
Graz University of Technology

Institute for Computer Graphics and Vision

Dissertation

Convex Optimization for
Image Segmentation

Markus Unger
Graz, October 2012

Thesis Supervisors

Horst Bischof

Hugues Talbot

Thesis Advisor

Thomas Pock

To my family.

Abstract

Segmentation is one of the fundamental low level problems in computer vision. Extracting

objects from an image gives rise to further high level processing as well as image composing.

A segment not always has to correspond to a real world object, but can fulfill any coherency

criterion (e.g. similar motion). Segmentation is a highly ambiguous task, and usually

requires some prior knowledge. This can either be obtained by interactive user input in

an supervised manner, or completely unsupervised using strong prior knowledge. In this

thesis we use continuous energy minimization to tackle all of these problems.

Continuous energy minimization provides an elegant way to model a problem like

image segmentation. If the problem is convex, there are powerful optimization algorithms

available. Additionally, we are guaranteed to find the globally optimal solution. We give

an extensive introduction to convex optimization methods in computer vision. A great

part of this thesis is devoted to basic image segmentation. We investigate the continuous

maximum flow model for the two label segmentation, as well as optimization problems for

multi-label segmentation.

To obtain good segmentation results in a reasonable time, it is important that the en-

ergy, optimization algorithm and implementation are perfectly matched. For non-smooth

convex optimization problems, primal-dual optimization methods deliver very good con-

vergence rates. Furthermore, they are inherently parallel, and therefore perfectly suited

for modern parallel hardware like graphics processors. While we achieve good results with

existing optimization methods, we also demonstrate how to further speed up convergence

for some specific energies. We have to keep all this in mind during the design of the energy.

As a result this thesis tackles the whole process from designing an energy minimization

problem, over the algorithmic optimization to the final implementation on the GPU.

Apart from the general segmentation algorithms, we also show four different appli-

cations: First, interactive color image segmentation, where the developed segmentation

models are applied. Second, tracking as segmentation of spatio-temporal volumes. In this

case a video is interpreted as a volume, and objects are segmented in a semi-supervised

vii

viii

manner. Third, we develop an unsupervised approach for segmenting 2.5D depth images.

Finally, we present an approach for joint motion estimation, segmentation and occlusion

handling.

Keywords. image segmentation, convex optimization, variational methods, interactive,

tracking, motion estimation, parallel computing

ix

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly marked all material which

has been quoted either literally or by content from the used sources.

Graz, October 1, 2012 (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, Oktober 1, 2012 (Unterschrift)

Acknowledgments

Working at the institute for computer graphics and vision over the course of the last years

has been one of the greatest times in my life. There is so much I learned on optimization,

computer vision, doing proper research etc. Pursuing my PhD meant lots of hours of hard

work, several setbacks and (especially while writing this thesis) a sacrifice of my leisure

time. But it also meant meeting great people, hours of entangling discussions, moments

of great excitement while working on new ideas and finally the satisfaction of solving a

problem and pushing knowledge a tiny little bit. All this would not have happened without

the support, guidance, criticism and friendship of the people I met along the way.

I like to thank Horst Bischof for persuading me to computer vision with his very first

lecture, and his continuous guidance till the end of my thesis. With his knowledge, ideas

and management, he created an environment that was simply a great place to be and do

research. I also like to thank Hugues Talbot for being my second supervisor.

I owe very much to Thomas Pock for inspiring, guiding and challenging me. His

enthusiasm and dedication always acted as a great example. Working with him was a

truly exceptional experience. I also like to thank Jakob Santner and Manuel Werlberger

for sharing an office, research interests and much more. Thanks, to all my co-authors as

well as colleagues at the institute. You all made this a great and fun place to work!

A very special thanks goes to my parents for enabling me to study and supporting

me in everything I do. I also like to thank my brother Michael and my friends for their

support and friendship. I am deeply grateful for the love of my wife Damaris and her

continuously backing me during demanding times. Finally, I like to thank my daughter

Sophie for making all trouble go away with a single smile.

xi

Contents

1 Introduction 1

1.1 What is image segmentation? . 1

1.2 Related work on image segmentation . 3

1.2.1 Active Contours . 4

1.2.1.1 Snakes . 4

1.2.1.2 Geodesic Active Contours 5

1.2.2 Energy minimization methods . 6

1.2.2.1 Graph Cuts . 7

1.2.2.2 Extensions to multi label segmentation 9

1.3 Contributions of the thesis . 10

2 Continuous convex optimization 13

2.1 Inverse problems . 13

2.1.1 Problem definition . 13

2.1.2 Minimization of a composite criterion 15

2.1.3 A Bayesian approach . 16

2.2 Classical variational problems . 16

2.2.1 Image denoising . 17

2.2.1.1 Tikhonov model . 17

2.2.1.2 ROF model . 19

2.2.1.3 TV-L1 model . 20

2.2.2 Shape denoising . 21

2.2.3 Mumford-Shah model . 24

2.3 Convex optimization . 27

2.3.1 Preliminaries . 27

2.3.1.1 Discretization . 27

2.3.1.2 Vector norms . 29

2.3.1.3 Convexity . 30

2.3.1.4 Duality . 31

2.3.2 An overview on minimization algorithms 32

2.3.3 A general primal dual algorithm . 34

xiii

xiv CONTENTS

2.3.4 Practical application . 36

2.3.4.1 ROF model . 36

2.3.4.2 TV-L1 model . 38

3 Variational Image Segmentation 41

3.1 Binary image segmentation - Continuous max flow 41

3.1.1 Recap of the discrete min cut / max flow 41

3.1.2 The continuous formulation . 43

3.1.2.1 The optimization problem 44

3.1.2.2 Discretization artifacts . 47

3.1.2.3 Convergence criterion . 49

3.1.3 Connections to other segmentation models 50

3.2 Multi-label image segmentation . 51

3.2.1 Fast relaxation . 52

3.2.2 Other relaxations . 53

3.2.3 Label costs . 55

3.3 Fast Optimization . 57

3.3.1 Thoughts on the implementation . 57

3.3.2 Global relabeling for continuous optimization 64

3.3.2.1 Motivation . 65

3.3.2.2 Algorithm . 65

3.3.2.3 Experimental results . 69

3.3.3 Binary segmentation using the ROF model 73

3.3.4 Comparison of continuous binary image segmentation algorithms . . 75

4 Supervised Segmentation 79

4.1 Interactive image segmentation . 79

4.1.1 Introduction . 79

4.1.2 Related work . 80

4.1.3 Creating potentials for segmentation 81

4.1.3.1 Unary potentials . 81

4.1.3.2 Binary potentials . 83

4.1.4 Interaction . 85

4.2 Tracking by segmentation . 88

4.2.1 Introduction . 88

4.2.1.1 Previous work on tracking 89

4.2.1.2 Tracking as segmentation in a spatio-temporal volume . . . 90

4.2.2 Algorithm . 90

4.2.3 Implementation . 93

4.2.3.1 The tracking framework . 93

4.2.3.2 Color tracking . 94

CONTENTS xv

4.2.4 Experimental results . 95

4.2.5 Summary . 99

5 Unsupervised Segmentation 101

5.1 Depth image segmentation . 101

5.1.1 Depth segmentation . 101

5.1.2 Model and algorithm . 102

5.1.3 Experimental results . 105

5.1.4 Summary . 107

5.2 Motion Segmentation . 109

5.2.1 A short introduction to motion estimation 109

5.2.1.1 Classical optical flow . 109

5.2.1.2 Improving optical flow . 111

5.2.1.3 Drawbacks of classical motion estimation 111

5.2.2 Related work on motion segmentation 113

5.2.3 A model for joint parametric motion estimation and segmentation . 114

5.2.3.1 The basic model . 114

5.2.3.2 Occlusions constraints . 115

5.2.3.3 Parametrization . 116

5.2.4 Optimization . 117

5.2.4.1 Parameters Hi . 117

5.2.4.2 Segmentation Ωi with map uniqueness constraint 121

5.2.4.3 Segmentation Ωi with backmatch constraint 123

5.2.5 Experimental Results . 126

5.2.5.1 General evaluation with map uniqueness constraint 129

5.2.5.2 Continuous flow label . 132

5.2.5.3 Extensions and variants . 135

5.2.6 Summary . 136

6 Conclusion 137

6.1 Summary . 137

6.2 Outlook . 138

A Segmentation comparison results 141

A.1 Global relabeling results . 141

A.2 Continuous segmentation results . 143

B Acronyms and Symbols 147

Bibliography 151

List of Algorithms

1 General primal dual algorithm to solve (2.50) 35

2 Accelerated primal dual algorithm to solve (2.50) if Φ or Ψ∗ are uniformly

convex. 35

3 General primal dual algorithm to solve the ROF model (2.9) 38

4 Accelerated primal dual algorithm to solve the ROF model (2.9) 38

5 Algorithm to solve the TV-L1 model (2.11) using thresholding scheme. . . . 39

6 Algorithm to solve the TV-L1 model (2.11) with dualized data term. 40

7 Primal-dual algorithm to solve graph cuts (3.3). 43

8 Primal-dual algorithm to solve the continuous max flow problem (3.9). . . . 46

9 Algorithm for solving the fast multi-label segmentation approximation by

[Zach et al., 2008] in (3.23). 54

10 Algorithm for solving the fast multi-label segmentation approximation with

label cost term (3.23). 57

11 Primal dual algorithm with global relabeling for binary image segmentation 68

12 Accelerated primal dual algorithm to solve the weighted ROF model (3.39)

for image segmentation. 75

13 Primal-dual algorithm to solve the spatio-temporal segmentation problem

(4.6) for tracking and video segmentation. 93

14 Algorithm for depth image segmentation (5.3). 104

15 Algorithm for solving the joint motion estimation and segmentation with

map uniqueness constraint (5.40) . 124

16 Algorithm for solving the joint motion estimation and segmentation with

backmatch constraint (5.46). 127

xvii

Chapter 1

Introduction

1.1 What is image segmentation?

This thesis deals with convex optimization methods for image segmentation. As a start,

we first consider a definition of the general image segmentation problem. We assume that

images are functions I : Ω → Rc given on some domain Ω. For 2D images, the domain

Ω is of dimensionality 2, and for volumetric data or videos, Ω is of dimensionality 3.

The function maps to some real valued vector. For color images we have c = 3, and for

gray-scale images c = 1, the mapping reduces to a scalar.

We define the segmentation problem such that the image domain Ω is partitioned into

K disjoint regions Ωi:

Ω =
K⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j . (1.1)

The case K = 2 is referred to as binary segmentation. It partitions the image domain into

foreground and background. The case K > 2 is also called multi-label segmentation.

The segmentation problem is highly ambiguous. As an example, see Figure 1.1, where

different objects of a natural scene are segmented. In (b-g), binary segmentation problems

have been solved to obtain segmentations of building, sky, facade, windows, porch and the

reflection of a crane. We depicted the foreground in white and the background in black. In

(h), a multi-label segmentation (K = 5) was performed, where each color corresponds to a

label. We can make several observations: Segmentations can be equivalent to each other in

the sense that they are inverse e.g. building and sky. Some segmentation regions represent

subsets of other regions e.g. the windows are a subset of the building, the reflection of

1

2 Chapter 1. Introduction

(a) Input (b) Building (c) Sky (d) Facade

(e) Windows (f) Porch (g) Crane (h) Multi-label

Figure 1.1: Illustration of different segmentations of a natural scene. (b-g) depict binary
segmentation problems with bright foreground and black background. (h) shows a multi-
label segmentation result.

the crane is a subset of the windows as well as the building. A region Ωi does not need

to be spatially connected e.g. windows and crane. As stated in (1.1), we assume regions

to be disjoint Ωi ∩ Ωj = ∅. This means that only one label can be assigned to a pixel,

as can be seen in the multi-label segmentation result in Figure 1.1(h). As a consequence

objects may occlude each other (e.g. the crane occludes the window). Of course another

definition of the segmentation problem would be possible, that allows to assign multiple

regions to a single pixel. We restrict ourselves to the segmentation problem definition in

(1.1).

We could go on with additional questions like: Why was the reflection of the sky in

the window not labeled as sky? Should not a crane form a single coherent region? etc. It

1.2. Related work on image segmentation 3

is not possible to model the segmentation problem in general, as it is highly ambiguous.

As a consequence, one has to utilize additional information for each problem separately.

The prior information reaches from user input, over priors on the connectivity, to complex

models of the label data.

We will present segmentation models that include assumptions on the boundary of

objects in Chapter 3. In Chapter 4, we will show how user input can be utilized to perform

interactive segmentation. Fully automatic approaches, that rely on special models for the

labels, are presented in Chapter 5.

1.2 Related work on image segmentation

There is a large body of different segmentation methods available. In the following, we

put the focus only on methods relevant to the topic of this thesis.

One of the most simple segmentation can be obtained by thresholding the image based

on some color or texture information [Sezgin and Sankur, 2004]. While thresholding

methods generally perform on a pixel level, they could also incorporate spatial information.

Similarly, clustering or classification methods can be used for image segmentation. A

typical clustering based segmentation method is the mean shift segmentation [Comaniciu

et al., 2002].

Instead of basing decisions on the pixel level, region based methods take into account

homogeneity criteria inside a complete area. Examples are the split and merge approach

[Horowitz and Pavlidis, 1974], the watershed transform [Vincent and Soille, 1991] or seg-

mentation based on the maximally stable extremal region (MSER) [Donoser et al., 2006].

Shape based segmentation additionally constraints the segmentation to be close to some

prior given outline of the segmentation.

Edge based methods are originally based on previously extracted edges that are refined

and traced to obtain a segmentation. Instead of tediously processing extracted contours,

gradient information can be used to model the spatial relation ship or edge information.

Modern segmentation approaches typically use edge information and contours. We will

therefore give a more detailed overview on active contours in Section 1.2.1. Often the

problem is formulated as some form of energy that is either minimized or maximized.

This allows to model the desired properties of the segmentation in advance. We give

a short overview on different energy minimization methods for image segmentation in

Section 1.2.2, and deal with the topics in more detail when needed.

4 Chapter 1. Introduction

1.2.1 Active Contours

In the following we introduce previous work on active contours. The main idea is to model

segmentation in terms of contours that are deformed according to various forces. These

forces are either data (image) based, or model some form of higher level information and

regularization.

1.2.1.1 Snakes

In [Kass et al., 1988], one of the first active contour models was introduced. The so called

snakes are splines that are exposed to different forces that deform the snake in an iterative

process. Using the spline, the contour is parametrized as C(s) = x(s) ∈ Ω, s ∈ [0, 1]. The

snake model can be stated as the following variational problem:

min
C
{Esnake} = min

C
{Eint(C(s)) + Eimg(C(s)) + Econ(C(s))} . (1.2)

The energy consists of three separate forces. First, the internal energy of the snake is

given by Eint and maintains the smoothness as well as the tension of the contour and is

given as

Eint =

∫ 1

0

α(s)

2

∣∣∣∣
∂C(s)

∂s

∣∣∣∣
2

ds+

∫ 1

0

β(s)

2

∣∣∣∣
∂2C(s)

∂2s

∣∣∣∣
2

ds. (1.3)

This energy penalizes both first-order and second-order derivatives. The free parametriza-

tion functions α(s) and β(s) are typically set to constant values. Inherently there is a

shrinking bias caused by this internal forces. The image term Eimg ensures that the

boundary is drawn towards significant image features:

Eimg = −λ
∫ 1

0
|∇(Gσ ∗ I)(C(s))|2ds. (1.4)

The ∇ operator computes the gradient of the image I convolved with a Gaussian kernel

Gσ. This ensures that the contour aligns with edges in the image. Finally, the third term

Econ is used to model constraints imposed by the user.

The energy defined in (1.2) is generally non-convex. As a result it is very difficult to

find the globally optimum. [Kass et al., 1988] suggested to solve the snake model by an

implicit finite differences method. While this method is very fast, it highly depends on a

good initialization. Therefore, the user first has to manually specifies an initial boundary,

hopefully close to the desired segmentation. For some special cases, it can be shown that

a globally optimal solution of the snake model can be found [Schoenemann and Cremers,

1.2. Related work on image segmentation 5

2007].

Another problem of the approach by [Kass et al., 1988], is that the parametrization of

the curve does not allow for automatic topology changes. Therefore, the algorithm has to

analyze the topology during all iterations for self-intersections. This is an computationally

expensive step.

Despite its drawbacks, the snake model has received much attention (especially in

medical image segmentation [Jayadevappa et al., 2011; McInerney and Terzopoulos, 1996;

Xu et al., 2000]). There exist several extensions, like an additional balloon force [Cohen,

1991] that prevents the typical shrinking bias. There also exist early extensions to 3D

[Cohen et al., 1992; Cohen and Cohen, 1993; Terzopoulos et al., 1988] by the same authors.

1.2.1.2 Geodesic Active Contours

The geodesic active contours (GAC) model was introduced in [Caselles et al., 1997a,b]

and [Kichenassamy et al., 1995, 1996]. The main idea, is to use an additional weighting

function to guide the contour. While in 2D one is speaking of active contours, the 3D

equivalent is referred to as minimal weighted surfaces.

Using the line integral, the GAC model can be formulated as the following optimization

problem.

min
C

{∮

C
g(C)dC

}
= min

C

{∫ |C|E
0

g(|∇I(C(s))|)dl
}
, (1.5)

with the Euclidean length of the contour C defined as |C|E =
∮ ∣∣∣∂C(s)

∂s

∣∣∣ ds =
∮
dl, and dl

the Euclidean element of length. Here g : Ω → R+ is a weighting function, that is used

to incorporate edge information. It should be low for strong edges, and high in flat areas.

This way, the contour is pulled towards the edges during the minimization process. As

suggested by [Caselles et al., 1997a] the edge detector function for an image I could be of

the form

g(I) =
1

1 + δ|∇Gσ ∗ I|2
+ ε. (1.6)

The GAC problem is equivalent to finding a geodesic curve in a Riemannian space,

where the length of the contour is given as

|C|R =

∫ |C|E
0

√
T TD(C(s))T dl. (1.7)

In the case of D = diag(g(|∇I|)), the contour length in the Riemannian space equals the

energy of the GAC model. Here T denote the unit tangent vector of the contour C.

6 Chapter 1. Introduction

There exists a very close relationship of the GAC model to the snake model [Aubert

and Blanc-Féraud, 1998, 1999; Caselles et al., 1997a]. If we assume constant α and β = 0

in (1.3), and additionally add the weighting function g to (1.4), we arrive at the following

variant of the snake model

Esnake = α

∫ 1

0

∣∣∣∣
∂C(s)

∂s

∣∣∣∣
2

ds− λ
∫ 1

0
g|∇(Gσ ∗ I)(C(s))|2ds. (1.8)

[Caselles et al., 1997a] already showed the equivalence of the snake model in (1.8) and the

GAC model in (1.5).

The simplest optimization approach is to apply gradient descent on the Euler-Lagrange

equation of the GAC model. Another option, the level set method [Osher and Sethian,

1988; Sethian, 1999], was already suggested in the original paper [Caselles et al., 1997a].

The level set method represents a contour, as the level set of a higher dimensional function.

Instead of evolving the contour directly, the higher dimensional function is updated. As a

result topological changes of the contour are possible.

In [Appleton and Talbot, 2005, 2006], a globally optimal solution to the GAC model

was introduced. The work of Appleton and Talbot also reveals the close connection to the

continuous maximum flow problem. We will discuss this relationships and algorithms in

more detail in Section 3.1.

1.2.2 Energy minimization methods

The labeling or segmentation problem can be written as an energy minimization problem.

In fact, all algorithms presented in this thesis are based on energy minimization. Energy

minimization methods typically try to minimize a composite criterion consisting of a data

fidelity term and a regularization term that models prior knowledge. The expression of a

composite energy term has a long history, dating from Maximum A Posteriori Bayesian

models, which were formulated in the late 1980s as MRF models, and solved with iterative

solvers, and more recently by Graph Cuts.

The energy formulation can either be set in a continuous or a discrete setting. The

continuous setting provides an intuitive approach to model the real world that lies behind

an image. Popular representatives of continuous segmentation formulations are the Mum-

ford Shah model (Section 2.2.3), the continuous max flow problem (Section 3.1) and the

continuous Potts model (Section 3.2). Chapter 2 and Chapter 3 will tackle these methods

in detail.

1.2. Related work on image segmentation 7

Discrete methods are quite popular in computer vision, as images on a computer are

typically sampled on a regular grid, and have a limited number of radiometric values.

Thus the input data for computer vision algorithms is already given in a spatially as well

as radiometric discretized domain. This perfectly fits the concept of graphs and Markov

random fields (MRFs) or conditional random fields (CRFs). MRFs are a class of statistical

models mainly developed in physics. Recently they have become quite popular in computer

vision [Li, 2009], as they provide a general framework to model low level as well as high

level computer vision problems. This includes labeling problems based on graph cuts or

Total Variation (TV) based energy minimization.

Comparing discrete to continuous methods cannot be done in general, although both

methods are used to solve very similar problems. In practice discrete methods are often

preferred, as there is a huge choice of algorithms available, they are easy to apply. But

there are reasons that make us use continuous approaches throughout this thesis, the most

prominent being:

• There is no inherent bias towards the grid (discretization artifacts).

• Continuous methods are easy to parallelize.

• They reduce memory consumption compared to discrete methods.

We will give more details later, when all algorithms have been introduced.

Graph cuts are the discrete counterpart to the continuous max flow approaches used

in this thesis. We therefore review the graph cut approach to image segmentation in the

next Section.

1.2.2.1 Graph Cuts

Ignited by the work of [Veksler, 1999] and later [Boykov and Kolmogorov, 2003, 2004]

graph cuts have become very popular in computer vision (e.g. ’GrabCut’ proposed by

[Rother et al., 2004]). Graph cuts are also referred to as the discrete max-flow/min-

cut problem. [Ford and Fulkerson, 1956] already showed that the problem of finding a

minimum cut in a weighted graph, is equivalent to finding the maximal flow through a

graph. Max-flow/min-cut optimization already has a long history in computer vision as

it can be applied to a wide range of optimization problems [Greig et al., 1989]. A more

recent study in the general context of Markov random fields can be found in [Szeliski et al.,

2008]. We will see in Section 3.1 that the discrete max flow problem is very closely related

to the continuous approaches used in this thesis.

8 Chapter 1. Introduction

ts ts

Figure 1.2: Illustration of the graph cut problem for a 2D image. On the left hand side
the gray value image is illustrated. A graph is constructed by connecting all pixels in a
4-neighborhood. Additionally each pixel is connected to the source s and sink t terminals.
The minimum cut on the right hand side, defines the final segmentation.

A graph G is a pair (V, E), that consists of a vertex set V and an edge set E ⊆ V × V.

In image processing the vertices usually correspond to discrete pixel locations and two

special terminal vertices, the source s and the sink t. See Fig. 1.2 for an illustration

of graph construction and the graph cut problem. The edge set E consists of different

types of edges. First, the spatial edges eb = (r, q) | r, q ∈ V\ {s, t} that define the pixel

neighborhood (e.g. 4-connected, 8-connected). Second, there are edges connecting every

pixel with the source es = (s, r) and with the sink et = (r, t). In case of a weighted graph,

all edges have some assigned costs C(e) ≥ 0. In case of eb these will correspond to image

gradient information (edges), and for es and et the costs are used to model the foreground

and background affinity.

A cut partitions the set of vertices V into two disjoint regions, Vs ∩ Vt = 0 and

V = Vs
⋃Vt, assigned to the source s and the sink t. We can define a cut Ec as the

cost of all edges ec ∈ Ec whose end points belong to two different regions. The cut has

an assigned energy as the sum of all corresponding costs C(ec). Therefore the min-cut

problem can be written as

min
Ec⊂E

{∑

ec∈Ec

C(ec)

}
. (1.9)

To formulate the maximum flow problem, we can reinterpret the edge costs C(e) as

capacities. The goal is now to push as much flow through the graph (from the source s to

the sink t) as the capacities allow. A flow can then be defined as a mapping F : E → R
that fulfills the following constraints:

1. Conservation of the flow: For each vertex q ∈ V\ {s, t}, the flow into the vertex

1.2. Related work on image segmentation 9

equals the flow leaving the vertex

∑

e:(r,q)∈E

F (e) =
∑

e:(q,r)∈E

F (e). (1.10)

2. Capacity constraint: For all edges e ∈ E , the flow has to be less or equal to the

corresponding capacity

F (e) ≤ C(e). (1.11)

[Ford and Fulkerson, 1956] showed that the min-cut and max-flow problems are equiv-

alent to each other, and suggested to use an augmenting path algorithm. Other well

known algorithms include the algorithm of [Edmonds and Karp, 1972], that improves the

sort order of the Ford-Fulkerson algorithm, and the push-relabel algorithm [Goldberg and

Tarjan, 1988]. All these algorithms rely on solving the max-flow problem. Recently, graph

cuts for image segmentation have also been implemented on parallel hardware [Dixit et al.,

2005; Vineet and Narayanan, 2008]. The discrete graph cut problem can also be written as

an L1 norm minimization problem as shown by [Bhusnurmath and Taylor, 2008], and it is

thus possible to solve graph cuts with off-the-shelf LP solvers. We will see in Section 3.1.1

that it is also possible to solve the discrete min-cut/max-flow problem using continuous

convex optimization methods.

1.2.2.2 Extensions to multi label segmentation

While multi label segmentation could be treated as a completely independent problem, it

can also be reduced to solving multiple graph cut problems. This is typically performed

using so called move-based algorithms. Move-based algorithms apply a number of changes

to the labeling such that they always decrease the corresponding energy. Finding the

optimal move is not trivial, as the multi label segmentation problem is usually NP-hard.

Therefore a reasonable set of possible moves has to be found, to find a good approximate

solution of the original problem. The most popular representatives are αβ-swap and α-

expansion [Boykov et al., 2001].

The αβ-swap works by selecting two labels αβ ∈ K. All pixels in the region Ωα
⋃

Ωβ

are then allowed to change their value to {α, β}. No other labels are affected by this move.

Additionally, the move is only accepted if it decreases the overall energy. The algorithm

performs αβ-swaps iteratively for all labels until no more changes occur.

The α-expansion move is different as it considers only one label α against the others.

10 Chapter 1. Introduction

Each pixel in Ω has the choice to either keep the current label, or switch to the label α.

Thus the current label can only expand. In practice the α-expansion move seems to be

the faster and more robust choice. However, the types of energies that expansion moves

can optimize is more restricted than swap moves.

Other approaches have been proposed, as e.g. roof duality as shown in [Rother et al.,

2007]. There also exist several other extensions to graph cuts and multi label segmentation,

that we mention when needed (e.g. label costs Section 3.2.3). An excellent recent overview

on progress in graph cut segmentation is given in [Delong, 2011].

1.3 Contributions of the thesis

Global relabeling for binary image segmentation: In Section 3.3.2, we discuss

a global relabeling algorithm for binary image segmentation that we first introduced in

[Unger et al., 2011]. Continuous optimization methods have become popular to deal with

non-smooth convex optimization problems. They are inherently parallel and therefore

well suited for GPU implementations. Most continuous optimization approaches have in

common that they are very fast in the beginning, but tend to get slow as the solution gets

close to the optimum. We therefore propose to apply global relabeling steps to speed up

the convergence close to the optimum. We apply this algorithm to both the continuous

max flow energy as well as to the discrete graph cut formulation. An evaluation compar-

ing convergence rates reveals significant speedups over the fast primal dual algorithm of

[Chambolle and Pock, 2010]. This is especially true for the discrete max flow, resulting in

a fast parallel graph cut solver.

Interactive image segmentation: Section 4.1 covers the contributions to interactive

image segmentation. It is based on the work in [Unger et al., 2008a,b] as well as parts

of [Santner et al., 2009; Werlberger et al., 2011b]. For interactive image segmentation, it

is important to have an efficient way to apply user constraints. We show that different

kinds of constraints can be incorporated into our segmentation models. Constraints can

be either hard to enforce pixel labels, or soft, giving only hints to which label the pixel

belongs. In this context we also briefly discuss features suited for image segmentation.

User constraints can have different forms e.g. scribbles or bounding boxes. We show how

this forms of interaction can be integrated into our segmentation framework.

Interactive image segmentation requires immediate feedback for an optimal workflow.

As a consequence the speed of the segmentation algorithm is very important, and requires

1.3. Contributions of the thesis 11

to match model, optimization method and implementation. With hardware getting more

and more parallel, we have a strong focus on GPU implementations that are discussed in

Section 3.3.1. Continuous convex optimization algorithms are inherently parallel and are

therefore discussed in Chapter 2. An important choice is a good segmentation model that

not only delivers good segmentation results, but can also be efficiently solved. Chapter 3

deals with variational segmentation models and how they can be solved efficiently. By

treating all this parts in a coordinated way, we are able to interactively segment images

with minimal response times.

Tracking as spatio-temporal segmentation: Tracking is usually interpreted as find-

ing an object in single consecutive frames. Regularization is done by enforcing temporal

smoothness of appearance, shape and motion. In Section 4.2, we propose a tracker, by in-

terpreting the task of tracking as segmentation of a volume in 3D. Inherently temporal and

spatial regularization is unified in a single regularization term. Segmentation is performed

by a variational approach using anisotropic weighted Total Variation (TV) regularization,

and thus closely related to the standard maximum flow approach. The proposed convex

energy is solved by a fast primal-dual algorithm already discussed in Section 2.3.3. As

demonstrated in our experiments, our tracking approach is able to handle large variations

in shape and size, as well as partial and complete occlusions. While the algorithm works

reasonably well by interactively segmenting the first frame, it allows interaction at all

times. Thus it is possible to further refine the results, or manually recover the algorithm.

The work of this Section was already introduced in [Unger et al., 2009], with a similar

approach adapted in [Roberts et al., 2011].

Depth image segmentation: In Section 5.1, we present a novel approach for segment-

ing buildings in depth images. Depth (2.5D) images of the earth are usually referred to as

digital surface model (DSM). They are obtained using either Lidar technology, or stereo

/ multi-view reconstruction from aerial imagery. In this Section we propose a multi label

approach to automatically segment building footprints into coherent regions. The segmen-

tation is based on the Potts model with label costs, we introduce in Section 3.2.3. Each

region is modeled by the affine parameters of a plane. The resulting algorithm iteratively

optimizes for the segmentation as well as the affine parameters.

A segmentation into meaningful regions gives rise to further processing such as seman-

tics and scene understanding. We demonstrate that the algorithm delivers good results

preserving small details such as chimneys. Additionally, we demonstrate that the proposed

12 Chapter 1. Introduction

approach can also be used for some stereo problems. The limiting factor is only the affine

model for the regions.

Joint Motion Estimation and Motion Segmentation: In Section 5.2, we propose a

unified variational formulation for joint motion estimation and segmentation with explicit

occlusion handling, that we first presented in [Unger et al., 2012]. This is done by a

multi-label representation of the flow field, where each label corresponds to a parametric

representation of the motion, similar to the depth image segmentation approach. We again

use a convex formulation of the multi-label Potts model with label costs and show that

occlusion constraints can be integrated into our formulation via convex constraints. This

is done for the asymmetric map-uniqueness criterion as well as the backmatch criterion.

Explicit occlusion handling eliminates errors otherwise created by the regularization. As

occlusions can occur only at segmentation boundaries, a large number of objects may be

required. By using a fast primal-dual algorithm we are able to handle hundreds of motion

segments.

Results are shown on several classical motion segmentation and optical flow examples.

Different extensions to the basic model with affine parameters are presented. This includes

the extension to quadratic parameters, as well as regions without any parametrization.

Although the algorithm is rather slow, it opens exciting opportunities by simultaneously

delivering optical flow, motion segmentation and occlusions.

Chapter 2

Continuous convex optimization

2.1 Inverse problems

Throughout this thesis we will deal with inverse problems. Thus, let us first start with

some considerations on these kind of problems. We therefore first define inverse problems,

and then discuss approaches to find a solution.

2.1.1 Problem definition

One of the earliest descriptions of an inverse problem can be found in the famous ’cave

allegory’:

Behold! human beings living in a underground den, which has a mouth open

towards the light and reaching all along the den; here they have been from their

childhood, and have their legs and necks chained so that they cannot move,

and can only see before them, being prevented by the chains from turning

round their heads. Above and behind them a fire is blazing at a distance, and

between the fire and the prisoners there is a raised way; and you will see, if you

look, a low wall built along the way, like the screen which marionette players

have in front of them, over which they show the puppets. [...] And do you

see, I said, men passing along the wall carrying all sorts of vessels, and statues

and figures of animals made of wood and stone and various materials, which

appear over the wall? [...] Like ourselves, I replied; and they see only their own

shadows, or the shadows of one another, which the fire throws on the opposite

wall of the cave? [Plato, 2008]

13

14 Chapter 2. Continuous convex optimization

Plato uses this allegory to make philosophical considerations if and how human beings can

discern truth. But the setting also gives a good example of an inverse problem. According

to [Keller, 1976], two problems are inverses to each other if the formulation involves all

or part of the solution of the other. He called the better understood problem the direct

problem, and the other one the inverse problem. While the direct problem often describes

a physical process and is easy to model, the inverse problem is often more complicated.

We speak of inverse problems whenever we have to deduce the state of a system (the

solution x) from one or multiple observations (the data y). This process is also called

inference. Inverse problems have already been well studied in various context, see for

example [Bertero and Boccacci, 1998; Chambolle, 2000; Fitzpatrick, 1991; Idier, 2008;

Kaipio and Somersalo, 2005; Kirsch, 2011; Knapik et al., 2011; Stuart, 2010] as a starting

point.

From the definition of inverse problems, it is obvious that we have to deal with inverse

problems all day long: When trying to catch a ball we have to infer its future location

from our visual observations. When trying to understand an image we have to infer the

single components it is composed of. When talking with your wife/partner, you have to

infer what she/he really tries to convey.

We already see that inverse problems are by no means trivial to solve. Inverse problems

are typically ill-posed. Let us first recall the definition of this notion. According to

[Hadamard, 1902] there are three conditions that have to be fulfilled for a problem to be

well-posed.

Existence: A solution x to the problem exists.

Uniqueness: The solution x is unique.

Stability : The dependence of the solution x on the data y is continuous. (An infinitesimal

small change δy of the data induces only an infinitesimal error δx on the solution.)

All other problems are considered ill-posed. While for a lot of ideal problems, the condition

of Existence is fulfilled, a solution might cease to exist if noise is added to the observation.

For a lot of problems the Uniqueness condition does not hold (e.g. think of quantization).

Also the condition of Stability is often violated. This poses additional difficulties, as small

deviations are amplified and can lead to arbitrary large errors. Note that although even

if problems can be modeled exactly, this does not mean that they are stable.

2.1. Inverse problems 15

2.1.2 Minimization of a composite criterion

When dealing with ill-posed inverse problems, one has to rely on prior knowledge on the

structure of the problem and the corresponding direct problem. One way to do so is by

means of an composite criterion. In the seminal work of [Tikhonov, 1963] the usage of an

optimization problem was proposed as follows:

min
u
{R(u) + λD(u, f)} . (2.1)

The observation is denoted with f and the solution with u. The right hand term D(u, f)

denotes a data fidelity term that models the relationship between solution u and observa-

tion f . To convert an ill-posed problem into a well-posed problem we have to make use

of a-priori information and make certain assumptions on the solution. In other words, we

have to impose some regularity on the solution. In (2.1), this is done by the regularization

term R(u). [Tikhonov, 1963; Tikhonov and Arsenin, 1977] used a quadratic regularization

of the solution that we will discuss among others in Section 2.2.1. The parameter λ is

used to find a tradeoff between regularization and fidelity to the observation.

