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Abstract

The aim of this work is to analyze a convolution quadratureruary element approach to
simulate wave propagation in porous media. In Laplace domh& model results in an el-
liptic second order partial differential equation. Fitsbundary value problems of interest
are described and equivalent boundary integral formulatare derived. Unique solvabil-
ity of all discussed boundary value problems and bounddegmal equations is discussed,
first in Laplace domain and finally also in time domain. A Ghiediscretization in space
and a convolution quadrature discretization in time is gl Unique solvability of the
discrete systems and convergence of the approximate@wddire discussed. Finally, the
theoretical results are confirmed by numerical experiments






Zusammenfassung

Das Ziel dieser Arbeit ist die Analyse eines numerische Nifgsverfahrens zur Simu-
lation von Wellenausbreitung in porésen Medien. Das nusobeg Naherungsverfahren
basiert dabei auf ein Kombination der RandelementmethodeleniFaltungsquadratur-
methode. Die Wellenausbreitung in porésen Medien wird rilfetéines elliptischen Dif-
ferentialoperators zweiter Ordnung und entsprechendedvRaiproblemen im Laplace—
Bereich beschrieben. Fir die betrachteten Randwertproblesngden &quivalente Ran-
dintegralformulierungen hergeleitet. Die eindeutigehairkeit der Randintegralgleichung
wird sowohl im Laplace—Bereich als auch im Zeitbereich digtti Die Randintegralglei-
chungen werden im Raum durch eine Galerkin Approximatiokrdtssiert. In der Zeit
wird eine Faltungsquadraturmethode verwendet. Im weitevied die eindeutige LOs-
barkeit der diskretisierten Integralgleichungen und dmwergenz der naherungsweisen
Losungen diskutiert. Schlussendlich werden die theatatis Ergebnisse mit Hilfe von
numerischen Beispielen bestatigt.
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1 INTRODUCTION

Wave propagation is a widespread phenomenon within our@mwient, and porous mate-
rials play an important role in many branches of engineerfgorous medium is a solid

permeated by an interconnected network of pores filled witial.fl The solid as well as

the pores are assumed to be continuous. Natural substarmateassrocks, soils, biological

tissues, foams, and ceramics can be considered as porous rredd-saturated porous
media cannot be modelled satisfyingly with the theory oktldynamics. Based on the
work of Terzaghi, Biot developed a theory to model porous mesiee [12, 13]. One of

the significant findings was the identification of three wawes® compressional waves
and a shear wave. For the numerical simulation, severabappes, both finite element
and boundary element, have been developed. An overviewease thpproaches and on
analytical solutions is given in [47].

In this thesis, a formulation based on the solid displacdraed the pore pressure as the
primary unknowns is chosen. The reduction to these unknaswargy possible in Laplace
domain. Boundary integral formulations based on this apprdeve been developed by
Schanz and Messner [39, 40, 46].

Boundary element methods are a popular method to solve boumdkie problems. A

main advantage of the boundary element method is the reducfithe problem to the

boundary. The boundary element method is especially daifabexterior boundary value
problems, since only the boundary of the domains has to leetized and the radiation
condition is already incorporated into the formulation. dogrehensive overview on the
topic is given by McLean [38], as well as Hsiao and Wendlart],[Sauter and Schwab
[45], and Steinbach [52]. Primarily, elliptic partial déffential operators are discussed.

An overview on the application of boundary element methodsarabolic and hyperbolic
partial differential equations is given in [17]. Basicallyd different approaches exist:
Space-time integral equation techniques use the fundamsritition in time domain to
formulate integral equations. Utilizing a Galerkin dig&zation by ansatz and test func-
tions with respect to time yields a time stepping procedArsecond approach is based on
the Laplace transformation. For fixed frequencies standauthdary element methods for
elliptic problems are applied. The transformation back time domain employs spe-
cial methods for the inversion of the Laplace or Fourier$farmation. The convolution
quadrature method as developed by Lubich [32, 33] falls thi® category. This method
approximates the convolution by a numerical integratiomida, where the integration
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weights are based on the boundary integral operators irmbamlomain and the underly-
ing multistep method. For poroelasticity this property ssential, since the fundamental
solution in time domain is not explicitly known.

The method was first applied to parabolic boundary integgalagons by Lubich and
Schneider [36], where the authors discussed an indireglesiayer approach. The analy-
sis is based on an ellipticity estimate of the single layamutary integral operator outside
a sector of the complex plane with an acute angle to the nvegaal axis.

For the wave equation a similar approach was studied in [3d]this case the single

layer boundary integral operator is only elliptic in a hpléne. The related estimates
for the single layer integral operator and the hyper-siagoberator were developed by
Bamberger and HaDuong [3,4]. The analysis for the wave equatas recently extended
to boundary value problems and transmission problems hghabnd Sayas [31].

The original convolution quadrature method was develomedrfultistep methods and
has been extended to Runge-Kutta methods in [6, 35]. In rquagmérs, fast numerical
implementations of the convolution quadrature method werestigated [5, 7,22, 23, 30].
An overview over recent theoretical results is given in [8].

The aim of this thesis is to extend the theoretical resultsife wave equation to poroe-

lasticity. It turns out that similar estimates as for the waguation can be shown. In

particular, the theory is applied to the mixed, the Dirittdad the Neumann boundary
value problem. Stability and convergence of the resultisgréte system are obtained and
confirmed by numerical examples.

Outline

Starting from constitutive equations, Biot’s linear theafyporoelasticity is derived in

Chapter 2. The resulting system of partial differential emums is transformed to the
Laplace domain, where a simplified system of partial difféied equations based on the
primary unknowns, the solid displacement and the pore presss derived. Suitable

boundary conditions are defined resulting in the statemktiteomixed boundary value
problem of interest.

In Chapter 3 the analytic preliminaries are introduced. Iditaah to some basics from
functional analysis, some definitions for a simplified niotatare introduced. Moreover,
Sobolev spaces and the Lamé system are discussed brietlyefraore the general frame-
work of strong ellipticity is introduced. In the following;zreen’s formulae are derived for
the operator of poroelasticity and ellipticity and boundless of the defined sesquilinear
form is established. With the help of these theoretical lteswnique solvability of the
mixed boundary value problem is shown. Finally, the condmheaivative of the solution
as well as it’s adjoint are discussed.



Furthermore, the fundamental solution of poroelasticgyeell as some of it's proper-
ties are introduced in Chapter 4. In the following, boundatggral operators and their
respective mapping properties are discussed. The symmeddtions within these bound-
ary integral operators are investigated, too. Moreoversh@n ellipticity of the single
layer boundary integral operator and the hyper-singulanbary integral operator. The
ellipticity estimates enable us to establish estimatesafioboundary integral operators.
The dependency of all these estimates on the Laplace paresistanalyzed and stated
explicitly. Moreover, the Steklov—Poincaré as well as tlonParé—Steklov operator are
introduced. Ellipticity estimates are shown for both imtgperators.

With the help of the representation formula boundary irdegquations are introduced
in Chapter 5. Boundary integral equations for the mixed, threcBlet and the Neumann
boundary value are derived. Unique solvability and est®&br their solutions are pre-
sented. Again, the dependency on the Laplace parameteall involved constants is
stated explicitly.

Moreover, the Galerkin discretization of boundary intégrpations is introduced in Chap-
ter 6. The theoretical framework is developed briefly. Eat#s for the Galerkin dis-
cretization of several boundary integral operators aregd. Furthermore, the discrete
boundary integral equations for the mixed, the Dirichled #le Neumann boundary value
problem are presented. Unique solvability and bounds fersihiutions are discussed.
Error estimates for the unknowns on the boundary as well mghésolution within the
domain are given. Additionally, indirect approaches fag irichlet and the Neumann
boundary value problem are discussed.

The convolution quadrature method is derived in Chapter Forkastimates for the ap-
proximation of operators are stated. A fast method, deesldyy Sauter and Banjai [7],
for the implementation of the convolution quadrature mdtisobriefly discussed. Finally
a Galerkin discretization in space and a convolution guadgapproximation in time are
discussed.

In Chapter 8, the analysis done in the Laplace domain is usebt&n statements in time
domain. The unique solvability for the continuous systerbaindary integral equations
as well as for the fully discretized system of boundary irégquations is discussed .
Finally, error estimates for the approximate solutionsgaven.

Numerical examples are discussed in Chapter 8. For this wedunte also a simple col-
location approach. In the following sections we compare@aderkin approach to the
collocation approach, and the theoretical convergencersghined throughout this work.
First the error in space and afterwards the error in time &eudsed for the mixed, the
Dirichlet and the Neumann boundary value problem.

In the last chapter we draw some conclusions and discuss gpemeguestions.
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2 BIOT'S THEORY OF POROUS MATERIALS

In case of fluid infiltrated materials like water saturated, 9l impregnated rocks or air
filled foam, the elastic as well as the viscoelastic desorpdf the material shows a rather
crude approximation of wave propagation phenomena. Dua totaraction of the solid
skeleton with the fluid in between and furthermore the payasfithe material, a different
theory is necessary.

In 1941, a theory based on the work of Terzaghi was presegt8iib[12]. In the follow-
ing years, this theory was extended several times. A cadlectf Biot's papers on porous
materials has been published by Tolstoy [55]. A second théoe theory of porous media
is based on the application of axioms of continuum mechawidsstorical treatment can
be found in the review article by de Boer [19]. In this work wdlwbncentrate on the
linear Biot theory. A review on linear models, analytic sauas and numerical methods is
given in [47].

2.1 Governing equations

In Biot’s theory, a fully saturated material is assumed, ae.elastic skeleton with a sta-
tistical distribution of interconnected pores is consdzcdjbrIntroducing\/f as the volume

of the interconnected pores, avd as the volume of the solid, the porosity is denoted by
Q :Vf/V, whereV =VS+V'. In[13] the balance of momentum in the solid and in the
fluid are described as follows: Foe 1,2, 3 we have

0} +(1-@)f°=(1-@)psi — pa (UJ - u;“’) - % (uif - uﬁ) , 2.1)
2
of + ot = aprt +pa (U - &) + < (0 - ), (2.2)

whereu® andu’ denote the displacement of the solid and of the fluid resyslgti Addi-
tionally, f° and fif are the volume forces of the solid and of the interstitialflwvhile ps
andp; are the respective densities. Moreover, the apparent neasstylo, is introduced
to describe the dynamic interaction between the fluid andkieéeton. Note that the Ein-
stein notation is used throughout this work. Finakydenotes the permeability. For an
isotropic and homogeneous elastic solid and for a viscaesstitial fluid the following
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partial stress formulations for the stress tensor of thi@lmﬂ and for the stress tensor of
the fluid Ji‘; are obtained for, j = 1,2, 3,

2
of =y +ui) + (A + T ) s+ Qlyd, 23)
g = —9pd; = (QUy+ Ry ). (2.4)

The elastic behaviour of the solid is governed by the LamétamisA andu. The con-
stantsQ andR characterize the coupling between the solid and the fluig.t®tal stress is
given as

f
ij = G} +0;; = U(U}j +Uj ) + AU & — a pdij, (2.5)

where

a:(p(1+%> € [0,1]

is Biot’s effective stress coefficient.

The balance of the mixture is obtained by adding the two @ldstilances (2.1) and (2.2),

aijj + fi = (1— @) psiif + @ps i, (2.6)

where

fi = (1— @) fS+ of;
is the bulk body force. Inserting the total stress (2.5) th& balance equation (2.6), and
using the density

p:=(1-@)ps+ @ps
and the specific flux

g-=9 (Uif - U|S>
results in
PG+ (A +p)us i — api+ fi = pid + pr 4. (2.7)

By using the specific flug and the fluid stress tenso(lf as given in (2.4), from (2.2) we
conclude Darcy’s law

o 1 .1
Pfu?+5 (pf +p—(;‘> Gi+- G+ pi = £ (2.8)

In addition, the variation of fluid volume per unit referenadume is introduced as

¢—a+ L. 29)
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The variation of the fluid contert is governed by the mass balance
 +ij=0. (2.10)
Inserting (2.9) into (2.10) finally yields

2
auﬁi+%p+qi,i =0. (2.11)

Biot’s model results in the three coupled partial differahgquations (2.7), (2.8) and
(2.11), where in addition appropriate initial and boundeoyditions have to be formu-
lated. The system describes seven unknowns, namely tledssgilacement®, the fluxg,
and the pore pressuge

2.2 Theu-p model in the Laplace domain

When assuming vanishing initial conditions, the partiafedté#ntial equations (2.7), (2.8)
and (2.11) can be reformulated by using the Laplace tramsftion

[oe]

f(s) = £{f(t)} = / f(t)e it

0

with the complex Laplace variabkec C™. By convention we havé (t) = 0 fort < 0.
The Laplace transformation is a linear transformation aadsforms differentiation into
multiplication, resulting in the properties

L{af(t)+bgt)} =al{f(t)}+bL{g(t)} foralla,beC,
L)} =" L{f(t)} forneN.

The Laplace transformation allows us to eliminate the $jeftux from equations (2.7),
(2.8) and (2.11). Without the Laplace transformation thimi@ation is not possible, since
in addition to the specific flux the time derivative of the dfiedlux appears as well.

By using the Laplace transformation we obtain from Darcys (2.8)
1 Pa) . 1. . ¢
PfSZGiSJrq—D (Pf+£>SQi+E i+pi=f,

and therefore

~ CDZK o
= f' —p; — piS0 2.12
a4 SK(pf(p+Pa)+(p2< i~ Pi—p u,) (2.12)
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follows. For the Laplace transform of (2.7) we conclude

G55 + (A +H)st,ij—aﬁiJrﬂ:PSzﬁisﬂLB(ﬂf—ﬁi—PfSZ@),

where i
P=«prorpy i@ <™ (2.13)
Analogously, the Laplace transform of (2.11) reads
ashy; + %ZsﬁJr pﬂfs <ﬁf, — Pii — pfszﬁﬁi> =0.
Hence we consider the coupled system of partial differeatjgations
(p — Bps)SPT — pAGE — (A + p) grad divi®+ (a — B)0p = f — Bf', (2.14)

B

ps

2
Aﬁ+%sﬁ Bdivﬂ, (2.15)

o — B)sdivi® — - =
(@-p) =

where the related partial differential operator can betemiais

(uA (A + p)graddiv+(p — Bpr)s®  (a B)grad)
P =

(o — B)sdiv B, & (2.16)

“pis R

Note that
Pe := —ulA— (A + p)graddiv

is related to the system of linear elasticity.

In addition to the partial differential operator (2.16) weed to formulate appropriate
boundary conditions. We consider a bounded Lipschitz do®ai- R with the boundary
I = 0Q, where the exterior normal vectoris given almost everywhere. For Dirichlet
boundary conditions we prescribe the solid displacerigand the pore pressuggon a
part of the boundaryp C I' Neumann boundary conditions describe the traction of the
solid displacemerti® and the negative specific fldkin normal direction along the bound-
ary on a part of the boundafyy C ' withT =T'p Uy andlp NIy = @. The traction is
given as

e =0o-n (2.17)

with the total stress tensar, see (2.5). The negative specific flux in normal direction is
defined as
B

—0 2.18
o1 nP ( )

Vip=—G-n=sBin+
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see (2.12). For the functidd = (G5,p)" the mixed boundary value problem of poroelas-
ticity in the Laplace domain is finally given as

P

f in Q,
o  onlp, (2.19)
y1U = gy only,

S G

with the Neumann trace operatgt) = (}4'0°, wo) '

A rather similar set of equations can be derived by the litle@ory of porous media. The
differences between Biot’s model and the linear theory obpsmedia are studied in [48].
There it is shown that the theories for the compressible castradict each other, due to
problems in matching the respective material constantsnkrpure mathematical point of
view however, both partial differential operators shatera same properties. Therefore,
the mathematical theory developed in the subsequent alaptalso applicable to the
linear theory of porous media.
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3 VARIATIONAL FORMULATIONS AND BOUNDARY VALUE
PROBLEMS

3.1 Preliminaries

In this section, some preliminaries from functional anelgse given. The main references
are [26, 38, 45, 52]. In particular, we introduce severahtiohs and discuss some basic
properties of the Lamé system, see [38, 52].

Definition 3.1. Let X,Y be Hilbert spaces.

* Amapping &,-) : X xY — C is called a sesquilinear form if for allyu, € X, all
vi,Vo €Y andallA € C

a(u1 +Aup,vqp) = a(ug,vi) +Aa(ug,ve), (3.1)
a(uy,vi+Ava) = a(ug,vi) +Aalug, Vo). '

« A sesquilinear form is bounded (or continuous) if theresesxa constantgsuch that
la(u,v)| < c3lullx [IVIly (3.2)
forallue X andveY.

» The sesquilinear form(a -) satisfies the inf-sup condition if there exists a constant
y > 0 such that
sup 12UV

veY\{0} IVIly

> y|lullx forallueX. (3.3)

* The sesquilinear form(a -) is called X -elliptic if there exists a constarit s 0 and
a bijective linear operato® : X — Y such that

Refa(u,0u)] > c¢||u[|4 forallu e X. (3.4)

From the Riesz representation theorem we deduce that a kesguiform induces an
operator.

11
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Lemma 3.1. [52] For every sesquilinear form(-,-) : X x Y — C there exists a unique
linear and bounded operatar. X — Y* such that

a(u,v) = (Ayv) forallue X,vey,

where(,-) denotes the duality pairing M xY. On the other hand, each bounded and
linear operatoA : X — Y™ induces a sesquilinear form

a(u,v):=(Auv) forallue X,veY.

Let X,Y be Hilbert spaces, lei(-,-) : X x Y — C be a continuous sesquilinear form and
letl] : Y — C be a continuous linear functional. We consider the absnatilem:

Findu € X such that
a(u,v) =1(v) (3.5)

forallvey.

Theorem 3.2.[26,38,45] For every € Y* the abstract problem (3.5) has a unique solution
u e X with

1
Jullx < v” Iy
if and only if the sesquilinear forra(-, -) satisfies the inf-sup condition (3.3).

Lemma 3.3. (Lax-Milgram) LetX,Y be Hilbert spaces and additionally let the sesquilinear
forma: X xY — C beX-elliptic. Then the variational problem (3.5) has a uniqakison
ue X foralll € Y* with

1
lullx < Z 1©lx sy IHly- -
C(E';Ll —

Proof. The X-ellipticity estimate (3.4) can be written as

a(u, ©u)|
cillullx <=
uflx

Furthermore we have
Oully < [|O[lx_y llullx

and therefore

i ul <|a(u,@u)|< |a(u,v)|'
1®llx_y X~ [l©uly “venvioy [IVIly

The inf-sup condition (3.3) is consequently fulfilled andhbe equation (3.5) is uniquely
solvable. The estimate for the solution follows directlgrfr Theorem 3.2. O
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Most of the analysis of the partial differential equatiohparoelasticity will be done in the
Laplace domain. To get estimates in the time domain the dkgrey on the Laplace pa-
rameters has to be stated explicitly. This analysis is only possittlee Laplace parameter
sis an element of the half-space

Ct :={seC:Re[g > g > 0}.

This assumption restricts the choice of the time steppinthpotketoA-stable methods, see
Chapter 7 or [34].

We will use the following notation throughout the thesis
o :=min(1,0).
An important estimate is
max(1,Re[s))g < Re[g forallse Cj (3.6)

and similarly
max(1,|s|)o <|s| forallse CJ. (3.7)

To be able to apply the concept of ellipticity, see (3.4) h® system of poroelasticity, we
need to introduce an appropriate bijective operator asvial!

Definition 3.2. Let X, X», X3, X4 be Hilbert spaces ovet and let us consider the product
space
X:X1><X2><X3><X4.

The mappin@®,p : X — X is defined as

Oab = (3.8)

where ab € C. Furthermore we write

@a:= 01 (3.9)

Sobolev spaces

We will consider the setting of a bounded dom&inc R which is assumed to be Lip-
schitz. We denote it's boundary with= dQ. We will make use of standard results for
Sobolev spaces, see, e. g., [1, 38,45].
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We denote the space of infinitely times differentiable fiored with compact support as
D(Q) :=C5(Q) C C*(Q). The Sobolev spaces are denotedHlyQ) for r € R, see [38].
For vector valued functions the Sobolev spaces are takepaoemtwise.

