
Dissertation:

ODEG – Ontology Driven E-Government
Combining MDA and Semantic Technologies to efficiently provide
E-Government Services

Peter Salhofer

Supervisor: Prof. Dr. Reinhard Posch

Graz University of Technology,
Institute for Applied Information Processing and Communications

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

Graz, 11.12.2011

Signature Value NoK3PMi1O1iQOSWE2AMB1CpKOJCIANUcH6LcllQipSHCezm3c/7PyfQ9lu2XqTde

Signatory T=Dipl.-Ing.,serialNumber=235166996167,givenName=Peter,SN=Salhofer,
CN=Peter Salhofer,C=AT

Date/Time-UTC 2011-12-11T17:06:59Z

Issuer-Certificate CN=a-sign-Premium-Sig-02,OU=a-sign-Premium-Sig-02,O=A-Trust Ges. f.
Sicherheitssysteme im elektr. Datenverkehr GmbH,C=AT

Serial-No. 229245

Method urn:pdfsigfilter:bka.gv.at:binaer:v1.1.0

Parameter etsi-moc-1.1@576d800

Verification Information about the verification of the electronic signature and of the printout
can be found at: http://www.signature-verification.gv.at

i

Table of Contents
1 Motivation & Research Question.. 1
2 The Semantic Web... 4

2.1 Ontologies.. 4
2.2 Open vs. Closed World Assumption ... 6

3 Semantic Web Technologies.. 7
3.1 Resource Description Framework – RDF.. 7

3.1.1 RDF Abstract Syntax... 7
3.1.2 RDF XML Syntax... 9
3.1.3 RDF Schema – The RDFS Vocabulary.. 11

3.1.3.1 RDFS Classes.. 11
3.1.3.2 RDF Properties.. 12

3.1.4 RDF Semantics.. 13
3.1.4.1 Interpretation.. 13
3.1.4.2 Entailment.. 15
3.1.4.3 RDF Vocabulary Interpretation.. 15
3.1.4.4 RDFS Interpretation... 16
3.1.4.5 Entailment Rules.. 17

3.1.5 Conclusions.. 20
3.2 The Web Ontology Language (OWL).. 20

3.2.1 SHOE... 21
3.2.2 OIL... 21
3.2.3 DAML... 22
3.2.4 OWL Language Variants.. 22
3.2.5 Important OWL Constructs.. 23

3.2.5.1 OWL Classes... 23
3.2.5.2 OWL Properties... 24
3.2.5.3 Property Restrictions... 25

3.2.6 Discussion.. 25
3.3 OWL 2.. 26

3.3.1 Syntaxes.. 26
3.3.2 OWL 2 Features... 26

3.3.2.1 Negative Property Assertions.. 26
3.3.2.2 Qualified Cardinality Restrictions... 27
3.3.2.3 Property Chain Inclusion.. 27
3.3.2.4 Keys... 27

3.3.3 OWL 2 Sub-Languages... 28
3.3.3.1 OWL EL.. 28
3.3.3.2 OWL QL... 28
3.3.3.3 OWL RL... 28

3.3.4 Discussion.. 28
3.4 The Web Service Modeling Language WSML... 29

3.4.1 WSML Syntax and Structure.. 30
3.4.2 WSML Semantics ... 31

3.4.2.1 WSML DL Extension ... 32
3.4.2.2 WSML Core, Flight and Rule Semantic .. 33

3.5 Comparing OWL and WSML.. 33
3.5.1 The WSML Solution... 35
3.5.2 The OWL Solution.. 38
3.5.3 Comparison of Results... 42

4 Semantic Web Services... 43

ii

4.1 Web Services... 43
4.1.1 WSDL 1.1... 44
4.1.2 WSDL 2.0... 48

4.2 Semantic Markup for Web Services (OWL-S)... 49
4.2.1 Service Profiles.. 51
4.2.2 Service Model.. 58
4.2.3 Service Grounding... 61

4.3 Semantic Web Service Framework (SWSF).. 62
4.4 Web Service Modelling Ontology (WSMO).. 63

4.4.1 The WebService Element.. 64
4.4.2 The Goal Element.. 69
4.4.3 WSMO Grounding ... 72

4.5 Comparison.. 75
4.5.1 Goal based discovery.. 76
4.5.2 Service Choreography .. 78
4.5.3 Service Execution.. 79
4.5.4 Summary.. 79

5 Model Driven Architecture.. 79
5.1 Idea/Motivation... 80

5.1.1 Computational Independent Model.. 81
5.1.2 Platform Independent Model.. 82
5.1.3 Platform Specific Model... 83
5.1.4 Model Transformation.. 83

5.2 Meta Object Facility (MOF)... 85
5.3 Object Constraint Language (OCL)... 88

5.3.1 Invariants.. 88
5.3.2 Pre- and Postconditions... 89
5.3.3 Initial and Derived Values.. 90
5.3.4 Operation Body Expressions... 90

5.4 Ontology Definition Metamodel (ODM)... 93
5.5 Discussion.. 94

6 Ontology Modelling... 96
6.1 General Ontology Modelling Guidelines.. 96
6.2 Governance Enterprise Architecture (GEA)... 97

6.2.1 GEA Object Model for Service Provisioning.. 97
6.3 Discussion.. 99

7 Ontology Driven E-Government... 99
7.1 Initial Feasibility Study.. 101

7.1.1 Prototype Requirements and Example Scenario... 101
7.1.2 Semantic Service Model and Ontologies... 101
7.1.3 Generating Forms to Access the Permanent Parking Permit Service..103
7.1.4 Lessons Learned... 105

7.2 Technology Selection... 106
7.3 Meta-Model.. 106

7.3.1 How to create the ODEG meta-model... 107
7.3.2 WMSO-PA – An WSMO implementation of GEA-PA... 107
7.3.3 GEA-SeGoF – Specialising WSMO/GEA-PA... 111
7.3.4 PersonData Ontology... 114

7.4 Service Locator.. 115
7.4.1 Selecting a Desire.. 117
7.4.2 Refining a Desire.. 119
7.4.3 The Service Finding Algorithm... 125

7.5 Semantic Forms... 126
7.5.1 Determining Required Service Input.. 126

iii

7.5.2 Rendering the Electronic Forms ... 128
7.5.3 Marking the Model... 134

7.6 Auxiliary Service Modelling.. 140
7.6.1 The Auxiliary Service Ontology.. 141
7.6.2 Implementing Auxiliary Services.. 144
7.6.3 Enabling Auxiliary Services... 146

7.7 WSDL and XSD Generation... 149
7.7.1 Converting Ontologies to XML Schema... 149
7.7.2 Generation of WSDL Files... 156

7.8 Implementing ODEG web services ... 161
7.9 The Big Picture... 166

8 Related Work.. 167
8.1 Goal Oriented Discovery for Semantic Web Service... 167
8.2 Domain Knowledge-Based Automatic Workflow Generation ... 167
8.3 SemanticGov.. 169
8.4 TerreGov... 172
8.5 SUPER - Semantics Utilized for Process management within and between Enterprises173
8.6 Access-eGov.. 174

9 Conclusion & Outlook... 178

iv

List of relevant Publications
All papers listed represent parts of this dissertation that have already been published and are accepted
submissions to international conferences, journals and books that have all undergone a qualified peer review
process.

• Bernd Stadlhofer and Peter Salhofer,„ Automatic Generation of E-Government Forms from Semantic
Descriptions" in Proceedings of the 1st International Conference on Theory and Practice of
Electronic Governance, Macao, China, pp 12-19, 10-13 December 2007

This paper presents the approach that was chosen for the prototypic implementation. The main
author was also the author of the diploma thesis. My contribution was to define the structure of the
paper and proofreading.
All other papers were entirely written by me. The co-authors are members of the ODEG software
development team and were responsible for providing screen-shots and proofreading.

• Peter Salhofer and Bernd Stadlhofer, "e-Government Service Discovery based on Citizens'
Desires" in Proceedings of the 4th International Conference on e-Government , RMIT University
Melbourne, Australia, pp 371-380, 23-24 October 2008

This paper describes the algorithm behind the service finder component.

• Peter Salhofer, Gerald Tretter and Bernd Stadlhofer "Goal-Oriented Service Selection" in
Proceedings of the 2nd International Conference on Theory and Practice of Electronic Governance ,
Cairo, Egypt, pp 60-66, 1-4 December 2008

In this paper the overall service identification approach was presented.

• Peter Salhofer, Bernd Stadlhofer, "Ontology Modeling for Goal Driven E-Government" in
Proceedings of the 42nd Hawaii International Conference on System Sciences, HICCS 42 , 5-8
January 2009, Big Island Hawaii, USA, IEEE, pp 1-9, 2009

This paper focuses on the meta-model used for the service identification component.

• Peter Salhofer, Bernd Stadlhofer, Gerald Tretter and Barbara Meyer, "www.SeGoF.org - Semantic E-
Government Forms" in Proceedings of Ongoing Research, General Development Issues and
Projects of EGOV 09, 8th International Conference , Linz, August 31 - September 5, 2009, pp 289-
296

This paper describes the form generation process.

• Peter Salhofer, Bernd Stadlhofer and Gerald Tretter, "Ontology Driven E-Government" in Politics,
Democracy and E-Government: Participation and Service Delivery (Reddick, Ch., Ed.), Information
Science Reference, April 2010, pp 383-401

This article outlines the idea behind ODEG.

• Peter Salhofer, Bernd Stadlhofer, "Knowledge-first Web Services - An E-Government Example" in
Proceedings of the 6th International Conference on Networked Computing and Advanced
Information Management, NCM2010, August 16-18 2010, Seoul, Korea, pp 218-223

The focus of this paper lies on ODEG's support for creating web-services based on semantic
models.

v

• Peter Salhofer, Bernd Stadlhofer, “Semantic MDA for E-Government Service Development “ in
Proceedings of the 45th Hawaii International Conference on System Sciences, HICCS 45 , 4-7
January 2012, Grand Wailea, Maui, USA, IEEE [to be published in 2012]

This paper represents a short version of the entire dissertation and covers almost all aspects of the
approach presented here.

vi

Abstract
This paper describes a new comprehensive approach to the creation of public electronic services called
Ontology Driven E-Government (ODEG). The concepts applied incorporate principles from Model Driven
Architecture (MDA) and Semantic Web Services (SWS). Both of these techniques have been intensively
hyped but for the time being could not keep up with the expectations. By combining these two approaches, a
new way to create E-Government services could be established that tries to overcome the disadvantages of
either of the underlying technologies. MDA, a software engineering practice, aims at reducing system
development effort by automatically transforming models of systems into running applications. Semantic
Web Services provide machine interpretable descriptions of web services that allow so called software
agents to automatically and autonomously achieve specific goals for their users. The very principle of the
approach presented here is to provide a running system based on a model expressed by semantic
technologies. Whereas classical MDA uses models based on the Unified Modelling Language (UML), ODEG
uses ontologies. The clear focus on E-Government allows for a well-defined and simple meta-model that can
be used as a scaffold for new public services. The resulting system model is directly interpreted by a runtime
environment. An automatic semantic reasoner represents the core of this system allowing to utilise the
immense expressiveness of semantic technologies not only during design time but also during the execution
of the system. This allows for a whole new quality of electronic services. Semantic descriptions of public
procedures can be used to identify relevant services in a new intuitive way that solely focuses on the citizen's
point of view. Since every service holds a description of the information that is necessary in order to
consume it, the system interactively gathers this information whenever a service is about to be used. Since
the input to a service is represented by a concept model that makes up the specific application domain of the
service, the information elicitation process automatically adapts to the specific situation of the current user.
This leads to electronic dialogues that are dynamically rendered based on concepts that reflect the current
need of the citizens and only contain information that is specific and relevant. Since the model is interpreted
every change to the model will show immediate effect in the system. Thus, changes to the system can be
easily achieved by simple modifying the model without any programming effort at all. Besides supporting
service identification and service utilisation ODEG also supports the implementation of the actual electronic
procedures. Therefore ODEG automatically generates a WSDL description for every single electronic service
together with all XML datatypes needed. This service interface can be used to model a BPEL process that
executes the procedure in a service oriented environment.

vii

Illustration Index
Figure 1: Schematic Overview of Ontology Driven E-Government (own illustration)...3
Figure 2: The Semantic Web Tower ([23], Copyright © 2000 World Wide Web Consortium. All Rights
Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)7
Figure 3: Graphical Representation of an RDF-Triple ([28] Copyright © 2004 World Wide Web Consortium.
All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)8
Figure 4: RDF graph presenting the situation described in Listing 3 (own illustration).9
Figure 5: OWL and its predecessors (own illustration based on [36]) ..21
Figure 6: WSML variants [73].. 29
Figure 7: Sample scenario travel agency business (own illustration)... 34
Figure 8: WSML travel agency example ontology. Screenshot from WSMO Toolkit ..35
Figure 9: OWL 2 travel agency example ontology. Protegé screenshot. .. 38
Figure 10: A Web Service sample Scenario (own illustration).. 44
Figure 11: WSDL 1.1 Structure (own illustration).. 45
Figure 12: Top-level description elements in WSDL 2.0 (own illustration)..48
Figure 13: OWL-S top-level classes ([96], Copyright © 2004 World Wide Web Consortium. All Rights
Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)50
Figure 14: The OWL-S ServiceProfile ([96], Copyright © 2004 World Wide Web Consortium. All Rights
Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-2002123150
Figure 15: The OWL-S variable hierarchy (own illustration, restored from
http://www.ai.sri.com/daml/services/owl-s/1.2/Process.owl using Protegé). ...51
Figure 16: Definition of input variables in a service profile (own illustration)..52
Figure 17: Class hierarchy to model preconditions in OWL-S (own illustration, extracted from
http://www.daml.org/services/owl-s/1.2/generic/Expression.owl using Protogè)..53
Figure 18: RDF-graph-like structure of the Result class an its properties (own illustration based on [97])55
Figure 19: The top level OWL-S process ontology[97]... 58
Figure 20: Basic OWL-S classes needed to model a composite process (own illustration based on [97]).59
Figure 21: Data binding classes to define the input of component processes (own illustration constructed
from http://www.ai.sri.com/daml/services/owl-s/1.2/Process.owl).. 59
Figure 22: Required elements to model OWL-S producer-push scenarios within a composite process (own
illustration based on [97]). .. 60
Figure 23: Example composite process reconstructed from http://www.ai.sri.com/daml/services/owl-
s/1.2/BravoAirProcess.owl (own illustration)... 61
Figure 24: OWL-S classes to model WSDL service grounding (extracted from
http://www.ai.sri.com/daml/services/owl-s/1.2/Grounding.owl, own illustration)...62
Figure 25: The WSMO approach to describe a web service's functional aspects (Reprinted from [113], page
87 with permission from IOS Press) ... 66
Figure 26: WSMO Goal Model Overview[122].. 70
Figure 27: WSMO data grounding approaches[125].. 72
Figure 28: MDA's different model levels (own illustration) ... 80
Figure 29: MDA model taxonomy ([141] page 193).. 81
Figure 30: The Waterfall Model in Software Engineering (own illustration based on [147])83
Figure 31: MDA Transformation Paths (own illustration).. 84
Figure 32: MDA Transformation Process based on Marking ([136], p. 3-8) ...84
Figure 33: Mapping of metamodels allows for direct model-to-model transformation ([136],p. 3-9)85
Figure 34: The MOF metalevels (own illustration).. 86
Figure 35: Example of four-layer metamodel hierarchy ([152],page 19) ..86
Figure 36: UML Infrastructure Library: Class definition ([152], page 93) .. 87
Figure 37: UML model of the sample scenario that is the basis for Listing 50 (own illustration created with
ArgoUML).. 90
Figure 38: ODM Metamodel of an RDF triple ([156],page 35).. 93
Figure 39: ODM metamodel of the OWL class ([156],page 69).. 94

viii

Figure 40: The GEA detailed object model for service provision [175] ...98
Figure 41: A typical ODEG usage scenario (own illustration)... 100
Figure 42: Part of the prototype's service model. The general model is shown on the left and the description
of the permanent parking permit service on the right (own illustration based on [177]).102
Figure 43: Fragment of the prototype's domain model (own illustration) ..102
Figure 44: Introducing constraints by subclassing existing class with restricted properties (own illustration)
... 103
Figure 45: Overview of the prototype's modelling and generation process (adapted from [177], page 63) ...105
Figure 46: Overview of framework provided ontologies and service specific ontologies (own illustration)107
Figure 47: Concept hierarchy of WSMO-PA societal entities and their relations to corresponding PROTON
Top module concepts (own illustration)... 108
Figure 48: Part of the WSMO-PA ontology representing ServiceOutcome and ServiceInput concepts (own
illustration)... 109
Figure 49: Sample usage scenario of the ValidConcept service input type (own illustration)110
Figure 50: The ServiceProcess concept and its relation to other elements (own illustration)110
Figure 51: The ODEG specific specialisation of WSMO-PA called GEA-SeGoF ontology (own illustration) . 111
Figure 52: Concept hierarchy describing different possible implementation types of public services (own
illustration)... 112
Figure 53: Main concepts and structure of the PersonData ontology (own illustration)114
Figure 54: The Desire concept and its related concepts (own illustration) ...116
Figure 55: Definition of the pull down permit service and its relations to a desire and its service constraint
(own illustration).. 117
Figure 56: Start page of the service locator showing a selection of available desires (screen shot of the
service finder application).. 117
Figure 57: A fragment of the construction ontology showing parts of the construction taxonomy (own
illustration)... 119
Figure 58: Specialisation as one way to refine a desire (screen shot from the service finder application)120
Figure 59: The PullDownRelevent concept and its direct sub-concept (screen shot of the WSMO Visualizer)
... 120
Figure 60: Dialogue to further specify the type of a residential house (screenshot of the service finder
application).. 122
Figure 61: Specifying the location of the pull down activity (screen shot of the service finder application) ...122
Figure 62: Result of the service finding process (screen shot of the service finder application)123
Figure 63: General overview of the desire refinement process (own illustration) ...124
Figure 64: Schematic overview of the service matching step when looking up relevant services (own
illustration)... 125
Figure 65: Initial screen of the building permit application without pre-filled instances.128
Figure 66: Initial building permit application form with data transferred from the service finder component . 128
Figure 67: Specialisation of the person concept assigned to the application property129
Figure 68: Form used to collect information about the applicant .. 129
Figure 69: Input form for specifying the properties of a physical person applying for a building permit130
Figure 70: Example of an error message caused by a model constraint that was not met131
Figure 71: Example of registering several degrees.. 132
Figure 72: Definition of the applicant property after personal data was successfully collected.132
Figure 73: Refinement path consisting of attribute value specification and classification/ specialisation (own
illustration)... 133
Figure 74: Part of the final overview that allows the user to review the application before it is actually
submitted... 134
Figure 75: Dialogue asking the current user to select different types of activities that will be offered via the
new business that is about to be registered (currently available in German only). ..137
Figure 76: Automatically generated form to specify a garage.. 138
Figure 77: Concept graph representing the path of a default value for the municipality attribute139
Figure 78: Screenshot showing the effect of a help text ... 140
Figure 79: Different auxiliary services as defined in the auxiliary service ontology..141

ix

Figure 80: A small part of the Austrian administration hierarchy according to the GEA meta-model142
Figure 81: Screenshot of a form that uses the street name provider service ...144
Figure 82: The list of values created for the disctrictCadastre property of the PieceOfLand concept.147
Figure 83: Screenshot of the input form used to get values for an instance of type PieceOfLand.148
Figure 84: An instance of PieceOfLand was successfully added to the application149
Figure 85: XSD type hierarchy of the GasFiringInstallation type.. 153
Figure 86: Resolving type conflicts be re-arranging of properties (own illustration)156
Figure 87: Schematic overview of the WSDL creation process based on the building permit application
example (own illustration)... 157
Figure 88: Schematic view on services and underlying processes (own illustration).161
Figure 89: Outside view on a BPEL process and its partner links (Screenshot of the Business Registration
Process opened in the Netbeans SOA Module's CASA viewer)... 162
Figure 90: Schematic overview of the business registration BPEL process (own illustration)163
Figure 91: Snippet of the business registration BPEL process showing the creation of a new file (screenshot
from Netbeans BPEL Designer).. 164
Figure 92: Mapping of part of the message necessary to create a new file ...164
Figure 93: Sample JBI components configuration (own illustration)... 165
Figure 94: ODEG structural overview (own illustration).. 166
Figure 95: Example service component hierarchy used by the automatic workflow generation approach
([210], page 4)... 168
Figure 96: Regulation ontology used for business registration process ([210], page 5)168
Figure 97: A blank user profile ([210], page 9).. 169
Figure 98: Composing public services based on existing service operations ([211],page 37)170
Figure 99: A sample goal tree used for the so called Greek Naturalization Service ([212],page 4)171
Figure 100: The TerreGov eGovernment Interoperability Centre Platform(EGIC, [213], page 5)172
Figure 101: Business process composition based on semantic annotations of services and processes ([215],
page 43).. 173
Figure 102: The SUPER architecture ([219], page 7)... 174
Figure 103: Architecture of the Access-eGov platform ([224], page 3) .. 177

1

1 Motivation & Research Question
Currently public agencies are facing significant budget cuts. As a result they have to make sure that scarce
resources are used most effectively and efficiently. In the field of information and communication
technologies (ICT) this means that every new investment has to keep its value for the organisation for as
long as possible, which requires systems and infrastructures that are capable of being adapted to steadily
shifting requirements at low costs and with almost no effort. This will make sure that systems keep their
benefit for the organisation. All these requirements also apply for E-Government services offered to citizens.
Thus, the questions arises how electronic public services can be created and provided at high quality with
low effort and in a way that facilitates maintenance. To answer this question firstly the term quality has to be
characterised in the context of E-Government.

According to [1] E-Government is the execution of business processes that involve public agencies by the
means of ICT and electronic media. This covers a range of qualitatively different efforts, starting from offering
information about public services on public agencies' web sites and ending at fully transactional services that
are conducted entirely electronically. To asses these different levels of service sophistication, several
classification schemes exist [2][3][4]. Usually they distinguish between four different levels or stages similar
to these defined by Layne and Lee[2]:

1. Catalogue (Online presence, catalogue presentation, downloadable forms)

2. Transaction (Services and forms on-line, working database supporting online transactions)

3. Vertical Integration (Local systems linked to higher level systems within similar functionalities)

4. Horizontal Integration (Systems integrated across different functions, real one stop shopping for
citizens)

Probably the most interesting aspect of this service sophistication model is, that the availability and
integration of electronic services on different governmental levels is a prerequisite to reach the final stage. As
a consequence, the evolvement of electronic service maturity at lower level Governments (e.g. Municipality
level) directly depends on the service maturity at higher level Governments (e.g. Provincial or Federal
Governments). Thus, every E-Government environment that strives for a high service maturity level has to
support the integration of different kinds of external services as well. This is why technologies that facilitate
the integration of services across system boundaries play a central role in E-Government. Generally, high
quality E-Government services are showing a high degree of integration, which allows them to offer
comprehensive services via a single entry point.

The next question is how can these services be created with minimal effort?

In the software engineering domain exist several approaches that try to reduce the development effort for
new systems. One of these approaches is known under the term agile development. This encompasses a
set of methodologies, technologies and tools that are emphasising at the fast production of code and thereby
trying to minimise the need for analysis, design and documentation tasks 1. In relative short development
iterations more and more parts of the system are implemented in close cooperation with the customer. This
ensures compliance with user requirements and early availability of deliverables.

Model Driven Architecture (MDA) [5] also aims at minimising development time and effort but its basic idea is
almost the opposite of the one behind agile methods. Instead of focusing on code production, it promotes
thorough analysis and comprehensive systems models. These models should be automatically converted
into running applications by code generators and can be reused for different platforms or programming
languages. To facilitate re-usability of models, there exist different layers of abstraction within the MDA based
on an approach called Meta Object Facility (MOF) [6]. At least theoretically, applying changes to the system
is about changing the model and re-generation of the application. Thus, the MDA seems to be good choice
for a methodology that allows for the fast creation of E-Government services that can also easily be
modified.

1 http://www.agilemanifesto.org/

2

Eventually the technology stack and the overall system architecture paradigm need to be defined.

As already pointed out at the beginning of this chapter, the ability to easily integrate other services
regardless whether they are provided within the same organisation or by any other governmental
organisation is key to reach high service maturity. Thus the technologies selected should facility integration
of services even across organisational boundaries.

One very popular technical approach to enable the integration of different services, regardless whether they
are offered at different governmental levels or not, is the use of web services [7]. Web service technology
can be used to offer services as a set of operations to arbitrary or distinct service consumers. One big
advantage of web services is their platform and programming language independency. This characteristic
makes them a first class candidate for every type of system integration. To facilitate the use of web services
by various types of clients, they typically come with a detailed technical description. This description is an
XML file expressed in the so called Web Service Description Language (WSDL) [8]. WSDL files contain the
definition of all operations that are offered by a particular service as well as the structure of input messages
consumed and output messages returned by them. Since this description is text it can be interpreted on any
platform and it is also detailed enough to automatically generate client code that can be used to access a
specific service. Overall system architectures that are based on such web services are known under the term
Service Oriented Architecture (SOA). This represents an approach that allows for the aggregation of
otherwise de-coupled services to more complex processes. Due to the minimal coupling between individual
services a software system that provides particular services can be replaced without causing an enormous
impact on the rest of the ICT landscape. This facilitates the adoption of new technologies and reduces the
risk of vendor lock-in situations. As a result SOA and web services seem to be an appropriate architectural
choice also for public agencies. So, web services are one excellent option to offer E-Government services at
high maturity levels.

However, when offering a (large) set of services there has to exist some mean to lookup appropriate services
that are suited to support citizens or businesses. Although there exists a mechanism that is called UDDI
(Universal description, discovery, and integration)[9] to facilitate the process of identifying and locating web
services that are offered on the web, it is hardly adopted anywhere. So called semantic web services [10],
however, address the problem of service discovery by introducing an additional semantic layer to existing
web services. While web services already include comprehensive descriptions of their technical structure
(syntax), additional semantic markup is needed to make them machine interpretable (semantic). This for
example allows so called software agents [11] to understand what a service does and what input data is
required to use it. Therefore semantic web services describe the so called IOPEs (Inputs, Outputs,
Preconditions and Effects) [12] of a service. Inputs and outputs are closely related to the input and output
datatypes of the actual web service, but refer to logical concepts that are represented by the datatypes used.
The set of preconditions describes the status of the world that has to be true in order to correctly use the
service. Effects describe how the service might change the status of the world and what is returned by the
service. This additional logical description is created by means of ontologies (see section 2.1). Based on the
availability of this information, appropriate services that serve a specific task or cause a specific effect can be
located and executed. Since every semantic web service contains a description of necessary preconditions
as well as its outcome, this allows for intelligent software agents that figure out a combination or
orchestration of several services to achieve even more complex goals.

Thus, while web services are apt to integrate E-Government services and processes that might span several
agencies, capabilities of semantic web services go far beyond this. The ability to link them to specific
intentions or goals together with their machine understandable nature could heavily facilitate identification
and localisation of appropriate public services. This, however, requires public services to be augmented with
semantic annotations as well as the creation of suitable user interfaces, since (semantic) web services are
primarily designed for machine-to-machine communication. Besides this, semantic annotations require the
creation of properly defined knowledge bases, so called ontologies. Since ontologies have to capture the
knowledge of a given domain, they can become very expressive but also probably complex, depending on
the chosen semantic framework and language. There are currently several different semantic modelling
languages available that could be used to describe semantic web services. The two most important ones are
OWL [13] and WSML [14]. Each of them exists in different variants, reflecting various trade-offs between
expressiveness and decidability resulting in different levels of complexity.

3

Despite their inherent complexity semantic web services are a great option for implementing E-Government
services, since the semantic description can be used to intelligently identify relevant services as well as for
their utilisation. Thus the question arises how the additional effort of creating a semantic knowledge base can
be compensated by the overall development process for new E-Government services that are implemented
as semantic web services?

The basic idea of the work presented here is to merge the concepts of MDA and semantic web services and
to apply them to the generation of new E-Government services with minimal effort. The research question is,
whether there exists a way to define semantic models for specific E-Government services that can be used
to efficiently generate executable on-line services that can easily be found, accessed and used by citizens
(see Figure 1). This would incorporate the advantages of both approaches; services that can be found based
on formally expressed semantic goals as well as minimised effort to implement such solutions. Services can
be developed rapidly, can be easily adapted and changes will have minimal effects on other parts of the ICT
infrastructure. This new approach to the creation of E-Government services is called Ontology Driven E-
Government (ODEG).

To show how ODEG can be designed to keep up with the aforementioned expectations, all relevant aspects
and possible solution scenarios have to be investigated and will be covered in the rest of this work. In
chapter 2 the basics of the semantic web together with a definition of the term ontology is given. To select an
appropriate semantic framework for the proposed solution it is necessary to know the capabilities of
ontologies in general and of existing candidate frameworks in particular. That is why chapter 3 provides a
presentation of some proposed standards for semantic modelling languages and compares their features to
support the decision to select one of them for use in the ODEG approach. Chapter 4 discusses the
characteristics of semantic web services and compares some existing frameworks. The necessary basics of
Model Driven Architecture and its various modelling levels are presented and discussed in chapter 5. Since
semantic modelling languages typically allow several ways to express identical situations, it seems
necessary to establish some modelling guidelines that reflect best practices and serve as a reference.
Recommendations about ontology modelling in general as well as a proposed reference model for the E-
Government domain are therefore presented in chapter 6. The actual approach to generate executable E-
Government services based on semantic models is presented in chapter 7, whereas similar approaches and
their differences to the presented one are discussed in chapter 8. Finally some essential conclusions from
the presented results are drawn and possible directions for future development are highlighted.

Figure 1: Schematic Overview of Ontology Driven E-Government (own illustration)

4

2 The Semantic Web

“The Semantic Web is a web of data, in some ways like a global database.” [15]

This was the initial definition of the semantic web given by Tim Berners-Lee one of the inventors of the
Internet back in 1998. The emphasis of his paper was clearly on improving the relevance of search results by
adding semantic annotations to web pages. This should enable search engines to understand the logical
context of web content. In the following years that were also characterised by the introduction of web
services, the understanding of the semantic web had obviously shifted. In 2001 a new vision of “The
Semantic Web” was published [16]. Today this article is considered to be the hour of birth of the semantic
web and describes a fictional scenario in which so called agents are able to solve rather complex tasks
autonomously. The Semantic Web was no longer a global database but a repository of services that can be
discovered, understood and utilised by software agents that try to achieve the goals of their human masters.
One of the elements that are needed to add the necessary amount of logic to facilitate this vision are
ontologies.

2.1 Ontologies
Ontologies are the basic elements of semantic systems since they describe the semantic aspects of any
given domain. There are numerous definitions of the term ontology available. One that is very frequently
cited, is the one by Thomas Gruber:

“An ontology is an explicit specification of a conceptualization” [17]

By citing [18] he also explains, that any approach of representing knowledge has to be based on
conceptualisation, which in turn is a collection of “objects, concepts, and other entities that are assumed to
exist in some area of interest and the relationships that hold among them”. This makes a conceptualisation a
simplified and abstract representation of the part of the world that should be modelled. All needed elements
are explicitly specified by means of a representational vocabulary, thus leading to the more precise definition:

“In such an ontology, definitions associate the names of entities in the universe of discourse
(e.g., classes, relations, functions, or other objects) with human-readable text describing what
the names mean, and formal axioms that constrain the interpretation and well-formed use of
these terms. Formally, an ontology is the statement of a logical theory.” [17]

In a more recent article Gruber refines this definition and provides slightly different explanations depending
on the context in which an ontology is used. For the context of computer and information sciences his
definition is:

“...an ontology defines a set of representational primitives with which to model a domain of
knowledge or discourse. The representational primitives are typically classes (or sets),
attributes (or properties), and relationships (or relations among class members). The definitions
of the representational primitives include information about their meaning and constraints on
their logically consistent application.” [19]

In this article Gruber also argues, that the most important reason why ontologies are considered to be at the
“semantic” level rather than at the “logical” level is their expressive power when it comes to logical
constraints. This expressiveness comes close to first-order logic.
A similar but rather pragmatic definition can be found in [11]:

5

“I define ontology as a set of knowledge terms, including the vocabulary, the semantic
interconnections, and some simple rules of inference and logic for some particular topic”

A more formal definition that further refines the previous description can be found in [20]:

Definition 1: An ontology with datatypes is a structure
O := (C, T, ≤C, R, A, σR, σA, ≤R, ≤A, I, V, ιC, ιT, ιR, ιA) consisting of

● six disjoint sets C, T, R, A, I and V called concepts, datatypes, relations, attributes,
instances and data values,

● partial orders ≤C on C called concept hierarchy or taxonomy and ≤T on T called type hierarchy,
● functions σR : R C" 2 called relation signature and σA : A C × T" called attribute signature,
● partial orders ≤R on R called relation hierarchy and ≤A on A called attribute hierarchy,

respectively,
● a function ιC : C 2" I called concept instantiation,
● a function ιT : T 2" V called datatype instantiation,
● a function ιR : R 2" I×I called relation instantiation,
● a function ιA : A 2" I×V called attribute instantiation.

Here is a short example that will point out the meaning of the different elements used in this definition.
Assume there is a simple ontology Odriving:=(C, T, ≤C, R, A, σR, σA, ≤R, ≤A, I, V, ιC, ιT, ιR, ιA) that models
certain aspects in the field of individual mobility where:

C={Thing, Person, Car, Driver, Drivinglicense}, T={String, Date},

≤C={(Thing, Person), (Thing, Car), (Thing, Drivinglicense), (Person, Driver)},

R={hasOwner,belongsTo}, A={hasName, hasExpirationDate},

σR={(hasOwner,(Car, Person)), (belongsTo,(Drivinglicense,Person))},

σA={(hasName,(Person,String)), (hasExpirationDate,(Drivinglicense,Date))},

≤R={}, ≤A={}, I={JohnFoo, BMW320, CarDrivingLicense4711},

V={“John Foo”, 31-12-2015},

ιC={(Person, {JohnFoo}), (Car, {BMW320}),
 (DrivingLicense,{CarDrivingLicense4711})},

ιT={(String,{“John Foo”}), (Date, {31-12-2015})},
ιR={(hasOwner,{(BMW320, JohnFoo)}),
 (belongsTo, {(CarDrivingLicense4711, JohnFoo)})}

ιA={(hasName,{(JohnFoo, “John Foo”)}),
 (hasExpirationDate, {(CarDrivingLicense4711, 31-12-2005)})}

This formal definition covers most of the aspects that are mentioned in the other definitions above. There are
classes, attributes, relationships among them and a vocabulary. The mapping between attributes and
classes as well as the instantiation methods impose some constraints on the model that restrict the creation
of valid elements.

Extracting the commonalities of the mentioned definitions leads to the following common characteristics of
ontologies:

● Ontologies contain abstractions of things in a particular domain, called classes or concepts.

● These concepts are expressed in a strictly formal language. Their description might include
attributes that in turn might be of a particular datatype.

● Concepts in an ontology form a taxonomy and might show addition relationships.

6

● Axioms can be used to further restrict the use of concepts.

2.2 Open vs. Closed World Assumption
It is important to know that most ontology modelling frameworks use the so called open world assumption
(OWA) [21], which basically assumes that the knowledge represented in a model is never complete. In the
context of creating an ontology, which is a model of some part of the world, these approach seems to be
intuitive, since such models can hardly be complete especially if there exist references to other domains as
well.

The practical consequence of this approach is, that if an assumption can not be explicitly inferred to be
wrong based on the existing model, it can't be decided at all, thus the answer is unknown.

Lets assume that an ontology contains the following fact:

“Vienna” isCapitalOf “Austria” .

If we would ask a reasoner based on the open world assumption whether Berlin is the capital of Austria, the
answer would be “unknown”, since, unless there is any rule saying that Berlin is not the capital of Austria,
this fact can't be inferred from the given information. In a system using the closed world assumption (CWA),
the answer would be “false”, since everything that is not known is assumed to be false. This behaviour is
also known as “Negation as Failure” [22]. A fact is considered to be false if every possible proof of this fact
fails. This leads to the important difference that OWA ontologies include restrictions to the world, whereas
closed world systems define everything that is possible. It is also important to notice that OWA systems are
monotonic. This means, that already made decisions (i.e. a result that is either false or true) will not change
when additional information is added to the system:

If we would ask whether Berlin is the capital of Germany and this fact is not deducible from the given
knowledge base an OWA system would respond “unknown”, whereas a CWA system would answer “false”.
As soon as a new fact, saying that Berlin is the capital of Germany, would be added to the ontology, the OWA
system would find an answer (“true”), but the CWA system would have to change it's previous answer to
“true”. Thus CWA systems behave non-monotonic.

The open world assumption, however, has also significant influence on modelling constraints that might limit
its use in classical systems engineering. Assume the following example:

The model of a flight reservation system contains some notion of flight and also a notion of seats.
Furthermore there is a cardinality constraint, limiting the number of persons that can be assigned to a seat on
a particular flight to one. Now the following situation occurs:

“Seat_10A” isReservedBy “Mrs. Miller” .

“Seat_10A” isReservedBy “Mrs. Johns” .

Any CWA system would immediately detect the inconsistency that there are two persons assigned to one
seat which contradicts the cardinality restriction. In an OWA system this potential conflict would be resolved
by inferring that Mrs. Miller and Mrs. Johns are actually the same person. This conclusion is made possible,
since OWA systems do not use the unique name assumption (UNA) either.

Even though the open world assumption seems to be most appropriate for the basic idea of modelling
ontologies, it shows some critical drawbacks in the field of systems engineering. Since in the proposed
approach to the model driven generation of E-Government services needs to model constraints as well, the
closed world assumption seems to be favourable.

7

3 Semantic Web Technologies

According to Tim Berners-Lee [23], the semantic web is based on a stack of technologies (Figure 2). The
base of this semantic web tower is formed by Uniform Resource Identifiers (URI) [24] that uniquely identify
resources and the Unicode standard [25] that allows to represent and share information in any language.
The next layer is formed by XML [26] which defines the notation used by the successive layers. This chapter
will give an overview about several semantic technologies that could be used within this proposed
architecture. The presented technologies are all W3C recommendations and start with the Resource
Description Framework (RDF), which was one the first widely accepted semantic notations. It was also the
foundation for the Web Ontology Language (OWL), which became recently available in version 2. Whereas
OWL is based on description logics, the Web Service Modeling Language (WSML) also incorporates logic
programming and rule paradigms.

3.1 Resource Description Framework – RDF
In October 1997 the World Wide Web Consortium has published the first RDF working draft. According to
this specification RDF was designed to be

“... a foundation for processing metadata; it provides interoperability between applications that
exchange machine-understandable information on the Web. RDF emphasizes facilities to
enable automated processing of Web resources” [27]

3.1.1 RDF Abstract Syntax
Any RDF expression represents a triple consisting of subject, predicate and object (Figure 3). Whereas the
subject is either an URI or a blank node, the predicate is an URI and the object is either an URI, a literal or a
blank node.

A set of RDF triples is called an RDF graph [28]. Only subjects and objects are considered nodes whereas
predicates are also called arcs. Since the predicate always points from the subject to the object the resulting
graph is directed (digraph). Furthermore, since the subject might only be an URI or a blank node, it has to be
a web resource (e.g. an HTML document) or at least an entity that can be uniquely identified using the web
(e.g. a person, a company, a product, ...). In the notion of RDF such triples are often used to describe
properties of given resources (the subject). This is why RDF uses the term property as a synonym for
predicate. In fact, the use of property instead of predicate is much more common in RDF [29]. Nevertheless,

Figure 2: The Semantic Web Tower ([23], Copyright © 2000 World Wide Web Consortium.
All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-
20021231)

8

since subject and object can be URI references, RDF triples can be used to describe any kind of relationship
between arbitrary (web) resources.

RDF also distinguishes between two different types of literals:

● plain literals: a unicode string with an optional language tag that is self-denoting.

● typed literals: a unicode string with a datatype URI that maps the value to the given datatype. This
also includes XML in which case the rdf:XMLLiteral type has to be used.

Listing 1 is a simple example that shows how to model some facts (author, subject, year of publication) about
a particular paper. Beside the fact that the subject is represented by an URI reference these facts are
expressed in natural language.

These three statements, however, are not valid RDF triples since the predicates used are not of type URI.
RDF uses URI references to make sure that predicates are machine processable, unique and can be easily
exchanged [30]. To express these facts in valid RDF we have to rewrite these statements in the N-Triple
notation [31] like shown in Listing 2.

In the next step this example will be refined in order to add more information about the author of this paper.
Therefore a so called blank node is introduced (Listing 3). Compared to the previous example, subject and
date of the paper identified by its URI are left unchanged. The creator property, however, now refers to a
blank node, which is identified by a generated id (“_:a” in this case). The blank node is of type
http://www.w3.org/2000/10/swap/pim/contact#Person and has the properties firstname, lastname and
organisation. The identifier of a blank node only has the purpose to allow local references to the node but is
not the label of the node. In fact, two graphs that are only distinguished by the id s of their blank nodes are
considered to be equal ([28], chapter 6.3).

Figure 3: Graphical Representation of an RDF-Triple ([28] Copyright © 2004
World Wide Web Consortium. All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314 has creator
whose value is Peter Salhofer
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314 has subject
whose value is e-Government
http://ieeexplore.ieee.org/stamp/stamp.jsp?tarnumber=4755547&isnumber=4755314 has date whose
value is 2009
Listing 1: Some simple facts expressed as triples of subject, predicate and object

<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314> \
<http://purl.org/dc/elements/1.1/creator> “Peter Salhofer” .
<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314> \
<http://purl.org/dc/elements/1.1/subject> “e-Government” .
<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314> \
<http://purl.org/dc/elements/1.1/date> “2009” .
Listing 2: Same facts as in Listing 1 expressed in N-Triple notation

9

Figure 4 shows this example as an RDF graph. There exist many ways to represent RDF triples. By
definition, every RDF document is a serialisation of an RDF graph into concrete syntax ([32], chapter 5.5).
Also tables in a relational database can be seen as RDF triples. If there is a table with multiple columns, one
row would represent a subject uniquely identified by its primary key. Every column in the table would
represent an object value and the column name would represent the predicate [28]. Another way to
represent RDF triple is the use of logical predicates. Since a predicate p defines a truth-value for a pair of
resources, the following notion could be used as well: R p(x,y).

3.1.2 RDF XML Syntax
RDF uses XML to encode RDF graphs. The exact grammar for RDF/XML can be found in [32]. The XML
representation of the N-triple example from Listing 3 is shown in Listing 4. Every RDF triple is contained in an
RDF description tag. The about attribute of this tag is the URI reference of the subject of the triple and the
property (predicate) is identified by its child-tag (e.g. dc:subject). The value of the child tag is the object of
the triple.

Description tags containing a blank node (another description tag without an about attribute) are

Figure 4: RDF graph presenting the situation described in Listing 3 (own illustration).

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314

e-Government 2009

http://www.w3.org/2000/10/swap/pim/contact#Person

Peter Salhofer FH JOANNEUM

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/2000/10/swap/pim/contact#firstname

http://www.w3.org/2000/10/swap/pim/contact#lastname

http://www.w3.org/2000/10/swap/pim/contact#organization

http://purl.org/dc/elements/1.1/creator

http://purl.org/dc/elements/1.1/datehttp://purl.org/dc/elements/1.1/subject

<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314> \
<http://purl.org/dc/elements/1.1/subject> "e-Government" .
_:a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> \
<http://www.w3.org/2000/10/swap/pim/contact#Person> .
_:a <http://www.w3.org/2000/10/swap/pim/contact#firstname> "Peter" .
_:a <http://www.w3.org/2000/10/swap/pim/contact#lastname> "Salhofer" .
_:a <http://www.w3.org/2000/10/swap/pim/contact#organization> "FH JOANNEUM" .
<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314> \
<http://purl.org/dc/elements/1.1/creator> _:a .
<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4755547&isnumber=4755314> \
<http://purl.org/dc/elements/1.1/date> "2009" .
Listing 3: Enhanced example using a blank node to add more information about the author
(creator)

10

representing sub-graphs rather than triples.

The RDF/XML syntax also allows for some abbreviations that help to make the resulting XML more compact.
Here is a list of some important abbreviations:

● If an object has several properties they can be modelled as multiple child properties in the same
description element

● If a property value is a string literal the property can be written as an attribute of the enclosing node
(attribute properties)

● If all property values are string literals of the same language and occur only once, they can be made
attribute properties of the enclosing element which is made an empty element

By applying these abbreviations, the XML representation can be significantly reduced like shown in Listing 5.

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

 <rdf:Description rdf:about="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=...">
 <dc:subject>e-Government</dc:subject>
 </rdf:Description>

 <rdf:Description rdf:about="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=...">
 <dc:creator>
 <rdf:Description rdf:type="contact:Person">
 <contact:firstname>Peter</contact:firstname>
 </rdf:Description>
 </dc:creator>
 </rdf:Description>

 <rdf:Description rdf:about="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=...">
 <dc:creator>
 <rdf:Description rdf:type="contact:Person">
 <contact:lastname>Salhofer</contact:lastname>
 </rdf:Description>
 </dc:creator>
 </rdf:Description>

 <rdf:Description rdf:about="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=...">
 <dc:creator>
 <rdf:Description rdf:type="contact:Person">
 <contact:organization>FH JOANNEUM</contact:organization>
 </rdf:Description>
 </dc:creator>
 </rdf:Description>

 <rdf:Description rdf:about="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=...">
 <dc:date>2009</dc:date>
 </rdf:Description>

 </rdf:RDF>
Listing 4: XML representation of the graph shown in Figure 4

11

3.1.3 RDF Schema – The RDFS Vocabulary
The RDF abstract syntax defines RDF triples and graphs but does not provide any mechanism to describe
properties and classes as well as the mapping between them. Therefore the RDF vocabulary description
language, RDF Schema (RDFS) is used [29]. In the RDF graph shown in Figure 4 various properties
(represented by the URI references at the arcs) and also a special type (Person) have been used. These
elements are described in separate RDF documents using RDFS and are called classes and properties.
Although this approach is conceptually similar to object oriented programming (OOP), there are some
important differences. Unlike OOP or other frame-based systems, RDFS class descriptions do not contain
the attributes of a class. Attributes are defined as separate classes on their own, are therefore global and are
linked to the classes they should belong to via special properties. Since attributes are classes, they can be
extended using inheritance as well.

The RDFS type system knows two different kinds of elements: classes and properties. In the following sub-
sections some of the most important vocabulary elements are explained. A complete description of RDFS
can be found in [29].

3.1.3.1 RDFS Classes
rdfs:Resource

This is the root of the RDFS class hierarchy. Every thing that is described in RDF is an instance of
rdf:Resource or more precisely is an a subclass of rdf:Resource.

rdfs:Class

This element represents classes in RDF. Like all other elements it is a subclass of rdfs:Resource which
means that all classes are resources as well. Classes are used to form groups of things with common
characteristics and can be used as types in RDF. In fact, everything that is referenced by an rdf:type
attribute is an instance of rdfs:Class (compare the example in Listing 4). Listing 6 shows a simple class
declaration.

rdfs:Property

 <Class rdf:about="http://www.w3.org/2000/10/swap/pim/contact#SocialEntity">
 <comment>
 The sort of thing which can have a phone number.
 Typically a person or an incorporated company, or unincorporated group.
 </comment>
 </Class>
Listing 6: Sample class declaration taken from http://www.w3.org/2000/10/swap/pim/contact.rd f
(Copyright © 2000 World Wide Web Consortium. All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

 <rdf:Description rdf:about="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=..."
 dc:subject="e-Government" dc:date="2009" >
 <dc:creator>
 <contact:Person contact:firstname="Peter" contact:lastname="Salhofer"
 contact:organization="FH JOANNEUM" />
 </dc:creator>
 </rdf:Description>
 </rdf:RDF>
Listing 5: Shortened version of the XML representation making use of abbreviations

http://www.w3.org/2000/10/swap/pim/contact.rdf

12

As already mentioned above, RDFS specifies class attributes as separate classes. The class rdfs:Property
is used for this purpose and is a subclass of rdf:Class. Listing 7 shows an example of a property definition.
The meaning of the domain and range tags will be explained in the next section.

3.1.3.2 RDF Properties
rdfs:range

This element is used to define the datatype of a given property. In the example shown in Listing 7, the
rdfs:range element limits all values assigned to the property birthday to be instances of the class Date.

Like all other RDF properties rdfs:range itself is a subclass of rdfs:Property.

rdfs:domain

This element is used to link a property to one or more classes. In object oriented programming, adding a
property to a class means that every instance of this class possesses an instance of this property. In RDF
the semantics of relating a property to a class is vice versa. Every instance that possesses this property is an
instance of the class specified by the rdf:domain tag. Taken the example from Listing 7 this would mean that
every instance that has a birthday attribute associated to it is an instance of the class SocialEntity.

rdf:type

This element can be used to define that a given resource is an instance of a specific class (see Listing 4 or
an example).

rdfs:subClassOf

This transitive property states that instances of the class enclosing this tag are also instances of the class
that is assigned as a value to this property. Listing 8 shows an example, saying that all instances of Person
are also instances of SocialEntity.

rdfs:subPropertyOf

 <rdf:Property rdf:about="http://www.w3.org/2000/10/swap/pim/contact#birthday">
 <domain rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#SocialEntity"/>
 <range rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#Date"/>
 </rdf:Property>
Listing 7: A simple property definition taken from http://www.w3.org/2000/10/swap/pim/contact.rdf
(Copyright © 2000 World Wide Web Consortium. All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)

 <rdf:Description rdf:about="http://www.w3.org/2000/10/swap/pim/contact#Person">
 <comment>A person in the normal sense of the word.</comment>
 <subClassOf rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#SocialEntity"/>
 </rdf:Description>
Listing 8: Defining a class Person as subclass of SocialEntity (from
http://www.w3.org/2000/10/swap/pim/contact.rdf, Copyright © 2000 World Wide Web Consortium.
All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)

 <rdf:Description rdf:about="http://www.w3.org/2000/10/swap/pim/contact#zip">
 <subPropertyOf rdf:resource="http://www.w3.org/2000/10/swap/pim/contact#postalCode"/>
 </rdf:Description>
Listing 9: Definition of ZIP code as a sub-property of postalCode (from
http://www.w3.org/2000/10/swap/pim/contact.rdf, Copyright © 2000 World Wide Web Consortium.
All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231)

http://www.w3.org/2000/10/swap/pim/contact.rdf
http://www.w3.org/2000/10/swap/pim/contact.rdf
http://www.w3.org/2000/10/swap/pim/contact.rdf

13

Defines a transitive relationship between two properties stating that one is a sub-property of the other. The
example shown in Listing 9 defines the property zip as a sub-property (a special form) of postalCode. As a
consequence, a class that is related to zip is also related to postalCode, which means it also has a property
of type postalCode.