The challenge now is to model this composite criterion such that the optimization

result is very close to the true solution. Therefore statistical properties on the space of

solutions as well as the physical process described by the corresponding direct problem are

important. Finding the right model for the actual problem is not a trivial task. George

E. P. Box once said: ’Essentially, all models are wrong, but some are useful.’

All problems in this thesis will be based on the formulation in (2.1). But modeling an

appropriate composite criterion does not only involve to find a model that has a solution

close to the desired solution, but we also have to be able to find this solution in a feasible

time. One important criterion is convexity of the energy posed by the composite criterion.

If convex, a globally optimal solution exists and can be found (e.g. by means of first order

derivatives). But if the energy is non-convex we additionally have to decide between local

and global optima. This process is much more complex and in general can only be solved

by comparing all possible solutions. Of course the number of solutions can be infinite

making non-convex optimization problems unpractical.

We will give an introduction to convex optimization methods in Section 2.3. The

rest of this thesis will deal with modeling appropriate convex optimization problems for

segmentation problems.

16 Chapter 2. Continuous convex optimization

2.1.3 A Bayesian approach

While the above description of a composite criterion minimization seems obvious, another

natural way to approach inverse problems is in a probabilistic setting. Indeed, the Bayesian

approach to inverse problems has been well studied [Bayes and Price, 1763; Markov, 1971;

Ramsey, 1931] and more recently [Chambolle et al., 2009; Idier, 2008; Kaipio and Somer-

salo, 2005; Pock, 2008]. We therefore treat u as a random variable that has some underlying

probability distribution. The optimization problem can then be formulated as finding the

hypothesis u, that maximizes the probability based on the observation f :

max
u
{p(u|f)} . (2.2)

We also speak of the maximum a posteriori (MAP) estimation, and p(u|f) the posterior

probability.

The well known Bayes theorem states that

p(u|f) =
p(f |u)p(u)

p(f)
, (2.3)

where p(u), the prior probability of u, corresponds to the regularization (2.1) or the a

priori known information. The likelihood that the observation f can be explained by the

hypothesis u is denoted as p(f |u), and is also called the conditional probability. It directly

corresponds to the data fidelity term in (2.1). For the optimization in u, we can neglect

the constant p(f).

As shown in [Chambolle et al., 2009], computing the MAP solution of u is not always

the best thing to do, as the solution with the highest probability might be very rare. A

better solution could rely on the expectation of u (e.g. [Protter et al., 2010]). Unfortu-

nately a direct optimization is not feasible and one has to rely on statistical optimization

methods like Markov Chain Monte Carlo (MCMC).

2.2 Classical variational problems

In this section we start with some classical variational problems in computer vision. As

an introduction we first focus on image denoising. The important contribution of [Rudin

et al., 1992] on image denoising paved the way for variational methods in image processing.

We will then show the close relationship to shape denoising, that already gives a motivation

for variational image segmentation.

2.2. Classical variational problems 17

2.2.1 Image denoising

The most basic example is the one of image denoising or restoration. We assume that the

true image u∗ : Ω→ R was degraded by additive noise n : Ω→ R. Note that Ω represents

the image domain throughout this thesis. Thus, we observe an image f : Ω → R as

f = u∗ + n. In the following, we will introduce three well known variational image

denoising problems.

2.2.1.1 Tikhonov model

Using the ideas of [Tikhonov, 1963] we can come up with the following optimization

problem:

min
u

{
1

2

∫

Ω
|∇u|2 +

λ

2

∫

Ω
(u− f)2dx

}
. (2.4)

The right term ensures that the solution u : Ω→ R is close to the input f , and is therefore

called the data fidelity term. The left term does regularization in the Tikhonov sense by

quadratically penalizing the image gradient ∇u. Finally, a free parameter λ is used to find

a tradeoff between regularization and data term. In Figure 2.1b, two examples of Tikhonov

denoising using (2.4) are depicted. One for a natural image with artificial Gaussian noise,

(a) Noisy input (b) Tikhonov (c) ROF (d) TV-L1

Figure 2.1: Comparison of different variational denoising models. The top row shows an
example with artificial Gaussian noise. On the bottom an CT image with natural noise
was used as an input.

18 Chapter 2. Continuous convex optimization

and one CT image with natural noise. While the Tikhonov denoising approach efficiently

removes the noise, it also results in a strong blur and loss of small details.

We now reconsider the Bayesian approach discussed in Section 2.1.3. If we assume

that the observation f was degraded by additive Gaussian noise of variance σ2, we can

formulate the likelihood as

p(f |u) =
∏

x∈Ω

1√
2πσ

e−
(u(x)−f(x))2

2σ2 . (2.5)

For the image prior, we again assume quadratic smoothness of the image gradients. If we

again assume a Gaussian distribution with variance µ2 of the image gradients |∇u|, we

obtain a prior probability as

p(u) =
∏

x∈Ω

1√
2πµ

e
− |∇u(x)|2

2µ2 . (2.6)

As a result of the Bayes theorem (2.3), we can write the posterior as

p(u|f) = p(f |u)p(u) =
∏

x∈Ω

1√
4πσµ

e
− ((u(x)−f(x))2

2σ2)2
− |∇u(x)|2

2µ2 . (2.7)

Interestingly this equation corresponds to the Gibbs function [Gibbs, 1902] that is used in

thermodynamics.

Using the MAP optimization approach (2.2), we arrive at the following optimization

problem.

max
u
{p(u|f)} = max

u

{∏

x∈Ω

e
− (u(x)−f(x))2

2σ2
− |∇u(x)|2

2µ2

}

= max
u

{
e
−
∫

Ω

(
(u(x)−f(x))2

2σ2
+
|∇u(x)|2

2µ2

)
dx
}

= min
u

{∫

Ω

(
(u(x)− f(x))2

2σ2
+
|∇u(x)|2

2µ2

)
dx

}
.

(2.8)

One immediately sees that this formulation is equivalent to the Tikhonov denoising model

in (2.4).

2.2. Classical variational problems 19

2.2.1.2 ROF model

In the seminal work of [Rudin et al., 1992], the quadratic regularization of (2.4) was

replaced with an L1 norm:

min
u

{∫

Ω
|∇u|+ λ

2

∫

Ω
(u− f)2dx

}
. (2.9)

This model is often referred to as the ROF model according to Rudin, Osher and Fatemi.

While the original formulation of [Rudin et al., 1992] proposes a constrained optimization

problem, the strictly convex formulation in (2.9) was proposed in [Chambolle and Lions,

1997]. The Total Variation (TV) term represents the sum over all absolute image gradients:

TV(u) =

∫

Ω
|∇u| =

∫

Ω

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

, (2.10)

with the 2D image gradient ∇u =
(
∂u
∂x ,

∂u
∂y

)T
. We assume here for the moment, that u

can be differentiated at least once. As depicted in Figure 2.1c, the ROF denoising model

according to (2.9) provides a much better result, as it not only removes the noise but also

preserves the edges. This fact is also well known in robust statistics [Huber, 1981]. For

an illustration of this edge preserving effect see Figure 2.2. Here three different functions

are depicted with different step sizes. Due to the quadratic regularization in the Tikhonov

model (2.4), the energy with a lot of small steps is significantly lower than one big step.

As a result the Tikhonov model will favor smooth transitions resulting in a blur of the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

∫
| ∇ x | d x = 1

∫
| ∇ x | 2d x = 1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

∫
| ∇ x | d x = 1

∫
| ∇ x | 2d x = 0 . 1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

∫
| ∇ x | d x = 1

∫
| ∇ x | 2d x = 0 . 0 2

(c)

Figure 2.2: Comparison of quadratic and TV regularization. TV regularization always
costs the total amount of all jumps, that is here 1 in all three examples. For the quadratic
regularization smaller jumps mean lower costs.

20 Chapter 2. Continuous convex optimization

image. On the other hand, TV counts the absolute gradients, making the resulting energy

for the three examples of Figure 2.2 always 1. As the regularization does not favor any

of these three functions only the data term is relevant for the final result, and edges or

smooth transitions of the image are preserved.

The denoising effect of TV regularization relies on the increased costs of small dips

that are caused by the noise. But this is of course also true for small structures, as

TV regularization prefers flat over rippled functions. As can be seen in Figure 2.1c, the

denoising results contains a lot of small flat regions. This so called stair-casing effect is a

well known side-effect of TV regularization.

The TV regularization term has also been extended to vector norms for color image

processing. See for example the publications of [Aujol and Kang, 2006; Blomgren and

Chan, 1998; Bresson and Chan, 2008; Chan et al., 2001; Goldluecke et al., 2012] as a

starting point.

2.2.1.3 TV-L1 model

The L1 norm can not only be used for the regularization, but also in the data term. When

the L2 data term in the ROF model (2.9) is replaced with an L1 norm, we arrive at the

so called TV-L1 model [Alliney, 1992, 1997; Aujol et al., 2006; Chan and Esedoglu, 2005;

Nikolova, 2002, 2004]:

min
u

{∫

Ω
|∇u|+ λ

∫

Ω
|u− f |dx

}
. (2.11)

While this problem is still convex, it is not strictly convex any more. This means that

the minimizers of (2.11) are not unique any more. In Figure 2.1d, the denoising result

using the TV-L1 model is depicted. When comparing to the results of the ROF model,

the differences are marginal. But [Nikolova, 2002] shows, that for certain types of noise

(e.g. impulse noise), the TV-L1 model outperforms the ROF model.

The artificial example in Figure 2.3 reveals another interesting property of the TV-L1

model. First, the ROF model suffers from slight blurring and contrast loss. Additionally,

it removes structures of the same size depending on its local contrast. This effect is much

smaller when using the TV-L1 model in Figure 2.3c, which seems to be almost contrast

invariant. Objects of a certain size are removed, regardless of their local contrast. When

using an L2 norm in the data term, small deviations of u and f cost significantly less than

large deviations. As a result, structures with low contrast are removed first. While this

observation is still true when using an L1 norm, the dependence is not quadratic anymore,

but linear. The effect of contrast dependence almost vanishes.

2.2. Classical variational problems 21

(a) Input (b) ROF (c) TV-L1

Figure 2.3: Demonstration of the contrast invariant denoising properties of the TV-L1
model (2.11), compared to the ROF model (2.9).

2.2.2 Shape denoising

In the previous section, we already noted that TV (2.10) counts the sum of all absolute

gradients. This relationship between the level-sets of an image with bounded variation

and TV was first expressed by the so called co-area formula [Fleming and Rishel, 1960]:

∫

Ω
|∇u| =

∫ ∞

−∞
Per ({x : u(x) > γ}) dγ , (2.12)

where Per(Σ) denotes the perimeter of a set Σ. According to the co-area formula, TV can

be decomposed into a sum of the length of all level-sets of u. As a result TV as in the ROF

model (2.9), not only minimizes the jumps in the image, but also the length of the level-

sets. This effect can be seen in Figure 2.3b, where the edges of the squares are noticeably

rounded. A thorough study on this relationship can also be found in [Chambolle, 2005].

We now assume that we deal with a binary input image f : Ω → {0, 1}. This binary

image can also be expressed by its characteristic function for a region Σ

f(x) = 1Σ(x) , (2.13)

with the characteristic function given as

1Σ(x) =

{
1 if x ∈ Σ

0 else .
(2.14)

Recalling the coarea formula (2.12), it is obvious that the TV of the characteristic function

22 Chapter 2. Continuous convex optimization

of a set, is exactly the perimeter of the set [Chan et al., 2006; Evans and Gariepy, 1992;

Giusti, 1984].

Per(Σ) =

∫

Ω
1Σ(x)dx. (2.15)

We further assume that the binary input image f is the corrupted correspondence to

another binary function u : Ω→ {0, 1}. We can easily add the constraint of a binary u to

the ROF model (2.9)

min
u∈{0,1}

{∫

Ω
|∇u|+ λ

2

∫

Ω
(u− f)2dx

}
, (2.16)

as well as the TV-L1 model (2.11)

min
u∈{0,1}

{∫

Ω
|∇u|+ λ

∫

Ω
|u− f |dx

}
. (2.17)

As a consequence, both models now minimize the contour length of the solution u. [Chan

et al., 2006] used the ROF formulation (2.16) to solve the following equivalent shape

denoising problem:

min
Σ
{Per(Σ) + λ|Σ	 S |} , (2.18)

for a given set S , and 	 the symmetric difference operator. As shown in [Chan and

Esedoglu, 2005], the data term of the TV-L1 model can also be rewritten using the layer

cake formula:

∫

Ω
|u(x)− f(x)|dx =

∫ ∞

−∞
|{x : u(x) > γ} 	 {x : f(x) > γ}| dγ. (2.19)

Unfortunately, both (2.16) and (2.17) are non-convex due to the binary functions. In

[Chan and Esedoglu, 2005; Chan et al., 2006], the authors proposed to rewrite (2.17) in

terms of the original convex TV-L1 formulation (2.11). They proved that if u(x) is a

minimizer of the TV-L1 energy (2.11), for almost every γ ∈ [0, 1], the binary function

1Σ(x) with Σ = {x : u(x) > γ} is a minimizer of the shape denoising problem (2.17). This

allows to transform the non-convex shape denoising problem into a convex problem by

making use of its level set formulation. Any threshold gives a globally optimal solution to

the shape denoising problem. But as the energy is not strictly convex, this solution is not

unique.

In Figure 2.4, we applied the shape denoising model (2.17) to a real world example.

Figure 2.4a shows the input image I and Figure 2.4b a thresholded version that is used

as input to the shape denoising problem f = 1{x:I(x)>0.5}. The first row shows the result

2.2. Classical variational problems 23

(a) Image (b) Thresholded (c) Edges

Figure 2.4: Shape denoising of (b). The first two rows show the results of the TV-L1 model
and the thresholded result. Row 3 and 4 show the output when using the ROF model
and the thresholded result. While the ROF model causes a strong contrast reduction, the
TV-L1 model delivers a nearly binary result. When thresholding the output at 0.5, both
models deliver almost the same shape denoising result. In the bottom row the TV in the
regularization term was weighted with the edge weighting function in (c). As a result the
boundary is drawn towards the edges.

24 Chapter 2. Continuous convex optimization

u of the TV-L1 model (2.11) with decreasing λ from left to right, and the second row

the thresholded version 1{x:u(x)>0.5}. We used a threshold of γ = 0.5, but any threshold

γ ∈ [0, 1] is possible. First note that with decreasing λ, the regularization term becomes

more important and the contour length is efficiently minimized. As one can see that the

output of the TV-L1 model is almost binary, with only small blurred regions. This means

that all globally optimal solutions to the shape denoising problem are very close to each

other.

In the third row of Figure 2.4 we used the ROF model (2.9) with the same input as

in the previous example. One can immediately notice the typical effects of blurring and

contrast loss. But when we look at the thresholded version, the result is the same as for

the TV-L1 model. This time the threshold γ = 0.5 is important. We will discuss this

relationship in detail in Section 3.3.3.

The examples in Figure 2.4 show that TV can be used to minimize the contour length

in a shape denoising framework. This already suggests that TV is well suited for image

segmentation tasks. But it is obvious that minimizing the contour length also results in

blobs where the boundaries might not align well with object boundaries in the image. A

circle has the lowest possible ratio between length and area, and will therefore be favored

in a shape denoising framework. Again note the rounded edges in Figure 2.3c. A way to

overcome this problem is to add a weighting function to the regularization. [Bresson et al.,

2007] suggested to use the weighted TV
∫

Ω g|∇u| to minimize the GAC energy [Caselles

et al., 1997a]. The shape denoising problem in (2.17) thus becomes

min
u∈{0,1}

{∫

Ω
g|∇u|+ λ

∫

Ω
|u− f |dx

}
. (2.20)

We can weight the boundary costs by setting g to an edge weighting function that has low

values for strong edges and high values in flat regions. As a result the region boundaries

are drawn towards the edges in the image. We depicted the results of (2.20) in the bottom

row of Figure 2.4. One can note that the shape denoising results are much better aligned

to object boundaries of the input image. All segmentation models presented in Chapter 3

and the rest of this thesis will rely on the weighted TV.

2.2.3 Mumford-Shah model

The Mumford-Shah segmentation model is a well known optimization problem introduced

in [Mumford and Shah, 1989]. It determines a piecewise smooth approximation of the

2.2. Classical variational problems 25

input image f . The Mumford-Shah functional is given by the following minimization

problem

min
Λ,u

{
νHc−1(Λ) +

α

2

∫

Ω
(u− f)2dx+

β

2

∫

Ω\Λ
|∇u|2dx

}
. (2.21)

Here Λ denotes the edge set, and Hc−1(Λ) the c − 1 dimensional Hausdorff measure.

The first term therefore minimizes the length of the edges. With the second term, the

quadratic distance of the solution u to the input image f is minimized. This data fidelity

term is equivalent to the one used in the ROF model (2.9). The last term of (2.21) applies

smoothing inside the region Ω \ Λ. The free positive constants ν, α and β are used to

weight the single terms.

A well known variation of the model in (2.21), is the piecewise constant Mumford-Shah

functional defined by

min
u

{
νHc−1(Γu) +

α

2

∫

Ω
(u− f)2dx

}
, (2.22)

where Γu now denotes the jump set of u. This problem is closely related to the Potts/Ising

model [Potts, 1952]. A good convex relaxation to the piecewise constant Mumford-Shah

model was e.g. presented in [Pock et al., 2009a]. We will discuss these approaches in

Section 3.2.

An exact minimization of the original energy (2.21) is not a trivial task. The Mumford-

Shah model is often solved using the level set framework [Osher and Sethian, 1988; Tsai

et al., 2000; Vese and Chan, 2002]. But also graph based methods have become popular

[Grady and Alvino, 2009] to improve on local minima. Unfortunately, graph based methods

do not allow for open boundaries. In [Pock et al., 2009b], a convex relaxation approach

is presented that uses functional lifting. In contrast to most other approaches, the convex

approximation ensures a globally optimal solution, and thus independence of initialization.

Additionally open boundaries pose no problem to the algorithm.

There is a wide range of applications of the Mumford-Shah model, that includes seg-

mentation, image denoising, matching and motion estimation. See for example [Berkels,

2010] as an overview on the wide applicability of the Mumford-Shah functional. Fig-

ure 2.5(c,d), depicts an example of the piecewise smooth Mumford-Shah model (2.21), for

which we used the implementation of [Pock et al., 2009b].

An important contribution is the active contours without edges (ACWE) model [Chan

and Vese, 1999, 2001] that we also refer to as the Chan-Vese model. The Chan-Vese model

minimizes the active contour energy (see Section 1.2.1), by reducing the Mumford-Shah

26 Chapter 2. Continuous convex optimization

(a) Input image (b) Chan-Vese model (2.23)

(c) Piecewise smooth Mumford-Shah (2.21) (d) Edge set Λ (2.21)

Figure 2.5: Demonstration of different approximations to the Mumford-Shah energy (2.21).
(b) depicts the two-phase Chan-Vese model. (c,d) were obtained using the convex relax-
ation of [Pock et al., 2009b].

model to the following two-phase segmentation problem;

min
Σ,c1,c2

{
νPer(Σ) +

∫

Σ
(c1 − f)2dx+

∫

Ω\Σ
(c2 − f)2dx

}
. (2.23)

The minimization problem minimizes not only for the region Σ, but also c1 and c2, making

the optimization problem non-convex. We will see in Section 3.1.3, that the model is also

closely related to the maximum flow problem. When fixing c1 and c2, the globally optimal

solution of the Chan-Vese model can be computed. The Chan-Vese model does not allow

for open boundaries. While this is not in the spirit of the original Mumford-Shah functional

(2.21), closed boundaries are an requirement for image segmentation as defined in (1.1).

In Figure 2.5(b), the result of the Chan-Vese model is depicted. We used the implemen-

tation of [Getreuer, 2010]. When comparing to the shape denoising results in Figure 2.4,

2.3. Convex optimization 27

the close connection becomes obvious.

The Chan-Vese model (2.23) was extended to a multiphase segmentation model in

[Vese and Chan, 2002]. This so called Vese-Chan model uses two level set functions to

model four different regions. Using the 4-color theorem, an arbitrary number of regions

can be modeled. Unfortunately this requires the region to be spatially connected. The

Potts model presented in Section 3.2 does not suffer from this topological constraints.

The Mumford-Shah model was also extended to vector-valued images [Chan, 2000].

Other approximations of the Mumford-Shah functional include the model by [Ambrosio

and Tortorelli, 1990]. The proposed phase field functions result in a diffuse boundary

representation. It also allows for open boundaries, making it a good approximation of the

original formulation (2.21).

2.3 Convex optimization

In the following we introduce some basics of convex optimization. We will discuss the

primal dual algorithm used throughout this thesis, and show how it can be applied to

basic problems discussed in the previous section.

2.3.1 Preliminaries

This section gives a short mathematical background and introduces notations that we are

going to use later on.

2.3.1.1 Discretization

We first consider the discretization of the continuous formulations. An image is usually

given on a two dimensional regular Cartesian grid of the size M ×N :

{(ih, jh) : 1 ≤ i ≤M, 1 ≤ j ≤ N} , (2.24)

with the indices of the discrete locations given by (i, j) and the pixel size (or spacing) h.

For this thesis, the pixels are considered isotropic and we therefore set h = 1. We make

all considerations assuming the dimensionality of the image to be d = 2. The extension

to higher order functions (e.g. 3D images) is straightforward.

28 Chapter 2. Continuous convex optimization

We now define a finite dimensional vector space X = RMN with a scalar product

〈v, w〉X =
∑

i,j

vi,jwi,j , v, w ∈ X . (2.25)

Furthermore, we define a vector space Y = RMN × RMN = R2MN , with the gradient

operator as a linear mapping ∇ : X → Y using finite differences and Neumann boundary

conditions:

(∇v)i,j =
(
(δ+
x v)i,j , (δ

+
y v)i,j

)T
, (2.26)

where

(δ+
x v)i,j =

{
vi+1,j − vi,j if i < M

0 if i = M
,

(δ+
y v)i,j =

{
vi,j+1 − vi,j if j < N

0 if j = N
.

(2.27)

Given two vectors p = (px, py)T and q = (qx, qy)T ∈ Y we define the scalar product as

follows:

〈p, q〉Y =
∑

i,j

pxi,jq
x
i,j + pyi,jq

y
i,j . (2.28)

Additionally we have to define a divergence operator div : Y → X by choosing it to

be adjoint to the gradient operator in (2.26), and thus fulfilling the equality

〈∇u,p〉Y = −〈u,divp〉X . (2.29)

Therefore, the discrete divergence operator is given as:

(divp)i,j = (δ−x p
x)i,j + (δ−y p

y)i,j , (2.30)

with

(δ−x p
x)i,j =





0 if i = 0

pxi,j − pxi−1,j if 0 < i < M

−pxi−1,j if i = M

,

(δ−y p
y)i,j =





0 if j = 0

pyi,j − p
y
i,j−1 if 0 < j < N

−pyi,j−1 if j = N

.

(2.31)

2.3. Convex optimization 29

2.3.1.2 Vector norms

A norm on a vector space X is a function || · || : X → R+, such that the following three

conditions hold:

1. ||v|| = 0 if v = 0 and ||v|| > 0 if v 6= 0.

2. ||kv|| = |k| ||v|| .

3. ||v + w|| ≤ ||v||+ ||w||.

for all vectors v, w ∈ X and the scalar k. In case the condition ||v|| > 0 if v 6= 0 does not

hold, one speaks of a seminorm.

We will make heavy use of the Lp-norm, that is defined as

||v||p =

(∑

i

|vi|p
)1/p

, (2.32)

with p ≥ 1. There are three important cases of the Lp-norm:

• p = 1: The so called L1-norm is often also referred to as the Manhattan or taxicab

norm. It is computed as the sum over all absolute values

||v||1 =
∑

i

|vi| . (2.33)

• p = 2: The L2-norm is also referred to as the Euclidean norm and computes the

length of a vector. It can be written as

||v||2 =
√
|v1|2 + . . .+ |vn|2 =

√
< v, v >X . (2.34)

• p =∞: The final case is the L∞-norm also referred to as the Maximum norm, as it

can be computed as

||v||∞ = max (|v1|, . . . , |vn|) . (2.35)

In case vector values are themself vector valued as e.g. in p = (px, py)T ,∈ Y , we have

to take special care with the notation. We typically assume that the point wise or inner

norm denotes the length of the vector computed as the L2-norm (or absolute value | · | for

scalars). To specify a different inner norm, we use the notation || · ||q,p, that denotes an

30 Chapter 2. Continuous convex optimization

inner Lq-norm, and an outer Lp-norm. Two examples are given in the following:

||p||2,1 =
∑

i

√
|pxi |2 + |pyi |2 ,

||p||1,1 =
∑

i

(|pxi |+ |pyi |) .
(2.36)

As the || · ||2,1-norm will be the most common used norm, we simplify our notation by

writing || · ||p instead of || · ||2,p and simply || · || instead of || · ||2,1.

2.3.1.3 Convexity

Convexity has an important role in optimization. Convex optimization deals with the

minimization of convex functions over convex sets. As there are no local, but only global

minima, convex optimization is much easier than the general case. We therefore shortly

recap the basic principles of convexity.

Convex sets: Given a set C in the vector space V , we call C a convex set if the following

condition holds

tx+ (1− t)y ∈ C, ∀x,y ∈ C and t ∈ [0, 1]. (2.37)

This means, that each point that lies on the line connecting two points x,y ∈ C, is again

in the set C.

There are several operations that preserve the convexity of a set, with the

most important as following: Given a convex set C, and an affine function f ,

then {f(x) : x ∈ C} is again convex. The sum of two convex sets C,D is again

convex C + D = {x+ y : x ∈ C, y ∈ D}. The same holds for the intersection

C ∩D = {x : x ∈ C and x ∈ D}.

Convex functions: A function f : X → R with its domain a convex set C, is called

convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) , (2.38)

with x,y ∈ X and t ∈ [0, 1]. If further the condition

f(tx+ (1− t)y) < tf(x) + (1− t)f(y) (2.39)

2.3. Convex optimization 31

holds, the function f is called strictly convex. While a convex function can have multiple

global minima, a strictly convex function has only one global minimum. The existence of

only global minima allows to base minimization on the local variations or derivatives, as

one cannot get stuck in local minima. As we will see in Section 2.3.2, this allows for a

wide range of algorithms to solve convex optimization problems.

(2.38) can be geometrically interpreted, that all points of the line connecting (f(x),x)

and (f(y),y) lie above the function, the so called epigraph. The epigraph epi of f is the

set containing everything on or above the function f .

epif = {(x, µ) : x ∈ X,µ ∈ R and µ ≥ f(x)} . (2.40)

In other words, f is convex if epif is a convex set.

The convexity of a function is preserved under several operations. If f1, . . . , fn are

convex functions, then also the sum h(x) =
∑

i fi(x), as well as the maximum h(x) =

max {f1(x), . . . , fn(x)} are convex. Further, any affine mapping f(Ax+ b) preserves con-

vexity.

2.3.1.4 Duality

In the following we introduce basic principles of duality. We will make use of the Legendre-

Fenchel (LF) transformation or convex conjugate [Rockafellar, 1970]. The LF transforma-

tion for a function f(x) is given as

f∗(y) = sup
x∈R
{yx− f(x)} . (2.41)

We can also write f∗(k) = (f(x))∗ or simply f∗ = (f)∗ for the LF transformation. The

LF transformation of f∗(k) is also called the double LF transformation (or biconjugate)

of f(x), and is given as

f∗∗(x) = sup
y∈R
{yx− f∗(y)} . (2.42)

For a good introduction to the LF transformation, we refer the interested reader to

[Touchette, 2007] and summarize the following properties of the LF transformation:

• The LF transformation f∗ is always a convex function.

• The double LF transformation f∗∗ is the convex envelope of f . For a convex function

f we get f∗∗ = f .

32 Chapter 2. Continuous convex optimization

• Points in f correspond to slopes in f∗, and slopes in f are transformed into points

in f∗.

• Non-differential points in f result in an affine slope in f∗. Affine as well as non-

convex segments in f correspond to a non-differentiable point in f∗.

We now derive the LF transformation for TV (2.10), that is a convex function with

one non-differential point. We have f(∇u) = |∇u| and its LF transformation with respect

to ∇u given as

f∗(p) = sup
∇u∈Rd

{p · ∇u− |∇u|} = I{||p||∞≤1}(p). (2.43)

With the indicator function IΣ(x) for the set Σ given as

IΣ (x) =

{
0 if x ∈ Σ ,

∞ else .
(2.44)

We call p : Ω → Rd the dual variable. Note that the ∇ operator performs a mapping

from R → Rd for d-dimensional images. As a consequence the dual variable p will be of

dimensionality d. See Section 2.3.1.1 for more details.

Now the LF transformation of f∗(p) can be computed as

f∗∗(∇u) = sup
p

{
p · ∇u− I{||p||∞≤1}(p)

}
= sup
||p||∞≤1

{p · ∇u} . (2.45)

The above equation gives two equivalent notations for the constraint ||p(x)||∞ ≤ 1, ∀x ∈
Ω.

2.3.2 An overview on minimization algorithms

In the following we give a brief overview on convex optimization methods. As we will

use a single primal dual algorithm throughout this thesis (the algorithm is detailed in the

next section), we only introduce the most relevant ideas. For an in depth introduction to

convex optimization there are excellent books such as [Boyd and Vandenberghe, 2004].

We first look at the following unconstrained minimization problem:

min
u
E(u), (2.46)

with E : Rn → R a convex energy with E ∈ C1 and u ∈ Rn. As the class of energies E

that allow to solve (2.46) directly is very small, one generally uses iterative approaches to

2.3. Convex optimization 33

solve the problem.

First order methods are based on the first derivative of E. The gradient d
duE(u) gives

the direction in which to move in order to minimize E. A critical point is reached when

the Euler-Lagrange equation is fulfilled:

d

du
E(u) = 0. (2.47)

Using gradient descend methods will converge to the globally optimal solution if the op-

timization problem is convex.

A gradient descend approach was already proposed for the ROF model [Rudin et al.,

1992]. Unfortunately gradient descend methods tend to be very slow in flat regions (typi-

cally close to the optimum), and often do not move towards the global optimum directly.

To tackle this problem over-relaxation is used by well known approaches such as Gauss-

Seidel iterations or successive over relaxation (SOR). Another example for a gradient

descend method is the interior point method of [Vogel and Oman, 1996]. There, a lin-

earization of the Euler-Lagrange equation is used. Still other problems of gradient descend

methods as discontinuities in the energy E and additional constraints, still remain.

Interior point methods solve a problem with linear equality as well as inequality con-

straints by reduction to a sequence of linear equality constrained problems. According to

[Boyd and Vandenberghe, 2004], they can be used to solve problems of the form

min
u
E(u),

s.t. fi(u) ≤ 0, i = 1, . . . ,M

Au = b,

(2.48)

with fi : Rn → R convex functions in C2, and A ∈ Rp×n and rankA = p < n.

Another well known concept is the one of proximal point methods. While interior

point methods work inside the convex feasible domain, the proximal point method is a

simplex method that works through the border of the convex feasible domain. They can

be applied if the energy can be split up into a sum of convex functions. First the gradient

based updates are done to obtain ũ. Then a proximity operator projects the update ũ

back to the convex set by solving

arg min
u

{
Ei(u) +

||u− ũ||2
2

}
. (2.49)

34 Chapter 2. Continuous convex optimization

A famous proximal point algorithm is the Douglas-Rachford splitting [Douglas and Rach-

ford, 1956]. Other well known proximal algorithms are the iterative shrinkage thresholding

algorithm (ISTA) algorithm [Nesterov, 1983], extended in [Nesterov, 2004] and adapted

by [Beck and Teboulle, 2009] as fast iterative shrinkage thresholding algorithm (FISTA).

Using duality as introduced in Section 2.3.1.4, discontinuities can be easily handled.

Examples are the fixed-point algorithm in [Chambolle, 2004] or the projected gradient

descent [Chambolle, 2005]. Other examples are [Kunisch and Hintermüller, 2004] and

[Zhu and Chan, 2008]. In the next section, we will discuss the primal dual algorithm of

[Chambolle and Pock, 2010], that we use throughout the rest of this thesis.

2.3.3 A general primal dual algorithm

In [Chambolle and Pock, 2010], a fast first order primal-dual algorithm for non-smooth

convex saddle point problems was presented. For the general algorithm a convergence rate

O(1/N) is proved. The general saddle point problem that can be solved using the primal

dual algorithm is of the form

min
α∈A

max
β∈B

{
〈Dα, β〉+ Φ(α)−Ψ∗(β)

}
. (2.50)

Where A and B are finite-dimensional real vector spaces, the linear operator D : A→ B,

and two proper, convex, lower-semicontinuous functions Φ : A→ R ∪ {∞} and Ψ∗ : B →
R ∪ {∞}. Here Ψ∗ is the convex conjugate of a convex lower-semicontinuous function Ψ.

The general algorithm to solve the saddle point problem in (2.50) is given in Algorithm 1.

The iterative algorithm consists of a gradient ascent step on the dual variable β with an

additional resolvent operator. For the primal variable α a gradient descent step with an

additional resolvent operator is performed. Additionally an extra-gradient step is applied

to the primal variable α. The time-steps τ and σ are chosen such that τσL2 < 1 with

the Lipschitz constant L2 = ||D||2. We chose θ = 1 for the rest of this paper. The newly

introduced variable ᾱ ∈ A represents the leading point for the primal variable α. The

subgradients of the convex functions Φ and Ψ∗ are denoted as ∂Φ and ∂Ψ∗. The resolvent

2.3. Convex optimization 35

Algorithm 1 General primal dual algorithm to solve (2.50)

τ > 0, σ > 0, θ ∈ [0, 1]
α0 ∈ A, β0 ∈ B and ᾱ0 = α0

for j = 1 to J do
βj = (I + σ∂Ψ∗)−1 (βj−1 + σDᾱj−1

)

αj = (I + τ∂Φ)−1 (αj−1 − τD∗βj
)

ᾱj = αj + θ
(
αj − αj−1

)

end for

Algorithm 2 Accelerated primal dual algorithm to solve (2.50) if Φ or Ψ∗ are uniformly
convex.

τ0 > 0, σ0 > 0, τ0σ0L
2 < 1, γ > 0, θ ∈ [0, 1]

α0 ∈ A, β0 ∈ B and ᾱ0 = α0

for j = 1 to J do
βj =

(
I + σj−1∂Ψ∗

)−1 (
βj−1 + σj−1Dᾱj−1

)

αj =
(
I + τ j−1∂Φ

)−1 (
αj−1 − τ j−1D∗βj

)

θj = 1/
√

1+2γτ j−1, τ j = θjτ j−1 and σj = σj−1/θj

ᾱj = αj + θj
(
αj − αj−1

)

end for

operators can be calculated as

β = (I + σ∂Ψ∗)−1 (β̃) = arg min
β

{
||β − β̃||2

2σ
+ Ψ∗(β)

}
,

α = (I + τ∂Φ)−1 (α̃) = arg min
α

{
||α− α̃||2

2τ
+ Φ(α)

}
.

(2.51)

[Chambolle and Pock, 2010] also showed that Algorithm 1 can be further accelerated

if either Φ or Ψ∗ are uniformly convex, meaning that they have a Lipschitz continuous

gradient. In this case, the they can prove a O(1/N2) convergence rate, using the modified

algorithm in Algorithm 2. In contrast to Algorithm 1, additionally the time steps τ and

σ, as well as θ are modified depending on the number of iterations. We will see in Sec-

tion 2.3.4, that this algorithm can efficiently solve the ROF model (2.9). As demonstrated

in [Chambolle and Pock, 2010], this results in a significantly faster convergence. They also

showed that the algorithm can be further accelerated to linear convergence, if both Φ and

Ψ∗ are uniformly convex. As we are dealing with TV in all our algorithms, this case is not

relevant in our context. A uniformly convex regularization term is e.g. the Huber norm

[Huber, 1973].

