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ABSTRACT

Estimating the 3D pose and shape of a human body is an essential task for a variety of

computer vision applications. A 3D model of a person helps to understand what the person

is doing and how the person looks like. Previous work in this area already yields high

quality models from a variety of image sources but requires several seconds of processing

time. However, fast processing times are essential for interactive applications such as

virtual mirrors, virtual dressing rooms and tele-presence systems.

The main focus of this thesis is to generate a 3D model of a moving person while the

person is recorded by multiple static cameras. We want to capture and process both the

3D pose and outer surface of a human body at camera frame rate. This task comes with

many challenges. For example, how can the system be initialized fully automatically when

a new user is present? Furthermore, the estimation of pose and shape must be robust and

long-term stable to enable interactive applications.

We propose a novel graph-based pose estimation algorithm that uses multi-view sil-

houette images of the person as input. This algorithm first estimates a noisy skeleton

graph from a volumetric body model. To robustly identify hands and feet in this graph,

we apply a novel end-node matching algorithm. Therefore, we assign a body part to each

end-node and fit a full skeleton model to the graph. Then, the fitted skeleton is used

to initialize a polygonal mesh of a human body. This mesh is adapted to the silhouette

outline of the person in the input images using Laplacian mesh editing methods. While

state of the art methods cannot take advantage of the skeleton during shape adaptation,

we co-optimize shape and skeleton joints to make mesh adaptation more robust. To reduce

the overall runtime for shape optimization, we use a novel decoupled constraints solver

which operates in a multi-resolution fashion.

Our experiments show that our approach is able to robustly estimate the skeleton pose

even in long sequences. Occasional pose errors are mostly caused by ambiguous graph

nodes but our algorithm is able to recover the correct pose automatically after a few frames.

Subsequent shape and skeleton adaptation shows superior performance to state of the art
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methods. Especially with a low number of input views, the co-optimized skeleton keeps

the mesh adaptation stable and avoids implausible deformations. A run-time evaluation

of our algorithms demonstrates that our complete system is able to estimate both human

pose and shape at a rate of 15 frames per second.

Due to long processing times, most existing approaches are restricted to estimating

the pose and shape of a moving human person in an offline stage. The work presented

in this thesis provides a way to perform these computations in real-time. Thus, our work

makes it possible to create interactive applications where a user can control his or her own

virtual avatar.

Keywords. Human pose estimation, body shape, real-time, virtual dressing room



KURZFASSUNG

Die Schätzung der 3D-Skelettpose und der menschlichen Körperform ist eine wesentli-

che Aufgabe bei einer Vielzahl von Computer-Vision-Anwendungen. Ein 3D-Modell einer

Person hilft zu verstehen, was die Person tut und wie die Person aussieht. Bisherige Ar-

beiten in diesem Bereich liefern bereits qualitativ hochwertige Modelle aus einer Vielzahl

von Bildquellen, erfordern jedoch eine Verarbeitungszeit von mehreren Sekunden. Kur-

ze Verarbeitungszeiten sind für interaktive Anwendungen wie virtuelle Spiegel, virtuelle

Umkleidekabinen und Telepräsenz-Systeme allerdings unerlässlich.

Der Schwerpunkt dieser Arbeit ist die Echtzeit-Generierung eines 3D-Modells von einer

sich bewegenden Person, welche von mehreren Kameras aufgenommen wird. Daher müssen

wir sowohl die 3D-Körperpose als auch die Oberfläche eines menschlichen Körpers mit der

Bildrate der Kamera erfassen und verarbeiten. Diese Aufgabe beinhaltet viele Herausfor-

derungen. Beispielsweise stellt sich die Frage, wie dieses System vollständig automatisch

initialisiert werden kann, wenn ein neuer Benutzer die Szene betritt. Außerdem muss die

Schätzung der Pose und Form robust und langzeitstabil sein, um interaktive Anwendungen

zu ermöglichen.

Wir präsentieren einen Graphen-basierten Schätzalgorithmus, welcher Silhouettenbil-

der der Person aus mehreren Kameras als Eingabe verwendet. Dieser Algorithmus schätzt

zunächst einen verrauschten Skelett-Graphen aus einem volumetrischen Körpermodell. Um

die Hände und Füße in diesem Graphen robust erkennen zu können, verwenden wir einen

neuartigen Algorithmus, der für jeden End-Knoten die Zugehörigkeit zu einem Körperteil

bestimmt und anhand des Graphen ein vollständiges Skelett in den Körper eingepasst.

Mit diesem Skelett wird ein Polygonnetz eines menschlichen Körpers initialisiert. Das

Netz wird im nächsten Verarbeitungsschritt so verformt, dass es optimal mit den Silhou-

etten der Person übereinstimmt. Im Unterschied zu existierenden Methoden, die während

der Formanpassung nicht von dem zuvor bestimmten Skelett profitieren können, erlaubt

unsere Methode eine gemeinsame Optimierung der Oberfläche des Netzes und des Ske-

letts. Dadurch wird die Robustheit gegenüber Bildfehlern erhöht. Um die Gesamtlaufzeit
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für die Formoptimierung zu reduzieren, verwenden wir einen neuartigen Optimierer, der

Kontrollgleichungen einzeln anwenden und auf verschiedenen Netzauflösungen arbeiten

kann.

Unsere Experimente zeigen, dass unser Algorithmus das menschliche Skelett auch in

langen Sequenzen robust schätzen kann. Gelegentliche Posen-Fehler werden meist durch

mehrdeutige Graphenknoten verursacht. Unser Algorithmus ist in der Lage, nach eini-

gen Bildern automatisch zur korrekten Pose zurückzufinden. Die nachfolgende Form- und

Skelett-Anpassung zeigt eine überlegene Leistung im Vergleich zu bestehenden Methoden.

Vor allem bei einer geringen Anzahl von Kameras ermöglicht die gemeinsame Optimie-

rung von Form und Skelett die Vermeidung von unplausiblen Ergebnissen. Eine Laufzeit-

Auswertung unserer Algorithmen zeigt, dass unser System in der Lage ist sowohl die

menschliche Pose als auch die Körperform mit einer Rate von 15 Bildern pro Sekunde zu

schätzen.

Aufgrund der langen Verarbeitungszeiten beschränken sich die meisten bestehenden

Ansätze darauf die Pose und Form einer sich bewegenden Person in einer Offline-Phase

zu schätzen. Unser Ansatz bietet eine Möglichkeit diese Berechnungen in Echtzeit durch-

zuführen. Damit wird eine Reihe von interaktiven Anwendungen ermöglicht, mit denen

der Benutzer seinen eigenen virtuellen Avatar steuern kann.

Schlüsselwörter. Menschliche Posenbestimmung, Körperformbestimmung, Echtzeit,

Virtuelle Umkleidekabine
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1.1 Virtual Garment Try-on

The human body is a fascinating entity that can move freely and has a seemingly infinite

variety in shape. People have different gender, age and stature. Moreover, people want to

dress in clothing that fits their body shape and looks appealing to them and others. The

traditional place for buying apparel is a clothing store. First, a customer browses through

the in-store collection and picks clothing that he or she likes. Then, the customer takes the

selected pieces of clothing into a dressing room to try them on. Looking into a mirror, the

customer decides whether the new clothing fits or not. Online shopping tries to have some

share of the market by letting users buy clothing over the internet. While this allows for

convenient home shopping, it deprives customers of the ability to try on clothing before

buying. Naturally, this leads to customers ordering clothing in different sizes and colors

first, but returning the majority of the clothing when they do not fit. These high return

rates are one of the major cost factors for online stores today.

Virtual garment try-on is the ideal solution to reduce product return rates. It allows

customers to judge beforehand whether clothing will appeal to them without having phys-

1



2 Chapter 1. Introduction

ical access to the garment. The most realistic virtual try-on (VTO) experience is achieved

when a customer sees the selected apparel on his or her own body. Such a virtual repre-

sentation of oneself is commonly referred to as an avatar. In an interactive VTO session,

the avatar mimics the pose, shape and texture of the customer (the customer is the user

of the system). Existing VTO systems either display non-customized avatars or apply

simple techniques to create a custom avatar using camera technologies. The user’s avatar

is then augmented with virtual clothing. Due to cost and run-time limitations, camera

based systems often use a single 2D color camera and/or depth cameras to capture images

of the person. However, the lack of complete 3D information limits realism and allows

displaying the user’s body only from the cameras’s point of view. We believe that with

today’s technology and scientific background it is possible to create a personalized 3D

avatar from camera images in real-time.

One goal of this thesis is to improve camera-based techniques for estimating the human

pose and shape of the user to create virtual avatars for interactive virtual dressing rooms.

Consequently, one requirement for interactive applications is to develop algorithms that

allow real-time performance, i.e., it must be possible to estimate the human pose and

shape at camera frame rate. Besides virtual try-on, virtual avatars of humans are useful

in many situations. The most obvious applications include computer games and the movie

industry. For these applications, one wants to capture a real body and use rendering

techniques to embed a real person in a virtual environment. A variety of techniques exist

that are able to create avatars using camera technologies [116]. It is not sufficient to

capture a point cloud of the person but a watertight surface. Only a watertight surface

makes rendering the avatars from arbitrary distances possible. Furthermore, it facilitates

further processing such as cloth simulation or even 3D printing. The majority of existing

approaches for creating virtual avatars adapt an existing body scan to one or multiple

camera images. The result is usually a textured 3D polygonal mesh which can be rendered

and animated. Many algorithms such as [165] are able to provide movie-grade quality and

capture even small details on human bodies. However, such algorithms require up to

several minutes of processing time per frame. Therefore, these algorithms are suited only

for offline processing.

Fast processing is needed in applications where users interact with their personal avatar

in virtual environments. Typical scenarios requiring real-time interaction are 3D telepres-

ence [48, 103], virtual mirrors and virtual dressing rooms. Similar to video conferencing,

3D telepresence allows two or more people to communicate with each other across long

distances using both audio and visual images. Usually, there are cameras and monitors

at both ends of the connection and data is transferred via a network. While video confer-

encing merely transfers a 2D video image, 3D telepresence uses partial or full 3D avatars

that not only look more realistic but also enable interaction with virtual objects.

A virtual mirror [76] is conceptually similar to 3D telepresence but with one significant

difference. Instead of communicating with a distant person, a virtual mirror displays a

rendered image of the person standing in front of a monitor such that the image looks like
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an actual mirror image. A virtual mirror no longer requires efficient network transmission

across long distances. Instead, it is important to process camera data as fast as possible

and to generate visual output on the monitor with minimal delay. The reason for this

requirement is that the person in front of the mirror expects the avatar in the mirror

image to instantly mimic his or her movements.

Real world mirrors show an image of the person in front of the mirror from a viewpoint

that is exactly the mirrored position of the eyes [21]. It is not possible to achieve a realistic

virtual mirror effect on a monitor with only one camera because that camera would have

to be placed behind the monitor such that the user is occluded. Placing a camera above

or on the side of the monitor will show a mirror image from a strange perspective. It

will not allow the user to maintain eye contact with his or her mirrored self. When the

user wants to look at his or her own eyes on the monitor, an above-monitor camera will

inevitably show the user looking down. Thus, the user’s mirror image will seem to be

avoiding eye contact at all times. In this thesis, we provide a solution that avoids this

effect by rendering the avatar from a suitable viewpoint.

As mentioned in the beginning of this section, the most prominent application for

a virtual mirror is virtual try-on (VTO). VTO is also known as virtual dressing. It is

concerned with showing an image of the user and augmenting virtual clothes onto his or

her own body. Such a system enables the user to pick items from a catalog of virtual

clothing and try them on instantly without the need for undressing first. While it is hard

to judge if the clothing will actually fit, the main benefit of virtual dressing is that users

are able to quickly try on a large number of clothes and narrow down the selection. This is

especially useful in stores where people are queuing for extended times before a traditional

dressing room becomes available – which is not unusual in emerging markets such as India

and China. Furthermore, a virtual try-on allows for browsing through a large catalog of

clothing without physically walking to a store. This possibility to quickly mix and match

various garments has the potential to increase sales and reduce return rates.

In Section 1.2, we unfold the conceptional ideas that are essential for understanding the

software and hardware requirements of a virtual dressing room. We give a short overview

of existing approaches that display clothes on the user’s body in Section 1.3. Unfortu-

nately, existing techniques are often limited in terms of visual quality. Some techniques

simply augment a single camera image while others do not use personalized avatars at all.

We argue that a personalized avatar is essential for the shopping experience because the

user sees his or her body wearing the clothes instead of some generic model. In Section 1.4,

we analyze the hardware requirements for a system that captures a moving person with

cameras. In Section 1.5, we discuss the challenges that arise when one wants to capture a

fully personalized avatar that is viewable from all sides. We will outline our contributions

for capturing the human shape and pose and elaborate on the their importance for per-

sonalizing avatars in real-time. In Section 1.6, we introduce mathematical notations and

in Section 1.7, we guide the reader through the remainder of this thesis.
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1.2 What is a Virtual Dressing Room?

We explain the term virtual dressing room by analyzing the individual words one by one.

The word virtual implies that parts of the experience inside such a room are not real. In

fact, when a virtual mirror is used to reflect what is happening inside a virtual dressing

room, purely computer generated content is presented to the user. One goal of this thesis

is to create the impression that user sees his or her own virtual mirror image. Thus, a

virtual avatar should look as similar to the real person as possible. This is in contrast to

systems that display a model of a generic person [115, 162].

The word dressing refers to the ability of a virtual dressing room to showcase clothing

worn by the user’s avatar. Similar to the avatar, clothing is only virtual and may not even

exist in reality. A natural requirement for such a showcase is that the avatar needs to have

the possibility to interact with garment. Without interactions, garment would be either

floating in mid-air or falling down to the floor. Therefore, the avatar cannot be a simple

2D image of the user. It needs to be a virtual model that can interact with virtual garment

and possibly other virtual items. For a more realistic experience, the avatar should be

able to move either by scripted motion or allow direct control by the user (e.g. mimic the

exact pose of the user). Ideally, the shape and pose of the user is known at all times to

allow for accurate control of the virtual avatar.

Finally, a virtual dressing room contains the word room which signifies some spatial

restrictions. This need not be a physical room. For example, the room can be a limited

area that is within a camera frustum such that the user can be seen. Typically, a virtual

dressing room is constructed such that the space where a user can be recognized by the

system is directly in front of the monitor of a virtual mirror. Thus, the user is encouraged to

maintain a position in front of the monitor, which facilitates the layout of camera positions.

There are virtual dressing rooms where the virtual room coincides with a physical room

surrounded by walls. The reasons for being in an enclosed room are either protection of

privacy or that the user is placed within a controlled environment (e.g. a wall color that

facilitates the segmentation of the user and the background).

The term virtual mirror is used for a device that mimics an actual mirror. It consists

of cameras and a monitor to show a mirrored image of the user (see Fig. 1.1). Ideally,

this image coincides with the image that a real mirror would show if mounted instead

of the monitor. There is, however, no restriction on the content. Displaying a modified

representation of the user is possible and often desirable. The main purpose of a virtual

dressing room is to augment the image of the user with virtual clothing. Therefore, the

virtual mirror is a natural display concept for a virtual dressing room.

1.3 Current State of Virtual Try-Ons

In recent years, the concept of the virtual dressing room has inspired both the scientific

community as well as commercial companies. Two conceptually distinct types of virtual
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(a) Fraunhofer Virtualmirror (see [76]) (b) Our virtual mirror solution

Figure 1.1: A virtual mirror is a combination of a monitor and one or multiple cameras
that generates an artificial mirror image of the user.

dressing rooms can be identified. First, there exist methods that achieve almost photo re-

alistic quality using purely virtual avatars and clothing. As a consequence, the avatar does

not look like the actual user and graphical content is typically generated in an offline stage.

Second, there are approaches that augment camera images of a user with virtual clothing.

These approaches are capable of running at camera frame-rates and allow displaying a

personalized avatar that looks like the user.

The first type of approaches uses an existing virtual avatar and dresses him or her in

scanned or designed virtual clothing. The major advantage is the complete control over

the resulting output. Since all possible parameters such as viewpoint, dresses and even

possible motions are known during design time, complex rendering or pre-computation

algorithms can be used to maximize visual quality. Examples for such commercial products

include Intel’s Magic Mirror [162] or the Virtual.Fitting.Room [115] by PhiSix fashion labs.

The main target market is online marketing on websites or personal computing devices.

However, the major disadvantage is that such approaches currently do not support on-

the-fly customizations of the avatar. It is difficult to make the avatar look like the user.

In fact, many solutions use a fixed set of avatars to display clothing, which is similar to

traditional showcasing of clothing using human models. There exist some solutions to

customize the avatar. For example, BodyPal [25] allows the user to enter his or her body

measurements into the system to create a roughly customized avatar.

In contrast, camera-based virtual try-on systems allow full user customization. Most

systems capture a single camera image of the user and overlay it with a 3D apparel model.

Photo realism can already be achieved for simple head-wearable gadgets such as eye-wear.

For example, TOMS [153] provides virtual try-on for eye-glasses that can be executed in
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a normal web browser. While rigid gadgets are easy to attach to a mostly rigid human

head, the simulation of clothing on a moving body is a significantly harder task due to

the large space of possible movements.

A simple way to simulate clothing is to visually modify existing clothing through re-

texturing. For example, Hilsmann et al. [76, 77] present a system which can track a

T-shirt worn by the user and modify its color and texture. Retexturing existing clothing

eliminates both the need for simulating the physical behavior of clothing and making it

fit to a human body. The approach by Hilsmann et al. produces realistic results but does

not allow to change the shape and size of the clothing.

In order to completely exchange the clothing worn by a user, virtual clothing is needed.

Such clothing has to be adapted to the shape and pose of the user. Representatives in

this area are the EON Interactive Mirror [60] and FittingReality [51]. These systems use

a Microsoft R© Kinect
TM

camera to track the body of the users during arbitrary movement

and overlay virtual garment. This creates the impression that the user is actually wearing

virtual clothing. However, using Microsoft R© Kinect
TM

based pose tracking only is not

reliable enough and often deviates from the actual pose. The resulting effect is that

clothing seems to float in front of the body in a detached manner. In addition, it is

difficult to automatically match the size of clothing with the size of the user. Such effects

lead to the conclusion that camera-based virtual try-on can be improved by using a better

model of the user. In [167], Yuan et al. compare three variants of a Kinect
TM

based

virtual try-on system: (1) showing virtual clothes on a body-size adapted virtual avatar,

(2) augmenting virtual clothes on a camera image of the user and (3) customizing only

the face of the avatar to resemble the face of the user. They conducted a user study that

reveals that people prefer to see their camera image augmented with clothing instead of

a virtual avatar. This leads to the conclusion that users do want to see their own body

image in virtual try-on systems.

Body measurements are an important aspect for virtual fitting rooms. In contrast

to VTO systems, a fitting room simulation determines whether clothing will fit the user

or not. Simple solutions such as UPcload [155] allow users to obtain rough body mea-

surements using a simple webcam. This is sufficient for predicting the rough size of

clothing. More advanced systems such as (TC)2 [148] allow to obtain accurate body scans

and measurements using active scanning methods such as structured light. In recent

years, the Microsoft R© Kinect
TM

camera has enabled measuring body shape at the user’s

home [24, 163]. Such body scanners are capable of creating a customized avatar for a user.

The customized avatar can be used to fit virtual clothing or to improve the visual quality

of VTO systems. However, specialized body scanning hardware will not allow random

movement of the user or enable real-time interaction with a VTO system.

In today’s systems, there is a significant gap between high quality visual output, true

interactive user personalization and accurate body measurements. Photo realistic methods

use advanced rendering and physics simulations but are very limited in terms of user

personalization. Virtual try-on systems achieve authentic results when they are limited
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Figure 1.2: Overview of hardware used in a virtual dressing room installation.

to rigid objects such as eye-glasses. Real-time full body VTO has become feasible on

cheap hardware in recent years. However, results often look unnatural due to inaccurate

body tracking possibilities. In contrast, sophisticated hardware can only be used for body

scanning and does not allow interactive virtual try-on. In this thesis, we address some of

these issues in order to enable a more realistic interactive VTO experience.

1.4 Hardware Requirements for Virtual Dressing Rooms

In order to build a virtual dressing room which uses a virtual mirror, several hardware

components are required. In Fig. 1.2, we show a person captured by multiple cameras,

a computer that processes image data and a monitor which shows the mirror image of

the user and possibly virtual content. This section discusses hardware requirements for

interactive installations.

One goal of this thesis is to generate a 3D model of the user that is viewable from

an arbitrary viewpoint. In order to capture such a virtual avatar of the user, we propose

to use multiple calibrated color cameras. Existing multi-camera setups often require a

dedicated full size room to mount the cameras [57, 130]. A virtual dressing room should

require significantly less space with a footprint of only a few square meters. The reason

is that the setup will be placed in a store environment where physical space is expensive.

This means that cameras will be mounted around a limited space in front of the monitor

where the user is allowed to move. In such a setup, it is not possible that every camera

sees the whole body of the user at all times. A location closer to the user’s body has the

advantage that the images have a better resolution of the body even though the number

of recorded pixels can be kept relatively low. However, a larger number of cameras are

needed to record all parts of the body when the person moves.

The algorithms required for a virtual dressing room include processing of camera im-

ages, interpreting the 3D human shape and pose of the user and rendering visual output.

Ideally, the computer system needs to be able to execute all of these algorithms in real-
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time (i.e. at camera frame rate). There are two possible choices of how to connect the

cameras to a computer system:

1. A multi-computer architecture consists of several dedicated slave computers and a

single master computer [1, 136]. Each slave computer pre-processes images recorded

from at most a few cameras in parallel. A master computer collects the pre-processed

images from the slaves and combines their results for 3D pose and shape estimation

as well as for rendering.

2. Alternatively, a single computer can be used for both recording and pre-processing

camera images as well as extracting 3D information [140]. In contrast to systems that

use separate capture servers and a centralized rendering server, a single computer

system eliminates communication latencies between machines. However, it requires

sufficient computational power to process all camera images.

We propose to connect all cameras to a single computer. Thus, we minimize the time

between capturing the image of the user and displaying a virtual mirror image. A thor-

ough description of hardware components and implementation details can be found in

Section 5.2.

An important design decision is concerned with how users interact with the system.

Traditional user inputs include keyboard, mouse or touch interfaces. In a virtual dressing

room where a user can move freely, these user input devices are not suitable. Instead,

we propose to use a gesture based user interface that uses the existing cameras. By

determining the 3D positions of the user’s hands, an intuitive user interface can be built.

For example, the user can trigger actions such as cloth selection or viewpoint changes by

touching virtual objects in space.

1.5 Challenges and Contributions

In Section 1.3, we have discussed the state of the art in virtual dressing and virtual fitting

rooms. Currently, there exists no system which supports both real-time virtual try-on

and body scanning at the same time. One reason for this shortcoming is that there is

an inherent difficulty to perform fast human shape and pose estimation. However, body

shape estimation is essential for simulating virtual garment and an accurate body pose is

important for both user interaction as well as for aiding shape estimation.

Current systems face a variety of challenges. Accurate shape and pose estimation

requires expensive hardware and long processing times. Real-time operation requirements

usually steer design choices towards a simple camera setup, which allows only pose tracking

and the animation or adaptation of an existing body model. Therefore, hybrid methods

often separate the body scanning part (shape estimation) from animation and tracking

(pose estimation). For example, Gall et al. [57] propose to scan a person using a laser

scanner first. Then, they use a multi-view camera setup to track the human pose and
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adapt the shape of the scanned model according to the images. However, their pose and

shape adaptation requires several seconds per frame, which does not allow for real-time

operation.

Another challenge is to make both pose and shape estimation robust towards distrac-

tions in images. Long term stability is crucial for an interactive system. This means that

pose or shape estimation must not get stuck in an erroneous state but needs to be able to

automatically recover.

In this thesis, we tackle the problem of real-time human pose and shape estimation on

a single hardware setup. We try to answer the following two questions:

• How can we quickly estimate the unknown skeleton pose of a human body without

manual initialization?

• How can we quickly estimate the body shape of a person given an initial pose?

Our goal is to develop efficient methods to capture a moving human person in order to

obtain a complete 3D model. In our experimental hardware setup, the person is allowed to

move freely inside a small room and should be able to see a virtual mirror image of himself

or herself on a screen with minimum delay. Even users without technical knowledge should

be able to use our system without supervision. Therefore, we require that all algorithms

work without manual initializations and without an initial pose. To fulfill the above

mentioned requirements, we have made the following contributions in this thesis:

• We propose a novel human pose estimation algorithm that operates on volumetric

data. The main idea of the algorithm is to compress dense volumetric data into a

graph structure which can be filtered and processed efficiently. Our pose estimation

approach is capable of real-time operation and automatic initialization.

• In addition to the user’s pose, we capture the 3D body shape. Therefore, we

adapt an existing model of the human body to the shape of the user. In contrast

to related methods that are able to optimize only the surface of the model, we

derive a linear model that simultaneously adapts both the shape and skeletal pose.

While existing approaches discard skeletal information during shape adaptation,

our approach uses the skeletal structure of the body during optimization. This is

essential for robustness when adapting the 3D body shape from multiple cameras.

In addition, the skeleton can be used to efficiently handle surface rotations during

linear shape adaptation, which further improves the quality.

• Finally, we show how to perform shape estimation at fast frame rates. Our

optimizer shares properties with real-time physics simulations that allow fast pro-

cessing of large polygonal meshes. Thus, we achieve a high quality mesh adaptation

at camera frame rate.
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These contributions make it possible to display a textured polygonal model of the user

on a screen in real-time. Alternatively, the model can be stored for subsequent offline

animation and rendering. Moreover, a polygonal model can be used to improve virtual

dressing rooms. As mentioned in Section 1.3, virtual clothing overlaid on images of a

human body often appears floating when the true body shape is not known. When a full

3D body model is adapted to camera images, we can accurately place virtual clothing on

the body. Moreover, the 3D model allows performing basic body measurements without

an additional body scan.

1.6 Mathematical Notations

Throughout this thesis, we use a common mathematical notation. Scalar values are de-

picted using italic font, e.g., a or x. Vectors are written in bold font and generally inter-

preted as column vectors, e.g., b = [x, y, z]T . Similarly, matrices are written in capital

bold letters such as A = [a1,a2,a2]. To denote vector spaces, we use blackboard bold

characters such as R2, which denotes the two-dimensional Euclidean space, for example.

Unless otherwise noted, we address elements of a matrix using indices in the form Cr,c,

where r is the row index and c the column index. The r-th row of a matrix is addressed

as Cr.

We define the number of elements of a vector or set as |.|. For example, let v = [x, y, z]T

then |v| = 3. This notation shall not be confused with the norm of a vector computed

such as ‖v‖2, which computes the Euclidean norm of vector v.

Linear vector functions are written using calligraphic font. For example, a linear

function F(v) that takes a vector v as input may be defined as F(v) = 〈v,v〉. 〈., .〉 signifies

the vector dot product. A set S = {a,b,C} can contain elements of different types such

as scalars, vectors and matrices.

1.7 Thesis Outline

This thesis is organized as follows. In Chapter 2, we review existing work of human pose

and shape estimation from images and give an overview of suitable camera technologies.

We present our novel graph based pose estimation algorithm in Chapter 3. In Chapter 4,

we present our method for body shape estimation as well as a real-time capable solver.

Both pose and shape estimation methods are evaluated in Chapter 5. Finally, we give a

summary of our approaches and conclude the thesis in Chapter 6.
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Reconstructing and tracking the human body has been an active research topic for

decades. In recent years, there has been significant progress in capturing a human body

using computer vision technologies. As a consequence, there exist a variety of algorithms

for human pose and shape estimation [106, 116]. This chapter gives an overview of the

scientific developments in this area.

We start with a general introduction on existing camera technologies such as multi-

view setups and active depth sensing camera hardware. A short overview of the projective

geometry explains the essential relationships found in multi-camera setups. After this

introduction to cameras and their mathematical relationships, we focus on algorithms

for human pose and shape estimation. We discuss existing work in the area of human

skeleton pose estimation from different image sources. At the end of this chapter, we

present existing approaches to capture the moving surface of the full human body and

evaluate their potentials for interactive applications.

2.1 Image Based 3D Sensing

One of the most important considerations for capturing a 3D model of the human body is

the choice of the imaging sensor. For example, there exist single and multi-camera setups

11



12 Chapter 2. Related Work

(a) SwissRanger 4000
TOF

(b) MicrosoftR© Kinect
TM

(c) Point GreyR© Flea
TM

2

Figure 2.1: A selection of passive and active cameras for capturing a scene.

as well as active cameras. This section gives an overview of existing camera technologies.

We explain the main concepts behind each technology and discuss a possible use for

capturing a human body. The goal is to identify a camera technology that is capable of

capturing a metric 3D representation of a human body in real-time.

