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Vorwort

Es ist unmittelbar ersichtlich, dass sich jedes Element n des Rings Z der
ganzen Zahlen als Summe von |n| Einheiten des Rings (das sind die inver-
tierbaren Elemente, im Fall von Z also die Elemente ±1) schreiben lässt (die
leere Summe wollen wir wie allgemein üblich als 0 annehmen). Dies soll als
erstes triviales Beispiel für jene Eigenschaften dienen, die im Rahmen dieser
Dissertation untersucht werden.

Für einen Ring R (mit Einselement) lässt sich die natürliche Frage stellen,
ob und wie R von seinen Einheiten additiv erzeugt ist. Konkret beinhaltet
dies die folgenden Fragen:

Ist jedes Element von R als Summe von Einheiten darstellbar? Falls ja,
gibt es für jedes Element Darstellungen mit einer fixen oder beschränkten
Anzahl an Summanden? Falls nein, besitzt R zumindest eine

”
natürliche“

Erweiterung S, sodass jedes Element von S als Summe von Einheiten dar-
stellbar ist? Mühelos lässt sich erkennen, dass genau dann jedes Element
von R als Summe von Einheiten darstellbar ist, wenn R als Ring von seinen
Einheiten erzeugt ist.

Die im Rahmen dieser Arbeit untersuchten Ringe sind jene, die in der Zah-
lentheorie an vordergründiger Stelle auftreten, nämlich Ganzheitsringe in al-
gebraischen Zahlkörpern, sowie deren analoge Konstrukte, S-Ganzheitsringe
in algebraischen Funktionenkörpern einer Unbestimmten.

Die Arbeit besteht aus vier Artikeln, von denen zwei bereits von Fach-
zeitschriften zur Publikation angenommen wurden und zwei sich unter Be-
gutachtung befinden.

Der erste Artikel gibt eine Übersicht über zahlreiche Resultate zum The-
ma der Einheitensummen und kann daher als Einleitung verstanden werden.

Im zweiten Artikel werden zwei grundlegende Resultate über Einhei-
tensummen in Ganzheitsringen algebraischer Zahlkörper auf den Funktio-
nenkörperfall übertragen.

Der dritte Artikel behandelt und löst ein offenes Problem, das von Jarden
und Narkiewicz für algebraische Zahlkörper formuliert wurde, im Funktio-
nenkörperfall.
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Der vierte Artikel enthält schließlich das Hauptresultat der Dissertati-
on, die vollständige Lösung des Problems von Jarden und Narkiewicz im
ursprünglichen Zahlkörperfall.

Es folgen kurze Beschreibungen der vier Artikel, die in ihrer Gesamtheit
diese Dissertation ausmachen.

Additive unit representations in global fields - A survey

Dieser Artikel entstand in Zusammenarbeit mit Fabrizio Barroero, zur Zeit
Dissertant in Graz, und Prof. Robert F. Tichy, unserem gemeinsamen Betreu-
er. Es handelt sich um den jüngsten der vier in dieser Dissertation zusammen-
gefassten Artikel, der eine Übersicht über zentrale Fragestellungen und Re-
sultate aus dem Umfeld der Einheitensummen bietet. Besonderes Augenmerk
gilt Ganzheitsringen in algebraischen Zahlkörpern und Funktionenkörpern,
sowie Matrizenringen.

Aufgrund seines Übersichtscharakters dient der Artikel vor allem als Ein-
leitung der Dissertation, er enthält jedoch auch neue Resultate. Zur Zeit
befindet er sich in Begutachtung bei einer Fachzeitschrift.

Sums of units in function fields

Jarden und Narkiewicz zeigten im Jahr 2007, dass es im Ganzheitsring jedes
algebraischen Zahlkörpers, für jede natürliche Zahl n, Elemente gibt, die sich
nicht als Summen von höchstens n Einheiten schreiben lassen. Im ersten Teil
des Artikels wird ein analoges Resultat für S-Ganzheitsringe algebraischer
Funktionenkörper einer Unbestimmten über perfekten Grundkörpern bewie-
sen. Die hierbei zentral verwendeten Hilfsmittel sind Resultate von Mason
über S-Einheitengleichungen in Funktionenkörpern.

Das zweite Hauptresultat des Artikels ist eine Klassifikation jener quadra-
tischen Funktionenkörper, deren Ganzheitsringe von ihren Einheiten erzeugt
werden. Die analoge Version für Zahlkörper wurde erstmals 1974 von Belcher
gezeigt.

Der Artikel wurde von den Monatsheften für Mathematik zur Publikation
angenommen und ist bereits als Onlineversion erschienen.

Sums of units in function fields II - The extension pro-
blem

Motiviert durch die Situation im Fall quadratischer Zahlkörper, in dem sich
relativ einfach eine positive Antwort zeigen lässt, stellten Jarden und Narkie-
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wicz die folgende Frage: Besitzt jeder Zahlkörper eine endliche Erweiterung
L, sodass der Ganzheitsring von L von seinen Einheiten erzeugt ist?

Das Hauptresultat dieses Artikels ist die positive Beantwortung der analo-
gen Frage im Fall von S-Ganzheitsringen in algebraischen Funktionenkörpern
einer Unbestimmten über perfekten Grundkörpern.

Zur Verwendung kommen klassische Methoden der algebraischen Zah-
lentheorie, die jedoch in dieser Form erstmals auf Probleme im Bereich der
Einheitensummen angewandt werden.

Der Artikel wurde von Acta Arithmetica zur Publikation angenommen.

On rings of integers generated by their units

In diesem Artikel wird der Ansatz aus
”
Sums of units in function fields II

- The extension problem“ modifiziert und erweitert, um schließlich die ur-
sprüngliche Frage von Jarden und Narkiewicz im Zahlkörperfall zu beant-
worten.

Zur erfolgreichen Übertragung der Methode auf den Zahlkörperfall wer-
den neue, weniger direkte Argumente benötigt. Der Beweis einer Existenz-
aussage gelingt mit Hilfe eines asymptotischen Abzähltheorems.

Dieses Abzähltheorem ist eine Verallgemeinerung eines Resultats von
Hinz, durch das potenzfreie Werte von Polynomen in Ganzheitsringen al-
gebraischer Zahlkörper gezählt werden.

Der Artikel befindet sich zur Zeit unter Begutachtung bei einer Fachzeit-
schrift.
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Preface

Clearly, every element n of the ring Z of rational integers can be written as
a sum of |n| units of the ring (units are invertible elements, in the case of Z
those are the elements ±1; we assume, as usual, that the empty sum equals
0). This shall serve as a first example of the properties which are investigated
in this thesis.

Given a ring R (with unity), it is a natural problem to investigate whether
and how R is additively generated by its units. Concretely, this includes the
following questions:

Is every element of R representable as a sum of units? If yes, are there, for
each element, representations with a fixed or bounded number of summands?
If not, does R have at least a “natural” extension S such that every element
of S can be represented as a sum of units? Obviously, every element of R is
representable as a sum of units if and only if R is generated by its units as a
ring.

The rings investigated in this thesis are the ones occurring most notably
in number theory, namely, rings of integers in algebraic number fields and
their analogues, rings of S-integers in algebraic function fields of one variable.

The thesis consists of four articles, two of which have been accepted for
publication by journals, and two are under review.

The first article provides an overview on various results in the area of
sums of units and thus can be understood as an introduction.

In the second article, two fundamental results on sums of units in rings of
integers of algebraic number fields are transferred to the function field case.

The third article considers and solves the function field version of an open
problem which was raised by Jarden and Narkiewicz in the number field case.

Finally, the fourth article contains the main result of this thesis, the
complete solution of the problem by Jarden and Narkiewicz in its original
number field version.

Let us continue with short descriptions of the four articles constituting
the thesis.
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Additive unit representations in global fields - A survey

This article is joint work with Fabrizio Barroero, currently a doctoral student
in Graz, and our adviser Prof. Robert F. Tichy. It is the latest of the four
articles forming this thesis and offers an overview on central topics and results
in the area of sums of units. Special attention is paid to rings of integers
in algebraic number fields and function fields on the one hand, and matrix
rings on the other hand.

Being a survey, this article serves primarily as an introduction to this
thesis, but it contains some new results as well. As of now, the article is
under review by a journal.

Sums of units in function fields

Jarden and Narkiewicz proved in 2007 that in the ring of integers of every
algebraic number field, for every positive integer n, there are elements that
can not be written as sums of at most n units. The first part of this article is
devoted to the development of an analogous result for rings of S-integers in
algebraic function fields of one variable over perfect base fields. The central
tools used in this part of the article are results by Mason on S-unit equations
over function fields.

The second main result of the article is a classification of those quadratic
function fields whose rings of integers are generated by their units. The
analogous version for number fields was introduced by Belcher in 1974.

The article has been accepted for publication by Monatshefte für Math-
ematik and has already appeared online.

Sums of units in function fields II - The extension prob-
lem

Motivated by the situation in the case of quadratic number fields, where a
positive answer is relatively easy to find, Jarden and Narkiewicz raised the
following question: Does every number field have a finite extension L such
that the ring of integers of L is generated by its units?

The main result of this article is an affirmative answer to the analogous
question for rings of S-integers in algebraic function fields of one variable
over perfect base fields.

The proofs use classical methods from algebraic number theory, which
are in this form applied for the first time to problems in the area of sums of
units.

The article has been accepted for publication by Acta Arithmetica.
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On rings of integers generated by their units

In this article, the approach from “Sums of units in function fields II - The
extension problem” is modified and extended to answer the original question
by Jarden and Narkiewicz in the number field case.

For successfully transferring the method to number fields, new, less direct,
arguments are needed. An existence statement is established with the help
of an asymptotic counting theorem.

This counting theorem is a generalisation of a result by Hinz, counting
power-free values of polynomials in rings of integers of algebraic number
fields.

Currently, the article is under review by a journal.
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Additive unit representations in global fields -
A survey

Fabrizio Barroero, Christopher Frei and Robert F. Tichy

Dedicated to Kálmán Győry, Attila Pethő, János Pintz and András Sarközy.

Abstract

We give an overview on recent results concerning additive unit
representations. Furthermore the solutions of some open questions
are included. The central problem is whether and how certain rings
are (additively) generated by their units. This has been investigated
for several types of rings related to global fields, most importantly
rings of algebraic integers. We also state some open problems and
conjectures which we consider to be important in this field.

1 The unit sum number

In 1954, Zelinsky [37] proved that every endomorphism of a vector space V
over a division ring D is a sum of two automorphisms, except if D = Z/2Z
and dimV = 1. This was motivated by investigations of Dieudonné on Galois
theory of simple and semisimple rings [6] and was probably the first result
about the additive unit structure of a ring.

Using the terminology of Vámos [34], we say that an element r of a ring
R (with unity 1) is k-good if r is a sum of exactly k units of R. If every
element of R has this property then we call R k-good. By Zelinsky’s result,
the endomorphism ring of a vector space with more than two elements is
2-good. Clearly, if R is k-good then it is also l-good for every integer l > k.
Indeed, we can write any element of R as

r = (r − (l − k) · 1) + (l − k) · 1,
2010 Mathematics Subject Classification: 00-02; 11R27; 16U60
Key words and phrases: global fields, sums of units, unit sum number, additive unit

representations
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18 F. Barroero, C. Frei, R. F. Tichy

and expressing r − (l − k) · 1 as a sum of k units gives a representation of r
as a sum of l units.

Goldsmith, Pabst and Scott [17] defined the unit sum number u(R) of a
ring R to be the minimal integer k such that R is k-good, if such an integer
exists. If R is not k-good for any k then we put u(R) := ω if every element of
R is a sum of units, and u(R) :=∞ if not. We use the convention k < ω <∞
for all integers k.

Clearly, u(R) ≤ ω if and only if R is generated by its units. Here are
some easy examples from [17]:

• u(Z) = ω,

• u(K[X]) =∞, for any field K,

• u(K) = 2, for any field K with more than 2 elements, and

• u(Z/2Z) = ω.

Goldsmith, Pabst and Scott [17] were mainly interested in endomorphism
rings of modules. For example, they proved independently from Zelinsky that
the endomorphism ring of a vector space with more than two elements has
unit sum number 2, though they mentioned that this result can hardly be
new.

Henriksen [21] proved that the ring Mn(R) of n×n-matrices (n ≥ 2) over
any ring R is 3-good.

Herwig and Ziegler [22] proved that for every integer n ≥ 2 there exists a
factorial domain R such that every element of R is a sum of at most n units,
but there is an element of R that is no sum of n− 1 units.

The introductory section of [34] contains a historical overview of the sub-
ject with some references. We also mention the survey article [31] by Srivas-
tava.

In the following sections, we are going to focus on rings of (S−)integers
in global fields.

2 Rings of integers

The central result regarding rings of integers in number fields, or more gen-
erally, rings of S-integers in global fields (S 6= ∅ finite), is that they are not
k-good for any k, thus their unit sum number is ω or ∞. This was first
proved by Ashrafi and Vámos [2] for rings of integers of quadratic and com-
plex cubic number fields, and of cyclotomic number fields generated by a
primitive 2n-th root of unity. They conjectured, however, that it holds true
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for the rings of integers of all algebraic number fields (finite extensions of
Q). The proof of an even stronger version of this was given by Jarden and
Narkiewicz [24] for a much more general class of rings:

Theorem 1. [24, Theorem 1] If R is a finitely generated integral domain of
zero characteristic then there is no integer n such that every element of R is
a sum of at most n units.

In particular, we have u(R) ≥ ω, for any ring R of integers of an algebraic
number field.

This theorem is an immediate consequence of the following lemma, which
Jarden and Narkiewicz proved by means of Evertse and Győry’s [10] bound on
the number of solutions of S-unit equations combined with van der Waerden’s
theorem [36] on arithmetic progressions.

Lemma 2. [24, Lemma 4] If R is a finitely generated integral domain of
zero characteristic and n ≥ 1 is an integer then there exists a constant An(R)
such that every arithmetic progression in R having more than An(R) elements
contains an element which is not a sum of n units.

Lemma 2 is a special case of a theorem independently found by Hajdu
[20]. Hajdu’s result provides a bound for the length of arithmetic progressions
in linear combinations of elements from a finitely generated multiplicative
subgroup of a field of zero characteristic. Here the linear combinations are of
fixed length and only a given finite set of coefficient-tuples is allowed. Hajdu
used his result to negatively answer the following question by Pohst: Is it
true that every prime can be written in the form 2u ± 3v, with non-negative
integers u, v?

Using results by Mason [27, 28] on S-unit equations in function fields,
Frei [14] proved the function field analogue of Theorem 1. It holds in zero
characteristic as well as in positive characteristic.

Theorem 3. Let R be the ring of S-integers of an algebraic function field
in one variable over a perfect field, where S 6= ∅ is a finite set of places.
Then, for each positive integer n, there exists an element of R that can not
be written as a sum of at most n units of R. In particular, we have u(R) ≥ ω.

We will later discuss criteria which show that in the number field case as
well as in the function field case, both possibilities u(R) = ω and u(R) =∞
occur.
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3 The qualitative problem

Problem A. [24, Problem A] Give a criterion for an algebraic extension K
of the rationals to have the property that its ring of integers R has unit sum
number u(R) ≤ ω.

Jarden and Narkiewicz provided some easy examples of infinite extensions
of Q with u(R) ≤ ω: By the Kronecker-Weber theorem, the maximal Abelian
extension of Q has this property. Further examples are the fields of all
algebraic numbers and all real algebraic numbers.

More criteria are known for algebraic number fields of small degree. Here,
the only possibilities for u(R) are ω and ∞, by Theorem 1. For quadratic
number fields, Belcher [3], and later Ashrafi and Vámos [2], proved the fol-
lowing result:

Theorem 4. [3, Lemma 1][2, Theorems 7, 8] Let Q(
√
d), d ∈ Z squarefree,

be a quadratic number field with ring of integers R. Then u(R) = ω if and
only if

1. d ∈ {−1,−3}, or

2. d > 0, d 6≡ 1 mod 4, and d+ 1 or d− 1 is a perfect square, or

3. d > 0, d ≡ 1 mod 4, and d+ 4 or d− 4 is a perfect square.

A similar result for purely cubic fields was found by Tichy and Ziegler
[33].

Theorem 5. [33, Theorem 2] Let d be a cubefree integer and R the ring of
integers of the purely cubic field Q( 3

√
d). Then u(R) = ω if and only if

1. d is squarefree, d 6≡ ±1 mod 9, and d+ 1 or d− 1 is a perfect cube, or

2. d = 28.