Primal-dual formulations in continuous optimization have the advantage that the gap

36 Chapter 2. Continuous convex optimization

between primal energy and dual energy provides a meaningful convergence measure. The

saddle point problem in (2.50) has a corresponding primal problem

Ep = min
α∈A

{
Ψ(Kα) + Φ(α)

}
, (2.52)

as well as a pure dual problem

Ed = max
β∈B

{
−Ψ∗(β)− Φ∗(−K∗β)

}
. (2.53)

The partial primal-dual gap is defined as

G(α′, β′) = max
β′∈X2

{
〈
Dα, β′

〉
+ Φ(α)−Ψ∗(β′)

}

− min
α′∈X1

{
〈
Dα′, β

〉
+ Φ(α′)−Ψ∗(β)

}
.

(2.54)

In the case of Ep(α) = Ed(β), the global optimum is reached, and (α, β) are a saddle

point. Though the primal-dual gap provides an optimality measure, it is not guaranteed

to decrease continuously.

In [Pock and Chambolle, 2011], a diagonal preconditioning for the above algorithms was

introduced. The preconditioning makes the computation of the time steps unnecessary.

They showed, that especially for problems with irregular structure, the preconditioned

algorithm outperforms [Chambolle and Pock, 2010].

2.3.4 Practical application

This section describes the optimization of the ROF and TV-L1 model using the principles

introduced in the previous sections, and the algorithms from Section 2.3.3.

2.3.4.1 ROF model

We now make use of the Legendre-Fenchel transformation to convert the ROF model (2.9)

into a suitable primal-dual problem (2.50). For a convex function f we know that f∗∗ = f .

Therefore the ROF model can be rewritten using the double LF transformation of TV in

2.3. Convex optimization 37

(2.45) as the following saddle-point problem

min
u

max
||p||∞≤1

{∫

Ω
p · ∇u+

λ

2

∫

Ω
(u− f)2dx

}
. (2.55)

The corresponding discretized version reads

min
u

max
p

{
〈p,∇u〉+

λ

2
||u− f ||2 − I{||p||∞≤1}(p)

}
. (2.56)

Let us recall that f ∈ RMN , u ∈ RMN and p ∈ RdMN with d = 2 for 2D images.

Consequently the linear operator ∇ is of size MN × 2MN .

Analyzing (2.56), we see that the primal variable α = u and the dual variable β = p.

The linear operator D = ∇ results in a Lipschitz constant L2 = 8. Finally we have the

non-linear functions Φ(u) = λ
2 ||u− f ||2 and Ψ∗(p) = I{||p||∞≤1}(p).

The resolvent operator for the primal update can be computed according to (2.49) as

u = (I + τ∂Φ)−1 (ũ) = arg min
u

{
||u− ũ||2

2τ
+
λ

2
||u− f ||2

}
. (2.57)

To solve this minimization problem we look at the corresponding Euler-Lagrange equation:

1

τ
(u− ũ) + λ(u− f) = 0. (2.58)

Thus, the solution to the resolvent operator is given as the following point-wise update

ui,j =
ũi,j + τλfi,j

1 + τλ
. (2.59)

We finally have to compute the resolvent operator for the dual update as

p = (I + σ∂Ψ∗)−1 (p̃) = arg min
p

{
||p− p̃||2

2σ
+ I{||p||∞≤1}(p)

}
. (2.60)

It is easy to see, that as Ψ∗(p) is the indicator function of a convex set, the resolvent

operator is given as simple point-wise Euclidean projections on the unit ball. We can

write this as

pi,j =
p̃i,j

max(1, |p̃i,j |)
. (2.61)

It is now trivial to apply the algorithms from Section 2.3.3 to (2.56). We summarized

the general primal dual algorithm for the ROF model in Algorithm 3. As the data term in

38 Chapter 2. Continuous convex optimization

Algorithm 3 General primal dual algorithm to solve the ROF model (2.9)

τ = σ = 1
L = 1√

8
, θ = 1

u0 = f, p0 = 0 and ū0 = u0 // Initialization
for j = 1 to J do
p̃ = pj−1 + σ∇ūj−1 // Update dual variable
pj = p̃

max(1,|p̃|)
u = (1 + τλ)−1(uj−1 + τdivpj + τλf) // Update primal variable
ūj = 2uj − uj−1 // Extra-gradient step

end for

Algorithm 4 Accelerated primal dual algorithm to solve the ROF model (2.9)

τ = σ = 1
L = 1√

8

u0 = f, p0 = 0 and ū0 = u0 // Initialization
for j = 1 to J do
p̃ = pj−1 + σ∇ūj−1 // Update dual variable
pj = p̃

max(1,|p̃|)
u = (1 + τλ)−1(uj−1 + τdivpj + τλf) // Update primal variable
θj = 1/

√
1+0.7τ j−1

τ j = θjτ j−1 and σj = σj−1/θj // Update time steps
ūj = uj + θj

(
uj − uj−1

)
// Extra-gradient step

end for

the ROF model is uniformly convex, we can apply Algorithm 2 as a solver. The resulting

accelerated algorithm is summarized in Algorithm 4.

2.3.4.2 TV-L1 model

Using the knowledge from the previous sections, we can transform the TV-L1 model (2.11)

into the following discrete primal-dual saddle point problem

min
u

max
p

{
〈p,∇u〉+ λ||u− f || − I{||p||∞≤1}(p)

}
. (2.62)

This problem is very similar to the ROF formulation in (2.56), but now we have an L1

data term and thus Φ(u) = λ||u− f ||.
The resolvent operator can again be computed as

u = (I + τ∂Φ)−1 (ũ) = arg min
u

{
||u− ũ||2

2τ
+ λ||u− f ||

}
, (2.63)

2.3. Convex optimization 39

Algorithm 5 Algorithm to solve the TV-L1 model (2.11) using thresholding scheme.

τ = σ = 1√
9
, θ = 1

u0 = f, p0 = 0 and ū0 = u0 // Initialization
for j = 1 to J do
p̃ = pj−1 + σ∇ūj−1 // Update dual variable
pj = p̃

max(1,|p̃|)
ũ = uj−1 + τdivpjf // Update primal variable

uj =





ũ− τλ if ũ− f > τλ
ũ+ τλ if ũ− f < −τλ
f if |ũ− f | ≤ τλ

ūj = 2uj − uj−1 // Extra-gradient step
end for

with the corresponding Euler-Lagrange equation:

1

τ
(u− ũ) + λ

u− f
|u− f | = 0. (2.64)

As a result, we arrive at the following soft thresholding schema:

ui,j =





ũi,j − τλ if ũi,j − fi,j > τλ

ũi,j + τλ if ũi,j − fi,j < −τλ
fi,j if |ũi,j − fi,j | ≤ τλ

. (2.65)

As the TV-L1 model is a non-smooth optimization problem, we can apply only the

general primal-dual algorithm. We summarized the algorithm in Algorithm 5.

While the soft thresholding schema in (2.65) works very well, we could also provide

an alternative optimization approach by dualizing the data term. The Legendre Fenchel

transformation for the L1 norm was already discussed for TV. Thus we can rewrite the

primal-dual TV-L1 model with dualized data term as

min
u

max
p,q

{
〈p,∇u〉+ 〈q, u− f〉 − I{||p||∞≤1}(p)− I{||q||∞≤λ}(q)

}
. (2.66)

Since we can rewrite 〈p,∇u〉+〈q, u−f〉 as

〈(
p

q

)
,

(
∇
I

)
u

〉
−qf , the reformulation is

again trivial. We now have the primal variable α = u and the dual variable β =
(
p q

)T
.

The linear operator D =

(
∇
I

)
, with I the identity matrix of size MN ×MN . This

40 Chapter 2. Continuous convex optimization

Algorithm 6 Algorithm to solve the TV-L1 model (2.11) with dualized data term.

τ = σ = 1√
9
, θ = 1

u0 = f, p0 = 0, q0 = 0 and ū0 = u0 // Initialization
for j = 1 to J do
p̃ = pj−1 + σ∇ūj−1 // Update dual variables
pj = p̃

max(1,|p̃|)

qj =
[
qj−1 + σ(ūj−1 − f)

]λ
−λ

uj = uj−1 − τ(−divpj + qj) // Update primal variable
ūj = 2uj − uj−1 // Extra-gradient step

end for

results in a Lipschitz constant L2 = 9. We have no non-linear parts any more Φ(u) = 0

and Ψ∗(p, q) = qf + I{||p||∞≤1}(p) + I{||q||∞≤λ}(q). The resolvent operator can then be

computed by solving the following constrained optimization problem

arg min
β

{ ||(p q)T − (p̃ q̃)T ||2

2σ
+ qf

}
,

s.t. ||p||∞ ≤ 1, ||q||∞ ≤ λ .
(2.67)

Solving the Euler-Lagrange equation 1
σ (q − q̃) + f = 0 we get

q = q̃ − σf , (2.68)

with the additional clamping of q to the interval [−λ, λ]. We denote this point wise trun-

cation as [·]λ−λ. The resolvent operator for p is again a point-wise Euclidean projection

on the unit ball as stated in (2.61).

The resulting algorithm can be found in Algorithm 6.

Chapter 3

Variational Image Segmentation

3.1 Binary image segmentation - Continuous max flow

Binary image segmentation is probably the most important segmentation task. A lot of

problems can be formulated as a simple foreground/background segmentation. Although

it is a special case of the more general multi label problem, treating binary image seg-

mentation separately allows for a lot of improvements and optimizations. It is thus more

efficient to solve for the specific rather than the general problem.

In this Section we focus on the continuous minimum cut / maximum flow problem. We

show how the problem can be solved efficiently using the convex optimization methods

introduced in the last chapter. Connections to the discrete minimum cut / maximum

flow approach as well as to the Mumford Shah functional and TV-L1 shape denoising are

discussed.

3.1.1 Recap of the discrete min cut / max flow

In Section 1.2.2.1, we already introduced the graph cut or discrete min cut / max flow

problem. We now reformulate the problem in (1.9) using the characteristic function u ∈ R.

Additionally we construct the vectors ws, wt ∈ R using the costs C(e) at the corresponding

positions of the edges linked with source s or sink t. We refer to these terms as the unary

terms. The same is done for the spatial edge costs by constructing the vector wb ∈ RK (the

binary terms). Here K indicates the neighborhood in the graph. Different neighborhoods

are depicted in Figure 3.1.

41

42 Chapter 3. Variational Image Segmentation

(a) 4-connected (b) 8-connected (c) 16-connected

Figure 3.1: Different connectivity for the graph of the discrete min cut / max flow model.

We can rewrite (1.9) as the following minimization problem

min
u
{‖Wb∇u‖1,1 + 〈1− u,ws〉+ 〈u,wt〉} ,

s.t. u ∈ {0, 1} ,
(3.1)

with Wb = diag(wb). To solve the above energy, we have to relax the variable u ∈ [0, 1] to

vary continuously between 0 and 1. It is well known [Chambolle, 2005] that the resulting

convex relaxation will provide the globally optimal solution for the original problem in

(3.1). We can rewrite the terms 〈1− u,ws〉 + 〈u,wt〉 as 〈u,wt − ws〉 + 〈1, ws〉. The last

term is the sum over all sink costs ws (note that ws ≥ 0). As this term is constant, we

can neglect it during optimization. To further simplify the notation, we define the unary

terms as wu = wt − ws. Therefore we can rewrite the relaxed version of (3.1) as

min
u
{‖Wb∇u‖1,1 + 〈u,wu〉} ,

s.t. u ∈ [0, 1],
(3.2)

We again use Legendre-Fenchel duality to obtain the convex conjugate of the L1 norm

in (3.2). We then arrive at the following primal-dual saddle point formulation of the graph

cut energy

min
u

max
p
{〈∇u,p〉+ 〈u,wu〉} ,

s.t. u ∈ [0, 1], p ∈ [−wb, wb].
(3.3)

With the dual variable p ∈ RK .

3.1. Binary image segmentation - Continuous max flow 43

Algorithm 7 Primal-dual algorithm to solve graph cuts (3.3).

τ = σ = 1√
8
, θ = 1

u0 = 0.5, p0 = 0, q0 = 0 and ū0 = u0 // Initialization
for j = 1 to J do
pj =

[
pj−1 + σ∇ūj−1

]wb
−wb

// Update dual variable

uj =
[
uj−1 − τ(−divpj + qj)

]1
0

// Update primal variable
ūj = 2uj − uj−1 // Extra-gradient step

end for

In comparison to the continuous optimization approach (3.9), the gradient operator ∇
is already defined on the discrete grid. We will limit ourselves to 4-connected (K = 2) and

8-connected (K = 4) graphs. For 4-connected graphs, the finite differences with Neumann

boundary condition as defined in (2.26) are used. In the case of 8-connected graphs, we

have

(∇v)i,j =
(
(δ+
x v)i,j , (δ

+
y v)i,j , (δ

++
xy v)i,j , (δ

+−
xy v)i,j

)T
, (3.4)

with the forward gradients defined in (2.27)the additional diagonal gradients

(δ++
xy v)i,j =

{
vi+1,j+1 − vi,j if i < M, j < N

0 else
,

(δ+−
xy v)i,j =

{
vi+1,j−1 − vi,j if i < M, j > 0

0 else
.

(3.5)

∇ can be simply represented as a MNK ×MN matrix.

Applying the primal dual algorithm in Algorithm 1 to the discrete max flow problem

(3.3) is trivial, as we again have the primal variable α = u and the dual variable β = p. The

linear operator D = ∇ with a Lipschitz constant L2 = 8, and Φ(u) = 〈u,wu〉+I{u∈[0,1]}(u)

and Ψ∗(p) = I{|px|≤wb}(p
x) + I{|py |≤wb}(p

y). We already solved a very similar problem in

Section 2.11, and therefore directly summarize the resulting algorithm in Algorithm 7.

We showed that it is possible to solve the discrete graph cut problem by means of

continuous convex optimization. An evaluation, and results can be found in Section 3.3.

3.1.2 The continuous formulation

The max-flow/min-cut problem is not restricted to the discrete setting only. In the con-

tinuous setting, the max-flow problem was first studied by [Strang, 1983], but remains

challenging [Strang, 2009] up to now (e.g. the continuous equivalence of directed graphs).

44 Chapter 3. Variational Image Segmentation

[Klodt et al., 2008], showed an experimental comparison of continuous and discrete formu-

lations. They showed that the well known metrication errors of discrete graph cuts, caused

by the definition of the grid, can be easily overcome in a continuous formulation. As we

will see later, this is especially important when using no or only slight edge information.

While the discrete and continuous approaches are defined in different settings, the

problems are very closely related. [Sinop and Grady, 2007], presented a common segmen-

tation model that evaluated different norms in the regularization term. Namely, the L1

norm that corresponds to the discrete graph cut model, the squared L2 norm and the L∞

norm. The random walker framework of [Grady, 2006] is a special case of this segmentation

model based on the squared L2 norm, and thus is closely related to the Dirichlet problem.

In [Couprie et al., 2011a], this connections were further extended to the watershed seg-

mentation. A good overview on this topic is given in the thesis of [Couprie, 2011]. While

closely related to the continuous maximum flow, the combinatorial continuous max-flow

(CCMF) [Couprie et al., 2011b] solves the true analogous discrete formulation. The ad-

vantage of the CCMF lies in working on a discrete graph while preserving the advantages

of the continuous formulation like no metrication errors.

[Appleton and Talbot, 2006], implemented the continuous max-flow equations using

a finite-differences scheme to find a globally optimal solution of the continuous max-

flow problem. [Chan et al., 2006] investigated convex minimization problems in computer

vision, and established relations between image segmentation and denoising. A wide range

of fast optimization methods for the max flow problem was also introduced in [Yuan, 2011].

All these methods have in common that they use the Total Variation as a smoothness term.

In the continuous setting there is a lot of work that was also influenced by the GAC

formulation of [Caselles et al., 1997a]. This includes e.g. the work of [Leung and Osher,

2005] and [Unger et al., 2008a,b]. These methods are all based on the weighted Total

Variation first introduced in [Bresson et al., 2007].

3.1.2.1 The optimization problem

The continuous equivalent to the weighted graph in the previous section, is a Riemannian

space R, that consists of domain Ω and an associated metric cb : Ω → R+. If we assume

that u, cs, ct, cb : Ω → R are now continuous functions, we can write the continuous min-

3.1. Binary image segmentation - Continuous max flow 45

cut/max-flow problem as

min
u

{∫

Ω
cb|∇u|2,1 +

∫

Ω
ctu dx+

∫

Ω
cs(1− u) dx

}
,

s.t. u ∈ {0, 1} .
(3.6)

We can again simplify the above model with cu = ct − cs and
∫

Ω ctu + cs(1 − u) dx =
∫

Ω cuu dx+
∫

Ω cs dx, neglecting the constant term. To make the above optimization prob-

lem convex, we relax the binary constraint to a continuous one u(x) = [0, 1]. As a result,

the optimum is no longer guaranteed to be binary. The well known thresholding theorem

[Strang, 1983], [Klodt et al., 2008] states that all upper level sets {x ∈ Ω | u∗(x) > θ} , θ ∈
[0, 1) of the optimal solution u∗ of the relaxed problem provide a globally optimal solution

to the binary labeling problem in (3.6). We therefore arrive at the following relaxed max

flow formulation:

min
u

{∫

Ω
cb|∇u|2,1 +

∫

Ω
cuu dx

}
,

s.t. u ∈ [0, 1].

(3.7)

As we have a discretized input image, we have to optimize a discrete version of (3.6).

In a discrete setting we can again use vectors wu for the unary and wb for the binary terms

exactly as used for the graph cut model in the previous section. The discrete minimization

problem of the continuous maximum flow (3.6) thus becomes

min
u
{‖Wb∇u‖2,1 + 〈u,wu〉} ,

s.t. u ∈ [0, 1] .
(3.8)

Note that the only difference to the graph cut energy in (3.2) is the point-wise L2 norm

for the regularization term. The primal dual formulation of (3.8) is then given as

min
u

max
p
{〈∇u,p〉+ 〈u,wu〉} ,

s.t. u ∈ [0, 1], ||p||∞ ≤ wb.
(3.9)

Unfortunately, the discrete functional in (3.8) no longer guarantees a binary solution since

the thresholding theorem holds only in the continuous formulation.

As everything necessary has already been introduced, the general primal dual algo-

rithm (Algorithm 1), applied to the saddle point formulation in (3.9), is summarized in

Algorithm 8.

46 Chapter 3. Variational Image Segmentation

Algorithm 8 Primal-dual algorithm to solve the continuous max flow problem (3.9).

τ = σ = 1√
8

u0 = 0.5, p0 = 0, and ū0 = u0 // Initialization
for j = 1 to J do
p̃ = pj−1 + σ∇ūj−1 // Update dual variable
pj = p̃

max(wb,|p̃|)

uj =
[
uj−1 − τ(−divpj + wu)

]1
0

// Update primal variable
ūj = 2uj − uj−1 // Extra-gradient step

end for

At this point we want to make some considerations on applying input data to the

segmentation algorithm. In Section 4.1, a more comprehensive view is given in the context

of interactive segmentation. Note that an additional parameter λ can be added similar to

the ROF or TV-L1 model, to model the tradeoff between data fidelity and regularization.

We neglected it here, as we can simply set the unary potentials to wu = λw′u. We can

differentiate between different ranges for wu:

• (wu)i,j = −∞: This is a hard foreground constraint that will enforce ui,j = 1.

• −∞ < (wu)i,j < 0: A negative binary potential will vote for the foreground. The

more negative the value, the more likely the final pixel will be ui,j = 1. As there is

also the influence of the regularization term, the final state of the pixel cannot be

predicted.

• (wu)i,j = 0: For this pixel the data term will be 0. The final state of ui,j is solely

determined by the regularization term.

• 0 < (wu)i,j <∞: A positive binary potential will vote for background.

• (wu)i,j =∞: This is a hard background constraint that will enforce ui,j = 0.

Theoretically, setting wu to either +/−∞ is sufficient to apply a hard constraint on certain

pixels, but dealing with∞ during implementation is not a trivial task. Additionally, there

are problems when computing the energy for the primal dual gap we will introduce in

Section 3.1.2.3. Instead we can apply simple additional constraints that enforce u(x) = 0

for background and u(x) = 1 for foreground. The addition to Algorithm 8 is trivial: First

the pixels are initialized according to the constraints, and then never updated.

3.1. Binary image segmentation - Continuous max flow 47

3.1.2.2 Discretization artifacts

An advantage of a TV based formulation is that in contrast to the graph cut energy, it does

not suffer from metrication errors [Klodt et al., 2008]. In Figure 3.2, the difference between

the discrete and continuous max flow formulation becomes obvious. Here, the dark red

areas are constrained to be foreground pixels, and the border was set to background. We

set the binary potentials to a constant value wb = 1, so no edge information is used.

The continuous (TV based) formulation efficiently minimizes the contour length (that

equals the convex hull for this special set of constraints). On the other hand the discrete

methods do not measure distances correctly, as they are based on a pre-defined grid. This

grid structure (also see Figure 3.1) becomes obvious when comparing 4-connected and

8-connected graph neighborhoods. As shown by [Boykov and Kolmogorov, 2003], the finer

(a) 4-connected (b) 8-connected (c) TV

Figure 3.2: Comparison of discrete to continuous min cut/max flow problem with constant
binary terms. The top row depicts the input with the segmentation as an overlay. The
bottom row shows the output of the relaxed problems without thresholding. The graph
based methods are biased by the underlying grid, while TV based continuous max flow
minimizes the true Euclidean length.

48 Chapter 3. Variational Image Segmentation

the grid the closer the discrete min cut will be to the Euclidean length. To exactly model

the Euclidean length, the angle between two edges has to become 0.

Note that the segmentation results in the bottom row of Figure 3.2 are not binary.

This is due to the fact, that the according energies are not strictly convex. Thus each

problem might have several global minima. By thresholding u in the range [0, 1], each of

these solutions can be obtained. Typically the solutions are very close to each other (note

the slight blur of some edges).

In practice, often 8-connected graphs deliver acceptable results. Especially when con-

sidering edge information in the binary terms. This effect is demonstrated in Figure 3.3,

where a strong edge weighting function was used. While for the 4-connected graph, the

(a) Input (b) Edges

(c) 4-connected (d) 8-connected (e) TV

(f) 4-connected (crop) (g) 8-connected (crop) (h) TV (crop)

Figure 3.3: Comparison of discrete to continuous min cut/max flow problem with strong
binary terms incorporating edge information. While for 4-connected graphs the grid struc-
ture is very prominent, the 8-connected graph delivers results very similar to the continuous
version.

3.1. Binary image segmentation - Continuous max flow 49

discretization artifacts are still prominent, the 8-connected graph already gives a result

close to the TV based result. See also Figure 3.12 for more comparisons on discrete and

continuous segmentation results.

3.1.2.3 Convergence criterion

As we have iterative algorithms to solve the discrete or continuous segmentation problem,

a convergence criterion is of great importance. The primal-dual gap as discussed in Sec-

tion 2.3.3 offers such a criterion. In the following, we derive the normalized primal dual

gap, which we will use as a convergence criterion. We start with the primal energy for the

graph cut model and the TV model

EGCp (u) = ‖Wb∇u‖1,1 + 〈u,wu〉+ 〈u,ws〉 ,
ETVp (u) = ‖Wb∇u‖2,1 + 〈u,wu〉+ 〈u,ws〉 .

(3.10)

Note that we have to use the term 〈u,ws〉 (neglected during optimization) for the energy

calculation to ensure that Ep > 0. Otherwise the normalization in (3.14) would not make

sense.

The primal-dual energies for the discrete (3.3) and continuous (3.9) model are the

same with only the constraints on p differing. To find a dual only formulation, we have

to obtain the optimal u for a given p as

û = arg min
u

〈
u,∇Tp+ wu

〉
,

s.t. u ∈ [0, 1].
(3.11)

It is trivial to obtain the optimal û as

ûi,j =

{
1 if (∇Tp)i,j + (wu)i,j < 0

0 else
. (3.12)

Therefore, the dual energy Ed can be written as

Ed(p) =
〈
û,∇Tp+ wu

〉
+ 〈u,ws〉 . (3.13)

The normalized primal dual gap is then given as

G(u,p) =
Ep(u)− Ed(p)

Ep(u)
. (3.14)

50 Chapter 3. Variational Image Segmentation

The gap will become 0 if u reaches the globally optimal solution. Thus it provides an

excellent optimality measure [Chambolle and Pock, 2010].

3.1.3 Connections to other segmentation models

Connection to Mumford Shah: In Section 2.2.3, we already introduced the Mum-

ford Shah segmentation model. Using the binary labeling function u and TV, we can

reformulate the Chan-Vese model defined in (2.23) as

min
u,c1,c2

{
ν

∫

Ω
|∇u|2 +

∫

Ω
u(c1 − f)2dx+

∫

Ω
(1− u)(c2 − f)2dx

}
,

s.t. u ∈ {0, 1} .
(3.15)

We denoted the input image as I : Ω → R. If we further assume that c1 and c2 are

no longer subject to optimization, but given in advance, we can reformulate the problem

further as

min
u

{∫

Ω
|∇u|2 +

∫

Ω
ctu dx+

∫

Ω
cs(1− u) dx

}
, (3.16)

where we set ct = (c1−f)2

ν and cs = (c2−f)2

ν . Up to the binary potentials, this formulation

corresponds exactly to the continuous maximum flow formulation in (3.6). We conclude

that in the case of fixed c1 and c2 the Chan-Vese model equals the continuous maximum

flow formulation.

Connection to shape denoising: Section 2.2.2 already revealed that the weighted

TV-L1 model (2.20) can be used for shape denoising. (2.20) can be rewritten as

min
u

{∫

Ω
cb|∇u|2 + λ

∫

Ω
|u− f |dx

}
,

s.t. u ∈ {0, 1} .
(3.17)

We already used a similar formulation for image segmentation in [Unger et al., 2008a,b],

and referred to it as TVSeg. Additionally, we showed in [Unger et al., 2008a] that from

an algorithmic point of view this approach is equivalent to the continuous maximum flow

algorithm of [Appleton and Talbot, 2006]. Note that we used an L2 data term in [Unger

et al., 2008a].

Although, the formulation in (3.17) looks quite similar to the continuous maximum

flow in (3.7) the data term is quite different. The L1 data term allows to set f to either

foreground (f = 1) or background (f = 0). In order to be comparable to the maximum

3.2. Multi-label image segmentation 51

flow approach, we can limit the unary potentials in (3.7) to {1,−1}. An f = {0, 1} for

the weighted TV-L1 model would then correspond to an cu = {1,−1} for the maximum

flow model.

For [Unger et al., 2008b], we made the weighting parameter λ spatially dependent

min
u

{∫

Ω
cb|∇u|2 +

∫

Ω
λ(x)|u− f |dx

}
,

s.t. u ∈ {0, 1} .
(3.18)

with λ : Ω → R+. The spatially varying λ(x) efficiently circumvents the aforementioned

problem of discrete unary potentials, but was never used in this sense. While still limiting

f(x) to the interval {0, 1} the pixel wise λ(x) can be used to model pixel wise probabilities.

Unfortunately a direct correspondence to the max flow problem cannot be established. In

case of the max flow data term
∫

Ω cuu dx, the actual value of the unary potential cu(x)

has no influence as soon as u(x) = 0. In case of (3.18), there is still a linear dependence.

3.2 Multi-label image segmentation

In the previous section the segmentation model was restricted to foreground and back-

ground. We will now focus on the general minimal partition problem for an arbitrary

number of labels.

min
Ωi

{
1

2

K∑

i=1

Per(Ωi) +

K∑

i=1

∫

Ωi

fi(x)dx

}
,

s.t. Ω =
K⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j .

(3.19)

Here fi are now the unary potentials, that are integrated inside the region Ωi. The

regularization term penalizes the contour length, and is weighted with 1
2 to account for

double counting. For the rest of this thesis we neglect this scale factor, as we can apply

arbitrary weighting by scaling fi.

Note, that there is a very close connection to the piecewise constant Mumford-Shah

functional discussed in Section 2.2.3. We can simply set

fi(x) = λ(ci − I((x)))2 , (3.20)

with a given input image I and the mean intensities ci, similar as done in the binary case

52 Chapter 3. Variational Image Segmentation

in Section 3.1.3.

In the discrete setting the model in (3.19) is usually referred to as the Potts model,

and is known to be an NP-hard problem. The Potts model was first introduced in the

context of physics and statistical mechanics in [Potts, 1952]. It generalizes the Ising model

[Ising, 1925] to multiple labels. Important contributions were made by [Ishikawa, 2003],

and the family of methods discussed in Section 1.2.2.2 can be used to approximately solve

the discrete multi label problem.

In the following we focus on the convex approximations of the continuous minimal

partition problem. More precisely we present a fast relaxation approach based on the

work of [Zach et al., 2008]. We chose this straightforward approach for its speed and ease

of use. While the relaxation is not the tightest, it delivers very good results in practical

applications. Other approaches are discussed in the subsequent section.

3.2.1 Fast relaxation

As stated by the co-area formula (2.12), the length of a contour can be expressed by

the TV. This requires that we represent the single labels by their characteristic functions

ui : Ω→ R. We therefore rewrite the minimal partition problem (3.19) as

min
ui

{
K∑

i=1

∫

Ω
|∇ui|+

K∑

i=1

∫

Ω
ui(x)fi(x)dx

}
, (3.21)

with the additional segmentation constraints of non overlapping regions as in (1.1) and

u ∈ {0, 1}. [Zach et al., 2008] proposed to relax the constraints in (1.1) to
∑K

i=1 ui = 1, and

the characteristic functions to u ∈ [0, 1]. We can additionally add the edge information by

adding binary terms to TV with cb : Ω→ R. The resulting optimization problem is then

given as

min
ui

{
K∑

i=1

∫

Ω
cb|∇ui|+

K∑

i=1

∫

Ω
uifidx

}
,

s.t.

K∑

i=1

ui = 1, ui ≥ 0 ∀i = 1, . . . ,K .

(3.22)

We transform the relaxed version of (3.22) into the following discretized primal-dual

3.2. Multi-label image segmentation 53

saddle point formulation

min
ui

max
pi,r

{
K∑

i=1

〈pi,∇ui〉+
K∑

i=1

〈ui, fi〉+

〈
r,

K∑

i=1

ui − 1

〉}
,

s.t. u ≥ 0, ||pi||∞ ≤ wb.
(3.23)

Here we introduced the Lagrange multiplier r ∈ R to obtain a primal-dual formulation of

the sum constraint.

(3.23) can be written in the form of (2.50) with

α =
(

(u1)T . . . (uK)T
)T

,

D =




∇
. . .

∇
I . . . I




and β =




p1
...

pK

r



.

(3.24)

This results in a Lipschitz constant L2 = 9. We further get Φ(u) =
∑K

i=1

(
〈ui, fi〉+ I{ui≥0}(u)

)
and Ψ∗(p, r) = r +

∑K
i=1 I{||pi||∞≤wb}(p). The resulting

algorithm is summarized in Algorithm 9.

While the relaxation of [Zach et al., 2008] is very fast, it might give inaccurate results.

Especially the constraint
∑K

i=1 ui = 1 does not guarantee binary labeling. Instead multiple

labels might have a value 0 < ui < 1. In practice this approach delivers very good

results. Due to the low memory consumption and speed, this algorithm is recommended

for interactive segmentation as well as problems with a large number of labels.

3.2.2 Other relaxations

A variant of (3.21) was introduced by [Lellmann et al., 2009b]. They used the vectorial

TV and relaxed the minimum partitioning problem to

min
u

{∫

Ω

√
||∇u1||2 + · · ·+ ||∇uK ||2dx+

K∑

i=1

∫

Ω
ui(x)fi(x)dx

}
. (3.25)

They solve the above problem using Douglas-Rachford splitting [Douglas and Rachford,

1956]. The resulting algorithm should deliver similar results to the approach of [Zach

et al., 2008].

54 Chapter 3. Variational Image Segmentation

Algorithm 9 Algorithm for solving the fast multi-label segmentation approximation by
[Zach et al., 2008] in (3.23).

// Initialization
τ = σ = 1√

9

p0
i = (0, 0)T , r0 = 0 and ū0

i = u0
i = 1

K

for j = 1 to J do
// Update dual variables
for i = 1 to K do
p̃i = pj−1

i + σ∇ūj−1
i

pji = p̃i
max(wb,|p̃i|)

end for
rj = rj−1 + σ

(∑K
i=1 ū

j−1
i − 1

)

// Update primal variables
for i = 1 to K do
uji = max

(
0, uj−1

i − τ
(
−divpi

j + rj + fi
))

ūji = 2uji − ū
j−1
i

end for
end for

In [Lellmann et al., 2009a], the approaches of [Lellmann et al., 2009b] and [Zach et al.,

2008] are generalized to arbitrary label distances. They achieve this by extending the

vector valued TV by an embedding matrix. Nestorov’s algorithm [Nesterov, 2004] is used

to solve the resulting convex optimization problem.

A tight relaxation of the minimal partition problem 3.19 was introduced in [Pock

et al., 2009a] for the Potts regularization. Later in [Chambolle et al., 2008, 2012] this

approach was extended to general label distance functions. They use a labeling function

v : Ω→ {0, . . . ,K}, that is then represented as

v(x) =
K∑

i=1

θi(x), (3.26)

with the K binary functions θ(x) = (θ1(x), . . . θK(x)) such that

θi(x) =

{
1 if v(x) ≥ i
0 else

. (3.27)

3.2. Multi-label image segmentation 55

They then express the perimeter with the following constrained primal dual formulation

K∑

i=1

Per(Ωi) = sup
ξ∈K

{
K∑

i=1

−
∫

Ω
θidivξi

}
, (3.28)

with the dual variables ξ constrained to lie in the set

K =



ξ = (ξ1, . . . , ξK) : Ω→ RdK ,

∣∣∣∣∣∣
∑

i1≤i≤i2

ξi(x)

∣∣∣∣∣∣
≤ 1, ∀x ∈ Ω, 1 ≤ i1 ≤ i2 ≤ K



 ,

(3.29)

While this approach delivers slightly superior results, the computational complexity and

memory consumption gets intractable for a large number of labels. Although, up to a

number of at least 10 labels this could be used for interactive segmentation, we stick to

the approach in Section 3.2.1.

3.2.3 Label costs

We extend the minimum partition problem in (3.21) with an additional label cost term,

as proposed by [Yuan and Boykov, 2010].

min
Ωi

{
K∑

i=1

Per(Ωi) +
K∑

i=1

∫

Ωi

fi(x)dx+ γ||1Ωi ||∞
}
,

s.t. Ω =

K⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j .

(3.30)

The infinity norm penalizes the maximum value of the characteristic function 1Ωi , and

minimizes the number of non-empty segments. We again use the characteristic functions

ui : Ω→ R to represent the regions Ωi. The label cost term then becomes
∑K

i=1 γ||ui||∞.

