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Abstract

Wave propagation problems play an important role, not only in the scientific community,
but also in industry. Think of acoustic scattering, sound radiation and other related prob-
lems. A common feature of these problems is the large or even infinite extension of the
acoustic domain compared to the rather limited extension of the surface of the embedded
scatterer. The appropriateness of solving such problems is inherent to the boundary el-
ement method: The solution in the domain (large or even infinite extension) is available,
once the solution on the boundary (limited extension) is computed. But, standard boundary
element formulations lead to fully populated system matrices and the computation of their
entries is very expensive. This issue has been remedied by the introduction of fast bound-
ary element formulations, the topic of the thesis at hand. Our objective is twofold. In the
first place, we construct two efficient numerical schemes, theH-matrix and the directional
fast multipole scheme. Both enable an efficient treatment of fully populated matrices of os-
cillatory nature. In the second place, we apply these schemes to acoustic boundary element
formulations and reduce their quadratic complexity to an almost linear one. We validate
our approaches by means of numerical examples. We solve a time-domain problem by
means ofH-matrices and several time-harmonic problems by means of the directional fast
multipole method. We emphasize on the fact that both presented approaches are kernel
independent, up to a certain extend.

Zusammenfassung

Die Simulation von Wellenausbreitungsphänomenen ist nicht nur für die Wissenschaft,
sondern auch für die Industrie von großem Interesse: Man denke zum Beispiel an aku-
stische Streuprobleme oder die Schallabstrahlung von bewegten Körpern. Bei solchen
Problemen hat der akustische Außenraum per Definition eine unendliche und darin vor-
kommende Körper eine endliche Ausdehnung. Im Vergleich zu anderen numerischen Me-
thoden, hat die Randelementemethode den Vorteil, dass die Lösung im akustische Aus-
senraum nicht diskretisiert werden muss, sondern durch die Lösung auf der Oberfläche
dieser Körper exakt dargestellt werden kann. Ein Nachteil jedoch sind ihre vollbesetz-
ten Systemmatrizen. Erst die Konstruktion schneller Randelementeformulierungen, wo-
mit sich die Arbeit beschäftigt, macht die Methode wieder attraktiv. Es werden zwei un-
terschiedliche Herangehensweisen zur effizienten Behandlung vollbesetzter Matrizen mit
oszillierenden Eigenschaften präsentiert: H-Matrizen und eine richtungsabhängige Fast
Multipol Methode. Beide Ansätze ermöglichen es, die quadratische Komplexität der Ran-
delementemethode auf eine fast lineare Komplexität zu senken, was anhand numerischer
Beispiele verifiziert werden konnte. In einem Anwendungsbeispiel wurde die Schallab-
strahlung eines Motors simuliert. Weitere Beispiele zeigen die allgemeine Gültigkeit der
Formulierungen auf.
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1 INTRODUCTION

The demand of simulating large real-world problems arising in science and engineering
has come along with the booming development of computing hardware. The growing
interest in conducting simulations on computers has multiple reasons. What are they?
Computers represent a highly flexible and efficient testing environment. Their fundamental
merit is the destruction-free nature when doing simulations. For example, only a limited
number of actual test cases have to be setup in a laboratory in order to calibrate and verify
a simulation software. Then, all further tests can be performed on computers which leads
to a significant cost reduction. These facts motivate the research in the field of computer
aided simulations.

The development of numerical schemes and their implementation on computers require
mathematical models which describe the physical problem we have to solve. Such models
often result in summations like

fi =
N

∑
j=1

K(xi,y j)w j for i = 1, . . . ,N.

The complexity of computing this summation directly grows quadratically with the prob-
lem size N. Let us assume, the computing capabilities grow linearly. Then, the limiting
factor of computer aided simulations will always be the quadratic growth of its computa-
tional complexity, unless, we develop efficient algorithms which reduce it.

In the thesis at hand, we focus on such algorithms, more specifically, on those which are
well suited for problems which are of oscillatory nature. We think of physical problems
where the kernel function in the above summation can be modeled like

K(x,y) =
1

4π
eık|x−y|

|x− y| ,

where k is the measure for the oscillatory behavior and is often denoted as wavenumber.
For example, we consider acoustic problems here. They often consist of a solid body being
a scatterer or an exciter and the acoustic pressure in the surrounding acoustic medium is
of interest. A powerful numerical scheme which is often adopted for the simulation of
such problems is the boundary element method (BEM). It requires a boundary description
only. In our specific case, the boundary of the acoustic domain is the surface of the solid
body. Once, the boundary solution is available, the solution within the acoustic medium is
available, too. The bottleneck of the BEM is the presence of dense system matrices, which
yields the quadratic complexity we addressed above.

1



2 1 Introduction

To close the circle, the main objective of this thesis are efficient algorithms which can
be applied to speedup the simulation of acoustic problems by using boundary element
methods.

1.1 State of the art

Let us give an overview on the current state of research. We arrange the considered topics
in two paragraphs. The first one addresses the research in the field of efficient summation
schemes and the second one in the field of boundary element methods and their efficient
realization.

Efficient summation schemes Numerous approaches have been developed in the last
decades. All have the common goal to reduce the quadratic complexity of direct summa-
tions which arise when pair-wise interactions need to be evaluated. To our knowledge, the
first publications in this field are Appel [3] and Barnes and Hut [8]. The paper by Rokhlin
[84] is probably the most known one. They presented for the first time algorithms which
scale likeO(N logN). Based on the latter work, the most prominent representative, the fast
multipole method (FMM) has been developed in [50, 31, 27, 78]. The method has been
improved significantly by Greengard and Rokhlin [51]. They proposed an approach which
scales like O(N) by exploiting the multilevel concept.

Another prominent representative are hierarchical matrices, also known asH-matrices (see
Hackbusch [56]). They are mostly used together with the adaptive cross approximation
(ACA, see Bebendorf [9, 12]) and lead to O(N logN) methods. H-matrices can be un-
derstood as matrices in the usual sense with the difference that they have a more efficient
structure. The entire framework of matrix arithmetics has been developed in [21, 58, 55]
and parallelized in [14]. A second hierarchy level has been introduced in [57, 19], it leads
to the so called H2-matrices. This approach represents the algebraic counterpart to multi-
level FMMs and lead to O(N) methods, as well.

Further approaches are the panel clustering method (see [59]) and wavelet techniques (see
[1]). The former approach is considered as the analytic counterpart ofH-matrices and has
strong similarities to a single-level FMM. The latter approach yields very good compres-
sion rates for the approximation of integral operators. It produces sparse matrices based on
orthogonal systems of wavelet like functions. However, their construction depends on the
geometry of the problem and that decisive limits the approach. If source and target parti-
cles are ordered ideally on a regular grid the resulting influence matrix exhibits a Toeplitz
structure. Using fast Fourier transforms [68] the complexity of the resulting matrix-vector
product can be reduced to O(N logN). However, the drawback of such approaches is that
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physically interesting effects of randomly distributed particles can only be modeled with
further effort.

All mentioned approaches have a fundamental concept in common. They expect kernel
functions to be separable. Proper admissibility criteria provide a priori knowledge when
this applies. The most common one is based on the distance of the particle pair |x−y| and
typically applies to kernels which are asymptotically smooth with respect to that distance
(see, e.g., [56, 12]). Another admissibility criterion, which applies for kernels of retarded
boundary integral operators, has been introduced in [64].

In the thesis at hand, we focus on oscillatory kernel functions. Additionally to the distance
|x− y|, they are affected by the so called wavenumber k. The rank of the oscillatory part
of the kernel eık|x−y| grows like O(kW ), where W is the size of the domain of the particles
x and y, respectively. This is explained in [88] and also shown in the thesis at hand.
Several solutions have been proposed to address this issue. In [85], a high-frequency
FMM based on diagonal translation operators has been developed for the Helmholtz kernel.
Diagonal operators have also been worked out in [52] for both the low- and high-frequency
regime. A stable plane wave expansion for the whole frequency regime has been proposed
in [36]. A combined wide-band scheme that switches between different representations
in order to cover both the high- and low-frequency regime has been presented in [32].
Brandt has taken a different approach in [23]. He exploited the fact that the oscillatory
part of the kernel eık(|x−y|−u·(x−y)) is low-rank in the direction of the unit vector u and
independent of the wave number k. Along the same line, Engquist and Ying have proposed
the directional admissibility criterion for oscillatory kernels in [40, 41]. Relying on that
idea they construct a fast directional multilevel algorithm for oscillatory kernels. It is also
the approach we follow, here.

Fast boundary element methods The boundary element method (BEM) is a well es-
tablished numerical scheme. As the name already proclaims, only the boundary, i.e., the
surface of the computational domain is considered. This seems to reduce the complexity
of a, say, 3D problem to a 2D problem. This is true in terms of number of unknowns. How-
ever, the arising system matrices are fully populated and the entries are costly to compute
as opposed to the finite element method (FEM). We refer to the textbooks [91, 83, 43] as
our main references. The first one gives a good engineering introduction to the BEM. The
second one is a practical guide toH-matrices, ACA and their application to the BEM. The
third textbook provides a rigorous mathematical framework of the method.

What type of problems are well-suited to be solved with the BEM? Characteristic for this
method is that the solution in the domain is fully given by the solution on the boundary.
This is in favor of exterior problems where the domain of interest is large or even un-
limited compared to the boundary. They often arise in wave propagation simulations. A
detailed review on time-domain BEM can be found in the articles [17, 18, 38] and [34].
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We consider the convolution quadrature method (CQM) proposed by Lubich [69, 70] to
solve time-domain problems. It provides a time-stepping scheme and uses the Laplace
domain fundamental solution which is essential in certain cases (see [87, 86]). A refor-
mulated CQM has been published by Banjai and Sauter [6], they rewrite the time-domain
problem as a system of decoupled Laplace domain problems. It allows the application of
well known efficient summation schemes. We adopt this approach for acoustic problems
in time-domain. An improved version using Runge-Kutta methods can be found in [4] and
is studied in [7] and in this thesis.

In order to pave the way for the simulation of large-scale problems fast boundary element
methods have been introduced. There exist several textbooks addressing them [12, 19, 56].
The first and the last one treatH and the second oneH2-matrices. Two important textbooks
about FMM BE-formulations are [65, 53]. In the last two decades, numerous application
of fast boundary element methods have been published. In the following, we list the most
important representatives. The first applications of ACA to speedup BE-formulations have
been published in [9] and [15]. In [10], the computation of good preconditioners based on
H-inversion orH-LU decomposition is introduced. An engineering approach is presented
in [16]. Besides using ACA with H-matrices, also an interpolation based approximation
can be used [20]. A combined H/H2-matrix approach for low- and high-frequency scat-
tering is given in [5]. A wavelet based fast BEM approach is presented in [24]. In the
work of Of et al. [81], the FMM is applied to elastostatic problems based on a Galerkin
BEM discretization. Engineering applications are presented in [73, 67] . The extension
to elastodynamics has been published in [29] based on a collocation approach. In time
domain, the FMM with a plane wave expansion applied to the BEM is presented in [92].
In [26], a comparison of fast approaches is given.

1.2 Model example

Generally speaking, any matrix K ∈ CM×N can be associated to a generating function
K(x,y), also called kernel function. The entries of that matrix are computed as

(K)i j = K(xi,y j) with i = 1, . . . ,M and j = 1, . . . ,N.

There exist various types of kernel functions. In the work at hand, we treat only so called
non-local ones which generate fully populated matrices. Non-local functions describe the
direct influence of the values at the set of source points {y j}N

j=1 on the values at the set of
field points {xi}M

i=1 which might be separated in space.
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Model problem We use the kernel function

K(x,y) =
1

α + |x− y| , x,y ∈ Rd and α ∈ R+, (1.1)

where the spacial dimension is denoted by d. Without the parameter α the kernel function
would become singular as y approaches x. We use this parameter in order to avoid this
issue, it removes the “singularity”. The goal is to evaluate the influence of the values
{w j}N

j=1 at the source points on the values { fi}M
i=1 at the target points. This can be done

by means of the direct summation

fi =
N

∑
j=1

K(xi,y j)w j i = 1, . . . ,M, (1.2)

which requires O(MN) operations. This becomes inacceptable as N and M grow. Our
goal is to construct a fast summation scheme which requires less operations. Usually, such
fast methods are approximations of a direct method. Hence, the cost of the speedup is the
accuracy of the result.

Low-rank matrices Let us write the direct summation from (1.2) in matrix notation as
f = Kw. In order to reduce its cost, we need to approximate K by a low-rank matrix Kr of
rank r ≤min{M,N}. Crucial is that we must be able to control the accuracy of the result.
In order to achive that, we introduce the following bound

‖K−Kr‖ ≤ ε‖K‖, (1.3)

where ‖ · ‖ denotes some matrix norm. The matrix K can be approximated by another
matrix Kr of lower rank r ≤ N for example by means of a truncated singular value decom-
position

K∼ Kr = UΣV∗ U,V ∈ CN×r, Σ ∈ Rr×r, (1.4)

where Σ stores the singluar values on its diagonal and U and V store the left and right
eigenvectors, respectively. ()∗ denotes the conjugate transpose and ∼ means that the term
on its right is the approximation of the term on its left. At this point of the work we do not
go deeper into details of this approximation strategy (for more details we refer to sec. 2),
we just point out that the quality of the approximation depends on how fast the singular
values of the matrix decay. In fact, the number of non-zero singular values represents the
rank of a matrix.

Let us set α = 10−1 in the kernel function (1.1) and distribute the source and target points
equally in the intervall [−1,1] as

xi = yi =−1+2
i−1
N−1

, i = 1, . . . ,N,
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(b) Error decay εr for growing rank r

Figure 1.1: Behavior of entire matrix [−1,1]× [−1,1] with N = 1000

then fig. 1.1a shows the decay of the singular values of the matrix K. There are no vanishing
singular values, i.e., all are non-zero, hence K as a whole has full rank. With the error
bound (1.3) we can define the accuracy of the approximation in terms of the rank r

εr =
‖K−Kr‖F

‖K‖F
.

In fig. 1.1b, we plot this accuracy εr in terms of the rank r = 1, . . . ,N. In practice, ac-
curacies of 10−4 and higher are required. We can conclude from this plot that it is not
possible to obtain a low-rank approximation Kr for the kernel function (1.1) in the domain
[−1,1]× [−1,1] which satisfies an accuracy ε ≤ 10−4. To rephrase this, we are not able
to compute a low-rank approximation of the matrix K in its entirity. However, we can
compute a data-sparse approximation of K, we will see that in the following.

Data-sparse approximation The problem is that matrices with kernels of the type 1/|x−
y| have full rank. The reason is that their generating kernel becomes singular as |x− y| ap-
proaches 0. As we have seen above, the goal can not be to find a low-rank approximation
of the entire matrix K. Instead we are looking for a data-sparse approximation. The idea
is to find submatrices of K which are effectively low-rank. To do so, we partition K in
four submatrices: We get two diagonal blocks [−1,0]× [−1,0] and [0,1]× [0,1] and two
off-diagonal blocks [−1,0]× [0,1] and [0,1]× [−1,0].

Let us first treat the latter two blocks, there target and source points are separated. In
fig. 1.2 we show the decay of the singular values and the accuracy εr of these off-diagonal
blocks. Figure 1.2b shows that already a very small rank r approximates the matrix block
accurately. Indeed a rank r = 7 leads to an accuracy of about 10−4.

Next, we look at the diagonal blocks. The target and source points are not separated, they
have a “singularity” located on their diagonal, i.e., they have the same structure as K as
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Figure 1.2: Behavior of off diagonal blocks, eg. [−1,0]× [0,1]

a whole. Thus, it seems natural to partition these diagonal blocks in the same way as we
partitioned the K beforehand. This procedure can be repeated recursively. We add the
off-diagonal blocks having a low-rank approximation to the far-field and subdivide the di-
agonal blocks until we reach a given recursion depth. There, the remaining diagonal blocks
form the near-field. The result is shown if fig. 1.3, a partitioned matrix with separated near-
and far-field. In our model example we stop at the third level. The numbers in the far-field
blocks represent the low-rank which leads to an accuracy of 10−4. The near-field blocks
have full-rank. A general note to the the recursion depth of the partitioning: The aim is to
somehow balance the cost of evaluating near-field and far-field.

(a) Entire matrix
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(b) 1 level
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(c) 2 levels
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(d) 3 levels

Figure 1.3: Separation of near- and far-field; the numbers denote the low-rank r which
guarantees the accuracy ε = 10−4

Fast matrix-vector product We can construct a fast matrix-vector product by exploiting
the low-rank approximations of far-field blocks. The main difference to direct matrix-
vector products is that we need to sum up the contribution of all blocks forming K. The
multiplication of near-field blocks is performed in the usual way, the multiplication of far-
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field blocks is performed efficiently: We use the low-rank representation (1.4) and get

f ∼ UΣ(V∗w) = U(Σw̄) = Uf̄, (1.5)

where w̄ = V∗w and f̄ = Σw̄ are intermediate vectors. By exploiting (1.5) the cost can be
reduced from O(MN) to only O(r(M+N)) operations for any low-rank block.

The cost of computing and storing matrix entries and the cost of performing a matrix-
vector multiplication is equivalent. Hence, for the sake of simplicity we just talk about
cost here. Table 1.1 shows the overall cost and the amound of cost reduction of the current
example in terms of different levels of matrix partitioning.

# levels cost reduction

0 1000N 1.00
1 514N 0.51
2 276N 0.27
3 163N 0.16

Table 1.1: Cost reduction depending on the number of levels as shown in fig. 1.3.

Recall, the entire matrix K has full-rank, i.e., no accurate low-rank approximation ex-
ists. Although by separating near- and far-field a data-sparse approximation can be found.
Note, this is not the same as a low-rank approximation, it is a more general concept. All
fast schemes to perform matrix-vector products efficiently have the following three points
in common

• Separation of near- and far-field blocks

• Direct evaluation of near-field blocks

• Approximation of far-field blocks

Finally, by exploiting the resulting data-sparse approximation various fast schemes can be
constructed which reduce the complexity from O(N2) to O(N logN) or even O(N).

1.3 Outline

Our objective can be seen as twofold. On one hand, we investigate on tools to efficiently
treat pairwise interactions of oscillatory nature. On the other hand, these tools can be
utilized to increase the efficiency of various numerical methods, e.g., boundary element
formulations. The structure of the thesis at hand reflects this splitting.
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From the model example in the previous section we have learnded about some of the
major concepts of efficiently treating dense matrices. We will deepen these concepts in
the first part of the thesis. In chap. 2, we introduce the concept of oscillatory kernels
which arise in the acoustic problems we treat. Moreover, we investigate on their properties
and present several approaches to efficiently represent associated matrices. In chap. 3, we
construct two schemes which allow for an efficient treatment of dense matrices arising
from oscillatory kernel functions. Thereby, we always focus on the kernel independent
nature of both methods. We conclude this chapter with numerical benchmarks.

In the second part of the thesis, we solve large acoustic problems with the aid of the tools
we constructed in the first part of the thesis. In chap. 4, we briefly present the governing
equations for the acoustic fluid. Then, the boundary integral representations are given,
which provide the basis for the numerical treatment of acoustic problems. Finally, in
chap. 5 we present various numerical simulations and show the efficiency of the presented
methods.

We conclude the thesis in chap. 6 with a summary and an outlook of future work in this
field and potential uses of the presented methods.





2 LOW-RANK MATRICES

In this chapter, we introduce a basic tool of fast methods: the approximation by low-rank
matrices. Such low-rank approximants can be exploited to reduce storage requirement and
to speed up arithmetic operations, such as multiplications and even factorizations.

Matrix kernels

Let the matrix K ∈ CM×N be associated to the generating matrix kernel function K(x,y)
with x ∈ X ⊂ Rd and y ∈ Y ⊂ Rd . The entries of K are then computed as

(K)i j = K(xi,y j)

for all {xi : i = 1, . . . ,M} and {y j : j = 1, . . . ,N}. In the following, we treat only matrix
kernel functions which lead to dense matrices having MN entries. We introduce here two
kernel types, asymptotically smooth and oscillatory ones. Both are important throughout
the work at hand.

Asymptotically smooth kernels Most kernel functions arising in physical problems are
of the type 1/r with r = |x− y|. An example is the fundamental solution of the Laplace
equation

KL(x,y) =
1

4π
1
|x− y| for x,y ∈ R3. (2.1)

Such functions have unbounded derivatives, both in x and y, as y approaches x. On the
other hand their smoothness increases indefinitely as the distance between x and y grows
to infinity. Generally speaking, such kernels K(x,y) are considered asymptotically smooth
as a function of x and y if∣∣∣∣∂ pK(x,y)

∂xp

∣∣∣∣≤Cp|x− y|g−p, respectively
∣∣∣∣∂ pK(x,y)

∂yp

∣∣∣∣≤ C̄p|x− y|ḡ−p,

hold for all x,y ∈ R3 and x 6= y. Above g, ḡ ∈ R are independent on the order of the
derivative p, whereas the constants Cp and C̄p depend only on p. For more details we refer
the reader to [23, 12].

11



12 2 Low-rank matrices

Oscillatory kernels In acoustics and electromagnetic problems and in various other
wave theories the arising matrices are associated to oscillatory kernel functions which
incorporate the term eıkr. Here, ı =

√
−1 is the immaginary unit, k is the wavenumber and

r = |x− y| the distance between x and y. An example is the fundamental solution of the
Helmholtz equation

KH(x,y) =
1

4π
eık|x−y|

|x− y| for x,y ∈ R3.

Note, the above kernel can be written as KH(x,y) = KL(x,y)eık|x−y|. Hence, it exibits the
same properties as KL(x,y) as the distance between x and y goes to infinity, i.e., it becomes
indefinitely smooth. However, as we will see in sec. 2.3, the oscillatory nature due to
eık|x−y| brings along complications considering their approximation. Whenever, we speak
of oscillatory kernels in this thesis we think of the Helmholtz kernel KH or kernels having
the same properties.

Low-rank approximation

Any matrix K can be factorized if there are matrices U ∈ CM×r̄ and V ∈ CN×r̄ such that

K = UV∗,

with r̄ ≤min{M,N}. Note, this factorized representation is no approximation yet. Hence,
it does not neccessarily reduce the cost of computing and storing the entries of K which
is O(MN). In fact, the representation UV∗ can be less efficient than the original represen-
tation, it is O(r̄(M +N)). Note also that no error is introduced yet. Let us introduce a
low-rank representation of K:

Definition 1. The matrix Kr ∈ CM×N is a low-rank matrix if r (M +N) < MN holds. It
approximates K ∈ CM×N satisfying the error bound

‖K−Kr‖ ≤ ε ‖K‖

for a given accuracy ε > 0 and some matrix norm ‖ · ‖.

Low-rank matrices Kr provide an efficient representation of dense matrices K. Beside
reducing the cost of computing and storing matrix entries, low-rank matrices allow also to
perform matrix-vector products efficiently.

There exist basically two sets of approximation methods to construct low-rank matrices.
On one hand, analytic methods are based on a truncated kernel function expansion, i.e., an
analytic approximation of the kernel function. On the other hand, algebraic methods stick
with evaluations of the original kernel function. Their idea bases on the exact computation
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of only some of the original matrix entries. Both, analytic and algebraic methods have in
common that they are designed to reduce memory requirement and computational cost.

In the following, we present two algebraic approximation methods, the truncated singular
value decomposition (SVD) in sec. 2.1 and the adaptive cross approximation (ACA) in
sec. 2.2. Moreover, we point out the merits of either approach and also show how they can
be combined to become even more efficient.

In contrast to the algebraic approaches, we present in sec. 2.3 an analytic approximation
of the kernel function via a Chebyshev interpolation scheme. Finally, we will demonstrate
the merits of this approach and show how it can be combined with algebraic approximation
methods to further increase efficiency.

2.1 Singular value decomposition

Let us use the Frobenius norm

‖K‖F =

(
M

∑
i=1

N

∑
j=1
|(K)i j|2

)1/2

to define the accuracy of the low-rank approximation Kr of the original matrix K as

‖K−Kr‖F ≤ ε ‖K‖F . (2.2)

Apparently, a tight connection exists between the accuracy ε and the rank r. The more
accurate the approximation is supposed to be, the higher the rank r becomes. We can find
the rank r by solving the minimization problem

r = min{rank(Kr) : ‖K−Kr‖F ≤ ε‖K‖F}.

The truncated singular value decomposition (SVD) gives the best solution to it. It provides
a method to find the best-possible Kr of the original matrix K for a given accuracy ε (see
[39]). First, the SVD of a matrix K ∈ CM×N reads as K = UΣV∗ where U ∈ CM×r̄ and
V ∈ CN×r̄ are unitary matrices with r̄ = min{M,N}. Σ ∈ Rr̄×r̄

+ is a diagonal matrix with
the singular values σi = (Σ)ii ordered such that σ1 ≥ σ2 ≥ ·· · ≥ σr̄ holds. According to
the Frobenius norm defined in terms of the singular values

‖K‖F =

(
r̄

∑
i=1

σ2
i

)1/2
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and the error bound from (2.2) the rank r of the best approximation is determined by the
condition

‖K−Kr‖2
F =

r̄

∑
i=r+1

σ2
i ≤ ε2

r̄

∑
i=1

σ2
i = ε2 ‖K‖2

F .

Once we know r, we set {σi : r < i≤ r̄}= 0, i.e., we truncate the singular values based on
the rank r. Hence, the best-possible approximation of K reads as

Kr = UrΣrV∗r ,

where Ur and Vr contain only the first r columns of U and V, respectively, and Σr contains
only the first r rows and columns of Σ.

The use of the SVD is usually not reasonable because it requires the computation and
storage of all matrix entries beforehand. Beside that, the computational cost is very high,
it sums up to 14MN2 +8N3 operations for a matrix K ∈ CM×N with M ≥ N (see [12]). As
a consequence, approaches based on the decomposition of the entire matrix K using the
SVD will never lead to fast methods. The SVD can, however, be used in combination with
other methods such as the adaptive cross approximation presented in sec. 2.2.

2.2 Adaptive Cross Approximation

The adaptive cross approximation (ACA), which was first presented in [9], is based on the
idea of pseudo-skeleton approximations [48]. It has probably become the most widespread
and easy-to-use tool to approximate matrices arising in boundary element formulations
[15, 13]. As we will see in the following, it provides similar approximation quality as the
SVD, however, it is considerably more efficient. There exist two variants of the algorithm,
on one hand the fully pivoted ACA and on the other hand the partially pivoted ACA [83].
We use the former variant first, to present the basic idea of the algorithm, then, we switch
to the latter variant, which is the widely used one.

