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Abstract

B
iological systems exhibit an impressive ability to interact with their environment.
They display high versatility in their movements, an ability to learn fast, and a

remarkable robustness to noise and external perturbations. On the other hand even
modern robots often look clumsy, have di�culty to learn successfully in noisy, dynamic
environments, and are prone to perturbations. Therefore, robot designers seek for
inspiration from nature by identifying successful strategies of biological systems and
applying them to robots.

With this dissertation I want to contribute to further close the performance gap
between arti�cial robots and their biological role models. My approach is to employ
experimental data, that have been collected over a wide range of biological systems and
over a variety of di�erent tasks. I identify the underlying general strategies, formalize
them by the use of rigorous mathematics, to �nally apply them to robots.

My dissertation is divided into two main parts, dealing with two di�erent biologically
inspired approaches. The �rst one, kinematic synergies, describes the phenomenon
in biological systems that a number of degrees of freedom (e.g., muscles, joints) are
coordinated in a �xed way in order to ful�ll a single task. This allows the controller,
which operates the synergy, to work in lower dimensional space. Hence, the remaining
control and/or learning task is much simpler. I demonstrate how kinematic synergies
can be formulated mathematically and how they can be applied to balance control
of a humanoid robot. Remarkably, such synergies, in conjunction with simple linear
controllers, enable a humanoid robot to balance online against all kinds of unknown,
dynamic perturbations with very little computational costs.

The second biologically inspired strategy, which I describe, is known as morpholog-
ical computation. It embraces the observation that the physical body (i.e., the mor-
phology) is not simply a device to carry the brain around, but rather that it is highly
involved in computational tasks. There exit already a number of robots, which suc-
cessfully implement this concept. Nevertheless, a theoretical basis for understanding
the capabilities and limitations of morphological computation has been missing so far.
I present di�erent theoretical models for morphological computation, where a precise
mathematical characterization of the potential computational contribution of a complex
physical body is feasible. Based on these models I propose morphological computation
setups, which consist of the physical body itself with static readouts and static feed-
backs. These simple structures are able to emulate a surprisingly rich class of nonlinear
computations (even ones with persistent memory), which map continuous input streams
to continuous output streams. Remarkably, in the case of a complex, compliant body
it is su�cient to add linear outputs and linear feedbacks in order to emulate nonlin-
ear, dynamic computations. This points to an interesting property of morphological
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computation: it facilitates learning. By outsourcing parts of the computation to the
physical body, the complex problem of learning to control a robot may be reduced to
the much simpler task of �nding linear output weights. This suggests that complexity
and nonlinearity, typically unwanted properties of robots, are desired features in order
to provide a computationally powerful physical body.

Keywords: biologically inspired, robotics, nonlinear control, nonlinear dynamic sys-
tems, morphological computation, kinematic synergies, balance control, locomotion



Zusammenfassung

B
iologische Systeme sind beeindruckend in ihrer Art und Weise wie sie mit ihrer
Umwelt interagieren. Sie zeigen dabei eine groÿes Repertoire an Bewegungen, die

Fähigkeit sich schnell an neue Situationen anzupassen und eine beeindruckende Ro-
bustheit gegenüber Rauschen und externen Störungen. Auf der anderen Seite sind
selbst moderne Roboter in ihren Bewegungen immer noch eher in�exibel, haben groÿe
Schwierigkeiten in einer dynamischen Umgebung zu interagieren und sie sind sehr an-
fällig gegenüber Störungen von auÿen. Daher suchen Wissenschaftler immer wieder
Inspiration in der Natur. Dabei versuchen sie erfolgreiche und allgemein gültige Strate-
gien zu identi�zieren, um diese dann auf Roboter anzuwenden.

Mit dieser Dissertation versuche einen Beitrag zu leisten, die Unterschiede zwischen
künstlichen Robotern und ihren biologischen Vorbilder zu verringern. Mein Ansatz ist
es dabei auf Ergebnisse aus Experimenten mit biologischen Systemen aufzubauen. Ich
arbeite die dahinter liegenden, allgemeinen Strategien heraus, beschreibe sie mit Hilfe
der Mathematik, um sie schlussendlich bei Robotern anzuwenden.

Meine Dissertation ist in zwei Teile unterteilt. Der erste Teil beschäftigt sich mit so
genannten Kinematischen Synergien. Der Begri� beschreibt ein Phänomen, das man in
vielen verschiedenen biologischen Systemen beobachten kann. Dabei werden mehrere
Freiheitsgrade (z.B.: Muskeln, Gelenke) zusammen koordiniert, um ein gemeinsames
Ziel zu erreichen. Durch die daraus resultierende geringere Anzahl der Dimensionen
in denen ich arbeiten muss, vereinfacht sie die eigentliche Aufgabe. Ich zeige wie
man Kinematische Synergien mathematisch formulieren kann, und wie man sie zur
Gleichgewichtskontrolle für humanoide Roboter verwenden kann. Die so gewonnenen
Synergien, erweitert durch einfache, lineare Regler, ermöglichen es einen humanoiden
Roboter online mit geringen Rechenaufwand Störungen dynamischer, unbekannter Art
und Gröÿe auszubalancieren.

Die zweite biologisch inspirierte Strategie, dich ich hier aufgreife, wird unter dem
Namen Morphological Computation zusammengefasst. Ihr liegt die Beobachtung zu-
grunde, dass der physikalische Körper nicht nur dazu da ist, vom Gehirn gesteuert zu
werden, sonder dass er selbst aktiv an der Regelung (z.B. um das Gleichgewicht zu
halten) beteiligt ist. Es gibt bereits eine Reihe von Robotern, die in ihrer Konstruk-
tion genau auf dieses Prinzip aufbauen. Trotz der erfolgreich Anwendung in der Praxis
war es bisher noch nicht möglich eine zugehörige Theorie zu �nden, mit deren Hilfe
man die Möglichkeiten aber auch die Grenzen dieses Ansatzes erfassen konnte. Ich
präsentiere hier daher verschiedene theoretische Modelle, mit denen man eine exakte
mathematische Charakterisierung des möglichen Beitrags des physikalischen Körpers
zu Berechnungen aufzeigen kann. Basierend auf diesen Modellen schlage ich Struk-
turen vor, die es einem ermöglichen mit Hilfe von physikalischen Körpern (Körperteilen)
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Berechnungen durchzuführen. Diese bestehen dabei nur aus dem Körper an sich, und
statischen Readouts und Feedbacks. Diese sehr einfachen Strukturen sind in der Lage
eine auÿergewöhnlich groÿe Klasse an nichtlinearen Berechnungen zu emulieren. Ein
besonders interessanter Fall ist gegeben, wenn der involvierte physikalische Körper eine
genügend komplexe Dynamik besitzt. Dann reicht es aus lineare Readouts und linearen
Feedback zu verwenden. Als Resultat kann dann, zum Beispiel, die komplexe Aufgabe
des dynamischen Interagierens eines Roboters auf die viel einfachere Aufgabe, nämlich
dem Finden von linearen Readout Gewichten, reduziert werden. Eine interessante Kon-
sequenz ist, dass daher die Körperteile von Roboter nicht statisch und starr sein sollten,
wie bisher bei klassischen Robotern, sonder dynamisch und komplex.

Schlüsselwörter: Biologisch Inspiriert, Roboter, nichtlineare Regelung, nichtlin-
eare dynamische Systeme, Morphological Computation, Kinematische Synergien, Gle-
ichgewichtskontrolle
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Detective Del Spooner: Human beings have dreams. Even dogs have dreams, but

not you, you are just a machine. An imitation of life. Can a robot write a symphony?

Can a robot turn a... canvas into a beautiful masterpiece?

Sonny: Can ... you?

from 'I, robot'



Chapter 1

Introduction

The dream of creating arti�cial life has always existed. Even before elaborated artifacts
were built the idea already dwelled in the mind of people. For example, in the famous
Greek Iliads Hephaestus (the god of craftsmen) made talking mechanical handmaids out
of gold. Throughout history people tried to build devices, which mimicked biological
systems. The motivations to construct such artifacts were numerous, from the simple
narcissistic joy to play god to profound scienti�c curiosity. However, in the 19th and
20th century people suddenly focused on building e�ective working machines resulting
in the success story of the assembly line. The used robots were highly optimized tools,
designed for very speci�c tasks. As a consequence, they did not look like any biological
systems anymore. Although this approach was successful, the used robots were bound
to a speci�c task and a speci�c environment. They were far from being called intelligent
or from being comparable to biological systems.

In the last decades there has been again a growing interest in robots, which are
not simple doing the same movement at the same place over and over again. This
new demand for versatile robots is mostly based on new �elds of applications, which
have arisen. For example, todays robots should help in the household, they should
support older or impaired people, or they are meant to walk autonomously in rough,
unknown terrain. In general robots are supposed to interact in highly complex, dynamic
and sometimes even delicate environments. Therefore, the new demands for this new
types of robots are very di�erent to the ones in an assembly line. They should exhibit
versatility in their movements, adaptivity to new situation, ability to interact in noisy
and dynamic environments and, last but not least, implement all of that with high
energy e�ciency. Biological systems face the same challenges and they master them
with an astonishing ease. Therefore, scientists take again a closer look at the solutions
nature provides. They try to identify successful, general strategies and adapt them for
arti�cial robots.

One way to extract such general strategies is to take experimental data of biological
systems into account. In addition, one can look at the main di�erences between a
classical robot design and the corresponding biological model to highlight properties,
which might be responsible for the di�erence in the performances.

For example, biological systems exhibit a much higher number of degrees than clas-
sical robots. One just has to compare the complex muscle skeleton system to the rather
simple compound of rigid parts and torque driven joints. The advantage of such a
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high dimensional working space is the variety of solutions it o�ers. This implies also
that the system is potentially adaptive and it can �nd new solutions, when confronted
with a new situation. However, from the engineer's point of view such a high dimen-
sional space represents a disadvantage. Any optimization scheme or learning algorithm
struggles with a high dimensional space, since the search and learning time increases
exponentially with the number of dimensions (often referred to as �curse of dimension-
ality�). This raises the question, why does nature does not have this problem? Looking
at a number of physiological experiments over a wide range of tasks and species, for
example [38, 11, 10, 13, 54, 53, 1, 35, 47], reveals an interesting strategy, the so-called
kinematic synergies1. They present a �xed coordination of a �xed number of degrees of
freedom. For example, in humans mixed sets of muscles and joints are working together
in a coordinated way to balance. In complex biological bodies there exist a number of
such synergies, which can then be combined, typically, in a linear superposition.

In Chapter 2 I seek to adapt this strategy in order to apply it to robots. I introduce
a general mathematical framework to describe such kinematic synergies and I apply it
to the special case of balance control for the humanoid robot HOAP-2. The results are
remarkable. Our proposed kinematic synergies, only augmented by simple linear con-
trollers, are able to maintain balance of the humanoid robot despite di�erent external,
unknown dynamic perturbations with very little online computational cost.

Another interesting property of biological systems, which is missing in classical
robots, is the compliance of their body parts. Again, for a classical robot designer
compliance is undesired. From their point of view they introduce unwanted complex
dynamics, which makes it unnecessary more di�cult to control the robot. Therefore,
classical robots are built out of rigid body parts and high torque servos. Despite the
disregard of the engineers, nature still uses compliant bodies. What is the advan-
tage? One explanation is that the physical body (i.e., the morphology) of a biological
system is not only a simple container for the brain, but rather that it is highly in-
volved in computational tasks. This aspect is usually summarized under the terms
morphological computation [42] or embodiment [44]. There exist a number of cases in
biology, which support this view [43]. There have been built even robots of all kinds,
which took the concept of morphological computation into their design process, e.g.,
[36, 61, 52, 20, 63, 62, 49]. However, so far there has been no clear mathematical frame-
work, which was able to grasp the concept in mathematical terms. Therefore, I present
in Chapter 3 and Chapter 4 theoretical models for morphological computation, which
are based on rigorous mathematics. They enable us for the �rst time to identify the
capabilities and the limitations of the computational power of physical bodies. It is even
possible to determine the contribution of the morphology to the computational process.
From the presented theories I derive morphological computation devices, which consist
of certain types of physical bodies and some static readouts (and eventually static feed-

1Also sometimes called muscle synergies or movement primitives.
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backs)2. These simple structures are able to emulate a rich class of computations, which
can even include the use of persistent memory. Actually, the proposed morphological
computation devices are analog devices, which are able to emulate complex, nonlinear
operators, which map input streams to output streams. Hence, they are able to im-
plement computations, which are crucial for any successful interaction in a dynamic
environment.

A remarkable conclusion from the proposed theories is that, if the physical body is
su�ciently complex, it is su�cient to add simple linear readouts and linear feedbacks
to the physical body in order to have the full computational power. This suggests
that complexity and nonlinearity, typically unwanted properties of robots, are desired
features in order to provide computational powerful physical bodies.

Chapter 2 deals with the concept of kinematic synergies. It is based on the publica-
tions "Biologically Inspired Kinematic Synergies Provide a New Paradigm for Balance

Control of Humanoid Robots" [16] and "Nonlinear Kinematic Synergies Enable Linear

Balance Control of a Humanoid Robot" [17]. Both papers were jointly written by Ger-
hard Neumann (GN), Auke J. Ijspeert (AI), Wolfgang Maass (WM) and myself (HH).
The optimization process with the Inverse Kinematics was implemented by Gerhard
Neumann (GN), the simulations and the experiments with the real HOAP-2 robot were
designed and implemented by HH (but the JPI-approach of Section 2.4.5, which was
implemented by GN).

Chapters 3 and 4 is about the concept of morphological computation. The �rst part
is based on a draft of a paper with the tentative title "A Theoretical Foundation for

Morphological Computation� and the second part, Chapter 4, is based on a draft of a
paper with the tentative title "Morphological Computation with Explicit Feedback�. The
authors for both papers are myself (HH), Rolf Pfeifer (RP), Rudolf M. Füchslin (RF),
Auke J. Ijspeert (AI) and Wolfgang Maass (WM). All of them contributed by giving
feedback and by proposing experiments. The basic impulse came from WM and AI.
The writing, the proofs, the implementation of the simulations as well the design of the
experiments were done my myself (HH).

2This depends on which model we apply.
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Despite many e�orts, balance control of humanoid robots in the presence of unforeseen

external or internal forces has remained an unsolved problem. The di�culty of this

problem is a consequence of the high dimensionality of the action space of a humanoid

robot, due to its large number of degrees of freedom (joints), and of nonlinearities in

its kinematic chains. Biped biological organisms face similar di�culties, but have nev-

ertheless solved this problem. Experimental data show that many biological organisms

reduce the high dimensionality of their action space by generating movements through

linear superposition of a rather small number of stereotypical combinations of simulta-

neous movements of many joints, to which we refer as kinematic synergies in this paper.

We show that by constructing two suitable nonlinear kinematic synergies for the lower

part of the body of a humanoid robot, balance control can in fact be reduced to a linear

control problem, at least in the case of relatively slow movements. We demonstrate for

a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the

capability to balance dynamically against unforeseen disturbances that may arise from

external forces or from manipulating unknown loads.
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2.1 Introduction

Humanoid robots are constructed to have the form of a human body in order to be
able to work in environments optimized for human needs. Additionally, in the near
future they are meant to work with people, and human like shape would increase the
possibility of acceptance of robots in human society. Nevertheless, the humanoid form
carries the burden of some disadvantages compared to wheeled robots for instance. One
of the biggest problem is the issue of balance, especially the case of counterbalancing
unknown perturbations, which is a standard situation in a real environment and has to
be solved as a prerequisite to any interaction. Due to their human structure, humanoid
robots are bipedal, and have therefore a smaller support polygon (which is de�ned as
the convex hull of the foot support area) compared to, for example, quadrupeds. In
addition, two-thirds of their body mass is typically located in that part of the robot
that lies two-thirds of body height above the ground [59]. Both facts contribute to the
instability of humanoid robots. Furthermore, a failure of their balance control is not only
bad for the robot, since a fall is likely to produce damages, but may also hurt people that
interact with the robot. Therefore, a crucial point for allowing human robots to work in
human environments is to �nd robust and e�ective methods for their balance control.
Additionally, these solutions should induce naturally looking movements in order to
increase the possibility of acceptance of humanoid robots as partners of humans.

The balance control problem of humanoid robots is known to be hard to solve due
to the high dimensionality of their action space (since many degrees of freedoms, i.e.,
joints, are involved) and the nonlinearities inherent to any kinematic chain. Because
of the importance of �nding solutions to this problem, quite a bit of e�ort has already
been invested and many approaches from di�erent research areas have been proposed.

A �rst step was made by introducing the Zero Moment Point (ZMP) criterion [56].
It simpli�es the high dimensional problem by reducing all acting forces above the foot
(in case of single support, i.e., contact with the ground with only on foot) to one single
force [56]. Due to physical interaction between foot and ground we get as a result of
Newton's 3rd law (i.e., action-reaction), at the point where this resulting force acts, a
so-called ground reaction force with opposite sign. The two dimensional point (called
ZMP) on the ground, where this resulting force acts, can then be used to characterize
the dynamic state of the robot: If the ZMP lies within the support polygon of the
robot, the state of the robot is called dynamically stable. This so called "ZMP stability
criterion" reduces the problem of stability to coordinate the limbs of the robot (i.e.,
apply appropriate torques through their servos) in such a way, that the ZMP stays
within the support polygon1.

While the ZMP can be calculated analytically, the position of this point can also

1The robot could also change the size of the support polygon by, for example, hold on to something.
For a discussion of di�erent control strategies in this context we refer to [15].



2.1. Introduction 15

be measured by pressure sensors (actually measuring the ground reaction force). From
this point of view the resulting point is called accordingly Center of Pressure (CoP).
As Goswami demonstrated [14] the ZMP equals the CoP, since they describe the same
phenomenon from di�erent points of view. In this paper we are going to use the name
CoP, since we use the pressure sensor information in combination with the support
polygon to estimate the state of stability. Since the original ZMP de�nition has some
limitations [14], other ground reference points have been proposed, for example, the
Foot Rotation Indicator (FRI) introduced by Goswami [14] or the Centroidal Moment

Pivot (CMP), just to name two. For a detailed discussion we refer to [45].
Other approaches have been proposed that are also based on a reduced model of the

robot. For example, the Inverted Pendulum Model, introduced by Kajita et. al. [24],
has proved to be very useful. It describes the whole robot, under some assumptions, by
a linear inverted pendulum and thereby, reduces the number of dimensions. Extensions
of this model have also been studied, for example, the Three-Dimensional Inverted Pen-
dulum Model 3D-LIPM [25] and the Reaction Mass Pendulum (RMP) [29]. Although
all these reduced models are useful, still, at the point of implementation one has to �nd
control schemes which map the strategy back into the full dynamic model (as Lee and
Goswami pointed out [29]). Hence, they necessarily fail to deal with unknown external
perturbations, since these perturbations present a change in the dynamics of the robot.

An alternative approach to balance control is to rely on the static model, i.e., to
use the kinematic model and the mass distribution of the robot. By employing a local
Jacobian Pseudo-Inverse (JPI) approach on local information, like Resolved Motion
Rate Control (RMRC) [58], the optimal change of the joint angles can be calculated.
Some of these frameworks even allow to set priorities amongst con�icting tasks [4, 5].
Accordingly, balancing could be one of these tasks, typically with a high priority. In
order to deal with unforeseen perturbations, the setup has to be used inside a feedback
control loop, for example as proposed in [34]. However, a drawback of such an approach
is that it calculates online inverse kinematics, which involves computationally expensive
matrix inversions. In addition, such computations lack biological plausibility.

Other approaches try to solve directly the dynamic equations within constraints,
which re�ect the border of stability. For example, Kagami et. al. [23] proposed an
online balancing scheme by solving a quadratic programming problem. However, the
precise dynamic model of the robot is needed in order to apply this approach. Therefore,
it could not be used in situations where the dynamic model of the robot changes due
to external unknown forces, for example, introduced by picking up unknown loads
or contact with the environment, which are standard situations for humanoid robots
working in a human environment.

Biological organisms face similar problems, but, as experimental data suggest, em-
ploy a radically di�erent strategy for controlling their movement apparatus with many
degrees of freedom (DoF), in particular for balance control. Numerous studies from
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the Lab of Bizzi at MIT ([38, 11, 10]) have shown that the central nervous systems
of a variety of organisms employ a modular architecture for motor control, whereby
many di�erent movements (arm movements, walking, jumping, swimming) can be con-
structed as largely linear (but non-negative) combinations of a rather small repertoire
of movement primitives (also referred to as muscle synergies, or kinematic synergies; we
use the latter term in this article).

Also recent work on whole-body movements of humans ([13, 54, 53]) show that bal-
ance control and other human body movements during standing can be understood as
combinations of a small set of stereotypical kinematic synergies (each of them a�ects
several joints). Experiments, where humans where asked to bend their upper trunk,
while recording the angles of the ankle, hip and knee, revealed after a Principal Com-
ponent Analysis (PCA) of these angles, that already the �rst principle component can
explain over 99% of the total angular variance [1]. This suggests that a set of muscles
(multiple degrees of freedom) are controlled by a low dimensional (possibly even one
dimensional) variable. Other experiments suggest that this principle of kinematic syn-
ergies is present over a wide range of di�erent movements like reaching and grasping
[35], upper-arm movement [47] and making a step [57]. Hence, kinematic synergies seem
to present a general strategy biological organisms apply.