We denote the norm of a Sobolev space by

HV”r,Q = HVH[Hr(Q)}d forr >0andd € N

for an elemenv e [H'(Q)]9. The dual spaces with respect to the inner product

(f. Vo= [ F(X)-v(x) dx
-]

are denoted bjH " (Q)]9. The norm forf € H"(Q) is given by

f,v
1] ai= sup Ve

r>0.
0s£ve[HT (Q))d IVl o

For a Lipschitz domaif2 the Sobolev spaces on the boundary are denoted'bly) for
r € (0,1), for the definition we refer to [38]. For an elemant [H' ()Y we denote the
norm by

Juller == lull e -
Forr € (—1,0) the spaced'(I") is defined by duality with respect to the inner product

(9V)r = / g(x) - V() dsy.
r

The norm is denoted by

,V
lolr= sup Y e 10

overr(rye VI —rr

For the definition of Sobolev spaces of higher order, a boyndéh a higher regularity is
necessary. For Lipschitz domains, Sobolev spaces wittehigdgularity are defined with
respect to piecewise smooth boundaries, see [45,52].

For an open parfo C I' of the boundary, Sobolev spaces of the ordek [0,1) are
defined by

H'(To) :={u=10lr,: U H"(MN)},
H'(Fo) := {u=10lr,: U H"(I) and sup@ € o}

with the norm
Jullry = inf { 0l : G € H(F) anddr, = u} .
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The spaces for negative order are defined by duality as

H" (o) := [H"(Fo)]* forr>0
H " (o) :=[H"(Fp)]* forr >0.

Definition 3.3. The trace operatoy for a function uc D(Q) is defined by

You :=ulr.

Theorem 3.4.[38] If Q is a Lipschitz domain and if 2 < r < 3/2, then the trace operator
Yo has a unique extension to a bounded linear operator

Yo H'(Q) — HY3(T),

and this extension has a continuous right inverse.

For fixeds € C} an equivalent norm iti1(Q) is introduced as

1

. 2 2 \2
Ivllig.0 = (lloracvi3g + lIsvi3q)

For a vector valued) € [H1(Q)]9 the norm is taken component wise. Additionally we
introduce the equivalent norm

1

IVl = g 1OV s (3.10)

In particular forU = (u, p) " with u € [H1(Q)]® andp € H}(Q) we have

1 2
2 2 2
P g = lorackl3 -+ i3 + | Sarack] + plGo.
From this we conclude the relations
2
o g 1 S
E (U P)ll1q < |—g| Il (us P}l < lll(u Pl g o < p Il (u, Plljs0 < % [(u,p)[l1q-
- - (3.11)
Another useful estimate is o
S|
loll10 < 2 1Vl (3.12)

dueto
1 _ s
IOy q < p 1OV llig.0 = o Y Il5.q-
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In the time domain we apply the spaces

HH(0, T.H¥(Q)) = {u(t,-) € HX(Q)/[|u(t,") [, o € H"(0,T) andu= 0 fort < 0}.
and

HH(0, T, H (M) ={u(t,-) € H¥(M)| [Ju(t, )|l - € H"(0,T) andu=0 fort < 0}.

An equivalent norm foH}(0, T;HX(Q)) is denoted by

T , 3
rkQ = (/ &ter(ta')Hk,Q‘ dt) ; (3.13)

If

0

whereas an equivalent norm foe H{ (0, T;HX(I")) is denoted by

: A\
Illyr = ( J]ar g, e, dt) .

0

Definition 3.4. For a,b € R and se C we abbreviate estimates of the kind
a<cc(s)b

as
a<cy(s)b (3.14)

as long as ¢ > 0 does not depend on the Laplace parameter s.

The Lamé system

Some well known results for the Lamé system will be statedhis $ection. For a more
detailed presentation see, €. g., [38,52]. The operatonedt elasticity is given by

Pe = —uA— (A + p)graddiv.

The operator is considered in a Lipschitz dom@irc R® with boundaryl” = dQ, where
the outer normal vectan is defined almost everywhere. For the oper&erthere holds
Betti’'s formula

aF(u,v) = (Peu,V)q + (TEU,V);

with the boundary stress operator

Teu:=Adivun+2udu+ punxcurlu onfl, (3.15)
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the sesquilinear form

/ 2ue;j(u)gj (V) + A divudivy] dx,
Q

and the strain tensor 1
€ij (u) = 5 (djui +diuj) .

A non-trivial result, Korn’s second inequality, results eflipticity and coercivity esti-
mates.

Theorem 3.5(Korn’s second inequality)Let Q be a Lipschitz domain, then we have

/a, Jei (@) b+ U3 2 lul2g  forallue Q)

Proof. See [38,41]. n

By adding thgLo(Q)]®-norm to the sesquilinear foraf (-, -), we end up with an equivalent
norm in[H}(Q)]3.

Theorem 3.6.For 4 > 0, A > 0 and se CJ the following estimates hold for all @
HY(Q)®

af(uu)+[ullfq 2 (3.16)
2
af(u,u)+ [Isulg.o = ®lullfyq- (3.17)

Proof. Inequality (3.16) follows immediately from Korn’s secomeguality. Furthermore,
by applying estimates (3.16) and (3.7) we end up with

2 2 2
lulllig o = llgradullg o + [Isullg o
2 2
< ullf.q +IIsulo

< cpa® (u,u) + max(L, |s) |Jull3

sf”
o2 lulga

Cz E
< oz 2+ suf3o)

< ¢y |af(u,u) +
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3.2 Strong ellipticity

Rather general approaches for the analysis of boundaryraiteguations have been de-
veloped, see, e. g. [26,38,45,52]. We follow the approagines in [38], where strongly
elliptic differential operators are considered.

A general partial differential operaté of second order is given by
3 3 3
=3 > Oi(Adu) + z Ajdju+Au onQcR3
j=1k=1

where the coefficients

Aj=al]. Aj=labg. A=[ap] 1<p<3andi<q<3

are functions fromf into C3*3, the space of complex:33 matrices. Notice that is in
general vector valued.

Definition 3.5. A second order partial differential operatd? is called uniform strongly
elliptic onQ if

3 3
ey 3 [AK(0&n]"&n| >clé?In|?
J: :

forallxeQ, & eR3 necC3andc>0.

The operator of poroelasticity (2.16) turns out to be sthpegiptic.

Theorem 3.7.Forse€ C} andu >0, 2u+A >0,k >0, 9> 0, (pa+ @ps) > Othe partial
differential operatorP as given in(2.16)is strongly elliptic.

Proof. The Fourier transform of the main pa?y is 730(5), Where730(£) is the homoge-
neousC***-valued quadratic polynomial

R pig|& P+ (u+N)&EE 0
Po(§) = (21 B .
0 — &
SPf

with the 3x 3 identitylz and€ = (&1,&)". Thus forn = (n1,n2) 7,

0" Po(€)n = (217 {u &2+ (42 |1 a2+ % |£z|2|nz|2]



3.3 Green’s formula in poroelasticity 19

and thereforé® is strongly elliptic if and only if

u>0, 2u+A >0, Re{ﬂ} > 0.

SPt
The last constant is given as
B _ KQ _ K¢ +3K°¢P(pa+ PPF)
or @ +SK(Pat QPF) |2+ K (pat Qo)
and therefore the real part is strictly positive under tivegiassumptions. ]

3.3 Green’s formula in poroelasticity

Let Q be a Lipschitz domain and latbe the outward unit normal vector én= 0Q, which

is defined almost everywhere. The componentwise multijinaf the partial differential
equation (2.14) with the complex adjoint of a test functgrintegration ovef, applying
integration by parts, and summation gives

J 15 =BT 0x= [ [0~ Bor)0 — uaky — A+ )Ty + (o~ B)i] 9 o
Q Q
— aF(G8,v) + (p — Bps)S* (T°, V) — a (P, divV) g — B(OP,V)q — (TEG — aﬁn»\?r , |
3.18

Recall that the_,-inner products are defined as

(uv)g = /u(x) -V(X) dx,

Q

and L
(F.ghe = [ 100-90) dse
r

When multiplying the partial differential equation (2.15fmthe complex adjoint of a test
functiong we obtain accordingly

B @*s_] _

B . /\f_ / RPN -~
— [ —divf'gdx= a—B)sdivl® — —Ap+ — dx
/pfs q (a—B) brs P+-5 P
Q Q
_ L, S =S B ~ (PZS .
= as{divi,g)g + Bs(05 Ha)g + S (0P Dd)g + "= (P.dig
aslnTad) P oiss
B8<n u,q>r pfs<dnp,q>r-

(3.19)
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Now, by combining (3.18) and (3.19) we conclude Green’s fostula in poroelastic-

T s (@ Q) O, e

with the sesquilinear form

2 ((T°,P); (v.q)) = a~(0°,v) + (p — Bpr)S* (0%, V) — & (B, divV)g — B (P, V)g
B s

+ aS<diVl/J\S, q>Q +BS<GS7 Dq>Q + PTS <Dp\a DQ>Q + ? <p\7 q>Q (321)

and with the boundary stress operator

s TeG—apn Te —an &
Vl(ﬁ): Bsn G + Bdnﬁ = g pﬂfsd“ (ﬁ)' (3.22)

prs

The boundary stress operator (3.22) reflects the dependétiay elastic stress on the pore
pressure, while the flux of the pore pressure depends on $péadement. The boundary
stress operator can be rewritten by using the stress tesser(2.5), the normal vector and
the negative specific flux, see (2.18).

In order to deduce Green’s second formula for the partidgidihtial equations in poro-
elasticity we need to introduce the formally adjoint pdddidferential operator as

N (/JA (A + p) graddivt(p — Bpy )& (a_ﬁﬁgrad)
P = — B o’s |, (3.23)
—(a—ﬁ)dlv —p—ng—f—?
and the related adjoint boundary stress operator
( Te asn )
=\ 5.1 B : (3.24)
—pBn’ —9
B e

Then, Green'’s first formula for the adjoint partial diffet@hoperator reads

aq((0%p); (vq)) = < (Gg) P (;) >Q + < @) W CJI) >r : (3.25)

and therefore by equalizing (3.20) and (3.25), we concludee@®s second formula in
poroelasticity,

() 7)) {(6) 7 L0)). = (5) () (6)-(0)),

(3.26)
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For readability we introduce functions = (G°,p)" andV = (v,q)'. Green’s formulae
can therefore be applied to the following setting. We denateterior domain by2™ and
the corresponding exterior domain By := ]R3\Q—. Green’s first formulae for both the

interior and exterior problems read as
ag:(U,V) = (PU,V)q: F(yiU, )5 V), forallU e [H3(Q)%V e [H}(QF))*,
(3.27)

ag:(U,V) = <u,7~>v>Qi T (U, V) forall U e [HY(Q5)]4V e [H2(Q*))*.
(3.28)

The radiation condition for the exterior problem is embetldeo the Sobolev space
[HY(Q™)]*. For poroelasticity the physically relevant solutionswhexponential decay

as||x|| — « and so the Sobolev spafé’(Q*)]* can be used for the formulation of the
relevant variational problem.

The jumps of the traces ovErof the conormal derivatives and the adjoint conormal deriva
tives are denoted by

Ulr=%U-y%U, yUlr=ynU-yU, [pUlr=y3U-yU.

Additionally, if yO+U = Y, U we denote it simply bypU. This notation will be used
accordingly fory,U andy;U.

Lemma 3.8. Let ue [Lo(R3)]* with ug+ € [HY(QF)]% If
Put =0 onQ¥,
then
(PU.@)r = (U.Py) =—(U]r.ad)r+ (il yow)r  forall g e DR, (3.29)
and
ag+(U |o+,V)+ag-(Ulg-,V)={(yyU,)p V) —(yfU,)g V), forallVe [H%Ré\g())])“.

3.4 Boundary value problems

With the help of Green’s formulae (3.27) and (3.28) we canyarearelated boundary value
problems. Unique solvability is proven by the Lemma of La’kgvam (Lemma 3.3),
which requires boundedness and ellipticity of the sesueslr form (3.21). Furthermore
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the dependency of the ellipticity and boundedness corsstamthe Laplace parametsr
will be studied.

For readability we use the abbreviatidds= (u,p) " andV = (v,q) " and the operatd®s
as introduced in (3.9). The operat®g is bounded by

S
g

19s]/x_,x < max1,|s|) < (3.31)

whereX is defined as in Definition 3.2.

Theorem 3.9. Let the Lamé constanfs > 0 and 4 > 0, the permeabilit > 0, the solid
and partial densitieps > 0 and ps > 0, the coupling constants Q 0 and R> 0 and the
porosity@ € (0,1). Moreover, let = C5. Then we have

Relaq(U,0)] 2 a0 [V

forallU e [HY(Q)]%

Proof. The real part of the sesquilinear form (3.21) with the testfion (su p) is given
by

Refao((U, p); (su p))] = Re[s|a" (u,u) + [s*Re[s(p — Bpr)] |ullg g

¢

— 1
+Re|(B—B)s(u, Up)q| *ERE{Q 19pll6.q + 5 Relsl Pllg.-

Sincea is real valued, the corresponding mixed term vanishes.

For Im[B] = 0 the second mixed part vanishes as well. In this case thamamaarts can
be estimated further. We have

p¢*Rels + K1 s> Re[s| + Ko Re[s]? + @*p?kIm [s]2

Re[s(o— Bp1)] = (3.32)
|92+ sK(pat+ @pr) |
with
K1 = K(Ppa+ @p:ps(1— @)K (Pa+ @Ps)),
Kz = @*Kppa+ K@ i ps(1— @) + PO°K (Pa+ @PF).
By using (3.7), the denominator can be estimated by
2 _ |s®
|9 +sk(pat+ 9p1)|” < =5 (3.33)

g2
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with the notation as introduced in Definition 3.4. Thus wedhav

|s*Re[s(p — Bpr)] = o®Rels]|s.
Furthermore we have

1 Re{ﬁ} _ K@P(¢P+ K2Rels| (pa+ 9pr))
o 2
P |92 + Sk (pa+ 9P|

< (3.34)

and therefore X
Lpel8]; ERe8
Pt S E

Finally we end up with the estimate

ag((u,p); (sup))
Re[s o”

sf?

2 Re[s]a®(u,u) + a®Rels s |u]l§ o + Ilgradpl(5. + Re[s] | Plgq-

Korn’s second inequality, or more precisely estimate (Bylélds the desired result. These

estimates complete the proof for the caséfin= 0.

For Im[B] # 0 we can estimate the mixed part further by

Re|(B—B)s(uOp)a] = 2 BI[1S |TploallUlog
and we end up with
Refaa((u. ); (su )] > Relsla (1) + [sZRe[s(p— Bpr)] [ula + & Rels Pl
~2lmiB]]is|3ploa loq+ - Re| 2| 10PI3g
~Refga(uu) + (|5%Re[s(p - Bpr)] - 3 ImIB]l 1) Iulfg
i BITS 0Pl - = v/ImBIS ||u\|3,9)2

2
(pi u £2|Im[B ]|ys|> Hmpy|§,9+%Re[S]HpH§,Q
> Refs aF(u.u)+ ([s7Re[s(p - Bpy)] - 75 Im B8 ) [l

+(Lre[B] - e2imigils ) 10012 g + & Rels [1pI2
o S oot R 0.0
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for all € > 0. Due to Rés| > 0 it is sufficient to ensure

1

s*Re[s(p—Bp1)] — ; Im[B]|Is| > O, (3.35)
el Re{ﬁ} —£2Im[B]||s| >0 (3.36)

P S

for an appropriately chosen In particular,e® needs to satisfy the inclusion
B
mls .1 Reld] a3
s|”Re[s(p — Bpt)] ps [IM[B][|s|

Hence we have to ensure

im[B]2 < 2-Re| Z | Refs(p - Bpr)]
Indeed, by using
¢Pk%p7|Im|s]|”

@2+ sk (pa+ @p1)|?

Im[B])?
and (3.32), (3.34) we obtain

pr Im[B]?
ceisto— o) ]

@Pk2p7 |Im [s)|°
[0@*Rels] + Ky |s°Re[s| + Kz Re[s)* + ¢*p?k Im [s]*]k 9292 + k2 Rels] (pa+ @pr))
. @®k2p?[Im s
(KiRe[s + @BpZk2) |Im [s]|* + ¢®pZk4 |Im []|* Re[s] (pa + @pr)

@
= @+ K7Re[s (pat 9p1) !

(3.38)

Thus we can chose

821( imigls| 1 Rel$] )

~ 2\ |sPRe[s(o—Bpr)]  Prlimsls

which obviously fulfills the inclusion (3.37). By using thetiesate (3.38),

Im[B]1° |sf? ¢ 1B
sI*Re[s(p — Bpr)] = P+ Kk7Reld (pa+ 9pr) pr Re{ }

S
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we end up with an estimate for the term (3.36)
1. 18] . 11 m 11 ¢ m
—Re|=| —¢&°|Im[B]||s| > =—Re|=| —=— Re|—|.
orFele] MBI 2 5o Re S| 5 o o R S

This term can be simplified to

1

@ 1B
2(1_(P2+K2Re[5](pa+¢ﬁ’f))PfRe[S]
1 Kk*Re[s|(pa—@pr) K@*(¢*+K>Rels| (pa+ @ps))

~ 292+ k2Re[s (pa+ 9p1) |2+ K (pat+ 9p1)|°
:}chz K ReS](pa‘f“pr))'
|92+ sk (pa+ @pr) |

We haveK3(p(pa+ @pt) > 0 and together with the estimate (3.33) this results in

1k@?(k*Re[s] (pa+ @p1)) _ Re[g a?
@ +sk(patopr)° ~ Isf

Again, using (3.38), i. e.

RRES i

2
Re ] " @+ Reld (oat gpr) 3 RESP e

yields an estimate for the term (3.35)

SPRe[s(p— Bpr)] 5 Im (8] s
1 Vi
>3 (1 s oo

The right hand side term is given as

|S|2R€‘[S(P—Bpf)] (1_ (p2+K2REEg]2(Pa+ (ppf))

_|8*(p9*Rels] + K1 |s*Re[s| + KoRe[s]* + ¢*p?kIm[?)  k2Re[s] (pa+ @p1)

)Is?Re[stp o).

|92+ sk (pa+ 9pr) | @+ k2?Rels (pa+ @ps)
with

K1 = K(ppa+ @psps(1— @)K (pa+ @ps)),
K2 = 9’k ppa+ K@2ps ps(1— @) + p@PK (Pa+ @pr).
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Estimate (3.33) and the estimaie® Re[s) + Ko Re[s)? + ¢*p?k Im[s2 > 0 yield

¢ ) _ Ki|s*Re(s]”k*(pa + ¢p1)0?

" Refs( —Bor)] (1‘(;»2+K2Re[s]<pa+cppf> ~ (¢?+K2Rels (pa+ @pr))

Moreover we havé&;k?(pa + @ps) > 0 and

¢*+ k*Re[s] (pa+ ¢p1) < max(1,Re[s)) (¢” + k*(pa+ @p1) < R%[S]'

Combining these estimates with estimate (3.33) yields

Ky |s|” Re[s]” k2(pa+ @py) 02
(@?+k2Rels] (pa+ @p1))

2 Re[s]|s]”0®.

Hence we end up with the estimate

ag((u, p); (sup))

> E 3 2 w2, Re[§a? 2 2
2 Re[s|a™(u,u) + o”Re[g]s| ||U||o,9+v||9radp||o,Q+Re[S]||I0||o,Q-

Again, Korn’s second inequality, or more precisely esten@.17), yields the desired re-
sult. O]

Corollary 3.10. The sesquilinear forn{8.21)is bounded, i. e.
< 1
aa(U.V) S IV llisllVlllg o
forallU € [H}(Q)]*and Ve [HY(Q)]%
Proof. The sesquilinear form is given as in (3.21),

aQ(<ua p)’ (V7 q)) = aE(u,v) + (p - Bpf)SZ <u7V>Q —a <p7diVV>Q - B <Dp>V>Q

B ¢’s

+ aS<diVU, q>Q +BS<U, Dq)Q + pTS<|:|pa Dq>Q + ? <p7 q>Q :

All constants in the sesquilinear form have to be estimafésihave

= @+ SK[(1— @)pspr @+ (1~ 9)PsPa+ PP1Pal

lp—Ber @2+ sk (pa+ @P1)
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and with the help of estimate (3.7) we conclude
1
_ < =

Moreover we have

B = Pfosz
SK(ps @+ Pa) + @2

and therefore
<o
E

‘_

1
[aa((u, p); (va))| < IEV]lgq IBu ooty [s\lo.q lIsUlo.q + [1EVlloqllPlloo

1
+[IsMlo.q SHP +lIsdlo,q [|Bullo.q +[10alloq [ISUlo.e
0.0
1
+ 1 0dllo.q gDp +Isdloq lIPllog
0.0
1 1
< Z ||| (v. u =
S S0 g (ullso+ 1 ZPllsa)
1
S g lhva s all(up)liig q-

A useful estimate as stated in [3] is given by the followingfea.