Fully pivoted ACA Let us split the matrix K ∈ CM×N in

K = Kr +Rr

with the approximant Kr and the residual Rr. Then, the idea of the adaptive cross approxi-
mation (ACA) is the following: After initializing the residual R0 = K and the approximant
K0 = 0, information is shifted iteratively from the residual to the approximant until the
error bound ‖Rr‖F ≤ ε‖K‖F holds. The procedure might become clearer in the following
example.
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Example 1. Let the matrix K be generated by the kernel function K(x,y) = 1/|x− y| for
equidistantly distributed points {xi}5

i=1 and {y j}5
j=1 in [−1,−0.5]× [0.5,1]. The resulting

matrix reads as

K =


0.666 0.615 0.571 0.533 0.500
0.727 0.666 0.615 0.571 0.533
0.800 0.727 0.666 0.615 0.571
0.888 0.800 0.727 0.666 0.615
1.000 0.888 0.800 0.727 0.666

 , ‖K‖F = 3.486.

We initialize R0 = K and K0 = 0. Then comes the key point of the algorithm: First,
we have to locate the maximal entry in modulus of the current residual, i.e., {i0, j0} =
ArgMax |(R0)i j|, in our example they are i0 = 5 and j0 = 1. Then we subtract from R0
the normalized outer product of its ith0 row and jth

0 column vector and add it to K0 which
becomes K1. The new residual becomes R1 and reads as

R1 =


0 0.022 0.038 0.048 0.055
0 0.020 0.033 0.042 0.048
0 0.016 0.026 0.033 0.038
0 0.009 0.016 0.020 0.022
0 0 0 0 0

 , ‖R1‖F = 0.134.

The rank of the approximant K1 is 1. Let the prescribed accuracy be ε = 10−2. We check
whether ‖R1‖F ≤ ε‖K‖F already holds. Apparently with 0.134/3.486 > ε this is not yet
the case, hence we need to repeat the procedure, now with i1 = 1 and j1 = 5. The residual
becomes

R2 =


0 0 0 0 0
0 3.10 ·10−4 3.19 ·10−4 1.88 ·10−4 0
0 5.32 ·10−4 5.44 ·10−4 3.19 ·10−4 0
0 5.25 ·10−4 5.32 ·10−4 3.10 ·10−4 0
0 0 0 0 0

 , ‖R2‖F = 1.25 ·10−3.

Finally 1.25 · 10−3 ≤ ε 3.486 holds and the obtained approximant K2 of rank 2 is suffi-
ciently accurate.

This variant, the fully pivoted ACA, requires the computation of all entries beforehand, be-
cause the residual gets initialized with the original matrix. We will neither use nor further
explain this variant. We exclusively deal with the partially pivoted ACA hereafter. In con-
trast to the fully pivoted variant the partially pivoted one requires the computation of only
few of the original matrix entries. That makes the partially pivoted ACA so attractive.
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Partially pivoted ACA A remark to the notation we use here: As usual (K)i j denotes
the i jth entry of the matrix K, (K)i: and (K): j denote the ith row and jth column of K,
respectively, and (un)i denotes the ith entry of the vector un, which is the nth column vector
of the matrix U, analogously for (vn) j.

A graphic illustration of the algorithm is sketched in fig. 2.1. Apparently, in each step,
which we denote by n, an outer product uv∗ is added to the current approximant Kn = UV∗

which then becomes Kn+1, i.e., its rank increments. The key part of the algorithm is to find
these vectors u and v. At step n they are computed as

ûn = (K): jn−
n−1

∑
n=1

(vn) jn un with jn = ArgMax |(vn−1) j|

un = γn ûn with the pivot γn = (ûn)
−1
in and in = ArgMax |(ûn)i|

vn = [(K)in:]
∗−

n−1

∑
n=1

(un)in vn.

Note, neither the approximant nor the residual are computed and stored explicitely at any
time. The vectors û and v are solely obained from rows and columns of the matrix K and a
subsequential subtraction of the yet obtained rows and columns of the yet existing approx-
imant UV∗ with U∈CM×n and V∈CN×n. They would exactly result in the respective rows

0 . . . rACA

r A
C

A
..
.

0

K ∈ CM×N
outer product form

K∼ UV∗

U
∈
C

M
×

r A
C

A

V∗ : V ∈ CN×rACA

not stored

Figure 2.1: Low-rank representation

and columns of an “immaginary” residual Rn. The pivot γn (represented by a dark square
in fig. 2.1) is chosen to be the inverse of the largest entry in modulus of ûn. It determines
the row and column indices in and jn of the nth approximation step, respectively. Further
hints for the right choice of the pivots γn and the initial index j0 can be found in [12].

We cannot use ‖Rn‖F ≤ ε ‖K‖F as stopping criterion here, because in contrast to the fully
pivoted ACA the matrix K is not known. We use its approximant instead and define the
stopping criterion for the partially pivoted ACA as

‖un‖F ‖vn‖F < ε ‖Kn‖F .
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The Frobenius norm of the approximant which is stored in its factorized form Kn = UV∗

can be computed recursively as

‖Kn‖2
F = ‖Kn−1‖2

F +
n−1

∑
n=1

[(unun)(vnvn)+(unun)(vnvn)]+‖un‖2
F‖vn‖2

F

by using the definition of the conjugate complex value z of z ∈ C.

Why choosing ACA over SVD? Basically both methods, SVD and ACA, will find a
rank r representation of a matrix K: SVD will find the best possible, ACA the near-best
possible one, thus rSVD ≤ rACA. SVD requires, however, the computation of all entries
beforehand, hence, only a memory reduction can be achieved: The computational cost is
of O(MN) to compute the entries plus O(N2(M+N)) for M ≥ N to perform the SVD for
finally reducing the memory cost toO(rSVD(M+N)). The decisive advantage of the ACA
over the SVD is that the computational cost scales like O(r2

ACA(M+N)) and the memory
cost like O(rACA(M+N)) (see [12] and for the required memory also fig. 2.1).

Remark. If the cost of generating matrix entries outweighs the algebraic transformations of
the algorithm the computational cost may scale likeO(rACA(M+N)). If a kernel function
has certain “non-nice” properties, one might need to augment the ACA algorithm in order
to ensure its convergence [12]. In that case the complexity is slightly higher, however, we
do not deal with such kernel functions.

2.2.1 Recompression via SVD

We know that ACA leads to the near-best possible approximant. Is there a way to exploit
the efficiency of ACA and the fact that SVD allows to find the best possible approxi-
mant?

Let us write the approximant in its factorized form as KrACA = UV∗ with U ∈CM×rACA and
V ∈ CN×rACA . Next, we compute their QR decomposition

U = QURU and V = QVRV,

with the unitary matrices QU, QV and the upper triangular matrices RU and RV. Then the
approximant can be rewritten as KrACA = QU(RURV

∗)Q∗V and we decompose the product
RURV

∗ ∈ CrACA×rACA using the SVD

RURV
∗ = ÛΣV̂∗
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with the unitary matrices Û and V̂ and the diagonal matrix Σ containing the singular values
in descending order. The product of QUÛ and QVV̂ are again unitary matrices. Hence,

KrACA = UV∗ = (QUÛ)Σ(QVV̂)∗

is an SVD of the near-best approximant KrACA which can hereby be truncated to the best
possible approximant KrSVD with rSVD ≤ rACA.

For the complexity estimate of this approach we refer the reader to [12]: The SVD of the
matrix K ∈ CM×N for M ≥ N sums up to O(N2(M +N)) operations, whereas the here
presented approach requires O(r2(M +N)) operations for the ACA and ∼ 6r2(M +N)+
20r3 operations which sums up to a total of only O(r2(M +N)) operations, as long as
r�min{M,N} is true.

2.3 Directional interpolation of oscillatory kernels

The aim of this chapter is to develop a polynomial interpolation scheme to efficiently and
accurately approximate both, asymptotically smooth and oscillatory kernel functions. A
very formal description of such schemes can be found in [20]. They represent a simple
and powerful approach to approximate a broad range of kernel functions (see [56]). The
directional interpolation of oscillatory kernels has already been published in [76]. We will
present it here in more detail.

The previsously presented truncated SVD and ACA compute low-rank approximants Kr
iteratively, by explicitely checking the approximation error. They neccessarily converge for
both kernel types to the best and near-best low-rank approximations, respectively (see [39,
12]). This is different when using polynomial kernel interpolations. Their basic concept
are separable kernel expansion. In [56], we found the following definition for that:

Definition 2. Let us assume that the kernel function K(x,y) with x∈X ⊂Rd and y∈Y ⊂Rd

can be split up as K(x,y) = K`(x,y)+R`(x,y). Then, any function

K`(x,y) =
`

∑
n=1

un(x)vn(y)

is a separable kernel expansion in X ×Y and approximates K(x,y). The functions un(x)
and vn(y) may be any function depending only on x and y, respectively. ` denotes the
truncation rank and the expression

R`(x,y) =
∞

∑
n=`+1

un(x)vn(y)

is the remainder.
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Recall, the entries of the matrix K ∈CM×N are computed by evaluating the associated ker-
nel function K(x,y). Thus, when using a truncated kernel expansion K`(x,y) the resulting
low-rank approximant K` ∈ CM×N is defined as

K` = UV∗ with U ∈ CM×`, V ∈ CN×`

and the entries are computed as (U)in = un(xi) and (V∗)n j = vn(y j) for all xi ∈X and yi ∈Y .
The cost for computing and storing K` is O(`(M +N)). Note, the different notation for
the low-rank: Here we let ` denote the low-rank, when we use the SVD or ACA we let
r denote the low-rank of the approximant. The reason is that ` needs to be set apriori,
whereas r is determined during the approximation procedure. This is a crucial difference
between these approximation approaches.

A central aim is to derive so called admissibility criteria for X and Y to determine the trun-
cation rank ` such that the required accuracy of the resulting approximant ‖K−K`‖≤ ε‖K‖
is satisfied. More importantly, we require the remainder |R`(x,y)| to decay exponentially
as the truncation rank grows. The analysis is based on the theory of Chebyshev expansions
and is presented in sec. 2.3.1. In sec. 2.3.2, we finally construct a Chebyshev interpolation
scheme for oscillatory kernels.

Another important fact is that an a priori determinded low-rank is indepent on the ac-
tual size of the matrix. This is normally not the case, though, and such approximation
approaches might lead to sub-optimal approximants. In section 2.3.3, we present an ap-
proach to overcome this issue.

2.3.1 Truncated Chebyshev expansion

A natural way to derive a polynomial approximation of K(x,y) is the expansion in a trun-
cated Taylor series in either x or y. This requires the analytical computation of derivatives
up to the expansion order. Hence, such approaches become less attractive the more accu-
rate the kernel needs to be approximated and also the more complicated it is. Other ideas
are to approximate the kernel by using multipole expansions based on spherical harmonics
(see [51, 84] for more details).

We use a truncated Chebyshev expansion whose definition we found in [74].

Definition 3. Let a continuous function f (x) with x ∈ [−1,1] be approximated via a trun-
cated Chebyshev expansion of rank `

p`(x) =
1
2

c0 +
`

∑
n=1

cn Tn(x)
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with the Chebyshev polynomials of the first kind Tn(x) = cos(narccosx) of order n and
the coefficients cn are given by

cn =
2
π

1∫
−1

f (x)Tn(x)√
1− x2

dx for x ∈ [−1,1].

There exist refined error estimates for truncated Chebyshev expansions [74]. The following
theorem gives a tool to control their accuracy.

Theorem 1. Assuming the function f (x) can be extended to a function f (z) then the error
bound

| f (x)− p`(x)| ≤
M

ρ`(ρ−1)
for x ∈ [−1,1] and ρ > 1

with the function f (z) being analytic on the ellipse Eρ and M is such that

| f (z)| ≤M for z ∈ Eρ with Eρ =

{
z ∈ C|z = ρeıθ +ρ−1e−ıθ

2

}
holds. As long as M is bounded for z in Eρ , the error decays exponentially like O(1/ρ`).

Directional expansion of oscillatory kernels

With these tools at hand we are ready to prepare the basis for the construction of a trun-
cated Chebyshev expansion K`(x,y) of the oscillatory kernel K(x,y) where the remainder
|K(x,y)−K`(x,y)| decays exponentially as ` grows. We start with an introductory exam-
ple:

Example 2. Let us analyse the error of a truncated Chebyshev expansion of the oscillatory
function

f (x) = eıkx for x ∈ R

depending on the truncation rank ` and the wave number k > 0. After extending f (x)
to f (z) with z ∈ C and choosing θ = −π/2 in the definition of the ellipse Eρ we obtain
z =−ı(ρ +1/ρ)/2. We plug this into f (z) and end up with ek/2(ρ+1/ρ), which apparently
grows exponentially fast in k for any admissible ρ and no constant M exists which is
independent of the wave number k. Hence, there exists no truncated Chebyshev expansion
approximating f for a fixed accuracy while varying k. As k increases, the oscillations must
be resolved by increasing correspondingly `.

Even though the reasoning is more complicated for the oscillatory kernel, we can conclude
due to the similarity to example 2 that we cannot achieve a k independend approximation
by directly deriving a truncated Chebyshev expansion. The idea is to introduce a modified
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representation of the oscillatory kernel, similarly as in [23]. Based on that, we show for
some X and Y its boundedness. Although, we derive the procedure for the Helmholtz
kernel, it applies to all oscillatory kernels having a multiplicative term eık|x−y|.

Let us introduce some notations. Recall the clusters X and the cluster Y containing the
points x and y, respectively. Moreover, X is centered at cx and Y at cy. By introducing
the vectors rx = x− cx, ry = y− cy, r = rx− ry and c = cx− cy we can rewrite the vector
between the two points x and y as

x− y = c+ r,

as shown in shown in fig. 2.2. All these newly introduced vectors are in R3.

cy

cx

y

x

Y Xc

ry

rx

x− y

Figure 2.2: Two clusters X and Y and the vectors c, rx and ry

We split the oscillatory kernel in two multiplicative parts K = Ks Ko which read as

Ks(x,y) =
1

4π
1
|x− y| and Ko(x,y) = eık|x−y| for x,y ∈ R3,

Ks represents the asymptotically smooth and Ko the oscillatory kernel part.

First, we look at the asymptotically smooth kernel part Ks. We use the relation x−y = c+r
and see that it is analytic unless |c+ r|= 0. To find a stronger admissible relation between
c and r we expand the denominator |c+ r| into a Taylor series in the vicinity of r. By
rewriting

|c+ r|= |c|
√

1+
|r|2
|c|2 +2

c · r
|c|2 ,

and by substituting ξ = (|r|2 +2 c · r)/|c|2 we can use the Taylor expansion for
√

1+ξ =
1+ 1

2ξ − 1
8ξ 2 +O(ξ 3) for |ξ | ≤ 1 and get

|c+ r|= |c|+ 1
2
|r|2
|c| +

c · r
|c| −

1
2
(c · r)2

|c|3 +O(|r|3), (2.3)

as long as the relation |r|/|c| ≤
√

2−1 holds. Now, we look for the situation where |c+ r|
most likely approaches 0. Certainly this is not the case if r ⊥ c, unless |c| = 0 the kernel
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Ks cannot become singular in that case. However, if r ‖ c with r and c pointing in opposite
direction, such that r · c =−|r||c|, the expansion (2.3) becomes |c|− |r|. Hence, we obtain
a stronger condition |r|< |c|. It implies that the clusters X and Y are not allowed to touch
themselves, i.e., X ∩Y = /0. This is an often used condition later on, if it holds, we say the
clusters X and Y are well separated. If we analyse the kernel in the complex plane and
choose ρ > 1 such that Ks(z) is analytic within the ellipse Eρ , then there exists an upper
bound |Ks(z)| ≤M. Hence, the non-oscillatory kernel part Ks can be approximated by a
truncated Chebyshev expansion unless cluster X and Y overlap.

Next, we analyse the oscillatory part Ko of the kernel. From Example 2 we know that
such functions grow exponentially fast with k in the complex plain. Hence, no truncated
Chebyshev expansion of truncation rank ` which is independent on k exists. We put up the
following theorem:

Theorem 2. Let the oscillatory kernel have the decomposition Ko(x,y) = Ku(x,y) eıku·(x−y)

with
Ku(x,y) = eık(|x−y|−u·(x−y) for x ∈ X , y ∈ Y,

the unit vector u ∈ R3 and |u| = 1. Both clusters X ,Y ⊂ R3 have the diameter w. If there
exists a constant γ such that

kw
∣∣∣∣ c
|c| −u

∣∣∣∣≤ γ and
kw2

|c| ≤ γ (2.4)

hold, then Ku has a truncated Chebyshev expansion of fixed accuracy and truncation rank
` while varying k.

Proof. We need to show that the kernel Ku is bounded independently of k in the ellipse Eρ
for some ρ > 1. First, we set x− y = c+ r and expand the exponent of Ku into a Taylor
series in the vicinity of r. By using (2.3) we get

|c+ r|−u · (c+ r) = |c|+ 1
2
|r|2
|c| +

c · r
|c| −

1
2
(c · r)2

|c|3 −u · (c+ r)+ . . . , (2.5)

which we plug into Ku. Next, we extend r ∈ R3 to z ∈ C3 and obtain

Ku(z) = exp
(

ık
(
|c|−u · c+

(
c
|c| −u

)
· z+ 1

2
|z|2
|c| −

1
2
(c · z)2

|c|3 + . . .

))
.

If there exists a constant γ such that the bounds (2.4) hold, then there exists an upper bound
for |Ku(z)| ≤M in the Ellipse Eρ which is independent of k.

From the bounds presented in Theorem 2 we can derive the following two criteria:
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cy cxY Xu
c

Figure 2.3: Directional admissibility criteria

Cone aperture criterion We introduce a cone with the origin at the center of Y , the di-
rection given by the unit vector u and an aperture of |c/|c|−u|. If this aperture is at
most O(1/kw) the first bound in Theorem 2 holds.

Separation criterion The distance of the centers of cluster X and Y is denoted by |c|. If
this separation is at least O(kw2) the second bound in Theorem 2 holds.

These conditions are also depicted in fig. 2.3. If both conditions are satisfied a truncated
Chebyshev expansion of Ku(x,y) exists and, consequently, also of K(x,y) whose remainder
decays exponentially for growing truncation rank `. The approximation is independent on
the wave number k.

2.3.2 Directional Chebyshev interpolation

The Chebyshev interpolation is a very good substitute to the truncated Chebyshev expan-
sion we presented above [74].

The simplest way to construct a polynomial approximation of degree ` to a given con-
tinuous function f (x) with x ∈ [−1,1] is to interpolate f (x) at `+ 1 equidistant points
x̄1, x̄2, . . . , x̄` in the intervall [−1,1] by the polynomial

f`(x) =
`

∑
i=0

ci xi.

The only requirement is to know the argument f (xi) at all interpolation points x̄i. With that
we get a set of `+1 linear equations which we can solve for all unknown coefficients ci.

However, the construction of such a polynomial approximation besides being time con-
suming becomes also numerically unstable if ` grows. There exist other, more efficient
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and reliable interpolation schemes. In order to get a measure of the quality of an approxi-
mation we need to define the best-possible approximation. Let us introduce the maximum
error of an approximation p(x) of f (x) in the interval x ∈ [a,b]

max
a≤x≤b

| f (x)− p(x)|.

The polynomial p(x) of order at most ` which minimizes the maximum error

min
order p(x)≤`

{
max

a≤x≤b
| f (x)− p(x)|

}
provides the sought after best-possible approximation, also called minimax approximation
[74]. Apparently the construction of such approximations is rather cumbersome because a
minimization problem needs to be solved.

The Lebesgue constant gives an idea on how good a given interpolant of a function is,
compared to its best-possible approximation of the same degree `. Interpolants at equidis-
tant points have a Lebesgue constant which grows exponentially in `. On the other hand,
the Lebesgue constant grows only logarithmically when using Chebyshev nodes as inter-
polation points

x̄m = cos
(

π
2

2m−1
`

)
for m = 1, . . . , `, (2.6)

which are the zeros of the Chebyshev polynomials T`(x) of order `

T`(x) = cos(`arccosx) for x ∈ [−1,1].

Indeed, interpolating at Chebyshev nodes gives us a near-minimax approximation, which
is the optimal compromise for efficiency and accuracy we are looking for. For more details
we refer the reader to [82], [25] and [89].

Moreover, the discrete othogonality (see [74]) of the Chebyshev polynomials

`+1

∑
m=1

Ti(x̄m)Tj(x̄m) =


0 i 6= j (≤ `)

`+1 i = j = 0
(`+1)/2 0 < i = j ≤ `

with the set of zeros {x̄m} of T`+1(x), leads to a very efficient interpolation formula: The
polynomial f`(x) interpolates the function f (x) in the Chebyshev nodes (2.6) as a sum of
Chebyshev polynomials in the form

f`(x) =
1
2

c0 +
`

∑
i=1

ci Ti(x) (2.7)
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for x ∈ [−1,1] with the coefficients

ci =
2

`+1

`+1

∑
m=1

f (x̄m)Ti(x̄m). (2.8)

After inserting (2.8) into (2.7) and swapping the sums we get the final interpolation for-
mula

f`(x) =
`+1

∑
m=1

f (x̄m)S`(x, x̄m) (2.9)

for x ∈ [−1,1] with the interpolating polynomial (see also [42])

S`(x, x̄m) =
1

`+1
+

2
`+1

`

∑
i=1

Ti(x)Ti(x̄m).

Arbitrary interval Most real problems, however, require the function to be defined in
an arbitrary interval x ∈ [a,b]. Hence, we need to map the arbitrary interval [a,b] to the
reference interval [−1,1] and vice versa. We introduce the affine mapping functiong Φ :
[−1,1]→ [a,b], given by

Φ(x) =
a+b

2
+

b−a
2

x.

It maps from the reference interval [−1,1] to any arbitrary interval [a,b] and the inverse
mapping Φ−1 : [a,b]→ [−1,1], given by

Φ
−1(x) =

2x−b−a
b−a

maps from any interval [a,b] to the reference interval [−1,1]. If we now interpolate a
function f (x) in the arbitrary interval [a,b]⊂R we need to rewrite (2.9) using the mapping
function Φ(x) as

f`(x) =
`+1

∑
m=1

f (Φ(x̄m)) S`
(
Φ
−1(x), x̄m

)
for x ∈ [a,b].

Obviously, the Chebyshev points {x̄m} which are defined in the reference interval [−1,1]
has to be mapped to the interval [a,b] when interpolating f (x) there. Moreover, when
evaluating the interpolating polynomial S`(x, x̄m) the point x ∈ [a,b] has to be mapped to
the reference intervall [−1,1].

Multidimensional interpolation We let the d-dimensional reference interval [−1,1]d be
defined via the tensor product

[−1,1]d = [−1,1]1×·· ·× [−1,1]d.
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Then, we construct the interpolation nodes x̄α ∈ [−1,1]d in the same way

x̄α = x̄α1×·· ·× x̄αd , (2.10)

where x̄αi are the zeros of the Chebyshev polynomials T`+1(xi) with xi ∈ [−1,1]i and α =
(α1, · · · ,αd) is a d-dimensional multi-index with αi = 1, . . . , `+1 for all i= 1, . . . ,d, hence
|α| ≤ (`+1)d . The d-dimensional interpolation polynomial is constructed analogously

S`(x, x̄α) = S`(x1, x̄α1)×·· ·×S`(xd, x̄αd) for x ∈ [−1,1]d. (2.11)

Hence, the interpolation of the function f (x) read as

f`(x) = ∑
m∈α

f (x̄m)S`(x, x̄m) for x ∈ [−1,1]d.

Interpolating derivatives We recall the derivative of the Chebyshev polynomials

dT`(x)
dx

= `U`−1(x) with U`−1(x) =
sin(`arccosx)√

1− x2
(2.12)

for x ∈ [−1,1] and U`(x) are the Chebyshev polynomials of second kind. Based on them
we can derive the interpolation polynomial of the derivative of f (x)

d f`(x)
dx

=
`+1

∑
m=1

f (x̄m) P̀ (x, x̄m) with P̀ (x, x̄m) =
dS`(x, x̄m)

dx
.

We observe that nothing happens with the function f (x). The derivative d/dx gets shifted
to the polynomial S`(x, x̄) and by using the relation (2.12) the polynomial P̀ (x, x̄) reads
as

P̀ (x, x̄m) =
2

`+1

`

∑
i=1

iUi−1(x) Ti(x̄k) for x ∈ [−1,1].

In the multidimensional case the interpolation of the gradient of ∇ f (x) ∼ ∇ f`(x) reads
as

∇ f`(x) = ∑
m∈α

f (x̄m) P̀ (x, x̄m) for x ∈ [−1,1]d.

The gradient of the interpolating polynomial P̀ (x, x̄) = ∇S`(x, x̄) is computed as

P̀ (x, x̄m) =


P̀ (x1, x̄α1)×·· ·×S`(xi, x̄αi)×·· ·×S`(xd, x̄αd)

...
S`(x1, x̄α1)×·· ·× P̀ (xi, x̄αi)×·· ·×S`(xd, x̄αd)

...
S`(x1, x̄α1)×·· ·×S`(xi, x̄αi)×·· ·× P̀ (xd, x̄αd)

 (2.13)
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for x ∈ [−1,1]d . Note, P̀ (x, x̄) in (2.13) is a vector function here, in contrast to S`(x, x̄) in
(2.11) which is a scalar function. The extension from the reference interval [−1,1]d to an
arbitrary interval [a,b]d is straightforward by simply plugging the mapping function Φ(x)
into the equations. For the sake of readability, however, we limit our explanations of the
ongoing tasks to the reference interval [−1,1]. Such can be made true by simply scaling
the the geometry, the simplification makes the notation much simpler, though.

Interpolating the oscillatory kernel

In the following, we use the Chebyshev interpolation to construct a polynomial approxi-
mation of the oscillatory kernel K(x,y). Only evaluations of K(x,y) at some given interpo-
lation points {x̄} and {ȳ} are required. This makes polynomial interpolation very attractive
because no modification of the kernel is required.

Recall, the directional representation of the oscillatory kernel reads as

K(x,y) = Ks(x,y) Ku(x,y) eıku·(x−y) (2.14)

for x ∈ X and y ∈ Y with X ,Y ⊂ R3 and is bounded in the complex plane. There exists
a Chebyshev expansion of Ku whose truncation rank ` does not dependent on the wave
number k.