We are especially interested in humanoid balance control, Therefore, we apply this
basic modular strategy (based on kinematic synergies) to balance control and demon-
strate how it can be used in the case of the humanoid robot HOAP-2. The kinematic
synergies were calculated o�ine by an optimization process based only on the static

model (kinematics and masses) of the robot2. However, we are able to demonstrate
that the concept of kinematic synergies, when plugged into a linear control loop, can
provide a powerful scheme for dynamic balance control.

In the next section we de�ne kinematic synergies. Section 2.3 explains how to con-
struct and use kinematic synergies for balance control of the humanoid robot HOAP-2.
In Section 2.4 we present a number of experiments with the simulated and the real
HOAP-2.

2.2 Formal De�nitions of Kinematic Synergies

In this section we de�ne kinematic synergies in order to reduce high dimensionality and
nonlinearities. Typically, humanoid robots have a high number of degrees of freedom
(DoF), namely joints. We interpret kinematic synergies (KS ) as a way to reduce the
DoF by putting a de�ned set of joints under the regime of one controlling parameter,
which we refer to as the KS -parameter s. We de�ne a kinematic synergy as a nonlinear

2This optimization process is closely related to the Jacobian Pseudo-Inverse approaches [48], how-
ever, the computations are only needed for the (o�ine) construction of the synergies and not during
online control.
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mapping Φ of the KS -parameter s ∈ R to a �xed number of m degrees of freedom
(joints).

De�nition 2.1. A kinematic synergy (KS ) is a function Φ := Φ(s) which maps the
KS -parameter s ∈ R onto a m dimensional vector of joint angles qKS = Φ(s):

Φ : R → Rm . (2.1)

The superscript KS denotes the subset of m joints, which are controlled by the KS. The
total number of joints of the robot is denoted by n. Further, we de�ne the function ϕ

ϕ : Rm → Rn (2.2)

to embed the m-dimensional subspace spanned by Φ into the n-dimensional space of
all joints of the robot. This embedding copies the angles of all joints a�ected by Φ and
leaves the remaining joints constant.

A KS is typically applied in order to control a low-dimensional, or even one-
dimensional, variable y ∈ Rl. In general the output y depends on all n joint positions
q ∈ Rn of the robot and can be described by a nonlinear function f(q)

f : Rn → Rl. (2.3)

We want the KS to control the output y = (f ◦ϕ◦Φ)(s). In the case of balance control,
the function f represents the nonlinear relationship between all joints of the robot and
a ground reference point like the CoP. We will use two KS Φx and Φz for the two
dimensions of the CoP. Therefore, in this particular case each KS is used to control a
one-dimensional output (l = 1).

Since such a KS a�ects m degrees of freedom that depend just on a one dimensional
parameter s, we can impose further constraints on the function Φ. A reasonable choice
for such a constraint is a linear relationship between the controlling parameter s and
its corresponding output y. This reduces nonlinearities, inherent to kinematic chains,
and hereby facilitates controlling and learning. Hence, we are particularly interested in
the following type of KS :

De�nition 2.2. A linearizing kinematic synergy is a kinematic synergy according to
De�nition 2.1, which has a linear relationship between its controlling parameter s and
the corresponding (to be controlled) output y

y = (f ◦ ϕ ◦Φ)(s) = k · s, k ∈ R . (2.4)

We restrict our attention in this article to such linearizing KS, to which we simply
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refer as KS. Figure 2.1 depicts Equation 2.4.

Φ(s)

s ∈ R

ϕ(qKS)

qKS
∈ R

m q ∈ R
n

f(q)

y ∈ R

linearity

Figure 2.1: Scheme for the composition of the functions ϕ and f according to (2.2) and
(2.3) with the linearizing kinematic synergy Φ, which ful�lls 2.4.

For a better understanding we provide some additional remarks:

1. As stated above the property of linearity in De�nition 2.2 reduces inherent non-
linearities. But Equation 2.4 presents a static mapping, and therefore it will only
linearizes the static part (linearization at q̇ = 0, q̈ = 0) of the whole dynamic
model of the robot. Nevertheless, it will reduce nonlinearities in the dynamic
regime to some extent too, since the dynamic part is coupled with the static part
of the di�erential equations.

2. The controlled variable y is one-dimensional, but is controlled by m > 1 joints.
Hence, we have additional redundant degrees of freedom and therefore, we are
free to impose additional constraints on the KS. Naturally, the choice will depend
on the task for which the KS are constructed. In our case of balance control we
used constraints to assure double support and an upright posture (used in the
optimization process described in Section 2.3.1).

3. KSs are calculated o�ine for each robot (see Section 2.3.1) and subsequently
�xed during simulation as well as when used with the real robot. In a biological
interpretation we assume the KSs to be found by evolution.

4. The presented framework was kept as simple as possible. Various extensions,
which lead to a better performance for particular tasks, are possible. For example,
one could de�ne a two dimensional kinematic synergy (i.e., s ∈ R2 and y ∈ R2)
or time-varying KSs (qKS = Φ(s, t)), which depend on a cyclic movement, for
example, to be used in a walking cycle.
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2.3 Using Kinematic Synergies for Balance Control of the

Humanoid Robot HOAP-2

In this section we show in detail how to use kinematic synergies for balance control
of the humanoid robot HOAP-2, see Figure 2.2A. The robot has n = 25 degrees of
freedom (rotational joints). Its structure can be seen in Figure 2.2B. The goal is to
construct KSs for balance control in double support. Therefore, we have to decide (a)
what output function f and output variables y we are going to use, (b) which subset
of m joints we put under the regime of the KSs and (c) what additional constraints we
are going to apply to construct the KS s:

A B

L hip 1

L hip 2

L hip 3

L knee

L ankle 1

L ankle 2
R ankle 2

R ankle 1

R knee

R hip 3

R hip 1
R hip 2

C

Figure 2.2: (A) The real HOAP-2 robot and (B) its schematic structure. The red
marked and labeled joint rotation axes are controlled by the kinematic synergies Φx

and Φz. (C) Support polygon on the support surface for the robot, including the touch
sensors, which are used to measure the center of pressure (mCoP). Black arrows indicate
the x dimension (forward/backward: range 9.5 cm) and z dimension (left/right: range:
14.3 cm) for movements of the center of pressure.

(a) For balance control a natural choice for the function f is a ground reference point.
These points are mathematically de�ned and can be analytically derived, but in
practice, they are estimated via pressure sensors. Therefore, we will denote the
reference point measured by the pressure sensors as measured Center of Pressure

(mCoP). HOAP-2 has four of such sensors per feet, located at the corners (see
Figure 2.2C). Since a KS is de�ned as a static mapping, we use the static version
of the mCoP to construct our KS. In the static case (zero joint velocity q̇ and
zero joint acceleration q̈) the mCoP coincides with the projected Center of Mass

(pCoM). Therefore, we chose the pCoM as output function f . Since the pCoM
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is a two dimensional point on the supporting surface, we split it up into its two
dimensions yx = pCoMx and yz = pCoMz and de�ne two separate KS s, namely
Φx and Φz, in order to control these one-dimensional outputs yx and yz.

(b) Next, we have to decide what joints are placed under the regime of our KSs. A
natural choice for balance control is to use all m = 12 leg joints (three hip joints,
one knee joint and two ankle joints for both legs). Their corresponding rotational
axes are highlighted in red in Figure 2.2B. The additional surplus of joints are free
to be used for other tasks (grasping, lifting weights, tracking objects, etc.). Their
movements clearly will change the pCoM too, but as we show later in Section 2.4,
our approach is able to deal with that in a natural way.

(c) Finally, we choose some additional constraints (next to the linearity property)
for the KS s, which are used for the optimization process described in the next
subsection. Suitable constraints for balance control are to keep the upper body
as upright as possible and to maintain double support.

2.3.1 Calculating Kinematic Synergies with Inverse Kinematics

In this section we describe the process to obtain the desired KSs in detail. All calcu-
lations are based only on the kinematic model of the robot including the mass infor-
mation (no dynamical information like the inertia matrices is needed). The KSs were
constructed o�ine and subsequently �xed during control action.

We de�ned an initial posture qinit (see Figure 2.4-A). This posture resulted (for the
case of a horizontal support surface) in a pCoM at the center of the support polygon. We
used a posture with wide-spread arms in order to avoid self collision when moving. The
KS-parameters sx and sz were rescaled such that the values −1 and +1 corresponded to
the borders of the support polygon. Therefore, the region of acting without falling was
(for the case of a horizontal support surface) sx/sz ∈ [−1,+1] for both dimensions x and
z, see red-dashed lines in Figure 2.2C. We additionally set the origin of the coordinate
system for the pCoM to the center of the support polygon and therefore, the resulting
outputs in the initial posture were fx(qinit) = fz(qinit) = 0.

We will only describe the procedure for Φx. The second kinematic synergy Φz was
obtained in a similar manner. TheKS was implemented as look-up table which maps the
KS -parameter sx ∈ [−1,+1] to joint angle o�sets (with regard to the initial posture)3,
i.e., ∆qx = ϕ(qKS

x )−qinit. Note that the look-up table represents a discretized version
of a linearizing kinematic synergy as de�ned in De�nition 2.2. In order to obtain
joint angle o�sets in between the table entries a linear interpolation was used. We
used joint angle o�sets instead of absolute joint angles in order to be able to use a

3The function ϕ is used to project the m-dimensional vector qKS
x into the n-dimensional space of

all joints.
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linear superposition (as biological data suggest) of both KS s, i.e., ∆q = ∆qx + ∆qz.
Although, the problem is due to the kinematic chains nonlinear, we will show that
a linear superposition is valid for a wide range of postures. The linear superposition
allows us to use two separate simple KS, which depend only on a one-dimensional
KS -parameter, and which can be constructed independently4.

In order to construct the look-up table, we divided the range of the KS -parameter
sx over the support polygon into 80 points. Therefore, the distance between two neigh-
boring points represents 9.5 cm / 80 ≈ 0.12 cm in the pCoM space, which corresponds
to a step of ∆sx = 0.025 in the KS -parameter space.

The construction of the KS consisted of two alternating optimization steps (see op-
timization scheme in Figure 2.3). Starting from qinit and sx = 0, the �rst optimization
step was used to move the pCoM of the robot to the next point y′x of the look-up table
(located 0.12 cm in x-direction from the origin). In addition, the optimization tried to
keep the upper part of the body upright. An inverse kinematics algorithm based on the
Jacobian Pseudo-Inverse (JPI) [48] was used to calculate the joint movement. There-
fore, the applied Jacobian matrix consisted of two 3×m sub-matrices, the Jacobian for
the position of the pCoM and the Jacobian for the rotation of the torso. However, due
to the movement calculated by this optimization, the position of the right foot relative
to the left foot tended to change. This should be avoided in order to prevent the robot
from falling. Therefore, a second JPI optimization step (see Figure 2.3) was used to
move the right foot back into its original position relative to the left foot. For this
optimization the same Inverse Kinematics algorithm was applied using only the 6 joints
of the right leg.

4Without this property, one would have to construct one single KS with a two-dimensional KS -
parameter, i.e., s ∈ R2.
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Figure 2.3: Scheme of the construction process for the look-up table for the KS Φx in
the form < sx,∆q >. Optimization step 1 moves the pCoM in the desired direction to
y′x, while keeping the trunk in an upright position. Optimization step 2 keeps the feet
at the initial positions.

These two previously described steps were iterated until the desired output value y′x
was reached. Subsequently, the joint angle o�sets to the initial posture were stored in
the look-up table and, now starting from the new joint position, the next entry of the
look-up table was calculated. The same process was applied for the opposite direction
(i.e., for sx from 0 to −1). This �nally led to a look-up table for the range sx ∈ [−1,+1]
which mapped the KS -parameter sx to joint angle o�sets.

Figure 2.4 presents four typical postures for di�erent KS -parameter pairs [sx/sz].
The center of the �gure shows the support polygon (gray area) and the coordinate
system of the KS -parameters. The yellow circles (A-D) represent the postures in the
KS -parameter space. The corresponding screenshots can be seen in the corners of the
�gure.
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Figure 2.4: Typical postures of the simulated HOAP-2 resulting from the KSs Φx and
Φz for di�erent KS -parameters. The center of the �gure shows the de�ned coordinate
system for the KS -parameters sx and sz. The gray shaded area indicates the support
polygon (SP) of our robot standing with both feet on the ground. The red dashed lines
depict the limits of the SP and correspond to the values sx = ±1.0 and sz = ±1.0.
The yellow points show typical postures in the KS -parameter space. Corresponding
postures can be seen in the corners (labeled from A to D). The used KS -parameters
[sx/sz] can be seen below the screenshots. Screenshot [A] shows the initial posture qinit

(sx = sz = 0 / at the origin) [B] shows the robot bending forward with sx = 0.8 and
sz = 0.0, while in [C] the robot is bending to the left (with sx = 0.0 and sz = −0.8).
Screenshot [D] presents a combination of both kinematic synergies with sx = −0.5 and
sz = 0.5.

Figure 2.5A shows the mapping of the KS -parameter sx to the outputs yx =pCoMx

and yz =pCoMz for the KS Φx. We can identify a linear relationship between sx and
yx, whereas the second output dimension yz is una�ected by sx. The same plot for the
KS Φz is shown in Figure 2.5B.

A graphical representation of the joint angle o�sets over the range of the KS -
parameter spaces (from −1 to +1) for the kinematic synergies Φx and Φz is presented
in Figure 2.6. Similar to their biological prototypes (see Figure 4 in [10]), the two KSs

largely a�ect disjoint sets of joints. The joints mainly responsible for the movement in
x-direction are orthogonal to the joints mainly responsible for the z-direction. Note that
the human muscle-skeleton system exhibits, although more complex, a similar struc-
ture. This orthogonality suggests to combine the two KSs linearly which is done by
summing up the initial posture and the two joint angle o�sets qL = qinit +∆qx +∆qz.
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Figure 2.5: (A) The plot shows the mapping of the KS -parameter sx to the outputs
yx = pCoMx and yz = pCoMz for the KS Φx . While the relationship between sx and
yx is linear (as demanded by the de�nition of a linearizing kinematic synergy, Equation
2.4), yz is nearly una�ected by sx. (B) The same plot for the second KS -parameter sz.

s
x

Φ
x
 (forward / backward)

 

 

−1 −0.5 0.0 +0.5 +1

L hip 1

L hip 2

L hip 3

L knee

L ankle 1

L ankle 2

R hip 1

R hip 2

R hip 3

R knee

R ankle 1

R ankle 2
−0.3

−0.2

−0.1

0.0

+0.1

+0.2

+0.3

s
z

Φ
z
 (left/ right)

[rad]

−1 −0.5 0.0 +0.5 +1

Figure 2.6: Graphical representation of the KS s Φx and Φz. Shown are the joint
angle o�sets (in color coding) for the kinematic synergies Φx (moves the pCoM for-
ward/backward) and Φz (moves the pCoM left/right) for the HOAP-2 over the range
[−1,+1] for the KS -parameters sx and sz. Note that these two KSs a�ect largely
disjoint sets of joints.

In order to show the validity of the linear superposition of the two KS s, we evaluated
empirically the deviation of the actual pCoM < fx(qL), fz(qL) > from the case of perfect
linear superposition < fx(qinit + ∆qx), fz(qinit + ∆qz) >. The deviations for the whole
support polygon can be seen in Figure 2.7. Except for extremal cases, where the pCoM
is located at a corner of the support polygon, the deviations from linearity are quite
small.

Note that the described optimization procedure is closely related to standard JPI
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approaches. However, these approaches are typically used for online control, involving
computationally expensive real-time calculations. With the use of kinematic synergies
most of this computational load can be transferred to the o�ine optimization scheme.
As a consequence, and as we will demonstrate later, without a signi�cant loss of per-
formance the robot can be balanced with very little computational power.

Error Function

 

 [cm]

rear

left  

0.2

0.6

1.0

1.4

Figure 2.7: Empirical evaluation of the validity of the linear superposition of
the KSs Φx and Φz. We calculated the deviation of the actual pCoM <
fx(qinit + ∆qx + ∆qz), fz(qinit + ∆qx + ∆qz) > from the case of perfect linear su-
perposition < fx(qinit +∆qx), fz(qinit +∆qz) >. The Euclidean norm of the deviations
is shown in color code for the whole support polygon. Except for extremal cases, where
the pCoM is located at a corner of the support polygon, the deviations from linearity
are quite small. The white dotted lines depict the contours of the feet.

2.3.2 From Statics to Dynamics by Using Linear Controllers

The kinematic synergies Φx and Φz were constructed using the pCoM as output func-
tion, and therefore they were based on the static model of the robot. However, the
robot can only estimate the mCoP with its pressure sensors5, which is also a�ected by
the dynamics of the robot. Nevertheless, we are still able to use the obtained KSs in a
dynamic context if following assumption holds:

Assumption: The robot moves su�ciently slowly such that

mCoP ≈ pCoM.

As we will demonstrate in this section, the assumption allows us to use simple linear
controllers in conjunction with the KS s. Due to the assumption we are in principle
limited to "su�ciently slow" movements. However, we will demonstrate in our exper-
iments that a wide range of unknown external forces can be counterbalanced by our
approach, despite this limitation.

We now explain how the kinematic synergy Φx can be used in combination with
a linear controller for balancing the robot in x-direction (forward/backward). For the

5In our simulations of the HOAP-2 we also used simulated pressure sensors to calculate the mCoP.
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Figure 2.8: Closed control loop for the kinematic synergy Φx. Since we want to have
the mCoPx at the center of the support polygon, the reference point is set to ỹx = 0 .
The external perturbation d results from external forces and/or model uncertainties.

other KS Φz the process is similar. As long as the assumption holds, the function from
the time derivative ṡx of the KS -parameter to mCoPx can be approximated by a linear
transfer function

P (z) =
K

(z− 1)
, (2.5)

with K ∈ R+ and with z being the time shift operator for discrete systems [39]. The
denominator polynomial represents an integrator (one pole at z = +1), which integrates
the velocity ṡx of the KS -parameter to obtain sx.

As long as the dynamical e�ects are small enough, they can be seen as uncertainties
in the linear model of Equation 2.5. Already a simple linear feedback controller can
handle these small uncertainties. In order to obtain a closed control loop we de�ne a
feedback error

ex := ỹx − yx (2.6)

with ỹx being the desired output value and yx = mCoPx. The goal is to prevent the
robot from falling. Therefore, the mCoPx should stay close to the center of the support
polygon. Since we have de�ned the center of SP at the origin, see Figure 2.2C, the
desired value ỹx is set to 0.

We can now use a general standard PID controller to get the controller output ṡx

ṡx = KP ex + KI

�
exdt + KD

dex

dt
, (2.7)

where KP , KI and KD are the positive PID controller parameters. Figure 2.8 shows
the described closed control loop for the kinematic synergy Φx. Since the plant (see
Equation 2.5) already contains an integrator, the use of PD controllers (KI = 0) is
su�cient. For the KS Φz we used a similar control loop, which worked independently
from and in parallel to the �rst control loop.

We have described the control scheme to control around a set point (ỹx = ỹz = 0).
However, the control loop can also be used to move the mCoP on any desired time
varying trajectory6, i.e., ỹx(t) and ỹz(t). This is useful in many applications. For

6See for example Section 2.4.2.
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example, for the purpose of initiating a walking cycle, the robot has to move its mCoP
under the future supporting foot in order to be able to raise the other leg without
falling.

The controller parameters used in the experiments were empirically found to have
a reasonable performance. As we demonstrate (see Subsection 2.4.4) there is a wide
range of appropriate controller parameters and therefore the choice of the parameters
is not critical.

Linear and nonlinear control theory o�ers a number of possible improvements for the
controllers, for example, adaptive control (see [2]) or robust control schemes, optimal
control and di�erent trial and error approaches to �nd good control parameters (see
for example [28]). Even higher order controllers or di�erent control structures than
in Figure 2.8 could be used. However, in order to illustrate the capability of using
kinematic synergies for balance control, we only use the previously presented, simple
PID controllers.

2.3.3 Examination of Di�erent Possible Perturbations

Lets take a closer look at possible perturbations d for the proposed control loop (Figure
2.8). We will distinguish between three di�erent kinds of perturbations:

1. Model perturbations: Since we obtained our KSs from the static model of the
robot, unmodeled dynamics, which will always be present to some extent, result
in model perturbations.

2. Internal perturbations: The mCoP is also in�uenced by movements of joints,
which are not under the control of the kinematic synergies. For example, if our
humanoid robot uses the presented KSs for balancing and additionally moves a
heavy weight with its arms, this movement will also change the mCoP position.
Note that the proposed control loop does not need any information about the
movements of these joints.