In order to optimize the label cost term, we follow the ideas proposed in [Yuan and

Boykov, 2010]. To replace the L∞-norm in ||u||∞, the scalar t is introduced. We then

arrive at the equivalent representation

t, s.t. uk,l ≤ t, ∀k, l. (3.31)

The pixel wise constraints can be written in a single term when using a primal-dual

formulation

〈
q, P

(
u

t

)〉
. Where the Lagrange multiplier q ∈ RMN has to be positive to

56 Chapter 3. Variational Image Segmentation

account for the inequality constraint. We define the (MN+1)×MN matrix P =
(
I,−1T

)
,

with the MN ×MN identity matrix I and the row vector 1 of size MN with all entries

equal to 1.

When combined with the fast relaxation in (3.23), the multi-label segmentation prob-

lem with label costs can be written as the following saddle point problem

min
ui,ti

max
pi,r,qi

{
K∑

i=1

〈pi,∇ui〉+
K∑

i=1

〈ui, fi〉+

〈
r,

K∑

i=1

ui − 1

〉
+ γti +

K∑

i=1

〈
qi, P

(
ui

t

)〉}
,

s.t. ui ≥ 0, ||pi||∞ ≤ wb, qi ≥ 0.

(3.32)

The above saddle point problem can be brought to the form of (2.50):

α =
(

(u1)T . . . (uK)T (t1)T . . . (tK)T
)T

,

D =




∇
. . .

∇
I −1T

. . .
. . .

I −1T

I . . . I




and β =




p1
...

pK

q1

...

qK

r




.

Φ(α) =

K∑

i=1

(
〈ui, fi〉+ γti + I{ui≥0}(ui)

)
,

Ψ∗(β) = r −
K∑

i=1

(
I{||p||∞≤wb}(pi) + I{qi≥0}(qi)

)
.

(3.33)

The resulting algorithm is summarized in Algorithm 10.

While regularization and dataterm sum up over the whole image, the variable ti is in

the range [0, 1]. To account for this imbalance, we introduce a normalized γn and set

γ = γnMN by scaling γn with the number of pixels. In Figure 3.4, the effect of the label

cost term is demonstrated. With increasing γ the number of non empty labels is reduced.

If γ gets to high, the segmentation reduces to a single label as can be seen in Figure 3.4(d).

Meaningful values are typically in the range γn ∈ [0, 0.015].

The label cost term poses only small benefit in interactive segmentation. But, we

demonstrate in Section 5, that the label cost term helps to automatically determine the

3.3. Fast Optimization 57

Algorithm 10 Algorithm for solving the fast multi-label segmentation approximation
with label cost term (3.23).

// Initialization
τ = σ = 1

L
p0
i = (0, 0)T , q0

i = 0, ū0
i = u0

i = 1
K , t̄0i = t0i = 0 and r0 = s0 = 0

for j = 1 to J do
// Update dual variables
for i = 1 to K do
p̃ = pj−1

i + σ∇ūj−1
i

pji = p̃
max(wb,|p̃|)

qji = max

(
0, qj−1

i + σ

(
P

(
ūj−1
i

t̄j−1
i

)))

end for
rj = rj−1 + σ

(∑K
i=1 ū

j−1
i − 1

)

// Update primal variables
for i = 1 to K do
tji = tj−1

i − τ (γ − ||qi||)
t̄ji = 2tji − t̄

j−1
i

uji = max
(

0, uj−1
i − τ

(
−divpi

j + qji + rj + fi

))

ūji = 2uji − ū
j−1
i

end for
end for

number of necessary labels in unsupervised segmentation.

3.3 Fast Optimization

After we have discussed variational approaches to binary as well as multi label segmen-

tation, we further investigate fast optimization of these models. We therefore first make

considerations on the implementation of the algorithms. Later we show algorithmic im-

provements for the binary segmentation task, and present an evaluation in terms of speed

and convergence rates.

3.3.1 Thoughts on the implementation

While the algorithms presented in this thesis are computationally expensive, they are in

general inherently parallel. When we look at Algorithm 1, the iterative updates are usually

58 Chapter 3. Variational Image Segmentation

(a) Input (b) γn = 0

(c) γn = 0.01 (d) γn = 0.1

Figure 3.4: Demonstration of the label cost term for multi label image segmentation. With
increasing label costs, the number of non empty segmentation labels decreases.

pixel wise. Note, that this is not the case for all algorithms (e.g. the sum in Algorithm 9).

In the ideal case, this would allow for independent threads for each pixel. Of course current

hardware offers only a limited amount of processors. Modern graphics processing units

(GPUs) are equipped with several hundred to thousands of processors, and are therefore

perfectly suited for implementing variational methods. While the central processing unit

(CPU) generally relies on a single instruction, single data (SISD) architecture, the GPU

uses a single instruction, multiple data (SIMD) architecture. Again, the SIMD architecture

perfectly suites our algorithms, where we can apply the same operations to each pixel in

parallel. Additionally the computational power in terms of GFlops and memory bandwidth

of modern GPUs has already significantly surpassed the computational power of CPUs,

as can be seen in Figure 3.5.

As a result, general-purpose computing on graphics processing units (GPGPU) has

3.3. Fast Optimization 59

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

Months since January 2003

C
om

pu
ta

tio
na

l P
ow

er
 [G

F
lo

ps
]

NV38
FX 5950 Ultra

NV45
6800 Ultra

G71
7900 GTX

G80
8800 Ultra

GT200
GTX 280

GF100
GTX 480

GF110
GTX 580

GK104
GTX 680

 Presler
 EE965

 Yorkfield
 QX6850

 Bloomfield
 i7 965XE

 Gulftown
 i7 980X

Sandy−Bridge
i7−3960X

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

220

Months since January 2003

M
em

or
y

B
an

dw
id

th
 [G

B
/s

]

NV38
FX 5950 Ultra

NV45
6800 Ultra

G71
7900 GTX

G80
8800 Ultra

GT200
GTX 280

GF100
GTX 480

GF110
GTX 580

GK104
GTX 680

 Northwood
 P4 HT3.4

 Smithfield
 D840

 Presler
 EE965

 Yorkfield
 QX6850

 Bloomfield
 i7 965XE

 Gulftown
 i7 980X

Sandy−Bridge
i7−3960X

Figure 3.5: Comparison of GPU (blue) and CPU (red) performance: On the left, the
theoretical number of floating point operations is depicted over time. The right hand
side, shows the evolution of the maximum memory bandwidth. In both numbers GPUs
significantly exceed the computational power of CPUs.

become increasingly important over the last years. Especially the introduction of the

compute unified device architecture (CUDA) [NVidia, 2011b] at the end of 2006, gave a

big boost to GPU implementations in computer vision. With the NVidia GeForce 8800

being the first GPU featuring the new “unified shader architecture” specifically designed

for GPGPU applications [Glaskowsky, 2009]. The CUDA framework∗ allows to write C

and C++ code directly for the GPU. A similar approach was taken by the open computing

language (OpenCL) †. While the proprietary CUDA framework is only designed for NVidia

GPUs, OpenCL is an open standard that can be implemented for any GPU or CPU. We

use the CUDA framework for all implementations presented in this thesis, as it allows

better control of the hardware and special features. Though, we believe that OpenCL will

become increasingly important in the future as more and more implementations occur,

allowing to produce code that can be executed on different platforms. The parallelization

potential makes the algorithms not only suitable for GPUs, but also for other highly

parallel devices such as an FPGA [Akin et al., 2011].

In the following we give some details on parallel GPU as well as CPU implementations

and do some performance evaluations based on the hardware setup listed in Table 3.1.

∗http://www.nvidia.com/object/cuda_home_new.html (as of 29.09.2012)
†http://www.khronos.org/opencl/ (as of 29.09.2012)

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/

60 Chapter 3. Variational Image Segmentation

Type Product Name Cores Clock Memory

GPU NVidia GTX 580 512 1,56 GHz 3 GB
Desktop CPU Intel i7 960 4 (8) 3,2 GHz 12 GB
Server CPU 2x Intel Xeon X5650 12 2,67 GHz 96 GB

Table 3.1: Used setups for performance evaluations.

GPU implementations: Most of the algorithms presented in this thesis consist exclu-

sively of iterative point wise updates that need only their neighboring pixel information

e.g. for the gradient operator ∇ in Algorithm 8. We will therefore give a few details on

the implementation of these basic algorithms with CUDA as these are the main part of

all presented algorithms. Special cases like e.g. the sum over an image, require special

implementations and are not the focus of this thesis.

We first introduce basic concepts of CUDA enabled GPUs. For a full introduction we

refer the interested reader to [Nguyen, 2007; NVidia, 2011a,b; Sanders and Kandrot, 2010].

The following assumptions are all based on the NVidia GPUs using the Fermi architecture,

but generally hold for all CUDA enabled GPUs (including the Kepler architecture). All

numbers we give as examples are optimal values for a NVidia GTX 580 GPU. Details on

the architecture can be found in [Glaskowsky, 2009].

Processors on a GPU are organized in groups, so called multi-processors. The number

of threads computed simultaneously by a multi-processor (e.g. 32) is called a warp, and

due to pipelining usually double the number of processors (e.g. 16). All threads within

a warp execute the same command according to the principles of the SIMD architecture.

Therefore it is important to avoid diverging threads, as they have to be serialized. A

program that is executed on the GPU is referred to as a kernel.

Threads in CUDA are organized in blocks and grids. While blocks are restricted to

a two-dimensional layout, threads in a grid are organized in a three-dimensional layout.

The first fragmentation occurs at the block level. Each block will be calculated on a

multi-processor and consists of a grid of threads. While all threads inside a block can

be easily synchronized, the execution order of the blocks is arbitrary. As a consequence

global synchronization can only be performed after a kernel finished. For our algorithms

the most obvious fragmentation is therefore to make a thread for each pixel and organize

the threads in local blocks.

Each multi-processor has access to local memory, namely registers and shared memory

that provides very fast access to a small (64K) amount of memory. The main memory

3.3. Fast Optimization 61

of the graphics card (DRAM) is usually referred to as global memory, and is significantly

slower than the local memory. As a result the most important design principle is to reduce

the amount of memory reads and writes. Additionally memory access should be coalesced

(consecutive access of aligned memory), as segments (of e.g. 128 bytes) are read in a single

read operation. Another prominent advantage of GPUs are textures. Textures not only

provide cached memory access, but also free bilinear interpolation and border handling.

With the introduction of the Fermi architecture the shared memory can partly be used as

an L1 cache, eliminating texture usage for caching only.

Using this basic knowledge on the GPU architecture, we can implement our algorithms

using the following principles:

• A fragmentation into blocks (of width 16) results in an optimal memory and warp

alignment (also see Figure 3.6a).

• Blocks should be as big as possible to be able to synchronize threads within a block.

The maximum size is usually limited by the amount of local memory (registers,

shared memory) needed. Additionally, there is a maximum number of threads in a

block (1024). Further, at least three times more blocks than multi-processors are

required to get optimal occupancy (pipelining).

• Images are stored in an aligned memory layout to provide fast access using caching

in 2D as well as 3D.

• A single kernel for a complete iteration avoids unnecessary memory transfers, even if

this means that some calculations have to be done twice. In Figure 3.6, we depicted

an example fragmentation required for a complete iteration inside a single kernel.

First the grid is defined with one pixel overlap at the right hand side and the bottom.

For the primal update, the divergence operator needs its left and top neighbors.

Using texture fetches (and caching) the divergence can be efficiently computed using

global memory reads. We can therefore update all pixels handled by the block. As

the information of the primal update is required by the dual update, we store the

result in the shared memory and make sure that all threads are synchronized. In

the dual update, the ∇ operator requires the right and bottom neighbors. While we

can efficiently use the data from the shared memory, it is not possible to access the

neighbors outside the block as a global synchronization cannot be performed inside

a kernel. Consequently, the right and bottom borders are not updated and only the

results inside the blue area (Figure 3.6b) are stored back to global memory.

62 Chapter 3. Variational Image Segmentation

Overlapping blocks

(a) Fragmentation of blocks

Primal update (16x12) Dual update (15x11)

(b) Grid for primal and dual updates (one block)

Figure 3.6: The blocks of the grid are defined with one pixel overlap as can be seen on
the left hand side. First the primal update is calculated for the full block. Here the div
operator needs the left and top neighbors. For the dual update the ∇ operator needs the
right and bottom neighbors. Therefore, we only update the block without its right and
bottom border, using the data from the primal update.

Unfortunately, a single kernel is not always possible. This might be the case for too

large memory requirements (Algorithm 9), or separate calculations as the sparse matrix

multiplication (e.g. in Algorithm 15). When splitting kernels, excessive memory transfers

should be avoided.

CPU implementations: Current CPUs follow the trend of parallelization and increase

the number of processors on a single chip with almost every generation. Compared to

GPUs the number of processors is still significantly lower, as can be seen in Table 3.1. On

the other hand CPUs offer a more powerful instruction set, larger cache sizes and higher

clock rates. We used the OpenMP‡ framework for parallelization as well as Intel IPP§

functions for an efficient implementation.

Similar to GPUs, the memory transfers are very costly. Therefore, good memory

management and efficient caching strategies are important. Interestingly, the same block

wise strategy used on the GPU also proved to be the most successful on the CPU. We

thus again parallelized with the same block structure as in Figure 3.6, but this time using

a block size of 32× 32 as there is more local memory available. Each block corresponds to

a thread and first loads the necessary data into an array. The updates are then the same

as on the GPU. Only the blue area (Figure 3.6b) is then stored back to the main memory.

While on the Xeon server, a simple row wise parallelization is as fast as the block wise

‡http://openmp.org (as of 29.09.2012)
§http://software.intel.com/en-us/intel-ipp (as of 29.09.2012)

http://openmp.org
http://software.intel.com/en-us/intel-ipp

3.3. Fast Optimization 63

Size 32× 32 50× 50 100× 100 128× 128 256× 256 481× 312
Num. pixels 1024 2500 10000 16384 65536 150072

GPU 164924 164516 163978 163738 52878 25808
Desktop CPU 57624 24658 6726 4104 1004 435
Server CPU 68609 47519 14503 10480 2859 1100

512× 512 640× 480 1024× 768 1200× 1200 2000× 2000 3160× 3160
262144 307200 786432 1440000 4000000 9985600

15544 13695 5426 3016 1094 462
255 218 85 47.4 17 7
673 606 247 143 55.7 22.2

Table 3.2: Evaluation results depicting the number of iterations per second of Algorithm 8
on different architectures. A visualization of the data can be found in Figure 3.7.

parallelization, this is not the case on the i7 desktop CPU. We believe that this is mainly

due to better caching strategies of the server CPU.

Performance comparison: To make a quantitative performance comparison, we opti-

mized the binary segmentation Algorithm 8 both on the GPU and the CPU using the prin-

ciples from above. An evaluation was done using the three setups presented in Table 3.1.

As a measure, we report the number of iterations calculated per second. Additionally, we

varied the image size to demonstrate the dependence on the number of input pixels. The

measurements are summarized in Table 3.2 and visualized in Figure 3.7.

From the left hand side in Figure 3.7 we can note that the number of iterations per

second is in general inverse proportional to the number of pixels. We also included very

small images in our evaluation, to reveal an interesting effect: When going below an image

width of 128 using the GPU implementation, the number of iterations per second saturates

at approximately 160000. This effect is caused by the memory alignment in global GPU

memory. As mentioned the GPU reads memory in big segments at once. Once the image

size gets below this segment size, memory transfer still cost the same. As a result only

the actual computation, that contributes only a very small part to the overall time, will

get faster. Also note, that the server multi-CPU setup shows a slight decrease from the

inverse proportionality for small images. This is due to the fact, that the communication

overhead between the two separate CPUs becomes apparent.

On the right hand side of Figure 3.7 the speedup of the GPU implementation compared

to the CPU implementations is depicted. This shows that due to the previous mentioned

64 Chapter 3. Variational Image Segmentation

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of pixels

Ite
ra

tio
ns

 /
se

co
nd

GTX 580
i7
Xenon

10
3

10
4

10
5

10
6

10
7

0

10

20

30

40

50

60

70

Number of pixels

S
pe

ed
up

i7
Xenon

Figure 3.7: Comparison of number of iterations per second (on the left) and the speedup
of the GPU (on the right) over the number of pixels. Note that the significant part of this
plots approximately start at 105 pixels.

restrictions, the speedup for small images decreases. When considering images with a

size of at least 128 × 128, we get a speedup of approximately 60 when comparing to the

desktop CPU and approximately 20 when comparing to the server multi-CPU setup. As

most practical imaging and segmentation problems easily exceed this size, we consider this

numbers as the relevant speedup for the segmentation problem in Algorithm 8. This is

especially true for interactive image segmentation.

3.3.2 Global relabeling for continuous optimization

In this section, we present an algorithm to solve the discrete as well as the continuous min

cut/max flow problem. We make use of the properties of (near) binary labeling problems

and introduce additional global relabeling steps. We show that using global relabeling

significantly speeds up the segmentation problem in the discrete setting. Additionally,

we also obtain speedups for the continuous segmentation that has a near binary solution.

Although we restrict ourselves to the 2-label segmentation problem, the basic idea could

be extended to the multi label case.

3.3. Fast Optimization 65

3.3.2.1 Motivation

Most algorithms that solve the discrete graph cut problem in Section 3.1.1 are highly

specialized algorithms (e.g. [Boykov and Kolmogorov, 2004]). Instead, we showed that

the general primal-dual algorithm of [Chambolle and Pock, 2010] can be used to solve the

graph cut problem in Algorithm 7. This algorithm can easily deal with a wide range of

non-smooth convex problems. We have shown with Algorithm 8 that the algorithm can

also be used for the continuous max flow problem. When comparing the algorithms, the

differences are only marginal.

However, continuous optimization methods also have disadvantages. We observed that

continuous methods are very fast in the beginning, but slow down as they get closer to

the globally optimal solution. We illustrate this problem in Fig. 3.8. The key observation

when watching the algorithm during optimization is as following: While the segmentation

variable gets very close to the final segmentation in a few iterations, usually some small

areas change their value very slowly over time. We therefore introduce global relabeling

steps that speed up the convergence process by evaluating thresholded versions of the

current segmentation variable. Instead of changing the value of an area only slowly, the

global relabeling step results in a discrete labeling with lower energy in just a single

iteration.

3.3.2.2 Algorithm

As the example in Figure 3.8 shows, the primal dual (pd) steps described in the previous

section are very fast in the beginning, but often slow down as the result gets closer to the

optimal solution. The main problem are small areas that change their value very slowly.

With the global relabeling (grl) step we want to assign this regions either the value 1

or 0. It is easy to identify this regions e.g. by over-segmentation or region labeling. One

can then apply global relabeling to each region separately, all possible combinations or all

regions at once. With the normalized primal dual gap (3.14) we have a meaningful opti-

mality measure. We then simply take the global relabeling that minimizes the primal dual

gap G(u,p). Obviously this could lead to very complex and computationally expensive

algorithms even when computed on the GPU.

To keep the grl step fast and efficient on parallel hardware, we simply compute the

upper level sets of u by thresholding u several times in the range (0, 1). We then compute

66 Chapter 3. Variational Image Segmentation

(a) Input + Scribbles

0 2000 4000 6000 8000
10

−15

10
−10

10
−5

10
0

standard
with global relabeling

(b) Convergence Criterion (c) Segmentation

(d) n = 40 (e) n = 200 (f) n = 360 (g) n = 1000 (h) n = 6400

(i) n = 40 (j) n = 200 (k) n = 360 (l) n = 1000 (m) n = 6400

Figure 3.8: Standard continuous optimization methods are usually very fast in the begin-
ning, but slow down later on. Note that the segmentation looks already good after 200
iterations (e, j). Nevertheless there are some small regions that are changing their value
very slowly. It takes the standard algorithm 6400 iterations to fully converge (h,m). We
propose to use global relabeling steps to speed up convergence. As can be seen in (b) the
proposed algorithm converges significantly faster.

the best thresholded version ũ and corresponding p̃ as

(ũ, p̃) = arg min
θ∈(0,1)

{G(uθ,pθ)} , (3.34)

where

(uθ)i,j =

{
1 if ui,j > θ

0 else
,

pθ = Πwb (p+ c∇uθ) .
(3.35)

3.3. Fast Optimization 67

grl Gmin

ωGmin

(a) First grl step

Φ

GminΨ

Σ

(b) Second grl step

Figure 3.9: Illustration of the optimization schema. While the pd steps can move freely
through the space of solutions, the grl step only allows jumps to binary solutions that are
closer to the global optimum than the best solution so far.

Hence, uθ represent thresholded versions of u. To obtain pθ the update equation is

evaluated with a very large time step c � 1. If the solution ũ is significantly closer

to the global optimum than the current solution u, we accept the grl step, otherwise

we continue optimization from the current solution u. Experiments showed that θ ∈
{0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99} provides enough different thresholds and is reason-

ably fast.

We need a non-binary u for the thresholding to work. The iterative primal dual

algorithm only takes into account its direct neighborhood with the ∇ operator. As a

result information is propagated only slowly as a wavefront. We compute the grl step

only every J = max (M,N) iterations. This ensures that information travels at least once

through the image. We will investigate this choice in Section 3.3.2.3.

In Figure 3.9, we illustrated the overall primal dual algorithm with global relabeling

pdgrl. We denote by φ = [0, 1]MN the feasible set of the relaxed labeling vector and by

Ψ ⊆ Φ the set of solutions (note that in general, graph cuts could have multiple solutions).

Furthermore, let Σ = {0, 1}MN be the set of binary labeling vectors and hence Ψ∩Σ is the

set of binary solutions. Starting from an arbitrary initialization, the pd steps will change

the labeling vector according to (primal and dual) gradient information. This could also

result in a temporary increase of the gap.

The grl step is only considered if the resulting gap is smaller than ωGmin. We added

an additional multiplicative parameter to take into account only significant updates. The

parameter 0 < ω < 1 allows a global relabeling only if G is significantly reduced. We

68 Chapter 3. Variational Image Segmentation

Algorithm 11 Primal dual algorithm with global relabeling for binary image segmenta-
tion

repeat
for 1, . . . , J do
pn+1 = Πwb

(
pn + σ∇

(
2un − ūn−1

))
// Primal Update

un+1 =
[
un − τ

(
∇Tpn+1 + wu

)]1
0

// Dual Update
ūj = 2uj − uj−1 // Extra-gradient step
n = n+ 1

end for
Gmin = min {Gmin , G(un,pn)}
(ũ, p̃) = arg minθ∈(0,1) {G(uθ,pθ)} // Thresholding
if G(ũ, p̃) ≤ ωGmin then

(un,pn) = (ũ, p̃) // Global Relabeling
end if

until G(un,pn) ≤ tol

used ω = 0.5 throughout the thesis. Algorithm 11 summarizes the proposed primal dual

algorithm with global relabeling. Note that for the graph cut the re-projection Πwb(p)

is a simple clamping to the interval [−wb, wb], and in case of the TV formulation, an

orthogonal projection to a L2-ball of radius wb.

ΠGC
wb

(p) = [p]wb−wb ,

ΠTV
wb

(p) =
p

max {wb, |p|}
.

(3.36)

Convergence of the algorithm follows from the fact that both steps, the primal-dual

optimization pd and the global relabeling grl are guaranteed to decrease the gap. In fact,

we allow a grl step only if the new gap G after grl is smaller than the minimal gap Gmin

obtained by pd so far. In [Chambolle and Pock, 2010], it is shown that the pd algorithm

decreases the primal-dual gap with a sublinear rate of O(1/N) where N is the total number

of iterations. Although the proposed global relabeling does not change this estimate, it

empirically gives a super-linear convergence close to the optimal solution.

The convergence criterion tol was chosen as following: When using 64bit double preci-

sion (Matlab) numerical accuracy is reached with a normalized primal dual gap G = 10−14.

For the 32bit float precision (CUDA) numerical accuracy is already reached withG = 10−7.

In case of the TV segmentation model we set tol = 5 · 10−4 as the segmentation did not

show any visible changes.

3.3. Fast Optimization 69

3.3.2.3 Experimental results

Experiments were conducted on a Intel Core i7 960 with 12 GB available memory and a

NVidia GeForce GTX 480 with 1.5 GB available memory. The segmentation framework

was implemented in Matlab. The actual algorithms were additionally implemented on the

GPU using the CUDA framework using the principles detailed in Section 3.3.1. Measured

(a)

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

4n−pd
4n−pdgrl

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

8n−pd
8n−pdgrl

0 2000 4000 6000

10
−2

10
0

tv−pd
tv−pdgrl

(b)

0 1000 2000 3000
10

−15

10
−10

10
−5

10
0

4n−pd
4n−pdgrl

0 1000 2000 3000
10

−15

10
−10

10
−5

10
0

8n−pd
8n−pdgrl

0 200 400 600 800

10
−2

10
0

tv−pd
tv−pdgrl

(c)

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

4n−pd
4n−pdgrl

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

8n−pd
8n−pdgrl

0 500 1000 1500 2000

10
−2

10
0

tv−pd
tv−pdgrl

(d)

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

4n−pd
4n−pdgrl

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

8n−pd
8n−pdgrl

0 2000 4000 6000 8000 10000

10
−2

10
0

tv−pd
tv−pdgrl

(e)

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

4n−pd
4n−pdgrl

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

8n−pd
8n−pdgrl

0 500 1000 1500

10
−2

10
0

tv−pd
tv−pdgrl

Figure 3.10: Comparison of the pd algorithm and the primal-dual algorithm with global
relabeling (pdgrl) for different segmentation problems. From left to right: 4-connected
graph cut, 8-connected graph cut, TV based segmentation. For the corresponding input
images see Figure 3.12.

70 Chapter 3. Variational Image Segmentation

(a) Input

(b) Segmentation

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

Iterations

N
or

m
al

iz
ed

 P
rim

al
 D

ua
l G

ap

8n−pd
8n−pdgrl J=max(M,N)
8n−pdgrl J=100
8n−pdgrl J=10
O(1/N)

(c) Convergence depending on J

Figure 3.11: Demonstration on the effect of different global relabeling intervals J . While
the chosen intervals (blue) are faster than the standard pd algorithm, J = 100 (cyan)
would speed up convergence even more. If global relabeling is done too often, e.g. J = 10
(orange), the algorithm might become slower.

times do not include any transfer times between CPU and GPU (the approximate overhead

ranges from 10 ms for images of size 256× 256 to 700 ms for images of size 3200× 3200).

To calculate the unary terms wu, we use two kind of scribbles as detailed in Section 4.1.

First, we can directly draw sparse source and sink seeds. Second, we can draw scribbles

that will be used to build color histograms. The binary terms wb are calculated according

to Section 4.1.3.2.

In Figure 3.10, we show experiments on typical segmentation problems using the Mat-

lab implementation. The corresponding input images and resulting segmentations can be

found in Figure 3.12. For (a,b) we used color information while for (c,d,e) the algorithm

relies solely on seed regions (only edge information is used). It shows that the global rela-

beling steps (the pdgrl algorithm is depicted in blue) converges significantly faster than the

pd algorithm alone. This is true for the graph cut model as well as the TV model. Note

that for the pd algorithm, some experiments did not converge within the 10000 iterations

allowed for this experiment.

3.3. Fast Optimization 71

(a)

(b)

(c)

(d)

(e)

Figure 3.12: Input images and segmentation results used in the comparison of the pd
algorithm and the primal-dual algorithm with global relabeling (pdgrl). See Figure 3.10
for the algorithmic results. From left to right: The input image, 4-connected graph cut,
8-connected graph cut, TV based segmentation.

72 Chapter 3. Variational Image Segmentation

(a) (b) (c) (d)

(e) (f) (g) (h)

10
5

10
6

10
7

10
−2

10
0

10
2

10
4

Number of pixels

R
un

tim
e

in
 s

ec
on

ds

4n−pdgrl
4n−boykov
4n−npp
8n−pdgrl
8n−boykov
tv−pdgrl

(i) Image (a) with seeds only

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of pixels

R
un

tim
e

in
 s

ec
on

ds

4n−pdgrl
4n−boykov
4n−npp
8n−pdgrl
8n−boykov
tv−pdgrl

(j) Image (c) with seeds and color

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of pixels

R
un

tim
e

in
 s

ec
on

ds

4n−pdgrl
4n−boykov
4n−npp
8n−pdgrl
8n−boykov
tv−pdgrl

(k) Image (e) using color only

10
5

10
6

10
7

10
−2

10
0

10
2

10
4

Number of pixels

R
un

tim
e

in
 s

ec
on

ds

4n−pdgrl
4n−boykov
4n−npp
8n−pdgrl
8n−boykov
tv−pdgrl

(l) Image (g) with seeds only

Figure 3.13: Evaluation of the influence of the image size to the runtime of different
algorithms. A full table with runtimes can be found in Appendix A.1.

3.3. Fast Optimization 73

To motivate the choice of J (the iteration interval after which global relabeling is

performed), we conducted experiments with varying J in Figure 3.11 on an image of size

519×324. In Section 3.3.2.2, we choose J = max(M,N). As one can see from Figure 3.11,

that this choice is rather conservative, as e.g. J = 100 would result in a much faster

convergence of the algorithm. On the other hand J = 10 would result in much slower

convergence, as the primal dual steps need some time to provide a meaningful direction.

Setting J = max(M,N) gives the primal dual steps the chance to propagate information

through the whole image before the next global relabeling is performed. Note that when

using J = max(M,N), during our large number of experiments, the global relabeling steps

never resulted into slower convergence. On the other hand, Figure 3.11 shows that there

might be better strategies on when to perform global relabeling.

In Figure 3.13, we compared the proposed pdgrl algorithm with the pd algorithm on

the GPU and a CPU implementation of [Boykov and Kolmogorov, 2004] (denoted as

boykov), that is one of the most used graph cut implementations to date. Additionally we

compare to the NPP library [NVidia, 2010] graph cut implementation (npp), that is to

our knowledge currently the fastest graph cut implementation on a GPU. Note that the

npp implementation only works for 4n. ¶ We conducted the experiment for 4 different

quadratic images that were scaled to 256, 512, 1024, 2048 and 3200 edge length, thus

ranging from approximately 6 · 104 to 107 pixels. All algorithms have an approximately

linear runtime behaviour. With the proposed algorithm most of the time a bit slower

than the npp implementation for 4n. The slowest algorithm is always the boykov CPU

implementation with 8n. Note that for the runtime of the pdgrl there is not much difference

for the graph cut with 4n and 8n, and the tv model.

3.3.3 Binary segmentation using the ROF model

Let us now reconsider the ROF model introduced in Section 2.2.1.2 (2.9)

min
u

{∫

Ω
|∇u|+ λ

2

∫

Ω
(u− f)2dx

}
. (3.37)

As shown in [Chambolle, 2005; Chambolle and Darbon, 2009], with a solution u of (3.37)

and z ∈ R, the super-level set Ez = {u ≥ z} is a minimizer of

min
u⊆Ω

{∫

Ω
|∇u|+ λ

∫

E
(z − f)dx

}
. (3.38)

¶As of 29.09.2012 there is also a 8n version available.

74 Chapter 3. Variational Image Segmentation

Figure 3.14: Example of image segmentation using the weighted ROF model. From left
to right: The segmentation result using the continuous maximum flow algorithm (Algo-
rithm 8). The unary potentials −cu depicted in the interval [−0.05, 0.05]. The binary
potentials cb. The denoising result u. Finally, the segmentation obtained using the ROF
model u > 0.

As a consequence the zero super-level set E = {u > 0} of the minimizer of the ROF model

is also a minimizer of maximum flow segmentation model as in (3.7). This connection

was also discussed by [Berkels, 2010], in the context of Mumford Shah segmentation. A

first example was already given in Figure 2.4, where we showed that the thresholded ROF

model is visually equivalent to the shape denoising problem.

Of course the equivalence of (3.37) and (3.38) also holds when dealing with the weighted

TV. The fully equivalent segmentation problem using the ROF model can then be written

as

min
u

{∫

Ω
cb|∇u|+

1

2

∫

Ω
(u− cu)2dx

}
. (3.39)

The advantage of treating segmentation as ROF denoising, is the possibility to apply the

accelerated algorithm as done in Algorithm 4. As we will see in the evaluation of the next

Section this speedup is significant, making the weighted ROF model perfectly suited for

realtime image segmentation. Using the accelerated primal dual algorithm of [Chambolle

and Pock, 2010] on the weighted ROF model in (3.39), results in Algorithm 12.

In Figure 3.14, we show an additional example that demonstrates the segmentation

using the weighted ROF model. The solution u is simply a denoisied version of the unary

constraints. We see that the zero super-level set delivers exactly the same solution as the

continuous maximum flow algorithm.

3.3. Fast Optimization 75

Algorithm 12 Accelerated primal dual algorithm to solve the weighted ROF model (3.39)
for image segmentation.

τ = σ = 1√
8

u0 = cu, p
0 = 0 and ū0 = u0 // Initialization

for j = 1 to J do
p̃ = pj−1 + σ∇ūj−1 // Update dual variable
pj = p̃

max(wb,|p̃|)
u = (1 + τ)−1(uj−1 + τdivpj + τwu) // Update primal variable
θj = 1/

√
1+0.7τ j−1

τ j = θjτ j−1 and σj = σj−1/θj // Update time steps
ūj = uj + θj

(
uj − uj−1

)
// Extra-gradient step

end for

3.3.4 Comparison of continuous binary image segmentation algorithms

In this section, we compare the algorithms to solve the continuous max flow problem

introduced earlier in this chapter in terms of performance. As the primal-dual gap is a

problem specific measure, it is not suited for comparing different problem formulations.

Moreover, the segmentation problems presented are not strictly convex. As a consequence

results might slightly differ when using different algorithms or initializations.

We overcome this problems, by first letting each algorithm run several hundred thou-

sand iterations to make sure it is converged. This first run is considered the ground truth

for the current segmentation problem. In a second step, the algorithm is run once more,

with the thresholded result compared to the ground truth every 20 iterations. As soon as

the results are identical, the algorithm is considered to be converged.

In order to be able to include the weighted TV-L1 shape denoising model as described

in Section 2.2.2, we have to make some considerations on the unary terms. While the

maximum flow approaches allow continuous constraints, the weighted TV-L1 model mea-

sures the difference of the segmentation u ∈ {0, 1} to some input f . In order to make

comparison possible, we simply restricted ourselves to unary terms that either vote for

foreground, background or nothing at all. We therefore refer to this experiment as the one

with discrete unary terms. See Section 3.1.3 for more details on the relationship between

shape denoising and continuous max flows.

Using the discrete constraints, we have an experimental setup as following. We com-

pare the shape denoising methods using the weighted TV-L1 model. Algorithm 6 with

dualized data term is denoted by ’TV-L1’ and Algorithm 5 with thresholding schema is

denoted as ’TV-L1 threshold’. Additionally, we use the continuous maximum flow algo-

76 Chapter 3. Variational Image Segmentation

TV−L1 TV−L1 threshold Max−flow Max−flow with grl ROF
0

5

10

15

20

25

30

N
or

m
al

iz
ed

 c
om

pu
ta

tio
n

tim
e

λ = 0 . 0 0 2

λ = 0 . 0 0 5

λ = 0 . 0 1

λ = 0 . 0 4

λ = 0 . 0 7 5

λ = 0 . 1 2

Figure 3.15: Comparison of the runtime of different algorithms for two label image seg-
mentation, with discrete unary terms. The results are averaged over 8 different images,
and normalized by the fastest performing method.

rithm in Algorithm 8 denoted as ’Max-flow’ as well as the primal dual algorithm with

global relabeling Algorithm 11 denoted as ’Max-flow with grl’. Finally, the weighted ROF

model in Algorithm 12 is denoted as ’ROF’.