Filipin, Tichy and Ziegler used similar methods to handle purely quartic
complex fields Q( 4

√
d). Their criterion [11, Theorem 1.1] states that u(R) = ω

if and only if d is contained in one of six explicitly given sets.
As a first guess, one could hope to get information about the unit sum

number of the ring of integers of a number field K by comparing the regulator
and the discriminant of K. In personal communication with the authors,
Martin Widmer pointed out the following sufficient criterion for the simple
case of complex cubic fields:
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Proposition 6. (Widmer) If R is the ring of integers of a complex cubic
number field K then u(R) = ω whenever the inequality

(1) |∆K | > (e
3
4
RK + e−

3
4
RK )4

holds. Here, ∆K is the discriminant and RK is the regulator of K.

Proof. Regard K as a subfield of the reals, and let η > 1 be a fundamental
unit, so RK = log η. Since K contains no roots of unity except ±1, the
ring of integers R is generated by its units if and only if R = Z[η]. By the
standard embedding K → R×C ' R3, we can regard R and Z[η] as lattices
in R3 and compare their determinants. Let η′ = x+ iy be one of the non-real
conjugates of η. We get u(R) = ω if and only if

2−1
√
|∆K | =

∣∣∣∣∣∣
det




1 η η2

1 x x2 − y2
0 y 2xy



∣∣∣∣∣∣
.

Since the right-hand side of the above equality is always a multiple of the
left-hand side, we have u(R) = ω if and only if

√
|∆K | >

∣∣∣∣∣∣
det




1 η η2

1 x x2 − y2
0 y 2xy



∣∣∣∣∣∣
.

Clearly, η−1 = η′η′ = x2 + y2, whence |x|, |y| ≤ η−1/2. With this in mind,
a simple computation shows that the right-hand side of the above inequality
is at most η−3/2 + 2 + η3/2, so (1) implies that u(R) = ω.

To see that condition (1) is satisfied in infinitely many cases, we consider
the complex cubic fields KN = Q(αN), where αN is a root of the polynomial

(2) fN = X3 +NX + 1,

with a positive integer N such that 4N3 + 27 is squarefree. By [7], infinitely
many such N exist. We may assume that αN ∈ R. From (2), we get

N2

N3 + 1
< −αN =

1

α2
N +N

< 1/N .

Since −1/αN is a unit of the ring of integers of KN , and N < −1/αN <
N + 1/N2, we have RK ≤ log(N + 1/N2). The discriminant −4N3 − 27 of
fN is squarefree by hypothesis, so |∆K | = 4N3 + 27. Now we see by a simple
computation that (1) holds.

In the function field case, Frei [14] investigated quadratic extensions of
rational global function fields.
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Theorem 7. [14, Theorem 2] Let K be a finite field, and F a quadratic
extension field of the rational function field K(x) over K. Denote the integral
closure of K[x] in F by R. Then the following two statements are equivalent.

1. u(R) = ω

2. The function field F |K has full constant field K and genus 0, and the
infinite place of K(x) splits into two places of F |K.

This criterion can also be phrased in terms of an element generating F
over K(x). If, for example, K is the full constant field of F and of odd
characteristic then we can write F = K(x, y), where y2 = f(x) for some
separable polynomial f ∈ K[x] \K. Then we get u(R) = ω if and only if f
is of degree 2 and its leading coefficient is a square in K ([14, Corollary 1]).

Theorem 7 holds in fact for arbitrary perfect base fields K. An alternative
proof given at the end of [14] implies the following stronger version:

Theorem 8. Let F |K be an algebraic function field in one variable over a
perfect field K. Let S be a set of two places of F |K of degree one, and denote
by R the ring of S-integers of F |K. Then u(R) = ω if and only if F |K is
rational.

All of the rings R investigated above have in common that their unit
groups are of rank at most one. Currently, there are no known nontrivial
criteria for families of number fields (or function fields) whose rings of integers
have unit groups of higher rank. We consider it an important direction to
find such criteria.

Pethő and Ziegler investigated a modified version of Problem A, where
one asks whether a ring of integers has a power basis consisting of units
[39, 29]. For example, Ziegler proved the following:

Theorem 9. [39, Theorem 1] Let m > 1 be an integer which is not a square.
Then the order Z[ 4

√
m] admits a power basis consisting of units if and only

if m = a4 ± 1, for some integer a.

Since analogous results are already known for negative m [40] and for the
rings Z[ d

√
m], d < 4 [3, 33], Theorem 9 motivates the following conjecture:

Conjecture. [39, Conjecture 1] Let d ≥ 2 be an integer and m ∈ Z \ {0},
and assume that d

√
m is an algebraic number of degree d. Then Z[ d

√
m] admits

a power basis consisting of units if and only if m = ad ± 1, for some integer
a.
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For rings R with u(R) = ω, Ashrafi [1] investigated the stronger property
that every element of R can be written as a sum of k units for all sufficiently
large integers k. Ashrafi proved that this is the case if and only if R does not
have Z/2Z as a factor, and applied this result to rings of integers of quadratic
and complex cubic number fields.

Let R be an order in a quadratic number field. Ziegler [38] found various
results about representations of elements of R as sums of S-units in R, where
S is a finite set of places containing all Archimedean places.

Another variant of Problem A asks for representations of algebraic in-
tegers as sums of distinct units. Jacobson [23] proved that in the rings of
integers of the number fields Q(

√
2) and Q(

√
5), every element is a sum of

distinct units. His conjecture that these are the only quadratic number fields
with that property was proved by Śliwa [30]. Belcher [3, 4] investigated cubic
and quartic number fields. A recent article by Thuswaldner and Ziegler [32]
puts these results into a more general framework: they apply methods from
the theory of arithmetic dynamical systems to additive unit representations.

4 The extension problem

Problem B. [24, Problem B] Is it true that each number field has a finite
extension L such that the ring of integers of L is generated by its units?

If K is an Abelian number field, that is, K|Q is a Galois extension with
Abelian Galois group, then we know by the Kronecker-Weber theorem that
K is contained in a cyclotomic number field Q(ζ), where ζ is a primitive root
of unity. The ring of integers of Q(ζ) is Z[ζ], which is obviously generated
by its units. Problem B was completely solved by Frei [13]:

Theorem 10. [13, Theorem 1] For any number field K, there exists a number
field L containing K, such that the ring of integers of L is generated by its
units.

The proof relies on finding elements of the ring of integers of K with
certain properties via asymptotic counting arguments, and then using these
properties to generate easily manageable quadratic extensions of K in which
those elements are sums of units of the respective rings of integers. The field
L is then taken as the compositum of all these quadratic extensions.

Prior to this, with an easier but conceptually similar argument, Frei [15]
answered the function field version of Problem B:

Theorem 11. [15, Theorem 2] Let F |K be an algebraic function field over a
perfect field K, and R the ring of S-integers of F , for some finite set S 6= ∅
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of places. Then there exists a finite extension field F ′ of F such that the
integral closure of R in F ′ is generated by its units.

5 The quantitative problem

Problem C. [24, Problem C] Let K be an algebraic number field. Obtain an
asymptotic formula for the number Nk(x) of positive rational integers n ≤ x
which are sums of at most k units of the ring of integers of K.

As Jarden and Narkiewicz noticed, Lemma 2 and Szemerédi’s theorem
(see [19]) imply that

lim
x→∞

Nk(x)

x
= 0,

for any fixed k.
A similar question has been investigated by Filipin, Fuchs, Tichy, and

Ziegler [11, 12, 16]. We state here the most general result [16]. Let R be
the ring of S-integers of a number field K, where S is a finite set of places
containing all Archimedean places. Two S-integers α, β are associated, if
there exists a unit ε of R such that α = βε. For any α ∈ R, we write

N(α) :=
∏

ν∈S
|α|ν .

Fuchs, Tichy and Ziegler investigated the counting function uK,S(n, x),
which denotes the number of all classes [α] of associated elements α of R
with N(α) ≤ x such that α can be written as a sum

α =
n∑

i=1

εi,

where the εi are units of R and no subsum of ε1 + · · · + εn vanishes. The
proof uses ideas of Everest [8], see also Everest and Shparlinski [9].

Theorem 12. [16, Theorem 1] Let ε > 0. Then

uK,S(n, x) =
cn−1,s
n!

(
ωK(log x)s

RegK,S

)n−1
+ o((log x)(n−1)s−1+ε),

as x → ∞. Here, ωK is the number of roots of unity of K, RegK,S is the
S-regulator of K, and s = |S| − 1. The constant cn,s is the volume of the
polyhedron

{(x11, . . . , xns) ∈ Rns | g(x11, . . . , xns) < 1},
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with

g(x11, . . . , xns) =
s∑

i=1

max{0, x1i, . . . , xni}+max

{
0,−

s∑

i=1

x1i, . . . ,−
s∑

i=1

xni

}
.

The values of the constant cn,s are known in special cases from [16]:

n
s 1 2 3 4 5
1 2 3 4 5 6
2 3 15/4 7/2 45/16
3 10/3 7/3 55/54
4 35/12 275/32
5 21/10

Furthermore, cn,1 = n+ 1 and c1,s = 1
s!

(
2s
s

)
.

In the following we calculate the constant cn,s for n > 1 and s = 2. This
constant is the volume of the polyhedron

V = {(x, y) ∈ Rn × Rn : g(x, y) < 1} ,
with

g(x, y) = max
i
{0, xi}+ max

i
{0, yi}+ max

i
{0,−xi − yi} ,

where x = (x1, . . . , xn), y = (y1, . . . , yn).
For any K, L, M ∈ {1, . . . , n} we consider the sets

VK,L,M =
{

(x, y) ∈ R2n : xi ≤ xK , yi ≤ yL, xM + yM ≤ xi + yi, g(x, y) < 1
}
.

Clearly the union of these sets is V and the intersection of any two of them
has volume zero. Thus

cn,2 =
n∑

K=1

n∑

L=1

n∑

M=1

IK,L,M ,

where IK,L,M is the volume of VK,L,M . For the values of IK,L,M we distinguish
three cases:

(i) K,L,M are pairwise distinct;

(ii) exactly two of the indices K,L,M are equal;

(iii) K = L = M .

The third case is simple. Since xi ≤ xK , yi ≤ yK implies xi + yi ≤ xK + yK
we obtain xi + yi = xK + yK . Thus VK,K,K has volume zero.

We only have to consider the remaining cases (i) and (ii). Clearly,

cn,2 = n(n− 1)(n− 2)I1,2,3 + 3n(n− 1)I1,1,2.
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5.i Calculation of I1,2,3

This case can only happen if n ≥ 3. The inequalities x3 + y3 ≤ xi + yi give
us lower bounds for xi and yi and we always have the upper bounds xi ≤ x1
and yi ≤ y2. Hence we have

x3 + y3 − xi ≤ yi ≤ y2

and
xi ≤ x1.

Note that

g(x, y) = max {0, x1}+ max {0, y2}+ max {0,−x3 − y3} .

We integrate with respect to the yi’s, i 6= 2, 3 and obtain

I1,2,3 =

∫
· · ·
∫

x3+y3−xi≤yi≤y2
xi≤x1, g(x,y)<1

dxdy =

∫
· · ·
∫

x3+y3≤x2+y2
x3+y3−y2≤xi≤x1
y3≤y2, g(x,y)<1

∏

j 6=2,3

(y2 − x3 − y3 + xj)dxdy2dy3.

Next we integrate over the xi’s, i 6= 1, 2, 3 and obtain

I1,2,3 =

∫
· · ·
∫

x2,x3≤x1, y3≤y2
x3+y3≤x2+y2
g(x,y)<1

1

2n−3
(y2 − x3 − y3 + x1)

2n−5 dx1dx2dx3dy2dy3.

For the values of g(x, y) we consider the following cases depending on the
signs of x1, y2 and −x3 − y3:

r x1 y2 −x3 − y3 g(x, y)
1 ≥ 0 < 0 < 0 x1
2 < 0 ≥ 0 < 0 y2
3 < 0 < 0 ≥ 0 −x3 − y3
4 ≥ 0 ≥ 0 < 0 x1 + y2
5 ≥ 0 < 0 ≥ 0 x1 − x3 − y3
6 < 0 ≥ 0 ≥ 0 y2 − x3 − y3
7 ≥ 0 ≥ 0 ≥ 0 x1 + y2 − x3 − y3

According to the table we split the integral into seven parts:

I1,2,3 =
7∑

r=1

I
(r)
1,2,3.
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One can calculate these integrals with the help of a computer algebra
system. We just give the final expressions:

I
(1)
1,2,3 = I

(2)
1,2,3 = I

(3)
1,2,3 =

2

n(2n− 1)(n− 1)2n
,

I
(4)
1,2,3 = I

(5)
1,2,3 = I

(6)
1,2,3 =

2

n(n− 1)2n
,

I
(7)
1,2,3 =

2

n2n
.

In conclusion we have

I1,2,3 =
2(n+ 1)(2n+ 1)

n(2n− 1)(n− 1)2n
.

5.ii Calculation of I1,1,2

We proceed in the same way as in the other case. We have the same bounds

x2 + y2 − xi ≤ yi ≤ y1

and
xi ≤ x1.

We integrate first with respect to the yi’s and then with respect to the xi’s,
i 6= 1, 2, and obtain

I1,1,2 =

∫
· · ·
∫

x2+y2−y1≤xi≤x1
y2≤y1, g(x,y)<1

∏

j 6=1,2

(y1 − x2 − y2 + xj)dxdy1dy2 =

=

∫
· · ·
∫

x2≤x1, y2≤y1
g(x,y)<1

1

2n−2
(y1 − x2 − y2 + x1)

2n−4 dx1dx2dy1dy2.

Proceeding as in the previous section we again split the integral into seven
parts I

(r)
1,1,2, r = 1, . . . , 7, and obtain:

I
(1)
1,1,2 = I

(2)
1,1,2 = I

(3)
1,1,2 =

1

n(2n− 1)(n− 1)2n
,

I
(4)
1,1,2 = I

(5)
1,1,2 = I

(6)
1,1,2 =

1

n(n− 1)2n
,

I
(7)
1,1,2 =

1

n2n
.
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Hence

I1,1,2 =
(n+ 1)(2n+ 1)

n(2n− 1)(n− 1)2n
.

Conclusion. The value of cn,2 is

(n+ 1)(2n+ 1)

2n
.

Remark. The computation of cn,s for s > 2 seems to be more difficult and
might be considered later.

6 Matrix rings

6.1 Matrix rings over arbitrary rings

Let R be any ring with 1. We say that two elements a, b ∈ R are equivalent
(a ∼ b) if there exist two units u, v ∈ R× such that b = uav. Vámos [34,
Lemma 1] already noticed the following simple fact.

Lemma 13. Let R be a ring and a, b ∈ R. If a ∼ b then, for all k ≥ 1, a is
k-good if and only if b is k-good.

We consider the ring Mn(R) of n × n matrices, with n ≥ 2, over an
arbitrary ring R with 1. As usual GLn(R) denotes the group of units of
Mn(R).

For a ∈ R the matrix En(a, i, j), i, j ∈ {1, . . . , n}, i 6= j, is the n × n
matrix with 1 entries on the main diagonal, a as the entry at position (i, j)
and 0 elsewhere. We call this kind of matrices elementary matrices and
denote by En(R) the subgroup of GLn(R) generated by elementary matrices,
permutation matrices and −I, where I is the identity matrix of Mn(R).

Let us consider a more specific kind of k-goodness introduced by Vámos
[34].

Definition. A square matrix of size n over R is strongly k-good if it can be
written as a sum of k elements of En(R). The ring Mn(R) is strongly k-good
if every element is strongly k-good.

The following lemma is Lemma 1 from [21] and Lemma 5 from [34].

Lemma 14. Let R be a ring and n ≥ 2. Then any diagonal matrix in Mn(R)
is strongly 2-good.
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A ring R is called an elementary divisor ring (see [25]) if every matrix
in Mn(R), n ≥ 2, can be diagonalized. Lemma 14 implies that, in this case,
Mn(R) is 2-good. In particular, if any matrix in Mn(R) can be diagonalized
using only matrices in En(R) then Mn(R) is strongly 2-good.

The following two remarks can be deduced without much effort from the
proof of Lemma 14 that is given in [34].

Remark. If R is an elementary divisor ring and 1 6= −1 then the represen-
tation of a matrix in Mn(R) as a sum of two units is never unique.

Remark. If R is an elementary divisor ring and 1 6= −1 then every element
of Mn(R) has a representation as a sum of two distinct units.

As we have already mentioned, Henriksen [21] proved that Mn(R), where
R is any ring, is 3-good. Henriksen’s result was generalized by Vámos [34]
to arbitrary dimension:

Theorem 15. [34, Theorem 11] Let R be a ring and let F be a free R-
module of rank α, where α ≥ 2 is a cardinal number. Then the ring of
endomorphisms E of F is 3-good.

If α is finite and R is 2-good or an elementary divisor ring then E is
2-good. If R is any one of the rings Z[X], K[X, Y ], K〈X, Y 〉, where K is a
field, then u(E) = 3. Here K〈X, Y 〉 is the free associative algebra generated
by X, Y over K.