3. External perturbations: For example pushes, pulls, contact with the environment
or a moving support platform.

Since a standard feedback control loop has the property to suppress the perturbations
d, our approach works for a wide range of tasks. As shown in our experiments [16],
these tasks include counteracting external forces, following trajectories, compensating
for forces introduced by movements of the limbs of the robot or even a mixture of
these tasks. If the perturbation is too large, the assumption (mCoP ≈ pCoM) might
be violated and the controller will therefore not be able to compensate the resulting
error anymore. Yet, as our experiments show, the proposed system is capable to react
appropriately to a wide range of perturbations.
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2.4 Experiments

We conducted experiments with our proposed approach to demonstrate the variety of
possible applications. We show that kinematic synergies with linear controllers empower
a humanoid robot to counterbalance di�erent kinds of dynamic perturbations. In our
�rst experiments the robot had to counteract a moving support surface (platform where
it stood on) and abrupt unforeseen external forces simultaneously (see Subsection 2.4.1).
In the next experiment the robot had to move its mCoP along a desired trajectory even
when additional perturbations were introduced by manipulating an unknown weight (see
Subsection 2.4.2). Subsequently, we show that the approach can be easily extended to
balancing in single support (the robot only stood on one foot, see Subsection 2.4.3)
and that robustness against parameter changes is an inherent property (Subsection
2.4.4). Furthermore, we compare our approach to an online Jacobian Pseudo-Inverse
(JPI) algorithm (Subsection 2.4.5). Finally, we demonstrate that our approach can be
easily transferred from the simulation to the real robot without any special precautions
(Subsection 2.4.6).

All simulations were implemented in the robot simulation software Webots [37]. A
detailed model of the dynamics of the HOAP-2 robot, based on data provided by the
vendor Fujitsu, was used. The basic simulation time step was set to 2 ms and the time
steps for the control loops were set to 8 ms. In the general setup we had two kinematic
synergies (Φx and Φz), which were used within two separate control loops. They re-
acted independently from each other on their corresponding output dimension x and z.
In dependence on their errors ex and ez, both linear controllers calculated the velocities
ṡx and ṡz of their KS -parameters. The velocities were integrated numerically to obtain
sx and sz, which were then mapped via the look-up table into joint angle o�sets. Sub-
sequently, these joint angle o�sets were linearly combined as described in Subsection
2.3.1 to get the actual joint target angles. Finally, these angles were transformed into
torques by local PD controllers7 at the servos. Note that there are accompanying videos
on my homepage available (http://www.igi.tugraz.at/helmut/thesis).

2.4.1 Moving Support Platform (Surfboard Task)

In this task we simulated the HOAP-2 robot standing on a movable support platform
(surfboard). The surfboard could rotate about the x-axis with angle Θx and about the
z-axis with the angle Θz. Typical scenarios of the setup can be seen in Figure 2.9.

7Note that these are the hardware controller of the servos and not the controllers from our proposed
control loops.
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x-direction z-direction
forward backward left right

without control +10.6◦ −8.6◦ −14.3◦ +14.3◦

with control +20.1◦ −22.3◦ −26.4◦ +26.4◦

improvement 89.6% 159.3% 84.6% 84.6%

Table 2.1: Results for very slow (quasi-static) movements of the support platform on
which the robot was standing. The �rst row shows the tilt angles of the support surface
at which the robot lost its balance when no balance control was applied. The second
row shows the tilt angles when our linear controller combined with a KS was used. The
controller enables the robot to tolerate about twice the tilt angle.

In a �rst experiment, we tested the capability of our linear controllers combined
with the KSs for the quasi-static case. We tilted the surfboard on which the robot was
standing and determined at which tilt angle the robot fell over. The tilting was carried
out very slowly (quasi-static) and was done separately for the x- and z-direction. Table
2.1 shows that our control strategy allows the robot to tolerate about twice the tilt
angle without loosing its balance � compared with a robot which does not change its
posture in an adaptive manner.

Next we considered the case where the surfboard was tilted dynamically in random
directions. The random trajectories for the angles Θx and Θz were generated inde-
pendently from each other by smoothing (by the use of a discrete low-pass FIR-�lter8)
random trajectories of jumps (steps) with random amplitudes and random durations.
Typical resulting trajectories are presented in Figures 2.10A and 2.10B.

In addition to the random movement of the surfboard, unforeseen external forces
(for example these forces could arise from wind or contact with other objects) were
applied to the torso of the robot at various points in time. We designed this scenario in
order to show that our proposed approach is able to deal with di�erent kinds of external
perturbations simultaneously. Furthermore, control strategies that require knowledge
of the dynamic model of the robot are inapplicable in this scenario, because the external
forces change the dynamic model of the robot in an unknown, online manner. Figure
2.10 shows the results when an external force W1 = [0, 0, 5]T N (a force from the right
side) was applied at the torso of the robot during the interval [5s, 10s], and another
external force W2 = [5, 0,−5]T N (a force from the right and the back) was applied
during the interval [15s, 20s] (we shaded these two time intervals in gray). Note that the
onsets of the winds were abrupt (i.e., a step function in time) and therefore represented
highly dynamical perturbations to the system.

Typical trajectories of the mCoP for the described setup, with and without balance
control, are shown in Figures 2.10C and 2.10D. Without balance control, the robot

8The used FIR-�lter had three poles at 0.997.
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A B

C D

Figure 2.9: Screenshots of the posture of the (simulated) HOAP-2 at 4 time points
during the balancing experiment with the random moving support surface (surfboard)
and external perturbations (winds). In Figure (B) the wind W1 was blowing from the
right (point of view of the robot; red arrow). As a consequence, the robot was leaning
against the wind in order to move its mCoP back into the middle of the support
polygon. In Figure (D) another wind W2 (red arrow) was blowing from the right and
the back, resulting in a diagonal force. Again, the robot responded properly to this
online modi�cation of its dynamic model.

lost balance after 16s (indicated by a black star in Figures 2.10C and 2.10E), whereas
with our controllers, balance was maintained. The error signals for both dimensions
x and z can be seen in Figures 2.10E and 2.10F. Note that both perturbations, the
movements of the surfboard and the external forces, are external perturbations. In
addition, as the setup was dynamic, inherent model perturbations were present too.
With this experiment, we demonstrated that our approach is able to react online against
a mixture of di�erent types of unforeseen perturbations.
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Figure 2.10: Results of the experiment with a moving support platform (surfboard)
and unexpected external forces (wind) W1 and W2. The balance of the HOAP-2 is
controlled by two linear controllers combined with the kinematic synergies. Without
balance control (red dashed line in C and D) the mCoP left the support polygon after
16s (in response to the wind W2), and the robot fell over. With balance control (solid
lines) the stability of the robot was maintained in spite of these unexpected external
forces.
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2.4.2 Trajectory Following

In contrast to the preceding experiment, where the robot was controlled around a set
point (ỹx = ỹz = 0), we demonstrate in this experiment that our approach can also be
used to follow any desired time varying trajectory of the mCoP. Trajectory following
is of interest for many applications, for example, to initiate a walking cycle by moving
the mCoP under the future single supporting foot.

In this experiment the robot stood on �at ground. It was supposed to follow a
desired trajectory of the shape of a �gure "eight", see Figure 2.11C. Figures 2.11A
and 2.11B show the same desired trajectory (gray, dash-dotted curves), split up into
its dimensions x and z. In addition to following the desired trajectory, the robot
manipulated a heavy weight (20% of the robot's weight) with its left arm. Note that
the arm joints were not under the control of the KSs, but their movements perturbed
the mCoP. This represented an internal perturbation as described in Subsection 2.3.3.
The impact of the arm movement on the mCoP, when no control action was applied, is
shown by the red dashed curves in Figures 2.11A and 2.11B. The same �gures show that
the robot was able to follow the desired trajectory despite the arm movement (the green
and blue curves show the actual mCoP). The control loops reacted with sinusoidal time
courses of the KS -parameters in order to follow the desired trajectory. In addition, as
response to the arm movement, the control loops introduced time varying o�sets in the
KS -parameters (see Figure 2.11D). The �rst row (A) of Figure 2.12 shows the robot
during the arm movement without balance control. The second row (B) of Figure 2.12
shows the robot with active balance control. Note that at the end of the simulation
(last screenshot on the right), the robot leaned to the right in order to keep its mCoP
at the center of the support polygon.
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Figure 2.11: Results for the trajectory following experiment. Figures (A) and (B)
present the mCoP trajectories split up into its two dimensions x and z. Our approach
enables the robot to follow the desired trajectory (gray, dash-dotted) despite moving
a heavy weight with its left arm. The red dashed curves depict the trajectory of the
mCoP when no control action was applied and therefore shows the deviation of the
mCoP introduced by manipulating the weight. Figure (C) presents the desired �gure
"eight" trajectory in 2D from bird view. The gray shaded rectangles depict the contact
areas of the feet with the ground. (D) The system reacts with sinusoidal responses in
the KS -parameters to the time varying desired trajectory. In addition, we can see time
varying o�sets in the KS -parameters as responses to the perturbation introduced by
manipulating the weight.

2.4.3 Kinematic Synergies in Single Support

In this experiment we demonstrate how to apply our approach in single support. We
used two di�erent strategies. The �rst strategy reused the KSs previously calculated
for double support (referred to as DS-KS ). We switched o� the output of the control
loop for the joints of the lifted leg and set the desired mCoP position to the center
of the reduced support polygon (de�ned by the single supporting foot). The second
strategy was to design new KSs for single support (referred to as SS-KS ). We used
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the same procedure as described previously in Subsection 2.3.1, with the distinction,
that we used a di�erent initial position (the one shown in Figure 2.13A) and we only
optimized the joint angles of the supporting leg.

In the experimental setup the robot stood only on its left foot. The right foot had
no contact to the ground and therefore the right leg was free to perform any desirable
movement, for example, a kick motion. The initial posture can be seen in Figure 2.13A.
The corresponding s-values for this posture were sx = 0 and sz = 0.195 for DS-KS and
sx = sz = 0 for SS-KS.
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Figure 2.13: Setup for the single support task. Figure (A) shows the initial posture.
The yellow circle denotes the CoM of the robot and the arrow points to the pCoM,
which is located at the center of the support polygon. Figure (B) shows the joint angle
trajectories, which were used for the kick motion. When no balance control was applied,
the robot lost balance and tipped over at about 7.5s (red vertical line).

In order to demonstrate the validity of both strategies, we moved the body joint
and the hip joints of the left leg (these joints were not under the control of the KS s)
in order to perform a kick motion, which also included the upper trunk (see Figure
2.13B). For the robot this movement represented an internal perturbation as discussed
in Subsection 2.3.3. When no balancing control was active, after about 7.5s of simulation
time, the robot tipped over and fell. With the controllers switched on, the robot was
able to keep balance during the kick motion (in both cases, SS-KS and DS-KS ). Figure
2.14 shows the time course from 2s to 12s of this experiment with DS-KS. Similar
results were obtained with SS-KS. Figures 2.15A and 2.15B show the trajectories of the
KS -parameters sx and sz. Note that in the case of DS-KS, there was an o�set at the
beginning of the simulation for theKS -parameter sz. This re�ects the o�set of the initial
posture for single support from the original initial posture for double support. Figures
2.15C and 2.15D present the errors during the simulation. The controllers counteracted
the disturbances correctly and kept the errors close to zero for both strategies. The
dashed red curve shows the errors when no controllers were activated. Note that the
scales of the y-axes of the plots in Figure 2.15 are di�erent for the dimensions x and z.
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This is a consequence of the used kick motion which mostly a�ected the mCoP in the
x direction (forward/backward). Both strategies (DS-KS and SS-KS ) showed a similar
performance (see Figures 2.15C and 2.15D). As a consequence, we can see that the KS s
can also be used for di�erent, albeit related tasks, for which, in the �rst place, they
have not been designed for. This might also help to reduce the number of needed KSs

in real world applications, because related tasks might share the same set of KS s.
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Figure 2.15: Results for the single support task. The left column shows the results
for the x-dimension (Φx, forward/backward) and the right column the results for the
z-dimension (Φz, left/right). The Figures (A) and (B) show the responses of the KS -
parameter sx and sz for both approaches (SS-KS and DS-KS ). Figures (C) and (D)
show the errors. The red dashed curves denote the errors when no balance control was
active. In this case the beginning of the red region indicates, when the robot tipped
over and lost balance.

2.4.4 Robustness to Changes in the Model of the Robot and the Con-
troller Parameters

The kinematic synergies are based on the static model of the robot. Since uncertainties
in the model parameters (lengths and masses) are common, it is desirable to have a
framework, which is robust to changes in those parameters. Moreover, such a robustness
simpli�es a transfer from the simulation to a real robot. In addition, it would be
bene�cial to have a wide range of valid control parameters, i.e., KP and KD, which
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are able to balance the robot. In the following experiments we demonstrate that our
proposed setup is widely robust to variations of these parameters.

In a �rst experiment we varied the size of the robot by changing the length of
every link by a multiplicative length factor, ranging from 0.5 to 2.5. We used the
trajectory following task from Section 2.4.2, where the robot had to follow a �gure
eight trajectory with its mCoP, while it manipulated a heavy weight. The KSs were
kept constant. First, we used the same controller parameters for both controllers as in
the original task (KP = 80 and KD = 0.1). The robot was able to keep balance for a
length factor, which ranged from 0.85 to 1.1. In Figure 2.16 the mean squared errors
for the x-dimension9 for successful length factors (the robot kept balance) are indicated
by red circles for these controller parameters. In order to demonstrate how to improve
robustness, we increased the response time of the controllers by setting the controller
parameters to KP = 50 and KD = 0.0. In this case, successful length factors ranged
from 0.85 to 1.45 (indicated by blue crosses in Figure 2.16). Note that the mean squared
error only increased slightly. We also tested an even slower controller (KP = 20 and
KD = 0.0), which resulted in a fairly large range from 0.7 to 2.25 (indicated by green
triangles in Figure 2.16). However, the used controller was too slow to follow the desired
trajectory, which can be seen in the high mean squared error values. The corresponding
mCoP trajectories of all three controllers can be seen in the right plots of Figure 2.16.
The black lines are the target trajectories. The conclusion of the experiment is that
the proposed setup is robust to changes in the lengths of the robot. In addition, the
results suggest that there is a tradeo� between the robustness of the approach and the
response times of the controllers. Similar results were obtained, when the masses as
well the lengths were changed simultaneously to simulate growing.

9Similar plots were obtained for the z-dimension.
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Figure 2.16: Results on robustness to changes in the lengths. The lengths of all links
were multiplied by a length factor. The plot shows three di�erent settings for the
controller parameters, resulting in di�erent response times of the controllers. The red
circles show the mean squared error (mse) for the controller (KP = 80 and KD = 0.1)
with the shortest response time. The red circles are shown for the range of successful
length factors (the robot kept balance) from 0.85 to 1.1. By increasing the response
time (controller parameters were set to KP = 50 and KD = 0.0.) the range (from 0.85
to 1.45) of successful length factors and therefore the robustness of our approach could
be increased. However, also the mse increased slightly, which indicates a worse tracking
performance. With an even longer response time (KP = 20 and KD = 0.0), the region
of successful length factors (from 0.7 to 2.25) also grows, however, the controller was
no longer able to follow the desired trajectory (indicated by the large mse values). The
results point to the fact, that there is a tradeo� between the robustness of the approach
and the response time of the controller.The right plots show the corresponding mCoP
trajectories for the three controllers (at a length factor = 1).

In a second experiment we provide an evaluation of the robustness of our approach
to the choice of the controller parameters. We used the single support task described
in Subsection 2.4.3 and varied the KP and KD parameters over several decades. We
evaluated which parameter settings (KP /KD-pairs) were successful, i.e., the robot was
able to keep balance. The results can be seen in Figure 2.17. Successful parameter
settings are highlighted in green. Note that the region of successful settings ranges over
two decades for both parameters. This suggests that our approach is robust to the
choice of the controller parameters and, thus, appropriate parameters are easily found.
Moreover, this robustness potentially allows us to combine our approach with adaptive
control [2] or online policy search methods [27].
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Figure 2.17: Region of evaluated controller parameters for the single support task de-
scribed in 2.4.3. Successful parameter settings (for which the robot was able to keep
balance) are highlighted in green. Note that the scales of the axes are logarithmic. The
region of successful controller parameters ranges over two decades for both parameters,
indicating that our approach is robust to the choice of the control parameters.

2.4.5 Comparison to an Online Jacobian Pseudo-Inverse Approach

We performed a comparison of our kinematic synergy setup to an online Jacobian
Pseudo-Inverse (JPI) approach [48]. This approach performed online an optimization
similar to the one we used for the o�ine construction of the KSs. In order to be
responsive to external perturbations and model uncertainties we had to plug the JPI
into a feedback control loop.

Figure 2.18: Schematic setup of the online Jacobian Pseudo-Inverse (JPI) approach, to
which we compared our approach (Figure 2.8). Instead of �xed kinematic synergies this
approach has to run online an optimization process (based on a JPI) at every single
time step to calculate the optimal joint angles velocities.

Figure 2.18 shows the considered setup. In order to compare both approaches the
robot had to track a rectangular trajectory (with rounded edges) centered at the center
of the support polygon. We systematically increased the size of the rectangle and the
speed of the trajectory and compared the maximum quantities, at which the robot
tipped over. The di�erences between the two approaches for both limits (rectangle
size and speed) were less than 1%. Hence, there was no signi�cant di�erence in their
performances. This suggests that the complex Jacobian Pseudo-Inverse computations
can be performed o�ine (in order to construct the KSs) without a signi�cant loss of
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performance. Note that the JPI approach needs to apply online sophisticated, time
intensive calculations, while our approach is based on a much simpler control law using
only a PID controller. A comparison of the online computation time of both approaches
revealed a speed-up factor of 80 in favor of our approach. The results also show that
the performance loss due to the linear superposition10 of the two KSs is negligible for
humanoid balancing.

2.4.6 Experiments with a Real HOAP-2 Robot

In our �nal experiment we transferred our approach to a real HOAP-2 robot. Due to
the previously demonstrated robustness against model uncertainties, we were able to
simply reuse the same KSs as in our simulations, even though the static model used for
the KSs did not perfectly match the static model of the real robot.

We investigated two di�erent setups. In the �rst setup the robot stood on the �oor
(denoted by F) and we applied external forces. This was done by applying an almost
constant force from di�erent directions for approximately 1 to 2 seconds by pushing
the robot. In the second setup (denoted by P) we reproduced the surfboard task. The
robot stood on a movable platform, which was mounted on a plastic sphere in order to
resemble the surfboard with its two degrees of freedom. In contrast to the simulated
experiment, no additional external forces (winds) were used (only the movement of
the platform represented an external force). Note that in both setups the robot had
no knowledge about the onset times, the directions or the amplitudes of the applied
external forces.

The �rst row of Figure 2.20 shows the responses of the robot to pushes from di�erent
directions (setup F). The second row shows responses of the robot to di�erent move-
ments of the supporting platform (setup P). The robot counterbalanced the applied
external forces in order to keep its mCoP at the middle of the support polygon in each
of these cases.

In Figure 2.19 we show typical KS -parameters and the error signals recorded while
the robot was pushed from di�erent directions (in setup F). Note that, except for a
short time period after a change of the applied external force, the error was kept close
to zero. This indicates that the robot always tried to maintain its mCoP at the center
of the support polygon.

10Note that the JPI approach does not use a linear superpositions, but rather simultaneously optimize
for both output dimensions, i.e., y ∈ R2.
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Figure 2.19: The KS -parameters and the errors signals recorded during an experiment
with the real HOAP-2 robot. The robots was pushed from di�erent directions (setup F).
The left �gure shows the KS -parameters and the right �gure shows the corresponding
error signals. We can see that, except for a short time period after a change of the
applied external force, the error is kept close to zero. This indicates that the robot
always tried to maintain its mCoP at the center of the support polygon.

2.5 Conclusion

We have presented a new approach towards balance control of a humanoid robot that is
based on inspiration from biology. We have formalized the concept of a kinematic syn-
ergy (KS ) that resembles the concept of a muscle synergy in physiology, and which re-
duces the dimensionality of the action space of the robot. We have shown that two kine-
matic synergies can be constructed for balance control of the humanoid robot HOAP-2
in such a way that their superposition is almost linear (like in biological paradigms),
although each KS itself is highly nonlinear. Based on this concept we were able to
demonstrate that it is possible to move the time intensive calculations of the optimiza-
tion process o�ine and therefore keep the needed online calculations simple and fast.
We have demonstrated, both through computer simulations and through experiments
with the real robot HOAP-2, that this strategy makes it possible to virtually reduce
the highly nonlinear balance control problem of the robot to a linear control problem
(as long as the required movements are not too fast).