Frequency regimes The number of waves which have to be approximated does not only
depend on the wave number k but also on the size of the computational domain, which
is represented by the clusters X and Y . Think of the function eıkx with x ∈ [a,b] where
the wavelenght is 2π/k. The more we enlarge the interval [a,b] the more waves have to
be approximated. If we use a polynomial interpolation of fixed order ` the quality of the
approximation suffers more and more. Obviously, it depends on the number of waves that
have to be reproduced. On the other hand, if |a− b| is at most O(1/k) the function eıkx

itself can be considered smooth in the interval [a,b]. Apparently, the relation of cluster size
w = min{diamX ,diamY} and wave number k is a convenient tool to define two frequency
regimes:
Definition 4. There exists a constant B such that the cluster pair X and Y is in the low
frequency regime for w≤ B/k and in the high frequency regime for w > B/k.

Low frequency regime For the constant B ≤ min{γ/η ,γ/2} equation (2.4) is always
true. Moreover, it is sufficient to satisfy the separation criterion w ≤ η |c| for X
and Y and the interpolant of the oscillatory kernel reads as

K(x,y)∼ ∑
m∈α

S`(x, x̄m) ∑
n∈α

K(x̄m, ȳn) S`(y, ȳn). (2.15)

The arbitrary parameter η > 0 comes from the well known separation criterion for
asymptotically smooth kernel functions [12, 56].
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High frequency regime Both criteria of (2.4) need to be satisfied: If X and Y fulfill the
minimal separation of O(kw2) and the maximal cone aperture of O(1/kw) an inter-
polant of Ku(x,y), which reads as

Ku(x,y)∼ ∑
m∈α

S`(x, x̄m) ∑
n∈α

Ku(x̄m, ȳn) S`(y, ȳn),

exists. After inserting it into (2.14) the interpolated oscillatory kernel reads as

K(x,y)∼ eık u·x
∑

m∈α
S`(x, x̄m)e−ık u·x̄m ∑

n∈α
K(x̄m, ȳn)eık u·ȳn S`(y, ȳn)e−ık u·y. (2.16)

Recall, the multi-index α with |α| ≤ (`+1)d . For d = 3 and with ` denoting the number
of interpolation points there are about (`+1)3 interpolation points in each cluster.

Interpolation error

To investigate the Chebyshev interpolation error we use an estimate from [74]. Converse-
ley to the error bound presented in Theorem 1 which holds for truncated Chebyshev ex-
pansions, here we analyze the error of the Chebyshev interpolation.

Theorem 3. If the function f (x) extends to a function f (z) of the complex variable z, which
is analytic on the ellipse Eρ then the estimate

∣∣∣ f (x)− `+1

∑
m=1

S`(x, x̄m) f (x̄m)
∣∣∣≤ (ρ +ρ−1)M

(ρ`+1−ρ−`−1)(ρ +ρ−1−2)
(2.17)

holds for all −1≤ x≤ 1 and with M and Eρ defined in Theorem 1.

For a given interpolation order `+ 1 we obtain the most strict error bound if we find the
optimal compromise between minimizing M and maximizing ρ .

How do we estimate the interpolation error of a kernel function K(x,y) which depends
on two variables? Let us take two clusters X ,Y ⊂ R3 that are centered at cx and cy, re-
spectively. Recall, c = cx− cy and r = x− y− c. We can rewrite x− y = c+ r where c is
constant. Thus, K(x,y) becomes K(r) and can be extended to K(z) with z ∈ C3.

Based on the following two examples we analyse the interpolation error of the kernels Ks

and Ku. In each example, we let the clusters X ,Y ⊂R2 be of diameter w= 1 and the cluster
X be centered at the origin cx = [0,0]. Only the center cy of cluster Y changes.

Example 3. Let us analyse the interpolation error of the asymptotically smooth kernel

Ks(r) =
1
|c+ r| .
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We let cluster Y be centered at cy = [2,0] and vector c = cy− cx becomes c = [2,0]. The
interpolation error for Ks(r) is analyzed for two cases

r‖ = [ζ ,0] varies parallel to c, and

r⊥ = [0,ζ ] varies perpendicular to c, for all −1≤ ζ ≤ 1.
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(a) r‖ = [ζ ,0] and Eρ for ρ = 3
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(b) r⊥ = [0,ζ ] and Eρ for ρ = 4

Figure 2.4: Modulus of Ks(r) = 1
|c+r| with r ∈ C2

figure 2.4 shows the modulus of Ks(z) in the complex plane for these two cases. The ellipse
Eρ is chosen such that Ks(z) remains analytic on it.
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Figure 2.5: Interpolation error for Ks(r) = 1
|c+r|
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The estimated and actual interpolation error for r‖ and r⊥, with respective poles at [−2,0]
and [0,±2ı], are compared in fig. 2.5. The error decay is of order O(1/ρ`) as expected.

Example 4. Let us analyze the interpolation error of the kernel

Ku(r) = eık(|c+r|−u·(c+r)).

The center of cluster Y depends on the wave number k. We choose it such that the sep-
aration criterion O(k) and cone aperture criterion O(1/k) for u = [1,0] are satisfied, i.e.,
c = cy = [k,1]. Again, we analyze two cases:

r‖ = [ζ ,0] varies parallel to u, and

r⊥ = [0,ζ ] varies perpendicular to u, for all −1≤ ζ ≤ 1.
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(a) r‖ = [ζ ,0] and Eρ for ρ = 30
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(b) r⊥ = [0,ζ ] and Eρ for ρ = 3

Figure 2.6: Modulus of Ku(r) = eık(|c+r|−u·(c+r)) with r ∈ C2 and for k = 20

Figure 2.6 shows the modulus of the oscillatory kernel Ku(z) in the complex plane for these
two cases. We notice that for r‖ the kernel increases at a much slower rate than for r⊥. This
implies that we can choose larger ρ and, due to estimate (2.17), the interpolation error must
be smaller. We can observe that in fig. 2.7. There, the actual and estimated interpolation
error for k = 2, 20, 200, 2000, and r‖ and r⊥ are compared. We can understand this
behavior if we look at the Taylor expansion of the exponent of Ku(r) in (2.5): when k
increases, the angle between c and u becomes smaller, and all the terms shown in (2.5)
become negligible (they cancel out when c and u are perfectly aligned). The reason why
the actual interpolation error for growing k and ` plateaus at some point is due to rounding
errors in the floating-point operations.
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Figure 2.7: Interpolation error for Ku(r) = eik(|c+r|−u·(c+r))

2.3.3 Efficient treatment of interpolants

Before we come to the efficient treatment we introduce the matrix representation of inter-
polants. First, we need to clarify an important but somewhat confusing point: Eventhough
in (2.15) and (2.16) both polynomials S` interpolating K(x,y) in x and in y, respectively,
are equivalent, in matrix notation they are indeed transposed operations. It will become
clear in a moment.

The low and high frequency regime have to be treated separately also in matrix notation.
However, we will find out that there exist some commonalities. Recall, the kernel K(x,y)
is defined for x ∈ X and y ∈ Y . In the low frequency regime, the low-rank representation
of K ∈ CM×N for admissible clusters X and Y reads as

K` = SX K̄ S∗Y , (2.18)

with SX ∈ CM×L, SY ∈ CN×L and K̄ ∈ CL×L with the multi-index |α| ≤ L = (`+ 1)d .
The entries are computed as (K̄)mn = K(x̄m, ȳn), as (SX)im = S`(xi, x̄m) and as (S∗Y )n j =
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S`(y j, ȳn) for i = 1, . . . ,M, j = 1, . . . ,N and m,n = 1, . . . ,L.

If we write the low-rank representation of K in the high frequency regime in the same way
as in the low frequency regime, the entries of the interpolation matrices are computed dif-
ferently, i.e., as (SX)im = S`(xi, x̄m)eıku·(xi−x̄m) and (S∗Y )n j = S`(y j, ȳn)e−ıku·(y j−ȳn). Appar-
ently, the additionally required plane wave terms eıku·(xi−x̄m) and e−ıku·(y j−ȳn) are separable:
They define the outer products PX = pX p̄∗X and PY = pY p̄∗Y computed as (pX)i = eıku·xi ,
(p̄∗X)m = e−ıku·x̄m and (pY ) j = e−ıku·y j , (p̄∗Y )n = eıku·ȳn . Thus, we write the low-rank approx-
imant K` in the high frequency regime as

K` = (SX ◦PX) K̄ (SY ◦PY )
∗, (2.19)

with the Hadamard product SX ◦PX and SY ◦PY defined as the entrywise product (SX ◦
PX)im = (SX)im (PX)im of the matrices SX ,PX ∈ CM×L, analogously for SY ◦PY . Recall,
the matrices PX and PY do only exist in the outer product form.

The matrices K̄, SX and SY are required for the representation of the low-rank matrix K` in
the low and the high frequency regime, see (2.18) and (2.19), respectively. Noteworthy are
two facts: On one hand they are computed identically in both frequency regimes and on
the other hand the generating function for K̄ is the original, unmodified oscillatory kernel
K(x,y). In the high frequency regime, the plane wave vectors pX ∈ CM, pY ∈ CN and
p̄X , p̄Y ∈ CL are required additionally.

Recompression via ACA and SVD Recall, the rank of the approximant K` obtained via
interpolation is denoted by L. It denotes the number of interpolation points in the clusters
X and Y and is determined before computing the interpolant K`. Conversely, the low-rank
of approximants computed via the SVD or ACA is denoted by r. Usually, r ≤ L holds for
any prescribed approximation accuracy ε because r is the rank of the best, respectively
near best apprixmation Kr. In the following, we present how the ACA and SVD can be
used to recompress interpolants K`.

Let us concentrate on K̄ in the representations of K` in the low frequency regime (2.18)
and in the high frequency regime (2.19). It is a dense matrix of the size L×L which might
have a low-rank approximant K̄ = K̄r + R̄r satisfying ‖R̄r‖F ≤ ε ‖K̄‖F . As long as r < L/2
holds, the approximant K̄r constitutes a more efficient representation then K̄. ACA can be
adopted, it leads to a low-rank approximant K̄r = UV∗ of K̄ and the interpolant K` in the
low frequency regime becomes

K` ∼ Kr = SX UV∗ S∗Y ,

and the interpolant in the high frequency regime becomes

K` ∼ Kr = (SX ◦PX) UV∗ (SY ◦PY )
∗.
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Moreover, the approach we presented in section 2.2.1, which combines ACA with a sub-
sequent application of the SVD, would lead to the best-possible low-rank approximant. In
any case the accuracy ‖K`−Kr‖F ≤ ε ‖K`‖F is guarateed.

Efficient interpolation on regular grids The application of the approach which com-
bines the ACA and SVD (see sec. 2.2.1) leads to an approximant Kr of best-possible rank
r, which is optimal when considering one cluster X being admissible with one cluster Y .

In the following, we consider one cluster X being admissible with a set of clusters {Yt}T
t=1.

Moreover, we need to introduce an essential cluster propery: Since, we are anticipating
something we will introduce in Chapter 3 we stick with the basics here. All cluster must
be identical up to translations, this must hold also for orientation and distribution of inter-
polation points, i.e., we require a regular grid. Each admissible cluster pair X and Yt leads
to a matrix Kt ∈ CM×Nt which we approximate in the low frequency regime as presented
in (2.18) and in the high frequency regime as presented in (2.19). After omitting SX , SYt

and PX , PYt we end up with the set of matrices {Kt}T
t=1, each of size L×L. We can write

them in a twofold way, either by organizing them as a row vector or as a column vector

K(row) = [K̄1, K̄2, . . . , K̄t , . . . , K̄T−1, K̄T ]

or K(col) = [K̄1; K̄2; . . . ; K̄t ; . . . ; K̄T−1; K̄T ].

We use the , and ; notations to distinguish column and row ordering. We chose for the
set based on cluster X the row representation K(row) (see the left setting in fig. 2.8). Any

X Y1

Yt

YT Y

XT

Xt

X1K(row)

K(col)

Figure 2.8: Row and column representation {Kt}T
t=1

matrix K̄t having a translation invariant kernel K(x− y) and the same translation vector
ct = cX − cY is identical due to the regular grid. We choose the column representation
K(col) for the matrix set {K̄t}T

t=1 based on cluster Y (see the right setting in fig. 2.8).

Next we approximate both, K(row) and K(col), by using the ACA for a given accuracy ε .
The resulting low-rank representations read as

K(row) ∼ U [V∗1,V
∗
2, . . . ,V

∗
t , . . . ,V

∗
T−1,V

∗
T ]

or K(col) ∼ [A1;A2; . . . ,At ; . . . ,AT−1;AT ]B
∗.
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Hence, for an individual matrix K̄t ∼ UV∗t ∼ AtB
∗ is true and by means of a QR decompo-

sitions we can rewrite it as

K̄t ∼ QU RU (QVt RV )
∗ ∼ QAt RA (QBRB)

∗. (2.20)

Here QU ,QVt ,QAt and QB are unitary matrices. Next, we introduce Φ = RU R∗V and Ψ =
RAR∗B then (2.20) reads as

K̄t ∼ QU ΦQ∗Vt
∼ QAt ΨQ∗B. (2.21)

Now, by means of (2.21) we can rearrange any matrix K̄t as follows

K̄t ∼ QAt ΨQ∗B
∼ QAt Ψ(Q∗BQB)Q∗B
∼ Kt (QBQ∗B)

∼ QU ΦQ∗Vt
(QBQ∗B)

∼ QU (Q∗U QU)ΦQ∗Vt
(QBQ∗B)

∼ QU (Q∗U KtQB)Q∗B = QU Ct Q∗B.

With Ct ∈ Cr×r being computed as Ct ∼ ΦQ∗Vt
QB or Ct ∼ Q∗U QAt Ψ (both expressions are

equal neglecting the approximation errors) we can rewrite the set {K̄t}T
t=1 as

QU [C1,C2, . . . ,Ct , . . . ,CT−1,CT ]Q
∗
B

The cost of the pre-computation increases slightly due to this representation of K̄t . How-
ever, the overall memory requirement and computational cost decreases substantially. In-
stead of storing UV∗, which is of orderO((L+T L)r), only one QU and one QB per set and
{Ct}T

t=1 need to be stored. Hence, the memory requirement reduces to O(2Lr+Tr2). The
computational cost must be analysed in a slightly different way. Due to the fact that we can
write K̄t ∼ UV∗t ∼ QU Ct Q∗B we can shift the application of QB and QU to the application
of SX and SY , respectively. Hence, the cost of applying K̄t gets reduced from O(2Lr) to
only O(r2) operations (one multiplication by Ct). Remember that this operation has to be
performed for each cluster X with each in the admissible set of clusters {Yt}T

t=1. Hence,
the savings are significant. A similar method is described in [42].
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The simulation of physical phenomena arising from applications in science and engi-
neering often imply the evaluation of many pairwise particle interactions as presented in
fig. 3.1. Such problems can be modeled as

fi =
N

∑
j=1

K(xi,y j)w j

for i= 1, . . . ,M. The source value w j at each source particle y j contributes to the field value
fi at each target point xi. The contribution is described by the kernel function K(x,y). As
depicted in fig. 3.1a, if the contributions evaluated directly, the complexity grows quadrat-
ically. In matrix notation we can write it as matrix-vector product f = Kw, with the matrix
K ∈ CM×N , the vector of source values w ∈ CN and the vector of field values f ∈ CM.
Plenty of research has been done to reduce the complexity of such tasks. The common
approach is to exploit properties of the kernel functions. Under certain circumstances they
permit to gather information of source and target particles within so called clusters what
clears the way for the construction of methods to evaluate particle interactions efficiently.
This idea is presented figuratively in fig. 3.1b.

target particles source particles

(a) O(N2)

target particles source particles

(b) O(N logN)

Figure 3.1: Particle interactions

We focus on a class of methods which can be wrapped up as tree methods. As the name
says, these methods base on a tree representation of the domain Ω which contains source
and target particles. The fundamental idea is to exploit the separability of the kernel func-
tion K(x,y)∼∑un(x)vn(y) and as a consequence the low-rank of the resulting matrices.

35
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Let us explain this idea. Generally, kernel functions are asymptotically smooth, i.e., they
are of the form 1/|x− y|, where |x− y| denotes the distance between source and target
particle. Resulting matrices are dense and have full-rank in their entirety. In other words,
they cannot be approximated by low-rank matrices (see sec. 1.2). That is why the tree
representation of the domain comes into play. It permits a partitioning of the original
matrix such that the near and far-field can be separated. Matrix blocks in the near-field
contain singularities, hence, they effectively have full-rank and must be evaluated directly.
Blocks in the far-field possess low-rank approximations and can be evaluated efficiently.
Thinking of efficient matrix vector products, partitioned matrices admit the construction
of an efficient matrix-vector multiplication. Instead of one large dense matrix, we have a
matrix consisting of many smaller matrices, with the major part being low-rank.

We focus on two approaches, hereafter. The fast multipole method (FMM, see [50]) has
become the best known representative of fast summation schemes. It is used for the simu-
lation of many-particle interactions in computational physics, chemistry, engineering and
applied mathematics, see, e.g., [51, 31, 27, 78]. The FMM leads to O(N logN) and in
some cases to O(N) algorithms by exploiting the multilevel concept. Another prominent
representative are hierarchical matrices (H-matrices, see [55, 58]). They are mostly used
together with the adaptive cross approximation (ACA, see [9] and the brief introduction in
sec. 2.2). They lead to O(N logN) methods.

This chapter is organized as follows: First, we present construction principles which are
the same for all tree methods (see sec. 3.1). In the second half, we present two repre-
sentatives of the class of tree methods. We do not give a very formal description, for
that we refer to the referenced literature given above. We rather concentrate on pointing
out similarities and merits of either method. Both are kernel independent up to a certain
stage. H-matrices together with ACA (presented in sec. 3.2) are entirely kernel indepen-
dent, hence no special treatment is needed when using them for the Helmholtz kernel. The
FMM based on a Chebyshev interpolation scheme (presented in sec. 3.3) is slightly less
kernel independent.

3.1 Construction principles

The construction of all tree methods is based on the same concept: The separation of near-
and far-field. This objective can be split as:

1. The first task is to generate an optimal cluster tree representation of the domain. In
sec. 3.1.1, we present the uniform and the balanced cluster tree.

2. The second task is to define suitable admissibility criteria which allow us to identify
near- and far-field blocks. In sec. 3.1.2, we present such criteria for asymptotically
smooth and for oscillatory kernel functions.
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The evaluation of the near-field is trivial, all fast methods use direct evaluation. The effi-
cient approximation of the far-field is what differs. Approaches for that are based on Taylor
expansions [59, 93] or interpolation schemes [22, 45]. Other possibilities are special ap-
proximations like multipole expansions [50, 51] or their counterparts for the Helmholtz
kernel [37, 5]. We focus on the kernel independent approaches we presented in sec. 2.

3.1.1 Cluster tree

We already know that the entries of the original matrix K∈CM×N are computed as (K)i j =
K(xi,y j) for xi ∈ X and y j ∈ Y and the root clusters X and Y cover the entire domain
Ω ⊂ Rd . Consequently, the setup of a tree representation of the domain goes along with
the partitioning of these root clusters. In the following, we present two tree types and
use as example the root cluster X . The first one is based on an uniform subdivision of
the bounding box of X . The second one is based on a balanced bisection of X . Both
are hierarchical procedures, i.e., the subdivision is applied recursively to the previously
obtained partitions. In each case, the result is a cluster tree of the domain being associated
to the root cluster X .

In order to point out the differences of both presented types we use the set of particles, e.g.,
shown in fig. 3.2a.

Uniform cluster tree

In the general case, any axis parallel box which we associate to the root cluster X as

X = [a1,b1]×·· ·× [ad,bd],

with {[ai,bi] : i = 1, . . . ,d} being closed intervals and d denoting the spacial dimension can
be used as bounding box. Usually X is chosen to be the minimum bounding box containing
the domain Ω⊂ Rd .

However, here we choose a special type of bounding box for X : We define it as [ai,bi] =
[a,b] with

a = min{(xi)k}M
i=1 and b = max{(xi)k}N

i=1 for all k = 1, . . . ,d.

Hence, all edges have the same length b− a which corresponds to the maximum axis
parallel extension of the domain. The geometric center cX of X is not neccessarily un-
ambiguous. This is not a problem. We fix it such that X contains the entire domain as
shown in fig. 3.2a. For the sake of completeness we denote the root cluster X as X0

1 . The
subscript indicates the unique index of the cluster at a given tree level which is denoted by
the superscript. In this case it is about tree level 0.
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Figure 3.2: Uniform partitioning

Once, the root cluster X is found its uniform oct-tree is defined. There are d separation
planes along which a cluster is subdivided into 2d equal child clusters as shown in fig. 3.2b.
The separation planes are defined by their normal vectors {nk ∈Rd : (nk−cX ,ek) = 0}d

k=1
with the unit vectors {ek}d

k=1 defining the coordinate axis.

This procedure is recursively applied to all child clusters until the number of contained
particles deceeds a given minimum number. If we look at fig. 3.2c, which corresponds to
tree level 2, we notice that the clusters X2

3 , X2
4 , X2

9 and X2
10 do not exist. Indeed, they do

not contain any particle and can be neglected in the computations.
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Figure 3.3: Uniform cluster tree based on fig. 3.2

A partitioning of this type leads to quad-trees for particle distributions in R2 and to oct-
trees for particle distributions in R3. The tree from fig. 3.3 shows a quad-tree obtained
from the exemplary particle distribution in fig. 3.2. Notice the empty, hence, not existing
clusters at tree level 2.
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Balanced cluster tree

Contrary to the previously introduced uniform partitioning the balanced partitioning sub-
divides a cluster X in two child clusters. The algorithm we use is mainly adopted from [83]
and works as follows: The centroid ĉX of a cluster X given by a set of particles {xi}M

i=1 is
obtained by

ĉX =
1
M

M

∑
i=1

xi.

Note, the geometric center cX of the cluster and its centroid ĉX , as computed above, are
normally not identical. Our goal is to bisect the cluster X in two equally balanced child
clusters X1 and X2 (both should contain about M/2 particles). Such can be achived if the
principal direction w of the particle cloud is known, which ends up in the solution of the
following maximization problem

M

∑
i=1
|xi− ĉX ,w|2 = max

v∈Rd ,|v|=1

M

∑
i=1
|xi− ĉX ,v|2,

and w can be identified as the normalized eigenvector of the maximum eigenvalue of the
covariance matrix C ∈ Rd×d defined as

(C)k` =
M

∑
i=1

(xi− ĉX)k(xi− ĉX)` for k, `= 1, . . . ,d.

Once the centroid ĉX and the principal direction w of a particle cloud is computed the child
cluster affiliation is determinded by

(xi− x̂,w)

{
≥ 0 xi ∈ X1,

< 0 xi ∈ X2,
for i = 1, . . . ,M.

The hyperplane, given by {x ∈ Rd : (x− ĉX ,w) = 0} defines the separation plane. All
particles on the positive side belong to the first child cluster X1 and all other particles
belong to the second child cluster X2.

In fig. 3.4a, the separation plane of the particle cloud is given by its normal w. In fig. 3.4b
and fig. 3.4c, we show the separation at level 2 and 3 respectively. In fig. 3.4c, it can clearly
be observed that the clusters X3

1 , X3
2 and X3

5 , X3
6 are no more symmetric. This comes due

to the fact that we are looking for equally balanced child clusters and not for uniformly
looking ones.

Figure 3.5 shows the cluster tree obtained via the principal direction based bisection. Con-
trary to the uniform partitioning, we obtain equally balanced binary-trees. The recursive
bisection procedure ends once the number of contained particles in a cluster deceeds a
given minimum number.
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Figure 3.4: Balanced partitioning
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Figure 3.5: Balanced cluster tree based on fig. 3.4
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Comparing uniform and balanced cluster trees

There are two decisive differences. We illustrate them in the following and explain why
uniform trees are the better choice for interpolation based approximations and why bal-
anced trees is the way to go if ACA is used.

Balance Let us define the balance at a given level as the ratio between the cluster contain-
ing the fewest and the cluster containing the most particles. Hence, if this ratio approaches
1 the tree is perfectly balanced. In Tab. 3.1, we compare the balance of both appoaches. If

Level uniform tree balanced tree

1 0.683 0.984
2 0.192 0.928
3 - 0.920

Table 3.1: Comparison of cluster tree balance based on the figures 3.2 and 3.4

we look at fig. 3.2 or 3.3, we notice that certain clusters contain no particles, i.e., they are
empty and can be neglected in any computation. That is why we also neglected them in
the evaluation of the cluster tree balance of the uniform cluster tree in Tab. 3.1.

Uniformity The uniform subdivision leads to an entirely regular clusters grid. Each
cluster corresponds to an axis parallel box whose edges have the same length, which is
twice the the length of its child box edge. All clusters at a given level are identical up to
translations. Such cluster trees allow us to apply the efficient treatment of interpolants as
presented in sec. 2.3.3.

3.1.2 Admissibility criteria

Once, we have tree representations of the root clusters the further tasks are twofold: First,
we need to find submatrices of the original matrix and, second, we need to identify them
as being admissible or not. Therefore, we introduce the concept of cluster pairs:

Definition 5. If the entries of the matrix K ∈ CM×N are computed as

(K)i j = K(xi,y j) with xi ∈ X , y j ∈ Y,

then K is associated to the cluster pair X ×Y , with the clusters X ,Y ⊂ Rd containing the
particles {xi}M

i=1 and {y j}N
j=1, respectively.
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Now, we have the tool to approach the first goal, i.e., we can define submatrices of the
original matrix. Next, we need to identify admissible cluster pairs which are associated to
potential low-rank submatrices of the original matrix. Therefore, we introduce the concept
of admissibility criteria as a tool to a priori identify submatrices having low-rank represen-
tations:

Definition 6. If the cluster pair X×Y satisfies given admissibility criteria then it is admis-
sible and the associated matrix K has a low-rank representation Kr of rank r. The admis-
sibility of cluster pairs guarantees that the remainder ‖K−Kr‖F decays exponentially as r
increases.

Finally, with the admissibility criteria we have the last tool to separate near- and far-field.
All matrices which are associated to admissible cluster pairs are assigned to the far-field F
and all other matrices are assigned to the near field N . Recall, all matrices in N must be
evaluated directly and all matrices in F can be approximated efficiently. In the following,
we present such admissibility criteria for asymptotically smooth and oscillatory kernel
functions.

