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Most of the fundamental ideas
of science are essentially simple,
and may, as a rule, be expressed
in a language comprehensible to
everyone.

Albert Einstein
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Abstract

The last two decades have seen the advent of applications that use brain signals for com-

munication and diagnosis. Such applications include brain-computer interfaces (BCIs)

that support communication for people affected by severe neuromuscular disorders and

mapping of eloquent cortex prior to resective brain surgery. A BCI measures brain

signals to provide a non-muscular communication channel to those that lost muscular

control in the progress of neuromuscular disorders and can no longer use conventional

assistive devices. Mapping of eloquent cortex is often performed prior to surgical re-

section of abnormal brain tissue. Surgical planning of the resection procedure depends

substantially on the delineation of abnormal tissue, and on the creation of a functional

map of eloquent cortex in the area close to that abnormal tissue.

While these applications could replace or enhance established clinical procedures,

their utility remains impeded by low communication performance and by the depen-

dence on experts and post-hoc analysis. These impediments mainly result from limita-

tions in current sensory technology, signal processing, machine learning and interface

design.

This dissertation set out to address these problems by developing methods that im-

prove the utility of applications that use brain signals for communication and diagnosis.

The results show that signals recorded from the surface of the brain could support

communication performance that is 3-4 times higher than what had previously been

reported, and that eloquent cortex can be mapped without previously required experts

and post-hoc analysis.

In summary, the results presented in this dissertation encompass two advances that

are critical to the utility of applications that use brain signals for communication and

diagnosis.
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Kurzfassung

Die letzten zwei Jahrzehnte haben Anwendungen hervorgebracht, welche Gehirnsignale

für Kommunikation und Diagnose verwenden. Solche Anwendungen umfassen Gehirn-

Computer Schnittstellen (engl. brain-computer interfaces (BCIs)) zur Kommunikation

mit Schwerbehinderten und die Kartierung kortikaler Gehirnfunktionen. Ein BCI ver-

wendet Gehirnsignale um die Kommunikation mit jenen schwerbehinderten wiederher-

zustellen, welche jegliche Muskelkontrolle im Verlauf einer Erkrankungen des motori-

schen Nervensystems verloren haben und andere auf Muskelkontrolle basierende tech-

nischen Kommunikationshilfen nicht mehr verwenden können. Kortikale Gehirnfunk-

tionen werden im Vorfeld der operativen Entfernung von krankhaften Gehirngewebe

kartiert. Präoperative Planung der Entfernung bedingt die Abgrenzung des krankhaften

Gehirngewebes sowie die Kartierung kortikaler Gehirnfunktionen in dessen Umfeld.

Diese Anwendungen könnten existierende klinische Verfahren ersetzen oder ver-

bessern, jedoch wird dies durch niedrige Kommunikationsgeschwindigkeit und eine

Abhängigkeit von Experten und nachfolgenden Analysen verhindert. Dies ist bedingt

durch technologische Grenzen der Sensoren, Signalverarbeitung, Mustererkennung und

Benutzerschnittstellen.

Das Ziel dieser Dissertation ist es Methoden zu entwickeln, welche die diese Proble-

me überwinden und die klinische Anwendung von Gehirnsignalen für Kommunikation

und Diagnose ermöglichen. Die Resultate zeigen, daß die Kommunikationsgeschwin-

digkeit mittels kortikale Gehirnsignale um den Faktor 3-4 erhöht werden kann und dass

kortikale Gehirnfunktionen ohne die zuvor notwendigen Experten und nachfolgenden

Analysen kartiert werden können.
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Zusammenfassend resultieren aus dieser Dissertation zwei technologische Fortschrit-

te, welche essentiell für die klinische Anwendung von Gehirnsignalen für Kommunika-

tion und Diagnose sind.

Schlagwörter: Elektroenzephalografie (EEG), Elektrokortikogramm (ECoG), brain-computer

interface (BCI), technische Kommunikationshilfen, P300, Ereigniskorrelierte Potentiale

(EKP), Visuell evoziertes Potential (VEP), Ereigniskorrelierte Synchronization (ERS), Er-

eigniskorrelierte De-synchronization (ERD), Epilepsie, Neurochirurgie, funktionelle Ge-

hirnkartierung
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1
Introduction

Brain signals reflect neural activity in the central nervous system (CNS). These signals

are expressed through chemical, electric, magnetic and metabolic modulations of neural

activity in the brain and spinal cord.

For decades, brain signals have been used for three established clinical applications:

(1) general diagnosis of epilepsy and other disorders of the central nervous system

through visual inspection of electroencephalographic (EEG) signals (Gibbs et al. 1936,

Fig. 1.1); (2) localization of epileptogenic cortex through visual inspection of interictal

and ictal data in electrocorticographic (ECoG) signals (Penfield et al. 1942, Fig. 1.1);

and (3) mapping of eloquent cortex1 through electrical cortical stimulation (ECS) for

presurgical planning of epileptogenic and lesional cortical tissue resection (Ojemann

et al. 1989, Fig. 1.2).

Recent studies have shown promising emerging clinical applications. Such applica-

tions include brain-computer interface (BCI) communication (Vidal 1973), and passive

mapping of eloquent cortex (Crone et al. 1998a).

A brain-computer interface, or BCI, is a system that measures CNS activity and

converts it into an artificial output that replaces, restores, enhances, supplements, or

improves natural CNS output, and thereby changes the ongoing interactions between

the CNS and its external or internal environment (Wolpaw and Winter-Wolpaw 2011).

Many people affected by debilitating neuromuscular disorders such as amyotrophic lat-

eral sclerosis (ALS), brainstem stroke, or spinal cord injury are impaired in their ability

to communicate. Conventional assistive devices (e.g., letter boards, cheek or tongue

1Areas of cortex that - if resected or lesioned - will cause sensory processing or linguistic impairment,
minor paralysis, or paralysis.
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2 Chapter 1. Introduction

A B

Figure 1.1: Visual inspection of brain signals. This figure shows the evolution of proce-
dures that use visual inspection of brain signals for clinical diagnosis and intervention.
(A) The photograph on the left shows a mechanical stylus and paper instrumentation
that records EEG signals up to 30 Hz from one patient. A physician inspects the signals
in real-time while also observing the behavior of the patient. (B) The photograph on the
right shows the evolution of this system into an automated video EEG instrumentation
that simultaneously records neural signals and behavior (i.e., two video streams of the
patient) from up to 6 patients. A technician observes the six streams of video EEG and
marks interesting behavioral events for the post-hoc inspection through a physician.

switches, or eye trackers) that aim to restore communication functions all require mus-

cular control, which is often lost in the progress of neuromuscular disorders. For these

people, a brain-computer interface (BCI) that uses brain signals directly, rather than

muscles, can re-establish communication with the outside world.

BCIs can be classified into exogenous and endogenous systems (Mason and Birch

2003). In an exogenous BCI the user communicates his intention through selectively

attending to an external stimuli. A BCI then detects the user’s intent from the neural

response to the stimuli. As the neural response to the stimuli is time-locked to the

stimuli and typically only depends on the attention to the stimuli, exogenous BCIs tend

to be static machine-learning problems that require no user training or adaptation of

the machine-learning algorithm. In an endogenous BCI, the user communicates his

intent by selectively modulating neural activity. A BCI detects the user’s intent from

the neural modulation. As the neural activity is not time-locked to a known stimulus

and typically depends on a mental strategy, endogenous BCIs tend to be co-adaptive

machine-learning problems that require extensive user training.

Various different exogenous and endogenous BCI approaches have been proposed.

An exogenous BCI approach that several groups have begun to test in clinical appli-
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Figure 1.2: Electrical stimulation mapping (ESM). This figure shows the process of
electrical stimulation mapping (ESM) prior to resective brain surgery. (A) The cortex is
exposed through a craniotomy of the skull and an incision of the dura. An electrode
grid is then placed on the cortex and connected to a cortical stimulator (not depicted in
this figure). (B) A physician then uses the connected cortical stimulator to deliver pulses
of electrical current that evoke a behavioral response. The observation of this response
results in a map of eloquent cortex that is directly used by the neurosurgeon to delineate
eloquent from abnormal tissue during resective surgery.

cations in humans (e.g., Nijboer et al. 2008; Sellers et al. 2006b, 2010; Vaughan et al.

2006; see Donchin and Arbel 2009 for a comprehensive review) is the EEG-based matrix

speller originally described by Farwell and Donchin in 1988. This interface allows people

to communicate at a rate of 4-5 characters per minute by selectively attending to exter-

nal stimuli. Another exogenous approach is the EEG-based steady-state visual evoked

potential (SSVEP)-based BCI. In such a paradigm, the subject performs a selection by

focusing eye-gaze on the target character (i.e., one of multiple light sources flickering at

different frequencies) while the BCI detects those frequencies in the EEG recorded over

occipital cortex (Middendorf et al. 2000). This interface allows people to communicate at

a rate of up to 19 characters per minute (Bin et al. 2009). An endogenous BCI approach is

the EEG-based sensory-motor rhythm (SMR) BCI speller (McFarland et al. 2003; Müller

et al. 2008; Pfurtscheller et al. 2003; Wolpaw et al. 1991). This interface allows people

to communicate at a rate of 4-5 characters per minute by selectively modulating the

sensory-motor rhythm (SMR).
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Currently BCIs present the only way of communication for people affected by the

late stages of debilitating neuromuscular disorders. However, people beyond this pop-

ulation, i.e., people that still posses residual motor control, find conventional assistive

devices to provide a better communication performance (e.g., MyTobii P10 eye-tracker

system, 10 words per minute at close to 100% accuracy). Consequently, BCIs need to

improve in speed, accuracy, and consequently the perceived value to the user, if they

were to become a viable alternative to conventional assistive devices.

The low communication performance of BCIs is due in part to the limitations in the

signal fidelity of EEG signals (Schalk 2008). A growing number of recent studies (e.g.,

Felton et al. 2007; Leuthardt et al. 2006, 2004; Miller et al. 2010; Ritaccio et al. 2010; Schalk

et al. 2008c; Vansteensel et al. 2010; Wilson et al. 2006) suggested that signals recorded

from the surface of the brain (electrocorticography (ECoG)) are a promising platform

for real-time BCI communication. This advantage is due in part to the high spatial,

spectral, and temporal fidelity that characterize ECoG signals (Ball et al. 2009; Brunner

et al. 2009; Leuthardt et al. 2004; Miller et al. 2007b, 2008). It is possible that these favor-

able signal characteristics may provide distinct advantages for the BCI communication

performance, but this has not been explored.

In aim 1 of this dissertation, we investigate this possibility by evaluating the feasibil-

ity and online performance of the matrix speller using ECoG signals. We hypothesize

that these experiments will provide evidence that the ECoG-based speller may sup-

port communication rates that are higher than those typically expected by EEG-based

spellers.

Mapping of eloquent cortex is performed prior to resective brain surgery. Resective

brain surgery is often performed in people with intractable epilepsy, congenital struc-

tural lesions, vascular anomalies, and neoplasms. Surgical planning of the resection

procedure depends substantially on the delineation of abnormal tissue, e.g., epileptic

foci or tumor tissue, and on the creation of a functional map of eloquent cortex in

the area close to that abnormal tissue. Traditionally, different methodologies have been

used to produce this functional map: electrical cortical stimulation (ECS) (Foerster, 1931;

Hara et al., 1991; Ojemann, 1991; Uematsu et al., 1992), functional magnetic resonance

imaging (fMRI) (Chakraborty and McEvoy, 2008), positron emission tomography (PET)

(Bittar et al., 1999; Meyer et al., 2003), magnetoencephalography (MEG) (Ganslandt et al.,

1999), or evoked potentials (EP) (Dinner et al., 1986). Each of these methods has prob-

lems that include morbidity, time consumption, expense, or practicality. However, be-
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cause existing surgical protocols typically already include the placement of subdural

electrodes, and because of its procedural simplicity, ECS has become the gold standard

for mapping of eloquent cortex.

Recently, a number of studies showed that ECoG activity recorded from these elec-

trodes reflect task-related changes (Aoki et al., 1999, 2001; Crone et al., 2001, 1998a,b;

Fries, 2005; Graimann et al., 2002; Lachaux et al., 2003; Leuthardt et al., 2007; Miller

et al., 2007b; Sinai et al., 2005; Varela et al., 2001). These studies showed that ECoG am-

plitudes in particular frequency bands carry substantial information about movement

or language tasks. Furthermore, recent studies demonstrated that such ECoG changes,

in particular those in the gamma band, were in general agreement with those derived

using fMRI (Lachaux et al., 2007a) and with results determined using ECS (Leuthardt

et al., 2007; Miller et al., 2007b; Sinai et al., 2005).

While a few recent studies have provided encouraging evidence that ECoG-based

analyses could become more accessible to clinicians (Lachaux et al., 2007b,c; Miller

et al., 2007a), passive mapping of eloquent cortex using ECoG has remained an aca-

demic demonstration. This is because the mapping procedure employs a discriminative

approach that depends on post-hoc analysis and an expert to optimize the analyses for

each individual patient. Generative approaches have been shown to overcome the re-

quirement for expert supervised post-hoc analysis in related domains such as computer

vision (Friedman and Russell 1997; Harville et al. 2001; Kuo et al. 2003; Lee 2005; Liyuan

et al. 2004; Pless 2003; Stauffer and Grimson 1999; Toyama et al. 1999) and biosignal pro-

cessing (Costa and Cabral 2000; Gardner et al. 2006; Harris et al. 2000; Pernkopf and

Bouchaffra 2005).

In aim 2 of this dissertation, we investigate the feasibility of the use of a generative

approach to passively map eloquent cortex using ECoG. We hypothesize that these ex-

periments will provide evidence that a generative approach to passively map eloquent

cortex using ECoG will provide results that are in general agreement to those derived

using electrical stimulation and that mapping can be accomplished without expert over-

sight.



6 Chapter 1. Introduction

1.1 Techniques to Acquire Brain Signals

In the 80 years since Hans Berger first recorded electroencephalographic activity (EEG)

from the scalp using silver wires and a galvanometer (Berger 1929), researchers and

clinicians have continued to explore better techniques to acquire brain signals. This re-

search has lead to invasive and non-invasive techniques that record brain signals either

directly using electrophysiological signals or indirectly using metabolic changes that re-

late to neuronal activity. Non-invasive techniques include the recording of metabolic

activity using functional near-infrared spectroscopy (fNIR), functional magnetic reso-

nance imaging (fMRI) and the recording of electrophysiological activity using EEG and

magnetoencephalography (MEG). Invasive techniques exclusively record electrophys-

iological activity using electrocorticography (ECoG), local field potentials (LFP), and

single-unit activity (SUA) (see Fig. 1.3 and Table 1.1).

Clinical applications then translate these brain signals into outputs that provide

value to the clinical investigator or the patient. This dissertation focuses on the applica-

tion of brain signals for communication and diagnosis. The following sections describe

the utility of each of the techniques to acquire brain signals for these two applications.

Table 1.1: Comparison of techniques that acquire brain signals. This table compares
the utility of non-invasive (e.g., fMRI, MEG, fNRI, EEG) and invasive (e.g., eECoG,
ECoG, LFP, SUA) techniques that acquire brain signals. In this comparison non-invasive
techniques tend to provide comprehensive coverage at low risk, but suffer from high
cost and low spatial resolution and signal to noise ratio.

epidural subdural
fMRI MEG fNIR EEG ECoG ECoG LFP SUA

temporal resolution sec ms sec ms ms ms ms µs
spatial resolution cm cm cm cm mm mm mm µm

coverage full full limited full limited limited limited very limited
signal to noise ratio low low low low medium high high very high

number of sensors 1000 100 50 100 100 100 200 500
expert required yes yes no no yes yes yes yes

expensive equipment very very no no no no no no
susceptible to artifacts yes yes yes yes no no no no

variety of tasks limited high limited high high high high very high
invasive no no no no yes yes yes yes

infection risk no no no no no yes yes yes
recording time limit hours hours hours hours years months months days
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Figure 1.3: Size and location of sensors that acquire brain signals This figure shows
the size and the location of sensors that acquire brain signals. Non-invasive sensors are
located on (e.g., EEG, fNRI) or above (e.g., MEG) the scalp and typically are sized 10
mm or larger in diameter. Invasive sensors are located on the dura (e.g., eECoG), under
the dura (e.g., ECoG) or within the cortex (LFP, SUA) and typically are sized 2 mm or
smaller in diameter.

1.1.1 Non-Invasive Acquisition of Brain Signals

Non-invasive techniques acquire brain signals without penetrating the skin. This is

accomplished by recording brain signals directly using the magnetic (MEG) or electric

(EEG) field, or indirectly by recording the metabolic changes that relate to neural activity

(fMRI, fNIR).
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1.1.1.1 Functional Magnetic Resonance Imaging (fMRI)

Functional magnetic resonance imaging measures the change in blood flow (i.e., hemo-

dynamic response) that is related to neural activity in the brain (Belliveau et al. 1991).

The change in blood flow occurs through neurovascular coupling in capillaries that feed

neurons engaged in neural activity, and induces a small magnetic field distortion that

can be measured. fMRI therefore is a non-invasive and indirect measure of neural activ-

ity that provides excellent depth sensitivity. The temporal resolution of fMRI is limited

because of two reasons. First, blood flow follows the change in neural activity only

slowly and with a delay. This limits the temporal resolution of fMRI to a few seconds.

Second, fMRI measures the change in blood flow sequentially (i.e., slice by slice) along

the medial axis of the brain. Each sequential measurement (i.e., slice) takes approxi-

mately 100ms and a full measurement along the medial axis of the brain requires up

to 150 slices. Consequently, the 15 seconds for one full measurement further limit the

temporal resolution of fMRI. This limitation and the high cost (e.g., multiple million dol-

lars) for the device restrict the utility of fMRI mainly to diagnostic applications. In these

applications, baseline fMRI activity is contrasted to task-related activity, resulting in an

fMRI image that shows the average neural activity during the task relative to baseline.

1.1.1.2 Magnetoencephalography (MEG)

Magnetoencephalography measures the weak magnetic fields that are created by syn-

chronized neurons. MEG therefore is a direct measure of neural activity (Cohen 1968).

As the magnetic field flux density attenuates exponentially with the distance to the neu-

ral source, the measured magnetic fields are most dominantly related to neural activity

in the cortex rather than to neural activity in deeper cortical structures. The recorded

magnetic fields are created by primary currents (i.e., currents directly related to neural

activity) and secondary currents (i.e., surface currents that compensate primary cur-

rents). As the magnetic fields are not markedly affected by the geometry and conduc-

tivity of the scalp, skull, outer meningeal covering and brain, MEG can easily locate

neural activity within the brain from the primary sources. Because this neural activity

instantly creates magnetic fields, the temporal resolution of MEG is only limited by the

sensitivity of the magnetic sensor technology. While the spatial coverage of MEG fully

encompasses the brain, its spatial resolution is limited by the size of the sensors that

measure the magnetic fields. As with fMRI, high cost (i.e., multiple million dollars) for

the device limits MRI to diagnostic applications.
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1.1.1.3 Functional Near-Infrared Spectroscopy (fNIR)

Functional near-infrared spectroscopy measures the change in concentration and oxy-

genation of hemoglobin in the brain (i.e., hemodynamic response) that is related to neu-

ral activity in the brain (Chance et al. 1998). Therefore fNIR, like fMRI, is a non-invasive

and indirect measure of neural activity. In contrast to fMRI, fNIR can be more easily

combined with other non-invasive techniques (e.g., fMRI, EEG, MEG), and is cheap and

easy to acquire. The use of near-infrared spectroscopy allows the simultaneous acqui-

sition of fNIR signals from multiple sensors. While this provides a somewhat higher

temporal resolution than fMRI, light spread and absorption limit the spatial resolution

to a few centimeters and the depth sensitivity to a few millimeters of the cortex. In

addition, because hair markedly affects the signal quality, fNRI is typically limited in

its spatial coverage to the forehead and the acquisition of neo-cortical brain signals.

This limits fNIR mostly to basic research and applications that use the fNIR signals for

communication.

1.1.1.4 Electroencephalography (EEG)

Electroencephalography measures electrical fields on the scalp that are created by syn-

chronized neurons (Fig. 1.4). Therefore, EEG is a direct measure of neural activity

(Berger 1929). As the electric field flux density attenuates exponentially with the dis-

tance to the neural source, the measured electric fields are most dominantly related to

neural activity in the cortex rather than to neural activity in deeper cortical structures.

These issues are compounded by the fact that the recorded electric fields are created by

secondary currents (i.e., surface currents that compensate primary currents). In addi-

tion, the geometry and conductivity of the scalp, skull, outer meningeal covering and

brain, markedly affect the electric field (Fig. 1.6). Therefore, it is difficult for EEG to

locate neural activity within the brain, effectively limiting its spatial sensitivity.

In contrast to techniques that measure changes in metabolic activity or magnetic

fields, techniques that measure changes in electrical fields require a reference to which

the electrical field is measured. While an “indefinite” reference (e.g., on the leg) would

be roughly equidistant to all possible sources within the brain, the electrical noise (e.g.,

line-noise) between the “indefinite” reference and the measurement site would markedly

affect the quality of the measured electrical signal. This limits the choice of the reference

to unipolar (e.g., one reference for all measurement sites) and bipolar (e.g., one reference

for each measurement site). Depending on the reference, unipolar EEG (e.g., linked ear-
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lobes as reference) tends to measure changes in global neural activity while bipolar EEG

tends to measure changes in local neural activity.

Neural activity instantly creates electric fields, and therefore the temporal resolution

of EEG is only limited by the sensitivity of the electric sensor technology and the elec-

tric filter characteristics of the volume conductor (i.e., the scalp, skull, outer meningeal

covering and brain). As MEG, the spatial coverage of EEG also fully encompasses the

brain, but the spatial resolution is mainly limited to the spatial filter characteristics of

the volume conductor. In contrast to fMRI and MRI, EEG is inexpensive and easy to

use. For that reason, EEG is used beyond diagnostic applications (see 1.3.1).
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Figure 1.4: Examples of characteristic EEG signals recorded during various behavioral
states in humans. These signals show the beta brain-wave pattern in an awake, alert per-
son (Excited); the alpha rhythm associated with relaxing with the eyes closed (Relaxed);
the slowing in frequency and increase in amplitude of theta waves associated with a
drowsy condition (Drowsy); the slow, high-amplitude delta waves associated with sleep
(Asleep); the larger, slow waves associated with deep sleep (Deep sleep); and the fur-
ther slowing of electroencephalographic waves associated with coma (Coma). (After
Epilepsy and the Functional Anatomy of the Human Brain by W. Penfield and H. H.
Jasper. Boston: Little, Brown, 1954, p. 12.)
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1.1.2 Invasive Acquisition of Brain Signals

Acquiring brain signals invasively involves making an incision in the subject’s body

and inserting electrodes to record electrophysiological signals. This procedure entails

additional costs and risks, which currently limit the utility of invasive brain signals to

applications in clinical diagnosis and basic research.

1.1.2.1 Electrocorticography (ECoG)

Electrocorticography measures electrical fields that are created by synchronized neurons

using a grid of electrodes on the cortex (i.e., subdural ECoG) or on the dura (i.e., epidural

ECoG). Therefore, ECoG is a direct measure of neural activity (Penfield and Boldrey

1937).

To place the electrode grid and record ECoG, the cortex is accessed through a cran-

iotomy of the skull and an incision of the outer meningeal covering, i.e., the dura.

In acute (i.e., intra-operative) ECoG, the cortex is left exposed. In chronic (i.e., inter-

operative) ECoG, the grid is sealed under the dura, skull and scalp, with the cables

tunneled through the incision in the dura, to exit the scalp distant to the incision (see

Fig. 1.5). Subdural ECoG requires penetration of the skull and the dura. This is impor-

tant for clinical application of this method, because the penetration of the dura increases

the risk of bacterial infection (Davson 1976; Fountas and Smith 2007; Hamer et al. 2002;

Van Gompel et al. 2008; Wong et al. 2009). Epidural electrodes (i.e., electrodes placed

on top of the dura mater) provide signals of approximately comparable fidelity (Tor-

res Valderrama et al. 2010) and do not penetrate the dura.

ECoG recordings are typically referenced to electrocorticographically silent elec-

trodes (i.e., locations that were not identified as eloquent cortex by electrocortical stim-

ulation mapping). Similar to EEG, the measured electric fields are most dominantly

related to neural activity in the cortex rather than to neural activity in deeper cortical

structures. However, ECoG provides better temporal and spatial resolution than EEG

(Fig. 1.6, Ball et al. 2009), as the signals are not attenuated and spread by the electric

filter characteristics of the volume conductor (i.e., the scalp, skull and outer meningeal

covering). Despite these advantages, current ECoG technology requires the brain to be

exposed, effectively limiting spatial coverage of ECoG to part of one hemisphere.