3.1.4 RDF Semantics
Based on precise formal vocabularies defined in RDFS, RDF is a formal language to formulate assertions. A
basic semantic capability is to show, whether a given proposition is true or false. Assigning a boolean value
to a given sentence (e.g. an RDF triple) is also called interpretation. Thus interpretation defines a formal
description to decide the truth of or falsity of any expression of a logic [33].

3.1.4.1 Interpretation
The formal semantic model of RDF is based on model theory. Model theory is used to connect a formal
language with its interpretation. A key element is the truth definition (denotation) that specifies for each pair
of a sentence and a model whether the sentence is true or false using the given model [34]. More formally:

I S⊨ , I .. Interpretation, S .. Sentence
means that S is true in I, I satisfies S or I is a model of S

An interpretation is a model for an RDF graph if it is a model for every single sentence (RDF triple) in it. As a
consequence, by having given this definition it is obvious that there does not exist one single interpretation
for any given RDF graph. However, the number of possible interpretations is inversely proportional to the
number of assertions that are made about the world of discourse. This means that, the bigger the graph is,
the fewer interpretations might be available since there exist more constraints in the assertions that have to
be considered.

Before the denotation mechanism of RDF can be explained in more detail, the following definition is
important:

Def: A ground graph is an RDF graph that does not contain any blank nodes.

RDF uses the following way to define an interpretation:

“A simple interpretation I of a vocabulary V is defined by:
1. A non-empty set IR of resources, called the domain or universe of I.
2. A set IP, called the set of properties of I.
3. A mapping IEXT from IP into the powerset of IR x IR i.e. the set of sets of pairs <x,y> with x

and y in IR.
4. A mapping IS from URI references in V into (IR union IP)
5. A mapping IL from typed literals in V into IR.
6. A distinguished subset LV of IR, called the set of literal values, which contains all the

plain literals in V” [34]

Based on this definition RDF uses the following denotation algorithm for ground graphs (@ indicates a tag in
the N-triple notation which is typically used to indicate the datatype of a typed literal):

if E is a plain literal "aaa" in V then I(E) = aaa

if E is a plain literal "aaa"@ttt in V then I(E) = <aaa, ttt>

if E is a typed literal in V then I(E) = IL(E)

if E is a URI reference in V then I(E) = IS(E)

if E is a ground triple s p o. then I(E) = true if s, p and o are in V, I(p) is in IP and <I(s),I(o)> is in
IEXT(I(p)) otherwise I(E)= false.

14

if E is a ground RDF graph then I(E) = false if I(E') = false for some triple E' in E, otherwise I(E)
=true.

To further illustrate the use of this mechanism a short example is discussed. Assume there exists a
vocabulary consisting of the following terms {<c:article>, <c:authorOf>, <c:writtenBy>, “John Doe”}.

The given vocabulary consists of one plain literal and three URI references. For the sake of compactness
instead of absolute URIs their QNames [26] consisting of a namespace prefix and a local name are used.
Thus we assume that the namespace prefix used was already defined elsewhere. Now a possible
interpretation can be defined. Therefore first a set of existing resources has to be defined:

IR = LV {S,T}⋃

Since plain literals are considered to be self-contained, they directly represent some resources (the person
with the name “John Doe” in this case) and therefore are part of IR, more precisely members of the subset LV.
Beside the literal values two additional resources called S and T are defined in the interpretation. Hence IR

consists of the following elements: {John Doe, S, T}. In the next step a set of properties has to be defined
along with IEXT, which is an extension for the elements of IP. This means, that all possible relations are
defined.

IP = {T}

IEXT = (T {<S,T>,<T,John Doe>})�

In this definition property T also appears in the list of resources so it can also be used as subject and object.
This complies with the RDF abstract syntax, since a property is defined by an URI reference. In the next two
steps we have to map the terms of our vocabulary into the sets of resources and properties. Since the
interpretation defines a grammar for true sentences, this step is important from a semantic point of view.

IS = (<c:article> S,<c:authorOf> T,<c:writtenBy> T)� � �

IL = ()

The mapping IL is empty since there do not exist any typed literals in this example. Now sentences can be
checked whether they are true in I.

<c:article> <c:authorOf> <c:writtenBy> .

To prove this sentence we follow the algorithm defined above. Therefore we have to show that:

1. {<c:article>,<c:authorOf>,<c:writtenBy>} V⊆
2. I(<c:authorOf>) I∈ P

3. <I(<c:article>), I(<c:writtenBy>)> I∈ EXT(<c:authorOf>)

The given sentence turns out to be true since all elements are members of V, I(<c:authorOf>) = T which is
element of IP and <I(<c:article>), I(<c:writtenBy>)> = <S,T> is element of IEXT(I(<c:author>)) =

{<S,T>,<T,John Doe>}. On the other side the following sentence turns out to be false according to this
interpretation:

<c:article> <c:writtenBy> “John Doe” .

Again all elements used in this sentence are members of V and I(<c:writtenBy>) is member of IP. However,
<I(<c:article>),I(”John Doe”)> = <S,John Doe> is not member of IEXT(I(<c:writtenBy>)) = {<S,T>,<T,John

Doe}.

This formal theory allows for automated interpretation of RDF graphs, even the interpretation used in this
example does not reflect the typical human understanding of the given domain. An interpretation that would
come closer to this understanding would be the following one:

IR = LV {1,2,3}⋃

IP = {2}

15

IEXT = (2 {<1, John Doe>})�

IS = (<c:article> 1,<c:authorOf> 3,<c:writtenBy> 2)� � �

IL = ()

In this interpretation the following sentence would hold true:

<c:article> <c:writtenBy> “John Doe” .

The following sentences are false within this interpretation:

<c:article> <c:authorOf> <c:writtenBy> .

“John Doe” <c:authorOf> <c:article> .

The latter sentence is false since there exists no valid extension for I(<c:authorOf>) in the interpretation and
since the subject in this case is a literal it does not comply with the RDF abstract syntax that only allows URI
references or blank nodes for subjects.

This schema can be extended to support interpretation for non-ground graphs as well [33]. Therefore a
mapping A is used that maps blank nodes to IR. The extended interpretation I+A simply uses A to obtain an
interpretation for blank nodes. The denotation algorithm needs to be extended to support blank nodes:

“If E is a blank node and A(E) is defined then [I+A](E) = A(E)
If E is an RDF graph then I(E) = true if [I+A'](E) = true for some mapping A' from blank(E) to IR,
otherwise I(E)= false.” [33]

Where blank(E) defines the set of blank nodes in E.

3.1.4.2 Entailment
Entailment is an essential characteristic in semantic technologies. Generally A entails B if whenever A is true
also B is true and if A is false also B is false. In the terms of semantics this can be taken as that the meaning
of A already includes the meaning of B. If A entails B and B entails A then both mean the same thing.

One practical impact on RDF is the validity of a graph that was constructed from other graphs. A graph E
constructed from a set of graphs S is valid, if every interpretation that satisfies every member of S also
satisfies E. In other words, if the set S entails E.

A detailed description of entailment together with useful lemmas and their proofs can be found in [33].

3.1.4.3 RDF Vocabulary Interpretation
In section 3.1.4.1 model theoretic interpretation was discussed in general. By adding the so-called RDF
vocabulary to a given vocabulary V and adding some constraints on valid interpretations, additional
semantics can be added. Interpretations that incorporate these constraints a called rdf-interpretations.

Def.: An rdf-interpretation of a vocabulary V is a simple interpretation I of (V union rdfV) which
satisfies the extra conditions described in Table 1 and all the rdf axiomatic triples [33].

The RDF vocabulary rdfV consists of {rdf:type, rdf:Property, rdf:XMLLiteral, rdf:nil, rdf:List
rdf:Statement, rdf:subject, rdf:predicate, df:object, rdf:first, rdf:rest, rdf:Seq, rdf:Bag,

rdf:Alt, rdf:_1, rdf:_2, ... , rdf:value}.

The first condition in Table 1 only allows for properties that are of type rdf:Property. Additionally the rdf
axiomatic triples (please see [33], chapter 3.1 for a complete list) defines the following elements as
properties: rdf:type, rdf:subject, rdf:predicate, rdf:object, rdf:first, rdf:rest, rdf:value,

rdf:1...n, rdf:nil. Since this condition requires all properties to appear in an ordered pair defined by IEXT,
which in turn is a mapping into IRxIR, the set of properties IP is a subset of IR.

16

The next two conditions in Table 1 define, that a literal of type XML is treated like a plain literal if the XML
content is well-typed, otherwise it is ignored.

x is in IP if and only if <x,I(rdf:Property)> is in IEXT(I(rdf:type))

If "xxx"^^rdf:XMLLiteral is in V and xxx is a well-typed XML literal string, then
IL("xxx"^^rdf:XMLLiteral) is the XML value of xxx;
IL("xxx"^^rdf:XMLLiteral) is in LV;
IEXT(I(rdf:type)) contains <IL("xxx"^^rdf:XMLLiteral), I(rdf:XMLLiteral)>

If "xxx"^^rdf:XMLLiteral is in V and xxx is an ill-typed XML literal string, then
IL("xxx"^^rdf:XMLLiteral) is not in LV;
IEXT(I(rdf:type)) does not contain <IL("xxx"^^rdf:XMLLiteral), I(rdf:XMLLiteral)>.

Table 1: Semantic conditions for rdf-interpretations[33]

3.1.4.4 RDFS Interpretation
The RDFS vocabulary rdfsV (also see section 3.1.3) adds additional semantics to RDF and consists of the
following elements:

rdfsV = {rdfs:domain, rdfs:range, rdfs:Resource, rdfs:Literal, rdfs:Datatype, rdfs:Class,

rdfs:subClassOf, rdfs:subPropertyOf, rdfs:member, rdfs:Container,

rdfs:ContainerMembershipProperty, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy, rdfs:label}

Like rdf-interpretation also rdfs-interpretation imposes additional constraints on an interpretation and defines
a set of axiomatic triples. In fact, the interpretation needs to be extended to conveniently deal with the
meaning of the rdfs:Class element. Therefore a new set IC, consisting of all classes and a special extension
ICEXT are introduced.

Def.: An rdfs-interpretation of V is an rdf-interpretation I of (V union rdfV union rdfsV) which satisfies
the semantic conditions shown in Table 2 and all the RDFS axiomatic triples [33].

1 x is in ICEXT(y) if and only if <x,y> is in IEXT(I(rdf:type))

IC = ICEXT(I(rdfs:Class))

IR = ICEXT(I(rdfs:Resource))

LV = ICEXT(I(rdfs:Literal))
2 If <x,y> is in IEXT(I(rdfs:domain)) and <u,v> is in IEXT(x) then u is in ICEXT(y)

3 If <x,y> is in IEXT(I(rdfs:range)) and <u,v> is in IEXT(x) then v is in ICEXT(y)

4 IEXT(I(rdfs:subPropertyOf)) is transitive and reflexive on IP

5 If <x,y> is in IEXT(I(rdfs:subPropertyOf)) then x and y are in IP and IEXT(x) is a subset of
IEXT(y)

6 If x is in IC then <x,I(rdfs:Resource)> is in IEXT(I(rdfs:subClassOf))

7 If <x,y> is in IEXT(I(rdfs:subClassOf)) then x and y are in IC and ICEXT(x) is a subset of
ICEXT(y)

8 IEXT(I(rdfs:subClassOf)) is transitive and reflexive on IC

9 If x is in ICEXT(I(rdfs:ContainerMembershipProperty)) then:
<x,I(rdfs:member)> is in IEXT(I(rdfs:subPropertyOf))

10 If x is in ICEXT(I(rdfs:Datatype)) then <x,I(rdfs:Literal)> is in IEXT(I(rdfs:subClassOf))

Table 2: Semantic conditions for rdfs-interpretation [33]

The definitions in row 1 of Table 2 state that ICEXT defines a set, where all members are of the same type as
the argument (see first line). Thus ICEXT(I(rdfs:Class)) defines a set of all classes, ICEXT(I(rdfs:Resource)) a
set of all resources and so forth.

17

Row 2 defines an interpretation for rdfs:domain: If there exists a subject and an object for an rdfs:domain
property (x and y) and there also exists and extension <u,v> for x (subjects of the rdfs:domain property have
to be properties to be valid within this interpretation), then u is of type y. Thus the object (y in this case) of an
rdfs:domain triple defines the type. Consequently, every resource that has this property is of type y.

The next condition defines the interpretation for rdfs:range which is similar to row 2, except that the object of
a property of type rdfs:range has to be an instance of rdfs:Class and determines the type of the
corresponding subject.

The condition in row 4 is obvious. In row 5 the interpretation for rdfs:subPropertyOf is further specified,
defining that subject and object of this property both have to be instances of class and every relation defined
by the sub-property is also member of the relation defined by the super-property. The next row defines that
every class is a sub-class of rdfs:Resource. Row 7 provides an interpretation for rdfs:subClassOf, stating
that it can only be applied to classes and all instances of the sub-class are also instances of the super-class.

The rule in row 9 defines that instances of rdfs:ContainerMembershipProperty are sub-properties of
rdfs:member.

Row 10 defines that all instances of rdfs:Datatype are sub-classes of rdfs:Literal.

Together with the rdfs axiomatic axioms (see [33], section 4.1) the rdfs-interpretation incorporates the
semantic of RDF and RDFS.

3.1.4.5 Entailment Rules
All the constraints discussed in the previous sections have added semantic conditions that can in turn be
used to define so called entailment rules. These rules are the basis for automatic inference and therefore are
essential to every semantic framework. Rdf and rdfs entailment rules are defined as triples that represent
patterns to recognise situations where these rules can be applied. They further describe a resulting triple that
can be added to the graph so that the resulting bigger graph is entailed from the original one. All rules are
taken from [33]. As a result the application of these rules extends the original graph. These extensions are
basically “new” additional facts that were inferred from the so-called ground facts. Thus, by applying
entailment rules new implicit knowledge can be derived from a set of some ground facts, which adds
enormous value to semantic models. These additional triples are sometimes also called “virtual triples” and
are accessible using query languages like RDQL[35].

To understand the meaning of the terms used, the following explanation is necessary:

● aaa, bbb etc., represent URI references that are typically used as predicates of a triple
● uuu, vvv etc., represent either URI references or blank node identifiers and can thus be used as

subjects and objects of triples
● xxx, yyy etc., stand for URI references, blank node identifiers or literals and are used as objects
● lll stands for a literal
● _:nnn is a blank node identifier

The interpolation lemma says that a graph S entails a graph E if and only if a subgraph of S is an instance of
E. An instance of a graph has no blank nodes in it. Thus a graph E can be entailed from a graph G by
replacing some URI references with blank nodes that have the same meaning as the original URI references
(“are allocated to” the original URI references). This fact is covered by the so-called simple entailment rules
(Table 3).

18

Rule name if E contains then add
se1 uuu aaa xxx . uuu aaa _:nnn .

where _:nnn identifies a blank node allocated to xxx by rule se1
or se2.

se2 uuu aaa xxx . _:nnn aaa xxx .
where _:nnn identifies a blank node allocated to uuu by rule se1
or se2.

Table 3: Simple entailment rules[33]

A specialisation of rule se1 is the so-called literal generalisation rule (Table 4). It simply replaces a literal with
a unique blank node identifier allocated to it. The consequence of the application of this rule is important,
since a blank node identifier can also be used as subject, which allows for making assertions about literals.

Rule name if E contains then add
lg uuu aaa lll . uuu aaa _:nnn .

where _:nnn identifies a blank node allocated to the literal lll by
this rule.

Table 4: Literal generalisation rule[33]

The inverse of rule lg is the literal instantiation rule gl (Table 5). Notice that a blank node identifier derived
by rule lg can only be replaced by the literal if it is in an object position.

Rule name if E contains then add
gl uuu aaa _:nnn .

where _:nnn identifies a blank node allocated to the literal lll by
rule lg.

uuu aaa lll .

Table 5: Literal instantiation rule[33]

The RDF entailment rules shown in Table 6 are straightforward consequences of the conditions for rdf-
interpretations listed in Table 1.

Rule name if E contains then add
rdf1 uuu aaa yyy . aaa rdf:type rdf:Property .
rdf2 uuu aaa lll .

where lll is a well-typed XML literal
.

 _:nnn rdf:type rdf:XMLLiteral .
where _:nnn identifies a blank node allocated to
lll by rule lg.

Table 6: RDF entailment rules[33]

Similar to RDF entailment rules also RDFS entailment rules (see Table 7) are consequences of rdfs-
interpretation conditions.

In the following paragraphs all rdfs entailment rules will be explained by their relation to corresponding rdfs-
interpretation conditions in Table 2. Thus whenever an rdfs condition is referred by a number, this number is
the corresponding row number in Table 2.

Rule rdfs1 results from condition 1. To be correct, the literal has to be in LV, thus it also has to be element of
ICEXT(I(rdfs:Literal)) which is only true if there exists an extension <lll,rdf:Literal> in IEXT(I(rdf:type))

which means: _nnn rdf:type rdfs:Literal (lg has to be used since literals must not be used as subjects).

Rdfs2 is the straightforward application of condition 2: <aaa,xxx> is element of IEXT(I(rdfs:domain)) and
<uuu,yyy> is element of IEXT(I(aaa)), thus uuu is in ICEXT(I(xxx)) which means uuu rdf:type xxx.

19

Example:

<c:hasName> <rdfs:Domain> <c:person>

<anURI> <c:hasName> “John Doe”

Entailed triple:

<anURI> rdf:type <c:person>

Rdfs3 is induced by condition 3: <aaa,xxx> is in IEXT(I(rdfs:range)) and <uuu,vvv> in IEXT(I(aaa)), which
forces vvv to be in ICEXT(I(xxx)).

Example:
<c:author> rdf:range <c:person> .

<c:article> <c:author> <anURI> .

Entailed triple:
<anURI> rdf:type <c:person>

Rule
Name

if E contains then add

rdfs1 uuu aaa lll.
where lll is a plain literal (with or without a
language tag).

 _:nnn rdf:type rdfs:Literal .
where _:nnn identifies a blank node allocated
to lll by rule lg.

rdfs2 aaa rdfs:domain xxx .
uuu aaa yyy .

uuu rdf:type xxx .

rdfs3 aaa rdfs:range xxx .
uuu aaa vvv .

vvv rdf:type xxx .

rdfs4 uuu aaa xxx . uuu rdf:type rdfs:Resource .

rdfs4b uuu aaa vvv. vvv rdf:type rdfs:Resource .

rdfs5 uuu rdfs:subPropertyOf vvv .
vvv rdfs:subPropertyOf xxx .

uuu rdfs:subPropertyOf xxx .

rdfs6 uuu rdf:type rdf:Property . uuu rdfs:subPropertyOf uuu .

rdfs7 aaa rdfs:subPropertyOf bbb .
uuu aaa yyy .

uuu bbb yyy .

rdfs8 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf rdfs:Resource .

rdfs9 uuu rdfs:subClassOf xxx .
vvv rdf:type uuu .

vvv rdf:type xxx .

rdfs10 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf uuu .

rdfs11 uuu rdfs:subClassOf vvv .
vvv rdfs:subClassOf xxx .

uuu rdfs:subClassOf xxx .

rdfs12 uuu rdf:type
rdfs:ContainerMembershipProperty .

uuu rdfs:subPropertyOf rdfs:member .

rdfs13 uuu rdf:type rdfs:Datatype . uuu rdfs:subClassOf rdfs:Literal .
Table 7: RDFS entailment rules

Rdfs4 and rdfs4b are a consequence of applying rdfs3 to the following two axiomatic triples (see [33] for a
complete list):

20

rdf:subject rdfs:range rdfs:Resource .

rdf:object rdfs:range rdfs:Resource .

Condition 4 directly leads to rdfs5 (transitivity) and rdfs6 (reflexivity), whereas rdfs7 is the application of
condition 5.

Since according to condition 6 every rdfs:Class is a sub-class of rdfs:Resource, rdfs8 is a trivial application
of this constraint, which is also true for rdfs9 and condition 7 respectively. The reflexivity of rdfs:subClassOf
(condition 8) directly leads to rdfs10 whereas its transitivity is covered by rdfs11. Rdfs12 and rdfs13 are also
straightforward applications of condition 9 and 10.

3.1.5 Conclusions
RDF/RDF-S was the first semantic markup language developed under the guidance of the W3C and
specifically aiming at implementing the vision of a semantic web. Compared to the definition of an ontology
presented in section 2.1, RDF/RDF-S shows relatively limited capabilities, since there's no way to express
additional axioms, nevertheless, it is the basis of most modern semantic languages. One particular aspect of
RDF-S is the fact, that classes can be instances of other classes (meta-classes). This opens a lot of
modelling possibilities and broadens its expressiveness, but also has some negative influences on
decidability and automatic reasoning support as will be shown later. In contrast to frame-based systems (like
object oriented programming languages) where classes contain the description of their attributes (also
referred to as slots), property definitions in RDF-S are global. Consequently every instance is a member of
all classes defined by its attributes.

RDF/RDF-S's initial version did not include the formal semantics model presented in section 3.1.4. This was
introduced later as a result of extensions to RDF/RDF-S that where created to overcome the limited
semantic capabilities of RDF/RDF-S. Model theoretic interpretations are key to efficient reasoning support,
since they can be mapped to description logics as will be shown later.

One of the most important representatives of RDF/RDF-S successors is OWL that will be discussed in the
next section.

3.2 The Web Ontology Language (OWL)

21

In November 2001 the World Wide Web Consortium (W3C) founded the Web Ontology Working Group as
part of its Semantic Web Activity2. The goal of this group was to develop a new language for the semantic
web “to extend the semantic reach of current XML and RDF meta-data efforts” that should be general and
also have formal semantics [37]. The result of this effort was the Web Ontology Language (OWL) [38]. OWL
is heavily based on DAML+OIL. The OWL Language Overview document even calls it a revision of the
DAML+OIL web ontology language [39]. Whereas a detailed discussion of the OWL development process
and how existing languages were influencing OWL design decisions can be found in [36], this work first
provides a short presentation of OWL predecessors before the most important OWL features are discussed.
Figure 5 provides an overview of how different semantic languages where influencing each other.

3.2.1 SHOE
The Simple HTML Ontology Extension (SHOE) [40][41] allows for embedding semantic descriptions into
HTML documents. There are three properties of SHOE that have influenced other languages such as DAML-
ONT and DAML-OIL:

● The usage of URI references for names

● Importing of other ontologies

● Versioning of ontologies

3.2.2 OIL

The Ontology Inference Layer (OIL) is heavily influenced by OKBC [42] and was one outcome of the EU
funded On-To-Knowledge3 project (IST-1999-10132). It is based on the following three aspects [43]:

● Description Logics (DL): To provide OIL with strong formal semantics and automatic reasoning

2 http://www.w3.org/2001/sw/
3 http://www.ontoknowledge.org

Figure 5: OWL and its predecessors (own illustration based
on [36])

22

support it includes a mapping to the SHIQ description logic [44]. Description logics (DLs) define
decidable fragments of first-order logic and, like frames, provide concepts (unary predicates) and
slots (binary predicates). As distinguished from frames, they come with a formal, logic-based
semantics [45].

● Frame based systems: To make OIL as intuitive as possible, it was designed as a frame-based
system from the very beginning [46].

● Web standards: XML and RDF. To be compliant with other web technologies, OIL offers an XML
serialisation syntax that is an extension of RDF and RDF-S. However, since RDF-S uses global
properties, slots of frame-based concept have to be adapted when represented in RDF/RDF-S. OIL
therefore uses class name suffixes on properties [47]. Every OIL ontology is a valid RDF-Document.

OIL is organised in several layers that are distinguished by features and complexity. At the lowest level there
is “Core OIL”, which is extended by “Standard OIL” and “Instance OIL” [48]. There is also and additional
layer called “Heavy OIL” that is reserved for future language developments. Since OIL was merged with the
DAML initiative it is very unlikely that this layer will ever be defined.

3.2.3 DAML

In August 2000, the American Defense Advanced Research Projects Agency (DARPA) officially launched the
DARPA Agent Markup Language (DAML)4 initiative [49]. The initial release of the developed semantic
markup language was called DAML-ONT [50]. Some of the shortcomings of DAML-ONT are discussed in
[51].

Since the objectives of DAML and OIL have been very similar, the two efforts were joined and the newly
created Joint US/EU ad hoc Agent Markup Committee developed a revised version called DAML+OIL [52].
This language was the direct predecessor of OWL.

3.2.4 OWL Language Variants
To cope with the wide range of OWL design objectives and requirements [53], the working group decided to
come up with three different sublanguages. These different species of OWL represent a trade-off between
ease-of-use, expressiveness, efficient reasoning and compatibility with RDF/RDF(S) and are [39]:

OWL Lite: This is the simplest version of OWL. In contrast to the next complex version it only supports
cardinality restrictions in the range zero to one and does not allow to declare classes as unions or
intersections of other classes and also lacks some other set based constructs. OWL Lite strongly
corresponds to SHIF(D) description logics and although it is the most efficient variant when it comes to
automatic reasoning it has exponential worst-case computational complexity [54].

OWL DL: DL is the acronym for description logics and expresses the close relationship between this version
of OWL and description logics. OWL DL strongly corresponds to SHOIN [54] and therefore the worst-case
complexity is non-deterministic exponential. OWL DL extends the features and capabilities of OWL Lite and
guarantees that all ontologies are decidable. In fact, OWL DL is the sub-language that offers most
expressiveness combined with automatic reasoning support and is a superset of OWL Lite.

OWL Full: This version is a superset of the other two languages and is completely compatible to RDF/RDF-
S. Since RDF(S) can be used to express scenarios that are not decidable, OWL Full ontologies are not
decidable either. One reason for the lack of decidability is RDF-S' capability to allow for classes that are
instances of other classes. An explanation, why this inevitably leads to undecidability can be found in [55].
OWL Full has the highest expressiveness of all OWL languages but does not support automatic reasoning.

4 http://www.daml.org/

23

3.2.5 Important OWL Constructs
This section provides a short overview of the most important OWL language constructs that are extensions
to RDF/RDF-S' capabilities. To unambiguously describe their meaning a short introduction to the model
theoretic semantics of OWL is needed [56]. For the sake of simplicity, the interpretation of datatypes is
omitted.

Every OWL vocabulary V consists of the following sets:
VL: The set of all literals used in V.
VC: The set of all class names in V, always includes owl:Thing and owl:Nothing.
VD: The set of all datatype names in V.
VI: The set of individual (instance) names in V.
VDP: The set of data-valued property names in V.
VIP: The set of individual-valued property names in V.
VAP: The set of annotation property names in V.
VO: The set of ontology names in V (might be used in import clauses, can be empty).

The definition of these subsets points out, that OWL explicitly distinguishes between properties of different
type: owl:ObjectProperty (VIP), owl:DatatypeProperty (VDP) and owl:AnnotationProperty (VAP).

An abstract OWL interpretation is a tuple of the following form:
I = <R, EC, ER, L, S, LV>

R is a non empty set of resources of I, LV represents the literal values of I
EC: VC → 2O

EC: VD → 2LV

ER: VDP → 2OxLV

ER: VIP → 2OxO

ER: VAP → 2RxR

ER: VOP → 2RxR

L: TL → LV (TL is the set of typed literals)
S : VI ∪ VC ∪ VD ∪ VDP ∪ VIP ∪ VAP ∪ VO { owl:Ontology, owl:DeprecatedClass, owl:DeprecatedProperty }∪

 → R

S(VI) ⊆ O

EC(owl:Thing) = O ⊆ R, where O is non-empty and disjoint from LV
EC(owl:Nothing) = { }
EC(rdfs:Literal) = LV

The extension function EC defines all extensions for classes that are also known as the class' instances.
Thus, if an individual (instance) is part of a class' extension it is a member (instance) of this class. In the
interpretation described above, the set of all possible instances is called O. OWL introduced two special
classes that are by definition part of every ontology: owl:Thing and owl:Nothing. Every instance of any OWL
class is also an instance of owl:Thing. This is not achieved by embedding owl:Thing into the class hierarchy,
but by the definition of the model theoretic interpretation. Since every individual is a member of O (EC: VC →
2O and S(VI) ⊆ O) and the extension of owl:Thing is O (EC(owl:Thing) = O) every instance is also a member of
owl:Thing, whereas no single individual can be an instance of owl:Nothing (since EC(owl:Nothing) = { }).
This is an important semantic extension to RDF/RDFS.

3.2.5.1 OWL Classes
Since rdfs:Class allows for instances that are classes - which leads to undecidability - OWL has introduced
a separate class construct. This construct is called owl:Class that is a subclass of rdfs:Class. In fact

24

owl:Class is the base class in all OWL Lite and OWL DL ontologies where rdfs:Class must not be used.
Thus the major difference between rdfs:Class and owl:Class is that owl:Class does not support the
definition of meta-classes.

While OWL Lite only allows for simple named classes (e.g. <owl:Class rfd:ID=”Person” />), OWL DL supports
a variety of class definition options, so called complex classes that are based on restrictions, set operations
or enumerations. For example, it is possible to define the class of all white wines as the intersection of the
class wine and those classes, that have a color property with value white (see Listing 10).

More generally a class can be defined as the complement of another class, the intersection or union of other
classes or as an enumeration of individuals. Especially when working with owl:complementOf it is important to
know the exact semantics of this construct that is:

EC(complementOf(C)) = O \ EC(C)

This means that the complement of a class consists of all individuals that do not belong to the extension of
class C. Defining a class “Male” as a complement of the class “Female” would be probably semantically
wrong, since as a consequence everything that is not an instance of “Female” (e.g. Car, House, Fish, ..)
would belong to the class “Male”. Assertions like these typically require a common super-class, so that
“Male” could be defined as the intersection of all instances of “Animal” (or “Human”) and the complement of
“Female”.

Beside the constructs mentioned above, there exist two additional constructs to make assertions about
classes. The owl:equivalentClass constructs defines that two classes have exactly the same set of
instances whereas owl:disjointWith states that there exist no common instances in the extensions of two
classes.

A detailed description of complex class definitions together with examples can be found in [57].

3.2.5.2 OWL Properties
Since OWL strictly separates properties that link instances of a class to other individuals and those that link
instances to literal values two sub-classes of rdf:Property have been introduced:

● owl:ObjectProperty (ER: VIP " 2OxO)

● owl:DatatypeProperty (ER: VDP → 2OxLV)

Additionally, object properties can be further characterised by adding one of the following types to their
declaration:

p rdf:type owl:TransitiveProperty . : States that a property is transitive
(ER(p) = (ER(p))+, p ∈ VIP)

p rdf:type owl:SymetricProperty . : The property is symmetric (ER(p) = (ER(p))-, p ∈ VIP)

p owl:inverseOf p0 . : p is the inverse of p0 (ER(p) = (ER(p0))-, p, p0 ∈ VIP)

p rdf:type owl:FunctionalProperty: defines, that the property p can have at most one value (P(x,y) and
P(x,z) implies y = z)

<owl:Class rdf:ID="WhiteWine">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Wine" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasColor" />
 <owl:hasValue rdf:resource="#White" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>
Listing 10: Example of an OWL complex class definition [57]

25

p rdf:type owl:InverseFunctionalProperty: defines, that the individual referenced by property p can be
assigned to at most one instance (P(y,x) and P(z,x)
implies y = z)

Only owl:FunctionalProperty can be applied to datatype properties as well.

3.2.5.3 Property Restrictions
Due to the compatibility with RDF/RDFS properties in OWL are global and classes on their own. Property
restrictions however, can be used to express additional axiomatic constraints in a local scope. Apparently,
this shows some influence of frame-based systems on the design of OWL.

Listing 11 presents the use of a property restriction. This restriction only applies to the class within it is
defined. As already shown in section 3.1.4, every property defines the type of the individual it belongs to via
its domain attribute. Thus every instance's type represents the intersection of all the domains of its
properties. This is explicitly used to apply property restrictions in OWL. In this example owl:allValuesFrom
denotes that all values assigned to the hasMaker property have to be of type Winery in order to form an
instance of type Wine. This restriction, however, does not require an instance of type wine to have a value
assigned to its hasMaker property at all.

Beside owl:allValuesFrom there exists the owl:someValuesFrom restriction. Whereas the first requires all
values (of fillers) of the restricted property to be instances of a given class, the latter means that at least one
of the assigned values has to be a member of the given class. The exact semantics of these two restrictions
is:

p owl:allValuesFrom r . : {x O | ∈ ∀ <x,y> ER(p) ∈ " y EC(r)} ∈

p owl:someValuesFrom e . : {x O | <x,y> ER(p) y EC(e)}∧∈ ∃ ∈ ∈

Additionally any property can also be restricted to a single value using the owl:hasValue restriction.

An additional form to restrict the usage of properties is offered by cardinality restrictions. By default every
property can hold an arbitrary number of values. This can be changed either by defining a specific number of
values using owl:cardinality, a minimum or maximum number of values using owl:minCardinality or
owl:maxCardinality and a range of values by using a combination of the latter two.

3.2.6 Discussion
As shown above, OWL provides much more semantic constructs than RDF/RDF-S and therefore provides
significantly higher expressiveness. Especially its class definition axioms appear to be extremely powerful.
Class axioms can range from an enumeration of individuals that belong to the class to complex combinations
of set-operations and restrictions. To define classes by applying restrictions to their properties is an important
extension to RDF/RDF-S' capabilities, since this allows for defining different classes that do not have
structural differences but have different ranges of domains assigned to their properties.

OWL is structured in several different sub-languages that offer different sets of constructs and at least OWL-

<owl:Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
 ...
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasMaker" />
 <owl:allValuesFrom rdf:resource="#Winery" />
 </owl:Restriction>
 </rdfs:subClassOf>
 ...
</owl:Class>
Listing 11: Example of a property restriction on the class "Wine" [57]

26

Lite and OWL-DL provide automatic reasoning support whereas OWL-Full concentrates on compatibility with
RDF/RDF-S. For the purpose of creating a semantic E-Government solution only OWL-DL seams to be
appropriate since OWL-Full is not decidable and therefore cannot be efficiently used in a run-time
environment and OWL-Lite has some limitations (e.g. all properties can only have zero or one values) that
do not reflect the characteristics of the E-Government domain.

One important issue is the fact that OWL only supports the open world assumption. As already pointed out in
section 2.2 this seams to contradict some basic requirements of public services that are often characterised
by limitations and constraints that have to met in order to become eligible for them. One way to get at least
partly around this potential problem is the use of owl:FunctionalProperty and
owl:InverseFunctionalProperty. This basically enables unique name assumption for the values of these
properties. However, limitations imposed by the open world assumption might influence the future
development of OWL ([51], p. 25). General, yet important potential shortcomings of OWL are discussed in
[58].

3.3 OWL 2
To overcome some of the shortcomings of OWL mentioned in the previous sections an improved version of
OWL called OWL 2 was recently presented[59]. OWL 2 is based on the initial version of OWL (subsequently
referred to as OWL 1), thus every OWL 1 ontology is a valid OWL 2 ontology. Whereas OWL DL was based
on the description logic SHOIN (see section 3.2.4) OWL 2 is based on SROIQ[60]. The extended features of
SROIQ compared to SHOIN are directly reflected by constructs and the semantics of OWL 2[61].

This section focuses on the most important differences between OWL version one and version two. A
detailed description of these differences can be found in [60].

3.3.1 Syntaxes
OWL 1 used RDF as its official exchange language and therefore supported several ways to represent RDF
graphs like the RDF/XML serialization [32], whereas the language specification was mostly based on the so -
called OWL abstract syntax[56]. OWL 2 now supports a variety of syntaxes besides RDF/XML. The
specification itself is based on a so called functional-style syntax [62]. To improve the processing of OWL
ontologies with XML tools a special OWL/XML serialization [63] is available that is based on an XML
schema[64]. For eased readability and creation of ontologies the Manchester OWL syntax [65] is provided.
Optionally Turtle (The Terse RDF Triple Language [66]) can be used to represent OWL 2 ontologies as RDF
graphs.

3.3.2 OWL 2 Features
In this section some of the most important new features of OWL 2 are presented, for a complete discussion
see [67].

3.3.2.1 Negative Property Assertions
Like OWL 1 also OWL 2 is based on the open world assumption, thus, there is no negation-as-failure
available. OWL 2, however, at least introduces a language construct that allows to model negative facts,
asserting that two individuals are not part of an object property relation (NegativeObjectPropertyAssertion) or
particular literals are not assigned to an individual using a data property (NegativeDataPropertyAssertion).
The following statement expressed in OWL 2 functional-style syntax defines that Paris is not the capital of
Austria:

NegativeObjectPropertyAssertion(:hasCapital :Austria :Paris)

This allows to answer some queries with no instead of unknown, since a reasoner can prove that certain
combinations cannot occur due to negative property assertions. However, to model the behaviour of a

27

system that uses the closed world assumption it would be necessary to explicitly model all negative facts
which is virtually impossible.

3.3.2.2 Qualified Cardinality Restrictions
Another set of very powerful constructs that are new in OWL 2 are qualified cardinality restrictions on
properties. OWL 1 already allows defining cardinality restrictions on properties and therefore to define the
number of fillers that can be assigned to an individual using the restricted property (see section 3.2.5.3). This
could be used to define a class of persons who have for example at least three children (using
owl:minCardinality). OWL 2 now allows including the type of a filler to be part of the cardinality constraints.
This allows for defining a class of persons that have a least two daughters:

ObjectMinCardinality(2 :hasChildren :Female)

Beside ObjectMinCardinality there exist ObjectMaxCardinality, ObjectExactCardinality,
DataMinCardinality, DataMaxCardinality and DataExactCardinality restriction constructs.

3.3.2.3 Property Chain Inclusion
Property Chain Inclusion can be used to express that two individuals that are indirectly related via an
arbitrary number of properties and other individuals are also part of a direct property relation. Here is a short
example to illustrate this construct:

SubPropertyOf(ObjectPropertyChain(:locatedIn :partOf) :locatedIn) ([67] section 2.2.5)

This means that if some individual x is locatedIn y and y is partOf z then x is also locatedIn z. So, since
Graz is located in Austria and Austria is part of Europe, Graz is located in Europe as well.

3.3.2.4 Keys
Another important extension that is new in OWL 2 are Keys. This axiom allows defining a set of properties
(data or object properties) as identifying attributes of class members similar to primary keys in relational
database tables. This allows to axiomatically introduce something like a unique name assumption that is
typically only part of systems using the closed world assumption. This axiom only applies to so called named
instances. Example:

HasKey (:File :hasReferenceNumber)

ClassAssertion (:File :BuildingPermitApplication1234)

DataPropertyAssertion(:hasReferenceNumber :BuildingPermitApplication1234 “2009/10-2231”)

This example defines that the hasReferenceNumber property is a key property, which means that all named
instances of File with the same reference number are considered to be the same individual. In the second
line a named instance (BuildingPermitApplication1234) is created and in the next line a reference number is
defined. The general syntax of this axiom is as follows:

HasKey(CE (OPE1 ... OPEm) (DPE1 ... DPEn))

Where the acronyms have the following meanings

CE … Class Expression

OPE … Object Property Expression

DPE … Data Property Expression

The correct semantics of this axiom expressed as model theoretic interpretation is the following [61]:

28

∀ x , y , z 1, , zm ,w1, ,wn : x∈CE C∧ ISNAMEDO y 
∧{ x , zi∈OPE i

OP∧ y , zi∈OPE i
OP∧ISNAMEDOZ i}i=1

m

∧{ x ,w j∈DPE j
DP∧ y ,w j∈DPE j

DP} j=1
n ⇒ x= y

with :
.C Class Interpretation
.DP Data Property Interpretation
.OP Object Property Interpretation
IObject Domainof the Interpretation =owl :Thing C 
ISNAMEDOx =true for x∈I iff a 

I=x for somenamed individual a

3.3.3 OWL 2 Sub-Languages
Just like OWL 1 (see section 3.2.4) also OWL 2 offers OWL 2 DL and OWL 2 Full. Additionally OWL 2
specifies three sub-languages also called profiles[68]. Profiles are optimized for specific usage scenarios
and vary in expressiveness and reasoning performance, two dimensions that are inversely proportional to
one another. Profiles therefore represent restrictions on OWL 2 and in fact every single OWL 2 profile is less
expressive then OWL DL.

3.3.3.1 OWL EL
The name EL stems from the EL language family of description logics [69] that has influenced the modelling
restrictions of OWL EL. Just like EL this profile is basically limited to conjunction and existential
quantification. It does for example not allow the use of universal quantification and cardinality restrictions.

OWL EL is specifically recommended for ontologies that consist of very large numbers of classes and/or
properties like the SNOMED CT5 ontology[70].

3.3.3.2 OWL QL
This profile limits OWL 2 constructs to a subset that can be automatically translated into SQL for query
answering. Therefore a simple query rewriting approach is used.

This profile is recommended when instances are stored in relational databases. The exact description of this
profile and its limitations can be found in [68].

3.3.3.3 OWL RL
This profile represents a set of restrictions on the way in which specific constructs are used. It allows for
building rule-based reasoners for OWL 2. A detailed discussion of its limitations can be found in [68].

3.3.4 Discussion
The design of this latest version of OWL was heavily influenced by the experience made with OWL 1 in
various domains. Probably the most interesting features that were added to OWL 2 are bringing the new
language at least a small step closer to rule based or logic programming based systems. This can be seen in
the new construct to assert negative facts as well as in the keys axiom. Beside this, the introduction of OWL
RL might bring description logics and rule based systems closer together.

Whereas OIL as one of the predecessors of OWL 1 used a frame-based notation for enhanced readability,

5 Systematized Nomenclature of Medicine--Clinical Terms, http://www.ihtsdo.org/snomed-ct/

29

OWL only offered RDF/XML serialization. OWL 2 now offers several additional serialization formats that
should facilitate processing but also readability of ontologies. This is another important improvement.

3.4 The Web Service Modeling Language WSML
WSML [71] is the language used within the Web Service Modeling Ontology (WSMO), a framework that was
designed to provide an integrated environment for semantic web service provisioning [72]. In contrast to
OWL it was not designed as an extension to an existing technology but to optimally integrate into the WSMO
framework [73]. The language is defined as a meta-meta-model based on the Meta Object Facility MOF [6]
(also see section 5.2).

Like OWL, also WSML offers different language variants. These variants are organised in two branches
reflecting the different paradigms they are based on (see Figure 6). WSML is influenced by description logics
as well as logic programming. Since these two paradigms use contrary concepts they can hardly be
integrated in a common logic system.

WSML-Core: Is the least expressive WSML variant and contains the compatible elements of
description logics and logic programming. This set is also called description logics programs (DLP)
and is defined by the intersection of a mapping of description logics and the horn subset of logic
programming into first-order logics. This excludes negation-as-failure as well as procedural
attachments that are typically found in logic programming [74]. WSML-Core shows the best
computational performance of all WSML variants, which is polynomial complexity [71].

WSML-DL: Extends WSML-CORE in the description logics dimension and is based on SHIQ(D).
Since this is the same description logics OWL-DL is based on, this variant of WSML is OWL-DL
compatible and there exists a mapping between these two standards [75]. WSML-DL is decidable and
can be used for automatic reasoning.

WSML-Flight: This WSML variant extends WSML-Core in the logic-programming dimension. Whereas
WSML logic programming is based on F-Logic [76], WSML-Flight is limited to the datalog subset of F-
Logic. Since WSML-Flight includes negation-as-failure it is based on the closed-world-assumption
(see section 2.2).

WSML-Rule: As a superset of WSML-Flight it extends the logic-programming capabilities and
represents the Horn subset of F-Logic.

WSML-Full: Is a super-set of the description logics and the logic-programming branch of WSML. Thus
it includes extensions to integrate non-monotonic logic with description logics. WSML-Full is the only

Figure 6: WSML variants [73]

WSML-Core WSML-Flight WSML-Rule

WSML-DL WSML-Full

D
es

cr
ip

tio
n

Lo
gi

cs

Logic Programming
(with nonmonotonic negation)

First-Order Logic
(with nonmonotonic extensions)

First-O
rder Logic

(w
ith nonm

onotonic extensions)

30

variant that is not decidable.

It is important to notice that this creates two rather independent branches starting with WSML-Core and
merging in WSML-Full. The partial order relations over all variants are: Core < DL < Full and Core < Flight <
Rule < Full. Since every WSML ontology allows importing existing ontologies that use other variants, this
imposes certain restrictions on the way different variants could be mixed. Whenever WSML-DL and
Flight/Rule ontologies occur in the same document, the resulting variant has to be WSML-Full [77].

3.4.1 WSML Syntax and Structure

By design WSML was developed to support semantic web services. This explains why ontologies are just
one part of it. In general a WSML document can contain of the following parts [78]:

● goal

● ontology

● webservice

● mediator

● capability

● interface

A goal is a description of what a semantic web service can achieve including the pre- and postconditions as
well as the actual effect. Since a goal can contain the description of a web service that is capable of
accomplishing the desired functionality, it consists of capability and interface elements. Ontologies are
used to define the terms and rules that are used throughout all other elements. The webservice section
represents the actual functionality that can be invoked over the Internet. Its description therefore covers the
service's capability as well as the service's interfaces. Mediators are used to bridge different terminologies
and to avoid mismatches. WSML distinguishes between four types of mediators: ontology-to-ontology
mediators (ooMediator), goal-to-goal mediators (ggMediator), webservice-to-goal mediators (wgMediator)
and webservice-to-webservice mediators (wwMediator). A capability element is used to describe the
functional aspects of a web service. This might include preconditions and assumption as well as
postconditions and the actual effect of the service invocation, which describes how the state of the world will
be changed. Interfaces are used to describe how to communicate with an actual web service (choreography)
and can also be used to describe how a given service depends on other services to successfully provide its
functionality (orchestration).
The rest of this section focuses on the mechanism used by WSML to describe ontologies. WSML therefore
uses a frame-based syntax that is defined in [78]. The syntax consists of two parts, the conceptual syntax to
describe concepts, attributes and instances and a logical expression syntax that is used to express rules and
constraints[79].

31

Listing 12 shows an example of a concept and an axiom definition in WSML. Compared to OWL there are
many differences that will be explained in the next sections. Most notably however is, that WSML does not
use XML but has a frame-based syntax as its preferred serialisation. This greatly improves human-readability
and allows for compact models. WSML also prefers local property definitions, which means that properties
are defined and only valid within the concept declaration. Whereas OWL explicitly distinguishes between
object and data type properties, WSML obviously does not.

3.4.2 WSML Semantics
Like OWL also WSML comes with a formal semantic definition that is based on model theory. This complete
semantic model can be found in [77]. Values used in the WSML vocabulary are either data values (literals),
built-in data types (e.g. “_string”) or Internationalized Resource Identifiers (IRIs, [80]) An IRI therefore
indicates the use of a reference to another concept or instance.

A WSML Core interpretation is defined as a tuple of the following form [77]:

I = U,⟨ ≺U,∈U,UD,IF,IP,Ihv,Iit,Iot⟩

with

● a non-empty countable set U (abstract domain) and a non-empty set UD (concrete domain)
disjoint from U,

● a strict sub-concept relation ≺U: → (U⋃UD)×(U⋃UD),
● a concept membership relation ∈U: → (U⋃UD)×(U⋃UD),
● a mapping IF of constants and function identifiers to elements of U and functions over

(U⋃UD),
● a mapping IP of relation identifiers to relations over (U⋃UD)
● mappings of binary relations Ihv (hasValue),Iit (impliesType),Iot (ofType) : (U⋃UD) →

 concept Human
 annotations
 dc#description hasValue "concept of a human being"
 endAnnotations
 hasName ofType foaf#name
 hasParent inverseOf(hasChild) impliesType Human
 hasChild subAttributeOf(hasRelative) impliesType Human
 hasAncestor transitive impliesType Human
 hasRelative symmetric impliesType Human
 hasWeight ofType (1) xsd#decimal
 hasWeightInKG ofType (1) xsd#decimal
 hasBirthdate ofType (1) xsd#date
 hasObit ofType (0 1) xsd#date
 hasBirthplace ofType (1) loc#location
 isMarriedTo symmetric impliesType (0 1) Human
 hasCitizenship ofType oo#country
 isAlive ofType (1) xsd#boolean

axiom IsAlive
 definedBy
 ?x[isAlive hasValue xsd#boolean("true")] :-
 naf ?x[hasObit hasValue ?obit] memberOf Human.
 ?x[isAlive hasValue xsd#boolean("false")]
 impliedBy
 ?x[hasObit hasValue ?obit] memberOf Human.

Listing 12: Example WSML concept definition (WSML-Rule). Taken from [78],Appendix A.2

32

2(U⋃UD)×(U⋃UD).
The sub-concept relation is transitive: if a ∈U b ∧ b ≺U c � a ∈U c .

The impliesType relation is semantically equivalent to the rdfs:range relation (see section 3.1.4.4):

if� c,d � � Iit(p), then for every a ∈U c holds that for every b ∈ U⋃UD
such that ⟨a,b ⟩ ∈Ihv(p), b ∈U d .

Functions and instance identifiers are interpreted as follows:
• Every instance identifier f is mapped to an element of the abstract domain U: IF(f) = u U∈ .

• Function identifiers are interpreted as functions over U according to their arity i ≥ 1:
IF(f)

i: Ui → U.

• Data values and datatype wrappers (e.g. “xsd#date(2009,5,30)”) with arity n ≥ 0 are interpreted as
functions over the concrete domain UD: IF(f)

n: (UD)n → UD

Relation identifiers are treaded as follows:
• N-ary relation identifiers p (with n ≥ 0) are interpreted as relations over the domain U⋃UD:

IP(p)n ⊆(U⋃UD)n.
• Identifiers of built-in predicates (e.g. “wsml#numericSubtract(?x1,A,B)”) are interpreted as relations

over the concrete domain UD: IP(p)n ⊆(UD)n.

This leads to the following set of conditions for the satisfaction of atomic formulas and molecules:
I ⊨ p(t1,t2,..tn) iff (t1I,t2

I,..tn
I) ∈ IP(p)

I ⊨ t1:t2 iff t1
I ∈U

 t2
I (memberOf)

I ⊨ t1::t2 iff t1
I ≺U

 t2
I (subConceptOf)

I ⊨ t1[t2 hasValue t3] iff t⟨ 1
I,t3

I I⟩ ∈ hv(t2
I)

I ⊨ t1[t2 impliesType t3] iff t⟨ 1
I,t3

I I⟩ ∈ it(t2
I)

I ⊨ t1[t2 ofType t3] iff t⟨ 1
I,t3

I I⟩ ∈ ot(t2
I)

I ⊨ t1=t2 iff t1
I = t2

I

These basic rules can be extended to support the valid interpretation of arbitrary complex formulas. The
interpretation of elements of the concrete domain is merely delegated to so-called concrete domain
schemes. WSML is not limited to one particular concrete domain scheme but every concrete domain scheme
that should be used together with WSML has to meet certain requirements and therefore has to be WSML
conformal (see [77], page 29ff). WSML treats all datatypes as concepts and consequently all data values as
instances of the corresponding datatype.

