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Abstract 

The number of applications and high-speed services are increasing at high speed due to the recent 

revolution in the wireless communication world. According to FCC 2002 report the licensed bands are 

underutilized by 15%-85%. Many applications are designed for operation in unlicensed bands. Cognitive 

radio proposed by J.Mitola is a solution to this problem. The cognitive radio is an intelligent, self-aware 

and self-managed radio. It can sense the communication environment and can adapt new parameters to 

improve QoS .It can avoid the possible interference by primary users. In this thesis four 802.16(d) 

systems are considered as primary users and 802.11(g) systems are considered as the secondary users. 

The cognitive radio based systems have a spectrum sensing and decision making device. The spectrum 

of the primary user is sensed on the basis of energy detection techniques (Welch periodogram) . The 

performance of a Welch periodogram based detector is good up to an SNR of -25dB. Below this, 

performance is poor. The idea of SVM was proposed by V.N.Vapnik. The SVM is working basically on the 

supervised statistical learning principle. SVM is basically designed for the solution of classification and 

regression problems. In this research a Support Vector Machine (SVM) based detector senses the 

spectrum and detects the spectrum holes at low SNR values with a high confidence level. The decision 

about the selection of the best spectrum hole is also done. On the basis of this information the cognitive 

devices can select a new spectrum band and can enjoy the spectrum flexibility. Fuzzy logic is basically 

used for the solution of control problems. In current research the fuzzy logic is used for the signal 

detection and hole selection by considering the time constraints. The signal detection and decision 

making is done by considering the 802.22 standard. This thesis is combining the statistical signal 

processing and machine learning concepts for the designing and improvement of future cognitive radio 

based networks. 
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Kurzfassung (Abstract German) 

Die Anzahl der Anwendungen und Services in der kabellosen Kommunikationswelt ist stetig im Steigen. 
Aufgrund der wenig genutzten Frequenzbereiche sind jedoch die Übertragungsgeschwindigkeiten und  
-kapazitäten stark eingeschränkt. Laut dem FCC 2002 Report werden 15-85% der lizenzierten 
Frequenzbänder nicht genutzt. Viele der neuen Anwendungen hingegen werden im unlizenzierten 
Frequenzbereich betrieben. Das "Cognitive Radio"-Prinzip von J. Mitola kann als Lösung dieses Problems 
dienen.  
Das Cognitive Radio ist ein intelligentes und autonomes Kommunikationsgerät. Es kann seine Umgebung 
wahrnehmen und neue Parameter adaptieren, um die dienst qualitatQuality of Service (QoS) zu 
verbessern. Des Weiteren kann es die möglichen Störungen und Interferenzen von Primary Users 
vermeiden. In dieser Arbeit werden die vier 802.16(d)-Systeme als Primary Users, die 802.11(g)-Systeme 
als Secondary Users bezeichnet. Die auf dem Cognitive Radio-Prinzip basierenden Systeme umfassen 
Funktionen zur Frequenzabtastung und Entscheidungsfindung. Das Frequenzspektrum des Primary Users 
wird mithilfe von Energy-Detection-Verfahren (Welch-periodogramm) abgetastet. Detektoren, welche 
auf dem Welch-periodogramm basieren, weisen eine gute Effizienz bis zu -25dB Signal/Rausch-Abstand 
(SNR) auf - liegt der SNR-Wert jedoch darunter, verlieren diese an Güte. 

Zur Entscheidungsfindung wird die Idee der Support Vector Machine (SVM) von V. N. Vapnik 
aufgegriffen. Die SVM arbeitet hauptsächlich auf dem kontrollierten Statistical-Learning-Prinzip. Mithilfe 
der SVM können Klassifizierungs- und Regressionsprobleme gelöst und eingeordnet werden. Der in den 
Untersuchungen verwendete SVM basierende Detektor durchsucht das Spektrum und detektiert 
Frequenzlöcher scheint auch bei niedrigen SNR-Werten mit hohes konfidenz  zu detektieren. Dabei wird 
die Auswahlentscheidung des Frequenzloches ebenfalls getroffen. Auf Basis dieser Informationen 
können die kognitiven Geräte ein neues Frequenzband auswählen und dadurch die Spektrumflexibilität 
nutzen. Um regeltechnische Probleme zu lösen, kommt Fuzzy Logic zum Einsatz. In den vorgelegten 
Ergebnissen wird Fuzzy Logic zur Signalerkennung und Lochauswahl unter Berücksichtigung von 
Zeiteinschränkungen verwendet. Die Signalauswahl und Entscheidungsfindung berücksichtigt des 
Weiteren den 802.22 Standard. Diese Doktorarbeit verbindet die statistische Signalverarbeitung mit 
Konzepten des Machine Learning, um zukünftige auf Cognitive Radio basierende Netzwerke entwerfen 
und verbessern zu können.  
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1 Introduction 

1.1 Overview of Cognitive Radio Systems 

Radio spectrum is the most valuable source in wireless communication. In most cases the shortage of 
spectrum is a spectrum access problem. The Cognitive Radio and Cognitive Radio Networks are 
transforming the static spectrum allocation based communication systems into dynamic spectrum 
allocation [1]. Cognitive radios must have the ability to check and sense the environmental conditions 
and can change its parameters according to the requirements to get the optimized performance at the 
individual nodes or to all systems [2]. This chapter covers the basis and origin of software defined radio, 
cognitive radio, cognitive radio network, cognitive cycle, cross layer design, performance metrics and 
the concept of cross layer design. This chapter also covers the different network paradigms. The 
performance metrics explain the node and network level performance measurements. 

Wireless communication creates a revolution in our lives. The mobile communication is the most 

successful wireless service. New wireless devices are offering a better data rate and new and useful 

services. Normally, mobile communication systems operate at a frequency less than 3.5 GHz [3].  With 

the increase of the mobile services, the bandwidth requirements are also increasing. For the new 

services the bandwidth availability is a problem. Currently the spectrum is utilized in a static way. There 

are two types of the bandwidth allocation, one is the licensed band allocation and the 2nd are ISM bands, 

which can be utilized by any user. The new wireless applications and devices are basically designed for 

the unlicensed bands, e.g. last mile broadband wireless access, health care, wireless PANs/LANs/MANs 

and cordless phones are working in unlicensed bands. According to FCC 2002 report, the licensed bands 

are underutilized and the ISM bands are over utilized [4]. This situation is creating the spectrum scarcity. 

According to FCC report the licensed band spectrum are underutilized. The spectrum usage lies in 

between 15-85%. This situation occurs due to static spectrum allocation policy adopted by the 

governments worldwide. Due to this policy, the spectrum bands are vacant temporarily. These vacant 

spectrum bands are known as the spectrum hole or white spaces. The holes are available at particular 

time or in particular locations. In 1992 Joe Mitola presents the idea of Software Defined Radio [5]. 

Software Defined Radio (SDR) is a programmable device which has the ability of multichannel and 

multicarrier communication. The SDR has the ability to change its parameter and quality of service (QoS) 

by programming according to demand. The solution of this problem was suggested by Mr. J.Mittola 

during his PhD at KTH Sweden. The Cognitive Radio is a spectrum agile system which has the ability to 

sense the communication environment dynamically and it can intelligently adapt the communication 

parameters (carrier frequency, bandwidth, power, coding schemes and modulation scheme etc.) [6]. 

The idea of a fully Cognitive Radio presented by J. Mitola et.al is still practically not possible. The 

hierarchical model is presented in which spectrum is accessed and bandwidths are adopted by 

secondary users with priority of the primary users. Normally unlicensed users are considering as 

secondary users. The Cognitive Radios (Secondary users) are allowed to coexist with the primary users if 
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they can maintain a minimum level of interference. The RF bands operated at the frequency <3.5 GHZ 

,Cellular bands and fixed wireless access bands with a center frequency 2.5 GHz and 3.5 GHz are the 

potential candidates for Cognitive Radio deployment [3]. In the United States, FCC allowed the dynamic 

access of the UHF TV bands by the Cognitive Radio devices. The Cognitive Radio operation depends 

upon the spectrum sensing information regarding activity, channel conditions, codebooks, messaging to 

other nodes, modulation schemes, noise variance and decision about the spectrum parameter 

adaptation. 

1.2 Spectrum Scarcity and Spectrum Utilization 

According to the FCC’s report published in 2002, the licensed spectrum is utilized in between 15%-85% 

[4]. The reason of this varying underutilization of the licensed spectrum is the policy of static allocation. 

Currently the devices are operated according to the fixed spectrum assignment policy. The demand of 

the radio spectrum is increasing dramatically specially for the Mobile Radio Communication. The current 

static allocation policy is the root cause of the inefficient spectrum utilization and spectrum scarcity .In 

unlicensed bands congestion is increasing rapidly. The ISM bands are overcrowded due to WLAN, 

Bluetooth, cordless phones, microwave ovens and other devices. In this situation of inefficient RF 

spectrum utilization and spectrum scarcity, the scientists and engineers want to design new systems 

which can sense the spectrum, detect spectrum holes and can utilize the spectrum more efficiently. This 

paradigm shift must also reduce the interference among the users. The   limited availability of the 

spectrum is the basic reason behind heavy cost and limited applications.                                 

1.3 Software Defined Radio 

The idea of Software Radio was first time designed and implemented by Garland Texas division of E-

Systems in 1984[7].In 1988 Helmuth Lang and Peter Hoeher designed first transceivers on the basis of 

software radio at German Aerospace Research Establishment (DFVLR). This transceiver was designed for 

satellite modem [8]. The idea of Software Defined Radio (SDR) was proposed in 1992 by J. Mitola [5]. 

Software defined radio is a reconfigurable radio [9]. In SDR all radio functions can be performed on the 

programmable chips. The radios can be reprogrammed and they can act as multi-transceivers.  Due to 

their re-programmability, they are easy to design and cheaper [10].  

The physical layer parameter of the radio can be modified by changing the software. The traffic and 

control information are fully programmable in SDR. In SDR the new and different protocols can be 

implemented due to reprogramming ability of the SDR. SDR radios are multi-functional, provide global 

mobility, compactness and they are efficient in power consumption [11]. As the radio functions are 

implemented with the help of software so they can be easily upgraded and runtime reconfiguration is 

possible. The Software defined radio based networks have a layered architecture [12]. Speak easy, JTRS, 

Wireless Information system, SDR-3000, Spectrum Ware and Chariot are few important projects 

completed on the basis of Software Defined Radio technology [13]. 
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Figure1.1: Software defined radio [11] 

 

 

Figure1.2  Implementable SDR mapped on transceiver functions [11] 

1.4 Cognitive Radios 

The Cognitive Radio architecture was based on simple Observe-Orient-Decide-Act (OODA) loop frame 

work [14]. Cognitive Radios are self-aware and intelligent devices which can sense the changing 

environmental conditions and can change its parameter like frequency, modulation techniques, coding 

techniques and power etc., according to the changing statistical communication parameters to maximize 

the utilization of available spectrum resources and to ensure the QoS [15]. In Mitola’s architecture 

prediction was done at planning stage. Self-awareness enables the Cognitive Radio to learn from the 

networking environment. Cognitive Radios can learn and make the decision about the adaptation of 
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their operating parameters and change the transmission and receiving parameters to maximize the QoS. 

Operations of the cognitive Radio are controlled by the Cognitive Engine. 

1.4.1 Cognitive Cycle 

The Cognitive Engine works according to the cognitive cycle [14, 15]. The cognitive engine performs the 

tasks of sensing, analysis, learning and decision making. Cognitive Radio networks consist on two types 

of users. First type of users, are the primary (licensed) users (Pus) and the second type of users are 

known as the secondary users (SUs). Licensed users are allocated higher priority for the usage of the 

frequency spectrum [16]. Secondary users can change their communication parameters in an adaptive 

way [17]. The secondary users can transmit the information using the primary spectrum when spectrum 

holes are available [16]. The idle primary licensed spectrum is known as the spectrum hole. The 

secondary users can utilize the spectrum hole and try to reduce the problem of spectrum scarcity and 

underutilization of the licensed spectrum. The cognitive cycle is shown figure below 

  

Figure 1.3  Cognitive radio cycle [14, 15] 

The spectrum sensing devices sense the spectrum and detect the spectrum holes. The spectrum holes 

are temporarily unused spectrum of licensed users or filled by the low power interferers. The holes are 

referred as gray or white spaces, secondary users have the equal priority of spectrum utilization. The 

important functions of cognitive cycle are   

Spectrum sensing: Means to sense the primary user spectrum and find the spectrum holes.  

Spectrum sharing: Coordinates with the other nodes and updates the spectrum information and adapts 

it in real time. 

Spectrum Management: Selects the best available frequency band and then reduces the in band 

interference. 

Spectrum Mobility: The system continuously monitors the users and whenever the primary user wants 

to use the spectrum then vacates the spectrum. Different Machine Learning techniques like 
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Autocorrelation kernel function based SVM, Fuzzy logic or Neural Networks train the spectrum sensing 

devices and help in the prediction of spectrum holes in a supervised, unsupervised or semi-Supervised 

learning way. 

Learning Process: Deals with the different machine learning techniques like SVM, Fuzzy logic or Neural 

Networks. These techniques are used for the training of cognitive engine, so that it can do the decision 

and can do online updating.  

Decision Phase: During this phase CR must be able to do the decision about the adaptation of the 

communication parameters. For efficient spectrum sensing, parameters adaptation can be improved by 

different machine learning techniques. 

1.5 Cognitive Radio Networks 

The Cognitive Radio (CR) based communication is subdivided into under lay, overlay and interweave 

paradigms. The underlay and overlay paradigms are based on various spectrum sharing models. The 

Interweaver model is an example of a spectrum agile opportunistic spectrum access model [18]. 

The underlay paradigm is the most promising technique. In this technique the interference for the 

primary user is maintained below certain threshold level. In this paradigm the CR users need the 

information of channel gainto the licensed users. The smart power allocation algorithms or multiple 

antenna techniques are used for this purpose. This technique is also used in spread spectrum based 

ultra-wide band systems (UWB). In this technique the main hurdles are: requirements of perfect channel 

state information from the Cognitive Radio transmitter to the primary receivers, maintenance of 

interference noise temperature below an acceptable threshold level [19]. 

In the overlay paradigm the cognitive user and primary users are communicating simultaneously. The 

cognitive users apply the dirty paper coding in order to reduce the interference effect. The information 

is exchanged through messaging. The cognitive user needs the mechanism of messaging from the PU. 

Overlay model based CR devices can transmit at any required available power [19]. 

The Interweaver paradigm is the latest technique in Cognitive Radio Communication. This model is also 

known as spectrum agile opportunistic spectrum access model. In this technique the CR must know the 

exact location of spectrum holes in time, space and frequency coordinates [19].  

The key point in performance of CR devices and networks are power efficient and computationally less 

complex spectrum sensing techniques. Spectrum sensing and the intelligent decision of the spectrum 

parameter adaptation play a vital role in interference mitigation and the efficient spectrum utilization in 

CR based communication devices. In this research spectrum sensing techniques and machine learning 

techniques for the efficient decision making are conducted for the improvement of the Interweaver 

paradigm for future Cognitive Radio devices. 
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1.5.1 Cognitive Radio Network Frameworks 

The unified theory of cognition (UTC) is the key component behind the designing of the Cognitive Radio 

Networks [20]. Much cognitive architecture is designed on the basis of UTC. In cognitive architectures, 

the intelligent entities react with the inputs [19]. In cognitive environment knowledge representation 

and learning are important features. 

UTC can be divided into simple and high complexity models 

 

Figure 1.4  Classification of Cognitive Frame Works [19] 

1.5.1.1  Simple Model 

Observer-Orient-Decide-Act (OODA) and Critique-Explore-Compare-Adapt loop (CECA) are the example 

of simple models. 

1.5.1.1.1 Observer-Orient-Decide –Act (OODA) Model 

OODA was proposed by John Boyd for the decision making to explain the behavior of Cognitive Radio. 

OODA is a simple model in which the whole process is done on the basis of continuous feedback used 

[19].It is a reactive system based approach. It is commonly used in decision making in fighter pilot 

combat or cognitive nodes on the basis of observed environment [19, 21]. Mitola’s radio was also 

designed by following the OODA architecture. Military Intelligence Cognition Systems are also developed 

on the basis of OODA loops. The OODA loop cannot describe a goal-oriented command decision process 

1.5.1.1.2 Critique-Explore-Compare-Adapt Loop (CECA)  

CECA is used to study the context of command and control on the OODA loop. CECA is a highly complex, 

conceptual model used for the initial plain of action [22]. The CECA model is started with the creation of 

conceptual model. 

1.5.1.1.3 High Complexity Model 

High complexity models are based on the UTC philosophy [23]. Some high complexity models are given 

below. 
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1.5.1.1.3.1  SOAR Cognitive Engine 

SOAR was developed in 1983. The SOAR cognitive engine is used for the solution of open ended 

problems. In this architecture radio senses the environment and then decides the parameters 

intelligently. Open source Cognitive Radio is designed on the basis of the SOAR approach. OSCR enables 

the engine to integrate with software communication architecture (SCA). The OSCR based network has 

the information about modulation type, signal constellations and coding schemes. SOAR-based engines 

are very complex. OSCR links multiple applications programming with a single cognitive engine. The 

main task of OSR is to maximize the capacity of the noisy channels [24]. This structure is based on state 

operators [25].This engine is difficult to implement on a single radio. It is a biologically inspired model 

developed in Michigan as an extension of the SOAR Cognitive architecture [24]. 

1.5.1.1.3.2 Storm Cognitive Framework 

Storm is the extension of the SOAR cognitive architecture. Storm was designed to develop a biologically 

inspired architecture. Due to complexity, it is not implemented on any practical platform [24, 26]. 

1.5.1.1.3.3 ACTR Model 

ACTR was developed by Carnegie Mellon University by studying the Human Psychology [24, 27]. Some 

programming language is used to model this architecture. In this framework accuracy and performance 

time are the main metrics. ACTR is used to model the Cognitive Radio tasks.  

1.6 Examples of Cognitive Radio Architecture 

1.6.1 Mitola’s Cognitive Radio Architecture 

 This radio was designed on OODA architecture. Its details are given below 

1.6.1.1 Case Based Reasoning Cognitive Engine (CBR) 

In this model the primary user (PU) has the priority of occupancy of the spectrum. The engine includes 

sensing, learning and decision making processes. The CBR based engines have different modules and 

their interfaces. IEEE 802.22 standard [29, 30] is operated on the base of the CBR model. CBR does the 

learning and decisions on the basis of historical record and environmental learning. CBR is implemented 

with the help of modular approach with interfaces. Constraint and Policy Engine (CnPE), multi-objective 

optimizer, case based reasoned (CBR), radio environment map, spectrum manager (SM) are few 

important primary modules [26]. The fuzzy logic based spectrum sensing and decision making also 

follow the CBR based approach. 

1.6.1.2 Public Safety Cognitive Radio 

The cognitive networks are also designed for public safety purposes [28]. Adhoc networks are one 

example of this type of cognitive radio based networks. These types of networks have a control and user 

domain. These networks have inner and outer loops. The outer loops have information recognition and 

behavioral adaptation. The inner loop consists of learning by tracking success and failure in the data 
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base. In public safety networks applications a selfish approach is applied. In the selfish approach one 

node has the priority over the other nodes. 

1.6.1.3 Open Source Cognitive Radio (OSCR) 

The OSCR project was designed for the integration of CE with multiple software communication 

architecture (SCA) [24]. OSCR also enables the connection of multiple radios with a single cognitive 

engine with the help of an application programming interface (API) [24]. The OSCR links a multiple radio 

application programming interfaces (API) with a single cognitive engine.  

1.6.1.4 Defense Advanced Research Program Agency (DARPA) Next Generation (XG) 

Program 

DARPA’s XG radio program is based on ontological reasoning on an SDR platform. It is a policy driven 

radio. This program is designed to make a strategy for unused spectrum. The main task is to avoid the 

interference of hidden users. In this program two ontological reasoning engines are suggested, one for 

policy and the other for waveform. The spectrum occupancy is provided by the dynamic spectrum 

access (DSA) capability. The white space probability tables are present at all nodes. These tables are 

updated at the fusion nodes. The XG uses the Web Ontology Language (OWL) [21] 

1.6.2 IEEE 802.22 WRAN (Wireless Regional Area Networks): First 

Wireless Standard 

The 802.22 was proposed in November 2004 [39]. It was the first Cognitive Radio based world wide 

effort to define a novel wireless air interface for the PHY and MAC layers [29, 30]. This standard was 

developed by the IEEE 802.22 Working Group (WG) [29]. The basic task of the Working Group was the 

development of PHY and MAC layers for CR based wireless regional area network (WRAN) [29]. The 

standard enables the unlicensed devices to operate in the Television (TV) band spectrums [30]. The basic 

task was the sensing and detection of the incumbent signal, so that interference due to incumbent users 

can be avoided and spectrum can be obtained by frequency reuse [29]. The dynamic spectrum 

management and radio environment characterization was designed also [29]. 