As with all invasive methods, the entailed cost and risks currently limit the applica-

tion of ECoG to applications in clinical diagnosis and basic research.
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Figure 1.5: Details of ECoG implant. This figure shows the patient (A) with a cran-
iotomy (B) and a subdural (C) ECoG implant (D). The cortex is accessed through a
craniotomy of the skull (B) and an incision of the outer meningeal covering, i.e., the
dura (C). In acute (i.e., intra-operative) ECoG, the cortex is left exposed. In chronic (i.e.,
inter-operative) ECoG, the grid is sealed under the dura, skull and scalp, with the cables
tunneled through the incision in the dura to exit the scalp distant to the incision.

1.1.2.2 Local Field Potentials (LFPs)

Local field potentials (LFPs) are electrical fields within the cortex that are created by

synchronized neurons. LFPs therefore are a direct measure of neural activity (Kennedy

1989; Legatt et al. 1980). To record LFPs, the cortex is exposed and microelectrodes are

implanted into the cortex. As microelectrodes are close to the neural activity, can be

spaced tightly and extend into deeper cortical structures, LFPs have excellent temporal,

spatial and depth resolution. However, current LFP technology limits the spatial cover-

age of LFPs in two ways. First, as with ECoG, implantation of microelectrodes requires
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the exposure of the cortex. Second, as the implantation process causes tissue damage

and inflammation around the microelectrode, extensive spatial coverage poses an in-

creased risk for infection and thus morbidity associated with this procedure (Jackson

et al. 2010; Krüger et al. 2010; Leach et al. 2010; Marin and Fernández 2010).

The additional cost and risks over other invasive techniques (e.g., ECoG) currently

limit the application of LFPs to applications in basic research.

1.1.2.3 Single-Unit Activity (SUA)

Single-unit activity is composed of action potentials that are created by individual neu-

rons. Therefore, SUA is a direct measure of neural activity (Fetz 1969). SUA activity

is recorded in the same way as local field potentials, however using smaller tipped

microelectrodes (Cham et al. 2005; Fee and Leonardo 2001). From recorded signals, ac-

tion potentials from individual neurons are isolated (Hochberg et al. 2006; Velliste et al.

2008). As LFPs, SUA provides excellent temporal, spatial and depth resolution at the

cost of limited spatial coverage. However, SUA activity recordings suffer in their long-

term recording stability from inflammation and displacement of the electrodes relative

to cortex (Jackson et al. 2010; Krüger et al. 2010; Leach et al. 2010; Marin and Fernández

2010).

The additional cost and risks over other invasive techniques (e.g., ECoG) currently

limit the application of SUA to applications in basic research.

1.1.3 Conclusions

The comparison of fMRI, MEG, fNIR, EEG, ECoG, LFP and SUA shows that broad

acceptance of a technique to acquire brain signals for communication and diagnosis

mainly depends on the ability to provide high temporal and spatial resolution without

entailed cost and risks (see Table 1.1). For example, MEG provides good temporal and

spatial resolution, but high cost impedes its utility for communication and diagnosis.

SUA, as an alternative, is more cost effective and provides even higher temporal and

spatial resolution, however the associated risks and limited practicality impede its utility

for communication and diagnosis.

ECoG represents an appealing compromise between high spatial and temporal res-

olution, and entailed cost and risks (Ball et al. 2009; Chao et al. 2010). This makes ECoG

well suited for overcoming the bandwidth limitation of brain-computer interfaces and

the conceptual limitations in mapping eloquent cortex.
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Figure 1.6: Somatosensory map of EEG and ECoG. This figure shows the somatosen-
sory map of EEG (blue) and ECoG (green). Primary motor cortex (A) is structured (B)
into different somatosensory modalities that can be mapped (C) using EEG (blue) or
ECoG (green). The distance of EEG electrodes to the somatosensory cortex (B) results
in extensive overlapping coverage in the somatosensory map (C), limiting the ability to
dissociate the different somatosensory modalities. In contrast, ECoG electrodes are lo-
cated on the somatosensory cortex (B) and provide the ability to dissociate the different
somatosensory modalities (C).
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1.2 Techniques to Analyze Brain Signals

Traditional clinical applications that use brain signals all depend on visual inspection to

provide value to the clinical investigator or the patient. In such applications, a highly

trained clinical investigator would base his/her diagnosis on the visual inspection of

recorded behavioral patterns and neurophysiological signals (Fig. 1.1).

This concept has been recently challenged by studies that have shown promis-

ing emerging clinical applications that could replace and enhance established visual

inspection-based procedures. Two of these applications are brain-computer interface

(BCI) communication (Vidal 1973), and passive mapping of eloquent cortex (Crone et al.

1998a). In these applications, traditional visual inspection is replaced by signal process-

ing, feature extraction and machine learning techniques.

So far, brain-computer interfaces and passive mapping of eloquent cortex employed

supervised feature extraction and discriminative techniques that depend on post-hoc

analysis and an expert to optimize the analyses for each individual patient. Unsuper-

vised and generative approaches have been shown to overcome the requirement for

expert supervised post-hoc analysis in related domains such as computer vision (Fried-

man and Russell 1997; Harville et al. 2001; Kuo et al. 2003; Lee 2005; Liyuan et al. 2004;

Pless 2003; Stauffer and Grimson 1999; Toyama et al. 1999) and biosignal processing

(Costa and Cabral 2000; Gardner et al. 2006; Harris et al. 2000; Pernkopf and Bouchaffra

2005).

This dissertation focuses on the application of brain signals for communication and

diagnosis. The following sections describe the signal processing steps that are necessary

to translate brain signals into an output that provides value to the clinical investigator

or patient.

1.2.1 Signal Preprocessing

Brain signals are time-varying quantities that are modulated by either the subject’s intent

(e.g., in the case of communication) or by the subject’s cognitive state (e.g., in the case

of diagnosis). This context-dependent modulation is considered as information that

provides value to the clinical investigator. Signal processing is the process of extracting

this information from raw brain signals (1.7).

For example, raw electrophysiological brain signals (e.g., EEG and ECoG) are mea-

surements of potential differences between two electrodes, i.e., a recording and a ref-

erence electrode. The signals in these field potentials then reflect activity from both
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electrodes. Adding to this, the wiring between electrodes and amplifier is typically

susceptible to external electromagnetic noise (e.g., 50/60 Hz line noise). Leading to all

electrodes being affected by the same external electromagnetic noise.

To extract and enhance information from such brain signals signal preprocessing

employs two fundamental signal processing approaches: (1) Spatial filtering to remove

noise common to all electrodes and to extract local and global activity from brain sig-

nals by re-referencing them. (2) Averaging brain signals across epochs, to augment the

information correlated across epochs and to attenuate uncorrelated noise.

1.2.2 Feature Extraction

For brain signals to be useful in communication and diagnosis, they need to be mod-

ulated by relevant information that provides value to the investigator. For example,

for the diagnosis of eloquent cortex, those signals are relevant, that are modulated by

behavioral tasks. Similarly, for communication, only those signals are relevant that are

modulated by the subject’s intent. However, such modulations are typically not acces-

sible to visual inspection based procedures and require feature extraction and selection

techniques (Fig. 1.7, Fig. 1.8).

Brain signal features are typically extracted in the time or frequency domain, de-

pending on how the signals are modulated. EEG and ECoG signals are modulated in

response to exogenous stimuli or to endogenous intent. The response to an exogenous

stimulus is typically time and phase locked and therefore best represented in the time

domain. In contrast, an endogenous intent remains covert to the observer and is thus

neither time nor phase locked and therefore best represented in the frequency domain.

Time domain feature extraction techniques range from simple area under the curve

or peak amplitude to the amplitude at a specific time point relative to the exogenous

stimulus. In the frequency domain, spectral power is typically determined as a feature

through parametric or non-parametric filters.

Such techniques provide the basis to characterize one task-related response or si-

multaneous intent. Multi-dimensional communication and control and the diagnosis

of eloquent cortex require multiple independent features. Feature independence occurs

through separation of the modulation in time, frequency, code and space domains.

The following paragraphs describe the necessary signal processing steps to extract

relevant features from brain signals in the time and frequency domain.
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Figure 1.7: Signal modulation in the time domain. This figure shows signal modulation
in the time domain in response to a listening task. (A) After some silence, the subject is
presented with listening task, while electrocorticographic (ECoG) signals are recorded
from the superior temporal gyrus. (B) The task-related modulation of the raw ECoG sig-
nals cannot be revealed by visual inspection. However, re-referencing (i.e., subtracting
the common-average-reference signal) and band-pass filtering reveals the task-related
modulation in the LFB (i.e., low frequency band) and HFB (i.e., high frequency band).

1.2.2.1 Time Domain

Brain signals that are time- and phase-locked to an external stimulus are best repre-

sented in the time domain. Event related responses (ERP) are such signals that in theory
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Figure 1.8: Signal modulation in the frequency domain. This figure shows the signal
modulation in the frequency domain in response to a listening task as presented in Fig.
1.7. (A) Frequency analysis of ECoG signals recorded during listening (red line) and
silence (blue line) reveal power-law characteristics (dashed line) that limit the useful
signal modulation (i.e., signal-to-noise > 1) to the 0-300 Hz range (dotted line). (B)
Within this range, the listening task induces a power decrease in the low frequency
band (LFB) and a power increase in the high frequency band (HFB). (C) A topographic
representation of these power augmentations reveals the involvement of the superior
temporal gyrus (STG) in the listening task.
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can be characterized through a matched filter or linear regression. However, variance in

the ERP’s amplitude and associated noise often require a reduction of the dimensional-

ity. This is achieved either through feature selection (e.g., stepwise linear regression) or

feature projection (e.g., area under the curve, energy, peak to peak value).

1.2.2.2 Frequency Domain

Brain signals that are constituted by power augmentations of multiple damped har-

monic oscillators are best represented in the frequency domain. Event-related synchro-

nizations and de-synchronizations (ERS/ERD) are such signals. Methods that estimate

the spectrum of these oscillations can be divided into parametric (e.g., moving average,

auto-regressive methods) and non-parametric methods (e.g., periodogram and other

FFT-based methods). Parametric methods estimate the parameters of stochastic process

that describes that signal; Non-parametric methods estimate the spectrum without as-

suming any particular structure. The damped nature of the oscillator makes the frequen-

cies of ERS/ERD non-stationary in their phase, adversity affecting FFT-based methods.

This makes parametric methods well suited to estimate the spectral power of these brain

signals.

1.2.2.3 Time-Frequency Domain

Brain signals constituted by power augmentations that are time- and phase-locked to

multiple external oscillators are best represented in the time-frequency domain. Steady-

state evoked potentials (SSEPs) are such signals. The fixed relationship to an external

oscillator makes the frequencies of SSEPs stationary in their phase. This makes FFT-

based methods well suited to estimate the spectral power of these brain signals.

1.2.3 Dimensionality Reduction

The extraction of features from multiple signal channels in the time, frequency and time-

frequency domain typically results in a exorbitant number of features. For example, for

64 signal channels, an FFT-based time-frequency feature extraction (e.g., 1s × 100Hz

with 100ms temporal, and 1Hz frequency resolution) would result in 64.000 features.

This exorbitant number of features makes modeling and classification with a limited

number of samples (e.g., 200 samples) infeasible. Feature projection and feature selec-

tion are two strategies that aim to reduce the number of features while preserving the

information content.
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1.2.3.1 Feature Projection

This strategy combines the original features into a lower-dimensional subspace. This can

be achieved in a supervised and unsupervised fashion. Supervised feature projection

uses the data labels to maximize the discriminability and minimize the dimensionality

of the data. For example, common spatio-temporal patterns (CSTP) determine an opti-

mal spatio-temporal filter that combines features from each channel into a new feature.

In the previous example, CSTP would reduce the number of features from 64.000 to 64.

In contrast unsupervised feature projection maximize a statistical property of the data

without using the labels of the data. For example principal component analysis (PCA)

transforms the features into a set of uncorrelated orthogonal features. Independent com-

ponent analysis (ICA) de-correlates the features even more by transforming the features

into a set of maximally independent non-orthogonal features. As PCA and ICA don’t

reduce the dimensionality of the data, they require subsequent feature selection.

1.2.3.2 Feature Selection

Features can be selected in a supervised and unsupervised fashion. Supervised fea-

ture selection uses the data labels to maximize the discriminability and minimize the

dimensionality of the data. For example, stepwise linear regression is an iterative al-

gorithm that adds features if they significantly benefit the model (e.g., p-value < 0.05)

and removes them otherwise. To promote dimensionality reduction, an information

criterion penalizes larger models over smaller ones. In contrast, unsupervised feature

selection maximizes an objective function of the data. For example, a PCA decomposes

the data into eigenvectors (i.e., the principal components) that each have an eigenvalue

associated (i.e., the variance in the data explained by the corresponding principal com-

ponent). Unsupervised feature selection then minimizes the dimensionality by selecting

those principal components as the feature subspace that explains a certain portion (e.g.,

90%) of the variance in the data.

1.2.4 Modeling and Classification

1.2.4.1 Discriminative Techniques

Discriminative techniques use a combination of signal features to separate two or more

categories. The combination of features is determined through a machine learning al-

gorithm that calculates the coefficients of a linear or non-linear function (i.e., classifier)
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that is predictive of the categories. The employed machine learning algorithms typically

require a supervised data set to determine the classifier.

Such supervised and discriminative techniques work well on data that is stationary

and for which all classes are known, but fail when data is non-stationary or not all

classes are known. Applications that use brain signals can be classified into exogenous

and endogenous systems (Mason and Birch 2003). For exogenous systems, the neural

response to the stimuli is time-locked to the stimuli and typically only depends on the

attention to the stimuli. Therefore, exogenous systems tend to produce supervised and

stationary data for which supervised and discriminative techniques work well. In con-

trast, while endogenous systems may cue the subject to produce a neural response, the

evoked neural activity is not time-locked to a known stimulus and typically depends

on a mental strategy. Therefore, exogenous systems tend to produce weakly-supervised

and non-stationary data which is sub-optimal for supervised and discriminative tech-

niques.

Many different approaches, including adaptation and more robust learning algo-

rithms, have been proposed to address these problems. However, each of these ap-

proaches adds complexity and additional parameters that impede its successful appli-

cation to brain signals in a clinical environment.

In summary, discriminative techniques are best suited for exogenous systems for

which all classes are known and stationary. One such exogenous system is the matrix-

based speller originally described by Farwell and Donchin in 1988. In aim 1 of this

dissertation, we use discriminative techniques to investigate for the first time the online

performance of the matrix speller using ECoG signals.

1.2.4.2 Generative Techniques

Generative techniques use a combination of signal features to model the statistical prop-

erties of the data. The parameters of the model are typically determined through a

machine learning algorithm that maximizes the data likelihood. The employed machine

learning algorithms may use supervised or unsupervised data sets to determine the

model.

Unsupervised generative techniques work well on data for which statistical prop-

erties are stationary and known, but fail when statistical properties are non-stationary.

Consequently, generative techniques are best suited for endogenous systems for which

one stationary condition exists. One application of an endogenous system is the passive

mapping of eloquent cortex using ECoG signals (Crone et al. 1998a). In this applica-
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tion, one known stationary condition (e.g., ECoG activity during rest) is discriminated

from multiple unknown non-stationary conditions (e.g., ECoG activity during activa-

tion of eloquent cortex). In aim 2 of this dissertation, we investigate the feasibility of a

generative approach to passively map eloquent cortex using ECoG.

1.2.5 Conclusions

In conclusion, brain signal analysis aims to describe the information contained in neural

signals through a limited number of variables. This entails, removing common noise,

extracting meaningful features, reducing the dimensionality and modeling the data.
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1.3 Applications that Make Use of Brain Signals

1.3.1 Applications for Communication

In the 80 years since Hans Berger first recorded electroencephalographic activity (EEG)

from the scalp using silver wires and a galvanometer (Berger 1929), researchers and

clinicians have continued to develop better instrumentation and clinical applications

that can detect and/or use EEG and other brain signals. One of these clinical applica-

tions is a brain-computer interface (BCI) (Vidal 1973) that might restore communication

to people with severe motor disabilities. BCI instrumentation consists of hardware and

software. BCI hardware records brain signals either non-invasively (e.g., EEG, magne-

toencephalography (MEG), functional near-infrared spectroscopy (fNIR)) or invasively

(e.g., electrocorticography (ECoG), local field potentials (LFP), single-unit activity) using

a series of devices (i.e., sensor, biosignal amplifier and analog-to-digital converter). BCI

software then translates these brain signals into device output commands and provides

feedback to the user.

Up to the present, BCI research and development has mainly focused on basic re-

search and laboratory demonstrations of various BCI applications (Bin et al. 2009; Bir-

baumer et al. 1999; Coyle et al. 2007; Farwell and Donchin 1988; Gao et al. 2003; Mc-

Farland et al. 2010b; Müller et al. 2008; Pfurtscheller et al. 1993, 2003; Schwartz et al.

2006; Taylor et al. 2002; Velliste et al. 2008; Wolpaw and McFarland 2004; Wolpaw et al.

1991, see Wolpaw et al. 2002 for review). As BCI research is evolving from isolated

demonstrations to systematic investigations, it has become clear that BCI hardware and

software require features, such as real-time capability (Berger et al. 2007; Cincotti et al.

2006; Guger et al. 2001, 1999; Mason and Birch 2003; Schalk et al. 2004; Wilson et al.

2010) and high bandwidth and sensitivity (Crone et al. 1998a; Schalk 2008), that existing

hardware and software often did not provide. In response, different vendors (e.g., g.tec,

Brain Products, Tucker-Davis Technologies, Ripple, etc.) have produced hardware de-

vices that are optimized for BCI or related research. These research systems can capture

EEG, ECoG or single-neuron activity in real time from up to 512 channels and sample

these signals at up to 50 kHz with very high sensitivity (e.g., 24-bit resolution, 250-mV

sensitivity). This BCI hardware is interfaced with BCI software that is based either on

general-purpose BCI frameworks such as BCI2000 (Mellinger and Schalk 2007; Schalk

et al. 2004; Schalk and Mellinger 2010) or OpenVIBE (Renard et al. 2010), or on custom

software. Using these research-grade systems, groups around the world are now begin-

ning to demonstrate clinical efficacy of BCIs in patients with severe motor disabilities
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(Cincotti et al. 2008; Guger et al. 2009; Kübler et al. 2005; Nijboer et al. 2008; Sellers et al.

2006b, 2010; Stavisky et al. 2009; Vaughan et al. 2006, see Mak and Wolpaw 2009 for

review), thereby beginning the translation of research findings into clinical practice.

In addition to these academic efforts that focus on clinical applications of BCI tech-

nology, some commercial vendors have begun to provide consumer-grade applications

to both able-bodied and disabled people. Such consumer applications include aug-

mented communication devices (IntendiX, http://www.intendix.com) and gaming sys-

tems (MindFlex, http://www.mindflexgames.com, Allison et al. 2007; Blankertz et al.

2010; Fairclough 2008, see Reuderink 2008 for review). Other types of commercial ap-

plications may use BCI technology to detect different covert states in a subject (Baern-

reuther et al. 2010; Bahramisharif et al. 2010; Zander and Jatzev 2009). This approach

provides the basis for emerging applications such as neuromarketing (e.g., Neurofocus,

http://www.neurofocus.com, Pradeep 2010) or defense applications (e.g., Honeywell,

AugCog helmet, Dorneich et al. 2009; Kotchetkov et al. 2010; St. John et al. 2005).

In summary, applications of BCI technology fall into the following four categories:

Basic Research, Clinical/Translational Research, Consumer Products, and Emerging Ap-

plications. These four categories all use BCI hardware and software, but have different

sets of requirements. For example, while basic research needs to explore a wide range

of system configurations, and thus requires a wide range of hardware and software

capabilities, applications in the other three categories may be designed for relatively

narrow purposes and thus may only need a very limited subset of capabilities. The

following sections summarize different technical issues for these four categories of BCI

applications.

1.3.1.1 Basic Research

Basic BCI research and development is based predominantly on recording and analysis

of electrophysiological brain signals. These brain signals can be classified into three

categories that depend on the source of the signal recordings: (i) EEG signals, which

are recorded from electrodes on the scalp; (ii) ECoG signals, which are recorded from

electrode grids on the surface of the brain; and (iii) single-unit activity that is recorded

from electrode arrays implanted within the brain.

The number of channels that are recorded usually varies from 8-64 for EEG (Shar-

brough et al. 1991), to 32-192 for ECoG (Lesser et al. 2010), to 100-300 for single-unit

recordings (Maynard et al. 1997). The brain signals recorded from these modalities vary

substantially in their amplitudes and frequencies (EEG: 50 µV, 0-50 Hz; ECoG: 500 µV,

http://www.intendix.com
http://www.mindflexgames.com
http://www.neurofocus.com
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0-300 Hz; extracellular single unit activity: 100 µV, 0.3-30 kHz, see Niedermeyer and

Lopes da Silva 1993 for review). Because signals also vary substantially in amplitude

across frequencies (Miller et al. 2010, 2008), it is difficult to acquire these three signal cat-

egories with the same amplifier and analog/digital converter. This issue is compounded

by safety requirements that are prescribed by regulatory authorities such as the Food

and Drug Administration (FDA) in the US, the European Commission (CE) in Europe,

and the Ministry of Health, Labor, and Welfare (MHLW) in Japan. For that reason, cur-

rent BCI hardware is usually tailored for only one category of signals and the extraction

of one set of features. In consequence, laboratories may need to purchase a dedicated

set of BCI hardware for each of these signals. At a system cost of several hundred to

one thousand dollars per channel, this becomes an expensive proposition.

The integration of these dedicated sets of acquisition hardware into the laboratory

requires connecting different hardware interfaces to electrodes and behavioral sensors.

This usually requires additional hardware (e.g., head stages, pre-amplifiers and behav-

ioral data acquisition) to acquire signals from other sources and to prevent artifacts that

affect the signal-to-noise ratio.

The coordinated acquisition, analysis, and storage of brain and behavioral signals

recorded by these sets of acquisition hardware remain complex. It requires commu-

nication between and synchronization of various software interfaces. These interfaces

may be synchronous (e.g., stream-based) or asynchronous (e.g., event-based) and their

timing and sampling-rate may vary (Wilson et al. 2010). General-purpose BCI software

frameworks such as BCI2000 (Mellinger and Schalk 2007; Schalk et al. 2004; Schalk and

Mellinger 2010) or OpenVIBE (Renard et al. 2010) provide readily available solutions to

acquire, analyze and store brain and behavioral signals. However, standardization of

software beyond such packages does not yet exist.

In summary, standardization and integration of hardware and software continues to

remain an issue for BCI research and development.

1.3.1.2 Clinical/Translational Research

The translation of BCIs into clinical practice provides a primary impetus and focus for

BCI research, and is thus of high interest to funding institutes such as the National

Institutes of Health (NIH). Groups around the world are demonstrating the clinical

efficacy of BCIs (Cincotti et al. 2008; Guger et al. 2009; Kübler et al. 2005; Nijboer et al.

2008; Sellers et al. 2006b, 2010; Stavisky et al. 2009; Vaughan et al. 2006, see Mak and

Wolpaw 2009 for review), and the NIH lists 11 active investigational clinical BCI trials
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(http://clinicaltrialsfeeds.org).

These investigational studies currently use experimental-grade BCI hardware and

software that were developed for basic research and suffer from high cost and complex-

ity, proprietary standards, and lack of robustness (Cincotti et al. 2006). The translation

of this experimental-grade BCI hardware and software into product-grade clinical BCI

instrumentation is challenging. It requires the integration of BCI hardware and software

into clinical environments as well as improvements to clinical applicability, robustness,

usability, and cost/benefit ratio (Kübler et al. 2006). Beside these engineering tasks,

the development of clinical certification (Higson 2002), reimbursement (Raab and Parr

2006), and dissemination procedures all require attention.

In addition to the difficulties in translating BCI technologies, it remains unclear

whether clinical BCI systems will ever be a viable alternative to other established (i.e.,

muscle-based) and emerging (e.g., bionic) assistive devices. Currently established and

emerging assistive clinical devices tend to provide a better cost/benefit ratio and are

easier to use and disseminate (Berger and Glanzman 2005; Majaranta and Räihä 2002;

Pylatiuk and Döderlein 2006; Schalk 2008).

If clinical BCI systems are to become widely used, they need to either improve on

their performance or complement established and emerging assistive devices. Hybrid

BCIs, i.e., the combination of a BCI with other BCIs or existing assistive systems, follow a

current trend that addresses this issue (Allison et al. 2010; Millán et al. 2010; Pfurtscheller

et al. 2010; Zander et al. 2010). In any case, the current lack of product-grade BCI

hardware and software and standardized procedures impedes the translation of BCIs

into clinical practice.

1.3.1.3 Consumer Products

The growing interest in and maturity of the field of BCI research have opened up differ-

ent avenues for application of BCI technology in commercial contexts.

Commercial BCI devices measure signals from the brain and turn them into out-

puts that provide value to the customer. As with many other novel technologies,

it is currently unclear in which situations BCI devices can provide maximum value

for the largest number of users. Several manufacturers are currently exploring these

questions by offering commercial BCI-like devices. These companies include Emotiv

(http://www.emotiv.com), Neurosky (http://www.neurosky.com) and OCZ Technology

(http://www.ocztechnology.com).