2.1.1 Monocular Cameras

A monocular camera system can be built using only a single image sensor and an opti-

cal lens. Such a camera captures images from a single point of view under perspective

projection. In general, a single static camera cannot be used to capture 3D data. The

limiting factor is the missing information about scale [133]. A full sized human body can

produce the same perspective image as a significantly smaller puppet standing closer to

the camera. Given a reference object such as a previously known marker, it is possible to

obtain the 3D pose and scale of a plane from a single image. This allows for simple 3D

body measurements using a single camera [155] but not for capturing full 3D information.

Hilsmann and Eisert [76] use a single camera to augment the camera image with new

information without the need for explicit 3D information.

2.1.2 Multi-View Systems

When more than one camera is used to capture the same scene from different view-points,

this setup is called a stereo setup for two cameras or a multi-view setup for more than

two cameras, respectively. Using more than one view-point has a major advantage over

a single camera system: it is possible to derive scale and depth from the scene if the

camera geometries and orientation between the cameras are known. This information can

be obtained through camera calibration, which needs to be performed only once for any

rigid multi-camera setup. Another important requirement for deriving depth data is that

all cameras capture the same scene at the same time. This means that the object of

interest must not move or deform until each camera has captured an image. Usually, this
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(a) (b) (c)

Figure 2.2: Three synchronized images from a multi-view setup showing the same person
from multiple angles.

requirement can be enforced by using synchronized cameras or fixed objects. A typical

example for multi-view images of a person is shown in Fig. 2.2.

A fast method to obtain 3D data from multi-view images is to process silhouette

images. A silhouette is the background segmented binary image of an object. Given a set

of multi-view silhouette images, it is possible to compute the 3D visual hull of the object.

The visual hull is the closest convex approximation of an object that can be obtained with

a volume intersection approach [53, 93]. There exist several approaches to compute the

human pose [16, 42, 78] or human shape [4, 57, 158] from silhouette images.

In order to obtain depth information from a multi-view setup, it is possible to exploit

epipolar geometry [68]. There exist a variety of algorithms that efficiently compute dense

depth maps from multi-view images [122, 124, 151]. Such depth maps can be used to

improve a surface estimation of the human body [136, 159]. However, computing dense

depth maps for multi-view images is still too slow for real-time applications even when

parallel computing platforms are used.

Point clouds are a sparse representation of a 3D object. They describe the surface of the

object through a collection of points. Typically, such points are obtained by triangulating

the 3D position of key-points from two or more input images [3]. A sparse point cloud can

be densified around key points in subsequent steps [54].

2.1.3 Active Depth Cameras

Active cameras are more than just image capturing devices. They use a projector to

project visible or invisible light into a scene. A camera captures the pattern and depth

information can be derived directly by analyzing how the projected light is altered by

the scene. The result is a dense 3D point cloud or a depth map of objects in the scene.

However, a point cloud only contains points visible for the camera and not the backside

of the object. Examples of images obtained with active depth cameras can be seen in

Fig. 2.3.
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(a) Microsoft Kinect (b) SR4000 TOF

(c) SoftKinetic TOF (d) TC2 Structured Light [148]
c©Popularmechanics

Figure 2.3: Depth images obtained from different active depth cameras.

Classical structured light systems project multiple patterns in rapid succession. A

synchronized camera captures every projected pattern (see Fig. 2.3(d)). By combining

these patterns, a code map can be generated which allows stereo matching algorithms

to create a depth map without existing image features (such as distinct edges). A laser

scanner sweeps one or multiple laser lines across the object while capturing the scene.

Depth information can be obtained by analyzing the deformation of the laser line for

every sweep step. The laser scanner yields the most accurate measurements but is very

slow compared to other active scanning methods. A major disadvantage of sequentially

projecting patterns or laser lines is that movement of the object during scanning can

produce artifacts or destroy the scan completely.

Modern cameras such as the Microsoft R© Kinect
TM

(see Fig. 2.1(b)) use a single static

infra-red projection with a coded dot pattern. Such patterns allow to uniquely identify a

neighboring set of dots in a decoding stage, which makes depth computations efficient and

robust towards errors. A single pattern has the major advantage that depth information

can be obtained from a single camera frame and movement of the object does not influence

the scan quality. However, depth image resolution is sacrificed because a single pattern
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code requires multiple projector pixels. Thus, the obtainable depth image has only a

fraction of the resolution of the camera.

A third type of active cameras does not use any structured pattern but measures the

time for light to travel from a light source via the object to the sensor. Examples for

such cameras are the MESA SwissRanger 4000 (see Fig. 2.1(a)) and the recently released

Creative R© Senz3D
TM

camera (based on SoftKinetic). These cameras work with the time-

of-flight (TOF) principle which derives depth information from the time related phase

shift of a modulated light source [67]. With this method, it is possible to compute a depth

value for every camera pixel. Since all depth values are computed at the same time using

the same modulated light source, capturing a moving object is possible. However, TOF

cameras are either expensive or have a low resolution and produce noisy images. We show

some examples for the depth image obtained with TOF cameras in Fig. 2.3 (b) and (c).

One major disadvantage of active cameras is that only one camera can capture the same

scene at once. Each camera has to project a pattern into the scene. Consequently, two

or more cameras projecting their pattern onto the same object will cause interferences.

There exist methods to avoid interference or minimize their effect. For example, time

slicing or random shaking of static patterns [32] enables the use of multiple cameras and

their projected patterns in the same scene. However, these methods can decrease the

quality of the result or increase the capture time. For TOF cameras, it is possible to use

several modulation frequencies in order to operate them concurrently.

2.1.4 Summary

A single passive camera has been identified as insufficient for capturing a 3D representation

of an object. Active cameras are the ideal choice for capturing 21/2D data from a single

view-point. However, problems arise when multiple active cameras are used in the same

scene which is necessary when a 3D model needs to be captured from all sides simultane-

ously. Therefore, the most suitable choice for real-time 3D reconstruction of the human

body is a combination of multiple passive cameras that are synchronized. In theory, a

virtually unlimited number of such cameras can be used in parallel to capture the same

scene. The main reason for limiting the number of cameras is the cost and bandwidth

factor. In a real-time system, the images of all cameras need to be transferred, processed

and combined in a short amount of time. In current literature, it is common to use a

number of four [130] to sixteen [1] cameras for real-time 3D reconstruction.

2.2 Projective Geometry

Projective geometry describes the mapping of a three-dimensional scenery to

two-dimensional images. This section focuses on the basic notations and the relationship

between real-world objects and their perspective images, which are captured by pinhole
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cameras. For a more detailed description on the concepts behind projective geometry,

the reader is referred to [68] and [133].

2.2.1 Homogeneous Coordinate Representation

One of the most important definitions of projective geometry is that of homogeneous

coordinates. Homogeneous coordinates are points in a d-dimensional projective space Pd

which are represented by a (d+1) element vector. The projective space is a quotient space

where the following equivalence relation holds:

∀α 6= 0 : [x̂1, . . . , x̂d+1]T = [αx̂1, . . . , αx̂d+1]T . (2.1)

The homogeneous coordinate x̂ of a non-homogeneous point x ∈ Rd is obtained by a

simple mapping from Rd into Pd:

[x1, . . . , xd]T → [x1, . . . , xd, 1]T = [x̂1, . . . , x̂d, x̂d+1]T . (2.2)

A homogeneous point x̂ ∈ Pd can be converted into a non-homogenous point by dividing

its first d elements by the (d+ 1)-th element:

[x1, . . . , xd]T =

[
x̂1

x̂d+1
, . . . ,

x̂d
x̂d+1

]T
. (2.3)

2.2.2 Perspective Cameras Model

A perspective camera can be used to project a three-dimensional point from object space

to the two-dimensional image plane. Using homogeneous coordinates, the projection of a

point x ∈ R3 to pixel coordinates y ∈ R2 becomes a linear operation. Only the mapping

from homogeneous coordinates to the Euclidean space requires a division. The following

equation demonstrates the projection of point x to pixel y using the projection matrix P:

ŷ1

ŷ2

ŷ3

 = P · x =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 ·

x1

x2

x3

1


[
y1

y2

]
=

[
ŷ1/ŷ3

ŷ2/ŷ3

]
(2.4)

The projection matrix P encodes the intrinsic and extrinsic parameters of the camera.

P can be computed as:

P = K[R| −Rt] (2.5)

where K ∈ R3×3 is an upper triangular matrix containing intrinsic camera parameters,

R ∈ R3×3 is a rotation matrix which encodes the orientation of the camera (R−1 = RT

and |R| = 1) and t ∈ R3 is the position of the camera center. The intrinsic camera matrix
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Camera 1 Camera 2

Camera 3
viewing ray

x

Figure 2.4: Elementary multi-view geometry. The scene point x is projected into all
cameras. It can be fully reconstructed by intersecting the viewing rays in least squares
sense.

K has the following form:

K =

fx s ux
0 fy uy
0 0 1

 (2.6)

where fx and fy represent the focal length of the lens, s is the degree of shear for slanted

pixels and ux and uy are the projection offsets on the image plane. A real-world opti-

cal system consists of a non-optimal lens which produces non-linear distortions in radial

and tangential direction. Such distortions can be modeled and corrected using Brown’s

model [31].

The intrinsic parameters of a camera are estimated using a camera calibration method

such as [29]. This method first records multiple images of a known target. Then, it opti-

mizes the intrinsic parameters of the camera such that the reprojection error is minimized

in all images.

2.2.3 Multi-View Geometry

From a single camera, it is not possible to reconstruct the 3D position of a projected point

because multiple 3D points may project onto the same 2D image location. Multi-view

geometry is concerned with methods that extract three dimensional information from two

or more cameras.

Given a set of cameras and their projection matrices P`, it is possible to compute

the 3D world position of scene points. This process is called triangulation. Triangulation

requires known 2D image positions y` of the 3D world point x in at least two camera

views. The position of such points can be found through searching in image space. When
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the image position is already known in one camera, the search space in other cameras can

be reduced by exploiting the epipolar relationships between two cameras [68]. From each

pixel, one can compute a 3D viewing ray which connects the camera center, the pixel on

the image plane and the 3D point. Thus, the true 3D location of the unknown point x

must lie somewhere on that ray. Mathematically, this relationship can be expressed as:

ŷ1

ŷ2

ŷ3

 = ŷ3

y1

y2

1

 = P


x1

x2

x3

1

 = Px̂. (2.7)

This relationship leads to the following two linear equations for each correspondence:

P3x̂y1 −P1x̂ = 0

P3x̂y2 −P2x̂ = 0 (2.8)

where Pn denotes the n-th row of the projection matrix.

Due to noisy image observations and noisy projection matrices, the exact location of

the point x cannot be found. Therefore, triangulation of the 3D location can be formulated

as a least squares problem to find the location for x that is closest to all viewing rays (see

Fig. 2.4). Through Equation (2.8), each image correspondence x ↔ y` contributes two

linear constraints and a solution can be obtained through SVD decomposition.

2.3 Human Pose Estimation

Human pose estimation is concerned with finding the pose parameters of a human body

model that fits best to the observations in one or more input images. It is a vivid topic

in the current literature [106, 116] due to its wide-spread applications such as motion-

capture, telepresence or object manipulation in virtual environments. In addition, when

the pose of the user is known, the user can interact with a computer system using only

gestures.

While marker-based systems are already available in numerous commercial applica-

tions, marker-less pose estimation is still a challenging research topic. There exists a

variety of algorithms that solve this task with high accuracy from multiple input im-

ages [56, 79] or even a single photograph [65, 75]. Unfortunately, these systems often

require manual initialization and cannot process camera images at interactive frame rates.

Promising methods for interactive human pose estimation use a volumetric model of the

body [78, 102, 154] or utilize a depth camera based on the time-of-flight principle [58] or

the Microsoft R© Kinect
TM

camera [127, 128]. This section explains the basic definitions of

human pose estimation and gives an overview of existing technologies and algorithms.
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(a) Motion Capture Suit
c©MetaMotion

(b) IR markers c©T-tus (c) Without markers c©E&T Magazine

Figure 2.5: Different technologies for estimating the human pose.

2.3.1 Overview of Human Pose Estimation Methods

There exists a variety of approaches to estimate the pose of a human body [13]. Early

approaches use mechanical systems such as magnetic sensors or armatures to measure joint

angles [61, 152]. These systems require an expensive hardware setup and the movement

of the captured person is limited by cables or limb-mounted hardware (see Fig. 2.5(a)).

Modern pose estimation systems are based on optical sensors. Compared to mechanical

systems, optical systems either require only small markers attached to the body of the

captured person (marker-based systems) or can perform pose estimation without any

markers (marker-less systems).

Marker-based systems use either infra red (IR) reflective points (passive) or LED lights

(active) as markers [36, 157]. The 3D position of each marker is determined by triangulat-

ing its position using two or more cameras. Usually, such cameras run at high frame rates

above 100 Hz to facilitate the task of marker tracking. A typical marker-based system

can be seen in Fig. 2.5(b). The advantage of marker-based systems is the high reliability

of pose estimation. Even at high frame rates, the processing time is low which allows

for real-time operation. A major drawback is the time required for placing markers and

configuring the system for each subject. In addition, markers alter the body surface and

do not allow the subject to wear natural clothing.

Recent research on marker-less optical human pose estimation systems addresses the

aforementioned problems [105, 106, 116]. Marker-less pose estimation methods do not rely

on markers and can be used by people in natural clothing. This benefit comes at the cost of

a higher computational effort and higher error rates due to possible ambiguities in camera

images. Marker-less systems can be categorized into pose estimation from monocular

2D images, monocular depth images or multi-view images. Furthermore, they can be

categorized into single-shot pose estimation (without prior initialization) and tracking

methods that need to know the pose from a previous frame to compute the current pose.



20 Chapter 2. Related Work

2.3.2 Marker-Less Human Pose Estimation

This thesis is concerned with estimating the shape and pose of people without markers.

Therefore, we review existing work in marker-less human pose estimation in more detail.

While there are many possible ways to categorize marker-less human pose estimation

algorithms, we will categorize them according to the type of input images.

Independently from the type of input images, there are two main schools of thought

for human pose estimation [116]: generative (model-based) and estimation-based models.

Generative approaches use an explicit body model that is driven by pose parameters.

Given some pose parameters, a generative model generates a representation of the pose

(i.e. rendered body image) and compare this image to the input images [57, 129, 131].

This allows for global or local optimization by minimizing some measured error between

the generative model and image. However, optimizing for the correct pose is not trivial

due to the high dimensionality of the problem and a good initialization is important. In

contrast, estimation-based approaches analyze the input image(s) to produce hypotheses

about the pose. In other words, they learn a mapping from image observations to the

underlying 3D pose [2, 127]. This implies that such methods require training data which

contains a good coverage of the possible pose space. The combination of generative and

discriminative approaches, a so called hybrid approach, tries to improve pose estimation

by using the advantages from both schools of thought. First, a discriminative method is

used to initialize the pose. Afterwards, a generative method is used to refine the pose until

a chosen cost function is optimal [11, 121].

2.3.2.1 Monocular Pose Estimation

Monocular articulated pose estimation is concerned with estimating pose of body and

limbs from one single 2D image. Such methods support processing images captured with

even the simplest camera. The inherent problem with this task is the ambiguity of 3D pose

from monocular image measurements (i.e. the same image can be explained by multiple

poses). Nevertheless, impressive algorithms on this topic have been published in recent

years [75].

One promising line of research is based on pictorial structures [8, 49, 50], which follow

the discriminative approach. For example, Eichner et al. [45] use an object detector that

is trained to recognize body parts. They assign to each pixel in the image a probability

that encodes the likelihood of that pixel belonging to each body part. These likelihoods

form the unary potentials of a probabilistic model. Parts are tied together by pairwise

potentials that encode spatial relations (e.g. an arm attached to the upper body). By

finding the maximum a posteriori probability (MAP) solution in the probabilistic model,

the most likely pose of the upper body in the image can be estimated. This procedure is

illustrated in Fig. 2.6. A similar method is used for detecting and tracking the full body

pose of people in street scenes [9].

The approach by Agarwal and Triggs [2] uses a relevance vector machine (RVM) to
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(a) Input color image (b) Part probabilities (c) Pose estimate

Figure 2.6: Ferrari et al. [50] show how to estimate the human pose from a single color
image through part detectors.

learn the mapping from monocular silhouettes to pose parameters directly. Their sparse

Bayesian nonlinear regression method allows them to distill a large training database into

a single compact model with good generalization to unseen examples.

Jaeggli et al. [83] combine a generative approach with statistical learning to estimate

the pose of a walking person. Therefore, they train a low dimensional manifold using a

database of example images. A pose estimate for a new image always represents a valid

pose, even under heavy occlusion. They allow multiple hypotheses about the current

activity (e.g. running or walking) and perform smooth activity switching to handle a

variety of motions.

Pure generative approaches such as by Sidenbladh et al. [129] often use particle filters

to generate a discrete set of pose parameters. Using the underlying body model, each

particle instance can be rendered and compared to the input image(s). Point-to-point

correspondences or edge-to-edge correspondences are commonly used to derive a measure

for an error that is then minimized.

Although monocular pose estimation methods have been shown to work in practice,

they are often constrained to front-facing poses or limited motion patterns. Furthermore,

they are not suited for interactive operation due to their heavy computational burden.

However, many concepts from monocular pose estimation can be found in human pose

estimation from multiple views or depth maps.

2.3.2.2 Pose Estimation from Multi-View Images

In contrast to monocular images, a set of multi-view images shows the same scene at (usu-

ally) the same time from different viewpoints. The major advantage of such a recording

setup is that occluded body parts in one view are likely to be visible in another view. In

addition, image information is redundant and 3D data can be obtained directly via tri-

angulation of two or more 2D points or similar image features. Alternatively, the human
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body can be represented by a volumetric model which directly encodes 3D information.

The disadvantages of a multi-view setup are higher hardware costs (multiple cameras),

camera synchronization and calibration issues. A surprising fact is that the processing

time tends to decrease as the number of cameras is increased. The reason for this is that

simpler algorithms can be used to estimate the pose. In addition, pre-processing of multi-

ple views can be easily parallelized [92]. More viewpoints allow for fewer ambiguous poses,

thus algorithms save time by an early rejection of implausible poses.

One class of multi-view pose estimation algorithms is based on shape-from-silhouette

reconstruction. These algorithms require a clean separation between background and

foreground (the silhouette of the person). Such input data is easy to obtain when a

multi-view camera setup is located in a studio environment that facilitates background

segmentation. A multi-view silhouette representation of input data enables the use of

efficient volume-based approaches for pose estimation [154]. Volumetric pose estimation

methods are often based on a visual hull representation [93] of the human body. Therefore,

the human body is discretized into voxels using space carving [91, 92] or converted to a

polygonal representation [52].

A volumetric model of the human body allows one to extract the skeleton graph

through bottom-up methods. Many approaches use a variant of the medial axis trans-

form introduced by Blum [23] for 2D objects. In 3D, the skeleton of an object is defined

as the locus of centers of maximal inscribed balls [41]. This representation can also be

referred to as the center-lines of the body. Typical ways to compute the graph of the skele-

ton are thinning, geometric methods, distance fields or potential fields [41]. Essentially,

the skeleton is an undirected acyclic graph with connected nodes that define the topology

of the human body.

Some early approaches for graph-based pose estimation use a single 2D silhouette

image. Thome et al. [149] use 2D silhouette images to generate a skeletal graph through

Delaunay triangulation and assign limb labels to the end-nodes through graph matching.

Menier et al. [104] state that using only a single 2D silhouette is prone to occlusion and

that a 3D skeleton cannot be mapped to a 2D skeleton graph directly. Instead, they use

multiple silhouette images to generate the visual hull of the body, extract medial axis

points using Voronoi centers and fit a skeleton model using a probabilistic framework. A

hybrid 2D/3D approach is presented by Correa et al. [42] who fit a skeleton in multiple

2D silhouettes and combine them in a 3D fusion step.

Given a volumetric representation of the human body, graph-based approaches allow

more efficient and accurate pose estimation. In Sundaresan and Chellappa [145], the

volume consisting of thousands of voxels is projected onto a low dimensional manifold

with six or less dimensions (see Fig. 2.7). The authors use Laplacian Eigenmaps of the

voxel neighborhood graph to transform limbs into smooth 1D curves in the embedded

space. This representation resembles the Reeb graph of the human body and limbs can be

identified reliably. However, computation times for this type of manifold embedding are

not suitable for real-time operations. A parallel algorithm for 3D skeletonization through
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Figure 2.7: Sundaresan and Chellappa [145] use a volumetric approach to extract the
human pose from multi-view silhouettes (image taken from [145]).

voxel thinning has been presented by Bakken and Elisassen [14]. It consists of simple

execution kernels that fully exploit the GPU processing architecture.

There are natural limitations for approaches based on the visual hull. Situations

where limbs are close to the body can lead to a poor pose estimation accuracy because

the extracted skeleton becomes degenerate. This problem can be circumvented by using

exemplar-based approaches such as in [62, 78, 120]. For example, Hirai et al. [78] have

proposed to estimate the 3D skeleton pose in real-time using volumetric regression. Since

voxel-based volumetric models generally require a huge amount of data, a näıve regression

method would be computationally slow. Therefore, Hirai et al. propose a fast and stable

volume tracking method with an efficient volume representation in a low-dimensional dy-

namical model. Van den Bergh et al. [156] use Haar-lets to recognize poses from a discrete

volume. However, the space of possible human poses is large which makes it difficult to

train an efficient regression model that captures all possible poses.

Similar to monocular pose estimation, generative approaches can be applied to multi-

view silhouette data. One major benefit of using multi-view images over monocular views

is that both the local and global optimization of the pose parameters converge faster to

the correct pose. For example, Gall et al. [57] use a polygonal model of a person and

locally optimize the overlap between silhouette contours and the model. To overcome

local optima, all misaligned limbs are then globally optimized using a particle filter [56].

Even though these filters can be optimized in a way that very few particles are needed,

computation can take several seconds per frame.

Research on multi-view pose estimation has shown that it is possible to either obtain

real-time pose estimates or very accurate results by using more than one camera. How-

ever, accurate pose estimation is only possible when the background permits a reliable

segmentation of the person. In real-world scenarios, automatic segmentation of persons

in front of cluttered background is difficult and obtaining accurate silhouettes of a person

may not be possible. For some scenes, it is possible to support an automatic segmentation

algorithm with a previously estimated pose. This pose can be used to perform a guided

segmentation [65, 69]. Alternatively, there exist methods that estimate the articulated

pose by tracking SIFT features [57] or by using a Sums of Gaussians-model [139] with

simple color information to describe the body of the person. The work of Wu et al. [165]

estimates the scene illumination to perform pose estimation under varying illumination.
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(a) Input depth image (b) Classified body parts (c) Joint positions

Figure 2.8: Shotton et al. [127] show how to estimate the human pose from depth images
through learned body part classification (images taken from [127]).

2.3.2.3 Pose Estimation from Depth Images

In recent years, new camera technologies have been developed that have revolutionized

how human pose estimation can be performed using only a single camera. These types

of cameras are commonly known as depth-sensing cameras such as time-of-flight cameras

and the Microsoft R© Kinect
TM

. These cameras not only capture a scene at fast frame

rates but also compute the depth for each pixel, the so called depth map. Using a depth

map, the user can be segmented from the background with minimal computational effort.

Furthermore, depth information helps to disambiguate between poses that look similar

under perspective projection.

Discriminative pose estimation methods are among the most successful techniques for

pose estimation at real-time frame rates. For example, Shotton et al. [127] use randomized

decision forests to assign a body-part label to every pixel of a depth map of a human body

(see Fig. 2.8). Even without temporal constraints, this method estimates the accurate

position of skeleton joints at high frame rates. During the training stage, this method

requires a massive database of previously labeled depth maps, which contains images of

persons of various age and size in different poses. In Sun et al. [144], a similar regres-

sion method is combined with a global latent variable that encodes body height or torso

orientation. This drastically improves the accuracy of body joint localization.

Other approaches have shown that pose estimation from depth images is possible using

generative models [11, 58]. One problem of generative methods is finding the correct

correspondences between the image and the model. This problem is solved in an elegant

way by Taylor et al. [147] who directly infer correspondences from depth maps or multi-

view silhouettes using a regression forest. Using these correspondences, pose estimation

can be performed in a single one-shot optimization step.
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Method Cost Speed Accuracy Summary

Mechanical ≥ $10K ≤ 300 Hz 1 mm wearable hardware and
long setup per user

Reflective markers ≥ $10K ≤ 1000 Hz 1 mm light markers but long
setup per user

Single-View < $100 < 1 Hz 50 mm minimal camera hardware
requirements but high
computational cost

Multi-View $10K ≤ 30 Hz 50 mm require a static background
and camera calibration;
usually large input data

Depth sensors < $1K ≤ 30 Hz 100 mm easy use and install but
limited to camera facing
poses

Table 2.1: Comparison of existing human motion capture approaches. We compare the
approximate cost for the required hardware, execution speed in frames per second and the
skeleton joint estimation accuracy.

2.3.3 Comparison

To summarize existing methods for human pose estimation and motion capture, we com-

pare the hardware costs, execution speed as well as accuracy of different strategies in

Table 2.1. It can be seen that mechanical and marker-based systems have a high accuracy

and sample the current pose at up to 1 000 Hz. However, they have high hardware costs

and require a substantial setup time per user such as mounting and calibrating markers.

In contrast, marker-less optical systems estimate the human pose without substantial

setup times. Depending on the type of input image(s), some algorithms require several

seconds to process a single frame but other algorithms achieve real-time performance.

Depth sensors are particularly suited for fast pose estimation but have a low accuracy

due to low camera resolution and higher noise levels. Typically, depth maps allow pose

estimation only when the user faces the camera.

2.4 Human Body Shape Estimation

Shape estimation systems for the human body either aim to capture all relevant mea-

surements that are distinct for the individual subject or create a full 3D model (avatar).

Manual body measurements are performed by taking defined measurements on certain

body locations. Automated, camera-based shape estimation methods usually perform a

dense reconstruction of the body. This section gives an overview of the history of body

scanning and measurements, explains related optical technologies and analyzes their po-

tential for creating virtual avatars interactively.
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(a) Tape measure (b) Calipers (c) Sliding compass

Figure 2.9: Measurement instruments for manual body measurements (images are released
under CC license).

2.4.1 History of Anthropometry

For hundreds of years, measuring the human body has been of great importance to tailors

when designing clothing that fits. In the last century, body measurements have gained im-

portance in many other areas such as automobile design, work site ergonomics, equipment

design as well as in sizing surveys as an indicator of health status [132].

Traditional methods to obtain anthropometric measurements include non-invasive in-

struments such as a measuring tape, calipers and the sliding compass. A selection of such

tools can be seen in Fig. 2.9. Usually, a human tailor has to locate landmarks such as the

hips or waistline on the subject and apply one of the measurement tools to obtain values

for length or girth.

One of the biggest problems of anthropometry is the accuracy and repeatability of mea-

surements. When measurements on the same person are performed by multiple observers,

the measured values can differ considerably due to imprecisions of landmark locations,

subject positioning and measurement instrument application [20]. Even though there

exist standards such as ISO 8559:1989 [82] that define how to measure at certain body

locations, the true measurement process still allows for much variation. A virtual model

of the body helps to perform such measurements automatically.

The first fully automatic anthropometric measurement systems were based on silhou-

ettes that were acquired by taking pictures of a human body against a distinct back-

ground [84]. Since then, researchers and companies have developed promising technologies

that automatically capture the shape of a human body. However, an optical measurement

system faces further challenges. First and foremost, an optical system can only recon-

struct and measure the human body including all worn clothing. Even though there exist

algorithms that estimate the human shape underneath clothing [69], these methods rely

on regularization through learned knowledge and can therefore not accurately reconstruct

an unseen person. Therefore, a subject usually is required to wear form-fitting garment

that does not alter the real shape of the body.
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Existing methods for human shape estimation can be split into two main groups:

1. Model-free approaches reconstruct the shape directly from data available in images.

They allow the highest degree of details but do not guarantee that the result has the

correct topology of a human body.

2. Model-based approaches require a previously scanned or otherwise generated model

of the human body. These approaches adapt this model to image data by modifying

its parameters. The adaptation of an existing model ensures that the result will

always be a valid human body.

In the remainder of this section, we discuss existing methods that perform human shape

estimation with a model-free approach or by using an explicit model.

2.4.2 Model-free Body Shape Estimation

A model-free shape estimation method is able to compute the 3D surface of a human body

from multiple images. As the name suggest, such methods require no prior model of a

human body. Instead, they reconstruct every detail directly from images. We give a short

overview of possible methods to compute the shape of previously unknown persons.

Volumetric Scans: A volumetric body scan classifies a predefined volume into space

occupied by the person and background. The most simple volumetric representation is

the visual hull [93]. It is the closest approximation of an object that can be obtained

with the volume intersection approach. As input, a visual hull method uses multi-view

silhouette images of a person. Space carving is a simple method to compute a regular

three-dimensional grid of empty and occupied voxels [91]. Alternatively, it is possible to

compute a polygonal mesh by intersecting silhouette outlines [52, 53].