Lemma 3.11. For any functionp € HY/2(I") and se CJ there exists an extension
ue HY(Q) such that

—Au+su=0 inQ,
u=¢ onl

and
llulll|g.0 < max(1,|s|)"/2 ll1/2r -

Let £ denote the continuous right inverse of the trggas stated in Theorem 3.4. For the
extensiort ¢ of the boundary daturg an estimate of the kind

Iullls,0 S 18 ||fP||1/2,r
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is straight forward. However, Lemma 3.11 defines an extengibich has an optimal
bound with respect te, see [31].

The ellipticity estimate (Theorem 3.9), the boundednesthefsesquilinear form (3.21)
(Corollary 3.10) and the extension operator as defined in La®uhl give us a bound for
the solution of the mixed boundary value problem (2.19).

Theorem 3.12. The mixed boundary value problem
PU=f inQ,
wU=9go onlp,
yiU = gn only

has a unique solution & [H1(Q)]* satisfying

3/2
s

s
(1710 + lonll -2, ) + o gz o0l /2

- <
V305 7o8

Proof. The respective variational formulation of the boundaryegbroblem is given as:
FindU e [H1(Q)]* with yoU = gp onlp such that
ag(U,V) = (f,V)q + (9N, YoV, (3.39)
forallV e [H3(Q,Ip)]%.

First we extend the functiogp € [HY?(I'p)]* to a functiongp € [HY/?(I")]* such that
dp = gp onlp. Furthermore, the extension operator as defined in Lemniai§sed to
define the functioty € [H1(Q)]* such that

Uglr = 0b

Next we split up the solutiot into U = Ug + Ug with Ug € [H3(Q,p)]* to be found.
Insertion into (3.39) yields a variational problem:

FindUp € [H3(Q,Tp)]*
an(Uo,V) = (f,V)q + (9N, V) —aa(Ug,V)
forall V in [H3(Q,p)]*.
Utilizing Corollary 3.10 and Theorem 3.9 results in
a°a ||| Uoll? , < Refaa(Uo, ©sUo]

s,Q ™

S [(f,Uo)q| + ‘<9Na@sV0U0>rN}+ |aq (Ug, ©sUo) |

s
< (11110 +ovl1/2r, ) 1OWoll o + o 1 Us g o Vs g g
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Estimate (3.12) can be applied {@sUo||; o resulting in

S|

IVollg o = gog (If1-2a+llonl-s/2ry +[IVsllzq) -

Applying Lemma 3.11 to estimate the norm of the functiyresults in the given state-
ment. 0

It is well known that the conormal derivative, as defined ir2g3, of a solution of a ho-
moegeneous boundary value problem is bounded. An estimatiean in the following
lemma.

Lemma 3.13.Let U € [H1(Q)]* such thatPU = 0. Then

L
ViUl _1/20 S 532 Vg q-

Proof. Applying Green’s first formula and Corollary 3.10 results in

yJ, e
IWUl_1pr =  sup '<H1—>r'
0£pe[HL/2(M))4 Pllajor
sup lag(U,£9)|

oLgemvzrys 1@llyar
LIVl €0l 5.0
sup  — ’

0#£@e[HY/2(M)]4 H‘P|’1/27r

~Y Y

where€ is an extension o into [H(Q)]?%, as described in Lemma 3.11 componentwise.
Thus we have

max(1, |s|)*/2
AUl zr S =5 — IVl 5.0
which together with the estimate (3.7) concludes the proof. O

The estimate as given in Lemma 3.13 can be extended to theqtithp conormal deriva-
tive.

Corollary 3.14. LetU € [H}(Q~ uQ™)]* such thatPU =0in Q- UQ™. Then
|S|l/2

I0AYIr a2 S a7 11U g -

The adjoint conormal derivative as given in (3.24) fulfillsimilar bound.
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Lemma 3.15. Given Ve [HY(Q~ UQ™)]* such thatPV = 0in Q- UQ™. Then
_ |S|1/2
IhaVirll—a2e < e IV llis.a-

Proof. Applying Green’s first formula for the adjoint problem and Gitary 3.10 results
in

||V1V||_1/2’r = sup M
ozgerzrp 1@llzr
sup [aa(Ee,V)|

OF@e[HY/2(M))4 “q’Hl/ZJ'
L1050Vl
sup .
0£@e]HY/2(r)]4 l@ll12r

~

The estimate

1
l120llg.0 < 5 ll€0lls.0

and Lemma 3.11 conclude the proof. m



4 SURFACE POTENTIALS AND BOUNDARY INTEGRAL
OPERATORS

To describe solutions of the partial differential equasi¢®.14) and (2.15) we use appro-
priate surface potentials which are based on the use ofteddiandamental solution. We
proceed as in [38], see also [26, 52].

4.1 Fundamental solution

A fundamental solution of the partial differential operaf as defined in (2.16) is given
by, see, e.qg., [46],

USy) ROGY)] _ caxa
Gs(x,y) = | N7 ’ c C™7, 4.1
s(*Y) {Uj(x,y) PP(x,y) 1)
where
1 az%_ 02 —onr A% alz aor 2 —asr
R . S 2 . _ R 3
( 7y) 4m(p BPf)SZ la%_azz al azze +(dla3 3>e

fori,j =1,2,3 with

g2 1| ¢*Sp;  S*(p—Bps)  Spi(a—P)?
127 2 BR A +2u B(A +2u)

@?SPp;  Pp—PBpr) | Lpi(a—PB)2\*  so?pi(p—PBpr)

i\/< o ez ) o ] “2
and
agzw, aEZM,
u A+2u

as well as

Rk:3l’ I’r2 51 3r I’r aj"f‘alfr,ir,j: r:\x—y|.

31
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Moreover, there holds
s(a —B)psr
Pi(xYy) = ’

10 = 4B+ 20)(0f - a3)
Uj(x,y) =sR(xy),

SPt
PP(x,y) =

1 1
(a1+ F) e i _ (02+ F) e“zr] ,

(@ - adje o — (a3 - ad)e o]

for j =1,...,3. The parameters represent the three waves occurringaelasticity.as »
represent the fast and slow compressional wavesxgride shear wave. If the property

Re[ai] >0 fori=1,...,3. (4.3)
is fulfilled, the fundamental solutioBs(X,y) decays exponentially as= [x—y| — oo.
For a3 this property follows from an appropriate choice of all paeders involved.
Lemma4.1. Letse C5 and@ < (0,1), p >0, pf >0, pa >0, ps > 0andk > 0, then
Re[az] > 0
andas(s) is an analytic function of s.
Proof. Sinceas is defined as a square root of a complex value, we simply takedhare

root with the real part greater or equal to zero. This apgrdais if the real part is equal
to zero. However if Irr{a32] # 0 we automatically get Res| # 0 and thus Rexs] > 0.

Remember
013%: SZ(P—BPf)'
u
We have X
0—Bpr = 21+scz _ 0103+SC203+S(21C12+ |S|“ CoCa (4.4)
3+SG |C3 + S|
with

CL= P’ Co=KpPPatKPPrPs(l— ),
C3=¢?,  Ca=K(Pa+t PPF).

Settings = a-+ bi we have Injg = b, Im [$*] = 2aband Im[s®] = b(3a® - b?). Inserting
these definitions results in

Im [C]_Cgsz + s3cocs + |s? secy + |sf? 520204}

= b [232¢4C; + b?a2C,C4 + 82(3C2C3 + CaC1) + b?(CaC1 — CoC3) + 82¢1C5)
= b [b?(CaC1 — C2C3 + 82CoCs) + a32C4C4a%(3C2C3 + C4C1) + 82C1 Cg)
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for the enumerator of (4.4). We can further estimate

C4C1 — C2C3 = —(KPPa+ KPP Ps(1— 9)) 9%+ p@*K (Pa+ PPF)
= —@*KPPa— YK P Ps(1— @) + P@PK Pa+ P3P K (Ps(1— @) + Pr @)
= ¢*pEK
and since; > 0 fori=1,...,4 anda= Re[g > 0 we conclude that the imaginary part of
sz(p — Bps) can only be zero if the imaginary part®is zero. If Im[s] = 0, the expression

a32 is strictly positive sincep — Bps is strictly positive. Therefore Hes] can always be
chosen strictly positive. ]

For the other two parameters we have to postulate the pyof@e®). Additionallya: # a2
has to be satisfied.

Assumption 4.1. We assum®e[a;] > 0 andRe|a] > 0. Furthermore we assume

¢?sPpr  Sp—PBpr) | Pprla -2\ SoPpi(p—Bpr)
Re[( BR " Atou | B(r+2u) ) ~BRO +2u)

] >0 (4.5

¢S Sp-Bpr)  Lpila—B)*\°  ePpi(o—Bpr)
'm[( BR ' At2u | B(r+ow) ) ~YTBRO +2u)

Remark 4.1. Letsc C§ andg < (0,1), p >0, ps >0, pa >0, ps > 0andk > 0, then the
fundamental solution as defined(#.1)is an analytic function with respect to s.

Proof. The square root functiogysis analytic forse€ C\ {s€ R|s < 0}. Sincef # 0 for
se C£, assumption (4.5) guarantees thatanda, are analytic. With the help of the same
argument the proof of Lemma 4.1 guarantees thanda, are analytic.

Furthermores®(p — Bps) # O for se C; and due to assumption (4.6% # a? and there-
fore the fundamental solution itself is analytic with resj® s. ]

The singular behaviour of the fundamental solution as giwef@.1) is well known. We
have

Ui'jz(x,y) = m {rVirJ +(3—5v)J; }%—FO(].), Ui(x,y) = O(1),
PP(xy) = gag + O, R(xy) =O(L).
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It turns out that the singularity of the bIod:JgJE(x, y) is the singularity of the fundamental
solution of linear elastostatics, wherd2¥x, y) has the same singularity as the fundamen-
tal solution of the Laplace operator. In the remainder offtinelamental solution (4.1) no
further singularities appeatr.

We define the operator, see (3.8)

Remark 4.2. UF and P° are symmetric with respect to x and y, thuS®,y) = UE(y,x)
and P°(x,y) = Plp ), whereas Pand U, are skew symmetric and thugRy) = —R(y,X)
and U (x y) = (y, X). Finally, the transposed of the fundamental solution careke

pressed as
Gs(y> X)T = /\GS(Xa y)/\_l

Remark 4.3. By using the operato\ one can rewrite the conormal derivative of the
adjoint problem as

=ApA Tt

4.2 Boundary integral operators

By using the fundamental solutidBs(X,y) we introduce the Newton potential

) = /Gs(x, y)f(y)dy forxeRS.
Since the underlying partial differential operaf@ras given in (2.16) is a strongly elliptic
operator with constant coefficients, see (3.7), we conglsele, e.g. [26, 38],
N(s): [HY(R3]* = [HTYR3)* forallseC,reR.

In addition to the Newton potenti®(s) we introduce the single and double layer poten-
tials

/Gsxy y) dsy,

DL(5)[]() i~ / Gy @(y) ds,

r
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for x € R® \T, whergGg(x, y) is the fundamental solution of the formally adjoint partial
differential operatorP, see (3.23). The surface potentials and related traced thi
mapping properties, see [38],

ViSL(s) 1 [H™Y4(M)]* = [HY2(M))%, yDL(s): [HY*(M)]* — [H2(M))*
and satisfy the jump relations

[SLYlr=0, [ynSL(Ylr=-¢, [DL(S@|r=¢, [viDL(s)¢|r=0. (4.6)

Since the partial differential operat®ris not self—adjoint, the resulting boundary integral
operators are not self-adjoint. For a complete overvievherptoperties and the different

relations of the boundary integral operators and therei@djon such a general situation,

see, e.g., [38]. The boundary integral operators for theiadpperatorP are defined by

SL(s)[g](x) = / Gi(y.X)@(y) dy, forxeR3\T,
r

DL(9)4)(0)i= [ AGs(yX)]" $(y) dhy forxe RO\
I

The following duality relations are a direct consequencthefdefinition of the boundary
integral operators.

Theorem 4.2.For @1, @ € [HY/?(")]* we have

(6 SL(S) 1. 92 = (@1 0SL(S) @2)

In addition, for s, @, € [HY2(I")]* there holds

(@Y DL(9) )y = (W SLS) @1,y ) .
(@.v5DL(S) Y1) = (Vi SL(9) g )y
(Y1, DL(s) Yr) = <71|5T—(5) Y, L.Uz>r :

Next we introduce the standard boundary integral operaitoyzarticular the single layer
integral operator
V() == Y SL(s) : [HY2(M)]* — [HY2(M))%, (4.7)
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the single layer integral operator of the adjoint problem
V() :=yoSL(s) : [H 2(M))* — [HY2(M)]%,
the hyper-singular boundary integral operator
D(s) := —y1DL(s) : [HY2(M)]* — [H~Y2(r)*, (4.8)
the double layer integral operators
1

K(s) := = (yg DL(S)+Y, DL(9)) : [HY2(M)]* — [HY2(M)]4, (4.9)

K(s) :=

NI~ N

(¥ DL(9+1 DL(9)) : HYAM)* = HY2(N)]%, (4.10)

and its adjoint

K(s)* := % (v SL(S)+y; SL(9)) : [HH2(M))* — [H-Y2(m))*.

Furthermore we conclude the following expressions foritaeds and conormal derivatives
of the single and double layer potentials, i.e.,

0SLE Y =V(SY, VESLIS) W =50+ K(9"W,
KDL 9= +50+K(S99.  WDL(S 9= -D(99.
0SLE W=V, Vi SLS) Y =T W+ K(5)°W.
K OLS9=+,0+K(Se  WDL(9@=D(9"p

for ¢ € [H~Y2()]* andg € [HY?()]* almost everywhere.
Lemma 4.3. [38] For the boundary integral operators one has the foligwelations

V(s)D(s) = %I —K(3)?, V()K(s)* =K(s)V(s),

D(9K(s) = K(°D(s), D(S\V(s) = %ﬂ _(R(s)")2

Moreover, the traces of the Newton potentik) imply the volume integral operators

N(8)o := JoN(s) : [H™H(Q)* = [HY()]%,
N(8); :=1aN(s) : [H™H(Q)* = [H™YZ(M))".
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4.3 On symmetry and ellipticity

Boundary integral operators related to partial differdmguations with complex parame-
ters are not self—adjoint, see for example the boundargrateperators for the Helmholtz
equation in [31]. The single layer integral operator andhyager-singular operator for the
Helmholtz equation are however symmetric.

The original partial differential operator (2.16) for petasticity is not symmetric, we
therefore cannot expect symmetry for those integral opesaOn the other hand, the par-
tial differential operator has a block skew-symmetric stinwe. This structure is preserved
by the boundary integral operators.

Lemma 4.4. For the boundary integral operators of poroelasticity asided in(4.7), (4.8)
and (4.9)there hold the following relations:

V(s)T =AV(s)A L,
K(s)" = AK(s)*A7L,
D(s)" =A"ID(s)A

Proof. The traces of the two single layer integral operator (4.€)aatjoint to each other,
I e.
V(99.4)r = (@V(9w)  forallg.ye H M)

By using Remark 4.2, the single layer potential of the adjorobfem can be written as
SL(s) = ASL(s)A— 1.

When we consider the Dirichlet traces the first relation f@sommediately. For the dou-
ble layer potential we apply Remark 4.2 and Remark 4.3, resgpilti

DL(s) 9= [ [11Gs (xy)] o) dsy
= [ [AATIAGsy A gly) ds,

[AViGs(y, N1 " a(y) ds,

A yiGs(y,X)] " Ag(y) ds,

I

A~IDL(s)A@
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and thus

K(9)9.4)r = (A K(SAg.0) = (9.AK(s) A1) .

Furthermore we have

D(s) = y1DL(s) = A 'DL(S)A = A" DL(s) = A"'D(s)A

and due tdD(s)* = D(s) the last relation follows immediately. O
Lemma 4.4 can be used to write the single layer integral epeeand the hyper-singular
operator in the following form.

Corollary 4.5. The single layer boundary integral operator can be written as

Vii(s)  Vaa(s)
V<S): (_s\lljz(s)T Vi;S))

with the symmetric operators

Via(s) :(H Y3012 = [HY2(0)PR,
Vaa(s) :HY2(r) = HYA(I),

and with the operator

Vio(s) tHTY3(M)  —  [HY3(M)2.

Proof. If we split the single layer boundary integral operator ifdor operators

_ (V1a(s) Via(s)
V(e = (Vzl(s) V22(5)>

and apply Lemma 4.4, the transposed of the operator is gsven a

(g ) (v ) (" )

79 (e

_ < V11(S) —S V12(S)>
—l/S \él(S) V22(S) )

We end up with the relationg 1(s) =V11(S) ', Vaz(S) = Va2(s) " andVia(s) = —1/s\y(s) "
as stated. O
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Corollary 4.6. The hyper-singular operator can be written as

D11(s)  Di2(9)
Dis) = <_éD12(S)T D22(5)>

with the symmetric operators

Dua(s) :HY2(MPE  — [H Y1),
Do(s): HY2(M)  —  H7YA(I),

and with the operator

Dia(s) : HY2(M)  —  [HY2(M)2

Proof. The proof is done in the same way as the proof of Corollary 4.5. O

Corollary 4.7. The double layer integral operator is given as

with the operators

Kia(s) :(HY2(M)P = [HYAI)P,
Kao(s) : HY/2(T) - HYZ(),
Kio(s) : HY2(T) —  [HYZ(N)3,
Koi(s): [HY?(M)]® —  HYA(rM).

Then the adjoint of the adjoint double layer integral operatan be written as

_ ( Kia(9)'  —sKoa(s T)
K(s)* = 1 :

—§K;|_2(S)T Kzz(S)T

Proof. Repeating the arguments of Corollary 4.5 results in the sttém O

Remark 4.4. Notice that the sum of the sesquilinear for(@21)for Q" andQ™~ can be
equi-valently written as

Re[aRa\r(u@Su)] = Re[ag+ (U, Osu)] + Re[ag+ (U, OsU)] .
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Theorem 4.8. The single layer integral operator (&) : [H™Y/2(I")]* — [HY/2(I")]* as de-
fined in(4.7)is [H~?(I)]*-elliptic, i. e.

oag

8
ER lWl|2 oy forall g e [H ()% (4.11)

Re[(y, 0V (s)Y)r] 2

Therefore \(s) is invertible with

El
HV 1||[H1/2 )4 [H-1/2(r))4 S O'Qg. (4.12)

Proof. We defineu = SL(s) s which fulfills Pu=0in R3\ I and thus we have

Re[(Y,0V (s))] = —Re[([y1u], YoOsV (S) )] (Jump conditions (4.6))
= Re|aga (U, @Su)] (Green’s first formula (3.30))

>o0g° |H u\H2 (Theorem 3.9)

|sl.R3\I

T ||L.U” —1/2, - (COI‘Ollary 314)

To prove estimate (4.12) we insept=V (s) "¢ € [HY?(")]* into the ellipticity estimate
(4.11), which results in

Kl

lq"Hfl/zr ~ oot

V(- Rel(4, 0V ()]

s . :
‘ | 58 19s@ll/2r V() ¢l ;o  (Duality estimate)

' : S 0lar IV 0] . (Estimate 331)

]

Proposition 4.9. For i € [H™Y2(I")]*, @ € [HY?(")]* and se C{. the following estimates
hold:

ISI

R [y (4.13)

3/2
[SLSV(S) 0]y oy < %zau(pulm, (419

Sk
v SLO W10 S 32 Il 121 - (4.15)
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Proof. Insertingu = SL(s) ¢ into the ellipticity estimate (Theorem 3.9) yields

We apply the jump condition (4.6) of the single layer potaintind Green’s first formula
(3.18) and end up with

Tl g S 10,0V () Wlor-  (416)
With the help of estimate (3.12) we get
O (Sl ar < 10t royr < 2 vl
and therefore we have 9
5 S
o= 7 (4.17)
The norm equivalence (3.11) yields
e £ 5 0l e 5 5 101
1IR3\ N |s|,R3\I" N 0-80- 1/2,r

or estimate (4.13).