Success of widespread dissemination of commercial BCI devices depends on reduc-

http://clinicaltrialsfeeds.org
http://www.emotiv.com
http://www.neurosky.com
http://www.ocztechnology.com
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ing the barriers to acquiring and using these systems. This requirement entails several

challenges that relate mainly to cost and ease of use. The cost of a typical (i.e., research-

based) BCI system is usually at least 5000 dollars – too much for most consumer prod-

ucts. Reducing these costs is mainly a technical problem that can be solved, but does

require appropriate resources. Improving ease of use mainly relates to improving EEG

electrode technology. Typical EEG electrodes are wet, i.e., they require the application of

conductive electrode gel, and usually have to be applied by trained experts who abrade

the skin mildly. In contrast, widespread application requires that electrodes can be ap-

plied without gel and the associated mildly abrasive procedures. Different strategies

have been proposed to address this problem. The first strategy is to create “dry” elec-

trodes, i.e., electrodes that can function with a dry interface between electrodes and

the scalp. Different types of dry electrodes have been proposed (Gargiulo et al. 2010;

Matthews et al. 2007; Popescu et al. 2007; Sellers et al. 2009; Sullivan et al. 2008) and are

currently distributed by commercial vendors (e.g., Nouzz (http://nouzz.com), Quasar

(http://www.quasarusa.com)), but at least some still have unsolved problems with ro-

bustness. The second strategy is to create “active” electrodes, i.e., electrodes that do

require the application of conductive gel, but amplify the EEG signal at the electrode,

which minimizes the need for skin abrasion. Active electrodes are provided by many

commercial vendors of EEG equipment, but typically are quite expensive and still re-

quire an additional biosignal amplifier and analog-to-digital converter. The third strat-

egy is to actively shield the connection between the electrode and the distant biosignal

amplifier. This possibility is currently only implemented by one commercial vendor

(Twente Medical Systems International (http://www.tmsi.com)). Their system utilizes

actively shielded cables that prevent capacitive coupling that also minimizes the need

for abrading the skin.

Finally, improving ease of use also requires that operation of the BCI software should

be as easy as possible. This requires that it can adapt efficiently to fluctuations in brain

signals caused by changes in the subject’s brain state or environmental or other noise.

In summary, it is currently unclear to what extent BCI performance will further

improve, and when and to what extent BCI technologies will find commercially viable

applications in consumer areas.

1.3.1.4 Emerging Applications not related to Communication and Control

Since their origin, BCIs have focused mainly on communication and control. The re-

sulting studies have developed a body of knowledge and technology, including portable

http://nouzz.com
http://www.quasarusa.com
http://www.tmsi.com
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hardware and novel methods for extracting and reliably classifying relevant aspects of

brain signals. This knowledge has applications beyond the development of traditional

BCIs. Some of these applications challenge the current definition of BCIs.

BCI technology can also provide the basis for novel applications that go beyond

restoration of function. Such novel and emerging applications that are not related to

communication and control may include detection of covert behavior (Baernreuther

et al. 2010; Bahramisharif et al. 2010; Zander and Jatzev 2009), biofeedback, sleep con-

trol, treatment of learning disorders, functional and stroke rehabilitation, and the use of

brain signals as biomarkers for diagnosis of diseases or their progression (Georgopoulos

et al. 2007). Some of these opportunities have begun to be exploited commercially, e.g.,

neuromarketing (Neurofocus, http://www.neurofocus.com, Pradeep 2010) and defense

applications (Honeywell, AugCog helmet, Dorneich et al. 2009; St. John et al. 2005).

The ability of BCI feedback to induce cortical plasticity (Carmena et al. 2003; Fetz 1969;

Leuthardt et al. 2004; Miller et al. 2010; Taylor et al. 2002; Wolpaw and McFarland 2004)

may provide the basis for therapeutic tools that restore brain function. Such thera-

peutic tools are currently under development for reducing seizures (Monderer et al.

2002; Sterman and Egner 2006; Walker and Kozlowski 2005), treating attention deficit or

hyperactivity disorders (Monastra et al. 2005), improving cognitive function in elderly

(Angelakis et al. 2007), managing pain (deCharms et al. 2005), and improving motor

function in stroke patients (Ang et al. 2010; Buch et al. 2008; Daly et al. 2009, see Daly

and Wolpaw 2008 for review). One of the characteristics of these emerging applications

is that they are often targeted toward larger markets than traditional BCIs.

In summary, emerging applications not related to communication and control may

provide additional drive for development of BCI hardware and software.

1.3.1.5 Standardization

As described in the previous sections, the translation of BCI hardware and software

from isolated demonstrations to systematic investigations and commercial products re-

quires efforts in different disciplines (Berger et al. 2007). The lack of defined technical

standards has become an important impediment to the integration of those efforts. As

an example, it is currently difficult to mix and share hardware devices (e.g., EEG head-

sets, amplifiers), tools (e.g., Bianchi et al. 2009), and software modules (e.g., classifiers)

that originate from different laboratories or manufacturers. While there have been iso-

lated efforts to define and implement a common model for BCI operation (Mason and

Birch 2003), a standard way in which they exchange information through well-defined

http://www.neurofocus.com


30 Chapter 1. Introduction

interfaces (Quitadamo et al. 2008), and general-purpose BCI software (Bianchi et al.

2003; Renard et al. 2010; Schalk and Mellinger 2010), these efforts do not yet completely

encompass all aspects of hardware connectivity, file formats for storing any kind of in-

formation (e.g., biosignals, classifiers outputs, feedback rules), or all software interfaces

(in particular with third-party software).

Standardization of the technical basis for hardware and software interfaces has been

shown to facilitate the translation from isolated demonstrations to systematic investi-

gations and commercial products (Tassey 1997). On the other hand, standardization, if

poorly designed or timed, impedes innovation (Tassey 2000). However, if well designed

and timed, standardization will facilitate the coordinated development of future BCI

hardware and software. For example, as a first step, connectors between EEG caps and

biosignal amplifiers could easily be standardized without overly stifling innovation.

1.3.1.6 Conclusions

BCI applications for communication are currently in a transition from isolated demon-

strations to systematic research and commercial development. Successful and contin-

uing transition requires that BCI technology further improve in speed, accuracy, price,

and robustness, and consequently the cost/benefit ratio. For example, to match the

cost/benefit ratio of conventional assistive communication devices, product-grade BCI

spelling devices may require maintenance-free spelling performance of more than 10

words per minute at close to 100% accuracy for less than 15 thousand dollars (e.g., My-

Tobii P10 eye-tracker system, Tobii Technology AB, Sweden, http://www.tobii.com). To

facilitate necessary improvements, an ecosystem of product-grade BCI systems and com-

ponents needs to be developed. The requisite efforts include the development of better

integrated and more robust BCI hardware and software, the definition of standardized

interfaces, and the development of certification, dissemination and reimbursement pro-

cedures.

We expect that these efforts will create an ecosystem of increasingly compatible BCI

hardware and software that will enable the translation of BCIs into clinical practice, as

well as the rapid development and dissemination of commercial consumer applications

and additional applications that are not related to communication and control. The

detailed aspects for creating an ecosystem of product-grade BCI hardware and software,

and the likely societal impact of this ecosystem, require further investigation.

The creation of this ecosystem may be hindered by factors such as defensive intel-

lectual property strategies, and the lack of patent pools and commercial interests. It is

http://www.tobii.com
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also possible that unresolved ethical considerations, such as privacy and liability, will

eventually impede the proliferation of BCIs (Haselager et al. 2009; Kübler et al. 2006).

In summary, the successful and continuing transition of BCI technology from iso-

lated demonstrations to systematic research and commercial development requires sig-

nificant improvements in speed, accuracy, price, and robustness, and consequently the

cost/benefit ratio. In aim 1 of this dissertation, I will begin to address this problem by

developing and validating methods for increased speed of matrix speller BCIs.
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1.3.2 Applications for Diagnosis

Electrophysiological brain signals have been used for decades for three established clin-

ical diagnostic applications: (1) general diagnosis of epilepsy and other disorders of the

central nervous system through visual inspection of EEG signals (Gibbs et al. 1936); (2)

localization of epileptogenic cortex through visual inspection of interictal and ictal data

in ECoG signals (Penfield et al. 1942); and (3) mapping of eloquent cortex through elec-

trical cortical stimulation (ECS) for presurgical planning of epileptogenic and lesional

cortical tissue resection (Foerster 1931).

These three applications (i.e., visual inspection of EEG or ECoG, or ECS mapping)

have evolved from mechanical stylus- and paper-based instrumentation to fully comput-

erized clinical bedside monitoring systems (Fig. 1.9). In this evolution, clinical bedside

monitoring systems were designed to deliver a visual impression comparable to that

of mechanical systems. Such systems record EEG or ECoG signals from 0.1 to 50 Hz

sampled at 256 Hz with 12-bit resolution (i.e., sensitivity of 100 µV). To acquire these

signals, EEG recordings typically use 20-64 surface electrodes arranged according to the

10/20 international electrode system (Jasper 1958). ECoG recordings may use arrays of

subdural electrodes in numbers from several to 200 arranged in 1-cm spacing on multi-

ple grids and strips and implanted above or below the dura. A biosignal amplifier with

analog-to-digital converters and a workstation comprise the clinical bedside monitoring

system. The workstation stores the recorded signals along with a video stream of the

subject’s behavior. A clinical investigator then bases his/her diagnosis on the visual

inspection of recorded behavioral patterns and neurophysiological signals.

The focus of these devices on only those aspects important to visual inspection has

recently begun to show its limitations. For example, recent studies have shown promis-

ing emerging clinical applications that could replace and enhance established visual

inspection-based procedures. One of these applications is the passive mapping of elo-

quent cortex using functional magnetic resonance imaging (fMRI) (Chakraborty and

McEvoy, 2008), positron emission tomography (PET) (Bittar et al., 1999; Meyer et al.,

2003), magnetoencephalography (MEG) (Ganslandt et al., 1999), evoked potentials (EP)

(Dinner et al., 1986) or electrocorticography (ECoG) (Crone et al. 1998a).

Each of these methods has problems that include morbidity, time consumption, ex-

pense, or practicality (Table 1.2). However, because existing surgical protocols typically

already include the placement of subdural electrodes, and because of its procedural sim-

plicity, ECS has become the gold standard for mapping eloquent cortex. The following

sections summarize different practical issues related to the application of fMRI, PET,
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MEG, EP and ECoG for passive mapping of eloquent cortex.

Table 1.2: Comparison of techniques that map eloquent cortex. This table compares
the utility of techniques that map eloquent cortex. In this comparison, ECS tends to
entail the most issues associated with risks, limitations, requirements and results. In
contrast, ECoG tends to entail fewer risks and limitations, but still suffers from issues
associated with the requirements and results of this procedure.

Risks ECS PET/fMRI MEG ECoG
can induce seizures yes no no no
increased morbidity yes no no yes

Limitations ECS PET/fMRI MEG ECoG
limited spatial resolution yes yes yes no

limited temporal resolution yes yes no no
limited variety of tasks yes yes yes no

limited to adult patients yes yes no no
Requirements ECS PET/fMRI MEG ECoG

requires expert† yes yes yes yes†

requires expensive equipment no yes yes no
requires much time† yes yes yes yes†

requires patient compliance yes yes yes yes
Results ECS PET/fMRI MEG ECoG

suffer from expert variability† yes yes yes yes†

suffer from artifacts problems yes yes yes no
require post/hoc analysis† no yes yes yes†

Note:
†

Issues addressed in this dissertation.

1.3.2.1 Electrical Cortical Stimulation (ECS)

Electrical cortical stimulation (ECS) maps eloquent cortex by applying electrical cur-

rent onto the cortical surface while observing the evoked behavioral response (Foerster

1931). The electric current is delivered in pulses (e.g., 0.5-15 mA, 0.3 ms 50 Hz pulses, 2-

5 sec stimulation, see Ojemann 1991 for details) through a grid of electrocorticographic

electrodes (2.4 mm diameter, 1 cm spaced). The stimulation evokes an excitatory or

inhibitory neural and consequently behavioral response that is observed by the clinical

investigator. Stimulation of motor, sensory or visual cortex typically evokes an exci-

tatory response, while stimulation of auditory, memory or language cortex evokes an

inhibitory response. The stimulation thresholds for motor and sensor cortex are lower

(e.g., 2-4 mA) than those for auditory, memory and language cortex (e.g., 8-15 mA).
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As such, ECS is a lesional and non-physiological approach that can be applied in the

operating room under local anesthesia (i.e., intraoperatively) or at the bedside. The re-

sults, i.e., the electrodes that are labeled as eloquent cortex, are directly used by the

neurosurgeon to delineate eloquent from abnormal tissue during resective surgery.

Since ECS has three quarters of a century of historical and clinical relevance (Foer-

ster, 1931), and perhaps also due to its relative procedural simplicity and low cost, ECS

has become the gold standard in mapping eloquent cortex. It has gained broad accep-

tance despite limited data to support efficacy (Hamberger, 2007) and despite of several

substantial issues. For example, ECS is time consuming because it requires a compre-

hensive search, i.e., stimulation of each grid contact, while simultaneously determining

the appropriate stimulation amplitude. ECS can also produce after-discharges that may

trigger seizures or even status epilepticus. This can result in substantial delays, aborted

procedures, and patient morbidity. The results derived using ECS may also not be

correct because: 1) stimulation may produce inhibitory responses that cannot readily be

observed; 2) propagation of stimulation current is affected by the anatomy and potential

after-discharges, and thus variable; 3) there may be substantial procedural variability;

and 4) stimulation-based mapping is based on a lesional and not a physiological model.

Finally, ECS depends on patient compliance and thus cannot easily be used in some

patient populations (such as pediatric patients). The characteristics of ECS are reviewed

in (Devinsky et al., 1993) and (Ojemann et al., 1989). The problems described above

increase the risk to the patient and the time and cost associated with surgical planning.

1.3.2.2 Positron Emission Tomography (PET) and Functional Magnetic Resonance

Imaging (fMRI)

Positron emission tomography (PET) and Functional magnetic resonance imaging (fMRI)

map eloquent cortex by measuring the task-related increase in metabolic activity relative

to a baseline (Bittar et al. 1999; Chakraborty and McEvoy 2008; Meyer et al. 2003). As

such, PET and fMRI represent physiological non-lesional (i.e., passive) approaches that

are limited to pre-surgically assessment of eloquent cortex. The result of this assess-

ment is a 3-dimensional volume of eloquent cortex that requires a translation into the

2-dimensional coordinate system that is used by the neurosurgeon to delineate eloquent

from abnormal tissue during resective surgery. This typically requires a multimodal

acquisition (PET-CT) and subsequent co-registration with anatomical structures (MRI).

PET-CT (Beyer et al. 2000) and fMRI (Belliveau et al. 1991) have only been recent

advances in medical imaging, require expensive instrumentation (e.g., multiple million
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dollars) and trained personnel. This is compounded by the technological limitations of

the fMRI and PET: 1) the procedure is not available at the bedside or in the operating

room when surgical decisions are most critical; 2) the low temporal resolution of fMRI

and PET prevents the assessment of eloquent cortex that is not continuously activated

(e.g., language, memory); Because of these reasons, PET and fMRI have not gained

broad acceptance as techniques to map eloquent cortex.

1.3.2.3 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) maps eloquent cortex by measuring the task-related

increase in the weak magnetic field that is created by synchronized neurons (Cohen

1968). As such, MEG represents a physiological non-lesional (i.e., passive) approach

that is limited to pre-surgically assessment of eloquent cortex. The measured magnetic

field follows neural activity instantly and is not markedly affected by the geometry and

conductivity of the scalp, skull, outer meningeal covering and brain. Consequently MEG

provides the high spatial and temporal resolution (Ganslandt et al. 1999) necessary to

map eloquent cortex that is not continuously activated (e.g., language, memory).

However, MEG mapping suffers from two substantial disadvantages: 1) it requires

expensive instrumentation (e.g., multiple million dollars) and trained personnel; 2) it

is not available at the bedside or in the operating room; In consequence, MEG has not

gained broad acceptance as a technique to map eloquent cortex.

1.3.2.4 Electrocorticography (ECoG)

Electrocorticography (ECoG) maps eloquent cortex by measuring the task-related in-

crease in electrical fields on the cortex (i.e., subdural) or on the dura (i.e., epidural) that

are created by synchronized neurons (Aoki et al. 1999, 2001; Crone et al. 2001, 1998a,b;

Fries 2005; Graimann et al. 2002; Lachaux et al. 2003; Leuthardt et al. 2007; Miller et al.

2007b; Sinai et al. 2005; Varela et al. 2001). These fields are typically recorded from the

same electrocorticographic grids that are used for ECS mapping (2.4 mm diameter, 1

cm spaced). While the spatial resolution of ECoG mapping is limited by these grids,

it provides excellent temporal resolution that allows to map eloquent cortex that is not

continuously activated (e.g., language, memory). As such, ECoG represents a physio-

logical non-lesional (i.e., passive) approach that is suited for intraoperative (i.e., within

the operating room) and bedside assessment of eloquent cortex. ECoG mapping typ-

ically uses task-related increases in the gamma band and its results have been shown
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to be in general agreement with those derived using fMRI (Lachaux et al., 2007a) and

ECS (Leuthardt et al., 2007; Miller et al., 2007b; Sinai et al., 2005). The results, i.e., the

electrodes that are labeled as eloquent cortex, are directly used by the neurosurgeon to

delineate eloquent from abnormal tissue during resective surgery.

While a few recent studies have provided encouraging evidence that ECoG-based

analyses could become more accessible to clinicians (Lachaux et al., 2007b,c; Miller et al.,

2007a), passive mapping of eloquent cortex using ECoG has remained an academic

demonstration due to the dependence on post-hoc analysis and an expert to optimize

the analyses for each individual patient.

1.3.2.5 Conclusions

The comparison of ECS, PET, fMRI, MEG, and ECoG shows that broad acceptance of a

technique to map eloquent cortex mainly depends on cost, availability and limitations.

For example, while the high temporal, spatial, and task fidelity of MEG overcomes many

limitations that are associated with ECS, high cost and the dependence on co-registration

with anatomical structures impede broad acceptance. Interestingly, ECoG represents a

cost-effective and readily available technique that overcomes many limitations of ECS

(see Table 1.2). However, because of the dependency on post-hoc analysis, ECoG has

not become a widely accepted technique to map eloquent cortex.

In aim 2 of this dissertation, I will develop techniques that remove the need for post-

hoc analysis by using a generative approach to passively map eloquent cortex using

ECoG.
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Figure 1.9: Evolution of clinical bedside monitoring systems This figure shows the
evolution of clinical bedside EEG and ECoG monitoring systems with the patient (left),
the instrumentation (center), and the interface to the investigator (right). In this evolu-
tion, clinical bedside EEG and ECoG monitoring systems have evolved from mechanical
stylus and paper systems (A) over video-EEG (B) to dedicated clinical research systems
(C) which in addition to monitoring the EEG and ECoG also provide feedback to the
patient.
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1.4 The Two Aims in this Dissertation

The introduction of this dissertation identified two major limitations of emerging clinical

applications that use brain signals for communication and diagnosis. These limitations

are: (1) low communication performance; (2) dependence on experts and post-hoc analy-

sis for diagnosis of eloquent cortex. This dissertation aims to overcome these limitations

by improving communication performance and by eliminating the need for experts and

post-hoc analysis in clinical diagnosis.

In Chapter 2, Brain Signals for Communication, we aim to improve the performance

of clinical applications that use brain signals for communication. We hypothesize that

a ECoG-based matrix speller may support communication rates that are higher than

those typically expected by EEG-based spellers. We test this hypothesis in real-time ex-

periments (study 1) and subsequently investigate the applicability of this BCI approach

to the target population, i.e., to people that suffer from severe neuromuscular diseases

and are unable to shift eye-gaze (study 2). The results demonstrate that an ECoG-based

speller could provide a sustained communication rate of 17 characters per minute (69

bits/min), which is 3-4 times higher than what had previously been reported. Our in-

vestigation of the applicability to the target population unequivocally showed, that the

performance of the matrix speller BCI depends on the ability to fixate on the intended

character. While this finding effectively limits the utility of increased spelling perfor-

mance to people that are able to fixate on the target, this has created an awareness

on this dependency and has since sparked scientific interest to develop exogenous BCI

systems that do not depend on eye-gaze.

In Chapter 3, Brain Signals for Diagnosis, we aim to eliminate the need for experts

and post-hoc analysis in applications that use brain signals for clinical diagnosis. We hy-

pothesize that a generative approach, to passively map eloquent cortex using ECoG will

provide results that are in general agreement to those derived using expert-supervised

electrical stimulation. We develop a diagnostic tool that uses ECoG and generative mod-

els to passively map eloquent cortex and test our hypothesis in a multi-center study. The

results show that this system does not need experts or post-hoc analysis to provide maps

of eloquent cortex that are in general alignment with those obtained from the current

gold standard. This could extend the clinical option for mapping eloquent cortex prior

to resective surgery.
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1.5 Overview of Contributions

The work described in this Dissertation produced a number of important contributions

to the clinical application of brain signals for communication and diagnosis, as well as

to basic and applied neuroscience. These contributions have been reported in 22 peer-

reviewed journal papers (see Appendix A) and are described in detail in Chapters 2 and

3, and are summarized here.

CHAPTER 2: Brain Signals for Communication At present, the translation of assis-

tive BCI communication devices into clinical practice has been impeded by poor speed

and accuracy, and by the unclear applicability to the target population.

The work described in Chapter 2 provided three contributions that will help to over-

come these impediments: first, I implemented the first ECoG-based speller BCI system.

Second, using this system, I showed that an ECoG-based speller can provide a sustained

communication rate of 17 characters per minute (69 bits/min), which is 3-4 times higher

than what had previously been reported. Third, I showed that the performance of the

matrix speller BCI depends on the ability to fixate on the intended character. These

results should facilitate the translation of assistive BCI communication devices from

laboratory demonstrations into clinical practice.

CHAPTER 3: Brain Signals for Diagnosis The clinical application of brain signals

to map eloquent cortex has been impeded by the dependency on experts and post-

hoc analysis. The work described in Chapter 3 provided three contributions that will

help to overcome this impediment: first, I developed a generative technique to model

brain signals and to detect task-related changes. Second, I implemented this technique

in a software tool that maps eloquent cortex in real-time at the bedside, and provides

the results in an intuitive interface to the clinical investigator. Third, I validated the

technique in a multi-center study that showed that the results are in general agreement

to those derived using electrical stimulation. These results should facilitate the clinical

application of brain signals to map eloquent cortex.
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Brain Signals for Communication

2.1 Summary of Contributions and Approach

This chapter discusses improvements in speed and applicability of Brain Signals for

Communication. At present, the translation of assistive BCI communication devices

into clinical practice has been impeded by poor speed and accuracy, and by the unclear

applicability to the target population (i.e., people with severe motor-disabilities). Con-

sequently, if BCI communication was to be become a viable alternative to conventional

assistive devices it needs to improve in speed, accuracy, and the applicability to the

target population.

The main contribution presented in this chapter is the improvement in speed and

accuracy in BCI communication and the finding that the most commonly used BCI com-

munication interface may not be applicable to the target population. The improvement

in speed and accuracy in BCI communication encompasses the development of tech-

niques and protocols for chronic real-time recording of ECoG signals from the surface

of the brain. The determination of applicability to the target population encompasses the

development of techniques and protocols for real-time operant conditioning to simulate

the target population, i.e., people with sever motor-disabilities that are unable to con-

trol their eye-gaze. The associated work is described in section 2.2 for the improvement

in speed and accuracy in BCI communication and in section 2.3 for the determination

of the applicability to the target population. The results provide evidence that brain

signals recorded from the surface of the brain (ECoG) could provide a sustained com-

munication rate that is 3-4 times higher than what had previously been reported, and

that the performance of the “P300” matrix speller BCI depends on the ability to fixate

41
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on the intended character. The work accomplished in this chapter should help to over-

come the speed and accuracy barriers that currently impede the translation of assistive

BCI communication devices into clinical practice. At the same time, the finding that the

most commonly used BCI communication interface may not be applicable to the target

population should spark scientific interest to develop exogenous BCI systems that do

not depend on eye-gaze.

The work in this chapter was highly multidisciplinary and depended on the integra-

tion of methodologies from different areas of engineering and science, such as exper-

imental psychology, neurosurgery, electrophysiology, electrical engineering, computer

science and signal processing. For example, I used computer science methodologies to

implement the software interfaces that enabled the real-time operant conditioning of the

subject’s eye-gaze.
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2.2 Rapid Brain-Computer Interface (BCI) Communication Us-

ing Electrocorticographic Signals (ECoG)

2.2.1 Introduction

Many people affected by neurological or neuromuscular disorders such as amyotrophic

lateral sclerosis (ALS), brainstem stroke, or spinal cord injury, are impaired in their abil-

ity to or even unable to communicate. A brain-computer interface (BCI) uses brain sig-

nals to restore some of the lost function. A BCI approach that several groups have begun

to test in clinical applications in humans (e.g., Nijboer et al. 2008; Sellers et al. 2006b,

2010; Vaughan et al. 2006; see Donchin and Arbel 2009 for a comprehensive review)

is the matrix-based speller originally described by Farwell and Donchin (Farwell and

Donchin 1988). This speller uses different event-related potentials (ERPs) including the

P300 evoked response. In this system, the user attends to a character in a matrix while

each row or column flashes rapidly and pseudo-randomly. The brain produces a re-

sponse to the row or column that contains the intended character (i.e., the oddball); this

response is different for the other rows or columns. The BCI can detect the desired char-

acter by determining the row and column that produces the largest evoked response.