3.4.2.1 WSML DL Extension
When the WSML Core interpretation of the previous section is compared to the OWL interpretation from
section 3.2.5 one can see, that OWL as a description language based approach strictly distinguishes
between classes (concepts), instances and properties. To enable DL-based reasoning on WSML ontologies
WSML DL introduces a syntactic separation of these concepts (i.e. it defines where theses different elements
might occur in constructs) as well as a semantic separation (see [77], p33ff).

Therefore the domain and the interpretation functions are split up:

Ui … The non-empty set of instances of individuals

Ua ... The set of attributes

Uc … The set of concepts

IF … maps instance identifiers to Ui, concept identifiers to Uc and attribute as well as annotation

33

property identifiers to Ua.

Beside this, the subconceptOf relation is redefined to apply to concepts only (≺U ⊂ Uc×Uc), memberOf is only
defined for instances and concepts (∈U ⊂ Ui×Uc) and hasValue, impliesType and ofType are only defined for
attributes (Ihv(u)=Iit(u)=Iot(u)={} |∀u ∈ Ui⋃Uc).

Finally satisfaction rules have to be extended to support quantified formulas on abstract instances:
I ⊨DL ∀ay(ɸ) iff ∀ay(ɸ) ∧ y(ɸ)∈Ui y∧ (ɸ)∉UD

I ⊨DL ∃ay(ɸ) iff ∃ay(ɸ) ∧ y(ɸ)∈Ui y∧ (ɸ)∉UD

With these extensions to WSML Core, a semantic model is defined that is almost equivalent to the OWL
semantic model (see section 3.2.5). As already mentioned above, the interpretation of data values is
delegated to a compliant concrete domain scheme. However, there exists no explicit equivalent to owl:Thing
and owl:Nothing.

3.4.2.2 WSML Core, Flight and Rule Semantic
The semantic model of WSML Core, Flight and Rule is based on research to develop semantic models for
logic programs. One of these approaches is called Stable Model Semantics [81]. Logic programs consist of a
set of rules and a set of ground terms or facts. Based on these sets a so -called Herbrand model can be
created that consists of all ground atoms (i.e. ground terms and entailed facts). For negation free programs,
the minimal Herbrand model is the so-called canonical model that contains all answers to variable free
queries. Programs with negation, however, do not contain a unique minimal Herbrand model. In this case a
Stable Model can be identified by the following algorithm ([81], p.1073):

“For any set M of atoms from program Π, let ΠM be the program obtained from Π by deleting
(i) each rule that has a negative literal ¬B in its body with B∈M, and
(ii) all negative literals in the bodies of the remaining rules.

… If this model coincides with M, then we say that M is a stable set of Π. Such sets can be also
described as the fixed points of the operator SΠ defined by the condition: for any set M of
atoms from Π, SΠ(M) is the minimal Herbrand model of ΠM.
… The stable model semantics is defined for a logic program Π if Π has exactly one stable
model, and it declares that model to be the canonical model of Π.”

Since every stable set is a minimal Herbrand model (see [81] for a formal proof), this approach is called the
stable model semantics. It is essential for the existence of a minimal Herbrand model, that after reduction
(i.e. the removal of all rules with negation) the set of atoms does not change. WSML enforces this by its
syntactic rules that allow negation (or more precisely negation-as-failure) only for atoms[78].
How-to derive the stable model for a given WSML Core, Flight or Rule ontology and a concrete domain
scheme is shown in [77] (p. 36-38).

3.5 Comparing OWL and WSML
WSML is an approach to use logic statements as well as rules to describe ontologies and therewith
overcomes some of the shortcomings of OWL. Nevertheless, there also exists the description logic variant
WSML DL and a mapping to OWL[75]. Thus this section focuses on differences between OWL and the logic
programming variants of WSML called Flight and Rule.

34

To point out the differences the following two example scenarios are modelled with both technologies:

Scenario 1

The Austrian Industrial Code defines all necessary regulations and procedures for different professions,
businesses and industries. When it comes to travel agencies the law distinguishes between four different
sub-types of businesses depending on the services offered by them (see Figure 7).

1. Non regulated business: If the agency only sells tickets then no special regulations apply. This kind
of business can be run without the proof of special skills or knowledge.

2. Regulated (Bus Tours): If the only purpose of the agency is to organise and sell bus tours then the
owner of the business has to have some minimum skills in the tourism industry

3. Regulated (Travel Agency): This represents the typical travel agency. Profound knowledge is
necessary to run the business.

4. Regulated (incl. flight packages): If the agency also organises tour packages including flights, it has
to proof the existence of a special type of insurance in addition to the previously mentioned
requirements.

The goal is to setup an ontology that represents this knowledge and that can decide in which category any
given travel agency falls into. The four types of travel agencies mentioned above are disjoint, thus any
agency can only fall into only one category. Since every single travel agency can offer a set of services (i.e.
pursue several activities) rules to categorise any given agency have to follow this order:

TicketSale < BusTourSale < TravelPackageSale < FlightPackageOrganization

Thus, if an agency sells tickets but also offers tour packages it falls into the third category. Any travel agency
that organises flight packages automatically falls into the fourth category regardless of any other activities.

To model this situation we want to introduce a general class Business that represents all possible professions
and businesses. TravelAgency should be a subclass of Business and should have four sub-classes
representing the four different cases mentioned above.

Scenario 2

Let's assume the following situation. Some construction law distinguishes between residential houses of
different size. Construction of smaller houses is eligible for a faster, less complex approval procedure,
whereas construction of bigger houses requires certain additional steps and reports. Thus, it is essential to
define whether a building permit application is about a big or a small house. Furthermore assume that every
residential house with no more then two floors and no more than 400 square meter of effective surface is

Figure 7: Sample scenario travel agency business (own illustration)

35

considered small whereas every other house is big. Thus the modelled ontology has to classify every
instance of a house with less than 3 floors and less than or equal 400 square meter of effective surface as
small and every other house as big.

3.5.1 The WSML Solution
To model these scenarios the most expressive but still decidable WSML variant WSML Rule was selected.
Let's start with the first scenario.

Whereas Figure 8 provides a structural overview of the entire ontology, Listing 13 shows the definition of the
concept hierarchy.

Every Business “performs” at least one Activity. Since TravelAgency is a subconcept of Business it also has
to have at least one Activity assigned to its instances. Since, however, a travel agency cannot perform any
arbitrary activity a specialised sub-class called TravelActivity was introduced that represents all activities
limited to travel agencies. RegulatedBusiness and NonRegulatedBusiness represent the fact that there exist
businesses where certain regulations apply whereas for other businesses no regulations apply.
NonRegulatedTravelAgency represents those agencies that merely sell tickets. It therefore is a sub-concept of
TravelAgency and NonRegulatedBusiness. A BusTourTravelAgency is a TravelAgency that is specialised in
organising and selling bus tours but might also sell other tickets. GeneralTravelAgency represents all travel
agencies that organise and sell trips but do not organise flight packages. FlightPackageTravelAgency is the
business with the strictest regulations.

Figure 8: WSML travel agency example ontology. Screenshot from WSMO Toolkit

36

Listing 14 contains the definition of some example instances of travel agencies that have to be classified by
a semantic reasoner based on the modelled ontology. Whereas most of these instances already contain a
class assertion (i.e. “memberOf TravelAgency”), the BusBusiness does not. Thus there have to be rules that
allow identifying this instance as a member of TravelAgency.

To decide which category any given travel agency belongs to a set of axioms has to be defined (see Listing
15). The first axiom allows identifying an instance as a member of the type TravelAgency, which is true as
soon as it has at least one activity of type TravelActivity associated with it using the hasActivity property.
The second axiom (isFlightPackageTravelAgency) defines the rules to classify a given instance as a
FlightPackageTravelAgency. Every axiom exists of a head clause (i.e. the consequence) and a body (i.e. the
condition). The head of the isFlightPackageTravelAgency axiom defines that the instance represented by the
variable ?business is a member of the concept FlightPackageTravelAgency if it is a member of TravelAgency
and has one activity with the value FlightPackageOrganization. Thus as soon as a travel agency offers flight
packages it is considered as a FlightPackageTravelAgency and all other potentially existing activities are
ignored. The isGeneralTravelAgency encompasses all travel agencies that offer PackageTourSale but no
FlightPackageOrganization. This is expressed by the naf (negation-as-failure) operator. Thus, if the proof of
the existence of the value FlightPackageOrganization fails, this operation returns true. Notice that the use of
the equality (=) operator together with the naf operator (e.g. “naf ?act = FlightPackageOrganization”) is not
allowed. Due to the restrictions explained in section 3.4.2.2, negation can only be applied to atoms and
whereas the hasValue construct is an atom, every equality expression is a molecule. The remaining axioms
simply exclude more and more activities using the naf operator and eventually the
isNonRegulatedTravelAgency axiom defines every agency that is not covered by the other axioms as a
NonRegulatedTravelAgency.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://iaik.tu-graz.at/dla#",
 xsd _"http://www.w3.org/2001/XMLSchema#"
 }
ontology _"http://iaik.tu-graz.at/travel_agency"

concept Business
hasActivity ofType (1 *) Activity

concept RegulatedBusiness
concept NonRegulatedBusiness
concept Activity
concept TravelActivity subConceptOf Activity
concept TravelAgency subConceptOf Business
concept GeneralTravelAgency subConceptOf {TravelAgency,RegulatedBusiness}
concept BusTourTravelAgency subConceptOf {TravelAgency,RegulatedBusiness}
concept FlightPackageTravelAgency subConceptOf {TravelAgency,RegulatedBusiness}
concept NonRegulatedTravelAgency subConceptOf {TravelAgency,NonRegulatedBusiness}

instance BustourSale memberOf TravelActivity
instance FlightPackageOrganization memberOf TravelActivity
instance PackageTourSale memberOf TravelActivity
instance TicketSale memberOf TravelActivity
Listing 13: WSML example concept hierarchy for the travel agency example

instance TicketFlightBusiness memberOf TravelAgency
hasActivity hasValue {TicketSale,FlightPackageOrganization}

instance TicketBusiness memberOf TravelAgency
hasActivity hasValue TicketSale

instance FlightBusiness memberOf TravelAgency
hasActivity hasValue FlightPackageOrganization

instance BusBusiness
hasActivity hasValue {TicketSale,BustourSale}

instance GeneralTA memberOf TravelAgency
 hasActivity hasValue {TicketSale,PackageTourSale}
Listing 14: Sample instances to test automatic classification

37

The entire WSML ontology was modelled with the Web Service Modeling Toolkit v2.06, which comes bundled
with the IRIS reasoner7. This tool has an integrated query interface that accepts semantic queries. Thus the
consistency and correctness of the ontology can easily be checked.

6 http://sourceforge.net/projects/wsmt/
7 http://www.iris-reasoner.org/

concept ResidentialHouse
hasFloors ofType (1 1) _integer
hasEffectiveSurface ofType (1 1) _integer

concept SmallResidentialHouse subConceptOf ResidentialHouse

concept BigResidentialHouse subConceptOf ResidentialHouse

axiom isSmallResidentialHouse
 definedBy ?house memberOf SmallResidentialHouse
 :- ?house[hasFloors hasValue ?floors,hasEffectiveSurface hasValue ?size] and
 size < 401 and ?floors < 4 .

axiom isBigResidentialHouse
 definedBy ?house memberOf BigResidentialHouse
 :- ?house[hasFloors hasValue ?floors, hasEffectiveSurface hasValue ?size]
 and (?floors > 3 or ?size > 400) .

Listing 16: WSML sample solution for the house classification problem

axiom isTravelAgency
definedBy
 ?business memberOf TravelAgency
 :-
 ?business[hasActivity hasValue ?a] and ?a memberOf TravelActivity .

axiom isFlightPackageTravelAgency
 definedBy
 ?business memberOf FlightPackageTravelAgency
 :-
 ?business[hasActivity hasValue FlightPackageOrganization] memberOf TravelAgency .

axiom isGeneralTravelAgency
 definedBy
 ?business memberOf GeneralTravelAgency
 :-
 ?business[hasActivity hasValue PackageTourSale] memberOf TravelAgency and

 naf ?business[hasActivity hasValue FlightPackageOrganization] .

axiom isBusTourTravelAgency
 definedBy
 ?business memberOf BusTourTravelAgency
 :-
 ?business memberOf TravelAgency and
 naf ?business[hasActivity hasValue FlightPackageOrganization] and
 naf ?business[hasActivity hasValue PackageTourSale] and
 ?business[hasActivity hasValue BustourSale] .

axiom isNonRegulatedTravelAgency
 definedBy
 ?business memberOf NonRegulatedTravelAgency
 :-
 ?business memberOf TravelAgency and
 naf ?business[hasActivity hasValue FlightPackageOrganization] and
 naf ?business[hasActivity hasValue BustourSale] and
 naf ?business[hasActivity hasValue PackageTourSale] .
Listing 15: WSML axiom definition for the travel agency example

38

The query “?x memberOf FlightPackageTravelAgency” for example correctly lists all automatically classified
instances (FlightBusiness, TicketFlightBusiness).

The solution for the second scenario is rather straight forward as shown in Listing 16. The only compromise
enforced by WSML is the lack of less-than-or-equal and greater-than-or-equal datatype predicates.

3.5.2 The OWL Solution

The OWL implementation of the sample scenario was done using Protegé 8 version 4.0, which is the first
version that supports OWL 2. Figure 9 provides an overview of the class structure of the sample ontology. In
contrast to the WSML solution three additional classes (ActivityType, RegulatedActivity and
NonRegulatedActivity) were added to the ontology. These classes are later used to find out whether a
business is regulated or non-regulated.

While the default OWL/XML serialisation is definitely not human readable OWL 2 supports the so called
Manchester Syntax as an alternative. Although OWL 2 is not a frame-based language, the Manchester
Syntax groups assertions and axioms by properties, classes and individuals which greatly improves
readability.

ObjectProperty: hasActivity
 Characteristics:
 Irreflexive
 Domain:
 Business
 Range:
 Activity
Class: Activity
 SubClassOf:
 owl:Thing
 DisjointWith:
 Business
Class: Business
 SubClassOf:
 hasActivity min 1 Activity
 DisjointWith:
 Activity
Class: TravelAgency

8 http://protege.stanford.edu/

Figure 9: OWL 2 travel agency example ontology. Protegé screenshot.

39

 SubClassOf:
 Business
Class: TravelActivity
 SubClassOf:
 Activity
Class: BusinessType
 SubClassOf:
 owl:Thing
Class: NonRegulatedBusiness
 SubClassOf:
 BusinessType
 DisjointWith:
 RegulatedBusiness
Class: RegulatedBusiness
 SubClassOf:
 BusinessType
 DisjointWith:
 NonRegulatedBusiness

The basic class structure, describing Business, Activity and BusinessTypes is shown in Listing 17. Although
the definition of the Business class contains a cardinality restriction, due to the open world assumption this
restriction does not have any practical implications. This means that an instance of a business can be
modelled that does not have a single activity associated to it, unless the absence of any activity is explicitly
modelled (e.g. by negative property assertions).

Class: ActivityType

Class: NonRegulatedActivity
 SubClassOf:
 ActivityType
 DisjointWith:
 RegulatedActivity

Class: RegulatedActivity
 SubClassOf:
 ActivityType
 DisjointWith:
 NonRegulatedActivity

Class: NonRegulatedTravelAgency
 EquivalentTo:
 TravelAgency
 and (hasActivity only NonRegulatedActivity)
 SubClassOf:
 NonRegulatedBusiness,
 TravelAgency

Class: GeneralTravelAgency
 EquivalentTo:
 (not (hasActivity value FlightPackageOrganization))
 and (hasActivity value PackageTourSale)
 SubClassOf:
 RegulatedBusiness,
 TravelAgency

Class: FlightPackageTravelAgency
 EquivalentTo:
 hasActivity value FlightPackageOrganization
 SubClassOf:
 RegulatedBusiness,
 TravelAgency

Class: BusTourTravelAgency
 EquivalentTo:
 (not ((hasActivity value FlightPackageOrganization)

Listing 17: OWL 2 travel agency sample ontology, basic class hierarchy

40

 or (hasActivity value PackageTourSale)))
 and (hasActivity value BusTourSale)
 SubClassOf:
 RegulatedBusiness,
 TravelAgency

DisjointClasses:
 BusTourTravelAgency,
 FlightPackageTravelAgency,
 GeneralTravelAgency,
 NonRegulatedTravelAgency

Listing 18 contains the definition of the different types of travel agencies. A NonRegulatedTravelAgency is a
TravelAgency that only offers services of type NonRegulatedActivity, whereas a FlightPackageTravelAgency
performs the FlightPackageOrganization activity (please see Listing 19 for available activities). A
GeneralTravelAgency offers PackageTourSale but does not perform FlightPackageOrganization. A
BusTourTravelAgency can offer BusTourSale but neither PackageTourSale nor FlightPackageOrganization.
Additionally it is asserted that all different travel agency types are disjoint, thus any given instance of a travel
agency can only belong to one single category. The not operator used in this notation is synonym for the
owl:ObjectComplementOf construct. Since there is no negation-as-failure in OWL this construct is only
evaluated to true if the presence of any negated property value is explicitly excluded. The same
requirements hold true for the only restriction. Exclusion of the potential presence of property values can be
achieved in several ways. One approach is to limit the number of fillers for an individual's properties as done
for the TicketBusiness (see Listing 20). If the maximum number of values assigned to a property for all
instances is one, this could also be indicated by defining the property itself as functional. Otherwise, if the
number of fillers can vary from individual to individual as in this case, a cardinality restriction can be used.

Individual: BusTourSale
 Types:
 RegulatedActivity,
 TravelActivity,
 owl:Thing
 DifferentFrom:
 FlightPackageOrganization,
 PackageTourSale,
 TicketSale

Individual: FlightPackageOrganization
 Types:
 RegulatedActivity,
 TravelActivity,
 owl:Thing
 DifferentFrom:
 BusTourSale,
 PackageTourSale,
 TicketSale

Individual: PackageTourSale
 Types:
 RegulatedActivity,
 TravelActivity,
 owl:Thing
 DifferentFrom:
 BusTourSale,
 FlightPackageOrganization,
 TicketSale

Individual: TicketSale
 Types:
 NonRegulatedActivity,
 TravelActivity,
 owl:Thing
 DifferentFrom:
 BusTourSale,
 FlightPackageOrganization,
 PackageTourSale

Listing 18: OWL 2 Travel agency example, class axioms for automatic classification

41

The BusBusiness individual has two activities assigned to it. To assert that there is no way for additional
property values, the maximum cardinality is set to two. This is necessary to “close” all possible assertions
about this individual's property. However, this also requires the two fillers of the BusBusiness's hasActivity
property (BusTourSale and TicketSale) to be declared different individuals (see the DifferentFrom assertions
in Listing 19).

An alternative way to express that an individual's property does not contain specific values is the use of
negative property assertions like done for GeneralTA.

Individual: TicketFlightBusiness
 Types:
 TravelAgency,
 owl:Thing
 Facts:
 hasActivity FlightPackageOrganization,
 hasActivity TicketSale

Individual: TicketBusiness
 Types:
 TravelAgency,
 owl:Thing,
 hasActivity max 1 owl:Thing
 Facts:
 hasActivity TicketSale

Individual: BusBusiness
 Types:
 TravelAgency,
 owl:Thing,
 hasActivity max 2 owl:Thing
 Facts:
 hasActivity BusTourSale,
 hasActivity TicketSale

Individual: FlightBusiness
 Types:
 TravelAgency,
 owl:Thing
 Facts:
 hasActivity FlightPackageOrganization,
 hasActivity PackageTourSale

Individual: GeneralTA
 Types:
 TravelAgency,
 owl:Thing
 Facts:
 hasActivity BusTourSale,
 hasActivity PackageTourSale,
 hasActivity TicketSale,
 not hasActivity FlightPackageOrganization

A solution to the problem stated in scenario two is only possible due to some new features introduced in
OWL 2. With the previous version of OWL it was simply impossible to meet these requirements since there
was no construct to further restrict the values of any datatype property to a particular range. With the
introduction of the DataTypeRestriction construct (see section 7.5 in [62]) this was made possible. Thanks
to this new feature the OWL solution almost directly reflects the requirements (see Listing 21).

Listing 19: OWL 2 instances of TravelActivity used in the example ontology

Listing 20: OWL 2 test individuals to check automatic classification

42

3.5.3 Comparison of Results
When comparing the solutions based on the two different frameworks and paradigms the first and most
obvious result is that they all meet the basic requirements stated in the problem descriptions. Thus this
section works out the differences between these approaches and therefore possible advantages and
disadvantages of one solution over the other.

As already discussed in sections 3.2 - 3.4, the major differences between the compared frameworks are as
follows:

• OWL is based on the open world assumption whereas WSML is based on the closed world
assumption

• OWL applies the description logics paradigm, whereas the WSML variant used here (WSML-Rule)
rests on the rule-based and logic programming paradigm

• WSML uses a frame-based approach

The implication of the open world assumption is the most obvious one since this also excludes the unique
name assumption. Therefore, for example, minimum cardinality restrictions cannot be checked unless it is
explicitly asserted that there cannot be additional values as already pointed out in section 3.5.2. This also
requires different individuals to be explicitly asserted as being different. Thus, in order to allow reasonable
consistency checking, which is key in the E-Government domain, you have to “close” your world by asserting
the absence of information. This does not only sound less intuitive but can also become tedious and error-
prone especially when dealing with larger ontologies. Although OWL 2 has introduced new constructs to
simplify this (e.g. by using negative property assertions), a lot of additional facts have to be stated. WSML on
the other hand, is based on the closed world assumption and therefore assumes everything that is not
explicitly stated as being wrong. This principle for example does not allow for the creation of instances

DataProperty: hasFloors
 Characteristics:
 Functional
 Domain:
 ResidentialHouse
 Range:
 positiveInteger

DataProperty: hasEffectiveSurface
 Characteristics:
 Functional
 Domain:
 ResidentialHouse
 Range:
 positiveInteger

Class: ResidentialHouse

Class: SmallResidentialHouse
 EquivalentTo:
 (hasEffectiveSurface only positiveInteger[<= 400])
 and (hasFloors only positiveInteger[<= 3])
 SubClassOf:
 ResidentialHouse
 DisjointWith:
 BigResidentialHouse

Class: BigResidentialHouse
 EquivalentTo:
 ResidentialHouse
 and ((hasEffectiveSurface some positiveInteger[> 400])
 or (hasFloors some positiveInteger[> 3]))
 SubClassOf:
 ResidentialHouse
 DisjointWith:
 SmallResidentialHouse
Listing 21: OWL 2 solution to the house classification problem

43

without any properties if their corresponding types (concepts) have some minimum cardinality restrictions.
Since WSML also uses the unique name assumption there is no need to specify that several individuals are
mutually different, which minimises the amount of assertions necessary.

Generally OWL 2 provides several useful additions. Without some of these a solution to the second problem
scenario would not be possible. Besides functional and logical extensions OWL 2 also supports the
Manchester Syntax as one of its serialisation formats. This makes OWL 2 ontologies easily readable for
humans. Although the Manchester Syntax almost looks like the WSML syntax, OWL is not frame-based. This
means for example that all properties are classes on their own and therefore global. Consequently every
property name can only be used once within an ontology. Thus, if there would be a property called hasAge, it
can only be declared and therefore also be assigned to a domain once. Age, however, is a property that
might be used for many classes. People have an age but also for example buildings. Thus what should be
the domain of this property? OWL suggests the use of pre- and suffixes to indicate the usage of a property,
nevertheless, hasAge has the same semantics regardless where it is used. WSML, in contrast, is a frame-
based language. Properties are part of a concept assertion and therefore local. Thus, the hasAge property
could be used within different concepts and could even have different types (ranges) depending on the
concept within it is used. On the other side, it would also be possible to use pre- and/or suffixes to make
properties globally unique. Together with axioms that define that the presence of a particular property implies
a specific type, the same semantics as in OWL could be achieved. Therefore the frame-based approach,
apart from the fact that it greatly improves readability, can be considered an advantage.

Whether the open or the closed world assumption should be considered advantages or disadvantages
merely depends on the nature of the domain that should be modelled. In the case of E-Government, where
anything that can't be proved is considered to be non-existent or false, the closed world assumption seems
to be the more natural or intuitive approach. Generally, every ontology modelled in an open world
assumption environment can be “closed” by modelling all negative facts, although this might lead to
enormously large ontologies. On the other side, closed worlds cannot be “opened” since there is no notion of
“unknown”.

4 Semantic Web Services
In Tim Berners-Lee's vision of the Semantic Web[16] intelligent software agents assist people in getting
relatively complex tasks done. Semantic web services are the technical backbone behind such scenarios
and are semantic extensions to web services. Since a sound understanding of semantic web services is key
to set-up semantic E-Government services, this chapter will present the most important initiatives in this field.
Later on these approaches are compared and discussed with respect to the E-Government domain and the
overall goal of Ontology Driven E-Government. Since all approaches are based on conventional web
services, a brief introduction to this subject is given as well.

4.1 Web Services
There exist various definitions of the term web service[7]. One that is broadly accepted as a standard
definition is the one by the W3C Web Service Activity Group[82]:

As covered by this definition a web service is an application that can be accessed via the exchange of XML
based messages over internet using standard protocols. How messages are exchanged and how these
messages have to be composed has to be defined in accessible XML documents. The XML definition of a
web service is contained in a so called Web Service Description Language (WSDL) document. There exist
several versions of WSDL. Still the most widely adopted version is 1.1 [8] although there exists a more recent

Definition 2: "A Web service is a software application identified by a URI, whose interfaces
and bindings are capable of being defined, described, and discovered as XML artifacts. A
Web service supports direct interactions with other software agents using XML based
messages exchanged via internet-based protocols."[82]

44

version 2.0[83]. This section will use a simple example to illustrate the characteristics of web services. The
example reflects a business integration scenario, where a service provider wants to offer some business
functionality to its clients or customers as a web service (see Figure 10). For the sake of simplicity only one
function that allows to look up a particular product from the service providers inventory based on a given
product id is offered via the web service.

The web service is described in a WSDL file that can be used by the service consumer to generate a client
side service stub. This stub is used to make local calls of the findProduct operation, which are transparently
serialised and sent to the service provider. The response from the service provider is unmarshalled and
exposed to the client side code as the return value of the method invocation. This principle is called Remote
Procedure Call (RPC)[84] and was supported by standards like the Common Object Request Broker
Architecture (CORBA)[85] before web services even came into existence. Like web services, CORBA can be
used in integration scenarios since it allows for cross-platform and cross-language RPCs. Although CORBA
has some technical advantages over web services [86], the foundation of web services which is a set of
successfully adopted standard technologies like XML and HTTP is considered to be an even more important
success factor[87].

4.1.1 WSDL 1.1
A WSDL document contains a web service description like required by Definition 2. It is conceptually split into
an abstract and a concrete definition (see Figure 11). The top level description elements (direct child
elements of the definitions root tag) are the following:

“Types– a container for data type definitions using some type system (such as XSD).
Message– an abstract, typed definition of the data being communicated.
Operation– an abstract description of an action supported by the service.
Port Type–an abstract set of operations supported by one or more endpoints.
Binding– a concrete protocol and data format specification for a particular port type.
Port– a single endpoint defined as a combination of a binding and a network address.
Service– a collection of related endpoints.” [8]

Figure 10: A Web Service sample Scenario (own illustration)

45

WSDL uses XML schema data type as its intrinsic default typing system. Types can be declared directly
inside the WSDL document or can be imported from existing schema files. Listing 22 provides the type entry
of the example WSDL file together with the source of the imported schema file. The defined elements are
then used as types in the service description. The complex type product represents the actual inventory
entry and is made up of an id, a product name, a product description and the unit price of the product.

WSDL File:
<types>

<xsd:schema>
<xsd:import namespace="http://webservice.demo.service.iaik.tugraz.at/"

schemaLocation="http://localhost:8080/DemoService/productWebService?xsd=1"/>
</xsd:schema>

</types>

Imported XSD File:
<xs:schema version="1.0" targetNamespace="http://webservice.demo.service.iaik.tugraz.at/">

<xs:element name="ProductNotFoundException" type="tns:ProductNotFoundException"/>
<xs:element name="findProduct" type="tns:findProduct"/>
<xs:element name="findProductResponse" type="tns:findProductResponse"/>
<xs:complexType name="findProduct">

<xs:sequence>
<xs:element name="productId" type="xs:long" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="findProductResponse">

<xs:sequence>
<xs:element name="return" type="tns:product" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="product">

<xs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0"/>
<xs:element name="id" type="xs:long" minOccurs="0"/>
<xs:element name="name" type="xs:string" minOccurs="0"/>
<xs:element name="unitprice" type="xs:double" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ProductNotFoundException">

<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0"/>

</xs:sequence>

Figure 11: WSDL 1.1 Structure (own illustration)

<definitions ..>

</definitions>

<types>
</types>

<message ...>
<part .../>

</message>

<portType ..>
<operation ...>
</operation>

</portType>

<binding ...>
</binding>

<service ...>
<port ...>
</port>

</service>

A
bs

tr
ac

t D
ef

in
iti

o
n

C
on

cr
et

e
 D

ef
in

iti
o
n

46

</xs:complexType>
</xs:schema>

Messages that are exchanged between the service requestor and the service endpoint are defined via
message elements (see Listing 23). The parts of these messages refer to XML elements in the types section
and are therefore precisely typed. A message can consist of several parts.

The final part of the abstract service definition is made up by the portType element with the embedded
definitions of supported operations (see Listing 24).

An operation represents a message exchange between the client and the service endpoint. Beside the
request/response exchange pattern WSDL 1.1 also supports one-way (service endpoint receives a
message), solicit-response (the endpoint sends a message to the client who has to reply) and notification
(the endpoint sends a message). The actual exchange pattern used is entirely determined by the messages
that occur within an operation. An input message followed by an output message indicates the
request/response pattern, an output message first followed by an input message implies the solicit-response
pattern. Input only or output only messages define the notification or one-way pattern respectively.
The example in Listing 24 defines a request-response message exchange pattern. Although it defines an
input and an output message this does still not necessarily indicate a synchronous RPC-like operation. The
actual behaviour of the operation is to be defined in the concrete section of the WSDL file when the binding
is specified. The findProduct operation also defines a so called fault message. This is an output message
that indicates the occurrence of an erroneous condition. When recursively following the elements used in this
definition it becomes clear that the operation expects a number as the input message an returns a product
consisting of id, name, description and unit price in case of normal termination or returns a text message in
case of an error.

Listing 22: WSDL type node together with the imported XSD file from the “findProduct” example

<message name="findProduct">
<part name="parameters" element="tns:findProduct"/>

</message>

<message name="findProductResponse">
<part name="parameters" element="tns:findProductResponse"/>

</message>

<message name="ProductNotFoundException">
<part name="fault" element="tns:ProductNotFoundException"/>

</message>
Listing 23: WSDL snippet from the "findProduct" example showing the message definition
section

<portType name="ProductWebService">
<operation name="findProduct">

<input wsam:Action="http://.../ProductWebService/findProductRequest"
message="tns:findProduct"/>
<output wsam:Action="http://.../ProductWebService/findProductResponse"

 message="tns:findProductResponse"/>
<fault message="tns:ProductNotFoundException" name="ProductNotFoundException"

 wsam:Action="http://.../ProductWebService/findProduct/Fault/ProductNotFoundException"/>
</operation>

</portType>
Listing 24: Porttype definition of the "findProduct" web service example

47

The concrete definition section of a WSDL file binds the abstract service description to the actual transport
mechanism and defines where the system can be found in the internet (see Listing 25). The binding element
defines the messaging protocol that should be used for the conversation between the service requester and
the service provider. The default protocol used by WSDL based web services is SOAP [88], which initially
was the acronym for Simple Object Access Protocol.

A SOAP message is an XML document that is sent between the communication peers. It supports various
transport protocols like HTTP[89] or SMTP[90]. In the case of the findProduct example HTTP is used as the
transport protocol, which together with the request-response message exchange pattern defines the RPC-
like nature of the operation. Listing 26 shows a sample request that invokes the findProduct operation and
the response that contains the inquired product details. The usage of XML as the messaging format is one of
the success factors of web services since it allows for entirely platform and programming language
independence.

<binding name="ProductWebServicePortBinding" type="tns:ProductWebService">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<operation name="findProduct">

<soap:operation soapAction=""/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>
<fault name="ProductNotFoundException">

<soap:fault name="ProductNotFoundException" use="literal"/>
</fault>

</operation>
</binding>

<service name="productWebService">
<port name="ProductWebServicePort" binding="tns:ProductWebServicePortBinding">

<soap:address location="http://localhost:8080/DemoService/productWebService"/>
</port>

</service>
Listing 25: Concrete definition of the "findProduct" example web service.

Request:
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:findProduct xmlns:ns2="http://webservice.demo.service.iaik.tugraz.at/">

<productId>77</productId>
</ns2:findProduct>

</S:Body>
</S:Envelope>

Response:
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:findProductResponse xmlns:ns2="http://webservice.demo.service.iaik.tugraz.at/">

<return>
<description>32" LCD TV, 4xHDMI</description>
<id>77</id>
<name>UE32X100</name>
<unitprice>499.98</unitprice>

</return>
</ns2:findProductResponse>

</S:Body>
</S:Envelope>
Listing 26: A "findProduct" sample request and response

48

4.1.2 WSDL 2.0
WSDL 2.0 is the most recent version of the standard. The most obvious differences when compared to
version 1.1 are changes in the top-level description elements (see Figure 12). Input and output messages of
operations now directly refer to particular types. Thus there is no need for an additional message section that
is used in WSDL 1.1 to compose messages out of parts. The portType element of WSDL 1.1 was renamed to
interface.

Beside these structural changes in the XML another important difference is the increased number of
supported message exchange patterns (MEPs) that has doubled to eight when compared to version 1.1 (see
section 4.1.1). MEPs are used to define the interaction between clients and the service endpoints. This
includes the number of messages that are sent, the potential creation of fault messages but also the timing
of messages (e.g. whether an operation is synchronous or asynchronous). WSDL 2.0 supports the following
MEPs[91][92]:

• In-only: This is the equivalent to WSDL's 1.1 in-only operations. The corresponding operation allows
for one input message and does not produce any fault messages.

• Robust in-only: This is a special case of the in-only MEP that allows the endpoint to respond with a
fault message if necessary.

• In-out: Equivalent to WSDL's 1.1 request-response operations. It is defined by one input message
followed by one output message. The endpoint might also respond with a fault message

• In-optional-out: Similar to in-out, the output message, however, is optional.

• Out-only: Equivalent to WSDL 1.1. There is only an output message, no fault messages are
produced.

• Robust out-only: Similar to out-only, however, a fault message is also allowed.

• Out-in: Allows for one output message followed by an input message. The client receives a message

Figure 12: Top-level description elements in WSDL 2.0 (own illustration)

<definitions ..>

</definitions>

<types>

</types>

<interface ...>
<operation ...>
</operation>

</interface>

<binding ...>
</binding>

<service ...>
<endpoint ...>
</endpoint>

</service>

Ab
st

ra
ct

 D
ef

in
itio

n
Co

nc
re

te
 D

ef
in

itio
n

49

from the endpoint and has to respond either with the appropriate output message or a fault message

• Out-optional-in: Similar to out-in, however, the response is optional

Since, in contrast to WSDL 1.1 to interaction pattern used by an operation can not be unambiguously
inferred from the number and the order of messages used, the MEP has to be explicitly specified using the
operation's pattern attribute (see Listing 21).

Although there already exist eight predefined patterns, WSDL 2.0 provides an extension mechanism that
allows for the definition of additional message exchange patterns if needed. Instructions on how to define
custom MEPs is provided in [93], whereas a discussion of this feature can be found in [94].

Although WSDL 2.0 shows some major improvements compared to WSDL 1.1 is still not widely adopted by
framework and tool providers. This might be due to its higher complexity and interoperability issues with
existing WSDL 1.1 web services[95]. The aim of this section was to provide a brief introduction to web
services and the underlying standards. In the next view sections so called semantic web service frameworks
will be discussed that try to add semantics required by software agents to discover, assess and utilise web
services as presented in this section.

4.2 Semantic Markup for Web Services (OWL-S)
OWL-S[96] was previously called DAML-S since its was originally based on OWL`s predecessor DAML+OIL.
The latest release of OWL-S is version 1.2 9. The aim of OWL-S is the creation of a service ontology that can
be used to describe the different semantic aspects of web services. This ontology is expressed in the Web
Ontology Language (OWL) and provides a computer interpretable description that allows software agents to
understand the intention of a web service. In particular OWL-S wants to support the following tasks:

1. Automatic Web service discovery: Based on a user's intention specified as computer-interpretable
semantic markup some agent process can identify those services apt to meet the given
requirements and constraints

2. Automatic Web service invocation: Agents should be capable of executing discovered and
selected web services solely based on OWL-S' declarative descriptions. Enabling agents to
understand the meaning of web services' operations and messages requires a mapping to
corresponding classes in OWL ontologies.

3. Automatic Web service composition and interoperation: Based on high-level descriptions of
goals, agents should be enabled to achieve them by automatically combining different web service
calls. Therefore, agents have to be aware of the effects and the preconditions of every single
operation to establish a sequence of web service calls that will eventually fulfil the given objective.

9 See http://www.daml.org/services/owl-s/ for an overview of DAML-S/OWL-S releases

<description ...>
 ...
 <interface name="reservationInterface">
 ...
 <operation name="opCheckAvailability" ... >

 <operation name="opLogInquiry"
 pattern="http://www.w3.org/ns/wsdl/out-only">
 <output messageLabel="Out" element="ghns:customerData" />
 </operation>

 </interface>
 ...
</description>
Listing 27: Sample specification of an out-only operation

http://www.daml.org/services/owl-s/

50

The top-level classes that are defined in the OWL-S service ontology are shown in an RDF-graph-like style
in Figure 13. The top level element is the Service class. In fact every semantic web service is represented by
an instance of this class. It has the following three properties:

• ServiceProfile: This element describes what a service does. Therefore, it provides a semantic
description that should allow agents to find out whether a service might be relevant for their goal.

• ServiceModel (ProcessModel): This class describes interaction patterns with the actual service in
terms of processes.

• ServiceGrounding: A grounding describes how the semantic description of a web service is related
to its technical description in the WSDL file. This part is particularly important for the actual service
enactment.

Thus, to understand the OWL-S approach to semantic web services it is necessary to cover some of the key
elements in the three service description sub-elements.

Figure 13: OWL-S top-level classes ([96], Copyright © 2004 World Wide Web Consortium.
All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-
20021231)

Figure 14: The OWL-S ServiceProfile ([96], Copyright © 2004 World Wide Web
Consortium. All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-
documents-20021231

51

4.2.1 Service Profiles
The intention of this element is to advertise provided services and to support capability-based service
discovery[12]. Therefore, the service profile has to capture a service's capabilities in a relatively generic, yet
formal enough way to allow service requestors to find out what the service actually does. Therefore, OWL-S
provides three different aspects: functional, non-functional and classification aspects. The functional aspect
is covered by describing the inputs, outputs, necessary preconditions and effects (IOPEs) of the service.
Beside these functional aspects the service profile also contains some non-functional aspects like elements
that contain information about the service provider. As shown in Figure 14, the ServiceProfile class itself is
not related to any properties but there exists a subclass called Profile. Instead of directly using this class,
OWL-S promotes the creation of specialised subclasses of Profile to indicate special service types. This
covers the classification aspect of capability descriptions, since the actual class memberships of a particular
profile individual can already reveal the intention of a service (e.g. if an instance of a profile class is also a
member of a class called HotelBookingService, this allows to subsume about the service's intention).

The profile class is related to the Parameter, Condition, Result, Input and Output classes via corresponding
object properties. Input and output classes are subclasses of the Parameter class as shown in Figure 15. The
actual instances of parameter, result, input and output elements are defined in the process or service model
(see section 4.2.2), The service profile only refers to them. For the ProcessVar class exist two datatype
properties called parameterType and parameterValue. The first one links process variables to elements of type
xsd#anyURI whereas the latter one links to elements of type xsd#XMLLiteral.

To actually assign any OWL class as input or output to a service profile, OWL-S uses service specific
individuals that are of type Input or Output respectively that link to the actual OWL input/output elements via
their prameterType property. To illustrate this approach Figure 16 shows some aspects of the OWL-S
CongoBuy10 example – a fictional book selling company - that is part of the OWL-S reference documentation.

This OWL-S example, however, is suffering from a version mix-up between the two web sites
http://www.daml.org/services/owl-s/1.2/ and http://www.ai.sri.com/daml/services/owl-s/1.2/. Whereas the
official OWL-S 1.2 web site is the latter one, the OWL-S ontologies can be obtained from both sites. At least
the process ontology (Process.owl), however, appears in two different versions. SRI's (Stanford Research
Institute) web site offers version 1.148 (dated 2007/01/18) whereas the DAML site provides version 1.139
(dated 2005/05/18). Nevertheless, the OWL-S example ontologies available at
http://www.ai.sri.com/daml/services/owl-s/1.2/examples.html import the outdated version of the process
ontology from the DAML web site. The two different versions show considerable differences (e.g. in the
variable class hierarchy). In this and the subsequent sections the analysis of OWL-S' features and
characteristics is based on the latest version of the process ontology, which is also the basis of the technical
documentation[97].

10 http://www.ai.sri.com/daml/services/owl-s/1.2/CongoService.owl

Figure 15: The OWL-S variable hierarchy (own illustration, restored from
http://www.ai.sri.com/daml/services/owl-s/1.2/Process.owl using Protegé).

http://www.ai.sri.com/daml/services/owl-s/1.2/CongoService.owl

52

Ellipses in Figure 16 represent classes, rectangles are individuals, rectangles with rounded corners are
literals and solid arcs represent property relations. Dashed lines indicate a subclass relationship.
Profile_Congo_BookBuying_Service is an instance of Profile but also of type BookSelling. The relation to
BookSelling adds significant additional semantics to the service description and reveals important
information about the type of the service. The profile is linked to several input elements. The input elements
shown in Figure 16 are not complete, but comprise some representative examples. The service described
here needs a credit card type as input information. Therefore, the service profile is not directly linked to the
CreditCardType class, but holds a hasInput relation to an individual called ExpressCongoBuyCreditCardType.
Consequently, ExpressCongoBuyCreditCardType is of type Input as well as of type Parameter and ProcessVar
and therefore can have a parameterType property assigned to it. Since parameterType is a datatype property
its value has to be a literal (of type anyURI) and it can't directly refer to the class CreditCardType. Instead it
uses the URI of the CreditCardType class as its value. It is important to note that this does not create a direct
semantic relationship between the class CreditCardType and the profile's input variables, since the value of
the parameterType property is interpreted as an URI value and not as CreditCardType. Consequently you
can't use a reasoner to query whether there exits a service profile that takes a CreditCardType as one of its
inputs. However, you can query whether one of the input variables contains a parameterType that has the
same value as the URI of the CreditCardType class. Thus to conclude that the URI of the parameterType
actually is a CreditCardType requires additional interpretation of the URI value. Since CreditCardType is an
enumeration of its individuals, which are different credit card brands, it can be inferred, which types of credit
cards are accepted by the service.

Besides the credit card type also a credit card number is required. In the analysed example this fact is
modelled by the introduction of the individual ExpressCongoBuyCreditCardNumber. The parameterType property
of this individual refers to the decimal XML schema datatype. By evaluating this value, it can be inferred that
the credit card number has to be a decimal number. Also here it is important to note that this description
does not include any semantic relationship to any class or individual that would indicate that this number
actually is the number of a credit card. The only glue about the actual nature of this number is the name of
the input parameter (ExpressCongoBuyCreditCardNumber), although this could not be interpreted by any
reasoner. Thus there is additional effort needed to indicate that this value actually means the number of a
credit card as we will see later. The third example of an input parameter definition is the ISBN number of the
book that should be purchased. Once again, there only exists an indirect reference to the ISBN class via the
ExpressCongoBuyBookISBN individual's parameterType property. Like in the first example of the credit card type,

Figure 16: Definition of input variables in a service profile (own illustration)

Profile

Profile_Congo_BookBuying_Service

CreditCardType

ISBN

MasterCard

AmEx

DiscoverCard

Visa

ExpressCongoCreditCardType

#CreditCardType
hasInput

ExpressCongoBuyCreditCardNumber

XMLSchema#decimal

ExpressCongoBuyBookISBN

book#ISBN

hasInput

hasInput

parameterType

parameterType

parameterType

BookSelling

53

this information needs additional interpretation to figure out that the value of the URI refers to the ISBN class.
This will lead to the information that an individual of ISBN is required by this service but does not include any
information about the datatype or the format of this element. Assuming that there is a common
understanding of this concept as well as the fact that there has to be a mapping between this element and
some web service message part, this should not imply any problems. In fact, since the range of the
parameterType property is anyURI, an URI literal assigned to this property can basically point to any web
resource and is not limited to OWL classes or datatypes.

Although the input and output parameters are part of the functional description it is not required to list all of
these parameters in the service profile. This is due to the intention of the service profile to advertise a service
and to describe what a service does. Therefore, according to OWL-S' technical documentation, only relevant
parameters have to be added to the service profile, even though there do not exist any rules or guidelines on
how to identify the relevance of parameters. In general the example above shows that OWL-S' abilities to
describe the inputs and outputs of a service are rather limited. This stems from the approach used by OWL
to model properties as well as from the open world assumption. Since all properties are global, the existence
of a specific property implies a certain type where as a type does not necessarily imply any properties. Thus,
when there is a need to model the existence of a special datatype there has to be a reference like the one in
the credit card number example, where, however, the semantic information gets lost. Otherwise there can be
a reference to a class like in the ISBN example, although there are no longer any assumptions about the
actual datatype or single class properties possible.

Besides input and output elements preconditions are an important part of a service profile. Preconditions in
the OWL-S sense are defined as follows:

“A precondition is a proposition that must be true in order for the service to operate effectively”
([12], page 5)

Thus, preconditions can tell a client or agent whether it makes sense to call the service having given a
specific situation. Preconditions, however, can also be used to tackle some of the problems that are implied
by the limits of input and output variable definitions as we will see in an example bellow. OWL-S uses the
hasPrecondition property to map service profiles to Conditions. Although description logics are not suited to
explicitly model logical rule-like conditions, there exist ways to incorporate expressions from other languages
into OWL-S. Figure 17 shows the class hierarchy that is used to model preconditions. This structure reveals
how different logical expressions can be embedded into OWL-S.

The following languages are supported:
• Semantic Web Rule Language (SWRL)[98]: This language is the datalog (i.e. construction-

function-free) sublanguage of the Rule Markup Language (RuleML) [99] restricted to unary or binary

Figure 17: Class hierarchy to model preconditions in OWL-S (own illustration, extracted
from http://www.daml.org/services/owl-s/1.2/generic/Expression.owl using Protogè)

54

predicates. This language allows to embed Horn-like rules consisting of heads (consequences) and
bodies (conditions) into OWL.

• Semantic Web Rule Language – First-Order Logic (SWRL-FOL)[100]: Extends SWRL with some
first-order logic constructs (e.g. universal and existence quantifiers).

• RDF Data Query Language (RDQL)[35]: This is a simple SQL-like query language that can match
edges in RDF-graphs. It is not a classical rule language, but conditions can be stated within a
query's where-clause.

• Declarative RDF System (DRS)[101]: This is a generalisation of SWRL that allows for predicates of
arbitrary arity and quantifiers. It therefore is significantly more expressive than SWRL and SWRL-
FOL.

• Knowledge Interchange Format (KIF)[102]: KIF was designed as interchange format between
different computer systems. It can be used to state logical terms and sentences including quantifiers.

• SPARQL Protocol and RDF Query Language (SPARQL)[103]: SPARQL is a very recent language
that was nevertheless widely adopted already[104]. Basically it is similar to RDQL since it also
matches RDF-graphs but offers significantly more expressiveness (e.g. optional parts, unions,
nesting, filtering, ..)

<process:hasPrecondition>
<expr:SWRL-Condition rdf:ID="ExpressCongoBuyCreditExists">

<rdfs:label>
cardNumber(ExpressCongoBuyCreditCard, ExpressCongoBuyCreditCardNumber)

 & validity(ExpressCongoBuyCreditCard, Valid)
</rdfs:label>

 ...
 <expr:expressionObject>
 <swrl:AtomList>
 <rdf:first>
 <swrl:DatavaluedPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#cardNumber"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyCreditCard"/>
 <swrl:argument2 rdf:resource="#ExpressCongoBuyCreditCardNumber"/>
 </swrl:DatavaluedPropertyAtom>
 </rdf:first>
 <rdf:rest>
 <swrl:AtomList>
 <rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#validity"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyCreditCard"/>
 <swrl:argument2 rdf:resource="#Valid"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
 </rdf:rest>
 </swrl:AtomList>
 </expr:expressionObject>
 </expr:SWRL-Condition>
</process:hasPrecondition>

Although all of these languages have their formal model theoretic semantics, this semantic is not understood
by ordinary description logics reasoners. Thus, to actually evaluate these conditions appropriate additional
reasoners have to be used. To get an idea of how rules are actually embedded into an OWL-S service profile
Listing 28 provides and example. This precondition uses SWRL as its expression language and is basically a
list of atomic formulae that contains two entries. The first axiom requires the two individuals
ExpressCongoBuyCreditCard and ExpressCongoBuyCreditCardNumber to be linked by the cardNumber property.
This conditions is essentially an RDF triple with the subject ExpressCongoBuyCreditCard the predicate
cardNumber and the object ExpressCongoBuyCreditCardNumber. The cardNumber datatype property is also part

Listing 28: Example of an OWL-S precondition. Taken from http://www.daml.org/services/owl-
s/1.2/CongoProcess.owl.

55

of the example and links a decimal number to the class CreditCard. Following an RDF and therefore also
OWL interpretation of this assertion the individual ExpressCongoBuyCreditCard is of type CreditCard
associated with a card number. ExpressCongoBuyCreditCard is not declared as an input variable but as so
called local variable, which indicates its usage in conditions. Thus, this first condition is needed to add the
semantics that is otherwise not covered by the declaration of the ExpressCongoBuyCreditCardNumber input
variable.

The second axiom in Listing 28 defines that the object property validity has to link
ExpressCongoBuyCreditCard to the individual Valid, which is an instance of validity's range class
ValidityType. This indicates that the provided credit card has to be valid. It is important to recognise that
OWL and RDF reasoners would take these conditions as ordinary assertions rather than as conditions that
have to be evaluated. Hence, additional tooling is needed to interpret these rules correctly as already
mentioned above.

The next important elements of a service profile are the descriptions of the web service's results. This
information is captured by the Result class. A web service is typically associated to several instances of
Result, describing different possible outcomes[97].