To prove that a matrix ring over a certain ring has unit sum number 3,
Vámos used the following proposition.

Proposition 16. [34, Proposition 10] Let R be a ring, n ≥ 2 an integer
and let L = Ra1 + · · · + Ran be the left ideal generated by the elements
a1, . . . , an ∈ R. Let A be the n × n matrix whose entries are all zero except
for the first column which is (a1, . . . , an)T . Suppose that

1. L cannot be generated by fewer than n elements, and

2. zero is the only 2-good element in L.

Then A is not 2-good.

We now apply Lemma 14 to a special case. Let R be a ring and suppose
there exists a function

f : R \ {0} → Z≥0,
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with the following property: for every a, b ∈ R, b 6= 0, there exist q1, q2, r1, r2 ∈
R such that

a = q1b+ r1, where r1 = 0 or f(r1) < f(b),

a = bq2 + r2, where r2 = 0 or f(r2) < f(b).

Then we say that R has left and right Euclidean division.

The next theorem is a generalization of the well known fact that every
square matrix over a Euclidean domain is diagonalizable. The proof strictly
follows the line of the one in the commutative case (see Section 3.5 of [18]),
hence it is omitted.

Theorem 17. Let R be a ring with left and right Euclidean division and
n ≥ 2. For every A ∈ Mn(R) there exist two matrices U, V ∈ En(R) such
that

UAV = D,

where D is a diagonal matrix.

Corollary. Let R be a ring with left and right Euclidean division and n ≥ 2.
Then Mn(R) is strongly 2-good.

We apply the previous result to the special case of quaternions. Consider
the quaternion algebra

Q =
{
a+ bi+ cj + dk | a, b, c, d ∈ Q, i2 = −1, j2 = −1, k = ij = −ji

}
.

Definition. The ring of Hurwitz quaternions is defined as the set

H =

{
a+ bi+ cj + dk ∈ Q s. t. a, b, c, d ∈ Z or a, b, c, d ∈ Z +

1

2

}
.

For basic properties about Hurwitz quaternions see [5, Chapter 5].

In Q the ring of Hurwitz quaternions plays a similar role as maximal
orders in number fields.

The units of H are the 24 elements ±1, ±i, ±j, ±k and (±1±i±j±k)/2,
so u(H) = ω.

It is well known that H has left and right Euclidean division. Therefore,
we get the following corollary.

Corollary. For n ≥ 2, Mn(H) is strongly 2-good.
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6.2 Matrix rings over Dedekind domains

Let R be a ring and A an r × c matrix. The type of A is the pair (r, c)
and the size of A is max(r, c). Let A1 and A2 be matrices of type (r1, c1)
and (r2, c2), respectively. The block diagonal sum of A1 and A2 is the block
diagonal matrix

diag(A1, A2) =

[
A1 0
0 A2

]
,

of type (r1 + r2, c1 + c2). A matrix of positive size is indecomposable if it is
not equivalent to the block diagonal sum of two matrices of positive size.

In 1972 Levy [26] proved that, for a Dedekind domain R, the class num-
ber, when it is finite, is an upper bound to the number of rows and columns
in every indecomposable matrix over R. Vámos and Wiegand [35] general-
ized Levy’s result to Prüfer domains (under some technical conditions) and
applied it to the unit sum problem.

Theorem 18. (see [35, Theorem 4.7]) Let R be a Dedekind domain with
finite class number c. For every n ≥ 2c, Mn(R) is 2-good.

Unfortunately we do not know a criterion. The only sufficient condition
we know for a matrix not to be 2-good is given by Proposition 16. For rings
R of algebraic integers this proposition is of limited use. Since ideals in
Dedekind domains need at most 2 generators, condition (1) can be fulfilled
only for n = 2. Concerning condition (2) it is not hard to see that, if the
unit group is infinite, there is a nonzero sum of two units in every nonzero
ideal in a ring of algebraic integers. Therefore we can apply Proposition 16
only to the non-PID complex quadratic case.

Corollary. [35, Example 4.11] Let R be the ring of integers of Q(
√
−d),

where d > 0 is squarefree and R has class number c > 1. Then u(M2(R)) = 3
and u(Mn(R)) = 2 for every integer n ≥ 2c.

Question A. [35, Example 4.11] With the hypotheses of the previous corol-
lary, what is the value of u(Mn(R)) for 3 ≤ n < 2c?

Question B. [35, Question 4.12] If R is any ring of algebraic integers with
class number c, what is the value of u(Mn(R)) for 2 ≤ n < 2c?
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Sums of units in function fields

Christopher Frei

Abstract

Let R be the ring of S-integers of an algebraic function field (in
one variable) over a perfect field, where S is finite and not empty. It
is shown that for every positive integer N there exist elements of R
that can not be written as a sum of at most N units.

Moreover, all quadratic global function fields whose rings of inte-
gers are generated by their units are determined.

1 Introduction

The connection between the additive structure and the units of certain rings
has achieved some attention in the last years. First investigations in this di-
rection were made by Zelinsky [20], who showed that, except for one special
case, every linear transformation of a vector space is a sum of two automor-
phisms, and Jacobson [11], who showed that in the rings of integers of the
number fields Q(

√
2) and Q(

√
5) every element can be written as a sum of

distinct units. Jacobson’s work was extended by Śliwa [17], who proved that
there are no other quadratic number fields with this property, and Belcher
[2], [3], who investigated cubic and quartic number fields.

Goldsmith, Pabst and Scott [8], investigated similar questions, but with-
out the requirement that the units be distinct. The following definition from
[8] describes quite precisely how the units of a ring R additively generate R.

Definition 1. Let R be a ring with identity and k a positive integer. An
element r ∈ R is called k-good if there are units e1, . . ., ek of R, such that

The original publication is available at http://www.springerlink.com.
DOI: 10.1007/s00605-010-0219-7
2010 Mathematics Subject Classification: 12E30; 11R27; 11R58; 11R04
Key words and phrases: unit sum number, sums of units, function field
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r = e1 + · · ·+ek. If every element of R is k-good then we call the ring k-good
as well.

The unit sum number u(R) of R is defined as min{k | R is k-good },
if this minimum exists. If the minimum does not exist, but R is additively
generated by its units, then we define u(R) := ω. If the units do not generate
R additively then we set u(R) :=∞.

By convention, we put n < ω < ∞, for every integer n. The case where
R is the ring of integers of an algebraic number field has recently been of
particular interest. The fact that no ring of integers of an algebraic number
field can have a finite unit sum number was proved by Ashrafi and Vámos
[1] in some special cases, and by Jarden and Narkiewicz [12] in the general
case. It is also a consequence of a result obtained independently by Hajdu [9].
Our first theorem is an analogous result for rings of S-integers of algebraic
function fields over perfect fields.

Regarding function fields, we use the notation from [16] and [18]. In
particular, an algebraic function field over a field K is a finitely generated
extension F |K of transcendence degree 1. If K is a finite field then F |K
is called a global function field. The algebraic closure of K in F is called
the (full) field of constants of F |K. Following [18], we regard the places of
F |K as the maximal ideals of discrete valuation rings of F containing K. In
particular, the places P of F |K correspond to (surjective) discrete valuations
vP : F → (Z ∪ {∞}) of F over K. Let n be a positive integer. We say that
a place P of F |K is a zero of an element f ∈ F of order n, if vP (f) = n > 0,
and P is a pole of f of order n, if vP (f) = −n < 0. If S is a finite set of
places of F |K then the ring OS of S-integers of F is the set of all elements
of F that have no poles outside of S. The S-units of F are the units of OS.
As a consequence of the definition of OS, an element f ∈ F is an S-unit if
and only if vP (f) = 0 for all places P outside of S. The pole [zero] divisor
(f)∞ [(f)0] of an element f ∈ F ∗ is the sum of all poles [zeros] of f , taken
with their respective multiplicities. The height H(f) of f is defined as the
degree of its zero divisor, or, equivalently, as the degree of its pole divisor:

H(f) := deg(f)0 =
∑

P

max{0, vP (f) degP}

= −
∑

P

min{0, vP (f) degP} = deg(f)∞,

where the sums run over all places P of F |K.

The following theorem is basically a consequence of Mason’s classical work
on unit equations in function fields [14], [15].
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Theorem 1. Let K be a perfect field, F |K an algebraic function field, and
S 6= ∅ a finite set of places of F |K. Denote by OS the ring of S-integers of
F . Then, for each positive integer N , there exists an element of OS that can
not be written as a sum of at most N units of OS. In particular, we have
u(OS) ≥ ω.

To show that both cases, ω and∞, occur, we give a complete classification
of the unit sum numbers of rings of integers of quadratic function fields over
finite fields. The number field analogue of this result was found independently
by Belcher [2] and Ashrafi and Vámos [1]. Results of this kind also exist for
cubic and quartic number fields [5], [19], [21]. In the global function field case
it turns out that the only quadratic function fields whose rings of integers
have unit sum number ω are real quadratic function fields that are again
rational.

Theorem 2. Let K be a finite field, and F a quadratic extension field of the
rational function field K(x) over K. Denote the integral closure of K[x] in
F by OF . Then the following two statements are equivalent.

(a) u(OF ) = ω.

(b) The function field F |K has full constant field K and genus 0, and the
infinite place of K(x) splits into two places of F |K.

Of course, one can use Theorem 2 to obtain explicit criteria similar to
those in [1], [2], [5], [19], [21]. If K is of odd characteristic then every
quadratic extension field of the rational function field K(x) with full con-
stant field K is of the form F = K(x, y), where y satisfies an equation
y2 = f(x), for some separable polynomial f ∈ K[X] \ K. It is well known
that F is of genus 0 if and only if deg f ∈ {1, 2}, and that the infinite place
of K(x) splits in F |K if and only if deg f is even and the leading coefficient
of f is a square in K. We therefore get the following corollary.

Corollary 1. Let K be a finite field of odd characteristic, and F = K(x, y),
where K(x) is a rational function field over K and y2 = f(x), for some
separable polynomial f ∈ K[x] \K. Denote the integral closure of K[x] in F
by OF . Then the following two statements are equivalent.

(a) u(OF ) = ω.

(b) The degree of f is 2 and the leading coefficient of f is a square in K.

If K is of characteristic 2 then every separable quadratic extension field
of the rational function field K(x) with full constant field K can be written
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as F = K(x, y), where y satisfies a quadratic equation in Hasse normal form
[10, p. 38]. That is,

(1) y2 + y =
g(x)

p1(x)2n1−1 · · · pm(x)2nm−1 ,

where, p1, . . ., pm ∈ K[X] are monic irreducible polynomials and distinct
from each other, n1, . . ., nm are positive integers, g ∈ K[X] is not divisible
by any of the pi, and the infinite place of K(x) is either no pole or a pole
of odd order of the right-hand side of (1). (That is, the difference of the
degrees of denominator and numerator is non-negative or odd.) We put
B := pn1

1 · · · pnm
m , and C := gp1 · · · pm (cf. [13]). Then (1) becomes

(2) y2 + y =
C(x)

B(x)2
.

Note that K is the full constant field of F |K if and only if C is not constant.
Using well-known properties of Artin-Schreier extensions of function fields
(for example Proposition III.7.8. from [18]), we see that the function field
F |K is of genus 0 if and only if

(3) degB = 0 and degC = 1

or

(4) degB = 1 and degC ≤ 2.

In case (3) the infinite place of K(x) is ramified in F |K, and in case (4)
the infinite place of K(x) splits in F |K if and only if either degC < 2, or
degC = 2 and the leading coefficient of C has the form a2+a, for some a ∈ K.
(These are exactly the cases where the projection of y2 + y +C(x)/B(x)2 to
the polynomial ring over the residue class field of the infinite place of K(x)
is reducible.) We have shown the following analogue of Corollary 1.

Corollary 2. Let K be a finite field of characteristic 2, and F = K(x, y),
where y satisfies an irreducible quadratic equation (2) in Hasse normal form.
Denote the integral closure of K[x] in F by OF . Then the following two
statements are equivalent.

(a) u(OF ) = ω.

(b) We have degB = 1 and either degC ≤ 1, or degC = 2 and the leading
coefficient of C is of the form a2 + a, for some a ∈ K.
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Note that ifK is of characteristic 2 and F |K(x) is an inseparable quadratic
extension then it is purely inseparable, and the infinite place of K(x) is ram-
ified in F |K. Therefore, we have u(OF ) =∞ in this case.

In the number field case, quantitative problems in relation with sums
of units have been objects of recent study. The question, how many non-
associated algebraic integers with bounded norm in a number field can be
written as a sum of exactly k units, has been investigated in [5], [6] and [7].
Similar considerations in the function field case would be of interest.

2 Proof of Theorem 1

Let K̃ be the full constant field of F |K. Since the places of the function
fields F |K and F |K̃ are the same, we may assume without loss of generality
that K = K̃. We start with the case where K is of characteristic 0.

2.1 Characteristic 0

The main tool for our proof is a finiteness result on S-unit equations by
Mason [14, Lemma 2].

Lemma 1. Let K be an algebraically closed field of characteristic 0, F |K an
algebraic function field, and S a finite set of places of F |K. Suppose that u1,
. . ., uk are S-units in F such that u1 + · · ·+ uk = 1, and no proper subset of
{1, u1, . . . , uk} is K-linearly dependent. Then we have H(ui) ≤ A(k), for all
1 ≤ i ≤ k and a constant A(k) that depends only on k, S, and F |K.

Mason even provides an explicit formula for the bound A(k), which was
improved by Brownawell and Masser [4]. For our purpose, however, the above
lemma is sufficient. Suppose that every element of OS is a sum of at most
N S-units, for some integer N > 1. Choose some non-constant S-integer r
that is not an S-unit, and denote the set of zeros of r by T . Obviously, r is
an (S ∪ T )-unit, and there is some place P ∈ T r S.

For every positive integer n, there exists some 2 ≤ k ≤ N , and S-units
ε1, . . ., εk ∈ O∗S, such that

ε1 + · · ·+ εk = rn,

and no proper subset of {ε1, . . . , εk, rn} is K-linearly dependent. Therefore,
we have

(5) ε1/r
n + · · ·+ εk/r

n = 1,
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for (S ∪ T )-units ε1/r
n, . . ., εk/r

n, and still no proper subset is K-linearly
dependent.

For some algebraically closed field Φ ⊃ F , let K be the algebraic closure
of K in Φ. We put F ′ := FK and regard the constant field extension F ′|K
of F |K. Let S ′ be the set of all places of F ′|K lying over places in (S ∪ T ).

Then (5) is an S ′-unit equation in F ′|K. Since F and K are linearly
disjoint over K (see, for example, [18, Proposition III.6.1]), all requirements
of Lemma 1 are satisfied. Therefore,

(6) H(ε1/r
n) ≤ A(k) ≤ A := max{A(2), . . . , A(N)}.

On the other hand, we have H(ε1/r
n) ≥ |vP ′(ε1/rn)| = nvP ′(r) ≥ n, for

any place P ′ of F ′|K lying over P . Here we used that ε1 is an S-unit and
P /∈ S, whence vP (ε1) = 0. If n is chosen big enough, this contradicts (6).

2.2 Positive characteristic

The case of positive characteristic p is similar in spirit, but a little bit more
technical. The main problem is that, due to the Frobenius homomorphism,
the height of solutions of unit equations is no longer bounded. For if

u1 + · · ·+ uk = 1

is a solution of such a unit equation then

up
l

1 + · · ·+ up
l

k = 1

as well, for any positive integer l. Again, we use a result by Mason. The
following lemma is a special form of Lemma 1 from [15].

Lemma 2. Let K be an algebraically closed field of positive characteristic p,
and K(z)|K a rational function field. Let F be a finite separable extension
of K(z), and denote by OF the integral closure of K[z] in F .

For each positive integer k, there exist bounds M(k), A(k) ∈ R, depending
only on F |K(z) and k, such that the following holds: Let (u1, . . . , uk) ∈ (O∗F )k

be a solution of the unit equation

u1 + · · ·+ uk = 0,

such that no proper subsum on the left-hand side vanishes. Then there are
non-negative integers m, t(1), . . ., t(m), a non-zero constant η ∈ K, and
units η1, . . ., ηm ∈ O∗F , such that

u2/u1 = η
m∏

j=1

ηp
t(j)

j .
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Moreover, we have m ≤ M(k), and H(ηj) ≤ A(k), for all 1 ≤ j ≤ m. (As
usual, the empty product is interpreted as 1.)

Additionally, we use the following elementary number-theoretical lemma.

Lemma 3. Let p, M , A be positive integers. Then there exist infinitely many
positive integers n that can not be written in the form

(7) n = −
m∑

j=1

pt(j)kj,

with any integer 0 ≤ m ≤ M , integers kj with |kj| ≤ A, and non-negative
integers t(j).