Using this approach, recent electroencephalography (EEG)-based studies (Guger et al.

2009; Lenhardt et al. 2008; Nijboer et al. 2008; Sellers et al. 2006a, 2010; Serby et al. 2005)

reported real-time accuracies from 79% to 91% (6x6 matrix of 36 characters; 2.8% chance)

at 13 to 42 seconds per selection.

A growing number of recent studies (e.g., Felton et al. 2007; Leuthardt et al. 2006,

2004; Miller et al. 2010; Ritaccio et al. 2010; Schalk et al. 2008c; Vansteensel et al. 2010;

Wilson et al. 2006) suggested that signals recorded from the surface of the brain (electro-

corticography (ECoG)) are a promising platform for real-time BCI communication. This

advantage is due in part to the high spatial, spectral, and temporal fidelity that char-

acterize ECoG signals (Ball et al. 2009; Brunner et al. 2009; Leuthardt et al. 2004; Miller

et al. 2007b, 2008). It is possible that these favorable signal characteristics may provide

distinct advantages in the context of the matrix speller, but this has not been explored.

In this study, we investigated this possibility by evaluating the feasibility and online

performance of the matrix speller using ECoG signals recorded from frontal, parietal,

and occipital areas in one human subject. We hypothesized that these experiments will

provide evidence that the ECoG-based speller may support communication rates that are

higher than those typically expected by EEG-based spellers. The results demonstrate

that ECoG allows for accurate single-trial detection of evoked responses, and thereby
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supports very high communication rates. Thus, with additional verification in more

subjects, these results may further extend the communication options for people with

serious neuromuscular disabilities.

2.2.2 Methods

2.2.2.1 Human Subject

The subject in this study was a 29 year old right handed woman with intractable epilepsy

who underwent temporary placement of subdural electrode arrays (see Fig. 2.1A) to

localize seizure foci prior to surgical resection. The subject had corrected-to-normal

vision and gave informed consent through a protocol reviewed and approved by the

review board of Albany Medical College.

A neuropsychological evaluation revealed a full-scale IQ score of 122 (93rd per-

centile, Wechsler 1997), superior visuomotor scanning performance (92nd percentile,

Trail Marking Test, Reitan 1958), and average visual search capacity (75th percentile,

WAIS-III: Symbol Search Subtest, Wechsler 1997).

The subject had a total of 96 subdural electrode contacts (i.e., one 8 x 8 64-contact

grid, one 23-contact grid, and two strips in 1 x 6 and 1 x 3 configuration, respectively).

These grids/strips were placed over the left hemisphere in frontal, parietal, temporal

and occipital regions (see Fig. 2.1B for details). The implants consisted of flat electrodes

with an exposed diameter of 2.3 mm and an inter-electrode distance of 1 cm, and were

implanted for one week. Grid placement and duration of ECoG monitoring were based

solely on the requirements of the clinical evaluation without any consideration of this

study. Following placement of the subdural grid, postoperative CT imaging verified

grid location (Talairach and Tournoux 1988).

2.2.2.2 Data Collection

We recorded ECoG from the implanted electrodes using 6 g.USBamp amplifier/digitizer

systems (g.tec, Graz, Austria) and the BCI software platform BCI2000 (Mellinger and

Schalk 2007; Schalk et al. 2004; Schalk and Mellinger 2010). Simultaneous clinical moni-

toring was implemented using a connector that split the cables coming from the patient

into one set that was connected to the clinical monitoring system and another set that

was connected to the g.USBamp devices. Thus, at no time was clinical care or clinical

data collection compromised. Two electrocorticographically silent electrodes (i.e., loca-

tions that were not identified as eloquent cortex by electrocortical stimulation mapping)
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A B

Figure 2.1: Implant. The subject had 96 subdural electrodes (2 grids and 2 strips in
different configurations) implanted over left frontal, parietal, temporal, and occipital
regions. A: Photograph of the craniotomy and the implanted grids in this subject. B:
Lateral x-ray of the subject, showing an 8x8 grid over frontal/parietal cortex, a 23 contact
grid over temporal cortex, and several strips.

over inferior and superior posterior parietal cortex served as ground and reference, re-

spectively. We used a grounding connection between the g.USBamp systems and the

patient’s skin to dissipate any electric currents generated by external electromagnetic

fields and to block electromagnetic interference. The amplifiers sampled the signal at

512 Hz and used a high pass at 0.1 Hz and a notch filter at 60 Hz.

2.2.2.3 Experimental Paradigm

The subject sat 60 cm in front of a flat-screen monitor. She was presented with a ma-

trix of alphanumeric characters that was centered on the screen and arranged in a 6x6

configuration (see Fig. 2.2). At this distance, the matrix subtended ±7.1 degrees of the

horizontal and vertical visual field.

The subject participated in a recording session that consisted of offline and online

experiments. In the offline (i.e., calibration) experiments, the BCI2000 matrix speller

flashed each of the 12 rows or columns in a pseudo-random sequence. Flashes occurred

at a rate of 16 Hz. Each flash lasted 1/64 s (16 ms) to 3/64 s (46.8 ms), followed by a 1/64

to 3/64 s inter-stimulus period. The intensity contrast between a flash and a non-flash

was 3:1. 15 flash sequences comprised one trial. The subject’s task in each trial was to

pay attention to the highlighted character in the words “THE QUICK BROWN,” and to



46 Chapter 2. Brain Signals for Communication

Patient

Figure 2.2: Experimental setup. The subject sat 60 cm in front of a flat-screen monitor
that presented a centered 6x6 matrix containing alphanumeric characters as well as
space (Sp) and backspace (Bs). The rows and columns in the matrix flashed rapidly and
pseudo-randomly. The subject’s task was to pay attention to the intended character. The
computer determined the intended character from the subject’s ECoG responses.

make a mental note (i.e., to count) each time the correct row/column flashed. A 3-sec

pause (i.e., “flight time”) between characters gave the subject time to shift her attention

onto the next character. We used the ECoG data collected in this calibration experiment

to establish a classifier using the stepwise regression method reported in Krusienski

et al. 2006. We then configured the BCI to use this classifier in online experiments.

During each of the 7 online experiments, the subject copy-spelled the sentence

“THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.” The BCI system pro-

vided feedback of the characters predicted from the ECoG signals. The subject selected

“backspace” to correct incorrect selections. In the 7 online experiments, the subject

spelled a total of 301 characters (i.e., 444 characters including “backspace” and sub-

sequent corrections) using different stimulation parameters that are described in more

detail in the Results section.

2.2.2.4 Offline Analyses

In offline analyses of data from each of the calibration experiments, we first filtered the

signal between 0.1 and 20 Hz and downsampled it to 40 Hz. We then extracted the

stimulus response, i.e., the ECoG signals from all 96 channels for 500 ms after stimulus

onset (see Fig. 2.3). This yielded 20 features (i.e., 40× 0.5 = 20) per channel or a total
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of 1920 features for all 96 channels. We define a sequence to be 12 flashes, i.e., flashes

of 6 rows and 6 columns of the presented matrix. Of these 12 flashes, two (i.e., the row

and column that contained the desired character) are expected to elicit a target evoked

response (i.e., oddball ERP) and 10 are not. With 15 flash sequences in each trial, this

yielded 30 target ERPs and 150 non-target ERPs. As we recorded 13 trials (i.e., each

character in ”THE QUICK BROWN”) during a calibration experiment, this resulted in a

total of 390 target and 1950 non-target ERPs for calibration.

500 ms60 µV

+

-

Figure 2.3: Event-related potentials (ERPs). The figure above shows averaged event-
related responses to target (red) and non-target (blue) flashes at each of the 96 recorded
locations.

2.2.2.5 Stepwise Regression Model

In the matrix speller paradigm, the subject’s selection is predicted by the intersection

of the row and column that elicits the largest target-related response. In 1988, Farwell

and Donchin proposed multiple approaches to determine the target-related response

from data for which the intended selection is known (i.e., calibration data, Farwell and
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Donchin 1988). These approaches included stepwise regression, peak picking, area un-

der the curve measurements, and the covariance. In our study, we used a stepwise

regression procedure that has been described in detail in Krusienski et al. 2006. In brief,

we first filtered the brain signal from each channel between 0.1 and 20 Hz and down-

sampled it to 40 Hz. The downsampled ECoG amplitude of all 96 channels for 500

ms after stimulus onset resulted in a total of 1920 potential signal features. A stepwise

procedure then produced a linear model that predicted, given a subset of all features,

whether or not the stimulus associated with these features was a target or non-target.

In this iterative procedure, each step added the most significant and/or removed the

least significant feature based on the p-value of a F-statistic (padd = 0.1, premove = 0.15,

Jennrich 1977). To prevent overfitting, the stepwise procedure limited the number of

features to 60 and terminated when a step did not further improve the regression model

or when the maximum number of iterations (5000) was reached. In summary, this pro-

cedure reduced the 1920 potential ECoG features to a maximum of 60 features, and

resulted in a linear model that was predictive of target or non-target. This linear model

was applied to the ECoG response to each stimulus (i.e., row or column flash). The row

and column with the highest model output defined the predicted character. Because

there were 36 characters, chance accuracy was 2.8%.

2.2.2.6 Online Experiments

For each online experiment, we used one of three different flash durations (i.e., 1/64,

2/64, 3/64 s). For each flash duration, we collected calibration data (“THE QUICK

BROWN”) and performed the offline analyses described above to establish a regression

model. We then used this model to evaluate online system performance. In these on-

line experiments, we asked the subject to use the matrix speller BCI system to spell

“THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG”. The BCI system pro-

vided feedback on the predicted characters as shown in Fig. 2.2. The subject performed

a “backspace” selection to correct for incorrect selections.
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2.2.3 Results

2.2.3.1 Optimization of System Performance

Over the course of online experimentation, we continually optimized system parameters

(i.e., the flash duration and number of flash sequences) so as to optimize the subject’s

information transfer rate. The results are shown in Fig. 2.4 and Table 2.1. For one flash

sequence, spelling accuracy reached a maximum of 81% (see Fig. 2.4) at a flash duration

of 3/64 s. We then used a flash duration of 3/64 s (i.e., 47 ms) and increased the number

of flash sequences. The accuracy reached 98% at 3 flash sequences, while the actual

information transfer rate (i.e., bit rate), which was calculated including stimulation- and

flight-time, peaked at 60.5 bits/min and 2 flash sequences (i.e., a selection every 4.5 s).

In a subsequent seventh 3.5 minute run, we reduced the time between selections to 2

seconds. The subject achieved a selection every 3.5 s at 86.4% accuracy. This represents

an information transfer rate of 69 bits/min or 17 characters per minute.

In a final run, we further decreased the number of flash sequences to one. In this

run, the subject spelled the word "FLOWER" at rate of 2.75 s/character (i.e., 22 charac-

ters/min or 113 bits/min).
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Figure 2.4: Optimizing accuracy and information transfer rate. The figure on the left
shows the relationship between the flash duration and classification accuracy with a
single flash sequence (i.e., single-flash accuracy). The figure on the right shows the
relationship between the number of flash sequences and classification accuracy using a
flash duration of 3/64 seconds (i.e., 46.9ms). The subject reached a maximum of 98%
classification accuracy at three flash sequence, and a maximum of 60.5 bits/min at 92.2%
accuracy (i.e., a selection every 4.5 s) at two flash sequences.
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Table 2.1: Optimizing accuracy and information transfer rate. The table on the top
shows the relationship between flash duration and classification accuracy with a single
flash sequence (i.e., single-trial accuracy). The table below shows the relationship be-
tween the number of flash sequences and classification accuracy using a flash duration
of 3/64 seconds (i.e., 46.9 ms). The data in these tables corresponds to the traces in Fig.
2.4.

flash duration flash sequences accuracy bit rate
1/64 s 1 42%
2/64 s 1 61%
3/64 s 1 81%
3/64 s 1 78% 53 bits/min
3/64 s 2 92% 60 bits/min
3/64 s 3 98% 56 bits/min

2.2.3.2 Cortical Locations With Significant Evoked Responses

The results presented in the previous section demonstrated that the BCI system suc-

cessfully predicted the intended character online with an accuracy of 81% using only

one flash of each row/column. We were interested in the physiological basis for this

successful demonstration, i.e., in the cortical locations and ERP components that held

significant information. To do this, we trained the classifier separately on each location

using the calibration data with a flash duration of 3/64 s, and evaluated performance

on the online data with the same flash duration and 1-3 flash sequences. Fig. 2.5 shows

the locations of all 96 subdural electrodes (blue dots) and the corresponding color-coded

classification accuracies. Accuracy ranged from chance level ( 1
6∗6 = 2.8%) to 50% for the

best electrode location.

Statistical comparisons (two-sample t-test, Bonferroni corrected for the number of

features (i.e., 1920)) of each extracted feature (ECoG amplitudes at a given time and loca-

tion) between target and non-target conditions revealed statistically significant (p<<0.001)

differences over wide-spread areas in secondary visual cortex (see locations marked

with A,B,C,D in the brain plot in Fig. 2.5), associative visual cortex (E), angular gyrus

(F) and somatosensory association cortex (G). The traces below show the correlation of

the ECoG signals following the flash with the type of the ERP (i.e., target vs. non-target).

This correlation analysis for locations A-G showed dominant peaks between 125 and 175

ms after the flash. The amplitude of these peaks were reversed between the neighboring

electrodes C, D, and E. Furthermore, signals recorded from angular gyrus (F), but not

other locations, were sensitive to the orientation (i.e., row or column) of the attended

flash (p=0.00003).
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Figure 2.5: Qualitative Results. The figure at the top shows the locations of the 96
subdural electrodes (blue dots), as well as the color-coded single-flash classification ac-
curacy at each individual electrode. The traces at the bottom show evoked responses
(i.e., the correlation between ECoG amplitude and the type of the ERP (target/no target)
for cortical locations A-G.
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2.2.3.3 Optimizing Number of Electrodes

The results presented in the previous section show that, in this particular subject, ERPs

recorded from electrodes over visual cortex contribute significantly to the performance

of the matrix speller BCI system. This suggests that a similar level of performance

may be achieved using recordings from only a few electrodes over a relatively small

area, which is important for potential clinical application of this approach. Thus, we

were interested in the relationship between the number of utilized electrodes over visual

cortex and spelling performance.

To do this, in offline post-hoc analyses, we evaluated spelling performance using 1-6

electrodes over visual cortex (i.e., locations A-F in Fig. 2.5) and 1-3 flash sequences. In

these analyses, we used the same calibration data as in the online experiment (i.e., “THE

QUICK BROWN”, 15 flash sequences, 3/64 s flash duration). We then established one

classifier for each possible combination of the 1-6 electrodes over visual cortex. For each

combination, we then applied the corresponding classifier to the data from the online

experiments. The results in Fig. 2.6 and Table 2.2 show the relationship between the

best combinations of 1-6 electrodes and spelling performance, i.e., accuracy and bit rate,

for 1-3 flash sequences. The results suggest that this particular subject could achieve a

maximum of 100% classification accuracy at three flash sequences and four electrodes,

and a maximum of 64 bits/min at two flash sequences and five electrodes. Furthermore,

one bipolar derivation (i.e., between locations C and A) may already allow for 57 bits

per minute or 90% of the peak spelling performance supported by five electrodes (see

Table 2.2).
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Figure 2.6: Optimizing number of electrodes. The two figures show the relationship
between the number of electrodes over visual cortex and accuracy (left) or bit rate (right)
that this subject may achieve with these electrodes at one (blue circle), two (green trian-
gle), and three (orange square) flash sequences. The subject may achieve a maximum
of 100% classification accuracy at three flash sequences and four electrodes, and a max-
imum of 64 bits/min at two flash sequences and five electrodes.

Table 2.2: Optimizing number of electrodes. This table shows the relationship between
the number of electrodes over visual cortex and accuracy (left) or bit rate (right) that this
subject can achieve with these electrodes at 1-3 flash sequences. The data in these tables
corresponds to the traces in Fig. 2.6; locations A-F correspond to the electrode locations
and evoked responses in Fig. 2.5.

accuracy (%) bit rate (bits/min)
number of flash sequences flash sequences
locations location(s) 1 2 3 1 2 3
1 C 53 75 78 28 41 38
1* C-A 75 91 93 50 57 51
2 C,A 81 94 96 56 60 54
3 C,B,A 86 96 98 62 63 56
4 E,C,B,A 86 96 100 62 63 59
5 E,D,C,B,A 87 97 100 63 64 59
6 F,E,D,C,B,A 86 96 100 62 63 59

Note: * Bipolar derivation.
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2.2.4 Discussion

The results of this study show that ECoG can support matrix BCI spelling at a sustained

rate of 17 characters per minute (i.e., 69 bits/min) and a peak rate of 22 characters per

minute (i.e., 113 bits/min). In line with recently completed studies by us (Brunner et al.

2010a,b, see section 2.3) and others (Treder and Blankertz 2010), our offline analyses

show that visual areas provided important contributions to the subject’s performance.

The results also indicate that only one bipolar derivation over visual cortex could sup-

port almost the same level of performance. In conclusion, with verification of our results

in more subjects, these findings may increase the BCI-based communication options for

people with serious motor disabilities.

The spelling rate reported for the one subject in this ECoG-based study (i.e., 17

sustained characters per minute or 69 bits/min) is 3-4 times higher than what had pre-

viously been reported in EEG-based P300 BCI studies (i.e., 1.4 to 4.5 characters per

minute) (Guger et al. 2009; Lenhardt et al. 2008; Nijboer et al. 2008; Sellers et al. 2006a,

2010; Serby et al. 2005)1 or in EEG-based sensory motor rhythm (SMR) BCI studies (1.7

to 4.9 characters per minute) (McFarland et al. 2003; Müller et al. 2008; Pfurtscheller

et al. 2003; Wolpaw et al. 1991). Furthermore, the sustained performance demonstrated

in this study is within the same range of previously reported EEG-based SSVEP studies

(15.8 to 18.7 character per minute) (Bin et al. 2009; Gao et al. 2003). Finally, to the best

of our knowledge, the peak performance shown here is the highest BCI performance

demonstrated in humans to date.

The spelling rate of the ECoG-based matrix speller BCI shown here is beginning to

match or even exceed that of conventional assistive devices. These devices are often

either intrusive (e.g., cheek or tongue-switch), cumbersome (e.g., letter board) or sus-

ceptible to fatigue (e.g., video-based eye-trackers using the corneal reflection). Thus,

while invasive, the BCI method presented here may provide distinct advantages over

those conventional assistive devices.

While the spelling rate shown here is very high, it is still at least one order of mag-

nitude slower than conventional communication (e.g., 200 to 400 characters using key-

board or voice; Majaranta and Räihä 2002; Schalk 2008). Although the spelling rate

of the matrix speller could be further improved, there are fundamental limitations to

these potential improvements. These limitations are due to the required dwell time

(e.g., the time during which the rows/columns are intensified) and the flight time (e.g.,

1Some of these EEG-based studies used software and analysis methods that were identical to those
used here.
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the time between two characters). In our study, we used single-trial flash presenta-

tion/classification (i.e., the smallest possible number) and a dwell time (i.e., the time the

subject sustained eye-gaze/attention) of as little as 0.75 s. While this dwell time com-

pares favorably to what is used in other assistive devices (e.g., 0.6 to 1.0 s for a modern

eye-tracker, Majaranta and Räihä 2002), these other devices tend to provide higher com-

munication performance. This is because the matrix spelling paradigm used here also

requires a flight time during which the subject produces brain responses, the computer

evaluates the responses, and the subject shifts gaze/attention to the next character. It

appears impractical to further substantially decrease either the 2-sec flight time dura-

tion, or the 0.75 s dwell time. Thus, the paradigm presented here should be limited to

a spelling rate that is only modestly higher than what we report here. This limitation

appears to have two reasons. First, the current paradigm is synchronous, i.e., the sub-

ject has to synchronize his/her behavior with the timing of the BCI. This requires the

subject to shift eye-gaze/attention onto the intended character within the 2-sec flight

time duration and to sustain eye-gaze/attention for the 0.75 s dwell time. One potential

solution to overcome this limitation is an asynchronous paradigm, i.e., a paradigm in

which the subject does not have to synchronize behavior with the system. Steady-state

visual evoked potential (SSVEP)-based BCIs often use such asynchronous paradigms.

In such a paradigm, the subject performs a selection by focusing eye-gaze to the target

character (i.e., one of multiple light sources flickering at different frequencies) while the

BCI detects those frequencies in the EEG recorded over occipital cortex (Middendorf

et al. 2000). These paradigms not only overcome the synchronization requirement, they

also permit stimulating each potential target independently for the whole dwell time

(i.e., by using individual frequencies for each potential target). Using such a paradigm,

Bin et al. 2009 reported 18.7 character per minute for EEG. The use of this paradigm

with ECoG may further increase performance.

The results suggest that ERPs over visual areas (VEPs) contribute significantly to the

performance of the matrix speller BCI system. Recent studies (Bin et al. 2009; Martens

et al. 2009) suggest that a time-, frequency-, and code-based stimulation may elicit a

wide range of VEPs while minimizing the flight time and obtrusive flickering that cur-

rently limits the utility of P300- and SSVEP-based BCIs. However, generation of a VEP

depends on foveation of the target character. This is of critical relevance to clinical ap-

plication of this BCI method, because eye movements are often impaired or lost in the

target population. For example, although some people with ALS maintain residual eye

movement for years (Birbaumer and Cohen 2007; Cohen and Caroscio 1983; Palmowski
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et al. 1995), others progress to near-complete or complete paralysis. The distance to

foveation influences visual acuity and also VEP amplitude (De Keyser et al. 1990; Sher-

man 1979) and thus would reduce the performance of any BCI that depends at least in

part on VEPs.

An interesting finding was the polarity reversal of VEPs recorded from neighboring

electrodes. While recording at the cortical surface (ECoG) can record these polarity

reversed VEPs, EEG recordings may only record the canceled superposition (Di Russo

et al. 2002; Makeig et al. 2002). This cancelation effect may be one reason why the

performance of EEG-based matrix speller systems, despite wider cortical coverage (e.g.,

64 scalp locations of an extended 10-20 montage (Sharbrough et al. 1991)), appears to be

lower than that shown here.

While quite encouraging, the results shown here are based on only one subject who

had coverage of large cortical areas including visual areas. Thus, it is currently unclear

whether the results presented here will generalize to other subjects. Furthermore, while

we were able to make general performance comparisons of this ECoG-based study with

previously published EEG-based studies, we did not compare performance of ECoG

and EEG within this subject.

The linear relationship between the flash duration and the accuracy, as well as the

fact that only one electrode was sensitive to the orientation (i.e., row or column) of the

attended flash, suggests that, in this particular subject, the magnitude of the ERP in

response to visual stimulation was determined mostly by luminance. However, many

previous studies have shown that the cortex performs neuronal processing of other fea-

tures of visual stimuli, such as spatial frequency, orientation, motion, direction, speed,

and many other spatiotemporal features (Hubel and Wiesel 1959, 1962; Zeki et al. 1991).

A recent study (Martens et al. 2009) showed that these properties of the visual system

can be exploited to increase the amplitude of the EEG response, and thereby increase

overall classification accuracy. This suggests that more extensive electrode coverage may

yield higher performance.

While in this study we only recorded signals from electrodes over the left hemi-

sphere, it is known that visual cortex has bilaterally symmetric retinotopic maps (Engel

et al. 1997, 1994; Yoshor et al. 2007). Thus, some of the ERPs may only reflect right visual

field stimulation (Daniel and Whitteridge 1961) and therefore bilateral coverage might

further increase performance. As a related point, the electrode placement in this study

was based solely on the requirements of the clinical evaluation, without any consid-

eration of this study. Pre-surgical mapping of visual cortex using functional magnetic
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resonance imaging (fMRI) (Engel et al. 1997, 1994; Vansteensel et al. 2010) could be used

to optimize electrode location.

In this study we used subdural electrodes (i.e., electrodes placed underneath the

dura mater). This placement requires penetration of the skull and the outer meningeal

covering, i.e., the dura. This is important for clinical application of this BCI method,

because the penetration of the dura increases the risk of bacterial infection (Davson 1976;

Fountas and Smith 2007; Hamer et al. 2002; Van Gompel et al. 2008; Wong et al. 2009).

Epidural electrodes (i.e., electrodes placed on top of the dura mater) provide signals of

approximately comparable fidelity (Torres Valderrama et al. 2010) and do not penetrate

the dura. Thus, epidural placement may increase safety and thus clinical practicality of

an ECoG-based matrix speller BCI.