We evaluated the algorithm on 8 different images and for 6 different values of λ using

the comparison to a precalculated ground truth as stated above. Each experiment was

then normalized by the fastest approach, and the average over all images was computed

to obtain a mean computation time. The result is depicted in Figure 3.15. We clearly

note, that the weighted ROF model is the fastest approach in this comparison. All other

approaches are approximately 10 times slower. There is hardly any speedup by the global

relabeling step for the continuous maximum flow algorithm. We made this observation

already in Section 3.3.2.3, where we saw a significant speedup for the discrete but not for

the continuous model. The weighted TV-L1 model with dualized dataterm is the slowest

one in this test, with the algorithm using the thresholding schema slightly faster.

Another observation we can make from Figure 3.15, is the fact that the speedup of

the ROF model generally increases with increasing λ. Note that a higher λ means less

3.3. Fast Optimization 77

Max−flow Max−flow with grl ROF
0

10

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 c
om

pu
ta

tio
n

tim
e

λ = 0 . 1

λ = 0 . 5

λ = 2

λ = 4

λ = 6

λ = 8

λ = 1 0

λ = 1 5

λ = 2 0

Figure 3.16: Comparison of the runtime of different algorithms for two label image segmen-
tation, with continuous unary terms. The results are averaged over 13 different images,
and normalized by the fastest performing method.

regularization and shorter runtimes. When looking at the full data in Table A.2, a factor

of 10 or more is typical when varying λ in the range [0.002, 0.12]. We also observed some

outliers from this trend (λ = 0.04 and λ = 0.12), for which we have no explanation.

In case of using continuously varying unary potentials (the normal case), we skipped

the models based on the weighted TV-L1 model. We evaluated the remaining algorithms

on 10 different images and for 9 different values of λ. The result is depicted in Figure 3.16.

Again, the weighted ROF model is significantly faster than the continuous maximum flow

algorithms. Generally a speedup of 30 can be achieved.

This makes the algorithm using the weighted ROF model (Algorithm 12) typically the

best choice for interactive segmentation methods. The fast minimization of the ROF model

is owed to the time step scheme of the accelerated primal dual algorithm of [Chambolle

and Pock, 2010] (Algorithm 2).

Full tables with all experiments conducted in this Section can be found in

Appendix A.2.

78 Chapter 3. Variational Image Segmentation

Practical considerations: While comparing to a ground truth result is a valid choice

for evaluation purposes, one does not have this information in practical applications. In

this case we again have to rely on the primal-dual gap as a convergence criterion as detailed

in the previous sections.

All of the above methods perform optimization until we reached the globally optimum

up to machine precision. While this is generally desirable, in practice a solution close to

the global optimum may suffice. As long as we know (e.g. by the primal-dual gap) that

we are in a reasonable range to the global optimum, the algorithm can be terminated

much earlier with only minor impact. We can further justify an early termination of the

algorithm, as most of the time, the proposed model together with unary and pairwise

potentials cannot accurately describe the desired solution. This is especially true in the

case of interactive segmentation, that we tackle in the next chapter.

Chapter 4

Supervised Segmentation

4.1 Interactive image segmentation

In the previous chapter, we introduced segmentation models for the binary as well as the

multi-label case. We now focus on the application of these models to the actual task of

interactive image segmentation.

4.1.1 Introduction

In Section 1.1, we demonstrated that image segmentation is a highly ambiguous task. As a

consequence the actual algorithm has to be tailored for a very specific task using as much

prior knowledge as possible. This can be done by completely unsupervised algorithms

(examples will be given in Section 5), or using some form of supervision or interaction.

Ideally, an algorithm would precalculate all meaningful segmentations and present the

most likely ones to the user for selection. Unfortunately, this approach is impractical

and we have to rely on more guidance by the user. We first make out some important

requirements for interactive segmentation:

• Speed:

As discussed in the introduction we need fast algorithms to get immediate response.

Using the algorithms presented in the previous section, we are able to accomplish

this point.

• Efficiency:

User interaction should be reduced to a minimum. This can be achieved both by the

type of constraints as well as the models used to create unary and binary potentials.

79

80 Chapter 4. Supervised Segmentation

Both of this points will be tackled in this Section.

• Predictability:

Interacting with the application should be predictable, to allow for precise user

input. Using convex methods, one is well aware of the desired objective function, and

they are guaranteed to find the globally optimum. As a consequence the proposed

methods are very predictable.

4.1.2 Related work

Providing information to the algorithm by direct user input has lead to a wide range of

different approaches. Commercial software such as Adobe Photoshop or Gimp provide

a wide range of different interaction tools. They typically fulfill all of the requirements

mentioned earlier.

A still common way to obtain an outline of an object, is to simply draw the contour.

This can be either done by exactly following the cursor, or by drawing line segments.

While this method allows to perform very precise segmentations, it is quite cumbersome

and time-consuming. One of the most frequently used improvements it to guide the border

towards nearby edges. This idea was first suggested by [Mortensen and Barrett, 1995] and

called “intelligent scissors”. A similar approach in Photoshop is called the “magnetic

lasso”. Also the snake model [Kass et al., 1988] can be used to refine an approximately

drawn contour. As a consequence, the user does not have to draw very precisely, resulting

in a significant speedup.

Often gray value and color information is utilized to obtain a segmentation. Selecting a

simple gray value or color model and thresholding is often used to select a number of pixels

simultaneously. The threshold as well as the seed regions can be interactively defined by

the user. When using seed regions the resulting segmentation can also be constrained to

be spatially connected. Modern implementation, such as the “magic wand” in Photoshop,

allow to further modify the contour and apply smoothing, dilation, matting and alpha

blending.

The concept of seed regions was already used by [Adams and Bischof, 1994]. They

suggested to use seeded region growing. In region growing approaches, the seeds are

expanded as long as some homogeneity criterion (e.g. color consistency) is fulfilled. Apart

from being fast, these methods have the advantage of working locally allowing to segment

complex objects by successive brushes.

Drawing scribbles with different brushes can be used as input for a wide range of

4.1. Interactive image segmentation 81

subsequent algorithms. As we will see later, this is our preferred method of interaction.

But also approximate outlines of the object can be used to learn models for more complex

algorithms. In the “GrabCut” approach [Rother et al., 2004], a simple bounding box is

drawn around the object. The learned color model is then used in a graph cut.

4.1.3 Creating potentials for segmentation

In the following we are going to discuss how the image as well as user input can be

incorporated to the models presented in Section 3. We first review the unary potentials

that are used for pixel wise (or feature based) information, and then binary potentials

that contain edge information.

4.1.3.1 Unary potentials

The multi label approach in Section 3.2, uses fi for the unary potentials assigned to label

i. When recalling the definition of the multi label segmentation problem in (3.19), a small

value fi corresponds to a probability of the pixel belonging to label i. For the two-label

model we denoted the discrete unary potentials for foreground and background with wt

and ws. Additionally we simplified the model in (3.7) by using wu = wt−ws, and discussed

the influence of wu in Section 3.1.2.1.

Both models are perfectly suited to use a pixel wise likelihood to create the unary

potentials. Given some label probabilities pi, we can simply set fi = 1 − pi. For the

two label case we have to simply use wt = pt and ws = ps. Another option is to use

log-likelihoods and set fi = − log(pi). In Figure 4.1, unary potentials for both cases are

depicted using a two-label example. Note, that although for both choices different values

of λ had to be used, the resulting segmentations are very similar. In practice we observed,

that both types of constructing the unary potentials deliver good results.

A very important task is to determine the pixel wise likelihoods pi. This is typically

evaluating a feature distribution over some user marked pixels. The choice of the right

features has a great impact on the final segmentation quality. This reaches from simple

gray values and color information to complex features like patches or HoG descriptors.

Unfortunately, the more complex the features, the more difficult it is to efficiently learn

and model distributions. Not every feature might work well for all images. Therefore,

the algorithms to generate the unary terms, have to be sensitive to pick the right fea-

tures. Learning methods, like random forests or a support vector machine (SVM), can

be used model the label data. This is a very complex topic on its own. [Santner, 2010;

82 Chapter 4. Supervised Segmentation

(a) wt (b) ws (c) wu (d) u

(e) wt (f) ws (g) wu (h) u

(i) Used scribbles (j) wb (k) Segmentation overlay

Figure 4.1: The top row depicts unary potentials and segmentation for a two-label problem
using probabilities pi directly (λ = 0.1). (a,b) are depicted in the range [0, 1] while (c)
is depicted in the range [−0.5, 0.5]. The middle row, shows the same results using log-
likelihoods (λ = 0.01). (e,f) are depicted in the range [0, 10] while (g) is depicted in the
range [−5, 5]. We also used binary potentials depicted in (j), and user scribbles in (i).

Santner et al., 2011, 2009] provides extensive work on using various features for texture

segmentation based on the models introduced in Section 3.

Instead of dealing with this rather complex methods, we focus on the low dimensional

feature color to demonstrate the usage of the proposed segmentation algorithms. Color or

gray value information is a strong feature to describe objects locally. Thus, it can be used

to segment a wide range of natural images.

4.1. Interactive image segmentation 83

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

(a) Foreground histogram

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

(b) Background histogram

Figure 4.2: Gray value histograms corresponding to the segmentation problem in Fig-
ure 4.1.

Based on some labeled pixels, a probability model has to be created for each label. Two

common methods for color features, are gaussian mixture models (GMMs) and histograms.

A gaussian mixture model (GMM) fits several Gaussians to the data, and thus allows for

a compact and smoothed representation of the feature distribution. It was e.g. used by

[Rother et al., 2004] for the GrabCut segmentation algorithm. While this works well for

three dimensional data like color, it becomes increasingly costly in higher dimensions. The

same holds for histograms, that we already used in [Unger et al., 2008b]. Smoothing is

inherently provided by the bins, but can additionally be increased by Gaussian smoothing.

An example of the corresponding gray value histograms for Figure 4.1 with 32 bins is given

in Figure 4.2.

As already mentioned in Section 3.1.2.1, constraining pixels to a label can be achieved

by setting wb =∞ or wb = −∞ in the two label case. Instead of ∞ a very large value can

be used during implementation. As also mentioned earlier, it is better to simply fix the

values of u in these areas.

4.1.3.2 Binary potentials

In the discrete setting, the weighted TV is defined as ‖Wb∇u‖2,1. The binary potentials

(wb or g), model the relationship between neighboring pixels. In a lot of cases, gray

value or color discontinuities coincide with object boundaries. The binary potentials allow

to incorporate this gradient information to the segmentation formulation. Note, that

84 Chapter 4. Supervised Segmentation

at object boundaries we have ∇u = 1 and ∇u = 0 otherwise. As we are dealing with

a minimization problem, a low value (or weight) of wb will favor jumps in the labeling

function u. We therefore have to design the binary potentials in a way that strong gradients

(edges) result in a low value of wb, and low gradients (flat areas) in a high value.

We compute the edge image g = (g1, g2, g3, g4) as the color gradient of the image

similar to (3.4):

g =
(
(c+x v), (δc+y v), (δc++

xy v), (δc+−xy v)
)T

. (4.1)

The color gradients simply compute the L2-norm of the single channel gradients, that are

otherwise computed as in (2.27) and (3.5). For 4-connected graphs we can then set the

binary terms wb as

(wb)i,j = β
(
e−α|(g1)i,j |, e−α|(g2)i,j |

)
, (4.2)

with α > 0, and for 8-connected graphs the binary terms become

(wb)i,j = β
(
e−α|(g1)i,j |, . . . , e−α|(g4)i,j |

)
. (4.3)

In case of the weighted TV, we set

(wb)i,j = (ḡi,j , ḡi,j) , ḡi,j = βe
−α
√

(g1)2i,j+(g2)2i,j . (4.4)

Meaningful values for α are in the range 0.6 - 1.2 and for β int the range 0 - 50. We

typically use α = 0.8 and α = 10 as default values. Figure 4.1(j), shows an example of

binary potentials computed with (4.4).

While simple gradients are typically sufficient, slight preprocessing can further enhance

the binary potentials. This can either be a simple Gaussian filtering of the input image,

or more complex steps like TV-L1 denoising. Figure 4.3, shows an example where these

two methods are compared with no preprocessing. Note that the binary potentials are

very noisy if no preprocessing is applied. In case of the Gaussian filtering boundaries are

enhanced, but the edges are blurred. The TV-L1 denoising gives very precise boundaries,

while eliminating small noise. While results are very similar, the preprocessing using the

TV-L1 model results in the most exact segmentation. We therefore use slight TV-L1

denoising before calculating the binary potentials, for most practical applications.

4.1. Interactive image segmentation 85

Figure 4.3: From left to right: The preprocessed input image, the corresponding binary
potentials and the resulting segmentation overlay. From top to bottom: No preprocessing,
Gaussian filtering and TV-L1 denoising.

4.1.4 Interaction

In order to generate the unary potentials as described in Section 4.1.3.1, user input or

some other kind of prior knowledge is required. We suggest to use scribbles as a user

input. They are easy to understand, allow great flexibility and are simple to implement.

We provide two kinds of scribbles:

• Histogram scribbles: Pixels assigned to this brush are used to build the color his-

togram for each label.

• Hard constraints: Pixels assigned to this brush are set to the assigned label.

86 Chapter 4. Supervised Segmentation

(a) Input (b) Binary potentials

(c) Histogram scribbles (d) Hard constraints (e) Mixed scribbles

Figure 4.4: Different kinds of scribbles.

Of course both scribbles can be combined and drawn simultaneously. In addition to the

scribbles we allow to set the border of the image to a certain label.

Figure 4.4, shows a comparison in the usage of the different scribbles. Histogram

scribbles are shown in a bright color, while hard constraints are shown in a dark color.

Although the histogram scribbles alone can perform well, they are sometimes not sufficient.

This is the case if color alone is not a meaningful feature to describe the layers (e.g. the

legs of the elephant). A great advantage of the histogram based scribbles is that the user

does not need to draw very exact, as the scribbles are only used to build the color model,

and can thus be assigned different labels by the algorithm.

Using hard constraints, as in Figure 4.4(d), we can specifically assign certain pixels

to a label, which allows to obtain any desired segmentation. In this case the border was

set to the blue label. Using only hard constraint scribbles will not take into account any

color information and the final result will only depend on the binary potentials. This is

useful when objects can’t be described by a simple feature distribution, as e.g. is the case

in magnetic resonance imaging (see Figure 4.5(b)).

Finally, as shown in Figure 4.4(e), both scribbles can be combined by drawing both

constraints simultaneously or simply mixing them. This is the most common usage sce-

nario. Typically, we first draw a few scribbles with both types of scribbles simultaneously,

4.1. Interactive image segmentation 87

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Examples of interactive multi-label segmentation utilizing user input by scrib-
bles.

and then fix the remaining errors by using hard constraints. In Figure 4.5, we show several

additional examples using the scribbles for interactive multi label segmentation.

Of course other type of user input can be incorporated. Instead of scribbles, one could

use a simple bounding box to mark the desired region. An example is shown in Figure 4.6.

Here both approaches deliver nearly the same result. For the bounding box approach, the

region inside the rectangle was used to learn the foreground model, and the whole image

was used to learn the background model. Additionally, everything outside the rectangle

was set as background.

The bounding box approach might sometimes be more efficient, as it only involves to

draw one rectangle around the desired segmentation region. On the other hand it has

several disadvantages: First, it does not offer the flexibility of the scribbles approach, and

the resulting color models are not as exact. Second, it is typically only usable in the

two-label case, and cannot be directly applied to multi-label segmentation problems.

Another way of user input is to directly modify the binary potentials. In [Unger et al.,

2008a], we showed how edge information can be modified by an additional brush. There

are some cases, where deleting edges may lead to the desired segmentation immediately.

Typically, the same effect can be obtained using the hard constraint scribbles, why we

88 Chapter 4. Supervised Segmentation

(a) Mixed scribbles (b) Bounding box

Figure 4.6: Comparison of segmentation by scribbles and a simple bounding box.

suggest only to provide brushes to modify the unary potentials.

4.2 Tracking by segmentation

In this Section, we present an application of the continuous maximum flow algorithms

presented in Section 3.1. We will do this by extending the segmentation model to the

spatio-temporal domain and apply it to tracking objects in videos.

4.2.1 Introduction

Robust visual object tracking is a vital topic in computer vision. The need for handling

variations of the objects appearance, changes in shape and occlusions makes it a challeng-

ing task. Additionally, robust tracking algorithms should be able to deal with cluttered

and varying background and illumination variations. We formulate the tracking prob-

lem as globally optimal segmentation of an object in the spatio-temporal volume. Under

the assumption that an object undergoes only small geometric and appearance changes

between two consecutive frames, the object is represented as a connected volume contain-

ing similar content. Applying the segmentation algorithm on a volume instead of single

frames, enhances robustness in the case of partial occlusions and similar background. Fur-

thermore, no explicit shape model has to be learned in advance. Instead spatial and

temporal consistency is enforced by a single regularization term.

4.2. Tracking by segmentation 89

4.2.1.1 Previous work on tracking

In the following we give a very brief review on common tracking approaches. We start

with simple frame based trackers.

The kernel-based method of [Avidan, 2005] considered tracking as a binary classi-

fication problem on the pixel level. An ensemble of weak classifiers is trained online to

distinguish between object and background, while a subsequent mean-shift procedure [Co-

maniciu et al., 2000] obtains the exact object localization. The patch-based method of

[Grabner et al., 2006] proposed online AdaBoost for feature selection, where the object

representation is trained online with respect to the current background. Although these

methods have shown their robust tracking behavior in several applications, they lack an

explicit representation of the objects shape, due to their representation by a simple rect-

angular or elliptical region.

Shape-based [Donoser and Bischof, 2006] or contour based [Isard and Blake, 1996]

tracking methods deliver additional information about the object state or enhance the

tracking performance on cluttered background. While [Donoser and Bischof, 2006] used

MSER regions for tracking, [Isard and Blake, 1996] applied the CONDENSATION algo-

rithm on edge information. Therefore feature extraction or segmentation were independent

from the tracking framework.

In contrast, especially level-set methods support the unified approach of tracking and

segmentation in one system. A detailed review on the use of level set segmentation is

given in [Cremers et al., 2007]. [Yilmaz et al., 2004] modeled object appearance using

color and texture information while a shape prior is given by level sets. [Fussenegger

et al., 2009] incorporated an active shape model based on an incremental principal com-

ponent analysis (PCA), which allowed the online adoption of the shape models. [Yilmaz,

2007] extended the mean-shift procedure by [Comaniciu et al., 2000], by applying fixed

asymmetric kernels to estimate translation, scale and rotation. [Bibby and Reid, 2008]

proposed an approach, where they used pixel-wise posterior instead of likelihoods in a nar-

row band level set framework for robust visual tracking. The use of pixel-wise posterior

led to sharper extrema of the cost function, while the GPU based narrow band level set

implementation achieved real-time performance.

All of the above approaches work on single frames. [Mansouri et al., 2003] proposed a

joint space-time segmentation algorithm based on level sets. The main idea of interpreting

tracking as segmentation in a spatio-temporal volume is closely related to the approach

presented in this paper. In contrary to our approach level set methods are used, that can

90 Chapter 4. Supervised Segmentation

easily get stuck in local minima.

The idea of adding temporal information was already used by [Porikli, 2001], [Brox

et al., 2010] and [Cremers, 2003, 2007]. Often this is done using optical flow, as optical

flow already provides tracking on a pixel level. In the recent work of [Ochs and Brox, 2011,

2012] flow trajectories are estimated. Based on these trajectories, clustering is performed.

The results is a fully automatic segmentation of the whole spatio-temporal volume (or

video).

4.2.1.2 Tracking as segmentation in a spatio-temporal volume

In the following we motivate this Section by providing details on the concept of interpreting

tracking as the segmentation of a 3D volume. As already stated, a color image I is defined

in the 2D image domain Ω as I : Ω → R3. The 2D frames of a video sequence can be

viewed as a volume by interpreting the temporal domain T as the third dimension. Thus

the volume is defined as V : (Ω× T)→ R3. This makes it possible to incorporate spatial

and temporal regularization in an unified framework. If we assume a high enough sampling

rate, adjoining frames will contain similar content. The 2D objects of a single frame I

correspond to cuts of planes with the 3D object defined in the volume V . Inherently

this approach extends the forward propagation of information through time by additional

backward propagation. Objects that are represented as disjoint regions in a single frame,

correspond to a single volume, and are therefore tracked robustly.

This concept is illustrated with an artificial example in Figure 4.7. Our tracking

approach is compared to an MSER tracker [Donoser and Bischof, 2006], that cannot

handle multiple disjoint regions. The volumetric approach does not suffer from such a

shortcoming, as the regions are connected in the volume.

4.2.2 Algorithm

We now formulate the basic idea of spatio-temporal segmentation, by extending the con-

tinuous max flow problem (3.7). Therefore, we first discuss the new segmentation model

and its optimization. The complete tracking algorithm is then discussed in Section 4.2.3.

The segmentation model: While the segmentation problem in (3.7), easily generalizes

to higher dimensions, we will take a look at an anisotropic formulation. We propose to

4.2. Tracking by segmentation 91

2 25 33

Figure 4.7: Tracking of an artificial object. The first row depicts frames of the input video
with frame numbers at the top. The second row shows the segmentation result using the
volumetric approach. The third row shows the result of an MSER tracker implementation
[Donoser and Bischof, 2006].

use the following spatio-temporal extension:

min
u

{
Ep =

∫

Ω×T
cbx|∇xu|+ cbt|∇tu|+ λ

∫

Ω×T
cuu dxdt

}
. (4.5)

The first term now features the anisotropic TV. While in the spatial domain Ω the TV

computation stays the same |∇xu| =
√(

∂u
∂x

)2
+
(
∂u
∂y

)2
, an additional |∇tu| =

∣∣∂u
∂z

∣∣ in the

temporal domain T is added. Edge information is incorporated using two separate binary

terms cbx : (Ω × T) → R and cbt : (Ω × T) → R that subsequently represent edges in the

current frame and edges from one to the next frame. The binary potential is computed as

cbx = exp
(
−a |∇xV |b

)
. Likewise one can compute cbt = exp

(
−a |∇tV |b

)
.

The usage of an anisotropic weighted TV norm for regularization has the advantage

that discontinuities in the spatial domain V and in the time domain T are separated. This

allows for a more accurate segmentation of small and fast moving objects. To illustrate

this, Figure 4.8 shows a comparison of the regularization term as used in (4.5), and the

standard weighted TV as in (3.7). It shows that the anisotropic regularization delivers

finer details during fast moving parts of the video.

Solving the minimization problem: To solve the energy defined in (4.5), we again

use duality by introducing the dual variable p : Ω × T → R3. The dual variable can be

separated into a spatial and a temporal component p = (px, pt)
T . Similar to (3.9), we get

92 Chapter 4. Supervised Segmentation

84 308 311

Figure 4.8: Comparison of anisotropic TV and standard TV regularization. The first row
shows frames of the original video where the left player is tracked. In the second row the
anisotropic regularization term shows a better segmentation of fast moving details than
the standard weighted TV regularization in the third row.

the following discretized primal-dual formulation of the spatio-temporal segmentation:

min
u

max
p
{〈∇u,p〉+ 〈u,wu〉} ,

s.t. u ∈ [0, 1], ||px||∞ ≤ wbx, ||pt||∞ ≤ wbt .
(4.6)

The application of the primal dual algorithm in Algorithm 1 is straightforward, as

it directly follows the application to the continuous max flow problem. Only the repro-

jection of the dual variables changes. We can formulate this by using the convex set

C =
{
q = (qx, qt)

T : |qx| ≤ cbx, |qt| ≤ cbt
}

denoting a cylinder centered at the origin with

the radius cbx and height 2cbt. The re-projection onto C can then be formulated as

ΠC

(
q
)

=

(
qx

max
{
cbx, |qx|

} , [qt]cbt−cbt

)T
(4.7)

We summarized the resulting algorithm in Algorithm 13.

For a convergence criterion based on the primal-dual gap, we have to find a pure dual

4.2. Tracking by segmentation 93

Algorithm 13 Primal-dual algorithm to solve the spatio-temporal segmentation problem
(4.6) for tracking and video segmentation.

τ = σ = 1√
6

u0 = 0.5, p0 = 0 and ū0 = u0 // Initialization
for j = 1 to J do
pj = ΠC

(
pj−1 + σ∇ūj−1

)
// Update dual variable

uj =
[
uj−1 − τ(−divpj + wu)

]1
0

// Update primal variable
ūj = 2uj − uj−1 // Extra-gradient step

end for

formulation of (4.6). Similar to (3.13), we obtain the pure dual energy as

Ed(p) =
〈
û,∇Tp+ wu

〉
, (4.8)

with û as in (3.12). We can therefore use the normalized primal dual gap defined in (3.14)

as a convergence criterion.

4.2.3 Implementation

The anisotropic segmentation model can be directly used for video segmentation using the

tools already introduced in Section 4.1. Instead of working on a single image, the user

can draw constraints to arbitrary frames. The desired segmentation is then obtained in

an interactive manner.

In the context of tracking we are not focused on the perfect segmentation, but in

minimizing the user input. Small errors are accepted as long as user interaction is kept to

a minimum. We now take a closer look at how the above segmentation algorithm can be

used for tracking.

4.2.3.1 The tracking framework

Due to limitations in computer hardware such as memory, the size of volumes that can be

computed at once is limited. Although modern computing hardware can handle volumes

with several thousand frames, the necessity of working on the complete sequence at once

restricts tracking to offline data. Multiple similar objects, or disjoint regions belonging

to the same object (e.g. by occlusions) make additional information necessary. When

attempting a general framework with objects of arbitrary size and shape, this becomes a

difficult task.

To tackle these problems, we propose to use an incremental approach. Only n frames

94 Chapter 4. Supervised Segmentation

are segmented at once. The algorithm is initialized on the first n frames, e.g. by drawing

a rectangle around the desired object. See Section 4.2.3.2 for details of the feature based

segmentation approach. If multiple objects are segmented, the user can select the desired

object manually by editing additional scribbles. After convergence of the segmentation

algorithm (Section 4.2.2) foreground and background models are updated.

Next, the oldest m < n frames are discarded, and m new frames are added to the

volume V . To speed up the tracking process we compute the segmentation only on small

areas around the current object. To prevent the algorithm from segmenting similar nearby

objects, only regions that overlap with the segmentation mask of the last step are selected.

In case of occlusions, the volumetric representation of an object might be separated into

several disjoint regions. Our overlap constraint might for some cases cause the tracker to

discard the new region if they are not connected in the volume.

To handle complete occlusions in general we use the following strategy: We keep track

of the average region size. If the segmentation gets smaller than a certain percentage of

this average region size, the object is assumed to be occluded. In case of an occlusion the

working region starts to grow slowly, and no updates of the foreground and background

model are performed. If a region is segmented that is big enough to be considered as the

object, tracking is continued on this region.

Any slice k ∈ [1, n] of the volume V can be selected as the tracking result. The number

of frames the tracker looks into the future is defined by n− k. Thus the smaller k and the

bigger n, the more robust disjoint regions are tracked.

Implementation of the tracker was done mainly on the GPU. The volume depth was

fixed for all experiments to n = 8, while slice k = 4 was used for the segmentation result.

4.2.3.2 Color tracking

Object appearance is represented in RGB color space using a foreground histogram

HF : R3 → [0, 1], and a background histogram HB : R3 → [0, 1]. Following the ideas

presented in [Bibby and Reid, 2008], we are using the pixel-wise posterior. We define

M = MF ,MB as the model parameter that is either foreground F or background B.

From the initialization, we obtain the foreground and background likelihoods P (HF |MF)

and P (HB|MB). Applying Bayesian rule we can estimate the posterior P (MF |HF) of a

pixel being foreground in the context of the actual background given by P (HB|MB) and

a region-prior P (Mj) with j ∈ F,B by:

4.2. Tracking by segmentation 95

P (MF |HF) =
P (HF |MF)P (MF)∑
j=F,B P (Hj |Mj)P (Mj)

(4.9)

We keep track of foreground and background models by updating them online using

an adaption rate α with likelihoods estimated from the current frame Pnew(Hj |Mj) as:

P (Hj |Mj) = (1− α)Pold(Hj |Mj) + αPnew(Hj |Mj) with j ∈ F,B (4.10)

In contrast to [Bibby and Reid, 2008] we do not apply marginalization. Instead we

simply set the segmentation cue f(x, t) = 0.5− P (MF |HF (V ((x, t)))).

4.2.4 Experimental results

In Figure 4.9, a white cat is successfully tracked and segmented. The first row shows the

input video with different overlays. The rectangle is indicating the current working region.

The blue color of the rectangle indicates that the tracker is working normally. If the object

is believed to be occluded in some slice, the rectangle becomes orange. The current object

is indicated by an orange overlay. If parts of the image get segmented, but do not belong

to the object, these areas are indicated in red. Note that some regions are segmented that

do not belong to the object, but most of the incorrect regions are removed. The second

row shows the segmentation cue f where the value −0.5 is mapped to black and indicates

foreground, the value 0.5 is mapped to white and indicates background. Frame 409 shows

a segment where a cross-fade occurs. The tracker detects the loss of the object, starts

216 403 409 418 589

Figure 4.9: Tracking example of a cat. The first row depicts the tracked object with the
current segmentation and the working region as overlays to the original input image. In
the second row the segmentation cue f is depicted in the range [−0.5, 0.5].

96 Chapter 4. Supervised Segmentation

growing the search region and begins to search for the object. Frame 418 shows that the

object was found correctly. Also note that the algorithm always correctly tracks the object

despite large scale changes, as our tracking approach makes no restrictions on the region

size.

The second example presented here shows the tracking of a fish in an aquarium. In

the top row of Figure 4.11, the input video is shown, while the bottom row shows the

extracted fish. Note that although several partially and complete occlusions occur, the

tracker does not lose the object throughout the video. In case of partial occlusions the

fish is still correctly segmented, as can be seen in frames 438 and 487. Also note that

large shape changes do cause tracking failures, as we make no assumption on shape. In

Figure 4.10, the video is displayed as a volume. The region corresponding to the fish is

rendered using iso-surface rendering based on the segmentation mask as obtained by the

tracker.

Naturally a color based tracker without any restrictions on shape and scale has its

limitations. In Figure 4.12 a player in a volleyball game is tracked. In the beginning the

tracker starts promisingly by separating skin tones from the very similar sand. Around

frame 337 the skin tones of other players appear in the working region, and are learned

as background. As one can see in frame 377 the tracker looses the legs and arms, but still

Figure 4.10: A schematic 3D rendering of the fish tracking sequence from Figure 4.11.
The tracking result is rendered in yellow.

4.2. Tracking by segmentation 97

64 158 168 200

298 438 487 940

Figure 4.11: Tracking sequence of a fish in an aquarium, showing the ability of the tracker
to handle large changes in shape, and various kinds of occlusions. The first row depicts
the input video and the second row the extracted object.

tracks the very characteristic green shirt. In frame 551 the player gets occluded by his

team member, with a very similar appearance. As no additional high level information is

available, both players are tracked.

In Figure 4.13, another video sequence is shown where the tracker fails. We tried to

track the skin of the person. Due to the many occlusions the volume corresponding to

skin is separated into several disjoint regions, causing problems for the tracker. Though

the tracker can recover several times, the object is permanently lost in frame 276. Other

reasons for the failure in this video is the bad discrimination of foreground and background

98 Chapter 4. Supervised Segmentation

270 320 337 377

419 551 592 1344

Figure 4.12: Tracking of volleyball sequence, where tracker fails due to highly similar
object and colors in the background. The first row shows the input video and the bottom
row shows the extracted player.

by using color.

Experimental results showed that a simple color tracker benefits from interpreting

tracking as segmentation in 3D. The tracker successfully handled large variations in scale

and shape. The examples show, that the tracker can deal with partial occlusions. Due to

the incremental approach also long complete occlusions do not pose any problem to the

tracker. Figure 4.12 shows an important characteristic of the tracker to adapt foreground

and background models to the most characteristic color values. This has the advantage

of making the tracking of the object more robust, but also decreases segmentation per-

formance. It also showed that multiple objects with similar appearance cannot be kept

apart if occlusions occur. Here clearly high level information could help, e.g. in the volley-

ball example restrictions on the region size could be made, and shape information would

4.2. Tracking by segmentation 99

8 55 73

104 207 276

Figure 4.13: Video example where tracking and segmentation fail, due to too many occlu-
sions, and bad discrimination of the color histograms.

definitely improve results.

4.2.5 Summary

We presented a tracking approach that tracks objects by segmenting them in a spatio-

temporal volume. By using the segmentation result a pixel wise classification into fore-

ground and background is achieved. The volumetric tracker presented in this paper, shows

promising results for the examples provided in Section 4.2.4. An incremental tracking ap-

proach was presented and implemented, that works only on a small volume at a time,

eliminating memory problems and allowing tracking of videos of arbitrary length. Due

to the segmentation in a 3D volume, information is also propagated back through time

if the regions are connected in 3D, showing improvements for tracking disjoint regions.

As we make no assumptions on shape or scale even large variations cause no problems to

the tracker. The tracker is able to handle partial as well as complete occlusions. It was

shown that a pure color based foreground and background description is sometimes not

sufficient, and leaves room for further improvement.

Future work might include optical flow into the segmentation process. This could e.g.

100 Chapter 4. Supervised Segmentation

be done by directing the temporal gradient in the direction of the optical flow. Work

that does this already in the context of image denoising is presented in [Werlberger et al.,

2011a].

Chapter 5

Unsupervised Segmentation

5.1 Depth image segmentation

In this Section, we tackle the problem of depth (or height) image segmentation. We

do this in the context of aerial imagery. Segments in depth images typically cannot be

described by simple gray values. Instead, man made structures are typically composed

out of several planes (e.g. rooftops or roads). In the following, we develop an approach

that jointly optimizes a segmentation of the scene and a plane parametrization for each

segment.

5.1.1 Depth segmentation

Depth images play an important role in aerial computer vision and photogrammetry. They

depict the geometry of the earth as seen from above using an orthographic projection. As

this 2.5D data represents the surface of the earth it is also referred to the as digital surface

model (DSM). Typical ways to obtain such depth images is either by using aerial imagery

together with 3D reconstruction and stereo matching, or by using laser scanners (Lidar).

The DSM gives a lot of information on the world, and therefore gives rise to extract

semantic information from it. Fully understanding the depth images is a difficult task,

and we will only focus on a very small sub task in this chapter. We want to explain 2.5D

footprints of buildings by a set of 3D planes. This makes a lot of sense, as most man made

structures like buildings, streets or parking lots are composed of simple planes.

Figure 5.1 illustrates the task we try to solve. The given depth image cannot be

successfully segmented using just edges of gray value information. But when looking at

the 3D visualization, it is obvious, that the scene consists of piecewise planar regions. We

101

102 Chapter 5. Unsupervised Segmentation

Figure 5.1: Illustration of the depth segmentation problem: On the left, the 2.5D input
image, and the corresponding 3D visualization. The right hand side depicts the resulting
segmentation into planes. The 3D reconstruction show the accuracy of the result.

now want to segment the input into this consistent regions such that each segment can

be represented using simple plane parameters. The corresponding reconstruction not only

shows a meaningful segmentation of the building, but also successfully removed noise and

small artifacts.

Image segmentation has already proved very useful during stereo estimation. Early

works (e.g. [Bleyer and Gelautz, 2004] and [Zitnick and Kang, 2007]) used an over-

segmentation of the input images to help the estimation process. In [Sinha et al., 2009],

piecewise planar stereo reconstructions were proposed in order to do image based render-

ing mainly on side views of buildings. First structure from motion is used to generate

a point cloud, to which then planes are fitted. The final stereo result is then obtained

by a MRF optimization problem. In [Bleyer et al., 2010] and [Bleyer et al., 2011], mod-

els for joint stereo matching and object segmentation were introduced. They propose a

model that segments the scene based on color and 3D connectivity. Therefore each seg-

ment is represented as a plane or B-spline. The segmentation not only improves the final

result, but also gives rise to better occlusion handling. Everything is formulated as one

joint MRF. We present a similar approach in Section 5.2 for joint motion estimation and

segmentation. For now, we assume a given stereo image that has to be segmented.

