
Shal, C. 26
Shamir, A. 13, 17, 18
Shapiro, E. 33
Sharp, R. 80
Sheehy, J. 19, 26, 50, 87, 105
Shen, Z. 70
Sherman, A. 70
Shi, E. 27
Shim, R. 3, 16, 39
Shiu, S. 43
Singaravelu, L. 26
Sitkin, S. 14
Skorobogatov, S. 14, 114
Smart, N. 17, 29
Smetters, D. K. 80
Smith, J. M. 24
Smith, L. A. 70
Smith, M. 70
Smith, S. 5, 14, 24, 114
Smyth, B. 33
Sniffen, B. 19, 26, 50, 87, 105
Song, D. X. 34
Sörensson, N. 127
Sparks, E. 36
Spicer, R. A. 70
Srinivasan, D. 65, 70
Stainforth, D. A. 70

Stamer, H. 43
Steel, G. 105, 112, 114–117, 122, 127,

129
Steele, G. 41
Sterbenz, A. 49
Sterling, L. 33
Stern, U. 34
Steurer, M. 43
Stoegbuchner, R. 43
Stoica, I. 70
Strachey, C. 12, 25
Strasser, M. xiii, 8, 43, 105–107, 111,

112
Stüble, C. 70
Stueble, C. 4, 5, 26, 39, 45, 46, 62, 72
Stumpf, F. 19, 50, 65, 117
Su, L. 71
Sulaiman, S. 43
Sun Microsystems 67
Syverson, P. 32

Tacchella, A. 108
Tafreschi, O. 19, 50
Tal, S. 70
Tamrakar, S. 96
Tang, T. 95
Tanveer, T. 43
Tarnovsky, C. 36
Taylor, G. 70
TECOM Consortium 69
Teerkorn, F. 4, 39, 46, 72
Tereshkin, A. 35
Tews, E. 44
The Trusted Computing Platform

Alliance 15
Thompson, K. 16
Thorpe, A. J. 70
Toegl, R. 2, 12, 20, 21, 28, 40–43, 45,

51, 53, 61, 69–72, 76, 95–99, 101,
104, 120–122, 127, 143, 151–155

Tomlinson, A. 26
Trusted Computing Group 3, 18, 21,

22, 46, 51, 76, 89, 90, 122
Tu, Y.-J. 95
Tuecke, S. 70
Turilli, M. 70

198 Author Index

Turuani, M. 34
Tygar, J. 24

Ullman, J. D. 12

Valdez, E. 65, 70
van Dijk, M. 43, 44
van Doorn, L. 5, 14, 23, 24, 27, 53, 65,

77, 80, 84, 85, 93, 99, 114, 119
van Oorschot, P. C. 17, 29, 31
van Rijswijk-Deij, R. 101
Vanstone, S. A. 17, 29, 31
Vasudevan, A. 27, 28
Vaughan-Nichols, S. 15
Vejda, T. 2, 42, 43, 70, 152, 154
Vernizzi, D. 45
Viganò, L. 34
Vigneron, L. 34
Vijayakumar, H. 70
Villari, M. 43
Vishik, C. 4, 65
Vlissides, J. 63
von Laszewski, G. 40
von Oheimb, D. 34

W3C XML Protocol Working Group
23

Wachsmann, C. 96, 100
Waidner, M. 26, 28
Walker, J. 4
Wallom, D. 70
Wang, C. 34
Wang, W. 81
Wang, X. 35
Want, R. 79
Warfield, A. 26
Warg, A. 100
Weber, A. 26
Wei, J. 43
Weingart, S. 14, 114
Wenzel, M. 33

Wiegele, P. 69, 101, 152
Wild, O. 24
Willman, B. 26
Winandy, M. 26
Winkler, T. 12, 40–43, 45, 51, 53, 61,