Success of widespread clinical application of ECoG-based matrix speller BCI systems

depends mainly on costs and risks (Higson 2002; Raab and Parr 2006). The results

presented here are of critical relevance to these issues, because they suggest that effective

ECoG-based matrix speller BCI systems may be realized by using only one bipolar and

possibly epidural electrode.

Our results provide encouraging evidence that ECoG can provide high spelling rates,

and recent results (Chao et al. 2010; Schalk 2010) suggest that ECoG has good long-

term stability. Moreover, an ECoG-based system reduces the patient’s dependence on a

caregiver to set up EEG electrodes or other external conventional assistive devices. At

the same time, the clinical value of an ECoG-based matrix speller BCI remains unclear.

Compared to non-invasive approaches, an ECoG-based approach entails additional costs

and risks. More generally, despite some encouraging successes of non-invasive matrix

spellers (Nijboer et al. 2008; Sellers et al. 2006b), it is still unclear to what extent matrix

spellers can serve the needs of people with disabilities, in particular those in who eye

gaze is compromised: two recent studies (Brunner et al. 2010b; Treder and Blankertz

2010) demonstrated that the performance of the matrix speller depends substantially on

the subject’s ability to fixate the target character. It is also unclear whether similar fast

stimulation rates (i.e., 16 Hz) can be used in people with disabilities. Even if the high

speed suggested by this study could be translated to clinical applications, it is unclear to

what extent end users will find this increased spelling rate desirable. Furthermore, it is

currently unknown whether the added benefit of increased robustness and/or increased

spelling rate will outweigh the additional cost of surgical implantation. More generally,

it is still debated whether people with complete paralysis can even achieve and maintain

brain-based control, irrespective of whether EEG or ECoG is used (Hill et al. 2006; Kübler
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and Birbaumer 2008).

2.2.5 Conclusions

In summary, the results shown in this study demonstrate that ECoG supports spelling

performance exceeding 20 characters per minute. In consequence, with additional veri-

fication in more subjects, our results may further extend the communication options for

people with severe motor disabilities.

2.2.6 Recommendations

While the results of this study unequivocally support our hypothesis, i.e., that a ECoG-

based matrix speller may support communication rates that are higher than those typ-

ically expected by EEG-based spellers, the results also raised questions. For example,

the results suggest that ERPs over visual areas (VEPs) contribute significantly to the

performance of the BCI communication system. This is of critical relevance to clinical

application of this BCI method, because the target population may be impaired in their

ability to fixate on the target and thus to generate VEPs. This raises the question whether

the performance of matrix speller BCI depends on fixating the target.

In response to this issue, my next study, which is described in the next section (2.3),

investigates whether the performance of the matrix speller BCI depends on fixating the

target.
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2.3 Does the “P300” Speller Depend on Eye Gaze?

2.3.1 Introduction

Many people affected by debilitating neuromuscular disorders such as amyotrophic lat-

eral sclerosis (ALS), brainstem stroke, or spinal cord injury are impaired in their ability

to or even unable to communicate with their family and caregivers. A Brain-Computer

Interface (BCI) uses brain signals directly, rather than muscles, to re-establish commu-

nication with the outside world. One well-known BCI approach is the so-called “P300

matrix speller” that was first described by Farwell and Donchin in 1988. In this system,

the user pays attention to a character in a matrix while each row and column is inten-

sified in a random sequence. The brain produces a response to the row or column that

contains the intended character (i.e., the oddball); this response is not present for the

other rows or columns. The BCI typically averages several responses, detects the row

and column with the strongest responses, and thereby identifies the character the user

wants to select.

The individual parameters of the “P300” matrix speller have each been studied and

optimized extensively. This includes the matrix size (Allison and Pineda 2003), stimu-

lation frequency (Sellers et al. 2006a), stimulation intensity (Takano et al. 2009), classifi-

cation algorithm (Krusienski et al. 2006) and electrode locations (Krusienski et al. 2008).

It has been recently shown that more than 80% of the population can use such a BCI

(Guger et al. 2009). The “P300” speller has also been used for a variety of applications,

such as web browser navigation (Mugler et al. 2008), control of ambient environment

(Edlinger et al. 2009), wheelchair navigation (Rebsamen et al. 2007), and mouse move-

ment (Citi et al. 2008), which demonstrates the broad utility of this approach. Most

important to the eventual goal of BCI research, several studies have also begun to show

mounting evidence that the “P300” speller is a feasible, practical, and useful method

to restore function in severely disabled individuals (Nijboer et al. 2008; Sellers et al.

2006b, 2010; Vaughan et al. 2006; see Donchin and Arbel 2009 for a comprehensive

review). Interestingly, clinical studies with ALS patients (e.g., Nijboer et al. 2008; Sell-

ers et al. 2006b, 2010; Vaughan et al. 2006) show lower spelling performance (i.e., 1.4-3

selections per minute, 79-83% accuracy) than laboratory demonstrations with healthy

subjects (Lenhardt et al. 2008; Serby et al. 2005, 4-4.6 selections per minute, 79-83% ac-

curacy).

Since the original description of the “P300” speller in 1988, it has been unclear

whether this method relies primarily on the P300 evoked potential, and minimally if
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at all on other EEG features, such as the visual evoked potential (VEP), that strongly

depend on eye-gaze direction (Donchin et al. 2000; Sellers et al. 2006b; Serby et al. 2005).

Omitting visual crowding (Korte 1923; Strasburger 2005), a P300 is not markedly af-

fected by whether the target is foveated, whereas a VEP is larger when the target is

foveated. This distinction is important for clinical application of this BCI method, be-

cause eye movements are often impaired or lost in the target population. For example,

although some people with ALS maintain residual eye movement for years (Birbaumer

and Cohen 2007; Cohen and Caroscio 1983; Palmowski et al. 1995), others progress to

near-complete and complete paralysis. It has been shown that the distance to foveation

influences visual acuity (see Fig. 2.7) and also VEP amplitude (De Keyser et al. 1990;

Sherman 1979).
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Figure 2.7: The effects of the distance to the center (eccentricity) on visual acuity.
This figure shows the degradation of visual acuity at increasing angles from a centered
focus point. The visual acuity (expressed as the Snellen fraction, i.e., 20/20 equals
100%) quickly declines to approximately 20% at 10 degrees eccentricity. (Modified from
Westheimer 1965.)



2.3. Does the “P300” Speller Depend on Eye Gaze? 61

The goal of this study was to determine to what extent performance in a “P300”

speller depends on eye gaze. We hypothesized that fixation of the target item would

produce both a P300 and a VEP, while fixation of a location other than that of the tar-

get would produce a P300 and a much smaller VEP. We also hypothesized that the

8-channel montage that had previously been optimized for target fixation is suboptimal

when the eyes do not fixate the target. Furthermore, we hypothesized that the richer in-

formation (i.e., about target or non-target stimuli) in the target fixation condition would

result in better speller performance (i.e., higher accuracy). Our results from 15 subjects

unequivocally support these hypotheses, and thereby disprove the assumption that the

performance of the “P300” speller does not depend on the subject’s ability to fixate the

target character.

2.3.2 Methods

2.3.2.1 Human Subjects

We collected a total of 17 datasets of 8- or 64-channel EEG from 15 right-handed sub-

jects (two subjects participated twice) using the general-purpose BCI software platform

BCI2000 (Mellinger and Schalk 2007; Schalk et al. 2004; Schalk and Mellinger 2010).

The subjects were 6 females and 11 males, aged 20 to 62. All subjects had normal or

corrected-to-normal vision, and gave informed consent through a protocol reviewed and

approved by the Wadsworth Center Institutional Review Board.

2.3.2.2 Experimental Paradigm

Subjects sat 60 cm (± 6 cm) in front of a flat-screen monitor. They were presented with

a 6x6 matrix of 36 alphanumeric letters and numbers that was centered on the screen

(see Fig. 2.8). At this distance, the matrix subtended ± 7.1 degrees of the visual field

both horizontally and vertically. Eye gaze was measured 60 times per second by an

eye tracker (Tobii T60, Tobii Technology, Inc., Sweden) that was integrated with the flat-

screen monitor. These eye-gaze coordinates were acquired by BCI2000 along with the

ongoing EEG and stored to disk. In addition, they were also used online to control for

gaze direction as described below.

Each subject participated in one two-hour session. In this session, we collected data

during two experimental conditions. In Condition 1, the “letter” condition, the subject

was asked to gaze at the target item. In Condition 2, the “center” condition, the subject

was asked to gaze only at a fixation cross located in the center of the screen while paying



62 Chapter 2. Brain Signals for Communication

Table 2.3: Subject profiles. We collected 8 channels of EEG in subjects A1-10, and 64
channels of EEG in subjects B1-B10.
Subject Age Handedness Gender Race Glasses Vision Channels
A1 62 right female caucasian yes nearsighted 8
A2 28 right female caucasian yes nearsighted 8
A3 31 right male caucasian no normal 8
A4 26 right male caucasian no normal 8
A5 30 right male caucasian yes nearsighted 8
A6 25 right male caucasian yes nearsighted 8
A7† 29 right male caucasian no normal 8
A8 23 right male caucasian yes nearsighted 8
A9† 52 right male caucasian no normal 8
A10 38 right female asian yes nearsighted 8
B1 35 right female african no normal 64
B2 20 right male caucasian no normal 64
B3 28 right female asian no normal 64
B4 35 right female caucasian no normal 64
B5† 29 right male caucasian no normal 64
B6 22 right male caucasian no normal 64
B7† 52 right male caucasian no normal 64
Note: † Subjects A7 and A9 participated in group B as subjects B5 and B7.

attention to the target item. In both conditions, the subject was asked to note every time

the target flashed. The fixation cross was color- and intensity-matched to the matrix

elements and, in Condition 2, it rotated by 45 degrees if the subject shifted eye gaze

more than 2.8 degree from the cross for more than 300 ms. Appropriate eye gaze in

these two conditions was also verified offline as described later.

The subjects performed a total of 24 runs – 12 for each task – in an alternating fashion.

Each run presented four different target items in succession (i.e., four trials), using 15

flashes (i.e., 15 flashes of each row and each column for each of the four targets). Each

intensification lasted 125 ms and was followed by an interval of 125 ms at a contrast

ratio of 5:1. An 8-sec pause between trials gave the subject time to shift attention (and,

in Condition 1, eye gaze also) to the new target, which was presented in the center (i.e.,

(instead of the fixation cross) for the first 5 sec of the 8-sec pause, and was also present

throughout the trial on the top left of the screen.

Each run was balanced and block randomized such that it contained one target from

each matrix quadrant and one target at each of four of the six possible distances from

the center (i.e., the fixation cross). The sequence of 12 runs was presented in the opposite

direction for the two experimental conditions (i.e., the first run of the first set of four
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targets for the “letter” condition was the last run for the “center” condition). All subjects

that participated in this study had successfully used the “P300” matrix speller prior to

this study. Because Condition 2, the “center” condition, may be a more complicated task

than that in Condition 1, one practice run familiarized them with both conditions prior

to the actual data collection.

2.3.2.3 Data Collection

In 10 subjects (Group A), we recorded EEG from 8 scalp locations (Fz, Cz, P3, Pz, P4,

PO7, Oz, PO8) using an 8-channel analog amplifier (g.MOBIlab, g.tec, Austria). In 7

subjects (Group B), we recorded EEG from 64 scalp locations (extended 10-20 montage

(Sharbrough et al. 1991)) using a 64-channel digital amplifier (g.USBamp, g.tec, Austria).

For both groups, the left and right mastoids served as ground and reference, respectively

(see Fig. 2.8). The 8-channel Group A montage had previously been shown to provide

performance on the “P300” speller similar to that of the full 64-channel Group B montage

(Krusienski et al. 2006, 2008). The 64-channel data of Group B allowed us to define the

topographies of the responses to the flashing stimuli. Both amplifiers sampled the signal

at 256 Hz and used a high pass filter and a notch filter to remove frequency components

be low 0.1 Hz and at 60 Hz, respectively. In addition to the 8 or 64 EEG channels, eye

gaze coordinates were independently acquired 60 times per second for the left and right

eyes, aligned with the EEG data, and stored.

Subject

Eye
Gaze

Figure 2.8: Experimental setup. Subjects were presented with a matrix on a computer
screen. There were two experimental conditions. In condition 1 (“letter”), the subject
was free to gaze at the target (e.g., the letter F). In condition 2 (“center”), the subject was
asked to gaze at a fixation cross in the center of the matrix. Fixation was verified in real
time by an eye tracker.
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LETTER CONDITIONCENTER CONDITION

Figure 2.9: Behavioral task. Subjects performed two behavioral tasks. In condition 1
(“letter”, see right figure), the subject was free to gaze at the target (e.g., the letter N).
In condition 2 (“center”, see left figure), the subject was asked to gaze at a fixation cross
in the center of the matrix. Fixation was verified in real time by an eye tracker.

2.3.2.4 Feature Extraction

In offline analyses, we first filtered the signal between 0.1 and 20 Hz and downsampled

it to 40 Hz. We then extracted the stimulus response, which was defined as the 750 ms

of EEG after stimulus onset from all eight channels of the optimized montage (i.e., the

same channels whether 8 or 64 channels were recorded). This yielded 30 features (i.e.,

40× 0.75 = 30) per channel or a total of 240 features for all 8 channels. Each sequence

had 12 stimuli, i.e., flashes of 6 rows and 6 columns of the matrix. Of these 12 flashes,

two included the target and thus elicited a target evoked potential (EP), while the other

ten did not include the target and thus elicited a non-target EP. The 15 sequences in

each trial (i.e., with each target) yielded 30 target EPs and 180 non-target EPs. Because

a subject performed 48 trials in each of the two conditions, we had a total of 1320 target

EPs and 7920 non-target EPs from each subject.

2.3.2.5 Modeling and Evaluation

We used previously established methods (Krusienski et al. 2006) to discriminate target

EPs from non-target EPs. In particular, we used a stepwise regression (penter = 0.1,

premove = 0.15, Jennrich 1977) to reduce the 240 features to a maximum of 60 features.

The regression established a linear model that predicted from the selected features
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RUN# TEXT TASK
1 N8PZ Center
2 T3OF Letter
3 Q74H Center
4 AWUE Letter
5 YKC? Center
6 RV5B Letter
7 VG5D Center
8 6MK? Letter
9 2ALU Center
10 H9SJ Letter
11 O1F3 Center
12 PIXZ Letter
13 PIXZ Center
14 O1F3 Letter
15 H9SJ Center
16 2ALU Letter
17 6MK? Center
18 VG5D Letter
19 RV5B Center
20 YKC? Letter
21 AWUE Center
22 Q74H Letter
23 T3OF Center
24 N8PZ Letter

A

Figure 2.10: Experimental design. (A) The subjects performed a total of 24 runs – 12 for
each task – in an alternating fashion. Each run presented four different target items in
succession (i.e., four trials). (B) The 6x6 matrix of 36 alphanumeric letters and numbers
that was centered on the screen and each target was presented in 1 of 6 possible distances
from the center. (C) Each run presented one target from each distance from the center
and each of the four 3x3 quadrants of the 6x6 matrix.
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whether a particular row or column did or did not contain the target. This model

was constructed and evaluated using a leave-one-out cross validation scheme. Thus, in

each of the 12 folds of this cross validation, a model was constructed using 11 out of 12

runs (i.e., 44 targets) and was tested on the remaining run. Each run served once as the

test run. For each trial, the intersection of the row and column that analysis indicated

produced a target EP defined the predicted target. Chance accuracy was 1/36, or 2.8%

( 1
6∗6 ∗ 100). We calculated the average classification accuracy for the 12 cross validation

folds.

FPZFP1 FP2

AF7 AF3 AFZ AF4
AF8

F7 F5 F3 F1 FZ F2 F4
F6

F8

FT7 FC5 FC3 FC1 FCZ
FC2

FC4
FC6

FT8

T9 T7 C5 C1C3 CZ C2 C4 C6 T8 T10

TP7
CP5 CP3 CP1 CPZ CP2 CP4 CP6 TP8

P7
P5

P3 P1 PZ P2 P4 P6 P8

PO7

PO3 POZ
PO4 PO8

O1 OZ

O2

IZ

Figure 2.11: Electrode montage for groups A and B. EEG from group B was recorded
from the 64 locations shown here (extended 10-20 montage (Sharbrough et al. 1991)).
EEG from group A was recorded from an optimized subset of 8 electrodes (shown in
blue) (Krusienski et al. 2006, Krusienski et al. 2008).
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2.3.2.6 Verification of Behavioral Compliance

Because the two experimental conditions in this study were set up to assess differences

in the EEG that were related to the gaze location, it was critical to verify that the subjects

actually fixated on the target in the “letter” condition and on the fixation cross in the

“center” condition. As described above, in the “center” condition the subjects received

immediate visual feedback if they looked away from the fixation cross for more than

300 ms, but the trial was not aborted. To verify that the subjects did maintain gaze

as instructed, we also analyzed the gaze data offline. The results are summarized in

Fig. 2.12. The traces show the distributions of the horizontal (for the six columns) or

vertical (for the six rows) distances of gaze location from the fixation cross for the two

conditions. The red trace (“letter” condition) shows six peaks for the six rows/columns,

while the blue trace (“center” condition) shows only one peak sharply focused on the

fixation cross. These data show that the subjects did follow the instructions, that is, they

looked at the target in the “letter” condition and at the fixation cross in the “center”

condition. It is relevant to note that the subject’s behavior during the “letter” condition

(i.e., looking at the target) using the instructions used in this study (i.e., to fixate on the

target) was comparable to that using the common instructions (i.e., to focus attention on

the target, see Fig. 2.13).
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letter
center

−7.1 −4.3 −1.4 0 1.4 4.3 7.1
DISTANCE FROM CENTER (DEGREES)

Figure 2.12: Distributions of the distance of eye gaze from the center during the two
conditions. The traces show the distributions of the horizontal (for the six columns)
or vertical (for the six rows) distances of gaze location from the fixation cross for the
“letter” condition (red) and the “center” condition (blue). Shading shows standard
deviation across subjects.

−7.1 −4.3 −1.4 0 1.4 4.3 7.1

example of subject behavior

DISTANCE FROM CENTER (DEGREES)

Figure 2.13: Distributions of the distance of eye gaze from the center when given
normal “P300” matrix speller usage instructions. The traces show the distributions
of the horizontal (for the six columns) or vertical (for the six rows) distances of gaze
location from the fixation cross for one subject that was given the instruction to “focus
attention” on the intended letter.
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2.3.3 Results

2.3.3.1 Effect of Condition on Classification Accuracy

The main results of this study are shown in Fig. 2.14. This figure shows the classification

accuracy (i.e., the accuracy in identifying the target) for the two conditions as a function

of stimulus repetitions. All subjects performed significantly better (pairwise t-test, p

< 0.001) for Condition 1, the “letter” condition, than for Condition 2, the “center”

condition. The final classification accuracy after 15 stimulus repetitions (i.e., the right-

most data point in each trace) ranged from 80% to 100% for the “letter” condition and

from 2.8% (i.e., chance level) to 90% for the “center” condition. These offline analyses

showed that the target could be identified with 100% accuracy for the majority (53%)

of subjects for the “letter” condition. In contrast, accuracy did not reach 100% for any

subject during the “center” condition, and reached at least 50% in only 47% of the

subjects.
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Figure 2.14: Classification accuracy as a function of the number of stimulus repeti-
tions. As expected, classification accuracy steadily increases with number of stimulus
repetitions. Accuracy is substantially greater for the “letter” condition than for the “cen-
ter” condition.
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2.3.3.2 Effect of Gaze Distance from the Center on Accuracy

Expanding on the results shown in the previous section, we determined whether accu-

racy depended on the distance between the target and the fixation cross. We hypothe-

sized that this distance would not affect classification accuracy when the subjects fixated

on the target (Condition 1), but would adversely affect accuracy when the subject fixated

on the center (Condition 2). Blue and red traces in Fig. 2.15 show for Conditions 1 (red)

and 2 (blue) the accuracy for all subjects for whom accuracy with 15 stimulus repetitions

was > 50% as a function of distance of eye gaze from the center. The results confirm our

hypothesis: in Condition 2 only, accuracy declined as the distance of the target from the

center increased (i.e., as the target moved from near the center of the visual field toward

the periphery).
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Figure 2.15: Accuracy as a function of the distance of eye gaze from the center. Red
and blue traces show results for Conditions 1 and 2, respectively. Shading indicates
standard deviation across subjects.
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2.3.3.3 Effect of Electrode Montage on Classification Accuracy

We also determined whether accuracy would be increased by a larger number of elec-

trodes. As described above, in the 10 subjects of Group A we recorded EEG using an

8-channel montage that had previously been optimized for the “P300” speller (Krusien-

ski et al. 2006, 2008), while in the 7 subjects of Group B we used a full 64-channel ex-

tended 10-20 montage (Sharbrough et al. 1991). In offline analysis of the Group B data,

we compared accuracies for the optimized 8-channel montage and the full 64-channel

montage (see Fig. 2.11). The results are shown in Fig. 2.16 for the two montages and

the two conditions. For both conditions, the 64-channel montage consistently yielded

higher accuracies. Consistent with a previous study (Krusienski et al. 2008), the supe-

riority of the 64-channel montage over the optimized 8-channel montage was modest

(4.4%, p = 0.34, pairwise t-test) for Condition 1 (red). In contrast, the improvement with

the larger montage was much greater for Condition 2 (18.7%, p < 0.01, pairwise t-test).

These results suggest that when a subject does not fixate the target, a different (or larger)

montage may be helpful.
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Figure 2.16: Accuracy as a function of stimulus repetitions for the 8-channel (red) and
64-channel (blue) montages for Condition 1 (down-pointing triangles) and Condition
2 (up-pointing triangles) for the subset of subjects with 64-channel recordings.
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2.3.3.4 Effect of Fixation Task on EEG Responses

The results presented in Section 2.3.3.1 show that all subjects performed significantly

better in Condition 1 than in Condition 2 (pairwise t-test, p < 0.001). We were interested

in the physiological basis for this difference. To assess the effect of condition on the

actual responses to the target and non-target stimuli, we calculated, for each subject’s

data under each condition, signed squared correlation coefficient (r2) values for each

time segment of the target and non-target responses at each of the 8 electrodes of the

optimized montage. We then calculated the average Condition 1 and Condition 2 results

across all subjects. The results are shown in Fig. 2.17. Fig. 2.17A and Fig. 2.17B show

the signed r2 time courses and raw EEG time courses, respectively, for Condition 1 (red)

and Condition 2 (blue). The Condition 1 traces show early components around 180

ms after stimulus onset that are absent in the Condition 2 traces. The P3 components

appear to be delayed and smaller in amplitude for the “center” task. Fig. 2.17C-D show

color-coded topographies for the 8-channel and 64-channel datasets, respectively. The

topographies are consistent for the 8-channel and 64-channel datasets. They show an

early VEP component that is focused on visual/occipital areas, with polarity reversal

over central and frontal locations, as well as a following P3 component that is focused

on central-parietal areas. The early VEP component is missing for the “center” task.

We quantified the impact of this early VEP component on classification accuracy by

running similar analyses as before, except that we excluded all data between 0 and 250

ms post stimulus. Compared to the results that included all data, the results show

a significant reduction in classification accuracy (16%, p < 0.01) for Condition 1, the

“letter” condition, and no change (0%, p = 0.9) for Condition 2, the “center” condition.
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Figure 2.17: Average traces and topographies for the two tasks. Average signed r2

traces (A) and wave forms (B) for the two tasks. The traces show negative early VEP
components around 180 ms post stimulus for the “letter” task (red traces). P3 compo-
nents appear to be delayed and smaller in amplitude for the “center” task (blue traces).
(C,D): Topographies show an early VEP component (topographies at 180 and 300 ms) for
the “letter” task that is absent for the “center” task. Topographies also show a classical
P300 response (topographies at 420 ms).
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2.3.4 Discussion

This study shows that accuracy of the “P300” speller is affected by gaze direction: fix-

ating on the target (as in Condition 1) produces substantially better classification than

fixating on a center point (as in Condition 2). These results suggest that online perfor-

mance of a “P300” speller-based BCI can be expected to be substantially reduced when

subjects do not gaze at the desired item. We also found that accuracy decreases as the

distance between the gaze fixation point and the target increases. Finally, we found

that the 8-channel montage, which focuses on central parietal and occipital areas and

has previously been optimized for the “P300” matrix speller (Krusienski et al. 2008), is

suboptimal when subjects do not gaze at the target. Detailed analysis of the target and

non-target responses indicates that the decreased performance when the subject does

not gaze at the target is due mainly to the lack of an early response over posterior (i.e.,

visual) cortex. These findings are in general alignment with a recently performed study

(Treder and Blankertz 2010). In Figure A1, we demonstrate that task-related ERPs be-

tween 50-400 ms are negatively correlated with distance to the center point. Together

with the fact that P300 evoked responses have not been reported to occur around 180 ms

and over visual areas, these results suggest that the matrix speller BCI usually depends,

as has been previously shown, on the P300 ERP that is evoked by the recognition of the

desired stimulus, but also on a visual ERP that is evoked by the flashing target stimulus.