Figure 18 depicts the result class together with its properties. The hasResultVar property can be used to
define so called ResultVars. These are ProcessVars like input and output variables (see Figure 15), but are
only valid within the Result they are specified. They can be used as variables to share information between
the condition, outputs and effects. Every Result can be associated with an expression that describes the
circumstances under which this result will be the actual outcome of a service call. This condition is also used
to initialise the result variables. Listing 29 shows the value of the inCondition property of the
ExpressCongoBuyPositiveResult, which describes the outcome of the simple book selling service in case
everything went right. The condition is expressed using SWRL and consists of two axioms. The first one
defines that the individual ExpressCongoBuyBook, which is one the result variables, has to have the value of
the input variable ExpressCongoBuyBookISBN associated to it using the hasISBN property. This defines that
ExpressCongoBuyBook is of type Book and that it is exactly the one that should be bought. The second axiom
requires that the InStockBook relationship holds true for this particular book.

<process:hasResult>
...
<process:inCondition>

 <expr:SWRL-Condition rdf:ID="ExpressCongoBuyBookInStock">
...

 <expr:expressionObject>
 <swrl:AtomList>

Figure 18: RDF-graph-like structure of the Result class an its
properties (own illustration based on [97])

Condition

Result

ResultVar

OutputBinding

Expression

inCondition

hasResultVar

withOutput

hasEffect

56

 <rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="&profileHierarchy;#hasISBN"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyBook"/>
 <swrl:argument2 rdf:resource="#ExpressCongoBuyBookISBN"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first>
 <rdf:rest>
 <swrl:AtomList>
 <rdf:first>
 <swrl:ClassAtom>
 <swrl:classPredicate rdf:resource="#InStockBook"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyBook"/>
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
 </rdf:rest>
 </swrl:AtomList>
 </expr:expressionObject>
 </expr:SWRL-Condition>

</process:inCondition>
</process:hasResult>

The withOutput property can be used to map certain result variables to appropriate output variables, which
describes the content of the messages that are returned by the service. In contrast to this, the effects of a
result indicate how the state of the world is modified by this particular service outcome:

“An effect is a proposition that will become true when the service completes.” ([12], page 5)

To illustrate the relevance of effects, Listing 30 shows the effect definitions of the
ExpressCongoBuyPositiveResult.

<process:Result>
...

<process:hasEffect>
 <expr:SWRL-Expression>

...
 <expr:expressionObject>
 <swrl:AtomList>
 <rdf:first>
 <swrl:ClassAtom>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyOutput"/>
 <swrl:classPredicate rdf:resource="#OrderShippedAcknowledgment"/>
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
 </expr:expressionObject>
 </expr:SWRL-Expression>
 </process:hasEffect>
 <process:hasEffect>
 <expr:SWRL-Expression rdf:ID="ExpressCongoOrderShippedEffect">
 ...
 <expr:expressionObject>
 <swrl:AtomList>
 <rdf:first>
 <swrl:ClassAtom>
 <swrl:classPredicate rdf:resource="#Shipment"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyShipment"/>
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest>

Listing 29: InCondition for the ExpressCongoBuyPositiveResult (taken from
http://www.daml.org/services/owl-s/1.2/CongoProcess.owl).

57

 <swrl:AtomList>
 <rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#shippedTo"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyShipment"/>
 <swrl:argument2 rdf:resource="#ExpressCongoBuyAcctID"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first>
 <rdf:rest>
 <swrl:AtomList>
 <rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#shippedBook"/>
 <swrl:argument1 rdf:resource="#ExpressCongoBuyShipment"/>
 <swrl:argument2 rdf:resource="#ExpressCongoBuyBook"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
 </rdf:rest>
 </swrl:AtomList>
 </rdf:rest>
 </swrl:AtomList>
 </expr:expressionObject>
 </expr:SWRL-Expression>
 </process:hasEffect>
 </process:Result>

The first effect defines that the type of the output variable ExpressCongoBuyOutput will be
OrderShippedAcknowledgment (see [98] for a definition of SWRL atoms). The second effect consists of three
axioms. The first one defines that the type of the result variable ExpressCongoBuyShipment is Shipment.
Shipment is an OWL class that encapsulates the recipient, the book that is shipped as well as the delivery
and packaging type. The second axiom states that the recipient of the shipment is the customer identified by
the current account id (ExpressCongoBuyAcctID). Finally the ExpressCongoBuyBook that was defined in the
InCondition is selected as the one that is shipped.
Assuming that a software agent is capable of evaluating the expressions used in preconditions and results, a
service's capabilities in terms of IOPEs can be figured out from the service profile. If these capabilities match
the agent's intention or needs, the service model has to be evaluated in order to figure out how the agent can
interact with the service.

Listing 30: Effects of the ExpressCongoBuyPositiveResult (taken from
http://www.daml.org/services/owl-s/1.2/CongoProcess.owl).

58

4.2.2 Service Model

Whereas the service profile is used to advertise a service's capabilities, the service model describes the
interaction pattern with the actual web service at a semantic level. Similar to the service model where a
subclass of ServiceModel is used to describe a service's capabilities (Profile) also here a subclass is used to
model the service interaction. This subclass is called Process and emphasises OWL-S' process oriented view
on web services.

Figure 19 depicts the top level elements of the service model. Some of the elements shown here have
already been discussed in the previous section. In fact the service profile refers to a process' input, output
and result elements in order to describe a service's IOPEs. The service profile also has a property
has_process that links the profile to the process (see Figure 14). There exist four different process
subclasses. An AtomicProcess represents a single method invocation that has no internal state. In fact the
ExpressCongoBuy process that was used as an example in the previous section is of this type. Therefore it is
entirely defined by its inputs, outputs and results. A CompositeProcess, however, represents a composition of
processes that are arranged in a programming-language-like control and data flow structure. Additionally a
SimpleProcess provides an abstract view on atomic and composite processes. The AsProcess class is also a
subclass of ControlConstruct and will be covered later in this section.

As indicated in Figure 19 a composite process is composedOf ControlConstructs. OWL-S defines the
following constructs to describe a control flow: sequence, split (concurrent execution that ends as soon as all
composite tasks are started), split+join (concurrent execution that ends when the last composite task has
finished), any-order (arbitrary selection of processing order but no concurrency), choice (one of the available
options has to be selected), if-then-else, iteration, repeat-while and repeat-until. All of these constructs are
subclasses of ControlConstruct. As shown in Figure 20 a composite process is only allowed to be composed
of exactly one control construct. Every single control construct, however, may refer to any number of other
classes using the components object property. For the base class ControlConstruct this property does not
define a range attribute, thus it could link to any arbitrary OWL class (indicated by the question mark in
Figure 20). For the specific subclasses of ControlConstruct, however, an object property restriction (see
section 3.2.5.3) limits the range of this property either to a ControlConstructList or a ControlConstructBag.
Both of these classes are lists of control constructs whereas the latter one does not impose any order.

Figure 19: The top level OWL-S process ontology[97].

59

The actual control flow therefore consists of a tree of nested control constructs. The leafs of this tree
represent processes that can be invoked. This can be modelled by either using a Perform control construct
that refers to another process via its process property or by using an AsProcess control construct. The
AsProcess class is a subclass of ControlConstruct as well as of Process but is disjoint from SimpleProcess. It
cannot be further decomposed to other control constructs since the cardinality of its components property is
set to zero. Thus, this element allows for the “inline” definition of processes.

Like an atomic process also a composite process is described by its interface consisting of inputs, outputs
and results. Thus there has to be a mean to model how the input data is passed to the individual process
components and how the output of the composite process is constructed based on the component
processes' outputs. Beside this, output of one component process can be necessary input for other ones. To
organise this data flow OWL-S provides data binding components.

Figure 21 shows the necessary classes to model process input in a so called consumer-pull scenario, which
covers the fact, that a component process defines the data needed from other processes. Therefore, a

Figure 21: Data binding classes to define the input of component processes (own
illustration constructed from http://www.ai.sri.com/daml/services/owl-
s/1.2/Process.owl).

Figure 20: Basic OWL-S classes needed to model a composite process
(own illustration based on [97]).

Process

CompositeProcess ControlConstruct
composedOf

1
?

components

Perform

1

process

AsProcess

components
0

ParameterBinding
toVar

1

XMLLiteral

valueSpecifier
1

ValueOf

valueSource

theParam

1

Perform
fromProcess

1

InputBindinghasDataFrom Input
toVar

allValuesFrom

Literal

1
valueData

xsd#anyURI

valueType

?
1

valueFunction

60

Perform individual can use its hasDataFrom property to define data for the input variables of the component
process it represents via its process property. The hasDataFrom property refers to an instance of
InputBinding, a subclass of Binding that only allows for mappings to input variables. Consequently, the toVar
property identifies the input variable of the Perform individual's process that will receive the value. To define
where the data comes from InputBinding offers three different properties but only one of them should be
used:

• valueFunction: This data type property is a sub-property of valueSpecifier and links the Binding
class to an XML literal. By convention this literal is supposed to be an expression in any of the
supported expression languages.

• valueData: Is also a sub-property of valueSpecifier and can be used to refer to literals that are used
as constant values.

• valueSource: In contrast to the previous two properties valueSource is an object property and links
the Binding class to a class called ValueOf. ValueOf uniquely identifies any value in the scope of the
enclosing composite process by referring to a parameter (see Figure 15 for an overview of
parameters) and to the process where this parameter occurs, by linking to the Perform element
representing it. The special Perform individual called ThisPerform can be used to refer to the parent
perform object of the current process. The ValueOf class can also be used to refer to other
parameters inside an expression.

The valueType property is an URI that refers the type of the parameter.

Producer-Push is another approach to share information among the different steps of a composite process.
The necessary classes are shown in Figure 22.

A composite process can define so called Local variables via its hasLocal property. These variables can be
used to share information along the flow of the composite process and can be accessed via their names.
There are two subclasses of Local: Link values can be written only once where as Loc values can be written
as often as necessary.

Figure 22: Required elements to model OWL-S producer-push scenarios within a
composite process (own illustration based on [97]).

ProcessVar

Local

Link Loc

CompositeProcess

hasLocal

ControlConstruct

Produce
Binding

LinkBinding

LocBinding
Set

toVar

toVar

produceBinding

setBinding

61

There exist two specialised control constructs to actually assign values to these variables. Produce can be
used to define a value for a Link variable using a LinkBinding instance and Set can be used to write a value
to a Loc variable via a LocBinding. To identify the source of the data that should be written to Loc or Link, the
binding class provides the same approaches already discussed above.

Figure 23 shows a composite process that describes a flight booking process that consists of atomic and
other composite processes. As mentioned earlier composite processes cannot use more than one top-level
control construct (sequence or if-then-else in this example). Control constructs in turn can refer to an
arbitrary number of other control constructs (e.g. via lists and bags of control constructs) which includes
Perform elements. It is important to notice, that the process description is not used by any server side
process engine but it is an instruction for clients on how to use the various service methods in order to
achieve a particular effect.

4.2.3 Service Grounding
The mapping between the semantic description and the actual web service description language document
(WSDL) is called grounding. Whereas the service profile and the service model are considered to be abstract
descriptions of the service the grounding contains the necessary information that allows an agent to execute
the actual operation(s). This section covers the principles and most important OWL-S classes to ground a
service. A detailed description on how to ground to a WSDL based web service can be found in [105].

Figure 23: Example composite process reconstructed from http://www.ai.sri.com/daml/services/owl-
s/1.2/BravoAirProcess.owl (own illustration)

BravoAir_Process

DepartureAirport
ArrivalAirport
OutboundDate
InboundDate
RoundTrip
AcctName
Password
Confirm

FlightsFound
PreferredFlightItinerary
ReservationID

TheClient hasFlightItinerary PreferredFlightItinerary

PerformSelect
AvailableFlight PerformBookFlight

SelectAvailableFlight BookFlight
PerformGetDesired

FlightDetails

PerformGetDesired
FlightDetails

LogIn

PerformLogin

CompleteReservation

PerformComplete
Reservation

If
Sequence

thenIf

else

LoggedIn

ConfirmReservation

PerformConfirm
Reservation

composedOf

Sequence

composedOf

composedOf

hasOutput

hasEffect

hasInput

process process

process

process

process

process

62

Figure 24 provides an overview of OWL-S' classes and their relations in order to describe a service
grounding. The central entry point is the WSDLGrounding class, which is a specialised sub-class of Grounding.
Whereas Grounding constitutes a collection of AtomicServiceGrounding, WSDLGrounding is restricted to
WSDLAtomicServiceGrounding instances only. From the various process types that can be modelled using
OWL-S only AtomicProcesses can be grounded. Basically every atomic process represents one particular
WSDL operation together with the necessary input and output messages. To map an AtomicProcess to the
corresponding operation, WSDLAtomicGrounding uses the owlsProcess and wsdlOperation object properties. To
map the atomic process's input and output parameters to the appropriate message parts of the
corresponding operation's input and output messages OWL-S uses WSDLOutputMessageMap and
WSDLInputMessageMap. WSDL usually uses XML schema datatypes to model the structure of message parts.
OWL-S also allows for the use of OWL classes to describe the type of a message part. Therefore an
additional namespace ("http://www.daml.org/services/owl-s/wsdl/") has to be added to the WSDL document
that provides attributes to directly refer from message part tags inside WSDL to OWL classes. It is important
to notice, however, that this approach is not supported by conventional web service tools. Thus, the
automatic generation of web service client stubs will fail. Additionally OWL-S proposes the use of XML style
sheets to map from OWL-S parameters to elements of complex XML schema types [105].

4.3 Semantic Web Service Framework (SWSF)
SWSF[106] is a comprehensive framework to define semantic web services that was submitted to the W3C
by the Semantic Web Service Initiative11. Although it is heavily influenced by OWL-S it does not use OWL but

11 http://www.swsi.org/

Figure 24: OWL-S classes to model WSDL service grounding (extracted from
http://www.ai.sri.com/daml/services/owl-s/1.2/Grounding.owl, own illustration)

Service
GroundingGrounding

WSDL
Grounding

Atomic
ServiceGrounding

WSDLAtomic
ServiceGrounding

hasAtomicServiceGrounding

hasAtomicServiceGrounding

AtomicProcess

owlsProcess

<types>
 <xsd:schema>
 …
 </xsd:schema>
</types>
<message name="xyz">
 <part name="parameters" element="tns:xyz"/>
</message>
…
<portType name="xyzPort">
 <operation name="op1">
 <input message="tns:xyz"/>
 <output message="tns:xyz"/>
 </operation>
 …
</portType>
<binding name="xyzBinding"
type="tns:xyzPort">
 <soap:binding transport="..." style="..."/>
 <operation name="getBlogEntryById">
 ...
 </operation>
...

WSDL

WSDLInput
MessageMap

wsdlInput

wsdlMessagePart

Input

hasInput

owlsParameter

Output

hasOutput

WSDLOutput
MessageMap

wsdlOutput

WSDL
OperationRef

wsdlOperation

63

defines its own set of language variants. SWSF can therefore be split into two major parts: T he Semantic
Web Service Language (SWSL)[107] and the Semantic Web Services Ontology (SWSO)[108]. SWSL itself
has two sublanguages: one (SWSL-FOL) that is based on first-order-logic [109] and one (SWSL-Rules) that
is based on the rules/logic programming paradigm[110]. Both languages are significantly more expressive
than OWL and meet the needs of describing web services in the terms of constraints and transitions.
Consequently there are two versions of the ontology: First-Order Logic Ontology for Web Services (FLOWS)
and Rules Ontology for Web Services (ROWS). The actual web service ontology clearly emphasises on the
description of processes and resembles an extension of ISO 18629, the Process Specification Language
(PSL)[111]. PSL is intended to be an exchange format for process definitions that consists of various
ontologies expressed in Common Logic Interchange Format [112]. A key concept within PSL is activity.
Activities can be composed of sub-activities. The simplest type of activity that can not be decomposed is
called primitive. An atomic activity is either a primitive or a set of concurrent activities. PSL distinguishes
between activities and activity occurrences, which intuitively reflects a potential activity execution. Every
activity can occur several times.

SWSO adopts these principles an introduces the service theory. A service represents a semantic web
service and can be associated to several descriptive elements. Beside this, every service is associated to a
PSL activity that represents the actual process and to an occurrence of this activity. Like OWL-S also SWSO
uses the notion of an atomic process that represents an invocable web service operation. Atomic processes
therefore cannot be decomposed into further sub-activities and are related to PSL primitives. Domain-
specific atomic processes are related to inputs, outputs, preconditions and effects (IOPEs). Beside this type
of atomic processes SWSO also has the notion of so called message-specific atomic processes that either
produce, read or destroy messages. Messages are represented by so called fluents, which are predicates
that might change their values upon activity occurrences. Conditions used in an atomic process' precondition
or conditional output definition are arbitrary first-order logic formulae.

Composite processes are represented by complex PSL activities. The actual flow of sub-activity occurrences
is defined by control constraints that are functionally similar to those found in OWL-S (e.g . sequence, split,
unordered. Please see [108] for a complete reference). In such choreographies domain specific atomic
processes exchange messages via Produce_Message and Read_Message activities.

The grounding of SWSO services into WSDL is relatively straight forward and similar to OWL-S' grounding.
Activities are mapped to operations and SWSO messages are mapped to an operation's input and output
messages. Obviously SWSF has never left the state of a specification and was not adopted by tool vendors
or practicians. This is why this framework is only discussed briefly here, however, the architecture of WSMO
(see next section) is based on SWSF recommendations.

4.4 Web Service Modelling Ontology (WSMO)
WSMO[113] is another framework that was specifically designed to model semantic web services. It has
adopted some of the core principles of SWSF and is separated into the conceptual framework and a specific
language, the Web Service Modelling Language (see section 3.4). Like SWSF, also WSMO provides a
description logics and a logic programming variant. As already mentioned in the WSML section, WSMO
defines the following top-level elements:

● goal
● ontology
● webservice
● mediator
● capability
● interface

Whereas the underlying ontology was already discussed in detail, this section provides an analysis of the
remaining constructs. Technically WSMO/WSML is based on the Meta Object Facility (MOF) [6],
consequently WSMO is basically a meta-model for semantic web services.

64

4.4.1 The WebService Element
This WSMO element captures the model of the actual executable web service. The MOF meta-model
defining the structure of this element is given in Listing 31.

Every webService instance can import an arbitrary number of ontologies that define concepts, which can be
used in the other elements. If there is some need to translate between different ontologies, also mediators
can be defined. Non functional properties are used to describe aspects related to quality, security, costs, trust
and reliability aspects together with a description of the provider of the service. Generally non functional
properties can be used to provide arbitrary additional information but can also contain logical expressions.

A central part of a WSMO web service description is the capability element (see Listing 32). The
importsOntology and the usesMediator properties have the same purpose as for the webService concept. The
remaining properties, however, are used to describe the IOPE's of a web service like already discussed in
section 4.2.1.

The hasSharedVariables property is used to define variables that can be used in the precondition,
assumption, post-condition and effect axioms, which are basically logical predicates. Shared variables can
be compared to OWL-S' process variables since there is no explicit distinction according to their role in the
service, such as input, output or internal values. Variables in WSMO/WSML are named values that start with
a questioned mark. Every variable used in any of the subsequent elements has to be defined in this property,
thus it can be seen as a scope for variables belonging to a capability description. The general contract for
shared variables, preconditions, assumptions, postconditions and effects is the following [113]:

forAll ?v1,...,?vn (preconditions(?v1,...,?vn) and assumptions(?v1,...,?vn)

implies (postconditions(?v1,...,?vn) and effects(?v1,...,?vn)).

This formalises the fact that whenever the stated preconditions and assumptions hold for the given values
assigned to the shared variables the defined postconditions and effects will hold as well. Whereas OWL-S
uses OWL to embed the description of rules, WSMO can directly model these conditions as WSML axioms.
WSML reasoners therefore can evaluate these rules.

Preconditions define the necessary input and the required state of the world related to this input. This is also
called the information space, since it is only related to concepts and properties that are directly accessible.
The actual web service checks the validity of the preconditions and can't be successfully enacted if they are
not met. To illustrate the meaning of this element Listing 33 provides an example describing a service from a
“Virtual Travel Agency” (VTA)12. The variable reservationRequest represents the input to the web service but
12 Taken from http://www.wsmo.org/TR/d17/industryTraining/SWS-tutorial-potsdam-20070220.pdf

Class webService sub-Class wsmoElement
 importsOntology type ontology
 usesMediator type {ooMediator, wwMediator}
 hasNonFunctionalProperties type nonFunctionalProperty
 hasCapability type capability multiplicity = single-valued
 hasInterface type interface

Listing 31: Meta-model definition of the WSMO webService element[114]

Class capability sub-Class wsmoElement
importsOntology type ontology
usesMediator type {ooMediator, wgMediator}
hasNonFunctionalProperties type nonFunctionalProperty
hasSharedVariables type sharedVariables
hasPrecondition type axiom
hasAssumption type axiom
hasPostcondition type axiom
hasEffect type axiom

Listing 32: Meta-model definition of the capability element[114]

http://www.wsmo.org/TR/d17/industryTraining/SWS-tutorial-potsdam-20070220.pdf

65

does not appear as a shared variable. Although it is not explicitly stated as a sharedVariable, its existence as
input concept is required since the precondition refers to this concept's attributes. The precondition axiom is
a logical expression that has to hold true. The first few lines are used to assign values to most of the shared
variables. These values are then restricted to particular individuals.

Basically this precondition defines that the value of ?reservationRequest has to be an instance of a WSML
concept called reservationRequest. This requires this individual also to meet all general constraints that are
defined for this concept in the ontologies (e.g. cardinality restrictions for its properties). Furthermore this
individual's reservationItem property is only allowed to refer to trips or tickets, reservations are exclusively
allowed for persons and the only accepted payment method are creditCards of type Visa or Mastercard.

Listing 34 shows the definition of an assumption taken from the same example. Assumptions are used to
express presumptions about the state of the world that are necessary for the service in order to complete
correctly. The major difference between assumptions and preconditions is that assumptions are not directly
checked by the service. Nevertheless, a service call will fail if the assumptions are not met. That is why the
error message of a failed service call should contain a description of all assumptions that did not hold in
order to provide the caller with additional information to look up other services that might establish the
necessary conditions. In the example above the provided credit card has to be valid and it has to be able to
cover the price of the reservation.

Postconditions define the guaranteed state of the information space after the service was executed
successfully. They also establish a relationship between the input to the web service and its output. An
example definition of a postcondition is presented in Listing 35. This example guarantees the existence of an

capability VTAcapability
sharedVariables {?item, ?passenger, ?creditCard, ?initialBalance, ?reservationPrice}
precondition

definedBy exists ?reservationRequest
(?reservationRequest[reservationItem hasValue ?item,
passenger hasValue ?passenger,
payment hasValue ?creditcard]
memberOf tr#reservationRequest and
(?item memberOf tr#trip or ?item memberOf tr#ticket) and
?passenger memberOf pr#person and
?creditCard memberOf po#creditCard and
(?creditCard[type hasValue po#visa] or
?creditCard[type hasValue po#mastercard])) .

Listing 33: Definition of the preconditions for the Virtual Travel Agency example web service

assumption definedBy
po#validCreditCard(?creditCard) and
?creditCard[balance hasValue ?initialBalance] and
(?initialBalance >= ?reservationPrice) .

Listing 34: Assumption definition of the Virtual Travel Agency example

postcondition definedBy
exists ?reservation(?reservation[

reservationItem hasValue ?item,
price hasValue ?reservationPrice,
customer hasValue ?passenger,
payment hasValue ?creditcard]

memberOf tr#reservation and
?reservationPrice memberOf tr#price) .

Listing 35: Postconditions of the Virtual Travel Agency example

66

instance of the type reservation that has specific property values set. This includes the actual item that was
reserved (either a trip or a ticket according to the precondition), the price, the passenger and the payment
method.

Effects are conceptually similar to postconditions. Like with preconditions and assumptions, postconditions
define the state of the information space, whereas effects describe how the successful execution of the
actual web service will change the state of the world. Listing 37 shows an example of an effect definition,

which states the current balance of the credit card used will be reduced by the price of the reservation.

Whereas the capability element of a WSMO web service description defines the service's IOPE's, the
description of how to actually interact with the service is captured by the webService's interface element.
The MOF meta-model definition of the interface element is shown in Listing 36. The first three properties of
the interface element have the same function and meaning as for the previously discussed elements. Thus
the specific properties of the interface definition are hasChoreography and hasOrchestration. Before these
elements are presented in more detail, Figure 25 provides an overview of how capability, choreography and
orchestration elements are used to semantically describe a web service. The choreography describes the
interaction pattern between the agent or user and the actual web service and can therefore be compared to
OWL-S' composite process element (see section 4.2.2). The orchestration element in turn describes how the
web service uses other web services in order to achieve its goals.

WSMO's orchestration element has undergone significant changes over the course of the specification
process. The most recent available specification[115] dates from February 2007. The latest specification of
WSML[116] from August 2008, however, which defines the syntax and semantic of all WSMO constructs, did
not incorporate the latest changes of the interface element, but seems to reflect the state of a previous
version[117]. The following analysis refers to the latest version of the orchestration specification. Identified
inconsistencies are mentioned wherever they occur.

WSMO's choreography description is based on an approach called abstract state machines [118] (ASM).

Figure 25: The WSMO approach to describe a web service's functional aspects (Reprinted from
[113], page 87 with permission from IOS Press)

effect
definedBy

?creditCard[po#balance hasValue ?finalBalance] and
(?finalBalance = (?initialBalance - ?reservationPrice)) .

Listing 37: Effect definition of the Virtual Travel Agency example

Class interface sub-Class wsmoElement
importsOntology type ontology
usesMediator type ooMediator
hasNonFunctionalProperties type nonFunctionalProperty
hasChoreography type choreography
hasOrchestration type orchestration

Listing 36: Meta-model definition of the WSMO/WSML interface element

67

ASMs are a generalisation of finite state machines in which states are not described by a finite collection of
names but by arbitrary mathematical structures. The effective state of an abstract state machine is defined
by the current values of its so called locations. A location can be seen as a function that depends on an
arbitrary number of parameters and a value of arbitrary type. An ASM consists of a finite number of update
rules that can modify the current value of a location. However, not all locations are updatable. Within an ASM
locations are separated into the following categories that are adopted in the WSMO choreography as
well[119]:

• Static: These are locations that are never updated. Thus they can be defined using functions or
axioms.

• In: Values of these locations can only be updated by the environment (e.g. by external sensors or the
user of a system) but can be read by the ASM. These locations are also called monitored.

• Out: These are locations that are only updated by the ASM but can be read by the environment.

• Controlled: These are locations that are only write- and readable by the ASM. The environment has
no access to these values at all.

• Shared: This describes locations that can be updated and read by the ASM as well as by the
environment.

ASM rules – also called guarded update rules – have the following form:

if Condition then Updates

Beside the classical conditional rule there exists a selection rule and a universally quantified rule of the
following forms:

choose x with Condition in Updates

forAll x with Condition do Updates

Updates is represented by a finite set of location assignments of the form f(t1,...,tn):=t, where f is the
name of the location and t1,...tn are the parameters of the location according to its arity n ≥0. All ASM rules
are executed simultaneously, thus, all updates with a satisfied condition happen in parallel.

Listing 38 presents the definition of the choreography element that is used to model the interaction pattern
with the service as an abstract state machine. Consequently it consists of all elements needed by an ASM
definition.

The hasStateSignature property refers to an element of type stateSignature that contains the definitions of
the various locations (see Listing 39). The meaning of these properties is the same as for the abstract state
machine. Concepts that are used as in, out or shared locations have to be defined with a grounding (see
section 4.4.3). The hasState property of the choreography element defines the possible states of the ASM in
terms of ground facts, which in this case are WSMO instances. This element, however, is not part of the
WSML syntax definition[116] nor is it formally defined in the syntax or semantics section of the choreography
definition document itself[115]. There is also no formal specification of the state type that is used in the
WSMO meta-model as far as the reference documentation is concerned. Generally the state of an ASM is
defined by the set of the current values of its locations. Since locations can be of arbitrary type there is
actually no need for an ASM's state to be finite.

Class choreography
hasNonFunctionalProperties type nonFunctionalProperties
hasStateSignature type stateSignature
hasState type state
hasTransitionRules type transitionRules

Listing 38: Meta-model definition of the WSMO choreography element[115]

68

However, there is a variant of ASMs called control state ASMs [119] that maintain the nature of named states
like in finite state machines (FSM). These types of machines use a special variable called ctl_state that
holds the FSM style state information. Update rules of control state ASMs take the current ctl_state into
account and have the following form:

if ctl_state = i and cond then rule
ctl_state := j

The transitionRules property of a choreography definition defines the update rules of the ASM. The syntax
of the transition rules is almost identical to the rules definition in classical ASM:

if Condition then Rules endIf
forall Variables with Condition do Rules endForall
choose Variables with Condition do Rules endChoose

The forall rule executes all rules that meet the given condition whereas the choose rule randomly takes one
of the locations that meet the given condition and executes the update. This explicitly models the non-
deterministic nature of ASMs. The actual rules are either add, delete or update and can be used to add,
delete or update instances or attribute values of instances. Each update rule can be decomposed into a
sequence of a delete and an add rule that has the same effect. Add and delete rules are therefore called
primitive rules. As a result all rules with a met guard condition form an update set U that turns the current
state S into an updated state SU by the following transitions, where a is a ground atomic WSML formula:

SU = S\{a|delete(a)∈U} ∪ {a|add(a)∈U}

To illustrate the application of the choreography element Listing 40 shows an example of the virtual travel
agency13. Although the use of the choreography's state as well as the use of the ctl_state variable are not
covered by the WSML syntax reference, this sample indicates that the latest revision of the WSMO
choreography favours control state ASMs over general ASMs. The sample ASM in this snippet consists of
three states. From the initial state (htl#start) there are transitions either to the state htl#offerMade or
htl#noAvail. This is modelled by so a called piped rule, where several alternative rules are separated by the
pipe character (“|”). The semantics of piped rules is that one of the available update rules is randomly
chosen. Thus the consecutive state is determined in an entirely non-deterministic fashion. This example,
however, also contains an error, since the ?name variable is used in the first add rule but is not defined in the
variable section of the forall rule and also not bound in the with clause, as required by the WSMO
choreography specification. When reduced to the actual message exchange the meaning of the ASM
modelled in Listing 40 is that the service might respond to a HotelRequest message either with a HotelOffer
message (indicating the state offerMade) or a HotelNotAvailable message (indicating the state notAvail). All
these messages are appropriately defined as either input or output messages in the choreography's state
signature. The current state, represented by the value of the ctl_state variable, can be used to reason
which messages are expected next by the service. The with clause of the transition rules can in turn be used

13 Taken from http://www.wsmo.org/TR/d17/industryTraining/SWS-tutorial-potsdam-20070220.pdf

Class stateSignature
 hasNonFunctionalProperties type nonFunctionalProperties
 importsOntology type ontology
 usesMediator type ooMediator
 hasStatic type mode
 hasIn type mode
 hasOut type mode
 hasShared type mode
 hasControlled type mode

Class mode sub-Class {concept, relation}
 hasGrounding type grounding

Listing 39: Definition of the stateSignature and the mode class[115]

69

to model the dataflow between consecutive message exchanges (e.g. by assigning values of previous output
concepts to attributes of expected input concepts).

An additional example containing a choreography can be found in [120]. It demonstrates the use of the
Amazon web service but reflects the previous version of the choreography specification only. Thus, there is
no state variable and dependencies between consecutive operations have to be modelled by making the
existence of output concepts of previous operations part of the if-condition of the corresponding transition
rules.

4.4.2 The Goal Element
WSMO goals represent the objectives of a client that should be met by the execution of appropriate web
services. Thus, goals are the base elements for identifying available web services that can achieve the
desired intention. As shown in Listing 41 a goal in WSMO is syntactically almost identical to WSMO's web
service description element (see Listing 31). The requestsCapabilty element can be used to define the
required functionality whereas the requestsInterface element can be used to define the expected
communication behaviour of suitable web services[121].

This, however, requires the user to express the requested functionality or behaviour in significant formal
detail that depends on in-depth WSMO knowledge and skills. To facilitate the usage of WSMO goals new

Class goal sub-Class wsmoElement
 importsOntology type ontology
 usesMediator type {ooMediator, ggMediator}
 hasNonFunctionalProperties type nonFunctionalProperty
 requestsCapability type capability multiplicity = single-valued
 requestsInterface type interface

Listing 41: WSMO meta-model definition of the goal element [114]

interface htl#BookHotelInterface choreography
stateSignature importsOntology htl#simpleHotelOntology

in htl#HotelRequest withGrounding _"http://...",
htl#HotelConfirm withGrounding _"http://...",
htl#HotelCancel withGrounding _"http://..."

out htl#HotelNotAvailable withGrounding _"http://...",
htl#HotelOffer withGrounding _"http://..."

shared htl#Hotel, htl#HotelAvailable, htl#HotelBooked
ctl_state {htl#start,htl#offerMade,htl#noAvail,htl#confirmed,htl#cancelled}

transitionRules
if (ctl_state = htl#start) then

forall {?req,?date,?loc,?client} with
?req[trv#date hasValue ?date, trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelRequest

do
add(htl#offer(?req)[trv#date hasValue ?date,

trv#hotelName hasValue ?name, trv#location hasValue ?loc,
htl#client hasValue ?client] memberOf htl#HotelOffer)

ctl_state := htl#offerMade
|
add(htl#notAvailable(?req)[trv#date hasValue ?date,

trv#location hasValue ?loc] memberOf htl#HotelNotAvailable)
ctl_state := htl#noAvail

endForall
endIf

Listing 40: Example choreography definition of the Virtual Travel Agency

70

recommendations[122] suggest pre-defined goals that are defined by ontology designers and should be
stored in a goal repository. These pre-defined goals are called goal templates, whereas goals that have
concrete values assigned to their defined input variables are called goal instances.

The entire recommended goal model is shown in Figure 26. Besides goal templates and goal instances also
so called composite goals are proposed that can be used to model more complex goals as an orchestration
of sub-goals. A WG mediator that links goals to web service descriptions is used to identify appropriate web
services. The formal semantics of this approach is also provided by a model theory that makes use of so
called Abstract State Spaces (ASS), which basically represent all valid states of the world of discourse [123].
A web service is considered a sequence of state transitions τ={s0,...,sm} that transfer the world from an
initial state s0 into a final state sm. Since web service and goal descriptions are made up of the same elements
(i.e. capabilities and interfaces) the same basic semantics applies to them:

Thus, every web service W can be interpreted as set of valid state sequences {τ}W that hold for the given capability
CW. Therefore W ⊨A CW if for all { }τ τ∈ W holds τ ⊨A CW. Conforming with this every goal G can be described by a
capability CG such that { }τ G is the set of all state transitions which are solutions to G and for all { }τ τ∈ G holds τ
⊨A CG.

A goal instance GI(G) is created by assigning concrete values to the input variables of a capability CG. This is
achieved by a so called input binding β that maps IN-variables to elements of the universe UA:

:{β i1,...,in} → UA

An input binding is considered to be valid if the current state of the world sc that is indicated by β meets the
required preconditions of the capability CG:

sc, β ⊨wsml Φpre

By substituting all occurrences of the IN-variables in all formulae φ of CG, all possible end-states for a

Figure 26: WSMO Goal Model Overview[122]

Definition 3 [122]: A capability is a 9-tuple C=(O,ΣA,IN,OUT,Φpre,Φass,Φpost,Φeff,NFP) with:
O ... set of imported Ontologies
ΣA ... the state signature consisting of all dynamic symbols ΣD and all static symbols ΣS

IN=(i1,...,in) the set of all input variables
OUT=(o1,...,om) the set of all output variables
Φpre,Φass,Φpost,Φeff ... preconditions, assumptions, post-conditions and effects
NFP … non functional properties

Let τ={s0,...,sm} be a sequence of state transitions in an Abstract State Space A.
The meaning of C is that if s0 ⊨wsml Φpre then sm ⊨wsml Φpost and sm ⊨wsml φeff if for all s τ∈ holds s ⊨wsml

φass. If this holds, we say that τ satisfies C, denoted by τ ⊨A C.

71

particular goal instance GI(G) can be determined. Since concrete values limit the number of potential
solutions it holds that { }τ GI(G) ⊂ { }τ G. This view on web services and goals allows for formal match-making
between goals and goal instances on the one side and web services on the other side, enabling the
discovery of appropriate services that meet the user's desires[124]:

Clauses (i) and (ii) in Definition 4 define the matching criteria between web services and goal templates or
goal instances respectively. If there is at least one possible solution part of the web service's executions th en
this service can solve the given problem. Since { }τ GI(G) ⊂ { }τ G a match for a goal instance also implies a
match for the corresponding goal template (match(GI(G),W) � match(G,W)). On the other side, if there does
not exist a match for the goal template there cannot exist a match for any of its instances: � match(G,W) �
� match(GI(G),W). This justifies the so called two-phase web service discovery approach [124] in which
suitable web services are linked to corresponding goal templates at design time. Thus, only these web
services have to be considered during run-time when looking up an appropriate web service for the given
goal instance. This significantly accelerates the discovery process but limits the possible results to those
services known during design time. Whereas Definition 4 provides the basic requirements for a web service
that can solve a given goal, the extent to which a web service's functionality matches the required
functionality of a goal can be further classified. WSMO distinguishes the following degrees of matches
between goal templates and web services:

● exact: The set of transitions sequences of the goal template and the web service are identical (if and
only if τ {τ}∈ G then τ {τ}∈ W)

● plugin: The set of transition sequences defined by the goal template is sub-set of the web service's
transitions (if τ {τ}∈ G then τ {τ}∈ W)

● subsume: The set of the web service's possible transition sequence is a sub-set of the goal
templates possible transition sequences (ifτ {τ}∈ W then τ {τ}∈ G)

● intersect: There exists at least one transition sequence that is part of both sets (there is a τ such
that τ {τ}∈ G and τ {τ}∈ W). This is equivalent to clause (I) of Definition 3.

● disjoint: There is no common transition sequence, thus, the web service cannot solve the given goal
template (there is no τ such that τ {τ}∈ G and τ {τ}∈ W).

From the first two matching degrees directly infers that the web service can also solve any instance of the
goal template, whereas for the latter two additional tests have to be conducted to see whether the given goal
instance contains transition sequences that are also part of the web service's set of transition sequences.

To relate web services to goal templates so called WG (web services to goal) mediators are used (compare
Figure 26). According to [122] a WG mediator should consist of the following elements:

● A source attribute that refers to a goal template

● A target attribute referring to the web service

● date and process level mediation facilities

Definition 4 [124]: “Let W be a Web service, G a goal template, and GI(G) a goal instance that
instantiates G with an input binding β. Let =(sτ 0,...,sm) be a sequence of states in an Abstract
State Space A. We define the following sets:
{ }τ G := possible solutions for G
{ }τ W := possible executions of W
{ }τ GI(G) ⊂ { }τ G := possible solutions for GI(G) that defines β
{ }τ W()β ⊂ { }τ W := possible executions of W when invoked with β

We define the usability of a Web service for solving a goal as:
(i) match(G,W) : ∃ . ({ }τ τ τ∈ G { }τ∩ W)

(ii)match(GI(G),W) : ∃ . ({ }τ τ τ∈ GI(G) { }τ∩ W()β)”

72

● the matching degree between goal template and web service like described above

● a client interface in oder to utilise the web service

This, however, is a recommendation for the implementation of the two-phase web service discovery
approach. The current specification of the wgMediator element in WSML[116] only contains the first three
elements and the sources attribute refers to web services whereas the target attribute links to a goal.

4.4.3 WSMO Grounding
WSMO terminology refers to the WSMO part of a web service as the semantic description whereas the
WSDL description of a web service is called the syntactic description. The mapping between corresponding
elements in the semantic and the syntactic description which is necessary to actually invoke the web service
is called grounding[125]. Like described in the previous sections, the semantic description of a web service
in WSMO consists of its capabilities and its interfaces including its choreography. Accordingly WSMO
distinguishes between the mapping of concepts that are used as messages, which is called data grounding
and the mapping of the interaction patterns, which is called behaviour grounding.

WSMO proposes three different approaches for data grounding:

1. Create a mapping at the meta-model level from XML schema to WSMO concepts and axioms. This
allows for automatic creation of an ontology based on XML schema datatypes.

2. Transfer between the XML serialisation of WSML and the web service's messages using
technologies like XML style sheets.

3. Use a specialised mapping language to map directly between XML messages and the WSMO
ontology.

Figure 27 provides an overview of the approach mentioned. At the upper right corner of this illustration a
sample snippet of an instance modelled in the so called target ontology is shown. This is the ontology that is
used to provide the semantic description of the web service. In the lower left corner a part of an actual XML
message as required by the web service is shown. The first data grounding approach is based on the
creation of a so called ad-hoc ontology. This is an ontology that is automatically created by direct translation
of the corresponding XML schema (XSD) into WSMO elements. A mapping between XSD elements and

Figure 27: WSMO data grounding approaches[125]

instance _#1 memberOf Person
name hasValue _#2

instance _#2 memberOf Name
first hasValue "John"
last hasValue "Doe"

...

instance _#1 memberOf Person
firstName hasValue "John"
lastName hasValue "Doe"

...

<person>
<name>
<first>John</first>
<last>Doe</last>

</name>
...

<wsml>
<instances>
<memberOf>Person
</memberOf>

...

Automatic lifting/lowering
based on conceptual
mapping

Ontology mapping
(ooMediator)

XSLT

(de)serialization

Direct mapping language

1

2

3

Ad-hoc ontology from schema Target SWS ontology

WSDL XML data WSML/XML representation

73

WSMO/WSML elements enables this transformation. XSD elements are mapped to WSML according to their
type. Since WSML uses the XSD type schema, simple types can be used on an as-is basis. Complex XSD
types are represented by concepts, where each element is either represented by a corresponding simple
type property or an object property. Restrictions are converted into concepts together with constraining
axioms. XML attributes are also mapped to concepts representing them. The complete mapping can be
found in [126]. This approach supports automatic conversion from XML data to corresponding WSMO
instances (lifting). Since every automatically created WSMO concept holds a mapping to its source XSD
element in its non-functional properties, also conversion from WSMO instances to XML data (lowering) is
possible. Due to the low-level mapping between XSD and WSMO, ad-hoc ontologies are relatively extensive
and reflect XSD artefacts (e.g. every XML attribute is represented by a separate concept). This is also
indicated in Figure 40 where instance representation in the ad-hoc ontology is longer than in the original
target ontology. To bridge the differences between these two ontologies a mediator is used. However, it is
also possible to directly use the ad-hoc ontology for the semantic description. In this case the ad-hoc and the
target repository are identical which eliminates the need for mediation.

An alternative approach to perform data grounding is to use the XML serialisation of WSML and to convert
between this XML version and the one required by the web service using standard technologies like XML
style sheets (XST). This requires the definition of an appropriate style sheet and the invocation of the
transformation using a suitable style sheet processor. The drawback of this approach, however, is that there
is no semantically interpretable mapping, since the actual transformation is simple text conversation. The
third recommended approach is the use of a direct mapping between WSMO/WSML elements and XML,
although there are no implementations available yet. A special mapping language could facilitate lifting and
lowering between the semantic and the syntactic description without any of the disadvantages of the other to
approaches.

Behaviour grounding deals with the mapping between a service's choreography and the appropriate WSDL
elements. A choreography's state signature defines concepts that are used as in, out or shared messages in
the transition rules. When grounding the choreography to an existing web services one has to be aware that
there can be significant differences in the granularity of the messages used in the semantic and the syntactic
description. According to [126] WSDL messages are generally more course grained to reduce network
roundtrips. Semantic descriptions, however, are typically fine grained and also split information over several
concepts to facilitate re-use of individual concepts. This leads to structural heterogeneity that has to be
considered during the design of the mapping. Generally the following cases can occur:

● Single rule per request/response operation: In this case there is a perfect match between one web
service operation and one transition rule. Thus, the in concept used in the transition rule is mapped
to the input message of the web service operation and the response message is represented by the
concept that is created by the transition rule.

● Multiple rules for an aggregate operation: This reflects the situation where a web service's operation
constitutes the interface of a sub-flow (i.e. several operations that are executed sequentially to
create the same result) that is explicitly modelled in the choreography spanning multiple transitions.
Consequently all in concepts of all the individual transitions that make up the web service's
aggregate operation are grounded to the single input message of this operation. Respectively, all out
concepts of the involved transitions are mapped to this operation's out message.

● Grounding one concept to multiple operations : This is caused by the different granularity of
messages in the semantic and syntactic description rather than by the different granularity of
operations and transitions and can occur in both situations mentioned above. In concepts can be
used as the input to several operation. Thus every in concept can be grounded to multiple input
messages. It is also possible that different operations have output messages of the same type,
corresponding to the same concept in the ontology.

Beside this cases a general constraint is that in concepts can only be grounded to input messages, out
concepts to output messages and shared concepts to input and output messages. This includes fault
messages as well. It is important to realise that the actual URIs that are used to ground these concepts are
not referring to XSD message type definitions but to the operations' input and output messages.

74

URIs used as values of the withGrounding attribute of the state signature (see Listing 40) have the following
form:

namespace#wsdl.interfaceMessageReference(interface/operation/message)
or

namespace#wsdl.interfaceFaultReference(interface/operation/message/fault)

Interface is the name of the interface in the WSDL file that contains the operation. The next value is the local
name of the operation followed by the role of the message (in or out). In case of a fault message the local
name of the fault message has to be provided. Having given the example shown in Listing 42, the following
grounding URIs would be possible:

http://example.com/#wsdl.interfaceMessageReference(BookTicketInterface/bookTicket/In)
http://example.com/#wsdl.interfaceMessageReference(BookTicketInterface/bookTicket/Out)
http://example.com/#wsdl.interfaceFaultReference(BookTicketInterface/bookTicket/Out/CreditCardNotValid)

As a result every transition rule that makes use of any of these messages is mapped to WSDL operations as
well. When a web service should be consumed based on a WSMO choreography, the client needs a
choreography engine that is capable of executing the ASM represented by the semantic description. The
goal of the choreography is to allow a client to use a web service that was previously unknown and therefore
to provide the necessary information on how to use the different web service operations in order to achieve a
specific goal. Assuming that the client has already evaluated the web service's capabilities holding the
description of its IOPEs, some instances of in and or shared concepts that are required by some transition
rules will be present in the information space. Thus, one transition rule will fire when the ASM is evaluated.
The client now marks all in and shared concepts used by this rule as those that have to be sent next. Based
on the grounding of these concepts the corresponding web service operation together with its input message
has to be identified. Since, as discussed previously, each concept can be grounded to multiple input
message, the client has to uniquely select the appropriate operation by sorting out those mappings that do
not apply. The detailed algorithm on how to perform this can be found in [126]. To figure out the next
operation that needs to be performed, these steps are repeated until the desired state is reached.

Besides grounding a semantic web service description to an already existing web service, WSMO also
proposes a way to generate a WSDL file based on the semantic description. This allows for a forward
engineering approach that starts with a semantic model where the actual web service endpoint description is
automatically generated. One prerequisite for this approach is the existence of some default grounding that
is used by the generation process. Data grounding in this scenario is implemented by wrapping each WSMO
concept that is accessible by the client (which is true for all in, out and shared concepts) in an XML schema
element declaration. This approach is shown in Listing 43 where “concept name” is replaced by each
concept's local name.

...
<interface name="BookTicketInterface">

<operation name="queryPrice" pattern="http://www.w3.org/ns/wsdl/in-out">
<input element="tns:TripSpecification"/>
<output element="tns:PriceQuote"/>
<outfault ref="tns:TripNotPossible"/>

</operation>
<operation name="bookTicket" pattern="http://www.w3.org/ns/wsdl/in-out">

<input element="tns:BookingRequest"/>
<output element="tns:Reservation"/>
<outfault ref="tns:CreditCardNotValid"/>
<outfault ref="tns:TripNotPossible"/>

</operation>
<fault name="TripNotPossible" element="tns:TripFailureDetail" />
<fault name="CreditCardNotValid" element="tns:CreditCardInvalidityDetail" />

</interface>
...
Listing 42: Snippet from an example WSDL file[126]

75

Thus the transformation process between semantic instances and XML messages at the syntactic level is
straight forward. The default behavioural grounding of a WSMO choreography is based on the following
considerations. Every in concept in the state signature can only be created by the client and is sent to the
service endpoint. This is considered a write operation. Every out concept is created or updated by the
service and is sent to the client. This leads to the semantics of a read operation. A shared concept, which
can be created or modified by both communication peers, will be part of a read and a write operation.
Consequently, the generated WSDL operations are either based on the in-only or out-only message
exchange pattern. Thus, there are no in-out operations in the generated WSDL, although this is usually the
most common message exchange pattern. Another shortcoming of this approach is that there is no
distinction between ordinary responses and fault messages. Since a fault message, however, can be seen
as a web service message with special semantics (i.e. indicating an erroneous condition), the loss of this
meaning at the syntactic level can be compensated by adequate meaning at the semantic level.
Nevertheless, more severe is the loss of synchronously produced fault messages since in-only operations do
not allow for any responses at all. The separation into in-only and out-only operations is argued by the lack
of information that is required to figure out which concepts belong together as input and output of a single
operation[126]. Interestingly, these considerations do not take the transition rules into account, which would
easily enable the automatic creation of web service operations that use the ordinary in-out message
exchange pattern. This, however, would require a different data grounding approach, since in this case all
input concepts used by a transition rule had to be aggregated into one input message for the corresponding
operation. The same is true for all concepts that are created or updated by the transition rules and had to be
aggregated to single output messages. Thus, an approach that translates every transition rule into one
corresponding web service operation would probably improve the overall usability of this generation
approach.

So far only approaches to map from WSMO to WSDL have been discussed. Nevertheless, there also exist
ways to map from WSDL to WSMO. One possible approach is the use of SAWSDL (Semantic Annotations
for WSDL and XML Schema)[127]. SAWSDL provides additional XML attributes that can be used to map
WSDL or XML schema elements to a corresponding semantic description. This approach does not make any
assumptions about the framework used to model the semantic descriptions thus it can be used together with
WSMO or OWL or any other semantic framework. The only prerequisite is that semantic model elements can
be unambiguously referenced via URIs. Since all SAWSDL attributes are multivalued it is even possible to
map a WSDL web service to several different semantic models simultaneously. The core attribute is
sawsdl:modelReference that directly maps the element it appears within to a semantic element. If additional
translation between the WSDL or XML element and the corresponding semantic element is needed it is also
possible to add additional processing instructions. Therefore the sawsdl:liftingSchemaMapping and the
sawsdl:loweringSchemaMapping attributes can be used to refer to XML stylesheets that describe the
transformation from XML to semantic models (i.e. lifting) and vice versa (i.e. lowering).

4.5 Comparison
When analysing semantic web service frameworks that could be candidates for the implementation of the
envisaged approach to ontology-driven E-Government it is important to particularly focus on those
frameworks that have already left the conceptual state and become available with implementations and
probably tool support. This is true for OWL-S and WSMO but not for SWSF. That is why SWSF will not be
explicitly regarded, although WSMO can be seen as an adoption of key SWSF concepts.