5.1.2 Model and algorithm

We start with an input image I : Ω→ R that contains the depth information. As a model

for the label representations, we use planes that are represented by a linear operator

h = (a, b, c). The plane is then computed as y = hx̃. Instead of standard coordinates

x = (x, y)T we use homogeneous coordinates x̃ = (x, y, 1)T

5.1. Depth image segmentation 103

Given a segmentation into K regions Ωi and the according plane parameters hi it is

possible to reconstruct the depth image as

u(x) =
K∑

i=1

(hix̃) 1Ωi(x) . (5.1)

As a data term for the segmentation, we minimize the quadratic distance of the recon-

struction u to the input image I by setting

fi(x) = λ|ui(x)− I(x)|2 . (5.2)

We then formulate the multi label segmentation problem with label costs in the manner

of (3.30) as

min
Ωi,hi

{
K∑

i=1

(
Per(Ωi) + λ

∫

Ωi

|hix̃− I(x)|2dx+ γ||1Ωi ||∞
)}

,

s.t. Ω =

K⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j .

(5.3)

The optimization problem (5.3) is non-convex due to the data term. We therefore

propose to do an alternating minimization with respect to Ωi and hi.

Optimization for Ωi: For the optimization in the variable Ωi, we assume that the plane

parameters hi are constant. We can therefore precompute fi as in (5.2). As a result (5.3)

reduces to

min
Ωi

{
K∑

i=1

(
Per(Ωi) +

∫

Ωi

fi(x)dx+ γ||1Ωi ||∞
)}

,

s.t. Ω =

K⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j .

(5.4)

This is exactly the multi-label formulation in (3.30) and can be solved by Algorithm 10.

Optimization for hi: Optimization for the plane parameters can be done by setting Ωi

to be constant. (5.3) then reduces to

min
hi

{∫

Ωi

|hix̃− I(x)|2dx
}
. (5.5)

104 Chapter 5. Unsupervised Segmentation

Algorithm 14 Algorithm for depth image segmentation (5.3).

Initialize Ωi by splitting the region into 10× 10 patches
for j = 1 to J do

Update plane parameters hi using (5.8)
Update segmentation Ωi using Algorithm 10
Discard empty labels and split spatially disconnected regions

end for

This is a simple label-wise least squares problem, that can be written as

Xih
T
i = yi, (5.6)

with

Xi =




x1 y1 1
...

...
...

xK yK 1


 and yi =




I(x1)
...

I(xK)


 : xk ∈ Ωi . (5.7)

As this is a linear least squares problem, it can be solved using the pseudo inverse:

hTi = (XT
i Xi)

−1XT
i yi. (5.8)

Initialization and algorithm: For the above two optimization steps, an initialization

of either the segmentation Ωi or the plane parameters Hi is necessary. We start with a

’patch’ segmentation by splitting the image in 10 × 10 regions. For each of these initial

regions, we then update the plane parameters hi according to (5.8). We then use the new

plane parameters to compute the segmentation according to Algorithm 10. The resulting

segmentation will give a first segmentation, that is further refined by iterating the two

optimization steps. In order to allow for new plane parameters, we split up regions of

labels that are not spatially connected. This allows to also capture and adapt planes that

were not found with the initialization. Empty labels are deleted during the optimization

process. The algorithm is summarized in Algorithm 14.

Determining convergence of the algorithm is not trivial. One can either monitor

changes in the parameters hi or the segmentation Ωi. Both approaches require a manually

selected convergence criterion. For practical application a fixed number of iterations seems

to be sufficient. We selected J = 10 for all examples presented in this thesis.

5.1. Depth image segmentation 105

5.1.3 Experimental results

In the following we show experimental results of the depth image segmentation model 5.3

in the context of height model generation. As input we use 21/2D orthographic images

where single buildings were already preselected. Figure 5.2, shows different segmentation

examples. On the left hand side, the input images with preselected buildings and the

Figure 5.2: Different examples of the height model segmentation, using the same param-
eters. From left to right: Input depth map I, input rendering, reconstruction rendering
and segmentation.

106 Chapter 5. Unsupervised Segmentation

λ = 400 λ = 700 λ = 1000 λ = 1300

γ = 0

γ = 0.05

γ = 0.1

γ = 0.15

Figure 5.3: Variation of the parameters λ and γ. Within a reasonable range, the segmen-
tation result is quite robust to the choice of parameters.

corresponding 3D visualization. The right hand side shows the reconstruction and the

segmentation result. Parameters were kept constant at λ = 700 and γ = 0.05. The

resulting segmentation provides a meaningful partitioning into the underlying structure of

the building. Note that the reconstruction (5.1) provides a denoised version of the input

data. The output of the proposed segmentation algorithm is therefore perfectly suited to

build a full 3D mesh.

While Figure 5.2 already shows, that a single parametrization can be used for a wide

range of input data, we further investigate the influence of parameter choice. In Figure 5.3,

the same scene was segmented with varying parameters λ and γ. The segmentation results

5.1. Depth image segmentation 107

show only minor differences, demonstrating that the Algorithm 14 is robust to parameter

variations in a reasonable range. When strong regularization is combined with large label

costs (bottom left) some regions already start to disappear.

In Figure 5.4, we also demonstrate negative examples where the approach using planes

as a model to describe a label are not appropriate. A common structure found in most

aerial images are trees. While in the top row, the structure of the house is successfully seg-

mented, strong over-segmentation occurs in areas of with plants. This effect is even more

visible in the second row of Figure 5.4. In order to deal with such structures, other models

have to be used. We could for instance use quadratic or higher order parametrization, or

non-parametric models. In Section 5.2, we will investigate such models in the context of

joint motion estimation and segmentation.

Finally, the bottom two rows of Figure 5.4, depict segmentation results of stereo images.

The stereo images are ground truth images of the Middlebury stereo benchmark [Scharstein

et al., 2002]. While most parts of the images are successfully segmented, some regions are

flattened or approximated with several regions. Nevertheless results show that a plane

prior might improve regularization in stereo matching.

Algorithm 14 was implemented in Matlab with the exception of the multi-label seg-

mentation problem in Algorithm 10. The segmentation was computed on the GPU, as it

poses the most expensive part of the computation. Experiments presented in this section

ranged from approximately 10 seconds to 2 minutes per iteration, where we calculated 10

iterations for all examples. The size of the input images ranged form approximately 0.1

to 1.5 million pixels.

5.1.4 Summary

We have demonstrated that the multi label segmentation formulation from Section 3.2

can be extended to segment aerial depth images and stereo data. The data term no

longer corresponds to some precalculated binary potentials, but is used to optimize for a

parametric representation of each label. Thus, simple feature based models are replaced

by parametric models. In addition, we do not longer need any user input, but can use a

fully unsupervised segmentation algorithm.

The resulting segmentation and reconstruction provides a meaningful representation of

the scene, that can be used for further analysis and extraction of scene semantics. While

the planar parametrization is sufficient for most buildings, more complex models would be

required to segment vegetation. Of course the approach could also be used directly during

108 Chapter 5. Unsupervised Segmentation

Figure 5.4: The top two rows show negative examples for the depth image segmentation.
The bottom tow rows show the algorithm applied to stereo results. From left to right:
Input depth map I, input rendering, reconstruction rendering and segmentation.

5.2. Motion Segmentation 109

stereo matching or 3D reconstruction as a regularization term. We will use this idea in

the more general case of motion estimation in the next Section.

5.2 Motion Segmentation

This chapter deals with the problem of fully automatic motion segmentation. We present

an energy minimization formulation for joint motion estimation, segmentation and occlu-

sion handling. Motion estimation is used as a basic source of information for numerous

computer vision applications including tracking, 3D reconstruction, video processing and

navigation. Additional motion segmentation gives rise to advanced algorithms for video

decomposition, superresolution, compression and others. Motion segments can also be

used as additional cues in video segmentation. Note that video segmentation is a very

different task as it has to discriminate objects even if there is no motion. In the case

of motion segmentation the aim is not to segment objects in the first, but regions with

coherent motion. We will demonstrate that for correct occlusion handling and motion

segmentation of complex scenes a large number of regions is required. Before we present

our method that can deal with all this problems, we first give a brief overview on motion

estimation techniques.

5.2.1 A short introduction to motion estimation

We first like to repeat the definition of motion estimation and optical flow, as these are

different but closely related problems, but are often used as synonyms. Optical flow refers

to the apparent motion of intensity patterns in image sequences. In case of lightning

changes this definition might not be intuitive. As an example, think of a torchlight moving

over a static scene. Optical flow estimates the motion of the resulting spotlight as it

moves through the scene. On the other hand, motion estimation corresponds only to the

actual motion of the underlying objects. Motion estimation thus has to be robust against

lightning changes and moving shadows. In the following we will use the term flow also for

the actual motion field, and the term optical flow only if we explicitly mean optical flow.

5.2.1.1 Classical optical flow

Starting from the basic assumption, that the intensities do not change between consecutive

frames I2(x+ v(x)) = I1(x) and applying a first-order Taylor expansion, one obtains the

110 Chapter 5. Unsupervised Segmentation

well-known optical flow constraint (OFC) [Horn and Schunck, 1981]

%(v(x)) = (v(x)− v0(x))∇I2(x) + I2(x+ v0(x))− I1(x) , (5.9)

where I1 and I2 are the image frames and v is the flow vector. Note that this equation

is under-determined, as there is only one equation for each unknown 2-dimensional flow

vector. This problem is also called the aperture problem. To overcome this problem, an

additional assumption (e.g. spatial coherence) has to be incorporated into the formulation.

The seminal work of [Horn and Schunck, 1981] used a variational formulation incorporating

a regularization term to circumvent the aperture problem:

min
v

{∫

Ω
|∇v(x)|2 + λ|%(v(x))|2dx

}
, (5.10)

where the free parameter λ defines the trade-off between smoothness and the residual

of the OFC. In subsequent work, the basic formulation of Horn and Schunck has been

modified and improved in different ways. For example robust functions [Black, 1991] have

been used instead of the quadratic functions in (5.10), to deal with motion discontinuities

and outliers in the OFC.

An important and more recent contribution was the realtime optical flow in [Zach

et al., 2007], that is often also referred to as TV-L1 optical flow :

min
v

{∫

Ω
|∇v(x)|+ λ|%(v(x))|dx

}
. (5.11)

Instead of the quadratic terms of the Horn and Schunck model (5.10) robust L1 norms

were used. As we have already seen in Section 2.2 the TV in the regularization works

edge preserving. It was first used for optical flow in the work of [Shulman and Hervé,

1989]. The L1 data term gives additional robustness. While the problem in (5.11) is

more difficult than the one in (5.10), using duality the resulting saddle point problem

can be solved efficiently. [Zach et al., 2007] showed that the resulting algorithm can be

easily parallelized on a GPU making it applicable for realtime applications. Variational

methods are well suited for motion estimation and are thus always found among the top

performers on the Middlebury evaluation benchmark [Baker et al., 2010]. While the data

term using the OFC is highly non-convex, optimization is usually embedded in a coarse-

to-fine approach. As a result larger displacements can be handled.

5.2. Motion Segmentation 111

5.2.1.2 Improving optical flow

There is a wide range of possible improvements to the classical optical flow approach [Sun

et al., 2010a]. They typically focus either on the data term or the regularization. In the

following, we pick a few relevant contributions. For an extensive overview and evaluation

of recent optical flow methods, we refer the interested reader to [Werlberger, 2012].

To improve the data fidelity term, more robust norms or features can be used. In

[Steinbruecker et al., 2009], a truncated L1 norm as well as a normalized cross correlation

(NCC) based data term was used. Also working with gradients or structure-texture de-

composition creates some additional robustness. Especially for large displacements, gray

values are subject to strong variations. In this case descriptor matching, as demonstrated

in [Brox and Malik, 2011], is an effective method to find correspondences of subsequent

frames.

The regularization for optical flow estimation has been heavily researched [Nagel and

Enkelmann, 1986]. As simple yet very efficient regularization is the Huber norm [Huber,

1973], that is well known from robust statistics. While still allowing for discontinuities,

also smooth transitions are allowed for small gradients. As shown in [Werlberger et al.,

2009] for optical flow, this already reduces the typical stair-casing artifacts caused by the

TV. To enforce affine regions in the flow field, it is also possible to use 2nd order Total

Generalized Variation [Bredies et al., 2010].

Regularization using non-local TV as presented in [Werlberger et al., 2010] is very

efficient at preserving fine details of the scene. The non-local weights (e.g. based on color

similarity) can already be seen as a presegmentation.

Another form of regularization is to take into account longer image sequences. As

shown in [Ochs and Brox, 2011], the additional information creates more robustness. The

trajectory based approach of [Brox and Malik, 2010; Ochs and Brox, 2011] is also a good

input for subsequent motion segmentation and clustering.

5.2.1.3 Drawbacks of classical motion estimation

In Figure 5.5, the most common drawbacks are depicted:

First, the regularization of the flow field can lead to artifacts in the flow field. This is

especially true around object boundaries. Gradient based regularization penalizes jumps

in the motion field. While this is a good prior inside an object, this assumption is violated

at object boundaries. Imagine two objects with different motions intersecting: Along the

boundary of these two objects the motion gradient is exactly the relative motion difference.

112 Chapter 5. Unsupervised Segmentation

(a) Input I1 for Army (b) Optical flow using
[Werlberger et al., 2009]

(c) Crop 1(b) (d) Crop 2(b) (e) Crop 3(b)

(f) Motion segmentation (g) Improved flow (h) Crop 1(g) (i) Crop 2(g) (j) Crop 3(g)

Figure 5.5: Comparison of our approach (bottom row) to a classical optical flow approach
(top row). We are able to deal with a very large number of labels that are necessary
for complex scenes. Our joint motion estimation and segmentation approach is able to
improve problems caused by a gradient-based smoothness term (stair-casing artifacts,
edge smoothing). Additionally our implicit occlusion handling improves the optical flow
at motion borders.

The higher the relative speed, the higher the costs in the regularization term. This will

eventually cause artifacts and smooth transitions at strong motion boundaries. Obviously

it is desirable to treat regularization inside an object independently from the regulariza-

tion along object borders. Therefore, an additional segmentation step is required. This

problem motivates us to introduce the joint motion estimation and segmentation model

in Section 5.2.3.

Second, an optimal regularization of the flow field is not a trivial task. While in

general a smoothness assumption inside an object makes sense, this might not be true for

all transformations e.g. rotations. Especially TV-regularization is well known for stair-

casing artifacts. In many natural scenes the motion field consists of piecewise homogeneous

motion (e.g. affine, quadratic). Hence, we will see that modeling the motion field as a

piecewise parametric field gives a stronger prior to the motion estimation problem.

Finally, occlusions and dis-occlusions are necessary to identify regions where the OFC

cannot be fulfilled. Most classical motion estimation approaches do not consider occlusions

during optimization, but rather calculate occlusions as a post processing step. As we will

see, a piecewise parametric representation of the flow field allows to simultaneously solve

for occlusions and the flow field.

5.2. Motion Segmentation 113

5.2.2 Related work on motion segmentation

Opposed to video segmentation, where a video is decomposed into single objects (even

if there is no motion), motion segmentation aims to partition videos into regions with

coherent motion. While there are interactive methods as e.g. [Nieuwenhuis et al., 2010],

we will focus on unsupervised methods only. Motion segmentation can be done by using the

estimated motion vectors in a clustering algorithm to obtain regions with similar motion

vectors [Wang and Adelson, 1994]. The approach of [Reina et al., 2010] groups regions

together by oversegmentation. Then trajectories of those superpixels are estimated. Those

hypothesis then compete against each other to form a reasonable segmentation. A similar

superpixel based approach is taken in [Zitnick et al., 2005]. In [Bleyer et al., 2011], the

benefit of a joint segmentation is presented in the context of stereo estimation.

Drawbacks of classical optical flow make it clear that joint segmentation and motion

estimation circumvents problems otherwise caused by treating segmentation as a post

processing step. In [Cremers, 2003; Cremers and Soatto, 2005; Schoenemann and Cremers,

2006], this is done by modeling motion with affine parameters. It showed that these

methods can be used to discriminate between a background layer and a moving foreground.

As an application the decomposed image was used to generate high resolution motion

layers [Schoenemann and Cremers, 2008]. In [Kumar et al., 2008], more complex models

are learned and applied to motion segmentation.

Occlusions and dis-occlusions are a crucial component for motion segmentation [Ogale

et al., 2005], but are often neglected by classical motion estimation approaches. In [Kol-

mogorov and Zabih, 2001], a map uniqueness constraint is embedded in a graph cut frame-

work for stereo and motion estimation. For stereo estimation the depth ordering (and

therefore the knowledge of occlusion presence) is essential, occlusion handling is often in-

corporated in such approaches [Bleyer et al., 2010; Woodford et al., 2009]. More complex

approaches that jointly try to optimize for segmentation, camera motion, optical flow,

depth ordering and occlusions were recently proposed by Sun et al. [Sun et al., 2010b] for

multiple layers or Zhang et al. [Zhang et al., 2011] for two layers.

Most of the above mentioned methods are defined in a discrete setting. In contrary

the proposed method will be defined in a continuous setting. Additionally, we are able to

use a large number of labels in the segmentation approach.

114 Chapter 5. Unsupervised Segmentation

5.2.3 A model for joint parametric motion estimation and segmentation

As we have seen in Section 5.2.1, classical regularization in motion estimation may lead to

artifacts. To overcome this problems, we suggest to do joint motion estimation, segmenta-

tion and occlusion handling, as already seen in Figure 5.5. In the following we introduce

a novel model to solve this task for a large number of labels.

5.2.3.1 The basic model

We start with two given input images I1 : Ω→ RD and I2 : Ω→ RD. Note that the input

images do not necessarily have to be gray value or RGB images. We therefore denoted

with D the feature dimension of the input images: e.g. D = 1 for gray value images,

D = 2 for gradients, D = 3 for RGB or HSV. Of course also higher dimensional features

can also be used.

We define optical flow v : Ω → R2 as the motion from image I1 to image I2. The

proposed motion segmentation model partitions the image domain Ω into K pairwise

disjoint sets Ωi. Where the motion inside a region is described by a set of parameters

integrated into a linear operator Hi. The complete flow field v is therefore given as

v(x) =
K∑

i=1

(Hix− x) 1Ωi(x), (5.12)

with the characteristic function as in (2.14) identified with the set Ωi. For modeling

occlusions, we introduce an additional label i = K+1 as the occlusion label. Of course, we

could easily add more complex motion models as separate labels. It is also straightforward

to add a precalculated optical flow as an additional label, as we will demonstrate in

Section 5.2.5.2.

We can now define our joint motion estimation and segmentation model as the following

energy minimization problem:

min
Ωi,Hi

{
K+1∑

i=1

(
Per(Ωi) + λ

∫

Ωi

fi(x)dx+ γ||1Ωi ||∞
)}

,

s.t. Ω =
K+1⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j .

(5.13)

The first part is a regularization term that minimizes the perimeter of the regions Ωi, and

the second term models the data fidelity. The number of used segments should be as small

5.2. Motion Segmentation 115

as necessary. Therefore, the last part of (5.13) is again the label cost term as discussed in

Section 3.2.3. λ and γ are free parameters to weight the single terms. The unary functions

fi : Ω→ R are given by a similarity measure Φ (I1(x), I2(Hix)):

fi(x) =

{
Φ (I1(x), I2(Hix)) if 1 ≤ i ≤ K
θ if i = K + 1

, (5.14)

with θ being a fixed cost for the occlusion label. If we want to use the OFC as in (5.9),

the brightness constancy assumption I1(x) = I2(Hix) can be enforced with

Φ (I1(x), I2(Hix)) = |I2(Hix)− I1(x)| . (5.15)

For gray scale or RGB images, (5.15) will result in the classical OFC. But we already

mentioned that I1 and I2 could also be arbitrary feature vectors. In case of image gradients

(e.g. D = 2 for x- and y-gradients) the data fidelity term becomes invariant to lightning

changes.

But we can also think of more complex data terms as suggested in [Werlberger et al.,

2010]. The similarity measure for the NCC is given as:

Φ (I1(x), I2(Hix)) = −NCC (I1(x), I2(Hix))

= −
∫

Ω (I1(x)− µ1(x)) (I2(Hix)− µ2(Hix)BΣ(x− y)dy)

σ1(x)σ2(Hix)
.

(5.16)

where BΣ is a box filter with normalization
∫
BΣ(x)dx = 1 a local neighborhood Σ around

x. Thus we can write mean and standard deviation as

µ(x) =

∫

Ω
I(x)BΣ (x− y) dy ,

σ(x) =

√∫

Ω
(I(x)− µ(x))2BΣ (x− y) dy .

(5.17)

5.2.3.2 Occlusions constraints

As we now have a parametrized version of the motion, it is easy to include different

occlusion constraints into the minimization problem in (5.13). We will investigate two

different occlusion constraints. First, the map uniqueness constraint that is defined as

K∑

i=1

1Ωi

(
H−1
i x

)
≤ 1 ∀x ∈ Ω. (5.18)

116 Chapter 5. Unsupervised Segmentation

(a) Map uniqueness constraint (b) Backmatch constraint

Figure 5.6: For the map uniqueness constraint only pixels in I1 have a label assigned.
But only one label that maps to position x in I2 is allowed to be 1. For the backmatch
constraint pixel in I1 and I2 have assigned labels. If label i is assigned to pixel Hix in
image I1 the same label has to be assigned to x in image I2. In other words, matched
pixels must have the same values in their indicator functions 1Ωi for all labels.

Only one or no proposal is allowed to map to a single pixel in I2. In the map uniqueness

constraints disocclusions are not handled explicitly. For an illustration of the constraints

see Figure 5.6.

The second occlusion constraint is the backmatch constraint and also allows to handle

disocclusions. It requires an additional segmentation of image I2 into disjoint regions

Ω′i, resulting in more computational complexity. On the other hand, one automatically

obtains the inverse optical flow v′ : Ω→ R2 that describes the motion for I2 to image I1.

See Section 5.2.4.3 for more details. The backmatch constraint is defined as

1Ωi

(
H−1
i x

)
= 1Ω′i

(x), 1Ωi(x) = 1Ω′i
(Hix) ∀x ∈ Ω. (5.19)

5.2.3.3 Parametrization

We also need a meaningful representation for the parametrization Hi. As a basic

parametrization, we suggest to use affine parameters:

Hi =

(
hi,0 hi,1 hi,2

hi,3 hi,4 hi,5

)
. (5.20)

We therefore have to replace the coordinates x = (x, y)T with homogeneous coordinates

x̃ = (x, y, 1)T . Using affine transformations the motion can consist of translation, rotation,

scaling and shearing. Of course this is well suited for planar and rigid objects but will

cause problems for more complex motions as we will demonstrate in Section 5.2.5.

5.2. Motion Segmentation 117

A slightly more flexible parametrization can also include quadratic terms:

Hi =

(
hi,0 hi,1 hi,2 hi,3 hi,4

hi,5 hi,6 hi,7 hi,8 hi,9

)
, (5.21)

with

x̃ = (x, y, x2, y2, 1)T . (5.22)

This additional degrees of freedom will allow for more smoothness when dealing with non-

rigid transformations. While the computational complexity increases only marginally, we

will restrict the following derivations to the affine parametrization (5.20) for simplicity.

The extensions to the quadratic terms (5.21) are straightforward.

In this Section, we have constructed a joint motion estimation and segmentation model

in (5.13) with additional map uniqueness (5.18) and backmatch (5.19) constraints. In the

following we will give more details on the parametrization and optimization.

5.2.4 Optimization

The optimization problem in (5.13) with the occlusion constraints, poses a difficult non-

convex optimization problem. But if we take a closer look, the model is convex in the

segmentation Ωi. Unfortunately the model is not convex in the motion parameters Hi.

But we can easily apply linearization methods well known from standard optical flow

calculation [Zach et al., 2007] to obtain a convex approximation of the energy around

some current parameters Hi,0. Hence, we can split up the optimization into two steps.

This results in an iterative algorithm, where we first create initial parameters and then

iteratively optimize for Ωi and Hi. In the following, the single steps of the algorithm are

described in detail.

5.2.4.1 Parameters Hi

Initialization: As an initialization H0,i, we can simply set the parameters to constant

values that approximately sample the expected flow range. Alternatively we can initialize

parameters by RANSAC style sampling on a precalculated optical flow v0. We therefore

use some regions Ω0,i. Thus we can find H0,i by solving H0,ix̃ = x̃ + v0, ∀x̃ ∈ Ω0,i. The

118 Chapter 5. Unsupervised Segmentation

Figure 5.7: Input for initialization when using precalculated flow. From left to right:
The input image (Army). The precalculated optical flow v0 by [Werlberger et al., 2009].
Superpixels Ω0,i created with [Felzenszwalb and Huttenlocher, 2004].

point-wise problem can be stated as

(
hi,0 hi,1 hi,2

hi,3 hi,4 hi,5

)



x

y

1


 =

(
x+ vi,x

y + vi,y

)
. (5.23)

To obtain the regions Ω0,i, the image can be split into any form superpixels. While

a simple grid (e.g. 20 × 20 patches) is sufficient, an meaningful oversegmentation will

obviously give even better results. We therefore used the fast graph-based segmentation

approach of [Felzenszwalb and Huttenlocher, 2004] to obtain superpixels. Figure 5.7 shows

exemplary input used for creating initial proposals based on precalculated optical flow.

Optimization of L1 data term: We first focus on the L1 data term as proposed in

(5.15), as the overall optimization shows to be the most robust. A more general optimiza-

tion scheme is discussed later.

As already stated in (5.14) we only have to consider the first K labels, where we have

for each label Φ (I1(x), I2(Hix)) = |I2(Hix) − I1(x)|. To optimize for Hi one has to

linearize I2 around the current parameters Hi,0:

I2(Hix̃) = I2(Hi,0x̃) + 〈∇I2, Hix̃−Hi,0x̃〉 . (5.24)

We can thus write the linearized optical flow constraint as

fi(x) = |It(x)− (hi,0x+ hi,1y + hi,2 − vx0)Ix(x)− (hi,3x+ hi,4y + hi,5 − vy0)Iy(x)| ,
(5.25)

with It(x) = I2(Hi,0x̃)−I1(x), Ix the derivation of I2 in x-direction, and Iy the derivation

5.2. Motion Segmentation 119

in y-direction and the current flow

(
vx0

vy0

)
= Hi,0x̃. For label i, we get the following

optimization problem:

min
hi
||Cihi − di|| , (5.26)

with

hi = (hi,0, hi,1, hi,2, hi,3, hi,4, hi,5)T , (5.27)

the |Hi| × |Ωi| matrix

Ci =
(
−c1,−cj , . . . ,−c|Ωi|

)T ∀j|xj ∈ Ωi , (5.28)

where |Hi| being the number of parameters, |Ωi| the number of pixels inside region Ωi and

cj =
(
xjI

x
xj yjI

x
xj Ixx1

xjI
y
xj yjI

y
xj Iyxj

)T
. (5.29)

Additionally, we define the |Ωi|-dimensional vector

di =
(
d1, dj , . . . , d|Ωi|

)T ∀j|xj ∈ Ωi , (5.30)

with

dj = It(xj) + vx0,jI
x(xj) + vy0,jI

y(xj) . (5.31)

By introducing the vector t of size |Ωi|, the problem (5.26) can be transformed into

the following linear program (LP) that can be solved using any available LP-solver

min
hi,t

(0,1)

(
hi

t

)
,

s.t.

(
Ci −I
−Ci −I

)(
hi

t

)
≤
(

di

−di

)
.

(5.32)

LP-solvers typically require a lot of memory, especially when it comes to large prob-

lems like we are dealing with in (5.32). Alternatively, one could apply the primal-dual

algorithm from Section 2.3.3 directly to the problem in (5.26), where usually a few hun-

dred iterations will be enough. While this does not guarantee an optimal solution like the

LP in (5.32), results are usually sufficient. Additionally, direct variational optimization of

(5.26) significantly reduces the amount of memory needed and the GPU implementation

is significantly faster.

120 Chapter 5. Unsupervised Segmentation

Optimization of arbitrary data terms: In [Werlberger et al., 2010], a second order

approximation of the complete data term was used to handle complex data terms like

the truncated normalized cross correlation (TNCC). The NCC is invariant against mul-

tiplicative illumination changes. Also patch based data terms like the sum of squared

differences (SSD), or more complex data terms become possible. Of course this second

order approximation of the data term can also be used for the L1 data terms as in (5.15).

We start with a second order Taylor expansion of the point-wise data term (5.16)

around some current parameters hi,0, with hi defined in (5.27). To simplify the notation

we replace Φ (I1(x), I2(Hix)) by Φ (x, hi), and obtain the second order approximation as

Φ (x, hi) ≈ Φ (x, hi,0) +∇Φ (x, hi,0)T (hi − hi,0)

+
1

2
(hi − hi,0)T ∇2Φ (x, hi,0) (hi − hi,0) .

(5.33)

Here ∇Φ (x, hi,0) are the first order derivatives of the data term computed by finite dif-

ferences. We therefore have to choose a ∆s as a step width for the central differences such

that the local variation of the data term is well captured. A good choice of ∆s is such

that the resulting maximum variation of the flow vi is 0.5, as empirical studies showed.

To ensure convexity of the Hessian matrix ∇2Φ (x, hi,0), we neglect all mixed derivatives

according to [Werlberger et al., 2010]. Thus the Hessian is a diagonal matrix containing

only the second order derivatives of the single parameters. Note that this data term (5.33)

is defined point-wise for all x ∈ Ωi. The corresponding Euler-Lagrange equation is then

given as

∇Φ (x, hi,0) +∇2Φ (x, hi,0) (hi − hi,0) = 0 . (5.34)

As a result we get a very simple update equation for the parameters hi as

hi = hi,0 −
∇Φ (x, hi,0)

∇2Φ (x, hi,0)
. (5.35)

The second order derivation of (5.33) is only valid in a local neighborhood. To prevent the

algorithm from drifting into a wrong direction, we clamp hi to the interval [hi−∆s, hi+∆s].

Additionally, we accept updates only if the energy of the original data term Φ (x, hi) is

lower than before the update. Although one could iterate this update (5.35) and do several

subsequent approximation steps, usually a single step is sufficient.

Splitting and Merging: In order to allow new proposals to be generated, we split each

label into spatially connected regions. For each of this regions the parameters Hi are

5.2. Motion Segmentation 121

optimized separately. As we demonstrate in Figure 5.11 this process allows to create and

adapt new proposals throughout the iteration process. To prevent over fitting of small

(possibly incorrect) regions and due to memory limitations, we skip regions with less than

10 pixels. We do not have to account for merging labels, as the segmentation model with

label costs will do this implicitly.

5.2.4.2 Segmentation Ωi with map uniqueness constraint

To solve the Potts based energy with label cost (5.13) and occlusion term with map unique-

ness constraint (5.18), we first have to apply some relaxations. We again assume that im-

ages are given on a discrete Cartesian grid of size M ×N : {(k, l) : 1 ≤ k ≤M, 1 ≤ l ≤ N},
with the indices of the discrete locations given by (k, l) and pixels of size 1. For reasons of

clarity we stick to the notation of x for the discrete location and use function arguments

for indexing a vector. We use the multi label segmentation presented in Section 3.2.1.

The continuous variable ui ∈ [0, 1]MN replaces the characteristic function 1Ωi . The unary

terms becomes the vector fi ∈ RMN . Thus we can formulate the Potts model with label

costs (5.13) and map uniqueness constraint as

min
ui

{
K+1∑

i=1

(
||Wb∇ui||+ λ 〈fi, ui〉+ γ||ui||∞

)}
,

s.t.
K+1∑

i=1

ui(x) = 1,
K∑

i=1

ui(H
−1
i x̃) ≤ 1, ui ≥ 0, ∀i = 1, . . . ,K + 1 .

(5.36)

Discretization: For the map uniqueness constraint in (5.36), we need to index the

segmentation at position y = H−1
i x̃. For x̃ = (k, l, 1)T , y will not necessarily point to a

location on the Cartesian grid. Therefore, one either has to do interpolation or rounding of

the coordinates. We will use a simple rounding scheme to obtain indices on the Cartesian

grid. With the inverse affine parameters denoted as b0, . . . , b5, we get

H−1
i x̃ =

(
bb0k + b1l + b2 + 0.5c
bb3k + b4l + b5 + 0.5c

)
. (5.37)

This enables us to define a linear operator G ∈ RMN×MN with elements

gm,n,k,l =





1 if m = bb0k + b1l + b2 + 0.5c and

n = bb3k + b4l + b5 + 0.5c
0 else

(5.38)

122 Chapter 5. Unsupervised Segmentation

such that the discretized version of the neighboring pixels for label i = 1, . . . ,K can be

written as Giui. Note that bxc denotes the floor of x. In other words ui is warped using

the inverse affine transformation with an implicit rounding schema. To further simplify

the notation, we add GK+1 with elements gm,n,k,l = 0, ∀m,n, k, l for the occlusion label.

With the discretized relationship of the map uniqueness constraint, (5.36) can be

written as

min
ui

{
K+1∑

i=1

||Wb∇ui||+ λ 〈ui, fi〉+ γ||ui||∞
}
,

s.t.

K+1∑

i=1

ui = 1,

K+1∑

i=1

Giui ≤ 1, ui ≥ 0, ∀i = 1, . . . ,K + 1 .

(5.39)

We will use the primal-dual algorithm of [Chambolle and Pock, 2010] as described in

Section 2.3.3 as a solver for the above problem. Therefore we first have to transform (5.36)

into a primal-dual saddle point problem.

The saddle point problem: We have already presented a primal dual formulation of

the multi label segmentation model with label costs in (3.32). In the same manner the

inequality constraint of the map uniqueness constraint
∑K+1

i=1 Giui−1 ≤ 0 can be treated.

Therefore, we introduce the Lagrange multiplier s ∈ RMN , s.t. s ≥ 0 to obtain the primal-

dual formulation
〈
s,
∑K+1

i=1 Giui − 1
〉

. The primal-dual formulation of the sum-constraint

is straightforward, by using the Lagrange multiplier r ∈ RMN . Finally, we arrive at the

following primal-dual formulation of (5.39):

min
ui,ti

max
pi,qi,r,s

{
K+1∑

i=1

(
〈pi,∇ui〉+ λ 〈ui, fi〉+ γti +

〈
qi, P

(
ui

ti

)〉
+ IΓ(ui)

−IΛg(pi)− IΓ(qi)

)
+

〈
r,

K+1∑

i=1

ui − 1

〉
+

〈
s,

K+1∑

i=1

Giui − 1

〉
− IΓ(s)

}
,

(5.40)

with the sets
Γ =

{
z ∈ RMN : zk,l ≥ 0 ∀k, l

}
,

Λg =
{
z = (z1, z2)T ∈ R2MN : |z| ≤ wbk,l , ∀k, l

}
.

(5.41)

5.2. Motion Segmentation 123

The saddle point problem (5.40) can be easily brought to the form of (2.50):

α =
(

(u1)T . . . (uK+1)T (t1)T . . . (tK+1)T
)T

,

D =




∇
. . .

∇
I −1T

. . .
. . .