We showed that, in contrast to other approaches, which are based on an exact
dynamic model of the robot, our proposed combination of KSs and linear controllers
enables a humanoid robot to counterbalance unknown external forces of di�erent kinds.
Additionally, we showed that robustness to parameter changes in the model as well to
changes in the controller parameters is an inherent property of the proposed approach.
Based on this robustness we were able to transfer in straightforward manner this new
approach for balance control from a simulated to a real HOAP-2 robot.
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We expect that both, the drastic dimensionality reduction of the action space and
the resulting linearization of the robot control through the use of suitable KSs, pave
the way for future learning-based solutions to movement control problems for humanoid
robots.
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The control of compliant robots is, due to their nonlinear and complex dynamics, inher-

ently di�cult. The vision of morphological computation proposes to view these aspects

not only as problems, but rather as parts of the solution. Non-rigid body parts are

not seen anymore as imperfect realizations of rigid body parts, but rather as potential

computational resources. The applicability of this vision has already been demonstrated

for a variety of complex robot control problems. Nevertheless, a theoretical basis for

understanding the capabilities and limitations of morphological computation has been

missing so far. We present a model for morphological computation, where a precise

mathematical characterization of the potential computational contribution of a complex

physical body is feasible. The theory suggests that complexity and nonlinearity, typically

unwanted properties of robots, are desired features in order to provide computational

power. We demonstrate that simple generic models of physical bodies, based on mass-

spring systems, can be used to implement complex nonlinear operators. By adding a

simple readout, which is static and linear, such devices are able emulate complex map-

ping of input to output streams in continuous time. Hence, by outsourcing the compu-

tation to the physical body, the di�cult problem of learning to control a complex body,

could be reduced to a simple and perspicuous learning task, which can not get stuck in

local minima of an error function.
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3.1 Introduction

Most classical robot designs are based on rigid body parts connected by high torque
servos and a central controller to coordinate them. This approach follows the view that
the physical body is some complex (dynamic) system, which has to be dominated by a
cleverly designed central controller. Although this is the standard approach, the result-
ing robots typically perform poorly compared to their biological role models. They are
rather in�exible, exhibit jerky movements and tend to have a high energy consumption
(see for example [9]). On the other hand the vision of morphological computation1

proposes a radical di�erent point of view [43]. Instead of suppressing the nonlinear dy-
namics of the physical body, which is the reason why classical robots are built of rigid
parts, the compliant physical body could be potentially employed as a computational
resource. This suggests that at least a part of the computations, which are needed dur-
ing interaction, could be outsourced to the physical body itself. Hence, the body is not
seen anymore as a device, which is deemed to merely drag the brain around, but rather
that it is highly involved in computational tasks. As a result the remaining learning or
control task and its implementation is less complex, than it would be without the aid
of the physical body. There are a lot of cases of biological systems, which indicate that
nature itself shares this point of view. For a number of examples and discussion we
refer to [43]. Inspired by that di�erent robots have been designed considering the idea
of morphological computation. A rigorous implementation of this concept are passive
walkers. The �rst of a series was developed by McGeer [36]. Typically, such a robot has
no active controller at all. Only its passive physical structure maintains the balance in
a robust fashion, while it walks down a slope. Therefore, one could argue that the com-
putation, which is needed in order to balance the robot robustly, is "computed" by the
physical body itself. A further development are passive walkers with attached (active)
controllers in order to enable the robots to walk even on �at ground (for example [61]).
The used controllers are remarkable simple, since most of the "work" is done by the
physical body. A clever design does not only simplify the controlling task, but also the
task to learn to control. For example Tedrake et. al. [52] showed that the complexity of
the task to learn to walk was drastically reduced by the use of a passive walker. Due to
the design of the physical structure of the robot the system was able to explore online
di�erent walking strategies without loosing balance.

Next to the two legged walking robots there exist also a number of biologically
inspired robots, which mimic a range of species by simultaneously implementing the
concept of morphological computation. For example the simple quadruped robot by
Iida and Pfeifer [20] with a mixture of active and passive joints exhibits a surprisingly

1We consider here the de�nition "computation obtained through interaction of physical form", as
suggested by [42]. However, the term is closely related to the concept of embodiment, which is the
dynamic and reciprocal coupling among brain (control), body and environment [44].
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robust behavior, although no explicit control feedback is used. Another successful
implementation is the arti�cial �sh "Wanda" [63]. It exploits the dynamics between its
physical body and its environment. In the physically more complex �eld of �ying has
also been demonstrated that morphological computation can play an important role,
for example, to stabilize �ight (e.g., [62], [49]).

Another more abstract implementation of the idea of morphological computation are
tensegrity robots [41]. These robots are built of a special combination of rigid struts
and compliant strings. Already simple controllers (found by genetic algorithms) were
able to induce locomotion by indirectly exploiting the dynamics of the physical body.

Despite the large body of evidence, indicating that morphology plays an important
role in controlling complex bodies, so far there has been no rigorous theoretical basis
for this phenomenon. As far as the authors know there has been only one attempt by
Paul [42]. Her line of argumentation, based on experimental experience and thought
experiments, resulted in the heuristic that a physical body with a greater amount of
"dynamic coupling" (complexity) has a higher possibility of a reduced control require-
ment. While her statement is correct, as we see later, it is rather vague. On the other
hand we will provide a rigid mathematical model to describe the computational power
of physical bodies. This will enable us not only to grasp the capabilities and limitations
of morphological computation, but also will give us insight of how to construct physical
bodies in order to be computationally more powerful than others.
This raises the question, which type of computation is useful for biological systems and
therefore for biologically inspired robots? Classical computation models, such as Turing
machines, simply map a batch of input numbers in an o�ine computation onto output
numbers. However, this type of computation is far from the needs of a robot, which
should act in a real environment. It has to integrate continuously information from
various continuous input streams (sensory information) and map them onto multiple
output streams (motor control). Typically, such streams are mathematically encoded
as functions. Computations, which map from such continuous input streams to a con-
tinuous output streams, are referred to operators or �lters. In lack of a better term we
will use here the expression �lter2, denoted by F . In principle the computation of a
�lter F involves two nontrivial computational processes. First temporal integration of
information (which is needed if the current output y(t) does not depend only on the
actual input u(t), but also on the values u(s) for some time points s<t), and second
the nonlinear combination of such temporally integrated information.
We will provide two theoretical models, each of which is able to represent both com-
putational processes. The considered models are depicted in Figures 3.1A and 3.1C.
We will demonstrate that both of them can be implemented with the help of generic

2Note that although the term �lter is often associated with somewhat trivial signal processing or
preprocessing devices one should not fall into the trap of identifying the general term of a �lter, as we
use it here, with special classes of �lters, like, for example, linear �lters.
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physical bodies, provided that they are su�ciently complex, i.e., non-rigid and diverse.
Figures 3.1B and 3.1D depict two proposed corresponding real physical implementa-
tions of these models with mass-spring systems. Note that physical bodies of biological
systems as well of compliant robots can be described by such mass-spring systems. We
will provide proofs that such physical realizations tend to represent the two theoretical
models and therefore emulate their computational powers. Furthermore, we will present
a number of simulations to support this view.
For both models we are able to demonstrate (with simulations) the contribution of the
morphological structure to the computation. In the �rst setup (Figures 3.1A and 3.1B)
the morphological structure contributes only the temporal integration. Therefore, in
order to complete the computation, a nonlinear, but static readout has to be added.
In the second setup (Figures 3.1C and 3.1D) the morphology provides both necessary
computational processes (i.e., temporal integration and nonlinear combination). As a
consequence only a linear, static readout is needed. The corresponding linear "weights"
can be usually calculated by some simple, supervised algorithms, such as linear re-
gression, but our setup also o�ers the potential use of some reward-based [30] or even
completely unsupervised learning rules (such as Slow Feature Analysis [60]). To put it in
other words the learning of complex, nonlinear dynamic �lters can be reduced, through
the help of the physical body (morphology), to the much simpler task of learning some
static, linear weights. This perspective points to a particularly interesting feature of
morphological computation, namely that it facilitates the learning of complex �lters.
Usually the learning of such �lters requires nonlinear optimization procedures (such as
backpropagation through time in a recurrent neural network), which often get stuck in
local minima of the error-function, and which also tend to generalize not too well to new
inputs3. However, since the morphological computation reduces this learning problem
to the learning of some static weights wout, it is guaranteed that learning can not get
stuck in local minima of the mean-squared error function and has arguably optimal
generalization capabilities.
In addition we demonstrate in our simulations that a rather arbitrarily given (or �found�)
physical body can be employed for such morphological computations, since the param-
eters of the simulated physical bodies were not optimized for the approximation of a
given �lter F , but rather randomly chosen from a suitable probability distribution. This
implies that the same physical body can in principle be used for carrying out many mor-
phological computations simultaneously by using a corresponding number of readouts
from this physical body. In other words, multiplexing of morphological computations
is an inherent property of the setups that we describe in this article.

3On the other hand results from statistical learning theory [55] imply that the resulting generaliza-
tion capability of a linear readout is optimal in comparison to any other learning method, where n + 1
parameters are �tted to training data (because the Vapnik-Chervonenkis dimension of such a linear
gate, which needs to be low in order to provide good generalization capability, see [6], is just n + 1).
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Figure 3.1: From abstract theoretical models for morphological computation to real
physical bodies (consisting of mass-spring systems). (A) The morphology (represented
here by an array of randomly chosen, time invariant, memory fading �lters B1, . . . , Bk)
contributes all temporal integration that is required to approximate a given �lter F .
The readout f is here some memoryless, continuous function and provides the necessary
nonlinear combination. Our theory provides evidence for a surprisingly large computa-
tional power of this simple architecture. (B) A possible implementation of (A) with a
physical body. The �lter array is built of an array of linear mass-spring systems and
the readout is implemented by a feedforward arti�cial neural network (ANN). (C) In
this architecture the morphology contributes, in addition to the temporal integration,
generic nonlinear preprocessing in the form of some arbitrary kernel (i.e., nonlinear pro-
jection of x(t) into a higher dimensional space). (D) A possible physical realization of
(C). The array of �lters and the kernel are both implemented by a randomly connected
network of nonlinear springs and masses. In this case only a linear readout (instead of,
e.g., an arti�cial neural network) has to be added externally. In the resulting computa-
tional device the output weights [wout,1, . . . , wout,l] are the only parameters, which are
adapted in order to approximate a given complex �lter F .
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In the next section we provide the theoretical foundations for morphological com-
putations and prove that our proposed physical implementations with mass-spring sys-
tems are valid physical realizations of the theoretical models. In Sections 3.3 and 3.4 we
present various simulations to support the results of the theoretical analysis. Finally,
we conclude with a discussion.

3.2 Theoretical Foundations

In this section we present the theoretical foundations for morphological computation.
We will show that certain (generic) types of physical bodies (i.e., which consist of mass-
spring systems) can be exploited as computational resources. Enhanced only by a static
(memoryless) readout they can be used to approximate uniformly any given nonlinear
�lter F from the class of time invariant �lters with fading memory. The restriction to
time invariant, memory fading �lters is requested by the theory we provide. However,
such a restriction is not a drawback at all, since all physical systems are time invariant
and a lot of practically interesting �lters have the property of fading memory.

Preliminary let us clarify the notation we use. We are considering computations,
which map from functions (or vector of functions) to functions to which we will refer to
as �lters F . The input is denoted by u : R → Rn and the output by y. The argument
t of u(t) and y(t) is interpreted as the time point t. The input domain is denoted by U .
Therefore, we write for the �lter F : U → RR, where RR is the class of all functions
from R to R. In order to express that the output y(t) at time t is the result of applying
the �lter F to an input u we write y(t) = (Fu)(t).

Now we are ready to de�ne the desired properties of time invariance and fading
memory for the considered �lters.

Fading memory is a continuity property of �lters. It requires that for any input
function u(·) ∈ U the output (Fu)(0) can be approximated by the outputs (Fv)(0) for
any other input function v(·) ∈ U that approximated u(·) on a su�ciently long time
interval [−T, 0] in the past4. Thus, in order to approximate (Fu)(0), it is not necessary
to know the precise value of the input function u(s) for any time s, and it is also not
necessary to have knowledge about values of u(·) for more than a �nite time interval
back into the past.

Time invariant �lters are �lters, which can be computed by devices that are input-
driven, in the sense that the output does not depend on any absolute internal clock
of the computational device. Formally one says, a �lter F is time invariant, if any
temporal shift of the input function u(·) by some amount t0 causes a temporal shift
of the output function by the same amount t0, i.e., (Fut0)(t) = (Fu)(t + t0) for all

4Formally one de�nes: A �lter F : U → RR has fading memory, if for every u ∈ U and every ε > 0
there exist δ > 0 and T > 0 so that |(Fv)(0)− (Fu)(0)| < ε for all v ∈ U with ‖u(t)− v(t)‖ < δ for all
t ∈ [−T, 0].
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t, t0 ∈ R, where ut0 is the function de�ned by ut0(t) := u(t + t0). Note that if the
domain U of input functions u(·) is closed under temporal shifts, then a time invariant
�lter F : U → RR is characterized uniquely by the values y(0) = (Fu)(0) of its output
functions y(·) at time 0. In other words, in order to characterize a time invariant �lter
F we just have to observe its output values at time 0, while its input varies over all
functions u(·) ∈ U .

Another way to characterize nonlinear, time invariant �lters with fading memory is
to describe them with Volterra series5. A Volterra series is a �nite or in�nite sum (with
d = 0, 1, . . .) of terms of the form

� ∞

0
. . .

� ∞

0
hd(τ1, . . . , τd) · u(t− τ1) · . . . · u(t− τd)dτ1 . . . dτd,

where some integral kernel hd is applied to products of degree d of the input stream
u(·) at various time points t− τi back in the past. In order to show that such complex
�lters F can be approximated with the help of certain types of physical bodies (which
consist of mass-spring systems), we use a theoretical result from Boyd and Chua [8].
This result builds on the Stone-Weierstrass approximation theorem and it implies that
arbitrary time invariant �lters with fading memory can be uniformly approximated by
computational devices, which consist of two stages:

• an array or �lter bank of �nitely many �basis �lters� B1, . . . ,Bk in parallel that
all receive the same input function u : R → Rn, and which are all assumed to be
time invariant with fading memory

• a memoryless (i.e., static) readout function f : Rk → R that maps the vector
of outputs x(t) = 〈(B1u)(t), . . . , (Bku)(t)〉 of the �rst stage at time t onto some
output y(t).

Figure 3.1A re�ects this setup. A remarkable fact, which provides the basis for our
theoretical analysis of morphological computation, is that the basis �lters B1, . . . ,Bk of
the �lter bank are not required to be of a particular form. Rather, they can be chosen
from any pool of time invariant, fading memory �lters6, which satis�es the following
pointwise separation property.

De�nition. A class B of basis �lters has the pointwise separation property, if there
exists for any two input functions u(·), v(·) with u(s) 6= v(s) for some s ≤ t a basis
�lter B ∈ B with (Bu)(t) 6= (Bv)(t).

5In fact, under some mild conditions on the domain U of input streams, the class of time invariant,
fading memory �lters coincides with the class of �lters, which can be characterized by Volterra series.

6Note that the class of nonlinear �lters F , which we want to approximate by our computational
device, is much richer than the class of �lters, which can be used to build the �lter bank.
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This pointwise separation property is satis�ed by simple, explicitly de�ned classes B,
such as the class of tapped delay lines. However, it tends to be satis�ed also by classes B
of �found� physical realizations of linear and nonlinear �lters. We will show that linear
mass-springs systems are one type of such physically realizable �lters, which form a class
B, which has the pointwise separation property. An interesting fact is that, although
no conditions are imposed on particular �lters of B, a substantial diversity among the
�lters in B is required. An remarkable consequence is that a physical implementation of
such a �lter bank (in form of a morphological structure) has to exhibit this substantial
diversity. While classical approaches to control robots try to avoid such complexity, or
at least try to reduce it, our theoretical model of morphological computation demands
it and therefore provides potentially an explanation of the complexity of biological
systems7.

Based on the de�nition of the pointwise separation property and on [8] (see Theorem
1 in [31] and Theorem 3.1 in [32] for a detailed proof) we can state following theorem:

Theorem. Any time invariant �lter F with fading memory that maps some n-

dimensional input stream u ∈ U onto an output stream y can be approximated with

any desired degree of precision by the simple computational model shown in Figure 1A,

1. if there is a rich enough pool B of basis �lters (time invariant, with fading mem-

ory), from which the basis �lters B1, . . . , Bk in the �lter bank can be chosen (B
needs to have the pointwise separation property) and

2. if there is a rich enough pool R from which the readout functions f can be cho-

sen (R needs to have the universal approximation property, i.e., any continuous

function on a compact domain can be uniformly approximated by functions from

R).

In order to apply this theorem to real physical implementations of the proposed
computational model we have to decide on how to implement the basis �lters and the
readout function. One possible implementation is to use real physical linear mass-spring
systems to build the �lter bank and an arti�cial neural network (ANN) as readout
function. In order to show that this choice is consistent with the previously stated
theorem, we have to demonstrate that linear mass-spring systems are time invariant,
have fading memory and that a pool of such systems has the pointwise separation
property. Regarding the readout we have to demonstrate that a pool of ANNs has the
universal approximation property, which has already been proved by [19] for the case
of feedforward neural networks with one hidden layer. Note that in a biological system
the nonlinear readout might be implemented by a biological neural network.

7Note that Paul [42] came to a similar conclusion.



3.2. Theoretical Foundations 53

Now let us prove the validity of using linear mass-spring systems to build the �lter
bank. A single linear mass-spring system can be described by following equations

ẋ1 = x2

ẋ2 = − k

m
x1 −

d

m
x2 +

1
m

u (3.1)

y = x1,

where x1 is the displacement relative to the resting length l0 of the spring, x2 the rate
of change of x1 (velocity ẋ1), k ∈ R+ the linear spring constant, d ∈ R+ the linear
damping constant, m the mass of the endpoint and u the sum of all external forces
acting on the mass. First, the dynamic system of Equations 3.1 is time invariant for
obvious reasons. Second, we have to show that the system has fading memory. Since
it is �nite-dimensional and linear, it is su�cient to demonstrate that it is exponentially
stable (see Section 5.1 in [8]). The eigenvalues of the system are s1,2 = −d/2m ±√

(d/2m)2 − (k/m). Since in real physical realizations of such systems k, m ∈ R>0,
the real part −d/2m is negative for any values of k and m. Hence, the system is
exponentially stable and therefore has the property of fading memory. Third, the
pointwise separation property of a pool of similar systems was discussed in Section
5.2 of [8]. They showed that this property holds for a special class of systems (Wiener's
Laguerre systems) and mentioned that this is true not only for this special subset, but
for all �nite-dimensional, linear dynamic systems, to which the system of Equations 3.1
also belongs to. Hence, real physical linear mass-spring systems can be used as basis
�lters B1, . . . , Bk in the setup with feedforward8 mass-spring systems as depicted in
Figure 3.1B.
Of course there exist a number of other possible implementations. A closely related
morphology in a biological system is the structure of the wings of a bird. A number of
diverse feathers receive the same input (i.e., air pressure) and mechanoreceptors measure
the distortions. This could represent a biological implementation of the �lter bank of
our proposed theoretical model. Remarkably, the resulting morphological computation
has already been considered in [49]. They used nonlinear angular springs to simulate
the distortions of the feathers and combined it with simulated mechanoreceptors and
a neural network (i.e., nonlinear readout). The network weights were found by genetic
algorithms. While their design was inspired by the biological system itself, we provide
here a theoretical model, which might explain their results.

So far we have only considered a setup with a clear separation of the temporal inte-
gration (implemented by a �lter bank of linear mass-spring systems) and the nonlinear
combination (implemented by an ANN). A biologically more plausible setup would be
to dissolve this separation. In this sense a more practical application could be to choose

8As opposed to the recurrent networks as sketched in Figures 3.1C and D.
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for R the pool of functions consisting of a �xed nonlinear kernel. The notion of a
kernel9 that we use here is closely related to the notion of a kernel for Support Vector
Machines in machine learning [55]. However, whereas a kernel for a Support Vector
Machine is a virtual mathematical concept, we are considering here concrete physical
implementations of a kernel. As a consequence, such a kernel can only satisfy the kernel
property for a �xed �nite range. However, su�ciently large and randomly connected
analog circuit of su�ciently many and diverse nonlinear components tend to map a large
class of pairwise di�erent inputs onto linear independent outputs. Therefore, a particu-
larly tempting option for morphological computation is to let both, the �lter bank and
the kernel, be realized by a single physical body. We will demonstrate with the help
of simulations that random, recurrently connected networks of nonlinear springs and
masses tend to have this property. In other words, such a physical body tends to carry
out temporal integration and nonlinear combination at once. Note that in contrast to
the setup with feedforward mass-spring systems, where the readout was an ANN, in
this case only an additional linear readout is required. Hence, learning to approximate
a given nonlinear (time invariant, fading memory) Filter F is reduced to the simpler
task of learning some weights, providing a number of advantages as already discussed
in the introduction. Figure 3.1C depicts this idea of combing both computational pro-
cesses in one physical body. Figure 3.1D depicts the corresponding proposed physical
implementation as a random, recurrent network of nonlinear springs and masses.