Adaptive modulation: Typical spectrum efficiency is 3 bits/sec*Hz (e.g., 64-QAM with ¾ code rate) 

OFDM type modulation to counter increased multipath due to less directional antennas at VHF and low 

UHF [29]. 

OFDMA on the return link allows scaling of the user terminal transmit power to the transmitted data 

rate [30]. 

1.6.3 Open Research Issues 

Tighter coupling with true research, more proactive approach for prediction, development of new tools 

for fast prototyping, adaptation of selfishness approach with respect to applications are the open 

research issues with respect to the cognitive frame work and architecture [10]. 
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1.6.4  Novel Algorithms for Cognitive Networks 

The novel based algorithms are basically bio-inspired networks. The examples of these algorithms are 

Ant colony algorithm (ACO), fish algorithm, Particle Swarm Optimization (PSO) algorithm and Grey 

analysis. The algorithms are designed by studying the behavior of animals (fish, birds, ants). These 

algorithms are especially useful in the large distributed networks. 

1.7 Cross Layer Design 

For all above tasks, the CR based networks work on the basis of cross layer design. By the combination 

of information from Physical and MAC layers the CR senses the environment. The decisions are made on 

the basis of these ‘meters’. On the basis of these ‘knobs’ (writeable parameters) the parameters of the 

Physical and MAC layer settings are changed to adapt according to the changing situation. The optimum 

performance of the CR networks can be obtained by the cooperation and exchange of information in 

between of the Physical, MAC and application layers [19]. Present protocols designed for the Physical 

and Mac layers for static spectrum allocation cannot be used for the CR based networks. For CR based 

networks the Mac layer protocols must have the ability to utilize the information from the Physical 

layer. It will help the MAC layer in assigning the resources to radio nodes. The decisions will be done on 

the basis of information provided by the Physical layer [31]. All the layers are used for the extraction of 

information from the physical layer and maximize the QoS for the applications. 

1.7.1 Physical Layer 

The main task of the Physical layer in CR networks is to sense the channel to check the presence of a 

primary user [31] and to find the spectrum hole. The best way of hole detection is the decision about 

the presence or absence of primary users’ signals [33, 34]. The Physical layer also measures the amount 

of interference during the channel occupancy by the secondary user. The Physical layer also shapes the 

transmitter waveform to avoid intolerable interference to meet the QoS requirements [33, 34]. The 

spectrum sensing techniques are subdivided into parametric versus non-parametric techniques [19].  

 

Figure 1.5 General OSI stack for the Cognitive radio based networks [34] 
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1.7.2 MAC Layer 

The MAC layer uses the Ton and Toff   information for the decision about switching of a new channel. It 

also works for the distribution of information among the other secondary nodes in the network [34] .It 

also manages the admission control and scheduling of different applications 

 

Figure 1.6  Functions done at different levels in Cognitive Radio Networks   [34] 

1.8 Performance Metrics  

The performance metrics appropriate the dynamic spectrum access and sharing has significant effects 

on various radio communication fields [36, 37]. The formalizing of the performance metrics will help in 

the research, comparison and advancement of the Cognitive Radio algorithms. The performance metrics 

are examined at the node, network and application levels [38]. The performance evaluation is a big 

challenge in the designing of CR networks and devices. The important step in CR design is the selection 

and establishment of effective performance metrics. The performance metrics will help the integration 

of the existing wireless networks with the CR based paradigm. The performance metrics help the 

regulators to establish the basics for regulating and certifying CR. The regulators ensure the non- 

generation of harmful interference. The vendors need performance, benchmarks for the approval 

testing during the production and development of the CR networks [3]. The performance benchmark 

helps the service providers in the deployment and maintenance of CR network and spectrum 

trading/subleasing [3]. The CR technologies cannot operate without performance metrics and 

benchmarking methods. The performance metrics must be selected carefully and they must enable the 

CE to give the proper response in changing environment and they must have the dynamic situation for 

utility functions [3]. 

The CR performance metrics are sub-divided into two categories: 

Node level performance metrics (node score card) as shown in below table 

The functionality of the CR node is evaluated on the basis of four domains [38]. These domains are 

1) Cognitive Functions. 

2) Overall Node Performance. 

3) Node Complexity. 

4) Technical Maturity. 
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Network level performance metrics (network score card) are also measured in the following four 

domains [38]: 

    1) Cognitive Functions. 

    2) Overall Network Performance. 

    3) Network complexity. 

    4) Technical Maturity. 

1.9 Motivation 

The solution of the spectrum scarcity is the dynamic spectrum sensing and change of new parameters 

adaptively according to the demand of a changing environment by ensuring the minimum level of QoS. 

The researchers in the field of Cognitive Radio are trying to solve this problem by designing the 802.22, 

802.15h and WRAN standards [29]. These standards are the steps towards the solution of the spectrum 

scarcity problem. In these standards the adaptation of the parameters of the TV bands and Wi-Fi bands 

are included. The knowledge of different disciplines is used for the designing of Cognitive Radios and 

networks. The main problem is still the effective decision making to mitigate the interference offered by 

the primary users. The interference problem is less serious in case of TV bands, but it will become a 

serious issue especially when the simultaneous communication of the both primary and secondary users 

will take place. In this thesis, spectrum sensing techniques are proposed for 802.16d as primary users 

and 802.11g as secondary users. In this case, as the 802.16d devices can communicate at any time and 

have the prior communication priority, so the problem of interference must be addressed. The solution 

of this problem is effective, low cost and computationally less complex spectrum sensing by using 

classical Non-Parametric Statistical Signal Processing based spectrum sensing techniques or machine 

learning based spectrum sensing techniques.  The spectrum sensing is basically a problem of statistical 

signal processing. In this thesis statistical learning theory is also applied. The sensing is done at the 

Physical Layer and the decision making process needs the utilization of MAC layer and messaging at the 

Network Layer. When there are more than one cognitive radios and sensing centers than cooperative 

spectrum sensing entities, data fusion centers and dynamic routing are required in a distributive way. A 

bridge in between different disciplines is required. J. Mitola presents the idea of agent based learning in 

Cognitive Radio networks .Unfortunately, most of the research is concentrating on the statistical signal 

Processing or cross layer design aspects. Few of them are working on machine learning based spectrum 

management and resource allocation [39]. This research is a small effort to make a bridge between 

statistical signal processing and machine learning by using these techniques for spectrum sensing. The 

results show that spectrum sensing is improved with the help of Support Vector Machines [39] and 

Fuzzy Logic Controllers FLCs. 

Welch periodogram is a non-parametric spectrum sensing technique and it does not need any prior 

knowledge about the signal. The performance of these detectors is poor at low SNR. At low SNR, the 

probability of miss detection (Pm) and probability of false alarm are high, and the probability of 

detection is reduced. The performance improvement needs more time and computational power. The 
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machine learning based spectrum sensing devices work on the basis of Statistical Learning Theory. These 

concepts are implemented here with the help of Support Vector Machines (SVM) and Fuzzy Logic 

Controllers FLCs. SVM is a supervised learning technique. SVM is basically used for the pattern 

recognition, feature detection, classification and the solution of regression problems in the field of 

vision and the speech recognition [40]. In this thesis the Autocorrelation Kernel is used for the signal 

detection by using SVM at very low SNR. 

1.10 Problem Description 

The cognitive radio is a future approach for the efficient spectrum utilization. For the proper working of 

cognitive radio based systems, it is necessary to decide whether the Primary user licensed spectrum is 

occupied or vacant. The robust and efficient spectrum sensing algorithms are the necessary component 

in the Cognitive radio technology. The criteria for the robustness and efficiency of the spectrum sensing 

algorithms and techniques are the preventing of hidden terminal problem, interference and the 

provision of reliable and robust detection performance at low SNR values. The spectrum hole detection 

and decision about the best hole selection is the main task of Cognitive Radio Cycle. For the spectrum 

hole sensing various signal processing techniques are used. In this research Welch periodogram based 

spectrum sensing Autocorrelation Kernel function based spectrum sensing techniques and Fuzzy logic 

based spectrum sensing techniques are applied. These techniques are applied for the AWGN channel for 

the Gaussian distribution based random data. There are two detection criterions one is Bayesian 

Criterion and the other is the Neyman Pearson Criterion. In the current thesis, the Neyman Pearson 

criterions is considered .In spectrum sensing the decision about the presence of the signal is done with 

the help of Statistical Signal Processing and Statistical Learning concepts. If the signal is not present at 

the specific frequency then the hole is present and the Cognitive Radio device can communicate by 

using these vacant frequency bands. The other problem arises when more than one spectrum holes are 

available. In this case, it is necessary to select best hole which is available for the longer time and where 

the chances of the interference are minimum. Statistical signal processing techniques have poor 

performance at low SNR or they are computationally more complex. The Support vector machine is 

working on the basis of statistical learning theory. Support Vector Machines are supervised learning 

technique which is mainly used for the pattern recognition, feature detection in the classification and 

regression problems in the field of Vision and speech recognition fields. The autocorrelation kernel 

method is normally used for feature detection on the basis of classification. In this thesis, the 

autocorrelation kernel is used for the spectrum sensing at very low SNR values. The machine senses the 

spectrum up to 89% accurately. The fuzzy logic was defined by Mr. Zaedh in 1969. The fuzzy logic based 

principles are used for the solution of control system problems. In this thesis, the spectrum sensing and 

decision about the selection of best spectrum hole is done with the help of Fuzzy logic. The decision 

about the best hole selection is done on the basis of the previous statistical band utilization record by 

considering the time constraints. The MAT LAB results are compared with the Mamdani’s model. The 

difference between the results is 4.1%, which is up to acceptable level. The spectrum sensing techniques 

are used to verify the following two hypotheses  
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H0:    W (n)                     noise only, the spectrum hole is present 

H1:    W (n) + S (n)            signal is present Spectrum hole are available 

The decision is done on the basis of threshold γ. If the PSD of the signal is< γ, then Ho will be satisfied 

and if the PSD> γ, then the H1 hypothesis will be satisfied. The Block diagram of the problem is given in 

figure 3.1 

1.11 Thesis Division  

The whole thesis is divided in the five chapters. The short description about the contents in these 

chapters is given below.  

Chapter 1 deals with the concepts of SDR, cognitive radio, cognitive networks, and cognitive cycle. The 

concepts of cross layer network design, present cognitive standard (IEEE 802.22), cognitive frame works 

and performance metrics are also discussed in this chapter.  

The Chapter 2 is dedicated for the background of spectrum sensing techniques. In this chapter basics of 

detection and estimation theories are discussed. In detection theory, the idea of Bayesian and Neyman-

Pearson detection criterion are discussed. In this chapter different data distributions are discussed. 

Furthermore the performance metrics for the detection devices is discussed. Short description of 

Quadrature Phase Shift Keying (QPSK) and Modulation techniques are given in this chapter. Also, in the 

end of this chapter, propagation effects on wireless channels are discussed. The characteristics of AWGN 

and fading channels are discussed in detail. 

 Chapter 3 deals with different classical, non-classical, parametric and non-parametric spectrum sensing 

techniques. The simulation results of the spectrum sensing with the help of Welch periodogram 

technique at various frequencies levels for both baseband and pass-band spectrum for AWGN channel 

are addressed. The Welch periodogram successfully detected the 400 MHz signals down to an SNR˂-25 

dB. 

Chapter 4 discusses the concepts of Machine Learning, Support Vector Machines, Autocorrelation Kernel 

and Mercer Theorem. The Autocorrelation kernel is used and the spectrum is sensed with the help of 

linear prediction methods. The SVM based spectrum sensing device works on the basis of supervised 

learning concepts. The detector identifies four transmitters successfully. This chapter also discusses the 

simulation results for the Autocorrelation Kernel for the baseband and pass-band spectrums. The 

simulation results showed the signal detection at low SNR Values. This technique is computationally 

more complex as compared to the energy based spectrum sensing, but they show the better 

performance at low SNR. This technique faces only a disadvantage that it needs the prior knowledge 

about the signals and it needs the certain time for training. But after the completion of the training it 

shows the better performance. 

Chapter 5 discusses the concept of the Fuzzy Logic. The Fuzzy Logic is a rule based technique. It is 

normally used for the solution of control system problems. In this chapter the spectrum sensing and 



 

14 

 

best hole selection are done by considering the time constraints. The MATLAB simulation results and the 

results from the Mamdani model are compared. The difference is 4.1%, which is acceptable. 

In the final conclusion, future work and the list of research papers are given. 

1.12 Contributions      

The main contribution of this thesis is the Autocorrelation Kernel, Fuzzy Logic and Welch periodogram 

based spectrum sensing for AWGN channel at very low SNR. The spectrum was successfully sensed up to 

400 MHz by a Welch periodogram based signal detection device down to SNR˂-25 dB. The 

Autocorrelation Kernel based SVM detector successfully detected the base-band and pass-band signals 

at low SNR values. SVM needs extra time for training the data, but after training the machine does not 

need extra time and computational power. The autocorrelation Kernel function based detection can 

provide a way for the detection of noise buried RF signals. 

This thesis is a ray of light for the solution of the spectrum sensing with the combination of the concepts 

of Statistical Signal Processing and Statistical Learning Theory.  

The few papers are already accepted in valuable research journals and will be published soon. The other 

papers are under progress and hopefully will be accepted in various scientific journals. 
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2 Background 
 

The understanding of many important concepts is required for the spectrum sensing in Cognitive Radios. 

Several ones are discussed here. 

2.1 Signal Detection Theory   

The detection theory is the key component in the decision about the presence or absence of the signal. 

It plays a vital role in the designing of electronic signal processing devices and wireless communication 

systems. These systems decide the occurrence of an event and then they extract the information about 

that event. The two main components of the detection theory are the ‘detection and decision’. The 

knowledge about the statistics of the signal and the probability distribution functions are required in the 

detection theory. It is difficult to directly predict the presence of the information signals at the receiver 

end due to the presence of noise and other signal distortion factors. The performance of the detector is 

checked on the basis of the statistical performance metrics. The detectors are designed to work in the 

noisy environment [1]. 

The detection theory plays a vital role in communication and signal processing systems, e.g. the first 

step in the operation of radar, sonar, mobile radios, speech processing, image processing systems, 

biomedical instruments, astronomy and the seismology etc. is the signal detection. In radar, the 1st task 

is the signal detection and the 2nd task is the information extraction [2, 3]. 

The decision about the presence or absence of a signal is the simplest detection problem [4]. The 

detection theory is also known as the hypothesis testing theory. There are two types of the hypothesis 

testing problems: binary hypothesis detection and multiple hypothesis detection problems. The speech 

recognition belongs to the binary hypothesis problem. The current research problem is the example of 

binary hypothesis. The problem can be represented as [5]  

    [ ]                                        [2.1] 

    [ ]   [ ]                           [2.2] 

Where X[n] represent the information signal and the w[n] represents the noise signal [6]. The presence 

of the signal or spectrum hole is decided on the basis of threshold value  . If the value of the received 

signal will be less than   then it will be noise (the spectrum hole is present) and in the case when the 

signal value is greater than the threshold value   [7] than it will be an information signal (spectrum hole 

is absent).    represents the null hypothesis and the    represents the alternative hypothesis [2].  

There are two simple classical testing approaches. These simple and classical hypothesis approaches are 

Neyman-Pearson theorem and Bayesian theorem or Bayesian approach. The Bayesian approach is based 

on minimizing loss. The loss function is established for each possible outcome and for possible decision. 

In the Bayesian approach of hypothesis, for testing prior probabilities are assigned [1]. The conditional 
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likelihood ratio is compared to the threshold. The Bayesian approach can be implemented for M-ary 

detection problem, M ≥2 [8]. The communications and pattern recognition systems follow the Bayesian 

approach. In this approach, the probability of error    is defined as  

    (  |  ) (  )   (  |  ) (  )               [2.3] 

The maximum likelihood detector (ML) is an example of Bayesian approach. A ML detector has the equal 

prior probabilities. In a ML detector the threshold is represented as  

 ( |  )

 ( |  )
 

 (  )

 (  )
                                                                                            [2.4] 

The detector which has the maximum aposteriori probability and which minimizes the Pe for any given 

value of the prior probability is known as the maximum aposteriori (MAP) detector. The MAP converts 

into Maximum Likelihood (ML) detector in case of equal prior probabilities. 

   The Neyman-Pearson approach is used basically for the binary detection problem. The Neyman- 

Pearson theorem is defined as: ‘Detector that maximizes the probability of detection for a given 

probability of false alarm is the likelihood ratio test’. In this approach tests are reduced to the 

comparisons of ratios of probability density or probability mass. These ratios are known as likelihood 

ratio test. The value of threshold   is found from the false alarm constraint [2, 9]. The Neyman-Pearson 

theorem is represented as 

 ( )   (    )  (    )                                  [2.5] 

In the Neyman–Pearson approach, the decision function is used to maximize the probability of 

detection. Signal detection in sonar and radar follow the Neyman-Pearson criterion approach. In our 

current research problem Neyman-Pearson approach is adopted [1, 3 and 10]. 

The performance of a detector is normally expressed with the help of three quantities, probability of 

false alarm    , probability of detection PD and probability of miss detection Pm [2, 3 and 11]. In the 

Neyman-Pearson theorem there are three possibilities of signal detection. The possible error in the 

detection are termed as 

a)  (     ) Is known as the Probability of false alarm (   ) [12]. It represents the situation when the 

noise is present and the detector shows the presence of the signal. It is also known as the type II error. 

Normally its value is up to 10-8 [2]. For a binary detection problem      ( ) [2]. The equation 2.6 

represents the values of the    . 

     (     )    { [ ]      }  ∫
 

√  

 

 
   (

  

 
  )     ( )                     [   ]  and  

b) Type I error represents the situation when the detector decides    but    is true. It is represented by 

 (     ) Probability of miss detection (  ) explain the situation when the information signal is 

present, but the detector shows the presence of noise (spectrum hole) [2, 13]. 

c)  (     ) Represents the probability of detection (  ) [14]. The detector exactly represents the 

presence of the signal for the situation when the signal is present [13]. For the binary detection problem 

   can be represented mathematically as     (   ) .Mathematically it is represented by  
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    (     )    { [ ]      }  ∫
 

√  

 

 
   (

  

 
(   ) )    (   )                    [2.7] 

The performance of a detector can be represented by the region of convergence (ROC) graph. This 

graph represents the relation between     and PD at various SNR values [2].  

The performance of a detector depends upon the selection of the two hypothesis H0 and H1.It also 

depends upon the selection of probability density functions P(X [0];   ) and P(X [0];   ) [8]. The optimal 

detector minimizes the  (     )   [  ]. 

     The Neyman-Pearson Theorem based detector represents the mapping from possible data values to 

the decision in case of data sets. Mathematically it can be represented with the help of critical region    

[2]  

   {                        }                                             [2.8] 

In this case the     can be represented with the help of significance level (size of the test) α as given 

below [2] 

∫  (      
)                                                                            [2.9] 

The basic task of the Neyman-Pearson based detector is the maximization of the     at any given value of 

   . The      is known as the power of the test. It can be represented mathematically [2] 

   ∫  (      
)                                                                           [2.10] 

The region where the value of    is is known as the best critical region. The performance of NP detector 

can be represented with the help of a plot between    and    . This plot represents the performance 

summary of the detector. The curve drawn in the plot is known as Receiver Operating Characteristics 

(ROC). Each point on the ROC curve represents a value of (       ) for the given value of the threshold    

It must be remembered that the value of threshold must be        [2]. In the Figure 2.1 the ROC for 

the given value of    is shown 

 

Figure 2.1: ROC for a Welch periodogram detector 
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The spectrum sensing techniques can be subdivided into local and cooperative spectrum sensing 

techniques. In local spectrum sensing techniques, decision about the presence of a primary user is done 

on the basis of local spectrum sensing measurements. While in cooperative spectrum sensing 

techniques, users within a group share their local spectrum sensing measurements and on the basis of 

this information, they decide the presence or absence of the primary users in a centralized or 

distributed fashion. Information fusion centers play a vital role in the decision process. 

The signals are detected on the basis of various properties. One of these properties is covariance and 

correlation. The covariance can be defined as [8]   

    [   ]   [(   [ ])(   [ ])]   [  ]   [ ] [ ]                     [2.11]                                       

The correlation coefficient is the normalized value of the correlation between two random variables X 

and Y. The correlation coefficient is define as 

    
   [   ]

√   [ ]√   [ ]

                
                                                                                     [2.12]

 

for a perfectly correlated variables i.e.      

The value of the correlation coefficient is        and for the uncorrelated variables      . In case 

of wireless communications, the signals are modulated carrier waves. These carrier waves can exhibit 

the built in periodicity [8]. This built-in periodicity can be used for the detection of the noise buried 

signal. These techniques are especially useful in case of time varying or frequency dispersive fading 

channels. 