If the volumetric description of the body is directly inferred from camera images,

special care has to be taken to handle outliers correctly. Artifacts are common with space

carving from silhouette images. If the number of views is limited, ambiguities cannot

be resolved correctly [125]. This leads to ghosting artifacts, which are structures that

perfectly explain the image observations but do not exist on the real person. A possible

solution to this problem is to employ photo consistency terms such as in [47, 91]. These

methods analyze the color information across multiple cameras to find the correct surface

of the object. An additional benefit of a photo consistency term is that concave regions

can be reconstructed. This is not possible with silhouettes alone.

It is possible to convert a volumetric representation into a surface model. A discrete

voxel representation can be converted into a polygonal surface using the marching cubes

algorithm [100]. A volume described by tetrahedra is equivalent to a surface representation

if only outer triangle faces are stored [4].
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Surface Scans: A point cloud is a simple representation of the surface of an object and

consists of a collection of unconnected 3D points. Each point has a 3D location and may

have an orientation. Point clouds are a typical output of laser scanners, structured light

systems [148] or multi-view stereo systems [55]. A collection of points is not well suited for

capturing the shape of a human body because they are unstructured. However, a point

cloud can be an intermediate representation for fitting a more advanced model to image

data [10, 70].

Instead of point clouds, it is possible to represent the surface through a polygonal

mesh. Usually, an initial mesh is obtained through a volumetric method or from a meshed

point cloud. Starck and Hilton [136] first compute the visual hull of the body as the

upper-bound of the person. Then, they use a dense reconstruction method that fuses

silhouette, feature, and stereo cues to reconstruct a smooth surface of the body. Furukawa

and Ponce [55] apply the Poisson Surface Reconstruction method [89] on oriented point

clouds to obtain a surface mesh. Depth sensing cameras (see Section 2.1.3) allow creating

a new mesh by merging depth images from multiple views [96].

Implicit Surfaces: The Microsoft R© Kinect
TM

has not only revolutionized human pose

estimation (see Section 2.3.2.3) but opens new possibilities for capturing surfaces of 3D

objects. The KinectFusion paper by Newcombe et al. [110] has presented an efficient

method to integrate multiple depth maps such that the surface of a static object can be

reconstructed by a moving Kinect
TM

camera. The object surface is encoded in an implicit

model as the zero-crossing of a signed distance function. A similar method to encode a

surface implicitly has been published by Graber et al. [63] who compute depth maps from

passive cameras. For human shape estimation, implicit surface models are only partially

suitable because they require the scanned person to maintain a static pose during the

entire scan. In addition, the cameras must be moved by a second person or robot.

2.4.3 Model-based Body Shape Estimation

A widely used approach to estimate the shape of a human body is to adapt an existing

human model to one or multiple images of a person [7, 39]. Therefore, such a model is

an essential pre-requisite for most human shape estimation methods. There exist many

representations of the human body that are suitable for analyzing the shape of a person.

Complex representations have a high degree of freedom and allow accurate and detailed

modeling. However, adaptation to images can be hard and over-fitting is not uncommon.

Simpler body models do not allow as much variation but can be fit to image data with

higher robustness. However, the latter representation can not recover details that are

distinct to every person.

Surface Models: A surface representation of a 3D object is a 2D manifold embedded

into 3D space. Usually, this manifold is sampled in regular or irregular intervals and



2.4. Human Body Shape Estimation 29

represented by a polygonal mesh which consists of vertices and faces. Typically, an existing

polygonal mesh can be adapted to image data by moving individual vertices [4, 57, 158].

Usually, a smooth deformation of the surface is ensured through the Laplacian Mesh

Editing (LME) framework [28]. The optimal shape can be obtained by optimizing a

linear system of equations that constrain some vertices according to image correspondences

while the overall mesh is held together by smoothness constraints. However, it may be

challenging to find the correct correspondences between vertices and pixels.

There exist two types of model-based surface estimation methods. Those that use an

underlying skeleton and those that do not. Aguiar et al. [4] argue that a skeleton limits the

application of marker-less motion capture to humanoid models and loose clothing cannot

be handled realistically. They propose to adapt a human body mesh to multi-view images

by first deforming a low-resolution volumetric mesh to capture the pose. Then, they refine

the detailed shape using a coupled high resolution surface mesh. In contrast, Cagniart et

al. [34] decompose a mesh into larger surface patches. This increases robustness to noisy

data and allows them to handle arbitrary objects.

Using a skeleton allows the explicit encoding of prior information about the deformable

object. For example, a skeleton can be used to initialize the mesh prior to deformation.

Gall et al. [57] and Vlasic et al. [158] adapt the shape and pose of a mesh in a two step

algorithm. First, they determine the skeleton pose without adapting the shape of the

surface. Then, they non-rigidly refine the surface of the mesh to fit to image data. While

Vlasic et al. [158] propose to optimize the skeleton and polygonal surface independently

from each other, Gall et al. [57] use mesh vertices rigged to the skeleton to estimate the

pose of the model given the image data. This approach has been extended to work with

multiple people if each person can be segmented independently [99]. All above methods

use the skeleton for initialization of the mesh but not during shape adaptation itself.

Recent developments in the mesh editing community are motivated by the desire to

perform modeling as rigid as possible (ARAP). In [95, 169], a skeleton is embedded in a

deformable mesh and surface vertices are connected to evenly sampled points along the

bones using a least squares formulation. Such a binding helps to preserve the volume of

the mesh while the globally optimal deformation is obtained through solving of a linear

system of equations. However, the presented methods can only handle cross-sectional

connections between skeleton joints and surface vertices. Thus, artificial joints need to be

added to achieve realistic results, which makes these methods only suitable for animation

but not for shape adaptation.

Parametric Models: The dimensionality of surface models that consist of individual

vertices can be very large. Each vertex has three degrees of freedom for movement. A

common technique to reduce the degrees of freedom is to use parametric body models. For

example, Alcoverro et al. [5] parametrize each bone of the skeleton with two additional

parameters, axial and radial deformation, and optimize the shape using a particle filter.

Thus, the number of degrees of freedoms is proportional to the number of bones. However,
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changing the shape through transformations of an underlying skeleton is not suitable to

fully capture shape variations due to muscle deformations, age and gender.

Therefore, many methods compress high-dimensional mesh data into a low dimensional

subspace using the principal component analysis (PCA) method [10]. For example, a

compact representation could contain dimensions for body size, weight and gender. In

order to obtain a model that generalizes well, a large database of aligned body scans is

required for training. The database should cover all possible variations in shape, size,

weight, age and gender. There exist datasets such as SCAPE [10], the MPI dataset [71]

as well as commercial products such as from the Civilian American and European Surface

Anthropometry Resource (CAESAR) project [33]. Very often, a parametric body model is

used for reconstructing a human body from image data [65, 69, 87, 163] or even reshaping

of bodies [118, 170].

Weiss et al. [163] describe how to build a body scanner for home use using a single

Kinect
TM

camera. In order to obtain a scan from all sides of the body, the user is required

to record multiple images from different viewpoints. Using a parametric model, Weiss et

al. are able to optimize a single shape under varying pose.

There exist methods to estimate the human shape from a single image. Given an

initial skeleton estimate, Guan et al. [65] iteratively fit a parametric body model to image

contours of a human person. Due to unknown scale, the height and gender need to

be supplied by an operator. The problem of scale has been addressed by a company

called UPcload [155]. They process images taken by an ordinary webcam and relate all

measurements to the image of a compact disk (CD), which has a known size. The most

important benefit of a monocular system is easy setup and calibration. However, there

are several disadvantages such as lack of scale and missing direct 3D data. Therefore,

researchers and developers of commercial systems hardly ever rely on measurements from

a single 2D image.

2.4.4 Comparison

In Table 2.2, we compare different shape models and capturing technologies for their

suitability to capture a human body. There is no single preferred choice for an acquisition

technique nor for the most suitable model. For example, parametric models are robust

towards outliers in input data and even allow reconstructing the skin of clothed people [70].

On the other hand, building a parametric model that generalizes to all possible bodies is

nearly impossible. Therefore, the choice of the right data representation strongly depends

on the application.

In a similar way, the capturing hardware either allows for fast capture times (e.g. with

a multi-view setup) or requires several seconds during which the user is supposed to limit

body movements to a minimum (e.g. structured light or moving camera). Processing time

may be an issue for scanning a body. Even if the complete body is captured within a

second, it may take minutes before a useful scan is available.
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Method Cost Time Accuracy Summary

Volumetric low < 1 s low - med. limited resolution but easy and
fast to compute

Model-free surface low seconds high usually highly accurate but
slow to compute

Implicit surface low seconds medium multiple views of a moving
camera are combined into one
model; require static subject

Model-based surface low seconds med. - high adapt an existing surface to im-
ages but may overfit; finding
correct correspondences can be
difficult

Parametric high seconds high few parameters to adapt but re-
quire a large training database

Table 2.2: Comparison of the approximate cost, scanning time and the accuracy of existing
human shape estimation approaches.

In an unsupervised setting such as a virtual dressing room, the focus of human shape

estimation should be on maximum robustness towards outliers. Therefore, we propose to

use a model-based approach which adapts an existing model of a person to image data. An

existing model further facilitates anthropometric measurements after adaptation because

measurement points need to be defined for the model only once.

2.5 Combined Human Pose and Shape Estimation

The majority of the previously mentioned approaches for human shape estimation require

that the rough pose of the person is known before the shape can be estimated. The rea-

son for this is that an existing model of the human body needs to be initialized before

adaptation. However, after the initialization of the shape model, the pose is often ignored

during the adaptation process [57, 158]. Optimizing pose and shape jointly has several

advantages. For example, a simultaneous optimization better handles outliers and erro-

neous observations which are frequently found in multi-view data [81]. In addition, pose

estimation can be made more robust if the shape fits to the actual body. In this section,

we analyze approaches that are able to optimize both shape and pose of a human body

simultaneously.

Droeschel and Behnke [44] propose a method to adapt both the pose and some para-

metric shape parameters of an adaptive body model to depth images using an iterative

closest point (ICP) algorithm. Hofmann and Gavrila [79] attempt to optimize both pose

and shape of a human model by batch processing a set of automatically selected multi-view

frames. This offline method requires initial pose estimates before starting the shape esti-

mation framework. The optimized shape is then used to refine the pose. Taylor et al. [147]
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(a) Patched mesh
and skeleton

(b) Input view with colored back-
ground

(c) Estimated body pose and
shape

Figure 2.10: Multi-View systems such as shown in Huang et al. [81] use a colored back-
ground to segment the user and obtain silhouettes. The pose and shape of the user can
be estimated by fitting a model onto the data such that the overlap between model and
silhouettes is maximized in all views (images taken from [81]).

improve the commonly needed iterative correspondence search between mesh vertices and

image data. They train a regression function that can predict correspondence between

image data and vertices directly. This allows them to perform one-shot pose estimation

and facilitates the adaptation of existing models to the data.

In Huang et al. [81], probabilistic surface deformation [34] is combined with the bone

binding energy presented in this thesis. While probabilistic surface deformation makes

soft assignments between the model and the observations, the bone binding energy guides

the skeleton fitting. The benefit is that unreliable observations in multi-view data can be

handled more robustly. We show a typical result of their work in Fig. 2.10.
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2.6 Conclusion

The previous sections have given an overview of the wide range of methods for image-

based human pose and shape estimation. However, none of the previously mentioned

approaches is able to estimate the pose and shape of the human body at interactive frame

rates. There has been significant progress towards real-time pose estimation using either

multi-view image data [15] or depth images [127]. But shape estimation still requires

several seconds per frame.

Our method is closely related to [57] and [158] as we follow their two-stage approach

with separate pose estimation and shape adaptation based on the LME framework. The

major difference compared to previous methods is that we do not discard the skeleton

during shape adaptation. Instead, we propose a method to jointly optimize both shape

and skeleton pose in a common framework. Our approach does not require intermediate

skeleton joints such as [95, 169]. We use an unmodified skeleton definition for both pose

and shape estimation.

In addition, we employ a real-time capable solver for optimizing the deformable shape.

Our method is inspired by position-based physics simulations [109] which are able to com-

pute realistic interactions between soft bodies in real-time. The key to real-time operation

is to apply decoupled constraints on individual vertices of a deformable mesh and to opti-

mize for a stable shape using an iterative multi-grid method. We show that this decoupled

optimization is suitable for mesh deformation guided by image-space correspondences such

that the final mesh resembles the content in the input images.
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3.1 Introduction

Human pose estimation is concerned with finding the 3D pose parameters of a human body

model such that the model fits to the observations in one or more input images. There

exists a variety of algorithms that solve this task with high accuracy from multiple input

images [56, 79] or even a single photograph [65, 75]. Promising methods for interactive

human pose estimation use a volumetric model of the body [78, 102, 154] or utilize a

depth camera based on the time-of-flight principle [58] or the newly released Microsoft R©

Kinect
TM

camera [127, 147].

In this chapter, we address the problem of real-time human pose estimation from

multi-view silhouette images. We propose a volumetric approach which first computes a

discretized 3D representation of the actor and then estimates the skeletal pose using an

efficient graph-based method. The skeletal graph is a tree that mimics the topology of the

human body (i.e. it comprises arms, legs and torso). It can be efficiently estimated from a

volumetric body representation using center-line tracing algorithms [119]. As the center-

line extraction produces spurious branches, we have developed a novel pose-independent

graph matching algorithm. This algorithm robustly classifies end-nodes of the graph into

head, hands and feet while detecting end-nodes that do not correspond to any valid limb.

Using these correspondences, we obtain a good initialization for fitting a human skeleton

35
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Silhouette Images 3D Volumetric Model
with Skeletal Graph

Skeletal Graph
with spurious limbs

Skeleton ModelLabeled Graph

Figure 3.1: Extracting the 3D human skeleton pose from silhouettes.

model onto the graph. Finally, we optimize all skeleton joint positions using a fast local

optimization similar to [18] while enforcing that joints lie on the skeletal graph and bones

maintain their lengths. A graphical summary of our algorithm is shown in Fig. 3.1.

The key benefits of our method are the robustness of limb-labeling and its ability to

perform single frame pose estimation. The computational cost is kept low due to an early

reduction of the input data from several thousand volumetric elements to a compact graph

with a few hundred nodes. Our method does not require any learning phase nor a database

with training images, which makes it particularly easy to implement. An additional benefit

of single-frame processing over pose tracking approaches is that our method cannot get

stuck in an erroneous pose but recovers automatically. Moreover, we do not require an

initial pose or manual initialization.

Such properties are particularly important in an interactive setting with visual feed-

back. Typically, the user will step in front of the monitor and expect that pose estimation

starts instantly. In order to use the system without interruptions, pose estimation should

work for an extended time of several minutes and must not get stuck in difficult poses.

Our system is capable of such operation due to its real-time, single-frame operation.

3.2 Skeleton Models

A skeleton consists of multiple bones that are connected via joints (see Fig. 3.2(a)). Every

skeleton can be represented as an acyclic graph with a single root node. This graph is

commonly referred to as the hierarchy of bones. Even though the human skeleton is well

defined through its 206 bones [66], there exists a variety of models with different levels of

detail [18, 57, 114, 127]. In the literature, most skeleton models contain bones for torso,

upper and lower limbs. Depending on the level of detail, bones that model hands and feet

can be missing from the model. Even the spine can be modeled using a single bone or

multiple bones to model bending poses. Similarly, the root of the skeleton is commonly

defined either as the pelvis or the neck.

A typical result of pose estimation is either a list of skeleton joint angles [57] or the 3D

positions of each joint [114, 127]. The position-based representation defines the skeleton
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(a) Anatomical skeleton (b) Joints and bones (c) Reeb graph

Figure 3.2: Different representations of the human skeleton.

similar to a 3D stickman, which consists of lines (bones) between points (joints). The joint

angle representation requires more knowledge about the skeleton. It denotes the angle of

each joint relative to a rest pose (e.g. a person standing with the arms in a T-pose). For

the rest pose, the lengths of all bones, rotation axes for each joint and possible rotation

limits must be known in advance. Typically, this information is manually designed and

adapted to a specific person. When defining the pose through joint angles, the lengths

of bones typically do not change during pose estimation. In contrast, when using the

position-based representation, it is very easy to adapt the lengths of bones as they are

implicitly encoded as the Euclidean distance between two connected joints. Flexible bone

lengths have the advantage that they can adapt to unknown persons. Since the skeleton

model used for pose estimation will always be incomplete, flexible bone lengths can be

used to model movements that are not supported by the skeleton model (e.g. bending of

the spine).

Throughout this thesis, we use a joint-position-based skeleton model. Our skeleton

hierarchy can be seen in Fig. 3.2(b). It models the arms without separate joints for hands.

For legs, there is a separate foot bone. The root joint of our skeleton is defined as the

middle-joint of the spine above the pelvis. The hierarchy of bones extends naturally from

this joint.

For graph matching, we require a representation of the human skeleton which represents

only the topology of the skeleton. The minimal skeleton graph is a Reeb graph [22] where

there are only nodes at critical points (see Fig. 3.2(c)). The Reeb graph contains only

branching nodes of the skeleton graph where limbs are attached to the body. The topology

of the human body is independent of the skeleton pose. Therefore, a correctly estimated

skeleton graph will be the same for every person in any pose.
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3.3 Pose Estimation from Skeleton Graphs

We estimate the unknown human skeleton pose by extracting a graph from a visual hull

representation of the body. In order to obtain the visual hull from input silhouette images,

we perform space carving on a discrete voxel grid [91]. Processing of voxel data can be

computationally inefficient when using a high resolution voxel space. The main idea of

our method is to reduce the amount of data from roughly 106 voxels to a skeletal graph

which consists of only about 102 connected nodes (see Fig. 3.1 for an example). Due to

space carving artifacts, it is possible that the resulting graph contains spurious branches.

These branches need to be robustly detected and removed in order to find those branches

that represent arms and legs. We call this process end-node labeling. Once the label of

every end-node of each branch is known, the skeletal graph can be used to initialize and

optimize a full skeleton model such that it represents the pose of the body in the original

images.

3.3.1 Generating the Skeletal Graph

We extract the skeletal graph G from a volumetric human body representation using voxel

scooping by Rodriguez et al. [119]. This algorithm efficiently approximates the center-line

from tubular volumetric data. The algorithm was originally intended for tracing center-

lines of neurons in medical data. We show that it can be easily applied to volumetric body

scans.

Starting with an initial node at a seeding point, each node in the graph spherically

expands in voxel space with a locally adaptive radius (hence the name scooping). Based on

this expansion, a new node is created and the process is repeated until there are no more

voxels left to scoop. When the expanded voxels of a single node no longer form a connected

component, a branching node is created and each branch is processed independently. For

each node, we store the information about its neighboring nodes as well the 3D position of

the expansion sphere. The result of voxel scooping is a graph similar to the human skeleton

but with many spurious nodes and branches (such as in Fig. 3.1). An early pruning step

is used to remove short branches with only a few nodes. Using a novel graph-matching

algorithm which is described in the next section, we classify the remaining branches as

outliers or valid hands and feet. In Fig. 3.3, we demonstrate the scooping process on

a single 2D silhouette image. Scooping pixels in 2D is similar to scooping voxels in a

volumetric body scan.

Voxel scooping requires a known seeding point. Therefore, we require that the seeding

point corresponds to the top of the head. We assume that the person is standing upright

such that the highest voxel in our volumetric representation is on the head. This assump-

tion no longer holds when the person is allowed to raise the hands above the head. In this

case, it is possible to track the head after initialization or to determine the head position

by a face detection algorithm.
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(a) (b) (c) (d)

Figure 3.3: Voxel scooping explained on a single 2D silhouette image. Fig. (a) shows the
input image. Fig. (b) shows the scoops alongside the generated graph. This graph contain
some spurious nodes (c) which are removed in Fig. (d).

3.3.2 Skeleton Graph Matching using End-Nodes

We provide a template skeleton G′ of the human body with approximately the same bone

lengths as the user. For this template, we provide labels for the end-nodes of arms and

legs in order to derive the position of hands and feet. An end-node is a node which

has only one sibling and is located at the end of a branch. By robustly matching end-

nodes of the skeletal graph G with this template, we propagate limb-labels and detect

spurious branches. The matching algorithm needs to be robust to pose changes and must

not rely on the position of branching nodes (hips and neck). The position of branching

nodes depends on clothing or the current body pose. We use a graph matching method

inspired by Bai and Latecki [12]. They perform shape recognition from 2D silhouette

images based on skeletal graph matching. Their main idea is to match two graphs by

comparing geodesic paths between end-nodes of the skeletal representation of the objects.

Hence, matching is performed independent of the graph topology and the articulation of

the object. Furthermore, there is no dependence on the global pose of the object in the

input images.

We adopt this idea for finding correspondences between a 3D skeletal graph G and

a template graph G′. However, the method of Bai and Latecki [12] cannot be directly

applied to a 3D graph. Their algorithm requires the end-nodes to be ordered along the

outer contour of a silhouette image of the object. In a volumetric model, such ordering

along a one dimensional line is not possible as the volume is bounded by a 2D surface

which does not allow for a deterministic sorting algorithm. Therefore, we propose a

different strategy that takes advantage of the known head position as the root of the

skeletal graph: we sort the end-nodes in ascending order by the length of the geodesic
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path to the head-node. This ordering preserves robustness in presence of articulated body

movements and is independent from the graph topology.

3.3.2.1 Constructing Pairwise Distance Matrices

Bai and Latecki [12] compute a descriptor for the graph by sampling a distance field along

the geodesic path between each two end-nodes. In contrast, we describe a graph solely

by geodesic distances between end-nodes. For the skeletal graph G with N end-nodes

Ω = {ω1, ω2, . . . , ωN} ordered by geodesic distances to the root-node (i.e. the head-node),

we define a pair-wise distance matrix

DG =

 gd(ω1, ω1) gd(ω1, ω2) . . . gd(ω1, ωN )
...

...
. . .

...

gd(ωN , ω1) gd(ωN , ω2) . . . gd(ωN , ωN )

 (3.1)

where gd(ωi, ωj) is the length of the geodesic path between end-nodes ωi and ωj of graph

G. The geodesic distance between two end-nodes are the accumulated Euclidean distances

between all nodes along the path. These distances can be efficiently determined using

Dijkstra’s shortest path algorithm. Each row of the symmetric matrix DG can be seen as

a descriptor for an end-node which contains distances to all other end-nodes of the same

graph (including spurious end-nodes).

In Fig. 3.4, we show two descriptor matrices where the values are color coded.

Fig. 3.4(a) shows the descriptor matrix for the template skeleton. The first row

corresponds to the head node, the second and third row to the hands and the remaining

two rows describe the feet. In the first column, the geodesic distance values increase from

the first to the last row. This signifies that feet have a larger geodesic distance from the

head than hands.

Fig. 3.4(b) shows the descriptor matrix for a query skeleton extracted from a volumetric

scan. It has seven end-nodes because it contains two spurious nodes (described by row

two and three). In order to label the nodes of this skeleton correctly, we propose a novel

matching algorithm which can cope with such spurious nodes.

3.3.2.2 Robust Matching of Distance Matrices

In order to assign a label to each end-node of the skeletal graph G with the descriptor

matrix DG, we need to find correspondences to end-nodes of a template skeleton graph G′

with a descriptor matrix DG′ . This is done by comparing every end-node of graph G to

all end-nodes of graph G′, or more precisely calculating the matching cost for every pair-

wise combination of row-vectors from both distance matrices DG and DG′ . Generally,

the query graph G will not contain the same number of end-nodes N as the template

graph G′ (N ′ = 5) because some end-nodes are missing or spurious. Consequently, the

sizes of DG and DG′ will be different and standard comparison methods cannot be used.
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(a) Template descriptor with five limbs (b) Descriptor of a query skeleton with five
limbs and two spurious end-nodes

Figure 3.4: Color-coded end-node descriptor matrices for the template skeleton and a
query skeleton. Blue denotes a geodesic distance of zero and an increasing redness denotes
higher distances.

Therefore, we need an algorithm to calculate the matching cost of feature vectors with

different lengths.

Dynamic time warping (DTW) can be applied to various problems that

consist of matching sequences of different lengths [117]. It makes use of dynamic

programming (DP) in order to efficiently calculate the minimal matching cost of a

sequence a = {α1, α2, . . . , αA} of length A by matching, skipping or deleting elements of

another sequence b = {β1, β2, . . . , βB}. DTW iteratively populates an (A + 1) × (B + 1)

warping matrix W (note that we use a 0-based indexing for this matrix). First, the

matrix is initialized along the border:

W(0, j) =∞
∣∣
j=1...B

W(i, 0) =∞
∣∣
i=1...A

W(0, 0) = 0 (3.2)

By applying DP, one can calculate its elements using the following procedure:

W(i, j) = c(αi, βj) + min {W(i− 1, j − 1),W(i− 1, j),W(i, j − 1)} (3.3)

where c(αi, βj) denotes a cost function which compares αi to βj . In the simplest case, this

is the absolute difference c = |αi − βj |. The minimal matching cost for both series can be

determined by evaluating the warping matrix at W(A,B).

We make use of dynamic time warping in order to match sequences of ordered end-

nodes with different lengths. In contrast to other applications of DTW such as time-series

processing, we are not interested in the optimal alignment of two series but rather in the

minimal matching cost as a measure of their similarity. We define a cost matrix C that
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(a) (b)

Figure 3.5: (a) Matching cost matrix for the descriptor matrices in Fig. 3.4. Cool colors
signify a low matching cost. Each row corresponds to the head or a limb of the template
skeleton and each column to an end-node of the query skeleton. (b) Correspondences
between skeletons.

contains a matching cost for every pair of end-nodes of graphs G and G′:

C(D,D′) =

mc(D1,D
′
1) mc(D1,D

′
2) . . . mc(D1,D

′
N ′)

...
...

. . .
...

mc(DN ,D
′
1) mc(DN ,D

′
2) . . . mc(DN ,D

′
N ′)

 (3.4)

where mc(Di,D
′
j) denotes the minimal matching cost of the i-th row of matrix DG and

the j-th row of matrix DG′ . The minimal matching cost is obtained by evaluating the

DTW matrix at W(N,N ′) when using both row vectors as input sequences α and β. The

optimal correspondence of end-nodes of the skeletal graph G to graph G′ can be found

using bipartite graph-matching based on the cost matrix C. This task can be efficiently

performed by the Hungarian algorithm [90], for example.

In Fig. 3.5(a), we show the resulting matching cost matrix C(DG,DG′) after matching

the two descriptor matrices shown in Fig. 3.4. For example, the low cost in C2,4 signifies

that node 2 (a hand) of the template skeleton matches node 4 in the query skeleton. On

the other hand, there is no low matching cost in columns two and three. This means that

the corresponding end-nodes in the query skeleton graph are most likely spurious nodes

and do not represent limbs. The obtained correspondences are visualized in Fig. 3.5(b).

Note that it is not possible to distinguish left and right limbs due to the body symmetry.

This is not visible from Fig. 3.5(a) where one would expect that there is a similar matching

cost for the left and right foot, for example. The reason for different matching costs lies

is the initial sorting according to geodesic distances from limbs to head. This sorting can

cause an arbitrary initial assignment to either side. We determine the correct side of each
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limb in a post processing step by keeping track of a vector that points in forward direction

relative to the body. Initially, this vector points towards the camera as the user is assumed

to face the camera. In subsequent frames, this vector is updated by analyzing the shoulder

positions. Estimating the front vector from shoulder positions has the advantages that a

person generally cannot move the shoulders as fast as the hands and it is not possible to

swap left and right sides. Once the direction of the shoulders is known, we propagate the

left/right information to each limb.

3.3.3 Using Tracking Information to Enhance Graph Matching

In the previous section, we have described a method to extract the skeleton from a volu-

metric voxel model and label its end-nodes. Our method is able to obtain a correct labeling

without tracking or multi-frame processing. Thus, given a single input frame, the correct

assignment of end-nodes to limbs is computed without knowledge of the previous pose

or manual intervention. In our experiments, however, we found that there are situations

where spurious nodes have descriptors that are very similar to actual limbs. These am-

biguities can cause confusion between the correct node and a spurious one. For example,

this can result in a spurious node on the body to be mislabeled as a hand.

Therefore, we propose to extend our end-node labeling algorithm by keeping track of

the 3D position of the detected end-nodes. We use a linear Kalman filter [86] to track

end-nodes detected in previous frames. This filter allows us to predict the position of end-

nodes in the current frame. We use these predictions to analyze end-nodes during graph

matching based on the cost matrix in Equation (3.4). If there are multiple nodes with a

similar label matching cost, we assign a smaller matching cost to the end-node closer to the

predicted position of a previous end-node. For computing the Euclidean distance between

two nodes, we use their 3D positions obtained during voxel scooping (see Section 3.3.1).