I −1T

I . . . I

G1 . . . GK+1




and β =




p1
...

pK+1

q1

...

qK+1

r

s




.
(5.42)

Further we get

Φ(α) =
K+1∑

i=1

(λ 〈ui, fi〉+ γti + IΓ(ui)) , (5.43)

and

Ψ∗(β) = r + s− IΓ(s)−
K+1∑

i=1

(
IΛg(pi) + IΓ(qi)

)
. (5.44)

We can directly apply the primal dual algorithm [Chambolle and Pock, 2010] from Algo-

rithm 1 . The resulting algorithm is summarized in Algorithm 15.

Algorithm 15 is perfectly suited for implementation on parallel hardware. The gradient

operator ∇ can be efficiently implemented using local operations, and the adjoint operator

div is also simple to compute (see (2.30)). On the other hand a manual inversion of the

linear operators Gi is not trivial. Therefore Gi was implemented as a sparse matrix,

making it easy to compute GTi .

5.2.4.3 Segmentation Ωi with backmatch constraint

In order to use the backmatch constraint we have to further optimize for the segmentation

u′i ∈ [0, 1]MN of image I2. Additionally, we need to introduce f ′i ∈ RMN similar to (5.14),

with a similarity measure Φ′
(
I1(H−1

i x), I2(x)
)
. The same way as done in (5.38), we can

construct a sparse matrix G′ ∈ RMN×MN that models the discretized neighbourhoods.

Using the backmatch constraint as defined in (5.19) we can write the full discretized joint

124 Chapter 5. Unsupervised Segmentation

Algorithm 15 Algorithm for solving the joint motion estimation and segmentation with
map uniqueness constraint (5.40)

// Initialization:
τ = σ = 1

L
for i = 1 to K+1 do
p0
i = (0, 0)T

q0
i = 0
ū0
i = u0

i = 1
K+1

t̄0i = t0i = 0
end for
r0 = s0 = 0

for j = 1 to J do
// Update dual variables:
for i = 1 to K+1 do
p
j−1/2
i = pj−1

i + σ∇ūj−1
i

pji =
p
j−1/2
i

max
(
wb,|p

j−1/2
i |

)
qji = max

(
0, qj−1

i + σ

(
P

(
ūj−1
i

t̄j−1
i

)))

end for
rj = rj−1 + σ

(∑K+1
i=1 ūj−1

i − 1
)

sj = max
(

0, sj−1 + σ
(∑K

i=1Giū
j−1
i − 1

))

// Update primal variables:
for i = 1 to K+1 do
tji = tj−1

i − τ (γ − ||qi||)
t̄ji = 2tji − t̄

j−1
i

uji = max
(

0, uj−1
i − τ

(
−divpi

j + qji + rj +GTi s
j + λfi

))

ūji = 2uji − ū
j−1
i

end for
end for

motion estimation and segmentation model with label costs and backmatch constraint as

min
ui,u′i

{
K+1∑

i

(
||Wb∇ui||+ λ 〈fi, ui〉+ ||W ′b∇u′i||+ λ

〈
f ′i , u

′
i

〉
+ γ||ui + u′i||∞

)}
,

s.t.
K+1∑

i=1

ui = 1,
K+1∑

i=1

u′i = 1, and ui ≥ 0, u′i ≥ 0, ∀i = 1, . . . ,K + 1,

and G′iu
′
i = ui, Giui = u′i, ∀i = 1, . . . ,K.

(5.45)

5.2. Motion Segmentation 125

To solve (5.45) we again transform the minimization problem into a primal-dual saddle

point formulation. All necessary conversions were already introduced in Section 5.2.4.2.

Therefore the saddle point formulation of (5.45) can be directly written as

min
ui,u′i,ti

max
pi,qi,r,si,pi′,r′,s′i

{
K+1∑

i=1

(
〈pi,∇ui〉+ λ 〈ui, fi〉+

〈
pi
′,∇u′i

〉
+ λ

〈
u′i, f

′
i

〉
+ γti+

〈
qi, P

(
ui + u′i

ti

)〉
+ IΓ(ui) + IΓ(u′i)− IΛg(pi)− IΛg′ (p

′
i)− IΓ(qi)

)
+

K∑

i=1

(〈
si, Giui − u′i

〉
+
〈
s′i, G

′
iu
′
i − ui

〉)
+

〈
r,
K+1∑

i=1

ui − 1

〉
+

〈
r′,

K+1∑

i=1

u′i − 1

〉}
.

(5.46)

Where we additionally introduced the dual variable p′i ∈ Y , and the Lagrange multipliers

r ∈ X and s′i ∈ X. Rewriting the primal-dual saddle point problem (5.46) in the form of

(2.50), we get

α =
(

(u1)T . . . (uK+1)T (u′1)T . . .
(
u′K+1

)T
(t1)T . . . (tK+1)T

)T
,

D =




∇
. . .

∇
∇

. . .

∇
I I −1T

. . .
. . .

. . .

I I −1T

I . . . I

I . . . I

G1 0 −I 0
. . .

...
. . .

...

GK 0 −I 0

−I 0 G′1 0
. . .

...
. . .

...

−I 0 G′K 0




and β =




p1
...

pK+1

p′1
...

p′K+1

q1

...

qK+1

r

r′

s1

...

sK

s′1
...

s′K




.
(5.47)

126 Chapter 5. Unsupervised Segmentation

Further we get

Φ(α) =
K+1∑

i=1

(
λ 〈ui, fi〉+ λ

〈
u′i, f

′
i

〉
+ γti + IΓ(ui) + IΓ(u′i)

)
. (5.48)

and

Ψ∗(β) = r + r′ +
K+1∑

i=1

(
IΛg(pi) + IΛ′g(p

′
i) + IΓ(qi)

)
. (5.49)

The full algorithm to solve (5.45) is summarized in Algorithm 16. Again, the algorithm

is easy to parallelize, and computations involving Gi and G′i are carried out using sparse

matrix multiplications.

5.2.5 Experimental Results

The algorithm was implemented in Matlab with the exception that the segmentation

algorithms are solved on the GPU using the CUDA framework. The number of labels is

only limited by memory. On the used Tesla C2050 we have 2688MB memory available.

For an image size of 640 × 480 this currently limits our approach to 305 labels for the

map uniqueness constraint and approximately the half for the backmatch constraint. The

current implementation is still quite slow and ranges from a few seconds (for small images,

few labels and flow initialization) up to an hour (for large images, hundreds of labels

and initialization with constant values). The computationally most expensive part, is the

update of the segmentation. While the algorithm is generally easy to parallelize on a

pixel level, the sparse matrix multiplications with Gi and GTi consume more than 90% of

computation time.

In Figure 5.8, we show the effects of occlusion handling on synthetic data with known

transformation. It shows that the occlusion label combined with the map uniqueness

or backmatch constraint delivers superior results. In some cases (e.g. top right) the

backmatch constraint improves the map uniqueness constraint as it offers additional in-

formation on disocclusions.

Figure 5.9 shows a real world example comparing the map uniqueness constraint with

the backmatch constraint. We can observe that there is a slight improvement when using

the backmatch constraint. Additionally, we get the inverse optical flow and a segmentation

for both input images.

Another example (Army) using the backmatch constraint is depicted in Figure 5.10.

See also Figure 5.15 for the results with map uniqueness constraint.

5.2. Motion Segmentation 127

Algorithm 16 Algorithm for solving the joint motion estimation and segmentation with
backmatch constraint (5.46).

// Initialization:
τ = σ = 1

L
for i = 1 to K+1 do
p0
i = p′0i = (0, 0)T

q0
i = t̄0i = t0i = 0

ū0
i = u0

i = ū′
0
i = u′0i = 1

K+1
if i ≤ K then
s0
i = 0

end if
end for
r0 = r′0 = 0

for j = 1 to J do
// Update dual variables:
for i = 1 to K+1 do
p
j−1/2
i = pj−1

i + σ∇ūj−1
i and p′

j−1/2
i = p′j−1

i + σ∇ū′j−1
i

pji =
p
j−1/2
i

max
(
wb,|p

j−1/2
i |

) and p′ji =
p′
j−1/2
i

max
(
w′b,|p

′j−1/2
i |

)
qji = max

(
0, qj−1

i + σ

(
P

(
ūj−1
i + ū′

j−1
i

t̄j−1
i

)))

end for
rj = rj−1 + σ

(∑K+1
i=1 ūj−1

i − 1
)

and r′j = r′j−1 + σ
(∑K+1

i=1 ū′
j−1
i − 1

)

for i = 1 to K do
sj = sj−1 + σ

(
Giū

j−1
i − ū′j−1

i

)

s′j = s′j−1 + σ
(
ūj−1
i −G′iū′

j−1
i

)

end for

// Update primal variables:
for i = 1 to K+1 do
tji = tj−1

i − τ (γ − ||qi||)
t̄ji = 2tji − t̄

j−1
i

uji = max
(

0, uj−1
i − τ

(
−divpji + qji + rj +GTi s

j − s′j + λfi

))

u′ji = max
(

0, u′j−1
i − τ

(
−divp′ji + q′ji + r′j − sj +G′Ti s

′j + λf ′i

))

ūji = 2uji − ū
j−1
i and ū′

j
i = 2u′ji − ū′

j−1
i

end for
end for

128 Chapter 5. Unsupervised Segmentation

(a) Input I1 (b) no occlusion (c) occl. label (d) map unique (e) backmatch

Figure 5.8: Comparing different types of occlusion handling: (b) Neglecting occlusions
reveals noise in the segmentation within occluded regions. Adding the occlusion label (c)
without an additional constraint yields nice result whereas an additional map uniqueness
constraint (d) improves the result significantly.

Figure 5.9: The top left images depict the input, and the top right images flow and
segmentation using the map uniqueness constraint. In the bottom row, the backmatch
constraint was used. We additionally obtain a segmentation and optical flow in the inverse
direction.

Figure 5.10: The Army example with backmatch constraint.

In the following we will show more experimental results on the single aspects of the

presented approach.

5.2. Motion Segmentation 129

Figure 5.11: Demonstration of different initializations for the case of L1 data terms as
proposed in (5.15). We used a crop of the Army example at iterations 1, 7 and 16:
On the left, constant proposals were used as initialization. On the right, the proposals
were initialized using estimates based on a precalculated optical flow. Both initializations
converge against very similar results, affirming the robustness of the proposed algorithm.

Figure 5.12: Different optimization schemes when using initialization with constant pro-
posals. Iterations from left to right are 1, 8 and 30. The quad-fit optimization in the first
row cannot handle parameters that are completely off, while this is no problem for the L1
optimization in the bottom row.

5.2.5.1 General evaluation with map uniqueness constraint

We compare different initialization methods in Figure 5.11. As discussed in Section 5.2.4.1,

we use either constant values or a RANSAC based estimation on a precalculated flow field.

Note that, after 16 iterations both initializations result in a very similar result. The more

sophisticated initialization by a precalculated flow is not mandatory, but helps to speed

up the overall convergence process. Therefore we will use it throughout the rest of the

thesis.

130 Chapter 5. Unsupervised Segmentation

(a) Input I1 (b) γ = 0 (c) γ = 0.06 (d) γ = 0.18

Figure 5.13: Different weights for the label cost term. With increasing γ the number of
labels used to explain the scene decreases.

In Figure 5.12, we show that the L1 optimization scheme can successfully optimize

parameters inside a region. This is especially important when using proposals with con-

stant motions as an initialization. On the other hand, the quad-fit optimization cannot

recover the correct motion estimation / segmentation. The quad-fit approach suffers from

the drawback, that the dataterm is approximated locally around some current parameters.

As a result only local changes can be made, and the optimization gets stuck in a local

minima. Therefore the quad-fit approach always needs an initialization that is already

reasonable close to the optimum. On the other hand, the L1 optimization scheme does

not suffer from this problem and finds the globally optimum in every iteration without

initialization.

In Figure 5.13, the effectiveness of the label cost term is demonstrated on the flower-

garden sequence. With increasing γ, fewer labels are used resulting in a simplified seg-

mentation. While we already demonstrated this effect in the previous sections, the label

cost term is especially important for our motion segmentation approach. Figure 5.13(d)

provides a very simplistic representation of the scene. In contrast, the segmentation with

γ = 0 splits up regions due to perspective distortion of the scene.

Our method is well suited for applications like traffic analysis (see Figure 5.14). We

not only get a segmentation of all moving vehicles, but also the according motion. In

comparison, the gradient based continuous flow in Figure 5.14(d) is more noisy and sub-

sequent clustering/segmentation algorithms would have problems discriminating the cars

on the top left.

A large number of labels helps to make occlusion handling more efficient. We demon-

strate this in Figure 5.15 by comparing our approach to the work of Sun et al. [Sun et al.,

2010b]. One can clearly note that a large number of labels results in a more meaning-

ful segmentation of the motion. As for both approaches occlusions only occur at region

boundaries, a more detailed segmentation also improves the occlusion detection. More

5.2. Motion Segmentation 131

(a) Input I1 (b) Flow v (c) Seg. u (d) Flow by [Werlberger
et al., 2009]

Figure 5.14: Motion segmentation of a traffic scene (Bad). We not only obtain a good
segmentation of the single cars, but also their motion field.

Figure 5.15: This example demonstrates that a large number of labels improves occlusion
detection. Top left: our approach, Bottom left: [Sun et al., 2010b]. Right: Crops for
better visualization.

comparison results can be found in Figure 5.16 for visual comparison.

The simple affine model is sometimes not enough to sufficiently describe non-rigid

deformations. In Figure 5.17, we show two more examples where the proposed algorithms

delivers very good results. But as seen in the dogdance example, complex non-rigid motions

cannot be described with affine transformations efficiently. As a result, we get strong

oversegmentation. Motion of small pixels is more error prone, resulting into wrong flow

and wrong occlusions. In the following, we show how the proposed method can also deal

with non-rigid motion.

132 Chapter 5. Unsupervised Segmentation

(a) army (b) teddy (c) venus (d) schefflera

Figure 5.16: Comparison of our approach (on the left) to the approach of [Sun et al., 2010b]
(on the right) using images from the Middlebury benchmark database. Our approach
delivers meaningful segmentations of the scenes. Occlusion detection benefits from a large
number of labels.

5.2.5.2 Continuous flow label

Looking again at the Army example in Figure 5.18(b,e), reveals that non-rigid deforma-

tions of the fabric cause problems. Several labels are required to explain complex motion,

resulting in inaccurate optical flow and incorrect borders. While we could easily use more

complex models, the simplest solution is to add an additional label that contains a pre-

calculated optical flow. We therefore used the continuous optical flow with Huber-norm

regularization from [Werlberger et al., 2009] as shown in Figure 5.18(d). In Figure 5.18(c),

the motion segmentation with the additional precalculated flow label is shown. Obviously

5.2. Motion Segmentation 133

Figure 5.17: The first two scenes (coke and wooden) are perfectly suited for the proposed
algorithm. The third scene (dogdance), cannot be described with affine transformations.

avg. Army Mequon Schefflera Wooden
rank all disc untex all disc untex all disc untex all disc untex

Endpoint
H.+Affine 22.2 0.09 0.24 0.09 0.27 0.74 0.26 0.28 0.58 0.31 0.18 1.21 0.08
Huber 28.4 0.09 0.28 0.07 0.21 0.81 0.16 0.54 1.22 0.22 0.25 1.38 0.14

Angular
H.+Affine 23.4 3.73 9.43 3.61 3.51 8.70 3.70 4.11 9.52 5.28 3.14 19.6 1.53
Huber 31.0 3.57 10.5 2.89 2.80 11.4 2.18 7.23 17.8 3.14 4.68 23.8 2.54

Grove Urban Yosemite Teddy
all disc untex all disc untex all disc untex all disc untex
0.88 1.32 0.48 1.79 1.97 0.99 0.11 0.15 0.15 0.74 1.52 1.02
1.15 1.50 1.35 0.45 1.69 0.32 0.20 0.19 0.26 0.88 1.88 1.03
3.58 4.66 2.49 5.98 17.7 5.96 2.31 4.34 1.36 3.77 8.10 5.09
4.05 5.20 3.28 4.59 16.7 3.47 4.37 5.56 2.84 5.32 12.4 3.83

Table 5.1: Evaluation of the proposed joint motion estimation / segmentation approach
with the precalculated optical flow (Huber + Affine) on the Middlebury benchmark. The
second row provides a comparison to the precalculated optical flow alone (Huber).

the new label is used to explain the non-rigid motions of the fabric while regions where the

affine model fits well are segmented with separate labels. Around borders and occlusions

new labels are introduced, because in standard gradient based optical flow object borders

and occlusions cause artifacts.

134 Chapter 5. Unsupervised Segmentation

(a) Input I1 (Army) (b) Affine u (c) Huber + Affine u

(d) Huber v (e) Affine v (f) Huber + Affine v

Figure 5.18: Comparison of continuous Huber regularized optical flow [Werlberger et al.,
2009] (d), with the proposed affine motion segmentation model (b,e) and the motion
segmentation with precalculated flow label (c,f).

In Figure 5.19, we show the improvement for the dogdance example, that suffered from

oversegmentation in Figure 5.17. While this is still not a very good segmentation, we do

not suffer from nearly as much oversegmentation. As the Huber regularized optical flow

is not perfect either, pixels where no model fits are labeled as occlusion.

By using the combined motion estimation and segmentation model with a precalculated

flow label, we can improve the flow in regions where the affine models better fits the data.

We evaluated this method on the Middlebury benchmark [Baker et al., 2010]. As the

benchmark does not take into account occlusions, we inpainted occlusions using the ROF

model [Rudin et al., 1992]. Table Table 5.1 shows that the combination of the proposed

joint motion estimation / segmentation approach with flow label significantly improves

the the precalculated optical flow alone.

5.2. Motion Segmentation 135

Figure 5.19: The (dogdance) with the Huber regularized optical flow on the left, and the
proposed model on the right.

Figure 5.20: The Army example with map uniqueness constraint. Quadratic parametriza-
tion is depicted in the top row. The NCC dataterm is depicted in the bottom row.

5.2.5.3 Extensions and variants

In the following we are going to show two more experimental results. First, the model with

map uniqueness constraint is used together with quadratic parametrization as in (5.21).

The result using the Army example is depicted in the top row of Figure 5.20. One can

notice a slight improvement in non-planar regions. In contrast to the continuous flow label

as shown in Section 5.2.5.2, there is no clear benefit. Although the quadratic terms could

improve over simple affine models, we recommend the use of continuous flow label that

simply offers more flexibility.

136 Chapter 5. Unsupervised Segmentation

As a second experiment the bottom row of Figure 5.20 depicts results when using

the NCC dataterm as described in (5.16). The NCC implicitly performs some form of

regularization (we used a 5 × 5 kernel). As a result fine details are often lost in the final

result. This makes us confident that a pixel based data fidelity term is sufficient for a wide

range of input data. Especially as the affine parametrization of the optical flow already

provides a very strong prior that can deal with a noisy data fidelity term.

5.2.6 Summary

In this section, we presented an approach for joint motion estimation and segmentation

based on a continuous Potts like model (see Section 3.2.1) with occlusion handling and

label costs. The approach can be used for a very large number of layers resulting in

a meaningful segmentation of the scene. The large number of layers clearly improves

occlusion handling, while the actual number of labels is determined automatically by the

algorithm. Parameter optimization can be solved with an off-the-shelf linear program.

We also eliminate classical problems of optical flow calculation such as local boundary

blurring and artifacts caused by occlusions. Experiments show that our approach is robust

to different initializations and delivers good results for a wide range of images.

However, the presented approach also has some drawbacks. First, the method is still

too slow for many practical purposes. To remedy this, on the fly calculation of the map

uniqueness or backmatch constraint could eliminate the costly sparse matrix multiplica-

tion and speed up the algorithm significantly. Second, the strong prior imposed by the

parametric flow is not the optimal choice for many natural scenes with non-rigid deforma-

tions. As we have shown with the additional label with precalculated gradient based flow,

this problem can be circumvented at the cost of a mixed representation.

Chapter 6

Conclusion

6.1 Summary

This thesis shows, that continuous convex optimization offers a powerful framework for

segmentation related tasks and image processing in general. This strength comes from

several properties:

First, energy minimization methods in general provide a very structured way of tackling

a problem. Designing the energy already defines the final properties of the solution, thus

making the result predictable. As long as the energy is convex, we are able to find the

globally optimal solution in a reasonable time. Unfortunately, non-convex energies are very

hard to deal with when doing large scale optimization problems typically found in computer

vision. Although, non-convex energies allow for more flexible problem formulations, they

are no longer guaranteed to find the globally optimal solution in a tractable time. As

a result, there is always the tradeoff between using an inferior energy formulation and

finding the exact solution, or using a superior energy and have no guarantee to come close

to the solution. We have seen that for a lot of non-convex problems we can find good

convex relaxations, that either give use the real globally optimal solution of the original

formulation, or at least come very close to the solution. If we are able to find such a good

convex relaxation this offers a good tradeoff between constraints on the energy design, and

finding the optimal solution.

Another advantage of continuous convex optimization is the idea of continuous func-

tions itself. For the implementation, we cannot work directly with continuous functions,

but have to work with a discretized formulation. As a result, there is no fundamental

difference between continuous and discrete optimization formulations. The real changes

137

138 Chapter 6. Conclusion

comes from thinking either in continuous functions or a discrete grid. We have seen that

the only difference between the discrete maximum flow problem and the continuous max-

imum flow is a point-wise L1 or L2 norm. The L2 norm computes the real Euclidean

distance and thus does not suffer from any grid bias. However this renders the problem

more difficult.

A big advantage of continuous convex optimization approaches is the availability of

powerful optimization algorithms like the primal-dual algorithm we used. This allows not

only to solve problems like the discrete graph cut problem, but also the continuous maxi-

mum flow formulation. The primal-dual formulation has the big advantage, that it is able

to deal with non-smooth functions like the Total Variation. As demonstrated we can effi-

ciently optimize various segmentation problems based on the TV, even if the optimization

problems are very complex. The resulting algorithms proved to be perfectly suited for

parallel hardware, as they can be parallelized on a pixel level and are therefore perfectly

suited for modern GPUs. The combination of fast algorithms and fast implementations

makes the proposed approaches very well suited for practical application.

We have introduced several different segmentation models. These ranged from the

simple two label image segmentation task, to multi-label segmentation with label costs

and more complex applications. The tracking or video segmentation approach shows

that segmentation can also be used in currently rather unconventional ways. Using the

algorithms for supervised segmentation demonstrated that the algorithms are fast enough

to be used in an interactive fashion. We also showed that the models can be extended to

unsupervised segmentation models as seen for the depth image segmentation or the joint

motion estimation and segmentation.

6.2 Outlook

Although, the presented algorithms already show some promising results, there is still a

lot of room for improvement and future work.

Using the Total Variation, the contour length of the segmentation is penalized. Com-

bined with the edge weighting of the binary terms, the weighted TV is a very good seg-

mentation prior. But for some occasions one could think of more complex priors, like

using the non-local TV as in [Werlberger et al., 2011b]. There is also a lot of work going

on in penalizing the curvature of the contour [Bredies et al., 2012; Schoenemann et al.,

2012]. Globally optimal curvature regularization is still limited in terms of speed and

discretization of directions. However this could represent a great potential of improving

6.2. Outlook 139

segmentation quality.

As we focused on the segmentation models and optimization, we did not talk much

about the optimal features for image segmentation. Although, color information is suffi-

cient for a lot of images, it sometimes is not enough. As shown in [Santner et al., 2011,

2009], the proposed methods can be easily extended with complex features when combined

with various learning methods. This also makes it possible to segment complex textures

in images. One could also think of more complex models for the labels (e.g. as we did in

the unsupervised examples). This could e.g. be color gradients, that were combined with

GMMs in the inspiring work of [Delong et al., 2011]. They not only presented a MRF that

combined different type of models for an label, but also showed a way to use superpixels

combined with local models. Local models allow to use simple features like color in a

reasonable spatial neighborhood to segment heavily textured and cluttered images. There

is certainly a lot of potential for interactive segmentation in these methods.

On an algorithmic side, the ROF model used for solving the continuous maximum flow

problem, showed excellent runtimes. The reason is that we are able to use algorithmic

speedups if at least one part of the energy is a smooth function. It would be worth to in-

vestigate whether similar methods for multi-label segmentation are possible. Furthermore,

the preconditioned primal-dual algorithm of [Pock and Chambolle, 2011] would speed up

convergence when using strong weights in the binary terms.

For the applications presented in this thesis we already gave a summary and short

outlook at each section. We would like to stress once more the idea of extending the

spatio-temporal video segmentation approach by using flow guided gradients. This will

certainly lead to improvements of the segmentation, and could be used for fast and precise

video segmentation.

Appendix A

Segmentation comparison results

A.1 Global relabeling results

In Table A.1, we summarized the experimental results visualized in Figure 3.13. See

Section 3.3.2.3 for a full description of the experimental settings.

Runtimes corresponding to Figure 3.13(i)

256× 256 512× 512 1024× 1024 2048× 2048 3200× 3200

4N

pd 0.25986 0.8439 7.8765 18.0204 66.1176

pdgrl 0.17647 0.7579 4.9137 16.6636 61.1402

byokov 0.27618 2.6130 17.1329 241.5678 897.8244

npp 0.06467 0.2887 2.4546 37.9883 176.8301

8N

pd 0.16892 0.7308 4.0466 45.4415 146.5739

pdgrl 0.11213 0.7115 3.0100 45.3134 130.5741

byokov 0.41579 3.6015 40.7945 1841.6567 7775.3371

TV
pd 1.80500 7.0344 34.7248 38.0857 83.5642

pdgrl 0.56535 1.0043 4.2760 21.8553 83.6442

141

142 Chapter A. Segmentation comparison results

Runtimes corresponding to Figure 3.13(j)

256× 256 512× 512 1024× 1024 2048× 2048 3200× 3200

4N

pd 0.0148 0.0956 1.3497 14.5545 45.7615
pdgrl 0.0178 0.0826 0.9559 6.4206 27.0064
byokov 0.0322 0.3544 3.4546 26.3678 59.0944
npp 0.0128 0.0259 0.1127 0.6225 2.4497

8N
pd 0.0198 0.1081 0.8148 6.8776 51.9962
pdgrl 0.0273 0.1077 0.8157 6.6190 31.7820
byokov 0.0550 0.5484 6.5967 85.0985 319.0546

TV
pd 0.0073 0.0466 0.2107 1.9537 4.5053
pdgrl 0.0074 0.0465 0.2106 1.8365 4.5925

Runtimes corresponding to Figure 3.13(k)

256× 256 512× 512 1024× 1024 2048× 2048 3200× 3200

4N

pd 0.050043 0.21313 1.0455 7.2184 32.5055
pdgrl 0.040377 0.09411 0.4986 6.9881 28.5708
byokov 0.090662 0.20354 1.5960 13.6675 26.8015
npp 0.023544 0.04798 0.1664 1.8905 3.2300

8N
pd 0.045491 0.94154 1.6263 8.0988 44.3078
pdgrl 0.061445 0.38124 1.3292 11.9545 28.5320
byokov 0.097347 0.49469 4.9993 52.9113 235.9746

TV
pd 0.025698 0.25456 0.4635 1.7904 6.5542
pdgrl 0.038327 0.24185 0.4836 1.7904 6.5532

Runtimes corresponding to Figure 3.13(l)

256× 256 512× 512 1024× 1024 2048× 2048 3200× 3200

4N

pd 0.037088 0.14210 1.0871 30.025 114.8381
pdgrl 0.029001 0.15337 1.1293 10.5521 50.5208
byokov 0.026275 0.18502 2.1537 36.6416 302.8063
npp 0.025631 0.06132 0.5238 9.5882 92.8287

8N
pd 0.026056 0.17251 1.1477 13.6945 247.4028
pdgrl 0.033199 0.18468 1.0040 14.1786 106.9219
byokov 0.059929 0.39582 5.0149 167.842 1395.7276

TV
pd 0.213610 0.40766 1.2638 7.4865 26.6235
pdgrl 0.267360 0.18590 1.2832 7.4143 26.7953

Table A.1: Runtimes (in seconds) for various segmentation algorithms. The top row
depicts the size of the input images. The data of this table corresponds to Figure 3.13.

A.2. Continuous segmentation results 143

A.2 Continuous segmentation results

This Section provides the full data of the experiments of Section 3.3.4. Table A.2 list the

results when using discrete constraints. Table A.3 presents the data when the constraints

are allowed to vary continuously.

TV-L1

0.002 0.005 0.010 0.040 0.075 0.120

man 35180 5960 6660 1220 1320 760

starfish 47600 4080 19260 4880 4340 600

horses 22000 37640 10720 1460 6760 580

elephant 16720 12820 23920 1760 8560 2420

flowers 17900 7800 1360 900 3400 1020

rabbit 46320 36740 29540 4840 2900 2040

wulfenia 20860 22980 18560 2000 2420 1740

zebra 43880 5820 4360 5200 10380 1420

TV-L1 threshold

0.002 0.005 0.010 0.040 0.075 0.120

man 33200 5640 6300 1160 1260 700

starfish 44880 3840 18160 4600 4300 660

horses 20740 35320 10100 1380 6540 560

elephant 15760 12100 22840 1660 8080 2300

flowers 16900 7400 1280 860 3540 1000

rabbit 43680 34640 27880 4560 2740 1780

wulfenia 19660 21700 17800 1900 2280 1640

zebra 41360 5480 4120 5200 9920 1460

144 Chapter A. Segmentation comparison results

Max-flow

0.002 0.005 0.010 0.040 0.075 0.120

man 33160 5640 6300 1160 1260 700
starfish 44880 3840 18160 4460 4280 640
horses 20740 36800 10100 1380 6540 560
elephant 15200 12100 22840 1640 7800 2460
flowers 16620 7400 1300 860 3540 1000
rabbit 43760 34640 27580 4560 2740 1900
wulfenia 19660 20940 17800 1900 2280 1640
zebra 41360 5480 4120 5200 9920 1440

Max-flow with grl

0.002 0.005 0.010 0.040 0.075 0.120

man 4440 7520 5900 1160 1260 700
starfish 43920 3840 18160 4460 4420 1380
horses 20740 36800 10100 1380 6540 560
elephant 22680 12660 23700 1640 7800 2460
flowers 16620 7400 1300 860 3540 1020
rabbit 41200 35700 17660 4560 2740 1900
wulfenia 48020 33460 17800 1900 2280 1640
zebra 42120 7020 17140 5200 9920 1440

ROF

0.002 0.005 0.010 0.040 0.075 0.120

man 3160 700 700 1600 120 260
starfish 2860 1140 520 280 100 100
horses 3560 1040 580 620 900 80
elephant 3140 4000 2700 780 720 940
flowers 2760 780 1020 2300 260 320
rabbit 3540 1900 1160 780 500 220
wulfenia 7420 3280 2920 780 520 2480
zebra 5100 1180 1100 720 100 220

Table A.2: Segmentation comparison results using the discrete constraints. The top row
depicts the varying λ value, and the left column the name of the current image. Numbers
of the table state the number of iterations until all pixels equaled the ground truth. The
data of this table corresponds to Figure 3.15

A.2. Continuous segmentation results 145

Max-flow

0.1 0.5 2.0 4.0 6.0 8.0 10.0 15.0 20.0

man 27680 6420 6840 4020 3120 4120 5180 9680 4520
starfish 36260 8760 16480 10880 12620 15040 18600 45940 1420
flowers 71720 12900 15400 2820 4800 17560 4860 860 1920
zebra 23020 11320 3000 2520 11700 1280 1700 300 580
horses 63320 4900 15340 3140 5020 1360 1600 6300 1740
elephant 57020 64320 35120 11400 46400 8140 6520 4000 50880
rabbit 57720 6200 2580 6800 14420 2160 11980 5100 1400
wulfenia 16300 8340 5640 16860 4200 4740 1640 760 1160
lady 13760 18740 4100 4220 18420 4560 1540 3860 1440
liver1 27240 5440 6300 4480 4760 12200 15540 4200 1460

Max-flow with grl

0.1 0.5 2.0 4.0 6.0 8.0 10.0 15.0 20.0

man 27700 6740 6840 4020 3120 4120 5180 9680 4520
starfish 36760 8760 16480 10880 12620 15040 18600 45940 1420
flowers 71720 12900 15400 2820 4800 17560 4860 880 1920
zebra 32640 11320 3000 2520 11700 1280 1700 300 600
horses 63740 4900 15340 3140 5020 1360 1600 6300 1740
elephant 58300 65640 35120 11400 46400 8140 6520 4000 50880
rabbit 60920 3680 2580 6800 14420 2160 11680 5100 1420
wulfenia 23720 8340 5640 16860 4200 4740 1640 760 1160
lady 14200 18740 4100 4220 18440 4580 1540 3880 1440
liver1 11900 5620 6300 4480 4760 12200 15540 4200 2780

ROF

0.1 0.5 2.0 4.0 6.0 8.0 10.0 15.0 20.0

man 500 340 360 160 360 160 100 120 120
starfish 1880 280 400 80 100 120 380 80 100
flowers 1760 820 320 200 160 160 140 60 60
zebra 1420 760 440 500 320 340 260 220 220
horses 1460 680 300 260 380 260 220 260 480
elephant 3200 1260 4900 1380 1080 1580 640 1500 480
rabbit 1500 1020 1040 600 340 680 320 240 420
wulfenia 2360 1260 1000 240 200 240 140 440 320
lady 520 380 160 80 140 140 120 100 80
liver1 560 260 100 140 1040 120 120 100 200

Table A.3: Segmentation comparison results using continuous constraints. The top row
depicts the varying λ value, and the left column the name of the current image. Numbers
of the table state the number of iterations until all pixels equaled the ground truth. The
data of this table corresponds to Figure 3.16

Appendix B

Acronyms and Symbols

List of Acronyms

ACWE active contours without edges

CCMF combinatorial continuous max-flow

CPU central processing unit

CRF conditional random field

CT computed tomography

CUDA compute unified device architecture

DSM digital surface model

FISTA fast iterative shrinkage thresholding algorithm

FPGA field programmable gate array

GAC geodesic active contours

GMM gaussian mixture model

GPU graphics processing unit

GPGPU general-purpose computing on graphics processing units

ISTA iterative shrinkage thresholding algorithm

LF Legendre-Fenchel

LP linear program

MAP maximum a posteriori

MCMC Markov Chain Monte Carlo

MRF Markov random field

MSER maximally stable extremal region

NCC normalized cross correlation

147

148 Chapter B. Acronyms and Symbols

OFC optical flow constraint

OpenCL open computing language

PCA principal component analysis

PDE partial differential equation

ROF Rudin, Osher and Fatemi

SIMD single instruction, multiple data

SISD single instruction, single data

SOR successive over relaxation

SSD sum of squared differences

SVM support vector machine

TNCC truncated normalized cross correlation

TV Total Variation

TV-L1 Total Variation regularization with L1 dataterm

149

List of Symbols

< x, y > Tensor product

I Identity matrix

f∗(y) Conjugate

f∗∗(x) Biconjugate

Ck The k derivatives exist and are continuous

∇ Nabla (gradient) operator

div Divergence operator

4 Laplace operator

δ+
x Forward differences in x direction

δ−y Backward differences in y direction

|x| Absolute value of x

bxc Floor of x

[x]ba Clamping of x to the interval [a, b]

IΣ(x) Indicator function for set Σ

|| · ||q,p Inner Lq-norm and outer Lp-norm

|| · ||p Inner L2-norm and outer Lp-norm (|| · ||2,p)
|| · || Inner L2-norm and outer L1-norm (|| · ||2,1)

Ω Image domain

BIBLIOGRAPHY 151

Bibliography

Adams, R. and Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(6):641–647.