<xs:element name="concept name">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="wsml:instance" />
 </xs:sequence>
 </xs:complexType>
</xs:element>
Listing 43: XML schema template for the default grounding of WSMO concepts in generated
WSDL files

76

There already exists some research on the comparison of WSMO and OWL-S [128][129] but all these studies
were published even before some key features of WSMO (e.g. service orchestration and grounding) had
been specified. Thus, their results lack important facts when it comes to a complete evaluation of these
approaches. When directly comparing semantic web service frameworks, especially when they should be
assessed according to their suitability for a given usage scenario, it is important to point out how these
frameworks support common semantic web service design goals. Like already pointed out in section 2, the
semantic web should allow automated software agents to accomplish non-trivial tasks to achieve a user's
goal [16]. Semantic web services are considered to be the core elements of the realisation of the semantic
web, which is for example reflected by the OWL-S design goals[96]:

• Automatic Web service discovery

• Automatic Web service invocation

• Automatic Web service composition and interoperation

Besides these goals, the basic process to actually use semantic web service s should consist of the following
phases[130]:

• Goal discovery and refinement

• Service discovery

• Service contracting

Integrating these design goals with the proposed utilisation process a semantic web service has to support
the identification of candidate web services based on a user's or agent's goal, has to describe how to
actually make use of these services and should additionally provide information that allows to reason about
combinations of different web service operations to get more complex goals accomplished. This section will
therefore compare the different frameworks in question along these requirements and will point out their
respective strengths and weaknesses.

4.5.1 Goal based discovery
Supporting goal based discovery of web services requires a notion of a goal that reflects something a user
wants to get done or achieved. In the case of OWL-S, there does not exist an explicit notion of goals
whereas WSMO provides a built-in component that reflects user goals. However, regardless of the existence
of an explicit formal goal as part of a framework it seems intuitive that a web service description that
unambiguously states what a service does and which output it produces can be used to figure out whether
this service contributes to the given goal or not. To provide this type of description OWL-S as well as WSMO
use so called IOPE's (inputs, outputs, preconditions and effects).

In general OWL-S proposes two approaches to implement goal based service discovery [12]. One family of
algorithms utilises the classification aspect of OWL-S service profiles. OWL-S recommends that every profile
should not only be a pure instance of OWL-S' Profile class but should also subclass other classes adding
extra semantics to facilitate service discovery. This approach is paradigmatically demonstrated in the Congo
Book Shop reference example. The profile of this service is a subclass of Profile but also a subclass of
BookSelling. This class is in turn a specialised subclass of E_Commerce that has its merchandise property
restricted to instances of type Book only. Thus, it can easily be subsumed that the Congo Book Shop is an e-
commerce service selling books. By extending the class hierarchy and adding another super-class like
PayPalEnabledService it would be possible to reason that one could use PayPal 14 in order to pay purchases.

However, it is also possible to model these facts in the IOPEs or capabilities of the service. Whereas inputs
and outputs can be natively expressed in OWL, OWL-S relies on external rule languages to model
preconditions and results/effects. Thus, the second family of goal based service discovery algorithms takes
the inputs and outputs of available services into account. According to [12] these algorithms interpret a
service description as a functional transition of input state into output state. To illustrate the advantages of

14 http://www.paypal.com

77

this approach, [12] mentions a language translation service that accepts n different languages as input and
provides n languages as output. Expressing this service in the previously explained service class hierarchy
approach would require up to n2 service classes to describe all possible translations. This can be avoided by
modelling the input and the output of the service as classes that represent the supported languages. There
are several algorithms[131][132] that consider a service's input and output. Some are already integrated into
runtime and development environments[133]. Basically, all these approaches use subsumption on input and
output classes. This requires a goal to be expressed as a service profile that contains the required output
and desired input. Since this type of a goal notation is very similar to an OWL-S service profile (see section
4.2.1), these algorithms compare the actual service's profile, the advertised profile and the goal description
to the requested profile. This, however, is almost identical to WSMO's notion of a goal (see section 4.4.2). To
identify appropriate services, this kind of discovery algorithms take a requested service profile as input and
reason about the requested profile's outputs (inputs) and all advertised profiles' outputs (inputs). It is
checked whether a requested output (input) is identical to an advertised service's output (input) or if one
subsumes the other. This is done for all inputs and outputs of the requested service. Based on the result of
this step a rank can be defined for every input/output element that leads to a total rank for every advertised
service with respect to the requested profile. The resulting rank depends on the subsumption relationship
between a requested and an advertised element and is almost identical to WSMO's goal matching states
(see section 4.4.2)[132]:

● exact: The advertised element A is equivalent to the requested element R (A B≡)

● plugin: Requested element R is a sub-concept of the advertised elements A (R ⊑ A)

● subsume: Requested element R is a super-concept of the advertised elements A (A R⊑)

● intersection: The intersection of requested element R and advertised element A is satisfiable
(� (A R⊓ ⊑ ⊥))

● disjoint: Requested element R and advertised element A are disjoint (A R⊓ ⊑ ⊥)

Although this schema uses the same notation as WSMO, the outcome is different. When considering the
language translation service again, the service discovery algorithm above only works correctly if the service
translates any of the supported input languages into every of the supported output languages. If, however,
the number of resulting output languages depends on the input language, the algorithm will lead to
inappropriate results. Instead of treading the service profile as a transaction that describes how some input
state is translated into some output state, the algorithm uses simple subsumption on input and output
concepts. Thus, the fact that not every input language can be translated into every output language is not
covered. This would require a model like it is used in WSMO, that describes the service interaction in terms
of a so called abstract state machine that transforms a state described by the available input into a resulting
state described by specific output. In the case of a WSMO based discovery approach the state machine
would receive the requested input language and would result in a set of so called runs containing all possible
output languages. If the desired output language is part of the output of at least one run, the service can be
used to achieve the goal. This shows that there are certain limits in OWL-S based discovery algorithms
compared to WSMO. Although OWL-S can model more sophisticated facts by embedding rule descriptions
for preconditions and effects, evaluation of them requires heterogeneous tool environments and therefore
more complex procedures. That is why OWL-S matchmaking is solely based on subsumption of service
profiles. Whereas especially reasoning over service class hierarchies is relatively fast and can be applied to
a large number of advertised services, WSMO's approach to model a service's capabilities is more
expressive but also more demanding in terms on computational complexity when applied to a large number
of advertised services. That is why WSMO proposes a two step matchmaking procedure, where candidate
services are related to so called goal templates at design times, limiting the number of services that have to
the analysed during runtime. This, however, limits the number of possible results to those already known at
design time.

Generally, every approach that takes service capabilities into account requires a formal description of a goal
that is similar to the actual service description and includes at least input and output concepts. Since the
creation of these descriptions is not very intuitive for non-expert users, this approach requires some
additional support. Again WSMO goal templates can be associated to natural language goal descriptions

78

and therefore can be used to support users in expressing their goals.

As pointed out above, both approaches have some advantages but also disadvantages. Whereas OWL-S'
approaches are efficient but rather limited in expressiveness and might potentially lead to incorrect results,
WSMO's approach is of high complexity and therefore virtually limited to pre-modelled candidate services.
The following three-phase discovery algorithm that is based on the advantages of both frameworks seems to
be an optimal solution:

1. Look-up all candidate service using subsumption within a comprehensive service ontology (e.g.
looking for LanguageTranslationServices).

2. In the resulting set of candidate services apply the subsumption algorithm on inputs and outputs

3. Verify the correctness of the results from phase two by using WSMO's abstract state machine
approach.

This would allow for very efficient service identification in phase one. Phase two is used to further reduce the
number of candidate services that are verified in phase three. Since this approach requires WSMO's state
machine approach it could be implemented by either extending WSMO's element hierarchy or by modelling a
meta-service-model-ontology within WSMO that refers to the appropriate WSMO elements when needed.

4.5.2 Service Choreography
The choreography of a semantic web service in this context describes how a web service is used in terms of
its interaction protocol, i.e. which messages have to be sent in which order to achieve a specific goal.

To describe how to interact with a web service, OWL-S provides a so called service model (see section
4.2.2). The basic building block of the service model is the process element. Basically there are atomic
processes and composite processes. Whereas an atomic process represents one web service operation, a
composite process represents a flow of composite and/or atomic processes. The flow of operations is
described via so called control constructs. The entire flow definition provides the client with information about
how to invoke particular web service operations in terms of their sequence. Control structures used by OWL-
S basically represent standard control structures as they are used in virtually any programming language.
This results in an intuitive workflow description. Along with the flow of control also the flow of data has to be
defined. This describes how information is passed along the entire flow of operations. Since OWL is not a
frame-based system and therefore the existence of a class does not allow for expecting the existence of any
particular property values, the data flow has to be described at rather fine granularity referring to individual
properties. Consequently data propagation has to be defined at low level as well using so called binding
classes. Generally this leads to extremely verbose description.

Whereas OWL-S uses a conventional, intuitive flow description, WSMO's choreography element (see section
4.4.1) represents an abstract state machine (ASM). The state signature defines variables , which are used as
the state machines locations. The current values of these locations define the state of the machine. To figure
out which operations to call, the abstract state machine has to be initialised by assigning the current input
values to the appropriate in and/or shared variables of the ASM. Like already described in section 4.4.3
variables in guard conditions of rules that are enabled to fire identify the operations that have to be invoked.
Due to potential differences in the granularity of transition rules and web service operations there might be
need for additional steps to figure out when and which operation to call. By setting up design guidelines that
require ontology experts to model transition rules as web service operation equivalents, this potential
additional complexity could be avoided. Given such constraints, a transition rule would be logically identical
to an atomic process in OWL-S.

Both approaches to model possible interaction patterns are equivalent according to their expressiveness.
Whereas OWL-S describes the flow of control, WSMO uses an ASM with transition and update rules written
in WSML. Thus, the WSMO ASM can be directly executed. Due to its frame-based nature, WSMO can map
concepts to entire messages, whereas OWL-S has to map individual massage parts. This eliminates the
need for separately modelling the data flow in WSMO as it is required in OWL-S. As a matter of fact,
however, WSMO's choreography suffers from different specification versions that are neither already

79

adopted by the modelling language used (WSML) nor by tools supporting WSMO services. Thus the latest
revision of the specification cannot be used in practice yet.

4.5.3 Service Execution
In this section the different approaches to ground the semantic descriptions are compared.

Since every atomic process in OWL-S represents exactly one web service operation grounding of OWL-S
services is rather straight forward (compare Figure 24). The grounding element for an atomic process refers
to the WSDL file of the web service. Via additional properties the process is connected to the appropriate
port type and operation. The input and output parameters are mapped to message parts, which are elements
of the operation's input and output messages.

WSMO's grounding is entirely based on message exchange patterns [134], i.e. a web service is rather seen
as an endpoint that receives and returns messages than as a set of operations available over the web. Thus,
there is no explicit equivalent for operations in WSMO, although transition rules represent state changes that
can be achieved via the invocation of web service operations. The actual mapping between WSMO's
semantic description and the operations of a web service endpoint happens via the messages used in a
transition rules guard condition. Concepts are not mapped to message types but directly to the input and
output messages of particular operations. Thus, the grounding of a message also refers to the operation it is
used with. Potential heterogeneities in the granularity between transition rules and operations might
introduce additional complexity as already pointed out in section 4.4.3.

Again the grounding mechanism of OWL-S must be considered to be more intuitive, although both
approaches unambiguously map semantic descriptions to the syntactic descriptions of WSDL documents. As
already mentioned in the previous section, the possibility of a more coarse grained mapping between WSMO
concepts and WSDL messages instead of individual message parts minimises markup effort and generally
eases mapping. Both frameworks support the use of XSL transformations to perform more sophisticated
mappings between concepts and messages. To support bidirectional mapping also from WSDL to the
semantic model OWL-S provides a separate namespace with proprietary markup. WSMO promotes the use
SAWSDL, which - due to its framework independent nature - can also be used with OWL-S.

4.5.4 Summary
Taking all core features of semantic web services together, WSMO shows some advantages, however, at the
price of higher complexity. There are some suggestions to minimise this complexity, e.g. by using predefined
goal templates. OWL-S potential shortcomings are caused by its description logics basis that is not suited to
natively express rules. Some of this shortcomings might be overcome be adopting OWL 2. WSMO shows
some inconsistencies between the specification of the choreography and orchestration in its adoption in the
actual modelling language. The available implementation, however, incorporates all core features, although
some new suggestions (e.g. the use of control state ASMs) are still missing.

5 Model Driven Architecture
This chapter presents an approach called Model Driven Architecture [5] that was initially proposed by the
Object Management Group15 (OMG) in 2001. Since MDA provides a conceptual framework for Model Driven
Development (MDD)[135], the goal is to identify principles an ideas that can be incorporated into the
envisaged approach to Ontology-Driven E-Government.

15 http://www.omg.org

80

5.1 Idea/Motivation

The general motivation behind MDA is to emphasise the importance of creating a comprehensive model of a
system before it is actually programmed. Therefore MDA wants to add additional value to models, by making
them machine readable, re-usable at different levels and making them the basis for automatic code
generation:

“This is the promise of Model Driven Architecture: to allow definition of machine-readable
application and data models which allow long-term flexibility of:

implementation: new implementation infrastructure (the “hot new technology” effect) can be
integrated or targeted by existing designs

integration: since not only the implementation but the design exists at time of integration, we
can automate the production of data integration bridges and the connection to new integration
infrastructures

maintenance: the availability of the design in a machine-readable form gives developers direct
access to the specification of the system, making maintenance much simpler

testing and simulation: since the developed models can be used to generate code, they can equally
be validated against requirements, tested against various infrastructures and can used to directly
simulate the behavior of the system being designed.” ([136] page 1-2)

Thus, MDA promotes the use of models not only to improve the design of a system but also to gain
significant advantages in later phases of the development cycle.

MDA is not an isolated technology but is based on a set of other OMG standards like the Uniform Modeling
Language (UML)[137], the Meta Object Facility (MOF)[6], the XML Metadata interchange (XMI)[138] and the
Common Warehouse Metamodel (CWM)[139]. The complete model of a system actually consists of up to

Definition 5: “The MDA defines an approach to IT system specification that separates the
specification of system functionality from the specification of the implementation of that
functionality on a specific technology platform. To this end, the MDA defines an architecture
for models that provides a set of guidelines for structuring specifications expressed as
models.” [5]

Figure 28: MDA's different model levels
(own illustration)

81

three models that represent different viewpoints and levels of abstractions (see Figure 28). The
transformation between these different models, especially between the Platform Independent Model (PIM)
and the Platform Specific Model (PSM) is a major focus of MDA.

Generally MDA defines a model as follows:

In the context of MDA it is important that a model is formal. This is true if the model has a well-defined form
(syntax) and every element that makes up the model has some associated meaning (semantic). This might
also include the existence of rules that allow for analysis and checks of the model. The form of the
representation of the model (e.g. whether it is text or a graphic) is not important as long as it is formal. One
way to establish formal models and therefore to setup syntactic rules and semantics, is to formally define
possible model elements and their relations by constructing a so called meta-model. This can be done by
using the MOF (see section 5.2). Most models used in MDA are expressed in UML, which in turn is based on
the MOF.

Each of three different models shown in Figure 28 has a different level of abstraction. Abstraction according
to ISO 10746-1 is “The process of suppressing irrelevant detail to establish a simplified model, or the result
of that process”[140]. Consequently the model at the highest level of abstraction contains least “irrelevant”
detail. The following sub-sections will briefly describe the different models used within MDA.

5.1.1 Computational Independent Model
Before describing the details of all the different models involved in MDA, taking a look a the model
taxonomy[141] presented in Figure 29 will help to understand the differences between those models and

how they contribute to a comprehensive picture of a system.
This taxonomy classifies models along several categories. The first separation happens along the dimension
business or domain versus system models. The first category of models clearly focuses on the business
aspects omitting all facets that are related to computer systems. This does not mean that the model is
incomplete but it simply does not worry about which elements of the business are subject to automation and

Definition 6: “In the MDA, a model is a representation of a part of the function, structure
and/or behavior of a system” ([5] page 3)

Figure 29: MDA model taxonomy ([141] page 193)

82

which are not. Consequently, system models, which focus on automation aspects typically have a smaller
scope than business/domain models. The next categorisation happens along logical models and physical
models. Physical models represent the run-time infrastructure of the system and how the different artefacts
of the system make use of the available resources. The logical model focuses on the functional aspects and
quality aspects of the system.
Another separation follows along the dimension computational and computation independence. This leads to
a requirement model that should not be influenced by any constraints imposed by the nature of the technical
solution. Thus, technical factors should be left out when establishing the requirements model. On the other
side computational models already contain specifics of the eventual technical solution. Computational
models are then split into two categories called platform independent and platform specific models. The first
category represents models that describe a computer-based solution but do not pay account to artefacts and
requirements imposed be the selection of a particular platform (see next sections). Platform specific models
are already optimised for the use with a particular platform.
To capture the content that typically goes into the business/domain and requirements models, MDA proposes
a so called Computation Independent Model (CIM). Thus, this model contains a business view that is
already influenced by the intention to automate certain aspects of the business or domain. Nevertheless, it is
not strictly limited to these parts of the system. Its general intention within the MDA process is to bridge the
gap between business/domain experts and system design experts to capture the system's requirements in
formal models. It does not contain any information about the structure or the parts of the system. Typically, a
CIM is made up of a set of UML diagrams like activity, class, interaction, collaboration and use-case
diagrams, although it is not explicitly needed by MDA.
Beside a few recommendations MDA does not make any assumptions about the computational independent
model since it focuses much more on the transformation process between the PIM and PSM. But there
exists significant literature on methods, tools and strategies how to create a CIM [142][143][144][145].

5.1.2 Platform Independent Model
The Platform Independent Model (PIM) is a computational model that further refines the requirements model
(CIM) but does not contain any specifics of the eventual run-time environment. To clarify what platform
independence in the context of MDA means, a definition of the term platform would be helpful. The MDA
literature, however, provides several explanations of this term:

“In the MDA, the term platform is used to refer to technological and engineering details that are
irrelevant to the fundamental functionality of a software component.”([5], page 5)

“A platform is a set of subsystems and technologies that provide a coherent set of functionality
through interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality provided by the platform
is implemented.”([136],page 2-3)

“A platform is an execution environment for models”([146],page 51)

Taking all these definitions together, a platform constitutes the run-time environment for a system and
provides functionality and services for the application, which in turn, however, are not relevant to the
fundamental functionality of the software system. Platforms typically form platform stacks [146] since one
platform at a higher level makes use of a lower level platform. The platform e.g. consisting of Java API's
makes use of the Java virtual machine, which in turn makes use of services provided by the operating
system.
A platform independent model ignores the influence of the selected platform on the logic and functionality of
the system. It therefore abstracts away this kind of technical detail but captures the entire functionality of the
software.

83

5.1.3 Platform Specific Model

The platform specific model (PSM) applies the specification of a PIM to the specific requirements of a
particular framework. Therefore it extends the PIM with concepts representing the functionality, services and
artefacts provided or needed by the platform. Platform-specific facts like information-formatting,
programming language, distributed component or messaging middleware influence the PSM. The PSM
therefore is the least abstract model, which holds in turn most technical detail and can thus be used to
generate an executable application based on the information contained in the model.

5.1.4 Model Transformation
All classical software development methods that are based on the waterfall model [147] contain a software
design phase (see Figure 30). The goal of this phase is to determine the layout of the major system
components and to plan the implementation of the system. The result of the design phase is a design
document the serves as the input to the implementation phase. If errors are detected in a development
phase that have their roots in a previous phase, the waterfall model provides a backtracking mechanism to
fix the error in the appropriate phase. Since it is not always clear whether a problem that occurs for example
in the testing phase is caused by a design flaw or an inappropriate implementation decision, updates might
be done to the code base that are not reflected by the design documentation although these changes
influence the design as described there. That is why the design documentation is likely to lose accuracy and
actuality over time. This trend is even intensified by the fact that in classical software engineering the design
document holds a description of the system but otherwise has no direct influence on the code base. Thus
updating the design model is a documentation task rather than an implementation task. The MDA approach
changes this significantly since here a model is no longer a pure design artefact but a representation of the
system that can be used to automatically generate source code. That is why MDA has a clear emphasise on
model transformation means.

MDA proposes three different main levels of abstraction. The computational independent model (CIM), the
platform independent model (PIM) and the platform specific model (PSM). Although model transformation is
a key factor in MDA, the specification does not deal with how to transform a CIM into a PIM, but generally
sees the CIM as an input to the (manual) creation of a PIM.
To overcome this lack of the specification there exist several recommendations aiming at the automatic
transformation of computational independent to platform independent models [148][149].

Figure 30: The Waterfall Model in Software Engineering (own
illustration based on [147])

84

The transformation of PIM into PSM, however, is thoroughly covered by the MDA specification. Figure 31
Illustrates the advantage of a comprehensive PIM since it can be transformed to several PSMs representing
different technological platforms. This enables reuse at a high level of abstraction and allows for rapid
adoption of new technologies.

While abstraction means suppressing irrelevant detail, the transformation of a platform independent into a
platform specific model means to leave a level of higher abstraction and to add more (technical) detail. Thus
every transformation relies on additional information that somehow has to be added to the model in order to
create a complete model at a more specific layer. MDA basically provides two mechanisms to map models at
different levels of abstraction. One approach is called model instance mapping or marking and the other
approach is called model type mapping or metamodel mapping. Marking augments the platform independent
model with concepts of the PSM. These so called marks add platform specific transformation information to
the PIM turning it in a so called “marked PIM” as shown in Figure 32. The marked PIM is then turned into a

Figure 31: MDA Transformation Paths (own illustration)

Figure 32: MDA Transformation Process based on Marking ([136], p. 3-8)

85

PSM.

While marking requires and intermediate step to enrich the PIM with platform specific information and
therefore dilutes the strict separation of these two layers, metamodel mapping uses a more general
approach. One prerequisite for this approach is that the models used for the PIM and the PSM are based on
metamodels. These metamodels define the syntax of the models and therefore contain definitions of all
elements that can be used in the actual model. Thus, a mapping between corresponding model elements
can be created at metamodel-level like shown in Figure 33. This mapping is used by the transformation
process to generate a model at the next concrete level.

Besides these two approaches to automatically create a PSM based on PIM MDA also allows for direct
transformation into source code, which makes the use of a PSM obsolete.

An important characteristic of all model transformations in MDA is the fact that transformations have to be
traceable. This allows to identify the corresponding source element in models of higher abstraction for every
model element that is a result of a transformation. When applied consequently over all levels of abstraction
this allows to trace every piece of code back to its related requirements.

In an MDA process a platform independent model is eventually transformed into executable source code.
Since MDA models are typically expressed in UML one can think of it as compiling UML into code or even
further of UML that is executable[150]. Having comprehensive models at higher level of abstraction allows for
re-use at model level and rapid adoption of new technologies and frameworks since platform specific models
can be created automatically once an appropriate metamodel mapping was established. MDA considers
models as valuable resources and their value rises according to their degree of abstraction.

5.2 Meta Object Facility (MOF)
The Meta Object Facility (MOF)[6][151] is an OMG standard for the definition of models and metamodels. It
therefore is one of the key elements of the MDA stack. MOF recommends four layers – so called metalevels
- to create new models as illustrated in Figure 34.

The lowest level called M0 contains the elements that are actually modelled. Thus they are instances of the
elements in the model, whereas the model itself is located at level M1. In the case of an UML class diagram
at level M1 the instances of these classes (concrete objects) were part of M0. More specifically the elements
at level M0 are called run-time instances to point out the differences between the actual data and their
equivalent model elements.

Figure 33: Mapping of metamodels allows for direct model-to-model
transformation ([136],p. 3-9)

86

The need for this more specific distinction becomes obvious when thinking about an UML object diagram. By
definition, elements of this type of diagram are already objects (instances of class) thus these elements
cannot be further instantiated at level M0. Corresponding elements at level M0 are therefore called run-time
instances, whereas their model equivalents are also called snapshots. The UML metamodel defines an
element called InstanceSpecification, which is the meta-element of snapshots.

Elements that can be used at level M1 to create an actual model are instances of elements defined at level
M2. This level therefore defines how models can be built and of which elements they might consist of.
Hence, this makes models at level M2 classical metamodels since they describe models. The way in which
metamodels can be created is in turn defined by models at level M3. Thus, M3 models must be considered
metamodels of metamodels, which makes them meta-metamodels. This level is actually the MOF, which
makes the MOF a language to describe metamodels. There does not exist any additional level of abstraction
beyond level M3 that is used to describe the MOF. In fact MOF is itself described by MOF. Consequently
MOF is a self-described or reflective language.

Figure 34: The MOF metalevels
(own illustration)

Figure 35: Example of four-layer metamodel hierarchy ([152],page 19)

87

Metamodels are typically more compact than the models they describe. Thus the number of elements found
in a metamodel is often much smaller than in the actual models that are made up of instances of the
metamodel. To illustrate how all the different levels of abstraction and (meta-)models are linked together
Figure 35 shows a simple example of an UML class diagram.

The MOF uses the UML class modelling notation to describe meta models that are MOF compliant. Thus the
MOF provides pretty much the same elements that are used in UML class models. As can be seen in Figure
35 the MOF contains an element called class. The snippet from the UML metamodel at level M2, however,
also contains a class element, which is an instance the MOF class. Both of these class elements are very
similar and share most of their structural and behavioural characteristics.

In fact major parts of UML 2 and the MOF share the same meta model, which is the common UML 2
Infrastructure library[152]. Figure 36 shows the definition of a class element as it defined in the infrastructure
library. The elements used there are almost identically used in the MOF as well as in UML, thus this diagram
can be used to model both classes. MOF uses the model shown in Figure 36 to merge it together with some
additional capabilities (e.g. to introduce reflection, which allows to navigate from every element to its
describing meta-element) into the MOF meta-model. UML re-uses the same model to describe its UML class
element but extends it with additional features. It is worth to mention that the class diagram presented in
Figure 36 that defines the capabilities of a class is in turn made up of classes, i.e. every rectangle used in
the diagram is an instance of MOF class, which in turn is defined by this model. This is exactly the self-
descriptive nature of the MOF. Thus the MOF is made up of MOF instances.

To facilitate the adoption of the MOF it was split into two packages. The Essential MOF (EMOF) represents a
kernel for metamodelling, whereas the more sophisticated Complete MOF (CMOF) provides the full
expressive power of the MOF. Tool developers can decide to only support EMOF, which simplifies their
products. EMOF is a subset of MOF that contains all capabilities that are typically found in object oriented
programming languages and XML.

Due to its close relation to UML, the default representation format of MOF and the (meta-)models based on it
is graphical. But there are ways to create MOF based models that are not diagrams but text. This approach
is called Human-Usable Textual Notation (HUTN)[153]. An example result of using this text based way of
metamodelling is WSML (see section 3.4).

One important part of the MOF specification is QVT (Query/View/Transformation), which specifies languages
for model-to-model transformations[154].

Figure 36: UML Infrastructure Library: Class definition ([152], page 93)

88

5.3 Object Constraint Language (OCL)
One central point of the MDA is to generate applications based on models and therefore to minimise the
actual coding effort. This requires models to capture all the aspects of running applications. UML, which is
the preferred modelling technique in MDA, can represent a broad variety of system aspects with its
numerous diagrams (UML 2.0 defines thirteen standard diagram types), but falls short when it comes to
represent logical constraints of functionality. This is why the OMG introduced the Object Constraint
Language (OCL)[155] that should have all the strengths of a formal language but is also simple enough to be
easily used by business and system modellers who do not necessarily have a strong mathematical
background.

OCL was not defined to substitute a programming language but is a pure specification language. The
evaluation of an OCL expression does not change the state of a model, although an expression can be used
to specify the state of a model. To demonstrate the expressiveness of OCL, some of its typical use-cases are
briefly presented in the following subsections. The different types of expressions will be compared to the
semantic technologies discussed in section 3 in order to identify similarities and differences between
UML/OCL based models and pure semantic models.

5.3.1 Invariants
Invariants are rules that can be used to impose restrictions on the attributes of a class that have to hold for
all instances of these classes at any time. Thus, invariants, like all other OCL expressions, apply to a
particular class, which is called the context of the expression. Assuming that there exists a class Student
with a property numberOfStudies of type integer. The OCL invariant show in Listing 44 is used to define that
the numberOfStudies has to be at least one for every single student:

The expression first has to define its context, which in this case is the class it applies to. This is done by
using the keyword context followed by the name of the class. The keyword inv specifies the type of this OCL
expression, which is invariant. In this case the OCL expression has a name, which is validStudent. Naming
of expressions in OCL is optional. The keyword self refers to the current context, thus numberOfStudies is an
attribute of the class Student. When comparing the semantics of this type of constraints it can easily be
shown that there exist equivalent constructs in OWL and WSML.

Listing 45 presents an OWL snippet that has effectively the same semantics as the OCL invariant
expression. It uses a data type restriction, which is one of the new features in OWL 2 (see section 3.3.2), on
the numberOfStudies property to define the members of the class Student. WSML, however, uses a
constraint axiom that is basically very similar to the OCL invariant notation (see Listing 46). If the body of the
axiom evaluates to true the ontology becomes inconsistent.

context Student inv validStudent:
self.numberOfStudies > 0

Listing 44: A simple OCL invariant declaration

DataProperty: numberOfStudies
 Range:
 nonNegativeInteger

Class: Student
 EquivalentTo:
 numberOfStudies some nonNegativeInteger[>= 1]

Listing 45: OWL ontology represented in the Manchester syntax that is equivalent to the OCL
expression in Listing 44.

89

Invariants can also be used to define cardinality restrictions, which are multiplicity restrictions in this context.
Assuming that instead of an attribute called numberOfStudies there would exist a one-to-many association
between the class Student and a class Study that is represented by an attribute called studies within the
Student class. The number of studies assigned to any student can be restricted to at least one by using the
OCL invariant given in Listing 47. OCL treats all attributes with multiplicity higher than one as a Set, which is
a pre-defined datatype. A set's size() operation returns the number of elements in the set. The same
constraints can be established in OWL as well as in WSML by the use of cardinality constraints.

Invariants significantly extend the semantic capabilities of UML models and bring them one step closer to the
expressiveness of semantic models.

5.3.2 Pre- and Postconditions
OCL can be used to define the pre- and postconditions of a class' operations and methods. More precisely
pre- and postconditions can be modelled for all instances of an operation's meta-class which is
BehavioralFeature (see [152], section 9.1.1).

The OCL expression again starts with the context keyword to define the operation that should be further
specified. The identifier of the operation has to start with the name of the class that owns the operation.
Besides the name of the operation, also the parameter list and the return type have to be part of the context.
In this case the keyword self, if used in any of the conditions, refers to the owning class. Pre- and
postconditions start with the keywords pre and post respectively. This OCL statement can be used to specify
conditions that have to be true whenever an operation is invoked. The postcondition defines the state that is
reached whenever the preconditions were met. The special keyword result can be used to define the return
value of the operation.

When looking for equivalent constructs in semantic frameworks like OWL or WSML some of the differences
between UML/OCL and these frameworks become obvious. Semantic frameworks have their roots in the
knowledge engineering domain and therefore are used to model knowledge bases. Knowledge bases
represent ground facts and rules that can be used to derive even more facts. There is no need for something
like a behavioural feature. This explains why representing operations in semantic framework is not very
intuitive. Nevertheless, as pointed out in sections 4.2 and 4.4 there exist ways to express the pre- and
postconditions of (web service) operations, although they can hardly be compared with the compact notation
of OCL.

context Typename::operationName(param1 : Type1, ...): ReturnType
pre : param1 > ...
post: result = …

Listing 48: OCL syntax for defining an operations pre- and postconditions ([155], page 8)

context Student inv:
self.studies->size() >= 1

Listing 47: OCL invariant to restrict the number of elements that are part of an association

concept Student
numberOfStudies ofType (1 1) _integer

axiom validStudent
 definedBy
 !- ?x[numberOfStudies hasValue ?y] memberOf Student and ?y < 1 .
Listing 46: WSML constraint axiom with equivalent semantics to the OCL expression in Listing
44.

90

5.3.3 Initial and Derived Values
OCL can be used to define the initial values of newly created instances. The init keyword can be used to
assign an initial value to an object's attribute, whereas the derive keyword is used to specify a conditional
assignment of a value (see Listing 49).

There does not exist a similar construct in the world of semantic frameworks since they are based on a
completely different paradigm. Semantic frameworks allow to classify existing data according to class
axioms. In object oriented programming, which is the conceptual basis of UML and OCL, every object is an
instance of at least one class. Thus, there are no instances without predetermined types/classes.
Subsumption is also predetermined by a static hierarchy of classes. In ontologies, however, new classes can
be introduced at any time and their members can be defined by axioms. In fact, the creation process of
instances is beyond the scope of semantic frameworks. Consequently there is no support for restricting the
creation of instances.

More specifically in semantic frameworks there exists no functionally equivalent way to express a constraint
over a set of instances using an aggregate function like done in the example shown in Listing 49. Here the
sum of the parents' income is calculated, where parents is a self reference of the Person class with
multiplicity two and income is a property of the Person class. In this context sum is an operation defined for
the OCL set datatype. Logical frameworks that are the basis of the discussed semantic languages do not
provide means for mathematical functions over sets of properties.

5.3.4 Operation Body Expressions

Another feature that has no direct equivalent in semantic frameworks is the capability to define the body of a
query operation as shown in Listing 50.

The class Person possesses a multivalued relationship to other persons called marriages (see Figure 37). In
OCL multivalued properties are represented by the Set datatype, which has some operations defined (e.g.
select). In this example an instance of Person is selected that is related to the actual instance via the
marriages relation where the ended property of this relation is set to false, indicating an active marriage.

context Person::income : Integer
init: parents.income->sum() * 1% -- pocket allowance
derive: if underAge

then parents.income->sum() * 1% -- pocket allowance
else job.salary -- income from regular job
endif

Listing 49: Example of an OCL init and a derive clause ([155],page 10)

context Person::getCurrentSpouse() : Person
pre: self.isMarried = true
body: self.mariages->select(m | m.ended = false).spouse

Listing 50: Example of a body expression that defines the functionality of an operation ([155],
page 9)

Figure 37: UML model of the sample scenario that is the basis for Listing 50 (own
illustration created with ArgoUML)

91

As already mentioned above there is no equivalent feature in any of the investigated semantic frameworks
since they do not posses the concept of methods or procedures anyway. Nevertheless there exist expressive
ways to query the knowledge represented by a semantic model, although query systems are not an
integrated part of these semantic frameworks. To point out the expressive and functional similarities and
differences between this particular OCL construct and OWL as well as WSML, this scenario will be modelled
using any of the two semantic languages.

ObjectProperty: hasMarriage
 Domain:
 Person
 Range:
 Person
 InverseOf:
 hasSpouse

ObjectProperty: hasSpouse
 InverseOf:
 hasMarriage
DataProperty: hasName
 Domain:
 Person
 Range:
 string

DataProperty: isEnded
 Domain:
 Marriage
 Range:
 boolean
Class: Person
Class: Marriage
 EquivalentTo:
 hasSpouse exactly 2 Person

Individual: John
 Facts:
 hasName "John"
 DifferentFrom:
 Bill,
 Mary
Individual: BillAndMary
 Facts:
 isEnded "true"^^xsd:boolean
Individual: Mary
 Facts:
 hasMarriage BillAndMary,
 hasName "Mary"
 DifferentFrom:
 Bill,
 John
Individual: Bill
 Facts:
 hasMarriage BillAndMary,
 hasName "Bill"
 DifferentFrom:
 John,
 Mary
Individual: JohnAndMary
 Facts:
 hasSpouse John,
 hasSpouse Mary,
 isEnded "false"^^xsd:boolean
Listing 51: OWL2 example of the marriages scenario in Manchester syntax

92

An OWL 2 model of the sample scenario is given in Listing 51. Like in the UML diagram shown in Figure 37
there are two classes. One representing a Person and one representing a Marriage. These two classes are
linked via the object properties hasMarriage pointing from Person to Marriage and hasSpouse defined as the
inverse property. The class Marriage is further restricted to allow for exactly two hasSouse property values
only. Beside the definition of classes and properties Listing 51 also contains some sample individuals to
demonstrate a few use cases. According to the facts modelled in this example Mary was married to Bill but is
currently married to John. Two find out which Person, if any, Mary is married to, the following Manchester
syntax query can be used:

hasMariage some (Marriage and isEnded value "false"^^boolean and hasSpouse some (hasName value "Mary"))
and not (hasName value "Mary")

Semantically this query is the equivalent to the OCL body expression used in Listing 50, although the literal
“Mary” needs to be replaced by some appropriate variable markup.

The WSML model that captures the same information is presented in Listing 52. In contrast to the UML
model (see Figure 37) and the OWL 2 ontology (see Listing 51) this ontology uses only one class, the
Person concept. A marriage is modelled by the relation isMarried, which in this case is a three-tuple that
relates together two instances of the concept Person and a boolean value that indicates whether the
marriage is ended or not. The ontology furthermore contains three instances of Person (John, Bill and Mary)
as well a two instances of the isMarried relation, which - like in the OWL example - state that Mary was
married to Bill and is currently married to John.

Two find out who is the current husband of Mary, the following query is needed:
isMarried(Mary,?x,true) or isMarried(?x,Mary,true)

Since the order in which spouses have to appear in the relation is not defined both options have to be
checked here. Again, when replacing the instance literal Mary by a variable this query can be considered an
equivalent alternative to the OCL body expression used in Listing 50. Thus, OWL as well as WSML can
capture the same facts as the example in Listing 50 and provide equivalent query support as UML/OCL,
although OCL and semantic frameworks are based on different paradigms. This equivalence, however,
cannot be generalised, since OCL query expressions might also contain constructs that are simply not
supported neither by OWL nor by WSML (e.g. using the sum of a multivalued number property within a query
expression).

Generally OCL can be used to define constraints on the instances of a class, which restrict the set of
possible instances. Semantic frameworks, however, use constraints that define whether a given individual is
a member of a particular class or not.

concept Person
hasName ofType (1 *) _string

relation isMarried(ofType Person, ofType Person, impliesType _boolean)

instance John memberOf Person
hasName hasValue "John"

instance Bill memberOf Person
hasName hasValue "Bill"

instance Mary memberOf Person
hasName hasValue "Mary"

relationInstance isMarried(Mary,John,false)
relationInstance isMarried(Bill,Mary,true)
Listing 52: WSML model of the marriage sample scenario

93

5.4 Ontology Definition Metamodel (ODM)
In the previous section key features provided by the object constraint language where presented and
compared to features provided by OWL and WSML in order to point out functional similarities and differences
between these frameworks. This section presents an additional approach to bridge the world of semantic
frameworks and model driven architecture, which is called ontology definition metamodel (ODM) [156]. The
overall goal of this specification is to provide

“... the foundation for an extremely important set of enabling capabilities for Model Driven
Architecture (MDA) based software engineering, namely the formal grounding for
representation, management, interoperability, and application of business semantics.”([156],
page 1)

ODM adds models to the MDA that allow for the presentation of ontologies, which are based on description
or first order logics, have formal model theoretic semantics and can be used by automatic reasoners.
Different profiles and mappings allow for the exchange of heterogeneous models as well as validation and
consistency checks like they are already commonly used in semantic frameworks. Due to the different
underlying paradigms of semantic models and UML, ODM does not extend UML to capture ontologies but
provides its own MOF based metamodel. In fact the specification requires some modifications to the MOF in
order to model all required aspects. According to the authors of the ODM specification the required changes
will be addressed by one of the next releases of the MOF (see [156], pages 6-7 for a detailed description of
the necessary modifications).

ODM is made up of five different metamodels, where some of them consist of different sub-package. The five
metamodels are description logics, common logic[157], RDF, OWL and topic maps[158]. Beside these
metamodels there exist mappings from UML to OWL, topic maps to OWL and RDFS/OWL to common logic.
Just to get an idea about what these metamodels look like, two important elements of RDF and OWL will be
presented.

Figure 38 shows a part from ODM's RDF metamodel that captures an RDF triple. The base class of most
elements in this diagram is RDFSResource (compare section 3.1.3.1). An RDF triple consists of one subject
of type Node, one predicate of type RDFProperty (compare section 3.1.3.2) and one object of type Node.
The class Node is further refined to the more specific types BlankNode, URIReferenceNode and
RDFSLiteral. All RDF elements, since they are subclasses of RDFSResource, might have an uriRef property
that eventually refers to an UniformResourceIndentifier. As already pointed out in section 3.1.4 not every
type of node might appear at every position within a triple (e.g. Literal values must not be used as subject).

Figure 38: ODM Metamodel of an RDF triple ([156],page 35)

94

To cover restrictions like these one ODM uses OCL wherever possible as shown Listing 53.

Another example of how to capture important semantic artefacts within ODM is shown in Figure 39.
OWLClass is modelled as a subclass of RDFSClass. Simple class assertions like equivalentClass or
disjointClass are modelled as self references. OWL offers various axioms to define classes (see section
3.2.5.1). These different types of axioms are represented by separate subclasses of OWLClass. ODM does
not provide any OCL constraints for this metamodel since the set semantics of OWL is much richer then is in
OCL. Thus, these definitions are outside the expressiveness of OCL. Basically ODM models can be seen as
an additional syntax for OWL knowledge bases whereas consistency checks and model validations are done
via the use of standard DL reasoners.

5.5 Discussion
The biggest benefit proposed by MDA is its possibility to reuse information at a higher level of abstraction
and to use automatic model transformation in order to adapt a system to various platforms, which should
also allow for rapid adoption of new technologies and platforms. On the other side, since abstraction means
the suppression of irrelevant detail, models at higher level of abstraction lack information needed by models
at more concrete levels, since at the consecutive layer this information cannot be considered to be irrelevant
any longer. This gap of information between models at different layers becomes most evident at the lowest

Figure 39: ODM metamodel of the OWL class ([156],page 69)

context Triple SubjectNotALiteral inv:
not self.RDFsubject.oclIsKindOf(RDFSLiteral)

context Triple PredicateNotALiteral inv:
not self.RDFpredicate.oclIsKindOf(RDFSLiteral)

Listing 53: OCL statements to constrain the use of certain node types within RDF triples
([156],page 39)

95

level transformation resulting in actual source code. Almost all MDA approaches require additional manual
coding after the last transformation step[146]. However, to preserve the value of a model, it needs to be
updated during the development cycle with every change request, which requires more concrete models
being re-generated. One important aspect of this roundtrip engineering is that manually added code does not
get lost when source code is re-generated. This is most often achieved by the introduction of so called
protected areas in source code files or separate files that contain manually added code, which will not be
overwritten by code generators. There also exist recommendations to use specific model transformation
languages enabling models at different levels to be kept in synch automatically [159].

Generally the problem of bridging the gap between models representing the problem domain and artefacts of
the software implementation domain is perceived as the so called problem-implementation gap [160]. Current
trends in practice as well as research indicate that the use of more specifically tailored domain specific
modelling approaches helps to bridge or at least to narrow this cap [161][162]. Domain specific modelling
(DSM) and domain specific languages (DSL) directly map model concepts to domain concepts and therefore
include most of the additional information required for generating executable code. A study comparing the
efficiency of DSM and UML models in terms of maintainability comes to the result that DSM models are
significantly easier to maintain resulting in less errors [163]. One of the reasons seems to be that DSM
models are typically much smaller than more generic UML models.

The integration of MDA and semantic technologies is especially important in the context of the envisaged
framework to ontology-driven E-Government. Here the ODM provides one generic approach to extend the
range of models to RDF and OWL knowledge bases. Since they provide MOF based metamodels, these
models can be translated like any other MDA model. Formal model theoretic semantics, which is implicitly
included via the syntactical equivalence of ODM models and RDF/OWL, allows the use of suitable
reasoners, although this requires appropriate serialisation of these models. Thus, ODM provides a basis to
integrate semantic technologies into MDA approaches. ODM therefore is merely an alternative notation for
OWL, although it can be integrated into the MDA tool stack. WSML on the other hand is already based on a
MOF metamodel, which should simplify its usage within MDA. An example of how to support UML
visualisation using a custom UML profile can be found in [164]. Besides integrating ontologies into MDA
models, there are also ways to extract ontologies from existing UML models [165].

UML includes the object constrained language, which provides additional semantics. Although section 5.3
tried to point out the similarities in expressiveness between OCL and semantic frameworks, OCL represents
a programming and rule language paradigm and can therefore hardly be compared to logic families
underlying semantic technologies. A discussion of the most important difference between OCL and
description logics, which focuses on set semantics can be found in [156], section 8.4. Other studies also
point out that there are more differences than similarities and that OCL and semantic language families have
to play some complementary roles[166].

Whereas ODM provides a mean to integrate ontologies into the MDA model family there exists a variety of
recommendations when it comes to the model driven development of semantic web services. Thus, these
solutions are domain specific since they are focussing on particular solutions. One framework recommends
UML (especially activity diagrams) to model semantic web services based on OWL-S [167]. UML models are
firstly serialised to XML and then transformed into OWL-S profiles using XSLT. Thus, this approach allows for
a model driven development of OWL-S based semantic web services. Another highly elaborated and
comprehensive approach that focuses on the creation of WSMO based semantic web services is presented
in [168]. Besides the utilisation of various methodologies and techniques it also comes with a specialised
software process model. This process model consists of eight phases that can be executed iteratively:
requirement specification, process design, data design, hypertext design, semantic description, architecture
design, implementation and testing/evaluation. After elicitation of the system requirements, a high-level
model of the application's underlying processes is created using the Business Process Modeling Notation
(BPMN) [169]. In the following data design phase a comprehensive domain model based on extended entity-
relationship modelling is created that might incorporate imported ontologies. In the hypertext design phase
functional requirements are translated into web services and so called website views, which basically
represent the user front-end. Both, the data model as well as the hypertext model are part of a methodology
called WebML[170] that is adopted in the development process. What makes this approach unique is the
semantic description phase, which adds all the required information to implement WSMO compliant semantic

96

web services. Concepts are extracted from the entity relationship model and a WSMO process model is
extracted from the BPMN model. The extraction process is performed semi-automatically.

There exists another recommendation for a semantic model driven approach to the development of service
oriented architectures[171]. In the proposed framework ontologies that follow the Web Service Process
Ontology (WSPO)[172] are used for the functional model of the application. Together with so called
distribution patterns they are the basis of a generation step producing required artefacts like WSDL and WS-
BPEL (Business Process Execution Language for Web Services) files. The interesting aspect is that this
approach uses ontologies as the model of the application, which comes close to the envisaged approach to
ontology driven e-government. However, the adopted WSPO framework is according to the authors of the
this approach a predecessor of SWSF (see section 4.3), which in turn is already overhauled by WSMO.

In order to realise most of the benefits that are expected from model driven architecture the creation of
domain specific model sets that easily capture the particularities of the problem domain seems to be a key
success factor. Possible ways to adopt standard MDA technologies are provided by UML profiles or by
providing customised MOF based model elements. ODM provides a standardised way to incorporate OWL
into MDA, however various other recommendations exist.

6 Ontology Modelling
Semantic methodologies and language frameworks offer a wide range of capabilities. Thus the question is
whether there are any guidelines or best practices that will lead to their efficient use. This chapter tries to
identify general guidelines for ontology modelling as well as best practices of ontologies in the context of the
E-Government domain.

6.1 General Ontology Modelling Guidelines
Thomas Gruber recommends the following general design criteria for modelling ontologies [17]:

1. Clarity: An ontology should clearly define the intended meaning of its concepts and also include
natural language documentation. Wherever possible, axioms should be used to express definitions.
The motivation for the definition of a particular concept should have no impact on the definition itself,
thus allowing the use of this concept in other contexts as well.

2. Coherence: An ontology should only allow for inferences that are consistent with the definition. This
also applies to the natural language documentation. Any sentence derived from axioms must not
contradict the definition or examples given in the documentation

3. Extendibility: An ontology should offer the conceptual foundation for a range of uses beyond the
ones it was originally defined for. This should allow for extension and specialisation of this ontology
without a need to revise existing definitions.

4. Minimal encoding bias: The notation used to define an ontology should have no influence on the
resulting definitions. I.e., the convenience of notation or implementation should not drive the design.

5. Minimal ontological commitment: An ontology should be based on a minimum number of claims
about the world being modelled and only define those terms that are essential for the given domain.
This should allow other parties to specialise and instantiate the ontology as needed.

Most of these recommendations can be achieved by using a layered approach to ontology modelling. This
means that there are several layers of abstractions allowing for efficient re-use of concepts as well as for the
necessary domain specific specialisation by extending, adapting or redefining concepts defined in higher
layers. Technically this is accomplished by defining different ontologies identified by different namespaces.
More specific ontologies import the more abstract ones and add necessary attributes and concepts as well
as additional axioms.

97

6.2 Governance Enterprise Architecture (GEA)
In section 5.5 it was argued that MDA approaches show best results when they were specialised to specific
domains. Thus in this chapter a suggestion for an E-Government domain specific model is presented.

The Governance Enterprise Architecture (GEA)[173] provides reusable top-level models for the overall E-
Government domain. GEA is the result of a business driven approach to create a reference ontology for the
E-Government domain. Even it suggests the use of semantic web services (SWS) the GEA model itself is
technology neutral (although there exists a WSMO implementation of GEA [174]). According to this model
the interaction between citizens and public administrations (PA) is split into two major parts:
planning/informative and execution/performative part.

The planning part consists of all activities and steps that need to be taken in order to provide citizens with all
the information necessary to effectively identify, find and use public administration services. This is to answer
the “Why, What, Who, Where and How questions” [175]. The planning part is split into the following three
activities:

● Mapping needs-to-services
This step tries to bridge the gap between the different points of view of citizens and public agencies.
Whereas citizens are typically driven by a particular need or desire, public organisations concentrate
on services. Thus there is an obvious need to map citizens' needs to (a set) of PA services that might
serve these needs. This is the basis for allowing citizens to identify services that are most
appropriate for their particular situation in a need-centric fashion.

● Service discovery
After a citizen's need was translated into a service that is needed within the previous step, this
service can now be located. To facilitate this, GEA proposes a so called Central Public
Administration Service Directory (CPASD) that holds necessary information to answer the What,
Who and Where questions

● Service exploration
Within this phase citizens are provided with information from the actual service provider about the
When and the How. This includes all necessary preconditions.

Like the planning part the execution part is split into three phases as well:

● Information gathering
All information that is needed as input to the selected service is gathered. GEA refers to this type of
information as evidence

● Information checking
Evidence provided is checked against the business rules of the service. This might happen in a
single step but could also become relatively complex including conditional checks based on the input
provided.

● Providing Output
This step provides proper communication about the consequences and effects of the service used.
This includes information to other agencies that be notified about these effects.

6.2.1 GEA Object Model for Service Provisioning
This model is based on in-depth analyses of the E-Government domain and is intended to be a conceptual
bases for a reference ontology in the field of PA services. An overview of the key concepts can be seen in
Figure 40.