This modification of matching costs effectively prohibits a false assignment of limbs

due to similar descriptors. However, if a spurious node appears spatially close to the actual

end-node, both nodes can have a similar descriptor. Therefore, it is possible that for a

few frames there is a wrong assignment which cannot be detected automatically. However,

when the person moves either body or limbs, the spurious node is likely to disappear and

the correct labeling can be restored. Care has to be taken that a tracking filter does

not delay the detection of the correct node due to motion smoothing. Alternatively, it is

possible to reset tracking information periodically and execute our standard single-frame

pose estimation algorithm without modified costs.

3.3.4 Skeleton Fitting

In addition to the end-nodes of the graph, we need to determine two additional interior

nodes (pelvis and neck) in order to initialize our skeleton model (see Fig. 3.6(b)). We find

these nodes by reusing the idea of the graph distance in order to define a discriminative
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Figure 3.6: Template skeleton model (a). Skeletal graph with labeled end-nodes and nodes
for neck and pelvis (b). Optimized skeleton model that fits to the skeletal graph (c).

interior-node descriptor:

FG(v) =
[
gdG(v,Head), gdG(v,HandL), gdG(v,HandR), gdG(v,FootL), gdG(v,FootR)

]T
(3.5)

where v denotes a node of graph G and gdG(v, ω) the geodesic distance between node v and

an end-node ω of this graph. We use names for the nodes ω in order to make the procedure

more comprehensible. For the pelvis and neck node, we calculate a descriptor FG′(Pelvis)

and FG′(Neck) from the template skeleton. We evaluate FG(v) for each node v in the

skeletal graph G in order to find the best match for the pelvis and neck:

vpelvis = arg min
v∈G
‖FG(v)− FG′(Pelvis)‖2 vneck = arg min

v∈G
‖FG(v)− FG′(Neck)‖2 (3.6)

As a result, the skeletal graph has seven labeled nodes which correspond to the human

skeleton as in Fig. 3.6(b). We initialize our skeleton model with the positions of the nodes

for head, limbs and inner joints. It is then possible to use any local optimization method

to refine the skeleton model until it fits to the graph. We propose to use a method similar

to Baran et al. [18], which locally optimizes joint positions until they fit nicely inside

the body. In addition, we ensure that bones have the same lengths as in the template

skeleton G′. In contrast to Baran et al., our implementation attracts bones towards the

skeletal graph instead of the center of the medial body surface.
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3.4 Summary and Discussion

In this chapter, we have shown a novel method to estimate the human skeleton pose

from volumetric body representations. We follow a bottom-up approach where we first

approximate the center-line from the discrete visual hull. This step compresses several

thousand voxels into a few hundred skeletal graph nodes. A robust and pose independent

end-node labeling algorithm is able to classify hands and feet while ignoring spurious

nodes. After the initial node labeling, a full skeleton model is fitted to the graph using

local optimization.

The basic algorithm described in this thesis is able to perform pose estimation with-

out knowledge of the pose in a previous frame. This property is essential for automatic

initialization of the pose. In addition, a single-frame pose estimation algorithm cannot get

stuck in erroneous poses from previous frames, which is a common problem for tracking-

based algorithms. Nevertheless, we have presented a possibility to include tracking data

in the end-node labeling process to facilitate the disambiguation of end-nodes with similar

descriptors. To maintain the advantage of single-frame pose estimation, this tracking data

should only be used for disambiguation between two or three similar end-nodes and not

for end-node labeling in general.

Our approach is able to achieve state of the art pose estimation results at real-time

frame rates (see experiments in Section 5.3). Even though related approaches such as

Bakken et al. [15] use a highly parallel GPU for estimating the skeletal graph, our single

CPU center-line extraction algorithm based on [119] shows superior performance. Our

novel graph matching algorithm successfully copes with artifacts in the skeletal graph in

more than 97 % of tested frames. Even if the pose estimation contains errors in a few

frames, our algorithm is able to recover automatically.

There is a number of limitations that come with our approach. So far, we have assumed

a template skeleton with roughly the same bone lengths as the person we want to estimate

the pose for. This assumption does not hold for most persons using the system. A possible

solution is to estimate the lengths of arms and legs from the height of the person since

there is a high correlation between body height and limb lengths.

One essential problem with our approach is that we cannot handle cases where the

arms are held close to the body or occluding objects. In this scenario, arms are no longer

separable from the body and a useful skeletal graph cannot be extracted. This can mean

that there is no branch for an arm, for example. Without a skeletal graph that contains

detectable limbs, our pose estimation will fail. This problem is shared with all methods

that use a bottom-up approach for human pose estimation from volumetric data. Our

algorithm is designed to estimate the pose of upright standing persons. The location of

the head must be easy to identify without prior pose information. Thus, we cannot handle

scenes where those assumptions are not fulfilled. In a virtual dressing room environment,

however, our pose estimation algorithm can be applied successfully because the person is

standing and the head is usually easy to detect.
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4.1 Introduction and Problem Statement

4.1.1 Motivation

In the previous chapter, we have shown how to estimate the pose of a human body from

multi-view images. However, it is possible to obtain more information from such images

than the skeletal pose. We capture the shape of a human body in order to build a 3D

model of the person. The shape of the body is the visible outer surface which consists of

the skin, hair, clothing and any gadgets the person is wearing.

In this chapter, we address how to capture the temporal evolution of this shape in every

frame of a multi-camera image sequence. We use a polygonal template model of the human

body and adapt it to images of a multi-camera setup. The main idea of our process is

shown in Fig. 4.1. Our approach improves the robustness of existing model-based surface

estimation methods by co-optimizing the surface and the skeleton of the human model.

In addition, we present a novel optimization scheme that enables low processing times

47
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Original mesh Set of camera images Find correspondences Adapted mesh Final Mesh

Figure 4.1: Shape adaptation is concerned with deforming an existing polygonal model
of the human body to images by minimizing the distance between corresponding mesh
vertices and pixels.

without noticeable loss in quality. Thus, our method makes it possible to estimate the

shape of a human body at camera frame rate.

There are many applications for capturing the body surface at high frame rates. For

example, computer graphics algorithms can be used to render the surface of the person

from arbitrary viewpoints. The resulting virtual images look realistic and can be used in

a virtual mirror setting. If the surface representation is sufficiently compact to be trans-

ported over a network, remote rendering algorithms can be used to create a tele-presence

system. Producing a virtual rendering of a person is not the only feasible application

when a captured surface is available. The surface information can be used to fit virtual

garment to the body of the person or to derive anthropological measurements from the

person without contact. Moreover, an exact surface can be used to accurately interact

with virtual objects in a scene.

4.1.2 Challenges of Multi-View Shape Estimation

There are a number of challenges associated with capturing the body surface from multi-

view data at high frame rates. A multi-camera setup has only a limited number of views.

Usually, a multi-camera system that is used for capturing a person consists of 8 to 10

cameras [57, 130, 135]. When eight cameras are arranged around a person, a 360 degree

view is possible when each camera has a viewing angle of approximately 45 degrees relative

to its neighbors. Such high differences in viewing angles make computations of depth maps

or photo consistency measures [124] challenging. A higher number of cameras would allow

to form stereo pairs, which is beneficial for such computations. However, more camera

images would need to be transferred and processed, which limits the feasibility of real-

time performance. In addition, a higher number of cameras increases hardware costs and

requires a more complicated setup.

One efficient way to capture the shape of the human body with a limited number

of cameras is by analyzing the silhouettes from each camera. A silhouette is the binary
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image of an object segmented from its background. Given a set of calibrated cameras and

a method to compute the silhouettes of the person from multiple views, it is possible to

quickly obtain the visual hull of the person [52, 93]. It is possible to use the visual hull

directly for rendering [73] or for computing a polygonal model [1, 52].

However, computing the visual hull directly from silhouette images can yield artifacts.

These artifact are similar to what caused spurious nodes in volumetric pose estimation

(see Chapter 3). Typical artifacts include additional limb-like structures. Therefore, we

need a robust way to capture the surface of the human body.

4.1.3 Human Shape Estimation Through Mesh Deformation

In recent years, there has been a strong trend towards model-based approaches for human

shape estimation. Model-based approaches often make use of a polygonal mesh which

already looks similar to the person or at least has a human shape. An adaptation algorithm

deforms this mesh in such a way that its reprojection to input images optimally explains

the silhouettes of the person. Prior to adaptation, it is common to pre-deform the mesh

such that it has a similar pose as the person in the images [57, 158]. Therefore, the mesh

can be automatically rigged to a skeleton [18] such that by transforming the skeleton, the

rigged mesh is transformed accordingly. The pose of the skeleton can be determined by a

pose estimation algorithm such as described in Chapter 3.

Adapting a model of the human body to camera images has several advantages over

bottom-up methods that reconstruct the body shape directly from input data. Compared

to bottom-up methods, the number of visible artifacts due to ambiguities in input images

is greatly reduced with model-based approaches as the model is a strong prior. Thus,

object segmentation errors or isolated wrong correspondences are unlikely to have a visible

influence on the result. If the model is a highly detailed laser scan of the person, details

such as clothing wrinkles are baked into the model. Adapting such a model to images

preserves these details even though they are not visible from the input silhouettes [57,

138]. Performing anthropological measurements directly on images is difficult because it

is hard to find the correct measurement points on the body. Such measurement points

can be defined once for an adaptable model. After adapting such a model to image

data, predefined measurement points can guide body measurements and make the overall

measurement process more robust.

The most common way of deforming a mesh such that it fits to images is to apply the

Laplacian Mesh Editing (LME) framework [134]. The original application of this frame-

work is to deform existing polygonal meshes by manually editing selected vertices. This

framework is based on a least squares energy minimization which can be computed effi-

ciently for reasonably sized meshes. It features a data term which pulls mesh vertices to

certain 3D positions in space. Moreover, the LME framework provides a regularization

term that preserves surface details in the mesh while allowing smooth deformations. This

smoothing information is computed by analyzing the local neighborhood of each mesh ver-



50 Chapter 4. 3D Human Models from Multi-View Images

tex and computing differential coordinates. Tuning the weight of data and regularization

terms influences the stiffness or flexibility of the deformation. More details about this

framework will be given in Section 4.3.

Previous methods which apply the LME framework for adapting a human model to

image data mainly focus on the efficiency of the data term. For example, such meth-

ods align mesh vertices with silhouette contours or image feature points [57, 158]. The

regularization term is usually the same as in classical LME.

The standard framework does not make use of an existing skeleton structure during

surface deformation. While the skeleton can be used to initialize the pose of the mesh

prior to adaptation, it has to be discarded during shape optimization. Indeed, high quality

results can be obtained without skeletons when each camera has a good view of the person

in a multi-camera setup. However, our experiments have shown that in non-optimal

camera layouts the result of mesh deformation can degrade substantially. For example,

this is the case when not every camera is able to capture the complete body or when there

are a low number of cameras. Non-optimal camera setups are usually the result of spatial

restrictions. The recording setup used in this thesis must be small enough to be operated

in a clothing store. It is not acceptable to sacrifice a whole room just for recording a single

person. This leads to limitations where cameras can be placed and often cameras are too

close to the human subject.

4.1.4 Contributions to Human Shape Estimation

We extend the LME framework by a novel skeleton-based regularization term to address

the aforementioned problems. We base this decision on the observation that deformations

of the human skin are predominantly caused by movement of the underlying skeleton. Our

skeleton based regularization term combines bone movement and surface optimization.

Consequently, large deformations of the surface are only possible if the connected bones

support this movement. This can help in situations where input images are ambiguous or

silhouettes cannot be extracted reliably.

Differential coordinates as defined for the LME framework support only translational

movements. Possible surface rotations must be handled either by implicit optimization

or explicit coordinate corrections. We show how to compute rotational corrections of

differential coordinates efficiently by using the co-optimized skeleton joint positions.

In order to align mesh vertices with silhouette contours, point correspondences are

required. Usually, such correspondences are found by projecting vertices into the image

and taking the nearest contour point or searching in direction of surface normals [4, 158]. In

an iterative fashion, this search for correspondences is alternated with surface optimization

until no further improvement is possible. This process is illustrated in Fig. 4.2. False

correspondences between mesh vertices and silhouette contours often cause problems and

lead to artifacts. We propose to solve this problem by an automatic weighting scheme

which takes into consideration the surface orientation of each mesh vertex as well as the
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Figure 4.2: Image-based Laplacian mesh editing is an iterative process.

orientation of the silhouette contours.

In Straka et al. [142], we proposed the first real-time capable mesh adaptation system

in the literature. We achieved a fast computation time through iterative minimization

of decoupled deformation constraints. In this thesis, we extend our previous work and

provide a novel framework for efficient shape estimation using a multi-resolution mesh

structure and a novel iterative optimization algorithm. At low resolutions, we perform

computationally demanding computations at a fraction of the run-time of a full resolution

mesh. First, we ensure that a mesh is coarsely aligned with the images without emphasis

on a detailed surface reconstruction. After increasing the resolution of the mesh, we adapt

the mesh to details in the input images.

4.2 Polygonal Meshes

4.2.1 Elements of a Polygonal Mesh

In this thesis, we use polygonal meshes to model the shape of the human body. This section

gives a short overview of how to represent such meshes and explains basic definitions. We

define a mesh M = {V,F} with several vertices V = [v1, . . . ,vn]T with vi ∈ R3 and

multiple triangular faces F = [f1, . . . , fm]T with fi ∈ N3. Each face references three vertices

by their index. We define that vertex indices must be counter-clockwise oriented when the

face is front-facing. An edge eij is defined as the direct connection between two vertices

vi and vj .

In Fig. 4.3(a), we show a small subset of a triangular mesh facing the reader. For

example, face 1 is defined as f1 = [1, 3, 2]T . We define the set N as the 1-ring vertex

neighborhood for each vertex. For example, the 1-ring of vertex v1 is the set of all vertices

directly connected to v1 via an edge: N1 = [2, 3, 4, 5, 6]T (i.e. all green vertices).

Another important concept of polygonal meshes deals with face and vertex normals.

A normal describes the orientation of the mesh surface at a particular point. Normals

are used for lighting computations in the rendering stage and when searching for mesh
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Figure 4.3: (a) Elements of a polygonal mesh. Circles denote vertices and lines represent
edges. (b) Linear skinning weights for the right upper arm as vertex colors.

correspondences. A face normal is a unit-length vector that points orthogonal to the

surface spanned by the vertices of the face. The face normal ni ∈ R3 can be directly

computed from the vertices of the face. The following equation computes the normalized

face normal for face 1:

nf1 =
(v3 − v1)× (v2 − v1)

‖(v3 − v1)× (v2 − v1)‖2
. (4.1)

All meshes used in this thesis are considered smooth (i.e. they have the same normal

on both sides of an edge). Thus, we can compute vertex normals as the normalized sum

of all adjacent face normals. For example, the vertex normal for vertex v1 is computed as

nv1 =

∑
i∈N1

nfi∥∥∑
i∈N1

nfi

∥∥
2

. (4.2)

All polygonal meshes used in this thesis are watertight. This means that there is

no boundary edge and every edge has exactly two adjacent faces. This implies that a

watertight mesh has no holes.

4.2.2 Skeletal Subspace Deformation

A polygonal mesh can consist of thousands of vertices. This number is too large for efficient

modifications such as changing the non-rigid pose of the mesh. Similar to the skin of a

human body, a mesh can be deformed in a more efficient way through linear blend skinning.

Therefore, a skeleton is embedded into the mesh and surface vertices are attached to one
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or multiple bones. This attachment can be expressed through linear skinning weights

0 ≤ ρij ≤ 1 that connect a vertex vi to a bone bj . Each bone bj has a linear affine

transformation Tj ∈ R3×4 that can modify all attached vertices. Mathematically, the

overall deformation of the mesh can be expressed as the weighted sum of transformed

vertices:

ṽi =
∑
j

ρijTj

[
vi

1

]
with

∑
j

ρij = 1 ∀i (4.3)

The skinning weights ρij can be automatically obtained through a rigging

algorithm [18]. In Fig. 4.3(b), we show the computed skinning weights for the attachment

between all mesh vertices and bone of the right upper arm as a colored surface. Purple

colors signify a strong attachment with ρij = 1 while cyan colors represent ρij = 0. In

the vicinity of joints such as elbow and shoulder there is a smooth transition of weights.

When a joint is bent, skin areas near joints will be transformed smoothly (e.g. partly by

the bones of the upper and lower arm).

4.3 Laplacian Mesh Editing

Mesh editing is the process of deforming the surface of an existing polygonal mesh by

modifying the position of a few selected vertices [28, 98, 134]. In contrast to skeletal sub-

space deformation, mesh editing involves no skeleton that defines surface transformations.

Instead, the user defines constraints directly for individual vertices of the mesh. These

constraints are commonly referred to as target handles and define the position and rotation

of selected vertices. The position of remaining vertices is optimized such that the resulting

deformation is smooth and structural details of the mesh are preserved. Therefore, each

vertex uses a coordinate relative to its neighboring vertices. These relative coordinates

are computed using the Laplace operator. Hence, the overall algorithm is called Laplace

mesh editing. The main application of mesh editing is 3D modeling and animation. In

contrast to alternative modeling techniques, the Laplacian mesh editing approach allows

non-rigid deformations to be modeled intuitively. An example for editing of an existing

mesh with this method is shown in Fig. 4.4.

Besides applications in the modeling domain, Laplacian mesh editing has proven to be

a versatile method for automatic estimation of body shape from images. It is especially

useful in the area of human performance capture from multi-view video [4, 57, 158]. The

main difference to manual mesh editing is that editing constraints are no longer user

defined but are automatically created from image correspondences. In the general case, it

is difficult to compute these correspondences directly from images. Therefore, the process

of finding image correspondences is iterated with a surface optimization until convergence

(see Fig. 4.2).

In this section, we provide a deeper insight into mesh adaptation using Laplacian mesh

editing techniques. First, we explain how differential coordinates can be used to describe
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(a) (b) (c)

Figure 4.4: Laplacian Mesh Editing: Sorkine et al. [134] (a) select a region of interest
and (b) modify the translation and rotation of the region in order to (c) achieve a detail
preserving deformation (images taken from [134]).
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Figure 4.5: (a) Computation of delta coordinates using the 1-ring of neighboring vertices.
(b) Definition of angles for the co-tangent weighting scheme [28] for edge (vi,vj).

the coordinate of each vertex depending on its neighbors. Then, we show how these

coordinates enable a smooth mesh deformation in a linear optimization scheme. Finally,

we present methods to handle rotation and scaling issues that arise when working with

differential coordinates and linear optimization.

4.3.1 Differential Coordinate Representation

Differential coordinates can be used to describe the position of a vertex relative to its

neighbors. This is essential for mesh editing as the absolute position of each vertex can

change during the editing process. By keeping relative coordinates similar to the unmod-

ified shape, the local structure of the mesh can be preserved during editing.

For a vertex vi, the differential coordinate δi ∈ R3 is computed as the vertex position
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minus the weighted sum of positions of its 1-ring neighbors Ni (see Fig. 4.5(a)). This is a

discrete approximation of the Laplace-Beltrami operator L(.):

Li(V) = δi = wivi −
∑
j∈Ni

wijvj . (4.4)

The weights wij ≥ 0 are obtained using the co-tangent weighting scheme [28]:

wi =
1

Ai
wij =

1

2
(cotαij + cotβij) (4.5)

where Ai is the Voronoi area of vertex vi and αij and βij are the two angles opposite to

the edge (vi,vj) (see Fig. 4.5(b)).

There are certain properties of differential coordinates that are computed with the

discrete Laplace-Beltrami operator. The operator is a linear operator which means that

constraints containing the Laplace operator can be used in a linear optimization frame-

work. A differential coordinate is independent of global translation but not on scaling and

rotation. Therefore, special treatment is required when rotations and scaling need to be

supported during mesh editing (see Section 4.3.3).

4.3.2 Least Squares Mesh Deformation

Deformation of the overall mesh can be expressed as a set of constraints. An optimally

deformed mesh is obtained when all constraints are satisfied. This can be achieved by

jointly minimizing the error of all constraint. There are two types of constraints involved

in Laplace mesh editing: (1) position constraints modify the position of selected vertices

(data term) and (2) smoothness constraints keep differential coordinates of the vertices

close to their initial value (smoothness term). Note that smoothness does not mean that

the resulting mesh is smooth but rather details of the original mesh are preserved. The

deformed vertex positions of the overall mesh Ṽ can be obtained via linear least squares

minimization:

Ṽ = arg min
V

M∑
i=1

wi‖vi − ti‖2︸ ︷︷ ︸
data term

+λ
N∑
i=1

‖δi − Li(V)‖2︸ ︷︷ ︸
smoothness term

(4.6)

where ti denotes the target position of handles and wi a weight for each target. λ is a

global weight factor that balances the influence of the data term and the smoothness of

the result. The set of equations in (4.6) can be expressed in matrix notation:

Ṽ = arg min
V

∥∥∥∥∥
[

S

λL

]
V −

[
T

λ∆L

]∥∥∥∥∥
2

(4.7)
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where T = [t1, . . . , tM ]T is the set of target positions and S is a matrix that selects the

handle vertices. L denotes the discrete Laplacian matrix for the mesh and the initial

differential coordinates of the mesh are ∆L = [δ1, . . . , δN ]T . The initial δ-coordinates of

the mesh are computed by applying the Laplacian operator on the initial vertex positions

∆L = L ·V0. Since both L and S are sparse matrices, this system of linear equations can

be efficiently solved in closed-form using sparse Cholesky decomposition [38].

4.3.3 Handling Rotations

As mentioned in Section 4.3.1, Laplacian mesh editing cannot accurately handle 3D rota-

tions of the mesh using linear optimization. The problem is that differential coordinates

as defined in Equation (4.4) support only the translation of vertices. Thus, any induced

rotation due to stretching or bending of the object result in shearing of vertices.

Sorkine et al. [134] present a possible solution to this problem. They implicitly optimize

for a transformation Ti(V) for every vertex. This transformation rotates and scales initial

differential coordinates δi during shape optimization. The modified optimization problem

can be written as:

Ṽ = arg min
V

M∑
i=1

wi‖vi − ti‖2 + λ

N∑
i=1

‖Ti(V)δi − Li(V)‖2. (4.8)

For two-dimensional meshes, the transformation Ti can be fully estimated using linear

equations. Thus, a deformed mesh can still be optimized using a linear solver. However,

for three dimensional meshes, only a linear approximation of the transformation is possible

when linearity is to be maintained. This approximation works for small rotation angles

only.

In case of larger rotations, a possible solution is given by Lipman et al. [98]. First, they

compute a rough deformation of the mesh using Equation (4.6). Then, for each vertex vi,

a local rotation matrix Ri is estimated by analyzing the 1-ring neighborhood of the vertex.

Finally, the initial differential coordinates are corrected δ̃i = Ri ·δi and the updated system

in Equation (4.6) is solved again.

4.4 Mesh Editing based on Silhouette Images

In the previous section, we have given an introduction to Laplacian Mesh Editing (LME)

with no specific focus on how to apply this framework to multi-view images. In this sec-

tion, we will explain how LME can be used to iteratively deform a polygonal mesh based

on image observations. More specifically, we focus on methods that operate on multi-

view silhouette images of a person. These methods are based on finding correspondences

between rim vertices and silhouette contours. In the optimization step, these correspon-

dences pull those vertices towards the silhouette contour which maximizes the overlap of

the projected mesh with the silhouettes (see Fig. 4.6). This procedure is iterated until



4.4. Mesh Editing based on Silhouette Images 57

Image

Camera
center

Viewing Ray

3D Mesh

Projected Mesh

Match

Rim-VertexNormal direction

Silhouette Contour
Constraint

Figure 4.6: Silhouette constraints pull rim-vertices towards the silhouette contour in every
camera image.

convergence. The result is equivalent to fitting the mesh to the visual hull. However, the

visual hull does not need to be computed explicitly.

Rim vertices are vertices that are located on the border of the mesh when projected

onto a camera image. In order to find rim vertices, we project vertices vi of mesh M into

all camera views using the corresponding 3 × 4 projection matrices P` = K`[R`| −R`t`]

and rotate the corresponding vertex normals ni onto the image plane using rotation matrix

R` ∈ R3×3:

v`
i =

[
P1

`

P2
`

]
·

[
vi

1

]

P3
` ·

[
vi

1

] n`
i = R` · ni (4.9)

where Pr
` denotes the rth row of the projection matrix of camera `. We compute vertex

normals ni as the normalized mean of face normals adjacent to the vertex vi. A rim vertex

in image I` is a vertex with a normal almost parallel to the image plane of camera `. The

absolute value of the z-component of n`
i is small. We find rim-vertices by comparing the

absolute z-component with a threshold.

Note that this threshold is dependent on the resolution of the mesh. In a high resolution

mesh, faces adjacent to vertices have a similar orientation and vertex normals are accurate.

However, when the mesh resolution is low, only a few vertices model the cross section of

a body part (e.g. an arm) and the mean orientation of adjacent faces may not represent

a good vertex orientation. Therefore, the threshold must be increased when the mesh

resolution is low. We use a threshold of |z| < 0.1 for a mesh with more than 2 000 vertices

and gradually increase this threshold to |z| < 0.3 as the mesh resolution decreases to

500 vertices or lower.

Next, we need to find correspondences between rim vertices and silhouette contour
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pixels. For all rim vertices, we sample pixels from I` along a 2D line

l(t) = v`
i + t

[
1 0 0

0 1 0

]
n`
i (4.10)

for intersections with the silhouette contour where −τ ≤ t ≤ τ defines the search region

in pixels. Note that it is important that only intersections with a contour gradient similar

to the normal direction n`
i are considered a match p`

k ∈ R2. To speed up the search for

correspondences, it is possible to use a binary search along the line. Each successfully

matched rim-vertex/contour pair (v`
i ,p

`
k) yields a 2D correspondence in image space.

4.4.1 Constraints based on Point Correspondences

There are several possibilities to translate a 2D correspondence into a 3D constraint. Each

pixel of a 2D image captured by a perspective camera can be represented by a viewing ray.

A viewing ray is a 3D line that connects the camera center with a pixel on the projective

plane. More importantly, the part of the object that is projected onto a specific pixel lies

on the corresponding ray. However, the distance of that object from the camera cannot

be known from a single image alone.

The standard LME framework which is presented in Section 4.3 supports only point-

to-point correspondences. A simple solution to attract a 3D vertex towards a viewing ray

is to compute the point on the ray with the shortest Euclidean distance to the vertex.

Then, a constraint is generated that minimizes the distance between this point and the

vertex during mesh deformation. This method already yields good results when the mesh

has been properly initialized before finding correspondences.

A more advanced correspondence scheme is presented by Gall et al. [57], who define

the correspondence between a three dimensional vertex and the camera ray itself. They

minimize the distance between a 3D vertex vi ∈ R3 and a viewing ray corresponding to an

image pixel pk ∈ R2. Therefore, the corresponding constraint has one degree of freedom

where the vertex is allowed to freely move along the ray. For each correspondence between

a vertex and a ray, Gall et al. define two linear constraints:

(Nx
` − px

kN
z
` ) vi + (T x

` − px
kT

z
` ) = 0(

Ny
` − py

kN
z
`

)
vi +

(
T y
` − py

kT
z
`

)
= 0 (4.11)

where the 3×3 rotation matrix N` = K`R` is computed from the corresponding projection

matrix P` and T` = −K`R`t` denotes the translation.

When determining correspondences between vertices and target points automatically, it

is possible that a vertex matches with an incompatible contour pixel. Therefore, a reliable

rejection or weighting of such matches is required. A feasible way to implement such

weighting is to analyze the surface normal of the vertex and compare it to the orientation

of the contour pixel [158]. The weight should be high for similar orientations and low if
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the vertex has a different orientation than the contour. A simple computation is based on

the dot product of the contour normal nk ∈ R2 and the projected vertex normal ni ∈ R3:

wi,k =
〈
nk,N

xy
` · ni

〉
(4.12)

where Nxy
` denotes the first two rows of the projective rotation matrix of camera `. We do

not normalize the rotated and truncated normal Nxy
` ·ni, which contains only the x and y

axis components. This strategy down-weights rotated normals with a higher z-component.

In practice, this ensures that only true rim vertices have a high weight wi,k.

4.4.2 Constraints based on Surface Correspondences

Since the matching of vertices and silhouette contours is based on an iterative closest point

scheme, it is likely that these point correspondences will change across iterations. This

leads to the question: why should we use point correspondences in the first place?

In fact, it makes more sense to align the mesh surface with the silhouette contour

instead of aligning individual vertices with contour points. Therefore, we propose a

novel covariance-based weighting scheme based on the Generalized Iterative Closest Point

(GICP) algorithm presented in Segal et al. [123]. Segal et al. propose a better way to align

three dimensional point clouds than by simply reducing the Euclidean distance between

two corresponding points. Instead, they minimize the distance between corresponding

planes. They make the assumption that every point vi lies on a small, local plane which

can be described using an anisotropic covariance matrix Σi. This matrix models a small

variance in the normal direction of the surface but a high variance on the local surface

plane. Each point vi is therefore described not only by its position but also by a covariance

matrix which is computed by analyzing the neighboring points.