To show the estimate (4.14) we start from estimate (4.17)saptly Corollary 3.14 result-
ing in
| ‘1/2 |S|3/2
HyiSL L)UH 1/2r~ 3/2 “‘um‘s‘ RB\FSJ 13/2 HWH -1/2T -

Finally, to prove estimate (4.14), we reconsider estiméteq)
foadeg U|||| o < 1Wl-y2r 1OV (S)Wlly 2

and apply Corollary 3.14, the bound®§ (3.31) and introducey =V (s) g e [HY2(I"))*,
which results in

2 Is¥?

0 Ul g gz MUl o 19172
The norm equivalence (3.11) yields

-1 ’S|3/2
HSL(S)V<S) (PHl,R3\F = Hqu,R3\F ~ ]_5/2 ||(pH1/2
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Remark 4.5. Due to Remark 4.2 the fundamental solution and thus the opeY4s)
can be symmetrised by applying the opera@ors. Theorem 4.8 shows that the operator
OV (s) is [HY/2(I")]*-elliptic.

Real valued block skew-symmetric systems can be transféonaesymmetric and positive
definite system by a Bramble-Pasciak transformation, sép For complex valued block
skew-symmetric systems the theory is however incomplete.

Theorem 4.10.Let s€ C}, then the hyper-singular integral operator(®) : [H 1/2(F)]4 —
[H™Y2(1)]* as defined ir4.8) is [H*/?(I")]*-elliptic, i. e.
o’o

Re[(D(8)9.00)] Z (9= o 2 ol2 . forall e [HY2(M)". (4.18)

Therefore Os) is invertible satisfying

sf?

HD(S)ilH[Hfl/z(r)}M[Hl/Z(r)]4 S 80" (4.19)

Proof. We start withu = — DL (s) ¢, which fulfills Pu= 0 in R*\ ', and which can be
estimated in the following way:

Re[(D(5)9,0s@)r] = Re[~ (u,[u)r]  (Jump conditions (4.6))
= Re[aRs\,—(u G)u)] Green'’s first formula (3.18)

> g0 || ul||2 (Ellipticity (Theorem 3.9))  (4.20)

|/, R3\F

| |2 H| HIISI R (Norm equivalence (3.11))

The trace theorem (Theorem 3.4) and the jump condition$ ¢4t be applied to estimate
[ullyrayr = [[UlIrll12r = @l
which results in the ellipticity estimate (4.18) for the leygsingular operator.

Estimate (4.19) for the norm of the inverse hyper-singufarator can be calculated by
using (4.20), which results in
o°0 Ul 4 - < Rel(D(8)9,O50)r]
SIIDSl 1721 [1©s@ll1/2r (Duality estimate)

SIIDSI 121 [1Os[Ullr ll/2,r (Jump conditions (4.6))

S .
S % ID(S)@ll_a/2r U1 ps\r (Thm. 3.4, estimate (3.31))

S .
< S 1Dl yar llull gz, (Norm equivalence (3.11)
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which yields
S
< 2 D0l yar-

The norm equivalence (3.11) and the trace theorem (Theo#ne@nclude the proof. [

Proposition 4.11.For se C, g € [HY?(M)]* andy e [H~Y2(I")]* the following inequal-
ities hold:

llull g g

| |5/2
IDL(S) @1 ra\r < 19725 1@ll1/2r (4.21)
DL(s Is* 4.22
H ( LII”]_]R?I\FN HL.UH /2> ( . )
2
IADL(S) @11 < ' S 0lyar (4.23)
Proof. Setttingu = DL(s) @ results in
a’al| u||\| SR S < |33\ r (U, Osu) (Theorem 3.9)
= [(yau, [OsU]|r )| (Green'’s first formula (3.18))
(Duality, jump conditions (4.6))
|S|3/2

< o572 (Corollary 3.14, Estimate (3.31))

Finally, with estimate (3.11) we have
|s|3 /2
Il zoyr S Ul goyr S grgrzg 19172
which concludes the estimate (4.21).
To show estimate (4.22) we start with

2
a°a||lull[§,

and introducep = D(s)‘ YeH 1/2(r)]4, which in addition to the trace theorem (Theorem
3.4) and the estimate (3.12) leads to
S|

%0 U1 o S o Ul oy 19 g

Finally, to prove estimate (4.23) we apply Corollary 3.14
’ |1/2

S
L@l 1107 < s 1l o S s

555 | la/2r
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Proposition 4.12.For se CJf, @ € [HY2(")]*and y € [H~Y/2(I")]* the following inequal-
ities hold:

|S|5/2
IK(s)oll < o192 lell/2r

HK(S)(p” N ;%?/,/220 1ll1/2r -

eyl < 182
INCORIPS o192 Il -1/2r

|Kesrw]| < Q'%Z W)y o -

Proof. The first two estimates for the double layer integral operki) andK (s)* follow
immediately from the estimates (4.21) and (4.15). The lastdperators are the adjoint
operators and thus fulfill the same bounds. n

4.4 The Steklov—Poincaré operator

Additionally we introduce the interior and exterior Stekl®oincaré operator'3s),

S (9=V(9 (31 +K®) =D+ (31 +K(E Ve (31 +K(9).

—S(s)=V(s)7? (%I - K(s)) =D(s)+ (%I - K(s)*) V(s)~t (%I - K(s))

and its inverse, the Poincaré—Steklov operafofs]

T (s)=D(s) ! (EI - K(s)*) =V(s)+ (; - K(s)) D(s)~? (EI - K(s)*) :
—T*(s)=D(s)? (%I +K(s)*) =V(s)+ (%I +K(s)> D(s)~! (%I +K(s)*) :

The Steklov—Poincaré operator is equivalent to the Dietttd Neumann map for homo-
geneous problems. Similarly the Poincaré—Steklov opemquivalent to the Neumann
to Dirichlet map for homogeneous problems. These two opesaire very popular in
domain decomposition methods, see, e. g., [51].
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Proposition 4.13. For the operator g(s) and T-(s) we have the ellipticity estimates

Re[(S™(9)¢,0s¢);] 2 ‘ ‘2 ||<P||1/2r forall g € [HY/2(M))*,

Re[(Osy, T (9Y)] 2 || 2wl o forall ge [HY(M)A,

and the bounds

£
Hﬁ(s)||[H*1/2(r)]4%[H1/2(r)]4 S %7 (4.24)

|S|
Hsi ||[H1/2 )45 [H-1/2(r))4 5 %0 (4.25)

forallse CJ.

Proof. We defineu® € [H}(Q*)]* as the solution ofPu® = 0inQ*, yfu=gonT.
Inserting this function into Green’s first formula (3.18gklds

Re[(S*(9)9,0sp) | = Re[(y1u, Osyou) ] = Re[ag: (u, Osu)] -

The ellipticity estimate in Theorem 3.9 for the sesquilinfaim, estimate (3.11) and the
trace theorem (Theorem 3.4) result in

Re[(S*(5)9,0s0); ] 2 ao|||u||||s|QM||2 191 2r

and thus the ellipticity estimate for the Steklov—Poinagpérator is obtained.
Furthermore we have

0°a ([ ull o S [(S*(9)9.050)c | S [|S" S0 1r Otz
and using the estimate (3.12) we end up with

< st

Sl

lull 5 qe € Cr .

The Dirichlet trace on the boundary can be estimated by
| g
I@l1/2r < lulge < Sllullg g

Introducinge = T*(s)y € [HY2(I")]* concludes the proof for estimate (4.24).
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For the ellipticity estimate of the Poincaré—Steklov opens T (s), we definev as the
solution of Pv= = 0in QF, y"'v= g onT. We have

Re[(0. 0T (9] — Relag: (u.0w] 2 %0 [[ul2 o = 2 421

and replacingy = S*(s)@ results in

2
< I8

IS99 a1 < a5

(s)e|| _1/2
and we obtain the bound for the Poincaré—Steklov operator. n

Remark 4.6. The bounds for the Steklov—Poincaré operatof$s$ and the Poincaré—
Steklov operator ¥(s) as given in Proposition 4.13 give an alternative proof fae iound
of the inverse of the single layer boundary integral oper&t¢s) and the hyper-singular
boundary integral operator [¥) since

D(s) 1=T(s—T"(s) and V(s) =S (s)—S'(s).

To classify the introduced operators we introduce the ¥alg space, see [31].

Definition 4.1. Let X and Y be Hilbert spaces and letdf: C/ — L£(X,Y) be an analytic
function in s. Ks) is an element afd(u, X,Y) if

IF(s)| <C(o)|s|* forallseC,

where C: (0,0) — (0,) is an non-decreasing function such that

C

C(o) < om

forall o € (0,1].

An overview on the mapping properties and bounds of all dised operators is given in
Table 4.1.

Additionally we introduce the operator
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F X Y u
SL(s) [HY2(M)* HY®R)* 2
DL(s) [HY*(M)*  [HYR3\M)* 572
V()  [H YAt HYH Mt 2
D(s) [HYAM)*  [HYAm)* 2
K(s)  [HYA(M)*  [HY*(M)* 512
K(s)  [H Y2 [HYAm)* 312
V(st HYAMY HYAME 2
D(s) ™t [H Y2t [HY>(M))* 2
SH(s)  [HYAM*  HYVAROE 2
THs) [H YA HYAO 2

Table 4.1: The operatdt(s) is an element of the spacé(u, X,Y).

Theorem 4.14.The operator H (s) : [H™Y2(I"))* x [HY2(M))* — [HY2(1))* x [H~Y2(r))*
is [H™Y/2(M))* x [HY?(1)]*-elliptic, i. e.

Rel(y. 0V ()] + Re| (. ~0s 51 +K(s )(N

+Re{<(;l +K(s >Lp @Sq0>r1 (59, 050)r]

%—|<||1.UH 1/2r+||fP||1/2r> (4.26)

for all ¢ € [HY?(M)]* and @ € [HY2(I")]*. The operator H (s) is therefore invertible
with

HH B H H1/2 )]4><[H*l/z(r)]4ﬁ[H*1/2(l')]4><[Hl/z(r)]4 S @ (427)

Moreover we have the bound
SsL DL(s)|H™ s 4.28
I[SL(S) —DL(S)]H™ ()| pywraqr s vo(ryjsipaype < oo (4.28)

Proof. u= SL(s) ¢ — DL(s) @ fulfills Pu=0inR3\ . The application of Green'’s first
formula (3.30) results in

"0 Ul o, S Re|ags,r (u.Osu)

= Re[([yaulr, O3 u) ] +Re[(v; u,Os[youlr )] -

(4.29)
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Due to the jump conditions we haygu]r = ¢ and|you|r = ¢ and furthermore

1
Gu=viow- (3 +Ke) o
and L
y, u=D(s)p+ (5' + IZ(S)*) 1]
resulting in

*o Ul s SRel(W.ON (Y]

_Re[<4p,®s (%u —|—K(S)) ¢>J
Ay

+Re[(D(s)W, ¢)r].

With the help of the trace theorem (Theorem 3.4), Lemma 3riBthe norm estimate
(3.11) we can estimate the traces by

s

o Il (4.30)

Ivadlr |2 1o + I oUlr 13 20 S SRS\

resulting in the ellipticity estimate (4.26).

Next we consider the operator equation
ofy-[e)
¢ 92
2

ERCT Re[([viulr, Osyp u) | +Re[{yy u, Os[youlr )]

Starting from estimate (4.29)

4
a“a||ull

we use the property; u = g; andy; u= g, and use Corollary 3.14 and estimate (3.11)
resulting in

E
atol U||||2g|7R3\r S r Hullly g <||91||1/2,r + ||92||71/2,r> (4.31)
or s
S
lulllg gar < 50 <||91||1/2,r + ||92||_1/2,r> : (4.32)

Estimate (3.11) results in (4.28), whereas estimate (46Xlts in (4.27). ]
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Proposition 4.15. Let s€ C/, then the property
H™(s) € A(5/2,[HM2(IM)]* x [HY2(1)]% [HY2(7))% x [HY2(M))*)
holds.

Proof. For the operator itself the bound can be easily calculatezksi

b

IR~ ()| < 2max|H;

where the operator norms are induced by the natural spaces. O

Remark 4.7. The inverse of the operator Hs) can be stated explicitly by

Proof. Using the non-symmetric representation of($) and S (s) results in

L ve leke) (vert(5oKke) |
%I +K(9*  D(s) — D(s)* (%I — K(s)*)
| A
(e V)
and since

A= (%I +K(s)) D(s) ! (%I - K(s)*> V(9
—V(8)+— (%I - K(s)) D(s)? (%I - k“<s)*> _D(gt (%I - K(s,)*)
=T (5)—T (s)=0

and

B=-D(s)+ <%I + K(s)*) V(s)~t (%I - K(s))

S [D(s) + (%I - K(s)*) V(s (%I - K(S))} ~D(9 (%' - K(SY")
=S (s)—S (s)=0

we end up with the identity. O
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Similarly we introduce the operator

1
v (—I - K>
2 (4.33)

= <—%| +K*) D

which shares the same propertied8y(s).

Corollary 4.16. For s C the operator H (s) is [H ~Y/2(I")]* x [HY/2(T")]*-elliptic, i. e. ,

Y] [Osp a’o
(v 2] 5 o)

for all Y € [HY?(") and ¢ € [HY?(I)]*. Furthermore the properties

HT(s) € A(5/2,[HY2(M))* x [HYZ(M)%, [HY2(M))* x [H-Y2(M))),
H(8) ™ € A2, [HY2(M))* s [H=Y3(M)]%, [HY2(M))* > [HY2(M))*)

and
[SL(s) —DL(s)]H*" ()"t € A2, [HY2(N)]* x [H2(M)4 HYR3\ )]%).

hold.

Proof. Repeating the arguments as in the proof of Theorem 4.14 sesuhiese properties.
O



5 BOUNDARY INTEGRAL EQUATIONS

In this chapter we will discuss the application of boundatggral equations to the solu-
tion of boundary value problems in the Laplace domain. Bigfrom a representation
formula we will derive boundary integral equations of theedt approach. Boundary in-
tegral equations resulting from indirect approaches aseudised briefly. In preparation
for the return to time domain, the dependency of the bounuhegral equations and it's
solutions on the Laplace paramesawill be presented.

5.1 Representation formula

The fundamental solution given in (4.1) is a solution of thaetial differential equation
PyGs(x,y) = 15(y—x)

with the Dirac distributiond and the identity matriX € R***. Insertion into Green's
second formula (3.29) yields the representation formula

u=SL(s)[yaulr —DL(S)[you]r INR3\T (5.1)
for all u e [HY(R3\ IN)]* satisfyingPu = 0. Settingu = 0 in Q* and taking the inte-

rior traces results in the well known integral equationatesd to interior boundary value
problems,

Yo U=V(s)y; u+ (%I — K(s)) ¥ U, (5.2)
Y u= (%I + K(s)*) Yy u+D(s)yp u. (5.3)

Reciprocal settingi= 0 in Q™ results in two integral equations for the exterior boundary
value problems,

Yo u= (%I + K(S)) Yo u—V(S)y; u, (5.4)
wu= (31 -K") viu-ou 55)

51
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5.2 Mixed boundary value problem

The interior boundary value problem with mixed boundaryditons is given as

Pu=0 inQ™,
You=0p onlp, (5.6)
Y, U=0N only.

With the help of the representation formula (5.1) we canudate the solution of the
boundary value problem, if the complete Neumann and Dieictiata are known. Thus
we need to find the unknown Dirichlet datwgiu on 'y and the unknown Neumann da-
tum y;uonlp. The approach itself is based on the symmetric formulat#$.[ For
deriving bounds for the solution of the boundary integralagpns techniques from [31]
are used.

First we choose appropriate extensigpse THY/?(I)]* anddy € [HY/2(I")]* of the given
Dirichlet datumgp € [HY/2(I')]* and the given Neumann datugg € [H~%2(I'y)]* such
that

go=0pb onlp, on=0n only.

The boundary integral equations for the interior problegid/i
_ _ 1 _
bu=viyut (51-K© ) pu

0= (—%I +K(s)*> Y u+D(s)y, -

We define the unknowns

Y=y u—gp € [HY3(r\)]*
and

@ =y u—Gn € [H Y3(p))*
Insertion leads to the boundary integral equations

V(9o K99~ (51 +K(9) o -V(sign  onro,
(5.7)
R (S @+ DSy = (gl —K<s>*) Gv—D(9d ony.

The operator
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is [HY/2(M)]* x [HY2()]* elliptic, see Theorem 4.14. The system of boundary integral
equations (5.7) is therefore uniquely solvable. The opef&f(s)*l is bounded by

—1 2
HH+(S) H [H—l/z(r)]4><[Hl/z(r)]4—>[H1/2(r)}4><[H‘l/z(r)}‘l S C(g7 O') |S’ )

see Proposition 4.15. The right hand side of (5.7) is bouihged

H (51+K©) do-vioam

H ( ) Gn — D(s)db

Combining these estimates yields an estimate for the salatidhe boundary integral
equations (5.7)

Sls?e(o) (llgoll +llonll-
12r ( 1/2p 1/2,FN)

S 18°2(9) (Ilgo 2o + IOl 1/2r, )

1/2,1

g9/
0l sj2r +10ulyor 60.0) %5 (Iollyzr, ol 12r,) . 68)

This bound can be further improved by an approach developg8li]. The boundary
integral equations (5.7) can be equivalently rewritten as

b =Viso+ (F1-K© ) +vem+ (31 -K©)o  onro,
0= (—%I +K(s)*) @ +D(s) Y+ (—%I +|Z(s)*) dn+D(s)dp only.

We replace the given Cauchy datum by the functigns= gy € [H™Y?(M)]* and
W = dp € [HY?(M)]* and can therefore rewrite the boundary integral equati®ry as

@ . . @ O1
H H
(o) 2] = 1S O] ) e 59)
17 Yo 04

with g1 = gp, 92 = 0, g3 = gn andgs = Op.

Theorem 5.1.LetH = [HY/2(M)]* x [HY2(M)]* x [H~Y2(M)]* x [HY2(1")]* and se CZ,
then the property
Hix(S) € A(5/2,H,H")

holds. Moreover, the operator is invertible with

H ()™t € A(5/2,H* H).
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Additionally, the property
[SL(S) —DL(8)] Hyix(s) € A(5/2,H, [HY(Q)]*).
holds.

Proof. The boundedness propetty..(s) € A(5/2,H,H*) is obtained straight forward by

[Heix(s ||HHH*§max{||V(S)H[H—1/2 oy 1D yzryasm-12rye

||K(S)‘|[H1/2(r)]4ﬁ[|_|1/2(r)}4, K(s)*

[HY2(M) A H-12(r) }

The proof of invertibility of the operatoH}..(s) and the bound of the inverse is given
in [31] for the wave equation. We follow this proof closelyeWefine

U= SL(s)(¢1+ @) — DL(s) (Y + y2).
The operator equation (5.9) is equivalent to the followingHdary value problem
Pu=0 inR3\T,
You=01 onlp, (5.10)
yiu=gz only,
with the transmission conditions
baullr —gs € HV4(Mo)*,  [youllr —ga € (HY2(Ty))*
Given a functioru as a solution of (5.10), a solution for equation (5.9) is oiad by
(o1, 1, @2, @) = (IUl|r — s, [Youlr — 94,93, 04)-
The boundary value problem (5.10) is equivalent to the falhg variational formulation:
Findu € [HY(R3\ M)]* with (y5 u, [youlr) = (91,04) onTp such that
aga\r(U,V) = (93, ¥ V)1 + (G2, [YovIr)r
forallve Ho={ueH|(yyu,|[yullr) =0o0nlp}.