Asymptotically smooth kernels One admissibility criterion is needed for asymptoti-
cally smooth kernels: the well separation criterion which reads as

w≤ η |c|, (3.1)

where η > 0 is the well known admissiblity parameter for asymptotically smooth kernels
[21, 9, 12, 56]. The cluster size w=min{diam(X),diam(Y )} and distance |c| are computed
depending on the type of cluster tree we use (see sec. 3.1.1). If we use uniform cluster
trees, the diameter is simply the length of a box edge, it is identical for each cluster at
a given level in the cluster tree. The distance is computed as c = cX − cY . If we use
balanced cluster trees, we compute the diameters as diam(X) = 2 max{|ĉX − xi|}M

i=1 and
diam(Y ) = 2 max{|ĉY − y j|}N

j=1, and the distance as c = ĉX − ĉY .

Figure 3.6 shows admissible cluster pairs based on a uniform cluster tree: The cluster pairs
X×Y1, X×Y2 and X×Y3 are admissible. Touching clusters pairs are not admissible.

Oscillatory kernels Oscillatory kernels require two bounds, see (2.4): The minimum
separation criterion and the maximum cone aperture criterion. Remember, a cone is de-
fined by the unit vector u, k is the wave number. Both criteria read as

kw2 ≤ γ |c| and αc
u ≤

γ
kw

(3.2)

where the cluster size w and the distance c are computed as previously introduced. The
cone aperture is computed as αc

u = 2 |c/|c|− u|. The constant γ has been introduced in
(2.4).
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far-field

w

Figure 3.6: Admissibile cluster pairs for asymptotically smooth kernels

Figure 3.7 shows a uniform cluster grid. The dashed circle represents the minimum sep-
aration of O(kw2) around X . The vector u points from the center of X in the direction of
the cone of maximum aperture O(1/kw). All clusters in this cone satisfy both admissibily
criteria in (3.2) with respect to cluster X and direction u. Obviously, the clusters Y2 and Y3
do not satisfy the cone aperture criterion for the cone of direction u. They are admissible
to X for cones having other directions.

X

Y3

Y1

Y2

far-field

near-field

u

w

Figure 3.7: Admissible cluster pairs for oscillatory kernels

3.2 Hierarchical Matrices

A formal description of hierarchical matrices (H-matrices) was first given in [55]. Impor-
tant textbooks are [56] and [12]. Here, we present a rather intuitive view on H-matrices.
Our goal is to point out the simplicity of using them and not to thoroughly and gaplessly
describe them. Hence, our notation will be simplified for the sake of clarity and, hopefully,
the context does not allow any misunderstandings.

At the beginning of this chapter we claimed that fast methods share the same idea, which
is the separation of near- and far-field. So do H-matrices. First, we explain which strate-
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gies we deploy to approximate the far-field. Then, based thereon, we explain how the
partitioning of the original matrix takes place.

3.2.1 Construction principles

Fundamental for the construction of H-matrices are the cluster tree type and the admissi-
bility criteria. Once they are determined, the near-field can be separated from the far-field
which, eventually, can be approximated. Even though, the construction follows this order,
we first determine the approximation method. Based thereon, we specify the cluster tree
type and the admissibility criteria and construct theH-matrix.

Adaptive cross approximation We deploy ACA to approximate the far-field. In order
to exploit its merits we make use of balanced cluster trees (see sec. 3.1.1) and the admissi-
bility criterion for asymtotically smooth kernel functions (see sec. 3.1.2). In the following,
we motivate our choice and support it by means of the examples 5 and 6.

Balanced cluster trees Equally balanced cluster trees imply that the ratio of the smallest
and the largest cluster at a given level approaches 1 (see tab. 3.1). Hence, balanced cluster
trees have smaller depths than uniform cluster trees. This, obviously, leads to fewer and
larger submatrices in the far-field. Since the efficiency of ACA increases with the size of
the matrix and it does not require any uniformity, balanced cluster trees are the way to go
when using ACA.

Admissibility criteria for asymptotically smooth kernels The ACA algorithm can be
augmented [12] such that every computed approximant converges to the prescribed ac-
curacy. Let us explain this with other words. If a matrix has full-rank the approximant
computed with ACA has full-rank, too. No matter whether we treat smooth or oscillatory
kernels or even kernels featuring singularities, ACA computes the almost optimal approx-
imant (see sec. 2.2). Nevertheless, we use the admissibility criterion from (3.1) to exclude
true full-rank blocks from the far-field, in order not to uselessly try to approximate them.

3.2.2 Separation of near- and far-field

The block-cluster-tree is the commonly used concept to describe the structure ofH-matrices.
It stores information about near-field and far-field in a hierarchical manner. We could also
use the term tree of cluster-pairs X×Y with the cluster-trees X and Y .
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To make the idea clearer we present in Algorithm 1 the setup of an H-matrix. It takes
as argument a cluster-pair X ×Y and checks whether it is admissible or not. If it is, the
associated matrix is added to the far-field. Otherwise, the admissibility of all child cluster-
pairs Xchild×Ychild is checked recursively, unless X and Y are already leafs.

Initially, we pass the root cluster-pair X0×Y 0 to the algorithm which, normally, does not
satisfy admissibility. This is, when the hierarchical construction of the block-cluster-tree
starts. The union of all admissible cluster-pairs forms the far-field and the union of all
non-admissible cluster-pairs forms the near-field.

Algorithm 1 Construction of block-cluster-tree from cluster a cluster-pair X×Y
1: procedure BLOCK CLUSTER TREE(X×Y )
2: if clusters X and Y are admissible then
3: add cluster-pair X×Y to far-field
4: else if X and Y are leaf clusters then
5: add cluster-pair X×Y to near-field
6: else
7: for all Xchild ⊂ X and Ychild ⊂ Y do
8: BLOCK CLUSTER TREE(Xchild×Ychild)
9: end for

10: end if
11: end procedure

A formal and complete description of the setup of block-cluster-trees can be found in
[55, 58, 56].

Different block-cluster-trees Recall, we have chosen balanced cluster-trees here. The
following example shows that other types of cluster-trees lead to differently looking block-
cluster-trees.

Example 5. We use Algorithm 1 and let the root clusters X0 = Y 0 be identical. Then,
we compare the resulting block-cluster-trees for a uniform and a balanced cluster-tree in
fig. 3.8. As minimum separation criterion, we require that admissible clusters are not
allowed to touch themselves. Anytime a cluster-pair does not satisfy this criterion its child
cluster-pairs are checked recursively for admissibility until the criterion is fulfilled or the
leaf-level of the cluster-trees is reached.

• We use the uniform cluster-tree from fig. 3.3. Apparently, no admissible cluster-pairs
exist a level 0 and 1, only at level 2 such pairs can be found: For example cluster
X2

13 is admissible to the clusters Y 2
1 , Y 2

2 , Y 2
5 , Y 2

6 and Y 2
11. It is not admissible to the

clusters Y 2
7 , Y 2

8 , Y 2
12, Y 2

13, Y 2
14 and Y 2

16, because they touch themselves. The resulting
block-cluster-tree is displayed in fig. 3.8a.
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• We use the balanced cluster-tree from fig. 3.5. No admissible cluster pairs exist at
level 1. There exist some at level 2, e.g., cluster X2

1 is admissible to the clusters Y 2
3

and Y 2
4 but it is not admissible to the cluster Y 2

2 . For each not admissible cluster-pair
its child cluster-pairs are checked recursively. We end up with the block-cluster-tree
in fig. 3.8b.

(a) Uniform cluster-trees

X2
4 ×Y 2

1

X2
3 ×Y 2

1 X2
3 ×Y 2

2

X2
2 ×Y 2

3

X2
1 ×Y 2

3 X2
1 ×Y 2

4

(b) Balanced cluster-trees

Figure 3.8: Block-cluster-trees for different types of cluster-trees

Let us compare the block-cluster-trees from fig. 3.8. The ratio of far- and near-field is
nearly the same. However, the right block-cluster-tree, which is based on the balanced
cluster-tree, contains fewer, but larger blocks compared to the left one. Considering the
efficiency of the far-field approximation this fact is not irrelevant. If we assume that each
far-field block has a low-rank representation of approximately the same rank, a balanced
cluster-tree leads to a more efficientH-matrix structure in terms of computational cost and
memory requirement.

Remark. The matrix partitions shown in fig. 3.8 cannot be seen as a general conclusion to
any problem geometry and size. It should give an idea about the stucture of an H-matrix
depending on the cluster-tree type.

Influence of the wavenumber Since we use the admissiblity criterion from (3.1), the
structure of the resulting H-matrix does not depend on the wavenumber k. In this sense,
the admissibility criteria for oscillatory kernels from (3.2), which dependends on k, are not
satisfied. This comes along with an increasing near-field and an increasing low-rank of
far-field blocks as k increases. We explain the behavior in the following.

Example 6. We randomly distribute points on the surface of a prolate spheroid of extension
d in x1 direction and d/10 in x2 and x3 direction. We choose d = 16 and get 7667 points
being associated to the root clusters X and Y . Then, we setup balanced cluster-trees and the
H-matrix structure based on the admissibility criterion from (3.1). At last, we evaluate all
blocks based on the oscillatory kernel (2.1) for the wavenumbers k = 1,10,100. Far-field
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blocks are approximated using ACA of accuracy εACA = 10−4. The resulting H-matrices
are displayed in fig. 3.9.
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Figure 3.9: SameH-matrix structure but different wavenumber k

Since the structure of the H-matrix does not depend on the wave number, we expect the
near- and far-field to be identical in all cases shown in fig. 3.9. However, this is no longer
the case. High wave numbers imply highly oscillatory kernels which require larger ranks
to satisfy prescribed accuracies. We know that ACA is able to handle this. However, a low-
rank representation of the form UV∗ is only more efficient then a full-rank representation
K ∈ CM×N as long as the condition r (M+N)< MN holds (see sec. 2). This is the reason
why the near-field increases with increasing wave numbers (think of the near-field as the
union of full-rank blocks).

3.2.3 Applications

The wholeH-matrix concept is not restricted to fast matrix-vector products only. Actually,
the only difference between H-matrices and ordinary matrices is the hierarchical block
partitioning. Each block stores its entries, either in full- or low-rank representation. In this
sense, H-matrices can be seen as ordinary matrices. All matrix operations, such as the
computation of matrix norms, matrix-vector and matrix-matrix multiplication, addition
and subtraction of matrices, matrix inversion, LU and QR decompositions, and so on, can
be performed efficiently, and are based on a prescribed accuracy. For the derivation and
complexity analysis af the entire suite ofH-matrix arithmetics we refer to [55, 58, 56, 12].
For example, a preconditioning strategy is presented in [10]. The idea is that hierarchical
inversion or LU decomposition of rather low accuracy leads to effcient preconditioners.
Parallelization strategies forH-matrix arithmetics are presented in [14].
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3.3 Directional Fast Multipole Method

The fast multipole method (FMM), invented by Greengard and Rokhlin [50], was one of
the first algorithm which allowed to overcome one of the biggest headaches of N-body
problems as claimed in [33]: “The fact that accurate calculation of the motions of N par-
ticles interacting via gravitational or electrostatic forces would seem to require O(N2) op-
erations. The fast multipole algorithm get by with O(N) operations.” We refer the reader
who is unfamiliar with the FMM to the introductory tutorial given in [66].

Our approach is based on the ideas published in [42, 88]. We extended their scheme to
oscillatory kernels by exploiting the idea presented in [40]. Many concepts we present in
this section have already been published in [76], we will elaborate them in more detail here.
We follow the same structure as in the previous section. First, we present the construction
principles and motivate them. Then, we derive the directional fast multipole method for
oscillatory kernels.

3.3.1 Construction principles

Fundamental for any FMM are the specification of cluster-tree type and admissibility cri-
teria, then, the method can be constructed. The choice of these principles depends on the
approximation scheme we utilize for the far-field.

Chebyshev interpolation For the approximation of far-field blocks we adopt the Cheby-
shev interpolation scheme as presented in sec. 2.3. In order to exploit the merits of this
scheme we use uniform cluster-trees we elaborated in sec. 3.1.1. All approaches which
base on a separable kernel approximation require tight admissibility criteria in order to
guarantee prescribed accuracies. So does the Chebyshev interpolation: We have to judi-
ciously choose between the admissibility criteria from (3.1) and from (3.2). In the follow-
ing we illustrate how we do that.

Uniform cluster trees Whenever we use an interpolation based approximation, uniform
cluster-trees are the more beneficial choice. Let us explain three decisive advantages.

1. We construct the interpolation nodes x̄ and ȳ in each cluster via a tensor product rule
as presented in (2.10). If we use uniform cluster-trees the interpolation nodes of all
clusters at a given tree level remain identical up to translations.

2. The matrix K̄ in (2.18) results from evaluations of a translation invariant kernel K(x̄−
ȳ) at interpolation nodes {x̄} ⊂ X and {ȳ} ⊂ Y . It stays constant whenever the
translation vector c = cX − cY is the same. Hence, on a uniform cluster grid, the
number of different matrices K̄ depends only on the maximal possible number of
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different translation vectors. This number can be bounded by the cluster size w and
the wave number k. On a not uniform grid the number of kernel evaluations would
grow with the size of the problem.

3. This point follows from the previous one. The recompression of K̄, as presented in
sec. 2.3.3, can only be used on uniform cluster grids. The reason becomes clear in
fig. 2.8. K̄t is only identical for both cluster pairs X×Yt and Xt×Y , if they live on a
regular grid.

Single-level scheme

Given is a uniform cluster tree of the interval [a,b] ∈ R having 4 levels (in a single-level
scheme only the leaf level is considered). The objective is the construction of a fast single-
level summation scheme for the sum in (3.3). Considering a single-level scheme, the
leaf-level consists of 16 clusters which are associated to {XI}16

I=1 and {YJ}16
J=1. Let us

evaluate the sum for an arbitrary XI with I ∈ [1,16]. In our example we chose I = 7 as
shown in fig. 3.10. First, we identify all cluster {YJF} which are well separated, hence,

Level 4
F F F F F F F F F F F F FNN

X7a b

Figure 3.10: Fast single-level summation in the interval [a,b]

admissible to XI . In fig. 3.10 the far-field is denoted by F and the near-field by N. The
clusters {YJN : JN ∈ [I− 1, I + 1]} are neighbors, all others are admissible to XI . In the
FMM notation non admissible clusters form the neighbor list and all admissible clusters
form the interaction list. The union of all interaction lists forms the far-field and the union
of all neighbor lists the near-field.

Using a single-level summation scheme the contribution from non-admissible clusters
{YJN} is computed directly

f N
i = ∑

j∈JN

K(xi,y j)w j

and from admissible clusters {YJF} approximately by interpolating the kernel function

f F
i ∼ ∑

m∈α
S`(x̄m,xi) ∑

n∈α
K(x̄m, ȳn) ∑

j∈JF

S`(ȳn,y j)w j

with the multi-index |α| ≤ (`+ 1)d . The above equation can be computed efficiently by
splitting it up in the following three steps

1. Moment to moment operator (M2M): Equivalent source values are computed at the
interpolation points ȳn ∈ YJF by Wn = ∑ j∈JF S(ȳn,y j)w j.
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2. Moment to local operator (M2L): Field values are computed at the interpolation
points x̄m ∈ XI by FM = ∑n∈α K(x̄m, ȳn)Wn.

3. Local to local operator (L2L): Field values are computed at final points xi ∈ XI by
f F
i ∼ ∑m∈α S(x̄m,xi)Fm.

Finally, near-field and far-field contributions are summed up as fi ∼ f N
i + f F

i .

Multilevel scheme

Conversely to single-level schemes, far-field contributions are gathered at multiple levels,
when using multilevel schemes. Let us explain this. Given is a uniform cluster tree of the
interval [a,b] as shown in fig. 3.11. The near-field of X7 is the same for both, single- and

Level 4
F N

X7

N F F

a b

Level 3
F F N N F

Level 2
N N F

Level 1

Level 0

M
2M

L
2L

Figure 3.11: Fast multilevel summation in the interval [a,b]

multilevel schemes. However, the far-field is evaluated differently. Let us start with setup
of the cluster relations starting from the root level. In level 0 and 1 exist no admissible
cluster-pairs. Well separated cluster-pairs exist from level 2 on. The difference to single-
level schemes comes now: If we step down to level 3 we do only look for admissible
clusters pairs in the near-field of the level 2. We repeat this all the way down to the leaf
level.

There is no difference to H-matrices, yet. The near-field and the setup of the far-field is
identical. The evaluation of the far-field is different in multilevel schemes. We consider
fig. 3.11 in the following explanation. First, starting from the leaf level, M2M operators
evaluate equivalent sources W at higher levels. Second, M2L operators gather their contri-
bution at all levels. Third, starting from the highest level having admissible clusters, L2L
compute field values F at the next lower levels. Moreover, in each level the contribution of
admissible clusters is added. At the end the near-field contributions are evaluated directly.
The multilevel scheme is elaborated in more detail in sec. 3.3.5.
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Matrix structure Let us compare the structure of anH-matrix and a multilevel scheme.
Based on the model domain [a,b] used above we schetch the resulting structures in fig. 3.12.
Figure 3.12a stems from theH-matrix and fig. 3.12b from the multilevel approach. We as-
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4 ×Y 2
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X2
3 ×Y 2

1

X2
4 ×Y 2

2

X2
1 ×Y 2

3 X2
1 ×Y 2

4

X2
2 ×Y 2

4

(a)H-matrix (ACA)

X2
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1

X2
3 ×Y 2

1

X2
4 ×Y 2

2

X2
1 ×Y 2

3 X2
1 ×Y 2

4

X2
2 ×Y 2

4

L2L

M
2M

(b) Multilevel scheme (Chebyshev interpolation)

Figure 3.12: Comparison of matrix structures

sume that N points are distributed equidistantly in [a,b]. Both matrix structures in fig. 3.12
store the same near-field, i.e., 23/128N2 entries. Only the far-field structure differs: Let us
adopt the matrix notations for far-field block as introduced in sec. 2: for ACA we use the
UV∗ and for the Chebyshev interpolation the SX K̄S∗Y representation. Moreover, we assume
a constant rank r approximation in both cases. The far-field of the H-matrix approach
uses in total 12.75Nr entries. The far-field of the multilevel approach is syntesized along
multiple levels, as depicted in fig. 3.11. The M2L operators K̄, denoted by little dark-gray
squares in fig. 3.12b, use 66r2 entries. The M2M and L2L operators, which correspond
to SY and SX , respectively, use Nr+24r2 entries each. This sums up to Nr+90r2 entries
compared to 12.75Nr required for theH-matrix.

In a formal complexity analysis the cost of H-matrices approaches grows like O(N logN)
and the cost or multilevel schemes grows only like O(N). Representatives are fast multi-
pole methods and their algebraic counterpartsH2-matrices [57, 19].
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3.3.2 Directional summation scheme

Two frequency regimes are of interest when dealing with oscillatory kernels as we intro-
duced in Definition 4. We need to choose the correct admissiblity criteria for each regime
in order to guarantee a prescribed approximation accuracy. The separation of near- and far-
field follows the idea of the hierarchical partitioning used forH-matrices: If a cluster-pair
is admissible it is added to the far-field, else the admissibility of their child cluster-pairs
is checked. The recursive procedure stops at the leaf-level of the cluster-trees. The data
organisation, however, is somewhat different when constructing multilevel schemes.

Consider the matrix vector product f =Kw with K∈CN×N written as a direct summation

fi =
N

∑
j=1

K(xi,y j)w j for i = 1, . . . ,M (3.3)

with all xi ∈ X and all y j ∈ Y . The objective is to construct a fast summation scheme
where the kernel functions K(x,y) are oscillatory. The scheme relies fundamentally on
the concept of interpolation. However, the actual calculation involves two different but
similar looking operators: the anterpolation and interpolation operators. In the following,
we present the tripartite scheme for the low and the high frequency regime.

Low frequency regime A cluster-pair X×Y in the low frequency regime is admissible if
it satisfies the well separation criterion from (3.1). In that case we can interpolate
the kernel as

K(x,y)∼ ∑
m∈α

S`(x, x̄m) ∑
n∈α

K(x̄m, ȳn) S`(y, ȳn),

and insert it in (3.3) and obtain

fi ∼ ∑
m∈α

S`(x, x̄m) ∑
n∈α

K(x̄m, ȳn)
N

∑
j=1

S`(y, ȳn)w j for i = 1, . . . ,N.

We can efficiently compute the above summation by splitting up this equation in
three tasks:

1. M2M: Compute equivalent sources at interpolation points ȳn by anterpolation

Wn =
N

∑
j=1

S`(y, ȳn)w j for n ∈ α.

2. M2L: Compute field values at interpolation points x̄M with the kernel function

Fm = ∑
n∈α

K(x̄m, ȳn)Wn for m ∈ α.
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3. L2L: Compute field values at final points xi by interpolation

fi ∼ ∑
m∈α

S`(x, x̄m)Fm for i = 1, . . . ,M.

High frequency regime A cluster-pair X ×Y in the high frequency regime is admissi-
ble if the minimum separation criterion and the maximum cone aperture criterion
from (3.2) are satisfied. By using the directional low-rank property of Ku(x,y) =
eık(|x−y|−u·(x−y)) we can then interpolate the oscillatory kernel K(x,y) as

K(x,y)∼ eık u·x
∑

m∈α
S`(x, x̄m)e−ık u·x̄m ∑

n∈α
K(x̄m, ȳn)eık u·ȳn S`(y, ȳn)e−ık u·y. (3.4)

We insert it in (3.3) and obtain

fi ∼ eık u·xi ∑
m∈α

S`(xi, x̄m)e−ık u·x̄m ∑
n∈α

K(x̄m, ȳn)eık u·ȳn
N

∑
j=1

S`(ȳn,y j)e−ık u·y j w j

for i = 1, . . . ,M and for j = 1, . . . ,N. We can efficiently compute the summation by
splitting the above equation in three tasks:

1. Directional M2M: Compute equivalent sources at interpolation points ȳn by
anterpolation

W u
n = eık u·ȳn

N

∑
j=1

S`(ȳn,y j)e−ık u·y j w j for n ∈ α. (3.5)

2. M2L: Compute field values at interpolation points x̄m with the kernel function

Fu
m = ∑

n∈α
K(x̄m, ȳn)W u

n for m ∈ α.

3. Directional L2L: Compute field values at final points xi by interpolation

fi ∼ eık u·xi ∑
m∈α

S`(xi, x̄m)e−ık u·x̄m Fu
m for i = 1 . . . ,M.

Here, α is the multi-index of the interpolation points {x̄m}m∈α and {ȳn}n∈α in the clusters
X and Y , respectively. If ` denotes the interpolation order, then |α| ≤ L = (`+1)d in Rd .
The steps 1 and 3 in both regimes require O(LN) and O(LM) operations, respectively.
Step 2 requires O(L2) operations. Hence for L� N and M, this summation algorithm
scales like O((M+N)L) in contrast to O(MN) of a direct evaluation.

Even though, the M2M and L2L operators differ (they are transpose of each other), both
are derived from the interpolation scheme presented in sec. 2.3. Thus, for the error analysis
of these translation operators only errors introduced by the interpolation algorithm need to
be studied. Regarding this, the anterpolation (M2M) and interpolation steps (L2L) behave
identically. Let us introduce the directional partitioning of the far-field and, then, study the
directional translation operators.
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3.3.3 Directional far-field partitioning

Due to the directionality of (3.4) we need to partition the far-field in the high frequency
regime into a set of cones given by the unit vectors {uc}Cc=1, where C denotes the number
of cones. Every cone has an aperture of O(1/kw). The partitioning in R2 is trivial. Let us
focus on the partitioning in R3. We follow the approach presented in [40].

Initialization To ease the understanding of the procedure we introduce an indexing of the
tree levels in the high frequency regime. We start with the first level in the high frequency
regime. We give it the index h= 0 and partition the entire far-field of all its clusters X ⊂R3

in six root cones. We define them by u1 = (1,0,0)>, u2 = (0,1,0)>, u3 = (0,0,1)>,
u4 = (−1,0,0)>, u5 = (0,−1,0)> and u6 = (0,0,−1)>.

For example the first root cone which is defined by u1 and displayed in fig. 3.13 contains
all points whose x1 coordinate is positive and greater than the absolute values of the x2 and
x3 coordinates. Let us define the opening angles

x1

x2

u1

u2
u4

u5

|α3| ≤ π
4

Figure 3.13: Root cone given by u1 = (1,0,0)> at level h = 0

α2(x) = arctan(x3/x1) α3(x) = arctan(x2/x1) (3.6)

for the root cone u1. Then, a point x = (x1,x2,x3)
> is in that cone if |α2(x)| ≤ π/4 and

|α3(x)| ≤ π/4 is true. Thus, the maximum opening angle at level h = 0 is π/2, as indicated
in fig. 3.13. The angles α2 and α3 denote a wedge each. Their intersection defines the root
cone of direction u1. The index denotes the axis defining the edge of the wedge. The
opening angles for the remaining root cones are defined analogously.

Nested cone construction Once, the six root cones at level h = 0 are constructed, we
pass over to the nested cone construction at all levels h > 0 having a non-empty far-field.
Recall, we are in the high frequency regime. Because of the uniform cluster-tree the cluster
size wh = 2wh−1 doubles as we go from one level to the next higher one. This leads to the
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formulation wh = 2hw0. Correspondingly, the opening angle of the cones must be halved
such that the criterion O(1/kw) is satisfied. And at the level h each of the six root cones
is subdivided in (2h)2 smaller cones, each of opening angle π/(21+h). This is presented in
fig. 3.14. Let us reuse the opening angles defined in (3.6). Then, a point x lies in the i j-th

x3

x2

u2

u3

u5

u6

(a) h = 0: one initial cone

x3

x2

u1
11u1

21

u1
12u1
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(b) h = 1: four sub-cones
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(c) h = 2: 16 sub-cones

Figure 3.14: The nested cones given by uh
i j are exemplarily sketched for the root cone u1

displayed in (a). Think of the outer boxes as the basis of this root cone. At
level h we have (2h)2 sub-cones.
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is satisfied. Recall, the indices of the sub-cones are given by i, j = 1, . . . ,2h. In total,
at level h the far field is subdivided in 6 · 22h sub-cones. The remaining root cones are
partitioned analogously.

The nested cone nature is advantageous because smaller cones at higher tree levels are
entirely contained by larger cones at lower levels. This eases the construction of the di-
rectional translation operators as we will see in sec. 3.3.4. However, the cones are not
isometric anymore, i.e., they cannot be obtained by applying rotations to an existing cone.
In [40], some symmetries are presented which can be exploited – an approach to speed up
the computation of the M2L operators.