The plane-to-plane distance between two point/covariance tuples (vi,Σi) and (vj ,Σj)

can be expressed using the squared Bhattacharyya distance:

(vi − vj)
T

(
Σi + Σj

2

)
︸ ︷︷ ︸

Hij

−1

(vi − vj) = (vi − vj)
T Hij

−1 (vi − vj) = ‖vi − vj‖2Hij
. (4.13)

The Bhattacharyya distance measure computes the combined covariance matrix

Hij =
Σi + Σj

2
(4.14)

as the average of the two covariance matrices. This covariance matrix has two key advan-

tages when minimizing the distance between two planes: First, an anisotropic covariance

matrix allows movement of points along the surface plane but constrains corresponding

points to have a low distance in normal direction. Second, the mean of two similarly

oriented covariance matrices conserves a high weight in normal direction while differently
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Figure 4.7: Covariances describe the orientation of the surface around a vertex vi. The
mean of two corresponding covariances yields an automatic weighting Hij .

oriented covariances automatically decrease the strength of the correspondence. This

behavior is demonstrated in Fig. 4.7. Since covariance matrices are symmetric, surface

points with an opposing normal direction would wrongly yield a strong correspondence.

Therefore, such correspondences need to be discarded. Note that if Hij is the identity ma-

trix, the distance computed in Equation (4.13) is equal to the standard squared Euclidean

distance.

In this thesis, we apply the concept of covariance-weighted point correspondences pre-

sented in [123] to correspondences found in image-based Laplacian mesh editing. There

are two problems that need to be addressed:

• The original GICP algorithm computes plane covariance matrices by sampling dense

points clouds [123]. The mesh used in mesh editing is not as dense but we can exploit

the polygonal structure of the mesh to compute plane covariances.

• Initial correspondences are given between three dimensional vertices and two dimen-

sional pixels. Thus, we need to rotate the plane covariance into the image plane

before we can compute a combined covariance matrix Hij .

For three dimensional meshes, we compute the surface covariance Σi as the weighted

average of the covariances of the faces adjacent to vertex vi. First, we assign a covariance

Σfj to each face:

Σfj = Rfj

εcov 0 0

0 1 0

0 0 1

Rfj
T . (4.15)

The rotation matrix Rfj rotates the normal of face fj onto the x-axis. εcov � 1 defines the

variance in normal direction. As the value of εcov becomes smaller, the resulting covariance

ellipsoid Σfj is flattened. The covariance Σi for vertex vi is obtained as the weighted sum
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of inverse-covariances of its neighboring faces:

Σi =

 ∑
j∈NF(vi)

αij

(
Σfj

)−1

−1

with
∑

j∈NF(vi)

αij = 1 (4.16)

where αij is a weight proportional to the area of face fj and NF(vi) the list of faces adjacent

to vertex vi. For 2D meshes or silhouette contours, we obtain Σi via edge covariances

weighted by edge lengths.

The 3 × 3 covariance matrix Σv
i corresponding to vertex vi cannot be averaged with

the 2 × 2 contour covariance Σp
k of a corresponding silhouette contour pixel pk. Thus,

we cannot compute Hik from Equation (4.14) directly. The solution is to first rotate Σv
i

into the image coordinate system of camera ` and then drop the depth component (z

axis). This allows the additive combination of surface covariances with the 2D contour

covariance of pixel pk:

H̃ik =
Σ̃v

i + Σp
k

2
with Σ̃v

i =

[
R1

`

R2
`

]
Σv

i

[
R1

`

R2
`

]T
(4.17)

where H̃ik is the combined correspondence covariance. By combining Equations (4.11),

(4.13) and (4.17), we obtain the squared covariance-weighted distance constraint for 2D/3D

correspondences of vertex vi and pixel pk:∥∥∥∥∥
[
Nx

` − px
kN

z
`

Ny
` − py

kN
z
`

]
vi +

[
Tx

` − px
kT

z
`

Ty
` − py

kT
z
`

]∥∥∥∥∥
2

H̃ik

= 0 (4.18)

This distance constraint can be directly embedded into the linear least squares solver

for mesh deformation.

4.5 Skeleton Supported Robust Mesh Adaptation

So far, we have presented a method to deform the surface of a mesh using automatically

obtained correspondences between mesh vertices and silhouette contours. We initialize a

mesh with roughly the same pose as the user in the images and then match rim vertices

with the closest silhouette contour. There is an inherent problem with matching closest

contour points: the contour may be occluded by other body parts. Thus, when matching

with the closest visible contour, the correspondence may be wrong and there is no way to

detect this from silhouette images alone. A typical example of this case is illustrated in

Fig. 4.8.

Laplacian surface constraints help to keep surface deformations consistent and min-

imize the effect of single outliers in the data term. However, in the example shown in

Fig. 4.8(c) all correspondences along the upper leg yield a consistent but wrong corre-
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(a) Model image
with two legs

(b) Silhouettes (c) Estimated corre-
spondences

(d) Volumetric solu-
tion

Figure 4.8: Demonstration of how wrong correspondences caused by overlapping silhou-
ettes can cause unnatural deformations.

spondence. Thus, surface optimizations with these correspondences will pull the front

of the right (green) upper leg towards the image of the left (red) leg. The vertices on

the backside of the leg will find correct correspondences. However, there is no direct

connection between vertices in the front and back.

Aguiar et al. [4] use a volumetric mesh consisting of tetrahedra in order to create

connections between one side of the surface with the opposite side. A volumetric mesh

preserves the volume of limbs. They can, however, not prevent an arbitrary bending of

limbs. In the worst case, vertices from the backside of the left leg will get pulled forward

as shown in Fig. 4.8(d).

Our solution tries to model the anatomy of the human body. The skin is not directly

connected to the backside of a limb or torso but attached to the bones of the skeleton.

It is a hybrid method between skeletal subspace deformation and Laplacian mesh editing.

While recent work on linearly connecting a mesh surface to a skeleton [95, 169] is limited

to handle short bone segments only, our approach is able to handle arbitrary bone lengths.

We propose to use the anatomical skeleton of the human body and introduce differential

bone coordinates to attach skin vertices to bones. Ideally, a bending of the mesh should

only be allowed near skeleton joints, thus allowing only a piecewise rigid deformation.

4.5.1 Differential Bone Coordinates

We introduce differential bone coordinates to connect mesh vertices to a skeleton. A

skeleton of the human body model is either provided with the model or can be estimated

automatically [18]. The skeleton lies inside the body and consists of joints gj ∈ R3 and

bones b. Each bone connects two joints. Following the hierarchy of bones in the human

body, we can assign each bone bj to exactly one joint gj and define that this bone connects
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to the joint gprev(j). By definition, gprev(j) is the bone hierarchically closer to the root of

the skeleton, which is the body center. For example, the forearm bone is connected to

joint gwrist and the previous joint is gprev(wrist) = gelbow.

gprev(j) gj

vi

.

bj

βij

Figure 4.9: Differential bone coordinates βij for vertex vi.

Our differential bone coordinates β are similar to δ-coordinates of Equation (4.4).

They encode the position of vertex vi relative to its connected bones. First, we define the

differential bone coordinate βij for vertex vi connected a single bone bj :

βij = vi −
(
γij gj + (1− γij) gprev(j)

)
. (4.19)

Each γij is chosen such that βij is orthogonal to bone bj (see Fig. 4.9):

γij =
1

2
−
‖vi − gj‖2 − ‖vi − gprev(j)‖2

2 ‖gj − gprev(j)‖2
. (4.20)

Each surface vertex vi can be connected to one or multiple bones bj as shown in

Fig. 4.10. This is similar to mesh animation with linear blend skinning where a rigging

algorithm such as [18] computes multiple skinning weights ρij for each vertex vi. These

weights describe the influence of bone bj on vertex vi (
∑

j ρij = 1). We use the same

weights ρij to connect a vertex to multiple bones. A multi-bone assignment is common

near joints to support smooth bending. In case of multiple bones, Equation (4.20) is

extended to:

Bi(V,G) = βi = vi −
|G|∑
j=1

ρij
(
γij gj + (1− γi,j) gprev(j)

)
(4.21)

where |G| is the total number of joints in the skeleton.

4.5.2 Skeleton Constraints for Mesh Deformation

Similar to differential Laplace coordinates in mesh editing, we can enforce that surface

vertices maintain a relative position to their connected bones. Therefore, we compute βi
values from an undeformed model and penalize any deviation during shape optimization.
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vi

βi

gj

Figure 4.10: Implicit skinning through multi-bone connection of vertices.

Our skeleton consistency term can be easily integrated into Equation (4.6):

Ṽ = arg min
V,G

M∑
i=1

wi‖vi − ti‖2︸ ︷︷ ︸
data term

+λskin

N∑
i=1

‖δi − Li(V)‖2︸ ︷︷ ︸
skin term

+λbone

N∑
i=1

κi‖βi − Bi(V,G)‖2︸ ︷︷ ︸
bone term

.

(4.22)

Now, both mesh vertices V and joint positions G are optimized together. For example,

joint positions are automatically updated when surface vertices are deformed and vice

versa. Similar to differential Laplace coordinates, bone coordinates are not rotation and

scale invariant. However, we can apply the method of Sorkine et al. [134] to implicitly

approximate a transformation matrix for bone coordinates or correct the rotation of bone

coordinates after each iteration.

κi ≥ 0 are weights that adjust the strength of the binding between surface and skeleton

for each vertex individually. This allows for some regions of the mesh to be more rigid

than others. A typical application is to optimize a model with partly loose clothing (such

as a skirt). There, certain vertices should be able to move independently from the skeleton

and have a low weight κ. Stoll et al. [138] show how to learn such weights automatically.

Equation (4.22) can be used for 2D and 3D meshes and allows natural deformations

near joints where vertices are affected by more than one bone. In Fig. 4.11, we show some

examples for deforming a 2D mesh. In these examples, we compute the initial configura-

tion of δs and βs from the default pose in Fig. 4.11(a). Then, we create some constraints

to set the positions of the bones and optimize for the vertex positions. This experiment

also demonstrates the effect of rotations and scale when using implicitly optimized trans-

formations of differential coordinates [134]. In contrast to 3D meshes, it is possible to

linearly estimate rotation and scale corrections for 2D meshes accurately.
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(a) Default pose

(b) λbone = 2 (c) λbone = 0.1 (d) Changing bone lengths

Figure 4.11: Effects of bending and stretching the skeleton on a 2D mesh. The undeformed
mesh is shown in Fig. (a). In (b), we show that high values for λbone cause a stiff
surface when bending. (c) A small λbone produces smoother results due to the skin term.
(d) Changing bone lengths leads to scaling of the attached surface.

4.5.3 Efficient Updates of 3D Differential Coordinates with Skeletons

As mentioned before, 3D meshes cause problems when the optimization introduces ro-

tations or scale changes of body parts. The problem is that differential coordinates can

model only translations but cannot handle rotations and scale in a linear optimization

framework. In Section 4.3.3, we have presented two existing methods to correct differen-

tial coordinates. These methods either implicitly or explicitly analyze the deformed surface

in order to update the scale and rotation of differential coordinates. Implicit linear meth-

ods that estimate a coordinate transformation are well suited for 2D meshes. As three

dimensional rotations cannot be fully represented with linear terms, implicit methods can

only be used to approximate small rotations for three dimensional meshes [134]. When

larger rotations are to be expected, it is necessary to explicitly compute a transformation

that corrects for rotations of the surface.

Explicitly computing a transformation can be computationally complex. For example,

Lipman et al. [98] estimate a local rotation matrix Ri for each vertex vi by analyzing the

1-ring neighborhood of the vertex. In addition, they require that the rotation matrices

of two neighboring vertices vi and vj are similar (‖Ri − Rj‖ ≈ 0). Finally, they apply

each rotation Ri to the corresponding differential Laplace coordinate δi in order to update

its orientation. A new surface optimization using the updated differential coordinates

produces more naturally looking results at rotated surface areas.

Our joint surface and skeleton pose optimization computes updates skeleton joint po-

sitions during each iteration. Using updated joint positions, we can efficiently compute
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Figure 4.12: We use skeleton supported mesh adaptation to efficiently update differential
coordinates.

a rotation matrix for each vertex as well as ensure that neighboring vertices have similar

rotation matrices. Our approach is based on the observation that the surface rotation of

body parts is always caused by the underlying bones. Therefore, it is not possible that two

surface vertices attached to the same bone have different surface rotations when the bone

is rotated. In fact, the same principle is used to animate a polygonal mesh using linear

blend skinning where only a single transformation matrix per bone is used to animate the

complete surface (see Section 4.2.2).

First, we estimate a rotation matrix for every bone. Then, we apply this rotation

to the differential coordinates of all connected vertices. As a vertex can be attached to

multiple bones, we use linear skinning weights ρij to blend together multiple rotations.

This allows for smooth changes in rotations near skeleton joints. Our approach performs

time consuming computations only once per bone. Since there are significantly less bones

than surface vertices in a polygonal model of a human body, this allows for a significant

speedup compared to estimating and smoothing rotations for every vertex.

In image-based surface adaptation, we can integrate explicit differential coordinate

updates into the optimization process. Fig. 4.12 shows that after every surface optimiza-

tion iteration, we update differential coordinates. In order to estimate rotation matrices

for bones, we need to analyze the joint positions of the skeleton before and after a opti-

mization. Each bone bj has a joint position gj and a previous joint position gprev(j) (see

Fig. 4.9). Thus, we compute a direction vector for each bone as:

ξj =
gj − gprev(j)

‖gj − gprev(j)‖
. (4.23)

We compute the rotation qj that rotates the initial bone direction ξ0
j onto the current

bone direction ξ̃j . As we want to blend together multiple rotations near joints, we choose

the quaternion representation because multiple rotations can be linearly combined [88]. A
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quaternion can be efficiently computed using the axis-angle notation:

aj = ξ0
j × ξ̃j ϕj = arctan


〈
ξ0
j , ξ̃j

〉
‖aj‖

 qj =

[
sin
(ϕj

2

)
·

aT
j

‖aj‖
, cos

(ϕj

2

)]T
(4.24)

Finally, we compute a rotation qi for each vertex as the weighted sum of rotations of each

bone qj :

qi =

|G|∑
j=1

ρijqj (4.25)

where ρij denote the linear skinning weights associated with vertex vi. There is no need to

normalize the quaternion qi as
∑|G|

j=1 ρij = 1. We apply the rotation quaternion qi to both

the differential Laplacian surface coordinates δi as well as differential bone coordinates βi
in order to update their rotations. In addition, we use these rotations to update surface

covariances which are needed for weighted surface correspondence (see Section 4.4.2).

4.5.4 Preserving Skeleton Symmetries

The quadratic energy minimization from Equation (4.22) can be efficiently solved using

efficient linear system solvers [27]. The optimization problem can be re-written as:

arg min
V,G

∥∥∥∥∥∥∥
 S

λskinL

λboneB

 · [V
G

]
−

 T

λskin∆L

λbone∆B


∥∥∥∥∥∥∥

2

= arg min
V,G

∥∥C · x− d
∥∥2

(4.26)

where S, L and B correspond to the sparse matrices that implement the linear constraints.

T, ∆L and ∆B signify the target positions, initial differential Laplace coordinates and

initial differential bone coordinates.

However, there is no constraint that controls the lengths of bones (i.e. ‖gj −gprev(j)‖).
Thus, the skeleton can change in size if joint positions G move relative to each other.

In situations when there is noisy or occluded image data, the stability of mesh defor-

mation can be increased when the lengths of bones remain constant. It is possible to

use quadratic equality constraints during optimization which keep the lengths of bones

constant or enforce symmetric bones during shape adaptation:

arg min
V,G

1

2
xT (CTC)x + (CTd)x with x =

[
V

G

]
(4.27)

subject to
1

2
xTEkx = ek for k = 1 . . .K
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where C and d are the combined matrices from Equation (4.26).

x = [vx1 , v
y
1 , v

z
1 , v

x
2 , . . . , v

z
|V|, g

x
1 , g

y
1 , . . . , g

z
|G|]

T (4.28)

contains vertex and joint positions. For example, the length of a single bone can be fixed

to ek using an equality constraint

‖gj − gprev(j)‖2 = ek (4.29)

where the squared Euclidean distance operator can be expressed as a symmetric matrix Ek.

Similarly, body symmetry (e.g. bones with equal length) can be expressed as

‖ga − gprev(a)‖2 = ‖gb − gprev(b)‖2. (4.30)

A quadratically constrained quadratic problem (4.27) cannot be solved using a linear

solver directly. Thus, we use the iterative Sequential Quadratic Programming (SQP)

algorithm [113]. This algorithm iteratively solves a (sparse) symmetric linear system of

equations and therefore increases the time required for solving (4.27) only by a linear

factor.

4.6 Multigrid Optimization for Mesh Adaptation

4.6.1 Introduction

Mesh adaptation from image correspondences is an iterative process which alternates

searching for correspondences and mesh optimization (see Fig. 4.2). So far, we have con-

sidered working with the same resolution of the mesh at every iteration. This means that

we optimize a highly detailed surface even though for early iterations it is unlikely that

correspondences are correct. Therefore, we propose to use a coarse to fine approach for

shape adaptation which first optimizes a mesh with only a few hundred vertices and then

gradually increases the number of vertices.

Coarse to fine approaches are well known in a variety of computer vision problems.

Examples for multi-resolution analysis are scale space theory [97], feature tracking [101]

and real-time optical flow computations [168]. Instead of changing the resolution of input

images, we change the resolution of our model mesh. There exist methods to compute

an arbitrary low resolution representation of meshes [59, 80]. Usually, such methods

generate a data structure that allows fast down and up sampling at run-time. This makes

them perfectly suited for adaptive rendering where each mesh is rendered at the optimal

resolution for a given distance to the camera. Multi-resolution meshes can also help to

speed up the process of mesh deformation [126].

One might wonder why a multi resolution approach helps when the globally optimal

deformed mesh can be obtained by a single call of the optimizer. Highly optimized linear
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least squares solvers such as supernodal Sparse Cholesky factorization [38] can easily op-

timize more than 100 000 vertices. But even with such sophisticated solvers, the solving

time becomes too slow for interactive applications. A possible solution is to use iterative

solvers based on the Gauss-Seidel or conjugate gradient algorithm [27]. However, due to

the sparse connectivity between vertices, convergence can be rather slow.

Multigrid methods are a group of algorithms that use iterative optimization techniques

efficiently through multi-resolution analysis [30]. These methods are based on the assump-

tion that the residual value of an error function can be decomposed into low frequency

and high frequency errors. Many iterative solvers reduce high frequency errors quickly

while overall convergence is slow. The main idea to speed up convergence is to reduce

low frequency residuals by performing optimization on a lower resolution representation

of the model. High frequency errors are eliminated at a more detailed resolution level,

afterwards. The resolution of the model can be changed using restriction and prolongation

operators to decrease and increase the resolution of a grid, respectively. Multigrid meth-

ods can operate on arbitrary grids of interconnected nodes. Although highly irregular,

polygonal meshes are a grid structure that is well suited to be processed by multigrid

methods [27].

There exist two types of optimization schemes commonly found in multigrid methods

(see Fig. 4.13): A cascading multigrid is initialized with the coarsest representation of the

grid. This implies that it must be possible to generate an initial coarse solution without

knowing the highest resolution. An optimizer solves the problem at the coarsest level of

resolution and therefore reduces the low frequency parts of the overall error. After an

intermediate solution is obtained, the next level of resolution is initialized through the

prolongation operator Ω↑. The optimizer is called again at this finer grid resolution to

further improve the solution. Usually, the number of solver iterations at each level can be

decreased as the resolution gets finer [26]. At the finest level, the original problem is solved

on the full grid. In a V-cycle scheme, optimization starts on the full grid at level 0. A

restriction operator Ω↓ first decreases the resolution of the grid until the coarsest resolution

in reached. At each intermediate level, the optimizer can refine the solution. After reaching

the coarsest level of resolution, optimization is the same as for the cascading multigrid. A

full multigrid contains multiple V-cycles.

In this thesis, we propose to use a cascading multi-grid approach to speed up the

process of adapting a polygonal mesh M to silhouette images of a human body. Similar

to single resolution mesh adaptation in Section 4.4, multigrid mesh adaptation consists

of four phases: (1) finding correspondences between the mesh and the input images, (2)

setting up the constraints, (3) preparing the optimizer and (4) the actual shape optimiza-

tion. We initially optimize the mesh at the coarsest resolution level. This optimization is

followed by upsampling the resulting mesh to the next finer level using the prolongation

operator Ω↑. At the finer level, shape refinement is continued. We iteratively increase the

mesh resolution while refining the deformed result until we reach the full resolution. A

coarse resolution in the beginning mainly helps to pull a mesh surface to the right place
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Level 0

Level 1

Level 2

(a) Three levels of grid resolution

finer

steps

Ω↑

Level 3

Level 2

Level 1

Level 0

(b) Cascading multigrid

Ω↓

coarser finer

steps

(c) V-cycle multigrid

Figure 4.13: Multigrid methods can be used to optimize a grid at multiple levels of reso-
lution (a). A cascading multigrid (b) starts optimization at the coarsest level, refines the
solution and then increases the resolution of the model. In contrast, a V-cycle scheme
(c) is initialized with a full resolution grid. First the resolution is decreased before it is
increased again.

(e.g. pull the arms to the correct location according to input images). At finer resolutions,

we can adapt the mesh to details such as wrinkles in clothing.

4.6.2 Changing the Resolution of the Mesh

In order to apply multigrid methods, the operators for coarsening and refining a mesh

need to be defined. A restriction operator Ω↓n reduces the resolution from a fine-grained

mesh Mn to a coarser mesh Mn+1. The index n denotes the current level of the mesh

and M0 denotes the initial level at full resolution. The restriction operator selects some

vertices from the fine mesh Mn that can be discarded such that the coarser mesh Mn+1

contains only a subset of all vertices. The prolongation operator Ω↑n is the inverse of

the restriction operator. It takes a coarse mesh Mn+1 and computes the finer grained
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mesh Mn from it. Therefore, it needs to interpolate the positions of vertices that are not

present at level n+ 1.

Our definition of the restriction operator Ω↓n and the prolongation operator Ω↑n is based

on Shi et al. [126]. Given a mesh Mn consisting of vertices Vn and a set of edges En, we

select coarse vertices based on Algorithm 1. This algorithm iteratively marks vertices as

coarse until each unmarked vertex has at least a number of ηmin coarse 1-ring neighbors.

From this selection, the operator Ω↓n produces a set of coarse vertices Vn+1 for the next

level. These vertices will be present in mesh Mn+1. All vertices that will not be present

in level n+ 1 are guaranteed to have at least ηmin coarse neighbors at level n. Typically,

we require a minimum of ηmin = 3 neighbors such that the prolongation operator can

perform interpolation. We show an example for this selection algorithm in Fig. 4.14(a).

Note that there is no preferred ordering in which the vertices are accessed. We use the

order given by the vertex index. In addition, it is possible to ensure that certain vertices

never get removed in a coarser mesh by setting the corresponding marked-flag to true

before selecting discardable vertices.

Algorithm 1 Selecting vertices for the next level.

1: for all vertices v do
2: marked(v) = false
3: end for
4: for t = 1 to ηmin do
5: for all vertices v do
6: if not marked(v) then
7: r = GetNeighbors(v)
8: if count(marked(r)) < t then
9: marked(v) = true

10: end if
11: end if
12: end for
13: end for
14: return marked

In order to maintain connectivity of the mesh at level n+ 1, we need to create a new

set of edges En+1. For each vertex marked as coarse at level n, we create an edge to

every coarse vertex within its 1- and 2-neighborhood. This remeshing is demonstrated in

Fig. 4.14(b). Note that the resulting connectivity is neither a triangular mesh nor a planar

graph. This will have an effect on how to compute Laplacian mesh coordinates.

The prolongation operator Ω↑n restores the vertices Vn from a set of coarser vertices

Vn+1. Therefore, the positions of all vertices at level n+1 are copied to their corresponding

vertices in Vn. The positions of vertices that have been removed by the restriction operator

Ω↓n need to be interpolated. Similar to [126], we use a linear interpolation function to

compute the new position for each vertex as the weighted sum of their 1-ring neighbors.
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Figure 4.14: Demonstration of the restriction operator applied on the mesh in (a). Blue
nodes are selected for the next level and white nodes have a minimum number of ηmin = 3
neighbors. In (b), the next level is displayed with its new edges.

Vn+1 = Ω↓nVn Vn = Ω↑nVn+1 (4.31)

Restriction and prolongation operators are both linear operators which can be repre-

sented as sparse matrices. Thus, changing the level of a mesh is a simple sparse matrix-

vector multiplication, which has a low computational cost. As long as the topology of the

original mesh is not altered, there is no need to change these operators for subsequent

input frames. However, the interpolation weights of the prolongation operator need to be

updated if the vertex positions of the mesh at level 0 are changed. This is the case when

the mesh M 0 is pre-deformed using pose estimation results, for example.

4.6.3 Laplacian Mesh Adaptation with Multigrid Meshes

Mesh adaptation with multigrid meshes is similar to traditional mesh adaptation at a

single resolution. However, the number of vertices and the connectivity changes at every

resolution level. To compute differential vertex coordinates at every level, a different

Laplace operator Ln is required. In addition, there is one important modification required

for coarsened meshes M n>0: It is no longer possible to compute co-tangent Laplacian

weights using Equation (4.5) because coarsened meshes do not consist of triangular faces

anymore. Instead, each vertex has a set of connected neighbors Ni defined via the set of

edges En. Instead of co-tangent weights, we use a uniform weighting scheme [134] for all

levels n > 0:

Lni (V) = vi −
1

|Ni|
∑
j∈Ni

vj . (4.32)
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We propose to perform a cascading multigrid approach for image-based mesh adap-

tation. First, the mesh has to be initialized at the coarsest level and correspondences

need to be found between vertices and image features. Then, the LME framework (see

Section 4.3) can be used to optimize for new vertex positions at this level. Afterwards,

we use the prolongation operator Ω↑n to increase the resolution and interpolate the posi-

tions of remaining vertices. We repeat the process of finding correspondences and shape

optimization at the finer level. At level n = 0, it is possible to use the co-tangent Laplace

weights from Equation (4.5) again and perform the final surface optimization.

One key advantage of multi-grid methods is that the prolonged surface from a coarser

level n+ 1 is a good initialization for iterative solvers such as conjugate gradient [19, 27].

For large meshes, using iterative solvers can be more efficient than to perform sparse

matrix decompositions. At intermediate levels, iterative solvers do not need to run until

convergence as optimization is continued at a finer level. Thus, the number of overall

iterations can be kept low.

4.6.4 Skeleton Supported Multigrid Meshes

In Section 4.5, we have introduced skeleton constraints for mesh adaptation. They are

based on differential bone coordinates that connect every vertex to one or multiple bones.

Since each bone constraint references only a single vertex, skeleton constraints can be used

at every level of multigrid meshes without modifications. For every resolution level, we

can use the same skeleton with the same joints. Therefore, there is no need to define

separate skeleton restriction and prolongation operators. However, care has to be taken

that if a vertex is not present at the current level, the corresponding skeleton constraint

is not applied.

There is a hidden problem with shape adaptation that arises when using our multigrid

method: It is no longer possible to compute vertex normals by averaging face normals as

described in Section 4.4 because the triangular face structure is lost at coarser levels. This

impacts both the ability to determine rim vertices and finding silhouette correspondences

along normal directions. When using a skeleton supported multigrid mesh, we propose to

initialize vertex normals at the full resolution mesh. Then, we use rotation quaternions qi

defined in Section 4.5.3 to correct the normal directions after each iteration of surface

optimization. This method allows us to compute vertex normals for every resolution level

even though the mesh does not consist of triangular faces.

4.6.5 Discussion

The multi-grid approach presented in this section enables a significant reduction of opti-

mization time. Only a reduced number of vertices need to be optimized in early iterations

of the shape adaptation process. Global solvers such as sparse Cholesky decomposition

can be inefficient for large meshes. Therefore, they are only suited for optimizing the low

resolution levels of our multi-grid approach.
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Iterative methods such as the conjugate gradient method [19] allow a significant

speedup when the number of iterations is low. However, they require a decent

initialization for fast convergence. In our multi-grid framework, we provide such an

initialization by optimizing the shape at lower resolutions first. Then, we interpolate

initial vertex positions for iterative optimization of a finer level.

4.7 Decoupled Constraint Solving for Mesh Adaptation

Even though multigrid methods promise a significant speedup compared to

single-resolution methods, shape optimization of full-resolution meshes still poses

a performance bottleneck. However, fast mesh adaptation is essential for real-time

operation. Therefore, we propose an iterative mesh optimization method that has a low

computational workload, yet provides high quality results.