This variational formulation can be analyzed by repeativegarguments of Theorem 3.12,
resulting in the estimate

Iulllg g < (@) 18l (11(02,98) | gz + 18"/ (01, 90) 112 )
and so finally by estimating the traces (Theorem 3.4 and Goyod.14) we end up with

(@, @) |12 + (Y1, Y2) |1/ < c(0) 5%/ <H(92,93)H71/2,r + ”(91794)|’1/2,r> :
]
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5.3 Dirichlet boundary value problem

The Dirichlet problem
Pu=0 inQ™,

YoU=0b onl

can be solved by using the first boundary integral equatiof®.@) to find the unknown
Neumann daturhe [H~?(")]* satisfying

(5.11)

1
V(s)t = (5' + K(s)) op onr. (5.12)
Unique solvability follows from the ellipticity of the sihg layer boundary integral op-
erator (Theorem 4.8). A bound for the unknown Neumann ddtwan be obtained by
composing the bound for the inverse single layer boundaegmal operator and the dou-
ble layer boundary integral operator resulting in

9/2
It 1/ar S c(g,0)1s/”?llgpll1/2r

By using the estimate for the mixed problem (Theorem 5.1) stien@te can be improved
to

5/2
It _y/or < c(g,0)1s*?llgollyzr

The operator

S (s)=V(s)?! (%I + K(s))

is the interior Steklov-Poincaré operator, which was alyediscussed in Section 4.4. The
bound for the Steklov-Poincaré operator results in an ingutdound for the solutionof
the boundary integral equation (5.12)

[t _1/2r S c(a,0) \3\5/2“9D\|1/2,r>
see Proposition 4.13. This bound is obviously the best ohe.sblution
u=SL(s)¢—DL(s)gp

itself can be estimated as
2
[ull1o- < IsI”llgbll1/zr -

see Theorem 5.1.

Another popular approach to solve the interior Dirichletibdary value problem is an in-
direct single layer approach. Using the ansatz SL(s) ¢ results in the boundary integral
equation

V(s)p=gp onr.
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Unique solvability as well as the estimate

1ll_1/2r < (0,0) I8 lgo]l1/2r

is obtained by the ellipticity estimate (Theorem 4.8). Atireate for the solutioru is
given by estimate (4.14), resulting in

3/2
ull o < c(a.0)|8¥?llaplly/ar -

5.4 Neumann boundary value problem

The interior Neumann boundary value problem is given by

Pu=0 inQ~,
] (5.13)
Y, U=0N onl.
The equation for the unknown Dirichlet datune THY2(I")]* is given by
D(s)li= (%I —K(s)*) on onrl. (5.14)

The ellipticity of the hyper-singular operator guarantaagjue solvability. An estimate
for the solutionu™e [H 1/2(r)]4 of the boundary integral equation is given by Proposition
4.13

~ 2
[0l 1/2r S c(o,0)[s”llonll —1/2r -
The solutionu = SL(s) gy — DL(s) G can be estimated by
2
Ul o- S c(o,a)[sl”llonll—1/2r
see Theorem 5.1.

An indirect double layer approaah= — DL (s) ¢ would result in the boundary integral
equation
D(s)y=9gn onT.

Again, ellipticity of the hyper-singular operator guaraes unique solvability angy €
[HY/2(")]* can be estimated by

2
[Wll1j2r Sclo,0)[sIllonl—1/2r -
see Theorem 4.10. The solutiartan be estimated by

Ju

2
10- S0 0)[s7llonll 1 2 -

see estimate (4.22).



6 GALERKIN DISCRETIZATION OF BOUNDARY INTEGRAL
EQUATIONS

In this chapter we will discuss the discretization of bougdategral equations introduced
in Chapter 5. For the Galerkin discretizations unique saligglwill be proven. The
boundary integral equations will be discussed in Laplacemalo only. In preparation
for the return to time domain, the dependency of the bounuofaegral equations and it's
solutions onto the Laplace paramesawill be presented. More precisely, estimates as in
Remark 7.1 will be shown for the solutions of the discretizedrdary integral equations.
Similar estimates are given for the approximate solutiosgde the domain, both in the
corresponding norm and for a pointwise evaluation. Finaligilar estimates are given
for the error estimates in the energy norm of the approxirsatetions of all boundary
integral equations.

6.1 Galerkin discretization

To discretize boundary integral equations, first a vanetidormulation has to be set up,
which is furthermore discretized by restricting test andadn functions to finite dimen-
sional subspaces. The theoretical background for the Kdaleiscretization is well estab-
lished, for more information we refer to [45, 52].

Let X be a Hilbert space, for an operathr X — X* and a given right hand sidee X*
we consider the following variational formulation.

Findu € X such that
(AuV) = (f,V) (6.1)

forallve X.

By introducing a finite dimensional subspagecC X a Galerkin approximationy, € X, of
the solutioru is defined by:

Find u,, € X, such that
(Aln, Vi) = (f,Vh) (6.2)

for all v, € X.

57
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Restricting the test spaceXg C X in the variational formulation (6.1) and subtracting the
equation from equation (6.2) leads to the Galerkin orthadjgn

(A(up—u),vy) =0 forallvy € X. (6.3)

Stability of the Galerkin scheme (6.2) is unique solvaypiidgether with a uniform bound
lun|lx < Cllullx forallue X

with a positive constar@ > 0 independent afi andu.

Stability together with the approximation property

inf |lu—wv 0 forh—=0
Jnt [lu—vhllx — -

leads to convergence for arbitrary right hand sides.

We introduce an operator notation for the Galerkin diszegton by utilizing Lemma 3.1.
We define the operatd¥, : X, — X;; by

(AnUn, V) := (Aun,Vp)  for all up € Xp, Vi € Xp.

Lemma 6.1(Cea’s Lemma) Let the discrete operatori& Xy, — X, be invertible, u the
solution of the variational formulatio(6.1), u, the solution of the variational formulation
(6.2). Then the following estimate holds

lu—unllx < (1+ ]| AY]

X=X HAHXax*)w‘]g(h [Ju—Vhllx-
Proof. See [45,52]. n

If the right hand siddf € X* is given asf = Bgwith g € Y and a bounded linear operator
B:Y — X*, we introduce a finite dimensional subspage" Y and approximatg € Y by
a functiongy, € Y;, resulting in the disturbed variational formulation:

Find Ui € X, such that
(Alh, Vh) = (Bth, Vh) (6.4)

for all v, € X.

The approximation property of the disturbed variationahfalation (6.4) is given by the
following lemma.
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Lemma 6.2(Strang-Lemma)Let the operator A: X, — X{ be invertible and let B: Y;, —
X be a bounded linear operator. Furthermore, let u be the sotubf the variational
formulation(6.1), u, the solution of the variational formulatiof®.2) and (i, the solution
of the variational formulatior{6.4). The following error estimate holds:

) Jinfflu=vhlx

+ A,

Ju—Ginly < (

Proof. Subtraction of the variational formulations (6.2) and Jée&ds to
(A(Un — Tn),Vn) = (B(g—Gn),Vh)  for all vy € Xn.
SinceAy, is invertible we immediately get the estimate

lu—Gn[lx <

Combining this estimate with Lemma 6.1 in addition to thengie inequality concludes
the proof. n

The operatoA usually denotes some boundary integral operator and thprsapate dis-
cretization spaces on the boundary have to be introduced.

First we introduce a sequence of boundary discretizatigns- UZN:]_TK with N disjoint
plane triangles, which are assumed to be regular in the s#rSarlet [15]. The local
mesh size is defined by

h, .= / ds¢

Ty

1/2

and the global mesh size is defined by maxN h,. Let M be the number of nodes

on the boundary wittMp andMy denoting the nodes on the Dirichlet bound&gy and
the Neumann boundaryy respectively. LikewiséNp denotes the number of boundary
elements on the Dirichlet boundaly, andNy the number of boundary elements on the
Neumann boundarlyy.

Define the discrete subspaces
S, *(Mo) = spar{y 119  [H-Y*(Mp)]",
SN = spar{ g MY ¢ [HY2(rw))*

with piecewise constant basis functiaps 0 and piecewise linear continuous basis func-
tions ¢, For convenience we introduce the space

SN = SN VAV
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This function space is used to discretize the solid displeseu® and the pore pressure
p, whereas the piecewise constant functions are used tetdiethe unknown Neumann
traces. Additionally, the given Neumann and Dirichlet datthbe approximated by cal-
culatingL, projections into discrete spaces. Tiheprojectionh, : X — X, is defined by

(Fhu, Vi) = (U, v for all vy, € X
We denote thé, projection into the spacﬁg’l(r) by
POL HY2(M))4 — 5,710, (6.5)

For the approximation of the unknown Neumann datum we amfditly introduce the
space N
S, (o) = spar{yy "}1AP C [H-Y%(rp))*

with piecewise linear but discontinuous basis functiqﬁsl’l, and the appropriate projec-
tion operator 1 1

P HY2(M))% — g (). (6.6)
The projection operatoIF}?’1 is used to approximate the unknown Dirichlet datum and

the projection operatd?h’l’1 is used to approximate the unknown Neumann datum. The
choice of these projection operators results in an optimaergence order of all involved
unknowns, in particular for the point evaluation of the $iolu in the interior.

For the discrete spacéﬁl’o(r) andﬁ’l(l') the following approximation properties hold.

Lemma 6.3. The following approximation properties hold:
inf [t —tnl| . < Pt |ufl - witha €[0,1] and € [0,1],
theS;’ /

inf [t —thll g < chP e lullg with a €[0,2] and € [0,2],
thGS;’

inf U= unl|_qr < chP*jullzr witha €[0,2] andB € [0,2)

Uheyx)

when assuming @ HB,(1) and te HB,(T).

Proof. See [45,52]. n

6.2 Bounds for discrete operators

In Section 4.2 the explicit behavior of the boundednessteoits of different integral oper-
ators on the Laplace paramegdras been discussed. Bounds for the discrete operators are
needed as well. For an exact Galerkin discretization of @naipr the bound obviously re-
mains the same. We introduce discrete subspggesH ~Y/2(I")]* andY,, c [HY/?()]*.
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Corollary 6.4. Let A be an element od(u,X,Y"), then the Galerkin discretization,As
an element ofA(, Xn, Yy ).

The Corollary 6.4 gives us a bound for the Galerkin discrébmeof the boundary integral
operatorsV(s), K(s), IZ(s)iand D(s). We denote the Galerkin discretizations of these
operators byh(s), Kn(s), Kn(s)* andDp(s) respectively. An overview of the bounds is
given in Table 6.1.

However, most of the time we do not have an exact discrebizaif an operator. For ex-
ample, the inverse of the discrete single layer integralaipevh(s)‘l Is not the Galerkin
discretization of the inverse single layer integral oparé¥ (s) ~1),. Therefore, estimates
for inverse operators cannot be transferred directly. Hewethe bound of the inverse
discrete single layer integral operator and the inverserelis hyper-singular operator are
direct results of the ellipticity estimates as given in Tiegn 4.8 and Theorem 4.10. The
ellipticity estimates also hold for the discrete operatond allow us to formulate the fol-
lowing Corollary.

Corollary 6.5. The inverse of the Galerkin discretization of the hypegslar operator
Dh(s)‘1 and the inverse of the Galerkin discretization of the sirigyer integral operator
Vi ()~ fulfill the following estimates:

o Is?

[[Vh(s) Sk
_ |s\

HD (s) 1 S g

Proof. The bound for’\/h(s)’l is a direct consequence of the ellipticity estimate as given
in Theorem 4.8:

Re[(y, 0V () Y)] > oo |s\ HL/—’H 21j2r forallge [H-Y2(M)%
For Y, € X, C [HY/3(1")]* we have

Re[(ih, OV (S) )] > ¢ 7> | | HWhH “1j2r  forall gn e X

Introducingyn = Vh(s) "¢ results in

IVh(s)an||” 12r Sy Re[(#’h,@th( S)Uh)r]

s N
‘ ’8 1Os@hlly 2 [IV(S) teh||_y o (Duality estimate)
|S|

S oo 1@lly2r IVh(8) " ey o (Estimate (3.31))
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concluding the estimate fa,(s)~*

As in the proof of Theorem 4.10 we define= — DL(s) @, for which we have the estimate
0 [ ull, g, < |(OH(S)h, O |
which can be further estimated by

(Duality estimate)

S IDn(S) @l —1/2,r [1Os[Ullr (|12 (Jump conditions (4.6))

s .
N ’E| IDh(S)hll_1/2r Ul g-ugr  (Thm. 3.4, estimate (3.31))

|

< 2 |IDW(S @l _y/ar IlUll g o, (Norm equivalence (3.11))

The norm equivalence (3.11) and the trace theorem (Theont@nclude the proof:

ISI ISI

[@hll1/or SRl /20 S ||| U|||‘s‘ R3\[ 5 || h(S)@hll_1/2r -

Replacingg, = Dh(S)_ll,Uh results in the desired estimate. ]

Additionally, the estimates (4.22) and (4.14) can be tramefl to the Galerkin discretiza-
tion of the single layer integral operator and the hypegsiar operator.

Corollary 6.6. The following estimates hold for a}, € X;; and ¢, € Yy,

S

||S|— Vh( (anlQ uo+ 5 O’_lL/zo_H%“l/ZF? (67)
o 187

||DL(S) ( whH]_Q uQ+ ~ 0.60.||L)UhH -1/2,1 - (68)

Proof. Settingu = SL(S) Y, with ¢ € X, € [H™Y?(I)]* results in

a’al| u|]||S| B\ < (U, OV (S)Uhn) | (Green's first formula (3.30))
S [{Wh, OsVh(S) Yn)r | (Galerkin discretization)
- I8

S g 1¥hl-12r Va(S)ehllyzr - (Duality estimate)

Corollary 3.14 and introducing, = V,(S) g, yield

3/2
_Is®

G o ||| U|||‘ ‘Ra\r N 0_3/2 ||| u||||s| ]R3\r H%HI/Z
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and thus estimate (6.7).

To derive the estimate (6.8) we set DL (s) @, with @, € ¥, € [HY?(I)]* and obtain

a’al| u|||‘2§‘ oo S |(D(9)¢h, Ost) | (Green’s first formula (3.30))
= |(Dh(S) th, Osth) | (Galerkin discretization)
ik D Duality estimat
N W [@hll1/2r | h(s)%\|_1/27r- (Duality estimate)

Introducingyy, = Dy(S)@ and using the estimate (3.12) result in the desired estimate

6.3 A discrete Steklov—Poincaré operator

Bounds for the discrete versions of the Steklov—Poincaréadpeand the Poincaré—Steklov
operator are still missing. These operators consist of ebamation of different boundary
integral operators. Two different representations by lolauy integral operators were in-
troduced in Section 4.4. On the continuous level the differepresentations are equiva-
lent to each other. In general, the equivalence is lost diseretisation.

In this section we will discuss the symmetric approximatidrthe Steklov—Poincaré op-
erator. A bound for the non-symmetric approximation is arbgpct of the analysis of the
mixed problem in Section 6.4.

The Dirichlet datum of the interior Neumann boundary valtebpem

Pu=0 inQ~
yau=g onl
can be obtained by solving
S (sju=g on'. (6.9)

The Steklov—Poincaré operator can be expressed as
— 1 2 * -1 1
S (8)=D(s)+ | 51 +K()" |V(s) | 51 +K(s) .
By introducingt € [H~Y/2(I")]* as a solution of the operator equation

V(sit = <%I +K(s)> u onfl,
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the boundary integral equation (6.9) can be rewritten as

1
) t V(s) - (EI -|-K(s)) i 0
H™(s) u/ — 1 - u/ g/’
(boke) o
Properties of the operatbt™ (s) were discussed in Theorem 4.14.

Introducing the discrete subspacésc [H™Y2(I")]* andY;, c [HY?(I)]* the Galerkin
discretization of the operatét ™~ (s) is given by

<Hh(s) B:] : [‘\’/"ﬂ >r = <H(s) B:] , [‘\’/"ﬂ >r for all Xn, Vi, € Xn, Y, Wh € Yh

resulting in the discrete equations

wol®)-( oy )@@
<§Mh+ Kh(s)*) Dh(s) h Gn
Proposition 6.7. The operator  (s) fulfills the following property
Hy, (S) € A(5/2,Xn % Yn, Xy X V).
Additionally, the operator H(s) is invertible with
Hy ()7 € A2, X x Vi, X % Yh).
Finally, we have the property

[SL(s) —DL(s)]Hy, (s) 1 e A2, % x Vi, [HYR3\ M)]%).
Proof. Repeating the arguments of Theorem 4.14 results in these piep n

Hence we have unique solvability of the following operatguation

Hy (9) [th} = [gl} (6.10)

Uh 02

with g1 € X andgy € Y. Forg; = 0 we obtain the Galerkin discretisation of equation
(6.9). By eliminatingt, we can define a discrete approximation of the Steklov—Poénca
operator by

S (S) = Dn(s) + <%Mh + Kh(s)*) V()2 (%Mh + Kh(s)) .
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On the other hand, fag, = 0 we can eliminatel, resulting in a symmetric approximation
of the Poincaré—Steklov operator

1 _ 1 2 *
Th(S) = Vh(s) + (EMh + Kh(S)> Dh(s) L (EMh +Kh(s) )
as introduced in Section 4.4.
Corollary 6.8. The following properties hold:

(S, (9)] e AR X Xn),
Th(9)] ™" €AY ).

Starting from the operatdd *(s) as introduced in (4.33) we can define a symmetric ap-
proximation of the exterior Steklov—Poincaré operatpfsy and of the interior Poincaré—
Steklov operator $(s) in a similar way.

F(s) X Y pu

Vh(s) X Xy 2
Dh(S> Yh Yﬁk 2

Kn(s) Xn Yy 5/2
Kn(s)* Yo X 312
Va9t Xy X 2
D)™t ¥ Y, 2
T X X 2
[S°8) " Yy Va2

Table 6.1: The operatdt(s) is an element of the spacé(, X,Y).

The estimates for these operators are given in Table 6.1ditiaal to bounds for already
discussed operators.

6.4 Mixed boundary value problem

The interior boundary value problem with mixed boundaryditions (5.6) is given as
Pu=0 inQ™,
Yo U=0p onlp, (6.11)
Y, U= 0N only.
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The boundary integral equations which are related to thedboundary value problem
(6.11) are deduced in (5.7) and are given as

V(9o KW= (314K ) do-V(oa onro
(6.12)

R(5"9+D(80 = (31 ~K(S" ) au-D(E% onr,

or equivalently as

HH(s) | P| = QD] _H* {QD} _
M RGRC]
We test the boundary integral equations (6.12) with fumstioy, &) € [H™Y2(My)]* x

[HY/2(Fp)]*. This results in the variational formulation:

Find (@, @) € [H™Y2(ry)]* x [AY?(Mp)]* such that

o] (2] = (8] -l [2])

forall (n,&) e [HY2(My)]* x [AY?(Mp)]*.

The given Dirichlet datungp is projected in the discrete spa#l(r) by using thel,
projectionPO’l, see (6.5). The given Neumann datgmis approximated by using the
projection Ph_l’l, see (6.6). The corresponding Galerkin variational foatiah has the
form:

Find (gh, ) € S, 22(Mn) x () such that

(v ] (8), ([P [20), - (w0 [ ) [2]),

(6.13)
for all (nn, &) € §,-°(Tp) x §H(w).

Due to the ellipticity of the operatdt ™ (s), see Corollary 4.16, the variational formulation
(6.13) is uniquely solvable. Strang’s lemma (Lemma 6.2) thiedapproximation property
(Lemma 6.3) gives us the following corollary.