Proof. Let T be any positive integer and RT the set of residue classes of all
positive integers of the form (7) modulo pT . Each residue class in RT has a
representative of the form

−
M∑

j=1

ps(j)kj,

with kj as in the lemma, and integers s(j) ∈ {0, . . . , T −1}. Obviously, there
are at most (T (2A+ 1))M such representatives, which is a polynomial in T .
On the other hand, there are pT residue classes modulo pT . If T is chosen
big enough then not all residue classes modulo pT are in RT , and the lemma
follows immediately.

Let N be a positive integer. We construct an element of OS that can not
be written as a sum of at most N units of OS.

Choose some place P of F |K that is not in S. The strong approximation
theorem permits us to find an S-integer r ∈ OS with vP (r) = 1. Let T be
the set of zeros of r. Then r is obviously an (S ∪ T )-unit, but no S-unit.

For some algebraically closed field Φ ⊃ F , let K be the algebraic closure
of K in Φ, and put F ′ := FK. We regard the constant field extension F ′|K
of F |K.

Let S ′ be the set of all places of F ′|K lying over places in (S ∪ T ),
and choose some places Q ∈ S ′ and R, R′ /∈ S ′ of F ′|K. By the strong
approximation theorem, we can find an element z ∈ F ′ that satisfies the
conditions

vR(z) = 1,

vR′(z) = |S ′| − 1,

vW (z) = −1, for all W ∈ S ′ r {Q}, and

vW (z) ≥ 0, for all places W /∈ S ′ ∪ {R,R′}.
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Since the principal divisor of z must have degree 0, it follows that vQ(z) <
0. Therefore, the poles of z are exactly the elements of S ′. Moreover, z is
not a p-th power, since p does not divide vR(z) = 1. It follows that F ′ is
separable over K(z) (use, for example, Proposition III.9.2 (d) from [18]) and
the integral closure of K[z] in F ′ is exactly OS′ , the ring of S ′-integers of F ′.

For any positive integer k, let M(k), A(k) be the constants from Lemma
2, for the function field extension F ′|K(z). In Lemma 3, put

M := max{M(k) | 2 ≤ k ≤ N+1}, and A := max{A(k) | 2 ≤ k ≤ N+1},

and choose some positive integer n that can not be written in the form (7).

We claim that the element rn ∈ OS can not be written as a sum of at
most N units of OS. Suppose otherwise; then there is some 2 ≤ k ≤ N and
units ε1, . . ., εk ∈ O∗S, such that

ε1 + · · ·+ εk = rn,

and no proper subsum on the left-hand side vanishes. Therefore, we get

−rn + ε1 + · · ·+ εk = 0,

for (S ∪ T )-units −rn, ε1, . . ., εk, and still no proper subsum vanishes. Re-
garded as elements of F ′, the summands on the left-hand side are S ′-units.
Lemma 2 implies that there exist an integer 0 ≤ m ≤M , non-negative inte-
gers t(1), . . ., t(m), a constant η ∈ K∗, and S ′-units η1, . . ., ηm ∈ O∗S′ , such
that H(ηj) ≤ A, for all 1 ≤ j ≤ m, and

(8) ε1/r
n = −η

m∏

j=1

ηp
t(j)

j .

Let P ′ ∈ S ′ be a place of F ′|K lying over P . Since K is perfect, constant
field extensions are unramified, and thus vP ′(r) = 1. We consider (8) in the
P ′-adic valuation:

−n = vP ′(ε1/r
n) =

m∑

j=1

pt(j)vP ′(ηj).

Since |vP ′(ηj)| are bounded by H(ηj) ≤ A, we found a representation (7),
contrary to our choice of n. This completes the proof of Theorem 1.
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3 Proof of Theorem 2

3.1 (b) implies (a)

To show that (b) implies (a), we prove a more general proposition.

Proposition 1. Let K(x) be a rational function field over any perfect field
K, n ≥ 2 an integer, and S = {P1, . . . , Pn} a set of n distinct places of
K(x) of degree one. Denote by OS the ring of S-integers of K(x). Then
u(OS) = ω.

Proof. By Theorem 1, we have u(OS) ≥ ω, hence it is enough to show that
every element of OS is a sum of S-units. This is clear for 0 ∈ OS. Let
f ∈ OS \ {0} be a non-zero element. The pole divisor of f has the form

(f)∞ = v1P1 + · · ·+ vnPn,

with non-negative integers v1, . . ., vn. If H(f) = 0 then f is a constant and
nothing is left to prove. Assume that H(f) > 0, that is, at least one of the
vi is positive. We construct an S-unit u ∈ O∗S, such that either f = u or
H(f − u) < H(f). Then the proposition follows by induction.

Without loss of generality, we assume that v1 > 0. By exchanging the
generating element x, if necessary, we can always assure that P1 is the infinite
place of K(x). Let x − αi ∈ K[x] be the monic local parameter for Pi, for
each 2 ≤ i ≤ n. Then f is of the form

f = g(x) · (x− α2)
−v2 · · · (x− αn)−vn ,

where g ∈ K[X]\{0} is some polynomial. Since−v1 = vP1(f) is the difference
of the degrees of denominator and numerator of f , we have −v1 = v2 + · · ·+
vn − deg g. Therefore, g is of degree v1 + · · · + vn. Let λ be the leading
coefficient of g, and put u := λ(x− α2)

v1 . Then u is an S-unit, and we get

f − u =
g − λ(x− α2)

v1+v2(x− α3)
v3 · · · (x− αn)vn

(x− α2)v2 · · · (x− αn)vn
.

The degree of the numerator is smaller than the degree of g. Therefore,
we have vP1(f − u) > −v1. Also, vPi

(f − u) ≥ −vi, for 2 ≤ i ≤ n, and
vP (f − u) ≥ 0, for all places P /∈ S. Therefore, we have either f − u = 0 or
H(f − u) < H(f). This concludes our proof.

Now assume (b) and let S := {P1, P2} be the set of infinite places of F |K.
Then both P1 and P2 are of degree one, so F is a rational function field over
K. The integral closure of K[x] in F is exactly the ring of S-integers OS of
F , whence (a) follows from Proposition 1.
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3.2 (a) implies (b)

If K is not the full constant field of F |K then F |K(x) is a constant field
extension (since it is of degree 2). Thus, F = K̃(x), where K̃ is the full
constant field of F |K. Since then OF = K̃[x], the units of OF are constants,
so u(OF ) =∞. Therefore, K is the full constant field of F |K. We treat the
cases of even and odd characteristic separately.

3.2.1 Odd characteristic

Let p ≥ 3 be the characteristic of K. In this case, we always have F =
K(x, y), for some y in F , satisfying an equation

y2 = f(x),

with a separable polynomial f ∈ K[X] \ K. We have OF = K[x, y], since
the separability of f implies non-singularity of the affine curve Y 2 = f(X).

The following two lemmata use the notation of the preceding paragraph.
The first one is the function field analogue of Lemma 1 from [2] and Theorem
7 from [1].

Lemma 4. The ring of integers OF is generated by units as a K[x]-module
if and only if there is some µ ∈ K∗ such that f + µ is a square in K[X].

In this case, the unit group O∗F is of rank 1 and there is a fundamental
unit of the form a(x) + y, for some a ∈ K[X].

Proof. Our proof is basically the same as Belcher’s proof of the number field
case. First, assume that f + µ = g2, for some µ ∈ K∗ and g ∈ K[X]. This
implies that

(g(x) + y)(g(x)− y) = g(x)2 − f(x) = µ ∈ K∗,
whence g(x)+y, g(x)−y are units in OF . Therefore, y = (g(x)+y)−g(x) ·1
is a K[x]-linear combination of units of OF , and since OF is generated by
{1, y} as a K[x]-module, we conclude that OF is generated as a K[x]-module
by its units.

Now assume that OF is generated by its units as a K[x]-module. By
Dirichlet’s unit theorem (for a version that holds in global function fields see
Proposition 14.2 from [16]), the group O∗F/K∗ is a free abelian group of rank
0 or 1. Rank 0 can not happen, since then the group of units in OF would
be exactly K∗, which generates only K[x] as a K[x]-module. Therefore, we
have a fundamental unit a(x) + b(x)y, with some a, b ∈ K[X], b monic, and
every unit of OF is of the form

λ(a(x) + b(x)y)n,
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with some constant λ ∈ K∗ and some integer n. Since the norm of a(x)+b(x)y
is a unit of K[x], hence an element of K∗, we have

(a(x) + b(x)y)−1 = κ(a(x)− b(x)y),

for some κ ∈ K∗. Let us write y as a K[x]-linear combination of units:

y = g0(x) +

k1∑

i=1

gi(x)(a(x) + b(x)y)ni +

k2∑

i=1

hi(x)(a(x)− b(x)y)mi ,

where k1, k2 and all ni, mi are positive integers, and all gi, hi ∈ K[X].
Expanding the right-hand side yields an equation of the form

y = g(x) + h(x)b(x)y,

with polynomials g, h ∈ K[X]. By comparing the coefficient of y, we get
b(x) ∈ K[x]∗ = K∗, whence b = 1. Since the norm of a(x) + y is a unit in
K[x], we get a2 − f = µ ∈ K∗, and f is of the desired form.

Lemma 5. Let a ∈ K[X], such that a(x) + y is a unit of OF . For any non-
negative integer n, define polynomials an, bn ∈ K[X] via an(x) + bn(x)y :=
(a(x) + y)n. Then deg f is even, and for every positive integer n, we have

(9) deg an = n(deg f)/2 and deg bn = (n− 1)(deg f)/2.

Proof. Induction on n proves that an, bn are given by the recursive formulas

(10) an+1 = aan + bnf and bn+1 = abn + an,

with starting values a0 = 1, b0 = 0.
Since N(a(x) + y) = a(x)2 − f is a constant, it follows that f is of even

degree, and deg a = (deg f)/2. From an(x)2 − bn(x)2f = N(a(x) + y)n ∈ K∗
we get, for all positive integers n,

(11) deg bn = deg an − (deg f)/2,

and

(12) the leading coefficients of a2n and b2nf coincide.

By (11) and the recursion formulas (10),

(13) deg an+1 ≤ deg an + (deg f)/2 and deg bn+1 ≤ deg bn + (deg f)/2,
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for all positive integers n.
We first prove (9) for the cases where n is a power of 2. We have already

seen that the assertion holds for n = 20 = 1. Since

(a2l+1(x) + b2l+1(x)y) = (a(x) + y)2
l+1

= (a2l(x) + b2l(x)y)2,

we get

a2l+1 = a22l + b22lf and b2l+1 = 2a2lb2l .

By (11) and by induction, we have deg a2
2l

= deg b2
2l
f = 2l+1(deg f)/2. As-

sertion (12) and the fact that p 6= 2 imply that deg a2l+1 = 2l+1(deg f)/2.
Also,

deg b2l+1 = deg a2l + deg b2l = (2l+1 − 1)(deg f)/2.

Now let n be an arbitrary positive integer and find the positive integer l,
such that 2l−1 ≤ n < 2l. We already know that

deg a2l−1 = 2l−1(deg f)/2 and deg a2l = 2l(deg f)/2.

By (n − 2l−1) applications of (13), we get deg an ≤ n(deg f)/2. Suppose
that we have deg an < n(deg f)/2. Then (2l−n) applications of (13) lead to
deg a2l < 2l(deg f)/2, a contradiction.

This and (11) yield the desired result.

Assume (a). We have already seen that K is the full constant field of
F |K. Clearly, F is generated by its units as a K[x]-module. Now Lemma 4
implies that deg f is even, that the unit group O∗F is of rank 1, and that a
fundamental unit is of the form a(x) + y, for some a ∈ K[X].

Let an, bn be as in Lemma 5. Then all units of OF are given by

(14) λ(an(x) + bn(x)y), and λ(an(x)− bn(x)y),

for λ ∈ K∗ and non-negative integers n. Every element of K[x] is a sum
of units and can thus be written as a K-linear combination of the an(x).
Since the degrees of all an are different from each other, and all divisible by
(deg f)/2, it follows that the degree of every polynomial in K[X] is divisible
by (deg f)/2 as well, whence deg f = 2. Therefore, the genus of F |K is 0.
It remains to show that the infinite place of K(x) splits into two places of
F |K. Let S be the set of places of F |K lying over the infinite place of K(x).
Then OF = OS, the ring of S-integers of F . By Proposition 14.2 from [16],
the unit group O∗S is of rank |S| − 1. We already know that the rank of O∗F
is 1, hence the infinite place of K(x) splits into two places of F |K.
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3.2.2 Characteristic 2

The only thing left to consider is the case where K is of characteristic 2. We
have already seen that K is the full constant field of F |K. Let g be the genus
of F |K and assume that

(15) g > 0

or that

(16) the infinite place of K(x) is inert or ramified in F |K.

We need to show that not every element of OF is a sum of units. This is true
if (16) holds. Indeed, we have already seen that, by Dirichlet’s unit theorem,
the unit group O∗F is of rank s− 1, where s is the number of places of F |K
lying over the infinite place of K(x). If there is only one such place then this
rank is 0, whence the unit group O∗F only consists of torsion elements. Then
u(OF ) = ∞, since the torsion subgroup of O∗F is exactly K∗, the group of
non-zero constants.

Assume from now on that (15) holds and (16) does not hold. Then
F |K(x) must be a separable extension, since otherwise it is purely inseparable
(as it is of degree 2) and therefore every place is ramified. Separable quadratic
extension fields F of K(x) with full constant field K and of genus g > 0,
such that the infinite place of K(x) splits in F |K, can always be written as
F = K(x, y), for some y ∈ F that satisfies an equation

(17) y2 +B(x)y + C(x) = 0,

with polynomials B, C ∈ K[X] \ {0} having the following properties: The
polynomial B is monic, and every prime factor of B is a simple prime factor
of C. Moreover, we have degB = g+1 and degC < 2g+2. This is a slightly
modified version [13, Theorem 1] of the Hasse normal form for Artin-Schreier
extensions [10, p. 38].

Let us first show that OF = K[x, y]. This holds if the affine curve given
by (17) is non-singular. Let

B =
r∏

i=1

Bni
i

be the prime factor decomposition of B, with pairwise distinct monic irre-
ducible polynomials Bi ∈ K[X]. Then the polynomial C is of the form

C = D
r∏

i=1

Bi,
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with some non-zero polynomial D ∈ K[X] that is not divisible by any Bi.
Put G = Y 2 +B(X)Y + C(X) ∈ K[X, Y ]. The partial derivatives of G are

GX = B′(X)Y + C ′(X) and GY = B(X).

Suppose that there are elements a, b in some algebraic extension of K, such
that G(a, b) = GX(a, b) = GY (a, b) = 0. Since B(a) = 0, there is some
1 ≤ k ≤ r with Bk(a) = 0. Therefore, C(a) = 0, and thus b = 0. Then
GX(a, 0) = 0 implies

0 = C ′(a) = D′(a)
r∏

i=1

Bi(a)+D(a)
r∑

i=1

B′i(a)
∏

j 6=i

Bj(a) = D(a)B′k(a)
∏

j 6=k

Bj(a).

However, since D, B′k, and all Bj, for j 6= k, are relatively prime to Bk, the
above product is not 0, a contradiction. Therefore, the affine curve given by
(17) is non-singular, and OF = K[x, y].

Note that the conjugate of y overK(x) is y+B(x). The following lemmata
use the notation established in (17). The first one is the analogous result of
Lemma 4.

Lemma 6. The ring of integers OF is generated by units as a K[x]-module
if and only if there is some µ ∈ K∗ such that the polynomial Y 2 + B(x)Y +
C(x) + µ ∈ K[x][Y ] has a root in K[x].

In this case, the unit group O∗F is of rank 1, and there is some polynomial
a ∈ K[X] such that a(x) + y is a fundamental unit.

Proof. The proof is similar to the proof of Lemma 4. Assume first that there
is some µ ∈ K∗ and a root a(x) ∈ K[x] of Y 2 +B(x)Y + C(x) + µ. Then

(a(x) + y)(a(x) +B(x) + y) = a(x)2 + a(x)B(x) + C(x) = µ ∈ K∗,

whence a(x)+y is a unit of K[x, y] = OF . Therefore, y = (a(x)+y)+a(x) ·1
is a K[x]-linear combination of units. Since OF is generated by {1, y} as a
K[x]-module, it is generated by its units as a K[x]-module.