Our method is inspired by position-based physics simulations [108, 109]. Such simula-

tions can be used to compute realistic interactions between soft bodies in real-time (e.g.

cloth simulation). A deformable model of the human body is very similar to a soft body.

Instead of simulating physical forces that act on individual vertices (e.g. gravity), we ap-

ply silhouette constraints on selected vertices to align them with corresponding silhouette

contours that are found in input images.

The key to real-time operation is to apply such constraints in a decoupled manner and

optimize one constraint at a time. For example, one optimization step pulls a single vertex

towards a corresponding silhouette contour while another step enforces a single smoothness

constraint. This optimization is similar to the Gauss-Seidel (GS) optimization scheme and

stochastic gradient descent (SGD) algorithms. It is a trade-off between quality and speed

and allows for extremely fast computation of vertex updates. This optimization scheme

is able to decrease the initial error quickly, but shows a slower overall convergence. We

show that decoupled optimization is suitable for mesh deformation guided by image-space

correspondences and that the results are qualitatively comparable to traditional solvers

such as direct Cholesky decomposition and conjugate gradient.

4.7.1 Constraint-based Mesh Deformation

Similar to the previous sections, we consider the problem of deforming a polygonal mesh

M = {V,F} consisting of vertices V by using the Laplace mesh editing framework and

image correspondences. We control the deformation and shape consistency through con-

straints:

Cj(V|Φj) = 0 1 ≤ j ≤M. (4.33)

Each constraint is a function Cj : R3×V → R with a set of parameters Φj that encodes a

relationship between selected vertices with other vertices of M or the scene. For example,

a constraint can be responsible for aligning the mesh with image data. We use the pa-

rameters Φj for storing constraint properties such as initial curvature or correspondences
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with images. Usually, these parameters are initialized before optimization. The vertex

positions of the deformed mesh can be obtained by minimizing over all constraints:

Ṽ = argmin
V

M∑
j=1

Cj(V|Φj). (4.34)

Note that such constraints need not be linear but have to be differentiable.

Inspired by the GS optimization scheme for linear systems of equations [19], we do not

minimize Equation (4.34) as a whole. Instead, we break it down into individual constraints

and project each Cj onto the vertices independently. We use a first-order Taylor series

expansion to find a position-correction term ∆Vj such that

Cj(V + ∆Vj) ≈ Cj(V) +∇VCj(V) ·∆Vj = 0 (4.35)

where ∇VCj denotes the gradient of constraint j. Solving for ∆Vj yields the step for the

iterative minimization

∆V = − Cj(V)

‖∇VCj(V)‖2
· ∇VCj(V) (4.36)

which is the standard Newton-Raphson update step. We use Equation (4.36) to perform

a weighted correction of the current vertex positions V← V+kj∆Vj for every constraint

Cj . kj ∈ [0, 1] is the step size for the gradient descent. Following Müller et al. [109], we

use a modified step size kj
′ = 1 − (1 − kj)1/N i

which allows projecting constraints with

linear dependence on the number of iterations N i.

Analog to the GS scheme, we use updated values of V for subsequent calculations as

soon as available. This requires less memory and allows the solution to converge faster

while keeping time complexity linear in the number of constraints. By iterating constraint

projection multiple times, we allow the effect of constraints to propagate along the surface

of the mesh until all vertices of the deformed mesh reach a stable position.

4.7.2 Constraints for Skeleton-Based Mesh Adaptation

The presented solver is capable of handling nonlinear constraints of any type. We propose

to use the constrains described in this chapter to perform decoupled constraint-based

mesh adaptation. Silhouette constraints Csil align rim vertices of a template mesh with

silhouette contours in the images. The surface constraint Cskin and the skeleton constraint

Cbone act as a regularization term. This allows Equation (4.34) to be rewritten as

Ṽ, G̃ = argmin
V,G

M∑
j=1

Csil
j (V) + λbone

N∑
j=1

Cbone
j (V,G) + λskin

N∑
j=1

Cskin
j (V). (4.37)

Similar to the previous sections, we define the constraints as quadratic errors such

that the derivatives are easy to compute. More specifically, the silhouette consistency
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Algorithm 2 Constraint projection algorithm.

Require: V = {vi . . .v|V |}
1: {Φ1 . . .ΦM} ← initialize(V)
2: for number of outer iterations No do
3: {Φ1 . . .ΦM} ← update(V, Φ1 . . .ΦM )
4: for number of inner iterations N i do
5: for j = 1 . . .M do

6: V← V − kj ′ Cj(V|Φj)
‖∇VCj(V|Φj)‖2 · ∇VCj(V|Φj)

7: end for
8: end for
9: end for

constraint Csil
j is defined similar to Equation (4.11) as:

Csil
i (V|pi) =

∥∥∥∥∥
[(

N1
` − px

i N
3
`

)
vi +

(
T 1
` − px

kT
3
`

)(
N2

` − py
i N

3
`

)
vi +

(
T 2
` − py

kT
3
`

)]∥∥∥∥∥
2

. (4.38)

The surface constraint is equivalent to the constraint defined in Section 4.3 and minimizes

the deviation of the surface from its initial value (δi):

Cskin
i (V|δi) =

∥∥∥∥∥∥
wivi −

∑
j∈N i

wijvj

− δi
∥∥∥∥∥∥

2

. (4.39)

Finally, a bone constraint ensures that the skeleton does not get detached from the skin

surface during optimization. Therefore, we use the skeleton constraints defined in Sec-

tion 4.5.

Cbone
i (V,G|βi) =

∥∥∥∥∥∥
vi −

|G|∑
j=1

ρij
(
γij gj + (1− γi,j) gprev(j)

)− βi
∥∥∥∥∥∥

2

(4.40)

The main idea of the proposed solver is to minimize each constraint in a sequential

manner. To achieve smooth results, we suggest to process silhouette constraints (they

represent the data term) before skin and bone constraints (the regularization constraints).

Moving selected vertices closer to silhouette contours first creates bumps and spikes on

the surface. The subsequent skin and bone constraints affect neighbors of these vertices

and ensure that the overall surface becomes smooth again.

4.7.3 The Iterative Solver

Our iterative solver for initializing and updating constraint parameters Φ1 . . .ΦM and

projecting constraints C1 . . . CM is outlined in Algorithm 2. In Line 1, we set up all
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constraints using the initial vertex positions estimates (i.e. we calculate δi and βi). The

solver contains two loops: the outer loop (Line 2) is executed No times and controls how

often constraint parameters are updated (i.e. matching of rim-vertices with the silhouette

contour) while the inner loop in Line 4 projects the constraints. Since constraints are

projected independently of each other, the number of inner iterations N i influences how

far the effect of each constraint can propagate along the surface of the mesh.

The constraint projection in Line 6 prohibits parallelization because each calculation

depends on the updated values V of the previous projection. When a parallel processing

architecture such as a GPU is available, it is possible to compute the update step ∆V

from the same vertex positions V for all constraints in parallel. However, care has to be

taken that a vertex position is not updated simultaneously by multiple threads [112]. In

addition, the number of inner iterations N i needs to be increased since the convergence

rate is slower compared to the Gauss-Seidel type solver. For our evaluation in Section 5.4.2,

we did not implement a parallel solver. Therefore, parallel decoupled constraint solving

remains future work.

4.8 Summary and Discussion

We have presented a novel method to adapt the surface of an articulated mesh to capture

geometric details from silhouette images. The mesh is attached to a skeleton using linear

skinning weights that are obtained through rigging methods such as [18]. In contrast

to existing approaches [57, 158], our formulation has the key advantage that bones and

vertices can be refined simultaneously. Our constraint formulation uses purely linear

optimization methods, which allows efficient deformation even of large meshes.

In Section 5.4, we show that the skeleton constraint increases robustness towards out-

liers and occlusions as it only allows physically plausible deformations. The strength of

our method is especially prominent when the number of cameras is reduced. Traditional

approaches lead to unnatural deformations when there are not sufficient input views. How-

ever, our approach still yields realistic results in the same situation. One might wonder

why we want to reduce cameras? A lower number of cameras saves hardware costs and

reduces processing times. More important to our goal of building a virtual dressing room

is the fact that the recording room cannot be arbitrary large and cameras are usually very

close to the person. Thus, cameras are usually focused on a small part of the person and

not every camera will see the entire body.

Mesh adaptation is an iterative procedure. It alternates between projecting the current

mesh into images to find correspondences, and optimization using the found correspon-

dences. Our novel multi-grid solver minimizes costly shape optimization times by reducing

the amount of mesh vertices that need to be processed in early iterations of adaptation.

Especially in early iterations, there is no need for a high resolution adaptation as corre-

spondences are not yet accurate. Thus, there is no loss in quality compared to optimization

with a full-resolution mesh at every iteration.
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By using our decoupled constraint solver, the processing time can be further reduced.

In Section 5.4.2, we compare the processing times of several state-of-the-art linear solvers

with our method. The outcome of our experiments is that a polygonal mesh can be

adapted to camera images at camera frame rate. This allows us to use our algorithm for

interactive applications. For example, one can use the adapted mesh for rendering or as a

collision object in physical simulations.

Even though we improve over state-of-the-art methods in terms of robustness and

adaptation speed, there are some limitations to our approach. We rely on a fairly accurate

initialization of the skeleton joints to create an initial mesh. Small displacements of joints

can be handled without loss of quality since the mesh automatically gets pulled towards

the silhouette contour. However, if the displacement is too large or completely wrong, the

search for silhouette contours will fail and no silhouette constraints can be generated for

affected vertices.

Another problem with the contour-based approach is that an occluded contour does not

allow for a valid match. Similar to pose estimation, our shape adaptation method cannot

accurately handle cases where limbs are held tightly near the body. While the skeleton

constraint is able to prevent unnatural deformations, the adapted mesh may not represent

the actual surface in occluded areas. A possible solution is to use color information to

detect feature points on the texture of the body surface [57]. However, tracking and

matching of such points has a negative impact on runtime performance. The intersection

of multi-view silhouettes produces an estimate of the convex visual hull of an object [53].

Our shape adaptation is essentially similar to visual hull modeling. This means that we

cannot recover concave regions from silhouette images alone. Concavities that are found

in the resulting mesh have been baked into the template mesh beforehand.

Our approach cannot adapt the body shape if the user wears substantially different

clothing than the template mesh (e.g. a skirt). This is a limitation shared by all model-

based shape adaptation methods. In this case, a specialized template with similar clothing

can be used. In a virtual dressing room scenario, we require that the person wears tight

fitting clothing. Thus, using a single template mesh is usually sufficient. In the next

chapter, we show several examples where we successfully adapt a single template mesh to

a variety of users.
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5.1 Introduction

In the previous chapters, we have described our algorithms and methods to estimate the

human pose and shape from multi-view images. Our goal is to execute these algorithms in

real-time on a single computer. This means that capturing and preprocessing of camera

images, pose estimation and shape adaptation must be finished before a new set of images

is recorded. Only when these time limits are adhered to, we can use our methods in

an interactive setting such as a virtual dressing room. We not only provide a runtime

analysis but also show that our approach matches or improves existing approaches in

terms of quality and robustness.

First, we present our hardware setup and computing platform in Section 5.2. This

setup allows us to record a synchronized video stream from ten color cameras on a single

computer. We give a short overview of our calibration procedure that quickly and fully

automatically configures the positions of each camera relative to a static calibration target.

Then, we evaluate the novel pose and shape estimation methods presented in this

thesis. Our graph-based human pose estimation algorithm is a promising method for fast

and reliable estimation of the human pose from multi-view images. Reliable and automatic

79
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initialization is an important aspect for interactive settings. Therefore, we conduct several

experiments to show how we can process long sequences of multi-view videos without losing

track of the moving person. In addition, we perform experiments to estimate the accuracy

of our results compared to ground truth data.

Human shape estimation goes further than pose estimation as it models the visible

outer surface of a person with a polygonal mesh. We estimate the surface from multi-

view silhouettes of a person using a novel skeleton constraint and an efficient multi-grid

solver. A natural measure for the quality of an adapted mesh is how well it agrees with the

silhouettes in all input images. The silhouette overlap measure counts all input silhouette

pixels that are different from the reprojected adapted model image. We evaluate how our

skeleton constraints improve the quality of the model. Existing shape estimation methods

have not been developed with real-time performance in mind. In an interactive setting, we

require fast processing times. Therefore, we evaluate the runtime of our multi-grid solver

and show its feasibility for real-time operation.

Finally, we evaluate the complete pose and shape estimation process. We present

example applications where real-time mesh adaptation is beneficial. A special emphasis is

put on applications where a user can interact with his personal avatar in a 3D environment.

5.2 Experimental Setup

In this section, we describe the prototype hardware system that we use for recording

multi-view images of a person. The setup consists of a camera setup connected to a

single computer. Moreover, we provide details for our camera calibration and image pre-

processing methods.

5.2.1 The Recording Studio

One goal of this thesis is to build a virtual dressing room that can be placed in an ordinary

store. Such an installment should be small and must comply with existing features of

the room it will be placed in. This means that our hardware system has some spatial

restrictions that need to be adhered to. Ideally, the complete setup should not be larger

than a regular dressing room. In addition, it must provide its own background and lighting.

A model of our setup is shown in Fig. 5.1. It consists of a 2 × 3 meters aluminum

enclosure with cameras mounted on all sides and a TV monitor in the front. The enclosure

is surrounded by green walls. Colored walls facilitate the segmentation of the user as long

as the user is wearing garments with a color contrast to the background. As a display, we

use a standard 47 inch Full-HD television set mounted in portrait mode. All devices are

connected to a single computer.

We use ten Point Grey R© Flea
TM

2 cameras (see Fig. 5.2). Each camera is equipped

with a 5 mm C-mount lens. The exact location of each camera has been determined ex-

perimentally. We have placed cameras in each top corner, in the middle of the enclosure
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(a) Model of the recording setup with camera positions (without walls)

(b) Real-World view from the outside of the setup

Figure 5.1: Our hardware setup comprises an aluminum enclosure with green walls, a
monitor and ten cameras.
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and below the monitor in order to get a sufficient variety in viewpoints. Lower camera

positions were not chosen such that users can not accidentally touch the cameras while

moving. The viewing frustums of all cameras are focused on an area approximately 1.5 me-

ters in front of the monitor. This means that the user is only allowed to move within a

small area in order to stay in an optimal position. When the person is moving, some body

parts will always be outside the view frustum in some cameras. These spatial restrictions

and limited viewpoints make shape and pose estimation more challenging than when using

larger recording setups such as [57, 135, 136].

Each camera records 640 × 480 pixel images at 15 frames per second. Color images

are encoded in the YUV422 format (2 byte/pixel). In order to transfer the data to a

single computer in real-time, we connect them via three separate FireWire 800 buses. The

FireWire buses not only transmit data but supply the cameras with power and enable

synchronization. Therefore, only a single cable needs to be connected to each camera.

5.2.2 A Computing Platform for Real-Time Image Processing

Fast computing platforms allow an ever increasing number of computer vision tasks to be

executed in real-time. Several years ago, there has been a global trend to build CPUs with

increasing core frequency. However, this increase was slowed down by a natural barrier:

faster CPUs became less efficient in terms of power consumption [146]. This stagnation

led to the development of parallel and even massively parallel computing architectures

that distributed the load from one processor to a multitude [37, 111].

Our system features a 3.4 GHz Intel R© Core
TM

i7 processor with 8 cores and a CUDA

enabled Nvidia R© GTX 480 GPU. This GPU consists of 15 SIMD processing units that can

execute 32 threads in parallel, each. In order to achieve optimal performance, care has to

be taken that algorithms are executed on the suitable processor type [94]. While the CPU

can quickly execute single threaded algorithms such as graph processing, the GPU can be

used for efficient parallel processing tasks. For example, pixel-wise image operations can

be performed extremely fast on a GPU. However, memory transfers between CPU and

GPU need to be minimized as they can easily become a performance bottleneck.

The cameras of our hardware system gather data at a rate of about 100 MB/s. We ex-

ploit the computational power of the graphics card to perform basic image manipulations

such as undistortion and background segmentation. Furthermore, the visual hull can be

efficiently computed on a GPU when each voxel of a discrete volumetric grid is processed

independently. Our real-time capable system therefore performs image and volume pro-

cessing on the GPU. This data is then compressed and transferred to CPU memory. The

CPU further processes the data in order to estimate the pose and shape of a human body.

5.2.3 Calibration

In order to reconstruct an object with a multi-view setup, the cameras need to be fully

calibrated. Camera calibration is a two step procedure. First, the intrinsic parameters
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(a) Calibration Target (b) PtGrey camera with lens (c) Mounted camera

Figure 5.2: Calibration target and cameras used in our hardware setup.

of each camera are calibrated individually. Therefore, we use a modified version of the

Bouguet calibration toolbox [29] which requires several images of a planar calibration

target to be recorded from different viewpoints. From these images, we estimate the

intrinsic camera matrix K` and undistortion parameters for each camera. Note that we

perform camera calibration at the maximum possible camera resolution of 1280 × 960

pixels.

Once every camera is calibrated, we mount the cameras on our aluminum frame. In

order to use all cameras in a single coordinate framework, we need to determine their

position relative to a defined origin. Our extrinsic camera calibration method utilizes a

3D target with four augmented reality (AR) Toolkit markers [160] attached on three sides

(see Fig. 5.2(a)). The total number of markers is twelve. We place this calibration target

in a central position inside our setup to perform extrinsic calibration.

For a single planar AR marker, it is possible to compute its exact position and rotation

in space and thus define the relative camera orientation. Each marker on the target is

accurately referenced with respect to a common coordinate system which we define as the

location of the first marker. Even if a camera can see only one marker, the locations of all

other markers can be computed. This is an important property as our cameras will see

the calibration target from different sides. No single marker can be seen simultaneously

from all cameras.

In Fig. 5.3, we show a typical situation where the calibration target is placed inside

the enclosure. Each camera sees at least two markers. Thus, we can compute the position

of the coordinate origin more accurately. In order to maximize calibration accuracy, it

is important to place the calibration target in the position where the human person is

supposed to stand during normal operations. Due to calibration from a single target

position, our procedure determines the extrinsic calibration (R`, t`) of all ten cameras at

a sufficient accuracy within seconds. However, this calibration method limits the choice of

possible camera orientations in our setup (e.g. it is not possible to have one camera focus

exclusively on the head of the person).
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Figure 5.3: Our calibration target and calibration GUI. The colored rectangles on the
target are augmented onto the camera image to verify that the camera has been registered
correctly. The purple dot on one marker signifies the coordinate origin.

5.2.4 Image Recording and Pre-Processing

In order to perform shape and pose estimation from silhouette images, we need a processing

method that computes silhouettes of the human body from the camera images. Our

method to compute silhouettes is simple, straight forward and is implemented on fast

GPU hardware.

First, we record synchronized images from all cameras and transfer them to the com-

puter. These raw images are copied to the GPU memory immediately. Then, the GPU

performs simple image processing tasks such as color conversions (YUV422 to RGB) and

image undistortion. In order to compute silhouette images, we perform background sub-

traction. This method requires an image of the room to be recorded without a person, first.

Once the person is inside the room, an illumination insensitive background subtraction

algorithm can detect regions in the image where the person is present but ignore shad-

ows caused by the person on the floors and walls. Our background subtraction method

is based on normalized RGB colors. Finally, we perform simple filtering to remove small

segmentation errors. The total pre-processing time for all camera images is 6.5 ms.

5.3 Real-Time Human Pose Estimation

In this section, we show results of the graph-based human pose estimation that we de-

scribed in Chapter 3. We perform experiments on our own recordings, public datasets as

well as on synthetic scenes with ground-truth data. The main focus of our evaluation is

to show that we can provide long-term pose estimation with automatic recovery in case of

an error. Long-term stability is essential for interactive systems where no user corrections

of the pose are possible. In addition, we show that our algorithms are sufficiently fast to

be used at camera frame rate.
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Figure 5.4: Estimation error for each joint. The error is the Euclidean distance between
estimated joint positions and ground truth data.

5.3.1 Data Acquisition

Our method requires a volumetric scan of the human body in order to extract a skeletal

graph. We perform GPU accelerated space carving from multi-view silhouette images

to compute the visual hull in a dense voxel grid. Unless otherwise specified, we use a

96 × 96 × 128 voxel grid with a resolution of about 15 mm per voxel for this evaluation.

For qualitative evaluations, we use our own hardware setup consisting of 10 synchronized

color cameras (see Section 5.2) and publicly available datasets [57]. To obtain ground

truth joint position data for our quantitative evaluation, we use motion capture data from

the CMU motion capture database [35] to animate a human polygon model and render it

from multiple views. Such images are equivalent to the images recorded with our camera

setup. In addition, the position of each skeleton joint is known from the motion capture

data. This allows us to compare our estimations to groundtruth data.

5.3.2 Quantitative Results

We quantify the joint position estimation accuracy as well as the robustness of end-node

labeling. To measure the estimation accuracy, we calculate the Euclidean distances of

our joint pose estimates to the corresponding ground truth position given by the motion

capture data. We perform this evaluation for every frame in several sequences of the CMU

motion capture database [35]. In total, we have evaluated our algorithm on almost twenty

thousand frames of sequences containing a variety of movements.

In Fig. 5.4, we show that the median of the distances stays below 80 mm for all joints

while the distance for end-joints such as hands and feet is even smaller. Note that the 25th
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Figure 5.5: Percentage of correctly classified joints dependent on the confidence threshold.
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Figure 5.6: Distance between the left hand and its ground truth position in an interval
taken from the sequence 13 18 of [35].

and 75th percentiles in the boxplot are less than twice the voxel size apart. This suggests

that most errors are systematic due to structural differences between our template skeleton

model and the skeleton used in the motion capture database.

In the next experiment, we determine how far joints deviate from their ground truth

position on average. In Fig. 5.5, we gradually increase the classification radius for each

joint. For example, hands are within a 25 mm radius from the ground truth position in

more than 50 % of all frames. On average, all joints are within 50 mm of their ground

truth position in more than half of all frames of our test sequences. When we increase

this threshold to 100 mm, we estimate all joints correctly in more than 95 % of all frames.

Again, the performance for hands and feet is superior to other joints as their position is

determined directly by the graph matching step (see Section 3.3.2.2), while other joints

depend on the position of hands and feet.

A major benefit of our algorithm is single-frame recovery. In Fig. 5.6, we show the

estimation error for the left hand over the period of some frames of a motion capture

sequence. We deliberately have chosen a time interval with many ambiguous poses that



5.3. Real-Time Human Pose Estimation 87

Sequence # Frames FootR FootL HandR HandL
01 01 2 750 0 (0.0 %) 0 (0.0 %) 51 (1.9 %) 36 (1.3 %)
02 01 342 0 (0.0 %) 0 (0.0 %) 10 (2.9 %) 47 (13.7 %)
02 05 1 854 1 (0.1 %) 0 (0.0 %) 5 (0.3 %) 85 (4.6 %)
03 01 431 0 (0.0 %) 0 (0.0 %) 11 (2.6 %) 5 (1.2 %)
05 02 1 122 8 (0.7 %) 5 (0.4 %) 5 (0.4 %) 7 (0.6 %)
06 04 395 1 (0.3 %) 0 (0.0 %) 6 (1.5 %) 10 (2.5 %)
13 17 4 839 29 (0.6 %) 28 (0.6 %) 119 (2.5 %) 48 (1.0 %)
13 18 2 999 37 (1.2 %) 41 (1.4 %) 162 (5.4 %) 129 (4.3 %)
13 29 4 591 75 (1.6 %) 96 (2.1 %) 172 (3.7 %) 90 (2.0 %)
16 11 533 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 0 (0.0 %)
Total 19 856 151 (0.8 %) 170 (0.9 %) 541 (2.7 %) 457 (2.3 %)

Table 5.1: Evaluation of the foot/hand classification errors on some sequences of the CMU
motion capture database [35]. Each limb that is not within a 100 mm radius of the ground
truth joint position is counted as an error.

cause a jump of the hand position in the resulting skeleton. Even though the position

cannot be determined accurately in some frames, our single-frame recovery prohibits that

the hand gets stuck in the erroneous position for more than a few frames. These findings

are also supported by Table 5.1, which gives a detailed count of how often each limb is away

more than 100 mm from its ground truth position in several motion capture sequences.

Even on long sequences, the error rate stays below 3 % on average.

5.3.3 Qualitative Results

In Fig. 5.7, we show qualitative results of our skeleton fitting algorithm. The input images

are taken from our own multi-camera hardware setup and publicly available datasets [57].

Colored squares mark the detected joint positions in the graph matching step that are

used for initialization of the skeleton model. Note that even long spurious branches do

not affect our end-node classification in most cases.

There are cases where pose estimation fails (such as in Fig. 5.7(e)). Such incorrect

poses are a result when end-nodes are classified incorrectly. This can happen when a

spurious node has a descriptor similar to an actual limb and thus gets a good matching

score. Usually, such spurious nodes disappear when the person slightly rotates the body

or keeps moving the arms. In Fig. 5.8, we show examples where a person is interacting

with objects such as a chair and a table. In (b) and (c), the person is touching these

objects, which causes the skeletal graph to grow into these objects. When the graph no

longer has the structure of a human body, end-node labeling fails (e.g. the leg of the table

gets classified as a human foot) and the skeleton pose becomes invalid. Our algorithm is

not able to cope with such occlusions. A possible way to detect wrong poses is to check if

the estimated pose is physically plausible.
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(a) (b) (c) (d) (e)

Figure 5.7: Skeleton model automatically fitted to the human body. We used [73] for ren-
dering the 3D model. Besides the skeleton (green), we show the skeletal graph (red/blue)
as well as labeled nodes. (a) to (d) show successful estimations while (e) contains a wrongly
labeled hand node.

5.3.4 Runtime Evaluation

We performed our experiments on a state of the art PC system equipped with a Nvidia R©

GTX 480 graphics card and an Intel R© Core
TM

i7 processor. It is possible to estimate a

human skeleton model in real-time at 15 frames per second using our algorithm, limited

by the frame rate of our camera setup. Given silhouette images of the body from multiple

views, we were able to generate a voxel model in 5 ms on the GPU and then use a single

CPU thread to extract a skeletal graph within 15 ms. Labeling end-nodes and fitting a

skeleton to the graph takes less than 1 ms. This allows for skeleton estimation at more

than 30 frames per second.

The main reason for this efficiency is the reduction of data early on: we compress the

voxel model by expressing its structure with a graph consisting of at most a few hundred

nodes. Compared to other center-line estimation algorithms such as Wang et al. [161]

who are able to process only around 6 000 voxels per second, our implementation of the

algorithm by Rodriguez et al. [119] is able to generate a skeletal graph by processing up

to 3 million voxels per second on a single CPU.

5.3.5 Comparison to Related Approaches

Top-performers in the field of human pose estimation from multi-view images achieve

average joint position errors of around 50–100 mm [56, 79] at the cost of a processing time

of more than one second per frame. Even then, such methods rely on tracking information
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(a) (b) (c)

Figure 5.8: Graph-based pose estimation has intrinsic problems with occluding objects.
In (a), the pose is estimated correctly, while the same person is touching a table in (b),
which causes pose estimation to fail. (c) A person sitting on a chair infront of a table
leads to a totally wrong pose.

and can get stuck in local minima if tracking information is wrong. Our system does not

necessarily depend on temporal information and is capable of providing the same error

rates at up to 30 frames per second.

Other methods such as [58, 127] rely less on tracking data. They provide real-time

performance at similar error rates but incur a substantial training effort for part detectors

or require a database of exemplar images [156]. We do not require any training data

but require only a skeleton model with known dimensions. Previous skeletal-graph-based

methods that work on 2D images [42, 149] or 3D data [104, 145, 158] can either not

operate at interactive frame rates or work only if users directly face the camera. Similar

to our method, the method by Bakken et al. [15] is evaluated on synthetic ground truth

data generated using the CMU dataset [35]. They achieve similar pose estimation accuracy

around 60 mm and limb misclassification rates of three percent but at higher computational

costs.

We present a comparison of existing approaches in Table 5.2. In particular, we compare

features relevant for interactive applications such as real-time capabilities and required user

interaction or initialization. When available in the corresponding paper, we provide mean

joint position accuracies and error rates. However, it is not possible to compare these

numbers directly as there is no common evaluation benchmark.
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Bakken et al. [15] skeleton graph 7 7 7 3 7 6 cm 3 %
Menier et al. [104] 3D medial axis 3 - 7 7 7 - 2 %
Liu et al. [99] local/global PF 3 - 7 3 7 2.8 cm -
Vlasic et al. [158] visual hull 3 7 7 7 3 - -
Stoll et al. [139] color blobs 3 3 7 3 7 4.5 cm -
This work skeleton graph O 7 7 3 7 10 cm 3 %

Method
Requires temporal tracking
Requires initial pose
Requires training data
Real-time capable (faster than 5 frames/second)
User interaction required
Average joint position error
Average joint misclassification rate

Table 5.2: Comparison of human pose estimation methods. Legend: (3) yes, (7) no,
(O) optional, (-) unknown.