3.3.4 Directional translation operators

In usual fast multipole methods the far-field constists of one interaction list. The new thing
of the directional scheme is the fact that the far-field is partitioned in cones. As a conse-
quence, we obtain as many interaction lists as we have cones. The efficient interpolation
scheme presented in sec. 2.3.3 can be applied to each interaction list individually.
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The arising M2M and L2L operators are considered translation operators between differ-
ent tree levels. In our specific case they coincide with anterpolations and interpolations,
respectively. The construction of these operators in the low frequency regime is straightfor-
ward. In the following, we look at their construction in the high frequency regime. Recall,
the nested cone generation from the previous section. Smaller cones at higher tree levels
are strictly contained by larger cones at lower three levels. We discuss the construction
based on a two level process, in a step by step fashion. We will omit the extension of the
proof to an arbitrary number of levels. Let us assume, we have computed the directional
expansion with coefficients W u

n for direction u at level h+1 (see (3.5)) as

W u
n = eık u·ȳn

N

∑
j=1

S`(ȳn,y j)e−ık u·y j w j.

We want to calculate the contribution of W u
n to the multipole coefficients W u′

m of the parent
cluster at level h. Recall, the high frequency interpolation formula of the kernel (see (3.4))
reads as:

K(x,y j)∼ ∑
n∈α

K(x, ȳn)eık u·ȳn S`(ȳn,y j)e−ık u·y j .

This formula is accurate as long as Ku(x,yi) can be interpolated at y j from data at ȳn.

To obtain the M2M operator, we simply need to consider how K(x, ȳn) can be interpo-
lated using the interpolation points of the parent cluster, denoted ¯̄yt . However, such an
interpolation operator requires using direction u′ to maintain the accuracy of the scheme.
Indeed, as we have shown in sec. 2.3, the interpolation scheme is accurate in a cluster of
size w as long as we consider points x and y such that x− y lies in the cone of axis u′. The
interpolation formula reads then as

K(x, ȳn)∼ ∑
t∈α

K(x, ¯̄yt)eık u′· ¯̄yt S′`( ¯̄yt , ȳn)e−ık u′·ȳn,

where S′`( ¯̄y, ȳ) is the interpolation polynomial for the parent cluster. We assume that the
interpolation order ` is the same, although in practice ` might vary slightly between levels.
However, those variations are typically small. Importantly there is an upper bound on `,
for a given error tolerance ε , which is independent of the cluster size.

In summary, the evaluation of K(x,y j) is done in two stages. First, we interpolate from ȳn
to y j by means of (3.5). A key element of the proof is the fact that this interpolation step is
accurate even when the points xi and y j interact at level h because the cone u′ for the parent
cluster is strictly contained inside the cone u at level h+1 for the child cluster. Secondly,
we interpolate from ¯̄yt to ȳn. This leads to the M2M operator

W u′
t = eık u′· ¯̄yt ∑

n∈α
S′`( ¯̄yt , ȳn)e−ık u′·ȳn W u

n .
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A similar derivation shows that the L2L operator is given by

Fu
m = eık u′·x̄m ∑

s∈α
S′`( ¯̄xs, x̄m)e−ık u′· ¯̄xs Fu′

s ,

it is the transpose and complex conjugate counterpart of M2M.

3.3.5 Directional multilevel algorithm

By now, we have all tools to construct the directional multilevel algorithm. We have pre-
sented fast summation schemes for oscillatory kernels in the low and in the high frequency
regime. Then, we have introduced a nested construction of directional cones and, based
thereon, we have derived directional translation operators. Now, we pass over to the pre-
sentation of the multilevel algorithm. In fig. 3.15, we present a sketch of it.

source values w

non directional W

directional W u

directional W u′

field values f

non directional F

directional Fu

directional Fu′

high frequency regime

low frequency regimeM
2M

L
2L

M2L

Figure 3.15: Plot of the directional fast multilevel scheme

Starting with the upward pass we first apply the M2M operators. In the low frequency
regime, we compute non directional equivalent sources W from the sources at the leaf level.
In the high frequency regime, we compute directional equivalent sources W u. Then comes
the traverse pass, we apply the M2L operators. The influence from the equivalent sources
is added to the field values at the respective levels. In the third place comes the downward
pass, we apply the L2L operators. And finally, after adding the near field contributions, we
obtain the sought after field values f .
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Algorithm Here, we present in a step-by-step manner how to apply the directional and
multilevel scheme. For the sake of readability we omit the indices indicating cone and
cluster-pair. This leads to a less complete but clearer notation.

1. Construct the cluster-tree such that all but the bottom most level are in the high
frequency regime (This is not a must, we use it for the explanation of the procedure
only).

2. The upward-pass starts at the leaf level and ends when no more long-range cluster
interactions are possible, i.e., the minimal separation O(kw2) becomes larger than
the computational domain. The upward pass consists of M2M operations (anterpo-
lation):

• Perform the non directional anterpolation at the leaf level (low frequency
regime): Anterpolate non directional equivalent sources Wn at interpolation
points ȳn from sources w j at initial points y j

Wn =
N

∑
j=1

S`(ȳn,y j)w j for n ∈ α.

This step is repeated going up the tree until we reach a cluster for which the
low-frequency approximation breaks down.

• Starting from the first level in high frequency regime, perform the directional
anterpolation for all directions {uc : c = 1, . . . ,C}: Anterpolate directional
equivalent sources W u

t at interpolation points ¯̄yt from sources W u
n at points ȳn

of all 2d child clusters

W u′
t = eık u′· ¯̄yt

2dL

∑
n=1

S`( ¯̄yt , ȳn)e−ık u′·ȳn W u
n for t ∈ α.

At the first level in the high frequency regime, we choose W u
n = Wn, the non-

directional multipole coefficients.

3. The transverse-pass consists of all M2L operations. The aim is to calculate the
partial local expansions F̄u

m for all clusters at all levels:

F̄u
m = ∑

n∈α
K(x̄m, ȳn)W u

n for m ∈ α.

For low-frequency clusters, use Wn and F̄m.

4. The downward-pass starts at the level the upward pass has ended, and ends at the leaf
level. It consists of L2L operations (interpolation). At the top of the tree Fu

m = F̄u
m.
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• For high frequency clusters, perform the directional interpolation for all direc-
tions {u′c : c = 1, . . . ,C′}: Interpolate directional field values Fu

m at interpolation
points x̄m of all 2d child clusters from directional field values Fu′

s at interpola-
tion points ¯̄xs

Fu
m = F̄u

m + eık u′·x̄m ∑
s∈α

S`( ¯̄xs, x̄m)e−ık u′· ¯̄xs Fu′
s for m = 1, . . . ,2dL.

Keep stepping down in the tree until the last tree level in the high frequency
regime is reached.

• For low-frequency clusters, perform the non directional interpolation: Interpo-
late field values Fm at x̄m from non directional field values F ′s at interpolation
points ¯̄xs

Fm = F̄m + ∑
l∈α

S`( ¯̄xs, x̄m)F ′s for m = 1, . . . ,2dL.

5. Evaluate the near-field contribution f N and add it to the interpolated far field contri-
bution:

fi ∼ ∑
m∈α

S`(x̄m,xi)Fm + f N
i .

Remark. In each multilevel method the M2L operations add the largest contribution to the
computational cost. The reason is that they have to be performed many times for each
cluster, whereas the M2M and L2L operations have to be performed only once per cluster.
As such, the optimization of this operation is important. In sec. 2.3.3 we presented an
approach for that.

3.3.6 Complexity

We present a general estimate of the computational complexity of the presented direc-
tional multilevel scheme. We do not examine the case where N→ ∞. The distribution of
the points is allowed to become inhomogeneous, in the sense that the ratio of the largest
point density over the smallest point density goes to ∞ (e.g., the points accumulate at a
location).

We make our problem non-dimensional by considering a wavenumber k equal to 1. The
diameter of the entire domain Ω⊂Rd is then W (now effectively measured in wavelength).
We assume that the problem is discretized such that the number of points per wavelength
is approximately constant (this avoids the issue of accumulation mentioned above).

We will consider three cases, the same conclusion being reached in all cases. 1) The points
are distributed more or less uniformly in Ω. 2) The points are distributed on a manifold of
dimension d−1 in Ω, e.g., on a surface in R3. 3) The points are distributed on a manifold
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of dimension d−2, e.g., on a curve in R3. In all cases, the method scales like O(N logN).
We give a more detailed proof of case 1) and outline case 2) and 3).

We will omit the analysis of the low-frequency regime since it follows the usual FMM
complexity analysis and leads to an O(N) computational cost. With our assumption, the
number of levels in the cluster tree is of order O(logW ).

Let us scatter points randomly in Ω ⊂ Rd . We then have N = O(W d). If w denotes the
cluster diameter, the number of clusters per level is O(W d/wd).

M2M and L2L operations In the high frequency regime there are O(wd−1) cone direc-
tions per tree level and both, the M2M and L2L operation involve O(1) operations. If we
write the cluster diameter w =W/2h in terms of the wave number and let h denote the tree
level, the complexity sums up to

O
( logW

∑
h=0

(W/2h)d−1 2hd
)
=O

(
W d−1

logW

∑
h=0

2h
)
=O(W d).

The complexity is of order O(W d) =O(N).

M2L operation This is the important step in the analysis. In the high frequency regime,
the far field is bounded by the minimal distance of O(w2) and the maximal distance
of O(4w2). Per cone, this represents O(w) clusters. Since there are O(wd−1) cones,
the total number of interactions per cluster in all directions is O(wd). Each interacting
cluster involves a constant number of operations, thus, we end up with a complexity of
O((W/w)d wd) = O(W d) = O(N) per level. We assume the number of levels grows like
O(logN), hence, we conclude that the total complexity is O(N logN).

We never reach w = O(W ), the size of the domain Ω, in this method. Instead with the
directional admissibility condition, at the highest level in the tree where interactions are
still being computed, we have w=O(

√
W ). The dimensions do not seem to match because

we made our problem dimensionless by choosing k = 1. With dimensions, we would have
w = O(

√
W/k). This means that the largest clusters in this method become smaller as k

increases. In dimensionless units, the size of the largest clusters increase like
√

W , and
therefore becomes small compared to the domain size W . This is in contrast with most
FMMs in which the size of the largest clusters is of the same order as the domain diameter.
The difference is that in our approach we maintain a low-rank representation (which leads
to an increased number of clusters in the interaction list) whereas in the traditional FMM,
e.g., [35, 36], the rank grows like the size of the cluster (but the size of the interaction list
is bounded).

Now, we outline the proof for case 2), where the points lie on a manifold of dimension
d−1 in Ω. The number of clusters in the interaction list per cone varies depending on the



3.3 Directional Fast Multipole Method 61

direction and possibly many directions havie no interactions. However, for all cones the
total number of interactions isO(w2(w2)d−2/wd−1)=O(wd−1). The complexity at a given
level is O((W/w)d−1wd−1) = O(W d−1) = O(N). The total complexity is O(N logN) as
before.

For case 3), where the points lie along a curve in R3, in the M2L operation, the size of
the interaction list isO

(
w2(w2)d−3/wd−2)=O(wd−2). The complexity at a given level is

O((W/w)d−2wd−2) =O(W d−2) =O(N). The total complexity is O(N logN).

3.3.7 Numerical examples

We consider particles distributed on a) a surface and b) in a volume in R3. We construct
the particle distributions and the underlying geometries with the meshing tool Gmsh [44].
In the following, we analyze three different example geometries shown in fig. 3.16. For
completeness, we provide the short Gmsh scripts used to generate these geometries.

1. Sphere of diameter k as shown in fig. 3.16a.

lc = 0.1; k = 128;
Point(1) = {0,0,0,lc}; Point(2) = {0,0,-k/2,lc};
Point(3) = {k/2,0,0,lc}; Point(4) = {0,0,k/2,lc};
Circle(1) = {2,1,3}; Circle(2) = {3,1,4};
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{1,2};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{3,6};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{9,12};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{15,18};}}

2. Oblate spheroid of diameter k in two directions and k/10 in the third direction as
shown in fig. 3.16b.

lc = 0.1; k = 128;
Point(1) = {0,0,0,lc}; Point(2) = {0,0,-k/2,lc};
Point(3) = {k/20,0,0,lc}; Point(4) = {0,0,k/2,lc};
Point(5) = {-k/20, 0,0,lc};
Ellipse(1) = {2,1,4,3}; Ellipse(2) = {2,1,4,5};
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{1,2};}
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{3,6};}
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{9,12};}
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{15,18};}

3. Prolate spheroid of diameter k in one direction and k/10 in the other two directions
as shown in fig. 3.16c.

lc = 0.1; k = 128;
Point(1) = {0,0,0,lc}; Point(2) = {0,0,-k/2,lc};
Point(3) = {k/20,0,0,lc}; Point(4) = {0,0,k/2,lc};
Point(5) = {-k/20,0,0,lc};
Ellipse(1) = {2,1,4,3}; Ellipse(2) = {4,1,1,3};
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{1,2};}
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Extrude{{0,0,1},{0,0,0},Pi/2}{Line{3,6};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{9,12};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{15,18};}

X
Y

Z

(a) Sphere

XY

Z

(b) Oblate spheroid

X
Y

Z

(c) Prolate spheroid

Figure 3.16: Example geometries

These code fragments only generate the surfaces. In order to end up with the volume, we
need to add the following lines to the code fragments:

Surface Loop(100) = {26,23,20,17,14,11,8,5};
Volume(200) = {100};

The variable lc specifies the mesh size; we choose it to be 0.1. Hence, surface meshes
have about 100 particles in a cluster of size one wave length, and volume meshes have
about 1000 particles in the same cluster.

The idea of these three different geometries is to analyze the efficiency of the direc-
tional algorithm with respect to the dimensionality of the computational domain: the first
represents a 3-dimensional, the second a quasi 2-dimensional, and the third a quasi 1-
dimensional object in R3. The more elongated the object is the fewer directional cones
are required to cover the computational domain. This becomes visible in fig. 3.17. Cross-
sections through the uniform oct-trees of the surfaces from fig. 3.16 are shown. Light
gray clusters are in the high-frequency regime, they have directional expansions, dark gray
clusters are in the low-frequency regime, they have non-directional expansions. All other
clusters are not interacting with any other cluster and are not used in the method. In
fig. 3.17, the depth of the oct-tree is chosen such that only leaf-level clusters are in the
low-frequency regime.

For further numerical benchmarks, such as the comparison to another FMM (based on
a plane-wave formulation, see [28]) and a validation of our implementation on irregular
surfaces we refer to [76].
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(a) Surface 3.16a (b) Surface 3.16b (c) Surface 3.16c

Figure 3.17: Cross-sections in the z-direction, for uniform oct-trees, of the surface particle
distributions from fig. 3.16 with k = 64.

FMM parameters

At this stage, we have not developed a method to optimize the parameters in the direc-
tional FMM. As a result the running times are cerntainly not optimal and can be improved
by changing our choice of parameters. In order to be consistent throughout all studies,
however, we stick with the following parameter setting. Recall that w and k denote the
length of the side of a cluster and the wave number, respectively.

Frequency regime threshold If kw < 1 holds, a cluster is in the low frequency regime,
otherwise it is in the high frequency regime. This threshold basically separates clus-
ters which are smaller than one wave length from the others.

Cone aperture The cone aperture is set to 1/kw < αu ≤ 2/kw where 2π/αu ∈ N and
αu ≤ π/2 due to the hierarchical cone construction. Except near the leaf level, the
cone aperture is divided by two when going up the tree.

Admissible distance The admissible distance (minimum distance between the centers of
two clusters that determines whether two clusters are in each other’s interaction list)
differs in the low and in the high frequency regime. In the low frequency regime it is
distlf = 2w (w is the length of one side of a cluster). In the high frequency regime it
is disthf = max(2w, kw2).

Accuracy We define the accuracy Acc of the direction FMM as (`,εACA) = (Acc,10−Acc).
Many numerical tests motivated this fusion of interpolation order ` and ACA accu-
racy εACA. Also the numerical results in the ongoing section support it (we mainly
refer to fig. 3.19).
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Tree depth We vary the tree depth depending on the mesh type, i.e., surface or volume
mesh, and the accuracy we want to achieve. The reason is that computational timings
for near- and far-field can be balanced in that way. Recall that we chose a mesh
size of 0.1, i.e., surface meshes have about 100 and volume meshes about 1000
particles in a cluster having a size of 1 wavelength. Hence, both volume mesh and
low accuracy require a deeper tree. We chose the tree depth for surface meshes such
that leaf clusters are of size

• ` < 7: 1/2 wavelength

• 7≤ ` < 10: 1 wavelength

• `≥ 10: 2 wavelengths

and for volume meshes

• ` < 7: 1/4 wavelength

• 7≤ ` < 10: 1/2 wavelength

• `≥ 10: 1 wavelength

in order to balance computational timings for near-field and far-field.

Considering this parameter list, a large number of different settings can be obtained. Per-
formance results, when varying the accuracy Acc are apparent, less accuracy goes along
with faster computations and vice versa. Also varying the parameters from the admissibil-
ity criteria leads to significant performance changes. For example, if we increase the cone
aperture, we get less cones but the accuracy of the results suffers. The same is true if we
decrease the admissible distance.

Surface particle distributions

We show computational timings of surface particle distributions for accuracies Acc = 4
and Acc = 7 in tab. 3.2, 3.3 and 3.4. All shown timings are those for the matrix-vector
product; they do not include the precomputation time. We achieve an almost linear growth
as can be seen by means of the convergence rate roct which is defined as

roct =
ln(N2k/Nk)

ln(t2k/tk)
,
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(Acc,k,N) εL2 t [sec] roct

(4, 4,5.69e+3) 1.18e-4 0.5
(4, 8,2.26e+4) 4.64e-4 2 0.995
(4,16,9.26e+4) 4.79e-4 8 1.017
(4,32,3.81e+5) 6.78e-4 30 1.070
(4,64,1.54e+6) 4.47e-4 139 0.911

(7, 4,5.69e+3) 2.13e-7 1
(7, 8,2.26e+4) 9.73e-7 6 0.770
(7,16,9.26e+4) 5.89e-7 29 0.900
(7,32,3.81e+5) 1.31e-6 143 0.887
(7,64,1.54e+6) 1.07e-6 632 1.034

Table 3.2: Timings for surface mesh of fig. 3.16a

(Acc,k,N) εL2 t [sec] roct

(4, 8,1.16e+4) 5.07e-4 1
(4, 16,4.75e+4) 6.16e-4 4 1.017
(4, 32,1.93e+5) 1.64e-3 14 1.119
(4, 64,7.87e+5) 9.23e-4 55 1.029
(4,128,3.23e+6) 1.10e-3 232 0.981

(7, 8,1.16e+4) 2.23e-6 3
(7, 16,4.75e+4) 3.05e-6 15 0.876
(7, 32,1.93e+5) 2.99e-6 59 1.023
(7, 64,7.87e+5) 1.17e-6 235 1.017
(7,128,3.23e+6) 1.40e-6 1105 0.912

Table 3.3: Timings for surface mesh of fig. 3.16b
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(Acc,k,N) εL2 t [sec] roct

(4, 16,7.66e+3) 3.01e-4 0.5
(4, 32,2.97e+4) 3.25e-4 2 0.977
(4, 64,1.19e+5) 1.73e-4 9 0.922
(4,128,4.83e+5) 5.46e-4 36 1.010
(4,256,1.94e+6) 1.28e-4 155 0.952

(7, 16,7.66e+3) 9.30e-7 2
(7, 32,2.97e+4) 5.10e-7 7 1.081
(7, 64,1.19e+5) 4.25e-7 32 0.913
(7,128,4.83e+5) 9.83e-7 155 0.888
(7,256,1.94e+6) 5.43e-7 682 0.938

Table 3.4: Timings for surface mesh of fig. 3.16c

Volume particle distributions

We show timing studies of volume particle distributions for accuracies Acc= 4 and Acc= 7
in tab. 3.5, 3.6 and 3.7. Again, the shown timings do not include the precomputation time
and we can see the almost linear growth by means of roct .

Contrary to the surface mesh studies above, here, we are not able to present results for
k = 64, 128 and 256, respectively, due to limited memory. In tab. 3.5 the computation for
k = 32 is only possible for an accuracy Acc = 4, the same holds in tab. 3.6 for k = 64. In
tab. 3.7 no computation for k = 128 is possible.

(Acc,k,N) εL2 t [sec] roct

(4, 4,6.14e+4) 8.36e-4 9
(4, 8,3.36e+5) 9.58e-4 53 0.958
(4,16,3.56e+6) 5.54e-3 552 1.007
(4,32,4.26e+7) 3.87e-3 7302 0.961

(7, 4,6.14e+4) 7.14e-7 45
(7, 8,3.36e+5) 3.10e-6 271 0.946
(7,16,3.56e+6) 8.80e-6 3362 0.937

Table 3.5: Timings of volume meshes of fig. 3.16a
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(Acc,k,N) εL2 t [sec] roct

(4, 8,4.04e+4) 1.55e-3 5
(4,16,3.94e+5) 8.87e-4 52 0.972
(4,32,2.21e+6) 1.46e-3 334 0.927
(4,64,2.62e+7) 2.49e-3 3999 0.996

(7, 8,4.04e+4) 6.38e-6 14
(7,16,3.94e+5) 6.07e-6 290 0.751
(7,32,2.21e+6) 6.78e-6 1562 1.024

Table 3.6: Timings of volume meshes of fig. 3.16b

(Acc,k,N) εL2 t [sec] roct

(4,16,2.69e+4) 4.32e-4 3
(4,32,2.02e+5) 1.19e-3 29 0.888
(4,64,1.56e+6) 2.26e-4 252 0.945

(7,16,2.69e+4) 1.10e-6 13
(7,32,2.02e+5) 2.02e-6 127 0.884
(7,64,1.56e+6) 1.12e-6 1125 0.937

Table 3.7: Timings of volume meshes of fig. 3.16c

Direct matrix-vector product

Figure 3.18 shows a comparison of the direct matrix-vector product and our method in
terms of computational time. The results are obtained with the surface meshes from
fig. 3.16 and all timings include precomputation and matrix-vector product. The direct
matrix-vector product is only faster for the smallest surface mesh from the sphere of
fig. 3.16a with k = 4 and an accuracy Acc = 7. Our method outperforms the direct method
in all other cases.

Overall error convergence and timings

Figure 3.19 shows the convergence of the relative error εL2 for interpolation order up to
`= 13 and accuracies up to εACA = 10−13. Both are key parameters for the accuracy of the
method. We use the surface mesh from fig. 3.16c with a wave number k = 128 (483389
particles). We chose the tree depth as described above. We plot the relative error εL2 vs. the
target accuracy εACA; each curve corresponds to a given interpolation order `. No matter
what ` we choose, if we fix εACA, we cannot get beyond a certain accuracy, and vice versa.
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Figure 3.18: Timings for the direct method and the directional FMM. In both cases the
timings include the setup of the matrix as well as the matrix-vector product
itself. The surface meshes originate from fig. 3.16.

For example, with an accuracy of εL2 ∼ 10−4, there is no point in choosing ` greater than
5. If we need an accuracy of εL2 ∼ 10−6 we need to use at least ` = 7 and εACA = 10−7.
Figure 3.19 shows that accuracies up to εL2 < 10−11 can be achieved. The motivation for
the fusion of the interpolation order ` and the ACA accuracy εACA to define the accuracy
Acc of the directional FMM stems mainly from fig. 3.19. Figure 3.20 shows timings for
the accuracies εL2 presented in fig. 3.19.

ACA plus QR-decomposition vs. SVD

In tab. 3.8 we compare the low rank (rACA/rSVD) and the precomputation time (tACA/tSVD)
of ACA plus QR-decomposition against the SVD approach (see [42]). We prescribe the
accuracy εACA = εSVD = 10−4. Shown are results from the surface mesh from fig. 3.16c.
In the second and third column, we compare the low rank obtained by ACA and SVD,
respectively. The left most values in each column represents the average low rank at the
highest level in the tree, the next value is the next lower level and so on. The right-most
value corresponds to a leaf where the non-directional scheme is used. Switching from the
directional method to the non-directional one results in a jump of about 60% of the rank.
This jump would presumably be reduced if we optimized the parameters in the method.
The SVD approach provides the smallest possible rank for a prescribed L2 error. The rank
obtained with ACA is close. However, the precomputation time for ACA is significantly
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Figure 3.19: Relative error εL2 for the surface mesh from fig. 3.16c with wave number
k = 128 (483389 particles); εACA is the accuracy for ACA; ` is the Chebyshev
interpolation order.
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Figure 3.20: Timings for the matrix-vector product for accuracies up to 10−11 for the sur-
face mesh from fig. 3.16c and k = 128.
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lower (N vs. N3 for a matrix of size N).

k rACA rSVD tACA tSVD

16 26, 26, 53 19, 24, 42 2 4
32 20, 26, 31, 51 15, 20, 25, 42 3 7
64 21, 29, 32, 51 15, 21, 25, 42 5 13

128 19, 19, 30, 34, 49 14, 15, 22, 25, 42 11 40
256 19, 23, 31, 32, 51 14, 17, 22, 25, 42 22 93

Table 3.8: Low rank r and timings t for ACA+QR and SVD.

Table 3.8 shows the decay of the singular values for different tree levels. The singular
values in the leaf level decay slowest, those from the highest level having a non-empty
far-field fastest. The decay behavior of the singular values can be improved by decreasing
the cone aperture or increasing the admissible distance. As already mentioned earlier in
this section, we have not yet fully optimized the parameter setting of our method.

0 10 20 30 40 50 60

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

S
in

g
u

la
r 

v
al

u
es

0.5 wavelenghts / cluster (low freq.)

1.0 wavelenghts / cluster (high freq.)

2.0 wavelenghts / cluster (high freq.)

4.0 wavelenghts / cluster (high freq.)

8.0 wavelenghts / cluster (high freq.)

Figure 3.21: Singular values for the surface mesh of fig. 3.16c with k = 256 and `= 4. The
index of the singular values is shown on the x-axis. Leaf clusters have a size
of 1/2 wave length.



4 BOUNDARY ELEMENT METHODS FOR ACOUSTICS

4.1 Basic equations for acoustics

In the following, we go through the laws of mechanics which we need to explain how
acoustic waves propagate from the source to the receiver. Let us start with some intro-
ductory remarks. A fluid particle represents an infinitesimal volume of the fluid, large
enough that contained fluid may be thought of a continuous medium, small enough that
the acoustic variables are uniform. Even without the presence of an acoustic wave such
particles feature an average motion. We introduce the displacement U(x, t) of a fluid par-
ticle and its velocity V (x, t) = ∂U(x, t)/∂ t. When considering only small perturbations of
the equilibrium state (acoustic waves of relatively small amplitudes), changes in the instan-
taneous density ρi(x, t) and in the instantaneous pressure Pi(x, t) will be small compared to
its equilibrium values

ρi = ρ0 +ρ, Pi = P0 +P, with ρ � ρ0, P� P0.