In Cognitive Radio networks the basic and the essential task is the detection of the spectrum holes and 

the decision about the busy or idle state of the channel. If the channels are vacant then it is necessary to 

decide which channel will be best. The selection of the best channel is done on the basis of the channel 

occupancy history. The channel which is idle most of the time will be best channel. The spectrum 

detection is the crucial aspect in the CR based systems. The spectrum sensing is done at the physical 

layer [15, 16]. 

2.2 Probability Density Functions (PDF) 

The ability of numerical or analytical determination of the probability density function of the data 

samples effect the performance of a detector. If enough knowledge about the PDF is available then an 

optimal detector can be designed easily. In case when the PDF is not completely known, then the 

designing of an optimal detector becomes a difficult task. Some important probability density functions 

relevant to the research are explained below. 

2.2.1    Gaussian Probability Density Function 

The Gaussian distribution is also known as normal PDF. For a scalar random variable it can be 

represented as [2, 8, and 10]: 

 ( )  
 

√    
   [

  

   
(   ) ]                                                     [2.13] 
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Where μ is known as the mean and σ2 is known as the variance of x.  Where      (    )  In case of 

 (   )  the PDF have the bell shape.        

The CDF for μ=0 and σ2=1 can be represented as  

 ( )  ∫
 

√  

 

  
   (

  

   
)                                                                     [2.14] 

and the right tail probability is defined as  ( )     ( )  where  

 ( )  ∫
 

√  

 

   
   (

  

   
)                                                                    [2.15] 

Where  ( )is a monotonically decreasing complementary cumulative distribution function of a 

Gaussian random variable with zero mean and unit variance [17]. 

The multivariate Gaussian PDF of (n, 1) of random vector x is  

 ( )  
 

(  )       ( )
   [

  

 
(   )    (   )]                                          [2.16]   

Where C is the covariance matrix and it is positive definite and its value is  

   [(   ( ))(   ( )) ]                                                                      [2.17] 

It must be remembered that the value of odd order joint moments are zero for μ=0 and even order 

moments are the combination of 2nd order moments. In our present research problem we consider the 

sample distribution as Gaussian distribution.                

It must be remembered that normal distribution satisfies the closure property under summation. 

Another important fact about normal distribution is the Central Limit Theorem. The Central Limit 

Theorem [18] is stated as, ‘for any distribution, the sum of n independent random variables approaches 

to the normal distribution.’ If      (     
 ), where               then 

∑      (    
 )        ∑            ∑                                                          [2.18] 

2.2.2 Chi Square (Central) Distribution 

 

A chi squared probability distribution function with  >1 degree of freedom is [2, 8 and 10] 

 ( )   {

 

 
 
  (
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     (

  

 
 )

                                                 

                                                              [2.19] 

The Chi-square distribution becomes Gaussian when the value of   is large. The Chi-Square PDF arises as 

the result of    ∑   
   

          ~  (0, 1) where    independently identical data (iid). In this research 

problem the output of the squared device without any data follows the Chi- squared data distributions. 
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2.2.3 Chi Square (Non- Central) Distribution 

 

The sum of the square of iid Gaussian random variable with non-zero mean will be Non Central Chi-

Square distribution [2, 8 and 10]. For the large value of   it will convert into a Gaussian distribution. The 

Chi Squared (non-central) distribution occurs for   ∑   
 
  and     (    ) with   degree of freedom 

[2, 19]. Its non-centrality parameter is   ∑    
 
    [ ] . In Integral form it can be represented as  

  ( ) {
 

 
(
 

 
)
   

     [
  

 
(   )]   

 
  (√  )                                         [2.20] 

 ( )  {
            

                                                                                              [2.21] 

Where I(r) is the modified Bessel function of order and first kind  [2, 20]. The value of   ( )     

  ( )  
(
 

 
 ) 

√𝝅 (  
 

 
)
∫     (     )        
𝝅

 
                                                                      [2.22] 

In this thesis the output of the squared device (in case of data) is Chi-Squared (non-central) distribution 

[21].  

2.2.4 Rayleigh PDF 

The Rayleigh PDF is achieved in the case when the data is arranged in the form of   √  
    

  

where           are independent and have the Gaussian PDF with zero mean represented 

as     (    ) and     (    ) and their PDF is given as[2,8,10] 

 ( )   {
 

  
   (

  

   
  )         

                                     
                                                                [2.23] 

2.2.5 Rician PDF 

The Rician PDF is achieved in the case when the data is arranged in the form of  

  √  
    

   where           are independent distributions and have with zero mean represented 

as     (    
 ) and     (    

 ) and their PDF is given as [2] 

 ( )   {
 

  
   [(

  

   
(     )]  (

  

  
)         

                                                               
                                               [2.24] 

Here       
    

                      ( )         can be represented as  

  ( )   ∫
   (     )      

 
                                                                                      [2.25] 

The spectrum sensing and detection can be subdivided into direct and indirect methods. The power 

spectrum is directly estimated from the signal [24]. The direct methods are also known as the frequency 

domain approach. [2] 
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2.3 Multiuser Detection    

The main task of the multiuser detection (MU) is the achievement of minimum error probability. A 

Matched Filter is also used for [25] optimum signal detection. The optimum detector must know about 

the signals and the signal correlations, the timing and amplitude of the signals, noise level. This 

information helps in the determination of bit error rate (BER). Individually optimum detector and jointly 

optimum detector are two possible approaches for the optimum detection. The jointly optimum detector 

[26] approach is a comparatively robust approach and provides the better results. Multiuser (MU) 

detection technique can be applied for the solution of non-orthogonal multiple access problems. For 

example, MU can be applied for CDMA, cross talk, Multipath TDMA and magnetic recording problems 

[27]. 

2.4 Performance Metrics 

The different performance metrics are used for the measurement of performance of the spectrum 

sensing devices. For a particular problem, the required spectrum sensing technique is selected on the 

basis of performance criterion like speed and accuracy, computational complexity of the estimation of 

the spectrum [28, 29]. It is not possible to attain the time and frequency resolution simultaneously. So, 

the tradeoff between speed (time resolution) and accuracy (frequency resolution) is achievable [24]. 

Actually due to uncertainty problem, it is not possible to achieve high spectrum sensing speed with great 

accuracy (time frequency tradeoff) [25, 26 and 27]. The good time resolution is required for the location 

of time domain discontinuities. Time resolution is compromised for the frequency resolution. 

In some cases the duty cycle is considered as the performance metric. So, the spectrum sensing 

technique will be selected on the basis of spectrum sensing speed and accuracy. The accuracy depends 

upon the frequency resolution, leakage and variance of the estimated power at each frequency band 

[24]. The bias or leakage depends upon the side lobe level [24]. The high side lobe creates the spillover 

in the neighboring frequencies and reduces the accuracy of the estimated power [24]. The variance is 

the result of the variations in the estimated power in a specific frequency band. Computational 

complexity is an important performance metric. The simplicity and less computational power 

consumption determine the possibility for the usage of the spectrum sensing device for the solution of a 

particular spectrum sensing problem. So, we can say that for a given problem, the best spectrum sensing 

(hole detection) technique will offer a tradeoff between time frequency resolution with minimum 

computational complexity. 

The coherent detection devices behave well for the detection of the signals with low SNR but they need 

perfect information about the signal properties. For example in pilot based detection the matched filter 

need the prior information about the pilot signals [30]. Non-coherent based signal detection techniques 

do not need the prior information but there detection performance is poor at low SNR [25] 

The cooperative spectrum sensing is the efficient way of increasing the performance of network. In 

cooperative spectrum sensing, the sensing is done at node level. The sensing results of each node are 
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combined at the fusion center by using different data fusion rules [31]. The majority decision rule 

improves the detection probability [32]. The majority decision rule is an efficient and reliable decision 

rule which can provide the optimum detection ability. 

The time domain spectrum estimation approach is also known as the indirect approach. Autocorrelation 

function based spectrum estimation is the example of the indirect spectrum estimation in the time 

domain [2]. The performance of these detection techniques is checked on the basis of their performance 

at the lower SNR.                   

2.5 Estimation Theory  

The 2nd step of spectrum decision process is the estimation. The process of extraction of parameter 

values which gives some data is known as the estimation. The basic task of the estimation theory is to 

provide the foundations for the information extraction. The parameter is a global characteristic of the 

population. The probability theory establishes the base for estimation theory. During the estimation 

process the information can be processed in summation or pooling way [4, 3 and 27].              

The estimator can be linear or non-linear. The sample mean and average based estimators are the 

examples of linear estimators. Linear estimators have the low variance and they can be used for the 

calculation of potentially better estimate of the true value of X. The linear estimator does not need the 

prior information. The Bayes’ rule establishes the basis of the estimation theory [3]. It can be defined as  

 ( | )  
 ( | ) ( )

 ( )
                                                                             [2.26 ]    

 
Figure 2.2  Combination of Prior Information p(x) with a measurement P (z|x) to calculate the Posterior [10]. 

The goal of the spectrum estimation is the description of the power contained over frequency in a signal 

[33]. The description is done for the finite data set. Power spectrum estimation is useful for the 

detection of noise buried wideband signals. The PSD )( j
x eS shows the power contents of the signals in 
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an infinitesimal frequency band [33]. The power spectral density (PSD) for a stationary random process 

)(nx  is the discrete Fourier transform of the correlation sequence )(nrx  [34]. It can be written as 

   ( 
  )  ∑   

  
    ( )                                                        [2.27]        

 

The equation 2.27 shows that the PSD of a signal represents the power content in an infinitesimal 

frequency band. 

The value of the   ( ) is given by [35] 

  ( )   [  ( ) (   )]                                                                                    [2.28 ]     

The integration of the PSD over a particular frequency band[     ] where            is equal 

to the average power of the signal for that particular band [3, 36]. It can be mathematically represented 

as   

 (     )  ∫    ( 
  )  

  

  
                                                 [2.29]

 

        

                             

 

                                                                                   

 

The asymptotic or high SNR assumption is useful in estimation problems. High SNR helps in accurate 

estimations.  

The spectrum estimators used for wideband spectrum estimation are subdivided into parametric and 

non-parametric spectrum estimators [37]. 

The parametric spectrum estimation methods are based on some model [37]. The performance of the 

estimator is highly dependent on the model. If the model is inaccurate then the performance of the 

spectrum estimator will be poor and vice versa. In this method, the PSD is estimated from the signal 

which is assumed to be the output of the white noise driven linear systems [38]. The PSD can be 

determined by estimating the parameters (coefficients) of the linear system which is hypothetically 

responsible for the signal generation [38]. The parametric methods show the better performance as 

compared to the classical non-parametric methods in case of short data length signals. Yule-Walker 

autoregressive (AR) method, Burg methods and autoregressive moving average (ARMA) methods are 

examples of parametric methods. 

The non-parametric spectrum estimation methods are not based on some model or assumption about 

the power spectrum shape. In this method, the PSD can be directly estimated from the signal itself 

without any prior knowledge [38]. Periodogram method, Welch periodogram, Multi-taper spectrum 

estimation and estimator-correlator methods are the few examples of non-parametric spectrum 

estimation approaches [38]. 

2.6 Modulation Techniques 

Various modulation techniques are used in analog and digital communications. In this research the QPSK 

is used. The information signal is transmitted with the help of baseband signals. For the transmission 

through the wireless channels, different modulation techniques are used. The modulation techniques 

are named with respect to the variations in the characteristics of the signals [39]. The modulation 

techniques are subdivided into  
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Amplitude modulation (AM) 

Frequency modulation (FM) 

Phase (Angle) modulation (PM) 

 In AM the amplitude is varied. In frequency modulation, frequency of the carrier signals is varied. Phase 

is varied in case of phase modulation. 

2.7 Propagation Through Wireless Channels 

The performance of the communication devices depends upon the condition of the channels and 

propagation mechanism. The radio waves are propagated as travelling electromagnetic waves through 

space. The energy of the signals exists in the form of mutually perpendicular electric and magnetic fields 

[41]. Radio communication becomes complex especially in urban areas due to multipath propagation 

[36, 41]. The power of the transmitted signals is degraded due to channel impairments [36,41]. The 

performance of communication systems highly depends upon these impairments [41]. For example, the 

great hurdle in the success of optical wireless communication is the heavy attenuation due to rain or fog 

situations. A lot of research is done just in order to overcome the attenuation which reaches up to 

multiple of 10 dBs. The effect becomes especially important in case of wireless communications. The 

multipath propagation happens due to reflection and diffraction of the signals. It is difficult to establish 

the models for the obstacles like tunnels, underground passages and indoors due to their complex 

structures. The Rayleigh model can be used for the random environmental structures [36, 41]. The 

waveguide theory or Rician model can be used to solve the problems of line-of-sight propagation paths. 

The important propagation attributes are diffraction, reflection and scattering [42]. 

2.7.1 Reflection 

Reflection is the bouncing back of the signal from the smooth surfaces. In case of reflection the angle of 

incidence is equal to the angle of reflection [43]. In case of reflection, the medium’s intrinsic impedance, 

angle of incidence and electric field polarization [41] affect the amplitude and phase of the reflected 

waves.      

2.7.2 Scattering 

The Scattering effect occurs due to the collision of the signals with a rough surface or with an object 

whose size is as small as the wavelength of the signal. In scattering, the energy is spreading in all 

directions. Scattering can be done due to the objects like lamp posts, furniture and so on. 

2.7.3 Diffraction 

In this phenomenon the radio waves are bending towards or away from their original path when they 

are entering from one medium to another and vice versa. 
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In undisturbed line of sight (LOS) [45] links only the free-space loss has to be taken into account. It is 

defined as follow [36]  

        (
   

 
)                                                                             [2.30] 

2.8 Fading Channels 

The performance of the communication devices depends upon the condition of the channels. The power 

of the transmitted signals is degraded due to channel impairments. The performance of communication 

systems highly depends upon these impairments. The effect becomes especially important in case of 

wireless communications. The fluctuations in the amplitude and phase occur due to multipath incoming 

waves at the receiver which results in the form of fading of the signals.  

The long- term or slow fading have longer period and signal power [18, 36, 41 and 46] attenuation 

values around the mean value [41]. Slow fading is the average of signal power over larger distance 

between transmitter and receiver of the order of few kilometers (5 to 40 wavelengths) [18, 36, 41 and 

46]. Normally Rician distributions are used for PDF [47].  

In case of short term or fast fading signal power fluctuates rapidly due to local multipath. The short term 

fading is observed for a distance about a distance which is approximately equal to ½ λ. Fast fading is 

random and the rapid fluctuations in it occurs due to movements of receiver, transmitter and 

surrounding objects. The statistical properties are used for the determination of the system 

performance. In this case, Rayleigh distribution is used for the approximation of PDF [18, 48]. 

The slow and fast fading is separated on the basis of small area average or sector average [49]. The 

average within small areas due to shadowing caused by buildings is varying in a random manner. This 

effect can be represented by lognormal distribution and is known as the Shadow effect or log normal 

fading. In general the receiver power is expressed as 

     (
  
 
)                                          [    ]  

                                        

                    (                                              ) 

                                                (          )      (                 ) 

The received power for non-LOS case can be expressed as  
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) [   ]             [2.32] 

The Doppler shift exists due to relative motion of transmitter and receiver [18, 41 and 50]. The value of 

maximum Doppler shift    is expressed as    
 
 
 ⁄
  Where  = carrier frequency. The received signal is 

the product of signal component subjected to long term fading  ( ) and the signal component is 
subjected to short time fading  ( ) [41] and it can be expressed as          

 ( )   ( )  ( )                              [2.33] 
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2.8.1 Characteristics of Wireless Communication Channels 

 

The characteristics of a wireless channel is quite different from wired channels due to shadowing and 

multi path fading, Doppler Effect, delay spread and time dispersion [18, 36, 46, 47, and 48]. Time 

dispersion in a mobile channel happens due to spread of symbol timing in the modulation symbol and 

produces the distortion. Time dispersion happens due to frequency selective fading. In this case, the 

frequency components spend different time to reach the receiver which results in the form of 

production of different attenuation levels [41] due to constructive and destructive interference [18, 36]. 

Frequency selective channel affects a portion of overall channel bandwidth at a given bandwidth [18, 

41]. 

Doppler shift takes place due to the relative motion of the transmitter or receiver or both. It produces 

the shifting or spreading of frequency components which can be explained with the help of frequency 

dispersion. For coherence time  (  ) , the channel attenuations are assumed to be kept constant and the 

channel impulse response is relatively correlated or invariant. The value of coherence time (  ) is equal 

to the inverse of Doppler spread [41, 51] 

The value of coherence time is  

    
 

    
         

 

 
                                                              [2.34] 

Doppler spread measures the rate of change of channel characteristics and it also calculate the rate of 

occurrence of the fading [41]. Fast fading takes place in case when the changes in the channel are faster 

than the symbol rate. When symbol rates are faster than the rate of changes in channels, then slow 

fading takes place.    is the rms delay for multipath delay [41]. 

The attenuation is kept constant and frequency components behave identically over a frequency range 

known as the coherence bandwidth. The phenomenon that two frequency components have strong 

potential for amplitude correlation can be used to classify the channel fading [41]. The channel fading 

can be classified into flat fading or frequency selective fading [18, 41and 52]. The coherence bandwidth 

   between two frequency envelopes [52] is represented as   

   
 

    
                                                                                           [2.35] 

Time dispersion takes place in case of band-limited channels or in a case when coherence bandwidth is 

less than modulation bandwidth [41]. Inter-symbol-interference (ISI) occurs due to time dispersion. For 

ISI, the bit error rate (BER) increases and energy of one symbol spills over to another symbol [17, 56].    

sets the upper limit for the transmission rate without any equalizer. The flat fading will takes place when 

frequency components separation      [52]. 

When,         the channel acts as frequency selective channel. In case of a frequency selective channel, 

the frequency components are affected non-identically. The rule of thumb is 

                                                                               [2.36] 
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The communication system parameters of cellular systems are designed with the help of propagation 

path loss models [24]. The selection of channel model affects the performance of the wireless network 

due to its interference prediction ability [18, 41and 46]. The example of few of these models is   

1. Hata/Oskumara model is the empirical model used in Europe and North America [54,55] 

2. Cost 231 models were proposed by the European Telecommunication standard Institute (ETSI) for 

the use in Personal Communication Networks/Personal Communication Systems (PCN/PCS) [41]. 

3. IMT-200 model was proposed by International Mobile Telecommunication-2000 (IMT-2000) for 

outdoor to indoor, pedestrian environment, indoor office environment and vehicular 

environment [41]. 

2.9 Noise in Communication Systems 

Unwanted signals in electrical systems are known as noise. Noise limits the correct symbol decision [18]. 

Noise can be subdivided into natural or man-made noise. The sources of natural noise are thermal or 

Johnson noise, atmosphere, sun and other galactic noise [56]. The example of man-made noise is 

switching transients or spark plug ignition. Often different techniques for example shielding, filtering, 

selection of optimum receiver and proper modulation techniques are used for the reduction of noise 

effects. Thermal noise is described as a Gaussian random process. The value of Gaussian random 

process  ( )is characterized with the help of Gaussian probability density function as given below [54, 

55 and 56] 

 ( )  
 

 √  
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)   ]                            ( )                                                 [2.37]        

Gaussian distribution is used for the system noise model due to the central limit theorem [57]. 

2.9.1 White Noise 

White Gaussian noise channel is most commonly used for simple channel modeling. The two-sided 

power spectral density   ( )of thermal noise (white noise) [58] is the same (flat) for all communication 

frequencies [18] i.e.; equal amount of noise power bandwidth-up to 1012 Hz. It can be denoted as 

  ( )  
  

 
                   , where                                   

If No is uniform, then the noise is known as white noise [47]. The Inverse Fourier Transform of the noise 

power spectral density is equal to the autocorrelation function of white noise [36]. It can be represented 

as       

  ( )     {  ( )}  
  

 
 ( )                                                    [2.38] 

The average power of white noise is   due to its   bandwidth [57]: 

   ∫
  

 

 

  
                                                                                [2.39] 
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Figure 2.3  Power spectral density of white noise [15] 

 

Figure 2.4  Autocorrelation function of white noise [15] 

It must be remembered that white noise is decorrelated from the time-shifted version. The above 

discussed model is also known as additive white Gaussian noise (AWGN). AWGN noise affects each 

transmitted symbol independently and the noise is superimposed on the signal [59]. In this thesis, 

AWGN noise buried signals are considered.  
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3 Spectrum Sensing Techniques in 

Cognitive Radios 

3.1 Introduction 

J.Mitola presented the idea of SDR and Cognitive radio for the solution of spectrum scarcity problem [1, 

2, 3, 4, 5 and6] for the solution of spectrum scarcity problem. There are many signal processing 

operations in the background of the Cognitive Radios [5, 7, 8 and 9]. One of these operations is the 

spectrum sensing. Signal detection theory is used for the separation and recognition of information from 

the noise-buried signals. The spectrum sensing (primary user detection in licensed spectrum) is the most 

important task and fundamental problem in Cognitive Radio based systems and networks. Cognitive 

Radio based networks have two types of users. One type of the users are known as the primary users 

and the other are known as the secondary users. The primary users are licensed users and the secondary 

users are the cognitive users (unlicensed users) [3, 5]. The primary users have the priority of spectrum 

usage [3, 5]. While the cognitive user have the opportunistic nature of the spectrum usage [3, 5], 

cognitive users can use the primary user’s frequency when the spectrum holes (primary users are not 

communicating) are available. Various Parametric and Non parametric Spectrum Sensing techniques are 

used for the spectrum hole detection. In this chapter various techniques are reviewed and discussed. 