5.4 Human Shape Estimation

In this section, we evaluate skeleton-based mesh adaptation and the multigrid solver that

we described in Chapter 4. We evaluate our approach on public datasets, artificially

generated data as well as on recordings made with our own hardware setup. If not provided

by a dataset, we use a mesh from the SCAPE database [10] as the template mesh. The main

focus of the evaluation lies on the quality of the obtained results as well as the runtime.

A fast execution time of the described algorithms is essential for real-time performance

which is required for interactive use of the adapted mesh.

We compare skeleton-based mesh adaptation to existing methods that do not contain

a skeleton constraint. In this evaluation, we provide our algorithm with challenging scenes

that have only a limited number of views of a person. A limited view is a common problem

when cameras are too close to the person to capture the full body in every camera image.

In order to reduce the runtime required for optimizing the adapted shape, we have

presented a cascading multigrid solver in Section 4.6. We show the quality of the generated

low resolution meshes and give insights into how the initial mesh converges to the final

solution. In this thesis, we claim that iterative solvers can improve runtime performance

significantly when they are initialized with a mesh close to the optimal solution. Therefore,
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we compare direct and indirect solvers with respect to their runtime and their output

quality.

Another set of experiments evaluates the robustness of our shape adaptation approach.

As our approach requires a good initial pose estimate, we simulate a noisy pose estimation

result with a number of different noise levels. Such noisy poses produce an inaccurate

initial mesh which will degrade the performance of shape adaptation.

Finally, we show qualitative examples of full body modeling and performance capture

using our approach. We discuss the benefits and limitations and compare our approach

to related work.

5.4.1 Skeleton Supported Human Shape Adaptation

We provide a qualitative and quantitative evaluation of our approach for adapting a 3D

human body model to multiple synchronized silhouette images using a skeleton constraint.

Similar to [4, 57, 158], we require a template mesh of the person in roughly the same pose.

Typically, such a mesh is obtained by a laser scanner or via image-based methods. A rough

pose can be obtained through pose estimation directly from silhouette images using the

method described in Chapter 3. By using linear blend skinning, we transform the template

mesh such that it has the same pose as the person in the images. This initial mesh is then

deformed such that its reprojection onto the input images has a maximum overlap with

the silhouettes of the human body. Any deviation from an optimal overlap is measured

using the silhouette overlap error [4, 17, 34]. Therefore, we count the number of pixels

that are different in the reprojection of the deformed mesh and the input segmentations.

5.4.1.1 Influence of the Skeleton Term

We evaluate our pose and mesh adaptation on a public dataset which contains high quality

silhouettes of multiple actors recorded by eight one-megapixel cameras [57]. In every frame,

we initialize the actor specific template model using the 3D skeleton pose information

provided in this dataset. In the first set of evaluations, we make use of our linear skeleton

binding energy for shape adaptation but do not use bone length preserving constraints

nor a multigrid solver. The configuration used in this section is similar to the method of

Gall et al. [57].

In Table 5.3, we evaluate the influence of our skeleton term and covariance-based

correspondence weighting. Almost all scenes benefit from an additional skeleton term,

which decreases the silhouette overlap error by 200 pixels on average compared to mesh

adaptation without skeleton and covariance weighting. The average number of pixels the

human actor occupies per camera image is between 50 000 and 80 000.

There are larger errors in configurations where a bone term is used without covariance

weighting for correspondences (εcov = 1). The surface covariance weighting scheme is

described in Section 4.4.2. The reason for larger errors without covariance weighting is as

follows: the bone energy competes against the deformation energy to maintain a natural
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Sequence # frames not εcov = 1 εcov = 0.01
adapted λbone = 0 λbone = 0.1 λbone = 0 λbone = 0.1

Dance 574 7 600 4 400 4 500 4 300 4 100
Skirt 721 6 900 4 100 4 300 4 300 4 100
Handstand 401 8 800 5 100 5 200 5 200 4 900
Wheel 281 7 200 4 400 4 600 4 300 4 300
Dog 60 4 700 3 300 3 100 3 100 3 100

Table 5.3: Effect of covariance weighting εcov and bone energy when adapting a mesh to
multi-view silhouette images. Reported values are the mean silhouette overlap error over
all cameras for the given sequence from [57].

distribution of vertices along the mesh surface while the deformation pulls vertices to

their closest silhouette contour. Covariance-based weighting enables both energies to be

optimized with minimal interference.
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Figure 5.9: Mean silhouette overlap error in pixels (evaluated on all views) when the mesh
is adapted only to the first n views of the given sequence.

In the original experiment configuration, the improvement of our method is rather

small compared to [57] because the number of camera views (eight) is sufficient for a good

adaptation with surface-only regularization. The real benefit of the skeleton constraint

becomes apparent when fewer input silhouette images are available. In Fig. 5.9, we analyze

the silhouette overlap error depending on the number of input views and compare mesh

adaptation with and without a skeleton term. For reference, we plot the initial error of

the not yet adapted mesh, which is independent on the number of views. This mesh

is obtained through linear blend skinning of the template mesh using the skeleton pose

estimate provided in the database.

When all eight cameras are used, our skeleton term does not significantly increase the
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Figure 5.10: Evaluation of the Wheel sequence [57] when only cameras with number 1–3
are used for mesh adaptation. The silhouette overlap error (y-axis) is computed from all
views (number of erroneous pixels).

performance. However, our bone energy term yields a significantly lower error when only a

few views are available. In Fig. 5.10, we take a closer look at the reason for these results.

By means of the Wheel sequence adapted to the first three camera views, we analyze

the mean silhouette overlap at each frame and camera individually. It can be seen that

our bone energy consequently yields a lower error in all frames (Fig. 5.10(a)). While the

skeleton term effectively minimizes the errors in views used for adaptation, its preference

for plausible deformations is honored by a lower error in the remaining views. Adaptation

without an underlying skeleton simply overfits to the given views and causes unnatural

effects visible in remaining views. Such effects can be seen in a qualitative analysis in

Fig. 5.11.

(a) Handstand (b) Handstand (c) Skirt (d) Dance

Figure 5.11: Our bone energy term reduces unnatural deformations even when only a few
camera views are available (here: 4 views). Deformation without (left) and with skeleton
(right).
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5.4.1.2 Runtime Evaluation

We analyze the runtime of our approach when adapting a mesh with 2 500 vertices and 18

skeleton joints. The overall adaptation of the mesh to a single frame in an eight camera

setup takes 4 seconds in an unoptimized Matlab implementation on an Intel R© Core
TM

i7

CPU. This measurement includes the time for eight iterations of matching rim vertices and

silhouette contours, computing vertex covariances and solving the equation system using a

sparse Cholesky decomposition. A single minimization of the objective function accounts

for about 60 ms when skeleton information is not used. By jointly optimizing for joint

positions, this time increases to 75 ms. This increase is negligible since shape optimization

requires only a fraction of the overall runtime. When solving the quadratically constrained

version of Equation (4.27) with 6 symmetry constraints, the time for a single optimization

increases to 500 ms.

5.4.2 Multigrid Shape Adaptation

The experiments in the previous section have been performed using a direct linear least

squares solver for computing a deformed mesh. In this thesis, we have proposed a multigrid

approach to perform mesh adaptation on multiple levels of resolution. We argue that the

overall runtime can be reduced by using iterative solvers at each level of resolution instead

of using a direct sparse Cholesky decomposition. For example, the conjugate gradient (CG)

algorithm [19] can be used to minimize a linear least squares system in a computationally

efficient manner when the initial solution is already close to the optimum. At each level of

resolution, a few iterations of optimization are typically sufficient since the overall mesh

is further optimized at a subsequent finer resolution. Similar to Cholesky decomposition,

the CG method requires the symmetric positive definite (SPD) squared system matrix to

be computed, which can take a relatively long time for larger systems of linear equations.

In Section 4.7, we have presented an iterative solver that directly operates on individual

constraints and does not require the computation of the SPD system matrix.

In this section, we compare the results of optimizing mesh deformation constraints in

a cascading multigrid using the direct Cholesky solver, the iterative conjugate gradient

method and our decoupled constraints solver. We evaluate these methods using a mesh

consisting of 2 502 vertices and 18 skeleton joints. The evaluation is performed on several

multi-view sequences of moving persons recorded with our own multi-camera setup (see

Section 5.2).

5.4.2.1 Generating the Multigrid

We analyze the result of the restriction operator on the input mesh by showing the vertices

and edges at different resolutions. In Fig. 5.12, we show the four levels of resolution we

generate for this mesh using the restriction operator defined in Section 4.6.2. From left

to right, the mesh consists of 171, 487, 1 233 and 2 502 vertices. These meshes have color
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coded vertices that display the maximum level of each vertex. For example, red vertices

are only present at level 0 while purple vertices exist at all levels throughout level 3.

Level 3 Level 2 Level 1 Level 0

Figure 5.12: Several resolution levels of a multigrid hierarchy starting with the coarsest
mesh M 3 on the left side. The mesh at its full resolution M 0 is shown on the right side.
The vertex color signifies the maximum level of each vertex.

5.4.2.2 Image Correspondences in a Multigrid Framework

In Fig. 5.13, we demonstrate the advantage of the multigrid approach in terms of matching

vertices with silhouette contours. We initialize our mesh at level 3 with the pose obtained

from a pose estimation algorithm. Initially, the skeleton pose is not sufficiently accurate.

This inaccuracy is clearly visible in Fig. 5.13(a), where rim vertices of the arms are far away

from the actual silhouette contour. In addition, the shape of the model can significantly

differ from the shape of the actual human body in the images. During initial iterations

of shape adaptation, the main goal is to correct the pose and perform a rough shape

alignment. Obviously, a high resolution mesh has no advantage over a coarse version in

these early iterations. A low resolution mesh with only a few hundred vertices makes

matching vertices with silhouette contours computationally efficient. This means that

more time can be spent for processing each vertex (e.g. searching for correspondences in

a wider range). In subsequent iterations of mesh adaptation, we increase the resolution of

the mesh such that finer details can be adapted to the input images. When analyzing the

progression of the optimization in Fig. 5.13 from (a) to (d), we can see that rim vertices

become better aligned with the silhouette contour at finer levels. Thus, we can reduce the

range where we search for correspondences. A narrower search range minimizes the risk

of wrong correspondences and allows faster matching.

In Fig. 5.14(a), we analyze how many outer iterations are needed until the contour

correspondences stabilize. At 100 %, all vertices have converged to a stable position and do

not move after another iteration of finding correspondences and optimization. Depending
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(a) Level 3 (b) Level 2

(c) Level 1 (d) Level 0

Figure 5.13: Silhouette correspondences of rim vertices at different levels of resolution. Op-
timization starts at a low resolution (a) and the resolution is gradually increased through-
out images (b) to (d). Green dots represent the rim vertices, purple lines mark the search
range and orange lines denote a found correspondence.

on the resolution of the mesh, the convergence rate is different. In Fig. 5.14(a), we use

the same initialization for the mesh at each level. This is in contrast to the multigrid

cascade, where the results of a lower resolution can be used to initialize a higher resolution

level. Therefore, this figure demonstrates the convergence our solver would yield without

a multigrid approach. In Fig. 5.14(b), we show the benefits of propagating the optimized

result from one level to the next level. An intermediate optimization provides a good

initial mesh for a finer level. This helps to find better silhouette correspondences and

leads to a faster convergence rate, especially at early iterations. In both experiments, the

highest resolution (2 502 vertices) shows the best convergence rate. The reason for this

is that we can use the co-tangent weighting scheme for skin constraints, which requires

a triangular face structure. The co-tangent weighting scheme on triangular faces has

superior performance compared to the uniform weighting scheme on a non-triangular grid
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(a) Independent convergence
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(b) Multigrid convergence

Figure 5.14: Convergence rates of contour matching and shape optimization for several
levels of optimization. We have used a Cholesky solver to optimize the shape.

structure of sub-sampled meshes.

The optimization of a coarse resolution is significantly faster than the time for opti-

mizing a full resolution mesh. Therefore, we propose to perform multiple outer iterations

of finding correspondences and shape optimization at coarse resolutions. In the following

experiments, we use two outer iterations each for the coarser levels 3 and 2. For the

finer levels 1 and 0, we only use one outer iteration at each level to limit the runtime

requirements.

5.4.2.3 Runtime Evaluation

In the following experiments, we compare the runtime of different solvers for mesh op-

timization using the multigrid cascade. We measure the runtime of each phase of the

algorithm separately in order to better show the differences between the solvers. We do

not include the time for upsampling the mesh from a coarser level to a finer level as the

time is generally less than 1 ms. For each level, we measure the time only for one outer

iteration of finding correspondences and optimization. The full resolution mesh has a

number of 2 502 vertices. We use the symbols A and b to denote the system of linear

equations that are solved in least squares sense (min ‖Ax− b‖2).

In Fig. 5.15, we show the runtime for the optimization phases at all four levels when

using the sparse Cholesky solver provided by the Eigen matrix library [46]. The total

runtime for a complete cascading multigrid optimization with four levels is about 700 ms.

Note that the most time-consuming phase of the optimization is the preparation of the

SPD system matrices. It consists of squaring the system of linear constraints A→ ATA

and Cholesky decomposition itself. As the number of vertices increases, this preparation

phase prohibits any fast optimization. This problem is addressed in the mesh editing
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Figure 5.15: Runtime for different phases and levels of the multigrid approach using a
direct Cholesky solver with symmetric permutation.

literature [27, 28] where a user manually modifies the positions of a few selected vertices.

The solution to reduce long precomputation times is to compute the Cholesky factorization

once and reuse it when the user applies a change to these vertices. In automatic mesh

adaptation, the correspondences between vertices and silhouette contours change at every

iteration. The reason for changing correspondences is that a vertex can gain or loose its

rim status and not all rim vertices have a matching silhouette contour. Thus, the number

of constraints constantly changes and we cannot reuse the symbolic results of a previous

Cholesky decomposition.

One advantage of multigrid methods is that the upsampled result of a coarser level

provides an excellent initialization for optimization at a finer level. In Fig. 5.16, we show

an optimization scheme where we use an iterative conjugate gradient algorithm with a

diagonal preconditioner. This reduces the total runtime for shape optimization to about

90 ms. Note that the time required for finding image space correspondences and setting

up the linear constraints is independent of the solver in use. Nevertheless, a CG solver

still requires the computation of a SPD system matrix which is responsible for the high

precomputation times.

We can avoid the computation of a squared matrix ATA using our decoupled constraint

solver, which optimizes each constraint independently. In Fig. 5.17, we show the runtime

required for optimizing the complete multigrid cascade with the decoupled constraint
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Figure 5.16: Runtime for different phases and levels of the multigrid approach using an
iterative CG solver with 8 iterations.

solver. It uses simpler precomputations (e.g. precomputation of gradient magnitudes) and

is able to optimize all constraints directly. This further reduces the total runtime to less

than 30 ms, which makes real-time operation feasible even without parallel hardware such

as a GPU.

A summary and comparison for all three solver types is shown in Fig. 5.18. This figure

clearly shows that the decoupled constraint solver outperforms both the direct Cholesky

solver and the iterative conjugate gradient solver.

5.4.3 Robustness Towards Initialization Errors

Our joint shape and pose estimation approach requires an initial pose estimate to initialize

the template model. Usually, such a pose can be estimated automatically using a human

pose estimation algorithm. However, pose estimation is prone to errors and thus can

influence shape estimation. For example, one consequence of an inaccurate initial pose is

that closest-point silhouette contour correspondences will be wrong. Small errors of the

initial pose have only a minor effect on the performance of our algorithm. The question

is, how much deviation from the correct pose can be tolerated?

We quantitatively evaluate the robustness of simultaneous shape and pose estimation

by performing an experiment on a dataset of artificial images. We use a skinned mesh and
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Figure 5.17: Runtime for different phases and levels of the multigrid approach using our
iterative solver with 8 iterations.
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Figure 5.18: Total runtime for Cholesky decomposition, iterative CG and our decoupled
constraint solver.

animate it through motion capture data from the CMU motion capture database [35]. We

simulate the multi-camera setup from Section 5.2 by rendering the animated mesh from

ten viewpoints to generate silhouette images. These artificial images are then used as

input to our pose and shape estimation algorithm. The initial pose is directly computed

from motion capture data. This dataset of artificial images allows us to obtain ground

truth data for both the pose and the shape of the human body. The mesh that we use for
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Figure 5.19: Influence of random noise on estimated joint positions on the resulting esti-
mated shape and pose.

rendering the input images is used as the template mesh for shape estimation. In theory,

this should allow perfect alignment between the silhouettes and the template mesh.

In Fig. 5.19, we evaluate the reconstruction error when pose estimates are noisy. There-

fore, we add a random offset vector to motion captured joint positions. This simulates

inaccuracies of the pose estimation algorithm. We increase the length of this vector in

order to simulate an increasing level of noise. We plot both the errors of the unadapted

mesh as well as the adapted version using our multigrid approach. The unadapted mesh

is generated directly by applying the noisy pose to the template mesh. The pose error

is computed as the average Euclidean distance between reported joint positions and mo-

tion captured joint positions. The shape error is the average Euclidean distance between

vertices of the model and the ground truth mesh that was used to generate the input

images.

Without noise on the initial joint positions, our adaptation algorithm produces an

average error of approximately 10 mm. This error is mainly caused by the limited number

of views and small errors in rim vertex matching. Up until a random noise of about

40 mm, the figure shows sub-linear increase of the error of both the adapted shape and

pose. This means that our adaptation algorithm can compensate for most inaccurate joint

estimates. For higher noise levels, our adaptation algorithm is able to reduce the initial

error by about 15 mm on average. Note that the random noise in this experiment is added

equally to every joint of the skeleton. Thus, the experimental setup is more challenging

than the expected error distribution reported in Section 5.3. The error of pose and shape

is strongly correlated because the skeleton term links the shape to the pose.

We have performed additional experiments concerning automatic corrections of an
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(a) Handstand #38 (b) Wheel #120 (c) Skirt #297

Figure 5.20: Our simultaneous shape and pose adaptation corrects an inaccurate initial
pose estimate (dashed). Solid lines represent our optimized skeleton.

inaccurate initial pose on a public dataset [57]. This dataset is provided with an initial

pose estimate for each frame of an eight view setup. We use this pose estimate and the

provided template mesh and refine shape and pose using our algorithm. In Fig. 5.20, we

show qualitative results on some frames with visible benefits. In these images, the given

pose (dashed) is clearly inaccurate and our approach is able to improve the locations of

skeleton joints (solid) to reasonable positions.

5.4.4 Qualitative Results

Our decoupled constraint solver and the conjugate gradient method require multiple itera-

tions until a satisfying mesh deformation is obtained. In Fig. 5.21, we compare the quality

of the resulting mesh (2 500 vertices) after two and eight inner solver iterations N i while

keeping the rim-vertex/contour matches constant. The decoupled constraint approach pro-

duces smooth results after two iterations already whereas the conjugate gradient solver

yields a noisy mesh after the same number of iterations. After eight iterations both ap-

proaches yield similar results, which are comparable to the mesh obtained by directly

solving the constraint system via Cholesky decomposition in Fig. 5.21(c). The reason

for smooth results at early iterations is the fact that silhouette constraints are evaluated

before smoothing constraints. Thus, even a low number of iterations produces pleasing

results. The CG solver does not distinguish between data and smoothing constraints and

aims for a high reduction of the error, which can be achieved by pulling rim vertices to

their corresponding contour.

In Fig. 5.22, we show some results achieved with our approach. The first two columns

show one out of ten input images that were used during mesh adaptation (the image is

mirrored). The three-dimensional model shown in the right most column is the adapted

template mesh colored with simple projective texture mapping. The examples in the first

three rows show a good match between the model and the image across the whole body. In

row four, however, we can see that the hand is modeled incorrectly because it is touching

the body. This is a common problem with all silhouette-based approaches because the

silhouette outline of the hand is indistinguishable from the silhouette of the body.
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(a) Decoupled constraint (b) Conjugate gradient (c) Cholesky

Figure 5.21: Quality of the deformed mesh after two and eight inner iterations of the
decoupled constraints solver (a) and a conjugate gradient solver (b). The mesh obtained
by solving the linear constraints using a Cholesky decomposition is shown in (c).

Related methods often present the deformation of a subject specific laser scan, which

includes details such as the face and wrinkles of garment [4, 57, 165]. In contrast, we show

that it is possible to deform one template mesh to multi-view silhouette images of a variety

of people (we use the SCAPE mesh [10]). Consequently, this means that the mesh will only

adapt to details that are visible in silhouette contours. For example, the template model

only supports hands that are formed to a fist and contains no individual fingers. Our

recordings contain many scenes where fingers of the users are visible. Therefore, the hand

cannot be reconstructed correctly. However, we can recover such details in a rendering

stage where individual fingers are visible in the texture. The advantage of using a generic

mesh is that we can estimate the body shape of previously unknown people without

additional 3D scanning. Note that the quality of feet in our results is comparatively low

as the majority of our cameras are pointed towards the upper body and feet are not covered

sufficiently in the view frustums. This is a limitation of our hardware setup, which was

designed to achieve a good quality for the upper body.

5.4.5 Comparison to Related Approaches

In the current literature, there is no focus on real-time adaptation of a polygonal mesh to

multi-view image data. Usually, related approaches focus only on a high quality recon-

struction of the human body. Therefore, a direct comparison between our methods and

literature that deals with human shape estimation is difficult. In Table 5.4, we compare

the runtime of existing methods with our approach. For example, the approach by Wu

et al. [165] estimates the illumination map of the environment in order to reconstruct fine

details of the human body. Such computations result in a runtime of several minutes per

frame. Simpler methods based on silhouette correspondence such as Vlasic et al. [158]

adapt a polygonal mesh to image data in a few seconds. Their runtime is mainly limited
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Figure 5.22: One input view (left), the adapted mesh as an image overlay (middle) and
the textured 3D model (right). The last row demonstrates a situation where the hand
touches the body, which cannot be modeled by our approach.
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Method Model Corresp. Vertices Time
Wu et al. [164, 165] S/M I 80 000 10 min
Aguiar et al. [4] V/M S/D/T 30 000 27 s
Cagniart et al. [34] M S 10 000 25 s
Hofmann & Gavrila [79] P S/T - 15 s
Vlasic et al. [158] M S 10 000 4.8 s
Huang et al. [81] M/S S/P 3 700 3.0 s
Gall et al. [57] M S/T 2 000 1.7 s
Our multigrid method (CG solver) M/S S 2 500 0.09 s
Our multigrid method (DC solver) 2 500 0.03 s
Our multigrid method (CG solver) 10 000 0.33 s
Our multigrid method (DC solver) 10 000 0.08 s

Model: (M)esh, (P)arametric, (S)keleton, (V)olumetric
Image correspondences: (S)ilhouette, (I)llumination, (T)exture,
(D)epth, (P)oint clouds
Number of vertices (for meshes)
Time per frame

Table 5.4: Comparison of the time required to deform a human mesh to multi-camera
data in seconds per frame.

by direct minimization of large linear systems of equations. In this thesis, we have shown

how to improve on this runtime limitation. The last four rows in Table 5.4 are runtimes

measured with our multigrid approach. We report the runtime for two different resolutions

of the template mesh (2 500 and 10 000 vertices) and use either a conjugate gradient (CG)

optimizer or our decoupled constraint (DC) solver. To the best of our knowledge, only our

system is able to perform multi-view shape and pose adaptation of a human body model

at interactive frame rates.

There exist other approaches to produce meshes of a scene or a body in real-time. For

example, the commercial system built by 4D Views [1] captures a mesh directly from the

visual hull. In Alexiadis et al. [6], multiple Kinect cameras are used to capture a human

body from multiple viewpoints. Their method records partial surface meshes which are

fused into a single mesh of the body. Other Kinect-based approaches such as Kainz

et al. [85] enhance the KinectFusion algorithm [110] in order to capture a volumetric

representation of a person with more than 10 cameras. However, all these methods produce

a new mesh every frame. Thus, these methods cannot capture movement of a person with

a consistent model.

An objective comparison of shape adaptation accuracy is difficult. There exists no stan-

dard evaluation dataset of moving persons with ground truth shape information because

highly accurate body scans are only possible for static poses. Therefore, the most common

error measure is the pixel overlap error, which we explained in Section 5.4.1. However,

most methods for shape adaptation explicitly aim to optimize the silhouette reprojection

error and thus yield a naturally small pixel overlap [81]. As shown in Fig. 5.11, a small
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overlap error does not imply plausible deformations. Alternatively, some researchers use

unpublished synthetic scenes [164] to compute accuracy scores such as the mean vertex

position error. Nevertheless, there is a need for a standardized dataset of captured human

motion with high accuracy ground truth shape information for comparison.

5.5 A Complete Pose and Shape Estimation System

A complete pose and shape estimation system comprises all hardware and software aspects

that have been described in this thesis. This includes components such as image recording,

estimation of the initial pose and estimation of the body shape. Most components depend

on the result of their predecessors. This leads to a natural sequence of processing steps

that cannot be parallelized. We show the main algorithmic blocks of our complete pose

and shape estimation system in Fig. 5.23.

capture
images

pre-
processing

voxel
model

estimate
pose

estimate
shape

render
output

Figure 5.23: Flowchart of our complete pose and shape estimation system.

Our system is built upon the Coin3D [40] framework. In Coin3D, all components of a

larger system are expressed in a scene-graph. Each component is a node in the graph which

can have several attributes and possibly child nodes. Traditionally, Coin3D is used by the

computer graphics community to compose 3D scenes for visualization. We have extended

the basic framework by custom nodes that perform tasks such as recording images from

a multi-camera setup or nodes that perform shape and pose estimation. All nodes can

be configured through a human-readable text-file. Some nodes produce graphical output

such as 3D meshes or line drawings which can be visualized. We can configure the nodes

of our system in order perform pose and shape estimation from live images or recorded

images from a database. At runtime, the complete graph is traversed once per frame and

all nodes are executed in their natural sequence.

Similar to traditional visualization systems based on scene-graphs, we can display the

graphical output generated by the scene-graph nodes. In Fig. 5.24, we show an example

of our graphical user interface. It consists of a large visualization area that displays 3D

content and a toolbar to configure parameters at runtime. In the example image, we show

an estimated skeleton next to the adapted template mesh.
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Figure 5.24: Our graphical user interface allows us to set parameters of the components
and displays rendered results.

Image pre-processing

6.5 ms

Voxel model

4.7 ms

Pose estimation

16.6 ms

Shape adaptation

21.2 ms

Figure 5.25: Analysis of the runtime of all components required for pose and shape estima-
tion. The total area of the pie chart amounts to 66 ms, which is the maximum processing
time possible when cameras are recording at 15 fps. Thus, the empty area is the available
time for additional processing in every frame.

In a live system which performs real-time pose and shape estimation, the camera frame

rate limits the total processing time allowed for all components. Our camera setup captures

images at 15 frames per second. This means that the total processing time for each frame

must not exceed 66 ms. In Fig. 5.25, we analyze the combined runtime of all components

of our system. The presented time values are average runtimes of a typical interactive
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application where the user is captured by our camera setup and the adapted polygonal

model is shown on a display. The combined runtime of our components is well below

the real-time limit. This means that there are more than 15 ms available for additional

computations such as rendering, cloth simulation or application specific tasks.

An important aspect for interactive systems is a low delay between the recording of

images and a rendered output on the display. A delay that is too long can cause simulator

sickness [137]. We have measured a delay of about 250 ms between actions in the real

world and their mirror reaction in the artificial rendering. This delay was measured by

recording the user and monitor simultaneously with an external high frame-rate camera.

This delay is not only caused by processing times but includes the time for transmission

of camera images, buffering of rendered images at the output stage and delays introduced

by the TV monitor. Considering that the user does not have to perform any critical task

in a virtual mirror scenario, this latency is acceptable.

We conclude that with our hardware setup and software runtime environment, it is

possible to create interactive applications. Due to the short delay between image recording

and graphical output, we prevent that users become annoyed by a visible lag. In the next

section, we present typical applications that are feasible with our real-time adapted mesh.

5.6 Applications

This section presents several applications that can be created using our recording hardware

and real-time pose and shape estimation algorithms. Many applications are based on

recording a 3D model of the user and producing a rendered output which shows the user

in a new setting. The focus of this thesis is on the reconstruction of a such 3D model

without an emphasis on rendering methods. There exist several methods to create a

rendered image of the person without an explicit 3D model. Such methods are described

in detail in the PhD thesis of Dr. Stefan Hauswiesner [72], which contains rendering

methods tailored to hardware the system described in this thesis.

5.6.1 Virtual Mirrors

In Section 1.2, we have described the concept of the virtual mirror. A virtual mirror is a

monitor that displays a live image of the user. Similar to a traditional mirror, the image

of the user is mirrored. However, there is complete control over the graphical content that

can be shown together with the mirror image. Examples are virtual clothing, augmented

objects or a complete artificial scene in the background.