These assumptions are necessary to derive the simplest equations for acoustic wave prop-
agation in a fluid. Fortunately, experiments have shown that such simplification adequatly
describe acoustic phenomena (see [63]).

Constitutive equation This equation describes the relation between pressure and den-
sity. We use the relation for barotropic fluids Pi(ρi), where the pressure depends only on
the density. After expanding this relation into a Taylor series around ρ0 and truncating it
after the linear term we end up with Pi(ρi) ∼ Pi(ρ0)+P′i (ρ0)(ρi−ρ0) With the condition
P0 = Pi(ρ0) we obtain the linearized constitutive equation

P = c2ρ (4.1)

with c2 = P′i (ρ0) = B/ρ0 where B denotes the bulk modulus of the acoustic fluid. Recall,
the index i of the instantaneous pressure Pi(x) and density ρi(x) does not denote any axis
direction of the coordinate system, both are scalar fields depending on x ∈ Rd .

Continuity equation To connect the motion of the fluid with its compression or expan-
sion we need use the equation of continuity or equation of mass conservation. It relates
the velocity of a fluid element V (x, t) and its instantaneous density ρi(x, t). Consider a

71
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infinitesimal element dΩ⊂ Rd being fixed in space and fluid elements flowing through it.
The net influx of mass −∇ · (ρiV )dΩ is the difference between the mass which enters and
leaves dΩ. The equation of continuity states that the net influx of mass must be equiva-
lent to the rate with which the mass in dΩ increases (∂ρi/∂ t)dΩ. Assuming that ρ0 is a
sufficiently weak function of time and space the relation simplifies to

∂ρ
∂ t

+ρ0 ∇ ·V = 0. (4.2)

Euler equation The Euler equation (momentum conservation equation) connects the
velocity V (x, t) of a fluid element with the instantaneous pressure Pi(x, t) acting on it.
Consider the same infinitesimal element dΩ as before, but now moving along with the
fluid element and containing fluid of mass dm = ρ0 dΩ. The net force dF acting on the
fluid element corresponds to the pressure difference acting on it. Sometimes also body
forces have to be included in the computations, however, we neglect them here. The net
force reads as dF = −∇Pi dΩ. It accelerates the fluid element according to Newton’s
second law dF = Adm. The acceleration A(x, t) of the fluid element is obtained from
its velocity V (x, t), it reads as A = ∂V/∂ t + (V ·∇)V . As in [63] we assume that the
convective acceleration is sufficiently small |(V ·∇)V | � |∂V/∂ t| and P0 is a sufficiently
weak function of space. After equating the resulting net force and acceleration terms we
obtain the linearized Euler equation

ρ0
∂V
∂ t

=−∇P. (4.3)

4.1.1 Wave equation

Note, at this point, we have five unknowns (three velocity components, pressure, density)
and five equations (one in (4.1) and (4.2), respectively, and three in (4.3)). Hence, the
combination of these equations yields to one differential equation with one dependent
variable, which is going to be the pressure P(x, t). First, we take the divergence of (4.3)

∇ ·∇P =−ρ0∇ · ∂V
∂ t

=−ρ0
∂ (∇ ·V )

∂ t
(4.4)

where ∇ ·∇ = ∆ is the Laplacian in Rd . Second, after plugging (4.2) into (4.4) and using
(4.1) we obtain the homogeneous acoustic wave equation

∆P− 1
c2

∂ 2P
∂ t2 = 0 (4.5)

describing acoustic waves as pressure perturbations propagating at a velocity c which de-
pends on the material paramenter of the fluid.
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4.1.2 Helmholtz equation

Often, integral transforms, such as the Laplace or Fourier transform, are used to bring
partial differential equations like the wave equation (4.5) into a form of the Helmholtz
equation and to get rid of the time variable. We make use of the inverse Laplace trans-
form

F(t) =
1

2πı

c+ı∞∫
c−ı∞

f (s)est ds

where the integration is conducted along the vertical line Res = c in the complex plane
such that c is greater than the real part of all singularities of f (s). If we apply the above
transform to the acoustic pressure P(x, t) and insert it in (4.5) we obtain the following form
of the Helmholtz equation

∆p−
( s

c

)2
p = 0 (4.6)

where s ∈ C. Note, if we set Res = 0 and Ims = ω we get the commonly known form
of the Helmholtz equation ∆p+ k2 p = 0 with the wavenumber k = ω

c > 0 of dimension
1/m. This form result also if an inverse Fourier transform would have been used, instead.
Also, the common approach to split off the time variable in a time-dependent scalar field
as F(x, t) = f (x)e−ıωt can be traced back to the application of the latter transform.

4.1.3 Boundary- and initial conditions

In order to have well-posed problems, partial differential equations require additional well
defined constraints. The acoustic wave equation (4.5) needs initial and boundary condi-
tions. The Helmholtz equation (4.6) needs boundary conditions. If such conditiones are
provided we speak of well posed boundary-, respectively, initial-boundary value problems
which have unique solutions [91]. Generally speaking, such problems are a differential
equation together with some constraints. Consequently, a solution to such problems is
a solution to the associated differential equation which also satisfies the prescribed con-
straints.

How does this apply to acoustics? Let us introduce some notations. Think of two possible
acoustic domain configurations as depticted in fig. 4.1. On one hand we can have an
interior acoustic domain Ω ⊂ R3 with its boundary Γ = ∂Ω. On the other hand we can
have an exterior acoustic domain Ωe =R3 \(Ω∪Γ). Note, the boundary Γ = ∂Ω = ∂Ωe is
the equivalent for both configurations, also the normal n on Γ points in the same directions
in both configurations.
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n

Ω

Γ

(a) Interior acoustic domain Ω

nΩe

Γ

(b) Exterior acoustic domain Ωe

Figure 4.1: Interior and exterior acoustic domains

Boundary conditions Boundary conditions are spatial constraints on the boundary. In
the following, we distinguish between Dirichlet, Neumann or mixed boundary value prob-
lems (e.g., [91]). Dirichlet problems have the acoustic pressure p prescribed on the entire
boundary

p(x) = gD(x) for x ∈ Γ,

where the acoustic pressure on the boundary is commonly denoted as Dirichlet datum,
hence Dirichlet problem. Neumann problems have the acoustic flux q prescribed on the
entire boundary

q(x) =
∂ p(x)
∂nx

= gN(x) for x ∈ Γ.

The acoustic flux on the boundary is commonly denoted as Neumann datum, hence Neu-
mann problem. Mixed problems have the Dirichlet datum gD prescribed on the Dirichlet
boundary ΓD and the Neumann datum gN on the Neumann boundary ΓN . In this case,
the boundary Γ = ΓD ∪ΓN is split in two non overlapping subsets ΓD and ΓN . A mixed
boundary value problem for the Helmholtz equation reads as

∆p(x)−
( s

c

)2
p(x) = 0 for x ∈Ω, (4.7)

with the boundary conditions

p(x) = gD(x) for x ∈ ΓD,

q(x) = gN(x) for x ∈ ΓN .

Initial conditions The Helmholtz equation does not feature any time dependency, i.e.,
only spatial constraints are needed for well-posedness. Conversely, the solution P(x, t) of
the wave equation is also a function of time. Hence, well-posed problems additionally need
also initial conditions. They prescribe initial values for P(x,0) and its first time derivative
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Ṗ = ∂P/∂ t. A mixed initial-boundary value problem for the wave equation reads as

∆P(x, t)− 1
c2

∂ 2P(x, t)
∂ t2 = 0 for x ∈Ω, t > 0,

with the initial conditions

P(x,0) = P0(x) and Ṗ(x,0) = Ṗ0(x) for x ∈Ω,

and the boundary conditions

P(x, t) = GD(x, t) for x ∈ ΓD, t > 0,
Q(x, t) = GN(x, t) for x ∈ ΓN , t > 0.

Sommerfeld’s radiation condition So far, we have only considered interior acoustic
domains, i.e., the governing acoustic equations were defined in Ω. From [80, 91] we know
that interior Helmholtz problems are well-posed. In order to make exterior problems, as
depicted in fig. 4.1b, uniquely solvable we need to impose an additional boundary condi-
tion at infinity. It is called Sommerfeld’s radiation condition [90] and reads for our form
of the Helmholtz equation (4.6) as∣∣∣∣ x

|x| ·∇p(x)+
s
c

p(x)
∣∣∣∣=O( 1

|x|2
)

as |x| → ∞. (4.8)

The radiation condition is also known as outgoing wave condition and it is equivalent to a
vanishing acoustic pressure field p(x) at infinity. By substituting s with −s one obtaines
the complement of the outgoing wave condition, i.e., the solution is subjected to incoming
waves.

In contrast to Helmholtz problems, problems for the wave equation do not require any
condition at infinity. Nevertheless, if initial conditions vanish at infinity, what excludes
incoming waves, the solution satisfies an outgoing wave condition which reads similarly
as Sommerfeld’s radiation condition [46].

4.2 Boundary integral formulations

Representation formulae for the solution of the Helmholtz and the wave equation provide
the main ingredient for boundary integral equations. The discretization of these boundary
integral leads to boundary element formulations, which are the tool we use to numerically
solve acoustic problems.
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Consider the Helmholtz equation (4.6) in a bounded domain Ω⊂R3. Its weak formulation
reads as ∫

Ω

(
∆p−

( s
c

)2 p
)

vdx = 0 for x ∈Ω (4.9)

for some suitably chosen test function v. Our first goal is to derive Green’s first identity.
To do so we first deploy the divergence theorem∫

Ω

∇ ·hdx =
∫
Γ

∂h
∂n

ds (4.10)

to the weak formulation in (4.9). In the above equation Γ stands for the boundary of Ω

and n for the normal vector on Γ pointing out of Ω. The normal derivative is defined as
∂h/∂n = n ·∇h with the continuously differentiable vector function h : R3→R3. We let this
function be h= v∇p with p,v :R3→C being scalar functions. By applying the divergence
operator to h we get

∇ ·h = ∇ · (v∇p) = v∆p+∇p ·∇v

with the Laplacian ∆ = ∇ ·∇. Next, we plug the above relation into (4.10) and get∫
Ω

v∆pdx =−
∫
Ω

∇p ·∇vdx+
∫
Γ

v
∂ p
∂n

ds.

After inserting the above equation into (4.9) we obtain Green’s first identity for the Helmholtz
equation ∫

Ω

(
∆p−

( s
c

)2 p
)

vdx = a(p,v)+
∫
Γ

v
∂ p
∂n

ds,

with the symmetric bilinear form

a(p,v) =−
∫
Ω

∇p ·∇vdx−
( s

c

)2
∫
Ω

pvdx.

We repeat the same procedure by reformulating Green’s first identity with the vector func-
tion h = p∇v and get ∫

Ω

(
∆v−

( s
c

)2 v
)

pdx = a(v, p)+
∫
Γ

p
∂v
∂n

ds,

Due to the symmetry of the bilinear forms a(p,v) = a(v, p) we can subtract both equations
from each other and obtain Green’s second identity for the Helmholtz equation∫

Ω

(
∆p−

( s
c

)2 p
)

vdx−
∫
Γ

v
∂ p
∂n

ds =
∫
Ω

(
∆v−

( s
c

)2 v
)

pdx−
∫
Γ

p
∂v
∂n

ds. (4.11)
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4.2.1 Representation formulae

The fundamental solution Ps : R3 → C of the Helmholtz equation is a function which
satisfies

∆Ps(x,y)−
( s

c

)2 Ps(x,y) =−δ (y− x) (4.12)

for all x,y ∈ R3 and reads as

Ps(x,y) =
1

4π
e−

s
c |x−y|

|x− y| . (4.13)

First, we use the weak formulation (4.9) to get rid of the first volume integral in (4.11).
Then, we replace the test function v in (4.11) with the fundamental solution Ps. With (4.12)
and the screening property of the Dirac distribution∫

Ω

p(y)δ (y− x)dy = p(x)

we get rid of the second volume integral in (4.11). By introducing the acoustic flux q =
∂ p/∂n as the normal derivative of the acoustic pressure p we obtain the representation
formula

p(x) =
∫
Γ

Ps(x,y)q(y)dsy−
∫
Γ

∂Ps(x,y)
∂ny

p(y)dsy for x ∈Ω. (4.14)

The derivation of the representation formula for the wave equation is similar. We only
provide a very brief outline. For a more detailed derivation we refer the reader to [2].
The starting point is again Green’s second identity, however, we consider its time-domain
counterpart. The fundamental solution P : R3×R→ R reads as

Pt(x,y, t,τ) =
1

4π
δ (t− τ− |x−y|

c )

|x− y| .

Here, the fundamental solution P represents the wave propagation due to an impulse at
emission time τ in point y (see, e.g., [79]). It can be obtained via an inverse transfor-
mation of the fundamental solution of the Helmholtz equation (4.13). The time-domain
representation formula reads as

P(x, t) =
t∫

0

∫
Γ

Pt(x,y, t,τ)Q(y,τ)dsy dτ−
t∫

0

∫
Γ

∂Pt(x,y, t,τ)
∂ny

P(y,τ)dsy dτ (4.15)

provides the solution P(x, t) for all t ∈ R+ and for all x ∈ Ω \Γ as long as the Dirichlet
datum P(y,τ) and the Neumann datum Q(y,τ) for all τ ∈ [0, t] and y ∈ Γ are known.
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4.2.2 Boundary integral equation

The representation formulae (4.14) and (4.15) provide the solution of the problem once the
complete Dirichlet and Neumann data are known on the entire boundary. This is usually
not the case, they first need to be computed. The tool therefore are boundary integral
equations.

We can derive them from the representation formulae by shifting x from the domain Ω

to its boundary Γ. This shifting procedure is a rather cumbersome process and has been
elaborated in many textbooks, e.g., in [43] and [91]. The difficulty represents the fact
that once x gets to the boundary singularities of different types appear in the integrals:
Think, for example, of the definition of the fundamental solution Ps(x,y), which becomes
singlular as |x− y| → 0. Weakly singular integrals are finite, strong singular integrals can
be interpreted as their Cauchy principal value. For other cases, such as hyper-singular
integrals, which are rather complex and problem dependent we refer the reader to [62].

We first consider the boundary integral equation for the Helmholtz equation. No problem
poses the single layer potential, it is well defined as x approaches the boundary. It reads
as

(Vsq)(x) =
∫
Γ

Ps(x,y)q(y)dsy for x ∈ Γ. (4.16)

This operator contains a so called weakly-singular integral, which is well defined, even
though the integrant is not analytic as x approaches y (see [91]).

A more profound analysis requires the second integral on the right hand side of (4.14) as x
is shifted to the boundary. It becomes

lim
Ω3x→x∈Γ

∫
Γ

∂Ps(x,y)
∂ny

p(y)dsy = (−I+C(x)) p(x)+(Ks p)(x).

Usually, the limiting process is performed by augmenting the boundary at the point x with
a hemisphere Bε(x) of vanishing radius ε . Herewith, the double layer potential on the
boundary is defined as

(Ks p)(x) = lim
ε→0

∫
Γ\Bε (x)

∂Ps(x,y)
∂ny

p(y)dsy for x ∈ Γ. (4.17)

In the present case this integral exists in an inproper sense (weakly singular integral).
Usually such an integration is called Cauchy principal value [54]. The integral on the
remaining part of the boundary is defined as

(Cp)(x) = lim
ε→0

∫
∂Bε (x)∩Ω

∂Ps(x,y)
∂ny

p(y) dsy for x ∈ Γ. (4.18)
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It is often referred to as integral free term [43, 91]. It is related to the interior solid angle
of Γ at the point x. If Γ is smooth in the vicinity of x the integral free term becomes
C(x) = 1/2.

Finally after having applied this shifting process Ω3 x→ x∈ Γ to the entire representation
formula (4.14) we obtain the boundary integral equation for the Helmholtz equation which
reads in operator notation as

C(x)p(x)+(Ks p)(x) = (Vsq)(x) for x ∈ Γ. (4.19)

The same procedure has to be followed to obtain the time-domain boundary integral equa-
tion for the wave equation. In operator notation it reads as

C(x)P(x, t)+(Kt ∗P)(x, t) = (Vt ∗Q)(x, t). (4.20)

The operator ∗ denotes the convolution in time, e.g., f ∗g =
∫ t

0 f (τ)g(t− τ)dτ . The time-
domain counterparts of the operators defined in (4.16) and (4.17) are defined similarly.
The single layer potential reads as

(Vt ∗Q)(x, t) =
t∫

0

∫
Γ

Pt(x,y, t,τ)Q(y,τ)dsy dτ

and the double layer potential as

(Kt ∗P)(x, t) = lim
ε→0

t∫
0

∫
Γ\Bε (x)

∂Pt(x,y, t,τ)
∂ny

P(y,τ)dsy dτ.

The integral free term C(x) turns out to be the same as in (4.18). Moreover, we notice that
the structure of (4.19) and (4.20) are identical up to the convolution integral.

Exterior problems Up to now we have treated interior problems, i.e., we look for the
solution in Ω. Do the representation formulae and the boundary integral equations change
if we look for the solution in Ωe? Recall, Sommerfeld’s radiation condition (4.8). In order
to impose this condition we introduce an artificial boundary at infinity, say Γ∞ = ∂R3.
If we apply the representation formulae to both boundaries, Γ and Γ∞, and if we impose
the radiation condition to Γ∞, we end up with only a sign change in the representation
formulae and only a sign change in front of the integral free term in the boundary integral
equations [91].
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Solvability There exist frequencies, when solvability or at least uniqueness of boundary
value problems for the Helmholtz equation is not given [91].

The single layer operator Vs (4.16) is singular if k2 corresponds to an eigenvalue of the
corresponding Dirichlet eigenvalue problem. Since V is the same for interior and exte-
rior problems, Dirichlet problems are uniquely solvable whenever such frequencies are
excluded. The double layer operator C+Ks (4.18) and (4.17) is not invertible if k2 cor-
responds to eigenvalues of the corresponding Neumann eigenvalue problem. In all other
cases interior Neumann problems have unique solutions. Exterior Neumann problems are
not solvable if k2 is an eigenvalue of the corresponding interior Dirichlet problem, that is
when the operator −C+Ks becomes singular.

There exist various possibilities to overcome these phenomena of so called spurious eigen-
frequencies. We do not treat them in this work, we refer the reader to [91] to find a detailed
listing and elaboration of the solvability of various boundary value problems.

4.3 Convolution quadrature method

This section affects only time dependent acoustic problems. The target is the convolution
operator (∗) in the time-domain boundary integral equation (4.20). Let us forget about
the spatial discretization for the moment. We focus on the temporal discretization of the
convolution integral in time. All proposed methodologies can be split in two groups: The
computation of the convolution integrals is either performed directly in time domain (e.g.,
[72, 38]) or an inverse transformation is combined with a computation in the Laplace
domain. Both groups react very sensitively on the chosen parameter settings.

We are going to use the convolution quadrature method (CQM) which has initially been
developed by Lubich [69, 70, 71] and was applied to the boundary element method in
[87]. The CQM can be ranged somewhere inbetween both above mentioned groups, it
exploits their merits and results in a stable time stepping procedure. Aside from that, the
very reason, we use this temporal discretisation scheme, is the fact that it relies on the
Laplace domain counterpart of the time domain fundamental solution. In the case of the
wave equation this is the fundamental solution (4.13) of the Helmholtz equation. Since in
chapter 2 and 3, we have constructed fast methods for exactly that type of matrix kernel,
this favours the CQM.

4.3.1 Discrete convolution

In the following, only those parts of its theoretical framework which are necessary for the
understanding of the present work are recalled. The very basic idea of the CQM is the
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discrete approximation of a convolution integral

y(t) = p∗q =

t∫
0

p(t− τ)q(τ)dτ (4.21)

with t ∈ [0,T ]⊂ R+ by means of a quadrature scheme

y(n∆t) = yn ∼
n

∑
i=0

ω∆t
n−i(p̂)qi

with qi = q(i∆t) and the Laplace transformed counterpart p̂ of p. The time interval [0,T ] is
split in N+1 intervals of equal length ∆t = T/N. The quadrature weights ω∆t

n−i(p̂) depend
on the underlying multistep method which we will address in the following.

Convolution weights Let us derive the explicit formula for computing the convolution
weights as presented in [69]. We start with the substitution of the p(t− τ) in (4.21) with
its inverse Laplace transform

y(t) =
1

2πı

c+ı∞∫
c−ı∞

p̂(s)
t∫

0

es(t−τ)q(τ)dτ

︸ ︷︷ ︸
x(t)

ds, (4.22)

with s ∈ C and an appropriately chosen value c ∈ R+. The function x(t) is the solution of
the ordinary differential equation of first order

x′(t)− sx(t) = q(t) for x(0) = 0. (4.23)

This is where the first of two approximations comes in to play: The numerical solution of
the above initial value problem is well studied in literature (e.g., [60]). As presented in
[4] we will deploy A- and L-stable Runge-Kutta methods here. They are classically given

by their Butcher tableaus
c A

b
with A ∈ Rm×m and c,bT ∈ Rm and m is the number

of stages. Note, if Runge-Kutta methods are used for solving (4.23), results are not only
computed at equally spaced timesteps n∆t but also at intermediate stages, i.e., at {(n+
(c)i)∆t : i = 1, . . . ,m}. The solution reads as

xn+1 = xn +∆tbT (sXn +qn) (4.24)
Xn = xn1+∆tA(xXn +qn).

Here xn ∈C is the solution at n∆t and Xn ∈Cm are intermediate solutions at the stages and
qn ∈ Rm is a vector with the entries (qn)i = q((n+(c)i)∆t) for i = 1, . . . ,m. Due to the
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A- and L-stability of the used Runge-Kutta methods bT A−1 = (0, ...,1) holds. Hence, with
(4.24) the solution at each timestep can be computed by the solution at the intermediate
stages by

xn+1 = bT A−1Xn. (4.25)

For a straightforward use of the above solution in the CQM we would need an relation like
xn = f (qn), which, however, is not possible to derive. We can only establish a relation for
the intermediate solutions Xn via a power series, which reads as

∞

∑
n=0

Xn zn =

(
∆(z)
∆t
− s I

)−1 ∞

∑
n=0

qn zn, (4.26)

where ∆ : C→ Cm×m is the characteristic function which reads as

∆(z) =
(

A+
z

1− z
1bT

)−1

.

By using (4.25) and (4.26) we finally get a relation between xn+1 and qn. Since we have to
plug it into (4.22) we need to multiply it by zn and sum over all n. It yields to

∞

∑
n=0

yn+1 zn =
1

2πı

c+ı∞∫
c−ı∞

p̂(s)bT A−1
(

∆(z)
∆t
− s I

)−1 ∞

∑
n=0

qn zn (4.27)

= bT A−1 p̂
(

∆(z)
∆t

)
∞

∑
n=0

qn zn.

In the last step, the Cauchy’s residue theorem has been applied. Note, the argument of
p̂ contains the characteristic function ∆(z), hence a matrix. Consequently, the resulting
expression is a matrix as well.

The next task is to get rid of the sum on the left hand side of (4.27). To do so, we introduce
the power series expansion

p̂
(

∆(z)
∆t

)
=

∞

∑
n=0

W∆t
n (p̂)zn. (4.28)

Inserting the above equation in (4.27) results in the product of two infinite power series.
By using the Cauchy product it can be rewritten as a discrete convolution. And, finally, by
comparing coefficients we end up with

yn+1 = bT A−1
n

∑
k=0

W∆t
n−k(p̂)qk. (4.29)
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The convolution weights W∆t
n are not yet defined. Usually an explicit representation can not

be derived from (4.28), however, they can be defined based on Cauchy’s integral formula
as

W∆t
n (p̂) =

1
2πı

∮
C

p̂
(

∆(z)
∆t

)
z−n−1 dz (4.30)

where C can be chosen as a circle centered at the origin of radius R < 1. Recall, the above
expression gives the result at the time (n+1)∆t.

So far only one approximation, i.e., the Runge-Kutta method for solving the ordinary
differential equation (4.23), has been introduced. Now, the second approximation is in-
troduced: The contour integral in (4.30) is approximated via a trapezoidal rule and the
convolution weights read as

W∆t
n (p̂) =

R−n

N +1

N

∑
`=0

p̂(s`)ζ n` with ζ = e
2πı

N+1 and s` =
∆(Rζ−`)

∆t
. (4.31)

Note, s` is a matrix whose size depends on the characteristic function ∆. Finally, by using
the above convolution weights in (4.29) we can approximate the convolution integral by
means of a discrete convolution quadrature.

Appart from the fact that Lubich [69] used multistep methods to approximate (4.23) in-
stead of using Runge-Kutta methods (single-step but multistage), this is where the initial
derivation of the CQM stopped.

4.3.2 Decoupled convolution

In order to split up the discrete convolution in (4.29) we follow the approach presented
by Banjai and Sauter [6]. They proposed to extend the convolution weights WN+1

n to be
valid also for negative indices n < 0, utilizing the fact that they have to vanish then due to
causality. Thus, the sum in (4.29) can be extended to k =N. After inserting the convolution
weights (4.31) that equation reads as

yn+1 = bT A−1 R−n

N +1

N

∑
`=0

p̂(s`) q̂` ζ n`. (4.32)

The vectors q ∈ Rm and q̂ ∈ Cm are given by

(q̂`)i =
N

∑
k=0

Rk(qk)i ζ−k` and (qk)i =
R−k

N +1

N

∑
`=0

(q̂`)i ζ k` for i = 1, . . . ,m.