Welch periodogram is a non-parametric, computationally less complex and fast spectrum sensing 

technique. The energy detection, Autocorrelation Estimator Correlator, Filter bank, MTSVD [3, 8] based 

spectrum sensing techniques are discussed here. These sensing techniques need a small amount of prior 

information about the source signal and the propagation channels. The practical challenges in spectrum 

sensing are the presence of interference noise due to the primary user signals. Welch periodogram 

works on the basis of Barlett windowing. In this chapter the Welch periodogram is successfully applied 

for the baseband and passband signal detection for the signals propagating through an AWGN channel 

in cognitive radio systems and networks. The detector detects the 4 signals successfully up to SNR=-30 

dB. The performance of the detector was checked for various SNR values and for various frequencies. 

With the help of available computational power, the Welch periodogram detector can detect the signals 

up to 400 MHz. The real-time and low complex spectrum sensing techniques are required. The solution 

of these challenges is theoretically analyzed on the basis of test statistics and the simulation results are 

shown in this chapter.  

The early work in the detection theory [10, 11, and 12] was done by radar researchers. Peterson, 

Birdsall, Fox, Wilson P. Tanner, David M. Green, and John A Swets play an important role in the 

development of the signal detection theory. Spectrum sensing and estimation can be divided into 

various categories. The spectrum estimation devices are sub-divided on the basis of classical direct and 

indirect spectrum estimation techniques [13]. Direct spectrum estimation techniques are basically lying 
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in the category of frequency domain approach [13]. In this technique, the power spectrum is directly 

estimated from the signal [13]. While indirect spectrum estimation techniques are in the category of 

time domain approach [13]. The example of indirect method is the spectrum sensing on the basis of 

cross correlation (autocorrelation) function. The power spectral density can be calculated from the 

autocorrelation function with the help of Discrete Fourier Transform (DFT).  

Spectrum estimation methods are also subdivided into parametric and non-parametric categories [14]. 

The parametric approach is also known as the model-based approach. The autoregressive (AR) model, 

moving average model or auto regressive moving average (ARMA) models are the few examples of this 

approach [8, 15, 16 and 17]. The signal parameters are estimated on the basis of observed signals with 

the help of derived model. Parametric estimators have the higher degrees of detail [18]. The parametric 

model based estimators have few drawbacks. In the case of nonsufficient and inaccurately described 

signals, the results of the estimators are less meaningful and accurate. 

The non-parametric methods do not need any assumption about the power, shape and other signal 

parameters [18]. The non-parametric methods find the power spectrum estimation without any prior 

knowledge of the respective stochastic approach [18]. 

There are three main and commonly used spectrum sensing approaches. These approaches are  

Energy Detector 

 Matched Filter 

Cycostationary Feature Detection 

3.2 Problem Statement 

The basic problem in the cognitive radio is to determine whether the channel is vacant or busy. The 

primary users have the priority of spectrum usage. The secondary users can use the spectrum bands 

when they are not used by the primary user. The idle frequency bands are known as the spectrum holes. 

So, the main problem is to decide about the idle or busy state of the channel [10, 19]. For this purpose 

the Binary Hypothesis mechanism is used [10]. H1 (alternative hypothesis) shows the presence of the 

primary signal and H0 (null Hypothesis) shows the empty signal or presence of the spectrum hole [8, 17]. 

The system model is discussed here for the FFT based (windowing based) energy detection device. In 

this case 

Ho=x[n] =W[n]                n=0, 1, 2,…………,N-1                                        [3.1]             

H1=x[n] =S[n] +W[n]       n=0, 1, 2,………..,N-1                                         [3.2]           

                  S[n]: zero-mean Gaussian process with known covariance 

W[n]: white Gaussian noise (WGN) with  (    ) independent of s[n]    [20] 

The detection problem is to distinguish between these two hypotheses [44]. In this thesis, various 

techniques were used to distinguish between the above two hypothesis 
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Figure 3.1  Experimental set up for QPSK based signal detection 

In this research problem four random signals were generated in MATLAB. The QPSK modulation scheme 

was applied on the signals. SSB-AM modulation scheme was used to propagate the signals at high carrier 

frequencies. The signals of different SNR values were propagated through the AWGN channel. At the 

receiver end, the signals were detected with the help of a detector. In this thesis these signals are 

detected by Welch periodogram, autocorrelation kernel based Support Vector Machines (SVM) detector 

and Fuzzy logic based detector. The selection of the best spectrum hole was done by SVM and Fuzzy 

logic detector. The Welch periodogram detector successfully detects the signals up to 400 MHz down to 

SNR 0-30dB. The SVM detector successfully detects the signals at low SNR values. The fuzzy logic 

detector selects the best spectrum hole in time varying environment. The theoretical details, simulation 

results, advantages and disadvantages of each scheme will be discussed in the remaining chapter 

3.2.1 Neyman-Pearson (NP) Theorem 

Definition: the likelihood ratio test (LRT) to maximize the probability of detection (Pd) at any given 

probability of false alarm (   ) [10] .H1 is related to the source signal distribution and    relates to the 

noise distribution [10, 20]. The Neyman Pearson based spectrum sensing detector decides H1 if the 

likelihood ratio exceeds to the threshold value [10, 20] then  

 ( )  
 (    )

 (    )
                                                                        [3.3] 

will represent the information signals [10, 20]. We must remember that the LRT based detection needs 

the knowledge about channel and noise distributions. Here received data vector is     

X=[x [0] x [1],…, x [N-1]]T    . 

In this case Gaussian PDF [10,20] will be  
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So, the likelihood ratio will be [10, 20] 

 ( )     ( )      [
  

   
[(   ) (   )     ]]           [3.6] 

It must remembered that the inequality cannot be changed by taking the logarithm due to the 

monotonically nature of the process [10, 20], so that 

 ( )     ( )  
  

   
 [
  

   
(   ) (   )     ]                             [ 3.7] 

After some algebraic operations, the inequality will be [10, 20]  

 

    
    

 

   
                                                                               [3.8 ] 

The signal energy is represented by the 2nd term [10, 20], now 

          
 

 
                                                                              [3.9] 

In this case, the alternative hypothesis H1 will be decided with the help of new threshold    [20, 21] 

 ( )      ∑  [ ] [ ]       
                                                                       [ 3.10] 

 Figure 3.2  Received signal is correlated with replica signal [10]

 XTs is the projection of X on to S [20]. This is the Neyman-Pearson criterion for the deterministic signals. 

It is known as correlator or replica correlator [10, 20 and 21]. This equation represents the correlation 

between X[n] and replica of S[n]. T(X) and        used to satisfy the desired value of                

     The above equation is derived from the linear vector space theory and represents the projection of X 

on to S [10, 22]. Schwarz inequality shows the higher values for the parallel vectors and has the 0 value 

for the orthogonal vectors [10, 20]. The estimator-correlator can remove orthogonal signal noise 

components and the parallel components (information signals) can be observed [20]. We must 

remember that the LRT based detection needs the knowledge about channel and noise distributions. 
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3.3 Energy Detector for Random Signals  

 The Energy Detection based spectrum sensing technique is a non-coherent, non-parametric and 

suboptimal spectrum sensing (detection) technique [23]. The energy detector is a most common 

spectrum sensing technique due to its low implementation and computational complexities [10, 20, 24, 

and 25]. In this technique, the prior information about the signal shape is not required. It is the most 

generalized, easy to implement technique which can be implemented to any type of signal. In many 

cases the energy detector is used for the PU detection [21, 26, 27and 28]. The energy detector needs 

minimum information like signal bandwidth and carrier frequency. In energy detector, the low pass filter 

is used to remove the out-of-band noise and adjacent interference [10]. The Analog to digital Converter 

(A/D) is used to convert the analog signals into processable digital signals. In the energy detector, the 

square law device is used to compute the energy of the signal. Due to non-flexibility, the periodogram 

detector is used for the detection of narrowband signals and sine waves. The details of the periodogram 

will be discussed further. 

In the case of zero mean, white Gaussian signals in WGN Channel, the energy detector is the NP 

detector [10, 20]. The problem statement regarding to the random signals are represented by equation 

3.1 and eq.3.2  

The detection problem is to distinguish between these null and alternative hypotheses [10, 20, 23, 24 

and 26]. In this research problem, the energy detector will follow the Neyman-Pearson criterion. 

According to the Neyman-Pearson (NP) criterion, the detector can decide that the    hypothesis is 

satisfied if the likelihood ratio is greater than threshold value   [10, 20]. 

L(X) =P(X;  )/ P(X;  )>γ                                                                  [3.11] 

For the signal s[n] as WGN with variance σ2
s is independent of S [10, 20]. Under any hypothesis, the 

received data vector X is distributed according to Gaussian PDF [20]. The variance will change when the 

signal s[n] will be present [20]. So, 

  {
       (     )                   

           (  (     ) )           
                                             [    ] 

Where CS=σ2
sI is the covariance matrix [22]. It can be written as [10, 20] 

 (    )  
 

(    )
 
 

    [
  

   
(   ) (   )]                                  [    ]        

and  (    )  
 

(    )
 
 

   [
  

   
   ]                                             [3.14]                   

The decision criterion for the    [20] is    ( )      ∑      
   [ ]                 [3.15]    

The decision criterion for the    [20] is   ( )      ∑      
   [ ]                   [    ]   

Where T(X) represent the test statistics   [20].                                       



 

40 

 

When the data is not added then the distribution will become the Chi–square distribution and in case of 

data addition the distribution becomes the Non-chi-square central distribution [10]. The diagram of the 

energy detection based sensing device is  

 

 

Figure 3.3  Energy detector based spectrum sensing devices [28] 

It must remembered that for Rs = σs
2 I, the estimator correlator is reduced to energy detector (ED). The 

energy detector has two degrees of freedom. The frequency resolution can be increased by the increase 

of FFT size. Increase in frequency resolution improve the detection performance  and improve the signal 

energy estimation, but this increase in the FFT size needs more time for processing [15,21,28]. In the 

case of fixed FFT size, the energy detector has comparatively low computational complexity [28]. The 

performance of the energy detector also depends upon the number of samples [29]. If the numbers of 

samples are not limited, then theoretically the energy detector can meet any required value of    and 

   . The minimum number required for any desired value of PD and PFA is calculated as  

                     [ (   )     (  )   
      (  )]                                      [3.17] 

The sensing time scale for the energy detector is  ( 
    ⁄ )   The sensing time scale is improved in 

case of sine wave detection. 

Disadvantage 

1. The energy detectors need less processing power. 

2. The energy based detector cannot detect the signal below SNRwall, where SNRwall is the minimum 

amount of SNR for detectable signals. 

3. The performance of the energy detector suffers from the noise power uncertainties [13, 21 and 28].    

4. The energy detector can only determine the presence of the signals. It cannot differentiate between 

the signal types.  

5. The simulation results show that the energy detector performance is poor at SNR ˂-30dB. 

Estimator correlator, periodogram and Welch periodogram are the few examples of energy detectors. 
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3.3.1 Estimator- Correlator 

In case of Gaussian distribution, The LRT becomes the estimator correlator. For the WSS Gaussian 

random process based signal detection propagating through WGN channels, PSD detectors can be used 

as approximate estimator-correlator for large data records N. Estimator correlator is the generalized 

energy detector for the signals with arbitrary covariance matrices Cs. 

The problem statement regarding to the random Signals is represented in equation 3.1 and 3.2. The 

decision criterion for the signal is represented by equation 3.11 

For the signal s[n] as WGN with Covariance matrix Cs, the data distribution will be [20]  

  {
       (     )                   

        (        )           
                                 [    ]  

After some algebraic manipulations and matrix inversion lemma [20] , the criterion for the occurrence of 

the H1 will be [20]     

 ( )     ̂  ∑  [ ] [ ]     
   

   

                            [    ]        

        ̂    (      )    

and if the noise signal occurs then we can say that the channel is vacant and the spectrum hole is 

available. Here   ( ) is the test statistics in quadratic form [20]. The diagram for the estimator-

correlator is given below 

 

 

Figure 3.4  Estimator-correlator for the detection of a Gaussian random signal in WGN [10] 

The detector is known as the estimator-correlator because the detector correlates the received data 

vector X with the estimated signal  ̂ [20].  ̂ is known as Wiener filter estimator of the signal because the 

estimated signal is produced after filtering through the wiener filter [10,20]. It must remembered that 

an estimator-correlator detector needs the knowledge about the source signal covariance matrix and 

the noise power [20, 22] . 
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3.3.2 Window Function 

The window function is used for the spectrum analysis [15]. The window function multiplied by the time 

waveform reduces the effects of spectral spreading [15, 30]. The FFT is used for the spectrum analysis 

for the calculation of cyclic extension of the time waveform [15, 30]. The non-cyclic time waveform 

results in the form of spectral spreading [15]. The window function is reducing these transients [15, 23 

and 30]. The power spectrum can be calculated by using the window function [30] 

  L
N wtwtSFFTsP 
21010 log20)))().(((log20)(

                              [3.20]  
 

Where )(tw  is the window function and )(Lw  is the window loss function, N is the number of samples 

in S (t) and P(s) is the power spectrum measured in dB [15, 28 and 30]. The performance of a window 

function can be determined with the help of side lobe power and the transition function. There is a 

tradeoff between the side lobe power and the transition width of the window function [15, 30]. The 

leakage in the window function is measured with the help of equivalent noise bandwidth (NEB) [15, 30]. 

The rectangular window is a simple but non popular window [15, 30]. Non rectangular windows can 

provide more details about the signals but they have more leakage effect [15]. The quality of windows is 

explained with a tradeoff between high resolutions versus high dynamic range windows [15]. The 

leakage is used to define the metric “Scalloping Loss” [15].   

3.3.3 Periodogram 

Short Time Fourier Transform (STFT) provides the information about the time and frequency [15, 18]. 

The tradeoff between the speed and accuracy can be compromised by changing the dimension of the 

window [15, 18]. If the window used is of small size then the estimation needs less time. It also results in 

the form of larger main lobes of the window kernel [15, 18]. This larger window kernel will result in poor 

frequency resolution. If the window size will be increased then for sample collection more time will be 

required which results in better frequency resolution. The STFT suggests the same window size for all 

sample collection. The STFT of a signal X[n] is defined as [15] 

     
mj

emWmnxnX







 ,

                                           [3.21]     

Where  [ ] is window sequence. In this case a one dimensional sequence  [ ] is converted into two-

dimensional function of discrete time variable n and continuous frequency variable λ. STFT is periodic 

with period     Equation 3.22 can be consider as DTFT of the shifted signal  [   ][  ]  

The STFT is the key concept behind the periodogram spectrum sensing. The periodogram is used for the 

estimation of the power spectral density of a signal [15]. It is the energy based spectrum sensing 

method. The idea of the periodogram was proposed by Arthur Schuster in 1898 [7]. Periodogram based 

spectrum sensing is a non-parametric spectrum sensing approach. The periodogram based spectrum 

estimation is considered as the output of several filters banks where each point in the power spectrum 

estimation is considered as the output of the respective filter. Practically, the periodogram is computed 

with the help of FFT from a finite length digital sequence. The use of a raw periodogram is not a good 

technique for spectral estimation [15, 31]. The problems in raw periodogram are spectral bias and the 
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variance at the desired frequency. Sharp truncation of the sequence is the basic reason of spectral bias. 

The bias problem can be reduced with the help of multiplication of the finite data sequence with some 

window function. The multiplication of the window function truncates the sequence gradually.  

Normally the rectangular window is used which results in the form of Dirichlet Kernel. The Dirchhlit 

Kernel is explained by the size of the side lobes and the width of the main lobe [18]. The width of the 

main lobe depends upon the frequency resolution of the power spectra [18]. The size of the side lobes 

[18] depends upon the ratio between minimum and maximum spectral power [18]. The rectangular 

window based spectrum estimators face the problem of leakage.  The periodogram based estimators 

are biased estimators. The time and frequency resolution is not achievable simultaneously. So, the 

tradeoff between speed (time resolution) and accuracy (frequency resolution) is achievable [18]. The 

periodogram or STFT cannot be tuned into time frequency varying radio environment. They compromise 

on the frequency resolution [15]. The variance problem can be reduced by smoothing the periodogram 

[15]. The first step in implementation of a periodogram is the calculation of the FFT of the signal [15]. 

Then the squaring takes place and the last step is the division by the number of samples N. 

 

Figure 3.5 Periodogram detector [20] 

3.3.4 The Barlett Window  

The Barlett window is used for the improvement of the performance of the periodogram method. 

Barlett window [15, 32 and 33] is an energy based spectrum sensing method. In this method, averaging 

process can reduce the power variance [15, 18 and 33]. For the averaging process, the samples are 

divided into several segments and the average of the each segment takes place [15, 18 and 33]. By the 

increase of the number of the segments, the variance is decreased and vice versa [15, 33 and 34]. The 

decrease in the number of samples in each segment results in the form of larger bias and less frequency 

resolution [15, 33 and 34]. Barlett’s method is one of the window function based smoothing mechanism 

[8, 15]. It is used for smoothing the discontinuities at the beginning and at the end of the tapering 

function [8, 15]. The Barlett’s method based Periodogram consist on the following steps [15, 33]  

1. The N point data segment is split up into K data points. The length of each data point is M. 

2. The periodogram for each segment is computed with the help of DFT (not divided by M). The result of 
the periodogram is squared and divided by M. 

3. Take the average of K data segments.  
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The Bartlett window is defined as [15, 33]     

   ( )  
 

 
(
   

 
 |  

   

 
|)                                                      [ 3.22]

 

 

The Barlett method was improved by the Welch periodogram method [34]. The Welch-periodogram 

method uses the overlapping window. The Welch periodogram is an energy based spectrum estimation 

method .It is a spectral density estimation approach. The power of a signal at different frequencies can 

be estimated by Welch periodogram method [15, 34]. In this technique, the segment overlap takes 

place. The arbitrary window is applied on the data segments which improve the spectrum estimation 

performance. The presence of the signal is shown by the lobes. In this method, the signal is transformed 

from time domainto frequency domain [15, 34]. Fourier transform (FFT) is used to estimate the power 

spectrum [15, 34]. The Welch periodogram reduces the noise in the estimated power spectra [7, 15 and 

34]  

The procedure of the Welch periodogram method is written below 

1. The data is split into L data segments and the length of each data segments is M. The signal is 

split into overlapping segments [20]. The overlapping is defined by the factor D [15, 34].If 

D=M/2, the overlap will be 50% and if D=0, the overlap will be 0% [15, 34]. This situation 

happened in Barlett’s method [33]. 

2. The individual L data segments are windowed.  The windowing makes the Welch periodogram 

an improved periodogram method [15, 34]. The periodogram is calculated by DFT and then its 

square magnitude is computed. In the end, the individual periodograms are averaged. The end 

result is shown by frequency bins versus PSD graph. The performance of the detector can be 

shown by the ROC curve [10]. In this thesis, the spectrum sensing of base-band and pass-band 

signals on AWGN channel with the help of the Welch periodogram detector was done. The 

periodogram detected the signals up to -30 dB well. At SNR˂-30dB, the signal detection is not 

possible with the help of this technique. This technique performed well and was effective with 

respect to time efficiency and flexibility of spectrum sensing. The Welch periodogram detector 

was slowed down for wide band signal detection at 40 MHz and the processing time is 

increased. 

3.4 Matched Filter 

Matched filtering is a generic spectrum sensing technique [26]. A Matched filter technique is used for 

pilot detection [15, 18]. In this technique the SNR is maximized. The secondary user must have full prior 

knowledge about the signal characteristics [35, 36] e.g.; order, modulation type, packet format, pulse 

shaping [37] pilot, preamble, synchronization words, training sequence and spreading codes etc. For 

example analog TV signals have narrow band pilots for the audio, video carriers [38]. CDMA schemes 

have pilot channels and paging channels and the OFDM based systems [38] have fixed preamble for the 

packet acquisition. The information about the pilot signal is used for the timing, carrier synchronization 

and channel equalization operations are done for coherent detection. Matched filter is an optimum and 

coherent spectrum sensing techniques. So, it is computationally less complex. For desired probability of 



 

45 

 

detection O(1/SNR) samples are required at lower SNR. In a Matched filter less time is required for 

detection. Matched filter based detection faces a disadvantage that for each primary wave different 

receivers are required.  For the same modulation technique and different frequencies, filter banks can 

be used. It must be remembered that LRT becomes a matched filtering detector in case of Gaussian 

distribution based noise and deterministic source signals. In short, pilot detector is an optimal detector 

with minimum time for detection but it needs the perfect synchronization. In case of lack of information 

about the pulse, the detector based on matched filtering can be used as an optimal detector [39, 40].  