Note that from our proposed theory it is not possible to conclude anything about the
performances of the proposed morphological computation devices (not for the feedfor-
ward structure of Figure 3.1A, nor for the recurrent network of Figure 3.1C). The theory
only states that su�ciently large morphological computation systems of the proposed
types will provide satisfactory approximation capabilities, as long as the morphology
is dynamic and su�ciently diverse. However, for a given �lter F the theory is not
able to specify how big su�ciently large is. Neither is it possible to conclude directly10

from the theory which mass-spring systems (i.e., which physical properties) are needed
for a well performing morphological computation device. This leaves us with the only
option to use generic structures, i.e., to use randomly chosen mass-spring systems to
construct the morphological computation devices. Naturally, this raises the questions is
this approach still applicable? The answer is yes. We present a number of simulations
of the proposed physical implementations (Figures 3.1B and 3.1D) applied to real world

9A kernel (in the sense of machine learning) is a nonlinear projection Q of k input variables u1, . . . , uk

into some high-dimensional space. For example all products ui·uj could be added as further components
to the k-dimensional input vector 〈u1, . . . , uk〉. Such nonlinear projection Q boosts the power of any
linear readout applied to Q(u). For example in the case where Q(u) contains all products ui · uj ,
a subsequent linear readout has the same expressive capability as quadratic readouts f applied to
the original input variables u1, . . . , uk. More abstractly, Q should map all inputs u that need to be
separated by a readout onto a set of linearly independent vectors Q(u).

10However, it might be possible to �nd well performing physical bodies for a given �lter F by
optimization schemes (e.g., with genetic algorithms).
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computational tasks (which are of interest for robotics) and demonstrate that already
relatively small generic structures can be used to emulate complex, nonlinear �lters F .

3.3 Morphological Computation with Feedforward Mass-

Spring Systems

In this section we present simulations of the proposed physical realization of the mor-
phological computation setup with feedforward mass-spring systems (Figure 3.1B). The
simulations consisted of an array of parallel linear mass-spring systems (each of them
described by Equations 3.1). All static, but nonlinear readouts were implemented as
feedforward neural networks, each of one with one hidden layer of sigmoidal neurons
and one linear gate as output. In the simulation we used a generic morphological struc-
ture, i.e., the values, which de�ned the properties of the involved mass-spring systems
(i.e., spring constants k and damping constants d) were drawn randomly from a de�ned
range. The simulations were implemented in Matlab and simulated at a time step of 1
ms.
We demonstrate that our proposed morphological computation device with feedforward
mass-spring systems is in principle able to emulate a Volterra series operator. In order to
have a clear, but nontrivial example we chose a Volterra series consisting of a quadratic
term with a Gaussian kernel. The chosen Volterra series operator V is of the form

y(t) = Vu(t) = (3.2)

=
�

τ1,τ2∈R+
0

h2(τ1, τ2)u(t− τ1)u(t− τ2)dτ1dτ2 ,

where u(t) is the input and h2 is a Gaussian kernel with µ1 = µ2 = 0.1 and
σ1 = σ2 = 0.05 (in seconds), i.e., h2(τ1, τ2) = exp

(
(τ1 − µ1)2/2σ2

1 + (τ2 − µ2)2/2σ2
2

)
,

which is de�ned for τ1, τ2 ∈ [0, 0.2] s. A plot of the kernel can be seen in Figure 3.2.For
the simulations we used a discretized version of the kernel with a discretization step of 1
ms. Note that any computational model, which should approximate this Volterra series
operator V, must provide temporal integration (the delays τ1 and τ2) and nonlinearity
(the quadratic term u(t− τ1)u(t− τ2)).
For the input we chose a product of three sinusoidal functions with di�erent frequencies:
u(t) = sin(2πf1t) · sin(2πf2t) · sin(2πf3t) with f1 = 2, f2 = 3.1 and f3 = 4.2 Hz. The
resulting signal can be seen in Figure 3.3A. The result after applying the given Volterra
series operator V to this input signal u(t) can be seen in Figure 3.3C (red line). This
signal was the target output for our computational device (i.e., target).
The input signal u(t) was applied to 10 linear mass-spring systems (�lter bank). They
all had di�erent, random spring and damping constants. The values were randomly
drawn from a log-uniform distribution from the interval [0.1, 150]. The responses of
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Figure 3.2: Quadratic kernel h2(τ1, τ2) used to de�ne a Volterra series operator V, which
should be approximated by our morphological structure with feedforward mass-spring
systems in combination with a nonlinear readout (i.e., as depicted in Figure 3.1B).

all linear mass-spring systems to the input can be seen in Figure 3.3B. They served as
inputs to the ANN, which consisted of 20 hidden sigmoidal nodes and one linear gate as
output. The weights of the ANN were adapted via BFGS quasi-Newton algorithm. For
more details please refer to the supplementary material on the corresponding homepage
(http://www.igi.tugraz.at/helmut/thesis). Figure 3.3C shows the performance after
learning. The red line is the target signal, i.e., Vu(t), and the blue line is the output of
our morphological computational device. The achieved mean squared error (mse) was
1.06 · 10−3.
In order to demonstrate the contribution of the morphological structure to the com-
putation we compared the results to the case when no physical body (no array of
mass-spring systems) was available and only the nonlinear readout (i.e., ANN) on the
raw input signal remained. In order to have the same number of weights the ANN
was resized accordingly. The results can be seen in Figure 3.3C. The green line is the
output of the plain ANN after learning. One can see clearly that this approach failed
to emulate the given Volterra series operator. The reason is that the ANN is only a
static readout and is not able to represent the necessary temporal integration, which
was contributed in the previous case by the morphological structure. As already argued
in the introduction the setup o�ers the possibility of multiplexing, i.e., the same �xed11

morphological structure can potentially be used for a number of di�erent tasks. Note
that the ability of multiplexing is a bene�cial feature, since the morphological struc-
tures of real robots (and biological systems) are to a high degree �xed12. In order to
demonstrate multiplexing we used the same morphological structure (same �lter bank)
and the same input of the previous task and applied it to a new task by simply adding
a new readout.

11Note that �xed is used in the sense of �xing the parameters, which describe the physical models
of the springs. The mass-spring systems themselves have to be dynamic.

12However, for the biological case exists experimental evidence, that the sti�ness can change in order
to adapt to di�erent environments (e.g., [12]).
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Figure 3.3: Applying a feedforward morphological computation device to approximate
the Volterra series operator V (de�ned by Equation 3.2) and the pendulum (Equation
3.3) simultaneously with one morphological structure (i.e., multiplexing). (A) The used
input signal u(t), which consisted of a product of three di�erent sinusoidal functions
(f1 = 2, f2 = 3.1 and f3 = 4.2 Hz). (B) the responses of all 10 mass-spring systems
to this input (for a better readability the outputs were normalized to zero mean and
a standard deviation of one). (C) the performance of the proposed morphological
computation device for the Volterra task. The red line is the target (applying the
Volterra series operator to the input, i.e., Vu(t)) and the blue line shows the output of
the morphological computation device. The green line shows the performance of the
device, when no morphological structure was available, i.e., only the nonlinear readout of
the ANN was applied to the raw input data. Clearly this approach fails, since the ANN
is only a static readout and is not able to represent the necessary temporal integration,
which was contributed in the previous case by the morphological structure. (D) The
pendulum task: The red line is the target, the blue line the output of the morphological
computation device and the green line, when no morphological structure was available.
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For the additional task we chose from an interesting subclass of nonlinear �lters, which
can be described by Volterra series, namely the class of nonlinear dynamical system with
fading memory13. An example of such a dynamical system is the damped pendulum,
which can be described by following equations (taken from [26])

α̇ = ω

ω̇ = −g

l
sin(α)− µ

m
ω +

1
ml2

Aτ (3.3)

y = α,

where α is the angle, ω the angular velocity, g = 9.81 m/s2 the gravitational accelera-
tion, l the length, m the mass of the bob and µ the friction coe�cient. The constant
A is a proportional factor, which was set to A = 40 in order to drive the system into
the nonlinear domain of the state space. For the same reason we set in the simulations
l = 0.5, m = 0.1 and d = 1. The input to the system was the torque τ and the out-
put was the angle α. In order to obtain suitable targets we simulated system 3.3 at
a time step of 1 ms with Matlab's internal ordinary di�erential equation solver. The
input u(t), now interpreted as torque τ(t), was the same as in the previous task (Figure
3.3A). The red line in Figure 3.3D shows the corresponding output (i.e., target).

Since we used the same morphological structure (same �lter bank array) and the
same input u(t), consequently, the responses of the mass-spring systems were the same
as before (Figure 3.3B). Based on these responses as inputs an ANN with 10 hidden
sigmoidal neurons and one linear output gate was trained (with the BFGS quasi-Newton
algorithm) to approximate the desired targets. The performance can be see in Figure
3.3D. The resulting mse was 1.09 · 10−3. As we can see the �xed generic morphological
structure in conjunction with two di�erent readouts was able to represent the two
di�erent nonlinear �lters.

Again, in order to show explicitly the contribution of the morphological structure
to the computation we compared the results to the case when no physical body (array
of mass-spring systems) was available and only the ANN remained. The performance
can be seen in Figure 3.3D, where the green line represents the output of the ANN.
As before, the ANN applied to the raw input stream failed to represent the desired
nonlinear �lter (i.e., the pendulum equations)..
As previously argued the morphological structure has to be diverse in order to be
computationally powerful. In order to show that this is true we set the properties of all
the mass-spring systems in the �lter bank to the same values (k and d were the same).
The resulting mse for the Volterra task was 0.7937, which was more than 700 times
higher than with the previously used heterogeneous �lterbank.

13Boyd and Chua [8] have pointed out that fading memory for (time-invariant) dynamical systems
is related to the unique steady-state property. For a discussion we refer to [7].
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3.4 Morphological Computation with Recurrent Networks

of Nonlinear Springs and Masses

In the previous simulations we used the approach with a strict feedforward structure
(Figure 3.1A). It implemented a spacial separation between a linear but dynamic part
(implemented as an array of linear mass-spring systems), which provided temporal in-
tegration, and the nonlinear, static readout (implemented as an ANN), which provided
the nonlinearity. However, as we have already argued in Section 3.2, there could exist
physical realizations which have the property to combine both computational aspects
in a single body. We will demonstrate in the following simulations, that random, re-
current networks of nonlinear springs and masses tend to be such physical realizations.
A particular interesting property of this setup is that in contrast to the setup with
feedforward mass-spring systems, where a nonlinear readout (e.g., ANN) was needed,
in this case only a simple linear readout has to be added in order to complete the
morphological computation (compare Figures 3.1B and 3.1D).

We continue with a description of the implementation of the simulation of such
networks followed by a number of example tasks.

3.4.1 Implementation of Recurrent Networks of Nonlinear Springs
and Masses

We considered an implementation of random, recurrent networks of nonlinear springs
and masses, to which we refer as mass-spring networks or simple as networks. In the
next sections we describe how we constructed such networks, how we simulated them
and how we implemented the learning process for the linear readout.

3.4.1.1 Constructing Mass-Spring Networks

The construction of the mass-spring networks was based on following two principles.
First, the �nal network should be realizable as a real physical system, and second, it
should be generic, i.e., not be constructed for any speci�c task.
A chosen number of N nodes (mass points) were randomly positioned (uniformly dis-
tributed) within a de�ned range of a two dimensional plane. Subsequently, we connected
these mass points by nonlinear springs. In order to �nd reasonable, non-crossing spring
connections we calculated a Delaunay triangulation on this set of points, resulting in L

non-crossing spring connections. A schematic example of such a mass-spring network
can be seen in Figure 4.2. Every single nonlinear spring of such a network can be
described by following nonlinear dynamic system

ẋ1 = x2

ẋ2 = −p(x1)− q(x2) + u, (3.4)
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Figure 3.4: Schematic example of a generic mass-spring network. The nodes (masses)
are connected by nonlinear springs. The red nodes are �xed in order to hold the network
in place. The green nodes are randomly chosen inputs nodes, which receive the input
in form of horizontal forces scaled by randomly initiated weights.

where x1 = l − l0 is the di�erence between the actual length l and the resting length
l0, x2 ∈ R is the rate of change of x1 (velocity ẋ1) and u the sum of all external forces
acting on it. At the beginning of the simulation we assumed the mass-spring network
to be at rest (i.e., all springs were at their point of equilibrium x = [0, 0]T and therefore
all masses were at rest). In order to accomplish this we set per de�nition the resting
lengths l0 of all nonlinear springs to the distances (at the start of the simulation) be-
tween the mass nodes they connected, hence l0 := l(t = 0). The functions p and q

were nonlinear and, in order to have a stable and physically reasonable system, had to
be monotonically increasing and ful�ll p(0) = 0 and q(0) = 014. Typically nonlinear
springs are modeled by 3rd order polynomials [40]. Therefore, we implemented the non-
linear functions as p(x1) = k3x

3
1 + k1x1 and q(x2) = d3x

3
2 + d1x2, where k1, d1 ∈ R>0

and k3, d3 ∈ R+ de�ned the properties of the spring. In order to get a rich kernel, as
argued in Section 3.2, the springs should be diverse. Hence, the parameters describing
the spring properties (i.e., k1, k3, d1 and d3) were randomly drawn from a de�ned range,
assigned to the connections and subsequently �xed. The left most and the right most
mass nodes were �xed in order to keep the network in place (red squares in Figure 4.2).
A certain percentage of all nodes were randomly chosen to be input nodes (green nodes
in Figure 4.2). During simulation they received a linearly scaled version of the current
input in form of a horizontal force. Before the simulation started the input scaling fac-
tors (weights win = [win,1, win,2, . . .]T ) had been randomly drawn from a certain range
and had been �xed subsequently.
The linear readout of the network was de�ned as the weighted sum of all ac-
tual spring lengths y(t) :=

∑L
i=1 wout,ili(t). The output weights (wout =

[wout,1, wout,2, . . . , wout,L]T ), in contrast the rest of the network parameters, were
adapted in the learning process.

14A proof for that is based on the Lyapunov function V (x) =
� x1
0

p(ζ)dζ + 1
2
x2

2, its derivative

V̇ (x) = −x2q(x2) and the use of a corollary of La Salle's Theorem (see Theorem 4.4 and Corollary 4.2
in [26]).
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Figure 3.5: Implementation of input, linear readout and simulation of forces of the
mass-spring networks. (A) The input is applied to an input node as a horizontal force
Fx proportional to the input signal u (scaled by a randomly initialized weight win for
this input node). (B) The readout from the network is the weighted sum of all L
spring lengths y(t) =

∑L
i=1 wout,ili(t). In general the input as well as the output can be

multi-dimensional. (C) All the spring forces act along their spring axis. The resulting
force Fsum is the sum of all forces acting on the node and is found by the summation
of the force vectors.

3.4.1.2 Simulating Mass-Spring Networks

We simulated every single mass points (of a total number of N) at a time step of 1 ms
by following equations

mp̈x = Fx + winu (3.5)

mp̈y = Fy, (3.6)

where p̈x and p̈y were the accelerations of the mass point relative to a global reference
frame split up into its two spacial dimensions, Fx and Fy were the forces acting on
the mass in the corresponding spacial dimensions, and winu was the weighted input.
Note that the input was de�ned as a horizontal force (see Figure 3.5A) and if the mass
point was no input node winu := 0. For the sake of simplicity15 all masses were set
to m = 1. The forces Fx and Fy resulted from the nonlinear springs, which were
connected to this mass point. The forces they applied to the mass point depended on
the states of the nonlinear springs, i.e., x1 and x2 in Equation 3.4. The value of x1 was
calculated by the actual length l(t) (Euclidean distance between the two masses which
the spring connected) and the resting length l0. The velocity x2 was approximated
by (x1(t)− x1(t−∆t)) /∆t with a time step of ∆t = 1 ms. The resulting forces were
calculated by the nonlinear functions p(x1) and q(x2). This procedure was repeated
for all springs connected to the mass. We assumed that these forces acted along their
corresponding spring axes. Finally, all spring forces acting on the regarding mass node
were summed up vectorially (see Figure 3.5C). Subsequently, the resulting force Fsum

was split up into its two spacial dimensions and added as forces Fx and Fy to Equations

15Note that the masses are only linear scaling factors and, since the properties of the springs were
randomly drawn, could be set to 1 for all masses without the loss of generality. Nevertheless, in a real
biological body (or robot) a diversity of masses is natural and it contributes further diversity.
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3.5 and 3.6. If the mass point was an input node the current input u(t) was added in
form of a scaled horizontal force (see Equation 3.5 and Figure 3.5A). The new position
and velocity of the mass were found by numerically integrating Equations 3.5 and 3.6
with the 4th order Runge-Kutta method. The same procedure was repeated for all
masses. At the end of the simulation step the current output was calculated by a linear
combination of the actual lengths of all springs, i.e., y(t) =

∑L
i=1 wout,ili(t) (see Figure

3.5B).

3.4.1.3 Learning the Linear Readout of Mass-Spring Networks

The structure of the mass-spring networks, as well as the parameters, which de�ned
the physical behavior, were randomly initialized and subsequently �xed. Only the
linear readout was adapted during the learning process, i.e., the weights wout =
[wout,1, wout,2, . . . , wout,L]T were adapted. For learning we considered a networks of N

nodes connected by L springs. During the simulation we collected the current lengths
of every single spring li(t) for i = 1, . . . , L at every time step t = 1, . . . ,M in a L×M

matrix L. We dismissed data from an initial period of time (washout time) to get rid of
initial transients. The target signal was also collected over time in a matrix T. Finally,
the optimal values for the output weights were calculated by w∗

out = L†T , with L†

being the (Moore�Penrose) pseudoinverse, since in general L was not a square matrix.
Note that the same procedure can be applied in the case of multiple inputs and/or
multiple outputs.

3.4.2 Representing Inverse Dynamics by a Recurrent Mass-Spring
Network

As a �rst task we will demonstrate that a generic mass-spring network can be used to
emulate the dynamic mapping from a trajectory of an end-e�ector of a robot arm in
Cartesian space to the corresponding torques. We used a full dynamic two link robot
arm [50], which was assumed to move in a horizontal plane. Hence, the gravitational
forces could be ignored. We refer to the supplementary material16 for further details
on the robot model. Figure 3.6 shows the setup of the task.

The end-e�ector of the robot arm had to move along the blue trajectory. The cor-
responding trajectories in Cartesian space, i.e., x and y positions, are plotted in Figure
3.8A. The corresponding targets torques, which allowed the robot arm to move along
these trajectories, can be seen in Figure 3.8C (red lines). These torques were found
by the following process: We chose an arbitrary starting posture. Based on the x- and
y-trajectories (which de�ned the �gure eight trajectory in Cartesian space) and the Ja-
cobian of the robot arm we calculated the corresponding trajectories of the joint angles.

16http://www.igi.tugraz.at/helmut/thesis
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Figure 3.6: Setup for the robot arm task. The blue line is the desired trajectory for the
end-e�ector.

Figure 3.7: Generic mass-spring network used for the robot arm task and subsequently
for the multiplexing task in Section 3.4.3. The red nodes are globally �xed and the
green nodes are the randomly chosen input nodes. The network consisted of 30 masses
and 78 nonlinear springs.