A virtual mirror needs to simulate the properties of a real mirror as accurately as

possible. When standing in front of a mirror at a distance d, the mirror image of oneself

appears exactly at the same distance but behind the mirror. Even though the distance d

can change, the size of the user in the mirror image when projected on the mirror surface

stays constant at half the height h of the user [21]. We illustrate this observation in
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Figure 5.26: (a) Illustration of the mirror effect: The size of the image of the user remains
constant at h/2, independent of the distance d between the user and the mirror. (b) A
virtual camera can be positioned anywhere around the user.

Fig. 5.26(a). The maximum height of a person influences the choice of a suitable monitor

for displaying the mirror image (see Section 5.2). Our television monitor measures 104 cm

on the longer edge. Therefore, it can display the full-body mirror image of users up to

two meters in height, which includes 99 percent of all people [150].

In order to simulate the effect of a virtual mirror, we use a virtual rendering camera to

render the captured 3D model of the user. We place the rendering camera at the mirrored

position of the eyes of the user and let the camera look in the direction of the mirror’s

surface normal. Thus, the distance between the user and the virtual camera is twice the

distance d. The mirror image of a person will be half the height h of the real person when

the focal length f of the virtual camera is twice the distance d between the person and

the mirror surface. Details and derivations of the exact camera parameters can be found

in Straka et al. [140].

Apart from classic mirror simulations, our system can be used to display a full 360◦ view

of the user by rotating the virtual mirror camera around the body as seen in Fig. 5.26(b).

In Fig. 5.27, we show how the user can view his mirror image from the front and even from

the back. We propose a simple and intuitive way of controlling the view selection through

hand gestures. The positions of the hands can be estimated using our pose estimation

algorithm from Chapter 3. The user can trigger a clockwise or counterclockwise rotation of

the mirror image by stretching his left or right hand sideways from his torso, respectively.

Stretching out both hands resets the rotation and sets the camera back to the normal

mirror mode. In order to minimize unintentional user inputs, we require the user to

maintain a certain pose for at least one second before an action is triggered.

A virtual dressing room is a typical application for the 360◦ view mode. The customer

tries on clothing and wants to find out how he or she looks from different sides. With a
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(a) Mirror image (b) Rotated mirror image

Figure 5.27: A virtual mirror cannot only show a traditional mirror image but also allow
a view from the back.

traditional mirror or a single camera virtual mirror, it is fairly easy to look at one’s front

and side. However, looking at one’s own back is challenging as the user would have to

rotate his or her head more than 90◦ to the side. This view is very easy to create with

our free-viewpoint virtual mirror.

5.6.2 Embedding 3D Models into New Scenes

In the last section, we have shown how to render the user in a virtual mirror setting.

We did not include any background in the output images but showed a mirrored image

of the user against a white color. A captured 3D model of a human body can easily

be integrated into 3D scenes or merged with photographs. There are several advantages

to integrating a 3D model into such scenes. When rendering 3D data, it is possible to

exploit depth information in order to handle occlusions correctly. Given an artificial light

source, a virtual shadow can be generated and merged with the scene to increase realism.

Typically, occlusion information and shadows cannot be automatically generated from 2D

images. Given a 3D model, this information can be computed with negligible computation

time. Moreover, due to the free choice of the viewpoint at render time, it is possible to

match the perspective of the person and the new scene.

In Fig. 5.28(a), we show an example of how captured models can be embedded into a

new scene. We combine a virtual person and a picture of camels to create the impression

that this person was visiting India. For this image, we used the recorded 3D model and

adjusted the viewpoint, scale and shadows during compositing.

The second example in Fig. 5.28(b) shows a person giving a talk at a conference while

standing behind a desk. In reality, this persons was never at this conference. However,

he can give his talk there virtually as he is seamlessly integrated into the scene. This is
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(a) Virtual Tourism (b) Telepresence

Figure 5.28: Two examples of how 3D models of people can be embedded in a new scene.

a typical application of tele-presence. A 3D model of the speaker and his voice can be

recorded in our studio anywhere in the world. The 3D model, texture and audio data

is then transferred to the conference via a network. Finally, the model is merged with

the existing scene of the speaker’s desk at the conference. With only a short delay, the

audience of the talk will be able to listen to the speaker and see his image on a screen

or projection. Such an image is not significantly different from live video of a physically

present speaker.

Another field of application for rendered 3D models is cinematography and performance

capture. In recent years, it has become popular to use dynamically captured bodies in

movies [1]. Captured people can be used in scenes of crowds or as background actors.

While foreground actors require a maximum of visual quality to look realistic, the quality

of automatically captured actors is sufficient if they occupy only a small region of the

screen. Note that there is no real-time requirement when recording animations of people

for movies. Therefore, it may be beneficial to use a longer processing time in order to

maximize visual quality [99]. A real-time capable shape estimation system can, however,

be used to quickly preview recorded material without hours of processing.

5.6.3 Body Measurements

A 3D model of a body cannot only be used for rendering purposes. It can act as input

data to measurement applications. Anthropomorphic measurements can be performed

directly on a polygonal mesh. In Fig. 5.29, we show that several measurement points can

be defined according to measurement standards such as ISO 8559 [82]. Measurements can

be performed by analyzing the cross section of the polygonal mesh or by performing length

measurements. When the mesh with defined measurement points is adapted to multi-view

images of a person, measurement points are automatically moved to the correct positions.

This eliminates the error prone direct detection of measurement points.
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(a) Selection of the waist-
line

(b) Measurement of the
waistline

(c) Measurement of arm lengths

Figure 5.29: Measurements points defined on the SCAPE mesh [10] enable predefined
measurements once the mesh is adapted to images.

Worn clothing can change body dimensions significantly. This effect becomes even

more challenging with loose clothing such as wide pants or long dresses. An easy solution

to avoid this problem is to require that persons must wear tight clothing or be scanned

semi-naked. While this may be a suitable requirement in a laboratory setting, it may not be

accepted by customers in a store. Xu et al. [166] present a method that can estimate body

dimensions from an adapted 3D model even in the presence of loose clothing. Alternatively,

there exist methods to fit a parametric model of a person into the captured mesh [70].

While adapting a mesh for anthropomorphic measurements with our approach is possi-

ble, it may not be the best choice. Body measurements do not require a real-time capable

system that performs body measurements at several frames per second. A slower but more

accurate approach to adapt a template mesh to multi-view images should be used. In ad-

dition to silhouette correspondences, computing dense depth maps from input cameras

should be considered [55]. Nevertheless, our mesh adaptation process is fast enough to

perform multiple measurements and use robust statistics to obtain stable measurements

over time. An actual implementation of body measurements with our approach remains,

however, future work.

5.6.4 Virtual Cloth Simulations

Last but not least, we want to mention that a 3D model of a human body can be used to

dress a person in virtual clothing. Virtual clothing is an essential component in a virtual

dressing room. In order to wear virtual clothing, the user of the system selects garment

items from a catalog. Then, the user can move around in the virtual dressing room and

see the clothing augmented on his or her body image.

There exist several methods for cloth simulation in the literature that can fit and

animate polygonal cloth models to a 3D body mesh [64, 109]. We show some examples
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in Fig. 5.30. Typically, the mesh of the body can be used as a collision object that must

not be penetrated by clothing. An important requirement for cloth simulations is that the

simulation is stable. Thus, rapid movement of body vertices or outliers must not cause

the virtual clothing to behave abnormal. Possible solutions use learning algorithms to

model possible cloth deformations [43]. A detailed evaluation of cloth simulation using

our captured 3D models is out of the scope of this thesis and remains future work.

Figure 5.30: Examples of virtual clothing on a polygonal mesh model (images from [64]).

A cloth rendering method based on images is presented in Hauswiesner et al. [74]. It

can augment a user’s rendered image with virtual clothing that has been recorded with a

multi-view setup. This method neither requires a polygonal mesh of the user nor a mesh

of the clothing.





CHAPTER 6

CONCLUSION

6.1 Summary

Human pose and shape estimation is an important aspect when creating 3D models of

persons. Existing approaches provide solutions for real-time pose estimation while other

approaches perform shape estimation in an offline-stage. There is a lack of a combined

system which estimates both the human pose and shape in real-time. A real-time-capable

system is beneficial for interactive applications such as virtual dressing rooms and telep-

resence systems. In this thesis, we have addressed the issue of robust and fast pose and

shape estimation when using only a single hardware setup. This section gives a summary

of our key contributions and findings.

Real-time capturing of people is not possible without a well-designed recording setup.

In Section 5.2, we have presented our hardware setup which consists of ten synchronized

cameras that are connected to a single computer. From each camera image, we extract the

silhouette of the user. By performing all computations on a single computer, we are able

to process the captured images with minimal delay. There is no time overhead for network

communication or synchronization between multiple devices. This is an important aspect

for interactive systems such as virtual mirrors because the user can see himself and expects

the mirror to instantly mimic his or her motions.

Human pose estimation is concerned with finding the optimal skeleton configuration

for the person in the input images. In Chapter 3, we have presented a novel method

to estimate the location of each skeleton joint from a center-line approximation of the

body. This so-called skeletal graph is quickly constructed from a volumetric body scan.

Our end-node labeling algorithm detects limbs in this graph and fits a skeleton model to

the data. Experiments have shown that this method allows automatic initialization and

quickly recovers from erroneous poses.

Given a rough pose of a person, we initialize a polygonal surface model and adapt it to
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the input silhouette images. Our approach in Chapter 4 accurately estimates a person’s

shape from multi-view images. First, the algorithm searches for correspondences between

model vertices and silhouette contours. Then, the vertices are deformed such that the mesh

optimally explains the silhouettes in all views. We have introduced a novel linear skeleton

term for shape optimization. This term improves the stability of shape optimization and

penalizes implausible deformations. Experimental results show that this skeleton term

improves robustness and makes it possible to reduce the number of input cameras.

We achieve real-time shape adaptation through the use of a multi-grid structure and a

decoupled constraint solver. This combination of multi-resolution processing and iterative

optimization reduces the runtime for the most time-consuming tasks in shape adaptation.

While related approaches report processing times of several seconds per frame, our method

enables shape adaptation at camera frame rate. Many authors who perform runtime eval-

uations on their systems have to admit that they do not reach the expected performance,

yet. A common promise is that faster hardware or GPU implementations can solve their

problems in future work. Our algorithms use parallel processors to process raw image

data only. We compress image data into a compact representation such that subsequent

algorithms can be executed efficiently on a single-threaded CPU. For example, we compact

a volumetric body scan into a skeletal graph with only a few nodes and use a coarse-to-fine

approach for mesh adaptation.

We have presented a series of experiments in Chapter 5. They prove that our methods

for human pose and shape estimation are working in real world settings. In addition,

we have shown some applications where a real-time generated model of a human body is

useful. In particular, we have pointed out the virtual mirror application which benefits

from a minimum delay between image recording and the visualization of a virtual mirror

image of the user.

6.2 Conclusion

In this thesis, we have introduced the idea of the virtual dressing room as a new concept to

virtually try-on clothes. Our system contains several components that are essential for a

virtual dressing room. We are able to capture the non-rigid 3D model of a moving person

with a recording studio small enough to be placed in a regular store. We not only capture

this model without manual initialization, but also estimate the current shape of the user

at every camera frame in real-time. Automatic initialization is an essential requirement

because users need not adhere to an initialization protocol or manually enter parameters

into the system.

The 3D model of a person can be used for a variety of tasks in a virtual try-on appli-

cation. For example, it can be rendered from a novel viewpoint to create the impression

of a virtual mirror. The captured 3D shape can be used as a collision object for cloth

simulations or interaction with virtual objects. A 3D model of a person has additional

advantages besides the use in an interactive application. For example, the model of a
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customer can be recorded in a store, once. At a later time, this model can be used to

show the user in new clothing without the need for capturing the customer again. For

example, the 3D model of the user can be displayed at his or her home computer. Further-

more, a 3D model allows for body measurements to determine clothing sizes and select

fitting garments. These possibilities open up a range of new marketing strategies such as

personalized clothing catalogs.

Our contributions to shape and pose estimation are a step in the right direction towards

a virtual dressing experience for customers. However, there are some challenges that are

not addressed in this thesis. For example, most of our test subjects have been wearing

tightly fitting clothing, had short hair and were of a similar height. In the real world and

especially in a clothing store environment, there will be people with a wide range of body

shape and clothing. With the current system, such variety cannot be handled. A possible

solution is to select an appropriate template model for each user. Loose garment such as

skirts or ponchos make it impossible for our pose estimation method to report a meaningful

pose. Such clothing violates the assumption that the human body has a tubular structure

with branches, which is required for voxel scooping. However, it is unclear if other generic

pose estimation algorithms can handle such input data, especially when only silhouettes

are available.

6.3 Future Work

The methods presented in this thesis yield usable results for estimating the pose and shape

of a human body. However, we do not provide a general solution for building a full-featured

virtual dressing room application. There are several aspects that we did not address. In

this section, we elaborate on possible future work based on our results.

Our recording setup was designed during a time when the Kinect camera was a mere

rumor on the internet and depth sensing cameras were extremely expensive. This fact

steered our hardware decision towards a multi-view setup. Since the Kinect has been

released in late 2010, cheap depth sensing hardware has become widely available. Future

work should investigate a combination of depth sensing cameras and classic cameras in a

combined installation. Such an installation comes with several challenges such as camera

synchronization and interferences between multiple active cameras. However, it may be

possible to reduce the total number of required cameras and still capture a full body

model. Furthermore, the current research prototype would need a visual redesign and a

new graphical user interface that looks more appealing to potential customers.

So far, we did not address self-collision. Self-collision or self-penetration may occur

in both shape and pose estimation. For example, it must not be possible that an arm is

estimated to be inside the torso. A possible solution to this problem is to include collision

constraints to the shape adaptation process [109]. In addition, we cannot handle multiple

persons or occluding objects with our framework when input silhouettes are merged. Liu

et al. [99] propose to segment multiple persons directly from input silhouettes. Such
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segmentation will help our algorithms to disambiguate between different persons or even

occluding objects.

Cloth simulation is a huge research area with many advances in the recent years. In

this thesis, we did not apply cloth simulation on the reconstructed mesh of the person. Our

current solution for cloth simulation is image-based [74]. However, it would be interesting

to implement a real-time physics simulation for clothing and evaluate how stable and

realistic cloth simulations will look. The estimated surface mesh can be used as a collision

proxy for virtual clothing such that clothing does not penetrate the body. Alternatively,

it may be possible to use the input silhouette images directly for such collision tests.

Our shape adaptation scheme currently adapts a single template mesh to silhouette

images in every frame. Even if the adapted shape is systematically different from the

template shape, we adapt the template to input data from scratch in every frame. A

possible extension to our approach is to modify the template mesh such that systematic

adaptations are represented in the template. For example, by iteratively updating the

template mesh using existing adaptations, the template mesh will become a personalized

mean shape for a specific user.

Finally, to evaluate the acceptance of our system by everyday users, a thorough user

study is needed. Even though not evaluated systematically, feedback from users without

a technical background have reported that graphical results sometimes look unpleasant.

Such reports are most probably related to the uncanny valley hypothesis [107]. This

hypothesis states that as representations of a human body become more realistic, human

observers often respond with revulsion. Unfortunately, this effect is increased when the

human model is moving. Therefore, care has to be taken that the model becomes either

very realistic or sufficiently unrealistic to increase acceptance from users. In addition,

it remains unclear if a company will ever use a camera-based system to promote their

clothing. The risk that the presentation of virtual clothing on a personal avatar behaves

abnormal can never be fully eliminated. According to companies such as PhiSix Fashion

Labs [115], a fashion company desires complete control over the content shown to potential

customers. Until now, pre-rendered animations of clothing are preferred over camera-

captured user images.

We believe that our work will inspire future work in the area of human pose and

shape estimation. For example, Huang et al. [81] have successfully integrated our skeleton

constraint into patch-based mesh adaptation. Skeleton constraints could be used by the

mesh editing community during design and animation phases. In addition, there is active

research in graph-based human pose estimation [15] besides the strong influence of the

Kinect camera. Given the results of this thesis and ideas for future directions, we are

confident that virtual try-on systems will continue to be developed in the future.



APPENDIX A

ACRONYMS AND SYMBOLS

List of Acronyms

AR augmented reality

CAESAR Civilian American and European Surface Anthropometry Resource

CD compact disk

CG conjugate gradient

CPU central processing unit

DC decoupled constraints

DP dynamic programming

DTW Dynamic time warping

GICP Generalized Iterative Closest Point

GPU graphics processing unit

GS Gauss-Seidel

GUI graphical user interface

HD high definition

ICP iterative closest point

IR infra red

LED light emitting diode

LME Laplacian Mesh Editing

MAP maximum a posteriori probability

PCA principal component analysis

PF particle filter

RGB red green blue

RVM relevance vector machine

SCAPE Shape Completion and Animation of People

SIFT scale invariant feature transform
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SIMD single instruction multiple data

SPD symmetric positive definite

TOF time-of-flight

VTO virtual try-on
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List of Symbols

Mesh and vertices

M A polygonal mesh consisting of vertices V and faces F

V R[3×n] Collection of n vertices
vi R3 Vertex with index i
nvi R3 vertex normal

F N[3×m] Collection of m faces
fi N3 triangular face, contains vertex indices
nfi R3 face normal

Skeleton and Bones

G defines a skeleton (collection of joints and bone hierarchy)
bj Bone with index j
gj R3 Skeleton joint with index j

gprev(j) R3 Parent skeleton joint for joint j

ρij 0 ≤ ρij ≤ 1 Skinning weight for vertex i that connects to bone j

Camera related symbols

` Camera index

P` R[3×4] Projection matrix of camera `

K` R[3×3] Intrinsic camera matrix of camera `
p`
k R2 Pixel position of point k in the image of camera `

Differential coordinates

δi R3 Differential vertex coordinate for vertex i
βi R3 Differential bone coordinate for vertex i
βij R3 Differential bone coordinate for vertex i connected to a single

bone bj

Table A.2: Variable names, their definition domains and a short description.
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LIST OF PUBLICATIONS

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. They are listed in chronological order along with their abstracts.

Primary publications are closely related to this thesis while secondary publications are

based on results and developments of this thesis.

B.1 Primary Publications

A Free-Viewpoint Virtual Mirror with Marker-Less User Interaction

Straka Matthias, Hauswiesner Stefan, Rüther Matthias and Bischof Horst

In: Proceedings of the 17th Scandinavian Conference on Image Analysis (SCIA)

May 2011, Ystad, Sweden [140]

(Accepted for poster presentation)

Abstract: We present a Virtual Mirror system which is able to simulate a physically

correct full-body mirror on a monitor. In addition, users can freely rotate the mirror image

which allows them to look at themselves from the side or from the back, for example. This

is achieved through a multiple camera system and visual hull based rendering. A real-time

3D reconstruction and rendering pipeline enables us to create a virtual mirror image at

15 frames per second on a single computer. Moreover, it is possible to extract a three

dimensional skeleton of the user which is the basis for marker-less interaction with the

system.
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Skeletal Graph Based Human Pose Estimation in Real-Time

Straka Matthias, Hauswiesner Stefan, Rüther Matthias and Bischof Horst

In: Proceedings of the British Machine Vision Conference (BMVC)

August 2011, Dundee, GB [141]

(Accepted for poster presentation)

Abstract: We propose a new method to quickly and robustly estimate the 3D pose of

the human skeleton from volumetric body scans without the need for visual markers. The

core principle of our algorithm is to apply a fast center-line extraction to 3D voxel data and

robustly fit a skeleton model to the resulting graph. Our algorithm allows for automatic,

single-frame initialization and tracking of the human pose while being fast enough for real-

time applications at up to 30 frames per second. We provide an extensive qualitative and

quantitative evaluation of our method on real and synthetic datasets which demonstrates

the stability of our algorithm even when applied to long motion sequences.

Simultaneous Shape and Pose Adaption of Articulated Models using Lin-

ear Optimization

Straka Matthias, Hauswiesner Stefan, Rüther Matthias and Bischof Horst

In: Proceedings of the European Conference on Computer Vision (ECCV)

October 2012, Firenze, Italy [143]

(Accepted for poster presentation)

Abstract: We propose a novel formulation to express the attachment of a polygonal

surface to a skeleton using purely linear terms. This enables to simultaneously adapt

the pose and shape of an articulated model in an efficient way. Our work is motivated

by the difficulty to constrain a mesh when adapting it to multi-view silhouette images.

However, such an adaption is essential when capturing the detailed temporal evolution of

skin and clothing of a human actor without markers. While related work is only able to

ensure surface consistency during mesh adaption, our coupled optimization of the skeleton

creates structural stability and minimizes the sensibility to occlusions and outliers in input

images. We demonstrate the benefits of our approach in an extensive evaluation. The

skeleton attachment considerably reduces implausible deformations, especially when the

number of input views is limited.
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Rapid Skin: Estimating the 3D Human Pose and Shape in Real-Time

Straka Matthias, Hauswiesner Stefan, Rüther Matthias and Bischof Horst

In: Proceedings of Conference on 3D Imaging, Processing, Visualization and Transmission

(3DimPVT)

October 2012, Zurich, Switzerland [142]

(Accepted for oral presentation)

Abstract: We present a novel approach to adapt a watertight polygonal model of the

human body to multiple synchronized camera views. While previous approaches yield

excellent quality for this task, they require processing times of several seconds, especially

for high resolution meshes. Our approach delivers high quality results at interactive rates

when a roughly initialized pose and a generic articulated body model are available. The key

novelty of our approach is to use a Gauss-Seidel type solver to iteratively solve nonlinear

constraints that deform the surface of the model according to silhouette images. We

evaluate both the visual quality and accuracy of the adapted body shape on multiple test

persons. While maintaining a similar reconstruction quality as previous approaches, our

algorithm reduces processing times by a factor of 20. Thus it is possible to use a simple

human model for representing the body shape of moving people in interactive applications.

B.2 Secondary Publications

Coherent Image-Based Rendering of Real-World Objects

Hauswiesner Stefan, Straka Matthias and Reitmayr Gerhard

In: Proceedings of the 2011 ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games (I3D)

February 2011, San Francisco, CA

(Accepted for oral presentation)

Abstract: Many mixed reality systems require the real-time capture and re-rendering

of the real world to integrate real objects more closely with the virtual graphics. This

includes novel view-point synthesis for virtual mirror or telepresence applications. For

real-time performance, the latency between capturing the real world and producing the

virtual output needs to be as little as possible. Image-based visual hull (IBVH) rendering

is capable of rendering novel views from segmented images in real time. We improve upon

existing IBVH implementations in terms of robustness and performance by reformulating

the tasks of major components. Moreover, we enable high resolutions and little latency by

exploiting view- and frame coherence. The suggested algorithm includes image warping

between successive frames under the constraint of redraw volumes. These volumes form a

boundary of the motion and deformation in the scene, and can be constructed efficiently by

describing them as the visual hull of a set of bounding rectangles which are cast around
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silhouette differences in image-space. As a result, our method can handle arbitrarily

moving and deforming foreground objects and free viewpoint motion at the same time,

while still being able to reduce workload by reusing previous rendering results.

Image-Based Clothes Transfer

Hauswiesner Stefan, Straka Matthias and Reitmayr Gerhard

In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality

(ISMAR)

October 2011, Basel, Switzerland

(Accepted for oral presentation)

Abstract: Virtual dressing rooms for the fashion industry and digital entertainment

applications aim at creating an image or a video of a user in which he or she wears

different garments than in the real world. Such images can be displayed, for example, in

a magic mirror shopping application or in games and movies. Current solutions involve

the error-prone task of body pose tracking. We suggest an approach that allows users

who are captured by a set of cameras to be virtually dressed with previously recorded

garments in 3D. By using image-based algorithms, we can bypass critical components

of other systems, especially tracking based on skeleton models. We rather transfer the

appearance of a garment from one user to another by image processing and image-based

rendering. Using images of real garments allows for photo-realistic rendering quality with

high performance.

Free Viewpoint Virtual Try-On With Commodity Depth Cameras

Hauswiesner Stefan, Straka Matthias and Reitmayr Gerhard

In: Proceedings of the 10th International Conference on Virtual Reality Continuum and

Its Applications in Industry (VRCAI)

December 2011, Hong Kong, China

(Accepted for oral presentation)

Abstract: We present a system that allows users to interactively control a 3D model

of themselves at home using a commodity depth camera. It augments the model with

virtual clothes that can be downloaded. As a result, users can enjoy a private, virtual

try-on experience in their own homes. As a prerequisite, the user needs to enter or pass

through a multi-camera setup that captures him or her in a fraction of a second. From the

captured data, a 3D model is created. The model is transmitted to the user’s home system

to serve as a realistic avatar for the virtual try-on application. The system provides free-

viewpoint high quality rendering quality with smooth animation and correct occlusion,

and therefore improves the state of the art in terms of quality. It utilizes cheap hardware

and therefore is affordable for and accessible to a wide audience.
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Multi-GPU Image-based Visual Hull Rendering

Hauswiesner Stefan, Khlebnikov Rostislav, Steinberger Markus, Straka Matthias and

Reitmayr Gerhard

In: Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV)

May 2012, Sardinia, Italy

(Accepted for oral presentation)

Abstract: Many virtual mirror and telepresence applications require novel viewpoint

synthesis with little latency to user motion. Image-based visual hull (IBVH) rendering is

capable of rendering arbitrary views from segmented images without an explicit interme-

diate data representation, such as a mesh or a voxel grid. By computing depth images di-

rectly from the silhouette images, it usually outperforms indirect methods. GPU-hardware

accelerated implementations exist, but due to the lack of an intermediate representation

no multi-GPU parallel strategies and implementations are currently available. This paper

suggests three ways to parallelize the IBVH-pipeline and maps them to the sorting clas-

sification that is often applied to conventional parallel rendering systems. In addition to

sort-first parallelization, we suggest a novel sort-last formulation that regards cameras as

scene objects. We enhance this method’s performance by a block-based encoding of the

rendering results. For interactive systems with hard real-time constraints, we combine the

algorithm with a multi-frame rate (MFR) system. We suggest a combination of forward

and backward image warping to improve the visual quality of the MFR rendering. We ob-

served the runtime behavior of the suggested methods and assessed how their performance

scales with respect to input and output resolutions and the number of GPUs. By using

additional GPUs, we reduced rendering times by up to 60%. Multi-frame rate viewing can

even be ten times faster.

Virtual Try-On Through Image-based Rendering

Hauswiesner Stefan, Straka Matthias and Reitmayr Gerhard

In: IEEE Transactions on Visualization and Computer Graphics

Volume 19, Issue 9, September 2013

(Accepted for journal publication)

Abstract: Virtual try-on applications have become popular because they allow users to

watch themselves wearing different clothes without the effort of changing them physically.

This helps users to make quick buying decisions and, thus, improves the sales efficiency of

retailers. Previous solutions usually involve motion capture, 3D reconstruction or model-

ing, which are time consuming and not robust for all body poses. Our method avoids these

steps by combining image-based renderings of the user and previously recorded garments.
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It transfers the appearance of a garment recorded from one user to another by match-

ing input and recorded frames, image-based visual hull rendering, and online registration

methods. Using images of real garments allows for a realistic rendering quality with high

performance. It is suitable for a wide range of clothes and complex appearances, allows

arbitrary viewing angles, and requires only little manual input. Our system is particularly

useful for virtual try-on applications as well as interactive games.

Temporal Coherence in Image-based Visual Hull Rendering

Hauswiesner Stefan, Straka Matthias and Reitmayr Gerhard

In: IEEE Transactions on Visualization and Computer Graphics

Volume 19, Issue 10, October 2013

(Accepted for journal publication)

Abstract: Image-based visual hull rendering is a method for generating depth maps of a

desired viewpoint from a set of silhouette images captured by calibrated cameras. It does

not compute a view-independent data representation, such as a voxel grid or a mesh, which

makes it particularly efficient for dynamic scenes. When users are captured, the scene is

usually dynamic, but does not change rapidly because people move smoothly within a sub-

second time frame. Exploiting this temporal coherence to avoid redundant calculations is

challenging because of the lack of an explicit data representation. This paper analyses the

image-based visual hull algorithm to find intermediate information that stays valid over

time and is therefore worth to make explicit. We then derive methods that exploit this

information to improve the rendering performance. Our methods reduce the execution

time by up to 25%. When the user’s motions are very slow, reductions of up to 50% are

achieved.

B.3 Collaborative Statement

Aside from my primary supervisor Prof. Horst Bischof, there has been collaboration with a

number of colleagues at the Institute for Computer Vision and Graphics. As the manager

of the Robot Vision lab, Matthias Rüther provided help in writing the publications that

lead to this thesis and contributed ideas for the evaluation of the presented algorithms.

There has been close collaboration with Stefan Hauswiesner during building the experi-

mental hardware setup, in creating graphical output and throughout all publications. In

particular, the software framework presented in Section 5.5, which connects all vision and

graphics algorithms, is joint work with Stefan.
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