There are actually two different entities participating in the service provision model. Social Entities who are
for example citizens or companies and Governance Entities. According to their assignment Governance
Entities are split into two different types: Political Entities who define Public Administration Services (not
explicitly shown in Figure 40) and Public Administration Entities who might play different roles in service

98

provisioning. These roles are:

● Service Provider: Offers a Public Administration Service to Social Entities

● Consequence Receiver: A Public Administration Entity that needs to be informed about the outcome
of a public service. E.g.: If a family with children moves into a new community the school authority
needs to be informed after registration to make sure that the children will attend school.

● Evidence Provider: A Public Administration Entity that provides a certain Piece of Evidence that is
needed as input for the Public Administration Service.

Pieces of Evidence are facts and are typically contained in so called Evidence Placeholders. An Evidence
Provider is typically a document that contains information about the fact. In the GEA object model exists a
many-to-many relation between these concepts, stating that a Piece of Evidence can be contained in several
Evidence Placeholders and also that an Evidence Placeholder can contain several Pieces of Evidence. E.g.:
A typical Piece Of Evidence could be the date of birth of the applicant. This information could be proven by
several different Evidence Providers like passport, personal identity card, certificate of birth and so on.

Pieces of Evidence are checked against a service's Preconditions which represent some of the services
business rules. These preconditions have to be met to be eligible for service utilisation. E.g.: To apply for a
place in a Kindergarten the date of birth of the child (Piece of Evidence) has to be within certain limits
(Precondition).

Every Public Administration Service results in some kind of output. The output is of one of the following
types:

Figure 40: The GEA detailed object model for service provision [175]

99

● Output: In the GEA object model the output is defined as the documented decision of the Service
Provider. This information is typically sent to the Social Entity as a administrative document/decision.

● Effect: In semantic web services an effect describes the change of the state of the world whenever
the service is executed successfully (E.g. an instance of person is transformed into an instance of
driver if an application for a driving license was approved). In the GEA object model the Effect is the
actual right or obligation (permit, punishment, certificate, ...) the Social Entity is entitled with. An
Effect only exists if the service ends successfully (the Social Entities request was not rejected
prematurely).

● Consequence: This type represents information that is forwarded to other interested parties.

In order to support the needs-to-service mapping step of the planning/informative part, the GEA object model
contains two important concepts that allow to link Social Entities to Public Administration Services. These
two concepts are Need and Goal. Need describes the citizen-centric view of the PA domain. Citizens have
certain needs in particular situations (e.g. to build a house). A Goal describes the service-centric view of PA
domain, which includes the outcome of PA services that might contribute to serve citizens' needs (e.g.
acquiring a building permit). Mapping needs to goals and therewith linking the citizen view to the PA view
allows for user-friendly service discovery.

6.3 Discussion
To follow well established guidelines and best practices is particularly important in the field of ontology
modelling since the potential solution space is enormous. Good guidelines constrain modelling efforts
towards better solutions. Specifically the guidelines and recommendations stated in section 6.1 are aiming at
better models and also emphasise on facilitating re-use which adds significant value to the resulting models.

The GEA model was developed as part of an EU sixth framework programme project called SemanticGov 16
(FP6-2004-IST-4-027517) between 2006 and 2009. It therefore is the result of a joint European effort to
establish a top-level e-government meta-model using semantic web technologies. It also is the conceptual
backbone of the SemanticGov Architecture[176]. Literature research could not find any other reference
model with a similar degree of comprehensiveness. Although the authors of the GEA model categorise their
model as an initial starting point that should be further developed according to upcoming needs, it is worth to
re-use the results of this effort as a starting point for a meta-model. Together with the previously mentioned
guidelines the non-invasive adoption of this model to ODEG-specific needs should be possible.

One potential general disadvantage of the GEA-PA model is probably the fact that it reflects the Government
domain on an “as-is” basis. This is indicated by its document-centric view when it comes to the description of
public services. EvidencePlaceHolders are representing documents and certificates, thus the model seems to
be influenced by document flows. To support more sophisticated features, that are no longer limited to entire
documents, the model needs to be adapted.

7 Ontology Driven E-Government
This chapter will present the implementation of ODEG. The first step in the development of ODEG was a
feasibility study that should demonstrate whether semantic technologies are apt to model electronic services
at all and that is presented in the next sub-section. The evaluation of the outcome of this study heavily
influenced ODEG's design as it will be pointed out in section 7.1.4. One crucial aspect was the selection of
the semantic technology used. Although the differences between candidate frameworks have already been
discussed in sections 3 and 4 the final decision is motivated in section 7.2. After this different components of
ODEG are presented. The goal of ODEG is to support all phases in E-Government service enactment like
shown in Figure 41. All components that make up the system are based on the semantic model. This is why
the meta-model that is used to define how public services are modelled is presented first in section 7.3. After
this the service identification component that allows to identify relevant services based on a citizen's specific

16 http://www.semantic-gov.org/

100

desire or situation is presented in section 7.4. Once services appropriate to help citizens' are identified they
can be directly utilised. This is made possible by the semantic forms component that is presented in section
7.5. This component uses the semantic description of a service to figure out what information is needed in
order to access a particular service. Thus the electronic forms rendered by this component are entirely
based in the model and are rendered dynamically based on the current situation.

During the implementation of different public services it became apparent that there is sometimes a need to
integrate external services into the forms generation process. These service can be used to validate data
(e.g. to validate the existence and correctness of a street address) or to look up values from central
databases. These services are called auxiliary services since they can be used add convenient features to
the system and that are beyond automatic reasoning. The approach used by ODEG to incorporate such
external services into forms creation and validation is described in section 7.6. The last step in an ODEG
usage scenario is the execution of the actual service once the necessary data was collected. Basically
ODEG here offers different approaches and is open to be tied to almost any type of service implementation
as it will become clear in the meta-model sub-section. Nevertheless the preferred implementation type is the
usage of standard web service technologies. This is supported by the automatic generation of all necessary
web service artefacts. This includes the description of the web service by providing a WSDL document as
well as XML schemes that define the types of the messages used by the web service's operations. Creating
XML schema based on the content of a semantic knowledge base is a non-trivial task as will be pointed out
in section 7.7. After the web service artefacts are available any web service framework could be used to
provide an appropriate implementation of the service contract defined in the WSDL file. ODEG, however
promotes the use of BPEL since this extends the idea of the MDA, which is to prefer modelling to
programming for the actual service implementation phase as well. The detailed explanation why BPEL
should be used is therefore given in section 7.8. Finally an overview of the ODEG approach is given in
section 7.9.

This structure also reflects the phases in which ODEG was developed. In fact it took several iterations to
define the system as it is described here. The overall approach was to define a sound meta-model based on
the GEA model already presented in section 6.2 first. After this actual services were implemented based on
this model in several iterations. Since the implementation was supported by the City of Graz, these service
represent typical procedures offered at municipal level, which is also reflected by the running examples used
for illustration purposes in the upcoming sub-sections. Sometimes the requirements of new services
exceeded the capabilities of the meta-model. In such cases the lack of functionality was carefully analysed
and the most generic way to deal with these requirements was introduced to ODEG's meta-model or
interpretation capabilities. This for example led to the model of implementing auxiliary services. After each
iteration the number of necessary adaptations of the meta-model declined. Recent application of ODEG to
additional domains (e.g. business registration) showed that there was no need at all to extend ODEGs
current capabilities to deal with new use-cases. That is why the current state can be considered feature-

Figure 41: A typical ODEG usage scenario (own illustration)

101

complete although extensions to the system can be easily implemented.

7.1 Initial Feasibility Study
To demonstrate that there are suitable ways to use ontologies as models for E-Government applications, a
prototypic implementation to create web forms and to validate user input data was created. The basic
intention of this prototype that was created as part of a diploma thesis [177] was to provide a proof of
concept. Since the outcome of this work provided valuable input for the final implementation it will be briefly
presented in the following sub-sections and the most important findings will be discussed.

7.1.1 Prototype Requirements and Example Scenario
The general requirements for the prototype were to create a semantic model of the problem domain that is
used to automatically create electronic forms. These forms are used to file an application for the sample
procedure. Validation of user input has to happen according to the constraints defined in the model, thus all
necessary constraints have to be part of the model. Once the user has completely filled in the form and the
provided information has successfully passed validation, the application data has to be provided as XML,
which complies to the so called EDIAKT II schema[178]. EDIAKT II is an Austrian national recommendation
for a standard data exchange format that is mainly used between different public agencies. This format
defines how to exchange either single documents (EDIAKT light) or entire files including various documents
(EDIAKT complete) between different peers. To use EDIAKT II as the resulting data format was an essential
requirement since it allows processing of the acquired data by any system supporting the recommended
standard and therefore allows to use the form creation tool as interface in a broad range of scenarios.

The sample use case chosen for the first prototypic implementation was the application for a permanent
parking permit within zones with limited parking in the City of Graz. People who live in Graz and own a car
that is also registered in Graz are eligible for this type of permit. Thus, when applying for a permanent
parking permit you have to prove that you are a resident of the City of Graz, that you own a car and that this
car is registered in Graz as well.

7.1.2 Semantic Service Model and Ontologies
The general model for public services that was developed as part of the prototype is based on the GEA
model presented in section 6.2.1. As already pointed out in the discussion of the GEA model, it represents
the government domain on an “as-is” basis. Service descriptions rather refer to documents (pieces of
evidence and evidence placeholders) than to the actual information that is required by a procedure. Since
the focus of the prototype was on the creation of forms, it is essential to model which data is needed to
access a particular service at an appropriate level of detail. Therefore the GEA model was modified like
indicated in Figure 42.

The major difference to the GEA recommendation is that a service can refer to arbitrary concepts that serve
as input to the service. Thus, a service's required attribute that lists the required input is not limited to
evidence placeholders but can hold any type of concept. This is inspired by the semantic web service
frameworks presented in sections 4.2 and 4.4, although the service itself is still an implementation neutral
description.

To implement the service model for the prototype OWL was chosen. This was mainly motivated by the fact
that OWL was the most widely adopted technology recommended by the W3C and that there was already
rich tool support available. The actual domain specific ontology that represents the classes necessary to
model the use-case was heavily influenced by the EDIAKT II recommendation. Since one important
requirement was to create EDIAKT II compliant XML as the final result, it seemed natural to establish close
links between datatypes defined in the schema and classes used in the ontology to facilitate lowering and
lifting between the semantic model and the corresponding XML representation. In fact there was a separate
OWL ontology created that holds all classes that are also defined as types in the EDIAKT II schema, since it
was assumed that the data exchange standard contains a comprehensive set of datatypes that are

102

intensively used in the E-Government domain. Thus, every complex type used in the EDIAKT II schema was
transformed into a corresponding OWL class. This for example included classes that represent different
types of persons (natural person, corporate body, …) and addresses.

To meet the particular requirements of the prototype usage scenario the resulting concept hierarchy was
extended. This led to two additional classes Car and CarOwner as shown in Figure 43.

The Car class reflects the vehicle as it is required to exist by the requirements of the prototype's use-case.
Beside other attributes one important property is the place where the car is registered. In this example
solution this property is modelled as a datatype property of type string. The CarOwner class represents a
person who owns a car. Therefore CarOwner is defined as a subclass of NaturalPerson with the additional
property ownsCar. At this stage the model contains and defines all the data that is needed to apply for a
permanent parking permit, although not all properties are shown in Figure 43. What is not covered yet, are
the constraints that have to be met in order to being eligible for a permanent parking permit. Therefore the
model presented in Figure 43 has to be restricted like shown in Figure 44.

Figure 43: Fragment of the prototype's domain model (own illustration)

Figure 42: Part of the prototype's service model. The general model is shown on the left
and the description of the permanent parking permit service on the right (own illustration
based on [177]).

103

As already mentioned, anyone who lives in Graz and owns a car that is also registered in Graz is eligible for
a permanent parking ticket. To express these constraints the relevant classes are subclassed and
appropriate restrictions on their properties are defined. This for example leads to a class called CarGraz. It is
a subclass of Car but the value of its isRegisteredIn property is restricted to the literal “Graz”. Although the
example solution presented here uses a string value to refer to a city this does not restrict the general
applicability of the chosen approach to use restricted properties.

It could also be applied to a scenario that uses a class to express locations, in which case the restriction of
an object property would be almost identical (using a restriction like “ isRegisteredIn value Graz”, where Graz
is the identifier of the individual representing the City of Graz). Similar to CarGraz also a class representing
addresses in Graz is defined (PostalAddressGraz). Finally a new type of CarOwner called CarOwnerGraz is
defined. Individuals of this class are only allowed to have addresses in Graz (PostalAddressGraz) and may
only own cars registered in Graz (CarGraz). By declaring the class CarOwnerGraz as the required input
element to the permanent parking permit service (like indicated in Figure 42) the service description now
contains all the required information together with the logical constraints that apply.

7.1.3 Generating Forms to Access the Permanent Parking Permit
Service
The prototypic implementation uses XForms[179] as presentation technology for electronic forms. XForms is
promoted by the W3C17 and is supposed to be widely adopted as the new standard for electronic forms in the
near future. Whereas ordinary HTML based web forms only use the two datatypes string and boolean, input
elements in XForms can be bound to types defined in an XML schema which makes them type-safe and
allows for XSD constraint checking. Another XForm characteristic is the fact that it uses XML as its data
transport format, whereas standard HTML forms are using various text encoding schemes that require
further parsing at the server side.

One necessary prerequisite to use XForms is the existence of an XML schema. Therefore the data model
definition expressed in the ontology needs to be converted into a schema. Since OWL's standard
serialisation format is XML, an XSLT transformation can be used to extract a schema from the OWL classes.
The stylesheet used in the prototype analyses all service description classes and selects their input classes
for transformation. However, if any of the classes used is a subclass merely defined by property restrictions,
then this class is replaced by its direct superclass (e.g. the class CarOwnerGraz is replaced by its superclass
CarOwner). After a class was added to the resulting schema, its properties are added as child elements to
the current type. How these properties are treated depends on their type. If a property is of a type that was
originally derived from the EDIAKT II schema a reference to the corresponding type is added. If the current

17 http://www.w3.org/MarkUp/Forms/2003/xforms-faq.html

Figure 44: Introducing constraints by subclassing existing class with restricted
properties (own illustration)

104

property is a datatype property then it is added as an ordinary XSD datatype. If, however, the current
property is an object property then it is recursively added as another class. The resulting schema for the
permanent building permit application is shown in Listing 54.

After the XML schema was created a corresponding XForm that is embedded inside an XHTML document
can be defined. Therefore IBM's XForms Generator [180] was selected. Beside an existing XML schema this
tool also requires a sample XML instance of the data that should be gathered. This sample instance has to
be created manually. The generated XForm has to be presented to the end user as part of a web application.
Within the prototype implementation an XForm processor called Chiba [181] was used to bring up the actual
web form. Although XForms are type-safe and can be used to restrict certain fields to a particular data range
they do not posses the logical expressiveness of OWL ontologies. Thus, after the form is filled in by a user
the data is fed back into a semantic reasoner to check its consistency with the axioms stated in the ontology.
This requires the resulting XML data to be translated into OWL first. To get this task accomplished, a tool
called JXML2OWL Mapper18 was used. This software allows to graphically map any XML schema to OWL
classes. This mapping results in another XML stylesheet that is used to do the actual transformation. After
the user's input is transformed into OWL, the information is loaded into an RDF/OWL reasoner called Jena 19.
The reasoner allows to check whether the loaded data is valid according to the rules of the previously
modelled ontology. If so, the data provided by the user is accepted, otherwise an appropriate error message
is displayed to the user. The entire process of creating the semantic model, generating an XForm, displaying
the form and validating user input is shown in Figure 45.

18 http://jxml2owl.projects.semwebcentral.org/jxml2owlmapper/index.html
19 http://jena.sourceforge.net/index.html

<xsd:schema … >
 <xsd:element name="PermanentParkingTicketRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CarOwner">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Car">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="LicensePlate" type="xsd:string"/>
 <xsd:element name="Type" type="xsd:string"/>
 <xsd:element name="isRegisteredIn" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="PhysicalPerson">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="ediaktPersonData:CompactPhysicalPerson"/>
 <xsd:element ref="ediaktPersonData:CompactPostalAddress"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
Listing 54: XML schema generated from the prototype's ontology

http://jena.sourceforge.net/index.html
http://jxml2owl.projects.semwebcentral.org/jxml2owlmapper/index.html

105

7.1.4 Lessons Learned
The intention of the prototypic implementation was to conduct a feasibility study that should demonstrate
the possibilities of semantic models as a source for automatically created web forms. It was further intended
to use standard technologies, tools and frameworks in order to minimise the amount of necessary custom
code. The prototype therefore was successful to demonstrate that there are means to create usable forms
based on semantic models, although the creation process is only semi-automatic, since it requires manual
intervention. For example, it is necessary to provide a sample XML document of a filled in form in order to
create an XForms description. Also the mapping from the XML schema representing the data gathered from
the user to OWL classes has to be performed manually. However, since this transformation is based on XML
style sheet and is basically the reverse operation of the OWL to XML schema transformation in the first step,
further automation of this step is possible.

Whereas the generation of the required XML schema as well as the creation of the sample XML instance
happens at design time, the transformation of the resulting XML into OWL instances has to happen during
run-time. Thus, the ontology is the model of the application and the creation of the XForms artefacts
represents the application generation process according to MDA. Although the numerous transformations
and the diversity of technologies used might be seen as disadvantage of the approach used, especially the
use of XForms compensates for some of OWL's drawbacks. OWL is hardly suited for expressing constraints
in order to enforce consistency checks solely based user provided data. The design of the ontology therefore
had to be done carefully, always having the purpose of the model in mind, which directly contradicts the
modelling principles presented in section 6.1. The logical constraints of the sample application as discussed
in section 7.1.2 and depicted in Figure 44 enforce the applicant to be a citizen of the city of Graz and to own
a car that is also registered in Graz. If a person, however, is allowed to live in several places and/or to have
more than one car, necessary constraints could still be expressed, but no longer checked with an OWL
reasoner. In this case, if the person would fill in an address that is not in Graz (e.g. Vienna) and/or would
provide data of a car that was not registered in Graz, the reasoner will try to make the model consistent by
assuming that the missing data is simply not known yet, or by inferring that “Vienna” is a synonym for “Graz”.

Figure 45: Overview of the prototype's modelling and generation process (adapted from
[177], page 63)

106

To prevent this behaviour, the relevant properties had to be restricted to a single possible value by making
them functional. As a consequence the resulting model does no longer exactly describe the real life situation,
which in the best case might be perceived as being less intuitive or simply incorrect in the worst case. Thus,
OWL does not seem to be the perfect choice for this kind of application. Nevertheless, as already mentioned
before, some facets of constraint checking can be performed at the XML/XForms layer, which at least forces
the user to fill in all required fields with values of the valid domain. Having consistency checks spread of
several layers and technologies, however, must be considered a general drawback, since it exacerbates
quality assurance.

7.2 Technology Selection
Based on the comparison of OWL and WSML/WSMO (see section 3.5) and the findings of the feasibility
study (see section 7.1.4) WSML/WSMO was selected as the semantic framework to be used in ODEG.
Although WSML/WSMO might be less frequently adopted than OWL, which is also reflected by the fact that
OWL is a W3C recommendation, whereas WSMO is a W3C submission only, the functional differences
between these two frameworks with respect to the requirements of ODEG clearly favour WSMO. The most
important facts that argue for WSML/WSMO are:

• Support of the closed world assumption, which makes constraint checking simple and intuitive.

• Compact frame-based language that can be read even without the use of sophisticated editors.

Both of the aforementioned aspects facilitate the creation of even huge ontologies in a way that is
significantly less error-prone than OWL modelling. One shortcoming of the initial prototype was the need to
transform data and meta-data back and forth between the semantic notation (OWL) and XML. Especially the
use of XForms requires the manual step of creating sample data XML which only allows for a semi-automatic
form creation process. On the other side, this XML-based approach was necessary to deploy cardinality
restrictions which are otherwise – due to the nature of the open world assumption - not “correctly” checked
by reasoners. Since WSML/WSMO supports the closed world assumption, also cardinality restrictions can
be intuitively checked eliminating the need for additional representation formats. As a consequence the new
solution should be tightly integrated with the semantic reasoner and no additional transformations should be
necessary.

7.3 Meta-Model
The aim of ODEG is to offer E-Government services that are almost entirely described by means of
semantic models. These models are turned into executable services using MDA principles. One intuitive
approach would be to directly model semantic web services. In sections 4.2 and 4.4 two prominent semantic
web service frameworks were presented. However, a detailed discussion of these frameworks (see section
4.5) showed that both of them posses some significant disadvantages. Additionally, regardless which
framework to choose there are no out of the box approaches to automatically turn these models into
executable web services and solutions to provide user-interfaces to these services based on a semantic
model do also not exist. Beside these general shortcomings any resulting model would be highly influenced
by the semantic web service framework used, since it has to fit the underlying framework specific meta-
model. In contrast to this, the GEA-PA model presented in section 6.2 is entirely framework independent. It
does not even require the public services modelled to be implemented as web services at all, which also
makes it technology neutral. These characteristics comply with the ontology design principles presented at
the beginning of section 6. Thus, the adoption of GEA-PA as the basis for an ODEG-specific meta-model
complies with ODEG's overall design objectives, since it makes ODEG portable and reusable with other
technologies as well. Therefore WSMO-PA[174], an existing WSML/WSMO model of GEA-PA was selected
as the starting point for the ODEG meta-model, instead of directly applying the WSMO semantic web service
modelling approach.

Figure 46 Provides a schematic overview of how ontologies provided by the framework and service specific
ontologies that have to be created as part of the modelling task are used to provide a semantic model an
electronic public service.

107

The core ontology is ODEG's meta-model, which is presented in sections 7.3.2 and 7.3.3. Besides this the
framework also contains some general purpose ontologies that are likely to be used directly in a service
description or that can be used as a basis for domain specific extensions. One of these general purpose
ontologies is the PersonData ontology presented in section 7.3.3. The service specific part consists of
instances of the meta-model ontology and probably some additional ontologies defining concepts that are
typically used in the current application domain (e.g. different types of buildings in the case of a building
permit procedure).

7.3.1 How to create the ODEG meta-model
As already mentioned, GEA-PA is a good starting point for a meta-model. To find out whether it is really apt
to be used together with the ODEG idea, first it has to be evaluated in a variety of sample scenarios. The
initial sample scenario selected for an ODEG show-case was the building permit domain. This decision was
made together with the City of Graz, the first municipality to adopt ODEG in its E-Government procedures. It
was mainly influenced by the fact that this particular problem domain was seen as probably the most
complex one at municipal level. Implying the assumption that when the new approach works well within this
domain, its results should be easily transferable to other, potentially less complex domains. Due to this
decision most of the examples used to illustrate ODEG in the next sections refer to the building permit
problem domain.

In the first phase it was important to find solutions for the specific procedures and problems of the building
permit domain. To facilitate re-use of identified concepts they were typically layered in several levels of
abstraction following the recommendations of section 6.1.

7.3.2 WMSO-PA – An WSMO implementation of GEA-PA
The central element of the ODEG meta-model is the PublicService concept (see Listing 55) as it is defined
in the WSMO-PA model. This element is a sub-concept of Service which is defined in the PROTON20 Top
module ontology. PROTON comprises 300 common domain-independent concepts organised in four
modules[182]. By linking to these top-level concepts, very general reasoning about public services is
enabled as well. In the terms of the MDA this relationship maps a domain specific model (DSM) to a domain
independent model, therefore combines the benefits of general MDA and domain specific approaches (see
the discussion in sections 5.5). All definitions of inverse properties were added to the original WSMO-PA
concept and therefore are considered minor ODEG specific modifications.

20 http://proton.semanticweb.org/

Figure 46: Overview of framework provided ontologies and service specific ontologies (own
illustration)

108

Every service is offered to a particular type of clients represented by the concept SocietalEntity. In WSMO-
PA exist two sub-concepts representing legal entities and natural persons. This part of the concept hierarchy
is shown in Figure 47. Also these concepts specialise the corresponding classes of the PROTON Top
module ontology. According to WSMO/GEA-PA every public service is categorised by its service domain
(e.g. education, transportation, health, ..) and its service sub-domain (e.g. illness prevention, public health
monitoring,...). The effect type describes which consequences are expected from offering and executing this
service (e.g. “promote sustainable development”). The hasLocation property describes where the service is
available. Locations are expressed by sub-concepts of Location. WSMO-PA defines two sub-concepts:
PhysicalLocation (an agency's front office where the service is available) and ElectronicLocation (a web-
site where the service can be accessed). Since services can be offered conventionally as well as
electronically and can also be offered at different locations this property has an unbound cardinality. The
administration level describes at which governmental level this service is provided. WSMO-PA defines the
levels ministry, region, prefecture and municipality.

The hasServiceOutcome property can refer to multiple instances of ServiceOutcome, which describe what will
happen or what is produced when the public service is executed. As shown in Figure 48 the possible values
for this property are manifold.

concept PublicService subConceptOf protontop#Service
 annotations
 dc#description hasValue "A public service is a service that a public administration provides to its
clients."
 endAnnotations
 hasClientType inverseOf(requestsPAService) ofType SocietalEntity
 hasPADomain ofType (0 1) PublicServiceDomain
 hasPASubDomain ofType (0 1) PublicServiceSubDomain
 hasEffectType ofType (0 1) PublicServiceEffectType
 hasLocation ofType (0 *) Location
 hasAdministrationLevel ofType (0 1) AdministrationLevel
 hasServiceOutcome inverseOf(isServiceOutcomeOf) ofType (0 *) ServiceOutcome
 isGovernedByLaw inverseOf(governs) ofType (0 *) Law
 usesServiceInput inverseOf(isServiceInputOf) ofType (0 *) ServiceInput
 isProvidedBy ofType (0 *) ServiceProvider
 hasProcess inverseOf(invokesNestedService) ofType (0 *) ServiceProcess
 hasPublicServiceType ofType (0 1) PublicServiceType
Listing 55: WSML definition of the PublicService concept

Figure 47: Concept hierarchy of WSMO-PA societal entities and their
relations to corresponding PROTON Top module concepts (own illustration)

109

A ServiceOutcome can be a so called service effect, a service consequence or any instance of type service
output. A detailed description of the semantics of these concepts can be found in section 6.2.1.

The isGovernedByLaw property refers to potentially several regulations that form the legal basis of this service
and therefore might define necessary preconditions. In order to model, which data is needed by a certain
PublicService GEA provides the usesServiceInput property. In the original version of WSMO-PA this property
could either refer to an EvidencePlaceHolder or an instance of type OtherServiceInput. As already pointed
out in the discussion of GEA-PA in section 6.3 this reference model rather reflects the (E-)Government
domain on an as-is, document-centric basis. In the context of ODEG, however, it is necessary to describe
the input of a service in much more detail than simply referring to required documents. WSMO-PA provides a
concept called OtherServiceInput to extend its capabilities to describe a service's input. This approach,
however, is not very helpful, since the only additional semantics introduced by this concept is that it is not an
EvidenceProvider, which is obvious anyway.

In order to extend its capabilities, the WSMO-PA model was extended by another possible input type called
ValidConcept. This new concept allows to refer to any concept that is considered to be valid input for a public
service. One conceptual problem that became apparent with the introduction of this property is the fact that it
crosses the border between concepts and instances. One of the critical features of RDF-S is its possibility to
make assertions about triples, which allows for classes that describe classes and instances of classes that
are classes themselves. This feature, however, is one of the reasons why RDF-S in undecidable (see section
3.1.5) and eventually led to the introduction of a separate OWL class construct (see section 3.2.5.1). The
idea of the newly introduced ValidConcept was to allow a service description, which in turn is an instance of
the PublicService concept to refer to a concept and not to another instance. Figure 49 illustrates this
situation, where rectangles stand for concepts and ovals indicate instances.

A direct property reference between instances and concepts like the one from PersonType to Person is simply
not possible, since it would break WSML's decidability. Consequently there is no WSML datatype that allows
to refer to a class and could be used as the oneOf property's type. Versions prior to version 1.0 of WSML
provided the datatype _iri, which could hold any IRI. Thus, in the initial version of ODEG this datatype was
used for the oneOf property and allowed to refer to the desired concept's IRI. This approach is conceptually
similar to one used by the OWL-S parameterType property (see section 4.2.1). Meanwhile, with the
introduction of WSML version 1.0 this datatype was removed from the language and wherever _iri was used
in ODEG ontologies is was replaced by the datatype _string. Since every reasoner takes the value of this
property as a simple string (or IRI in previous versions) the actual semantics of this description cannot be
used for automatic reasoning. Consequently, the interpretation logic responsible for executing the model has

Figure 48: Part of the WSMO-PA ontology representing
ServiceOutcome and ServiceInput concepts (own illustration)

110

to consider the intended semantics explicitly. Eventually, however, ODEG uses a different approach to
describe the input to a service, which will be explained in the next section.

The next element of the PublicService is its hasServiceProvider property, which refers to the PAEntity that
has the role of the service provider (compare section 6.2.1). The hasProcess property of the PublicService
concept refers to an instance of ServiceProcess. This concept is an initial attempt to describe the procedural
aspects of a public service. Every ServiceProcess is defined by a start date and a property that holds the
maximum duration of the process. Besides this, it can hold references to several ServiceCollaborators as
well as so called nested services, which are other PublicServices that are used by the current service (see
Figure 50). A ServiceCollaborator is an additional role that a PAEntity can have. These properties make a
ServiceProcess conceptually similar to the WSMO orchestration element (see Figure 25 in section 4.4.1),
although it is very basic since it does not describe any control flow aspects and therefore merely represents
an enumeration of other public agencies and services involved.

Finally the hasPublicServiceType property specifies the type of the service (e.g. control, authorisation,
certification, …).

When comparing the recommended GEA-PA object model for service provisioning (see section 6.2.1) to the
WSMO-PA model, it becomes obvious that the central concepts Need and Goal are missing. Since these
elements provide the conceptual basis for rather intuitive service identification, WSMO-PA needs to be
extended to support such functionality. This is why the so called Desire concept was added to the adapted
version of WSMO-PA. This concept represents a citizen's desire or need and has only one property with the
name isRelatedToConcept. The type of this property is string and it holds the IRIs of concepts that are

Figure 49: Sample usage scenario of the ValidConcept service input type
(own illustration)

Figure 50: The ServiceProcess concept and its relation to other
elements (own illustration)

111

needed to fully specify a citizen's desire. Thus, the same approach is used to refer from instances to
concepts as for the ValidConcept mentioned above. A detailed discussion of the idea behind this concept and
its internal structure can be found in section 7.4.

This slightly modified and extended WSMO-PA ontology is ODEG's most general top level ontology of the E-
Government domain. Following the recommendations for ontology modelling presented in section 6.1
concepts in this ontology are refined by introducing more specific ontologies that specialise WSMO-PA. The
next sections present these ontologies.

7.3.3 GEA-SeGoF – Specialising WSMO/GEA-PA
Although, the previous section already described some modifications to the original WSMO-PA ontology as it
was presented in [174], these adaptations are not representing a specialisation of WSMO-PA but rather have
to be considered fixes of conceptual errors, completion of obviously missing concepts compared to GEA-
PA[173] and minor improvements. Thus, the modified version represents a comprehensive WSML
specification of GEA-PA. The so called GEA-SeGoF ontology further specialises WSMO-PA and introduces
some ODEG specific top-level concepts (see Figure 51). The ConstrainedPublicService adds so called
ServiceConstraints to a PublicService and provides relations to Desires that the service might meet. As
already mentioned in the previous section a desire might be further specified by a set of concepts it is related
to. Whether a service actually meets a particular desire or not is specified in combination with its service
constraints. The ServiceRequest concept is the super-concept of all classes that describe input to public
services. Specialisations of the service request concept typically contain references to all required concepts
and therefore can be compared to application forms in conventional procedures. A ServiceInputPlaceHolder
is conceptually a more general type of service request. Analysis of some public services showed that facts,
which are preconditions can either be proven by adding the appropriate document to the request or
alternatively by applying for this document as a sub-procedure. The ServiceInputPlaceHolder therefore can
represent either a document or the data necessary for the application (in which case the actual concept used
with the procedure has to be a sub-concept of ServiceInputPlaceHolder as well as ServiceRequest). On the
other side a ServiceRequest is not necessarily a special form of a ServiceInputPlaceHolder in every case,
this is why there does not exist any sub-concept relationship between these two concepts.

To further explain, how a public service is modelled in ODEG it is helpful to refer to an example. Listing 56
presents the definition of the pull down permit service.

It shows almost all the properties of a public service as presented in section 7.3.2. Additional ODEG specific
properties are servesDesire and appliesToServiceConstraint, which describe the conditions under which this
service is apt to meet a citizen's desire or situation. The exact meaning and resulting consequences of these
elements are described in all detail in section 7.4.

Figure 51: The ODEG specific specialisation of WSMO-PA called
GEA-SeGoF ontology (own illustration)

112

Another additional element that was not part of the original GEA model is the hasContactInformation
property. Although each service is already related to the service provider it was found that this information is
not specific enough to provide citizens with information about responsible departments or persons. Thus, this
property allows for fine grained contact information at service level. Also an extension to the original GEA
PublicService is the implementationType property. This property holds information about the service's actual
implementation. The GEA model itself is technology neutral, which means that it does not make any
assumptions about its own serialisation and representation (whether it is stated in OWL, WSML or any other
semantic language) or the implementation of public services described by model instances. Although the
hasLocation property of GEA's PublicService concept can refer to physical and electronic locations (see
section 7.3.2), where citizens can find the service, this does not imply any information about how electronic
services are implemented. WSMO on the other side, assumes that actual services are implemented by the
means of web services. In the context of ODEG it is important to provide information about where to deliver
data that was collected by the applying citizen. The ODEG specific extension of the GEA ontology therefore
provides the concept PublicServiceImplementationType and several implementation specific sub-concepts
(see Figure 52).

Currently there are two different concrete service implementation types. One is the
eGrazServiceImplementationType, which stands for a proprietary E-Government solution operated by the City
of Graz. Technically this means that collected user data representing the actual application is send to the
back-office via a remote procedure call and therefore conducting the public service. An alternative
implementation is represented by the SOAPServiceImplementationType, which indicates that a service is

instance GeaPullDownPermitService memberOf geaGraz#ConstrainedPublicService
annotations

_"http://www.semantic-gov.org#hasWsmoService" hasValue PullDownPermitService
dc#description hasValue "Pull down service for constructions that require a pull down permit"
segofUtil#severityLevel hasValue "1"

endAnnotations
gea#isProvidedBy hasValue geaGraz#Graz_Municipality
gea#hasClientType hasValue construction#ConstructionApplicant

 gea#hasPADomain hasValue construction#BuildingsAndInstallations
 gea#hasPASubDomain hasValue construction#BuildingDomain
 gea#hasEffectType hasValue construction#AllowPullingDownOfConstruction
 gea#hasLocation hasValue geaGraz#Graz
 gea#hasAdministrationLevel hasValue gea#MunicipalityLevel
 gea#hasServiceOutcome hasValue construction#PullDownPermit
 gea#isGovernedByLaw hasValue construction#StyrianConstructionLaw
 gea#hasPublicServiceType hasValue gea#Authorization
 geaGraz#servesDesire hasValue geaGraz#PullDownAConstruction
 geaGraz#appliesToServiceConstraint hasValue construction#PullDownPermitServiceConstraint
 geaGraz#hasContactInformation hasValue geaGraz#ContactInformation_Construction
 geaGraz#implementationType hasValue geaGraz#eGraz

Listing 56: The GEA related description of the pull down building permit service that is required
whenever particular types of buildings are going to be knocked down

Figure 52: Concept hierarchy describing different possible implementation
types of public services (own illustration)

113

implemented by a SOAP based web service. Every instance of SOAPServiceImplementType has to have an
endPoint property which holds the service endpoint of the web service implementation.

When comparing the example public service described in Listing 56 to the GEA PublicService concept
shown Listing 55 it becomes obvious that the optional usesServiceInput property is not used. In fact the
information about what data is necessary in order to invoke a public service is key for a framework that
wants to interactively gather this information based on a semantic model.

The approach chosen to model required input is based on some initiatives to further integrate GEA and
WSMO[183][184] and is also used by a modelling tool called WSMO Studio 21. The basic recommendation is
to express input to services by the means of appropriate constructs of the WSMO specific webService
element. This leads to a twofold specification of any public service: a GEA specific part and a WSMO specific
part. The WSMO part of the pull down permit service is shown in Listing 57. This specification states that the
PullDownPermitService requires an input variable (in WSMO represented by the sharedVariable element) of
type PullDownPermitApplicationRequest (which, in turn by ODEG-convention is a sub-concept of
ServiceRequest). Furthermore, this request element has to contain a property of name pulldownbuilding
(representing the type of building that is supposed to be knocked down) which has to hold a value of one of
the listed types. Thus this service is only eligible for some particular types of buildings.

Since the specification of one public service is scattered over two elements, the question arises how these
elements are related. The answer lies in specific annotations that are used with every single specification
element. The GEA part of the specification refers to its corresponding WSMO part via an annotation named
http://www.semantic-gov.org#hasWsmoService where as the WSMO part refers to the GEA element via the
annotation http://www.semantic-gov.org#geaInstance. Both elements are results of the afore-mentioned
integration efforts.

Beside classical transactional services that represent procedures of public agencies ODEG has introduced a
special type of constrained services, the so called information services. As the name indicates, these
services represent access to information resources like web pages with background information, information
about contact persons or electronic brochures. Technically an information service is a sub-concept of a
constrained service (see Listing 58). Thus it can be mapped to desires and service constraints just like any
other transactional services. This allows for services that provide very specific information for particular
situations, like highly customised electronic information brochures that only contain facts relevant for a

21 http://www.wsmostudio.org/

webService PullDownPermitService
 nonFunctionalProperties
 wsmostudio#version hasValue "0.7.3"
 _"http://www.semantic-gov.org#geaInstance" hasValue GeaPullDownPermitService
 endNonFunctionalProperties

capability Capability_PullDownPermitService

sharedVariables {?request}

precondition
definedBy

?request[construction#pulldownbuilding hasValue ?building] memberOf
construction#PullDownPermitApplicationRequest

and (?building memberOf construction#SmallGarage or
?building memberOf construction#MiddleGarage or
?building memberOf construction#BigGarage or
?building memberOf construction#BigPullDownAdjoiningBuilding or
?building memberOf construction#BusinessHouse or
?building memberOf construction#MixedHouse or
?building memberOf construction#SmallResidentialHouse or
?building memberOf construction#BigResidentialHouse or
?building memberOf construction#OtherConstruction).

interface Interface_PullDownPermitService

Listing 57: The WSMO specific part of the pull down permit service

114

citizens desire. The major difference between an information and a transactional service is the fact, that an
information service does not need any back-office processing, hence, its execution does not change the
state of the world.

7.3.4 PersonData Ontology
The PersonData ontology is a central general purpose ontology within ODEG. Although there already exist
several ontologies that describe persons and their common attributes like the PROTON top module or the
friend of a friend (FOAF) ontology[185] this ontology defines different types of persons as they might be
needed within the E-Government domain.

Thus, PersonData represents a domain specific specialisation. On the one hand side it was motivated by the
idea to facilitate conversion into the EDIAKT II format whereas on the other side EDIAKT II was considered
to contain a valid general conceptualisation since it was designed to exchange procedural data between
public agencies. Consequently the PersonData ontology reflects the structure of the respective part of the
EDIAKT II specification, although this might introduce some redundancy.

Figure 53 shows the structure of the top level concepts that make up the PersonData ontology. Basically a
person is described by a composition of a so called PersonData and a PostalAdressData concept. The first
one describes identifying attributes like a person's name (see Listing 59 for the definition of person data
concepts) whereas the latter one holds contact information in form of a postal address (see Listing 60).

Figure 53: Main concepts and structure of the PersonData ontology (own
illustration)

concept InformationService subConceptOf geaGraz#ConstrainedPublicService
 nonFunctionalProperties
 dc#description hasValue "super concept for all information services"
 endNonFunctionalProperties
Listing 58: Definition of the information service concept.

115

Just like in the PROTON top module and WSMO-PA (compare Figure 47) also the PersonData ontology
distinguishes between physical persons and corporate bodies, although both types of person share the same
PostalAdressData concept.

7.4 Service Locator
Analysis of the building permit domain showed that even identifying the correct procedure that is needed in a
particular situation is a non-trivial task. For example, to get permission for erecting some new construction
the Styrian building law defines three different procedures with different internal complexity and therefore
duration:

• Building development requiring official approval: In this case you have to apply for approval
which will trigger a fairly complex process. If successfully approved, the public agency in charge will
issue a building permit at the end of this process.

• Notifiable building development: In this case you have to notify the responsible public agency
about the project, providing detailed information and blueprints. The agency can prohibit the project
within six weeks. Otherwise approval is considered to be granted.

• Building development not requiring official approval: In this case you just have to inform the
responsible public agency about when construction work will start and provide some basic
information about the project.

concept CompactPhysicalPersonData subConceptOf PersonData
prefix ofType (0 *) AcademicDegreePrefix
givenName ofType (1 *) _string
familyName ofType (1 1) _string
suffix ofType (0 *) AcademicDegreeSuffix
maritalStatus ofType (0 1) MaritalStatus
sex ofType (1 1) Gender
dateOfBirth ofType (1 1) _date
placeOfBirth ofType (0 1) _string
iSOCode3 ofType (1 1) _string
telephoneNumber ofType (0 1) _string
mobileNumber ofType (0 1) _string
faxNumber ofType (0 1) _string
eMailAdress ofType (1 1) _string

concept CompactCorporateBodyData subConceptOf PersonData
fullName ofType (1 1) _string
legalForm ofType (0 1) _string
//organization ofType (0 1) _string
telephoneNumber ofType (0 1) _string
mobileNumber ofType (0 1) _string
faxNumber ofType (0 1) _string
eMailAdress ofType (1 1) _string

Listing 59: Definition of the two concrete PersonData sub-concepts

concept CompactPostalAdressData subConceptOf PostalAdressData
nonFunctionalProperties

dc#description hasValue "concept for address of houses and societal entities"
endNonFunctionalProperties
countryCode ofType (0 1) _string
countryName ofType (0 1) _string
postalCode ofType (0 1) _string
municipality ofType (1 1) _string
streetName ofType (1 1) _string
buildingNumber ofType (1 1) _string
unit ofType (0 1) _string
doorNumber ofType (0 1) _string

Listing 60: Definition of the CompactPostalAdressData concept

116

Which of these procedures is the relevant one mainly depends on the type as well as on the size of the
building or facility that is going to be erected. One example that illustrates this is the erection of a garage.
Whether an application for a full-blown building permit or a relatively light-weight notification is needed
depends on the size of the garage. The size of a garage, however, is not determined directly by its physical
extent but implicitly by the type and number of vehicles that can be parked in the garage. Similar rules apply
to a variety of other construction types. Due to this inherent complexity it is not easy for citizens to find out
the appropriate service. Therefore clients need support by the system to identify those services that are
relevant to their specific situation. In this context the Desire concept is used to capture information about a
citizen's goal at a level detailed enough to decide which services are needed. Typically a citizen's primary
intention or desire is not to get a building permit in the first place, which might not be necessary for the given
situation anyway, but to erect some particular type of building. Applicants just wants to be sure that they are
allowed to build whatever they intend. Thus a typical desire might be “ I want to erect a garage” rather than “I
want to get a building permit”. This introduces a citizen centric point of view when it comes to goal/desire
definitions.
However, as already pointed out at the beginning of this section, a goal like “ I want to erect a garage” would
not contain the necessary details required to identify the relevant service, since this decision depends on the
size of the garage as well. To derive a more concrete specification of a citizen's desire, every desire can be
related to an arbitrary number of other concepts as shown in Figure 54.

Every desire, which technically is an instance of the concept Desire, can be linked to those types of concepts
that are relevant for the decision about the required or appropriate services. In the case of a building permit
this could be the type of the building that is going to be erected. Additionally it is important to know where the
construction site is located since this determines which public agency is responsible for handling the
procedure.

To illustrate how all of these elements fit together lets proceed with the relatively simple example of the pull
down permit service that was already used in section 7.3.3. Figure 55 shows how the actual public service is
related to a desire and a service constraint. The meta-model defines the concepts ContraintsPublicService,
Desire and ServiceConstraint as well as their relations. The shapes with rounded corners in Figure 55
represent instances, whereas rectangles stand for concepts. The GeaPullDownPermitService supports the
PullDownAConstruction desire. This desire is in turn related to the concept PullDownRelevant and
PreliminaryConstructionAddress, which indicates that this goal is only sufficiently specified when it comes
together with concepts of these types. PullDownRelevant represents things in the knowledge space that can
be knocked down. A PrelimaryConstructionAddress describes the location of the project. It is different from
the PostalAddress concept presented in section 7.3.4 and captures the facts that for the location of building
projects there sometimes does not exist a street number yet and that a detailed description of the location is
not necessary during service discovery phase anyway. In fact in this example it is only necessary to find out
in which community the construction or pull down activity takes place and – in case of a larger city like Graz -
in which borough.

Figure 54: The Desire concept and its related concepts (own
illustration)

117

7.4.1 Selecting a Desire

From a citizen's point of view, service discovery should start with selecting the appropriate desire. Therefore
the start page (see Figure 56) of the service locator provides an overview of all registered desires, i.e. all
instances of the Desire concept. These instances are found by querying a reasoner that has registered all
available ontologies.

The user can now select the desire that reflects his or her situation best. To translate the semantic model into
human readable form, so called resource bundles 22 are used. Basically a resource bundle in this context is
nothing but a set of text files that contain key/value pairs.
22 http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/

Figure 55: Definition of the pull down permit service and its relations to a desire
and its service constraint (own illustration)

Figure 56: Start page of the service locator showing a selection of
available desires (screen shot of the service finder application).

118

Listing 61 shows the resource bundle entries necessary to create the dialog for the selected desire in Figure
56. Resource bundles are typically used for localisation and provide text in different languages. Thus, the
usage of resource bundles allows for simple support of internationalization as well.

To map elements of the semantic model to the appropriate text in a resource bundle, the element's IRI, which
is its globally unique identifier, is used. However, since the colon that is part of each IRI is used as a
key/value separator and the hash character is used to indicate comments in resource bundles, some simple
character substitutions have to be performed. Thus, the IRI of a model element is equal to its key in the
resource bundle, except for colons and hash characters, which are replaced by dots.
To construct the text for the user dialogue, first the text of the corresponding bundle entry, depending on the
currently selected language is retrieved (“pull down a {1}” in this example). This text might contain
placeholders for parameters (indicated by the curly brackets). These placeholders are replaced with the text
values of the related concepts. In this example, the run-time system tries to insert the text for
PullDownRelevant (“Building”) and PreliminaryConstructionAddress (“Construction location”). If there are
more related concepts than placeholders, these concepts are ignored during the creation of the text.
Otherwise, if there are more placeholders than related concepts, an error will be produced. Like shown in
Figure 56 the resulting text for the PullDownAConstruction desire will be “pull down a Building”. Generally, for
every model element a corresponding entry in the resource bundles is created automatically, which defaults
to its local name, i.e. its name without the namespace. This makes sure that there are no missing bundle
entries.

In the case of the German version, things are slightly more difficult, since the German language uses
different definite and indefinite articles depending on a noun's gender. Thus, the system has to know the
gender of a noun in order to determine the required article. This information is contained in a concepts
annotation section, wherever it is required. The concept PullDownRelevant has a gender annotation, which
refers to the value segofUtils#Neuter. Thus, in the case of a German version also the text for the desire
instance would be retrieved first (“{0} {1} abbrechen” in this example). The placeholder with the index zero is
always reserved for the article. From the context, the run-time environment knows that it has to use the
appropriate indefinite article, which is “ein” in this case. Together with the text for the related concept
PullDownRelevant (“Gebäude”), the resulting text for the desire would be “ein Gebäude abreissen”. This

[from English resource bundle]
http.//segof.fh-joanneum.at/GEA.PullDownAConstruction = pull down a {1}
http.//segof.fh-joanneum.at/Construction.PullDownRelevant = Building
http.//segof.fh-joanneum.at/PersonData.PreliminaryConstructionAddress = Construction location

[from German resource bundle]
http.//segof.fh-joanneum.at/GEA.PullDownAConstruction = {0} {1} abbrechen
http.//segof.fh-joanneum.at/Construction.PullDownRelevant = Gebäude
http.//segof.fh-joanneum.at/PersonData.PreliminaryConstructionAddress = Wo werden Sie voraussichtlich
Ihr Bauvorhaben umsetzen?

[from ODEG ontologies]

instance PullDownAConstruction memberOf geaGraz#ConstrainedDesire
 annotations
 dc#description hasValue "Citizen wants to pull down a construction"
 segofUtil#displayPriority hasValue "3"
 endAnnotations
 isRelatedToConcept hasValue {_"http://segof.fh-joanneum.at/Construction#PullDownRelevant",

_"http://segof.fh-joanneum.at/PersonData#PreliminaryConstructionAddress"}

concept PullDownRelevant
annotations

dc#description hasValue "abstract concept which marks construction that are relevant for pull down
application"

gender hasValue segofUtil#Neuter
endAnnotations

Listing 61: English and German snippets from the resource bundles used together with
semantic model elements relevant for the desire selection.

119

approach makes sure that always a correct sentence is created for any concept a desire might be related to.

Another aspect that should be mentioned is the segofUtil#displayPriority annotation that is used for the
PullDownAConstruction desire shown in Listing 61. Whenever there is a list of elements a user can choose
from, these elements are sorted alphabetically. Sometimes, however, it seems to be more appropriate to use
a different order, e.g. determined by the frequency or likelihood certain elements might be needed. In this
case the display priority property can be used to explicitly create a different order. This explains why the
“pull down a Building” desire comes third in the dialogue presented in Figure 56.

7.4.2 Refining a Desire
Desires are typically modelled as abstract and general as possible. In the example of the pull down permit
services the corresponding desire is related to a concept called PullDownRelevant, which represents all
possible types of constructions that can be knocked down and a location. Thus, this desire does not contain
any information about the actual building that should be removed. As already pointed out at the beginning of
section 7.4 this level of abstraction typically does not allow for selecting the required service. Consequently
the desire of a citizen who wants to pull down a particular building has to be refined to the necessary detail in
order to determine the appropriate service. In this phase the domain specific ontologies become important.
Concepts in these ontologies form graphs along the level of abstraction and therefore define taxonomies.

Figure 57 shows some of the concepts that are part of the domain specific construction ontology. One central
concept in this ontology is Construction, which stands for all things that can be erected and are therefore
covered by the construction law that applies. This ontology, however, also contains more specific types of
constructions like fence of garage. The identification of all of these concepts was done by a careful analysis
of the Styrian Construction Law, which is the legal basis of all building permit procedures. Whenever the law
text was referring to a particular type of construction, it was added to the domain. Later on these terms were
re-arranged and classified leading to a taxonomy of buildings and facilities. Although there exist some
approaches to automatically extract semantic information from law texts [186][187], this analysis was
conducted manually to have full control over the creation process. During interviews with domain experts
where the resulting taxonomies were discussed, some of the concepts identified during text analysis were
dropped, since – according to the experts – they had no practical relevance for the procedures.