Our results may explain in part why “P300” speller performance in ALS patients

tends to be lower than that in healthy subjects (Nijboer et al. 2008; Sellers et al. 2006b;

Vaughan et al. 2006). At the same time, further studies are needed to determine the

relationship of gaze and performance in ALS patients, and to optimize the montage for

this population. In summary, our findings suggest that the clinical applicability of the

“P300” matrix speller in subjects with impaired gaze may be limited. In such subjects, an

auditory “P300” matrix speller (e.g., Furdea et al. 2009; Klobassa et al. 2009; Schreuder

et al. 2010) may prove useful.

The percent of subjects (94%) with high accuracy (i.e., 80-100% correct) in Condition

1 was similar to that found in a recently published study (Guger et al. 2009) that allowed

the subjects to gaze directly at the target.

The accuracy shown in this study declines with increasing distance of the target

from the center of foveation due mainly to the lack of an early response over posterior

(i.e., visual) cortex. Because of the relationship between the visual acuity and the VEP

amplitude (De Keyser et al. 1990; Sherman 1979; Westheimer 1965), we expected a more

extensive decline in accuracy. This was not the case. Fig. 2.18 shows a decline over
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Figure 2.18: Average squared correlation coefficient r2 values of the target and non-
target responses as a function of the distance of gaze from the center. The traces
show the r2 averaged over all 8 electrodes of the optimized montage and all subjects
that achieved more than 50% in Condition 2, the “center” condition. The traces show a
decline of the r2 value over the distance for the 50-200 ms (i.e., VEP) and the 250-400 ms
(i.e., P300) period, while the r2 value for the 400-600 ms (i.e., late ERP) period increases.

the distance for the VEP (i.e., 50-200 ms) and the P300 (i.e., 250-400 ms) responses,

while the amplitude of the late ERP (i.e., 400-600 ms) response increases. This increase

in amplitude of the late ERP may explain the less extensive decline in accuracy with

increasing distance of the target from the center of foveation. As a side note, this change

of the ERP component amplitude with increasing distance of the target from the center

of foveation did not affect the generalization of the classifier as Fig. 2.19 shows.

Hubel and Wiesel (1959, 1962) showed that the visual cortex performs neuronal pro-

cessing of spatial frequency, orientation, motion, direction, speed, and many other spa-

tiotemporal features. A recent study (Martens et al. 2009) showed that these properties

of the visual system can be exploited to increase the amplitude of the EEG response, and

thereby the overall classification accuracy. Di Russo et al. 2002 showed the same polarity

reversal of the early VEP components between visual/occipital cortex and central and

frontal locations that we observed in Condition 1 (see Section 2.3.3.4).
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Figure 2.19: Classification accuracy, based on distance specific classifiers, as a function
of the distance of gaze from the center. The bars show the classification accuracy
in Condition 2, the “center” condition, for classifiers specifically trained on each of 6
distance of gaze to the center. The distance specific classifiers poorly generalize to other
distances (e.g., trained on 2 degree, tested on 9.9 degree), while the generalized classifier
(dark blue bar) results in the best overall and best generalizing classification accuracy.

The optimization of “P300” stimulation parameters is usually based on data from

normal subjects obtained in Condition-1-like circumstances (i.e., the subject is allowed

to gaze at the target). Our results suggest that such optimization is determined more

by the VEP than by P300 (Gonsalvez and Polich 2002). Thus, the lack of early VEP

components over visual/occipital cortex, with polarity reversal over central and frontal

locations, in Condition 2 (see Section 2.3.3.4) suggests that optimization based on data

from normal subjects (Krusienski et al. 2006, 2008; Sellers et al. 2006a; Takano et al. 2009)

may not generalize well to subjects in whom gaze control is impaired.

Two aspects of the study methodology may have exaggerated the actual difference

in accuracy between the two conditions. That is, the improvement produced by gazing

at the target rather than at a central fixation point may not be as great as the present

data imply. First, Condition 2, the “center” condition, is a more demanding task than

is Condition 1, the “letter” condition. In Condition 1, the subject has only to look at

the target and pay attention to it, while in Condition 2 s/he has to look at the fixation
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cross and pay attention to the target. Tasks that require greater amounts of attentional

resources have been shown to elicit smaller and delayed P300 responses than tasks that

require lesser attentional resources (Kok 2001; Polich 1987). This is consistent with

our results shown in Section 2.3.3.4. This could account for much of the difference in

accuracy between the conditions summarized in Fig. 2.14. Furthermore, it is possible

that with continued practice, the subjects might improve their performance on the more

difficult task of Condition 2, and thereby reduce the difference in accuracy between the

two conditions.

Second, given the inverse relationship between visual acuity and distance from the

point of gaze (e.g., Westheimer 1965), under Condition 2, 32 of the 36 possible targets

(see Figure 2) were at a disadvantage because some of their non-target competitors (i.e.,

some of the possible mistakes) were closer to the point of gaze. This finding suggests

that, if the impact of having non-targets closer to the fixation point than the target were

eliminated (e.g., by having all possible targets in a circle centered on the fixation point),

Condition 2 accuracy would improve, and the superiority of Condition 1 would be less

marked.

To verify that these aspects did not affect our main result, i.e., that the performance

of the “P300” matrix speller in normal subjects not only depends on the P300 evoked

potential, but also on other EEG features such as the visual evoked potential (VEP) that

strongly depend on eye-gaze direction, we conducted the following analysis. We hy-

pothesized that the classification accuracy in Condition 1, the “letter” condition, that is

unaffected by both before-mentioned aspects, would significantly decrease if the visually

evoked potential (VEP) were not used. Thus, we compared the classification accuracy

within Condition 1, the “letter” condition, when we used either all data (i.e., 0-800 ms

after stimulus presentation) or data that excludes VEP components (i.e., 300-800 ms).

ERPs that depend on eye gaze such as VEPs are known to occur 150-350 ms post stimu-

lus, while P300 ERPs are known to occur 300-600 ms post stimulus. The results shown

in Fig. 2.20 demonstrate that 14/17 subjects performed significantly worse when the

ERPs used for classification were restricted to 300 to 800 ms compared to when they

were not (29.6%, p<0.05, pairwise t-test). This confirms our hypothesis and proves that

our main result is not affected by the two aspects mentioned above. At the same time, it

is important to remember that the results of this analysis were done in healthy subjects

and may not be identical to those for people with impaired eye-gaze.

Visual crowding (Korte 1923; Strasburger 2005), i.e., the impaired recognition of a

suprathreshold target due to the presence of distractor elements in the neighborhood



78 Chapter 2. Brain Signals for Communication

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
B1
B2
B3
B4
B5
B6
B7

A
C

C
U

R
A

C
Y 

(%
)

STIMULUS REPETITIONS

letter (0-800 ms) letter (300-800 ms)

1 5 10 150

20

40

60

80

100

1 5 10 150

20

40

60

80

100

Figure 2.20: Classification accuracy in the “letter” condition as a function of the num-
ber of stimulus repetitions and data period. The left panel shows results when we used
all data (i.e., 0-800 ms post stimulus). The right panel shows results when we used only
data after 300 ms (i.e., 300-800 ms post stimulus). See text for details.

of that target, may have also had an adverse effect on the classification accuracy in

Condition 2, the “center” condition. Crowding is inevitable in the matrix “P300” speller

and can only be avoided by arranging the letters in a circle rather than a matrix.

Finally, while we controlled for eye movements in this study, we did not control

for or eliminate very small or very brief eye movements. Such movements, e.g., micro-

saccades (Cornsweet 1956), contribute to maintaining foveal visibility by continuously

stimulating neurons in primary visual areas (Rolfs 2009). While it is known that ALS can

impair eye-gaze (Cohen and Caroscio 1983; Palmowski et al. 1995), the effect of ALS on

such saccades has not yet been studied. Thus, the difference between the results shown

here and the results that can be expected in people with ALS is currently unclear.

Further studies are needed to optimize P300 recording montages and stimulation

and analysis parameters and to evaluate the effect of online feedback and extended

training in this user population.
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2.3.5 Conclusions

In summary, this study shows in normal subjects that the classification accuracy of the

“P300” matrix speller BCI is substantially improved when the subject gazes directly at

the target. Thus, the study disproves the widespread assumption that the performance

of the “P300” speller does not depend on fixating the target. Further research is needed

to determine whether this effect is similarly prominent in the potential user population

(e.g., people severely disabled by ALS), and whether their performance can be improved

by modifications in montage selection, algorithms, or other aspects of BCI operation.

2.3.6 Recommendations

The results of this study show that the traditional design of the matrix speller not only

relies on the P300 evoked potential, which does not depend on eye gaze, but also on

other features such as visual evoked potentials, which strongly depend on foveation and

thus the ability to control eye gaze direction. In addition to the dependence on eye gaze,

the spelling rate supported by the matrix speller BCI is still an order of magnitude lower

than what conventional assistive devices can provide (Majaranta and Räihä 2002; Schalk

2008). In summary, the limited speed and dependence on gaze of the traditional design

of the matrix speller BCI limits the practical value of this BCI approach to individuals

in the target population.

Recent studies have attempted to address these two issues. To improve spelling

performance, studies have optimized stimulus presentation and algorithms to detect

the intended letter. For example, recent studies employed faster stimulation (McFarland

et al. 2010a), more robust coding (Hill et al. 2009; Townsend et al. 2010), or probabilistic

measures of the letter frequency (Martens et al. 2010). However, these approaches have

only modestly increased or in some case even decreased spelling performance. It is

likely that the limited gain of these approaches is due to physiological constraints of

the brain. For example, limited speed of cortical processing will define the maximal

stimulation frequency.

To remove or mitigate the dependence of the matrix speller on eye-gaze, recent

studies used oddball paradigms with auditory (Klobassa et al. 2009; Kübler et al. 2009;

Schreuder et al. 2010), tactile (Brouwer and van Erp 2010), or simplified visual stimuli

(Acqualagna et al. 2010; Treder et al. 2011; Treder and Blankertz 2010; Treder et al. 2010).

While the results of these studies are encouraging, further improvements to accuracy

and speed in this gaze-independent approach are needed.
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Brain Signals for Diagnosis

3.1 Summary of Contributions and Approach

This chapter discusses methodologies that overcome the dependence on experts and

post-hoc analysis in the application of Brain Signals for Diagnosis. At present, the

clinical application of brain signals to passively map eloquent cortex has been impeded

by the dependence on experts and post-hoc analysis.

The main contribution presented in this chapter is the development of a diagnostic

tool that does not depend on experts or post-hoc analysis to passively map eloquent

cortex. This encompasses the development of techniques, protocols and methods for

chronic real-time recording, modeling and detection of ECoG signals, as well as the

development of an intuitive interface that presents the results to the clinical investigator

for the purpose of clinical validation. The associated work is described in section 3.2 for

the modeling and detection of ECoG signals and in section 3.3 for the clinical validation.

The results show that this diagnostic tool does not need experts or post-hoc analysis to

provide maps of eloquent cortex that are in general alignment with those obtained from

the current gold standard (i.e., ECS). The work accomplished in this chapter should

allow clinical investigators to use brain signals for clinical mapping of eloquent cortex.

The work in this chapter was highly multidisciplinary and depended on the integra-

tion of methodologies from different areas of engineering and science, such as computer

science, signal processing, machine learning, electrical engineering, experimental psy-

chology, neurosurgery and electrophysiology. For example, I used machine learning

and computer science methodologies to develop and implement the generative model

that enabled the detection of ECoG signals in real-time.

81
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3.2 Detection Instead of Classification

3.2.1 Introduction

Clinical applications that use electrophysiological activity depend on signal processing

techniques to identify relevant brain signals and to translate them into diagnostic out-

puts that provide value to the clinical investigator or the patient.

Brain signals are usually deemed relevant if they are modulated by a particular di-

agnostic condition. For example, for the diagnosis and localization of epileptic seizures,

those brain signals are relevant that selectively change when seizures occur. Seizures

themselves can be indicated by overt or covert behavioral patterns, e.g., overt convul-

sions or covert lapses in attention. The identified relevant brain signals are then trans-

lated into a cortical map that delineates the epileptic foci and is informative to the clinical

investigator.

Another diagnostic example is the delineation of eloquent cortex prior to resection

of the epileptic foci. In this case, brain signals are relevant if they selectively change

with specific covert or overt behavior, for example, receptive and expressive language

processing or motor movement and sensation. As in the previous example, the identified

relevant brain signals are then translated into a cortical map that delineates eloquent

cortex and is informative for the clinical investigator.

These two examples show that it is important to identify those brain signals that

are modulated by diagnostic conditions. This is challenging, because brain signals are

non-stationary due to two main reasons. First, brain signals are not only modulated

by diagnostic conditions, but also by other unrelated cognitive processes. Second, the

modulation by the diagnostic condition depends on a multitude of latent factors, e.g.,

the subject’s cognitive state and behavioral strategy. The general lack of signal features

that are invariant to those factors makes the signal identification problem difficult to

solve.

Traditional approaches that identify relevant brain signals rely on discriminative

supervised learning. To overcome the issues associated with non-stationary signals, dis-

criminative supervised learning typically depends on a top-down approach in which

an expert defines a diagnostic condition and determines the best set of parameters that

identifies it. This top-down approach reduces the signal identification problem from a

multivariate to a univariate problem. This reduction effectively limits the signal identi-

fication capacity to only those diagnostic conditions that are described by the set of pa-

rameters. Despite this effort, such an approach inevitably fails if non-stationary effects
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markedly affect the brain signals (see Fig. 3.2). Nevertheless, discriminative supervised

learning is the most commonly employed approach to the signal identification problem

(Meyer-Baese 2003).

Generative unsupervised learning of multivariate statistics presents an alternative

approach to the signal identification problem. This bottom-up approach determines a

generative model that describes the multivariate data. The generative model is then used

to detect the diagnostic condition rather then to classify it. This bottom-up approach

effectively detects any signal modulation and therefore is a powerful technique to solve

the signal identification problem. Many different generative models and unsupervised

learning procedures have been proposed. The following sections expand on the selection

of the appropriate generative unsupervised learning approach, which mainly relates to

the selection of an appropriate representation, learning, and recognition approach.
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3.2.2 Methods

3.2.2.1 Feature Extraction

The extraction of features from non-stationary brain signals entails a series of procedures

that preprocess the signals and extract those features that are most reflective of the

modulation by the diagnostic condition.

Signal Preprocessing. Raw electrophysiological brain signals are often not reflective of

the modulation by the diagnostic condition. This is mainly due to the lack of an absolute

reference point and high correlation with processes that are irrelevant to the diagnostic

condition. Both issues can be addressed by spatial filters as described in (McFarland

et al., 1997). The absolute reference point can be established by re-referencing each

electrode to a common potential derived from all electrodes. This is done by using a

common average reference (CAR) spatial filter as illustrated in Fig. 3.1(a) whereby as

seen in Eq. (3.1) the potential of each electrode c at each time point t is re-referenced

using the average over all electrodes Nc.

X′t,c = Xt,c −
1

Nc

Nc∑
i=1

Xt,i (3.1)

(a) common reference aver-
age

(b) small Laplacian (c) large Laplacian

Figure 3.1: Spatial filters. This figure shows three different spatial filters over the elec-
trode C3.
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The correlation with processes that are irrelevant to the diagnostic condition is ad-

dressed by using a small or a large Laplacian spatial filter as illustrated in Fig. 3.1(b)

and 3.1(c) respectively. This filter assumes that relevant modulations of the electrophys-

iological signals are spatially focused, while other irrelevant modulations are spatially

widespread. A Laplacian filter then removes the averaged spatially widespread irrele-

vant modulation from the electrophysiological signals. As seen in Eq. (3.2) the weighted

sum of the four nearest and next nearest electrodes are subtracted for the small and large

Laplacian respectively. The weight wc,i in Eq. (3.3) is derived from the distance dc,i be-

tween the electrode of interest c and its neighbor i.

X′t,c = Xt,c −
∑
i∈Sc

wc,iXt,i (3.2)

wc,i =

1
dc,i∑

i∈Sc

1
dc,i

(3.3)

Feature Extraction Electrophysiological brain signals are most markedly modulated

by diagnostic conditions in their spectral amplitude (Miller et al. 2007b). Damped har-

monic oscillators that inhibit or innervate function serve as a model for this modulation.

The damped nature of these oscillators results in the non-stationary characteristics of

electrophysiological brain signals. Such signals not only are modulated in their spectral

amplitude by the diagnostic condition, they also change their phase unrelated to these

conditions. Consequently, techniques that extract the spectral amplitude of these sig-

nals need to be invariant to phase changes. While in such a scenario, traditional linear

spectral transformations, such as the fast Fourier transform (FFT) result in cancelation

effects, but autoregressive spectral estimation methods are invariant to phase changes.

An autoregressive model is a linear model that predicts the data using a limited

number of autoregressive coefficients (Kay, 1988; Marple, 1987; Priestley, 1981; Stoica

and Moses, 1997). This time domain prediction can be transformed into the frequency

domain, which makes autoregressive models well suited for the robust extraction of

spectral components from electrophysiological brain signals. One such autoregressive

spectral estimation model is the Burg Maximum Entropy Method (Burg 1967, 1968) that

is described in the following paragraphs.
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An autoregressive model of order p is described by its autoregressive coefficients

a1 . . . ap. The relationship between the autoregressive coefficients and the stationary

stochastic signal Xt is given by the following difference equation (3.4). However, since

the solution of this equation is of high computational complexity, it is more practical to

solve the equivalent in terms of the autocorrelation sequence in Eq. (3.5).

Xt + a1Xt−1 + . . . + apXt−p = εt (3.4)

RX(τ) = E [X(t)X(t− τ)] = −
p∑

k=1

akE [X(t− k)X(t− τ)] (3.5)

Hence the autocorrelation sequence can be described using the autoregressive coef-

ficients in Eq. (3.6) for any lag τ.

RX(τ) =



−
P∑

k=1
akRX(τ − k) τ > 0

−
P∑

k=1
akRX(τ − k) + σ2

ε τ = 0

RX(−τ) τ < 0

(3.6)

In the case of an autoregressive model of the order p the autoregressive sequence

can be described in Eq. (3.7) in matrix form or in Eq. (3.8) in vector form. Adding

the mean-square error σ2
ε from Eq. (3.6) for τ = 0 the matrix RX is transformed into

a persymmetric Toplitz matrix in Eq. (3.10). To solve Eq. (3.8), this matrix has to

be inverted, which can be performed in O(n2) using the Levinson-Durbin recursion

algorithm.


RX(0) RX(1) . . . RX(p− 1)

RX(1) RX(0) . . . RX(p− 2)
...

...
...

RX(p− 1) RX(p− 2) . . . RX(0)




a1

a2
...

ap

 = −


RX(1)

RX(2)
...

RX(p)

 (3.7)

RX · a = r (3.8)
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σ2
ε = RX(0) +

P∑
k=1

akRX(−k) (3.9)


RX(0) RX(1) . . . RX(p)

RX(1) RX(0) . . . RX(p− 1)
...

...
...

RX(p) RX(p− 2) . . . RX(0)




1

a1
...

ap

 = −


σ2

ε

0
...

0

 (3.10)

In order to achieve a more stable solution for the autoregressive coefficients that in-

corporate forward and backward prediction, the Burg algorithm was proposed (Burg

1967, 1968). Thus, rather than using the Levinson-Durbin algorithm to invert the per-

symmetric Toplitz matrix, Burgs Maximum Entropy Method minimizes the forward and

backward prediction based on the reflection coefficients Kk with the constraint that the

autoregression coefficients satisfy the Levinson-Durbin recursion.

This forward and backward prediction X̂t and X̂t−p respectively are defined in Eq.

(3.11) and Eq. (3.12). The corresponding forward and backward prediction error are

defined in Eq. (3.13) and (3.14). The total error that is to be minimized is comprised of

the forward and backward prediction error and defined in Eq. (3.15).

X̂t = −
P∑

k=1

ap(k)Xt−k (3.11)

X̂t−p = −
P∑

k=1

a∗p(k)Xt−p+k (3.12)

e f
p(t) = Xt − X̂t (3.13)

eb
p(t) = Xt−p − X̂t−p (3.14)

Ep =
N−1∑
j=p

[∣∣∣e f
p(j)

∣∣∣2 + ∣∣∣eb
p(j)

∣∣∣2] (3.15)
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For minimization of Eq. (3.15), the Levinson-Durbin recursion is used resulting in

the recursive expression for e f
p(t) in Eq. (3.17) and eb

p(t) in Eq. (3.18) whereby the

initialization is performed according Eq. (3.16). Substituting from Eq. (3.17) and Eq.

(3.18) into the minimization function in Eq. (3.15) and minimizing the resulting equation

in respect to the reflect coefficient (Kk) the result in Eq. (3.19) is obtained from which

after each iteration one autoregressive coefficient in Eq. (3.20) can be obtained. Eq.

(3.21) demonstrates that the algorithm always produces p coefficients in p steps while

the remaining error converges in each step.

e f
0(t) = eb

0(t) = Xt (3.16)

e f
k (t) = e f

k−1(t) + Kkeb
k−1(t− 1), k = 1, 2 . . . , p (3.17)

eb
k(t) = K∗k e f

k−1(t) + eb
k−1(t− 1), k = 1, 2 . . . , p (3.18)

K̂k =

−
N−1∑
j=k

e f
k−1(j)eb

k−1(j− 1)

1
2

N−1∑
j=k

[∣∣∣e f
k−1(j)

∣∣∣2 + ∣∣eb
k−1(j)

∣∣2] , k = 1, 2 . . . , p (3.19)

ak(k) = Kk (3.20)

Ek = Ek−1

[
1− |Kk|2

]
(3.21)

Finally, the time series defined by the autoregressive coefficients are transformed in

Eq. (3.22) into the frequency domain to yield the amplitude spectrum P( f ).

P( f ) =
a0[

1−
K∑

k=1
ake−j2πk f

fs

]2 (3.22)
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3.2.2.2 Representation

Generative approaches can represent data in parametric or non-parametric models.

Parametric models assume a structure of the data, whereas non-parametric approaches

determine the underlying structure from the data itself. For example, multivariate ker-

nel density estimation is a non-parametric approach to estimating the probability den-

sity function of the data. In this approach each data point defines the parameters of

one kernel (e.g., Gaussian distribution), and the combination of all kernels defines the

probability density function of the data itself. In contrast, Gaussian mixture models

(GMMs) are a parametric approach to estimating the probability density function as the

joint probability density function of a mixture of Gaussians.

The choice between parametric and non-parametric representations mainly relates

to computational complexity, the ability to adapt the model, the capacity to include

contextual information, and the robustness to noise, all of which are essential for sig-

nal identification from multivariate non-stationary brain signals. For example, high

computational complexity, sensitivity to noise and the inability to include contextual

information make non-parametric representations such as multivariate kernel density

estimation ill-suited for our applications. In contrast, parametric representations that

overcome these limitations, such as Gaussian mixture models and hidden Markov mod-

els (HMMs), are better suited for the multivariate signal identification of non-stationary

brain signals.

Gaussian Mixture Models (GMMs) Gaussian mixture models estimate the probabil-

ity density function of the underlying data using the joint probability density function

of a mixture of Gaussians. This approach has two particular advantages in the context of

the signal identification problem. The first advantages is the ability to robustly identify

non-stationary signals (Fig. 3.2). This allows detecting unseen diagnostic conditions as

long as the diagnostic condition modulates the features. The second advantage is the ca-

pacity to model complex multivariate distributions (Fig. 3.3). This allows modeling the

interaction between multiple brain processes that result in complex probability density

functions.

Model Definition Any Gaussian distribution c can be described by is center µc and

its covariance matrix Σc. As a distance metric the Mahalanobis distance, as defined in

Eq. (3.23), assigns every point Xt in a Gaussian distribution (Σc, µc) a distance that is in

units of estimated variance between the point Xt and the center µc.
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Figure 3.2: Linear regression vs. Gaussian Mixture Model (GMM). Linear regression
between the data points in condition A (crosses) and B (dots) in (a) fails as soon as one
condition (e.g., B) is non-stationary as seen in (b). In contrast, a GMM trained on the
condition A in (c) can be used to discriminate condition A from condition B (Fig. (d)).

m(Xt|c) = (Xt − µc)
TΣ−1

c (Xt − µc) (3.23)

Using this distance metric and introducing the weight ωc as the proportion of data

points assigned to this Gaussian distribution, the probability density function η(Xt|c)
can be defined in Eq. (3.24). The definition of the negative log likelihood is described in

Eq. (3.25).
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(b) Probability density estimated by
SIGFRIED.

Figure 3.3: Gaussian Mixture Model (GMM). This figure shows a complex feature
distribution (a) for which the probability density is estimated by a Gaussian Mixture
Model (b).

η(Xt|c) =
ωc

(2π)
D
2 |Σc|

1
2

e−
m(Xt |c)

2 (3.24)

LL(Xt|c) = −log [η(Xt|c)]

= −log(ωc) +
D
2

log(2π) +
1
2

log(|Σc|) +
m(Xt|c)

2
(3.25)

The maximized likelihood L can be described as the accumulated negative log like-

lihood Li in Eq. (3.26) over all Gaussians in Eq. (3.27).