Now assume that the ring of integers OF is generated by its units as a
K[x]-module. The same argument as in the proof of Lemma 4 shows that the
unit group O∗F is of rank 1, and that there is a fundamental unit a(x)+b(x)y,
with polynomials a, b ∈ K[X], b monic. Every element of O∗F is of the form

λ(a(x) + b(x)y)n,

with λ ∈ K∗ and n ∈ Z. Since the norm of a(x) + b(x)y is in K∗, we have

(a(x) + b(x)y)−1 = κ(a(x) + b(x)B(x) + b(x)y),
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for some κ ∈ K∗. Let us express y as a K[x]-linear combination of units:

y = g0(x) +

k1∑

i=1

gi(x)(a(x) + b(x)y)ni +

k2∑

i=1

hi(x)(a(x) + b(x)B(x) + b(x)y)mi ,

with positive integers k1, k2, ni, mi, and polynomials gi, hi ∈ K[X]. By
comparing the coefficient of y, we get b(x) ∈ K[x]∗ = K∗, whence b = 1.
Since the norm of a(x) + y is some µ ∈ K∗, we have

µ = (a(x) + y)(a(x) +B(x) + y) = a(x)2 + a(x)B(x) + C(x),

as desired.

Next, we prove an analogue of Lemma 5.

Lemma 7. Let a ∈ K[X], such that a(x) + y is a unit of OF . For any non-
negative integer n, define polynomials an, bn ∈ K[x] via an(x) + bn(x)y :=
(a(x) + y)n. Then we have, for every positive integer n,

(18) deg an ≤ n degB and deg bn = (n− 1) degB.

Proof. Induction on n proves that an, bn are given by the recursive formulas

(19) an+1 = aan + bnC and bn+1 = abn + an + bnB,

with starting values a0 = 1, b0 = 0.
Since degC < 2g + 2 = 2 degB, and

(20)
a(x)2 +B(x)a(x) +C(x) = (a(x) + y)(a(x) +B(x) + y) = N(a(x) + y) ∈ K∗,

we get deg a ≤ degB.
First consider the case where deg a < degB. Then degC = degB +

deg a. We use induction to prove the following (in)equalities for every positive
integer n:

(21) deg an < deg bn + degB and deg bn+1 = deg bn + degB.

First one checks (21) directly for n = 1. Assume that both (in)equalities
hold for n. Then we have an+1 = aan + bnC, and deg a + deg an < deg a +
deg bn + degB = deg bn + degC. Therefore,

deg an+1 = deg bn + degC = deg bn + deg a+ degB

= deg bn+1 + deg a < deg bn+1 + degB.
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Similarly,

deg bn+2 = deg(abn+1 + an+1 + bn+1B) = deg bn+1 + degB.

The desired result (18) now follows by induction from (21).

Now assume that deg a = degB. From (20), we have deg(a2 + aB) =
degC < 2 degB, and thus deg(a+B) < degB = deg a. This time, we prove
the following equalities for all positive integers n:

(22) deg an = deg an−1 + deg a and deg bn = deg an−1.

Again, we check the case n = 1 directly. Assume (22) holds for n. Then

deg bn+1 = deg((a+B)bn + an) = deg an,

since deg((a+B)bn) < deg a+deg bn = deg a+deg an−1 = deg an. Moreover,

deg an+1 = deg(aan + bnC) = deg an + deg a,

since deg bn + degC = deg an − deg a+ degC < deg an + deg a.

From the first equality of (22), we deduce inductively that deg an =
n degB, whence the second equality of (22) implies deg bn = (n − 1) degB.

Suppose that every element of OF is a sum of units. Let a(x) + y be the
fundamental unit from Lemma 6, and an, bn the polynomials from Lemma
7. Then all units of OF are of the form

λ(an(x) + bn(x)y), or λ(an(x) + bn(x)B(x) + bn(x)y),

for constants λ ∈ K∗ and non-negative integers n. Since the degrees of the bn
are all distinct from each other, the only way to represent elements of K[x]
as sums of units is as K-linear combinations of the

(an(x) + bn(x)y) + (an(x) + bn(x)B(x) + bn(x)y) = bn(x)B(x).

Since deg(bnB) = n degB, and degB = g+1 > 1, there is no way to represent
x as such a linear combination, which is a contradiction. This completes our
proof.
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Added in proof: There is a simpler way to prove that (a) implies (b) in
Theorem 2, which the author was not aware of when submitting this article.
We sketch the argument here:

Suppose that u(OF ) = ω. By Dirichlet’s unit theorem, the torsion-free
part of the unit group of OF is of rank at most 1. Since OF is generated by
its units as a ring, the rank is 1. It follows that

OF = K[ε, ε−1],

for some fundamental unit ε ∈ OF . Since the quotient field of OF is F , we
get F = K(ε), which shows that F |K is of genus 0 and has full constant field
K. The fact that the infinite place of K(x) splits into two places of F |K
follows in the same way as in Section 3.

The proof shown in Section 3, while being significantly longer and more
technical than the above argument, has its own merits, especially Lemmata
4 and 6, which show an additional function field analogy of the unit sum
number problem in number fields.
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[17] J. Śliwa. Sums of distinct units. Bull. Acad. Pol. Sci., 22:11–13, 1974.

[18] H. Stichtenoth. Algebraic function fields and codes. Universitext.
Springer-Verlag, Berlin, 1993.

[19] R. F. Tichy and V. Ziegler. Units generating the ring of integers of
complex cubic fields. Colloq. Math., 109(1):71–83, 2007.



Sums of units in function fields 53

[20] D. Zelinsky. Every linear transformation is a sum of nonsingular ones.
Proc. Am. Math. Soc., 5:627–630, 1954.

[21] V. Ziegler. The additive unit structure of complex biquadratic fields.
Glas. Mat., 43(63)(2):293–307, 2008.

Technische Universität Graz
Institut für Analysis und Computational Number Theory
Steyrergasse 30, 8010 Graz, Austria
E-mail: frei@math.tugraz.at
http://www.math.tugraz.at/~frei



54 C. Frei



Sums of units in function fields II - The
extension problem

Christopher Frei

Abstract

In 2007, Jarden and Narkiewicz raised the following question: Is
it true that each algebraic number field has a finite extension L such
that the ring of integers of L is generated by its units (as a ring)?
In this article, we answer the analogous question in the function field
case.

More precisely, it is shown that for every finite non-empty set S of
places of an algebraic function field F |K over a perfect field K, there
exists a finite extension F ′|F , such that the integral closure of the ring
of S-integers of F in F ′ is generated by its units (as a ring).

1 Introduction

In their paper [7], Jarden and Narkiewicz proved that, for every finitely
generated integral domain R of characteristic 0 and every positive integer N ,
there exists an element of R that can not be written as a sum of at most N
units. This also follows from a result obtained by Hajdu [6], and applies in
particular to the case where R is a ring of integers of an algebraic number
field. The author recently showed an analogous result for the case where R
is a ring of S-integers of an algebraic function field of one variable over a
perfect field [4].

A related question is whether or not a ring R is generated by its units. If
we take R to be a ring of integers of an algebraic number or function field,
both possibilities occur. Complete classifications have been found in many
special cases, including rings of integers of quadratic number fields [1, 2] and

Accepted for publication by Acta Arith.
2010 Mathematics Subject Classification: Primary 11R58; Secondary 11R27.
Key words and phrases: function field, sums of units, generated by units

55



56 C. Frei

certain types of cubic and quartic number fields [3, 11, 13], and rings of S-
integers of quadratic function fields [4]. All of these results have in common
that the unit group of the ring in question is of rank 1. The author is not
aware of any general results for rings of integers whose unit groups have
higher rank.

Among other problems, Jarden and Narkiewicz asked the following ques-
tion, which was later called the extension problem.

Problem 1. [7, Problem B] Is it true that each number field has a finite
extension L such that the ring of integers of L is generated by its units.

This is of course true for finite abelian extensions of Q, since those are
contained in cyclotomic number fields by the Kronecker-Weber theorem, and
the ring of integers of a cyclotomic number field is generated by a root of
unity. The scope of this paper is an affirmative answer to the function field
version of Problem 1. Let us fix some basic notation before we state the
theorem.

Regarding function fields, we use the notation from [9] and [10]. In partic-
ular, an algebraic function field over a field K is a finitely generated extension
F |K of transcendence degree 1. The algebraic closure of K in F is called the
(full) constant field of F |K. An element t ∈ F is called a separating element
for F |K, if the extension F |K(t) is finite and separable. Following [10], we
regard the places P of F |K as the maximal ideals of discrete valuation rings
OP of F containing K. In particular, the places correspond to (surjective)
discrete valuations vP : F → Z ∪ {∞} of F over K. Let n be a positive
integer. We say that a place P of F |K is a zero of an element f ∈ F of order
n, if vP (f) = n > 0, and P is a pole of f of order n, if vP (f) = −n < 0. If
S is a finite set of places of F |K then the ring OS of S-integers of F is the
set of all elements of F that have no poles outside of S. Moreover, we write
K× := K r {0}.
Theorem 2. Let K be a perfect field, F |K an algebraic function field over
K, and S 6= ∅ a finite set of places of F |K. Let OS be the ring of S-integers
of F . Then there exists a finite extension F ′|F such that the integral closure
of OS in F ′ is generated by its units (as a ring).

The basic idea to prove Theorem 2 is the following: First, choose a finite
set {t, t1, . . . , tn} of generators of OS over K. Then, for each 1 ≤ i ≤ n,
iteratively construct a finite extension Fi|F such that

(I.) t, t1, . . ., ti are sums of units in the integral closure of OS in Fi, and

(II.) the integral closure ofOS in Fi is generated by units as a ring extension
of OS.
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Then the integral closure of OS in Fn is generated by units and sums of units
as an extension of K, thus it is generated by its units. Section 2 provides
the tools to construct the extension fields Fi. In Section 3, everything is put
together.

2 Auxiliary results

The following lemma illustrates the idea explained at the end of the intro-
duction.

Lemma 3. Let K be a perfect field not of characteristic 2 and a ∈ K×. Con-
sider the extension of rational function fields K(x)|K(t), where t = x+a2/x.
Then the integral closure of K[t] in K(x) is K[x, x−1], which is generated (as
a ring) by its units.

The only places of K(t) that are ramified in K(x) are the zeros of t− 2a
and t+ 2a, both with ramification index 2.

Proof. The minimal polynomial of x over K(t) is X2 − tX + a2, whence
K(x) = K(t, y), with y2 = t2 − 4a2. (Here we used the assumption that K
is not of characteristic 2.) One can verify the assertions about ramification
directly or use Proposition III.7.3 from [10].

Obviously, x and x−1 are integral over K[t], and K[t] ⊆ K[x, x−1]. Since
K[x, x−1], as a ring of fractions of the principal ideal domain K[x], is inte-
grally closed, it is the integral closure of K[t] in K(x). Obviously, x, x−1 and
all elements of K× are units in K[x, x−1], and the lemma is proved.

The main step in the construction of the extension fields Fi is carried out
in the following proposition, which is the most important component of our
proof of Theorem 2.

Proposition 4. Let K be a perfect field not of characteristic 2, F |K an
algebraic function field with full constant field K, t a separating element of
F |K, and O the integral closure of K[t] in F . Assume that there is some
a ∈ K× such that the zeros of t + 2a and t − 2a in K(t) are unramified in
F |K(t).

Let F ′ := F (x), where x is a root of the polynomial f := X2 − tX + a2,
and let O′ be the integral closure of K[t] in F ′. Then K is the full constant
field of F ′|K, x is a unit in O′, t = x+ a2/x, and O′ = O[x].

Proof. The roots of f ∈ O[X] in F ′ are x and a2/x, whence x is a unit in
O′. Obviously, t = x + a2/x. If f is reducible over F then x, a2/x ∈ O, and
the proposition holds trivially. Assume now that f is irreducible over F .
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The field F ′ is the compositum of F and K(x). Since the characteristic
of K is not 2, the extension F ′|F , and thus as well F ′|K(t) is separable. By
Lemma 3, the only places of K(t) that are ramified in K(x) are the zeros of
t− 2a and t+ 2a, both with ramification index 2.

Let P be a zero of t+ 2a or t− 2a in F ′|K. By Abhyankar’s lemma (see,
for example, Proposition III.8.9 from [10]), the ramification index of P over
K(t) is 2. Here, we used the assumption that the zeros of t− 2a and t+ 2a
in K(t) are unramified in the extension F |K(t). Therefore, the ramification
index of P over F is 2.

Again by Abhyankar’s lemma, every place Q of F ′|K that is not a zero
of t+ 2a or t− 2a is unramified over F .

Since there are ramified places in the extension F ′|F , it is not a constant
field extension, so K is the full constant field of F ′|K.

We are left with the task of proving that O′ = O[x]. Denote the different
of O′|O by D, and let δ(x) be the different of x, that is δ(x) = f ′(x) = 2x−t.
It is well known that O′ = O[x] if and only if D is the principal ideal of O′
generated by δ(x) (see, for example, Theorem V.11.29 from [12]).

Already knowing all ramification indices in the extension F ′|F , we see
that the different D of O′|O is the product of all prime ideals of O′ dividing
(t + 2a) or (t − 2a) (use, for example, Theorem III.2.6 from [8] and the
assumption K is not of characteristic 2).

Since

δ(x)2 = (2x− t)2 = t2 − 4a2 = (t+ 2a)(t− 2a),

the ideal of O′ generated by δ(x) satisfies

(δ(x))2 =
∏

P|(t±2a)
P2 =


 ∏

P|(t±2a)
P




2

= D2.

Here, P ranges over all prime ideals of O′ dividing (t + 2a) or (t − 2a). As
we have already seen, the ramification index of each such P over the prime
ideal (t+2a) [or (t−2a)] of K[t] is 2. By unique ideal factorization, the ideal
of O′ generated by δ(x) is D.

For function fields of characteristic 2, we use a slightly modified form of
Proposition 4.

Proposition 5. Let K be a perfect field of characteristic 2, F |K an algebraic
function field with full constant field K, t a separating element of F |K, and
O the integral closure of K[t] in F . Assume that there is some a ∈ K such
that the zero of t+ a in K(t) is unramified in F |K(t).
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Let F ′ := F (x), where x is a root of the polynomial f := X2+(t+a)X+1,
and let O′ be the integral closure of K[t] in F ′. Then K is the full constant
field of F ′|K, x is a unit in O′, t = x+ 1/x+ a, and O′ = O[x].

Proof. Again, x is a unit in O′, since x and 1/x are the roots of the monic
polynomial f ∈ O[X]. Clearly, t = x+ 1/x+ a. The proposition holds again
trivially if f is reducible over F . Assume from now on that f is irreducible
over F .

Putting y := x/(t+a), we get F ′ = F (x) = F (y) and y2 + y = 1/(t+a)2.
We use Proposition III.7.8 from [10] to prove that the only places of F |K
that are ramified in F ′ are the zeros of t + a. Indeed, for each such zero P ,
we have

vP
(
1/(t+ a)2 − (1/(t+ a)2 − 1/(t+ a))

)
= vP (1/(t+ a)) = −1,

since P is unramified over K(t). For each place Q of F |K that is not a zero
of t+ a, we have

vQ(1/(t+ a)2) ≥ 0.

Therefore, Proposition III.7.8 from [10] implies that the places of F |K that
are ramified in F ′ are exactly the zeros of t + a, and that the respective
ramification indices and different exponents are 2. We conclude that K is
the full constant field of F |K and that the different D of O′|O is of the form

D =
∏

P|(t+a)

P2.

Here, P ranges over all prime ideals of O′ dividing (t + a). On the other
hand, the different of x is δ(x) = f ′(x) = t+a, and the ideal of O′ generated
by t+ a is given by

(t+ a) =
∏

P|(t+a)

P2 = D.

Note that the ramification index of every ideal P of O′ over the prime ideal
(t+a) of K[t] is 2, since (t+a) is unramified in F and the ramification index
of P over F is 2.

Therefore, D = (δ(x)), which suffices to prove that O′ = O[x].

The following lemma shows a way to enlarge O, while still maintaining
the property that O′ = O[x] from the previous propositions. The results
are probably not new, but the author is not aware of an adequate reference.
Recall that, for any place P of an algebraic function field, OP denotes the
discrete valuation ring with maximal ideal P .
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Lemma 6. Let F |K be an algebraic function field with perfect constant field
K, F ′|F a finite separable extension, and x ∈ F ′ with F ′ = F (x). Let S ⊆ T
be sets of places of F |K, and assume that x is integral over OS. Then we
have:

(a) If OP [x] is integrally closed for all P /∈ S then OS[x] is integrally closed
as well.

(b) If OS[x] is integrally closed then OT [x] is integrally closed as well.

(c) If x is algebraic over K then OT [x] is integrally closed.

Proof. Denote the integral closure of OS in F ′ by O′. Clearly, OS[x] ⊆ O′.
To prove (a), we need to show that OS[x] = O′. Let S ′ be the set of places
of F ′|K lying over places in S. We have

O′ =
⋂

P ′ /∈S′

OP ′ =
⋂

P /∈S

⋂

P ′|P
OP ′ =

⋂

P /∈S
(OP [x]).