Corollary 6.9. Letg € [Ha,(1)]%, € [H5,(M)]*, an € [Hpw(Tn)]*and @ € [H5,(Tp)]%,
then the following error estimate holds
10— hll_1/or + 1¥ — Unlly2r
< c(@) 1202 (11l + 1 Wll2r + llonll 1 + 19012, ) -
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With the help of the inverse inequality an error estimatenmlt,-norm for the error ofp
can be deduced,
2,FD) ’

see [52]. The dependancy on the paramstisrthe same as for the natural norm. The
Aubin—Nitsche trick gives us an error estimate in thenorm of the error ofy

or <c(s? (gl +

see [52]. The constani(s) depends on estimates of the operaiys) : [H1(M)]* —
[Lo(M)]* and it's inverse and estimates for the opera€és)* : [H1(M)]* — [H~1(M)]%
The explicit behaviour of these estimates onto the paransdias not been investigated
yet and therefore the explicit behaviour of the error est@mto the parameteris not
known.

l0—llor < o(@) 182 (1@l + WLz + lonlzr, + o

| — gn

27 +llonllzry + 1190121, )

The solutionu of the interior mixed boundary value problem (5.6) is apprated by
evaluating the representation formula (5.1)

un = SL(s) (¢h-+ Py "an ) ~DL(S) (n+ RO

The error in a poink € Q can be estimated by the following lemma.

Lemma 6.10.Letg € [H3,(M)]%, @ € [HE(M]*, an € [Hpw(Tn)]* and g € [H5,(Tp)]%,
then for xe Q the following error estimate holds

u(x) — un(x)| < c(a,|s))h? (H(P ir HWlor +llonllyry, + ||9DH2,FD> :

Proof. In [52] the proof is given for ah, approximation of the Neumann datum by using
piecewise constant discontinuous basis functions. Tberdéhe order of convergence is

restricted to two. By reiterating the proof using the pies@ninear discontinuous basis

functions as approximation the order can be increasedéee thithout further assumptions

onto the given Neumann datugg. O

The solution of the variational formulation (6.13) is obwsly bounded. An improved
bound, corresponding ®is obtained by reiterating the arguments from [31].

Theorem 6.11.For s € C} the solution of the variational formulatio6.13)is bounded
by
[@ll_1/2r + [[Wnll12r < (o) 5%/ (HgNH—l/Z,I'N + HgDHl/z,rD) :

Moreover, @y = SL(S) (@ + Ph_l’lgN) —DL(s)(yn+ Pﬁ’lgD) is bounded by

lunllz.o < &(0) 182 (llon ] _1/2.ry + 190ll1/2r ) -
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Proof. For the wave equation the corresponding bound is derive8lih We follow this
proof closely. The proof is essentially an extension of tteopof Theorem 5.1 to discrete
operators.

We start by definining the function

Un = SL(S) (@h+ Py, “Gn) — DL(S) (Yh+P>'Gp).

Then the variational formulation (6.13) is equivalent te fbllowing boundary value prob-
lem

Pup=0 inR3\ T,
(Yo Un,N)p = <Pﬁ’1§D,n>r foralln e S;l’o(FD) (6.14)
(Yiun,v)p =0 forallv e $(y)

with the transmission conditions

Vaunllr =Py M € §,0%(M0),  [youn]lr — Pgo € (T w).

We denote the annihilator of a function spacby X°. The boundary value problem (6.14)
is on the other hand equivalent to the following variatidieamulation:

Find u, € [HY(R3\ )] with (5 Un, Vi) = <Pr?’l§D,Vh>r for all vy € S, *°(Ip) and

([youn]r,Wn) = <Pr?71§D’Wh>r for all w, € [éﬁ’l(rN)] such that
ag3\r (Un,V) = <Ph‘ YRS V>r (6.15)

forallve [HY(R3\ M) with y ve [S;l’o(rD)} ) and[yov|r € SH(TN).

The solution of this variational formulation can be estiethby repeating the arguments
in the proof of Theorem 3.12. Finally the boundedness of tiogeption operators results
in

llunllg gy < ©(@) 18| (llonl_s 21, + 182 190ll1/2 ) -

Using estimates for traces, see Theorem 3.4 and Corollady @€ obtain

1ol _1/2r +¥all1/2r < cla) 5%/ (”gN”—l/Z,FN + HgDH1/2,rD> :
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Pointwise evaluation

To obtain a convergence estimate for the pointwise errdnentitne domain, we need to
have a bound for the point evaluation in the Laplace domdnesé estimates are obtained
by estimating the fundamental solution.

For this, an additional assumption on the material dataesieeé. \We assume

laf — ag| > L'Z) (6.16)

C
8

whereas andas are given in (4.2) and correspond to the fast and slow corsjanesvave.
Assumption 6.16 is fulfilled by all materials consideredhinitthis work.

Lemma 6.12. The point evaluation of the single layer potentialXat Q™ is a bounded
linear functional with the absolute value bounded as

ISL(s) @(X)| < c(ga, dist(x,T"))|s].

The point evaluation of the double layer potentiakat Q is a bounded linear functional
with the absolute value bounded as

IDL(s) @(%)| < c(a, dist(%, ")) [s*.

Proof. The single layer potential can be estimated by
ISL(s) @(X)| = /Gs(i,y)q)(y) dsy| < [[Gs(%,) |1 1@l 1 -
r

As long asxe Q~, the fundamental solutio®s(X, -) is an element o€£*(Q") and of
[HY(Q7)]* The trace theorem (Theorem 3.4) can therefore be appliggiafts

SL(S) @(R)| < IGs(%,) [l o+ 1@l 1 - -
With assumption (6.16) the different parts of the fundarakslution can be estimated by

UF | < cl@ye ", Pi| < c(g)e N,
Uil < c(o)lsle” ", |PP| < (o) [s|e <Y,
with o = max(Re[a1],Re[az],Re[as]). Due to assumption (4.3) > c(o) > 0 which

results in
1Gs(%,)lo.q+ < c(0,Q7)]s].
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Sinceay 2.3 < ¢(0) |9 all derivatives and thus thigd'(Q™)]*-norm of the fundamental
solution can be estimated by

IGs(%, ) 1.0+ < c(0,Q7)[8°.

For the double layer potential we have

IDL(S) ¢ (x)| = /[VlGé(i,y)]*w(y) dsy| < [VAGs R W) _1j2r 1WIl1 -
r

The adjoint of the fundamental solution is the fundamerhitgn of the adjoint problem.
Therefore the fundamental solution fulfills the propeR@:(X,-) = 0in Q" forxe Q™.
Lemma 3.15 results in

INGsE Y121 S Gs(ZY) g0+ -

By following the same estimates as above, we can show theedesstimate. ]

6.5 Dirichlet boundary value problem

The Dirichlet problem (5.11)
Pu=0 inQ~,
— (6.17)
You=0p onl

can be by solved by starting from the boundary integral equngb.12), which results in
in the following variational formulation:

Findt, € Sgl’o(l') such that

(V(S)th, Tn) = < (%I + K(s)) P>'gp, rh> (6.18)

r
forall T, € s;l’o(r).
Equation (6.18) can be rewritten in operator notation as

Vh(S)th = <}Mh —+ Kh(S)> Pﬁ’lgD. (6.19)

2
Unique solvability of equation (6.19) follows from the eliicity of the single layer poten-
tial (Theorem 4.8). A bound for this nonsymmetric realiaatof the Dirichlet to Neumann
map can be obtained by refining the result for the mixed boyndsue problem in The-
orem 6.11.
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Lemma 6.13. The following property holds:

Wi (M) ) € A (29705, 20)

Proof. Following the proof of Theorem 5.1 we first introduce
Un = SL(S) ¢h — DL(s) P>'gp
and by estimating the variational formulation (6.15) weantt
llunllg gonr < ()18 l1g0l1)2r (6.20)
Estimating the jump of the conormal derivative, Corollar§43.results in

@l _1/2r <clo) 57 l9pll1/2,r

and thus the desired estimate follow. ]

For ¢ € [H3,,(7)]* andgp € [H5,(T)]* Strang’s Lemma 6.2 results in the error estimate

9/2

g0l _y/zr < ()2 (5 9lly +15%2 9ol ). (6.21)

An estimate for thé.»,-norm can be obtained by the use of the inverse inequality,

& — @llor < c(o)h <|5|4 1l + |5|9/2 ||9D||2,r> ’ (6.22)
see [52].
The solution inside the domain is given by the represemdtoonula

Un = SL(S) gh — DL(s) P**gp

When assuming € [H¥?(Q)]* and distx, ") > 0 we have the error estimate

U(®) — un(R)| < c(a Ishn® (11l + ool ) (6.23)

foranyXe Q, see [52].
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Indirect single layer approach

Another popular approach is an indirect single layer apgroaUsing the ansata =
SL(s) @, results in the variational formulation:

Find ¢, € S, -°(I") such that
(Vn(S)@h, M) = (db, M)

for all np, € S, °().
Unigue solvability as well as the estimate
[l _1/2r < c(0) 5% 190 ]l1/2r

is obtained by using the ellipticity estimate (Theorem 4 8 estimate for the solution
inside the domain is given by Corollary 6.6 which results in

- 2
[Gll1.0 < c(@) s llgblly /2 -

An estimate for the pointwise evaluation inside the doms&given by combining Theorem
4.8 and Lemma 6.12, resulting in the estimate

G(%)| < c(0) I81* lgoll_y/2r

for X € Q.

6.6 Neumann boundary value problem

According to Section 5.4 the Neumann problem (5.13)

Pu=0 inQ™,
_ (6.24)
Y, U=0On onl
results in the following variational formulation:
Find g, € ﬁ’l(r) such that

OO = ( (51K ) § avw)

r

for all v, € ﬁ’l(r),
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or equivalently
1 ~ _
Dh(s)¢h = (QMJ - Kh(s)*) P Ygn. (6.25)

The ellipticity of the hyper-singular operator guarantaagjue solvability. A bound for
this nonsymmetric realization of the Neumann to Dirichleéiator is given in the follow-
ing lemma.

Lemma 6.14. The following property holds:

Dh(s) ™1 (%Mg - Kh(s)*) e A(2, %, Yh).

Proof. Following the proof of Theorem 5.1 we first introduce
Un = SL(S)R, “gn — DL(s)
and by estimating the equivalent variational formulatioaoetbtain
Ilunllg za,r < S(@)18 lgn 27 (6.26)

Notice that the estimate is better, corresponding than the corresponding estimate for
the Dirichlet problem (6.20). Combining the estimate (6.&&h the trace theorem, The-
orem 3.4, and estimate (3.11) results in the estimate

nllyor < (@) ISP llON]I_y/ar -

Due to the slightly worse estimate for the jump of the Direthrace we end up with a
similar estimate as for the pure Dirichlet boundary valusopem. O

When assumingy € [H5,(7)]* andgn € [Hp,(M)]* Strang’s lemma (Lemma 6.2) results
in the error estimate

= Wl < c(@)02 (|5 [l + 1572 lonllsr ) (6.27)
With the help of the Aubin-Nitsche trick an error estimatetfoe Lo-norm is given as

ln—Wlor < (0,9 (| @lzr + llonllor) - (6.28)

see [52].

The solution inside the domain is approximated by

Un = SL(s) P, "*gn — DL(s) .
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When assuming € [H¥?(Q)]* and dist%, ") > 0 we have the error estimate

u(R) ~ un(®)| < (0, s (llan - + 191 ) (6.29)

for anyxXe Q.

In [52] the estimate is done for a piecewise constant digcootis approximation of the
known Neumann datum, resulting in a lower convergence rateam By repeating the

arguments when using an approximation of piecewise linisaodtinuous basis functions
of the known Neumann datugy the stated error estimate can be shown.

Indirect double layer approach

An indirect double layer approaech=— DL(s) Y, with ¢, € ﬁ’l(r) results in the varia-
tional formulation:

Find g, € Sﬂ’l(r) such that
(Dn(S)Wh; V) = (9N, Vn)r

for all v, € ﬁ#l(r).

Again ellipticity of the hyper-singular operator guaraegeunique solvability. Theorem
4.10 and Corollary 6.6 yield the following estimates

hllyjor S c(@)Isi®llon]l 1/2r (6.30)

and
|

2
1,0 Sc(o)ls| H9n||71/2,r~

An estimate for the pointwise evaluation inside the domsgiven by combining estimate
(6.30) and Lemma 6.12, resulting in the estimate

G(%)| S o(0) sl*llon ]l _1/2r

for X € Q.
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Convolution quadrature is an approximation method for cartian integrals. It was de-
veloped by Christian Lubich in [32, 33] and applied to the wageation in [34]. In the
following chapter the method will be derived and importagults will be stated.

7.1 The Convolution Quadrature Method (CQM)

Let F(s) be an analytic function in the half-plane Re> pg such that the Laplace inver-
sion formula

f(t):zim_ / F (s)ds

p+iR

exists for allp > po. f(t) is a continuous and exponentially bounded function which
vanishes fort < 0. To emphasize the dependency on the funckg¢s) we denote the

convolution as
t

F(@)g(t):= [ f(t-)g(r) dt 71)

0

The notation (7.1) emphasized the dependancy of the caimolanto the analytic func-
tion F(s) in the Laplace domain. A justification for the notation corfresn the fact that
for F(s) = swe havedig = ¢ and from the composition rule

F(a)G(a)g = (F-G)(d)g.

Parseval’s formula gives us the following result:
Remark 7.1. Assume that Fs) is bounded by
IF(s)] <Cls|"
for all Re[s] > o > 0. The operator extends by density to a bounded linear operato

F(d):Hy "(0,T) = H(0,T) (7.2)

75



76 7 Convolution quadrature

for all r € R. Insertion of the Laplace inversion formula into the comnmn integral and
applying Fubini’s theorem results in

_Zio/t+/ (9)e™ ds gt — 1) dr

p

t
/ / g(t—r1)dr ds.
p+R 9

a"e

:Zy(t,S)

“\
[EEN

The functiony(t,s) is the solution of the ordinary differential equation

y(t) =syt)+9(t),  y(0)=0.

This ordinary differential equation can be discretizechgsa multistep method. We con-
sider a constant time step grid with= nAt. A general linear multistep method is given

by
k

k
Ynoj =Ot'S Bj(syh-j +9((n—j)At)).
_Z)ony j ,; j(S¥h-j+9((n—j)At))

J:
We multiply the sums with€" and sum oven. We manipulate the resulting sum in the

following way
zi);ijajyn JE ;i)ajfj‘z:Yh an I,

The right hand side can be rewritten accordingly. Setying 0 andg, = 0 forn < 0 and
introducingy(&) = Z ynéMandg(&) = Z g(nAt) results in

n>0 n>0

k

y(&) Z}mfl =h(sy(§) +9(& Z)BJE‘

Jf
Introducing the quotient of the generating polynomials

K ~.2j
Yj-00j¢’

06)==——
(€) S B

we obtain
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By utilizing Cauchy'’s integral formula we get an approximatuf F (g;) as the n-th coef-
ficient of a series expansion of

o | 0 a® as=F (%) at@)

p+HR At

Using the series expansion

5O &
F(F)—n;wnf, g <1 (7.3)

an approximation is defined by

<F <tht) 9At> (tn) == Ji‘”ﬂig(tj)- (7.4)

The convergence order of the underlying multistep methtdmsferred to the convolution
quadrature under the following assumptions, see [34]. IH@&ai multistep method has to
be A-stable, i.e., R&(&)] > 0 for |§| < 1 andd(¢&) is not allowed to have poles on the
unit circle. Due to A-stability we are restricted to muliptmethods of order 2. We will
use the backwards difference formula of order one (BDF1) druder 2 (BDF2) in this
work. Both fulfill the stated assumptions. The generatinypoinials are given as

3 1
dsDF2(¢) = > —25+552 and dgpri1(§)=1-¢.
Theorem 7.1. Let F(s) € A(u, X,Y). The generating polynomial of the multistep method
d(&) has no poles along the unit circle aiE[d(&)] > 0 for |€] < 1. For g € H,(0,T)
Y

) 1 .
with r > > +max(i,0), and 3 = min ((r —H)ma

r, p) we have

|Fat)at) — F(@g)]|, <catPlogat lglor, foro<t<T
and
N ) 1/2
(h_;HFwﬁ‘)g(im)—F<at>g<iAt>HY> < 2t |glhyr o)

If the first two terms in the definition ¢ are strictly greater than p, theog(At) term in
the first error estimate can be omitted.

Proof. See [34]. ]
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7.2 A decoupled system

Several methods have been presented to speed up the ewalaohthe approximation

(7.4), defined by a convolution quadrature approach. [Efifeapproaches are given in,
e.g.,[22,23,25,30]. The approach presented in this chayats developed in [7]. The

method was further extended in [5].

The weights in the series expansion (7.3) can be calculatéuebCauchy integral

o fF(Ca) e

as proposed in [32]. Choosing the contour as a circle arownadrigin withé = A 2™ and
approximating the resulting integral with the trapezoidge in the pointsr, = k/(N+1)
results in the approximate weights

2mj
INFI . 271j
N+1Z) (e i )ém. (7.5)

We will introduce additional approximations that allow osiecouple the set of equations.
Starting from the definition of the convolution quadratup@@ximation

(F (at“) g) (tn) := jiwh_ j9(t))

and using the approximate weights (7.5) we extend the sulh by settingwf\ =0 for
j < 0. We end up with a new approximation

(F (‘9€i> g) (tn) = i“ﬁ j9(t))- (7.6)
£

o S(E]
Introducingéy.. 1 = &N ands; = (EA'\ltH) the new operator can be written as
(()) 2 k(n—j) anjkj
WIS gj= (s0)§ ATE g,
=3 ke S 5 s

with gj = g(tj).
The weighted discrete Laplace transform is given by

N . -
La(@:=S AlEKg;.
X
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Starting from the equation
(F (dtet\) 9) (tn) =hn
and applying the weighted inverse Laplace transformatieremd up with the set of de-

coupled equations
F(s)La(@)k= Lo fork=0,....N.

The error of the additional approximation can be boundedbydllowing lemma.

Lemma 7.2. Let the multistep method be either the BDF2 or the BDF1. LeeNotk the
number of time stepf,< A <1and Fe A(u,X,Y), then

At At AN+1 1
|F@d)a-Faq, <zt lglluom

with C dependingon T.

Proof. In [7] the proof was done for the inverse single layer potdrdaind the backward
difference formula of order 2. The extension to the genaaaéds straight forward. [

Remark 7.2. The discrete operator fulfills the composition rule, thus \aeeh

F(95)G(05) = (FG)(8%).

Proof. See [7]. n

7.3 Galerkin discretization in space and convolution quadrature in
time

In the previous chapters the convolution quadrature mettexidiscussed. This method
can be used to discretize convolution integrals arisinghfliundary integral equations.
The necessary properties for all boundary integral opes&i@ve been established in Chap-
ter 4, the properties have been transferred to their Galetiscretizations in Chapter 6
and finally all necessary properties for several boundaggal formulations and their
Galerkin discretizations have been established in Chapa@d3Chapter 6. All boundary
integral equations will be discretized in time by the comimn quadrature and in space
by the Galerkin method. The necessary theory is establishéuis chapter. We will
first discuss an abstract setting and finally apply this thhémdifferent boundary integral
formulations.

Let X be a Hilbert space and the operator

A: X — X* e A(u, X, X¥). (7.7)
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We start with the operator equation A

Al = f
for 6= Luc X and f = £f € X* in Laplace domain and the corresponding Galerkin
approximation

Anlih = fi,
as defined in (6.2).

Let the operatoAy, be invertible with the property

At e A(v, X %) (7.8)
The Laplace inversion formula yields
An(G)un = fy

with u, = £7%0, and f, = £~ f,,. Applying a time discretization as defined in (7.6) results
in the fully discretized system

(03 )up = T (7.9)
With the help of the composition rule, see Remark 7.2, this&gn can be rewritten as

up = Aﬁl(dté)t\ ) fi.