Li =

Ni∑
t=1

LL(Xt|ci) (3.26)

L =
C∑

i=1

Li (3.27)

For each Gaussian distribution, the number of free parameters Np can be described

as in Eq. (3.28) as the sum of parameters from the covariance matrix Σc, the Gaussian

center µc, and its weight ωc.
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Np =
[

Npcovariance + Npcenter + Npweight

]
· Nc

=

[
D(D + 1)

2
+ D + 1

]
· Nc (3.28)

3.2.2.3 Learning

Parametric representations such as Gaussian mixture models depend on learning al-

gorithms to identify the model parameters. This parameter identification problem

is often ill-posed and difficult to solve, because it requires overcoming local minima

and verifying the correctness of the model. For example, GMMs use the expectation-

maximization (EM) algorithm (Dempster et al., 1977) to learn the model parameters, i.e.,

the parameters of the Gaussian distributions. Starting from random model parameters,

this algorithm alternates between assigning the data to the Gaussian distributions (i.e.,

expectation-step) and estimating new parameters (i.e., maximization-step) for the Gaus-

sian distributions until a stable solution is reached. However, this stable solution may

be a local minimum or not even a correct model.

Model selection is an approach to overcome local minima and to select the correct

model. The classification expectation maximization (CEM) algorithm (Celeux and Go-

vaert 1992) is an learning algorithm that extends the EM algorithm by implementing

random perturbations, to avoid local minima, and model selection, to find a correct

model.

Information Criterion Model selection mainly relates to finding the balance between

the goodness of fit and the simplicity of the model as well as to the selection of the

correct model. This requires the definition of an information criterion as a measure of

the relative goodness of fit of a statistical model that determines the model selection.

For Gaussian mixture models (GMM), the number of mixtures to describe the data has

to be selected. Therefore an information criterion takes in account the model fit as well

as a penalty for model order to avoid overfitting. Most information criteria are in the

form of Eq. (3.29).

information criteria = measure of fit + complexity penalty (3.29)

A number of these information criteria have been described in the literature, e.g., the

Akaike Information Criteria (AIC) (Akaike 1973), Vapnik’s Structural Risk Minimization
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(SRM) (Vapnik and Chervonenkis 1974), Schwarz’s Bayesian Information Criteria (BIC)

(Schwarz 1978), Rissanen’s Minimum Description Length (MDL) and Shortest Data De-

scription (SSD) (Rissanen 1978) and Bozdogan’s Corrected Akaike Information Criterion

(CAICF) and Consistent Akaike Information Criterion (CAIC) (Bozdogan 1974) (see Torr

(1997) for a comprehensive review).

For GMMs, the measure of fit is the maximized likelihood, and each of these infor-

mation criterions propose a different measure for the complexity penalty:

Bayesian Information Criteria (BIC) As the amount of data goes to infinity, the

Bayesian Information Criteria (BIC) promises to select the model that the data was gen-

erated from (Schwarz 1978). The complexity penalty is chosen conservatively, account-

ing for the number of samples N and the number of free parameters Np. Therefore, the

BIC in (3.30) tends to select the best structure instead of the best predictor.

KBIC = −2 ·maximized likelihood + bayesian compl. penalty

KBIC = −2 · L + 2Np log N
(3.30)

Akaike Information Criteria (AIC) As the amount of data goes to infinity, the

Akaike Information Criteria (AIC) promises to select the model that will have the best

likelihood for future data (Akaike 1973). Therefore the number of observations N is not

accounted for in Eq. (3.31). AIC does not produce an asymptotically consistent estimate

of the order of the model and tends to overfit.

KAIC = −2 ·maximized likelihood + akaike compl. penalty

KAIC = −2 · L + 2Np
(3.31)

Mixture of AIC and BIC As there is no evidence that indicates which information

criterion best suits the modeling of electrophysiological signals, we chose to introduce

another parameter that defines a linear combination of AIC and BIC. Eq. (3.32) defines

the information criterion K as a linear combination of AIC and BIC with the linear

constant k. For 0 ≤ k ≤ 1 the information criterion K selects on the continuum between

pure AIC and BIC. Thus k modulates the impact of the number of samples N to the

information criteria.

K = (1− k) · KAIC + k · KBIC, 0 ≤ k ≤ 1 (3.32)
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Model Selection Maximizing the information criterion in an iterative procedure typi-

cally yields the correct model. In our procedure, we test the hypothesis that increasing

or decreasing the model order (i.e., the number of Gaussians) benefits the information

criterion:

Hypothesis to Decrease Model Order: Deleting Gaussian d with the lowest contri-

bution to the model improves information criterion of whole model.

Hypothesis Test to Decrease Model Order: The improvement in information cri-

teria ∆K is defined in Eq. (3.35) for reducing the number of Gaussians from C to C− 1.

The contribution of each Gaussian i to the model is defined in Eq. (3.33) as the

difference in the total negative log likelihood as the data points are assigned from the

best fitting Gaussian i to the second best fitting Gaussian j. The Gaussian d as defined

in Eq. (3.34) with the minimal contribution LLd to the model is selected as candidate to

be deleted.

If ∆K > LLD the hypothesis is true and the Gaussian D is deleted.

∆LLi =

Ni∑
t=1

LL(Xt|cj)− LL(Xt|ci) (3.33)

∆LLd = min [∆LLi] , i = 1 . . . C (3.34)

∆K = K(C)− K(C− 1) (3.35)

Hypothesis to Increase Model Order: Splitting one Gaussian i into two Gaussians

improves the information criterion of data points assigned to Gaussian i and the infor-

mation criterion of the whole model.

Hypothesis Test to Increase Model Order: For each Gaussian i this hypothesis is

tested by splitting the Gaussian i into two Gaussians. The CEM algorithm is executed for

all data points that are assigned to the Gaussian i for one (unsplit) Gaussian and for two

(split) Gaussians. If the resulting information criterion Kisplit < Kiunsplit , the hypothesis is

true for the Gaussian i and the Gaussian remains split.

In this case, the maximization and expectation step of the CEM algorithm is executed on
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the whole data set with now C + 1 Gaussians. If the information criterion KC+1 < KC,

the hypothesis for the whole model is true.

CEM Algorithm The Classification Expectation Maximization (CEM) algorithm as de-

scribed in (Celeux and Govaert, 1992) and (Biernacki et al., 2003) is based on the EM-

Algorithm that was originally described in (Dempster et al., 1977).

Initialization: The initialization uses a user-defined number of initial Gaussians

and randomly assigns each data point to one Gaussian.

Maximization: The maximization (i.e., M) step calculates for each Gaussian c its

weight wc in Eq. (3.36), mean Xc in Eq. (3.37) and covariance matrix Σc in Eq. (3.38). To

calculate the Mahalanobis distance m(Xt|c) in Eq. (3.41), the inverse of the covariance

matrix Σ−1
c is calculated using the Cholesky decomposition in Eq. (3.39), which provides

a lower triangular matrix Lc that provides the inverse of the covariance matrix Σ−1
c in

Eq. (3.40). If the determinant of each covariance matrix |Σc| is very small, the covariance

matrix tends to be singular. In these cases, this Gaussian c is deleted.

wc =
Nc

N
(3.36)

Xc =
1

Nc

Nc∑
t=1

Xt (3.37)

Σc =
1

Nc − 1

Nc∑
t=1

(Xt − Xc)(Xt − Xc)
T (3.38)

Σc = LcLT
c (3.39)

Σ−1
c = (LcLT

c )
−1 = (LT

c )
−1L−1

c = (L−1
c )T L−1

c (3.40)

Expectation: For each data point Xt, the Expectation (i.e., E) step calculates the

distance m(Xt|c) in Eq. (3.41) to each Gaussian c and its likelihood η(Xt|c) in Eq. (3.42)

that it belongs to each c.

m(Xt|c) = (Xt − Xc)Σ−1
c (Xt − Xc)

T (3.41)
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η(Xt|c) =
wc

(2π)
D
2
√
|Σc|

e−
m(Xt |c)

2 (3.42)

Classification: For each data point Xt, the Gaussians c1 and c2 with the lowest and

second lowest negative log likelihood − log[η(Xt|c)] are determined. Furthermore, each

data point Xt is assigned to the best fitting Gaussian c1.

Deletion: For the Gaussian c with the lowest contribution to the model in Eq. (3.43),

the selection criterion for model decrease is applied and the Gaussian is deleted if that

suites the information criteria.

∆− log[η(X|c)] =
Nc∑

t=1

{− log[η(Xt, c2)]} − {− log[η(Xt, c)]} (3.43)

Split: The split step applies the information criterion for model increase to each

Gaussian c.

Termination: The program is not terminating as long it is within a maximum num-

ber of iterations and any data point was reassigned or any Gaussian was split during

the last iteration.

3.2.2.4 Recognition

Signal recognition techniques apply the learned model to brain signals and detect rel-

evant modulations. This entails experimental paradigms that trigger behavior, scoring

algorithms that translate signal modulations into statistically relevant measures, and in-

terfaces that provide value to the investigator. The following paragraphs expand the

issues that are associated with these techniques.

Experimental Paradigms Experimental paradigms aim to selectively elicit covert and

overt behavior that modulates those brain signals that are relevant for the diagnostic con-

dition. For example, experimental paradigms for mapping eloquent cortex selectively

elicit expressive or receptive sensorimotor and language behavior. However, as behav-

ioral compliance cannot always be obtained, experimental paradigms need to validate

compliance and thus the data, using control conditions, e.g., behavioral observations for

expressive and control questions for receptive behavior.
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Another issue are non-stationary changes in the signals that are not relevant to the di-

agnostic condition. For example, mapping of eloquent cortex in people with intractable

epilepsy may be affected selectively in one diagnostic condition by brief electrographic

seizures, i.e., brief seizures that are only reflected in the brain signals but not in the be-

havior. To mitigate this effect, interleaving and re-referencing the behavioral task with a

baseline condition distributes such rare events equally across all diagnostic conditions.

Another issue are systematic errors in the modulation of brain signals. Such errors

result from the anticipation and transition during a deterministic sequence of behavioral

tasks. Counterbalancing the sequence of tasks avoids such systematic errors.

Scoring Algorithms Scoring algorithms translate signal modulations into statistically

relevant measures. The signal detection algorithm results in a likelihood measure for

each time point. This likelihood is then translated into a measure that represents sta-

tistical significance. This is accomplished by correlating the likelihood measure with

behavior (e.g., sensorimotor activity and rest).

Intuitive Interfaces Intuitive interfaces present the detected signal modulations to the

investigator. This form of presentation depends on the particular clinical application and

can either be abstract or anatomically correct. For example, for verification of identified

eloquent cortex through a gold standard procedure (e.g., electrical cortical stimulation

(ECS)), a 2-dimensional form of presentation (Fig. 3.4A) that mimics the electrode grid

is most intuitive to the neurologist. In contrast, a 3-dimensional anatomical correct

presentation (Fig. 3.4B) is most intuitive for the neurosurgeon to plan cortical resection.

3.2.3 Conclusions

In conclusion, in this section we presented signal detection as a practical approach for

diagnostic applications. We showed that while the signal detection problem can be

approached by generative unsupervised learning, it requires careful consideration of

the appropriate representation, learning and recognition method.

3.2.4 Recommendations

This section developed a framework for signal detection using generative models. The

following section (3.3) will validate my implementation of this framework in a multi-

center clinical study.
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A B

C

D

VOICE TONES LANGUAGE

Figure 3.4: Intuitive interface for mapping eloquent cortex. For the purpose of map-
ping eloquent cortex and for localizing the epileptic foci, this patient with intractable
epilepsy had 120 electrocorticographic electrodes implanted over left frontal, parietal
and temporal cortex. A lateral x-ray (A) and an operative photograph (B) depict the con-
figuration of two grids (one 40-contact frontal grid, one 68-contact temporal grid) and
three 4-contact strips. From the recorded seizures, a neurologist localized the epileptic
foci and determined that surgical resection of the left temporal lobe while sparing elo-
quent language cortex was necessary. The passive mapping procedure developed in this
dissertation (SIGFRIED) identified eloquent language cortex by contrasting task-related
changes during listening to voices and tones (C and D). The results were presented in
two intuitive interfaces, a 2-dimensional interface that mimics the electrode grid and
was most intuitive for the neurologist, and a 3-dimensional anatomical correct interface
that was most intuitive for the neurosurgeon to plan cortical resection.
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3.3 A Practical Procedure for Real-Time Functional Mapping of

Eloquent Cortex

3.3.1 Introduction

Resective brain surgery is often performed in people with intractable epilepsy, congeni-

tal structural lesions, vascular anomalies, and neoplasms. Surgical planning of the resec-

tion procedure depends substantially on the delineation of abnormal tissue, e.g., epilep-

tic foci or tumor tissue, and on the creation of a functional map of eloquent cortex in the

area close to that abnormal tissue. Traditionally, different methodologies have been used

to produce this functional map: electrical cortical stimulation (ECS) (Hara et al., 1991;

Ojemann, 1991; Uematsu et al., 1992), functional magnetic resonance imaging (fMRI)

(Chakraborty and McEvoy, 2008), positron emission tomography (PET) (Bittar et al.,

1999; Meyer et al., 2003), magnetoencephalography (MEG) (Ganslandt et al., 1999), or

evoked potentials (EP) (Dinner et al., 1986). Each of these methods has problems that

include morbidity, time consumption, expense, or practicality. Since ECS has three quar-

ters of a century of historical and clinical relevance (Foerster, 1931), and perhaps also

due to its relative procedural simplicity and low cost, ECS has become the gold standard

in mapping eloquent cortex. It has gained broad acceptance despite limited data to sup-

port efficacy (Hamberger, 2007) and despite of several substantial issues. For example,

ECS is time consuming because it requires a comprehensive search, i.e., stimulation of

each grid contact, while simultaneously determining the appropriate stimulation am-

plitude. ECS can also produce after-discharges that may trigger seizures or even status

epilepticus. This can result in substantial delays, aborted procedures, and patient mor-

bidity. The results derived using ECS may also not be correct because: 1) stimulation

may produce inhibitory responses that cannot readily be observed; 2) propagation of

stimulation current is affected by the anatomy and potential after-discharges, and thus

variable; 3) there may be substantial procedural variability; and 4) stimulation-based

mapping is based on a lesional and not a physiological model. Finally, ECS depends on

patient compliance and thus cannot easily be used in some patient populations (such

as pediatric patients). The characteristics of ECS are summarized in Table 3.1, and are

reviewed in (Devinsky et al., 1993) and (Ojemann et al., 1989). The problems described

above increase the risk to the patient and the time and cost associated with surgical

planning.
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Table 3.1: Comparison of the properties of ECS mapping and ECoG-based mapping.
Electrical ECoG-Based
Cortical Passive

Stimulation Mapping
time consuming Yes No

risk of seizure induction Yes No
difficulty in observing inhib. resp. Yes No

necessity for anti-epileptic drugs Yes No
variable prop. of stim. current Yes No

procedural variability Yes No
non-physiological model Yes No

patient compliance necessary Yes currently yes
proven by clinical studies Yes not yet

Patients undergoing invasive brain surgery would benefit greatly from a mapping

methodology that does not have the problems associated with existing techniques, i.e., a

method that is safe, can be rapidly applied, is comparatively inexpensive, procedurally

simple, and also congruent to existing techniques (in particular to electrical stimulation).

Task-related changes detected in electrocorticographic (ECoG) recordings appear to have

attractive properties (see Table 3.1) and thus could provide the basis for a technique with

those desirable characteristics. This approach seems attractive in particular because ex-

isting surgical protocols typically already include the placement of subdural electrodes,

and because a number of recent studies showed that ECoG activity recorded from these

electrodes reflect task-related changes (Aoki et al., 1999, 2001; Crone et al., 2001, 1998a,b;

Fries, 2005; Graimann et al., 2002; Lachaux et al., 2003; Leuthardt et al., 2007; Miller

et al., 2007b; Sinai et al., 2005; Varela et al., 2001). These studies showed that ECoG am-

plitudes in particular frequency bands carry substantial information about movement

or language tasks. Specifically, amplitudes typically decrease in the mu (8-12 Hz) and

beta (18-25 Hz) bands, whereas amplitudes usually increase in the gamma (>40 Hz)

band (see Fig. 3.5). Furthermore, recent studies demonstrated that such ECoG changes,

in particular those in the gamma band, were in general agreement with those derived

using fMRI (Lachaux et al., 2007a) and with results determined using ECS (Leuthardt

et al., 2007; Miller et al., 2007b; Sinai et al., 2005). However, these traditional ECoG-based

analyses usually need to be optimized for each individual. Typically they are generated

by signal processing experts after comprehensive post-hoc analyses. While a few recent

studies have provided encouraging evidence that ECoG-based analyses could become

more accessible to clinicians (Lachaux et al., 2007b,c; Miller et al., 2007a), a widely avail-

able and robust procedure that can be utilized by non-experts is needed.
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Figure 3.5: Example for ECoG signal changes between the tasks of repetitively open-
ing and closing of the hand and resting. (A) Signals in the mu/beta band (5-30 Hz)
decrease with the task and are spatially less specific (lower topography), whereas signals
in the gamma band (70-116 Hz) increase with the task and are spatially more specific
(upper topography). (B) The power spectrum on a logarithmic scale for the electrode
marked with a star in the topographies illustrates the spectral decrease in the mu/beta
band (marked by the green bar) and spectral increase in the gamma band (orange bar).

We demonstrate here a comprehensive evaluation of a robust, practical, and readily

available procedure for presurgical functional mapping of eloquent cortex using subdu-

ral electrodes. This procedure is based on our BCI2000 and SIGFRIED (SIGnal modeling

For Real-time Identification and Event Detection) technologies. BCI2000 is a general-

purpose software platform for real-time biosignal acquisition, processing, and feedback

(Mellinger and Schalk, 2007; Schalk et al., 2004) (http://www.bci2000.org). In collabo-

ration with other institutions, most notably the University of Tübingen in Germany, we

have been developing BCI2000 for more then ten years. BCI2000 is currently in use by

more than 1000 laboratories world-wide for a variety of studies. It supports more than

35 different signal acquisition devices and can thus be readily integrated in different
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research or clinical environments. SIGFRIED (Schalk et al., 2008a,b) is a signal process-

ing procedure that I implemented within BCI2000 as part of this dissertation to detect

and visualize task-related changes in real time without prior parameterization (e.g., of

frequency bands, visualization parameters, etc.) by an expert.

In this thesis, I demonstrate the use of the SIGFRIED/BCI2000 system for delineating

cortical areas related to tongue and hand motor function in ten patients from four in-

stitutions. The results show that this method can provide a functional map within only

a few minutes and that this map is in strong congruence to that derived by ECS map-

ping. Furthermore, they demonstrate that this technique provides robust and practical

mapping capabilities in different clinical environments.
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3.3.2 Methods

3.3.2.1 Human Subjects

A total of 10 patients (Table 3.2) at Albany Medical Center (Albany, NY) [AMC1-5],

Barnes-Jewish Hospital (St. Louis, MO) [BJH1], Middleton Memorial Veterans Hospital

(Madison, WI) [VAH1-2] and University Medical Center Utrecht (Utrecht, The Nether-

lands) [UMC1-2] were implanted with subdural platinum electrodes arrays (4 mm di-

ameter, 2.3 mm exposed, 1 cm inter-electrode spacing, Ad-Tech, Racine, WI) for a period

of 5-12 days prior to resection of a seizure focus. In each patient, the seizure focus was

identified by neurologists using visual inspection, and eloquent cortex was identified

over a period of 1.5-7.5 hours using electrical cortical stimulation (ECS). For the ma-

jority of patients, this stimulation was not completed, thereby leaving 12% to 74% of

the covered cortex without stimulation results. Grid locations were classified as hand

or tongue function if stimulation (typically 1 to 4 mA) elicited or inhibited motor ac-

tivity or sensation. Some of the contacts were not stimulated for different reasons: (1)

they had no relevance to the surgical procedure, i.e., they were sufficiently distant to

any planned resection; (2) the minimum stimulation current (e.g., 4 mA) could not be

reached without inducing pain; (3) stimulation induced a seizure before any response

was detected; (4) time constraints; (5) stimulation induced global after-discharges. The

locations of the seizure foci and eloquent cortex were subsequently used for planning of

surgical resection. Location and duration of the implantation were solely determined by

clinical criteria and only patients with some peri-rolandic coverage were included in the

study. All patients gave informed consent through a protocol reviewed and approved

by each of the participating institution’s review board.

3.3.2.2 Data Collection

During the monitoring period, we recorded ECoG signals at the bedside from 32-128

contacts of the implanted grids using different biosignal acquisition devices (Table

3.3). Scalp or grid electrodes were used for reference and ground. Data collection

and stimulus presentation was accomplished using BCI2000 (Schalk et al., 2004) soft-

ware, a general-purpose system for real-time biosignal acquisition, processing and feed-

back. Real-time signal processing and visualization was performed using the SIGFRIED

method (Schalk et al., 2008a,b) implemented within BCI2000.
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A B

Figure 3.6: Example of an implanted subdural grid in patient AMC3. (A) Subdural
grid placed over fronto-parietal areas. (B) Lateral radiograph indicating the position of
the grid.

Table 3.2: Patient characteristics.
Hemispheric Full Surgery Fraction of

Subject Age Handed- Gender dominance for scale hemi- Simulation electrodes
ness language (IAP) IQ sphere duration stimulated

AMC1 19 right male N/Aa N/Ab left 5 hours 100% (48/48)
AMC2 61 right female left 95 left 5 hours 71% (52/77)
AMC3 32 right female left 99 right 4 hours 40% (24/48)
AMC4 29 right male left 94 right 3 hours 100% (84/84)
AMC5 50 right male bilateral 109 right 2 hours 43% (36/83)
VAH1 62 right male left N/Ac right 1.5 hours 70% (45/64)
VAH2 36 right male left N/Ad right 2.5 hours 26% (26/128)
UMC1 28 right male left 92 left 4.5 hours 93% (112/120)
UMC2 27 right female left 69 left 7.5 hours 69% (72/112)
BJH1 44 left female bilateral 95 left 1.5 hours 88% (56/64)

Note:
a IAP was not administered.
b IQ was not tested; patient completed 12 years of education.
c IQ was not tested; information about education not available.
d IQ was not tested; patient completed 13 years of education.
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3.3.2.3 Experimental Protocol

We first recorded 6 minutes of baseline data during which the subject was asked to

remain relaxed and to avoid any movements. Then, each subject performed alternating

sequences of repetitive movements of the tongue, i.e., protrusion and retracting of the

tongue, movements of the hand, i.e., opening and closing of the hand contralateral

to the side of the grid placement, and resting. The subject was visually cued by the

words "tongue" or "hand," which were presented on a computer screen (a blank screen

indicated the resting period). Each task was performed for a duration of 3 seconds

(15 seconds for subject UMC1) at a self-paced rate of about two repetitions per second,

followed by a resting period of the same duration (Fig. 3.7) before the next task. One

run consisted of 15 repetitions of this sequence over the course of 180 seconds. We

typically recorded one initial run to familiarize the subject with the task. All analyses

in this thesis are for one run following the initial training run. The visual display to the

investigator during online operation of this run was provided as described below.

6 mins

Baseline Model
Building

1 min

Collect ECoG for
2 Conditions

3 mins

3 sec 3 sec3 sec

Figure 3.7: SIGFRIED-based mapping procedure: After an initial 6 min baseline period,
an automated routine generates a statistical signal model for that baseline period for
each electrode (this automated procedure takes less than one min). The subject then
alternated between hand and tongue movement tasks interspersed with rest periods.
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Table 3.3: Signal Recording Properties
Subject Channels Sampling Filter Update Rate
AMC1 32 256 Hz 0.1 Hz 32 Hz
AMC2 32 256 Hz 0.1 Hz 32 Hz
AMC3 32 1200 Hz 0.1 Hz 30 Hz
AMC4 32 1200 Hz 0.1 Hz 30 Hz
AMC5 64 1200 Hz 0.01 Hz 15 Hz
VAH1 32 1061 Hz 3-512 Hz 35 Hz
VAH2 64 1061 Hz 3-512 Hz 35 Hz
UMC1 128 512 Hz 0.15-134.4 Hz 16 Hz
UMC1 128 512 Hz 0.15-134.4 Hz 16 Hz
BJH1 64 1200 Hz 0.1 Hz 30 Hz

3.3.2.4 Signal Analysis

To provide a basis for real-time feedback, we first used the SIGFRIED procedure (Schalk

et al., 2008a,b) to establish a statistical model of the recorded baseline data. While the

subject executed the task, we then used this procedure to identify in real-time those grid

contacts that showed activity changes that were statistically different from the baseline

model. In short, we used the following signal preprocessing, feature extraction and

feature selection configurations: first, the signal from each grid contact was re-referenced

using a common average reference (CAR) filter (McFarland et al., 1997). Then, for each

grid contact and 500 ms time period, the time series ECoG signal was converted into

the frequency domain using an autoregressive model (Burg, 1968, 1972; Childers, 1978)

with a model order of 1/10th of the sampling rate. Frequencies between 70-100 Hz

(ten bins at 4 Hz bandwidth) were submitted to SIGFRIED. During online processing,

SIGFRIED then utilized the established baseline model to calculate for each grid contact

the likelihood that the signal at that grid contact was statistically different from the

modeled baseline signals. This likelihood was calculated every 28.27 to 66.66 ms (see

Table 3.2).