Here, P ′ denotes places of F ′|K and P denotes places of F |K. The third
equality follows from the assumption that OP [x] is integrally closed and the
fact that x is integral over OP , for all P /∈ S. Therefore, it is sufficient to
show that

⋂

P /∈S
(OP [x]) =

(⋂

P /∈S
OP

)
[x].

Clearly, the right-hand side of the above equality is included in the left-hand
side. Now let f be an arbitrary element of

⋂
P /∈S(OP [x]). Denote the degree

[F ′ : F ] by n. Then, for each P /∈ S, there is some polynomial gP ∈ OP [X]
of degree smaller than n, with f = gP (x). Since {1, x, . . . , xn−1} is a basis of
F ′|F , all gP are equal and thus elements of

(⋂
P /∈S OP

)
[X]. This shows the

other inclusion.
To prove (b), notice that, for all P /∈ S, OP is the localization of OS at

the unique prime ideal P of OS corresponding to the place P . Therefore,
OP [x] can be seen as ring of fractions of OS[x] with denominators in the
multiplicative set OS r P. Assume that OS[x] is integrally closed. By the
above argument, OP [x] is integrally closed for all P /∈ S, in particular for all
P /∈ T , so (b) follows from (a).

The special case of (b) with S = ∅ is exactly (c).

As an immediate consequence of Lemma 6 (c) and the primitive element
theorem, we get that finite constant field extensions have property (II.) from
the overview presented at the end of Section 1 (see also the third paragraph
of Remark 6.1.7 from [5] for a more general formulation):
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Corollary 7. Let F |K be an algebraic function field with perfect constant
field K, S a set of places of F |K, and K ′|K a finite extension. Then the
integral closure of OS in K ′F is K ′OS.

To use Propositions 4 and 5, we need to ensure that we can always find
an a as required. This is accomplished by the following lemma.

Lemma 8. Let F |K be an algebraic function field with perfect constant field
K, and t ∈ F r K. Then there is a finite extension K0|K and an element
a ∈ K×0 , such that the zeros of t− a and t+ a in K0(t) are unramified in the
extension K0F |K0(t).

If F is separable over K(t) then K0F is separable over K0(t).

Proof. The first part of the lemma clearly holds if K is infinite, since there
are only finitely many ramified places in F |K(t), so we can put K0 := K.

In the general case, consider the algebraic closure K of K in some alge-
braically closed field Φ ⊇ F and the constant field extension KF |K of F |K.
Since K is infinite, we find some a ∈ K, such that the zeros of t−a and t+a
in K(t) are unramified in KF . Put K0 := K(a). Then the zeros of t− a and

t + a in K0(t) are unramified in K0F , as desired. Indeed, let P
′

be a place

of KF |K lying over the zero P of, say, t + a in K0(t). Put P ′ := P
′ ∩K0F

and P := P
′ ∩ K(t). We know that P

′|P is unramified. From P
′|P |P and

the fact that constant field extensions are unramified, it follows that P
′|P is

unramified. Now P
′|P ′|P implies that P ′|P is unramified.

The assertion regarding separability holds because if F is separable over
K(t) then K0F is generated over K0(t) by separable elements.

3 Proof of Theorem 2

For convenience, let us state the theorem again.

Theorem 2. Let K be a perfect field, F |K an algebraic function field over
K, and S 6= ∅ a finite set of places of F |K. Let OS be the ring of S-integers
of F . Then there exists a finite extension F ′|F such that the integral closure
of OS in F ′ is generated by its units (as a ring).

It is enough to prove Theorem 2 under the assumption that K is the full
constant field of F |K, since then the general case follows as well.

Denote the characteristic of K by p ≥ 0, and assume first that p 6= 2. We
find a separating element t of F |K such that OS is the integral closure of
K[t] in F . To this end, choose places Q ∈ S and R, R′ /∈ S of F |K. By the
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strong approximation theorem, we can find an element t ∈ F that satisfies
the conditions

vR(t) = 1,

vR′(t) = |S| − 1,

vP (t) = −1, for all P ∈ S r {Q}, and

vP (t) ≥ 0, for all places P /∈ S ∪ {R,R′}.

Since the principal divisor of t has degree 0, it follows that vQ(t) < 0. There-
fore, the poles of t are exactly the elements of S. Moreover, t is not a p-th
power, since p does not divide vR(t) = 1. It follows that F is separable over
K(t) (see, for example, Proposition III.9.2 (d) from [10]) and the integral
closure of K[t] in F is exactly OS.

Choose some non-constant elements t1, . . . , tn of OS, such that OS =
K[t, t1, . . . , tn] (for example, let {t1, . . . , tn} be an integral basis of OS over
K[t] and omit a possible constant).

Lemma 8 permits us to find a finite extension K0|K and some a ∈ K×0 ,
such that the zeros of t− 2a and t+ 2a in K0(t) are unramified in K0F . By
Corollary 7, the integral closure of OS in K0F is K0OS = K0[t, t1, . . . , tn].

Proposition 4 yields a finite extension F0|K0 of K0F |K0, such that t is a
sum of units in the integral closure O0 of OS in F0, and O0 = K0OS[x0] =
K0[t, t1, . . . , tn, x0], for some unit x0 of O0. Moreover, K0 is the full constant
field of F0|K0.

We inductively construct finite extensions F1|K1, . . ., Fn|Kn of F0|K0

with the following properties. If Oi denotes the integral closure of OS in Fi

then we have, for i ∈ {0, . . . , n}:

• Oi = Ki[t, s1, . . . , si, ti+1, . . . tn, x0, x1, . . . , xi], where x0, . . ., xi are
units of Oi, and for all 1 ≤ j ≤ i there is some m with sp

m

j = tj.

• t, s1, . . ., si are sums of units of Oi.

• Ki is the full constant field of Fi|Ki.

For i = 0, the function field F0|K0 has all desired properties. Let i ∈
{1, . . . , n} and assume that we have constructed Fi−1|Ki−1. The figure on
page 63 shows the relations between the rings and fields constructed in the
following paragraphs.

Take the maximal non-negative integer m such that ti is a pm-th power
in Fi−1 (the maximum exists since ti is not constant), and let si be the pm-th
root of ti. Then si ∈ Oi−1, since si has the same poles as ti. Therefore,
Oi−1 = Ki−1[t, s1, . . . , si, ti+1, . . . , tn, x0, . . . , xi−1].
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Figure 1: The rings and fields occurring in the induction step.

Since si is not a p-th power in Fi−1, it is a separating element of Fi−1|Ki−1
(again, we used Proposition III.9.2 (d) from [10]). By Lemma 8, there is some
finite extension Ki|Ki−1 and some a ∈ K×i such that the zeros of si− 2a and
si + 2a in Ki(si) are unramified in KiFi−1, and KiFi−1 is separable over
Ki(si).

Denote the integral closure of Ki[si] in KiFi−1 by O. By Proposition 4,
there is a finite extension Fi|Ki of KiFi−1|Ki, such that the integral closure of
O in Fi is O[xi], for some unit xi, and si is a sum of units in O[xi]. Moreover,
Ki is the full constant field of Fi|Ki.

By our convention, Oi is the integral closure of OS in Fi, and thus as
well the integral closure of Oi−1 in Fi. By Corollary 7, the integral closure of
Oi−1 in KiFi−1 is KiOi−1. Since si ∈ Oi−1, we have O ⊆ KiOi−1. Let U be
the set of poles of si in KiFi−1, and V ⊇ U the set of poles of t in KiFi−1.
Then O = OU and KiOi−1 = OV . Since OU [xi] = O[xi] is integrally closed,
Lemma 6 (b) implies that OV [xi] = KiOi−1[xi] is integrally closed as well.
Therefore, KiOi−1[xi] is Oi, the integral closure of Oi−1 in Fi. We conclude
that

Oi = Ki[t, s1, . . . , si, ti+1, . . . , tn, x0, . . . , xi],

as desired. The elements x0, . . ., xi−1 are units in Oi, because they are units
in Oi−1 ⊆ Oi. Moreover, xi is a unit in Oi, since it is a unit in O[xi] ⊆ Oi.
Therefore, t, s1, . . ., si are sums of units of Oi, and the induction is complete.

Now put F ′|K ′ := Fn|Kn, and Theorem 2 is proved whenever the char-
acteristic of K is not 2. In characteristic 2, the proof is exactly the same
as above, except that we always write a instead of 2a and use Proposition 5
instead of Proposition 4.
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On rings of integers generated by their units

Christopher Frei

Abstract

We give an affirmative answer to the following question by Jarden
and Narkiewicz: Is it true that every number field has a finite extension
L such that the ring of integers of L is generated by its units (as a
ring)?

As a part of the proof, we generalize a theorem by Hinz on power-
free values of polynomials over number fields.

1 Introduction

The earliest result regarding the additive structure of units in rings of al-
gebraic integers dates back to 1964, when Jacobson [12] proved that every
element of the rings of integers of Q(

√
2) and Q(

√
5) can be written as a sum

of distinct units. Later, Śliwa [17] continued Jacobson’s work, proving that
there are no other quadratic number fields with that property, nor any pure
cubic ones. Belcher [2], [3] continued along these lines and investigated cubic
and quartic number fields.

In a particularly interesting lemma [2, Lemma 1], Belcher characterised
all quadratic number fields whose ring of integers is generated by its units:
These are exactly the fields Q(

√
d), d ∈ Z squarefree, for which either

1. d ∈ {−1,−3}, or

2. d > 0, d 6≡ 1 mod 4, and d+ 1 or d− 1 is a perfect square, or

3. d > 0, d ≡ 1 mod 4, and d+ 4 or d− 4 is a perfect square.

2010 Mathematics Subject Classification: Primary 11R04; Secondary 11R27.
Key words and phrases: sums of units, rings of integers, generated by units, additive

unit representations
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This result was independently proved again by Ashrafi and Vámos [1], who
also showed the following: Let O be the ring of integers of a quadratic or
complex cubic number field, or of a cyclotomic number field of the form
Q(ζ2n). Then there is no positive integer N such that every element of O is
a sum of N units.

Jarden and Narkiewicz [13] proved a more general result which implies
that the ring of integers of every number field has this property: If R is
a finitely generated integral domain of zero characteristic then there is no
integer N such that every element of R is a sum of at most N units. This
also follows from a result obtained independently by Hajdu [10]. The author
[7] proved an analogous version of this and of Belcher’s result for rings of
S-integers in function fields.

In [13], Jarden and Narkiewicz raised three open problems:

A. Give a criterion for an algebraic extension K of the rationals to have the
property that the ring of integers of K is generated by its units.

B. Is it true that each number field has a finite extension L such that the
ring of integers of L is generated by its units?

C. Let K be an algebraic number field. Obtain an asymptotical formula for
the number Nk(x) of positive rational integers n ≤ x which are sums of
at most k units of the ring of integers of K.

The result by Belcher stated above solves Problem A for quadratic number
fields. Similar criteria have been found for certain types of cubic and quartic
number fields [5], [18], [22]. All these results have in common that the unit
group of the ring in question is of rank 1.

Quantitative questions similar to Problem C were investigated in [5], [6],
[9]. The property asked for in Problem B is known to hold for number
fields with an Abelian Galois group, due to the Kronecker-Weber theorem.
However, this is all that was known until recently, when the author [8] affir-
matively answered the question in the function field case. In this paper, we
use similar ideas to solve Problem B in its original number field version:

Theorem 1. For every number field K there exists a number field L con-
taining K such that the ring of integers of L is generated by its units (as a
ring).

It is crucial to our proof to establish the existence of integers of K with
certain properties (see Proposition 4). We achieve this by asymptotically
counting such elements. To this end, we need a generalised version of a
theorem by Hinz [11, Satz 1.1], which is provided first. Let us start with
some notation.
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2 Notation and auxiliary results

All rings considered are commutative and with unity, and the ideal {0} is
never seen as a prime ideal. Two ideals a, b of a ring R are relatively prime
if a + b = R. Two elements α, β ∈ R are relatively prime if the principal
ideals (α), (β) are.

The letter K denotes a number field of degree n > 1, with discriminant
dK and ring of integers OK . Let there be r distinct real embeddings σ1, . . .,
σr : K → R and 2s distinct non-real embeddings σr+1, . . ., σn : K → C, such
that σr+j = σr+s+j, for all 1 ≤ j ≤ s. Then σ : K → Rn is the standard
embedding given by

α 7→ (σ1(α), . . . , σr(α),<σr+1(α),=σr+1(α), . . . ,<σr+s(α),=σr+s(α)).

An element α ∈ OK is called totally positive, if σi(α) > 0 for all 1 ≤ i ≤ r.
A non-zero ideal of OK is called m-free, if it is not divisible by the m-th

power of any prime ideal of OK , and an element α ∈ OK \ {0} is called
m-free, if the principal ideal (α) is m-free. We denote the absolute norm of
a non-zero ideal a of OK by Na, that is Na = [OK : a]. For non-zero ideals
a, b of OK , the ideal (a, b) is their greatest common divisor. If β ∈ OK \ {0}
then we also write (a, β) instead of (a, (β)). By supp a, we denote the set of
all prime divisors of the ideal a of OK . The symbol µ stands for the Möbius
function for ideals of OK .

For x = (x1, . . . , xn) ∈ Rn, with xi ≥ 1 for all 1 ≤ i ≤ n, and xr+s+i =
xr+i, for all 1 ≤ i ≤ s, we define

R(x) := {α ∈ OK | α totally positive, |σi(α)| ≤ xi for all 1 ≤ i ≤ n},

and

x := x1 · · · xn.

Let f ∈ OK [X] be an irreducible polynomial of degree g ≥ 1. For any
ideal a of OK , let

L(a) := |{β + a ∈ OK/a | f(β) ≡ 0 mod a}| .

By the Chinese remainder theorem, we have L(a1 · · · ak) = L(a1) · · ·L(ak),
for ideals a1, . . ., ak of OK that are mutually relatively prime.

We say that the ideal a of OK is a fixed divisor of f if a contains all f(α),
for α ∈ OK .

Hinz established the following result, asymptotically counting the set of
all α ∈ R(x) such that f(α) is m-free:
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Theorem 2 (([11, Satz 1.1])). If m ≥ max{2,
√

2g2 + 1 − (g + 1)/2}, such
that no m-th power of a prime ideal of OK is a fixed divisor of f , then

∑

α∈R(x)
f(α) m-free

1 =
(2π)s√
|dK |

· x ·
∏

P

(
1− L(Pm)

NPm

)
+O(x1−u),

as x tends to infinity. Here, u = u(n, g) is an effective positive constant
depending only on n and g, the infinite product over all prime ideals P of
OK is convergent and positive, and the implicit O-constant depends on K,
m and f .

A subring O of OK is called an order of K if O is a free Z-module of
rank [K : Q], or, equivalently, QO = K. Orders of K are one-dimensional
Noetherian domains. For any order O of K, the conductor f of O is the
largest ideal of OK that is contained in O, that is

f = {α ∈ OK | αOK ⊆ O}.

In particular, f % {0}, since OK is finitely generated as an O-module. For
more information about orders, see for example [16, Section I.12].

Assume now that f ∈ O[X]. Then we define, for any ideal a of OK ,

LO(a) := |{α + (O ∩ a) ∈ O/(O ∩ a) | f(α) ≡ 0 mod (O ∩ a)}| .

The natural monomorphism O/(O∩ a)→ OK/a yields LO(a) ≤ L(a), and if
a1, . . ., ak are ideals of OK such that all ai ∩O are mutually relatively prime
then LO(a1 · · · ak) = LO(a1) · · ·LO(ak).

In our generalised version of Theorem 2, we do not count all α ∈ R(x)
such that f(α) is m-free, but all α ∈ R(x)∩O, such that f(α) is m-free and
f(α) /∈ P, for finitely many given prime ideals P of OK .

Theorem 3. Let O be an order of K of conductor f, and f ∈ O[X] an
irreducible (over OK) polynomial of degree g ≥ 1. Let P be a finite set of
prime ideals of OK that contains the set Pf := supp f. Let

(1) m ≥ max
{

2,
√

2g2 + 1− (g + 1)/2
}

be an integer such that no m-th power of a prime ideal of OK is a fixed divisor
of f , and denote by N(x) the number of all α ∈ O ∩R(x), such that

1. for all P ∈ P, f(α) /∈ P

2. f(α) is m-free.
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Then
N(x) = Dx+O(x1−u),

as x tends to infinity. Here, u = u(n, g) is an explicitly computable positive
constant that depends only on n and g. The implicit O-constant depends on
K, P, f and m. Moreover,

D =
(2π)s√

|dK |[OK : O]

∑

a|f

µ(a)LO(a)

[O : a ∩ O]

∏

P∈P\Pf

(
1− L(P)

NP

) ∏

P/∈P

(
1− L(Pm)

NPm

)
.