Akin, A., Beretta, I., Nacci, A. A., Rana, V., Santambrogio, M. D., and Atienza, D.

(2011). A High-Performance Parallel Implementation of the Chambolle Algorithm. In

IEEEACM 2011 Design Automation and Test in Europe Conference, pages 7–12.

Alliney, S. (1992). Digital filters as absolute norm regularizers. IEEE Transactions on

Signal Processing, 40(6):1548–1562.

Alliney, S. (1997). A property of the minimum vectors of a regularizing functional defined

by means of the absolute norm. IEEE Trans Signal Processing, 45(4):913–917.

Ambrosio, L. and Tortorelli, V. M. (1990). Approximation of functionals depending on

jumps by elliptic functionals via Γ-convergence. Communications on Pure and Applied

Mathematics, XLIII(8):999–1036.

Appleton, B. and Talbot, H. (2005). Globally Optimal Geodesic Active Contours. Journal

of Mathematical Imaging and Vision, 23(1):67–86.

Appleton, B. and Talbot, H. (2006). Globally minimal surfaces by continuous maximal

flows. IEEE transactions on pattern analysis and machine intelligence, 28(1):106–18.

Aubert, G. and Blanc-Féraud, L. (1998). An elementary proof of the equivalence between

2D and 3D classical snakes and geodesic active contours.

Aubert, G. and Blanc-Féraud, L. (1999). Some Remarks on the Equivalence between

2D and 3D Classical Snakes and Geodesic Active Contours. International Journal of

Computer Vision, 34(1):19–28.

Aujol, J. and Kang, S. (2006). Color image decomposition and restoration. Journal of

Visual Communication and Image Representation, 17(4):916–928.

Aujol, J.-F., Gilboa, G., Chan, T., and Osher, S. (2006). Structure-Texture Image De-

composition - Modeling, Algorithms, and Parameter Selection. International Journal of

Computer Vision, 67(1):111–136.

Avidan, S. (2005). Ensemble tracking. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 494–501.

152

Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., and Szeliski, R. (2010). A

Database and Evaluation Methodology for Optical Flow. International Journal of Com-

puter Vision, pages 1–31.

Bayes, M. and Price, M. (1763). An Essay towards Solving a Problem in the Doctrine of

Chances. By the Late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John

Canton, M. A. and F. R. S. Philosophical Transactions (1683-1775).

Beck, A. and Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for

Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183.

Berkels, B. (2010). Joint methods in imaging based on diffuse image representations. PhD

thesis, Friedrich-Wilhelms-University Bonn.

Bertero, M. and Boccacci, P. (1998). Introduction to Inverse Problems in Imaging. Taylor

& Francis.

Bhusnurmath, A. and Taylor, C. J. (2008). Graph cuts via l1 norm minimization. IEEE

transactions on pattern analysis and machine intelligence, 30(10):1866–71.

Bibby, C. and Reid, I. (2008). Robust Real-Time Visual Tracking Using Pixel-Wise Pos-

teriors. In Proc. European Conference on Computer Vision, volume 2, pages 831–844.

Black, M. J. (1991). Robust dynamic motion estimation over time. In IEEE Computer

Society Conference on Computer Vision and Pattern Recognition.

Bleyer, M. and Gelautz, M. (2004). A layered stereo algorithm using image segmentation

and global visibility constraints. In IEEE International Conference on Image Processing,

pages 2997–3000.

Bleyer, M., Rother, C., and Kohli, P. (2010). Surface stereo with soft segmentation. In

Conference on Computer Vision and Pattern Recognition, pages 1570–1577.

Bleyer, M., Rother, C., Kohli, P., Scharstein, D., and Sinha, S. (2011). Object Stereo

- Joint Stereo Matching and Object Segmentation. In Computer Vision and Pattern

Recognition, number 1, pages 3081–3088.

Blomgren, P. and Chan, T. F. (1998). Color TV: Total variation methods for restoration

of vector valued images. IEEE Trans Image Proc, 7:304–309.

BIBLIOGRAPHY 153

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press.

Boykov, Y. and Kolmogorov, V. (2003). Computing geodesics and minimal surfaces via

graph cuts. In Ninth IEEE International Conference on Computer Vision, pages 26–33

vol.1.

Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE transactions on pattern analysis and

machine intelligence, 26(9):1124–37.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast Approximate Energy Minimiza-

tion via Graph Cuts. IEEE transactions on pattern analysis and machine intelligence,

23(11):1222–1239.

Bredies, K., Kunisch, K., and Pock, T. (2010). Total Generalized Variation. SIAM Journal

on Imaging Sciences, 3(3):492–526.

Bredies, K., Pock, T., and Wirth, B. (2012). Convex relaxation of a class of vertex

penalizing functionals. preprint (gpu4vision.org).

Bresson, X. and Chan, T. (2008). Fast dual minimization of the vectorial total varia-

tion norm and applications to color image processing. Inverse Problems and Imaging,

2(4):455–484.

Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., and Osher, S. (2007). Fast

Global Minimization of the Active Contour/Snake Model. Journal of Mathematical

Imaging and Vision, 28(2):151–167.

Brox, T. and Malik, J. (2010). Object Segmentation by Long Term Analysis of Point

Trajectories. IEEE European conference on computer vision.

Brox, T. and Malik, J. (2011). Large displacement optical flow: descriptor matching in

variational motion estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(3):500–513.

Brox, T., Rousson, M., Deriche, R., and Weickert, J. (2010). Colour, texture, and motion

in level set based segmentation and tracking. Image and Vision Computing, 28(3):376–

390.

154

Caselles, V., Kimmel, R., and Sapiro, G. (1997a). Geodesic active contours. International

Journal of Computer Vision, 1(22):61–79.

Caselles, V., Kimmel, R., Sapiro, G., and Sbert, C. (1997b). Minimal surfaces : a geometric

three dimensional segmentation approach. Numerische Mathematik, 77(4):423–425.

Chambolle, A. (2000). Inverse Problems in Image processing and Image segmentation:

some mathematical and numerical aspects. Technical report, Lecture notes given at the

School on Mathematical Problems in Image Processing.

Chambolle, A. (2004). An Algorithm for Total Variation Minimization and Applications.

Journal of Mathematical Imaging and Vision, 20(1/2):89–97.

Chambolle, A. (2005). Total Variation Minimization and a Class of Binary MRF Models. In

Energy Minimization Methods in Computer Vision and Pattern Recognition, number 1,

pages 136–152.

Chambolle, A., Caselles, V., Novaga, M., Cremers, D., and Pock, T. (2009). An intro-

duction to Total Variation for Image Analysis. Technical report, Summer School on

”Theoretical Foundations and Numerical Methods for Sparse Recovery”, Linz, Austria.

Chambolle, A., Cremers, D., and Pock, T. (2008). A convex approach for computing

minimal partitions. Technical report, Ecole Polytechnique Centre De Mathematiques

Appliquees UMR CNRS 7641.

Chambolle, A., Cremers, D., and Pock, T. (2012). A convex approach to minimal partitions

(revised version). Preprint (gpu4vision.org).

Chambolle, A. and Darbon, J. (2009). On Total Variation Minimization and Surface Evo-

lution Using Parametric Maximum Flows. International Journal of Computer Vision,

84(3):288–307.

Chambolle, A. and Lions, P. L. (1997). Image recovery via total variation minimization

and related problems. Numerische Mathematik, 76(2):167–188.

Chambolle, A. and Pock, T. (2010). A First-Order Primal-Dual Algorithm for Convex

Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision,

pages 1–26–26.

Chan, T. (2000). Active Contours without Edges for Vector-Valued Images. Journal of

Visual Communication and Image Representation, 11(2):130–141.

BIBLIOGRAPHY 155

Chan, T. and Vese, L. (1999). An Active Contour Model without Edges. Scale-Space

Theories in Computer Vision, 1682(1682):141–151.

Chan, T. F. and Esedoglu, S. (2005). Aspects of Total Variation Regularized L1 Function

Approximation. SIAM Journal on Applied Mathematics, 65(5):1817.

Chan, T. F., Esedoglu, S., and Nikolova, M. (2006). Algorithms for Finding Global

Minimizers of Image Segmentation and Denoising Models. SIAM Journal on Applied

Mathematics, 66(5):1632.

Chan, T. F., Kang, S. H., and Shen, J. (2001). Total Variation Denoising and Enhance-

ment of Color Images Based on the CB and HSV Color Models. Journal of Visual

Communication and Image Representation, 12(4):422–435.

Chan, T. F. and Vese, L. A. (2001). Active contours without edges. IEEE Transactions

on Image Processing, 10(2):266–277.

Cohen, I., Cohen, L. D., and Ayache, N. (1992). Using Deformable Surfaces to Segment

3-D Images and Infer Differential Structures. Comput Vision Graphics Image Process

Image Understand, 56(2):242–263.

Cohen, L. D. (1991). On active contour models and balloons. CVGIP Image Understand-

ing, 53(2):211–218.

Cohen, L. D. and Cohen, I. (1993). Finite-element methods for active contour models and

balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(11):1131–1147.

Comaniciu, D., Meer, P., and Member, S. (2002). Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24:603–619.

Comaniciu, D., V., R., and Meer, P. (2000). Real-time tracking of non-rigid objects using

mean shift. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

pages 142–149.

Couprie, C. (2011). Graph-based variational optimization and applications in computer

vision. PhD thesis, Universitee de Marne-la-Vallee, ESIEE Paris.

156

Couprie, C., Grady, L., Najman, L., and Talbot, H. (2011a). Power Watershed : A

Unifying Graph-Based Optimization Framework. IEEE Trans. on Pattern Analysis and

Machine Intelligence.

Couprie, C., Grady, L., Talbot, H., and Najman, L. (2011b). Combinatorial continuous

maximum flow. SIAM Journal on Imaging Sciences, 4(3).

Cremers, D. (2003). A variational framework for image segmentation combining motion

estimation and shape regularization. In Conference on Computer Vision and Pattern

Recognition, volume 1, pages 53–58.

Cremers, D. (2007). Bayesian Approaches to Motion-Based Image and Video Segmenta-

tion. Complex Motion, 3417:106–125.

Cremers, D., Rousson, M., and Deriche, R. (2007). A Review of Statistical Approaches to

Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International

Journal of Computer Vision, 72:195–215.

Cremers, D. and Soatto, S. (2005). Motion Competition: A Variational Approach to

Piecewise Parametric Motion Segmentation. International Journal of Computer Vision,

62(3):249–265.

Delong, A. (2011). Advances in Graph-Cut Optimization: Multi-Surface Models, Label

Costs, and Hierarchical Costs. PhD thesis, University of Western Ontario.

Delong, A., Gorelick, L., Schmidt, F. R., Veksler, O., and Boykov, Y. (2011). Interactive

Segmentation with Super-Labels. In Energy Minimization Methods in Computer Vision

and Pattern Recognition.

Dixit, N., Keriven, R., and Paragios, N. (2005). GPU-Cuts : Combinatorial Optimi-

sation, Graphic Processing Units and Adaptive Object Extraction. Technical Report

05-07, Laboratoire Centre Enseignement Recherche Traitement Information Systemes

(CERTIS), Ecole Nationale des Ponts et Chaussees (ENPC).

Donoser, M. and Bischof, H. (2006). Efficient Maximally Stable Extremal Region (MSER)

Tracking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

pages 553–560.

Donoser, M., Bischof, H., and Wiltsche, M. (2006). Color blob segmentation by MSER

analysis. 2006 International Conference on Image Processing, 1(c):757–760.

BIBLIOGRAPHY 157

Douglas, J. and Rachford, H. H. (1956). On the Numerical Solution of Heat Conduction

Problems in Two and Three Space Variables. Transactions of the AMS, 82(2):421–439.

Edmonds, J. and Karp, R. M. (1972). Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems. Journal of the ACM, 19(2):248–264.

Evans, L. C. and Gariepy, R. F. (1992). Measure Theory and Fine Properties of Functions.

CRC Press, Boca Raton, FL.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient Graph-Based Image Seg-

mentation. International Journal of Computer Vision, 59(2):167–181.

Fitzpatrick, B. G. (1991). Bayesian analysis in inverse problems. Inverse Problems,

7(5):675–702.

Fleming, W. H. and Rishel, R. (1960). An integral formula for total gradient variation.

Archiv der Mathematik, 11(1):218–222.

Ford, L. R. and Fulkerson, D. R. (1956). Maximal flow through a network. Canadian

Journal of Mathematics, pages 399–404.

Fussenegger, M., Roth, P., Bischof, H., Deriche, R., and Pinz, A. (2009). A level set

framework using a new incremental, robust Active Shape Model for object segmentation

and tracking. Image and Vision Computing.

Getreuer, P. (2010). tvreg: Variational Imaging Methods

(http://www.getreuer.info/home/tvreg).

Gibbs, J. W. (1902). Elementary principles in statistical mechanics, volume 66. Bib-

lioBazaar, LLC.

Giusti, E. (1984). Minimal Surfaces and Functions of Bounded Variation. Birkhäuser

Basel.

Glaskowsky, P. N. (2009). NVIDIA’s Fermi: The First Complete GPU Computing

Architecture. A white paper prepared under contract with NVIDIA Corporation,

(September):1–26.

Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum-flow problem.

Journal of the ACM, 35(4):921–940.

158

Goldluecke, B., Strekalovskiy, E., and Cremers, D. (2012). The Natural Vectorial Total

Variation which arises from Geometric Measure Theory. SIMS, pages 1–27.

Grabner, H., Grabner, M., and Bischof, H. (2006). Real-Time Tracking via On-line Boost-

ing. In British Machine Vision Conference, pages 47–56.

Grady, L. (2006). Random walks for image segmentation. IEEE transactions on pattern

analysis and machine intelligence, 28(11):1768–83.

Grady, L. and Alvino, C. V. (2009). The piecewise smooth Mumford-Shah functional on

an arbitrary graph. IEEE Transactions on Image Processing, 18(11):2547–2561.

Greig, D. M., Porteous, B. T., and Seheult, A. H. (1989). Exact maximum a posteri-

ori estimation for binary images. Journal of the Royal Statistical Society Series B,

51(2):271–279.

Hadamard, J. (1902). Sur les problèmes aux dérivés partielles et leur signification physique.

Princeton University Bulletin, 13:49–52.

Horn, B. K. P. and Schunck, B. G. (1981). Determining Optical Flow. Art. Intell.

Horowitz, S. L. and Pavlidis, T. (1974). Picture segmentation by a directed split-and-merge

procedure. In Proceedings of the 2nd Int Joint Conference on Pattern Recognition, pages

424–433.

Huber, P. J. (1973). Robust Regression: Asymptotics, Conjectures and Monte Carlo. The

Annals of Statistics, 1(5):799–821.

Huber, P. J. (1981). Robust Statistics. Wiley-Interscience, first edition.

Idier, J. (2008). Bayesian Approach to Inverse Problems. John Wiley and Sons.

Isard, M. and Blake, A. (1996). Contour Tracking by Stochastic Propagation of Condi-

tional Density. In Proc. European Conference on Computer Vision, pages 343–356.

Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors.

IEEE transactions on pattern analysis and machine intelligence, 25(10):1333–1336.

Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift Für Physik,

31(1):253–258.

BIBLIOGRAPHY 159

Jayadevappa, D., Kumar, S. S., and Murty, D. S. (2011). Medical Image Segmentation

Algorithms using Deformable Models: A Review. Iete Technical Review, 28(3):248–255.

Kaipio, J. and Somersalo, E. (2005). Statistical and Computational Inverse Problems,

volume 160 of Applied Mathematical Sciences. Springer.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. Inter-

national Journal of Computer Vision, 1(4):321–331.

Keller, J. B. (1976). Inverse Problems. The American Mathematical Monthly, 83(2):107–

118.

Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A. (1995). Gra-

dient flows and geometric active contour models. Proceedings of IEEE International

Conference on Computer Vision, 0:810–815.

Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A. (1996). Conformal

curvature flows: From phase transitions to active vision. Archive for Rational Mechanics

and Analysis, 134(3):275–301.

Kirsch, A. (2011). An Introduction to the Mathematical Theory of Inverse Problems

(Applied Mathematical Sciences). Springer, second edition.

Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., and Cremers, D. (2008). An

Experimental Comparison of Discrete and Continuous Shape Optimization Methods.

In 10th European Conference on Computer Vision, pages 332–345.

Knapik, B. T., Van Der Vaart, A. W., and Van Zanten, J. H. (2011). Bayesian Inverse

Problems. arXiv, math.ST:1–35.

Kolmogorov, V. and Zabih, R. (2001). Computing Visual Correspondence with Occlusions

via Graph Cuts. In IEEE International Conference on Computer Vision, pages 508–515.

Kumar, M. P., Torr, P. H. S., and Zisserman, A. (2008). Learning Layered Motion Seg-

mentations of Video. International Journal of Computer Vision, 76(3):301–319.

Kunisch, K. and Hintermüller, M. (2004). Total Bounded Variation Regularization as a

Bilaterally Constrained Optimization Problem. SIAM Journal on Applied Mathematics,

64(4):1311–1333.

160

Lellmann, J., Becker, F., and Schnörr, C. (2009a). Convex Optimization for Multi-Class

Image Labeling with a Novel Family of Total Variation Based Regularizers. IEEE 12th

International Conference on Computer Vision, (3):646–653.

Lellmann, J., Kappes, J., Yuan, J., Becker, F., and Schnörr, C. (2009b). Convex Multi-

Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Varia-

tional Methods in Computer Vision, 5567:150–162.

Leung, S. and Osher, S. (2005). Global Minimization of the Active Contour Model with

TV-Inpainting and Two-phase Denoising. In 3rd IEEE Workshop on Variational, Geo-

metric and Level Set Methods in Computer Vision, pages 149–160.

Li, S. Z. (2009). Markov Random Field Modeling in Image Analysis Third Edition, volume i

of Advances in Pattern Recognition. Springer London.

Mansouri, A.-R., Mitiche, A., and Aron, M. (2003). PDE-based region tracking without

motion computation by joint space-time segmentation. In Proc. International Confer-

ence on Image Processing, pages III–113–16 vol.2.

Markov, A. (1971). Extension of the Limit Theorems of Probability Theory to a Sum of

Variables Connected in a Chain. In Howard, R., editor, Dynamic Probabilistic Systems

(Volume I: Markov Models), chapter Appendix B, pages 552–577. John Wiley & Sons,

Inc., New York City.

McInerney, T. and Terzopoulos, D. (1996). Deformable models in medical image analysis:

a survey. Medical Image Analysis, 1(2):91–108.

Mortensen, E. N. and Barrett, W. A. (1995). Intelligent scissors for image composition.

Proceedings of the 22nd annual conference on Computer graphics and interactive tech-

niques SIGGRAPH 95, 84602(801):191–198.

Mumford, D. and Shah, J. (1989). Optimal approximation by piecewise smooth functions

and associated variational problems. Comm Pure Appl Math, 42:577–685.

Nagel, H. H. and Enkelmann, W. (1986). An investigation of smoothness constraints for

the estimation of displacement vector fields from image sequences. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8(5):565–593.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence

rate. Soviet Mathematics Doklady.

BIBLIOGRAPHY 161

Nesterov, Y. (2004). Smooth minimization of non-smooth functions. Mathematical Pro-

gramming, 103(1):127–152.

Nguyen, H. (2007). GPU Gems 3. Addison-Wesley Professional, first edition.

Nieuwenhuis, C., Berkels, B., Rumpf, M., and Cremers, D. (2010). Interactive Motion

Segmentation. In DAGM, Annual Symposium of the German Association for Pattern

Recognition, pages 483–492.

Nikolova, M. (2002). Minimizers of cost-functions involving nonsmooth data-fidelity

terms. Application to the processing of outliers. SIAM Journal on Numerical Anal-

ysis, 40(3):965–994.

Nikolova, M. (2004). A Variational Approach to Remove Outliers and Impulse Noise.

Journal of Mathematical Imaging and Vision, 20(1/2):99–120.

NVidia (2010). NVIDIA Performance Primitives (NPP) Version 3.2.16. Technical report.

NVidia (2011a). CUDA C Best Practices Guide - DG-05603-001 v4.0. Technical report.

NVidia (2011b). NVIDIA CUDA C Programming Guide - Version 4.0. Technical report.

Ochs, P. and Brox, T. (2011). Object segmentation in video: A hierarchical variational

approach for turning point trajectories into dense regions. In International Conference

on Computer Vision, volume 21, pages 1583–1590. IEEE.

Ochs, P. and Brox, T. (2012). Higher Order Motion Models and Spectral Clustering.

Conference on Computer Vision and Pattern Recognition, pages 614–621.

Ogale, A. S., Fermüller, C., and Aloimonos, Y. (2005). Motion segmentation using occlu-

sions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):988–992.

Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed:

Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,

79(1):12–49.

Plato (2008). The Republic, chapter Book VII. Project Gutenberg.

Pock, T. (2008). Fast Total Variation for Computer Vision. PhD thesis, Graz University

of Technology.

162

Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-dual

algorithms. Convergence, pages 1762–1769.

Pock, T., Chambolle, A., Cremers, D., and Bischof, H. (2009a). A Convex Relaxation

Approach for Computing Minimal Partitions. In Computer Vision and Pattern Recog-

nition.

Pock, T., Cremers, D., Bischof, H., and Chambolle, A. (2009b). An algorithm for min-

imizing the Mumford-Shah functional. 2009 IEEE 12th International Conference on

Computer Vision, (813396):1133–1140.

Porikli, F. M. (2001). Video Object Segmentation. PhD thesis, New York University,

Brooklyn.

Potts, R. B. (1952). Some Generalized Order-Disorder Transformation. In Transforma-

tions, Proceedings of the Cambridge Philosophical Society, volume 48, pages 106–109.

Protter, M., Yavneh, I., and Elad, M. (2010). Closed-Form MMSE Estimation for Signal

Denoising Under Sparse Representation Modeling Over a Unitary Dictionary. IEEE

Transactions on Signal Processing, 58(7):3471–3484.

Ramsey, F. P. (1931). Truth and Probability. In The Foundations of Mathematics and

other Logical Essays, volume 2, chapter 7. Routledge (Reprinted 2001).

Reina, A. V., Avidan, S., Pfister, H., and Miller, E. L. (2010). Multiple Hypothesis Video

Segmentation from Superpixel Flows. In IEEE European conference on computer vision,

volume 6315, pages 268–281. Springer.

Roberts, M., Jeong, W.-k., Amelio, V., and Unger, M. (2011). Neural Process Reconstruc-

tion from Sparse User Scribbles. In Fichtinger, G., Martel, A., and Peters, T., editors,

Medical Image Computing and Computer-Assisted Intervention, volume 14 of Lecture

Notes in Computer Science, pages 621–628. Springer.

Rockafellar, R. T. (1970). Convex Analysis, volume 28 of Princeton Mathematical Series,

No. 28. Princeton University Press.

Rother, C., Kolmogorov, V., and Blake, A. (2004). ”GrabCut” - Interactive Foreground

Extraction using Iterated Graph Cuts. ACM Transactions on Graphics (SIGGRAPH).

BIBLIOGRAPHY 163

Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M. (2007). Optimizing Binary

MRFs via Extended Roof Duality. IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8.

Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal

algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268.

Sanders, J. and Kandrot, E. (2010). CUDA by Example: An Introduction to General-

Purpose GPU Programming. Addison-Wesley Professional.

Santner, J. (2010). Interactive Multi-Label Segmentation. PhD thesis, Graz University of

Technology.

Santner, J., Pock, T., and Bischof, H. (2011). Interactive Multi-Label Segmentation.

ACCV, (813396):397–410.

Santner, J., Unger, M., Leistner, C., and Bischof, H. (2009). Interactive Texture Segmenta-

tion using Random Forests and Total Variation. In British Machine Vision Conference.

Scharstein, D., Szeliski, R., and Zabih, R. (2002). A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. Proceedings IEEE Workshop on Stereo

and MultiBaseline Vision, 47(1):131–140.

Schoenemann, T. and Cremers, D. (2006). Near Real-Time Motion Segmentation Us-

ing Graph Cuts. DAGM, Annual Symposium of the German Association for Pattern

Recognition, pages 455–464.

Schoenemann, T. and Cremers, D. (2007). Introducing Curvature into Globally Optimal

Image Segmentation: Minimum Ratio Cycles on Product Graphs. IEEE 11th Interna-

tional Conference on Computer Vision (2007), pages 1–6.

Schoenemann, T. and Cremers, D. (2008). High Resolution Motion Layer Decomposi-

tion using Dual-space Graph Cuts. In Conference on Computer Vision and Pattern

Recognition, Anchorage, Alaska.

Schoenemann, T., Kahl, F., Masnou, S., and Cremers, D. (2012). A linear framework

for region-based image segmentation and inpainting involving curvature penalization.

International Journal of Computer Vision (to appear).

164

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods: Evolving Inter-

faces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials

Science, volume 11 of Cambridge Monograph on Applied and Computational Mathe-

matics. Cambridge University Press.

Sezgin, M. and Sankur, B. (2004). Survey over image thresholding techniques and quan-

titative performance evaluation. Journal of Electronic Imaging, 13(1):146–168.

Shulman, D. and Hervé, J.-Y. (1989). Regularization of discontinuous flow fields. In

Proceedings Workshop on Visual Motion, pages 81–86.

Sinha, S. N., Steedly, D., and Szeliski, R. (2009). Piecewise planar stereo for image-based

rendering. In ICCV.

Sinop, A. K. and Grady, L. (2007). A Seeded Image Segmentation Framework Unify-

ing Graph Cuts And Random Walker Which Yields A New Algorithm. IEEE 11th

International Conference on Computer Vision.

Steinbruecker, F., Pock, T., and Cremers, D. (2009). Advanced Data Terms for Variational

Optic Flow Estimation. In Vision, Modeling and Visualization Workshop, volume 1,

Braunschweig, Germany.

Strang, G. (1983). Maximal flow through a domain. Mathematical Programming,

26(2):123–143.

Strang, G. (2009). Maximum flows and minimum cuts in the plane. Journal of Global

Optimization, 47(3):527–535.

Stuart, A. M. (2010). Inverse Problems: A Bayesian Perspective. Acta Numerica, 19(1):1–

107.

Sun, D., Roth, S., and Black, M. J. (2010a). Secrets of Optical Flow Estimation and Their

Principles. Baseline, pages 2432–2439.

Sun, D., Sudderth, E., and Black, M. (2010b). Layered image motion with explicit oc-

clusions, temporal consistency, and depth ordering. In Advances in Neural Information

Processing Systems 23, pages 2226–2234.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen,

M., and Rother, C. (2008). A comparative study of energy minimization methods for

BIBLIOGRAPHY 165

Markov random fields with smoothness-based priors. IEEE transactions on pattern

analysis and machine intelligence, 30(6):1068–80.

Terzopoulos, D., Witkin, A., and Kass, M. (1988). Constraints on deformable mod-

els:Recovering 3D shape and nonrigid motion. Artificial Intelligence, 36(1):91–123.

Tikhonov, A. N. (1963). Regularization of incorrectly posed problems. Soviet Math Dokl,

4(1):1624–1627.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems, volume 21 of

Scripta series in mathematics. W. H. Winston.

Touchette, H. (2007). Legendre-Fenchel transform in a nutshell. Technical report, School

of Mathematical Sciences, Queen Mary, University of London.

Tsai, A., Yezzi, A., and Willsky, A. S. (2000). A curve evolution approach to smoothing

and segmentation using the Mumford-Shah functional. In Conference on Computer

Vision and Pattern Recognition.

Unger, M., Mauthner, T., Pock, T., and Bischof, H. (2009). Tracking as Segmentation

of Spatial-Temporal Volumes by Anisotropic Weighted TV. In Energy Minimization

Methods in Computer Vision and Pattern Recognition, pages 193–206.

Unger, M., Pock, T., and Bischof, H. (2008a). Continuous Globally Optimal Image Seg-

mentation with Local Constraints. In Computer Vision Winter Workshop, Moravske

Toplice, Slovenija.

Unger, M., Pock, T., and Bischof, H. (2011). Global Relabeling for Continuous Optimiza-

tion in Binary Image Segmentation. In Energy Minimization Methods in Computer

Vision and Pattern Recognition, Saint Petersburg, Russia.

Unger, M., Pock, T., Trobin, W., Cremers, D., and Bischof, H. (2008b). TVSeg - Interac-

tive Total Variation Based Image Segmentation. In British Machine Vision Conference,

Leeds, UK.

Unger, M., Werlberger, M., Pock, T., and Bischof, H. (2012). Joint Motion Estimation

and Segmentation of Complex Scenes with Label Costs and Occlusion Modeling. In

Conference on Computer Vision and Pattern Recognition, Providence, USA.

Veksler, O. (1999). Efficient Graph-Based Energy Minimization Methods in Computer.

PhD thesis, Cornell University.

166

Vese, L. A. and Chan, T. F. (2002). A Multiphase Level Set Framework for Image Seg-

mentation Using the Mumford and Shah Model. International Journal of Computer

Vision, 50(3):271–293.

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm

based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(6):583–598.

Vineet, V. and Narayanan, P. J. (2008). CUDA cuts: Fast graph cuts on the GPU. IEEE

Conference on Computer Vision and Pattern Recognition Workshops.

Vogel, C. R. and Oman, M. (1996). Iterative Methods For Total Variation Denoising.

SIAM J. Sci. Comput, 17:227–238.

Wang, J. Y. A. and Adelson, E. H. (1994). Representing moving images with layers. IEEE

Transactions on Image Processing, 3(5):625–638.

Werlberger, M. (2012). Convex Approaches for High Performance Video Processing. PhD

thesis, Graz University of Technology, Austria.

Werlberger, M., Pock, T., and Bischof, H. (2010). Motion Estimation with Non-Local

Total Variation Regularization. Order - A Journal On The Theory Of Ordered Sets

And Its Applications, pages 2464–2471.

Werlberger, M., Pock, T., Unger, M., and Bischof, H. (2011a). Optical Flow Guided TV-L1

Video Interpolation and Restoration. In Proceedings Energy Minimization Methods in

Computer Vision and Pattern Recognition, number 6819 in Lecture Notes in Computer

Science, pages 273–286.

Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., and Bischof, H. (2009).

Anisotropic Huber-L1 Optical Flow. In Proceedings of the British Machine Vision

Conference BMVC, London, UK.

Werlberger, M., Unger, M., Pock, T., and Bischof, H. (2011b). Efficient Minimization of

the Non-Local Potts Model. In Proceedings International Conference on Scale Space

and Variational Methods in Computer Vision, Lecture Notes in Computer Science, pages

314–325. Springer.

Woodford, O., Torr, P., Reid, I., and Fitzgibbon, A. (2009). Global Stereo Reconstruction

under Second-Order Smoothness Priors. IEEE transactions on pattern analysis and

machine intelligence, 31:2115–2128.

BIBLIOGRAPHY 167

Xu, C., Pham, D. L., and Prince, J. L. (2000). Medical Image Segmentation Using De-

formable Models. In Fitzpatrick, J. M. and Sonka, M., editors, Handbook of Medical

Imaging, volume 2, chapter 3, pages 129–174. SPIE Press.

Yilmaz, A. (2007). Object Tracking by Asymmetric Kernel Mean Shift with Automatic

Scale and Orientation Selection. In Conference on Computer Vision and Pattern Recog-

nition, pages 1–6.

Yilmaz, A., Li, X., and Shah, M. (2004). Contour Based Object Tracking with Occlusion

Handling in Video Acquired Using Mobile Cameras. IEEE transactions on pattern

analysis and machine intelligence, 26:1531–1536.

Yuan, J. (2011). Convex Variational Approaches to Image Motion Estimation, Denoising

and Segmentation. PhD thesis, Ruprecht-Karls-University Heidelberg.

Yuan, J. and Boykov, Y. (2010). TV-Based Multi-Label Image Segmentation with Label

Cost Prior. In Procedings of the British Machine Vision Conference, number 1, pages

101.1–101.12.

Zach, C., Gallup, D., Frahm, J.-m., and Niethammer, M. (2008). Fast Global Labeling for

Real-Time Stereo Using Multiple Plane Sweeps. In Vision, Modeling and Visualization

Workshop, pages 243–252.

Zach, C., Pock, T., and Bischof, H. (2007). A Duality Based Approach for Realtime TV-L1

Optical Flow. In DAGM, Annual Symposium of the German Association for Pattern

Recognition.

Zhang, G., Jia, J., Hua, W., and Bao, H. (2011). Robust Bilayer Segmentation and

Motion/Depth Estimation with a Handheld Camera. IEEE transactions on pattern

analysis and machine intelligence, 33:603–617.

Zhu, M. and Chan, T. (2008). An Efficient Primal-Dual Hybrid Gradient Algorithm For

Total Variation Image Restoration. UCLA CAM Report 08-34, (1):1–29.

Zitnick, C. L., Jojic, N., and Kang, S. B. (2005). Consistent Segmentation for Optical

Flow Estimation. In IEEE International Conference on Computer Vision, pages II:

1308–1315.

Zitnick, C. L. and Kang, S. B. (2007). Stereo for Image-Based Rendering using Image

Over-Segmentation. International Journal of Computer Vision, 75(1):49–65.

	Introduction
	What is image segmentation?
	Related work on image segmentation
	Active Contours
	Snakes
	Geodesic Active Contours

	Energy minimization methods
	Graph Cuts
	Extensions to multi label segmentation

	Contributions of the thesis

	Continuous convex optimization
	Inverse problems
	Problem definition
	Minimization of a composite criterion
	A Bayesian approach

	Classical variational problems
	Image denoising
	Tikhonov model
	ROF model
	TV-L1 model

	Shape denoising
	Mumford-Shah model

	Convex optimization
	Preliminaries
	Discretization
	Vector norms
	Convexity
	Duality

	An overview on minimization algorithms
	A general primal dual algorithm
	Practical application
	ROF model
	TV-L1 model

	Variational Image Segmentation
	Binary image segmentation - Continuous max flow
	Recap of the discrete min cut / max flow
	The continuous formulation
	The optimization problem
	Discretization artifacts
	Convergence criterion

	Connections to other segmentation models

	Multi-label image segmentation
	Fast relaxation
	Other relaxations
	Label costs

	Fast Optimization
	Thoughts on the implementation
	Global relabeling for continuous optimization
	Motivation
	Algorithm
	Experimental results

	Binary segmentation using the ROF model
	Comparison of continuous binary image segmentation algorithms

	Supervised Segmentation
	Interactive image segmentation
	Introduction
	Related work
	Creating potentials for segmentation
	Unary potentials
	Binary potentials

	Interaction

	Tracking by segmentation
	Introduction
	Previous work on tracking
	Tracking as segmentation in a spatio-temporal volume

	Algorithm
	Implementation
	The tracking framework
	Color tracking

	Experimental results
	Summary

	Unsupervised Segmentation
	Depth image segmentation
	Depth segmentation
	Model and algorithm
	Experimental results
	Summary

	Motion Segmentation
	A short introduction to motion estimation
	Classical optical flow
	Improving optical flow
	Drawbacks of classical motion estimation

	Related work on motion segmentation
	A model for joint parametric motion estimation and segmentation
	The basic model
	Occlusions constraints
	Parametrization

	Optimization
	Parameters Hi
	Segmentation i with map uniqueness constraint
	Segmentation i with backmatch constraint

	Experimental Results
	General evaluation with map uniqueness constraint
	Continuous flow label
	Extensions and variants

	Summary

	Conclusion
	Summary
	Outlook

	Segmentation comparison results
	Global relabeling results
	Continuous segmentation results

	Acronyms and Symbols
	Bibliography