Fig. 3.8 illustrates time courses of the negative log-transformed likelihood values for

two locations recorded from subject VAH2. The upper trace corresponds to the location

marked with a star in Fig. 3.11. The bottom trace corresponds to the location marked

with a rectangle. The times of cue presentation for hand movements are marked with

yellow bars and for tongue movements with red bars. Interleaved rest periods are shown

in white. The SIGFRIED trace in the upper figure detects hand movements but not

tongue movements, whereas the bottom trace detects tongue but not hand movements.

Finally, for each grid contact and task, the distribution of the negative log-transformed
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likelihood values was further re-referenced to those values calculated during the resting

period between the tasks by calculating the value of r2, i.e., the proportion of values that

was accounted for by the task. This resulted in a value between 0 (not different) and 1

(very different) for each grid contact and task.
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Figure 3.8: Output of the SIGFRIED procedure for two locations recorded from sub-
ject VAH2. Locations for hand (top) and tongue (bottom) electrode are each marked in
Fig. 3.11 by a star and rectangle, respectively.
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3.3.2.5 Interface to the Investigator

The results from the signal analyses described above were presented to the investigator

in real time using a topographic interface (Fig. 3.9). The interface contained, for each

task (i.e., hand or tongue), a display of the r2 values at each location. Each display

contained one circle at each electrode’s location. The size of each circle and its tint

was proportional to the r2 value. Thus, a large red circle represented a large statistical

difference between the corresponding task and rest, while a small black circle indicated

a small statistical difference. The display corresponding to each task was autoscaled

to the minimum and maximum r2 value. Thus, no parameter (e.g., frequency range,

display or detection parameters, etc.) needed to be changed by the investigator prior to

or during system operation.

Patient

Figure 3.9: Equipment setup and interface to the investigator. The subject is presented
with visual cues shown on a computer monitor while electrocorticographic signals are
recorded. Both the patient screen and the data acquisition device are interfaced with a
laptop computer running BCI2000. BCI2000 acquires signals from the device, submits
these signals in real time to the SIGFRIED method, and presents the results visually in
a topographical display to the investigator.
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3.3.3 Results

3.3.3.1 Qualitative Results

The following paragraphs present the results derived using the SIGFRIED mapping

procedure, and qualitatively and quantitatively compare the results to those obtained

with ECS mapping.

The main results are shown for all subjects in Fig. 3.10 and 3.11. In each figure, the

lateral radiographs (all subjects except UMC1 and UMC2) or computer tomography (CT)

images (UMC1 and UMC2) on the left show grid contacts marked by colored circles.

Contacts that were stimulated and identified as eloquent cortex associated with hand

function are shown in yellow, those associated with tongue function are shown in red,

and those associated with neither hand nor tongue function are shown in white. Semi-

transparent white circles indicate locations that were not stimulated.

The four detailed lateral radiographs/CT images on the right show the results of the

SIGFRIED mapping procedure derived after 30, 60, 120 and 180 seconds. Similarly to the

ECS results shown on the very left, yellow circles indicate the results for the hand task,

and red circles indicate the results for the tongue task. Locations that were excluded

(e.g., due to broken connectors) or not recorded (e.g., due to limitation in the number of

channels) are left blank. The final maximum r2 (i.e., the value of r2 of the largest circle

in each figure) after 180 seconds is noted on the right for hand (range 0.05 to 0.61) and

tongue (range 0.10 to 0.51).
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3.3.3.2 Quantitative Results

The results in Fig. 3.10 and 3.11 show substantial agreement to those derived using

electrical stimulation. In addition, we assessed these results using two quantitative

comparisons. For both comparisons of tongue and hand, the r2 values at each location

were classified as eloquent or non-eloquent with a threshold that was derived using

Minimum Bayesian Error (Berger, 1985).

The first comparison in Table 3.4 provides a quantitative analysis for the 18 to 77

contacts that were both stimulated by ECS and mapped with SIGFRIED. This compari-

son was done independently for hand and tongue and resulted in a correct or incorrect

match between ECS and SIGFRIED at each location. The incorrect results were further

classified into false positives, i.e., contacts identified by SIGFRIED but not by ECS, and

false negatives, i.e., contacts identified by ECS but not by SIGFRIED. Table 3.4 shows that

there were more false positives than false negatives. For three subjects (AMC1, VAH1

and VAH2), no false negatives for hand and tongue were identified. We hypothesized

that most of the incorrect results would have been correct if they had been derived for

a next neighbor. Table 3.5 shows the results of the corresponding analysis. While this

analysis effectively corresponds to a reduction in the resolution of the mapping, this

procedure resulted in no false negatives, and only in 0.46% and 1.10% false positives for

hand and tongue maps, respectively.
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Table 3.4: Quantitative results. Highest squared correlation (r2) between the task and
the SIGFRIED output and Minimum Bayesian Error between the results of the electrical
cortical stimulation and the SIGFRIED mapping.

HAND TONGUE
false false false false

subject r2 positive negative r2 positive negative
AMC1 0.40 0.00% 0.00% 0.51 12.50% 0.00%
AMC2 0.21 4.17% 4.17% 0.49 12.50% 12.50%
AMC3 N/Aa N/Aa N/Aa 0.37 16.67% 11.11%
AMC4 0.38 0.00% 0.00% 0.46 4.00% 12.00%
AMC5 0.15 0.00% 0.00% 0.10 0.00% 3.70%
VAH1 0.07 10.35% 0.00% 0.14 10.35% 0.00%
VAH2 0.61 3.57% 0.00% 0.37 3.57% 0.00%
UMC1 0.18 3.33% 1.67% 0.11 10.00% 1.67%
UMC2 0.25 3.75% 2.50% 0.48 10.00% 1.25%
BJH1 0.30 3.57% 1.79% 0.31 10.71% 0.00%

average 0.26 3.19% 1.12% 0.33 9.03% 4.22%
Note:
a The electrical cortical stimulation resulted in no hand hits for subject AMC3.

Table 3.5: Quantitative results in a next-neighbor comparison. Highest squared cor-
relation (r2) between the task and the SIGFRIED output and Minimum Bayesian Error
between the results of the electrical cortical stimulation and the SIGFRIED mapping in
a next-neighbor comparison.

HAND TONGUE
false false false false

subject r2 positive negative r2 positive negative
AMC1 0.40 0.00% 0.00% 0.51 0.00% 0.00%
AMC2 0.21 4.17% 0.00% 0.49 4.17% 0.00%
AMC3 N/Aa N/Aa N/Aa 0.37 5.56% 0.00%
AMC4 0.38 0.00% 0.00% 0.46 0.00% 0.00%
AMC5 0.15 0.00% 0.00% 0.10 0.00% 0.00%
VAH1 0.07 0.00% 0.00% 0.14 0.00% 0.00%
VAH2 0.61 0.00% 0.00% 0.37 0.00% 0.00%
UMC1 0.18 0.00% 0.00% 0.11 0.00% 0.00%
UMC2 0.25 0.00% 0.00% 0.48 1.25% 0.00%
BJH1 0.30 0.00% 0.00% 0.31 0.00% 0.00%

average 0.26 0.46% 0.00% 0.33 1.10% 0.00%
Note:
a The electrical cortical stimulation resulted in no hand hits for subject AMC3.
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3.3.4 Discussion

We provide the first comprehensive demonstration of a functional mapping procedure

that is rapid, practical, robust, and accurate in localizing primary motor cortex. In our

evaluation of ten patients from four institutions, we found that the SIGFRIED procedure

identifies at least the same contacts or their immediate neighbors compared to ECS

mapping.

These results may have important implications for functional localization prior to

invasive brain surgery. Our method can be used with little training and can be read-

ily implemented in the typical clinical environment. In fact, our system is currently

in evaluation by a number of epilepsy centers in the US and Europe. Thus, we believe

that the SIGFRIED/BCI2000 system has the potential for widespread adoption in a large

number of centers world-wide. At the same time, this new mapping platform is open-

ing up several important research questions: e.g., which tasks are best suited to elicit

appropriate responses for different classes of anatomical areas? What are the situations

or populations (e.g., children) for which this method provides the maximum benefit?

What is the efficacy of the SIGFRIED method for other brain functions, in particular

for mapping expressive and receptive language? (Ongoing work in our laboratory is

providing encouraging evidence in this regard.) It is at present also unclear how this

method will be integrated in the clinical workflow. Despite the strong congruence of

the SIGFRIED-based results to ECS-based results, it is likely premature to replace ECS

mapping with SIGFRIED-based mapping. Rather, it seems to be more appropriate to

optimize ECS mapping based on the results of prior SIGFRIED mapping.

Like the recent study by Miller et al. (Miller et al., 2007b), our study demonstrates

considerable variance in the somatotopy across subjects and coherence with the ECS

mapping results. Both location and area identified as eloquent cortex vary among sub-

jects. While for Miller et al. it was not clear whether this was due to subject variability or

expert variability in performing the ECS, our study shows that a next-neighbor analysis

achieves an almost perfect coherence with the ECS mapping results. This suggests that

most of the variance is due to expert variability.

Crone et al. (Crone et al., 1998a) reported that not all subjects displayed changes in

the gamma band. This is in contrast to the results of this study that showed adequate

task-related changes of gamma amplitudes (which were the basis for the SIGFRIED

calculations) in all ten subjects. It is possible that this is due to a difference in hardware,

processing, or motor tasks. For example, our own experience, and also results from a

previous study (Aoki et al., 1999), suggest that more complex tasks (such as the Rubic’s
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cube manipulation task) increase the amplitude of the gamma changes.

The SIGFRIED results were generally in substantial agreement to those derived us-

ing electrical stimulation, but there were some differences. These differences could be

attributed to several factors that include expert variability in ECS mapping or ECS’s

variable current spread, low statistical significance, or the characteristics of the subject’s

task. Cortex at remote locations may be activated due to current spread, and thus result

in a site that is registered by ECS and not by SIGFRIED. Conversely, SIGFRIED may

falsely register sites with low statistical significance. For example, consider the map for

hand function in subject AMC3 (shown in Fig. 3.10). This subject’s grid did not have

hand coverage, i.e., ECS mapping did not detect hand function in any electrode. The

SIGFRIED map highlights several sites, although the maximum r2 value (0.05) was very

low. Thus, the magnitude of the maximum r2 value gives an index of confidence in a

particular map. Future versions of the software could even calculate such a confidence

index (i.e., a p-value) explicitly. The factor that may have the largest influence on the

differences between the ECS and the SIGFRIED maps may be the nature of the subject’s

task. In one extreme, this task would be very simple, and only require very limited

areas of cortex for its execution. In this case, SIGFRIED would only register very few

electrodes or none at all. In the other extreme, the subject’s task would be difficult and

require engagement of different cortical facilities. Thus, the use of this task would result

in activation of more widespread areas of cortex, and consequently, SIGFRIED would

detect changes in more electrodes. As described above, recent experiments suggest that

the use of more complex visuomotor tasks results in even more robust maps. In sum,

the optimal tasks for mapping motor and other cortices using the SIGFRIED method are

currently unknown. However, the rapidity of our method facilitates the use of several

tasks that engage the desired cortical area in different ways.

The SIGFRIED mapping overcomes many problems associated with ECS. It is also

based on a different principle. While ECS is based on a lesional model (Engel, 1993),

SIGFRIED is based on task-related changes in ECoG signals. The clinical impact of this

difference is currently unclear. It is thought that the lesional model utilized with ECS

closely resembles the effect of surgical resection, in that it allows the identification of

those areas that are critical for a particular function. In contrast, SIGFRIED detects those

areas that change their activity with a particular task. It may not detect areas that do

not change their activity but are critical for a particular function, or may detect areas

that change their activity but are not critical. At the same time, ECS clearly has prob-

lems of accuracy itself, e.g., because there is no defined standard for ECS mapping,
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because there are practical (in particular time) constraints for using ECS, and because

the resolution of ECS is limited due to current spread and the need for bipolar stim-

ulation. In summary, at this early stage of clinical validation, replacing ECS with the

SIGFRIED/BCI2000 system is not warranted. Nevertheless, despite its potential limita-

tions, there may already be distinct advantages over ECS mapping.

The ECS protocol labels each contact with the eloquent function that is elicited or

inhibited as the contact is stimulated. Finding eloquent function at a low threshold

terminates the protocol for this contact, assuming that each type eloquent function is

spatially contiguous as it is suggested by the motor homunculus model (Penfield and

Rasmussen, 1950). Recent fMRI (Meier et al., 2008) and ECS (Hamberger, 2007) studies,

however, show a more complex and spatially noncontiguous somatotopy. The SIGFRIED

mapping could establish a comparable somatotopy by exploring different tasks, for ex-

ample a dedicated motor/sensory evaluation for each finger. This could allow more

detailed surgical planning and thus benefit the outcome of the resection procedure.

However, the lack of a verifiable gold standard makes it difficult to assess the qual-

ity of such a more detailed somatotopy. Only surgical outcome can provide a detailed

assessment on whether a more detailed somatotopy may be beneficial.

Studies have shown task-related changes associated with ipsilateral movements in

the low frequency band (Chollet et al., 1991; Colebatch et al., 1991; Grafton et al., 1992;

Kawashima et al., 1994, 1993; Kim et al., 1993; Wisneski et al., 2008; Yoshii et al., 1989).

The implications of resecting cortical areas associated with these ipsilateral movements

have not been defined, mainly because ECS is not able to elicit ipsilateral limb movement

within the conventional stimulation thresholds (Foerster, 1936; Penfield and Boldrey,

1937). The SIGFRIED mapping could facilitate such studies by exploring ipsilateral

tasks.

An initial application of the SIGFRIED/BCI2000 system is shown here, but there are

several ways in which this system can be further improved. As a first example of the

potential for improvement, we observed a noticeable delay between stimulus onset and

the patient’s response even when there was good compliance of the subject. Crone et al.

also reported such delays, and estimated them to be in the 300-400 ms range for sim-

ple visually cued hand movements and tongue protrusions (Crone et al., 1998a). Our

results show similar delays (see Fig. 3.8). Because the total duration of each stimulus

was only 3 sec (15 sec for subject UMC1), a significant fraction of the signals were thus

effectively assigned to the incorrect task category. In more recent experiments, we have

begun to alert the subject to the change in condition by presenting an auditory stimulus,
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and we suspend data analysis for 1 sec. In the end, it may be possible to partially or

even completely eliminate this need for patient compliance, which is currently an issue

for all mapping techniques. For example, for motor tasks it would be relatively straight-

forward to utilize motion sensors, such as a data glove, motion capture device, or EMG

electrodes, and to simply correlate SIGFRIED values with the detected motion rather

than with the stimulus. For sensory input, it would be possible to use programmable

tactile stimulators and earphones. Thus, such approaches may fully remove the require-

ment for patient compliance and facilitate mapping in pediatric environments where

patient compliance is either impossible (e.g., with infants) or hard to obtain (e.g., with

young children). As another example for potential further improvements, it may be

possible to use the SIGFRIED mapping intraoperatively. This possibility could replace

the two surgeries that are currently necessary with one surgery that encompasses grid

placement, mapping of eloquent cortex, and resection. In particular in patients that do

not require longer monitoring periods (e.g., tumor patients), this would significantly

decrease risks to the patient and costs of the hospitalization.

3.3.5 Conclusions

In conclusion, in this section we presented the SIGFRIED/BCI2000 system as a prac-

tical functional mapping procedure. This system is readily available at no cost for

research and educational purposes at www.bci2000.org, and there is substantial doc-

umentation on its theory (Mellinger and Schalk, 2007; Schalk et al., 2008a,b, 2004) and

use (doc.bci2000.org). BCI2000 currently supports signal acquisition from 35 different

devices, and more are continually added. This should facilitate the integration in exist-

ing clinical environments.



116 Chapter 3. Brain Signals for Diagnosis

30 sec 60 sec 120 sec 180 secAMC1

0.40

0.51

AMC2

0.21

0.49

AMC3

0.05

0.37

AMC4

0.38

0.46

AMC5

0.15

0.10

Figure 3.10: Results of electrical cortical stimulation (left) and the passive functional
mapping using SIGFRIED (right) for subjects AMC1 to AMC5. Lateral radiographs
(left) show the results of the electrical cortical stimulation for hand (yellow) and tongue
(red) and no response to hand or tongue (white). Transparent circles indicate no stim-
ulation. Detailed lateral radiographs (right) show the result of the passive functional
mapping using SIGFRIED after 30, 60, 120 and 180 seconds for hand (yellow) and
tongue (red). The number indicates the final maximum r2 between the stimulus and
the SIGFRIED response (0 to 1).
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Figure 3.11: Results of electrical cortical stimulation (left) and the passive functional
mapping using SIGFRIED (right) for subjects VAH1, VAH2, UMC1, UMC2 and BJH1.
Lateral radiographs or computer tomographic renderings (left) show the results of the
electrical cortical stimulation for hand (yellow) and tongue (red) and no response to
hand or tongue (white). Transparent circles indicate no stimulation. Detailed lateral
radiographs (right) show the result of the passive functional mapping using SIGFRIED
after 30, 60, 120 and 180 seconds for hand (yellow) and tongue (red). The number
indicates the final maximum r2 between the stimulus and the SIGFRIED response (0 to
1). The real-time SIGFRIED traces in Fig.3.8 are for the locations marked by a yellow
star and red rectangle in subject VAH2, respectively.





4
Conclusion and Future Work

4.1 Conclusion

In this dissertation, we set out to identify and overcome some important deficiencies that

currently limit the utility of emerging clinical applications for communication and diag-

nosis. Specifically, we identified low communication performance and the dependency

on experts and post-hoc analysis for diagnosis of eloquent cortex as two important de-

ficiencies. To overcome these, we hypothesized that ECoG signals could support higher

communication performance in the BCI context and that generative models could elim-

inate the need for experts and post-hoc analysis in clinical diagnosis.

To test our hypotheses, we conducted two studies. The first study used ECoG signals

and external stimuli to provide BCI communication. In this study, we showed that our

BCI system could provide a sustained communication rate of 17 characters per minute

(69 bits/min), which is 3-4 times higher than what had previously been reported.

The second study was the development and validation of a diagnostic tool that used

ECoG and generative models to passively map eloquent cortex. In this study, we showed

that this system did not need experts or post-hoc analysis to provide maps of eloquent

cortex that were in general alignment with those obtained from the current gold stan-

dard.

While the results of these two studies unequivocally support our hypotheses, they

also raised questions. For example, the results suggest that ERPs over visual areas

(VEPs) contribute significantly to the performance of the BCI communication system.

This is of critical relevance to clinical application of this BCI method, because the target

population may be impaired in their ability to fixate on the target and thus to generate
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VEPs. This raised the question whether the performance of the matrix speller BCI de-

pends on fixating the target. In response to this issue, we conducted a follow-up study

that disproved the widespread assumption that the performance of the matrix speller

BCI does not depend on fixating the target. While this finding effectively limits the util-

ity of increased spelling performance to people that that are able to fixate on the target,

our study created an awareness on this dependency and sparked scientific interest to

develop exogenous BCI systems that do not depend on eye-gaze. As a result, recent

studies proposed exogenous BCI systems that use auditory (Klobassa et al. 2009; Kübler

et al. 2009; Schreuder et al. 2010), tactile (Brouwer and van Erp 2010), or simplified vi-

sual stimuli (Acqualagna et al. 2010; Treder et al. 2011; Treder and Blankertz 2010; Treder

et al. 2010).

4.2 Future Work

Other questions go beyond the scope of this dissertation and require future work. For

example, this dissertation has shown that, despite the 3 to 4 fold improvement in com-

munication performance, it remains unclear whether clinical BCI systems will ever be

a viable alternative to other established (i.e., muscle-based) and emerging (e.g., bionic)

assistive communication devices that tend to provide a better communication perfor-

mance (e.g., MyTobii P10 eye-tracker system, 10 words per minute at close to 100%

accuracy). This is because the communication performance of BCIs is limited to the

speed in which the user can re-locate his attention and/or sensory input towards the

next intended target, and the number of targets the user can simultaneously pursue.

While there is evidence that in endogenous BCIs users may pursue multiple target si-

multaneously (McFarland et al. 2010b; Taylor et al. 2002), exogenous BCIs are limited

through their sensory input (e.g., visual, auditory, tactile) to one simultaneous target.

With this restriction, the paradigm presented in this dissertation should be limited to

a communication performance that is only modestly higher than the 22 characters per

minute we report here. If clinical BCI systems are to become widely used, they need to

either improve on their performance or complement established and emerging assistive

devices. Hybrid BCIs, i.e., the combination of a BCI with other BCIs or existing assistive

systems, follow a current trend that addresses this issue (Allison et al. 2010; Millán et al.

2010; Pfurtscheller et al. 2010; Zander et al. 2010). Future work could investigate how

the BCI presented in this dissertation could benefit from such hybridization.

More questions also arise from our results on passive mapping of eloquent cortex.
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While the developed diagnostic tool overcomes the most critical deficiencies of passive

mapping, it does not yet fully encompass all components that are necessary to translate

this technique into clinical practice. To facilitate this translation, future work needs

to expand on clinical validation and address regulatory certification as well as clinical

integration and dissemination.

Another question is whether the developed diagnostic tool fully exploits the po-

tential that passive mapping of eloquent cortex using ECoG offers. For example, the

presented technique has not yet exploited the potential to map detailed aspects of be-

havior at very high spatial resolution and without the patient’s compliance. In future

work, a combination of higher resolution ECoG grids (e.g., Fig. 4.1) and more advanced

tasks that engage the subject in more detailed aspects of behavior could improve the de-

lineation of eloquent cortex. Further, the integration of behavioral sensors could remove

the requirement for patient compliance and facilitate mapping in pediatric environments

where patient compliance is either impossible (e.g., with infants) or hard to obtain (e.g.,

with young children). Finally, translating the procedure into the operating room could

spare the patient a second surgery and reduce morbidity. While some of these aspects

have already been investigated by us (Ritaccio et al. 2010; Roland et al. 2010) or others

(Cervenka et al. 2011), a system that fully exploits the potential of passive mapping of

eloquent cortex has not yet been demonstrated.
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Figure 4.1: High spatial resolution ECoG grid. This figure shows how the currently
used 1 cm spaced ECoG grid (A) can be translated into an ECoG grid that provides
high spatial resolution while remaining its compatibility with ECS (B). This is accom-
plished by retaining the 2.3 mm exposed contacts of (A) in (B) that still can be used for
ECoG while adding additional 1 mm spaced microelectrodes that provide high spatial
resolution.
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AIC Akaike Information Criteria

ALS Amyotrophic Lateral Sclerosis

AugCog Augmented Cognition

BCI Brain-Computer Interface

BIC Bayesian Information Criteria

CAIC Consistent Akaike Information Criterion

CAICF Corrected Akaike Information Criterion

CAR Common Average Reference

CE European Commission

CEM Classification-Expectation-Maximization

CNS Central Nervous System

CSTP Common Spatio-Temporal Patterns

ECoG Electrocorticography

ECS Electrical Cortical Stimulation

eECoG Epidural Electrocorticography

EEG Electroencephalography

EM Expectation-Maximization

EP Evoked Potential

ERD Event-RelatedÊDesynchronization

ERP Event-Related Potentials

ERS Event-Related Synchronization
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FDA Food and Drug Administration

FFT Fast Fourier Transform

fMRI Functional Magnetic Resonance Imaging

fNIR Functional Near-Infrared Imaging

GMM Gaussian Mixture Model

HFB High Frequency Band

HMM Hidden Markov Model

IAP Intracarotid Amobarbital Procedure

ICA Independent Component Analysis

IQ Intelligence Quotient

LDA Linear Discriminant Analysis

LFB Low Frequency Band

LFP Local Field Potential

MDL Minimum Description Length

MEG Magnetoencephalography

MHLW Ministry of Health, Labor, and Welfare

NIH National Institutes of Health

PCA Principal Component Analysis

PET Positron Emission Tomography

PNS Peripheral Nervous System

SIGFRIED SIGnal modeling For Real-time Identification and Event Detection

SMR Sensory Motor Rhythm

SRM Structural Risk Minimization

SSD Shortest Data Description

SSEP Steady-State Evoked Potential

SSVEP Steady State Visually Evoked Potentials

STG Superior Temporal Gyrus

SUA Single Unit Activity

VEP Visual Evoked Potential

WAIS Wechsler Adult Intelligence Scale
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List of Symbols

Xt,c signal from channel c at time point t

Nc number of channels

wc weight of channel c

RX autocorrelation of signal X

ak k-th autocorrelation coefficient

σ2
ε mean-square error

τ lag

Kk k-th reflection coefficient

X̂t forward prediction

X̂t−p backward prediction

P( f ) amplitude spectrum

fs sampling frequency

m Mahalanobis distance

Σc covariance matrix

η(Xt|c) probability density function

LL negative log likelihood

L maximized likelihood

N number of free parameters

D dimensionality

∆K improvement in information criteria
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