The sum runs over all ideals of OK dividing f, and the infinite product over
all prime ideals P /∈ P of OK is convergent and positive.

For our application, the proof of Theorem 1, we only need the special
case where m = g = 2, and we do not need any information about the
remainder term. However, the additional effort is small enough to justify
a full generalisation of Theorem 2, instead of just proving the special case.
The following proposition contains all that we need of Theorem 3 to prove
Theorem 1.

Proposition 4. Assume that for every prime ideal of OK dividing 2 or 3,
the relative degree is greater than 1, and that O 6= OK is an order of K. Let
P be a finite set of prime ideals of OK, and let η ∈ O rK2. Then there is
an element ω ∈ OK with the following properties:

1. ω /∈ O,

2. for all P ∈ P, ω2 − 4η /∈ P, and

3. ω2 − 4η is squarefree.

The basic idea to prove Theorem 1 is as follows: Let O be the ring
generated by the units of OK . With Proposition 4, we find certain elements
ω1, . . ., ωr ofOK , such thatO[ω1, . . . , ωr] = OK . Due to the special properties
from Proposition 4, we can construct an extension field L of K, such that
ω1, . . ., ωr are sums of units of OL, and OL is generated by units as a ring
extension of OK . This is enough to prove that OL is generated by its units
as a ring.

3 Proof of Theorem 3

We follow the same strategy as Hinz [11] in his proof of Theorem 2, with mod-
ifications where necessary. For any vector v ∈ Rn, we denote its Euclidean
length by |v|. We use a theorem by Widmer to count lattice points:
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Theorem 5 (([20, Theorem 5.4])). Let Λ be a lattice in Rn with successive
minima (with respect to the unit ball) λ1, . . ., λn. Let B be a bounded set in
Rn with boundary ∂B. Assume that there are M maps Φ : [0, 1]n−1 → Rn

satisfying a Lipschitz condition

|Φ(v)− Φ(w)| ≤ L |v − w| ,

such that ∂B is covered by the union of the images of the maps Φ. Then B
is measurable, and moreover

∣∣∣∣|B ∩ Λ| − VolB

det Λ

∣∣∣∣ ≤ c0(n)M max
0≤i<n

Li

λ1 · · ·λi
.

For i = 0, the expression in the maximum is to be understood as 1. Further-
more, one can choose c0(n) = n3n2/2.

We need some basic facts about contracted ideals in orders. The state-
ments of the following lemma can hardly be new, but since the author did
not find a reference we shall prove them for the sake of completeness.

Lemma 6. Let O ⊆ OK be an order of K with conductor f. Then, for any
ideals a, b of OK, the following holds:

(1) if a + f = OK and b | f then (a ∩ O) + (b ∩ O) = O.

(2) if a+ f = OK, b+ f = OK, and a+ b = OK then (a∩O) + (b∩O) = O.

(3) if a + f = OK then [O : a ∩ O] = Na.

Proof. For any ideal a of OK with a + f = OK , we have

(a ∩ O) + f = (a + f) ∩ O = OK ∩ O = O.

The first equality holds because for every α ∈ a, β ∈ f ⊆ O with α + β ∈ O
it follows that α ∈ O.

Moreover, if c is an ideal of O with c + f = O then

cOK + f ⊇ (c + f)OK = OOK = OK .

Therefore,
ϕ : a 7→ a ∩ O and ψ : c 7→ cOK

are maps between the sets of ideals

{a ⊆ OK | a + f = OK} and {c ⊆ O | c + f = O}.
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Let us prove that ϕ and ψ are inverse to each other. Clearly, (ϕ◦ψ)(c) ⊇ c
and (ψ ◦ ϕ)(a) ⊆ a. Also,

(ϕ◦ψ)(c) = (cOK∩O)O = (cOK∩O)(c+f) ⊆ c+f(cOK∩O) ⊆ c+cfOK ⊆ c,

and

a = aO = a((a∩O)+f) ⊆ (a∩O)OK+fa ⊆ (a∩O)OK+(a∩O) = (ψ◦ϕ)(a).

Clearly, ϕ and ψ are multiplicative, so the monoid of ideals of O relatively
prime to f is isomorphic with the monoid of ideals of OK relatively prime to
f. (In the special case where O is an order in an imaginary quadratic field
this is proved in [4, Proposition 7.20].)

If a, b are as in (1) then f ⊆ b ∩ O, and thus O = (a ∩ O) + f ⊆
(a ∩ O) + (b ∩ O).

Suppose now that a, b are as in (2), and ϕ(a) + ϕ(b) =: c ⊆ O. Then
c + f ⊇ ϕ(a) + f = O, whence c = ϕ(d), for some ideal d of OK relatively
prime to f. Now a ⊆ d and b ⊆ d, so d = OK , and thus c = O.

To prove (3), we show that the natural monomorphism Φ : O/(a∩O)→
OK/a is surjective. This holds true, since

OK = a + f ⊆ a +O.

For now, let us prove Theorem 3 with the additional assumption that
f(α) 6= 0 for all totally positive α ∈ OK . This holds of course if deg f ≥ 2,
since f is irreducible over OK . At the end of the proof, we specify the changes
necessary to drop this assumption. Let

Π :=
∏

P∈P
P.

It is well known that

∑

a|b
µ(a) =

{
1, if b = OK
0, otherwise,

for any nonzero ideal b of OK . Assume that f(α) 6= 0. Then

∑

a|(Π,f(α))

µ(a) =

{
1, if for all P ∈ P , f(α) /∈ P

0, otherwise.
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Write (f(α)) = c1c
m
2 , where c1 is m-free. Then bm | f(α) if and only if b | c2,

whence

∑

bm|f(α)

µ(b) =

{
1, if f(α) is m-free

0, otherwise.

Therefore,

(2) N(x) =
∑

α∈R(x)∩O

∑

a|(Π,f(α))

µ(a)
∑

bm|f(α)

µ(b).

Put

(3) N1(x, y) :=
∑

α∈R(x)∩O

∑

a|(Π,f(α))

µ(a)
∑

(b,Π)=1
bm|f(α)
Nb≤y

µ(b),

and

(4) N2(x, y) :=
∑

α∈R(x)∩O

∑

a|(Π,f(α))

µ(a)
∑

bm|f(α)
Nb>y

µ(b).

It will turn out that, with a suitable choice of y, the main component of N(x)
is N1(x, y). In fact, since

∑

a|(Π,f(α))

µ(a)
∑

(b,Π) 6=1
bm|f(α)
Nb≤y

µ(b) = 0,

for all α ∈ OK with f(α) 6= 0, we have

(5) N(x) = N1(x, y) +N2(x, y).

3.1 Estimation of N2(x, y)

We can reduce the estimation of N2(x, y) to a similar computation to that
which has already been performed by Hinz [11]. Indeed, for any nonzero
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ideal q of OK , we have

|N2(x, y)| ≤
∑

α∈R(x)∩O

∣∣ ∑

a|(Π,f(α))

µ(a)
∣∣ ·
∣∣ ∑

bm|f(α)
Nb>y

µ(b)
∣∣

≤
(∑

a|Π
µ(a)2

) ∑

α∈R(x)

∣∣∑

c|q

∑

bm|f(α)
Nb>y

(b,q)=c

µ(b)
∣∣

≤ NΠNq
∑

α∈R(x)

∑

bm|f(α)
Nb>y/Nq
(b,q)=1

µ(b)2.

The last expression differs only by a multiplicative constant from the right-
hand side of [11, (2.6)], so we can use Hinz’s estimates [11, pp. 139-145]
without any change. With a suitable choice of q ([11, (2.8)]), we get (see
Lemma 2.2 and the proof of Theorem 2.1 from [11])

(6) N2(x, y) = O(xg/(2l+1)y(l−m)/(2l+1)(xy(l−m)/g + 1)),

for any integer 1 ≤ l ≤ m−1, as x, y →∞. The implicit O-constant depends
on K, f , m, and P .

3.2 Computation of N1(x, y)

Now let us compute N1(x, y). We have

(7) N1(x, y) =
∑

a|Π
µ(a)

∑

(b,Π)=1
Nb≤y

µ(b) |Ma,b(x)| ,

whereMa,b(x) is the set of all α ∈ R(x)∩O such that f(α) ∈ a and f(α) ∈ bm.
Since all occurring ideals a, b are relatively prime, we have

Ma,b(x) = {α ∈ R(x) ∩ O | f(α) ≡ 0 mod abm}
=

⋃

β+abm∈OK/ab
m

f(β)≡0 mod abm

((β + abm) ∩R(x) ∩ O) ,

where the union over all roots of f modulo abm is disjoint. We asymptotically
count each of the sets (β + abm) ∩ R(x) ∩ O by counting lattice points.
Consider the natural monomorphism ϕ : O/(abm∩O)→ OK/abm, mapping
α + (abm ∩ O) to α + abm.
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Lemma 7. The set (β + abm) ∩O is not empty if and only if β + abm is in
the image of ϕ.

In that case, let ε ∈ [0, 1/n], and c ≥ 1/m such that Nb ≤ xc. Then

∣∣∣∣|(β + abm) ∩R(x) ∩ O| − c1(K)
x

[OK : abm ∩ O]

∣∣∣∣ ≤ c2(K)
x1−ε

Nb(1−ε)/c .

Here, c1(K) = (2π)s/
√
|dK |, and c2(K) is an explicitly computable constant

which depends only on K.

Proof. If α ∈ (β + abm) ∩ O then β + abm = α + abm = ϕ(α + (abm ∩ O)).
If, on the other hand, β + abm = ϕ(α + (abm ∩ O)), for some α ∈ O, then
α + abm = β + abm, and thus α ∈ (β + abm) ∩ O.

Assume now that (β + abm) ∩ O is not empty. Then, for any α ∈ (β +
abm) ∩ O, we have

|(β + abm) ∩R(x) ∩ O| = |(abm ∩ O) ∩ (R(x)− α)| .

Let σ : K → Rn be the standard embedding defined in Section 2, and let
T : Rn → Rn be the linear automorphism given by

T (ei) = x1/n/xi · ei, for 1 ≤ i ≤ r, and

T (er+i) = x1/n/xr+di/2e · er+i, for 1 ≤ i ≤ 2s,

where e1, . . ., en is the standard basis of Rn. Then

(8) detT = x/(x1 · · ·xrx2
r+1 · · ·x2

r+s) = x/(x1 · · ·xn) = 1.

Therefore, T (σ(abm ∩ O)) is a lattice in Rn with determinant

(9) detT (σ(abm ∩ O)) = 2−s
√
|dK |[OK : abm ∩ O].

Moreover, T (σ(R(x)− α)) = T (σ(OK)) ∩ B, where B is a product of r line
segments of length x1/n and s disks of radius x1/n. Clearly,

(10) Vol(B) = πsx.

We construct maps Φ : [0, 1]n−1 → Rn as in Theorem 5. Write B = l1 ×
· · · × lr × dr+1 × · · · × dr+s, with line segments li of length x1/n and disks di
of radius x1/n. Put

Bi := l1 × · · · × li−1 × (∂li)× li+1 × · · · × lr × dr+1 × · · · × dr+s,
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for 1 ≤ i ≤ r, and

Bi := l1 × · · · × lr × dr+1 × · · · × di−1 × (∂di)× di+1 × · · · × dr+s,

for r + 1 ≤ i ≤ r + s. Then

∂B =
r+s⋃

i=1

Bi.

For 1 ≤ i ≤ r, ∂li consists of two points, and the remaining factor of Bi is
contained in an (n− 1)-dimensional cube of edge-length 2x1/n. For r + 1 ≤
i ≤ r + s, ∂di is a circle of radius x1/n, and the remaining factor of Bi is
contained in an (n − 2)-dimensional cube of edge-length 2x1/n. Therefore,
we find 2r + s maps Φ : [0, 1]n−1 → Rn with

(11) |Φ(v)− Φ(w)| ≤ 2πx1/n |v − w| ,

such that ∂B is covered by the union of the images of the maps Φ.
Since

|(β + abm) ∩R(x) ∩ O| = |T (σ(abm ∩ O)) ∩ T (σ(R(x)− α))|
= |T (σ(abm ∩ O)) ∩B| ,

Theorem 5 and (9), (10), (11) yield

(12)

∣∣∣∣∣|(β + abm) ∩R(x) ∩ O| − (2π)s√
|dK |

x

[OK : abm ∩ O]

∣∣∣∣∣ ≤ c3(K)
xi/n

λ1 · · ·λi
.

Here, c3(K) = (2r + s)(2π)n−1n3n2/2, i ∈ {0, . . . , n − 1}, and λ1, . . ., λi are
the first i successive minima of the lattice T (σ(abm∩O)) with respect to the
unit ball.

Let us further estimate the right-hand side of (12). First, we need a lower
bound for λi in terms of Nb. For each i, there is some α ∈ (abm ∩ O) r {0}
with λi = |T (σ(α))|. Since α ∈ bm, the inequality of weighted arithmetic
and geometric means and (8) yield (cf. [15, Lemma 5], [20, Lemma 9.7])

Nbm ≤ |N(α)| =
n∏

j=1

|σj(α)| =
r+s∏

j=1

∣∣∣∣
x1/n

xj
σj(α)

∣∣∣∣
dj

≤
(

1

n

r+s∑

j=1

dj

∣∣∣∣
x1/n

xj
σj(α)

∣∣∣∣
2
)n/2

≤
(

2

n

)n/2
λni .
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Here, dj = 1 for 1 ≤ j ≤ r, and dj = 2 for r + 1 ≤ j ≤ r + s. Recall that
n ≥ 2. With the assumptions on ε and c in mind, we get

xi/n

λ1 · · ·λi
≤
(

2

n

)i/2
xi/n

Nbmi/n
≤ x1−ε

Nbmi/n+(1−ε−i/n)/c
≤ x1−ε

Nb(1−ε)/c .

Since f ∈ O[X], we can conclude from β + abm = ϕ(α+ (abm ∩O)) that
f(β) ∈ abm if and only if f(α) ∈ abm ∩ O. Therefore,

Ma,b(x) =
⋃

α+(abm∩O)∈O/(abm∩O)
f(α)≡0 mod (abm∩O)

((α + abm) ∩ O ∩R(x)) ,

and thus
∣∣∣∣|Ma,b(x)| − c1(K)LO(abm)

x

[OK : abm ∩ O]

∣∣∣∣ ≤ c2(K)L(a)L(bm)
x1−ε

Nb(1−ε)/c ,

whenever Nb ≤ xc, for some c ≥ 1/m, and ε ∈ [0, 1/n]. Notice that
LO(abm) ≤ L(abm) = L(a)L(bm), since a, b are relatively prime. There-
fore,

∣∣ ∑

(b,Π)=1
Nb≤xc

µ(b) |Ma,b(x)| − c1(K)x
∑

(b,Π)=1

µ(b)
LO(abm)

[OK : abm ∩ O]

∣∣

≤
∣∣ ∑

(b,Π)=1
Nb≤xc

µ(b)

(
|Ma,b(x)| − c1(K)x

LO(abm)

[OK : abm ∩ O]

) ∣∣

+
∣∣c1(K)x

∑

(b,Π)=1
Nb>xc

µ(b)
LO(abm)

[OK : abm ∩ O]

∣∣

≤ c2(K)x1−εL(a)
∑

(b,Π)=1

µ(b)2 L(bm)

Nb(1−ε)/c

+ c1(K)L(a)x
∑

(b,Π)=1
Nb>xc

µ(b)2 L(bm)

[OK : abm ∩ O]
.

Let s > 1 be a real number. As in [11, top of p. 138], we get

∑

Nb≤y
µ(b)2L(bm) = O(y),
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whence ∑

(b,Π)=1
Nb>xc

µ(b)2L(bm)

Nbs
= O(xc(1−s)),

by partial summation. Therefore, the sum

∑

(b,Π)=1

µ(b)2 L(bm)

Nb(1−ε)/c

converges whenever c < 1− ε. Since [OK : abm ∩ O] ≥ Nbm, we have

∑

(b,Π)=1
Nb>xc

µ(b)2 L(bm)

[OK : abm ∩ O]
≤

∑

(b,Π)=1
Nb>xc

µ(b)2L(bm)

Nbm
= O(xc(1−m)).

Putting everything together, we get

∑

(b,Π)=1
Nb≤xc

µ(b) |Ma,b(x)| = c1(K)x
∑

(b,Π)=1

µ(b)
LO(abm)

[OK : abm ∩ O]

+O(x1−ε + x1+c(1−m)),

(13)

whenever 1/m ≤ c < 1 − ε and 0 ≤ ε ≤ 1/n, as x → ∞. The implicit
O-constant depends on K, a, P , f , m, c and ε.