Thus, the initial version of the construction ontology contained more elements and abstraction layers than it
does now. On the other side, concepts like PullDownRelevant were not identified in the text analysis phase,
but during the analysis of the different procedures. Whereas all concepts shown in Figure 57 are
constructions, not all of them are relevant for pull down permit procedures according to the construction law.
Although this is not explicitly defined in the law, this became obvious in the review process with the domain

Figure 57: A fragment of the construction ontology showing parts of the
construction taxonomy (own illustration)

120

experts. Thus, the additional concept PullDownRelevant marks all its instances as relevant for pull down
permit services. It therefore defines a subset of all constructions.

ODEG makes one very important assumption about concept hierarchies in general. Every concept that
possesses sub-concepts is considered to be abstract, whereas all concepts that are leafs of the type
hierarchy graph are considered to be concrete. Furthermore only concrete concepts are allowed to appear in
any of the procedures. This intuitively reflects the fact that one has to apply for permission to erect or pull-
down a concrete type of building rather than “a building”. Thus refining a desire merely means replacing
every related concept which is abstract by any of its concrete sub-concepts.

One way how this can be accomplished is shown in Figure 58. This dialogue will be shown once you click
the next button in the desire selection dialogue (see Figure 56) assuming that the “pull down a Building”
option was selected. It presents all direct sub-concepts of the initial PullDownRelevant concept that was listed
as the first related concept of the PullDownAConstruction desire (shown in Listing 61).

These sub-concepts can easily be determined by querying the reasoner (compare Figure 59) and are
rendered as radio-button options. Thus the current user has to determine the next more specific type of the
building that is about to be torn down. This activity is called specialisation, since the user of the system adds
more specific information about the concepts that have to be dealt with.

On the other side, sometimes additional levels of specialisation are necessary due to specific needs of the

Figure 58: Specialisation as one way to refine a desire (screen
shot from the service finder application)

Figure 59: The PullDownRelevent concept and its direct sub-
concept (screen shot of the WSMO Visualizer)

121

underlying regulations. These additional classes are not always intuitive or easily comprehensible for
citizens. The Styrian Construction Law for example, explicitly distinguishes between small and other
residential houses (see Figure 57). According to this law, a residential house is considered to be small when
it does not possess more then three floors and its total floor space is bellow 600m 2. This distinction is
important, since this fact might decide whether a simplified permit procedure is possible or not. The simple
straight specialisation approach where the user has to select the appropriate sub-concept type like shown in
Figure 58 would lead to usability problems if applied to this type of decision as well. In fact significant amount
of additional information had to be shown to the citizen in order to support the decision about whether the
house is small or not according to the definition of the regulation. However, semantic reasoners can easily
decide, whether a given instance belongs to a specific class of not, by applying an ontology's axioms.

ODEG makes use of these reasoning capabilities here and provides appropriate axioms that exactly reflect
the specifications of the law. Listing 62 presents the axiom that specifies whether a given instance is of type
SmallResidentialHouse. The head of the axiom defines the consequence, which states that the instance
represented by the variable x is a member (i.e. an instance) of SmallResidentialHouse.

The body of the axiom defines the condition that has to hold true for the head to become effective. One
important restriction here is that the instance represented by the variable x already has to be a member of
the concept ResidentialHouse to be further analysed. This improves the performance of the entailment
process since far less combinations have to be investigated by the reasoner compared to an unrestricted
variable. Besides this condition the effective area of the residential house has to be smaller than 600m 2 and
it must not have more than three floors. There is another property called hasNeighbourSignatures, which is of
type boolean. This property captures the fact that the small nature of a residential house only leads to
simplified procedures if all neighbours explicitly express their approval of the project by signing the
blueprints. Thus, if this approval is missing the physically small residential house is treaded like it was bigger.
However, to use a reasoner for making the decision about a residential house's concrete class, it has to be
fed with an instance holding the relevant information. Therefore the ODED run-time checks for every single
refinement step whether there exist axioms that can be used for automatic classification. This search is a two
step activity. First all direct sub-concepts of the current concept in question are determined. This information
is also needed for manual specialisation. Then the system checks for axioms, which classify instances as a
member of any of these previously identified sub-concepts and take variables of the appropriate type as
input. The input type is considered appropriate, if the current concept is a member of it. This means that the
input variable of the axiom is either the same type as the current concept or one of its super-concepts.

If such axioms where found, the system collects all the properties that are referenced in these axioms and it
creates a dialogue in which the user is asked to provide values for these properties. Assuming that the user
selects the option “Residential House” in the dialogue shown in Figure 58 the system first would find out that
there are two more sub-concepts for the currently selected ResidentialHouse concept. Thus refinement has
to go on since according to ODEG's assumptions ResidentialHouse is abstract and needs to be replaced by
one of its concrete sub-concept. In a consecutive step the system now checks for axioms. In this case it
would find the one presented in Listing 62 and another one that defines BigResidentialHouses. The variables
used in these axioms are extracted and added to a set of properties that are needed for automatic
reasoning. This set of properties is used to dynamically render the dialogue shown in Figure 60.

axiom SmallResidentialHouseDefinition
 definedBy
 ?x memberOf SmallResidentialHouse
:-
?x[effectiveArea hasValue ?effectiveArea, numberFloors hasValue ?numberFloors,
hasNeighbourSignatures hasValue ?hasNeighbourSignatures] memberOf ResidentialHouse
 and wsml#equal(_boolean("true"), ?hasNeighbourSignatures)
 and ?effectiveArea < 600
 and ?numberFloors =< 3.

Listing 62: Axiom that defines whether a given instance is of type SmallResidentialHouse or not

122

The input elements used in this dialogue depend on the type of the properties. The dialogue also contains
information about the current context, including the currently specified desire (“You want to pull down a
residential house ...”). The user now has to specify some of the properties of the house that should be
removed. Once the user clicks the next button an instance of a residential house with the specified
properties is created and registered with the reasoner. The reasoner now applies all the registered axioms,
which will lead to the required classification.

Axioms, however, are also used for enforcing the consistency of the instances (e.g. the number of floors of a
house has to be bigger than zero, …), which will be explained more precisely in section 7.5. Generally,
ODEG refers to the process of refining the type of a concept by using the reasoner (compare Figure 60) as
classification, while refinement that is explicitly performed by the current user (compare Figure 58) is called
specialisation. After the reasoner has successfully classified the given instance, the system goes on to the
next step (see Figure 61). In our example this will bring us to the specification of the desire's next related
concept, the PreliminaryConstructionAddress (compare Listing 61).

This dialogue immediately uses classification, which is caused by the existence of several sub-concepts of
PreliminaryConstructionAddress that can be inferred using axioms. One of these sub-concepts is the class
of all locations within the City of Graz.
The specification of this group of addresses is called GrazAddress and is presented in Listing 63. This type is
also used in the PullDownPermitServiceConstraint shown in Figure 55 on page 117.

Figure 60: Dialogue to further specify the type of a residential house (screenshot of the
service finder application)

Figure 61: Specifying the location of the pull down activity (screen shot of the service finder
application)

123

The dialogue presented in Figure 61 shows the result of the previously performed automatic classification
(“You want to pull down a small residential house ...”). It also contains two peculiarities. The field for the
municipality is disabled and already contains the value “Graz”. On the other hand, the field for the district is a
pull-down list with predefined values. How such a behaviour can be defined is described in sections 7.5.3
and 7.6 respectively. After values for the location are provided, the reasoner will classify the address.

Now, since all the desire's related concepts are thoroughly specified, the actual service identification takes
place. The algorithm used to identify relevant services is rather straight forward. First of all, all services that
generally serve the user's desire, i.e. all desires that have the selected desire as a value of their

servesDesire property are identified. From these services those are extracted that have matching service
constraints associated with them. A service constraint matches the current desire when all of its properties
are of the same type as the desire's related concepts. More precisely, there has to be one related concept
specified with the desire that is of the same type as the property of a service constraints for all properties of

axiom GrazAddressDefinition
nonFunctionalProperties

dc#description hasValue "define a location in Graz"
endNonFunctionalProperties

definedBy
?x memberOf GrazAddress

:-
?x[municipality hasValue ?municipality, districtCadastre hasValue ?districtCadastre] memberOf
PreliminaryConstructionAddress

and (wsml#equal("Graz", ?municipality)
or wsml#equal("graz", ?municipality)).

Listing 63: Axiom to classify all addresses that are located in Graz

Figure 62: Result of the service finding process (screen shot of the service finder
application)

124

the constraints. This also matches service constraints that only have a sub-set of the desire's related
concepts defined as properties or their properties are of a super-type of the desire's related concept. This
provides a great degree of freedom to map services to more or less specific desires. Generally the result of
the match can be empty (which would indicate an incomplete model) or can consist of one or more services.

Service identification includes transactional public services as well as information services. The result of our
pull down permit example is shown in Figure 62. Based on the data that was filled into the different forms,
the system has identified the “Pull down permit request” service as the appropriate one. Additionally an
information service that will show the contact information of the responsible contact person was found as
well. This information service also serves the PullDownAConstruction desire and has a matching service
constraint. In this example the responsible person is found, based on the district in which the activity will take
place. Next to the bottom of the result dialogue there is a section showing additional services that might be of
relevance. Services listed here are all services that serve the same (abstract) desire but do not have
matching service constraints associated with them.

The example of the pull down permit service used here to illustrate the service identification process is
relatively simple. Service identification can be also be a bit more complex as it is the case with the building
permit service. The difference is that, although, the type of the required service merely depends on the type
of the construction that is about to be erected, citizens can apply for permission to erect several
constructions in one single application. A relatively frequent case is that people want to build a residential
house but also want to erect a garage. Sometimes the level of the terrain is also changed, which needs
approval as well. Thus, several construction types might occur within one desire.

To support a situation like this, ODEG has introduced multi-valued related concepts. However, since the
cardinality of the isRelatedToConcept property already has an unbound cardinality, this is based on some
convention. Technically, if a related concept should by multi-valued, it requires the desire to provide as
second property called relatedConceptCardinality. Every value of this property represents the
corresponding related concept's upper bound. The relation between the values of the cardinality and the

instance BuildingAConstruction memberOf geaGraz#ConstrainedDesire
 nonFunctionalProperties
 dc#description hasValue "Citizen wants to errect a construction"
 segofUtil#displayPriority hasValue "1"
 endNonFunctionalProperties
 isRelatedToConcept hasValue {

_"http://segof.fh-joanneum.at/Construction#ConstructionProjectNewbuild",
_"http://segof.fh-joanneum.at/PersonData#PreliminaryConstructionAddress"}

 relatedConceptCardinality hasValue {"*","1"}
Listing 64: Definition of the BuildingAConstruction desire

Figure 63: General overview of the desire refinement process (own illustration)

125

related concept property of a desire is the order of their appearance. An example is given in Listing 64. This
desire is related to two different concepts called ConstructionProjectNewbuild and
PreliminaryConstructionAddress. The former, however, is a multi-valued property indicated by the asterisk,
which is the first element of the relatedConceptCardinality property.
If a related property is multivalued, the user can add additional instances of this concept to further specify the
current desire. The complete control flow used in the desire refinement phase is shown in Figure 63.

7.4.3 The Service Finding Algorithm
Although the principle of the service finding algorithm was already presented in the previous section, here all
the details and potential scenarios will be discussed.

As already pointed out, appropriate services are found by matching the concrete concepts of a given desire
with the types of a service-constraint's properties. Before this can be done, in a first step all the potentially
abstract concepts a desire might be related to have to be replaced by their concrete sub-concepts. A concept
is considered to be abstract, if there exist any sub-concepts. This refinement process was extensively
described in section 7.4.2.

To narrow the number of services that have to checked, in a second step only those that serve the given
desire are selected. A schematic overview of how a service, its desires and its service constraints are related
to each other in order to find relevant services is shown in Figure 64. Basically every single
ConstrainedPublicService can serve an arbitrary number of desires but has to be related to at least one.
Consequently, different desires can lead to the same service, which is for example the case for the contact
person information service found in our pull down permit example presented in the previous section. The
same information service will be found in case of a building permit application since it contributes to all
desires that are related to the building domain.

Every service that generally serves the selected desire is now further analysed. Each of these services can
also be related to an unlimited number of service constraints. If there are several service constraints, they
are combined using logical disjunction. Thus if one of these constraints matches the desire then the service
is relevant. Consequently every service constraint is checked if all of its properties are of the type of the now
concrete related concepts of the desire. This condition is met if there is one concrete concept in the desires
set of related concepts that is either exactly of the same type as the constraint's property or a subtype. If a
constraint's property contains several values (like property1 in Figure 64) only one of them has to match.
Thus, individual values of a multi-valued property also form a disjunction. On the other side, if a service

Figure 64: Schematic overview of the service matching step when looking up relevant
services (own illustration)

126

constraint possesses several properties (compare property1 and property2 of ServiceConstraint1 in Figure
64), all of them have to match, which represents a conjunction. Taking the example depicted in Figure 64,
the service would be relevant in the following cases:

1.) The selected desire has a related concept that was replaced by X or Y and another related concept
that was replaced by any sub-concept of V
 or

2.) The selected desire has a related concept that was replaced by Z.

In the first case the shown desire automatically meets this constraint, since V is the type of the original
related concept. This situation could also be described by a predicate logic term, where the predicates
require a variable to be of a particular type:

[∃ s,t | (isOfTypeX(s) isOfTypeY(s)) isOfTypeV(t) ⋁ ⋀] [⋁ ∃ t | isOfTypeZ(u)] =>
requiresService(v,s,t)

Thus, whether the service v is required for the given situation or not depends on the types of the related
concepts represented by s and t. Generally, any combination of dis- and conjunctions is possible, which
allows for describing virtually any logical constraint. Listing 65 shows a service constraint that is used
together with the pull down notification service, a simplified procedure for obtaining permission to knock
down a building. This constraint matches a particular desire if it is related to one of the construction types
assigned to its construction property (disjunction) and to a location of type GrazAddress.

It is important to notice that this algorithm can't be expressed entirely via axioms that are fed to a reasoner.
For example, references from instances to concepts are modelled as properties of type string that contain
the IRIs of the referenced concepts. This information can only be interpreted correctly by knowing the
underlying conventions. Thus, significant parts of this algorithm are implemented in software, whereas the
reasoner is used to answer all the queries needed to look up instances and identifying class-hierarchies.
When comparing this algorithm to those discussed in section 4.5.1 resulting matching states are either plugin
or exact in the case of a service found and disjoint when no service was found.

7.5 Semantic Forms
In the previous section the service identification mechanism was presented that allows for finding appropriate
services necessary to fulfil a specific desire. In the upcoming sections the process of the actual service
utilisation is described. This comprises elicitation of all the information required by the service that will be
used. During this phase citizens are working with electronic forms that are interactively rendered based on
the underlying ontologies and the currently selected concepts. Thus, it is important to determine which
information is necessary to invoke a particular electronic public service.

7.5.1 Determining Required Service Input
Due to some compatibility considerations pointed out in section 7.3.3 every service description is split into
two parts: a GEA inspired instance of a ConstrainedPublicService and a corresponding WSMO webService
element. Whereas the GEA part holds a general description of the service, the desires it might fulfil and the
provider of the service, the WSMO part describes the required input and preconditions as shown in Listing
66. In this example – that will be used as a running example to demonstrate the semantic form generation

instance PullDownNotificationServiceConstraint memberOf geaGraz#ServiceConstraint
construction hasValue {_"http://segof.fh-joanneum.at/Construction#SmallToolShed",
_"http://segof.fh-joanneum.at/Construction#SmallAdjoiningBuildingForAgricultureAndForestry",
_"http://segof.fh-joanneum.at/Construction#SmallPullDownAdjoiningBuilding"}
location hasValue _"http://segof.fh-joanneum.at/PersonData#GrazAddress"

Listing 65: Service constraint for the pull down notification service

127

process - there has to exist an input variable of type BuildingPermitApplicationRequest for which one
additional constraint has to hold true.

Thus, once a service is selected, the shared variables of the corresponding WSMO webService element are
analysed, which form the starting point of the interactive form creation process. The concept definition of the
input variable type used in this example is shown in Listing 67. According to this concept, whenever
someone wants to apply for a building permit, the following information needs to be provided:

1. At least one or more applicants have to be named

2. A potential delegate who represents the applicant(s) throughout the procedure can be specified

3. A short description of the construction project consisting of all the facilities the will be erected or
remodelled

4. The location of the project

5. A proof that the piece of land used for the project is ready to be connected to water and electricity
supply networks as well as sanitation. This can be done by either uploading the required
confirmation, which is in turn the outcome of a separate procedure, or by applying for this
confirmation as part of the building permit procedure

6. An optional set of blueprints and other documents that can be attached to the application

Although applying for a building permit is considered to be one of the most complex procedures at municipal
level the formal description of the required input is rather short and simple as demonstrated in Listing 67.
This stems from the fact, that the semantic model allows the use of abstractions, where as the concrete
types (e.g. which type of building is actually erected) are determined during the information elicitation
process.

webService BuildingPermitService
 annotations
 _"http://www.semantic-gov.org#geaInstance" hasValue GeaBuildingPermitService
 endAnnotations

capability Capability_BuildingPermitService

sharedVariables {?request}

precondition
definedBy

?request[construction#constructionProject hasValue ?projectType] memberOf
construction#BuildingPermitApplicationRequest
and ?projectType memberOf construction#BuildingPermitConstructionProject.

Listing 66: WSMO description of the building permit service.

concept BuildingPermitApplicationRequest subConceptOf ConstructionServiceRequest
annotations

dc#description hasValue "concept representing input to building permit service"
endAnnotations
applicant ofType (1 *) personData#Person
delegate ofType (0 1) personData#Person
constructionProject ofType (1 *) ConstructionProject
buildingLocation ofType (1 1) BuildingLocation
buildingSiteEligibility ofType (0 1) BuildingSiteEligibilityPlaceHolder
record ofType (0 *) segofUtil#File

Listing 67: Definition of the BuildingPermitApplicationRequest concept that describes the
required input to the building permit service

128

7.5.2 Rendering the Electronic Forms
All forms presented by the semantic forms component are dynamically rendered based on the currently
selected concept. When starting a new application the first – and in most cases the only - input concept as
defined in the service's webService element is the currently selected one. Thus this concept defines the initial
form as it is shown in Figure 65. If the form was started after using the service finder, any information that
was provided during the preceding phase is automatically added to the information space of the application
as shown in Figure 66.

The fields of this form directly reflect the structure of the BuildingPermitApplicationRequest concept. Any
property that is defined with a minimum cardinality greater than zero (compare the properties applicant,
constructionProject and buildingLocation from Listing 67) is rendered as a mandatory field. For properties
with a cardinality greater than one a series of property instances can be created as long as the upper bound

Figure 65: Initial screen of the building permit application without pre-filled instances.

Figure 66: Initial building permit application form with data transferred from the service
finder component

129

is not reached. The form's layout follows the recommendation of the Austrian Style-guide for Electronic
Forms[188] and is fully style guide compliant.

The form creation algorithm is based on the following simple considerations:

• Internally every concept is seen as a tree.

• Properties that are of a primitive datatype (e.g. string, number and date) are leafs, for which values
can be directly provided.

• Every property that is itself a concept is seen as the root of a sub-tree

Besides these assumptions also the general ODEG convention, defining all non-leaf concepts as being
abstract is considered by the algorithm. Thus the current concept must not have any sub-concepts before
the user can provide values for any of its primitive typed properties. Nevertheless, the entire data-structure
defining the information needed by the service is a sub-graph of the underlying ontologies that is not
necessarily a tree, but every walk from its initial node – due to continuous refinement either by going from a
more general to a more specific concept or by following a concept's attributes – will eventually reach a leaf.
These two dimensions of refinement will become clearer with the ongoing example. Since the data-structure
behaves like a tree – in fact the only difference to a tree is that any two branches might merge into one node
again – it is very well suited for a recursive approach.

Generally the user is free to start with the specification of the current concept's properties in any order. In our
example, however, the first property on the form – the applicant – is further specified first. The type of this
property is defined as personData#Person. As pointed out in section 7.3.4 this type is abstract and subsumes
the specific types physical person and corporate body. Thus, when adding a new applicant to the information
space, the abstract type person has to be replaced by a more specific type in a first step. ODEG supports
the two different approaches called specialisation and classification as already discussed in section 7.4.2. In
this case, specialisation is used, which basically means that the user has to select the appropriate type like
shown in Figure 67.

This is an example of the classification/specialisation refinement dimension mentioned earlier. After the use

Figure 67: Specialisation of the person concept assigned to the application property

Figure 68: Form used to collect information about the applicant

130

selected one of the available sub-concepts was, a new instance of this concept – in our example a physical
person – is created and the properties of this concept – now the current one – have to defined. At this point
the same algorithm that was used for the specification of the initial application concept is applied recursively.
Therefore the current implementation of ODEG makes use of Spring Web Flow [189]. This web application
framework allows to arrange page and logic sequences in so called flows. In turn, these flows can be
recursively called as sub-flows. Thus, one and the same logic is going to be applied over and over again as
long as a leaf of a particular branch is reached. But for now, the properties of the applicant, who is a natural
person in this example, have to be further specified (see Figure 68).

The separation of a person concept into a person and an address data block was caused by the originally
close ties between the form solution and the EDIAKT II data exchange standard as already discussed in
section 7.3.4. Both of these properties are concept types, thus, in a first step new instances of these
properties have to be created by clicking on the respective button. The form now shows the properties of the
CompactPhysicalPersonData concept. This concept is a leaf in the concept hierarchy and all its properties are
of primitive data types, therefore the user can provide values for them as shown in Figure 69. It is important
to mention that the set of properties shown in this page also includes all inherited properties that were
specified in any of the current concept's super-concepts. Whenever the next button is clicked a concept
instance with the values provided by the user is registered with the reasoner. This causes all constraints and
axioms in the ontologies to be checked. If this leads to errors, the user is returned to the form and
appropriate error messages are rendered like shown in Figure 70.

Figure 69: Input form for specifying the properties of a physical person applying for a
building permit

131

The look and feel of these error messages follows the specification of the Austrian Style-guide for Electronic
Forms. Although the example shown here is a very simple one, constraints can get arbitrarily complex as
long as they can be captured by F-Logic body clauses.

Some of these check-constraints are also used by the forms solution when rendering input elements. The
form shown in Figure 69 contains several pull-down list elements that contain all possible values for the
respective fields. There are several ways to provide such ranges of values as will be explained in the
upcoming sections. In this example, however, simple constraint axioms like the one shown in Listing 68 are
used to populate the pull-down list elements. WSML constraint axioms do not have a head clause. If the
body of a constraint axiom is evaluated to true, the ontology is not longer consistent. Thus, the axiom's body
is required to be false. This explains why it tests that the value does not contain any of the required values.

The form component tries to render a list of values since the concept AcademicDegreeSuffix, which is used
as a property type in the PersonData concept is a sub-concept of the type OneOfEnumerationType. This special
concept adds the necessary information for the form component. Similar ways to add form specific
information to the model are presented in section 7.5.3. The actual values for the list are then extracted from
the constraint axiom. If no list of values was created, the ontology would only accept valid values anyway
since the axiom is always evaluated. An academic degree is also a well suited example to demonstrate the
form components handling of multi-valued properties. Every academic degree property is optional, which
means that the lower bound of this property's cardinality is set to zero. On the other hand, the upper bound
of this cardinality is not limited, thus, anyone could have an arbitrarily long list of academic titles. If someone
therefore wants to add several degrees, it only takes a click on the add-button to create a new instance as
illustrated in Figure 71. Conventional electronic forms solution typically offer a variety of possible
combinations of degrees. ODEG, however, uses the list of degrees like defined in Listing 68 and allows the

concept AcademicDegreeSuffix subConceptOf segofUtil#OneOfEnumerationType
annotations

dc#description hasValue "concept for suffix academic degree --> create enumeration box in form"
endAnnotations
value ofType (1 1) _string

axiom AcademicDegreeSuffixValues
definedBy

!- ?x[value hasValue ?value] memberOf AcademicDegreeSuffix
and ?value != "BA" and

 ?value != "BSc" and
 ?value != "Bakk." and
 ?value != "MA" and
 ?value != "MSc" and
 ?value != "MAS" and
 ?value != "MBA" and
 ?value != "MIB".

Listing 68: Definition of academic degrees used in a suffix notation together with a constraint
axiom that checks for allowed values.

Figure 70: Example of an error message caused by a model constraint that was not met

132

user to combine these degrees in arbitrary order and number.

As already explained before, when the user clicks on the next-button the correctness of the current concept
instance is checked using a semantic reasoner. If this check is successful the user is sent to the next form,
which in our example is the concept possessing the now completed person data concept as an attribute.
This brings us back to the applicant. The data that was collected in the previous step is now displayed in this
form as well and a little green checkmark next to the person data property label indicates that this block has
already passed validation (see Figure 72).

The entire path in the refinement process that was taken so far is illustrated in Figure 73. Going from left to
right means that the user has decided to specify the value(s) for a selected property. Going down indicates
the need for specialisation/classification as already described in section 7.4.2. If there are any axioms that
can be used for automatic classification they will be used by the forms component to ask the user for the
required property values just like in the case of service identification.

Figure 71: Example of registering several degrees

Figure 72: Definition of the applicant property after personal data was successfully
collected.

133

Once all properties that are spanned by the root concept – BuildingPermitApplicationRequest in our
example – are filled with valid values, the information collection process is completed. In the case the
complete data is successfully validated by the semantic reasoner a final overview of the provided information
is presented to the user in a flat a form (see Figure 74). The user can cross-check all the provided data and
either go back to make some corrections or go on with submitting the application to the public agency. There
is also an option that allows the user to digitally sign the entire application – including all supplements –
using the Austrian Citizen Card[190].

What happens to the submitted data depends on the implementation type of the actual public service that is
used. As presented in section 7.3.3 there are currently two different implementation types available:
eGrazServiceImplementationType and SOAPServiceImplementationType. The first implementation type
indicated that the service is invoked via the so called E-Government platform of the City of Graz [191]. This
software system can handle E-Government requests and forwards them to the appropriate department in
charge using an electronic file handling system. Furthermore this platform allows citizens to track the current
state of their applications is they log on to the system using the Austrian Citizen Card. Technically, since this
platform – just like ODEG - is also based on Java, this interface is implemented via remote method
invocation (RMI23). However, before the data is passed to the interface method all concept instances
representing the current application are converted into XML first (see section 7.7.1) and are then packed into
a valid EDIAKT II structure. The resulting XML document is passed to the E-Government platform. The
method returns an object that contains a digitally signed acknowledgement of receipt or possible error
messages. The confirmation is presented to the citizen and can be archived for later reference.

If the service implementation type is an instance of SOAPServiceImplementationType this instance contains a
reference to a web service endpoint. If this implementation type is used the web service is required to
implement the port types that are specified in an automatically created WSDL file (see section 7.7.2 for a
detailed description). This allows for a direct web service invocation using the XML serialised instances of
the information space.

23 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html

Figure 73: Refinement path consisting of attribute value specification and classification/
specialisation (own illustration)

134

7.5.3 Marking the Model
In the previous section one aspect of how to extend a model for application-specific needs was briefly
presented when discussing a list of values that can be used to select academic degrees. In this section more
possibilities to extend a semantic model in order to add special run-time behaviour will be presented. Most of
them have evolved over time to cope with special use-cases and requirements found in various public
service domains.

As discussed in section 5, MDA uses several models at different levels of abstraction. The so called Platform
Independent Model (PIM) is the root for every MDA driven development approach. This model can be
automatically transferred into a more detailed model, the Platform Specific Model (PSM). The advantage of
this approach is the simplified reuse of models that are of higher abstraction. On the other side, when turning

Figure 74: Part of the final overview that allows the user to review the application before it
is actually submitted.

135

a higher level model into a more specific lower level model additional information that is needed by the
targeted platform needs to be added. Different approaches on how this information can be added were
presented section 5.1.4. Although ODEG directly interprets the PIM, which is represented by a semantic
model of the domain, rather than performing any transformation or even source code generation steps, it
also relies on additional information that is necessary to cope with more specific or complex use-cases. A
simple example to illustrate such a need is the requirement to create different on-screen representations of
properties that are actually of the same type. Typically a property of type string is rendered as an ordinary
text input field in the resulting web form. This is desirable if the property represents the name of an applicant.
What, however, if this property should capture some longer describing text? Thus there has to be some
mean that allows the form component to render this field as a text area and not as a text field.

One mechanism that is proposed by MDA to achieve this is called marking. Marks are model tokens that add
extra information to the PIM, which is needed for a proper transformation into a PSM. This marking approach
was also adopted by ODEG. In the case of the text area field ODEG uses WSML's annotation mechanism.
As the name suggests, these elements can be used to annotate model items. Thus, they can also be seen
as meta-data since they represent “information about information”. In fact, annotations add information about
the model. Listing 69 shows how an annotation can be used to provide the required information that will
cause a property to be rendered as text area rather than as a default text field. Annotations directly have to
follow the element they refer to. The formElementType is a property known by the form component and its
value defines the graphical appearance of the constructionDescription property. However, Listing 69 also
contains a second mark that is represented by an annotation. The gender property is necessary to find the
correct German articles for the goal templates and labels as already discussed in section 7.4.1. The value
assigned to the gender property is defined in the utility ontology. This ontology contains the definition of most
of the marks that can be expressed as concepts and/or instances. Thus, this ontology will be presented in
more detail in the rest of this section.

The gender specific snippet of the utility ontology is shown in Listing 70. The instances defined here can be
used to determine the gender of a concept. This information is used to provide correct sentences during the
goal definition phase and all classification steps.

In the previous section the list box with different academic degrees was already discussed. This list of values
is indicated by the fact that the underlying concept AcademicDegreeSuffix is a sub-concept of
OneOfEnumerationType (compare Listing 68). Thus, this mark is no longer an annotation that adds meta-
information to the domain model but is a direct part of the model. This might cause some arguments that the

concept Construction
 annotations
 dc#description hasValue "Super-concept for all constructions that can be built"
 gender hasValue segofUtil#Neuter
 endAnnotations
 constructionDescription ofType (0 1) _string
 annotations
 formElementType hasValue "textArea"
 endAnnotations
Listing 69: Definition of the construction concept containing two marks needed for form creation

concept Gender
 annotations
 dc#description hasValue "class for grammatical gender"
 endAnnotations

instance Male memberOf Gender

instance Female memberOf Gender

instance Neuter memberOf Gender
Listing 70: Definition of different genders needed to determine correct german articles

136

pure semantic model is now contaminated with implementation specific constructs, which might limit its
general use and reusability. In fact when taking a closer look at this example it simply asserts that values
assigned to some academic degree attribute indicated by the AcademicDegreeSuffix type have to be
members of some given set of values, although this approach does not look to be the most intuitive. Thus,
also this part of the ontology can used in any other environment and would allow reasoning about consistent
instances. On the other hand, no other form of expressing such as restriction would cause the form
component to render a list of values. Thus existing models need to be adapted to the particular needs of the
form components meta-model.

Besides the OneOfEnumeration concept there also exists a SomeOfEnumerationType concept as shown in
Listing 71. The meaning of this second concept is almost self-explaining. It will cause any attribute of this
type to be rendered as set of checkboxes. The values that are actually rendered as checkboxes are
extracted from a corresponding constraint-axiom just like shown in Listing 68.

An approach that shows a similar result in the user interface but is conceptually complete different is the use
of so called enumeration instances. Whereas in the previously discussed approaches the list of values was
limited to elements of type string, this approach allows for entire concept instances to be elements of a list of
values. An example is presented in Listing 72, which is taken from the business registration domain. If you

want to register a business you have to state exactly what you plan to do, allowing the system to identify all
relevant regulations that will apply to this situation. The conceptual model is based on professions. Every
profession enables or allows one to perform certain activities. The HotelRestaurantIndustry is a special type
of profession that allows for some activities that are of type HotelRestaurantActivity. Depending on the set
of activities that the owner of the respective business wants to offer, different regulations and therewith
different procedures might be relevant. Thus it is important to ask the user about the planed activities. The
ontology therefore provides a set of activity instances, which are all members of HotelRestaurantActivity as
well as EnumerationInstance. Whereas the first type allows them to be used as fillers of the
HotelRestaurantIndustry concept's activities property, the latter type tells the form component that these
instances can be used to populate a list of values.

concept OneOfEnumerationType
annotations

dc#description hasValue "super concept for all one of enumeration types"
endAnnotations

concept SomeOfEnumerationType
annotations

dc#description hasValue "super concept for all some of enumeration types -> becomes check box
in form"

endAnnotations

Listing 71: Mark concepts that can be used to model lists of values

concept HotelRestaurantIndustry subConceptOf DLAProfession
activities ofType (1 *) HotelRestaurantActivity

concept HotelRestaurantActivity subConceptOf Activity

instance Lodging memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance RestaurantActivity memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance DrinksInBuses memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance MountainShelter memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance SmallClosedDrinks memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance SmallLodging memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance Buschenschank memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}
instance DrinksInAutomators memberOf {HotelRestaurantActivity, segofUtil#EnumerationInstance}

Listing 72: Ontology snippet showing the use of the EnumerationInstance concept to define list
of values.

137

Since in this example the cardinality of the activities property allows for multiple values, the list of values is
actually rendered as a set of checkboxes like in the case of the previously mentioned
SomeOfEnumerationType. Figure 75 shows the resulting form. The text entries presented there are all taken
from a resource bundle as explained in section 7.4.1.

So far there were already two different approaches to create lists of values presented. One that can be
applied to string values and one that can be applied to instances as elements of a list of values. Sometime,
however, it also necessary to provide different concepts in a list of values. As already discussed in section
7.3.2 it is not possible to refer from an instance to the concept. ODEG, however, uses a convention to use a
string property with the IRI of a concept as its value whenever a relation between an instances and concepts
should be simulated. This is for example done to create a relation between public service instances and
desires that are fulfilled by such a service. Sometimes, however, such situations can occur in application
domains as well. In the building permit domain for example it is necessary to specify the type of vehicle that
should be parked inside a garage, since this might have a major impact on the procedures that need to be
conducted. Therefore the concept Garage defines a property called forVehicleType that is of type
MotorVehicle. This type comes with an existing third-party vehicles ontology that was simply imported by the
construction specific ontology. Consequently, this property refers to all different types of motor vehicles. The
question, however, is how to model these different types. In the context of this use-case it is necessary to
find out whether the applicant plans to park cars, motorbikes or any other type of vehicle in the garage. Thus
one option would be to model Car as an instance of the concept MotorVehicle. Although this is possible it is
not very intuitive since car is rather seen as a special type of vehicle and an instance would represent a
specific existing car described by model, brand, license-plate and so on. In fact the imported motor vehicle
ontology introduces car as a sub-concept of motor-vehicles. Thus, the forVehicleType attribute has to refer
to a concept rather than holding an instance as value.

Figure 75: Dialogue asking the current user to select different types of activities that will be
offered via the new business that is about to be registered (currently available in German
only).

138

The forVehicleType property is therefore annotated with a property of type subConceptEnum. This is a hint for
the form component to render a list of values consisting of all sub-types of MotorVehicle as defined in the
ontologies. The resulting form can be seen in Figure 76.

Since the cardinality of the forVehicleType property is set to exactly one the list of values is rendered as
radio buttons. Although this looks similar to a specialisation step like presented in section 7.4.2 (compare
Figure 58), it is conceptually different since this step is not about determining the actual type of a still abstract
attribute concept but about determining a reference to a concept that is held as the value of a property.
Actually Figure 76 also demonstrates the effect of the text area hint discussed earlier in this section.

Another requirement that came up with certain use-cases is the possibility to define decent default values for
certain properties or to pre-set properties to values in a way that this value can't be changed by the user.
One such use case is the initialisation of address concepts. Since most of the services modelled yet are
offered by the City of Graz it seems plausible that most of the users will have addresses located in Graz as
well. For some procedures it is even necessary to live in Graz. However, defining Graz as the default value
for the municipality or city attribute of the address concept would limit the reusability of such a concept in
other contexts. Consequently a default value for a concept's property should not be defined as part of this
concept but should be defined in the appropriate context in which such a concept is used. The solution to
this problem is a way that allows to define default values for a concept's attribute at any pace this concept
might occur, for example as part of a public service's request object definition.

concept Garage subConceptOf {Construction,ClosedBuilding,SignatureRelevant, PullDownRelevant,
RebuildRelevant}
 annotations
 dc#description hasValue "Building for parking vehicles"
 gender hasValue segofUtil#Female
 segofUtil#displayPriority hasValue "4"
 endAnnotations
 forVehicleType ofType (1 1) vehicle#MotorVehicle
 annotations
 dc#description hasValue "Vehicle type for which garage is built"
 segofUtil#subConceptEnum hasValue "true"
 endAnnotations
 vehicleCapacity ofType (1 1) _integer
 effectiveArea ofType (1 1) _decimal

Listing 73: Definition of the garage concept

Figure 76: Automatically generated form to specify a garage

139

Such an example is shown in Listing 74. A default value definition might consist of up to three properties.
The defaultValue property defines the actual value that should be used whenever a new instance of the
concept containing the corresponding attribute is created. The defaultValueAttribute property refers to the
property to which the default value should be applied. The value of this attribute is a sequence of attribute
names that are separated by a dot. The first element of this value refers the a property of the current
concept. Taking a closer look at the first occurrence of defaultValueAttribute in Listing 74 reveals that it
applies to the applicant property of the current application request concept. The next part of the value refers
to the applicant's hasAddressData property and the final part to the address' municipality attribute.

The entire situation is illustrated in Listing 74. The applicant property of the
BuildingPermitApplicationRequest concept is of type Person, which is considered to be abstract. Thus it has
to be replaced by an instance of any of its concrete sub-concepts. The advantage of the notation used to
specify the attribute that should hold a default value is the fact that it spans all possible paths that might lead
to the resulting municipality property. The notation is therefore independent of the actual types that are used
in the current situation. On the other hand, if the path cannot be found in the existing instance hierarchy this

concept BuildingPermitApplicationRequest subConceptOf ConstructionServiceRequest
annotations

dc#description hasValue "concept representing input to building permit service"
segofUtil#criticalAxiom hasValue "true"

endAnnotations
applicant ofType (1 *) personData#Person
annotations

segofUtil#defaultValue hasValue "Graz"
segofUtil#defaultValueAttribute hasValue "applicant.hasAdressData.municipality"

endAnnotations
delegate ofType (0 1) personData#Person
annotations

segofUtil#defaultValue hasValue "Graz"
segofUtil#defaultValueAttribute hasValue "delegate.hasAdressData.municipality"

endAnnotations
construction ofType (1 1) Construction*/
constructionProject ofType (1 *) ConstructionProject
buildingLocation ofType (1 1) BuildingLocation
annotations

segofUtil#defaultValue hasValue "Graz"
segofUtil#defaultValueAttribute hasValue "buildingLocation.onPieceOfLand.address.municipality"
segofUtil#defaultValueExclusive hasValue "true"

endAnnotations
buildingSiteEligibility ofType (0 1) BuildingSiteEligibilityPlaceHolder
record ofType (0 *) segofUtil#File

Listing 74: Complete definition of the BuildingPermitApplicationRequest concept including
marks to define default values

Figure 77: Concept graph representing the path of a default value for the municipality
attribute

140

does not lead to any error. In such a case, that might for example be caused by the fact the not all potentially
selectable concepts share the same attribute, the default value is simply ignored.

The third attribute that might be part of a default value definition is called defaultValueExclusive. Whenever
this attribute is set to true the provided default value cannot be overridden by the user. This attribute is used
in the last default value definition in Listing 74. The location of a building project has to be in Graz since
otherwise the service offered by the City of Graz can't be used to get permission for this project. Therefore
the form component takes the default value and applies it to the appropriate field, but the on-screen
representation of this value is set to read-only.

Another feature that is supported by the run-time environment is the possibility to add help and information
messages to arbitrary model elements. This is not done by extending or marking the actual model but by
providing additional resource-bundle keys that follow a simple convention. The mechanism used to turn
model elements into human-readable form was already explained in section 7.4.1. The IRI of a model
element is – after some simple character substitutions - used as a key in the resource-bundle. If such a key
with the suffix “.help” exists, this entry is used as a help message that is rendered right next to the
corresponding model element.

An example of such a help text definition is show in Listing 75. The form component indicates the existence
of a help text by rendering an information icon. This is in compliance with the Austrian Style Guide for
Electronic Forms[188]. The actual help text becomes visible when the user either clicks on the information
icon or hovers over this icon with the mouse like shown in Figure 78.

7.6 Auxiliary Service Modelling
The ODEG approach to interpret a semantic model and using a semantic reasoner to evaluate this model at
run-time is very powerful. The possibility to make intensive use of abstraction, specialisation and
classification allows for simple yet enormously expressive models. Axioms can be used to enforce complex
plausibility constraints on the ontologies used. Besides this the previous section showed how the formal
model of a domain can be extended by application specific information that influences the look and feel as
well as functionality of a system. Nevertheless, not everything can be done by using semantic technologies
exclusively. At some point it is necessary and/or reasonable to integrate external services as well. Let's take
the following scenario to motivate the integration of such external services. Austria as well as many other
European countries operates a central register of citizens where all people living in Austria are stored
together with their current address. Information like this could be used to check whether an address that was
provided by the user is correct. It is simply impossible to do checks like this within a reasoner since the sheer
size of the required data would exceed the capabilities of these tools. As pointed out in sections 3.2.4 and
3.4 reasoning about semantic models can easily have an exponential complexity. That is why the number of
elements registered with a reasoner should always be kept as small as possible. Thus, alternative ways
have to be provided to enable plausibility checks outside the reasoner. For this purpose ODEG provides a so
called auxiliary service ontology to integrate the use of external services into a semantic domain model.
Some of the elements defined in this ontology can be used just like the marks that were introduced in the

http.//segof.fh-joanneum.at/Construction.numberFloors = Number of floors
http.//segof.fh-joanneum.at/Construction.numberFloors.help = Please add the number of floors here. The
basement does not count as a floor. Also the attic can be excluded if its height is bellow the usual room
height and it is inhabitable.

 Listing 75: Snippet from the resource bundle defining a help text for the attribute
“numberFloors”

Figure 78: Screenshot showing the effect of a help text

141

previous section.

7.6.1 The Auxiliary Service Ontology
The auxiliary service ontology (see Figure 79) defines a meta-model for external services that can mainly be
used either to check the consistency, correctness and plausibility of some data in the information space or to
provide values which are valid fillers for certain properties.

All external services that could be used inside a semantic domain model are sub-concepts of
AuxiliaryService. The three direct sub-concepts of this type fall into two categories. The types
DomainProviderService and ValidationService indicate different functionality of an external service, whereas
the type ScopedAuxiliaryService provides information about when an auxiliary service can be used. The
definition of ScopedAuxiliaryService and its super-concept is given in Error: Reference source not found.

Every auxiliary service holds information about its service provider. Additionally each scoped service defines
to which governmental level the service applies (via its appliesTo property) and by which governmental
entities it can be effectively used (via its validWithin property). By combining these two attributes the scope
of a service can be described. To illustrate the idea behind this concept the structure of governmental entities
is shown in Figure 80. All oval-shaped forms are instances, whereas all rectangular shapes are concepts.
The background colour of the shapes indicates which instance is a member of which concept.

The structure starts with the Austrian national government. At least in this model this element has no parent

Figure 79: Different auxiliary services as defined in the auxiliary service ontology

concept AuxiliaryService
annotations

 dc#description hasValue "super concept for all auxiliary services"
 endAnnotations
 providedBy ofType (0 1) gea#ServiceProvider

concept ScopedAuxiliaryService subConceptOf AuxiliaryService
 annotations
 dc#description hasValue "super concept for all scoped auxiliary services which means that the service
can only be applied to certain administrative levels and locations"
 endAnnotations
 appliesTo ofType (1 *) gea#AdministrationLevel
 validWithin ofType (1 *) geaSeGoF#GovernmentalEntity

concept GovernmentalEntity subConceptOf gea#ServiceProvider
 hasGovernmentalLevel ofType (1 1) gea#AdministrationLevel
 hasParentAdministrativeUnit ofType (0 1) GovernmentalEntity
Listing 76: Definition of AuxiliaryService and ScopedAuxiliaryService together with
GovernmentalEntity.

142

administrative unit, although one might model the European commission as a parent unit for example.
Austria is structured into provinces reflecting different regions at the next lower administrative level. Every
province is split into prefectures, which in turn contain communities.

Based on this model every possible combination of where an auxiliary service could be used can be
modelled. Assuming that there exists an auxiliary service that can be used by all public services offered at
municipal level in Austria. In this case the appliesTo property of the auxiliary service has to contain the
instance Municipal_Level and the validWithin property has to have the value Austrian_NationalGovernment.
This indicates that all services at Municipal_Level that have the Austrian_NationalGovernment as their
hasParentAdministrativeUnit can use this auxiliary service. In another scenario there should exists a service
that can be used by all prefectures within Styria. To achieve this, the appliesTo property of the auxiliary
service must contain the value Prefecture_Level and the validWithin property the value Styria_Province.
Therefore the concept ScopedAuxiliaryService can be used to determine in which situation an auxiliary
service can be used but it does contain any hint about what a service can be actually used for.

To describe what an auxiliary service can be used for the remaining two sub-concepts of AuxiliaryService
are used. Listing 77 shows the definition of the concept ValidationService. It adds one single property called
validatesValuesFor that refers to the IRIs of those concepts that can be validated. More precisely instances
of these concepts can be validated according to the internal implementation of the auxiliary service.

Listing 77 also contains an instance of a validation service to illustrate the use of ValidationService together

Figure 80: A small part of the Austrian administration hierarchy according to the GEA meta-
model

concept ValidationService subConceptOf AuxiliaryService
annotations

dc#description hasValue "validates values for a given concept"
endAnnotations
validatesValuesFor ofType(1 *) _string

instance BuildingLocationGrazValidationService memberOf {ScopedAuxiliaryService, ValidationService,
service#SpringBeanService}

providedBy hasValue geaSeGoF#Graz_Municipality
appliesTo hasValue gea#MunicipalityLevel
validWithin hasValue geaSeGoF#Graz_Municipality
validatesValuesFor hasValue _"http://segof.fh-joanneum.at/Construction#PieceOfLand"
service#beanName hasValue "districtValidationGrazService"

Listing 77: Definition of the ValidationService concept together with a sample instance

143

with the previously presented concept ScopedAuxiliaryService. The service shown in the listing is used to
verify the correctness of building project locations which are represented by instances of the type
PieceOfLand. Thus the service is able to validate this type of instances, expressed by its validatesValuesFor
property. Besides this, this validation service is also a scoped service. According to the rules of interpreting
the appliesTo and validWithin properties it can only be used by services offered by the City of Graz since its
implementation has only access to locations within the city. Additionally the service instance is a member of
SpringBeanService. This implementation specific concept will be explained in the next section. Whereas
validation of a given instance is the primary task of a validation service, these services can also be used to
set missing values on instances as well as we will see later.

Listing 78 presents the definitions of the three different types of so called domain provider services. These
services are used to retrieve lists of values for certain properties in different ways. How to define simple lists
of values was already discussed in section 7.5.3. In contrast to these approaches domain provider services
are used to access external datasources like databases or other web-services. The root of this branch of
auxiliary services (see Figure 80) is the concept DomainProviderService. It has two additional properties. The
providesValuesFor property holds the IRI's of those concepts and properties the service is able to provide
instances or values for. The usesAjax property defines how the list of values is rendered. If this property is set
to false then the list of values will be rendered as pull-down list. For a large number of entries, however, this
approach is unsuitable. Therefore, in cases like this the usesAjax property should be set to true, which will
cause the form component to render an Ajax[192] based text field with dynamic autocompletion.

The KeyValuePairProviderService is a specialised sub-concept. Sometimes codes are used to ease
automatic processing of data, which, however, are typically not very well suited to be used in user interfaces.
For example public electronic services operated by the City of Graz prefer to use the number of an inner-city
district or borough where citizens typically refer to them by their names rather than their numbers. In such a
scenario a key-value-pair provider service can be used that takes the district number as the key and the
district name as the value. The user of the system can select the name of the appropriate district, but the
system uses the districts number internally. Thus, this type of provider service is used whenever some
encoded information should be looked up in a user-friendly way. There are additional attributes that allow to
decide which of these two elements should be displayed in the final overview dialogue (compare Figure 74).

Another specialised auxiliary service is represented by the concept DependentDomainProviderService. Just
like the other domain provider services it provides values for concepts or property instances but to do so, this
type of service requires additional information. One example of such dependent service is shown in Listing
79.

concept DomainProviderService subConceptOf AuxiliaryService

annotations
 dc#description hasValue "provides values for given attributes or concepts"
 endAnnotations
 providesValuesFor ofType (1 *) _string
 usesAjax ofType (1 1) _boolean

concept KeyValuePairProviderService subConceptOf DomainProviderService

concept DependentDomainProviderService subConceptOf DomainProviderService
annotations

 dc#description hasValue "provides a domain for an attribute that is restricted by the value of another
 attribute"

 endAnnotations
 dependsOn ofType (0 *) _string
Listing 78: Definition of the different types of domain provider services

144

This service provides a list of street names, however, to know which street names are relevant, the service
needs to know the current city. To indicate this, the dependsOn property refers the IRI of the concept
municipality. To deal with the huge amount of data that might be retrieved by this service the usesAjax
property is set to true. Figure 81 shows the effect of using the StreetnameProviderService.

7.6.2 Implementing Auxiliary Services
In the previous section the part of the ODEG semantic meta-model necessary to specify auxiliary services
was presented. This section will present some implementation details.

The approach chosen to implement auxiliary services is in fact very similar to the one chosen for actual
public services as presented in section 7.3.3. The implementation of a public service is determined by its
PublicServiceImplementationType. There are currently to sub-types of this concept, which are called
eGrazServiceImplementationType and SOAPServiceImplementationType. The implementation of an auxiliary
service is defined by its membership to a sub-concept of ServiceImplementation. The currently available
types are shown in Listing 80.