3.5 Correlogram   

Correlogram is a well-known approach for the spectrum estimation. In this approach the autocorrelation 

function is determined [18]. The power spectral density can be calculated from the Fourier transform 

(FT) of this autocorrelation function [15, 18]. The value of the PSD depends upon the exact value of the 

autocorrelation function Rxx(k). The Fourier transform of the autocorrelation function is equal to the 

PSD of the signal [15,35]. The length is considered as infinitely long for the measurement of the 

autocorrelation. The performance of the correlogram technique can be improved by using the 

rectangular window. The Improved version of the correlogram is the Blackman-Tukey method [15]. In 

this method, the estimated autocorrelation value is calculated and then the suitable window function   

w(k) is applied [15, 18]. Then the Fourier transform is applied which results in the PSD [15, 18]. The 

Blackman–Tukey method can be considered as smoothing periodogram method [15, 18]. In this method 

the periodogram is convolved with the selected window kernel. 

3.5.1 Cyclostationary Feature Detection 

Normally, the transmitted data is taken as a stationary random process [10, 15 and 18]. Transmitted 

data is modulated on sinusoidal carrier wave [15, 41 and 42]. The cyclic prefix is introduced (in case of 

OFDM) and code or hoping sequence (in case of CDMA) [18]. All of these additions introduce the built-in 

periodicity. This builtin periodicity introduces cyclostationarity features [15, 56]. These spectral 

correlation features help in signal detection and correlation [43, 44 and 56]. The built-in periodicity 

helps the non-coherent detection of the signals. The periodicity is generated intentionally in order to 

estimate the parameters like pulse timing, direction of arrival and carrier phase. The random noise 

mixed in signals can be detected on the basis of these periodic parameters [57]. The random signals can 

be detected on the basis of autocorrelation and power spectral density [45, 57]. The correlation function 

is also known as cyclic spectrum function [15, 35 and 46, 56]. The spectrum correlation function is a two 

dimensional transform. If cyclic frequency =0 then PSD can act as spectral correlation 52[58]. Cyclic 

autocorrelation function (CAF) and spectral correlation function (SCF) are two key functions are typically 

utilized for the cyclostationary feature analysis [4, 15,35,41,46 and 47, 58]. CAF is used in time domain 

analysis and it can be expressed as [15, 35, 41, 46 and 47]  
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The spectral correlation function is obtained from the Fourier transform of CAF. The SCF can be written 

mathematically as [15, 35 and 46] 
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Where α represents the cycle frequency [28], f is known as the spectral frequency [15, 35 and 46] and 

   
 (   )  is known as the cyclic periodogram of    

 ( ) [4] where 
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The spectral coherence coefficient (SCC) is the correlation coefficient of the spectral correlation function 

(SCF) between frequency components      . The SCC values are in a range from 0 to 1 when α=0. The 

value of SCC can be calculated as [4, 5] 
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                                             [3.26] 

3.5.1.1 Signal Feature Extraction 

The spectral correlation function is estimated from a finite number of samples [15, 35, 43 and 46]. Time 

domain averaging and frequency domain smoothing which are used for the estimation of spectral 

coefficients [15, 35, 43 and 46]. Spectral correlation estimation can be expressed as [4, 5] 
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Where the frequency increment is represented by     
 

(   )  
 and the cyclic sampling interval is 

represented    and   
  

  
  represents the sample length. Remember that         is the width of the 

data tapering window    (    ).In this case the value of [3] 
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     (     )                                    [3.28] 

The spectral correlation magnitude surface for different types of signals can be calculated from SCF [15, 

35, 43 and 46]. The features f and energy can be calculated from equations 3.25, 3.26, 3.27 and 3.28.  

Different modulated signals (e.g., BPSK, QPSK and QAM) have identical PSD function but have different 

spectral characteristics. The correlation based spectrum can be used for the spectrum sensing at lower 

SNR levels. The Fourier transform of the autocorrelation function [21,27,49,66] is equal to the power 

spectral density [15,35,46 and 48]. In DGPS devices, the location is calculated on the basis of the 

autocorrelation function based spectrum estimation. 

As the noise signal has no correlation with WSS signal, while the modulated signals exhibits the spectral 

correlation due to signal periodicity. So, SCF can differentiate between the noise signal and modulated 

signals. 
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In this thesis the autocorrelation features are used for the signal detection. Autocorrelation kernel 

function was used in support vector machines based signal detector.  

3.6 Other Spectrum Sensing Approaches 

There are few other important spectrum sensing approaches such as Multi Taper Spectrum Estimation 

(MTSE) and Filter Bank Spectrum Estimation (FBSE) [15, 18 and 49]. MTSE performs better for small 

sample spaces [4, 13] and small number of samples. This technique is not useful for large sample sizes 

due to increasing computational complexities [4, 13]. FBSE has slower speed of execution in case of big 

window size. The FBSE is computationally less complex as compared to MTSE technique.  

3.6.1 Wavelet Based Detection 

This technique is commonly used for edge detection in the field of image processing. Wavelet based 

spectrum sensing technique for the dynamic spectrum access was first proposed by Tian and 

G.B.Giannakis [54]. They proposed edge detection in case of wideband channels for the spectrum 

sensing by measuring the PSD. The edges determine the boundary occupied bands and spectrum holes, 

which can be used for the detection of spectrum holes [49]. Wavelet based spectrum sensing technique 

has the excellent time frequency localization properties [16]. The time frequency localization property is 

used as a powerful tool for the analysis of the spectral structure and the identification of singularities 

and edges. In this technique, the wide frequency band is decomposed into elementary non-overlapping 

blocks of sub bands [18]. In each sub-band the power characteristics are smooth. There are 

discontinuities in the adjacent sub-bands. These local frequency irregularities characterize the sub bands 

[18]. These singularities and irregular structures can be analyzed by wavelet detection technique [18]. It 

can be used for the characterization of the edge of the signals and local regularity [55]. Intensities and 

location of the spectrum holes can be determined with the help of irregularities in the PSD [18]. The 

wavelet is convolved with the power spectrum density [16, 54 and 55]. The frequency boundaries are 

found by the 1st and 2nd order derivatives of convolution.  

3.7 Simulation Results 

3.7.1 Base Band Signal Detection by Welch Periodogram Detector 

In the context of this work, signal detection is a binary problem. The Welch periodogram is an efficient, 

computationally less complex method for the signal detection. In this thesis, QPSK based base-band and 

pass-band signal detection is done. Four transmitters are detected in a centralized environment (as 

shown in Fig 3.1). Due to limited available computational power, the signals up to 400MHz are detected. 

The simulation results show that welch periodogram detector can detect the base-band signals up to 

SNR=-20dB. The baseband signals are communicated with the help of QPSK modulation technique. The 

simulation results at different SNR values are given below. In these simulation results power spectral 

density is shown along Y-axis. In MATLAB, spectrum.welch function calculate the PSD and represent it 
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along y-axis in the form of power/frequency [dB/Hz].It must remember that the performance of the 

detector is dependent on the processing machines.  

 

Figure 3.6  2, 3, 4 and 5 kHz baseband signals at -30 dB by Welch periodogram detector 

 

Figure 3.7  2, 3, 4 and 5 KHz baseband signals at -25 dB by Welch periodogram detector 

The above simulation results shows that the baseband signal or signals cannot be detect at the SNR ≤-25 

dB. 

 

Figure 3.8  2, 3, 4 and 5 kHz baseband signals at -20 dB by Welch periodogram detector 
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Figure 3.9  2 kHz baseband signals at -20 dB by Welch periodogram detector 

The above simulation results show that the signal detection is not clear for four signals at SNR≤-20 dB. It 

must be remembered that the performance of the Welch periodogram detector is improved for single 

or two signals at SNR=-20dB. Especially the detection is clear and significant for the single baseband 

signal at -20 dB 

 

Figure 3.10  2, 3, 4 and 5 kHz baseband signals at -15 dB by Welch periodogram detector 

 

Figure 3.11  2, 4 kHz baseband signals at -15 dB by Welch periodogram detector 
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Figure 3.12  2, 3, 4 and 5 kHz baseband signals at -10 dB by Welch periodogram detector 

 

Figure 3.13  2, 3, 4 and 5 kHz baseband signals at 0 dB by Welch periodogram detector 

 

Figure 3.14   2, 3, 4 and 5 kHz baseband signals at 10 dB by Welch periodogram detector 
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Figure 3.15   2, 3, 4 and 5 kHz baseband signals at 20 dB by Welch periodogram detector 

 

Figure 3.16  ROC curve for 2, 3, 4 and 5 kHz AWGN base-band baseband signals by welch periodogram detector 

The above simulation results show that the Welch periodogram detector cannot detect the signals at 

SNR˂-20dB. Even at -15dB the signals are not so much clear but at least they can be identified. For the 

SNR>-20dB, say at -15dB and above values, the signals can be detected correctly. The above simulation 

results show that the detector performance is improved for the single detector as compared to its 

performance for the detection of more than one transmitter. The detector is very simple, 

computationally less complex and fast and can detect the signal in a short interval of time. The 

deficiency of the signal detector is its poor performance at the lower SNR values. 

3.7.2 Simulation Results for Pass-band Signal Detection by Welch 

Periodogram Detector 

In this thesis the four transmitters are detected in a centralized way. Due to limited computational 

power, the signals are measured only up to 400 MHz frequency. If the heavy computational power is 

available, then this technique can be applied for the detection of the signals up to GHz frequency range. 
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The simulation results show that the detector performance is good up to -25dB. Below this SNR value, 

detector cannot detect the signal. Few important simulation results are shown and discussed below. 

3.7.2.1 Simulation Results for 1.6, 1.7, 1.8 and 1.9 MHz AWGN Pass Band Signals by Welch 

Periodogram Detector 

 

Figure 3.17  1.6, 1.7, 1.8 and 1.9 MHz AWGN pass-band signals at -30 dB by Welch periodogram detector  

 

Figure 3.18  1.6, 1.7, 1.8 and 1.9 MHz AWGN pass-band signals at -25dB by Welch periodogram detector  

 

Figure 3.19  1.6 MHz AWGN pass-band signal at -25 dB by Welch periodogram detector                      
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Figure 3.20  1.6, 1.7, 1.8 and 1.9 MHz pass-band signals at -20 dB by Welch periodogram detector  

 

Figure 3.21  1.6 MHz AWGN pass-band signal at -20 dB by Welch periodogram detector 

 

Figure 3.22  1.6, 1.7, 1.8 and 1.9 MHz AWGN pass-band signals at -10 dB by Welch periodogram detector 
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Figure 3.23  1.6, 1.7, 1.8 and 1.9 MHz AWGN pass-band signals at 0 dB by Welch periodogram detector 

 

Figure 3.24  1.6, 1.7, 1.8 and 1.9 MHz AWGN pass-band signals at 10 dB by Welch periodogram detector  

3.7.3 Simulation results for 100,200,300 and 400 MHz AWGN Pass- 

Band Signals by Welch periodogram Detector 

 

 

Figure 3.25  100,200,300 and 400 MHz AWGN pass-band signals at -30 dB by Welch periodogram detector   
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Figure 3.26  400 MHz AWGN pass-band signal at -30 dB by using Welch periodogram detector   

 

Figure 3.27  100,200,300 and 400 MHz AWGN pass-band signals at -25 dB by Welch periodogram detector   

 

Figure 3.28  100 MHz AWGN pass-band signal at -25dB by Welch periodogram detector 
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Figure 3.29  400 MHz AWGN pass-band signals at -25 dB by Welch periodogram detector  

 

Figure 3.30  100,200,300 and 400 MHz AWGN pass-band signals at -20 dB by Welch periodogram detector 

 

Figure 3.31  300 MHz AWGN pass-band signals at -20 dB by using Welch periodogram detector 
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Figure 3.32  100,200,300 and 400 MHz AWGN pass-band signals at -15 dB by Welch periodogram detector 

 

Figure 3.33  100,200,300 and 400 MHz AWGN pass-band signals at -10 dB by Welch periodogram detector 

 

Figure 3.34  100,200,300 and 400 MHz AWGN pass-band signals at 0 dB by Welch periodogram detector 
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Figure 3.35  ROC of Welch periodogram detector for 100, 200,300 and 400 MHz AWGN pass-band signals   

 The above results show that the performance of the detector is very poor for four signals in centralized 

environment at-30dB. The above simulation results show that the signal detection up to 400 MHz 

frequency is reliable for the single and four signals at the SNR≥-25dB. At SNR =-30 dB, the detector can 

detect the signals successfully. But the performance is still poor. At SNR≤-30 dB, the signal detection is 

very poor and the improvement in the performance of the detector is required. The signal detection can 

be improved by the increase of SNR values. The above simulation results show that the Welch 

periodogram based signal detection is simple, computationally less complex and fast. The only problem 

is its poor performance at lower SNR values. 

 

References 

[1] Joe Mittola “The Software Radio architecture,” IEEE communication Magazine , May 1995 

[2] Gerald Youngblood, AC50G, “A software defined Radio for the Masses”  

[3] Simon Haykin, “Cognitive Radio: Brain-Empowered wireless Communications”, IEEE journal on 

Selected areas in Communications, vol. 23, No.2, Feburary , pp.201-220 

[4] Klaus Moessener, Didier Bourse, Dieter Greifendorf, Joerg Stamen “Software Radio and 

Reconfiguration Management”   

[5] Joseph Mitola III “Cognitive Radio an Integrated Agent Architecture for Software Defined Radio” 

Dissertation Doctor of Technology 

[6] “Federal Communications Commission Spectrum Policy Task Force Report of the Spectrum Efficiency 

Working Group”, November 15, 2002 

0 0.2 0.4 0.6 0.8 1

x 10
-5

0

0.5

1

1.5

2

2.5

3
x 10

-3 Theoratical performance verification

Probablity of false alarm

Pr
ob

ab
lit

y o
f d

et
ec

tio
n



 

59 

 

[7] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation Issues in Spectrum Sensing for 

Cognitive Radios”, Proceedings of the Asilomar Conference on Signals and Systems, 2004 

[8] I. Budiarjo, H. Nikookar, L.P. Ligthart, "Cognitive Radio Modulation Techniques", IEEE Signal 

Processing Magazine, Vol. 25, Page(s): 24-34, Nov 2008.  

[9] Y. Hur, J. Park, W. Woo, K. Lim, C.H. Lee, H.S. Kim, and J. Laskar, “A Wideband Analog Multi-

Resolution Spectrum Sensing Technique for Cognitive Radio Systems”, IEEE International Symposium 

Circuit and System, pp. 4090-4093, May 21-24, 2006. 

[10] Steven M.Kay “Fundamentals of Statistical Signal Processing, Detection Theory”, 3rd edition 

[11] J.G. Proakis and D. G. Manolakis, “Digital Signal Processing: Principles, Algorithms, and 

Applications,” Fourth Edition. Upper Saddle River, NJ: Prentice Hall, Inc, 2007.  

[12] B. Porat, “A Course in Digital Signal Processing,” New York: John Wiley and Sons, Inc., 1996 

[13] Danda B.rawat. “Signal Processing techniques for Spectrum Sensing in Cognitive Radio Systems: 

Challenges and Perspectives,”2009, First Asian Himalayas International Conference on Internet, 11/2009 

[14] D. J. Thomson, “Spectrum Estimation and Harmonic Analysis”, Proc. IEEE, vol. 70, no. 9, pp. 1055-

1096, September 1982 

[15] Alan Oppenheim, Ronald W. Schafer, “Discrete time signal Processing, “Third edition  

[16] M.K. Lakshmanan, and H. Nikookar, “A Review of Wavelets for Digital Wireless Communication”, 

Springer International Journal on Wireless Personal Communications, vol. 37, May 2006 

[17] Klaus kainrath, “Advance Signal Processing: The Fundamentals of Detection Theory”, 26-11-2004, 

pp.1-18  

[18] D.D.Ariananda, M.K.Lakshmanan, H.Nikookar (2009), “A Survey on Spectrum Sensing Techniques for 

Cognitive Radio”, Wireless VITAE'09, Aalborg, Denmark, pp. 74-79. 

[19] Khalid Ben Letaief. “Cooperative Spectrum Sensing, Cognitive Wireless Communication Networks”, 

2007  

[20] Stefan Tertinek.  ”Optimum Detection of Deterministic and Random Signals”, Report written for the 

Advance Signal Processing 1 SE, December 2004, pp.1-6  

[21] Harry Urkowitz, “Energy Detection of Unknown Deterministic Signals,” Proceedings of the IEEE, 

Vol.55, No.4, April 1967  

[22] Yonghong zeng, “A Review on Spectrum Sensing for Cognitive radio: Challenges and Solutions.” 

EURASIP Journal on Advanced in signal Processing, 2010  

[23] D. Cabric, A. Tkachenko, R.W. Brodersen, “Spectrum Sensing Measurements of Pilot, Energy, and 

Collaborative Detection”, IEEE Military Communications Conference, October, 2006 

[24] Sai Shankar N, Carlos Cordeiro, and Kiran Challapali Spectrum Agile Radios: Utilization and Sensing 

Architectures pp.160-169.In Proc.IEEE int. Symposiumon, New Frontiers in Dynamic Spectrum Access 

Networks, Baltimore Maryland, USA, Dublin Ireland ,Nov.2005, pp 160-169  



 

60 

 

[25] D.Cabric, A.Tkachenko, R.W.Brodersen,“Spectrum Sensing Measurements of Pilot, Energy and 

Collaborative Detection”, proc. IEEE Military Communication Conf.Washington, DC,USA Oct.2006,pp1-7 

[26] D. Cabric, A. Tkachenko, and R.W. Brodersen, “Experimental study of Spectrum  Sensing Based on 

Energy Detection and Network Cooperation," Proc. ACM Int.Workshop on Technology and Policy for 

Accessing Spectrum (TAPAS), Boston, MA,Aug. 2006. 

[27] J. Baek, H. Oh, and S. Hwang, “Improved Reliability of Spectrunm sensing  using Energy Detector in 

Cognitive Radio Systems," 10th International Conference on Advanced Communication Technology 

(ICACT), Feb. 2008 

[28] Harry Urkowitz, “Energy Detection of a random Process in Colored Gaussian Noise,” IEEE 

Transactions on Aerospace and Electronic systems, Vol. AES-5, No.2, March 1969 

[29] Guicai Yu, “Spectrum Detection Based Cyclostationarity in Spectrum Pooling System,” WRI world 

Congress on Computer Science and Information Engineering, 03/2009  

[30] Eric-Philip Lawrey, “Adaptive Techniques for Multiuser OFDM,” PhD thesis, December 2001, pp.259-

265 

[31] Nani fadzlina Naim,“Offline Analysis of High frequency Digital Signal,” 5th International Conference 

on MEMS NANO and Smart Systems,12/2009  

[32] Steven M.Kay, stanley Lawrence Marple, JR.,”Spectrum Analysis-A Modern Perspective", 

Proceedings of the IEEE, Vol.69, N=.11, November 1981 

[33] M.S. Bartlett, “Smoothing Periodograms from Time Series with Continuous Spectra”, Nature 

(London), Vol.161, May 1948 

[34] P. D. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method 

Based on Time Averaging Over Short, Modified Periodograms”, IEEE Transactions on Audio and 

Electroacoustic, vol. AU-15, no. 2, pp. 70-73, June 1967.  