3.3 End of the proof

By (5), (6), (7) and (13), we get

N(x) = N1(x, xc) +N2(x, xc)

= c1(K)x
∑

a|Π
µ(a)

∑

(b,Π)=1

µ(b)
LO(abm)

[OK : abm ∩ O]
+R

=: Dx+R,

where

R = O(x1−ε + x1−c(m−1) + xg/(2l+1)−c(m−l)/(2l+1)(x1−c(m−l)/g + 1))

holds for every 0 ≤ ε ≤ 1/n, 1/m ≤ c < 1 − ε, and l ∈ {1, . . . ,m − 1}, as
x→∞. The implicit O-constant depends on K, P , f , m, c, and ε.

Assume first that m > g + 1. Then we put

l := m− g, c := 1− 5/(g + 10), ε := min{1/n, 4/(g + 10)},



80 C. Frei

to get

R = O(x1−1/n + x1−4/(g+10) + x1−g(g+5)/(g+10) + x(g+5)/(g+10)) = O(x1−u(n,g)),

with u(n, g) as in the theorem.
Now suppose that 2 ≤ m ≤ g + 1. Then

R = O(x1−ε + x1−c(m−1) + x1+g/(2l+1)−c(m−l)(g+2l+1)/(g(2l+1))).

We proceed as in [11, Section 3, Proof of Theorem 1.1]. For every m that
satisfies (1), we find some 1 ≤ l ≤ m−1 ≤ g, such that m−l > g2/(2l+g+1).
Then we can choose some c, depending only on g, l, with

1

m
≤ g(2l + 2)

g(2l + 2)(m− l + 1)
≤ g(2l + 1) + g2

(m− l)(2l + g + 1) + g(2l + 1)
≤ c < 1.

A straightforward computation shows that

1 + g/(2l + 1)− c(m− l)(g + 2l + 1)(g(2l + 1)) ≤ c.

For any 0 < ε < 1− c, ε ≤ 1/n, we get

R = O(x1−ε + x1−c + xc) = O(x1−u(n,g)),

for a suitable choice of u(n, g). Notice that there are only finitely many values
of m for every g.

The only task left is to prove that D has the form claimed in the theorem.
We split up D in the following way: Let Π1 be the product of all prime ideals
in P \ Pf. Then

D = c1(K)
∑

a|f
µ(a)

∑

b|Π1

µ(b)
∑

(c,Π)=1

µ(c)LO(abcm)

[OK : abcm ∩ O]

=
c1(K)

[OK : O]

∑

a|f

µ(a)LO(a)

[O : a ∩ O]

∑

b|Π1

µ(b)LO(b)

[O : b ∩ O]

∑

(c,Π)=1

µ(c)LO(cm)

[O : cm ∩ O]
.

This holds because for all combinations of a, b, c as above, the O-ideals
(a∩O), (b∩O) and (cm∩O) are relatively prime to each other, by Lemma 6.
Therefore,

[OK : abcm ∩ O] = [OK : O][O : a ∩ O][O : b ∩ O][O : cm ∩ O],

and
LO(abcm) = LO(a)LO(b)LO(cm).
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Finally, we notice that, by Lemma 6, [O : r∩O] = Nr and thus LO(r) = L(r),
for any ideal r of OK relatively prime to f. A simple Euler product expansion
yields the desired form of D. All factors of the infinite product

∏

P/∈P

(
1− L(Pm)

NPm

)

are positive, since no Pm is a fixed divisor of f . For all but the finitely many
prime ideals of OK that divide the discriminant of f , we have L(Pm) =
L(P) ≤ g. Therefore, the infinite product is convergent and positive.

This concludes the proof of Theorem 3 under the assumption that f has
no totally positive root in K. If f has such a root then we let the first sum
in (2), (3), (4) run over all α ∈ R(x)∩O such that f(α) 6= 0. The estimation
of N2(x, y) in Section 3.1 holds still true, since a possible α with f(α) = 0 is
ignored in Hinz’s estimates anyway. In (7), we get an error term O(y). This
additional error term becomes irrelevant in Section 3.3.

4 Proof of Proposition 4

We need the following estimate for the index [OK : O].

Lemma 8. Let p1, . . ., pk be distinct prime ideals of O. For each 1 ≤ i ≤ k,
let

piOK = P
ei,1
i,1 · · ·P

ei,li
i,li

be the factorisation of pi in OK, with distinct prime ideals Pi,j of OK, and
ei,j, li ≥ 1. Then

[OK : O] ≥
k∏

i=1

1

[O : pi]

li∏

j=1

NP
ei,j
i,j ,

with equality if and only if f divides
∏k

i=1

∏li
j=1 P

ei,j
i,j .

Proof. Put

Π :=
k∏

i=1

li∏

j=1

P
ei,j
i,j .

Then we have

[OK : O] =
[OK : Π][Π : Π ∩ O]

[O : Π ∩ O]
≥ NΠ

[O :
⋂k
i=1 pi]

=

∏k
i=1

∏li
j=1 NP

ei,j
i,j∏k

i=1[O : pi]
,

since [O : Π ∩ O] = [O :
⋂k
i=1 pi] =

∏k
i=1[O : pi], by the Chinese remainder

theorem. Moreover, we have Π = Π ∩ O if and only if f divides Π.
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Without loss of generality, we may assume that P contains all prime ideals
of OK dividing the conductor f of O. Since η ∈ O r K2, the polynomial
f := X2 − 4η ∈ O[X] is irreducible over OK . Evaluating f at 0 and 1, we
see that the only fixed divisor of f is (1).

We put x1 = · · · = xn, so

R(x) = {α ∈ OK | α totally positive, max
1≤i≤n

|σi(α)| ≤ x1/n}

depends only on x. Let N(x) be the number of all α ∈ R(x), such that

1. for all P ∈ P , α2 − 4η /∈ P, and

2. α2 − 4η is squarefree,

and let NO(x) be the number of all α ∈ R(x) ∩ O with the same two prop-
erties.

Theorem 3, with m = g = 2, invoked once with the maximal order OK
and once with the order O, yields

N(x) = Dx+O(x1−u) and NO(x) = DOx+O(x1−u).

To prove the proposition, it is enough to show that

lim
x→∞

NO(x)

x
< lim

x→∞
N(x)

x
,

that is, DO < D.
By Theorem 3, the infinite product

∏

P/∈P

(
1− L(P2)

NP2

)

is convergent and positive. Moreover, we notice that

(14) (1− L(P)/NP) > 1/2,

for every prime ideal P of OK . This is obvious if 2 /∈ P, since then NP ≥ 5
by the hypotheses of the proposition, but f is of degree 2, so L(P) ≤ 2. If
2 ∈ P then we have f ≡ X2 mod P, whence L(P) = 1. On the other hand,
NP ≥ 4, so (14) holds again. Therefore, the finite product

∏

P∈P\Pf

(
1− L(P)

NP

)



The extension problem 83

is positive as well. The proposition is proved if we can show that

(15)
1

[OK : O]

∑

a|f

µ(a)LO(a)

[O : a ∩ O]
<
∏

P∈Pf

(
1− L(P)

NP

)
.

Let p1, . . ., pk be the prime ideals of O that contain the conductor f, and,
for each 1 ≤ i ≤ k, let

piOK = P
ei,1
i,1 · · ·P

ei,li
i,li

,

with distinct prime ideals Pi,j of OK , and ei,j, li ≥ 1. Then the Pi,j are
exactly the prime ideals of OK dividing f, that is, the elements of Pf.

Notice that, for every ideal a | Pi,1 · · ·Pi,li of OK , we have a ∩ O = pi if
a 6= OK , and a∩O = O if a = OK , since O is one-dimensional. As all pi, pj,
i 6= j, are relatively prime, we get

∑

a|f

µ(a)LO(a)

[O : a ∩ O]
=

k∏

i=1

∑

a|Pi,1···Pi,li

µ(a)LO(a)

[O : a ∩ O]

=
k∏

i=1


1 +

LO(Pi,1)

[O : pi]

∑

J⊆{1,...,li}
J 6=∅

(−1)|J |


 =

k∏

i=1

(
1− LO(Pi,1)

[O : pi]

)
.

Thus, (15) is equivalent to

k∏

i=1

(
1− LO(Pi,1)

[O : pi]

)
< [OK : O]

k∏

i=1

li∏

j=1

(
1− L(Pi,j)

NPi,j

)
.

Clearly, Π :=
∏k

i=1

∏li
j=1 P

ei,j
i,j divides the conductor f. Let us first assume

that Π is a proper divisor of f. Then Lemma 8 (with strict inequality, since
f does not divide Π), (14), and the fact that NP ≥ 4 for all prime ideals P
of OK imply

[OK : O]
k∏

i=1

li∏

j=1

(
1− L(Pi,j)

NPi,j

)
>

k∏

i=1

NP
ei,1
i,1

[O : pi]

(
1− L(Pi,1)

NPi,1

) li∏

j=2

NP
ei,j
i,j

2

≥
k∏

i=1

NPi,1

[O : pi]

(
1− L(Pi,1)

NPi,1

)
2li−1 ≥

k∏

i=1

(
1− LO(Pi,1)

[O : pi]

)
.

For the last inequality, notice that eitherOK/Pi,1 ' O/pi, and thus L(Pi,1) =
LO(Pi,1), or

NPi,1

[O : pi]

(
1− L(Pi,1)

NPi,1

)
> 2 · 1

2
= 1 ≥ 1− LO(Pi,1)

[O : pi]
.
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We are left with the case where Π = f. Then, for all 1 ≤ i ≤ k, we have

(16) li > 1 or ei,1 > 1 or [OK/Pi,1 : O/pi] > 1.

Indeed, suppose otherwise, that is piOK = Pi,1 and OK/Pi,1 ' O/pi, for
some i. We put Õ := (OK)Pi,1

, the integral closure of the localisation Opi ,

m := piOpi , the maximal ideal of Opi , and M := Pi,1Õ, the maximal ideal of
Õ. Then

[Õ : Opi ] =
[Õ : M][M : m]

[Opi : m]
=

[OK : Pi,1][M : m]

[O : pi]
= 1.

The second equality holds because OK/Pi,1 ' Õ/M, and O/pi ' Opi/m.
The third equality holds because M = Pi,1Õ = fÕ, whence M is clearly
contained in the conductor of Opi in Õ. (Here we used the hypothesis Π = f.)
Therefore M = M ∩ Opi = m.

Therefore, Opi is a discrete valuation ring. According to [16, Theorem
I.12.10], this is the case if and only if pi does not contain f. Since pi contains
f, we have proved (16). (In [16, Section I.13], it is stated that (16) holds even
without the requirement that Π = f, but no proof is given.)

With Lemma 8, (14), and the fact that NP ≥ 4 for all prime ideals P of
OK , we get

[OK : O]
k∏

i=1

li∏

j=1

(
1− L(Pi,j)

NPi,j

)
>

k∏

i=1

1

[O : pi]

li∏

j=1

NP
ei,j
i,j

2

≥
k∏

i=1

NPi,1

[O : pi]

NP
ei,1−1
i,1

2
2li−1 ≥

k∏

i=1

2([OK/Pi,1:O/pi]−1)+(ei,1−1)+(li−1)−1.

To conclude our proof, we notice that the last expression is at least 1, by
(16).

5 Proof of Theorem 1

We need to construct extensions of K where we have good control over the
ring of integers. This is achieved by the following two lemmata.

Lemma 9 (([14, Lemma 1])). Let r be a positive integer, and β ∈ OK, such
that g = Xr− β ∈ OK [X] is irreducible. Let η be a root of g, L = K(η), and
DL|K the relative discriminant of L|K. For every prime ideal P of OK not
dividing gcd(r, vP(β)), we have

vP(DL|K) = r · vP(r) + r − gcd(r, vP(β)).
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Lemma 10. Let ω, η ∈ OK, such that ω2 − 4η is squarefree and relatively
prime to 2. Assume that the polynomial h := X2 − ωX + η ∈ OK [X] is
irreducible, and let α be a root of h. Then the ring of integers of K(α) is
OK [α], and the relative discriminant DK(α)|K of K(α) over K is the principal
ideal (ω2 − 4η).

Proof. The discriminant of α over K is

d(α) = det

(
1 (ω +

√
ω2 − 4η)/2

1 (ω −
√
ω2 − 4η)/2

)2

= ω2 − 4η.

Let, say, (ω2 − 4η) = P1 · · ·Ps, with an integer s ≥ 0 and distinct prime
ideals Pi of OK not containing 2. Then the relative discriminant DK(α)|K
divides P1 · · ·Ps.

Since K(α) = K(
√
ω2 − 4η), Lemma 9 implies that vPi

(DK(α)|K) = 1,
for all 1 ≤ i ≤ s, whence the relative discriminant DK(α)|K is the principal
ideal (ω2− 4η) = (d(α)). This is enough to prove that the ring of integers of
K(α) is OK [α] (see, for example, [21, Chapter V, Theorem 30]).

We may assume that K satisfies the hypotheses of Proposition 4, since it
is enough to prove the theorem for the number field K(

√
5) ⊇ Q(

√
5).

We may also assume that the field K is generated by a unit of OK . If
not, say K = Q(β), where β ∈ OK . Let α be a root of the polynomial
X2 − βX + 1 ∈ OK [X]. Then Q(α) ⊇ K, whence it is enough to prove the
theorem for Q(α), and α is a unit of the ring of integers of Q(α).

Therefore, the ring generated by the units of OK is an order. Let us call
that order OU . If OU = OK then there is nothing to prove, so assume from
now on that OU 6= OK .

Choose a unit η ∈ O∗K r K2. We use Proposition 4 to obtain elements
ω1, . . ., ωr ∈ OK with

(17) OK = OU [ω1, . . . , ωr],

such that

(18) all ω2
i − 4η are squarefree and relatively prime to 2 and each other.

Start with
P := supp(2), O := OU ,

and choose an element ω1 as in Proposition 4. Then OU [ω1] is an order larger
than OU , whence

[OK : OU [ω1]] =
[OK : OU ]

[OU [ω1] : OU ]
≤ [OK : OU ]

2
.
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Assume now that ω1, . . ., ωi−1 have been chosen. If OU [ω1, . . . , ωi−1] = OK
then stop, otherwise put

P := supp(2) ∪
i−1⋃

j=1

supp(ω2
j − 4η), O := OU [ω1, . . . , ωi−1].

Let ωi be an element as in Proposition 4. Then

[OK : OU [ω1, . . . , ωi]] ≤ [OK : OU [ω1, . . . , ωi−1]]/2 ≤ [OK : OU ]/2i.

Therefore, the above process stops after r ≤ log2([OK : OU ]) steps, with
elements ω1, . . ., ωr ∈ OKrOU , such that OK = OU [ω1, . . . , ωr]. Conditions
(18) hold by our construction.

For 1 ≤ i ≤ r, let αi be a root of the polynomial X2−ωiX + η ∈ OK [X].
Then αi is a unit in the ring of integers of K(αi). Moreover, αi /∈ K, since
otherwise αi ∈ O∗K , and ωi = αi + ηα−1

i ∈ OU , a contradiction. By Lemma
10, the ring of integers of K(αi) is OK [αi], and the relative discriminant
DK(αi)|K of K(αi) over K is the principal ideal (ω2

i − 4η).
We use the following well-known fact (for a proof, see [16, Theorem

I.2.11]):

Lemma 11. Let L|K and L′|K be two Galois extensions of K such that

1. L ∩ L′ = K,

2. L has a relative integral basis {β1, . . . , βl} over K,

3. L′ has a relative integral basis {β′1, . . . , β′l′} over K, and

4. the relative discriminants DL|K and DL′|K are relatively prime.

Then the compositum LL′ has a relative integral basis over K consisting of
all products βiβ

′
j, and the relative discriminant of LL′|K is

DLL′|K = D
[L′:K]
L|K D

[L:K]
L′|K .

Consider the extension fields Li := K(α1, . . . , αi) of K. We claim that
Li has an integral basis over K consisting of (not necessarily all) products of
the form ∏

j∈J
αj, for J ⊆ {1, . . . , i},

and that the relative discriminant DLi|K is relatively prime to all relative
discriminants DK(αj)|K , for i < j ≤ r.
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With (18), this claim clearly holds for L1 = K(α1). If the claim holds for
Li−1, and αi ∈ Li−1, then it holds for Li = Li−1 as well. If K(αi) 6⊆ Li−1

then the extensions Li−1|K and K(αi)|K satisfy all requirements of Lemma
11, whence the claim holds as well for Li = Li−1K(αi).

Now put L := Lr. Then the ring of integers of L is OL = OK [α1, . . . , αr].
With (17) and ωi = αi + ηα−1

i , we get

OL = OU [ω1, . . . , ωr, α1, . . . , αr] = OU [α1, α
−1
1 , . . . , αr, α

−1
r ],

and the latter ring is generated by units of OL.
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