Subsequently, the corresponding torques were found by the use of PD-controllers17 in
order to follow those joint angle trajectories.
We constructed a generic mass-spring network based on the previously described pro-
cess (Section 3.4.1.1). The parameters of the springs (i.e., k1, k3, d1 and d3 as de�ned
in 3.4.1.1) were randomly drawn from the range [1, 100] (log-uniform distribution) for
the values k1 and d1, and from [100, 200] (uniform distribution) for the values k3 and
d3. We chose randomly 20% of all nodes to be input nodes for the �rst input (i.e., input
signal x) and also 20% of all nodes for the second input (i.e., y). For more details please
refer to the supplementary material (http://www.igi.tugraz.at/helmut/thesis). One of
the obtained mass-spring networks can be seen in Figure 3.7. It consisted of 30 masses
and 78 nonlinear springs.
As described in Section 3.4 the randomly chosen input nodes (green nodes) received a
scaled horizontal force proportional to the input. The scaling weights win were ran-
domly (uniform distribution) drawn from [−1,+1]. The mass-spring network responded
to this inputs by changing the mass positions and the spring lengths. Figure 3.8B shows
10 typical spring length trajectories (out of all 78). For a better readability the trajec-
tories in this plot were normalized to zero mean and a standard deviation of one. Based

17The used P and D values were empirically found to have a reasonable performance.
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on the targets, all 78 spring length trajectories and the previously described learning
process we calculated the optimal output weights. Note that these weights were static,
i.e., did not provide temporal integration, and that the resulting readout was linear, i.e.,
it did not provide any nonlinearity. Figure 3.8C shows the performance after learning
(using the network of Figure 3.7). The red lines are the target torques and the blue lines
are the outputs of the morphological computation device (solid blue for τ1 and dashed
blue for τ2). We can see that the setup was able to represent the dynamic mapping
from the Cartesian space to the robot arm torques.
In order to demonstrate the contribution of the morphological structure to the compu-
tation we compared the results to the case when no physical body (i.e., no mass-spring
network) was available and only the linear readout remained. In order to do so we
applied linear regression (LR) on the raw input signals. Therefore, we de�ned the out-
put at time t by τLR

1 (t) = w1x(t) + w2y(t) + wbias, where x and y were the inputs
(as in Figure 3.8A) and wLR = [w1, w2, wbias]T were some static weights, which were
found by standard linear regression. Accordingly, we calculated the three corresponding
weights for the second output τ2. Figure 3.8D shows the performance of this approach.
The red lines are the targets and the green lines are the outputs. The approach failed
because it was no able to represent the necessary temporal integration and nonlinear
combination. In the previous case (with the physical body) the morphological structure
provided both of these computational aspects18.
The network of Figure 3.7 was chosen based on the fact that it was the best performing
network out of a number of networks constructed with the same probability distribution,
i.e., the same construction parameters, which de�ned the ranges for the random values
used for the construction process. More speci�cally, these construction parameters were
the de�ned ranges, from which the spring parameters were drawn from, the percentage
of all nodes, which received an input, the range for the input weights win and the size
of the area in which we randomly placed all mass points. This raises the question, is it
easy to �nd such a set of parameters, which de�nes a pool of well performing networks?
Note that for example the range of possible values for the spring parameters k1 and
d1 went over two decades ([1, 100] - see description above). This points to the fact
that no tedious parameter tuning was necessary. In order to demonstrate that the used
(rather broad ranged) construction parameters de�ned a whole set of well performing
networks, and the presented network was not just a statistical outlier, we constructed
400 random networks based on exactly these parameters. Subsequently, we sorted the
networks accordingly to their performances (i.e., by their averaged mean squared error
over both outputs; denoted here by mse). The results are presented in Figure 3.8F. We
can see that even the worst performing network had still a mse smaller than 10−3. Out
of the 400 mass-spring networks we chose

18Note that in the setup used in the Section 3.3 the physical body only provided the temporal
integration.
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Figure 3.8: Representation of the inverse dynamics of a robot arm with the help of
morphological computation. (A) The desired end-e�ector trajectory split up in its
two Cartesian coordinates x and y (i.e., inputs). (B) 10 typical responses (out of all
78) of the mass-spring network to this input. For a better readability each signal was
normalized to zero mean and a standard deviation of one. (C) The performance of
the morphological computation device. The red lines are the target torque trajectories
and the blue lines are the outputs of the computational device. (D) The performance
when no morphological structure was available, i.e., only a linear regression (LR) on the
actual values of the inputs remained. This approach failed to represent the dynamic
and nonlinear mapping. (E) and (F) Based on the same construction parameters we
randomly generated 400 networks and sorted them by their mean squared error (mse)
over its two outputs. The table shows the performances of the best, the worst and the
median network. The best network was used for the plot of Figure C. The performances
of the worst (black dotted line) and the median network (green) are presented in Figure
F.
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the best network (blue line), the worst network (black dotted line) and the median
network (green line)19. The table in Figure 3.8 lists the mse of them. Figure 3.8C shows
the performance of the best network and Figure 3.8E the performances of the worst net-
work (black dotted line) and the median network (green line). Similar results can be
obtained for other tasks and construction parameters. This suggests that in general no
tedious parameter search has to be done in order to �nd probability distributions to de-
�ne a successful pool of networks. Additionally, this means that the physical body does
not have to be tuned for a speci�c task in order to be a valid computational resource,
as long as it is su�ciently complex and diverse. Therefore, the same morphological
structure could be potentially used for a number of di�erent tasks simultaneously (i.e.,
multiplexing).

3.4.3 Multiplexing Property of a Mass-Spring Network

In this section we demonstrate that mass-spring networks have the desired property of
multiplexing. Note that in contrast to the multiplexing in the setup with feedforward
mass-spring systems (Section 3.3), where we used di�erent ANNs as readouts, in the case
of mass-spring networks only a corresponding number of linear readouts is su�cient.
For the following simulations we used therefore one generic network, one input and
three di�erent linear readouts to emulate three di�erent nonlinear �lters.
For the �rst �lter we chose the previously de�ned Volterra series operator V (Equation
3.2). The second task was to emulate following 2nd order nonlinear dynamic system

y[k + 1] = 0.4y[k] + 0.4y[k]y[k − 1] + 0.6u3[k] + 0.1 , (3.7)

where u[k] was the input and y[k] the output at time step k. The third task was to
emulate following nonlinear 10th order system

y[k + 1] = 0.3y[k] + 0.05y[k]

(
9∑

i=0

y[k − i]

)
(3.8)

+1.5u[k − 9]u[k] + 0.1 .

Again u[k] was the input and y[k] was the output at time step k. The systems 3.7 and
3.8 were both taken from [3], where they were used in order to demonstrate the perfor-
mance of a new learning algorithm for recurrent networks. Note that nonlinear systems
of the type of Equations 3.8 are typically hard to emulate for recurrent networks due to
their long-term time dependencies [18]. Note also that our proposed morphological com-
putation device is an analog device, which is able to map continuous input streams onto
continuous output streams. However, in the simulation of this analog device we were

19By median we mean that half of all networks had a better and the other half had an equal or worse
performance.
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Figure 3.9: Simultaneous morphological computation of the three nonlinear �lters with
one generic recurrent mass-spring network (i.e., multiplexing). (A) The input u(t),
which consisted of a product of 3 sinusoidal functions. (B) The trajectories of 10
typical (out of 78) individual spring lengths l(t) as responses to this input. (C) The
performance for the Volterra task. The red line is the target function and the blue
line is the output of the morphological computation device. The green line depicts
the outputs of the device, when no morphological structure was available, i.e., only the
linear readout was applied to the raw input data. Note that the result is simply a scaled
version of the input with some o�set. (D) Performance of emulating system 3.7. (E)
Performance for the �lter de�ned by the system 3.8.
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restricted to discrete time. The simulation time step and the time step of Equations
3.7 and 3.8 were the same. Note that a real physical (analog) implementation of the
morphological computation device would emulate the underlying continuous dynamic
systems, which correspond to the discrete Equations 3.7 and 3.8 and which minimize
the errors at the discretization time steps.
We used the same network as in the previous robot arm task (Figure 3.7). All previ-
ously chosen input nodes (in the robot task assigned for two inputs) were now de�ned
to receive the single input u[k]. As input we used the same signal as previously for the
experiment in Section 3.3, where we used the morphological computation device with
feedforward mass-spring systems. It was a product of three sinusoidal functions and it
is shown again in Figure 3.9A. Figure 3.9B shows 10 typical trajectory (out of all 78)
of the spring lengths as responses of the mass-spring network to this input. The output
weights for the linear readouts were found as previously described. Figure 3.9C shows
the performance of our morphological computation device for the Volterra task. The
red line is the target and the blue line is the output of the morphological computation
device. The mass-spring network with an additional linear readout is able to emulate
the nonlinear �lter de�ned by the Volterra series operator V. Note that, unlike to the
previous Volterra task of Subsection 3.3 (with a �lter bank), here the physical body
(mass-spring network) provided not only the temporal integration but also the nonlin-
earity. Hence, in order to learn to emulate the given nonlinear �lter V, due to the use
of the nonlinear and dynamic morphological structure (as a computational resource),
we only had to calculate a simple linear regression.
In order to show the explicit contribution of the morphological structure to the com-
putation we compared the results to the case when no physical body (no mass-spring
network) was available and only linear regression on the raw input data remained. We
used a linear regression with two weights, w1 for the actual input u(t) and w2 to learn
a bias. Hence, the resulting output at time step t was yLR(t) = w1u(t) + w2. The per-
formance can be seen in 3.7C. The output yLR(t) is depicted by the green line, which
is simply a scaled version of the input (with a very small amplitude) with an additional
o�set. Not surprisingly, pure linear regression on the raw input stream failed to repre-
sent the nonlinear �lter V, since all the required temporal integration and nonlinearity
was contributed before by the physical body (mass-spring network).
Figure 3.9D and 3.9E show the performances of the morphological computation device
in order to emulate the nonlinear systems 3.7 and 3.8 using the same morphological
structure (mass-spring network of Figure 3.7). Again, the red lines are the targets and
the blue lines the outputs of the device. The green lines depict the results, when no
morphological structure was available and only pure linear regression was applied to
the input stream. One can see, that also in these cases, the linear regression, which was
static and linear, failed to represent the necessary dynamics and nonlinearity.
In summary, we can see that one single mass-spring network (i.e., one physical body)
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can be employed to emulate a number of di�erent nonlinear �lters by simple adding a
corresponding number of linear and static readouts.

3.5 Discussion

Based on rigorous mathematics we introduced two theoretical models, which provide
a potential explanation for the computational power of physical bodies. In order to
demonstrate the applicability of the theory to real world tasks we presented a number
of experiments, where we simulated physical implementations of the proposed morpho-
logical computation devices.
The proposed setups are formed by a dynamic morphological structure (i.e., the phys-
ical body with �xed parameters) and a static readout (which can be adapted). As we
have shown the readout can be even linear, if the morphological structure is su�ciently
rich. Remarkably, such simple devices are in principle able to emulate any nonlinear,
time-invariant �lter with fading memory by adapting a simple, linear readout. Hence,
the complex task of learning to emulate such complex �lters can, due to the help of
the morphological structure (i.e., due to morphological computation), be reduced to the
task of �nding some linear weights. This suggests that physical bodies are potentially
able to boost the expression power of attached linear learning systems. Note that a
linear readout increases the speed of learning drastically. Furthermore it guaranties
that the optimization process does not get stuck in a local minimum and it has optimal
generalization capabilities.
A remarkable fact of the proposed theory is that it suggests that morphological struc-
tures, in order to be computationally powerful, should be diverse in their parameters
and that they should exhibit high dimensionality. Note that both aspects are typi-
cal properties of compliant, biological body parts. However, in classical robot design
these attributes are suppressed (by high torque servos and rigid body parts) in order
to have a more tractable model and an easier controllable robot. Our results point
to the fact that the consideration of these dynamic features are essential in order to
be able to outsource computational tasks to the morphological structure and therefore
simplify the control of the robot. This perspective suggests that the development of
novel high-dimensional readouts from arti�cial limbs (e.g., acceleration sensors at many
locations inside the robot) is a possible way to exploit the morphological structure. The
morphological structures of biological systems might even be more suitable for this task
since they provide naturally a high number of internal sensory signals and a variety of
interconnected dynamic structures (muscle-skeleton system, etc.).
Another interesting aspect of the approach is that compliant physical bodies provide
the necessary nonlinearities and the temporal integration for free. The physical struc-
ture simple reacts on its inputs. Actually, it is not even necessary to have real physical
interpretation of all the available internal signals in order to exploit them for morpho-
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logical computation.
Another remarkably property of the proposed morphological computation devices is
the one of multiplexing. One morphological structure is able to provide the necessary
signals for a number of nonlinear �lters - only a corresponding number of readouts has
to be added. While this multiplexing ability is obviously bene�cial, since the physical
bodies of biological system as well as of robots are to high degree �xed, on the other
hand one would also assume that the computational tasks for the physical body are lim-
ited to a set of particular �lters. This suggests that physical bodies or di�erent parts
of the body could be optimized regarding to their computational tasks. The resulting
structures would be inhomogeneous and asymmetric as opposed to the examples pre-
sented here. This points to the need for a new type of computational material science
and computational robotics, where the geometrical and statistical properties of the �ne
structure of di�erent materials are analyzed (and optimized) with regard to their suit-
ability to support through morphological computation the computations of a particular
range of �lters, e.g., �lters that are needed to control a robot for a particular range of
tasks.
Obviously these considerations will also open new perspectives for our understanding of
the shape and structural properties of the body of biological organisms and consequently
will lead to new types of biologically inspired robots.
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In the previous chapter we presented two theoretical models, which provided an explana-

tion for the computational power of certain types of physical bodies. We showed that the

proposed morphological computation devices are theoretically able to emulate any non-

linear, time-invariant �lter with fading memory. While this class of �lters is very rich

and it includes a wide range of relevant computations, it still has its limitations. For

example, it does not include limit cycles, nor the switching between di�erent states, since

such computations request persistent memory. However, such types of computations are

still of interest for robots, for example, to induce locomotion, or to carry out any other

rhythmic movement. It would be also of value to be able to switch between di�erent types

of locomotion (i.e., gaits) depending on some sensory information. A way to overcome

the limitations of the previous approach, and therefore to be able to emulate the men-

tioned computations with persistent memory, is to add external feedback. However, this

requires a new type of computational model, which we will introduce in this chapter.

Based on this new theory we will demonstrate that physical bodies enhanced by simple,

linear feedbacks and linear readouts can be enabled to emulate virtually any nonlinear

dynamic systems, as long as the physical body is su�cient diverse and dynamic (i.e.,
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complex and compliant). Hence, the task of emulating complex, nonlinear dynamic sys-

tems (even with persistent memory) can be reduced, due to the help of the morphological

structure, to the much simpler task of �nding some linear output weights. We present a

number of simulations to demonstrate that already small networks of nonlinear springs

and masses (of the same type as used in the previous chapter) with additional exter-

nal, linear feedbacks and linear readouts can be used to generate di�erent types of limit

cycles in a highly robust fashion. Furthermore, we show that such devices are able to

produce di�erent gaits with the same morphological structure. Moreover, we demon-

strate that such morphological computation devices are capable to implement a smooth

input dependent switching between di�erent limit cycles.

4.1 Introduction

Looking at the list of examples of morphological computation in the introduction of
chapter 3 one can see that locomotion is an especially fruitful �eld of application for
morphological computation. This is not utterly surprising, since compliant parts tend
to oscillate and locomotion is typically based on some sort of repetitive patterns. So far
a standard approach to produce such patterns for locomotion are networks of coupled
oscillators. Due to their rather abstract implementation they can be employed for
all kinds of locomotion. For example, Righetti and Ijspeert applied them to various
quadrupeds [46] or Ijspeert et. al. [21] implemented such a network in order to produce
di�erent movements for a lamprey robot. In general these implementations have the
advantages that they exhibit robustness and that they are generic, thus can be tailored
for a speci�c task. However, a disadvantage is that the involved parameters are either
hand-tuned or found by time intensive nonlinear optimization schemes, e.g., genetic
algorithms. Another drawback is that they just produce some abstract trajectories,
which then have to be followed by high torque servo motors. Hence, the dynamics of
the physical body of the robot are not taken into account and therefore, one still has to
deal with previously discussed disadvantages of classical robot design (see Section 3.1).
In contrast to that we will propose a morphological computation setup, which employs
directly the nonlinear dynamics of the compliant body parts for computation. The
setup also exhibits the desired robustness and the generic applicability. Moreover, the
adaptable parameters are some linear, static weights, which can be found with simple
linear regression. Naturally, this is much faster than any nonlinear optimization scheme
and it is guaranteed to get not stuck in local minima.

While locomotion is a particularly interesting application for morphological compu-
tation our proposed setup is more general. The underlying theoretical model is based
on rigorous mathematics and gives therefore clear insight on how physical bodies can
be employed for computational tasks, which need persistent memory. More speci�c,
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we will demonstrate that nonlinear mass-spring systems1, which are typically used to
describe the dynamics of compliant biological and robotic body parts, can be enhanced
by a nonlinear, but static feedback and a nonlinear readout to emulate in principle any
conceivable computation on some analogous input stream. Moreover, we will show, if
the dynamics of the compliant body is su�ciently complex, already a linear feedback
and a linear readout is su�cient, since the needed nonlinearities are "outsourced" to the
physical body. Remarkably, although the presented theory in this chapter is entirely
di�erent to the one introduced in Chapter 3, it suggests also, that high dimensionality
and nonlinearity, both properties usually undesired due to the di�culties to control
them, are desired attributes for computationally powerful physical bodies.

In the next section we provide the theoretical framework for morphological compu-
tation with feedback and demonstrate how a physical body can be employed to carry
out complex computations on input streams. In Section 4.3 we demonstrate, how this
theoretical model can be practically implemented with a real physical body. In order
to support our theoretical model we provide a number of experiment in Section 4.5.
Finally, we close with a conclusion.

4.2 Theoretical Foundations

We present a theoretical model for morphological computation, which is based on a
result by Maass et. al. [33]. They proved that certain types of nonlinear dynamical
systems (which can have the property of fading memory) gain computational power to
emulate arbitrary nonlinear systems (which can have persistent memory), by adding
simply a suitable static (memoryless) feedback and a suitable static (memoryless) read-
out function. Remarkably, the original dynamic system stays unchanged. Only the
static feedback drives the system in order to emulate, in conjunction with a static
readout, a given nonlinear target system. Maass et. al. applied their theoretical frame-
work to di�erent models of recurrent circuits of neurons and demonstrated that those
generic networks gained computational power to carry out computations with persistent
memory (even under the in�uence of noise), when they added a suitable feedback. A re-
markable fact, which also provides the basis for our theoretical analysis of morphological
computation, is that such a �xed dynamical system, is not required to have a partic-
ular form. It is only requested that it belongs to the class Sn of feedback linearizable
systems.

1Note that they are of the same type as described in Section 3.4
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Theorem 4.1. A system of the form

x′(t) = f(x(t)) + g(x(t)) · v(t) , (4.1)

with x = [x1, . . . , xn]T , f : Rn → Rn and g : Rn → Rn is feedback linearizable about

some point x0 if and only if

(LI) The set of vector �elds {g(x), adfg(x), . . . , adn−1
f g(x)} is linearly independent2

(INV) The distribution generated by {g(x), adfg(x), . . . , adn−2
f g(x)} is involutive

in some neighborhood of x0 (for proof we refer to [51]).

Accordingly, a dynamic system of the form of Equation 4.1 is globally feedback lin-

earizable if and only if the conditions (LI) and (INV) hold for the whole state space.
We will reserve the letter C to denote feedback linearizable systems of the form of Equa-
tion 4.1, i.e., C ∈ Sn. A useful property of such systems is, as the name already suggests,
that they can be transformed by a suitable feedback into a linear system. Actually, this
is a standard tool in nonlinear control to transform a nonlinear system into a linear
system, which is then naturally much easier to control. The corresponding resulting
linear system L to the nonlinear system C is

L : x′ = Anx(t) + bnv(t), (4.2)

with

An =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 bn =


0
0
...
0
1

 .

More generally, one can say that the nonlinear feedback linearizable system C is feedback
equivalent to the linear system L. The notion of feedback equivalence is an equivalence
relation expressing that two systems of di�erential equations can be transformed into
each other through application of a suitable feedback and a change of basis in the state
space [33, 51]. Such a change of basis can be achieved through an appropriate readout
function.

Let us assume that we have a given dynamic system G, which has the order n, is
nonlinear, and is of the form

G : z(t)(n) = G(z(t), z(t)′, . . . , z(t)(n−1)) + u(t) , (4.3)

2with adi
fg(x) being the i-times recursively applied Lie bracket of f and g (see for example [22]).
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Figure 4.1: Computational architectures considered in Theorem 4.2. (A) Fixed dynam-
ical system C ∈ Sn, which is of the form of Equation 4.1 (B) An given arbitrary nth
order dynamical system G (target system) with external input u(t), which should be
emulated by system (A) using an appropriate static feedback K(x(t), u(t)) and a static
readout function h(x(t)). This results in structure (C), which emulates the system G,
i.e., it delivers the same output as system G, i.e., h(x(t)) = z(t) for any input u(t).

where G : Rn → R is a su�ciently smooth, but otherwise arbitrary, nonlinear function.
We can easily demonstrate that the considered system G is also feedback equivalent to
the linear system L of Equation 4.2. Indeed, if we chose the state space transformation
x1(t) = z(t), and xi+1(t) = z(i) for i = 1, . . . , n−1 and the feedback v(t) = G(x(t))+u(t)
we can transform the linear system L into the nonlinear system G, hence they are
feedback equivalent. Since C is feedback equivalent to L, and L is feedback equivalent
to G, we can conclude that also any system C is also feedback equivalent to any system
G (for a proof we refer to Maass et. al. [33]). In other words, for a given nonlinear,
dynamic system G (Equation 4.3) there exist a feedback K(x(t), u(t)) and a readout
h(x(t)) (both nonlinear and static) to transform the nonlinear, dynamic system C such,
that it emulates G. To be more speci�c, for any input u(t) the transformed system
(i.e., C plus feedback) provides through its static, nonlinear readout function h(x(t))
the same output as the original target system G, i.e., h(x(t)) = z(t) (see Figure 4.1).

This implies, that one can have a �xed system C, which operates as some universal
basic module, and one just has to add a suitable feedback and readout in order to
emulate any given nonlinear system G, as long it has the form of Equation 4.3. Note
that the description of the system G in Equation 4.3 is remarkable general. It includes
computations like, for example, to describe any time invariant, memory fading operator
(i.e., the class of �lters, which can be emulated by the morphological computation de-
vices described in Chapter 3), or to generate nonlinear limit cycles in order to provide
trajectories for locomotion. Furthermore, it even allows to describe input dependent
state switching. Actually, the proposed setup is able to emulate any conceivable contin-
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uous dynamic response to an input stream u(t), hence, one could argue that a system
C becomes a universal computing device for analog computing on time-varying inputs
by applying an appropriate feedback and readout. Remarkably, even under noise the
proposed computational setup still has maximal possible computational power within
the a priori limitation, i.e., that they can emulate any given �nite state machine (FSM)
[33]. Note that any digital computer is a FSM.