They can be considered as a scaled Fourier transform and its inverse counterpart.
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System of decoupled Helmholtz problems Let us recall the boundary integral equation
of the wave equation

C(x)p(x, t)+(Kt ∗ p)(x, t) = (Vt ∗q)(x, t). (4.33)

At this stage, we have derived all tools we need to unwind the convolution integrals in the
above equation. By using the decoupled approximation of the convolution from (4.32) we
can rewrite the boundary integral operators of the above equation as

(Vt ∗q)(x, tn+1)∼ bT A−1 R−n

N +1

N

∑
`+1

(Vs q̂)`(x)ζ n`

(Kt ∗ p)(x, tn+1)∼ bT A−1 R−n

N +1

N

∑
`+1

(Ks p̂)`(x)ζ n`

with tn+1 = (n+1)∆t. Next, we insert the above expressions in (4.33) and compare coeffi-
cients. Finally, the boundary integral equation for the wave equation dissolves in a system
of N +1 decoupled boundary integral equations of the Helmholtz equation

(C+Ks p̂)` (x) = (Vs q̂)`(x). (4.34)

Matrix exponentials Recall the definition of s` = ∆(Rζ−`)/∆t from (4.31): It is a ma-
trix whose size is given by the characteristic function ∆ : C→ Cm×m. If we look at the
definition of the integral operators (4.16) and (4.17) of the Helmholtz equation, we notice
that s` essentially defines the complex frequencies the fundamental solution (4.13) has to
be evaluated for. Due to its form a matrix exponential of the type es` has to be evaluated.
How do we do that? If a matrix is diagonal then its exponential can be obtained by just ex-
ponentiating every entry on the main diagonal [47]. Let us assume that s` is diagonalizable
as s` = EΛE−1, where the column vectors of E are eigenvectors of s`, and the corresponding
diagonal entry in the diagonal matrix Λ= diag(λ1, . . . ,λm) is the corresponding eigenvalue.
Hence, the matrix exponential in Ps can be computed as

Ps(x,y) = E diag
(
Pλ1(x,y), . . . ,Pλm(x,y)

)︸ ︷︷ ︸
PΛ(x,y)

E−1,

where the Helmholtz fundamental solution Pλ (x,y) is evaluated for any eigenvalue λ . By
using the above relation, the operators used in (4.34) can be written as Vs = EVΛE−1 and
Ks = EKΛE−1, the equation finally results in(

E(C+KΛ)E−1p̂
)
`
(x) =

(
EVΛE−1q̂

)
`
(x). (4.35)

Let us sum up the cost. We have N+1 systems of equations as the one above. Each of them
is a coupled system of m equations, this gives us a total number of m(N +1) equations to
solve for.
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Remark. Recall the definition of the matrix s` which needs to be diagonalized in order
to obtain the complex frequencies needed in (4.35). However, is s` always diagonaliz-
able? Exceptions are presented in [4]: For example, for the 2-stage and 3-stage Radau
IIA method exist only one, respectively, two values for Rζ ` where s` is not diagonalizable.
It is very unlikely to hit these values during a computation. However, it is advisable to
investigate the condition number of the matrix s`.

4.4 Boundary element formulation

Here, the objective is to construct efficient boundary element formulations for acoustics.
In the chapters 2 and 3, we have derived a framework of tools to efficiently evaluate many
pairwise interactions based on oscillatory kernels. They have the same properties as the
fundamental solution Pk of the Helmholtz equation but not as the fundamental solution Pt of
the wave equation. This is the reason why we focus on the discretization of the boundary
integral equation (4.19) for the Helmholtz equation, hereafter. All operators appearing
therein are elliptic boundary integral operators and such have been analyzed extensively
by many researchers. Our main reference is [91], it contains a very detailed analysis of
such operators and their discretization.

On the other hand, operators appearing in the time-domain boundary integral equation
(4.20) belong to the family of hyperbolic boundary integral operators. They are mathe-
matically less studied and mainly treated in engineering literature yet. An exemplary but
not complete listing of studies is given by [72, 2, 38, 34]. Hyperbolic operators require
a different treatment then the elliptic operators, thus, diverse boundary element formula-
tions need to be established. However, the temporal discretization scheme we introduced
in sec. 4.3, allows us to reformulated (4.20) as a set of decoupled boundary integral equa-
tions (4.19) for the Helmholtz equation. Concluding, no matter whether we need to solve
time dependent or steady state problems, we can use the discretization of (4.19). In both
cases, we have boundary element formulations for the Helmholtz equation.

4.4.1 Weak solution of the boundary value problem

Let us recall the mixed boundary value problem (4.7) for the Helmholtz equation, it reads
as

∆p(x)+ k2 p(x) = 0 for x ∈Ω, (4.36)

with the boundary conditions

p(x) = gD(x) for x ∈ ΓD, (4.37)
q(x) = gN(x) for x ∈ ΓN .
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Commonly, an analytical solution to the above problem cannot be found. We use boundary
element formulations to find the solution numerically. The idea is not to solve the given
boundary value problem in its strong form (4.36), but to solve its weak form∫

Ω

w(x)
(
∆p(x)+ k2 p(x)

)
dx = 0 for x ∈Ω (4.38)

for some suitable chosen test functions w(x). It is well known that the resulting solution
p(x) satisfying the boundary conditions (4.37) is also a solution to its strong form [91].
Equation (4.38) can also be found as weighted residual.

Collocation method

Demanding the weak form (4.38) to hold for suitable test functions w(x) in the integral
sense yields the Galerkin method. We choose these test functions to be Dirac delta distri-
butions w(x) = δ (x). Using their screening property

∫
g(x)δ (x− x∗)dx = g(x∗) yields the

collocation method and the weak form results in

∆p(x∗)+ k2 p(x∗) = g(x∗).

In other words, the solution p(x) needs to satisfy (4.36) only at a given set of so called
collocation points {x∗}. Note, due to the choice of test functions the collocation method
can be considered a special case of the Galerkin method.

Adapting the collocation method to the boundary integral equation (4.19), which we de-
rived to solve the Helmholtz equation for given boundary conditions, results in a system
of equations

((C+Kk)p)(x∗) = (Vk q)(x∗) (4.39)

which holds for the Cauchy data p(x) and q(x) at all collocation points {x∗} ⊂ Γ. Recall,
if they were exact solutions of the problem, the boundary integral equation (4.19) would
be true everywhere on the boundary and not just at the collocation points.

Up to now, we have as many equations as we have collocation points. However, before we
focus on them we need to further investigate the Cauchy data. Given is the mixed problem
(4.37), this means that p(x) and q(x) are partly known, partly unknown on the boundary.
To find the unknown parts, we introduce the decomposition

p(x) = p̃(x)+ g̃D(x) and q(x) = q̃(x)+ g̃N(x) for x ∈ Γ, (4.40)

with the unknown Dirichlet and Neumann data p̃, respectively, q̃. The quantities g̃D and
g̃N are arbitrary but fixed extensions of the given Cauchy data to the whole boundary [91].
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We insert (4.40) in (4.39) and obtain the following equation where known and unknown
Cauchy data are separated

(Vk q̃)(x∗)− (C+Kk) p̃)(x∗) = f (x∗),

with the right hand side

f (x∗) = ((C+Kk) g̃D)(x∗)− (Vk g̃N)(x∗).

Spatial discretization Next, the discretization of the boundary Γ is introduced. It is
commonly given by a set of E boundary elements τ . Usually they do not exactly represent
the original boundary but give just an approximation as

Γ∼ Γh =
E⋃

e=1

τe,

where τe denotes the eth boundary element having an average size h. Given the domain
Ω ∈ R3, its boundary Γ is a 2-dimensional mannifold, hence boundary elements are usu-
ally either triangles or quadrilaterals. These geometrical entities can be accessed via a
coordinate transformation Φ : R2→ R3 from a reference element τ̄ to the global element
τ .

Cauchy data approximation We introduce the approximation of the Cauchy data as

p(x)∼
M

∑
i=1

(p)i ϕi(x) and q(x)∼
N

∑
j=1

(q) j ψ j(x).

In other words, the discrete solution to the Cauchy data is represented by the vectors
p ∈CM and q ∈CN . The basis functions ϕ and ψ are defined on the discrete boundary Γh.
What properties do they have? From physics we know that the acoustic pressure p is con-
tinuous, whereas the acoustic flux q, being related to the normal vector on the boundary,
is not neccessarily continuous. Think of an arbitrary geometry having edges and corners,
there the normal vector on the boundary has jumps. Generally speaking, most approxi-
mations of smooth boundaries, e.g., spheres, become non smooth. These restrictions from
physics give rise to discrete boundary element spaces

S+h (Γh) = span{ϕi}M
i=1 and S−h (Γh) = span{ψ j}N

j=1, (4.41)

where S+h contains the continuous Dirichlet datum p and S−h the discontinuous Neumann
datum q on the entire discrete boundary Γh.
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Algebraic equation system The continuous decomposition of the Cauchy data in (4.40)
holds also for its discrete counterparts p and q. The vector p containing the discrete Dirich-
let datum is split in p̃ ∈ CMN and gD ∈ CMD . Equally, the vector q containing the discrete
Neumann datum is split in q̃ ∈CND and gN ∈CNN . Note, the size of the vectors containing
the complete discrete Cauchy data is still M = MD +MN , respectively, N = ND +NN .

What else do we need to obtain an algebraic equation system? The distribution of the
collocation points x∗ comes into play. We have the unknown vectors p̃ of size MN and
q̃ of size ND. We need the same number of equations. We require (4.39) to hold at the
collocation points {x∗i : i = 1, . . . ,ND} ⊂ ΓD,h, respectively at the collocation points {x∗j :
j = 1, . . . ,MN} ⊂ ΓN,h. This yields the equation system(

VD −KD
VN −KN

)(
q̃
p̃

)
=

(
fD
fN

)
(4.42)

with the discrete single layer potentials VD ∈ CND×ND , VN ∈ CMN×ND and double layer
potentials KD ∈ CND×MN , KN ∈ CMN×MN and the right hand side vectors fD ∈ CND and
fN ∈ CMD . The entries are computed as

(VD)i j = (Vkψ j)(x∗i ) for ψ ∈ S−h (ΓD), x∗ ∈ ΓD

(VN)i j = (Vkϕ j)(x∗i ) for ϕ ∈ S+h (ΓN), x∗ ∈ ΓD

(KD)i j =
(
(C+Kk)ψ j

)
(x∗i ) for ψ ∈ S−h (ΓD), x∗ ∈ ΓN

(KN)i j =
(
(C+Kk)ϕ j

)
(x∗i ) for ϕ ∈ S+h (ΓN), x∗ ∈ ΓN

The entries of the right hand side vectors fD and fN are computed analogously.

The domain of integration in the above integrals corresponds to the support of the respec-
tive basis funtion. That is where it is evaluated to non-zero entries. Recall, ψ belongs to
S−h , i.e., the discontinuous boundary element space for the Neumann datum. Hence, the
support of ψ is strictly associated to the corresponding boundary element τ , no matter what
polynomial order ψ has. On all other boundary elements the discontinuous ψ is evaluated
to zero. This is different for ϕ , which belongs to S+h , the continuous boundary element
space for the Dirichlet datum. Its support usually affects the set of neighboring elements.
For more information we refer the reader to [43] or [91].

Solution procedure For the solution of the block matrix system (4.42) we apply a similar
nested solution procedure as presented in [91] for such block systems. By inserting the first
equation

q̃ = V−1
D (fD +KD p̃)
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into the second, we obtain a Schur complement system(
VNV−1

D KD−KN
)︸ ︷︷ ︸

S

p̃ = fN−VNV−1
D fD︸ ︷︷ ︸

y

.

The goal is to solve the resulting system Sp̃ = fD for the unknown vector p̃. Instead of
performing a direct inversion of VD we deploy a nested iterative solution procedure. First,
we compute the right hand side

y = fN−VN c

with the solution c of VD c= fD. Then, the matrix-vector product for the Schur complement
system is defined as

Sp̃ = VN b−KN p̃

with the solution b of VD b = KD p̃. Neither VD nor S are symmetric.





5 NUMERICAL EXAMPLES

In this chapter we present numerical examples of acoustic computations. We bring together
fast summation schemes for oscillatory kernels presented in chap. 3 and the boundary ele-
ment formulation presented in sec. 4.4. This yields to fast boundary element formulations
which open the door to the numerical simulation of large-scale acoustic problems.

The present section is split in two parts: In sec. 5.1, we present an example of an initial-
boundary value problem for the wave equation. In sec. 5.2, we present two examples of
exterior boundary value problems for the Helmholtz equation. All examples were solved
using the C++ software library HyENA [77].

5.1 Hierarchical matrices and Runge-Kutta CQM

An acoustic fluid is given in the domain

Ω = {x ∈ R3 : x1,x2 ∈ [−0.5m,0.5m],x3 ∈ [0m,3m]}

as depicted in fig. 5.1. The speed of sound is set to c = 346 m/s and corresponds to the one
of air. The mixed initial-boundary value problem reads as

∆P(x, t)− 1
c2

(
∂ 2P
∂ t2

)
(x, t) = 0 for x ∈Ω, t > 0,

P(x, t) = 0 for x ∈ ΓD, t > 0,
Q(x, t) = GN(x, t) for x ∈ ΓN , t > 0.

P(x,0) =
(

∂P
∂ t

)
(x,0) = 0 for x ∈Ω,

with zero initial conditions and mixed boundary conditions.

When looking at the system shown in fig. 5.1b we note that the front face is the Dirichlet
boundary ΓD = {x ∈R3 : x1,x2 ∈ [−0.5m,0.5m],x3 = 0} ⊂ Γ with zero acoustic pressure
P = 0 at any time. The remaining part of the boundary is the Neumann boundary ΓN =
Γ∩ΓD. However, only the subset {x ∈ R3 : x1,x2 ∈ [−0.5m,0.5m],x3 = 3m} ⊂ ΓN has
non-zero acoustic flux Q(t) = H(t)N/m2, where H(t) is the Heaviside step function.

91
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Figure 5.1: Acoustic problem

5.1.1 Setup of the numerical method

We deploy the CQM (see sec. 4.3) to perform the temporal discretization. It leads to a
system of decoupled Helmholtz problems (see sec. 4.3.2) and we can deploy theH-matrix
approach (see sec. 3). Therefore, we used the C++ library AHMED [11]. For the spatial
discretization we use the collocation method. Therefore, the boundary is approximated by
12032 linear triangular elements as depicted in fig. 5.1a. Moreover, we use linear con-
tinuous basis functions to approximate the Dirichlet datum and piecewise constant basis
functions to approximate the Neumann datum. We end up solving for the unknown vec-
tors p̃ and q̃ of size N = 5529, respectively, M = 896 (the Neumann datum is unknown
only on ΓD, i.e., the front face). In order to get an algebraic equations system as presented
in (4.42), we need to collocate on ΓD at 896 points located in the center of the boundary
elements and on ΓN at 5529 points located on the vertices of the boundary elements (the
same collocation point is shared by all boundary elements possessing the same vertex).

In the following, the behavior of the CQM with respect to the chosen Runge-Kutta method
is numerically studied. We compare Runge-Kutta methods like the 2- and 3-stage Radau
IIA and the 4-stage Lobatto IIIC method. The respective Butcher tables can be found in
[60]. Moreover, the efficiency of the H-matrix approach for the Runge-Kutta methods is
compared to BDF2 (backward differential formula of order 2, a single-stage but multi-step
method). A similar study, however, for elastodynamics, a symmetric Galerkin BEM and
only the BDF2 has been presented in [75].

Two parameters have to be set in the CQM. The first one is the radius, we chose it to be
R =
√

ε with ε = 10−5 [69]. The total number of time steps of equal length ∆t is given
by NT . The overall time is given by NT ∆t = 8.67 · 10−2 seconds. The second parameter
is the time step size ∆t. It is natural to set the speed of sound in relation to the size
of the boundary elements, which is here h = 0.05. Commonly used is the dimensionless
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Courant-Friedrichs-Lewy number β . It tells us how many boundary elements are traversed
by a sound wave in one time step. A remark to our notation hereafter: We associate the
overall number of problems NT (β ) to a given β . For example, if we use BDF2, which is
a single-stage method, and β = 0.1 a total of NT (0.1) = 6000 time steps are required to
cover the overall time of 8.67 ·10−2 seconds. This involves the solution of 6000 decoupled
Helmholtz problems. On the other hand, if we use the 2-stage Radau IIA method and the
same β only NT (0.1)/2 = 3000 twice as large time steps are required to cover the same
time. The difference is that in the latter case 3000 systems of 2 problems each, have to be
solved. Finally, this amounts to the same overall cost of NT (0.1) = 6000 problems. That
is, why we use the definition

β =
c∆t
mh

,

where m denotes the number of stages of the used Runge-Kutta method. In the case of
BDF2 the number of stages is m = 1. In the following, we present numerical results for
the range of β ∈ [0.1,1.2].

Remark. If we look at the definition (4.31) of the complex frequencies s` we notice that
they traverse the complex plane symmetrically with respect to the real axis (see fig. 5.7).
In other words, there exist NT (β )/2 complex conjugate frequencies pairs which yield to
analogous solutions. We solve only for that part of the frequency pair with Ims` ≥ 0
and reuse the result for the remaining part. Hence, we have to effectively solve only for
NT (β )/2 problems.

5.1.2 Behavior of the Runge-Kutta CQM

The following results have also been published in [7]. We focus on the acoustic flux at
the most central element on the Dirichlet boundary ΓD. It represents the most meaningful
result, as we will see in a moment. The numerical solutions for the overall time Tβ ∆t =
8.67 · 10−2 s are shown in the figs. 5.2, 5.3, 5.4 and 5.5 for BDF2, 2-stage and 3-stage
Radau IIA and 4-stage Lobatto IIIC, respectively. We compare them for varying β values
and study the efficiency of the H-matrix approach. In the following, we use the accuracy
of ACA to be εACA = 10−5 and choose η = 0.7 in the admissibility criterion (3.1).

The analytic solution for the 1-dimensional counterpart of the present problem is a square
curve as presented in [49, 86]. Eventually, the resulting square curve makes clear why we
study this very academic looking problem and it explains why we analyze it. It is very
costly to generate a square curve by means of the superposition of harmonics. That is,
very figuratively speaking, what the CQM does. Let us have a closer look to our results.
In fig. 5.6, we zoom in to the interval t ∈ [0.059s,0.080s] for BDF2 and all Runge-Kutta
methods. This limits the curves to only the last peak.
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Figure 5.2: BDF2
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Figure 5.3: Radau IIA 2-stage
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Figure 5.4: Radau IIA 3-stage
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Figure 5.5: Lobatto IIIC 4-stage



96 5 Numerical examples

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

·10−2

−0.4

−0.2

0

0.2

0.4

time [s]

ac
ou

st
ic

flu
x
[N
/m

2 ]

analytic solution β = 0.1
β = 0.4 β = 0.8

(a) BDF2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

·10−2

−0.4

−0.2

0

0.2

time [s]

ac
ou

st
ic

flu
x
[N
/m

2 ]

analytic solution β = 0.2
β = 0.5 β = 0.9

(b) Radau IIA 2-stage
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(c) Radau IIA 3-stage
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Figure 5.6: Comparison of t ∈ [0.059s,0.080s]
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The behavior of truncated Fourier series of piecewise continuously differentiable periodic
functions at a jump discontinuities is well studied. They feature large oscillations, which
increase the maximum of the truncated series above that of the function itself. The over-
shoots do not die out as the frequency increases, but approach a finite limit [95]. This is
known as Gibb’s phenomenon, however commonly known approaches to flatten out these
overshoots do not work in the case of the CQM. Only the similarity to Gibbs phenomenon
should be pointed out here.

0 0.5 1 1.5 2 2.5 3

·104

−2

−1

0

1

2

·104

Res`

Im
s `

BDF2
Radau IIA 2-stage
Radau IIA 3-stage

Lobatto IIIC 4-stage

Figure 5.7: Complex frequencies s` for β = 0.9

These overshoots can be observed in all figures, however, they behave differently depend-
ing on the used time-stepping scheme. Figure 5.7 displays the complex frequencies s`
(4.31) for β = 0.9 (T0.9 = 666) and all time-stepping schemes. The ellipses show the ar-
rangement of the resulting {s` : `= 1, . . . ,T0.9} complex frequencies in the complex plane.
We notice that the quality of the resulting square curves depends on the chosen time step-
ping scheme. For example, if we consider the ellipse for BDF2, we note that the ratio
Res`/ Ims` grows faster compared to Runge-Kutta methods. This results in the Runge-
Kutta methods to produce better square curves. Especially fig. 5.8, which compares the
last peak of the results for β = 0.3 and β = 0.9, reflects this behavior.

Computational cost Here, we compare the computational cost with respect to the qual-
ity of the numerical result. We count the overall cost in terms of equation systems to be
solved. In other words, the solution of NT (β ) dense equation systems, each of size N2,
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Figure 5.8: Comparison of interval t ∈ [0.059s,0.080s] for all time-stepping schemes



5.1 Hierarchical matrices and Runge-Kutta CQM 99

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

s`

M
em

(H
/d

en
se

-m
at

ri
x)

BDF2
Radau IIA 2-stage
Radau IIA 3-stage

Lobatto IIIC 4-stage

(a) β = 0.3

0 100 200 300
s`

(b) β = 0.9

Figure 5.9: Compression of KN versus complex frequencies s`

is equivalent to a cost of NT (β ). Recall, we use H-matrices to efficiently compute the
solution of the equation system. Hence, if the matrices of the same set of NT (β ) equation
systems are represented as H-matrices and an average of, say, only N2/2 entries need to
be stored, then, the overall cost is equivalent to NT (β )/2.

We study the cost in terms of the matrix KN . It is the largest of the four matrices and has
a size of N = 5529 rows and columns. Figure 5.9 shows the compression of KN for BDF2
and all Runge-Kutta methods for β = 0.3 and β = 0.9. Recall, we effectively solve only
for NT (β )/2 problems due to the symmetric arrangement of s` (see fig. 5.7). That said,
fig. 5.9 shows the compression for all NT (0.3)/2 = 1000 and NT (0.9)/2 = 333 problems
for β = 0.3, respectively, β = 0.9.

Interesting, but at the same time obvious, is on one hand the bad compression in the first
half and on the other hand the asymptotic behavior in the second half of the frequency
range in fig. 5.9. Let us again consider the ellipses in fig. 5.7, the first frequencies have a
fast increasing imaginary part but only a very slow increasing real part. Hence, the matrix
kernel becomes very oscillatory but only very little damping is effected due to the small
real part. This result in a bad compression. We have already reported on that in sec. 3. In
the second half of the frequency range, the real part becomes so large that effectively the
far-field looses any influence, it can be set to 0. That is why, the cost in the second half
converges to exactly the cost of the near-field.

Optimal setting Let us try to find the optimal setting for our numerical method to solve
the present example in terms of efficiency and quality of the result. In fig. 5.11, we have
presented the point wise L2 error εL2 for BDF2 and all Runge-Kutta methods with respect
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Figure 5.10: Overall compression of KN
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Figure 5.11: Point-wise relative L2 for different time-stepping schemes
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to β . We single out an accuracy εL2 ∼ 10−1 (indicated by the dotted line in fig. 5.11)
and align the resulting cost in table 5.1. The third column gives the effective number of
problems to be solved. The last column gives the overall cost as defined above. Evidently,
the Radau IIA 3-stage method is the best compromise of efficiency and quality of the
result. Figure 5.12 shows the same flux results for the four settings presented in table 5.1,

Time stepping scheme required β εL2 Tβ/2 overall cost

BDF2 0.2 1.06 ·10−1 1500 541.4
Radau IIA 2-stage 0.7 1.05 ·10−1 432 169.8
Radau IIA 3-stage 1.1 1.08 ·10−1 303 125.8
Lobatto IIIC 4-stage 0.9 1.06 ·10−1 336 139.6

Table 5.1: Cost for a point-wise relative L2 error εL2 ∼ 10−1 (see dotted line in fig. 5.11 for
required β )

however, for an ACA accuracy εACA = 10−3. From t > 0.060s on the resulting square
curve starts to break away due to the apparently to bad approximation accuracy.
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Figure 5.12: Accuracy εACA = 10−3

Relation between computational time and required memory We have not given any
timing results, because we used the compression to be representative for doing efficiency



102 5 Numerical examples

studies. Figure 5.13 proofs that this assumption is valid. Indeed the compression of the
matrix KN and the matrix assembly time per frequency s` behave identically. In the first
half of the frequency range a bad compression goes along with large matrix assembly tim-
ings, in the second half, where only the near-field needs to be computed, both compression
and assembly timings flatten out.
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Figure 5.13: Comparison of compression of KN and matrix assembly time for BDF2 and
β = 0.2

5.2 Directional fast multipole method

In this section, we elaborate how the directional fast multipole method (dFMM) as pre-
sented in sec. 3.3 is used to improve the efficiency of the BEM for solving Helmholtz
problems, and we present numerical studies. First, we analyze the convergence for Dirich-
let and Neumann problems and, then, we present an acoustic scattering problem and the
sound radiation from an electric machine.

5.2.1 Realization of the FMM approximation

Here, we assume the real part of the Laplace parameter in (4.6) to vanish, i.e., it becomes
s = ıω with the circular frequency ω . Thus, we end up with the more common form of the
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Helmholtz equation
∆p+ k2 p = 0

with the wavenumber k = ω
c > 0. Both, the representation formula and the boundary

integral equation do not change, they remain the same as (4.14) and (4.19), respectively.
With the above met assumptions the fundamental solution simplifies to

Pk(x,y) =
1

4π
eık|x−y|

|x− y|
and represents exactly that type of oscillatory kernel we developed the dFMM for (see
sec. 3.3). In the following, we elaborate the application of the dFMM to the BEM.

No matter whether we solve a mixed, a Dirichlet or a Neumann boundary value problem
for the Helmholtz equation we let the equation system (4.42) be our starting point. Recall,
the first block equation VD q̃−KD p̃ = fD holds only on the Dirichlet part of the boundary,
whereas the second block equation VN q̃−Kq̃ = fN holds only on the Neumann part of the
boundary. Hence, for solving a Dirichlet problem we use the first equation, otherwise the
second one.

In either case we only discretize two boundary integral operators: the single layer poten-
tial

(Vk q)(x∗) =
∫
Γ

Pk(x∗,y)q(y)dsy (5.1)

and the double layer potential

(Kk p)(x∗) =
∫
Γ

∂Pk(x∗,y)
∂ny

p(y)dsy (5.2)

for all collocation points x∗ ∈ Γ. Next, we recall the reformulation of the fundamental
solution Pk as introduced in sec. 2.3. It reads as

Pk(x,y) =
eık(|x−y|−u·(x−y))

4π|x− y| eıku·(x−y) = eıku·x Pu
k (x,y)e−ıku·y.

The modified and directional part Pu
k of the fundamental solution can be interpolated by

using Chebyshev interpolation. With it, the approximated fundamental solution reads as

Pk(x,y)∼ eıku·x
∑

m∈α
S`(x, x̄m) ∑

n∈α
Pu

k (x̄m, ȳn)S`(y, ȳn)e−ıku·y (5.3)

with the multi-index α with |α| ≤ (`+1)d . The interpolation operator S` is elaborated in
sec. 2.3.2.
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Our aim is not to touch the actual fundamental solution Pk when we approximate the po-
tentials (5.1) and (5.2). For the single layer potential we just need to substitute Pk with its
approximant (5.3), and it reads as

(Vkq)(x∗)∼ eıku·x∗
∑

m∈α
S`(x∗, x̄m) ∑

n∈α
Pu

k (x̄m, ȳn)
∫
Γ

S`(y, ȳn)e−ıku·yq(y)dsy.