[35] Prokas, j.g, “Digital Communications,”4th ed. McGraw-Hill 2001 

[36]  Tevfik Y¨ucek and H¨useyin Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive Radio 

Applications”, IEEE Communications surveys & Tutorials,vol.11,no.1,First Quarter 2009, pp. 116-130 

[37] F.Richard Yu, “Distributed Consensus –Based Cooperative Spectrum Sensing in Cognitive Radio 

Mobile Ad Hoc Networks,” Cognitive Radio Mobile AD Hoc Networks, 2011  

[38] I.Budiarjo. “Cognitive Radio Dynamic Access Techniques,” Wireless Personnel Communications, 

05/2008  

[39] M. Davenport, M. Wakin, and R. Baraniuk, “Detection and Estimation with Compressive 

Measurements." Rice ECE Department Technical Report TREE 0610, November 2006 

[40]  J. Haupt and R. Nowak,“Compressive Sampling for Signal Detection," IEEE Int.Conf. on Acoustics, 

Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, April 2007 



 

61 

 

[41] W.A.gardner, “Spectral Correlation of Modulated signals: part 1-analog Modulated signals, “IEEE 

transaction on communication, 1987, COM-35(6):584-594 

[42]  W.A.gardner, “Spectral Correlation of Modulated Signals: part II-Digital Modulation,” IEEE trans 

communication, 1987, COM-35(6):595-601 

[43]  Hao hu, junde song, Yujing Wang, “Signal Classification Based on Spectral Correlation Analysis and 

SVM is Cognitive Radio”,2nd International Conference on Advanced Information Networking and 

Applications 

[44] William A.Gardner, “Signal Interception: A Unifying Theoretical Framework for Feature Detection, 

”IEEE Transactions on Communications, Vol.36, NO.8, August 1988,pp.897-905 

[45] Er. Vishakha sood, Er. Manwinder Singh, “Spectrum utilization by using Cognitive radio 

technology,”International Journal of Advanced Engineering Sciences and Technologies, Vol No.7, Issue 

No.2, pp.258-263 

[46] Bernard Sklar, “Digital Communications Fundamentals and Applications,”2nd Edition 

[47]  Xinying He, “Signal Classification Based on Cyclostationary Spectral Analysis and HMM/SVM in 

Cognitive Radio,”International Conference on Measuring technology and Mechatronics 

Automation,04/2009 

[48] Petr Sysel, “Enhanced Estimation of Power Spectral Density of Noise using the Wavelet Transform,” 

IFIP-Personel Wireless Communications, IFIP-the International Federation of Information processing, 

volume 245, 2007 

[49] Mansi Subhedar and Gajanan Birajdar “SPECTRUM SENSING TECHNIQUES IN COGNITIVERADIO 

NETWORKS: A SURVEY” International Journal of Next-Generation Networks (IJNGN) Vol.3, No.2, June 

2011, pp. 37-51 

[50] B. Farhang-Boroujeny,”Filter Banks Spectrum Sensing for Cognitive Radios”, IEEE Transaction on 

Signal Processing, Vol. 56, pp. 1801-1811, May 2008 

[51] Mengda Lin. “Progressive Decimation Filter Banks for Variable Resolution Spectrum Sensing in 

Cognitive Radios,”2010, 17th International Conference on Telecommunications, 04/2010   

[52] B. Farhang-Boroujeny, “A Square-Root Nyquist (M) Filter Design for Digital Communication 

Systems”, IEEE Transaction on Signal Processing, vol. 56, no. 5, May 2008 

[53] B. Farhang-Boroujeny and R. Kempter, “Multicarrier Communication Techniques for Spectrum 

Sensing and Communications in Cognitive Radios”, IEEE Communication Magazine, vol. 48, no. 4, April 

2008 

[54]  Z. Tian and G. B. Giannakis, “A Wavelet Approach to Wideband Spectrum Sensing for Cognitive 

Radios”, Proceeding of International Conference on Cognitive Radio Oriented Wireless Networks and 

Communications, Greece, 2006 

[55] H. Nikookar, “Short Course: Wavelets for Wireless Communication”, European Conference and 

Wireless Technology, Munich, Germany, October 9-12, 2007.   



 

62 

 

[56] Robert W. Bordersen, “Cycloststationary Feature Detector Experiments using Reconfigurable 

BEE2,”2nd IEEE International symposium on New Frontiers in Dynamic Spectrum Access Networks, 

04/2007  

[57] J.P.donohoe. “Stationary and Cyclostationary Random process models,” Proceedings of South East 

CON 94 SECON-94, 1994 

[58] Lei Yang, zhe chen, Fuliang Yin, “Cyclo-Energy Detector for Spectrum Sensing in Cognitive Radio,” 

AEUE-International Journal of Electronics and Communications, Volume66, Issue 1,January 2012,pp.89-

92  

 



 

63 

 

4 Support Vector Machines Based 

Spectrum Sensing 

4.1 Introduction 

In this chapter, the system design approach to meet the challenge of detecting very weak signals with 

machine learning technique is shown. The design space is diverse as it involves various types of primary 

user signals. The analysis of signal processing approaches helps in the identification of the regimes 

where these techniques are applicable. The goal of the research is to present a practical system design 

view of spectrum sensing functionality to improve the spectrum sensing results [1]. 

Support Vector Machines (SVM) works on the basis of Statistical Learning Theory concepts. Normally 

SVM is used for the solution of classification and regression problems. SVM is a type of detection 

technique. In this chapter SVM is used for the spectrum sensing problem at very low SNR values. This 

task is done with the help of a new SVM kernel known as the Autocorrelation function (ACF) kernel. It is 

a linear classifier and performs well for classification problems [2]. In this chapter, ACF kernel based 

detector detects the spectrum holes up to 89% confidence level for both base-band and pass-band 

communication signals for the frequency range up to 50 MHz at very low SNR values in AWGN Channel 

for the four signals. Spectrum sensing improve the spectrum efficiency and the interference [3, 4,5and 

6].Recently spectral correlation analysis and feature detection is used for the communication parameter 

detection by using the Support Vector Machines [7, 8, 9 and10]. The signal classification approaches are 

based on patter recognition or decision theoretic approach. 

Generally Support Vector Machines (SVM) is used for pattern recognition. SVM works on the basis of 

structural risk minimization principle. SVM have an advantage that can provide better generalization and 

improve performance for small number of training samples. SVM can be used for the signal 

classification. In this chapter, a new approach for the signal detection is implemented which is based on 

the combination of SVM based supervised learning and spectral correlation analysis [10]. The high 

performance at low SNR and better detection results are proved by simulations. 

4.2 Machine Learning 

The Machine Learning is branch of Artificial Intelligence. The computer algorithms allow computational 

machines to learn from the empirical training data sets which are collected from a set of sensors. This 

task oriented approach and process can be used for solving real-world problems. Machine Learning 

methods are usually categorized by their requirements over the types of data they can use. 

The machine learning algorithms can be supervised, unsupervised or semi-supervised learning. 
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Supervised algorithms always need teachers to reveal the true interpretation of the data. Such 
interpretation is referred as the label of the data. The goal of these algorithms is to learn a mapping 
from the input data to the output given by the teachers [13]. Depending on the nature of the output, 
the algorithms can be subdivided into classification problems (where the output space is represented in 
discrete form) or the regression problem (where the output space is continuous). 

 

Unsupervised learning algorithms do not need any teacher and they are operating slowly over the data 

samples themselves. Their basic task is to identify the similar patterns in their inputs and identify 

clusters of data samples. Unsupervised algorithms can be used to recognize the structure of data and 

recognize the organization between them. 

There are many applications where the requirement for a teacher in supervised learning methods 

cannot be satisfied. For example, in few cases the true interpretation of data is either costly or require 

special measurements or it is a time consuming task [10]. In few cases, the true interpretation of the 

data requires the repeated efforts which are tedious for a human. However, the collection of large 

amount of unlabeled data samples requires less effort. In some cases, it is cheap to collect the unlabeled 

data samples. Due to these reasons, it is necessary in many cases to use the methods which need the 

minimum amount of supervision and they can learn from labeled and unlabeled data. The semi-

supervised learning techniques full fill these requirements and deals with developing of the algorithms 

which can learn from both labeled and unlabeled data samples. The semi supervised algorithms can mix 

both unsupervised and supervised principles to fulfill and attain the specific tasks. 

4.2.1 Support Vector Machines for Classification 

SVM is a universal learning machine [12, 14 and 15]. It belongs to the category of supervised learning 

methods. The idea of SVM was initially proposed by Vladimir Vapnik [12]. Support Vector Machines are 

considered as the special case of Tikhonov regularization [16]. Regularization refers to the generalization 

of the model to previously unseen data and it is necessary to produce smooth decision functions thus, 

avoiding over fitting onto the training data [5]. SVM works on the basis of the principal of Statistical 

Learning Theory. The principal of Statistical Learning Theory used in SVM is known as structural risk 

minimization principle (SRM) [3].  The SVM can be used for the solution of classification problems. The 

SVM is known as non-probabilistic binary linear classifier. For the solution of classification problems, 

SVM based models assign the new data into one or another category. Different categories are divided by 

clear wide gaps and mapped into same space. Then decision about the belonging of the new data 

samples with any category is done. Let us consider the independent uniformly distributed data set 

(      ) where            and           {    } are labels. Our main task is the 

determination of a classifier which can separate the data and have smallest generalization error. For this 

task, hyperplane is an optimal choice. Hyperplane has the maximum margin between the two classes. It 

is formulated as quadratic optimization problem [12] which can be represented as [14]  

   [
 

 
‖ ‖ ]                                          [4.1] 

Where    [    )   ]                     are the conditions for the classification [2].By 

introducing the Lagrangian multiplier into each constraint, the resultant constraints will be  
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∑    {  [(    )   ]   } 
        [ 4.2] 

The   can be removed with the help of a dual optimization problem which can be written as   

     ( )  ∑    
 

 
 
   ∑            

 
                   [4.3] 

                               ∑     
 
    =0          [4.4] 

 The coefficients                         can be obtained by solving the dual optimization problem 

[17, 18]. These results in the form of a non-linear decision function can be written as   

     [∑       (  
  
     )   ]                  [4.5] 

Where  (    ) is known as kernel function and    are the number of support vectors. We can 

introduce the slack variable ξi ≥ 0 in case of binary non-linear separable data which can relax the hard-

margin constraints. It gives the   minimization which can be represented as  

   [
 

 
‖ ‖   ∑   

 
   ]         [(    )   ]                         [4.6] 

Where,       . The decision function can be calculated with the help of the above formula. 

4.2.2 Kernel Methods  

Basically, kernel methods belong to a class of algorithms which are used for the pattern analysis. Pattern 

analysis deals with the relation between the data. The example of these relations is classification, 

ranking, correlation and principal component’s analysis (PCA). In this technique, data is mapped into a 

higher dimensional feature space H. Each coordinate in the feature space belongs to at least one feature 

of the respective data item. In this way, the data is converted into a set of points in the Euclidian Space. 

This mechanism is also known as the Kernel trick. 

The Kernel method works on the basis of the Kernel function [19, 20 and 21]. The performance of SVM 

mainly depends upon the support vectors and prior selection of the Kernel function. The Kernel function 

is the key component of Support Vector Machines [2]. Different kernels can produce different support 

machines [2]. The Kernel functions are calculated by the inner products in some feature space [22]. The 

inner products are calculated between the images of all data pairs in the feature space. Kernel methods 

are computationally less complex, cheaper, simple, statistically efficient and well founded processes. 

Many learning techniques, for example, Support Vector Machines, Fisher’s Linear Discriminant Analysis 

(LDA), Principal Components Analysis (PCA) are working on the basis of Kernel algorithm. Normally 

Kernel algorithms are based on Eigenvalues or Convex Optimization problems.  

The Kernel methods are commonly applied for the solution of the problems of Bioinformatics, Geostatic, 

Chemo Informatics, Cognitive Radio, text recognition and hand writing recognition fields. The problems 

in these fields are solved with the help of Kernel methods. 

A Kernel algorithm is used for mapping the learning data (non-linear) into a higher dimensional feature 

space, in which the problem becomes linearly separable. In this case, the computational power of the 

linear machine is increased. The kernel provides an efficient way of dealing with non-linear algorithms. It 

reduces a non-linear algorithms into linear in some feature space H, which is non-linearly related to the 

input space. The kernel function computes the inner function in the feature space. 
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 (    )    ( )  (  )    

4.2.3 Conditions for Admissible Support Vector Machines Kernel  

It must be remembered that a function can be considered as  admissible Support Vector Machines 

kernel, if it satisfies the two conditions, Firstly, it must satisfy the Mercer’s Theorem and secondly, the 

Fourier Transform must be non-negative (+ve definite) [9, 11]. These conditions are explained below. 

4.2.3.1 Mercer Theorem 

The Mercer theorem [4, 5] provides the conditions [8, 23] for admissible Support Vector Machine 

Kernel, which are given below 

Let us consider      (     ) for a symmetric real valued kernel where integral operator is given by 

[2]  

     ( 
 )    ( 

 )                        [4.7]    

and (   )( )  ∫  (  ) ( )  
   is positive for all      ( 

 ) and we can get from [2] 

  ∫  (   ) ( ) ( )      
     

    [4.8 ]       

The necessary and sufficient condition for translation invariant kernel [24, 25] is explained as 

 A translation invariant Kernel  (    )   (    ) is an admissible support vector machine kernel [26] 

if Fourier Transform is non-negative [2, 27].  

 [ ( )]  ( 𝝅)
  

 ∫    (  (   ))  ( )  
      [4.9]        

4.2.3.2 Spectral Correlation Analysis  

Many communication signals exhibit built-in 2nd order periodicities due to modulation, sampling, coding 

and multiplexing like operations. These cyclostationary properties are known as spectral correlation 

features (SCF) [10]. These features can be used for the signal recognition and detection. Basically, 

correlation is a matching process [14]. The cyclostationary processes have cyclical statistical properties 

with respect to the time [28]. The Auto Correlation Function (ACF) is a special type of correlation and an 

important function in statistical signal processing techniques [2]. It is the correlation between two 

samples           which are separated by a time lag (   ) [2]. It shows the degree of correlation 

between two time samples of the same random process. ACF depends upon the relative time lag (   ) 

for stationary signals [2]. It does not depend on the absolute time   [19] 

The autocorrelation function of a random process can be defined as [2] 

 (   )   [    ]                                                                 [4.10]   

For a real valued energy signal  ( ) , autocorrelation function can be defined as [14, 30] 

  ( )  ∫  ( ) (   )                      
 

  
        [4.11 ]           
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The ACF shows how the signal is closely matched with its shifted version in time unit    here   plays as 

the scanning or searching parameter. It must be remembered that the autocorrelation is the function of 

time difference between the signal and its shifted copy [14]. 

4.2.3.3 Properties of Autocorrelation Function 

The ACF has the following important properties 

The ACF is a symmetric function i.e.;  ( (   ))   (   )          

ACF is symmetric in   about zero i.e;   ( )    (  )           [30] 

The maximum value of ACF occurs at origin  |  ( )|    ( )            [30] 

The PSD of the signal is equal to the Fourier transform (FT) of ACF i.e.;   ( )    ( ) [30, 31] 

The energy of the signal is equal to the value of ACF at origin [14, 30] i.e.  

  ( )  ∫   
 

  
( )    

It must be remembered that it will show the average power in case of a power signal. 

The autocorrelation function of real valued power signal power  ( ) is defined as [14, 30]  

  ( )        
 

 
∫  ( ) (   )                      
   

    
       

The Autocorrelation function of the periodic power signal  ( )               is taken as time average 

over a single period   [  ]. The ACF can be expressed as  

  ( )  
 

  
∫  ( ) (   )                      
    

     
       

It must be remembered that the autocorrelation function of a real valued periodic signal can satisfies 

the above four properties [30].  

In our research, 4 QPSK signals are transmitted as shown in figure 3.1.On the basis of this builtin 

periodicity the triangle based autocorrelation function is used for the spectrum sensing. 

4.2.3.4 Auto Correlation SVM Kernel 

The autocorrelation function satisfies the condition of admissible SVM Kernel [1].It is explained above 

that the autocorrelation function is symmetric. The autocorrelation function can satisfy the Mercer’s 

theorem. 

The Autocorrelation function can be decomposed as [2] 

 (   )   [    ]        
 

 
∑   

   
   

   
 

 
∑ ∑   

  
   

 
     

  ( (  )  (  ))            [4.12]     

Where N is the total number of pulses of a signal. It must be remembered that       ( 
 ), so we get 

[2] 

∬  (   ) ( ) ( )    
     

 ∬ ( ( )  ( )) ( ) ( )    
      ∬ ( ( ) ( )  ) 

     
    

 [ 4.13 ]      
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The above proof shows that the autocorrelation function satisfies the Mercer’s Theorem.  

Meanwhile, we know that the discrete time Fourier transform (DTFT) of the autocorrelation function is 
equal to the power spectrum of the random signal    [2] which can be represented as 

 [ ( )]  ( 𝝅)
  

 ∫    (  (    ))  ( )                [4.14]         

As we know that the power spectrum is a non-negative quantity[2]. So, the 2nd condition for admissible 

Support Vector Machines kernel is also satisfied. The above discussion proves that the autocorrelation 

function can be used as the admissible Support Vector Machine kernel [2] . 

4.3 System Model  

Basically, the process of classification is similar to the process of detection. Initially, the estimation and 

detection of the signal parameters are considered as the problem of Statistical Signal Processing. The 

performance of classical detection techniques is limited especially at low SNR values. In Cognitive Radio 

systems we need the computationally less complex, efficient and less power consuming and real- time 

sensing process. Along with the sensing it is necessary to do online adaptive decision about the selection 

of the best spectrum hole out of all available holes. The performance criteria for the best spectrum hole 

are the availability of the band for longer time so that the chance of interference due to primary users 

can be mitigated. The problem of interference mitigation becomes serious when the primary and the 

secondary users want to communicate simultaneously. In this thesis, different spectrum sensing 

techniques are applied. Here four transmitters are acting as primary users. While the signals are 

detected in a centralized environment with the help of a SVM detector, Kyouwoong Kim et.al, Shujie 

Hou et.al and Robert, Hao Hu, Marco di Felice, George Piewald, Tobias Renk, T:charles Clancy and many 

others suggests  the Kernel based spectrum sensing in Gaussian and fading Channels. In the current 

research problem, four different QPSK based band-limited base-band and pass-band signals through an 

AWGN channel are investigated by using autocorrelation kernel function based SVM detector. The 

signals have the builtin periodicity. At the receiver end, the signals are sampled and processed. These 

processed signals are used for the classification. The signal classification is done by analysis and feature 

extraction with the help of a support vector classifier. A set of generated signals are used for training 

purposes and another set of signals are used for the testing purpose [32].This detection problem is a 

binary hypothesis problem. The system model is  

H0= W (t)                                   [4.15] 

H1=S (t) +W (t)                         [4.16] 

Where the Ho is null hypothesis which represents the presence of noise only and the    is known as the 

alternative hypothesis which shows the presence of the Information signal .In the current problem, the 

Neyman-Pearson criterion is considered for the decision in which        
   

 , where    represents the 

threshold value. The threshold is selected on the basis of desired value of      The whole system 

description is represented by the figure 3.1.   
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According to Neyman-Pearson criterion, the performance of a detector depends upon the value of the 

    (probability of the false alarm) and    (                       ) [33, 34]. The results of the 

cyclostationary feature detection techniques are improved with the help of triangular autocorrelation 

SVM Kernel. In the SVM detector      represents the false positive rate and    represented by true 

positive rate. 

4.4 Simulation Results 

The baseband and pass-band signals are generated in MATLAB which is used as input to the SVM 

classifier [35]. In this simulation pass-band signals are detected. The transmission channel is modeled as 

non-line of sight (LOS) AWGN channel. The receiver and the transmitters are both in fixed positions. So, 

the Doppler shift        he signals are transmitted with adjustable SNR values = [-80:10:20] dB. The 

sampling frequency for the signals follow the Shannon’s theorem [30]  he performance of the detector 

is decreased at the lower SNR values. The graph shows that the confidence level of the detector is up to 

a high confidence level. The performance of the detector depends upon the number of samples, 

resolutions, number of training sessions, frequency of signal to be detected and SNR range. All of these 

factors are shown with the help of simulation results given below.  

4.4.1 Simulation Results for Pass-Band Communication Signals  

The SVM detector is used here for the pass-band signal detection. In this thesis, autocorrelation Kernel 

function based SVM detector is used for the detection of four AWGN pass-band signals (shown in figure 

3.1). The maximum performance of SVM detector is equal to AUC= 89%. These results can be improved 

by cross validation and by the increase of number of training samples (sessions). Also the ROC curve can 

be improved by the increase of SNR resolution (SNR step size). The caption shows the decision level 

about the presence of the signals. The confidence level >20% will show the presence of the signal. The 

simulations results show that the signal detection is possible at very low SNR values.  
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Figure 4.1  ROC for 20, 30, 40 and 60 kHz AWGN pass-band signals for SNR= [-40:10:40] by autocorrelation Kernel 
based SVM detector 

 

Figure 4.2  ROC for 20,30,40 and 60 kHz AWGN pass-band signals by autocorrelation Kernel based SVM detector 
for SNR= [-40:2:40]  
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Figure 4.3  ROC for 20,30,40 and 60 kHz AWGN pass-band signals by autocorrelation kernel based SVM detector for 
SNR= [-80:10:40] after first training session 

 

Figure 4.4  ROC for 20,30,40 and 60 kHz AWGN pass-band signals autocorrelation kernel based  SVM detector for 
SNR= [-80:10:40] after second training session. 
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Figure 4.5   ROC for 200,300,400 and 500 kHz AWGN pass-band signals for SNR= [-80:10:20] by autocorrelation 
based SVM detector 

The above simulation results show that the performance of the detector for AWGN pass-band signals 

depends upon the step size. The performance of the SVM detector will be improved by the decrease of 

step size. The above simulation result shows that AUC =86 for SNR step size=10 and simulation result 

shown by Figure 4.2 Figure 4.2  ROC for 20,30,40 and 60 kHz AWGN pass-band signals by autocorrelation 

Kernel based SVM detector for SNR= [-40:2:40]shows that it became AUC=89 for SNR step size=2 for the 

same SNR range =[-40:10:40]. The simulation results of  Figure 4.3  ROC for 20,30,40 and 60 kHz AWGN 

pass-band signals by autocorrelation kernel based SVM detector for SNR= [-80:10:40] after first training 

session and  Figure 4.4  ROC for 20,30,40 and 60 kHz AWGN pass-band signals autocorrelation kernel 

based  SVM detector for SNR= [-80:10:40] after second training session. The performance is improved 

by the increase of the number of training sessions for the same SNR range and step size. The more 

training sessions, the better will be the detector performance. The simulation results show that the 

value of AUC becomes 72 to 75 after the 2nd training session for the same SNR range = [-80:10:40] for 

the 20, 30, 40 and 60 kHz pass- band signals. The training process initially need more time but in the end 

it will improve the net detector performance. The simulation results shown by Figure 4.5 confirms that 

the performance of SVM detector depends upon the frequency range of the signal .It is shown that the 

increase in the frequency range of the signals will decrease the performance of the detector for the 

same SNR range and step size. 
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4.4.1.1 20, 30, 40 and 60 kHz AWGN Pass Band Signal Detection for SNR= [-80:10:40] by 

Using Autocorrelation Kernel Function based SVM Detector  

 

 

Figure 4.6  20, 30, 40 and 60 kHz AWGN Pass-band signals at -80 dB for SNR= [-80:10:40]  

 

Figure 4.7  20, 30, 40 and 60 kHz AWGN pass-band signals at -70 dB for SNR= [-80:10:40]   
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Figure 4.8  20, 30, 40 and 60 kHz AWGN pass-band signals at -60 dB for SNR= [-80:10:40]  

 

Figure 4.9  20, 30, 40 and 60 kHz AWGN pass-band signals at -50 dB for SNR= [-80:10:40]  

 

Figure 4.10  30 kHz AWGN pass-band signals at -50 dB for SNR= [-80:10:40]  
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Fig. 4.10 shows the detection of four signals, but only one was transmitted. This is a detection failure. 