As already mentioned the system C, the �xed basic module of our computation
device, does not have to have a special form, but only has to belong to the class Sn

of feedback linearizable systems. This remarkable fact allows us to apply this theory
to morphological computation, by employing the type of dynamic systems, which are
typically used to described the dynamic behavior of the morphological structure of bio-
logical systems (i.e., muscle-skeleton system), as well to describe the dynamic behavior
of compliant parts of robots. Consequently, we can employ the dynamic structure of
a robot (which is �xed) as such a basic dynamic module C. If we apply appropriate
feedbacks and readouts to this physical body, it then gains universal computational
power for analog computing. Therefore, one can argue that the dynamic structure can
be employed as a part of a morphological computation device. Typically, the considered
dynamics are mathematically described by nonlinear mass-spring systems

x′1 = x2

x′2 = −p(x1)− q(x2) +
1
m

v , (4.4)

where x1 ∈ R is the displacement of the spring relative to the resting length l0, x2 ∈ R
the rate of change of x1 (i.e., velocity x′1), m ∈ R+ the mass and v the sum of all
external forces acting on the spring. The functions p : R → R and q : R → R are
nonlinear functions, which describe the properties of the spring3. In order to have a
physically realistic and therefore stable system these functions have to be monotonically
increasing and ful�ll p(0) = 0 and q(0) = 0. In accordance to the previous discussion
we can now state following theorem, which will be proved in next section:

Theorem 4.2. The dynamical system of a nonlinear mass-spring system (Equation 4.4)

acquires through feedback universal computation capabilities for analog computing. More

precisely, through a proper choice of a (memoryless) feedback function K(x(t), u(t)) and
a (memoryless) readout h(x(t)) it can simulate any given dynamical system of the form

z(t)′′ = G(z(t), z(t)′, z(t)′′) + u(t) , (4.5)

with a su�ciently smooth function G.

The corresponding proofs can be found in Section 4.8. Note that the order of the system

3The scaling factor 1
m

is already included in the functions p(x1) and q(x2).
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4.5 is only two, since the dimension of the original dynamic system (i.e., the mass-spring
system of Equation 4.4) is also two. However, as Maass et. al. pointed out even systems
consisting of several higher order di�erential equations of the form Equation 4.3 can be
simulated by �xed systems of the form Equation 4.4 with a corresponding number of
feedbacks (see Theorem 1 in [33]).
Accordingly, we are able to employ the dynamic properties of compliant body parts,
which can be described by Equation 4.4, to emulate any nonlinear, dynamic response
to an input stream u(t). This o�ers us the possibility take advantage of the dynamics
of the structure of the robot, just by applying appropriate static feedbacks and static
readouts. From this point of view the dynamics of the compliant body parts do not
have to be suppressed any longer, but rather can serve as basic dynamic modules (i.e.,
as a systems C) for a powerful morphological computation device.

.

4.3 Application of the theory to recurrent networks of non-

linear springs and masses

In the previous section (along with the proofs in Section 4.8) has been demonstrated that
nonlinear mass-spring systems can gain universal computational power in the previously
discussed sense by applying suitable nonlinear feedbacks and nonlinear readouts. A
remarkable fact is, that the feedback as well as the readout function, which de�ne what
system is emulated, are static. Hence, they provide suitable targets for supervised
learning techniques. These static functions could be implemented, for example, by a
feedforward neural networks with one hidden layer, since such networks can approximate
any continuous function with arbitrary precision [19]. However, this is only possible if
the desired feedback and readout functions are known, and this is only possible if the
exact properties of the used mass-spring system, i.e., functions p(x1) and q(x2), and
the mathematical model of the target system are known. In general this is not the case
and therefore, no clear target functions are available.

However, a di�erent point of view can provide us with a solution. Instead of having
nonlinear feedbacks and readouts, one could consider to �outsource� the task of nonlin-
ear combination. For example, some highly complex, nonlinear, dynamic systems could
be employed to provide the necessary nonlinearities. For a practical implementation
one could consider a recurrent network of nonlinear springs and masses (e.g., of the
type of Section 3.4) and employ its inherent complex nonlinear dynamics. Actually, a
typical morphological structure, either of a biological organism or a compliant robot,
embodies a similar pool of complex dynamics. Therefore, we could move the load of
providing nonlinearity directly to the morphological structure. This results in a remark-
able consequence. While in most classical approaches in robot control this complexity
is unwanted, and is therefore overridden (by the use of rigid body parts and high torque
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servos), in contrast, our proposed setup requires such high complexity and nonlinear-
ities in the dynamics of the morphological structure. Note that Paul [42] suggested
a heuristic that a physical body with a greater amount of "dynamic coupling" (com-
plexity) has a higher possibility of a reduced control requirement. While her �ndings
were based on experimental experience and thought experiments, we provide a rigorous
mathematical model to explain the need for complex dynamics of the morphology of
robots and biological organisms.

The underlying idea is to see the morphological structure as some �xed, �nite and
nonlinear kernel, which provides us with high dimensional projections and nonlinear
combinations of our input. Hence, the required nonlinearity (next to the dynamics)
is provided by the morphological structure itself and therefore, linear feedbacks and
readouts are su�cient in order to emulate nonlinear di�erential equations. In other
words, the morphological structure provides the dynamics and the needed nonlinearities
in one physical body. Note that the notion of a kernel, especially the one of a �nite
kernel, that we use here, is the same as previously discussed in Section 3.1. As a
consequence, the complexity of the morphology is highly important, since it determines
the complexity (and even the type) of computation that can be carried out by the
morphological computation device. In addition, learning linear readouts is much simpler
and faster than to learn any nonlinear function. Moreover, it is guaranteed that learning
can not get stuck in local minima of the mean-squared error function.

From this previous line of argumentation we can conclude that the previously intro-
duced random, recurrent networks of nonlinear springs and masses can be used as part
of the new morphological computation devices. We simply have to add linear readouts
and linear feedbacks in order to emulate nonlinear di�erential systems of the type of
Equation 4.3. Again as before, we will refer to such networks simply as mass-spring net-
works. In the next Section we revise the construction, the simulation and the learning
with such mass-spring networks.

4.4 Implementation of mass-spring networks

4.4.1 Constructing mass-spring networks

The construction of the mass-spring networks was very similar the process described
in Section 3.4. A �xed number of N nodes (mass points) were randomly positioned
(uniformly distributed) within a de�ned range of a two dimensional plane. Subsequently,
we connected these mass points by nonlinear springs. In order to �nd reasonable, non-
crossing spring connections we calculated a Delaunay triangulation on this set of points,
resulting in L non-crossing spring connections. A schematic example of such a mass-
spring network can be seen in Figure 4.2. Every single nonlinear spring of such a network
can be described by Equation 4.4. At the beginning of the simulation we assumed the
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Figure 4.2: Schematic example of a generic mass-spring network. The nodes (masses)
are connected by nonlinear springs. The red nodes are �xed in order to hold the network
in place. The green nodes are randomly chosen inputs nodes, which receive the input
in form of horizontal forces scaled by randomly initiated weights. The purple nodes are
feedback nodes. Similarly, they receive the output y(t) in form of a scaled, horizontal
force.

mass-spring network to be at rest (i.e., all springs were at their point of equilibrium
x = [0, 0]T and therefore all masses were at rest). In order to accomplish this we set
per de�nition the resting lengths l0 of all nonlinear springs to the distances (at the
start of the simulation) between the mass nodes they connected, hence l0 := l(t = 0).
The functions p and q were nonlinear and, in order to have a stable and physically
reasonable system 4, had to be monotonically increasing and ful�ll p(0) = 0 and q(0) =
0. Typically, they are modeled by 3rd order polynomials [40]. We implemented the
nonlinear functions as p(x1) = k3x

3
1 +k1x1 and q(x2) = d3x

3
2 +d1x2, where k1, d1 ∈ R>0

and k3, d3 ∈ R+ de�ned the properties of the spring. In order to get a rich kernel
the springs should be diverse. Hence, the parameters describing the spring properties
(i.e., k1, k3, d1 and d3) were randomly drawn from a de�ned range, assigned to the
connections and subsequently �xed. The left most and the right most mass nodes were
�xed in order to keep the network in place (squared, red nodes in Figure 4.2). A certain
percentage of points were randomly chosen to be input nodes (green nodes in Figure 4.2).
During simulation they received a linearly scaled version of the current input in form
of a horizontal force. Before the simulation started the input scaling factors (weights
win = [win,1, win,2, . . .]T ) had been randomly drawn from a certain range and had been
�xed subsequently. In the same way, before the simulation started, the feedback nodes
had been randomly chosen. They received during simulation a linearly scaled version
of the current output in form of horizontal forces. The corresponding feedback weights
were denoted by wfb = [wfb,1, wfb,2, . . .]T . Similar to the input weights they were
randomly initialized and subsequently �xed.

The linear readout of the network was de�ned as the weighted sum of all

4A proof for that is based on the Lyapunov function V (x) =
� x1
0

p(ζ)dζ + 1
2
x2

2, its derivative

V̇ (x) = −x2q(x2) and the use of a corollary of LaSalle's Theorem (see Theorem 4.4 and Corollary 4.2
in [26]).
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Figure 4.3:

Figure 4.4: Implementation of the input, the feedback, the linear readout and the
simulation of the forces at a mass point in a mass-spring networks. (A) The input
is applied to an input node as a horizontal force Fx proportional to the input signal
u (scaled by a randomly initialized weight win for this input node). The feedback is
similarly implemented (with a feedback of an output weighted by wfb). (B) The output
of the systems is the weighted sum of all L spring lengths y(t) =

∑L
i=1 wout,ili(t). In

general the input, the feedback as well as the output can be multi-dimensional. (C)
All the spring forces act along their spring axis. The resulting force Fsum is the sum of
all forces acting on the node and is found by the summation of the force vectors.

actual spring lengths y(t) :=
∑L

i=1 wout,ili(t). The output weights (wout =
[wout,1, wout,2, . . . , wout,L]T ), in contrast the rest of the network parameters, were
adapted in the learning process.

In general the networks had multiple inputs, outputs and feedback loops. Accord-
ingly, the corresponding matrices were denoted by Win, Wfb and Wout.

4.4.2 Simulating mass-spring networks

We simulated every single mass points (of a total number of N) at a time step of 1 ms
by following equations

mp′′x = Fx + winu + wfby (4.6)

mp′′y = Fy , (4.7)

where p′′x and p′′y were the accelerations of the mass point relative to a global reference
frame split up into its two spacial dimensions, Fx and Fy were the forces acting on the
mass in the corresponding spacial dimensions, winu was the weighted input, and wfby

the linear feedback. Note that the input was de�ned as a horizontal force (see Figure
4.4A) and if the mass point was no input node win := 0, accordingly for the feedback
wfb := 0. For the sake of simplicity all masses were set to m = 1. The forces Fx and
Fy resulted from the nonlinear springs, which were connected to this mass point. The
forces they applied to the mass point depended on the states of the nonlinear springs,
i.e., x1 and x2 in Equation 4.4. The value of x1 was calculated by the actual length
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l(t) (Euclidean distance between the two masses, which the spring connected) and the
resting length l0. The velocity x2 was approximated by (x1(t)− x1(t−∆t)) /∆t with a
time step of ∆t = 1 ms. The resulting forces were calculated by the nonlinear functions
p(x1) and q(x2). This procedure was repeated for all springs connected to the mass.
We assumed that these forces acted along their corresponding spring axes. Finally, all
spring forces acting on the regarding mass node were summed up (see Figure 4.4C).
Subsequently, the resulting force Fsum was split up into its two spacial dimensions
and added as forces Fx and Fy to Equations 4.6 and 4.7. If the mass point was an
input node the current input u(t) was added in form of a scaled horizontal force (see
Equation 4.6 and Figure 4.4A). Accordingly, if the mass point received feedback the
corresponding force, i.e., wfby(t) , was added too. The new position and velocity of the
mass were found by numerically integrating Equations 4.6 and 4.7 (4th order Runge-
Kutta). The same procedure was repeated for all masses. At the end of the simulation
step the current output was calculated by a linear combination of the actual lengths of
all springs, i.e., y(t) =

∑L
i=1 wout,ili(t) (see Figure 4.4B).

4.4.3 Learning the linear readout of the mass-spring networks

The structure of the mass-spring network, the input and feedback weights, as well as
the parameters, which de�ned the physical behavior, were randomly initialized and
subsequently �xed. Only the linear readout was adapted during the learning process,
i.e., the weights wout = [wout,1, wout,2, . . . , wout,L]T were adjusted. The learning process
was carried out with open loops. Instead of the real outputs of the network the target
signals were fed back. Therefore, the system was forced into the desired operative state
by this "teacher" signal. Hence, this setup is referred to as teacher forcing. After
the learning process the loops were closed, i.e., the actual outputs were fed back, and
the system ran freely. Note that in this case already small perturbations (for example
numerical imprecisions in the simulations or noise in real systems) would lead such
a closed loop system away from its learned trajectories. Therefore, we superimposed
either the feedback target signals or the readout with white noise during the teacher
forcing process. In the �rst experiments of Section 4.5.1 we used the �rst type of noise
to explicitly demonstrate the noise to signal ratio and to give the reader an intuition
of the amount of noise we used (see Figure 4.5). In all the other experiments we used
the second type of noise. However, in general both approaches work for all tasks. As
a result of the added noise the found output weights did not simply reproduce the
desired target trajectories, but rather were able to do so even under the in�uence of
perturbations. Hence, the learned trajectories were robust. Remarkably, this noise,
which, for example, is inherent to any real world learning by demonstration setup, is
crucial for the robustness of the learned outputs.

For learning we considered a network of N nodes connected by L springs. During
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the teacher forcing phase we collected the current lengths of every single spring li(t) for
i = 1, . . . , L at every time step t = 1, . . . ,M in a L×M matrix L. We dismissed data
from an initial period of time (washout time) to get rid of initial transients. The target
signal was also collected over time in a matrix T. Finally, the optimal values for the
output weights were calculated by w∗

out = L†T , with L† being the (Moore�Penrose)
pseudoinverse, since in general L was not a square matrix. Note that the same procedure
could be applied in the case of multiple inputs and/or multiple outputs (feedback loops).
Note also that the feedback weights were not changed at all.

4.5 Experiments

The previously presented theory only states that nonlinear mass-spring systems gain
computational power, if we add nonlinear feedbacks and nonlinear readouts. However,
as we have pointed out in Section 4.3, if the physical body is complex enough, linear
feedbacks and linear readouts might be su�cient. Yet, it is not possible to conclude
from our proposed theory if a given dynamic system G can be emulated su�ciently well
enough by a given mass-spring network. In order to demonstrate that our approach is
still applicable we present simulations of the mass-spring nets applied to a number of
robotic relevant tasks.

All presented simulations were implemented in Matlab and were simulated at a time
step of 1 ms.

4.5.1 Generating stable, nonlinear limit cycles with morphological
computation

The general description of dynamical systems (Equation 4.3), which can be emulated
by the proposed morphological computation setup, also include nonlinear limit cycles
(e.g., the Van der Pol equations as we have shown in Section 4.8.1). Nonlinear limit
cycles are very appealing for the control of robots, since they represent an elegant way
to describe repetitive patterns, which are typically used for locomotion. A standard
approach is to implement such limit cycles by a nonlinear oscillator or a network of
such oscillators. They exhibit the property of robustness towards di�erent types of
disturbances. However, they just produce some abstract trajectory without taking
the dynamics of the robot into account. Moreover, the parameters of such oscillators
typically were hand-tuned or were found by computationally intensive nonlinear search
algorithms, .e.g., genetic algorithms. On the other our theory suggests, that nonlinear
mass-spring systems, and therefore the body of a robot itself, can be used to generate
autonomously and robustly such limit cycles. Furthermore, by employing the nonlinear
dynamic of the morphology, the adaptation problem can be reduced to linear regression.

We chose three di�erent limit cycles as tasks. They are summarized in Table 4.1.
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Table 4.1: Three di�erent limit cycles, which should be generated through morphological
computation by generic mass-spring networks with linear feedbacks. The �rst column
shows the di�erential equations describing the three limit cycles. The second column
shows the corresponding trajectories of the state variables x1 and x2 (target signals for
our tasks). The last column shows the same state variables in the phase plane (i.e., x1

vs. x2).

The �rst limit cycle is the already introduced dynamic system described by the Van der
Pol equations. The second one (second row in Table 4.1) is an example taken from [26]
(example 2.8). Due to its quadratic terms (x2

1 + x2
2) we refer to it as the "quadratic"

limit cycle. The third example is an arti�cial limit cycle de�ned by two sinusoidal
functions with a frequency ratio of f1/f2 = 3/2. Together (x1 vs. x2) they produce a
Lissajous �gure with multiple crossings of the limit cycle trajectory in the state space
(see last plot in the third row of Table 4.1). Hence, any dynamical system, which should
emulate this system, must have an order higher than two. As already argued in the
theory section, although the basic system (the nonlinear mass-spring system) is only
two dimensional, due to the right number of feedbacks and/or connections of various
basic systems (the latter is the case here), it is possible to emulate systems of higher
order too.

We used three di�erent generic mass-spring networks for the three limit cycles. The
networks were found by the previously described random process. The number of mass
points were N = 10 for the Van der Pol and the quadratic limit cycles and N = 20 for
the Lissajous �gure task. The number of the connecting nonlinear springs were 22 (Van
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Figure 4.5: Performance of generating di�erent limit cycles of Table 4.1 through mor-
phological computation with linear feedback. The left column shows the used generic
mass-spring networks. The red squares depict �xed mass points. The hexagons and the
diamonds mark nodes, which received feedback from the �rst and the second output,
respectively. The second column shows the outputs of the systems plotted in phase
plane (x1 vs. x2), when the systems ran freely , i.e., in closed loop. The red lines are
the desired target trajectories, while the black dotted lines are the outputs produced
by the morphological computation device. The gray shaded areas depict the regions,
which have been covered by the noisy learning data. (A) and (B) correspond to the
"Van der Pol" task, (C) and (D) to the "quadratic " limit cycle task and (E) and (F)
to the "Lissajous �gure" task, as described in Table 4.1.
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der Pol), 22 (quadratic limit cycle) and 49 (Lissajous �gure). The used mass-spring
networks are shown in the �rst row of Figure 4.5 (A,C and E). The squared, red nodes
are �xed mass points. The connections are nonlinear springs. The nodes, which received
feedback from the �rst output (x1), are marked by purple diamonds. The nodes, which
received feedback from the second output (x2), are marked by aqua marine hexagrams.
Note that the feedback nodes were chosen randomly. The corresponding linear feedback
weights Wfb were randomly initialized and subsequently �xed. There were no input
nodes, since, after learning the morphological computational device should generate
autonomously the desired trajectories. The outputs were de�ned as previously described
by a weighted sums of all current spring lengths. The optimal outputs weights were
found by the previously described learning process (teacher forcing with additional
noise). For more details on the chosen ranges for the various parameter we refer to the
supplementary material at our homepage http://www.igi.tugraz.at/helmut/thesis.

After the learning phase the networks were simulated with closed loops, i.e., the
outputs were fed back. The right column of Figure 4.5 shows the corresponding outputs
in phase plane, i.e., x1 vs. x2. The red lines are the target trajectories of the limit
cycles and the black dotted lines are the trajectories produced by the morphological
computation device. Note that the readouts as well as the feedbacks were static and
linear. Hence, the necessary dynamics as well as the nonlinearities were �computed� by
the morphological structure. Since the presented mass-spring networks are simulations
of real physical systems, one can argue that the corresponding real physical bodies can
perform such morphological computations too.

As inherent to any simulation there were numerical imprecisions present at any
time. Nonetheless, the systems stayed robustly on the trajectories de�ned by the limit
cycles. This was due to the additional noise during the learning process as described in
4.4.3. Therefore, the found output weights did no only represent a "perfect" mapping
to the desired outputs, but rather de�ne additionally some region of attraction around
those trajectories. We also tested all three networks regarding their stability on the
long run. We simulated the networks during 1 million time steps. The networks still
stayed robustly on the desired trajectories.

The amplitudes of the noise during learning was quite big compared to the ampli-
tudes of the signals. For example, in the case of the quadratic limit cycle (Figure 4.5D),
the noise to signal ratio was more than 0.14 for x1 and more than 0.25 for x2. This
suggests that the morphological computation device with the learned output weights is
not only able to counteract underlying noise with a small amplitude, like of numerical
imprecisions, but rather is truly robust towards all kind of disturbances. In order to
demonstrate this robustness we conducted various experiments, where we disturbed the
system with di�erent types of perturbations. For all robustness experiments we used
the network of Figure 4.5A (quadratic limit cycle). However, similar results can be ob-
tained for the other limit cycles too. Figure 4.6 summarizes the results of the conducted
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robustness experiments.
In a �rst test (Figures 4.6A and 4.6B) the system started unperturbed. Suddenly, at

t = 10 s (start of the red region), instead of the actual produced output x1 (blue dotted
line), the last correct value x1(t = 10) = 0.09 was fed back for the next 10 seconds (full
blue line). For a real robot this situation correspond to the case when, for example, one
degree of freedom were stuck or if there were a temporal sensor failure for this particular
variable. After some time (at t = 20 s; end of the red region) the actual output value
of x1 was fed back again. Figure 4.6A shows the trajectories of both outputs x1 and
x2. The red region depicts the time window, when x1 was locked. Figure 4.6B shows
the same trajectories but in a phase plane. Note that the di�erent colors encode the
corresponding time windows as labeled in Figure 4.6A. The computational device was
able to �nd back to the desired trajectory after the disturbance had vanished.