We have the mapping properff* : H™(0,T;X}) — H'(0,T;X,) and thus forfy, €
H™V(0, T;X{) we end up withu, € H' (0, T; X). The error of the Galerkin approximation
is bounded, see Lemma 6.1,

||U— Uh||Hr(o’T;x) < Cvigih HU — Vh”H”“*"(O,T;X) . (710)

whereu is the solution of the equation
A(G)u=f. (7.11)
The error in space and time is estimated in the following lemm

Lemma 7.3. Let the multistep method be either BDF1 or BDF2 and p its ortet u be
the solution of equatioii7.11) and let lﬂ be the solution of equatiofv.9). We assume
conditions(7.7) and (7.8) fulfilled, f € HY"P*1(0,T,X) and0 < A < 1. Introducinga =
1/2+pu+v+eandfB =v+ p+ 1+ € results in the following error estimate

|k ) —utw)|

W S C[Vtigih [U—=VhllHao1:x)

+AP [ Fllyp 0 1xe)
NHL
+ WN [ llv o)

foralli =1,...,N, with c dependingon T.
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Proof. The error can be split up as

|utta) ~ | = )A- @)t -A et
< A7 a0 T —A (o) I
+\Aal< A
+‘Aﬁl(‘7tm)f—Aﬁ 3 fo

and thus combining estimate (7.10), Theorem 7.1 and Lemgwiélds the result. [

Remark 7.3. Let the assumptions of Lemma 7.3 be valid and furthermorenasa™N ~
AP Fora = 1/24+u+v+¢eandfB =v+ p+ 1+ ¢ the following error estimate holds

|k t) —uw| <c (V;g;h Ju=Vhll e om0 +Atpr|qup<o,T;X*>> -
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8 TIME DOMAIN

In this chapter different boundary value problems will bgcdissed in time domain. Parse-
val's formula allows us to transfer the results from Lapldoeain to time domain. We will
prove unique solvability for all discussed problems, folateithe boundary integral equa-
tions, prove unique solvability for the continuous intdgrguations and for their Galerkin
discretizations. Finally, by application of Lemma 7.3 andrRRek 7.3, error estimates for
the error of the space and time discretization can be given.

8.1 The mixed boundary value problem

The mixed problem in time domain is given as

Pl(x,t) =0 forxeQ~, te(0,T),

¥ U(x,t) = Gp(x,t) forxelp, te(0,T),

i a(xt) =gn(xt)  forxely, te(0,T), (8.1)
4(x,0) =0 forx e Q,
a(x,00=0 forx e Q.

Ford(x,t) € HE(0,T; [H(Q)]*) unique solvability is a direct consequence of unique solv-
ability in Laplace domain, see Corollary 3.12. Remark 7.1 gjive the following bound
for the solution:

||0Hr,1,Q <cC <||QD||I’+%,*%,FD + HgNHHL*%TN) :

The notation of the norm was introduced in (3.13).

The system of integral equations in time domain is given by

V(@)p- K@) = (51@)+K@)) B-V(@)d  onMox (OT)

) 1 ~ ~ ~

R*(@)9-+ D@ = (51(@)~K'(@) )6 ~D@) onlyx(0.T)
with the unknown Neumann datum € HS(0,T,[H~Y2(p)]*), the unknown Dirich-
let datum € H§(0, T,[HY?(F\)]*) , the extension of the given Dirichlet datugp &

83
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Ho™¥2(0, T, [HY2(Mp)]*) to gp € Hy¥/%(0, T, [H2(1)]*) and the extension of the given
Neumann datungy’ € H3t2(0, T, [HY2(T)]*) to gy € H P20, T, [H~Y2(T)]*) for any
te (0, T)andr e R.

The system of boundary integral equations is again unicgeaable due to Theorem 4.14
and the solution is bounded by

| ‘3/2

ngD\|r+2,2,rD)

for all r € R. The discrete decoupled system at time stgpsnAt, n=1,....N+1is
given by

003 08050 <€ S 00l ey g o
N

1 ~ 11x
Vh(05) @ —Kn(9%) ﬁt—(zmhw ) +Kn(9? >) Py 6o —Vh(63)R, "'an  onTo,

)0kt + Dn(0 0 = ( M0 0%) K (0%4) ) B 0w~ DR o o,
(8.2)
Unique solvability can be proven due to Theorem 4.14 and éhgposition rule, Remark
7.2. The Galerkin spaces will be chosen as stated in Secdo'When assuming(t, ) €
[H52(Q))*, Remark 7.3 combined with Corollary 6.9, Theorem 5.1 and Témao8.11
results in the following error estimate for the discretauioh at the time stefy, = nAt.

|wit) -yt

L ‘|‘H(Ptn — ¢ (tn)
2

1rN

< 2 [@l1g/2per +19ll1s2ear | + B 10N 71 pre 1y 180074 pre o
(8.3)

For a reduced order in space or time a reduced order of cagwveegcan be deduced.

8.2 Dirichlet boundary value problem

The Dirichlet problem in time domain is given by

Pi(x,t) =0 forxe Q~, te(0,T),

Yo U(x,t) = b (x,t) forxel, te(0,T), (8.4)
4(x,0)=0 forxe Q,
ad(x,00=0 forx e Q.

Forue Hi(0,T;[HY(Q)]*) unique solvability is a direct consequence of unique salipab
in Laplace domain, see Corollary 3.12. The correspondingntbary integral equation is
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given by
V@)= (5@ +K(@) 6o

with the unknown Neumann datugne H3(0, T,[H~Y/2(I")]*). Unique solvability is guar-
anteed by Theorem 4.8 with the estimate

”lllHr,f%,l' < CH@DHHZ%I

which is obtained with the help of Lemma 6.13. Choosing digcsabspaces as in Section
6.5 we end up with the discrete equation at the timedtepanAt

1 0,14
()0 = ( GMh(085) + Kn(02) ) PP
which is unique solvable with the estimate
1l —1r <cli@oll 21y

When assuming € H3"¢(0, T, [H(M)]*) anddb € HY 2™ (0, T, [H5w(7)]*) we can apply
estimate (6.21) and Lemma 6.13, thus obtaining

| @t - 98 )

3/2 ~ A
<02 (1@lloyzrear + 00llsie2r ) + At [80llg. peyr] -

(8.5)
8.3 Neumann problem
The Neumann problem in time domain is given by
730(x,t):0 forxe Q™, te(0,T),
¥ U(x,t) = Gn(X,t) forxel, te(0,T), (8.6)
0(x,0) =0 forxe Q, '
0(x,0)=0 forx e Q.

The corresponding boundary integral equation in time dansagiven by

N

D(@)§= 5@ K@) B, o

with the unknown Dirichlet datunp € H'(0,T,[H¥?(I)]*). Theorem 4.10 guarantees
unique solvability with the estimate

10 3 <cldnl o yr
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which is a direct consequence of Lemma 6.14. We choose the digrete subspaces as
in Section 6.6 and end up with a full discretized system

. 1 ., 11,
D4 )i = (SO K@) ) By o

for the timesteps, = nAt. The discrete system is uniquely solvable with the follayvin
estimate for the solution.

Il r < clionllizo g

Assumingg € Hy/?*#(0,T,[H,(Q)]*) anddy € Hy > ™ P¥2%2 (0 T [H2,()]*) and
using estimate (6.27) and Lemma 6.14, we end up with the estonate

| &t — G 1)

32 (112 . DllA
%,FSCh/ <H(PH%+S7H+||9N||4,1,r>+CAt ||9N||g+p+g,%,r- (8.7)



9 NUMERICAL EXAMPLES

In this chapter the convergence results from the Chapter 8arirmed with the help
of numerical examples. In addition to the presented apbrogcstudy a collocation ap-
proach, which is derived in Section 9.2. The error of the sgiscretization is discussed
first, followed by a discussion of the error in time.

9.1 On the implementation

The discussed algorithms were implemented in the softwarary HyENA [27]. The
integral operators were realized by the Duffy transfororgtisee [20]. The double layer
potential, adjoint double layer potential and the hypegslar operator where regularized
through partial integration, see [39, 40].

To reduce computational and storage complexity fast meatiinade been utilized. The
first fast methods, which were developed, are the Fast Mudipethod, see [42] and
references therein, and the Panel-Clustering method [24{hd HYENA library theH-
Matrices [11, 21, 44] are utilized, to be more precise thepligda Cross Approximation
(ACA) [10] as implemented in the AHMED library [9] is used.

The different parameters differ greatly in the order of magle, see e. g., Table 9.1 for
Berea sand stone. A direct discretization leads to systemaastvith condition numbers
higher than 1€P. Direct solvers still succeed, at least most of the time, ree iterative
solvers, as they are used in our code, simply fail. A variat@iasformation from [28] is
applied, which results in reasonable conditioned matridgdditionally preconditioners
are applied. The single layer potential is preconditioneat artificial multilevel precon-
ditioner [50] and the hyper-singular operator is precdadeéd by an operator of inverse
order [53].

9.2 A collocation approach

The collocation approach is still very popular especiallgngineering applications. Start-
ing from an operator equation
Au=f

87
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with A: X — X* and f € X* we can restricty, to X,. Instead of using test functions we
require the equation to be fulfilled in collocation poins j € | resulting in the discrete
system

ACun(xj) = f(x;) foralljed.

For a basisp,i € I, of the spaceX,, the matrix has the entries
Aj = (A@)(xj) i,jel

On general Lipschitz domains the solvability of the equatod thus the stability of the
numerical scheme is still an open question. Stability iy &mlown for special cases, for a
more detailed discussion see, €. .g., [2,18,43].

For the mixed boundary value problem
Pu=0 inQ™,
You=0p onlp, (9.1)
Y1 U=0ON only.

we start with the first integral equation, see [38],
0=V(s)yau— (ol +K(s))u (9.2)
where

£—0
yeQ:ly—x|=¢

o0 =tm [ WGy ds,

The termo degenerates to/2 onC? surfaces, see [38], however on corners and edges this
simple relation is not true. Thus the jump tenis equal to ¥2 almost everywhere.

We choose appropriate extensid@se [HY/2(I")]* andgy € [HY/?(I)]* for the Dirichlet
and Neumann daigp < [HY/?("p)]* andgy e [H~Y/2(I'y)]* such thafip = gp onp and
On = On onTy. We define the unknowns

t =yu—gyandi=u—0gp.
Insertion into the first integral equation (9.2) results in
V(s)f — (al +K(s))i= (al +K(s))dp — V(s)n. (9.3)

As for the Galerkin approach we choose lowest order ansatzifinsty, € S;l’o(l'D) and

Up € ﬁ’l(rN) to approximate the unknown functions. Equation (9.3) ismiszed using
the collocation approach. To end up with a quadratic systecollocation points are
chosen in the following way. Ohp we choose the centre of the triangles = 1,...,Np

and for'y we choose the points of the mesh itsgjf i = 1,...,Mn. We denote the
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number of elements on the Dirichlet boundary wNB and the number of elements on
the Neumann boundary witRy respectively. The number of nodes on the Dirichlet and
Neumann boundary are denoted My and My. In the same way as for the Galerkin
approach the Dirichlet datgp is approximated bPﬁ’lQD and the Neumann datg, is

approximated by3 1’1§N.

We end up with the linear system of equations

Vin() KSn(S) ] {q _
VEn(S) onn+KRn(s)] T

with the system matrices

1
EISD + KSD(S) _VI\(I:D(S)
KSN (s _Vl\(l: n(S)

R'do
Py o

Vo9 = V(W ) (x)  fori =1,...,Np,

[VSN (S)]ik = V(S) ")Uiilvo) (Xk) for k= 1) R Mn andi = 17 R ND7

KSo( (P (%) fori =1,...,Npandk=1,...,My,
(

(
(Xk) fork=1,...,Mn,
) fork=1,...,Mn

Mk = V() ") (%)  fork=1,...,Myand/=1,...,Ny,
M la = (V()w, ") (x)  fori =1,...,Np andé=1,....Ny,
[KSo(8)]ji = (K(S)¢)"h) (%) fori =1,...,Np andj=1,...,Mp,

[lpolij = (W) (%) fori =1,...,Np andj=1,...,Mp,
[KSn(S)]jk = (K(S) 97" (%) fork=1,...,Myandj=1,...,Mp.

A formula for the evaluation of the jump term(x) is given in [37]. On the right hand
side the jump term is evaluated in the centre of the trianghess the jump term is simply
1/2.

The final system of linear equations is given in Laplace domaiconvolution quadrature
approach, see Chapter 7, is used obtain a solution in timeidoma

9.3 Laplace domain

We start by examining different problems for a fixed Laplaaeametess in Laplace do-
main. The resulting error represents the error in spacea feed frequencg an analytical
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solution is well known, namely the fundamental solut@(X, -) fixed in a pointe R3\ Q.
Actually each column of the fundamental solution is a solutf the problem. We chose
the last column. The unit cut® = (—0.5,0.5) is chosen as the domafd. As material
we chose Berea sand stone as given in Table 9.1, see [29].

A H P ® a Ps R K
rock 4-10° 6-10° 2458 019 Q0778 1000 4885.10° 1.9.10°10

Table 9.1: Material properties of Berea sand stone.

Starting from an initial mesh consisting of 12 trianglessheface of the cube is uniformly
refined. We chose the poirtegual t0(0.3,0.13,1.5). The solution is evaluated on 413
nodes residing on a second cupe0.375,0.375)% inside the domai). The error is
observed for the unknowns of the solid and the fluid sepataiéle solid displacement
and the pore pressugeis examined on the boundafyand pointwise in the domaif.
Furthermore we study the Neumann trace split up into thditrat = y;'u and the flux
q= —yf p, see (2.17) and (2.18) respectively.

9.3.1 Dirichlet boundary value problem

In this chapter we discuss the Dirichlet problem (5.11) Thelace parameter is fixed at
s= 2+ 1i. We compare the results of the Galerkin approach given i9}6.

1
Vh(S)th = <§Mh + Kh) Ph oo

with the collocation approach discussed in Section 9.2
1
Vis (9 = (ilﬁ+ KE) Ry 0o

In case of the Dirichlet problem the original boundary imgg@quations are the same, only
the space discretization is different. We compare theivelap(I")-error on the boundary

of the unknown Neumann datg and %C For the Galerkin approach the theory implies
a convergence rate of one, see (6.22). The Neumann graeeplit up into the traction

t = (@, @, @) and the fluxg= —@. We split up the discrete Neumann traces accordingly.
We denote the relativieo-error by

[t —tnllor la—ahllor

It ’

or AT

o,r

The results are stated in Table 9.2.
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| Collocation | Galerkin
#DOF | g eoc e eoc | q eoc e eoc
48 4.75e-01 6.73e-01 4.78e-01 6.67e-01

192 2.50e-01 0.92 3.41le-01 0.98.55e-01 0.91 3.55e-01 0.91
768 1.18e-01 1.08 1.46e-01 1.221.21e-01 1.08 1.55e-01 1.20
3072 | 5.73e-02 1.05 6.39e-02 1.2(6.80e-02 1.06 6.66e-02 1.21
12288 | 2.81e-02 1.03 2.89e-02 1.14£.83e-02 1.04 2.97e-02 1.16

Table 9.2: Comparison of the relatig(I")-errors for the Neumann trace.

The collocation approach produces slightly lower erroentthe Galerkin approach, the
difference however is almost negligible. The convergences match quite well with
the theoretical bounds. Furthermore we compare the eroora point evaluation of the
unknown function

U = SL(s) gh— DL(s)P>"gp

inside the domain. We split the error into the solid disptaeatu = (Uy,U,,Us) " and the
pore pressur@ = U,.

The pointwise error is defined as

VS U(%) — un(%) VI &) —t()
pe, = 5 pa =
51 u(%)1? 5 (%)

wherei =1,...,413 are the different evaluation nodes. Equation (6.23)iea@an optimal
convergence order of three for the Galerkin approach. Tédtseare stated in Table 9.3.

) (9.4)

| Collocation | Galerkin
#DOF | pey eoc pe, eoc | pe eoc pe, eoc
48 6.79e-02 1.14e-01 6.44e-02 1.13e-01

192 1.65e-02 2.05 2.03e-02
768 2.49e-03 2.73 1.86e-03
3072 | 5.11e-04 2.28 4.23e-04
12288| 1.19e-04 2.10 1.02e-04

9.36e-02 2.25 1.90e-02 2.58
31.04e-03 3.70 8.67e-04 4.45
3B.00e-05 3.70 6.82e-05 3.67
B.10e-06 3.30 7.34e-06 3.22

NN W

Table 9.3: Comparison of the relati¢g-errors for the point evaluation.

The convergence rate for the Galerkin approach startsrrhtge but seems to retreat to
three. The convergence rate of the collocation approachewother hand tends towards
two. The errors for the Galerkin approach are thereforeifsogimtly better. To achieve
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the desired convergence rate for the Galerkin approachimpsrtant to project the in-
coming Dirichlet datagp into the discrete subspaﬁl. Replacing thid >-projection by

an interpolation into the spa@’1 results convergence orders as stated in Tables 9.5 and

9.4.
| Collocation | Galerkin

#DOF | g eoc e eoc | g eoc e eoc
48 5.61e-01 7.48e-01 5.64e-01 7.45e-01

192 2.76e-01 1.02 4.05e-01 0.82.77e-01 1.03 4.06e-01 0.88
768 1.28e-01 1.12 1.78e-01 1.181..27e-01 1.12 1.78e-01 1.19
3072 | 5.99e-02 1.09 7.51e-02 1.246.99e-02 1.09 7.50e-02 1.24
12288| 2.88e-02 1.05 3.24e-02 1.212.88e-02 1.06 3.24e-02 1.21

Table 9.4:.L,(I")-errors of the Galerkin approach with interpolation of tlieg Dirichlet

data.

ThelL(IN)-error as presented in Table 9.4 increases slightly, thaatig however not as

significant.
| Collocation | Galerkin

#DOF | pe, eoc pep eoc | pey eoc pep eoc
48 1.96e-01 1.81e-01 1.81e-01 1.71e-01

192 5.03e-02 1.96 4.36e-02 2.0%4.55e-02 2.00 4.01e-02 2.09
768 1.26e-02 1.99 1.05e-02 2.051.10e-02 2.05 9.15e-03 2.13
3072 | 3.15e-03 2.00 2.63e-03 2.0®@.71e-03 2.02 2.26e-03 2.02
12288| 7.85e-04 2.00 6.58e-04 2.06.73e-04 2.01 5.61e-04 2.01

Table 9.5:/>-errors of the Galerkin approach with interpolation of tineeg Dirichlet data.

From the errors in table 9.5 we deduce that the pointwiser @naeases for both ap-
proaches. The impact on the Galerkin approach however ig ignificant, since the
convergence rate for the Galerkin approach is reduced to fivus effect was already

studied in [52].

9.3.2 Neumann boundary value problem

In this section the Neumann problem in Laplace domain (5d8jscussed. The Laplace
parameter is fixed at 100200G. The Galerkin approach for the Neumann problem (6.28)

1+ N\
Dhih = (EME - Kh) P Mo
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is compared with the collocation approach from Section 9.2

1 _
(é Oh + KE) Us =VR gy

In addition to different spatial discretizations, diffateboundary integral equations are
compared. The unknown function is split up into the solicptiisement = (Y1, Yo, Ys3)

and the pore pressume= (5. Estimate (6.28) implies a convergence rate of two of the
Galerkin approach. The error is given as

[[u—unl[or [P— Pnllor
= ep: _
1ullo.r Ipllor

The errors are presented in Table 9.6.

| Collocation | Galerkin
#DOF | &y eoc e, eoc | ey eoc e, eoc
32 4.32e+01 1.01e+01 2.55e-01 3.90e+00

104 1.34e+01 1.68 2.35e+00 2.1®.21e-02 1.47 1.72e+00 1.18
392 3.40e+00 1.98 7.51e-01 1.691.99e-02 2.21 4.04e-01 2.09
1544 | 9.01e-01 192 2.18e-01 1.781.26e-03 2.22 6.35e-02 2.67
6152 | 2.41e-01 1.90 5.74e-02 1.938.73e-04 2.13 1.06e-02 2.58

Table 9.6: Comparison of the relatilg-errors for the Dirichlet trace.