70, 72, 81, 143, 151, 154
Winter, J. 36, 45, 69, 76, 100, 101,

137, 152, 153
Wiseman, M. 65
Wojtczuk, R. 35
Wu, J. 34
Wu, X. 70

Xingkui, W. 43
Xinguang, P. 43

Yan, F. 70
Yan, J. 43
Yao, A. 31, 109, 122, 130
Yee, B. 24
Yellin, F. 41
Yin, Y. L. 35
Ylonen, T. 29
Yoder, K. 23, 53
Youn, P. 116, 122
Yu, H. 35
Yussoff, Y. M. 100

Zaerin, A. 5, 39, 45, 62, 72
Zaharia, M. 70
Zhan, J. 26
Zhang, H. 70
Zhang, Q. 70
Zhang, X. 24, 43, 77, 80, 84, 85, 93
Zhang, Y. 34
Zhao, G. 71
Zhou, Z. 27, 82
Zic, J. 43
Zirkler, D. 52
Zlattinger, J. 40

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Introduction
	Motivation
	Research Challenges
	Contribution
	Outline

	Background
	Introduction
	Of Security and Trust in Computing
	Secure Computing
	Hardware Security Modules
	`Trusted' Computing

	TCG Hardware Architecture
	Trusted Platform Components
	Cryptographic Methods used by the TCG
	Trusted Platform Module and Core Concepts

	TCG Software Architecture
	Trusted System Architectures
	Static Chain-of-Trust
	Platform Virtualization
	Dynamic Chain-of-Trust

	Security Protocols and their Analysis
	Cryptographic Protocols and Protocol Failures
	Protocol Analysis

	Vulnerabilities of Trusted Platforms
	Summary

	Design and Standardization of a Trusted Computing API
	Introduction
	Trusted Computing in the Java Environment
	Emerging Fields of Use
	Review of Existing Java Libraries
	Other Trusted Computing Interfaces
	Findings

	API Design
	The Java Community Process
	Goals for a Novel API
	Expected Developer Knowledge
	API Scope Considerations
	Process Implementation: Transparency and Agility
	Selected Features

	Outline of the API
	Implementation and Integration Aspects
	Java Libraries and Services for Trusted Computing
	Reference Implementation
	Technology Compatibility Kit

	Experience
	Third Party Implementation and Teaching Experience
	Case Study: Attestation in the Cloud

	Summary and Outlook

	A Proximity Interface for Attestation
	Introduction
	Motivation and Background
	From Remote to Local Attestation
	Near Field Communication

	Attestation Of Local Platforms
	Open Challenges
	Scenario: Kiosk Computing

	Mobile Attestation Token
	The MAT Protocol
	An NFC Interface for the TPM
	Integration of NFC with the MAT Protocol

	Implementation and Validation
	Mobile Attestation Token and Kiosk Software Platform
	NFC Demonstrator
	NFC Robustness against Man-in-the-Middle Attacks
	Validation

	Extensions and further Experiments
	Touch`n' Trust
	Local Attestation with a Dedicated Hardware Device
	Isolation and Integrity Protection on the Mobile Device

	Summary

	Rigorous Design of Trusted Services
	Introduction
	Formal Analysis of a Secret Distribution Scheme
	Protocol
	Model Checking

	Modeling the Protocol
	Assumptions
	Model Details
	Security Targets

	Protocol Analysis Results
	Model Checking
	Enhancements

	Conclusions on Protocol Analysis
	A Trusted Virtual Security Module
	TvSM Background
	Intel TXT as DRTM
	Challenges and Tools for API Analysis

	Architecture
	Virtual Security Module
	Trusted Virtualization Platform Integration

	API Design
	Considerations and Notation
	Abstract Presentation of the API

	API Model and Practical Verification
	The Verification Tool
	The Executable Model

	Validation of Method and Verification Results
	Example Attacks
	Conclusions from Analysis and Validation

	Implementation
	Software Design
	Performance and Results
	Security Discussion

	Conclusions on the TvSM
	Summary

	Conclusions
	A Look Back
	Contribution
	A Look Forward
	Conclusions

	Appendix 1 - The JSR 321 API
	The API

	Appendix - List of Publications
	Journals
	Conference and Workshop Proceedings

	Bibliography
	Author Index