In a second robustness test (Figures 4.6C and 4.6D) all nodes received from 10 to 20
s (red region) a constant horizontal force. The amplitudes were uniformly drawn from
the range [−10,+10]. After t = 20 s the disturbing input vanished suddenly and the
system ran freely again. Figure 4.6C and 4.6D show the trajectories of the outputs x1

and x2. Again, the used colors in the phase plane correspond to the colors of the labels
of the di�erent time windows in Figure 4.6C. Remarkably, although the perturbation
was fairly strong, the system was able to recover from it and to �nd its way back to its
nominal trajectory. Note that the perturbation led the trajectories to a region in state
space far away from the area, which had been covered by the noisy learning data. Hence,
one would conclude that the system was able to generalize to values "far away" from
the presented learning data. However, this is not entirely true. Assuming that we start
both systems, the original dynamic system and the device, which emulates this system,
at the same point in the state space x = [x1, x2]T , in general, the trajectories of the
two systems, which lead them back to the nominal limit cycle, will di�er. Nevertheless,
both will come back to the desired trajectory. Therefore, for practical reasons, one
could say that the morphological computation device is able to emulate the same limit
cycle with a robustness similar to the one in the original system.

A third experiment was conducted in order to show that the setup is also able to
recover from stochastic disturbances (Figures 4.6E and 4.6F). In the time window from
10 to 20 s the signals of the sensors, which read the current lengths of the nonlinear
springs, i.e., li(t) for i = 1, . . . , L, were superimposed by white noise. Consequently,
there were noisy outputs and therefore noisy feedbacks. After 20 s, when the noise had
vanished, the system recovered fast to its correct trajectories.

In an additional experiment we demonstrate that the system is even able to recover
from the state of total rest. Therefore, we started with the network (same network as
previously used) in a state, where all velocities and accelerations of all masses were zero
and the nonlinear springs had the exact lengths of their resting lengths. Hence, if no
additional force would have act on the system (e.g., open loop), the network would have
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Figure 4.6: Experiments to demonstrate the robustness of the learned limit cycle
using morphological computation. The used network was the one depicted in 4.5C
("quadratic" limit cycle). The red regions mark the time windows, when the perturba-
tions appeared. The color coding of the plots of the second column correspond to the
labels of the time windows in the plots of the �rst column. Following three perturba-
tions were tested: (A), (B) The output x1 was held at a constant level (blue solid line)
and fed back into the system instead of the actual output (blue dotted line).(C), (D)
All nodes received a constant force, i.e. the whole network was distorted. (E), (F) The
measured current lengths li(t) were superimposed by white noise. Hence, the outputs
and the feedbacks were noisy too. In all three cases the system was able to recover and
to �nd its way back to the nominal limit cycle.
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Figure 4.7: The swing up task. The network starts at rest and is able to swing itself up
to its nominal limit cycle. Figure (A) shows the trajectories over time and (B) shows
the same trajectories in phase plane. The color coding of (B) corresponds to the color
labels of the time windows in (A).

stayed at rest. However, we closed the loop and the system swung up to the desired
trajectories. Since the outputs were based on a weighted sum of the actual lengths,
which are non zero (even at t = 0), the outputs, and therefore the feedbacks, were
nonzero and, hence, the system was able to recover from its initial state. The results
are summarized in Figures 4.7A and 4.7B.

4.5.2 Generation of di�erent walking patterns using the same mass-
spring network

So far we have only demonstrated that di�erent, generic mass-spring networks with some
linear feedbacks can be used to produce di�erent limit cycles. However, for locomotion,
which requires such nonlinear repetitive patterns, it is crucial that the same physical
body (i.e., morphological structure) can be employed to produce di�erent patterns.
Since the used networks are generic, i.e., they are not constructed for a speci�c task, they
can potentially be used to emulate a number of di�erent nonlinear dynamic systems.
Moreover, since the physical body only serves as some basic dynamic module, only
the readout and the feedback (both static) de�ne what system is emulated. Hence,
di�erent static feedbacks loops can force the same physical body to produce di�erent
patterns. Furthermore, since in our setup the feedbacks were randomly initialized and
subsequently �xed, already di�erent readout weights Wout are su�cient to produce
di�erent dynamic patterns.

The task was to produce four di�erent walking patterns, namely walk, trot, pace
and bound, for a generic quadruped with the same morphological structure. Righetti
and Ijspeert [46] used a network of four coupled oscillators with four di�erent couplings
in order to produce four di�erent gates. We demonstrate that it is possible to produce
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Figure 4.8: Used generic network with four outputs (and feedbacks) for the task to
produce di�erent gaits with one physical body. Di�erent colors and relative positions
mark di�erent feedbacks.

the same rhythmic patterns with one �xed physical body (i.e., mass-spring network)
with some �xed feedback weights, but four di�erent, linear readouts.

The used mass-spring network can be seen in Figure 4.8. It consisted of 50 masses
and 137 nonlinear springs. It was constructed as previously described in Section 4.4.
For more details on the used values we refer to the supplementary material at our
homepage http://www.igi.tugraz.at/helmut/thesis. Note that the network had four
outputs (denoted here by x1, x2, x3 and x4) and therefore, it had four corresponding
feedback loops. The di�erent, colored squares mark the randomly chosen nodes, which
received feedback. Some of the nodes received feedback from various outputs. The
linear feedback weights were randomly initialized and were subsequently �xed. Only
the linear readout weights were adapted in the learning process.

The learning data (targets) was produced by simulating the original equations used
in [46] at a time step of 1 ms. The learning procedure was the same as previously
described. Every walking pattern (walk, trot, pace and bound) was simulated indepen-
dently from each other. Finally, we had four output matrices of the size 137 × 4, one
for each walking pattern, i.e., Wwalk, Wtrot, Wpace and Wbound.

After the learning process we tested the found output weights. Figure 4.9 summa-
rizes these results. Figure 4.9A shows the four trajectories, which were produced, when
the walking gait matrix Wwalk was used to close the loop. The red dotted lines are the
target patterns, and the solid lines are the produced outputs. The next plot (Figure
4.9B) shows the output of the morphological computation device, when the loops at
t = 0 suddenly were closed with the matrix to produce the trot pattern (Wtrot) instead
of Wwalk, i.e., the readout switched from walk to trot. After some transition time
the system settled to the desired trot pattern. Figure 4.9C and 4.9D show the corre-
sponding responses, when it switched suddenly from walking to pace (C) and walking
to bound (D). Again, after some transition time, the morphological computation de-
vice produced the desired walking pattern. Note that the di�erent walking pattern had
di�erent frequencies, forms and amplitudes. Nevertheless, only di�erent static, linear



4.5. Experiments 90

A

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 

 

 walk 
x

1
x

2
x

3
x

4

B

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 

 

 trot 
x

1
=x

4

x
2
=x

3

C

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 

 

 pace 
x

1
x

2
x

3
x

4

D

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 

 

 bound 
x

1
=x

2

x
3
=x

4

Figure 4.9: Generation of di�erent walking patterns for a generic quadruped robot by
the use of one morphological structure. (A) walking pattern produce by the morpho-
logical computation device.(B), (C) and (D) responses of the device, when at t = 0,
the weights of the outputs suddenly changed from Wwalk to Wtrot, Wpace and Wbound,
respectively. The red dotted lines are the target patterns. In all case, after some
transition time, the setup was able to produce the desired patterns.
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readouts (or sudden switches between them) were su�cient to force the mass-spring to
produce robustly the desired nonlinear patterns.

4.5.3 Generation of di�erent limit cycles depending on an input
stream

In the previously presented examples mass-spring networks were employed to generate
autonomously di�erent rhythmic output patterns. However, our theory suggests that
the proposed setup can emulate even more complex dynamical systems. For example,
the proposed morphological computation devices are also able to produce input depen-
dent limit cycles. The input stream could be, for example, some sensory signal, which
delivers the information to decide which pattern has to be produced.

For this task we adapted the previously used equations of the "quadratic" limit cycle
(of Table 4.1) by adding a parameter ε (i.e., the input to the system), which gives us
the possibility to change smoothly the shape of the limit cycle. Figure 4.10 summarizes
the properties of the new target system. Figure 4.10A shows the equations of dynamic
system with the input ε (colored in red). The in�uence of the input ε on the trajectories
of x1 and x2 can be seen in Figure 4.10B. It shows the limit cycles for three di�erent
input values ε = 5, ε = 1 and ε = 0.2 in phase plane. The corresponding trajectories
in time can be seen in Figures 4.10C, 4.10D and 4.10E. Note that the amplitude, the
shape as well the frequency change in dependence of the input ε. Figure 4.10F and
4.10G depict this fact by plotting the amplitude and the frequency versus the input ε

for the state variable x1.
Figure 4.11 summarizes the learning data used for the task. Figure 4.11A shows the
time-varying input ε(t) over the whole learning time of 200 s. Figure 4.11B show the
resulting limit cycles, i.e., the targets, in phase portrait. The color coding correspond
to the colored labels of the time windows in Figure 4.11A.

For the simulation we used a mass-spring network with N = 100 nodes and L = 283
connecting springs. The network was constructed as previously described in Section
4.4. For more details of the used values we refer to the supplementary material at
our homepage http://www.igi.tugraz.at/helmut/thesis. For the learning we used the
previously described teacher forcing setup with superimposed noise.

Subsequently, the morphological computation device was tested, if it was able re-
produce the desired input dependent limit cycles. Figure 4.12 summarizes the results.
Note that at the end of the learning process the input was ε = 5 (see Figure 4.11A)
and therefore the mass-spring network was in the state to reproduce the corresponding
limit cycle. The two plots of Figure 4.12A show the response of the system, when the
input was kept at this constant value of 5. The left plot shows the trajectories of the
outputs x1 and x2 over time, while the right plot shows the corresponding trajectory in
the phase plane. In the second row (Figures 4.12B) the response of the system can be
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Figure 4.10: Target system for the input depended limit cycle generator task. (A)
Equation of the dynamical system with the input ε. (B) Di�erent limit cycles for the
inputs ε = 5, ε = 1 and ε = 0.2 in phase plane. (C)-(E) The corresponding trajectories
in time. (F) and (G) change of amplitude and frequency in dependence of the input ε.
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Figure 4.11: Data used to learn to switch smoothly between di�erent limit cycles de-
pending on the input ε. (A) Input ε to the system during learning, ranging from 0.2 to
5. The total learning time was 200 s at a time step of 1 ms. The di�erent colored time
windows correspond to the color coding in Figure (B), where the resulting changes of
the state variables x1 and x2 as a result of the changing input ε are plotted.
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seen, when the input suddenly changed to a constant value of 1.0. Hence, the system
should generate the corresponding limit cycle (compare to Figure 4.10D). After some
transition phase, due to the jump in the input from 5 to 1, the system settled down to
the desired limit cycle. After that it stayed robustly on the desired trajectories. The
last row (Figure 4.12C) shows the response of the network when the input suddenly
changes for 5 to 0.2. Again the morphological computation device delivers robustly,
after some transition time, the desired limit cycle.

Let us emphasize some points here. First, the found readout weights (and the
whole feedback loop) were linear and static. Hence, the nonlinear dynamics, which
were apparently involved in this task, were all provided by the generic physical body.
Second, in contrast to the previous task of producing walking patterns, here the same
static feedback loop (i.e., readout plus feedback) was used to produce di�erent types
of limit cycles. Third, the input was applied as some randomly weighted, but constant
forces acting on some randomly chosen input nodes. Such constant input can be seen
as squeezing the network a certain points (i.e., at the input nodes). Hence, �guratively
spoken, the network produced di�erent limit cycles, depending how strong (from 0.1 to
5) it was compressed.
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Figure 4.12: Testing the morphological computation device to emulate di�erent limit
cycle depending on the input. The left column shows the two output variables variables
x1 and x2 evolving over time. The right column shows the corresponding trajectories in
the phase plane for three di�erent cases. In any of the cases the network started in the
state to produce the limit cycle with ε = 5. Case (A): The input was kept at 5. (B):
The network suddenly receives instead ε = 5 a constant input of ε = 1. The system
changes its output to the corresponding limit cycle. Case (C): The network received
suddenly an input of 0.2 (instead of 5) and produces, after some transition time, the
corresponding limit cycle (compare target limit cycles in 4.11B).
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4.6 Discussion

We introduced a new type of theoretical model for morphological computation to over-
come the limitations of the previous approach of Chapter 3. We demonstrated that
certain types of physical bodies (which have fading memory) can emulate a class of
nonlinear systems (which can have even persistent memory) when we add appropriate
nonlinear, but static feedbacks and readouts. We argued that, if the physical body is
complex enough, it could serve as some �nite kernel. As a result only linear feedbacks
and readouts are su�cient. We demonstrated the validity of this point of view by simu-
lating recurrent networks of nonlinear springs and masses, which can serve as models for
complex, compliant body parts of robots and biological systems. Remarkably, already
small networks in conjunction with linear feedbacks and readouts were able to represent
the dynamic systems of nonlinear limits cycles (which are typically used for locomotion).
Furthermore, the learned trajectories were highly robust to all kinds of perturbations.
We also demonstrated that the same �xed morphology (i.e., same physical body) can
be used to generate, for example, di�erent walking gaits. Finally, we presented results,
which showed, that even an input dependent smooth switch between di�erent limits
cycles can be emulated by the proposed morphological computation device.

There are a number of remarkable conclusions we can draw from the presented
results. First, complexity and compliance of the physical body are crucial in order to
be able to outsource parts of the computation to the morphology and therefore be able
to use linear readouts and feedbacks. As a consequence the task of learning to emulate
complex, nonlinear dynamic systems can then be reduced to �nding some static, linear
output weights.
Second, the physical body, which is naturally to a high degree �xed, can be employed
for di�erent nonlinear computations.
Third, the superimposed noise during the learning process (teacher forcing) is crucial
for the robustness of the learned limit cycle. This is remarkable, since noise, inherently
present in any real world task, is typically unwanted.
Considering the presented points one can conclude that a transfer of the presented
approach from our abstract networks to real physical robots should be possible in a
straight forward manner. Additionally, our results could give raise to entirely new
types of robots or robot body parts.
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4.8 Proofs

In this Section we provide the accompanying proofs.

4.8.1 Computational universality property of a single nonlinear mass-
spring system

In this section we demonstrate that a physically realistic, nonlinear mass-spring sys-
tems has the previously described computational universality property (i.e., we prove
Theorem 4.2). Thus, they can be used as basic systems C to emulate arbitrary, nonlin-
ear, dynamical systems G of the form of Equation 4.3. Moreover, since the equations
describe real physical systems, for example, compliant body parts of the robot, we
can conclude that such real physical system can be employed too, i.e., can be used
for morphological computation. In order to prove that, we have to demonstrate that
the dynamic system of Equation 4.4, which describes such nonlinear mass-spring sys-
tems, belongs to the class Sn of feedback linearizable systems. Accordingly to Theo-
rem 4.1 the conditions LI and INV have to be ful�lled, i.e., the set of vector �elds
{g(x), adfg(x), . . . , adn−1

f g(x)} has to be linearly independent, and the distribution
generated by {g(x), adfg(x), . . . , adn−2

f g(x)} has to be involutive.
For the case of the nonlinear mass-spring system (Equation 4.4) the order is n = 2

and the regarding vector �elds are

f(x) =
(

x2

−p(x1)− q(x2)

)
and g(x) =

(
0
1
m

)
.

The resulting Lie bracket of f(x) and g(x) is (now dropping for the sake of readability
the reference to the state vector x)

adfg = ∇g · f︸ ︷︷ ︸
=0

−∇f · g = −
(

0 1
−ṗ −q̇

)
·
(

0
1
m

)
=
(

1
m

− 1
m q̇

)
,

where ˙(.) denotes the �rst derivative of the regarding state variable. First, we have to
show that following set of vector �elds

[g, adfg] =
(

0 1
m

1
m − 1

m q̇

)
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is linearly independent (condition LI), which is true for any value of q̇, assuming that
the mass m 6= 0.

Second, we have to show, that g = [0, 1
m ]T is involutive, which is also true, since it is

a constant vector. Hence, the nonlinear mass-spring system of Equations 4.4 belongs to
the class Sn of feedback linearizable systems and therefore has the previously described
computational universality property and can be employed as a basic computation mod-
ule C.

Assuming we have a given target system G, naturally the question arises, what is
the corresponding nonlinear feedback K(x, u) and the nonlinear readout h(x) for the
nonlinear mass-spring system to emulate this system? We will answer this question for
a speci�c example. We choose the nonlinear Van der Pol equation as a dynamical target
system G, i.e., the system which should be emulated by the morphological computation
device. The Van der Pol equations describe a stable, nonlinear limit cycle. Hence,
they present an interesting example of a dynamic system, which produces nonlinear,
repetitive trajectories as, for example, used for locomotion. The considered di�erential
equations are

x′1 = x2

x′2 = −x1 + (1− x2
1)x2. (4.8)

The corresponding function G is found by rewriting the set of two di�erential equations
of order one into one di�erential equation of order two. This results in x′′1 = −x1 +
(1 − x2

1)x
′
1. By transforming the variables by z = x1 we get z′′ = −z + (1 − z2)z′,

hence, the corresponding function is G(z, z′) = −z + (1− z2)z′. By using the feedback
K(x, u) = p(x1) + q(x2) − x1 + (1 − x2

1)x2 and, for example, the readouts h1(x) = x1

and h2(x) = x2 we can use the nonlinear mass-spring system to emulate the van der Pol
equations. Note that the feedback K as well as the readout h are static. Furthermore,
note that if only the feedback K#(x, u) = p(x1) + q(x2) would be applied, the system
would be linearized and the resulting linear system would of the form of Equations 4.2
with n = 2.

4.8.2 Computational universality property of an array of linear mass-
spring systems

Now we consider a set of linear mass-spring systems (along with the proof for neural
networks equations like (11) in [33], where they used linear systems in parallel too).
Assuming our basic module has the following form

x′1 = x2

x′2 = −kx1 − dx2 + v , (4.9)
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where k ∈ R+ is the linear spring constant and d ∈ R+ the linear damping constant.
The same system can be written in matrix form(

x′1
x′2

)
=

(
0 1
−k −d

)
︸ ︷︷ ︸

A1

(
x1

x2

)
+
(

0
1

)
︸ ︷︷ ︸

b1

v

y =
(

1 0
)︸ ︷︷ ︸

cT
1

(
x1

x2

)
.

We now consider a system, which is made of m di�erent parallel linear mass-spring
systems of the form of Equation 4.9, with xi,j being the jth state variable of the ith
system (j = 1, 2 and i = 1, 2, . . . ,m).

x′1,1

x′1,2

x′2,1

x′2,2
...

x′m,1

x′m,2


=


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am


︸ ︷︷ ︸

A



x1,1

x1,2

x2,1

x2,2
...

xm,1

xm,2


+



0
1
0
1
...
0
1


︸ ︷︷ ︸

b

v (4.10)

This system of m sub-systems in parallel has the order of n = 2m. Now we have show
that it ful�lls the two conditions LI and INV (see Theorem 4.1). Note that a linear
system trivially ful�lls the second condition INV (see Theorem 6.2 in [50]) and the
�rst condition LI takes a special form. The corresponding vector �elds are f = A and
g = b, and the set of vector �elds {g(x), adfg(x), . . . , adn−1

f g(x)} becomes therefore(
b Ab . . . An−1b

)
. In control theory this matrix is well known as the so-called

controllability matrix R [50]5. In order to demonstrate that condition LI is ful�lled we
have to show, that R =

(
b Ab . . . An−1b

)
is invertible. Our proof is based on

following observations: The sub-systems are non interacting (parallel systems), i.e., no
state variable from the kth system has in�uence on any state variable of the lth system
with k 6= l ∀k, l = 1, 2, . . . , n at any time. Therefore, R evolves in such a way that the
two corresponding rows of the ith system only depend on its own system variables ki

and di. For example row 1 and 2 of R only depend on k1 and d1, row 3 and 4 only on
the 2nd subsystem, and so on. Any pair of such rows of R have the following form for

5Actually condition LI is the nonlinear counterpart of showing that the nonlinear system is control-
lable.
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a given order n (
0 1 di p(d2

i,) · · · p(d(n−2)
i )

1 di p(d2
i,) p(d3

i,) · · · p(d(n−1)
i )

)
, (4.11)

where p(dw
i ) denotes a polynomial of di of order w.6 Assuming we have di�erent sub-

systems (i.e., ki 6= kj and di 6= dj for i 6= j ∀i, j = 1, 2, . . . ,m) it is easy to see from
the structure above, that all columns and all rows a linearly independent, hence, the
matrix is invertible.

Therefore, we have shown that any system of the form of Equation 4.10, with di�er-
ent sub-systems (as de�ned above), has a controllability matrix R, which is invertible.
Hence, the overall system ful�lls both conditions LI and INV and therefore belongs to
the class of feedback linearizable system Sn.

6Note that any p(dw
i ) also depends on ki in some polynomial form with an order lower than w,

but for the sake of readability it is suppressed. The proof holds independently from that for any real
positives values of ki.
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