The convergence rate of the Galerkin approach for the s@mlatement is in good agree-
ment with the theory. The convergence rate of the pore pressunigher than expected.
The collocation approach results in significant largerrsirthe convergence rate however
seems to tend towards two as well. Additionally the errorgtie point evaluation inside
the domain are given in Table 9.7.

| Collocation | Galerkin
#DOF | pey eoc pe eoc | pe eoc pe eoc
32 3.54e+01 3.61e+01 8.74e-02 7.51e+00

104 1.12e+01 1.65 4.85e+00 2.9®.89e-02 1.60 2.91e+00 1.37
392 291e+00 1.95 9.75e-01 2.312.73e-03 3.40 3.15e-01 3.21
1544 | 7.78e-01 1.91 2.33e-01 2.0&2.17e-04 3.65 2.36e-02 3.74
6152 | 2.08e-01 1.91 5.79e-02 2.012.30e-05 3.24 1.40e-03 4.07

Table 9.7: Comparison of the relati¢g-errors for the point evaluation.
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Estimate (6.29) predicts an optimal convergence rate ektlfor the Galerkin approach.
The convergence rate is indeed achieved. The error for thecation approach is again
much higher and the convergence rate seems to be restaced.t

Remark 9.1. To achieve the presented convergence rates for the Galapkiroach in Ta-
ble 9.7 the accuracy for the evaluation of the matrix entf@she hyper-singular operator
had to be increased quite significantly.

To obtain a convergence rate of three for the Galerkin amgbr,adhe given Neumann data
has to be projected into the discrete subs@j&éL of linear discontinuous basis functions.

Projecting the given Neumann data into the discrete subﬁf&co of constant basis func-
tions results in a lower convergence rate in the intericg,[S€]. The resulting errors for
the collocation and the Galerkin approach are presentedbie®.9 and Table 9.8.

| Collocation | Galerkin
#DOF | e eoc ep eoc | e eoc e eoc
32 1.60e+02 4.11e+01 1.35e+02 2.36e+01

104 3.88e+01 2.04 8.86e+00 2.212.82e+01 2.26 9.62e+00 1.30
392 9.01e+00 2.11 2.86e+00 1.6¥.19e+00 1.97 3.23e+00 1.58
1544 | 2.15e+00 2.06 8.20e-01 1.801.81e+00 1.99 9.52e-01 1.76
6152 | 5.31e-01 2.02 2.11e-01 1.964.55e-01 2.00 2.56e-01 1.89

Table 9.8: Thd_,(I")-errors for the Galerkin discretization with the given fidfand side
P_LOgN.
h

Comparing the errors presented in Table 9.8 with the erramsngin Table 9.6 shows
that both approaches suffer severely by this change. Edpettie error of the Galerkin
approach increases significantly. Again the error for thee poessure is slightly better in
the collocation approach, whereas the solid displacenesntts in a slightly smaller error
when calculated with the Galerkin approach.

The point evaluation for both approaches is now restriobea tonvergence rate of two,
see Table 9.9. The error of the pore pressure is even sligkther for the collocation
approach, however the error of the solid displacementlisbghtly higher. The errors for
the collocation approach did increase slightly, the impag however small in comparison
to the Galerkin approach.

9.3.3 Mixed boundary value problem

In this section the numerical results for the mixed problaeniaplace domain are stud-
ied. The Laplace parameter is fixedsat 20+ 15. We compare the Galerkin approach
discussed in Section 6.4 and the collocation approach seclin Section 9.2.
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| Collocation | Galerkin
#DOF | pey eoc pe eoc | pe eoc pep eoc
32 1.31e+02 3.98e+02 1.11e+02 3.27e+02
104 3.18e+01 2.04 1.10e+01 5.18.31e+01 2.26 1.42e+01 4.53
392 7.38e+00 2.11 3.48e+00 1.66.89e+00 1.97 4.03e+00 1.82
1544 | 1.77e+00 2.06 8.80e-01 1.98.48e+00 1.99 9.40e-01 2.10
6152 | 4.37e-01 2.02 2.09e-01 2.073.72e-01 2.00 2.28e-01 2.04
Table 9.9: Thel,-errors for the Galerkin discretization with the given tigland side
P gn.
#DOF | e eoc ep eoc | g eoc e eoc
24 2.26e-01 4.25e-01 5.02e-01 4.59e-01
100 8.04e-02 1.49 1.70e-01 1.32.82e-01 0.83 2.48e-01 0.89
420 1.56e-02 2.37 3.93e-02 2.111.47e-01 0.94 1.34e-01 0.88
1732 | 3.30e-03 2.24 8.65e-03 2.187.40e-02 0.99 6.84e-02 0.98
7044 | 7.55e-04 2.13 1.96e-03 2.143.71e-02 1.00 3.43e-02 0.99

Table 9.101 »-error of the Cauchy data on the boundary for the Galerkinagogir.

The results for the Galerkin approach are stated in Tablgé 9'he convergence rates are
in good agreement with the theory. The errors for the cotlonaapproach, as given in
Table 9.11, behave in a similar way. In general the errorhefGalerkin approach are
slightly smaller or equal to the errors of the collocatiopiegach.

#DOF | ey eoc ep eoc | & eoc e eoc
24 5.66e-01 5.26e-01 5.03e-01 4.64e-01

100 1.49e-01 1.92 1.95e-01 1.43.83e-01 0.83 2.47e-01 0.91
420 | 4.21e-02 1.83 5.28e-02 1.89.47e-01 0.95 1.34e-01 0.88
1732 | 1.19e-02 1.83 1.35e-02 1.977.40e-02 0.99 6.84e-02 0.98
7044 | 3.27e-03 1.86 3.40e-03 1.9%8B.71e-02 1.00 3.43e-02 0.99

Table 9.111 »-error of the Cauchy data on the boundary for the collocatppr@ach.

Additionally the error of the point evaluation is given inblea 9.12. The error behaves
in a similar way as for the Dirichlet and the Neumann probléife have a convergence
rate of two for the collocation approach and a convergenieeafthree for the Galerkin

approach. This results in a smaller error for the Galerkpragach.
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| Collocation | Galerkin
#DOF | pe, eoc pe eoc | pe, eoc pep eoc
24 4.16e-01 3.04e-01 1.03e-01 1.90e-01

100 9.89e-02 2.07 6.82e-02
420 291e-02 1.77 1.34e-02
1732 | 8.47e-03 1.78 3.43e-03
7044 | 2.36e-03 1.85 8.57e-04

64.09e-02 1.33 4.58e-02 2.05
3.47e-03 3.56 3.68e-03 3.64
7A.28e-04 3.02 2.67e-04 3.79
(6.09e-05 2.81 2.80e-05 3.25

NN

Table 9.121,-error of the point evaluation for the mixed problem.

9.4 Time domain

In this chapter we discuss numerical results for the comrarg of solutions in time do-
main. To the best of our knowledge no pure analytical safuitiotime domain is known.
We therefore start with a fixed discretization in space afideenly in time. The finest
level is taken as a reference solution. The error and thesponding convergence rates
reflect the error in time. As domail we chose the cubg-0.5,0.5)%. The surface of the
cube is refined with 12 elements. No further refinements icepae necessary.

9.4.1 Dirichlet boundary value problem

The Dirichlet datum is given as
u(t,x) = 10 5 5(130873-@x -3 anqp(t, x) = 0

witha=(1,2,1)". The solid displacement represents an incoming wave. At tieto the
solid displacement is not equal to zero, the maximal valuireg zero is however smaller
than 2— 9. The wave travels at a speed of 1308i73. The length of the time interval
is chosen a3 = 4e— 3. Starting with 64 time steps we calculate up to 2048 timpsste
The finest level is chosen as a reference solution. In Tall@ ferst the number of time
steps, denoted b, is given, followed by the pointwise errors and finally theoeiof the
traction and the flux on the boundary. The relative pointwiser is defined as

Vi [t ) — (%) o5

t(iivtj)‘z

ij u(*lut)_uh()zlat) 2
peh:\/ZIJ‘ j J" et —

2
20

u(%,t)| Ji.j
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wherei =1,...,413is an index for the different evaluation nodes @ndl, ..., N an index
for the different time steps. On the boundary the error ferfthx is given as

2 /5 (VA= Gen) (1)) (0= Grer) >r
\/21<V0ref ), Oref (t )>2

with the reference solutioget. The error for the traction is defined in the same way and

denoted bye, Y2 The single layer potentid is evaluated for a fixed = 1 and thus the
error is equivalent to thp—l‘l/z(r)]“-norm. Both approaches are discretized in time using
a BDF 2 scheme, which results in an optimal convergence ofdeio

(9.6)

N pet, eoc pet eoc et_l/ 2
128 | 2.36e-02 1.65 1.39e-01 $.90e-02 1.74 1.57e-01 1.71
256 | 6.13e-03 1.95 3.64e-02 2.60e-02 1.93 4.13e-02 1.92
512 | 1.52e-03 2.01 9.06e-03 (6.46e-03 2.01 1.03e-02 2.01
1024 | 3.62e-04 2.07 2.16e-03 71.54e-03 2.07 2.45e-03 2.07
2048 | 7.24e-05 2.32 4.32e-04 23.08e-04 2.32 4.90e-04 2.32

—1/2

€0C € eocC

NINDN P

Table 9.13: Dirichlet problem - Collocation approach - BDF 2.

Both the collocation approach, see errors presented in Bab® as well as the Galerkin
approach, see errors presented in Table 9.14, convergawidhvergence rate of two.

N pet, eoc pet eoc q_l/z eoc eal/z
128 2.70e-02 1.65 1.25e-01 1.68 1.04e-01 1.63 1.37e-01 1.74
256 7.10e-03 1.93 3.24e-02 195 2.68e-02 1.95 3.56e-02 1.95
512 1.77e-03 2.00 8.04e-03 2.01 6.66e-03 2.01 8.86e-03 2.01
1024 4.24e-04 2.07 1.92e-03 2.07 1.59%e-03 2.07 2.11e-0F 2.0
2048 8.48e-05 2.32 3.83e-04 2.32 3.17e-04 2.32 4.23e-02 2.3

eocC

Table 9.14: Dirichlet problem - Galerkin approach - BDF 2.

For the Galerkin approach the numerical results confirmhieretical convergence rates.
Theoretically the scheme is stable for any time step. Honténg was not observed in our
numerical examples. Both approaches tend to become ungttiddenatrix entries are not

computed with enough accuracy. By increasing the Gaussypemiare able to calculate
rather a long time, especially for the Galerkin approache Gdllocation approach tends
to be more sensitive. For this Dirichlet problem 4096 timepstare not stable with the
collocation approach, refining once in space however regult stable scheme again.
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Remark 9.2. For an error estimate in the4(I") an estimate

1 (1
2 (s

needs to be proven. The(l') errors of the solution of the Galerkin and the collocation
approach are given in Table 9.15, which indicate such a bowmst®for both approaches.

<c(a)|s]*
[HL(F)]— (Lo ()]

\ Collocation \ Galerkin

N & eoc e eoc & eoc e eoc

128 1.24e-01 1.74 1.59e-01 1.71 1.16e-01 1.68 1.38e-01 1.74
256 3.21e-02 1.94 4.19e-02 1.93 3.00e-02 1.95 3.58e-02 1.94
512 7.97e-03 2.01 1.04e-02 2.01 7.45e-03 2.01 8.90e-03 2.01
1024 1.90e-03 2.07 2.49e-03 2.07 1.78e-03 2.07 2.12e-0¥F 2.0
2048 3.80e-04 2.32 4.98e-04 2.32 3.56e-04 2.32 4.25e-0&£ 2.3

Table 9.15: Dirichlet problemL(I") error - BDF 2.

9.4.2 Neumann boundary value problem

For the Neumann problem we prescribed the given Neumanredata
t(t,x) = 10°8(10 — (a,x) — 3) (a, n) e 2(139873—(@x) -3 anqq(t,x) = 0

with a=(1,2,1)" andn as the normal vector. The length of the interval is againriaie
T = 4e— 3. We compare the pointwise errors in the interior definedX)( The error on
the boundary was measured by the norm

e VTP b)), (1 wer)1)f
\/Zj <Duref(tj)auref(tj)>ﬁ

with the reference solutione;. The error of the pore pressure is measured in the same

norm and denoted b@/},/z. The hyper-singular operator was evaluatedsfer 1 and thus
the norm is equivalent to the/2(I")-norm.

) (9.7)

The errors presented in Tables 9.16 and 9.17 indicate teatdhocation as well as the
Galerkin approach yield the desired convergence ratesiéopoint evaluation in the inte-
rior as well as the given norm on the boundary.

The error for the Galerkin approach is significantly smatham the error for the colloca-
tion approach.
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N pet, eoc pety eoc e[1/ 2 eoc
256 1.16e-01 1.66 1.59e-01 1.63 1.39e-01 1.67 7.14e-02 1.81
512 3.08e-02 191 4.24e-02 1.90 3.70e-02 1.91 1.85e-02 1.95
1024 7.74e-03 199 1.07e-02 1.99 9.31e-03 1.99 4.61e-0D 2.0
2048 1.85e-03 2.07 2.56e-03 2.06 2.22e-03 2.07 1.10e-03% 2.0
4096 3.70e-04 2.32 5.11e-04 2.32 4.45e-04 2.32 2.21e-02 2.3

eoc e’

Table 9.16: Neumann problem - Collocation approach - BDF 2.

N pet, eoc pety eoc etl/ 2 eoc
256 6.72e-03 1.92 2.30e-02 1.93 1.82e-02 192 2.67e-02 1.93
512 1.70e-03 198 5.81e-03 1.99 4.61e-03 1.98 6.74e-03 1.99
1024 4.22e-04 2.01 1.44e-03 2.01 1.14e-03 2.01 1.67e-03 2.0
2028 1.01e-04 2.07 3.43e-04 2.07 2.73e-04 2.07 3.98e-04 2.0
4096 2.01e-05 2.32 7.07e-05 2.28 5.46e-05 2.32 7.97e-02 2.3

eoc ef?

Table 9.17: Neumann problem - Galerkin approach - BDF 2.

9.4.3 Mixed boundary value problem

For the mixed problem the Dirichlet bounddry is chosen as the face = —0.5 and the
Neumann boundary d§y =TI \ 'p. On the Dirichlet boundary the wave

u(t,x) = 10 6e 5(130873—(ax-3)* 5nqp(t, x) = 0
is prescribed. On the Neumann boundary the incoming wave
t(t,x) = 1078(10t — (a,x) — 3) (a, n) e 5(130873—(@x-3)2 gnqq(t, x) = 0

is prescribed. Agaia = (1,2, 1)T andn is the normal vector.

The errors for the collocation approach, see Chapter 9.2stated in Table 9.18. The
errors are given in &Il/Z(I'N) norm, see (9.7), for the solid displacemerdnd the pore
pressurep and al—|*1/2(FD) norm, see (9.6), for the tractidrand the fluxg.

The errors for the Galerkin approach (8.2) are presentedhte™.19. The errors converge
with the expected convergence rate of two.

Comparing the errors of the Galerkin and the collocation @ggin, the errors for the
Galerkin approach are in general significantly better byosinone order of magnitude.

Moreover the error of the point evaluation inside the donfais presented in Table 9.20.
The relative error is defined in (9.5).
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1/2

N af/ 2 eoc €p /2 o L/2

—1
eoc g €0C € eocC

256 3.51e-02 1.85 4.35e-02 1.87 3.01e-02 1.85 4.91e-02 1.81
512 9.01e-03 1.96 1.11e-02 197 7.71e-03 1.96 1.27e-02 1.95
1024 2.24e-03 2.01 2.76e-03 2.01 1.92e-03 2.00 3.18e-0D 2.0
2028 5.36e-04 2.07 6.58e-04 2.07 4.61e-04 2.06 7.61le-0b5 2.0
4096 1.07e-04 2.32 1.32e-04 2.32 9.68e-05 2.25 1.52e-0£ 2.3

Table 9.18: Mixed Problem - Collocation approach - BDF 2.

1/2

N eﬁ/ 2 eoc €y /2 o 1/2

—1
eoc g €0C € eocC

256 6.87e-03 1.96 8.18e-03 1.96 8.25e-03 1.94 1.15e-02 1.96
512 1.73e-03 1.99 2.05e-03 199 2.08e-03 1.99 2.89e-03 1.99
1024 4.28e-04 2.01 5.09e-04 2.01 5.16e-04 2.01 7.16e-04 2.0
2028 1.02e-04 2.07 1.21e-04 2.07 1.23e-04 2.07 1.71e-04& 2.0
4096 2.04e-05 2.32 2.43e-05 2.32 2.48e-05 2.31 3.42e-02 2.3

Table 9.19: Mixed Problem - Galerkin approach - BDF 2.

Again the errors for the Galerkin approach are significabditer.

In comparison the errors for the BDF 1 multistep methodsaitilj the Galerkin approach
are presented in Table 9.21. The reference solution whichusad to calculated the error
was calculated with 8192 time steps with the BDF 2 multistefhod Thus the reference

solution should be far more exact. Indeed no increase indheesztgence number in the
last level is observed.

As expected the convergence number tends towards one amdréne are significantly
worse than the errors presented in Table 9.19 for the BDF 2steptmethod.

N pet, eoc pet, eoc pet eoc pet, eoc
\ Collocation \ Galerkin

256 1.64e-02 1.84 4.38e-02 183 4.38e-03 1.96 9.17e-03 1.94
512 4.20e-03 1.96 1.13e-02 1.95 1.10e-03 1.99 2.31e-03 1.99
1024 1.05e-03 2.00 2.82e-03 2.00 2.72e-04 2.01 5.73e-04 2.0
2028 2.50e-04 2.07 6.75e-04 2.07 6.49e-05 2.07 1.37e-04/ 2.0
4096 5.01e-05 2.32 1.35e-04 2.32 1.30e-05 2.32 2.75e-041 2.3

Table 9.20: Mixed Problem - Point evaluation - BDF 2.
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4

eoc ef’

eoc e[_l/ 2

eoc eg 12 eoc

256
512
1024
2028
4096

1.10e-01
5.78e-02
2.96e-02
1.50e-02
7.53e-03

0.87
0.93
0.97
0.98
0.99

1.19e-01
6.30e-02
3.24e-02
1.65e-02
8.29e-03

0.85
0.92
0.96
0.98
0.99

1.33e-01
7.12e-02
3.69e-02
1.88e-02
9.46e-03

0.83
0.91
0.95
0.97
0.99

1.32e-01 0.81
7.13e-02 0.89
3.71e-024 0.9
1.89e-0Z 0.9
9.56e-0® 0.9

Table 9.21: Mixed Problem - Galerkin approach - BDF 1.
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10 CONCLUSIONS AND OUTLOOK

We have derived a boundary element approach for poroetgstiée started from a system
of partial differential equations in Laplace domain, andw the symmetric formulation.

By applying an inverse Laplace transformation this set oilauy integral equations was
transferred into time domain. Furthermore the set of bogyniskegral equations was dis-
cretized by a Galerkin approximation in space and a conslwtuadrature approximation
in time. Unique solvability, stability and convergence loé¢ tfully discretized system was
shown. The convergence order coincide with the convergerter's obtained by numeri-
cal examples.

A few open points remain: Error estimates for the convolutjpadrature methods were
derived in the energy norms. An extension to a set of normesgehable. Especially error
estimates for thé&,(I")-norm are more practical. To show such an error estimatehtor t
boundary integral equation related to the Dirichlet boupdalue problem an estimate for
the operator

V(s)~t (%I +K(s)> CHY(M)* = [La(m)]* (10.1)
is needed. It is well known that the operator (10.1) is bodndewever the explicit de-
pendency onto the Laplace parametes not yet known. The bound can be calculated by
techniques utilized in [38]. If such a bound also holds fa tiiscrete operator is still an
open question.

To obtain reasonable results with the Galerkin method fentixed boundary value prob-
lem the accuracy of the computation of matrix entries issgdémanding. The partially in-
tegrated kernel of the hyper—singular operator is rathemptex, combined with the Duffy

transformation, see [20], which utilizes a Gauss produgr@gch, the requirements on
the computation time are so far quite high. For example dpédhintegration formulae,

see [16, 54], could decrease the computation time.
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