It works similarly for the double layer potential. Instead of applying the normal derivative
to Pk directly we apply it to its interpolation (5.3) and substitute it into the double layer
potential

(Kk p)(x∗)∼ eıku·x∗
∑

m∈α
S`(x∗, x̄m) ∑

n∈α
Pu

k (x̄m, ȳn)
∫
Γ

∂
∂ny

(
S`(y, ȳn)e−ıku·y

)
p(y)dsy

where

∂
∂ny

(
S`(y, ȳn)e−ıku·y

)
= n(y) ·

(
(∇y S`(y, ȳ))e−ıku·y +S`(y, ȳ)∇y e−ıku·y

)
= n(y) · (P̀ (y, ȳ)− ıkuS`(y, ȳ))e−ıku·y.

Recall, the vector valued gradient P̀ =∇S` of the interpolation operator S` in the equations
above. We observe that Pu

k and, hence, also Pk remains untouched as required, operations
are only performed on the interpolation operator S`.

Matrix entries As presented in sec. 2.3.3 we write the discrete operators for a cluster
pair X ⊂ R3 and Y ⊂ R3 in matrix notation as the product of three matrices

V = SX K̄S∗Y and K = SX K̄P∗Y .

The entries of the L2L operators SX ∈ CM×|α| are point-wise evaluations at collocation
points {x∗i : i = 1, . . . ,M} ⊂ X ∩Γ

(SX)i j = S`(x∗i , x̄ j)eıku·(x∗i−x̄ j)

and for all interpolation points {x̄ j : j = 1, . . . , |α|} in the cluster X . The M2M operators
SY ,PY ∈ CN×|α| read as

(SY )i j = eıku·ȳ j

∫
supp(φi)

φi(y)S`(y, ȳ j)e−ıku·y dsy,

(PY )i j = eıku·ȳ j

∫
supp(φi)

φi(y)n(y) ·
(
P̀ (y, ȳ j)− ıkuS`(y, ȳ j)

)
e−ıku·y dsy
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for i = 1, . . . ,M and supp(φ) ⊂ X ∩ Γ denotes the support of the basis function φ . It
can be substituted with any basis function from (4.41). The M2L operators K̄ ∈ C|α|×|α|
are point-wise evaluations of the unmodified fundamental solution Pk at the interpolation
points {x̄} ⊂ X and {ȳ} ⊂ Y . It reads as

(K̄)i j = Pk(x̄i, ȳ j) for i, j = 1, . . . , |α|.

Apparently, if we evaluate both matrices V and K for the same cluster pair X×Y , the L2L
operator SX and the M2L operator K̄ are the same, only the respective M2M operators SY
and PY differ.

Implementation and computational aspects We have implemented the dFMM as an
additional module in HyENA [77]. We have parallelized the M2M, M2L and L2L opera-
tion by using shared memory parallelization (see OpenMP [30]). All computations were
computed on a 64 CPU node, each of 2261MHz, with 256GB shared memory. The effec-
tively used number of CPU is mentioned at the respective examples. As preconditioning
strategy, we simply used the inverted diagonal blocks of the near-field. This is clearly
suboptimal, but still saves some iterations as we will see in the following.

5.2.2 Convergence studies

We study the convergence of the DFMM by solving interior Dirichlet and Neumann bound-
ary value problems for the Helmholtz equation. We chose Ω to be a unit cube given by
{x ∈ R3 : |x1|= |x2|= |x3|= 0.5} and Γ = ∂Ω being its surface. We use piecewise linear
basis functions ϕ ∈ S+h (Γ) to approximate the Dirichlet datum p and piecewise constant
basis functions ψ ∈ S−h (Γ) to approximate the Neumann datum q = ∂ p/∂n. For the solu-
tion of the resulting equation systems we use the GMRES method up to a relative accu-
racy εGMRES = 10−8. As preconditioning strategy we simply invert the diagonal near-field
blocks.

We prescribe the fundamental solution as boundary condition gD(x) = Pk(x, ỹ) for x ∈ Γ

and the fixed point ỹ∈Ωe given by ỹ = (0.55,0.55,0.55)T . Since Pk is an analytic solution
of the Helmholtz equation, we can study the error convergence therewith as we refine the
approximation of the boundary Γ∼ Γh =

⋃E
e=1 τe. The average size of the linear triangular

boundary elements τ is denoted by h. Apparently, the relation O(E−1/2) = O(h) holds,
and, due to the constant approximation of the Neumann datum, also N = E holds.

Interior Dirichlet problem We solve the Helmholtz equation (4.6) together with the
Dirichlet boundary condition p(x) = gD(x) for x ∈ Γ and for the wave number k = 5. If
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we use (4.42) as starting point the equation system to be solved reduces to the first block
equation and reads as

VD q̃ = (C+KD)gD

with the given Dirichlet datum gD ∈CM and the sought after Neumann datum q̃∈CN . The
coarsest mesh is composed by N0 = 1384 linear triangles. We introduce five refinement
levels up to N5 = 1417216 triangles.

N M Acc IterdiagPrec ε1 roc1 ε2 roc2

1384 694 4 34 3.13e-1 - 6.88e-5 -
5536 2770 4 43 1.69e-1 0.889 1.87e-5 1.879

22144 11074 5 45 7.26e-2 1.219 4.33e-6 2.111
88576 44290 6 56 2.81e-2 1.369 1.10e-6 1.977

354304 177154 7 69 1.05e-2 1.420 2.65e-7 2.053
1417216 708610 8 83 3.90e-3 1.428 6.86e-8 1.952

Table 5.2: Accuracy of the DFMM for the Dirichlet problem on the unit cube

Table 5.2 shows the convergence study. The first and second column list the size of the
discrete Neumann and Dirichlet datum at the respective refinement level. Column three
shows the chosen accuracy Acc of the DFMM. From sec. 3.3.7 we know that it can be de-
termined by choosing (εACA, `) = (10−Acc,Acc). Column four lists the number of GMRES
iterations needed to reach the prescribed accuracy εGMRES. Column five shows the relative
L2 error for the computed Neumann data q̃ on Γ, computed as

ε1 =
‖gN− q̃‖L2(Γ)

‖gN‖L2(Γ)
,

where gN ∈ CN is the exact Neumann datum computed as (gN)i = ∂gD(xi)/∂nxi . The
absolute error of the computed solution p̃Ω is obtained by formulating the representation
formula (4.14) twice, first for the exact Neumann datum gN and second for the computed
counterpart q̃. After subtracting one from another we obtain

(pΩ)i− (p̃Ω)i =
N

∑
j=1

(
(gN) j− (q̃) j

) ∫
supp(ψ j)

Pk(x̃i,y)ψ j(y)dsy for y ∈ Γ.

with the set {x̃i : i = 1, . . . ,446} of inner points which are randomly distributed on the
surface of a cube given by {x ∈ R3 : |x1| = |x2| = |x3| ≤ 0.4}. Column seven shows the
average of the absolute or point-wise L1 error and is computed as

ε2 =
|pΩ− p̃Ω|L1

446
.
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Finally, the columns six and eight show the rate of convergence with respect to the mesh
size h given by roc = log(εν−1/εν )

log(hν−1/hν )
, where ν denotes the refinement level. The convergence

rate roc1 approaches 1.4, which is slightly higher than the theoretically guaranteed conver-
gence for the Neumann datum, which would be linear [91]. The convergence rate roc2 is
quadratic as predicted theoretically for the Collocation method (for the Galerkin method it
would be cubic).

Multi-frequency analysis of the interior Dirichlet problem Since the Helmholtz equa-
tion provides also another parameter, the wave number k, we study its influence. We take
refinement level 3 with N3 = 88576 and M3 = 44290 which is sufficient for wavenumbers
up to k ≤ 32. Moreover, we keep the depth of the oct-tree constant at 4 levels and vary the
wave number k as can be seen in tab. 5.3. We used 40 CPUs for the computation of this
example.

k IterdiagPrec IternoPrec tmult[s] (lf,hf) ε1 ε2

1 46 71 3.13 (3,0) 4.54e-2 3.40e-7
2 46 70 3.12 (3,0) 4.10e-2 3.39e-7
4 52 77 3.44 (2,1) 3.16e-2 5.08e-7
8 69 96 4.05 (1,2) 2.19e-2 2.44e-6

16 161 200 3.48 (0,3) 5.24e-2 1.40e-4
32 362 494 6.69 (0,2) 4.58e-2 8.79e-5

Table 5.3: Behavior of the DFMM (Acc = 6) at refinement level 3 for the interior Dirichlet
problem for different wave numbers k

Column two and three of tab. 5.3 list the number of GMRES iterations for εGMRES = 10−8

with and without preconditioning, respectively. Column four presents the required time for
a single matrix-vector multiplication and the next column lists the number of low- and high
frequency levels having expansions. Obviously, the higher the wave number becomes, the
more the low frequency threshold climbs up the oct-tree. This implies a growth of the near-
field, what is reflected in growing timings for the matrix-vector multiplications. Noticeable
is the value in column four for k = 8 compared to the value for k = 16. The reason is that
the compression of the M2L operators for k = 16 is significantly better than for k = 8.
The last two columns list the obtained errors ε1 and ε2. A possible reason for the relatively
large errors for k = 16 might be that k2 comes close to one of the spurious eigen frequencies
where the interior Dirichlet problem is not solvable (see sec. 4.2.2 and [91]). We did not
study this assumption in detail, though.

Interior Neumann problem We solve the Helmholtz equation (4.6) together with the
Neumann boundary condition gN(x) = ∂gD(x)/∂nx for x ∈ Γ and for the wave number
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k = 5. We take again (4.42) as starting point and end up with the equation system

(C+KN) p̃ = VN gN (5.4)

with the given Neumann datum gN ∈ CN and the sought after Dirichlet datum p̃ ∈ CM.
For the convergence study we choose the same refinement as for the interior Dirichlet
problem.

N M Acc IterdiagPrec ε1 roc1 ε2 roc2

1384 694 4 22 1.28e-1 - 2.93e-4 -
5536 2770 4 23 3.01e-2 2.088 6.76e-5 2.116

22144 11074 5 22 7.30e-3 2.044 1.95e-5 1.794
88576 44290 6 24 1.70e-3 2.102 4.85e-6 2.007

354304 177154 7 26 4.07e-4 2.062 1.22e-6 1.991
1417216 708610 8 27 9.43e-5 2.109 2.90e-7 2.072

Table 5.4: Accuracy of the DFMM for the Neumann problem on the unit cube

Results are plotted in tab. 5.4. Column one, two, three and four show the same as in
tab. 5.2. Column five presents the relative L2 error for the computed Dirichlet datum p̃ on
Γ, it is computed as

ε1 =
‖gD− p̃‖L2(Γ)

‖gD‖L2(Γ)

where gD ∈ CM is the exact Dirichlet datum on Γ computed as (gD)i = gD(xi). As in
tab. 5.2, column seven shows the average of the absolute of point-wise L1 error of the
computed solution p̃Ω in the domain Ω, but it is obtained slightly differently. Again, the
representation formula (4.14) is formulated twice, however, first with the exact Dirichlet
datum gD and second for the computed counterpart p̃. After subtracting one from another
we obtain

(pΩ)i− (p̃Ω)i =
M

∑
j=1

(
(p̃) j− (gD) j

) ∫
supp(ϕ j)

∂Pk(x̃i,y)
∂ny

ϕ j(y)dsy for y ∈ Γ.

with the same set {x̃i : i = 1, . . . ,446} of inner points as above. Also ε2 is computed as
above. We obtain a quadratic convergence rate for ε1 and ε2 as predicted theoretically in
[91].

5.2.3 Acoustic scattering

We assume rigid scattering of sound, i.e., an acoustic wave which is incident on a rigid
obstacle is totally reflected. The physical assumptions are shown in fig. 5.14. As usual
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Ωe Γ

pi ps

Figure 5.14: Rigid scattering of sound

Ω ⊂ R3 is a bounded domain, called obstacle, with the surface Γ = ∂Ω = ∂Ωe, where
Ωe is the unbounded exterior domain. The unit normal vector on Γ is denoted by n. The
acoustic fluid in Ωe is supposed to be ideal, and is given by its bulk modulus B [N/m2] and
density ρ [kg/m3]. All waves are time harmonic with a circular frequency ω .

As incoming acoustic wave field pi a plane wave is considered

pi(x) = eıku·x

with a unit vector u, such that |u|= 1 holds. It describes a plane wave with a wave number
k moving in direction of u. It is useful to divide the the total acoustic field into the sum of
the known incident acoustic field pi and the unknown scattered acoustic field ps as

p(x) = pi(x)+ ps(x).

Rigid acoustic scattering requires the acoustic flux to vanish on the boundary Γ such that

∂ p(x)
∂n

= 0 for x ∈ Γ

holds. Finally, the exterior Neumann problem to be solved reads as

∆ps(x)+ k2 ps(x) = 0 for x ∈Ω
e, (5.5)

∂ ps(x)
∂n

=−∂ pi(x)
∂n

for x ∈ Γ.

The Sommerfeld condition (4.8) is automatically satisfied by the boundary integral equa-
tion we use for solving the above stated acoustic scattering problem. It ensures that waves
are not reflected at infinity and makes the problem uniquely solvable.

25 spheres Given are 25 unit spheres of diameter 1m (see, e.g., fig. 5.15). They represent
rigid scatterers and form the domain Ω. The exterior domain Ωe is assumed to be an
ideal fluid. For simplicity we choose the bulk modulus B = 1.0 N/m2 and the density ρ =
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1.0 kg/m3. The incoming plane wave is chosen to be pi(x) = eıku·x. Hence, the imposed
Neumann boundary condition in (5.5) reads as

gN(x) =
∂ ps(x)

∂nx
=−ıkeıku·x(nx ·u) for x ∈ Γ. (5.6)

The equation system to be solved reads as (5.4). The 25 scatterers are discretized in totally
E = 210550 linear triangles. We choose piecewise linear basis functions for the Dirichlet
datum and end up with the unknown vector ps ∈ CM of size M = 105325. Moreover,
we choose piecewise constant basis functions for the Neumann datum and get the vector
gN ∈CN of size N = E = 210550 prescribed by (5.6). Once, the ps is known on the surface
of the scatterers we can evaluate the total pressure field p = ps + pi at 12896 randomly
scattered points {x̃} ⊂ Ωe on a plane which is located 0.2m behind the layer of spheres.
This is done by evaluating the representation formula at all points exterior points {x̃} and
finally adding the incoming pressure field pi, the solution reads as

p(x̃) =−(Vk ps)(x̃)+(Kk gN)(x̃)+ pi(x̃).

incoming plane wave pi

Figure 5.15: k = 1

The figs. 5.15, 5.16, 5.17 and 5.18 show the resulting total pressure field |p(x̃)| on the disc
in Ωe for k = 1,2,4,8, respectively. All four computation were conducted on 30 CPUs.
Table 5.5 lists the number of GMRES iterations for εGMRES = 10−5, the overall time for
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incoming plane wave pi

Figure 5.16: k = 2

incoming plane wave pi

Figure 5.17: k = 4
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incoming plane wave pi

Figure 5.18: k = 8

the solution of the linear system and the time for a single matrix-vector multiplication.
The accuracy of the dFMM was chosen to be Acc = 5. The depth of the oct-tree was kept
constant at 5 levels for all wave numbers k. Evidently, the required time for the GMRES
solution grows almost linearly with the number of GMRES iterations. This shows clearly
the need of an efficient preconditioning strategy when using the dFMM. Column four and

k Iter tsol[s] tmult[s] (lf, hf)

1 7 24.23 3.46 (2, 2)
2 13 48.47 3.73 (1, 2)
4 23 83.18 3.61 (0, 3)
8 39 202.07 5.18 (0, 2)

Table 5.5: Number of GMRES iterations, timings and low- and high frequency levels hav-
ing expansions

five in tab. 5.5 report on the time for a single matrix-vector multiplication and on the
number of low- and high frequency levels having a non-empty far-field. For example,
for k = 1 we have (lf, hf) = (2, 2), meaning that the leaf level and the next higher level
are in the low-frequency regime and have interactions. Moreover the next two levels are
in the high-frequency regime and have directional interactions. This changes for k = 8
where we have (lf, hf) = (0, 2). No low-frequency levels exist. The leaf level and the
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next higher level are in the high-frequency regime and have directional interactions. All
other levels have an empty far-field. As expected, the higher the wave number k is, the
larger the near-field becomes. For k = 8 only two high frequency levels have expansions,
hence, the near-field is much larger compared to k = 1,2,4. That is why its matrix-vector
multiplication takes the most time.

5.2.4 Sound radiation

A multi-physical model is necessary to compute electromagnetically excited sound radi-
ation of electrical machines [94]. An electromagnetic model delivers mechanical forces
acting on the machine. Such forces lead to structural vibrations which can be computed by
means of an elastodynamic model. Our objective addresses the sound radiation induced
by surface vibrations.

Starting point is the solid-fluid interaction [61]. Machine vibrations given as velocities v
on its surface Γ excite the exterior acoustic fluid in Ωe. It picks up the vibrations of the
embedded machine in the form of acoustic waves, i.e., sound is radiated from the machine.
The acoustic problem to be solved is an exterior Neumann problem. The boundary con-
dition is obtained from the compatibility condition requiring the normal velocities of the
solid and fluid to be equal on Γ. We multiply the stationary Euler equation (obtained from
(4.3)) with the normal vector n and interpret the resulting normal velocities v · n as the
velocities of the solid. This leads to the Neumann boundary condition

gN(x) =
∂ p(x)
∂nx

=−ıωρ f v(x) ·nx for x ∈ Γ, (5.7)

with given velocities v. The final goal is to determine the stationary acoustic field of
radiated acoustic pressure p in Ωe.

We deploy the DFMM for solving the exterior Neumann problem. We assume the acoustic
fluid to be ideal. We choose it to be air with the bulk modulus B= 134081.92 N/m2 and den-
sity ρ = 1.12 kg/m3. The electric machine has the dimensions (0.902m,0.902m,1.730m)
and is shown in fig. 5.19. The mesh consists of E = 103554 linear triangles. The equation
system to be solved is (5.4). We choose piecewise linear continuous basis functions to
approximate the Dirichlet datum and end up with the vector p ∈ CM of size M = 51763.
Moreover, we choose piecewise constant basis functions to approximate the Neumann da-
tum and get a vector gN ∈ CN of size N = E = 103554. The given velocities v on the
surface of the electric machine are assumed to be equal for various excitation frequencies.
Hence, considering (5.7), only the amplitudes of the given Neumann datum changes, as
can be seen in fig. 5.20. Once, the Dirichlet datum is computed on the surface Γ of the ma-
chine we approach our final goal and determine the stationary acoustic field in the exterior
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xy

z

Figure 5.19: Electric machine (103554 linear triangles)

(a) 750Hz (b) 2200Hz

Figure 5.20: Real part of given Neumann datum RegN in [N/m2]
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domain Ωe. The solution is complex-valued and reads as

p(x̃) =−(Vk p)(x̃)+(Kk gN)(x̃) for x̃ ∈Ω
e.

All computation were performed on 40 CPUs. The accuracy of the dFMM was set to Acc=
5 and the solution accuracy εGMRES = 10−5. The oct-tree has 5 levels in all computations
which are studied in tab. 5.6. Column two in tab. 5.6 shows the ratio of wave length

f [Hz] λ/h Iter tsol[s] tmult[s] (lf,hf)

750 34.1 112 475.39 4.24 (1,2)
1000 25.6 171 777.69 4.55 (0,3)
1500 17.1 261 1275.99 4.88 (0,3)
2200 11.6 566 4347.20 7.68 (0,2)

Table 5.6: Number of GMRES iterations for εGMRES = 10−5, timings and low- and high
frequency levels having expansions

λ = c/ f to the average mesh size h. Recall, the circular frequency ω is related to the
frequency f as ω = 2π f . Yet, for a frequency of 2200Hz the wave has a length of about
11.6 elements. This is sufficient for its approximation. As in tab. 5.5, the overall solution
time grows with the number of GMRES iterations. The jump in the time for a single
matrix-vector multiplication at 2200Hz with respect the other frequencies is caused by the
fact that only two levels have a non-empty far-field. This can be seen in the last column.

The figs. 5.21, 5.22, 5.23 and 5.24 show Re p on 65901 randomly scattered points on a
plane given by {x ∈ Ωe : x2 = 0} for the excitation frequencies 750Hz, 1000Hz, 1500Hz
and 2200Hz, respectively. The decrease of the amplitudes is distinctively visible.

The figs. 5.25, 5.26, 5.27 and 5.28 show the absolute value of the radiated sound pressure
|p| on the same plane in Ωe for the same set of frequencies.
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Figure 5.21: Sound pressure Re p in [N/m2] on a plane in Ωe at 750Hz

x

z

Figure 5.22: Sound pressure Re p in [N/m2] on a plane in Ωe at 1000Hz



5.2 Directional fast multipole method 117

x

z

Figure 5.23: Sound pressure Re p in [N/m2] on a plane in Ωe at 1500Hz
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Figure 5.24: Sound pressure Re p in [N/m2] on a plane in Ωe at 2200Hz
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Figure 5.25: Sound pressure |p| in [N/m2] on a plane in Ωe at 750Hz
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Figure 5.26: Sound pressure |p| in [N/m2] on a plane in Ωe at 1000Hz
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Figure 5.27: Sound pressure |p| in [N/m2] on a plane in Ωe at 1500Hz
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Figure 5.28: Sound pressure |p| in [N/m2] on a plane in Ωe at 2200Hz





6 CONCLUSION

The thesis consist mainly of two parts. The first part considers efficient and accurate
numerical tools for evaluating many pair-wise interactions of oscillatory nature. In the
second part, we used them to increase the efficiency of boundary element methods and its
capability of simulating large-scale problems in acoustics.

We have presented three approximation strategies for dense matrices which are of oscilla-
tory kernels: The singular value decomposition (SVD), the adaptive cross approximation
(ACA) and the Chebyshev interpolation scheme. Even though, the SVD is capable of
computing the best-possible approximation, it is prohibitive in terms of its computational
cost. The ACA and the interpolation based approach do not have this bottleneck, they
are also efficient in terms of computational cost. The ACA is very little code intrusive.
This outstanding feature results from its black-box and self-controlling nature. The ACA
yields the near-best-possible approximation. Moreover, by combining it with a subsequent
application of the SVD also the best-possible approximation can be obtained. These facts
explain the high popularity of the ACA in both science and engineering. The second ap-
proach is slightly more involving. It is based on the interpolation of oscillatory kernels
via Chebyshev polynomials. An advantage is the relatively simple error analysis based
on the growth of the kernel function in the complex plane. The effective rank of the ap-
proximation is determined by the a priori chosen interpolation order. Thus, it might lead
to suboptimal approximations. To remedy this drawback, we have proposed an approach
which combines the Chebyshev interpolation with a subsequent application of the ACA
and the SVD. In this way the merits of all three schemes are exploited and end up with the
best-possible approximation.

Moreover, we have presented two efficient schemes for evaluating summations which have
oscillatory kernel functions: The H-matrix approach and the directional fast multipole
method (dFMM). Both schemes base on the partitioning of the underlying domain in so
called cluster-trees. We have studied balanced and uniform cluster-trees. The former tree
type allows to better exploit the advantages of the ACA. The latter one enables a further
recompression when using an interpolation based approximation. Clearly, the H-matrix
approach, which uses the ACA, is less involving. The reason is thatH-matrices, apart from
the fact that they have different structure, can be understood as matrices in the usual sense.
Meaning that the entire framework of matrix arithmetics is provided. Moreover, they allow
for an easy and efficient construction of good preconditioners by computing approximative
matrix decompositions. Conversely, the dFMM, which is based on the Chebyshev inter-
polation scheme, is clearly less straight forward and also more involving to implement.
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Nonetheless, both methods rely on the original and unmodified kernel. They are also
applicable to non-oscillatory kernels without further treatment. Moreover, the black-box
nature of both schemes facilitates a potential extension to vector-valued kernels.

In the second part of the thesis, we have presented acoustic boundary element methods
(BEM). We have derived the governing equations, i.e., the wave and the Helmholtz equa-
tion, and their respective integral representations. We have adopted the collocation scheme
to conduct the spatial discretization. Moreover, we have utilized the convolution quadra-
ture method (CQM) to convert time-domain problems to systems of decoupled Helmholtz
problems. Only then, the application of the efficient schemes we presented in the first part
of the thesis can be used straight forward.

We have validated the presented methodologies with numerical examples. We have adopted
the H-matrix approach to speedup the simulation of a mixed interior acoustic initial-
boundary value problem. The problem to be solved is of rather academic nature, however,
it points out the necessity of having a stable and accurate numerical scheme. In the context
of the CQM we have compared four different time-stepping procedures for its realization:
the BDF2 and three Runge-Kutta methods. The numerical examples approve that all four
procedures lead to results which match well with the analytical solutions. However, we
were interested in the optimal setting in terms of overall cost and quality of the result.
Runge-Kutta methods turned out to lead to better results than the BDF2.

Moreover, we have used the dFMM to accelerate BE-formulations to solve steady-state
Helmholtz problems. Noteworthy, is the reusability of appearing operator matrices. For
example the L2L (interpolation), respectively, the M2L operators are identical when evalu-
ating the discrete single- and double layer operator. Only the M2M (anterpolation) operator
differs. We have verified the error convergence of the proposed method for both, interior
Dirichlet- and Neumann problems and have reached the theoretically estimated conver-
gence rates. Finally, we have presented the numerical solution of two exterior problems.
In the first one, we have considered a rigid acoustic scatterer. The acoustic pressure in
the exterior domain has been of interest. In the second example, we have considered the
sound radiation from an electrical machine for different excitation frequencies. The accu-
racy of these two examples has not been validated, however, the resulting images seem to
be correct.

The combination of the dFMM with a Galerkin BEM and the incorporation of the second
boundary integral equation [91] would be straightforward since all arising trace operators
can be shifted to the interpolation operators. However, the critical point is to gain control
on the arising singularities in the near-field.

A further use of the dFMM is the adaptation to vectorial problems. The complication
which arises here is the following. Consider the elastodynamic kernel Uki(x,y) in R3. It
features two elastic waves of different velocities c1 and c2 (given by k1,2 = ω/c1,2) and
each wave is connected to an oscillatory term like eıki|x−y|. Hence, in the high frequency
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regime, we are required to split up such kernels, apply the directional summation to each
part (with wave numbers k1 and k2) separately, and finally combine both contributions.
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