 

Figure 4.11  20, 30, 40 and 60 KHz AWGN pass-band signals at -40 dB for SNR= [-80:10:40]  

 

Figure 4.12  30 kHz AWGN pass-band signals at -40dB for SNR= [-80:10:40]  
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Figure 4.13 30 kHz AWGN Pass-band signals at -20 dB for SNR= [-80:10:40]  

The SNR is high enough for reliable detection of a single signal by Welch periodogram. However, the 

SVM fails because it was trained for four signals  

 

Figure 4.14  20 kHz AWGN pass-band signal at 10 dB for SNR= [-80:10:40]  
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it was trained for four signals. This needs further investigation.  

The results suggest that the SVM detector may identify very low signals. However simulation will be 

needed to verify that the confidence level drops significantly below the threshold no carriers are 

present. In any case the combination of Welch periodogram and a SVM based detector could provide 

means to detect signals at low SNR levels reliably. This will be subject to future investigations 
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5 Fuzzy Logic Based Spectrum Sensing 

5.1 FUZZY INFERENCE SYSTEM 

A fuzzy inference system (FIS) deals with a nonlinear mapping of the input data vector and defines scalar 

output by using fuzzy rules. This mapping process uses input/output membership functions, FL 

operators, fuzzy if–then rules, aggregation of output sets and defuzzification. A general model of a fuzzy 

inference system (FIS) is shown in Figure 5.1 [1]. 

The FLS maps crisp inputs into crisp outputs. It can be seen from the Fig 5.1, that the FIS contains four 

components: the fuzzifier, inference engine, rule base, and defuzzifier. 

 

Figure 5.1   Block Diagram of a Fuzzy Inference System 

5.1.1 Fuzzifier 

Fuzzification is a process through which we can convert the input value to a fuzzy set. This process takes 

place in the Fuzzifier. The fuzzy set consists of two values which describes the degree of belongingness 

with a certain membership function. The crisp values of input variables from sensors are fuzzified into 

linguistics values using predefined membership functions (MSFs). The outputs of fuzzifiers are a set of 

fuzzy numbers, two fuzzy numbers for each input variables. 

5.1.2 Inference Engine 

Inference Engine is 2nd component of fuzzy logic control system. IF-THEN fuzzy logic rule can be 

assembled as IF antecedent THEN consequent. When an input is given to the control system then 
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against this input, the inference engine fires an appropriate rule. The inference engine defines mapping 

from input fuzzy sets into output fuzzy sets and determines the degree to which the antecedent is 

satisfied for each rule. It is possible that one or more rules may fire at the same time. 

5.1.3 Rule Base 

The rule base contains linguistic rules that are provided by experts. It is also possible to extract rules 

from numeric data. Once the rules have been established, the FIS can be viewed as a system that maps 

an input vector to an output vector. Outputs for all rules are then aggregated. During aggregation, fuzzy 

sets that represent the output of each rule are combined into a single fuzzy set. Fuzzy rules are fired in 

parallel, which is one of the important aspects of FIS. In FIS, the order in which rules are fired does not 

affect the output [1]. 

5.1.4 Defuzzifier 

The defuzzifier maps output fuzzy sets into a crisp number. Given a fuzzy set that encompasses a range 

of output values, the defuzzifier returns one number, thereby moving from a fuzzy set to a crisp 

number. Defuzzification is a process through which we can convert linguistic values to crisp values. This 

process takes place in the defuzzifier. Against each output one defuzzifier exist. The main objective of 

the defuzzifier is to determine single numeric crisp (singleton) value of each output variable [2].  . 

In order to process the input to get the output reasoning there are six steps involved in the creation of a 

rule based fuzzy system [3]. 

1. Identification, names and ranges to inputs.  

2. Identification, names and ranges to outputs. 

3. For each input and output, creation of the degree of fuzzy membership functions. 

4. Construct the rule base for the system to operate.  

5. Decide how the action will be executed by assigning strengths to the rules  

6. Defuzzify the output by combining the rules. 

The fuzzy inference process can be described completely in the five steps as shown in Fig.5.2 
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                                              Figure 5.2   Fuzzy Inference Process 

 

Step 1: Fuzzy Inputs 

The first step is to take inputs and determine the degree to which they belong to each of the 

appropriate fuzzy sets via membership functions. 

Step 2: Apply Fuzzy Operators 

Once the inputs have been fuzzified, we know the degree to which each part of the antecedent has been 

satisfied for each rule. If a given rule has more than one part, the fuzzy logical operators are applied to 

evaluate the composite firing strength of the rule.  

Step 3: Apply the Implication Method 

The implication method is defined as the shaping of the output membership functions on the basis of 

the firing strength of the rule. The input for the implication process is a single number given by the 

antecedent, and the output is a fuzzy set. Two commonly used methods of implication are the minimum 

and the product. 

Step 4: Aggregate all Outputs 

Aggregation is a process whereby the outputs of each rule are unified. Aggregation occurs only once for 

each output variable. The input to the aggregation process is the truncated output fuzzy sets returned 
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by the implication process for each rule. The output of the aggregation process is the combined output 

fuzzy set. 

Step 5: Defuzzify 

The input for the defuzzification process is a fuzzy set (the aggregated output fuzzy set), and the output 

of the defuzzification process is a crisp value obtained by using some defuzzification method. The most 

commonly used method is the centroid. Other methods include the maximum, the means of maxima, 

height, and modified height method.  

5.2 Cognitive Radio Using Fuzzy Logic 

A cognitive radio is a two way radio capable to change its parameters of transmission or reception 

automatically considering several factors; radio frequency spectrum, user behavior and network states. 

The main problem in the cognitive radio is the spectrum sensing, and if the spectrum holes are available 

then select the best spectrum hole on the basis of communication parameters is an important task. The 

classical signal processing technique can detect the spectrum hole but cannot do the decision, which 

hole will be best. The hole which is idle most of the time will be more secure from interference 

produced due to communication of licensed primary user. The signal will be detected at Physical layer 

and the decision will be done at MAC Layer [4]. 

IEEE 802.22 standard is designed for Wireless regional area networks. The white spaces available from 

licensed TV spectrum are used for CR communication [5, 6, 7 and 8]. 

The components of the dynamic channel selection scheme for a wireless node are instantaneous 

collision probability and signal strength. Estimated collision probability Pc (f) is often very imprecise and 

cannot be computed very accurately. Information processing based fuzzy logic control has been 

deployed successively in many real world automatic systems including autonomous robot navigation, 

autofocus cameras, image analysis, diagnosis systems, washing machines, automobile transmissions, air 

conditioners and aerospace. 

The key efforts in the area of fuzzy logic based algorithms and new software and hardware architecture 

are needed to address new challenges in the evolution of CR networks. 

Fuzzy logic is useful for multidimensional decision making problems in dynamic and distributed 

uncertain environment by saving computational complexity. Fuzzy logic control and decision making 

have proven useful when time-invariance and linearity of the controlled process cannot be assumed by 

lacking a well posed mathematical model. Fuzzification process is needed to change the imprecise 

collision probability in each channel into a fuzzy set which can be used by inference rules to determine 

the traffic load in each channel. The decision on dynamic channel selection at node is based on a utility 

factor. The signal strength rf is the function of distance between the access point AP and the wireless 

node and the channel condition. Both collision probability & received signal strength impact the channel 

utility function [9]. 
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Recently an approach to use fuzzy logic in networks and telecommunication system has been organized 

into three efforts: modeling and control, forecasting and management and performance estimation. 

5.3 A Proposed Cascaded Fuzzy Logic Control System for 

Decision Making in Cognitive Radio System 

The proposed cascaded Fuzzy logic control system shown in Fig.5.3 consists of three fuzzy logic 

controllers: FLC-1, FLC-2 and FLC-3, and a ROM [10]. 

 

FLC-1

ENVIRONMENT

DISTANCE

VELOCITY

SSPU

PSU
FLC-2 FLC-3

SSPU

SNRPU

RSU

MOD(PSU)

HO

SSPU

MEMORY

ROM

DURATION

USED

SPECTRUM

FINAL 

DECISION

AVAILABLE 

HOLE

 

               Figure 5.3    Block Diagram of Cascaded Fuzzy Logic Control System for CRs. 

5.3.1 FLC-1 

This fuzzy controller deals with four input variables: Environment condition, distance of SU from PU, 

speed of SU and the signal strength received at secondary user SU from the primary user PU (SSPU). For 

distance, velocity and SSPU, each linguistic variable is characterized by a term set of three fuzzy sets: 

Small, Medium and High. 

T(Distance)=T(Velocity)=T(SSPU)={ Small, Medium , Large}={ S, M , La} 

One input variable, environment is labeled as: 

T(Environment)={  Worst, Bad, Normal}={  W, B, N} 

The one output variable, transmission power of SU (PSU) is also characterized by a term set of three fuzzy 

sets: Small, Medium and High 
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T(PSU)={ Small, Medium , High}={ S, M , H} 

Total numbers of active rules for FLC-1 are 81. 

Total number of active rules= mn=34=81 

Where, m=Maximum number of overlapped fuzzy sets=3, n=Number of inputs=4 

”. 

5.3.1.1 Fuzzy Rules Base for FLC-1 

The input variables and output variables are labeled with the term of three fuzzy sets. In Table 5.1, 

T(environment)=T{W,B,N}={Worst, Bad, normal} are the terms of three Fuzzy sets for the environment. 

Similarly T(distance)= T{S,M, La}={small, medium, large}, T(speed)= T{L,M, H}={low, medium, high},and 

T(SSpu)= T{L,M, H}={low, medium, high} are the terms of  three fuzzy sets for distance, speed and signal 

strength received at SU from the PU. T(Psu)={Small, Medium, High}={S,M,H} are used for the speed of  

secondary  user. IF -Then rule base arrangement for FLC-1 is shown in Table 5.1. 

 

IF THEN 

Rule No. Environment Distance of SU 
from PU 

Speed of SU SSPU 

Signal strength 
received at SU 
from the PU 

PSU 

Transmission 
power of SU 

1,2,3 W S L L,M,H L,M,M 

4,5,6 W S M L,M,H L,M,M 

7,8,9 W S H L,M,H L,M,M 

10,11,12 W M L L,M,H L,M,H 

13,14,15 W M M L,M,H L,M,H 

16,17,18 W M H L,M,H L,M,H 

19,20,21 W La L L,M,H L,M,H 

22,23,24 W La M L,M,H L,M,H 

25,26,27 W La H L,M,H L,M,H 

28,29,30 B S L L,M,H L,M,M 

31,32,33 B S M L,M,H L,M,M 

34,35,36 B S H L,M,H L,M,M 

37,38,39 B M L L,M,H L,M,M 

40,41,42 B M M L,M,H L,M,M 

43,44,45 B M H L,M,H L,M,M 

46,47,48 B La L L,M,H L,M,M 
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49,50,51 B La M L,M,H L,M,M 

52,53,54 B La H L,M,H L,M,M 

55,56,57 N S L L,M,H L,L,L 

58,59,60 N S M L,M,H L,L,L 

61,62,63 N S H L,M,H L,L,L 

64,65,66 N M L L,M,H L,L,L 

67,68,69 N M M L,M,H L,L,L 

70,71,72 N M H L,M,H L,L,L 

73,74,75 N La L L,M,H L,M,M 

76,77,78 N La M L,M,H L,M,M 

79,80,81 N La H L,M,H L,M,M 

 

Table 5.1   Fuzzy Rules Base for FLC-1 

 

5.3.1.2 MATLAB Surface Viewer for FLC-1 

Fig. 5.4 shows MATLAB Surface Viewer for FLC-1 considering SSpu, environment and Psu. This shows 

that with the increase of SSpu, Psu is also increasing and change in environment also effects in the value 

of Psu. 

 

Figure 5.4   MATLAB Surface Viewer for FLC-1, Showing Relation between Velocity, Environment and Psu. 
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Fig.5.5 shows MATLAB Surface Viewer for FLC-1, showing relation between SSpu, distance and Psu. It 

shows that when SSpu increases Psu also increases. The change in distance also causes the change in 

SSpu for certain range of values according to selected rule base. 

 

Figure 5.5   MATLAB Surface Viewer for FLC-1, Showing Relation between Velocity, Environment and Psu. 

 

Fig. 5.6 shows that after certain condition of environment, the value of Psu also changes. 

 

Figure 5.6   MATLAB Surface Viewer for FLC-1, Showing Relation between Velocity, Environment and Psu. 
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Fig.5.7 shows the environmental effects on Psu and also change in Psu due to change in velocity at 

certain range of selected rule base values. 

 

 

Figure 5.7   MATLAB Surface Viewer for FLC-1, Showing Relation between Velocity, Environment and Psu. 

5.3.2 FLC-2 

The Fuzzy Logic Controller FLC-2 deals with four input variables: Single Strength received by SU as 

transmitted by PU (SSPU), Signal to noise ratio at the PU (SNRPU), transmission power of SU without 

interfering the PU (PSU), and bit rate of the PU (RSU) [10]. 

Each input variable is characterized by a term set of three fuzzy sets: Small, Medium and High. 

T(SSPU)=T(SNRPU)=T(PSU)=T(RSU)= {Low, Medium, High}={L,M,H} 

The two output variables: Modification in the transmission power of SU – MOD(PSU) and spectrum hand 

off (HO). 

The output MOD (PSU) linguistic variable is characterized by a term set of the three fuzzy sets: Low, 

Medium and High. 

T (MOD Psu) = {Low, Medium, High} = {L, M, H} 

Another output HO is characterized by a term set of the three fuzzy sets: Yes, Probable Yes and No. 

T(HO)={Yes, Probable Yes, No}={Y, PY, N}. 

Total numbers of active rules for FLC-2 are 81. 
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Total number of active rules= mn=34=81 

Where, m=Maximum number of overlapped fuzzy sets=3, n=Number of inputs=4 

5.3.3 Fuzzy Rules Base for FLC-2 

FLC-2 deals with four inputs and two output variables. The three fuzzy sets for each variable are shown 

as: 

T(SSPU)= {Low, Medium, High}={L,M,H} 

T(SNRPU)= {Low, Medium, High}={L,M,H} 

T(PSU)= {Low, Medium, High}={L,M,H} 

T(RSU)= {Low, Medium, High}={L,M,H} 

T (MOD Psu) = {Low, Medium, High} = {L, M, H} 

T(HO)={Yes, Probable Yes, No}={Y, PY, N}. 

 

IF THEN 

Rule No SSPU 

Signal 
strength 

received at 
SU from the 

PU 

SNRPU 

Signal to noise 
ratio at PU 

PSU 

Power of SU 

RSU 

Bit rate of PU 

MOD(PSU) HO 

1,2,3 L L L L,M,H M,L,L Y,PY,N 

4,5,6 L L M L,M,H M,L,L Y,PY,N 

7,8,9 L L H L,M,H L,L,L Y,PY,N 

10,11,12 L M L L,M,H M,L,L PY,PY,N 

13,14,15 L M M L,M,H M,L,L PY,N,N 

16,17,18 L M H L,M,H L,L,L PY,N,N 

19,20,21 L H L L,M,H M,L,L PY,N,N 

22,23,24 L H M L,M,H M,L,L N,N,N 

25,26,27 L H H L,M,H L,L,L N,N,N 

28,29,30 M L L L,M,H M,L,L Y,PY,N 

31,32,33 M L M L,M,H L,L,L Y,PY,N 

34,35,36 M L H L,M,H L,L,L Y,PY,N 

37,38,39 M M L L,M,H M,M,M PY,N,N 
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40,41,42 M M M L,M,H L,L,L PY,N,N 

43,44,45 M M H L,M,H L,L,L PY,N,N 

46,47,48 M H L L,M,H M,M,M N,N,N 

49,50,51 M H M L,M,H L,L,L N,N,N 

52,53,54 M H H L,M,H L,L,L N,N,N 

55,56,57 H L L L,M,H M,L,L Y,PY,N 

58,59,60 H L M L,M,H L,L,L Y,PY,N 

61,62,63 H L H L,M,H M,M,M Y,PY,N 

64,65,66 H M L L,M,H L,L,L PY,N,N 

67,68,69 H M M L,M,H L,L,L PY,N,N 

70,71,72 H M H L,M,H L,L,L PY,N,N 

73,74,75 H H L L,M,H M,L,L N,N,N 

76,77,78 H H M L,M,H L,L,L N,N,N 

79,80,81 H H H L,M,H L,L,L N,N,N 

 

Table 5.2   Fuzzy Rules Base for FLC-2 

 

5.3.4 MATLAB Surface Viewer for FLC-2 

MATLAB surface viewer gives the various relations between inputs and outputs variables using different 

selection modes. Fig. 5.8 represents the relation of SSpu, SNRpu and MOD(Psu) according to the 

selected rule base. MOD(Psu) changes with the change in SNRpu. While change in SSpu also effects in 

MOD(Psu). 
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Figure 5.8  MATLAB Surface Viewer for FLC-2, Showing Relation Between SSpu, SNRpu and MOD(Psu). 

 

Fig. 5.9 shows the relation of Psu, SSpu and MOD(Psu) according to the selected rule base applied. 

MOD(Psu) changes with the change in SSpu. While change in Psu also effects SSpu for some range of 

values according to the selected rule base for some range of values. 

 

Figure 5.9  MATLAB Surface Viewer for FLC-2 Showing relation Between Psu, SSpu and MOD(Psu). 
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Fig. 5.10 shows the relation of Rsu, SSpu and MOD(Psu)according to the selected rule base applied. 

Keeping SSpu constant for some range of values, Rsu causes influence in MOD(Psu). 

 

Figure 5.10  MATLAB Surface Viewer for FLC-2, Showing Relation Between Rsu,  SSpu and MOD(Psu). 

 

Fig. 5.11 MATLAB Surface Viewer for FLC-2 shows the relation between SNRpu, Rsu and HO. The value of 

SNRpu causes change in the HO. 

 

Figure 5.11  MATLAB Surface Viewer for FLC-2 , Showing Relation Between SNRpu, Rsu and HO. 
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Fig.5.12 shows  the relation between SSpu, Rsu and HO. Keepin SSpu constant, change in Rsu results the 

change in the value of HO. 

 

Figure 5.12  MATLAB Surface Viewer for FLC-2, Showing Relation Between SSpu, Rsu and HO. 

 

Fig.5.13 shows that keeping Psu constant, change in Rsu needs the change in HO. 

 

Figure 5.13  MATLAB Surface Viewer for FLC-2, Showing Relation Between Rsu, Psu and HO. 



 

94 

 

Fig.5.14 shows MATLAB Surface Viewer for FLC-2, showing relation between SSpu, Rsu and HO for 

certain range of selected rules. Decrease in Rsu causes increase in HO keeping SSpu constant according 

to certain rules applies. 

 

Figure 5.14   MATLAB Surface Viewer for FLC-2 Showing Relation Between SSpu, Rsu and HO. 

5.3.5 FLC-3 

The Fuzzy Logic Controller FLC-3 deals with four input variables: SSPU -Signal strength received at SU from 

the PU, Spectrum Hand off (HO), available used frequency spectrum and Spectrum availability duration 

(Information stored in ROM). 

SSPU input variable is characterized by a term set of three fuzzy sets: Small, Medium and High. 

T(SSPU)= {Low, Medium, High}={L,M,H} 

The input HO is characterized by a term set of the three fuzzy sets: Yes, Probable Yes and No. 

T(HO)={Yes, Probable Yes, No}={Y, PY, N}. 

Available used frequency spectrum input variable is characterized by a term set of three fuzzy sets: Low 

Bandwidth, Medium Bandwidth and High Bandwidth. 

T(Available frequency Band)={ Low Bandwidth, Medium Bandwidth , High Bandwidth}={LB,MB,HB} 

T (Frequency Band) = {Low Band, Medium Band, High Band} = {LB, MB, HB} 

Spectrum time duration input variable is characterized by a term set of three fuzzy sets: Limited Average 

and Unlimited. 

T(Available frequency time  duration)={ Limited, Average , Unlimited}={L,A,UL} 
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The output available Spectrum Hole is characterized by a term set of the three fuzzy sets: Low Range, 

Medium Range and High Range. 

T (Spectrum Hole) = {Low Range, Medium Range, High Range}={LR, MR, HR} 

Total numbers of active rules for FLC-3 are 81. 

Total number of active rules= mn=34=81 

Where, m=Maximum number of overlapped fuzzy sets=3, n=Number of inputs=4 

 

5.3.5.1 Fuzzy Rules Base for FLC-3 

The fuzzy rule base for FLC-3 is shown in Table 5.3. The following three fuzzy sets for four input 

variables: SSpu, HO, available frequency Band and available frequency time  duration. While one output 

with three fuzzy sets is taken. 

T(SSPU)= {Low, Medium, High}={L,M,H} 

T(HO)={Yes, Probable Yes, No}={Y, PY, N}. 

T(Available frequency Band)={ Low Bandwidth, Medium Bandwidth , High Bandwidth}={LB,MB,HB} 

T(Available frequency time  duration)={ Limited, Average , Unlimited}={L,A,UL} 

T (Spectrum Hole) = {Low Range, Medium Range, High Range}={LR, MR, HR} 

 

IF THEN 

Rule No. SSPU 

Signal strength 
received at SU 
from the PU 

HO 

Hand Off 

Available 

Spectrum 

Time Duration 

Of Available 
spectrum 

Spectrum Hole 

1,2,3 L N LB L, A, UL LR 

4,5,6 L N MB L, A, UL LR 

7,8,9 L N HB L, A, UL LR 

10,11,12 L PY LB L, A, UL MR 

13,14,15 L PY MB L, A, UL MR 

16,17,18 L PY HB L, A, UL MR 

19,20,21 L Y LB L, A, UL LR 

22,23,24 L Y MB L, A, UL MR 

25,26,27 L Y HB L, A, UL HR 

28,29,30 M N LB L, A, UL MR 
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31,32,33 M N MB L, A, UL MR 

34,35,36 M N HB L, A, UL MR 

37,38,39 M PY LB L, A, UL MR 

40,41,42 M PY MB L, A, UL MR 

43,44,45 M PY HB L, A, UL MR 

46,47,48 M Y LB L, A, UL LR 

49,50,51 M Y MB L, A, UL MR 

52,53,54 M Y HB L, A, UL HR 

55,56,57 H N LB L, A, UL HR 

58,59,60 H N MB L, A, UL HR 

61,62,63 H N HB L, A, UL HR 

64,65,66 H PY LB L, A, UL HR 

67,68,69 H PY MB L, A, UL HR 

70,71,72 H PY HB L, A, UL HR 

73,74,75 H Y LB L, A, UL LR 

76,77,78 H Y MB L, A, UL MR 

79,80,81 H Y HB L, A, UL HR 

Table 5.3   Fuzzy Rules Base for FLC-3 

 

5.3.5.2 MATLAB Surface Viewer for FLC-3 

The various MATLAB rule viewer graphs are shown for different relations according to the selected rule 

base. 

Fig. 5.15 shows that with increase in HO, the increase in spectrum Hole is also required. Similarly change 

in SSpu also causes change in Spectrum Hole according to the rule base selected. 
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Figure 5.15  MATLAB Surface Viewer for FLC-3, Showing Relation between SSpu, HO and Spectrum Hole. 

 

Fig. 5.16 shows that after certain range of values increase in SSpu also demands the change in spectrum 

hole according to the selected rule base. 

 

Figure 5.16  Surface Viewer for FLC-3, Showing Relation between Available Band, SSpu and Spectrum Hole. 
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Figure 5.17  Surface Viewer for FLC-3, Showing Relation between HO, SSpu and Spectrum Hole. 

 

 

Figure 5.18   MATLAB Surface Viewer for FLC-3, Showing Relation between HO, Available band and spectrum Hole. 
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5.4 GUI using Microsoft Visual Basic 

The graphic user interface GUI for fuzzy logic system for proposed CR system is shown in 

Fig.5.19.This GUI takes the input values and gives output values for FLC1, FLC2 and FLC2. The 

back end software uses the inputs values to determine membership functions, find linguistic 

values, applies fuzzy rule base and determine crisp values for each output using Mamdani 

model. 

 

Figure 5.19   Overall representations of the Fuzzy logic controllers 



 

100 

 

5.5  Design Algorithms 

5.5.1 FLC-1 

 

Environment  =  31.7 

Distance  =  28.3 

Velocity  =  48.3 

SSpu      =  68.3 

Psu  =  53.6 

5.5.1.1 Environment 

 

 

 

 

 

 

 

 

 

f1  =  50-31.7/50 

 = 18.3/50 

 = 0.367 

f2  = 1- f1 

 = 0.633 

M.SFs involved are :   Worst (w)   Bad (B) 

 

 

 

Environment = 31.7 
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5.5.1.2 Distance 

 

 

f3 = 50-28.3/50 

 = 0.437 

f4  = 1- f3  

 = 0.566 

Membership functions involved are: Small (S), Medium (M) 

    

 

 

5.5.1.3 Velocity 

 

 

 

f5  = 50-48.3/50 

Distance = 28.3 
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 = 0.034 

f6  = 1- f5  

 = 1-0.034 

 = 0.966 

M.Fs involved are: Low (L) 

   Medium (M) 

 

 

5.5.1.4 SSPU 

 

 

 

f7   = 100-68.3/50 

 = 0.634 

f8  = 1- f7  

 = 0.366 

M.Fs involved are:  M & H 

 

 

 

 

 

SSpu = 68.3 

Velocity  = 48.3 
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Rule No. Env Dis Vel SSpu Psu 
Singleton 

Values 

Ro W S L M M SO = 0.5 

R1 W S L H M S1 = 0.5 

R2 W S M M M S2 = 0.5 

R3 W S M H M S3 = 0.5 

R4 W M L M M S4 = 0.5 

R5 W M L H H S5 = 1 

R6 W M M M M S6 = 0.5 

R7 W M M H H S7  = 1 

R8 B S L M M S8 = 0.5 

R9 B S L H M S9 = 0.5 

R10 B S M M M S10 = 0.5 

R11 B S M H M S11 = 0.5 

R12 B M L M M S12 = 0.5 

R13 B M L H M S13 = 0.5 

R14 B M M M M S14 = 0.5 

R15 B M M H M S15 = 0.5 

 

 

RO f1 ^ f3 ^ f5 ^ f7  0.367 ^ 0.437 ^ 0.034 ^ 0.634 0.034 

R1 f1 ^ f3 ^ f5 ^ f8   0.367 ^ 0.437 ^ 0.034 ^ 0.366 0.034 

R2 f1 ^ f3 ^ f6 ^ f7  0.367 ^ 0.437 ^ 0.966 ^ 0.634 0.034 

R3 f1 ^ f3 ^ f6 ^ f8 0.367 ^ 0.437 ^ 0.966 ^ 0.366 0.366 

R4 f1 ^ f4 ^ f5 ^ f7 0.367 ^ 0.566 ^ 0.034 ^ 0.634 0.034 

R5 f1 ^ f4 ^ f5 ^ f8 0.367 ^ 0.566 ^ 0.034 ^ 0.634 0.034 

R6 f1 ^ f4 ^ f6 ^ f7   0.367 ^ 0.566 ^ 0.966 ^ 0.634 0.0367 

R7 f1 ^ f4 ^ f6 ^ f8   0.367 ^ 0.566 ^ 0.966 ^ 0.366 0.0366 

R8 f1 ^ f4 ^ f6 ^ f8    0.367 ^ 0.566 ^ 0.966 ^ 0.366 0.0366 

R9 f2 ^ f3 ^ f5 ^ f8    0.633 ^ 0.437 ^ 0.034 ^ 0.366 0.034 

R10 f2 ^ f3 ^ f6 ^ f7    0.633 ^ 0.437 ^ 0.966 ^ 0.634 0.437 

R11 f2 ^ f3 ^ f6 ^ f8    0.633 ^ 0.437 ^ 0.966 ^ 0.366 0.366 
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R12 f2 ^ f4 ^ f5 ^ f7    0.633 ^ 0.566 ^ 0.034 ^ 0.634 0.034 

R13 f2 ^ f4 ^ f5 ^ f8    0.633 ^ 0.566 ^ 0.034 ^ 0.366 0.034 

R14 f2 ^ f4 ^ f6 ^ f7    0.633 ^ 0.566 ^ 0.966 ^ 0.634 0.566 

R15 f2 ^ f4 ^ f6 ^ f8    0.633 ^ 0.566 ^ 0.966 ^ 0.366 0.366 

 

 

 

 

 

  

 

 

Si x Ri  

0.5*0.034 0.017 

0.5*0.034 0.017 

0.5*0.367 0.184 

0.5*0.366 0.183 

0.5*0.034 0.017 

1*0.034 0.034 

0.5*0.367 0.184 

1*0.366 0.366 

0.5*0.034 0.017 

0.5*0.034 0.017 

0.5*0.437 0.219 

0.5*0.366 0.183 

0.5*0.034 0.017 

0.5*0.034 0.017 

0.5*0.566 0.283 

0.5*0.366 0.183 

∑  Si * Ri 1.983 

 

Table 5.4   Rule Based Verification of Algorithm 

15 

∑  Ri = RO  +  R1 +……………………………+ R15  = 3.473  

i=0 
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5.5.1.5 Mamdani’s Model 

 

Output variable (crisp value) =  ∑ Si * Ri / ∑  Ri * 100 

= 1.938 / 3.473 * 100 = 55.8 

 

MATLAB Simulation Value 53.6 

Design Value 55.8 

 

Diff = 2.2 

% error = diff / original * 100 

 = 2.2 / 53.6 * 100 

% error = 4.1 % 

 

 

Similarly design algorithms for FLC-2 and FLC-3 can be explained. 

 

 

 

 

 

 

 

 

 

 

 

 

% error = 4.1% 
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5.6 Hardware Description of Fuzzifiers, Inference Engine and 

Defuzzifier 

For the proposed Cognitive Radio system, the arrangement of three fuzzy logic controllers FLC-1,FLC-2 

and FLC-3 are shown in Fig. 5.20. 
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Figure 5.20   Fuzzifiers used for three fuzzy logic controllers-FLC-1, FlC-2 and FLC-3. 
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Fig. 5.21 shows the construction details of fuzzifier  for one FLC . It consists of a multiplier, region 

selection comparator, multiplexer, subtractors and divider. 

 

 

Figure 5.21   Construction details of fuzzifier  
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Fig. 5.22 shows the hardware arrangement of Inference Engine used in Fuzzy logic controller . For the 

four input variables the arrangement of sixteen Min-AND Gates is used to find the values of sixteen rules 

from R1 to R16. 

 

Figure 5.22  Hardware details of inference Engine used in Fuzzy logic controller   
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The block diagram of Defuzzifier used in FLC is shown in Fig. 5.23. 
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Figure 5.23   Defuzzifier used in FLC  
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Fig. 5.24 shows the hardware description of defuzzifier used in FLC. It consists of sixteen multipliers, two 

circuits for summation and one divider circuit to achieve the result of Mamdani model formula. 

 

Figure 5.24   Hardware description of defuzzifier used in FLC  
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Conclusion 
 

Spectrum is a valuable resource in wireless communication systems. Over many years, spectrum 

optimization is an attractive focal point for research and development efforts by scientists and 

engineers. Future wireless communication systems require high performance and will accommodate a 

large number of users. So, they will need more bandwidth and flexible bandwidth allocation.  

In this thesis the Welch periodogram is applied for the detection of 4 narrow and wideband signals at 

SNR down to      dB. The Welch periodogram detector is an efficient, computationally less complex 

and fast spectrum sensing technique for narrowband signals, but it is slower and a simple energy 

detector and needs high processing power for very high frequency signals. For example ,the Welch 

periodogram can detect the QPSK based 1.6, 1.7, 1.8 and 1.9 MHz signals (propagating  through an 

AWGN  channel) within few minutes but it needs almost 12 hours to detect the 100,200,300 and 400 

MHz signals. This technique failed to detect the signal at SNR˂-25dB. It is a non-intelligent and cannot 

help in the selection of the best spectrum hole. 

In this thesis, the autocorrelation kernel function-based spectrum sensing technique along with the 

Welch periodogram detector has been introduced. This technique may work efficiently at very low SNR 

values. The results, advantages and disadvantages of this technique are described below.  

The results of spectrum sensing in chapter 3 shows that the Welch periodogram-based detector does 

not perform well at SNR ˂-30 dB for an AWGN channel. On the other hand, signal detection may be 

done at SNR˂-30dB with the help of the autocorrelation kernel function. There is a problem that SVM 

can detect the signals at lower SNR values but it is more vulnerable for false alarm or miss detection. 

More training and research will help to overcome on this problem. Initially this kernel was used for the 

modulation detection. In this thesis the autocorrelation kernel function was used for the signal 

detection and frequency recognition for band-limited baseband and pass-band signals. The performance 

of the detector is better than compared to conventional energy detectors, as the classifier is trained in a 

supervised way. Therefore, for combination of each new signal combination, it needs the retraining. 

However, extra time is required for the detection of the signals. 

Welch periodogram detector can detect up to -20dB for baseband signals. But when this detector was 

executed on IGS 64 bit processor based network then it detects the 400 MHz signals up to -30dB.It 

shows that the performance of the detector depends upon the processing environment. 

The main attraction in SVM-based signal detection is its flexibility and its potential ability to operate at 

very low SNR values. It also helps in the selection of the best spectrum hole out of available holes. SVM 

also provides a simulation-based training and testing facility. The performance of the autocorrelation 

detector is improved by the increased number of training examples. 

The autocorrelation has the drawback that it is designed on the basis of supervised learning. So, it needs 

the retraining for new frequency samples, requiring extra time. Also at very low SNR values, it shows the 

false alarm and miss detection. The performance of the SVM detector depends upon the frequency 
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range of the signals to be detected. By the increase of the frequency range, performance of the detector 

was reduced. Also an increase in frequency range will increase the time required for the training of the 

detector. 

Performance of the detector depends upon the SNR range. ROC is higher for lower SNR ranges. Also for 

the higher SNR range, the detector needs more time for training.  

Performance of the detector depends upon the number of training sessions. The higher the number of 

training sessions, the better will be the performance of the detector. The additional time needed for 

training will lead to better signal detection and less time required for signal detection. 

Performance of the detector depends upon the SNR step size. Performance of the detector is improved 

by the decrease of SNR step size. Reduction of the step size increases the performance of the detector. 

In case of reduction of the SNR step size the training time will increase, but finally it will increase the 

accuracy in the signal detection. 

The autocorrelation function is an admissible SVM kernel. In this thesis, the autocorrelation function 

kernel based SVM detector is successfully implemented for the detection of four QPSK based signals 

propagating through an AWGN channel. As the machine is trained for the four signals, so some times it 

shows the false alarm or miss detection for less than four signals. 

Fuzzy logic is used for the solution of control system problems. In this thesis, as a whole it is worth to 

mention that the fuzzy logic controller provides the opportunity to solve the interdependence problem 

in a dynamic environment. 

In this system, Fuzzy Logic Controllers (FLCs) may be used in a different way to establish the authenticity 

of decision for Cognitive Radio System requirements in a future implementation. 

Future work will provide the rapid estimation of Cognitive Radio System problems for design and 

analysis in all sorts of scenarios. 

The Mamdani model is a time varying model for the optimal decision and control. The results for the 

algorithm designed for the implementation of FLC 1 were calculated. The practical results were 

compared with the values derived from Mamdani’s model. The difference between the values was equal 

to 4.1%. The hardware description of fuzzifiers, inference engine and deffuzifier were shown. The 

hardware description suggests an idea for the practical implementation. The results of the fuzzy logic 

will help for the further improvement in the spectrum sensing and spectrum management. A fuzzy logic 

based algorithm helps for the selection of the best spectrum hole in a time varying environment.  

In this thesis a solution of the spectrum scarcity problem is proposed and it gives a ray of hope that 

improved cognitive radios are possible by the combination of statistical signal processing and machine 

learning concepts. 

Cognitive radio is a generic term which indicates that the problems of wireless communication can be 

solved by the introduction of cognition in the wireless communication devices. 
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Future work 

 

The applications of wireless communication and its services are increasing. Spectrum scarcity is the 

bottleneck for the new wireless applications. Cognitive Radio is a solution of this problem. The 

worldwide research is done in the various aspects of the Cognitive Radio based systems and networks 

including spectrum sensing, spectrum management, cross layer design and spectrum decision. The 

future possibilities for the research the field of spectrum sensing can be: 

1. Cross-layer design based cooperative spectrum sensing is required to work for the scheduling and 

dynamic routing for the cooperative and distributed networks. Improvement in the performance of 

cognitive radio networks will be done by distributive cooperative spectrum sensing techniques. Also the 

designing of new dynamic routing protocols is necessary for improvement of the performance of the big 

cognitive radio based networks 

2. Two stage spectrum sensing technique for the solution of the hidden terminal problem at low SNR 

values: The coarse spectrum sensing technique is computationally less complex and the fine spectrum 

sensing technique is computationally more complex, but able to detect the signal with low SNR. 

3. Spectrum sensing can be done by using machine learning techniques. It can be one by using neural 

networks, fuzzy logic and Support Vector Machine methods. This is the time to include statistical 

learning techniques for the solution of the dynamic spectrum sensing and the selection of best spectrum 

hole. The cognitive radio networks can become intelligent and behave in a really adaptive way with the 

help of machine learning techniques. 

4. In this research the reconsideration, redesigning and new training patterns of the autocorrelation 

kernel function based SVM based detector is required to solve the problem of false alarm and miss 

detection of various combinations of the signals, especially at lower SNR values ˂-20 dB. At higher SNR 

values >-20dB the combination of welch periodogram and SVM detector are solving this problem. But, 

still intelligent and more reliable SVM decision is required. This weakness needs the reconsideration 

about the application and designing of SVM machine detectors. The cross validation will also improve 

the performance of the detector. 

4. The supervised learning based spectrum sensing is good and easy, the hole adaptation by avoiding the 

interference with the primary user device can be possible by the online unsupervised learning 

techniques. The new algorithms must be designed by using these techniques, which must be 

computationally less complex and need less power. Unsupervised spectrum sensing will not need the 

training time for the detection of new signals. 

5. Fuzzy logic controllers will be used to identify the best spectrum holes. 
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6. The implementation of numerical techniques for the optimized performance of the cognitive radio 

devices and networks is required. 

7. The research, results and algorithm designed and developed for the intelligent networks, WRAN, 

WPAN can be considered for the improvement of the Cognitive Radio based networks.   

8. The performance of the seismic prediction devices can be improved with the help of intelligent 

spectrum sensing techniques as well. For example, the detection of the signal with the help of wavelet 

technique and the prediction by using some machine learning techniques with the help of Hidden 

Markov Model (HMM) or EM algorithm can help to improve the time for seismic prediction. 

 9. Optical wireless communication is an interesting area in the field of broadband wireless 

communications. It can provide cheap and high data rate transmission. The main problem for the optical 

wireless communication is the attenuation problem due to rain and fog. The attenuation can reach very 

high attenuation levels (several 10 dB). This problem can be solved by the combination of cognitive 

radio and optical wireless communication concepts. The optical wireless designed on the basis of 

Cognitive Radio will have the ability to sense the spectrum at very low SNR values .It can be done by 

using the autocorrelation kernel detector. With the help of fuzzy logic based cognitive decision engine, 

the radio can adapt various parameters. The adaptation of the various communication parameters e.g.; 

power levels, coding and modulation scheme may help to overcome the problem of attenuation. Only 

sensing of the signals and measurement of the attenuation at the receiver end and the adaptation of the 

parameters at the transmitter end can help in solving the problem. The implementation of different 

signal recovery and equalization technique will help to communicate in worst attenuation conditions. 

10. The main problem in optical wireless communication is non-detection of the transmitter signal at 

very low SNR. An improvement is possible by the simultaneous transmission of the optical and 

microwave signals (frequency diversity). 
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