In fact all currently available auxiliary services are of type SpringBeanService. This means that the service
implementation is represented by an ordinary JavaBean[191] that is managed by the Spring framework[193].
Basically this allows to refer to an instance of the service implementation class by a simple name. Since the
run-time environment has to tread all auxiliary services uniformly, every implementation class has to
implement the same interface, which is shown in Listing 81.

instance StreetnameProviderService memberOf {DependentDomainProviderService,
service#SpringBeanService}
 providedBy hasValue geaSeGoF#Graz_Municipality
 providesValuesFor hasValue _"http://segof.fh-joanneum.at/PersonData#streetName"
 dependsOn hasValue {_"http://segof.fh-joanneum.at/PersonData#municipality"}
 service#beanName hasValue "streetsByMunicipalityService"
 usesAjax hasValue _boolean("true")
Listing 79: Example of a dependent domain provider service that provides the name of street in
a given municipality

Figure 81: Screenshot of a form that uses the street name provider service

concept ServiceImplementation
annotations

dc#description hasValue "super concept for all service implementations"
endAnnotations

concept SpringBeanService subConceptOf ServiceImplementation
beanName ofType _string

concept WSMOService subConceptOf ServiceImplementation
hasWSMOService ofType _string

Listing 80: Concepts representing different implementation alternatives for auxiliary services

145

This is a typical application of the so called command-pattern [194], which is used when different activities
should be triggered in a uniform way. The actual types of the argument and the return value of a specific
service implementation depend on the type of the auxiliary service. Validation services for example receive
an array that contains the current instance as it is registered with the reasoner and a set of attributes that
were collected by the user. This allows validation services not only to check the provided values but also to
modify or to complete values of the current instance depending on the user's input. This possibility can
explicitly be used in the model as presented in the next section. The return value of validation services is a
set of possible error messages. Thus, if this set is empty, validation was successful. Otherwise these
messages are presented to the user. Beside the service specific arguments, there is always an object
passed along that holds information about the current user's selected language, which allows for localised
return values.

In the case of a domain provider service there are typically no service specific arguments required except for
those provider services that depend on other input like the StreetnameProviderService. Thus instances of
DependentDomainProviderService are passed the values of those properties that are listed in the dependsOn
attribute of their definition in the order they appear. Again, in the case of the StreetnameProviderService the
name of the current municipality is passed as the only argument besides the afore-mentioned localisation
information. The return type is a list containing the appropriate values found if any. Thus, this list might be
empty as well.

Every instance of a KeyValuePairProviderService returns a map instead of a list. This map contains the keys
together with the associated values.

public interface SpringBeanService {

/**
 * central execute method for every springbean service
 */
public Object execute(Object params);

}
Listing 81: Interface for all auxiliary service implementations

146

7.6.3 Enabling Auxiliary Services

In the previous sub-sections it was shown which auxiliary services are available, how they can be defined in
the semantic model and also how they have to be implemented. In this section it will be shown, how these
services are actually mapped to those concepts and attributes they will be eventually applied to and how the
discovery process for auxiliary services works.

Basically the semantic description of every auxiliary service is precise enough to figure out when and where
it can be used by the run-time environment. However, to optimise the performance of the form generation

concept PieceOfLand
annotations

dc#description hasValue "concept for preliminary address of houses and societal entities in Graz"
 segofUtil#valuesValidatedByService hasValue "true"

endAnnotations
propertyOwner ofType (0 1) personData#Person
districtCadastre ofType (1 1) _string
annotations

segofUtil#writeOnlyField hasValue "true"
segofUtil#valuesProvidedByService hasValue "true"

endAnnotations
district ofType (0 1) District
annotations

segofUtil#valueDerivedByOtherField hasValue "true"
endAnnotations
cadastreCommunity ofType (0 1) CadastreCommunity
annotations

segofUtil#valueDerivedByOtherField hasValue "true"
endAnnotations
realtyNumber ofType (1 1) _string
ez ofType (0 1) _string
postalCode ofType (1 1) _string
annotations

segofUtil#valuesProvidedByService hasValue "true"
 segofUtil#minQueryLength hasValue "1"

endAnnotations
securityArea ofType (0 *) _string
annotations

segofUtil#valueDerivedByOtherField hasValue "true"
segofUtil#lineBreak hasValue "true"
segofUtil#containsTranslation hasValue "true"

endAnnotations
securityAreaInfo ofType (0 *) _string
annotations

segofUtil#defaultValue hasValue "noSecurityArea"
segofUtil#valueDerivedByOtherField hasValue "true"
segofUtil#containsTranslation hasValue "true"
segofUtil#hasHTML hasValue "true"
segofUtil#lineBreak hasValue "true"

endAnnotations
municipality ofType (1 1) _string
annotations

segofUtil#defaultValue hasValue "Graz"
segofUtil#defaultValueAttribute hasValue "municipality"
segofUtil#defaultValueExclusive hasValue "true"

endAnnotations
streetName ofType (1 1) _string
annotations

 segofUtil#valuesProvidedByService hasValue "true"
 segofUtil#minQueryLength hasValue "3"

endAnnotations
buildingNumber ofType (0 1) _string
annotations

 segofUtil#valuesProvidedByService hasValue "true"
 segofUtil#minQueryLength hasValue "1"

endAnnotations

Listing 82: Definition of the PieceOfLand concept used to capture locations of building projects

147

component it does not look for appropriate validation or value provider services for every single concept or
attribute. A design decision was made to trigger the search for appropriate auxiliary services only if this is
indicated by the existence of corresponding marks in the model. Listing 82 shows the definition of a concept
that makes intensive use of different types of auxiliary services. This concept, called PieceOfLand land is
used to capture information about the location of a building project.

The concept definition is followed by an annotation containing the property valuesValidatedByService, which
indicates that the validation of instances of this type is not exclusively done by the reasoner but also by
validation services. This causes a multi-step validation process. Whenever an instance of this concept with
values provided by the user becomes available, it is first checked using those validation services that are
found by querying the semantic model using the reasoner. Thus, the system will look up all instances of
ValidationService that are able to validate instances of PieceOfLand. After calling the validation services the
instance is checked by the reasoner whether it is consistent with the rules imposed by the ontologies.
However, if no validation services are found in the first step, service based validation is skipped and no error
messages will be produced. This behaviour allows for dynamically adding and removing validation services
to and from the model without causing any errors. By design, validation using auxiliary services is rather
seen as an optional step. Thus, when modelling a concept and adding the valuesValidatedByService
annotation, the semantics is more like “if there exists an appropriate validation service, then use it”. Later, by
adding more and more validation services to the model, the quality of data can be improved but the initial
model can also be used without any validation services available yet. If any errors occur during the validation
phase, the user is sent back to input page containing the error messages.

The next attribute that contains annotations is called districtCadastre. This property refers to the name of
the city district as it occurs in the cadastre. In fact, most city districts are subdivided into more specific
cadastral communities in the cadastre. There are two annotations used with this property. The first one,
called writeOnlyField, means that this property only has to be rendered in the input form but should not be
included in any read-only form that is presented to the user in oder to review the provided information. The
second one, called valuesProvidedByService actually indicates the use of a value provider service. This
annotation causes the form generation component to look for an appropriate service registered with the
reasoner. Again, if no such service is found, this annotation is ignored and an ordinary input field is rendered
instead, otherwise, a list of values is rendered as shown in Figure 82.

The next two attributes called district and cadastreCommunity are annotated with the
valueDerivedByOtherField property. This indicates, that the values for these fields do not have to be filled in
by the user, but there exists an auxiliary service that will add appropriate fillers for these properties. This is
why those properties do not appear in the input form shown in Figure 83. However, if no validation service is
found, or the service does not add the missing values to the instance, this could result in validation errors if
such derived properties were mandatory, which is not the case in the current example. The postalCode

Figure 82: The list of values created for the disctrictCadastre property of the PieceOfLand
concept.

148

property is also annotated with valuesProvidedByService. Additionally there is the annotation property called
minQueryLength. If the domain provider service for the postal code is configured to use AJAX, th en this
property defines the required minimum length of user input to trigger an AJAX request. In this example every
key typed will cause the list of values to be updated.

The next two properties reflect some peculiarities that only apply to the City of Graz. These two attributes are
called securityArea and securityAreaInfo. A security area is some part of the city where special regulations
apply to building projects. For example, if you plan to erect or modify a building in the historic city district

there apply rather rigid rules in order to maintain the overall appearance of the townscape. Another example
of such zones are those areas of the city that bear a certain risk of floodwaters. Both of these properties are
annotated with valueDerivedByOtherField, thus these fields do not occur in the input form shown in Figure
83. Besides this there exist various hints for the form generation component. The containsTranslation
property indicates that the values set by the validation service are actually keys and that the text presented
in the user interface should be looked up in the current resource bundle based on these keys. The lineBreak
attribute tells the form generation component to add HTML line break tags between consecutive values of
every such property and the hasHTML attribute prevents HTML escaping and therefore allows for the use of
HTML in (translated) property values.

Once the form was submitted and has successfully passed validation the resulting information is shown on
the next page (see Figure 84). The property districtCadastre that is annotated with writeOnlyField is not
shown on this page. Instead all the other properties that are annotated with valueDerivedByOtherField are
now shown with the values set by the validation service for instances of PieceOfLand.

In the general the use of auxiliary services requires the existence of such a service that is represented by an
actual service implementation and a semantic description. On the other side, the need for such a service has
to be indicated by appropriate annotations at the concepts and properties that should be validated or
provided with values. It is important to point out that there is no direct reference between a particular
auxiliary service and a concept that would like to utilise such a service. In fact by querying the reasoner a
service is sought that can be applied in the current situation. If no such service is found, this does not
necessarily indicate an error and the system proceeds as if there was no auxiliary annotation at all. This
allows for dynamic extension of the model with additional auxiliary services at any time. Appropriate,
available services are automatically found based to their semantic description and applied wherever they are
needed. In fact, the auxiliary service framework as implemented by ODEG can be seen as a lightweight

Figure 83: Screenshot of the input form used to get values for an instance of type
PieceOfLand.

149

semantic (web) service framework in its own.

7.7 WSDL and XSD Generation

As described in the previous chapters, ODEG, through its service finder and electronic form components,
offers extremely rich and flexible support for the front-end used by citizens. Nevertheless the basic idea of
this approach as well as the technologies used were influenced by frameworks for implementing semantic
web services (compare section 4). Thanks to the adoption of GEA principles, however, the description of
public services is implementation agnostic. Thus, the model makes no assumption about whether a service
is implemented as a web service or not. Nevertheless, there exists the implementationType property (see
section 7.3.3) to indicate the actual nature of the service's implementation.

ODEG has chosen to keep all its information at the semantic model level in order to use the expressive
power of ontologies that can be utilised via semantic reasoners. Thus, all the information that was entered by
citizens using the service finder and/or the semantic forms component is held in the ontologies by the means
of concept instances. In order to provide this information to other systems that are not ontology based, it has
to be transformed into some data exchange format. The most popular technology used to exchange
information between different systems is XML. In fact also web-services are using XML as their message
format. To describe the possible structure of these messages XML schema is used. Consequently also
ODEG provides a way to export its information state to XML.

7.7.1 Converting Ontologies to XML Schema
Whereas there already exist ways to serialise ontologies into XML, the requirements for exchanging user
data are different. The default XML serialisation is used to write or store ontologies that can for example be
loaded into reasoners for further processing. Thus, these formats are used to exchange ontologies rather
than the data that is kept in a model as concept instances. At this point however, we need to extract
instances and have to represent them in XML as intuitively as possible, which means that the resulting XML

Figure 84: An instance of PieceOfLand was successfully added to the application

150

should not be biased towards specific semantic model requirements. Actually this is the same problem as
producing a service grounding, where instances have to be mapped to messages of a web service, which
are instances of XML schema types as well. Possible solutions to the grounding problem together with their
drawbacks have already been discussed in section 4.4.3.

Thus, the procedure presented here to turn ontologies used with ODEG into XML schema and instances into
corresponding XML is effectively a default grounding. However, before turning ontologies into XML schema
the differences between these two technologies have to be pointed out.

There exist recommendations for an algorithm to create XML schema out of OIL ontologies [195]. Although
OIL is quite different from WSML (e.g. datatype support is limited), the core problems of translating ontology
definitions into XML schema are essentially the same. Even though, these problems are pointed out in the
referenced paper, it does not provide any solutions but stays with a simple example that can easily be
translated. Fensel argues that the problems related to turn ontologies into (database) schemes derive from
the obviously different goals associated to the underlying methodologies:

“An ontology provides a domain theory and not the structure of a data container.” [196]

As a matter of fact it is virtually impossible to translate ontologies into corresponding XML schemes without
compromising. This is mainly due to the different means that are available to express class hierarchies and
therefore inheritance. Whereas WSML supports multiple-inheritance, which can either be expressed explicitly
using the subConceptOf construct or implicitly via axioms there is fairly limited support for inheritance in XML
schema. XML schema's extensions mechanism (see [197] for a detailed explanation) allows for types to be
based on other types. These new types can either extend the elements of their super-type by adding
additional elements or can restrict elements of their super-type to certain values. In contrast to ontologies,
the extension method cannot be used to redefine the type of an existing element to a more specific one.

Besides the limitations imposed by the conceptual differences between ontologies and XML schema there
are ODEG specific conventions that have to be considered as well when designing a procedure to create
XML schema elements for ontology instances. ODEG considers all concepts that are refined by sub-

concepts to be abstract. Abstract concepts are not supposed to have any instance in the context of a
problem domain but provide generalised abstractions of their concrete sub-concepts. Therefore, once the
elicitation process is completed only instances of concrete concepts will be part of the information space.
Thus, since the resulting XML will be used to exchange the data gathered by the user, only XML elements of
these concrete types will be used. On the other side, however, it is important that at least major parts of the
concept hierarchy will be preserved in the XML schema type hierarchy as well. Abstraction allows to create
simple and generic, yet formally correct service descriptions. Like shown in Listing 67 in section 7.5.1, the
required input to a relatively complex service like a building permit application can be captured by a few
concepts, covering all possible types of construction scenarios. Maintaining a similar abstraction hierarchy in
XML schema will allow for a similar degree of abstraction and therefore compact and comprehensive
message types in web service descriptions as well. Also in contrast to the conceptional differences, WSML

concept CompactPostalAdressData subConceptOf PostalAdressData
annotations

dc#description hasValue "concept for address of houses and societal entities"
endAnnotations
countryCode ofType (0 1) _string"
countryName ofType (0 1) _string
postalCode ofType (0 1) _string
municipality ofType (1 1) _string
streetName ofType (1 1) _string
buildingNumber ofType (1 1) _string
unit ofType (0 1) _string
doorNumber ofType (0 1) _string

Listing 83: A concrete concept representing an address with attributes of primitive data types
only

151

and XML schema share a common type system when it comes to primitive data-types like strings, numbers
or dates. This allows for a direct mapping between those types in the semantic model as well as in the XML
schema definitions.

To point out the characteristics of the algorithm that was designed to create the corresponding XML schema
lets start with some simple examples. Listing 83 shows the CompactPostalAddressData concept, which
represents an address. This concept is a leaf in the concept hierarchy, which according to the ODEG
convention makes it a concrete concept. All its attributes are data value attributes, thus, they do not refer to
other concepts. Besides this, it has one direct super-concept of type PostalAddressData. Due to this relatively
simple nature, it can be directly translated into a corresponding XML type like shown in Listing 84. The
resulting schema data type has the same name as the concept in the ontology. In fact every concept of an
ontology is translated into a complex type in the XML schemes. Every attribute of the concept eventually
ends up as an element with the same name. Also the cardinality restrictions stated for a property are
translated into the corresponding boundaries in the element definition. The WSMO type _string that was
used for the properties is replaced by its corresponding XML schema type. Like the concept is a sub-type of
PostalAddressData its XML schema representation extends the PostalAddressData type.

The XSD extension mechanism has almost the same semantics as in the ontology although there are much
more restrictions. It creates an explicit type hierarchy, thus, a sub-type can be used everywhere a super-type
is expected. All the elements that are defined in any super-type along the type hierarchy are also elements of
the extended type. As shown in this example, annotations are translated into comments. This should
improve the readability of the resulting schema.

Another difference between WSMO ontologies and XML schema is the fact that WSMO ontologies that are
defined in separate files can share the same namespace. In XSD, however, every namespace can only refer
to elements defined in a single file. The translation algorithm therefore stores all elements that are defined in
the same namespace in a single file. Thus, the content of several WSML files might end-up in a single
schema file if they share the same namespace. Generally schema files have the same namespace as the
ontologies that hold the concepts from which the schema elements were derived.

In the simple example used above all attributes of the concept were data properties and therefore used
primitive data types. In case of object properties – i.e. properties referring to other concepts – the
transformation algorithm works similarly, since every single concept is translated into an XSD complex type.

<complexType name="CompactPostalAdressData">
<!--http://purl.org/dc/elements/1.1#description : [concept for address

of houses and societal entities] -->
<complexContent>

<extension base="tns:PostalAdressData">
<sequence>

<element maxOccurs="1" minOccurs="0" name="unit" type="string" />
<element maxOccurs="1" minOccurs="0" name="postalCode" type="string">
</element>
<element maxOccurs="1" minOccurs="1" name="municipality"

type="string">
</element>
<element maxOccurs="1" minOccurs="1" name="streetName"

type="string">
</element>
<element maxOccurs="1" minOccurs="0" name="doorNumber"

type="string">
</element>
<element maxOccurs="1" minOccurs="1" name="buildingNumber"

type="string">
</element>

</sequence>
</extension>

</complexContent>
</complexType>

Listing 84: XML schema type representing the concept shown in Listing 83.

152

Thus, the element has to refer to the corresponding complex type. An example of such a translation is shown
in Listing 85. Here the concept Person is turned into its XSD representation. Like already mentioned in
section 7.3.4 this concept is an abstraction and has further sub-concepts like physical person or corporate
body. Accordingly the resulting XML type is declared abstract as well. Both properties of the person concept
refer to other concepts. As a consequence the elements of the resulting complex type refer to those complex
types representing the person's property types. One of these elements is of type PostalAddressData, which is
the abstract super-type of the CompactPostalAddress used in the previous example. Thus an element of the
type CompactPostalAddress can be used as a value for the hasPostalAddressData element. This example
therefore demonstrates that the concept hierarchy of the ontology is maintained as a type hierarchy in the
XML representation as well.

However, as already mentioned one severe problem for the transformation is the fact that ontologies support
multiple inheritance and axiomatic classification. XSD requires every inheritance relation to be expressed
explicitly and only supports a single super-type that can be extended. Although this is briefly discussed in
[195], the algorithm presented there does not take care of multiple inheritance. The procedure presented
here tries to overcome the lack of multiple-inheritance support within XML schema by extending the first
super-type with all the inherited elements from the other super-types. Thus the super-concept that occurs
first in the list of super-concepts is extended and is therefore the only one that shows up in the explicit type
hierarchy of the resulting schemes.

An example of such a situation where a concept has several super-concepts is shown in Listing 86. The
concept called GasFiringInstallation is merely a combination of the concepts FiringInstallation and

concept Person subConceptOf {FormConcept}
hasPersonData ofType (0 1) PersonData
hasAdressData ofType (0 1) PostalAdressData

<complexType abstract="true" name="Person">
<complexContent>

<extension base="tns:FormConcept">
<sequence>

<element maxOccurs="1" minOccurs="0" name="hasAdressData"
type="tns:PostalAdressData" />

<element maxOccurs="1" minOccurs="0" name="hasPersonData"
type="tns:PersonData" />

</sequence>
</extension>

</complexContent>
</complexType>
Listing 85: The Person concept and its translation into XSD schema

concept FiringInstallation subConceptOf Installation
 annotations

 dc#description hasValue "super concept for all firing installations"
 gender hasValue segofUtil#Female
 endAnnotations
 heatOutput ofType (1 1) _decimal

concept GasInstallation subConceptOf Installation
 annotations

 dc#description hasValue "super concept for all gas installations"
 gender hasValue segofUtil#Female
 endAnnotations
 gasTankType ofType (1 1) GasTankType
 gasTankVolume ofType (1 1) _decimal

concept GasFiringInstallation subConceptOf { FiringInstallation, GasInstallation}
Listing 86: Snippet of the construction ontology showing the definition of the concept
GasFiringInstallation.

153

GasInstallation. It does not define any properties but inherits the properties of both super-concepts. The
strategy in transforming this concept is to select the first super-concept – FiringInstallation in this case –
as the super-type of the resulting XSD complex type. To make all other properties, which are added to the
concept via multiple inheritance available as well, these properties are added to the extended type. The
resulting type is shown in Listing 87. The transformation algorithm takes care that all inherited properties
become elements of the XSD types. This is not limited to direct super-concepts but includes all properties
along the concept hierarchy. The rational behind this approach is that instances of concrete concepts will find
corresponding elements for all their properties in the relevant XSD types.

A schematic overview of the situation is provided in Figure 85. It illustrates that the properties of the
FiringInstallation concept are inherited whereas the properties of the GasInstallation concept are directly
added to the extended type. Only the type-hierarchy for the FiringInstallation will be available in XSD
types whereas there will be no relation to GasInstallation any longer .

An analysis of concepts with multiple super-concepts in the various ODEG ontologies has shown that the
lack of multiple inheritance is not too problematic anyway. In fact the overwhelming majority of concepts that
fall into this category have additional super-concepts that work as extra classifiers like the PullDownRelevant
concept. These concepts merely work as markers and are used to support efficient semantic queries rather
than being part of structural concept hierarchies in the terms of generalisation or specialisation. However,
during ontology modelling it is important to use the most relevant super-concept as the first one in the list of
super-concepts.

Another aspect that has to be dealt with is the possibility to re-define concept attributes within WSML. To
illustrate this scenario Listing 88 provides a sample ontology where the property attribute1 of the concept
RootA is defined to be of type TypeA. In the concept SubConceptOfRootA, however, this attribute is re-defined to
be of type TypeB. Thus, RootA as well as its sub-concept SubConceptOfRootA define the same property but with
a different type. Generally concepts in WSMO ontologies can re-define properties that are already defined in
any of their super-concepts with an arbitrary new type. However, if there exists an instance of such a concept
that provides a value for such a re-defined property, then this value has to be a member of all the types along
the concept hierarchy that were used to define it. Otherwise an instance of the sub-concept would not be a

<complexType abstract="true" name="GasFiringInstallation">
<complexContent>

<extension base="tns:FiringInstallation">
<sequence>

<element maxOccurs="1" minOccurs="1" name="gasTankType"
type="tns:GasTankType" />

<element maxOccurs="1" minOccurs="1" name="gasTankVolume"
type="decimal" />

</sequence>
</extension>

</complexContent>
</complexType>
Listing 87: XML schema data-type for the GasFiringInstallation concept

Figure 85: XSD type hierarchy of the GasFiringInstallation type.

154

valid member of the super-concept(s), which breaks the concept hierarchy. This of course can only be true, if
any type that is used in a re-definition is a sub-concept of the type used in the previous definition(s) of the
property. This means that property re-definitions like the one shown Listing 88 are basically a refinement or
restriction, since the type of the re-defined property (TypeB) is a sub-concept of the previously already defined
property type (TypeA). The value provided for this property in Instance2 fulfils all the constraints of the
concept hierarchy since it is a member of TypeA as well.

Nevertheless, it is technically also possible to re-define properties with arbitrary types like shown in Listing
89. Any reasoner would register this ontology without complaining. Yet, there is no way of creating an
instance of the concept SubConceptOfA that holds a value for property attribute1 in this case. Like mentioned
before any value of a re-defined property has to be a member of all the types of this property in any concept
along the hierarchy. In this case however, the set of values that are of type string as well as of type integer is
empty! Thus it is quite questionable whether models that contain problematic re-definitions like the one
presented in Listing 89 should be considered correct or consistent.

One also has to be aware to the fact that the afore-mentioned effects are not only caused by re-definitions of
properties within a single branch in the hierarchy graph, but could also be triggered by multiple inheritance.
Listing 90 shows a situation where multiple inheritance causes the same effect as the definition in Listing 89.

concept RootA
attribute1 ofType _string

concept SubConceptOfA subConceptOf RootA
attribute1 ofType _int

Listing 89: Inconsitent re-definition of a property

concept TypeA
theValue ofType _string

concept TypeB subConceptOf TypeA
anotherValue ofType _string

concept RootA
attribute1 ofType (0 *) TypeA

concept SubConceptOfRootA subConceptOf RootA
attribute1 ofType (0 *) TypeB

instance ValueA memberOf TypeA
theValue hasValue "Value A"

instance ValueB memberOf TypeB
theValue hasValue "Value B"
anotherValue hasValue "Another Value"

instance Instance1 memberOf RootA
attribute1 hasValue ValueA

instance Instance2 memberOf SubConceptOfRootA
attribute1 hasValue ValueB

Listing 88: A sample ontology where an attribute (attribute1) is re-defined with a more specific
type in a sub-concept

155

In this scenario the concept SubConceptOfAandB inherits the property attribute1 of both super-concepts.
Thus, again any value of this property has to be a member of the two different types used in the property
definitions. In this case this leads to an empty set of possible values. Being aware of this problematic, the
question remains how to deal with this in the XSD transformation process.

As pointed out before, the re-definition of a property does not impose any problems if the type used in the re-
definition is a sub-concept of the types this property was already defined with in all super-concepts. This,
however, means that the set of possible fillers for such a property is restricted to a particular and more
specific sub-type of the previously used super-type(s). XML schema also provides a mechanism to derive
new types based on restrictions of a so called base type (see section 4.1.2.1 in [198]). This construct,
however, can only be used to restrict the domain of a type e.g. to certain exhaustively stated values, string
values that mach a particular regular expression or numbers within a given range. Therefore this approach
cannot capture the semantics of a re-defined property in the ontology. Generally the type extension
mechanism of XSD is quite limited. As demonstrated at the beginning of this section it is only possible to add
new elements. Even repeating an existing element with the same type leads to an error. Replacing an
element with a new type other than restricting it in the afore-mentioned ways is simply not possible.

The algorithm designed for the transformation process checks for every concept property that is locally
defined whether there exists a property with the same name in any of the current concept's super-types. If
such a property is found, the type of this previous definition is compared with the local type. If these two
types are compatible, which means that they are either identical or the current concept's property type is a
sub-concept of the previously defined one, then the locally defined property is removed from the
transformation. The rational behind this is the following: According to the ODEG convention every concept
that is further refined via sub-concepts is considered to be abstract. Hence, there should never exist any
instances of theses concepts in the information space. The intention of the XML schema, however, is to
provide a mean for exchanging instances. In any relevant situation the abstract type is represented by an
instance of one of its non-abstract sub-concepts. By removing a re-defined property from the transformation
in this case, the information about the actual type restriction to a particular sub-type gets lost, and the
resulting XML schema type will accept any instance of the super-type. Consequently the resulting schema
will be more relaxed than the ontology but the type hierarchy remains correct, which allows for the same
simplification via abstraction as in the ontology. The semantic difference in describing the correctness of valid
types is considered to be less important than the retention of the concept hierarchy, especially since
validation of consistency and plausibility is performed at the semantic level before the instances are
transformed into XML.

The second form of property re-definitions that leads to type conflicts should probably be considered a
modelling error. Thus the algorithm produces an error message for every such type conflict that is
encountered. Nevertheless, the algorithm creates valid schema types for concepts with conflicting properties
as well. There are two possible solutions. One approach is to exclude the conflicting properties from the
resulting XML like in the case of a valid re-definition. As a consequence the re-definition is simply ignored,
which allows for XML instances that may contain values for a conflicting property. Although, there is no
chance for a corresponding WSMO instance to exist – at least in a consistent ontology – this creates a valid
schema type.

concept RootA
attribute1 ofType _string

concept RootB
attribute1 ofType _int

concept SubConceptOfAandB subConceptOf {RootA,RootB}
Listing 90: Inconsistent property type caused be multiple inheritance

156

An alternative approach is to re-arrange conflicting properties in the concept hierarchy. Therefore the
property definitions causing the conflicts are removed from their original definition location in the hierarchy
and pushed into the leafs of the concept graph. Since ODEG only allows for instances of leaf concepts, this
does not change the elements of these instances. In contrast to the first approach, member representations
of the concept that caused the conflict by re-defining a property with an incompatible type will inherit the
modified type while all other instances will have a property with the same name but of the original type. Once
again, a consistent ontology would not allow for instances that contain values for such a conflicting property.
Still the XML schema tries to capture the model in a way that might have been intended by the designer.
That's why the current implementation of the transformation algorithm uses the latter approach when dealing
with conflicting properties.

7.7.2 Generation of WSDL Files
The creation of XML schema types that represent and hold those concept instances that have to be fed to
public procedures is a prerequisite for the automatic generation of WSDL files, which act as an entry-point for
a web service implementation of the semantically modelled services. Thus, these types can be used to
model messages that are exchanged by web service methods. Before the creation process is discussed in
more detail, lets recap how a public service is modelled in ODEG.

Conceptually, in the context of ODEG every public service is seen as a single (web service) operation, which
takes some input and produces some result. In section 4 semantic web service frameworks have been
presented and discussed. Comparing the ODEG approach of relating semantic service descriptions to
physical (web) services, it has to be noted that this corresponds to the atomic process elements used in
OWL-S. As also mentioned in the discussion in section 4.5 the advantage of this approach is its very intuitive
and simple way to provide a grounding for semantic web services. Besides these simple atomic processes,
ODEG does not offer any composite constructs, as provided by OWL-S and WSMO. Therefore, there is also
no need for describing a service choreography. Although this might be seen as an undue simplification it is
nevertheless justifiable for the special requirements of the E-Government domain specifically when focusing
on a Citizen-to-Government scenario. A simple atomic process perfectly represents the classical approach of
submitting an application and receiving an official notification as a result. Thus, in a typical E-Government
scenario where processes are offered to end customers – whether they are citizens or business – there is
simply no need for composite process constructs. On the other side, however, every semantic web service
that offers several operations that depend on particular call sequences could also be modelled as individual
services made up of one atomic process each and the interaction between them is defined by their
respective IOPE's. Thus a service the produces and effect or some output that is needed as precondition or
input for another service has to be called first. Consequently ODEG's capabilities are not necessarily
restricted by focusing on this simple atomic process model.

Since every service represents one operation that takes the application as input and produces for example
some notification as output, this type of interaction corresponds to the in-out message exchange pattern
presented in section 4.1.2. Due to the processing time of an application, (electronic) public services are
typically asynchronous. After an application was submitted it usually takes days or weeks (e.g. in the case of

Figure 86: Resolving type conflicts be re-arranging of properties (own illustration)

157

a building permit application) until the result becomes available.

Thus, resulting notifications are often sent via conventional mail or electronic delivery services [199] to the
applicant after a significant period of time has elapsed since the actual application was submitted. By default,
however, every web service that represents a public service in the ontologies is modelled as an in-out
operation and therefore is a synchronous web service.

Figure 87: Schematic overview of the WSDL creation process based on the building permit
application example (own illustration)

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://segof.fh-joanneum.at/ConstructionServices"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
name="BuildingPermitService" targetNamespace="http://segof.fh-joanneum.at/ConstructionServices">
<types>

<xsd:schema>
<xsd:import namespace="http://segof.fh-joanneum.at/ConstructionServices"

schemaLocation="./BuildingPermitService_2.0-SNAPSHOT.xsd" />
</xsd:schema>

</types>
<message name="Capability_BuildingPermitServiceRequest">

<part element="tns:Capability_BuildingPermitServiceRequest" name="parameters" />
</message>
<message name="Capability_BuildingPermitServiceResponse">

<part element="tns:Capability_BuildingPermitServiceResponse"
name="parameters" />

</message>
<message name="Capability_BuildingPermitServiceFault">

<part element="tns:Capability_BuildingPermitServiceFault" name="parameters" />
</message>
<portType name="Capability_BuildingPermitService">

<operation name="Capability_BuildingPermitService">
<input message="tns:Capability_BuildingPermitServiceRequest"

name="Capability_BuildingPermitServiceRequest" />
<output message="tns:Capability_BuildingPermitServiceResponse"

name="Capability_BuildingPermitServiceResponse" />
<fault message="tns:Capability_BuildingPermitServiceFault"

name="Capability_BuildingPermitServiceFault" />
</operation>

</portType>
</definitions>

Listing 91: The automatically created WSDL document

158

If the nature of the underlying procedure that is triggered via a call to a web service is asynchronous, then
the resulting synchronous response of the web service represents an acknowledgement of receipt instead of
the actual process result. In the case of a synchronous service, the return type represents the final official
notification or whichever result is expected.

The overall idea of how to turn a semantic service description into a WSDL document is presented in Figure
87. Within the semantic model, the service description consists of the GEA based service instance and a
corresponding WSMO web-service element. The web-service's capability element refers to one or more
concepts of the application domain as so called shared variables. These shared variables are the actual
service input as already presented in section 7.5.1. In the case of the building permit service the service
input is represented by the BuildPermitApplicationRequest concept. During the XML generation process this
concept is first turned into a corresponding XML schema type as described in the previous section. Than,
based on the definition of the building permit service, a WSDL document is created. This WSDL document
contains exactly one operation, which has the same name as the WSMO webService element. Therefore in
this example the name of the operation will be “BuildingPermitService”. Since - by convention – every public
service is mapped to an in-out operation, the created operation is defined with input and output messages as
well as with a fault message that can capture error messages produced during service invocation (see
Listing 91). The input message to the service operation is an XSD type called
Capability_BuildingPermitServiceRequest. This type is not inferred from the model but is based on a
convention of the transformation process. Its name is the name of the service operation extended by the
prefix “Capability_” and the suffix “Request”. As shown in Listing 92 this input data type contains one
element called “request”. The type of this element is BuildingPermitApplicationRequest, which is the XML
representation of the input concept as defined in the semantic service model. Thus the actual input type is
wrapped into the request element of a service's input message type. This allows for a unique top level
description of all generated web service and therefore simplifies the invocation process of such services.

Currently ODEG's meta-model does not provide any means to define specific return values for public
services. Although this could be easily achieved by extending the meta-model, up to now the approach
currently used by the frameworks has proven to be sufficient. In this approach the return type is defined in a
separate schema file that is automatically attached to the WSDL definition. In this file the type
segofMessage:return (compare Listing 92) needs to be defined. The default type definitions used for output
and fault messages are presented in Error: Reference source not found. Thus, the output element of a
service might have some id, which for example could hold a result code, a messageHeader to describe the
outcome and some arbitrary XML called messageBody that represents the actual return value.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:segofMessage="http://segof.fh-joanneum.at/schema/messages"
xmlns:segof_fh-joanneum_at_Construction="http://segof.fh-joanneum.at/Construction"
xmlns:tns="http://segof.fh-joanneum.at/ConstructionServices"
targetNamespace="http://segof.fh-joanneum.at/ConstructionServices"
version="1.0">
<import namespace="http://segof.fh-joanneum.at/Construction"

schemaLocation="./segof_fh-joanneum_at_Construction_2.0-SNAPSHOT.xsd" />
<import namespace="http://segof.fh-joanneum.at/schema/messages"

schemaLocation="./default/messages_2.0-SNAPSHOT.xsd" />
<element name="Capability_BuildingPermitServiceResponse" type="segofMessage:return" />
<element name="Capability_BuildingPermitServiceFault" type="segofMessage:exception" />
<element name="Capability_BuildingPermitServiceRequest"

 type="tns:Capability_BuildingPermitServiceRequest" />
<complexType name="Capability_BuildingPermitServiceRequest">

<sequence>
<element name="request"

type="segof_fh-joanneum_at_Construction:BuildingPermitApplicationRequest" />
</sequence>

</complexType>
</schema>
Listing 92: Default XML schema that is generated for every WSDL document. This example
shows the input type created for the building permit service operation.

159

Probably the biggest benefit of the automatic generation of XML schema datatypes and WSDL files is the
fact that this allows for taking advantage of abstraction almost to the same extend as within the semantic
model. As presented in section 7.5.1 abstraction allows for a compact description of the required data. The
building permit service for example requires the applicant to describe the construction that is about to be
built. The service input concept (see Listing 67 on page 127) therefore can refer to a construction concept
that is the super-concept of all things that can be built. In the data elicitation phase based on semantic forms
this abstract concept has to be replaced by any concrete subclass. Thus, the construction concept can be
seen as a container or placeholder for all possible construction types that have not to be mentioned explicitly.

On the other side, instances of the concrete sub-concepts will be used, which hold their specific attributes so
that no situation-specific information will get lost. Due to the XSD generation process that tries to maintain
the type hierarchy this feature can be used on the web service side as well.

Listing 94 shows the XSD representation of the building permit service's input type. Its structure is very

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://segof.fh-
joanneum.at/schema/messages"

targetNamespace="http://segof.fh-joanneum.at/schema/messages" version="1.0">
<complexType name="return">

<sequence>
<element name="id" type="int" />
<element name="messageHeader" type="string" />
<element name="messageBody" type="anyType" />

</sequence>
</complexType>
<complexType name="exception">

<sequence>
<element name="id" type="int" />
<element name="messageHeader" type="string" />
<element name="messageBody" type="string" />
<element name="source" type="string" />

</sequence>
</complexType>

</schema>
Listing 93: Default schema file use to define the output and fault messages of a service
operation

<complexType name="BuildingPermitApplicationRequest">
<!--http://purl.org/dc/elements/1.1#description : [concept representing

input to building permit service] -->
<complexContent>

<extension base="tns:ConstructionServiceRequest">
<sequence>

<element maxOccurs="unbounded" minOccurs="0" name="record"
type="segofUtil:File" />

<element maxOccurs="unbounded" minOccurs="1"
name="constructionProject" type="tns:ConstructionProject" />

<element maxOccurs="1" minOccurs="0" name="buildingSiteEligibility"
type="tns:BuildingSiteEligibilityPlaceHolder" />

<element maxOccurs="unbounded" minOccurs="1" name="applicant"
type="personData:Person">

</element>
<element maxOccurs="1" minOccurs="1" name="buildingLocation"

type="tns:BuildingLocation">
</element>
<element maxOccurs="1" minOccurs="0" name="delegate"

type="personData:Person">
</element>

</sequence>
</extension>

</complexContent>
</complexType>

Listing 94: The XML schema type used as input message to the building permit service

160

similar to the corresponding WSML concept and makes use of abstraction. The ConstructionProject type for
example uses the same abstract types for its attributes as its WSML concept equivalent. Also the Person type
used here to describe applicants and potential delegates is declared abstract and needs to be replaced by
one of its non-abstract sub-types. Since abstract types comprehend all their concrete sub-types, messages
can be declared extremely compact and nevertheless their actual values will consist of sub-type instances
with all their specific elements, covering a huge variety of different scenarios.

To illustrate this, a snippet of a building permit service SOAP request that was automatically created is
shown in Listing 95. While the type of the applicant element is defined as Person in the schema presented
in Listing 94 the actual XML message part is of type PhysicalPerson. The same is true for the construction
that is of type BigResidentialHouse and comes with specific elements like floorHeight.

Generally, the resulting XML schema and WSDL files are a starting point for implementing a web service that

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:segof_fh-joanneum_at_Construction="http://segof.fh-joanneum.at/Construction"
xmlns:segof_fh-joanneum_at_PersonData="http://segof.fh-joanneum.at/PersonData"
xmlns:segof_fh-joanneum_at_UtilConcepts="http://segof.fh-joanneum.at/UtilConcepts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
ns="http://segof.fh-joanneum.at/ConstructionServices"
xsi:schemaLocation="...">
<soapenv:Body>

<ns:Capability_BuildingPermitServiceRequest
xmlns:ns="http://segof.fh-joanneum.at/ConstructionServices">
<request>

<applicant xsi:type="segof_fh-joanneum_at_PersonData:PhysicalPerson">
<hasPersonData

xsi:type="segof_fh-joanneum_at_PersonData:CompactPhysicalPersonData">
<givenName>John</givenName>
<familyName>Doe</familyName>
<sex xsi:type="segof_fh-joanneum_at_PersonData:Gender">

<value>male</value>
</sex>
<telephoneNumber>0316 123456</telephoneNumber>
<eMailAdress>john.doe@doe.com</eMailAdress>
<iSOCode3>AUT</iSOCode3>

</hasPersonData>
<hasAdressData

xsi:type="segof_fh-joanneum_at_PersonData:CompactPostalAdressData">
<municipality>Graz</municipality>
<postalCode>8010</postalCode>
<streetName>Inffeldgasse</streetName>
<buildingNumber>16a</buildingNumber>

</hasAdressData>
</applicant>
<constructionProject

xsi:type="segof_fh-joanneum_at_Construction:BuildingPermitConstructionProject">
<construction

xsi:type="segof_fh-joanneum_at_Construction:BigResidentialHouse">
<constructionDescription>This is the description
</constructionDescription>
<totalArea>220</totalArea>
<effectiveArea>150</effectiveArea>
<numberFloors>2</numberFloors>
<floorHeight>2.6</floorHeight>
<hasNeighbourSignatures>false</hasNeighbourSignatures>

</construction>
<constructionProjectType xsi:type=

"segof_fh-joanneum_at_Construction:NewBuildOrExtensionWithoutChange">
<hasChangeOfSiteDensity>false</hasChangeOfSiteDensity>
<hasChangeOfDriveway>false</hasChangeOfDriveway>

</constructionProjectType>
</constructionProject>
...

Listing 95: Part of an automatically created SOAP call of the building permit service

161

provides services described in the semantic model. Although there exist numerous frameworks for web
service creation, the next chapter describes an approach that will probably add the most value to ODEG
based service implementation.

7.8 Implementing ODEG web services
As pointed out in the previous sections, ODEG proposes a simple view on public E-Government services.
Every service represents an electronic interface to the process providing the actual service as illustrated in
Figure 88. The left side shows the situation of a synchronous service, whereas the right side sketches the
situation of an asynchronous service. Every electronic service therefore triggers a process that is either
entirely automated or involves some human interaction. Every process typically utilises other processes to
accomplish its task. These utilised processes are then called sub-processes in the context of the consuming
process and are indicated by the grey arrows in Figure 88.

On the other side, every process is exposed via its service interface. From a client's perspective, the process
itself is seen as a black box since no details about the process' structure will be revealed via its interface. In
the context of ODEG this service interface is the WSDL file that was automatically generated based on the
semantic model of a service. Consequently, implementing a web-service that fulfils this WSDL interface
means to implement the process executed underneath. As discussed in section 4.5.2 OWL-S as well as
WSMO provide some means to describe processes, however, both approaches are suffering from significant
shortcomings. OWL-S uses rule languages to describe the control flow. Although syntactically embedded
into OWL, these rules require additional tooling for interpretation. The WSMO specification on the other side
uses abstract state machines to model processes, but this part of the specification is not adopted by the
latest available WSML implementation. Generally semantic frameworks are great in describing the state of a
problem domain in the terms of ground facts and axioms that can be used to subsume and entail additional
facts, but are not very apt to model dynamic aspects like processes. Thus is seems natural to adopt a
technology that is better suited for the definition and execution of processes. Again taking the situation
shown in Figure 88, a process that makes intensive use of sub-process is reaching its goal by combining
these sub-processes according to the actual business needs. In this case the choreography of this process
is describing the orchestration of its sub-process in order to reach some goal. Being able to deal with such a
scenario is one of the design goals of an approach called Business Process Execution Language for Web
Services (BPEL4WS):

“BPEL4WS should define business processes that interact with external entities through Web
service operations defined using WSDL 1.1 and that manifest themselves as Web services
defined using WSDL 1.1...” ([200], page 1)

BPEL[201] processes communicate to sub-processes via WSDL based interfaces. On the other side, the
interface of every BPEL process is also a WSDL operation. Thus BPEL processes are essentially web

Figure 88: Schematic view on services and underlying processes (own illustration).

162

services. Therefore it is completely transparent to the caller of such a service whether the implementation is
a BPEL process or any other type of web service implementation. Consequently also the WSDL based
services used by a BPEL process could be ordinary web services or other BPEL processes as well. This
perfectly matches the situation illustrated in Figure 88, where a process is represented by a WSDL operation
and makes use of other services to get its task accomplished. Since an excellent introduction to BPEL
concepts and its main building blocks can be found in [202] the rest of this section will focus on pointing out
the application of BPEL in the ODEG context and the advantages of doing so.

To define the dependencies of a BPEL process and the external services used by it, BPEL defines so called
partner links. Each partner link element refers to a service's WSDL document and assigns a logical name to
this link. Relevant attributes of a partner link definition are partnerRole and myRole. One of these two
attributes has to be used. If the myRole attribute is used, then this link refers to the WSDL file that represents
the actual functionality of the current BPEL process. Otherwise the link refers to some service that is needed
by this process. Thus, the set of partner links defines the complete external interface of a BPEL process.
Figure 89 shows the partner links of the business registration BPEL process.

This process was defined based on an automatically generated WSDL file. It represents the process that is
invoked when someone wants to register a new business. It can be accessed using the semantic form
component and the collected information is sent to the web service endpoint via a SOAP request. The WSDL
port and therewith the web service operation that is implemented by the process is shown on the left lane
(ODEGBusinessRegistrationPort). This is the interface that is exposed to potential clients. The link between
the actual process and the business registration port is established via the PL_ODEG_BusinessRegistration
partner link (indicated by the green ingoing arrow in Figure 89). Generally ingoing arrows on the left side of
the BPEL process indicate services that are offered by the process, whereas outgoing arrows on the right
side represent those services that are consumed by the BPEL process. These needed services have to be
accessible via WSDL defined interfaces. Thus, this approach perfectly fits into a service oriented
environment. Clients of the BPEL process only see the provided WSDL file and do not have to take care of
all the other partner links.

An overview of the example business registration process used in this section is provided in Figure 90. It
interacts with several back-office services that are shown on the right side. The first activity within the
process stores the entire application as it comes with the web service request to a database. This task
provides a backup of all incoming data so that it could be used in case of a system crash. Records older than
72 hours are automatically deleted. In the next step the received XML request is transformed into another
XML format, which represents the required input structures of some of the external services. To perform this
transformation, the process uses an external transformation engine. After this transformation the process

Figure 89: Outside view on a BPEL process and its partner links (Screenshot of the
Business Registration Process opened in the Netbeans SOA Module's CASA viewer)

163

logs on to the back-office infrastructure. The security mechanism used here is Kerberos [203]. Token
negotiation is invoked transparently at HTTP protocol level using SPNEGO[204]. The BPEL process uses a
predefined service account as its identity when interacting with other protected service. Upon connection, the
identity service returns a session id that has to be used as part of all other messages. After this session id
was successfully retrieved, the process calls the reference number service to get new ids for the file and for
every attachment that might be included in the request. In the next step, a new electronic file is created in the
document management system. This includes the transmission of all structured data, represented by the
XML serialised concept instances that come from the semantic form component. Then all the attachments
are added to the document management system and are logically linked to the file. Since all the application
data is now available in the back-office, a new workflow is created an started. This will cause a new task to
appear on the electronic work-desk of the civil-servant in charge. Thus, the rest of the business registration
will be processed manually and controlled by the workflow system in place. After the workflow was triggered,
an acknowledgement of receipt is created, which contains the reference number of the new file. The receipt
is then digitally signed using the so called MOA-SPSS[205] service.

MOA stands for modules for online applications and is a set of services that support the creation, use and
verification of digital signatures provided by the office of the Austrian CIO. After the receipt was created and
signed the current session id is invalidated and the receipt is returned as the response of the BPEL web

Figure 90: Schematic overview of the business registration BPEL process (own illustration)

164

service call.

Now that the overall functionality of the process is clear, lets take a closer look at some details of the BPEL
process in order to get some insight in the complexity or simplicity of creating such a flow. Figure 91 Shows a
fragment of the BPEL process that is responsible for creating a new file in the document management
system. The box labelled scope_Acta is the equivalent of the “Create new File” activity in Figure 90. The
external service is called by the BPEL invoke element called invoke_CreateActa. An invoke element is
typically preceded by one or more assign elements that set up the input messages that are sent by the
invoke element. Using an appropriate editor, these mappings can be done by drag-and-drop operations.
Figure 92 shows the mapping that is represented by the assign_ActaMetaData assign element in Figure 91.

All variables that are defined within the BPEL process are shown on the left and the right side of the mapping
editor. Simple mappings can be created by dragging an element from the left side to one of the right side. In

our example the name of the new file will consist of one part of the reference number and the current year
separated by a slash character. This can be achieved by adding a string concatenation element that has to
be connected with the appropriate input and output elements. Thus, creating a BPEL process is largely a
modelling task that can be performed by a skilled business and therefore ideally complements the ODEG
approach.

To execute a BPEL process an appropriate run-time infrastructure is needed. ODEG currently uses a

Figure 91: Snippet of the business registration BPEL process showing the creation of a
new file (screenshot from Netbeans BPEL Designer)

Figure 92: Mapping of part of the message necessary to create a new file

165

framework called OpenESB/GlassfishESB24.

“An Enterprise Service Bus (ESB) is a standards-based integration platform that combines
messaging, web services, data transformation, and intelligent routing to reliably connect and
coordinate the interaction of significant numbers of diverse applications across extended
enterprises with transactional integrity”([206], page 1)

OpenESB is an implementation of the Java Business Integration (JBI) specification [207]. A schematic
overview of some of its major components is shown in Figure 93.

The core element of a JBI based ESB is the normalised message router. It uses a unified message protocol
that can intelligently route messages, for example based on their content. Besides this, JBI specifies so
called service engines. These service engines – like the BPEL or the XSLT engine – are closely tied to the
message router and provide services to other components. External services or systems are connected to
the message router via so called binding components (BC). These are intelligent interfaces that translate
messages between the internal and the application specific protocol. They also expose the functionality of
their connected external systems to the rest of the ESB via WSDL documents. JBI implementations typically
ship with various standard binding components. There are BCs that can be used to connect to web services,
files, databases or other Java programs. Additionally OpenESB provides some monitoring components that
can be used to observe the activities on the enterprise service bus.

ODEG is not specifically bound to this framework since it only proposes the use of BPEL for its convenient
approach to implement web services as a modelling task. Thus, arbitrary other BPEL or ESB
implementations could be used as well. There exist several commercial products but also some additional
open source projects like Apache ServiceMix25, Fuse ESB26 or Swordfish27. Generally the use of BPEL to
describe business processes that are in turn exposed as electronic public service seems to be much more
practical than trying to capture this information in the semantic model. As found out as a result of the
analysis of existing semantic web services (see section 4.5), they show some significant shortcomings when

24 http://www.logicoy.com/OpenESB
25 http://servicemix.apache.org
26 http://fusesource.com/
27 http://www.eclipse.org/swordfish/

Figure 93: Sample JBI components configuration (own illustration)

http://www.logicoy.com/OpenESB

166

modelling the choreography of a web service. Due to the simplifications in the business protocol that are
possible for E-Government services (compare Figure 88) there is no need to expose any choreography to
the service client, since every public service is eventually represented by one web service operation. BPEL
completes ODEG since it is a perfect mean for defining the internal choreography of the service
implementation, which is in turn an orchestration of the external services consumed by a BPEL process.

7.9 The Big Picture

As pointed out at beginning of section 7 the goal of ODEG is to provide support for all important phases
during the utilisation of public services. This includes support for identifying relevant services, accessing a
service by collecting all the required information needed by the service and the execution of a service by
submitting collected and valid data to the service end-point. Figure 94 provides an overview of how all this is
achieved. The core of the system is the semantic model that holds several service descriptions. Every
service description is split into a GEA and a WSMO part. The GEA part of the service description holds
references to all desires/goals that a service might possibly fulfil. Whether a service actually contributes to a
desire/goal or not, depends on the concrete desire. A desire is considered to be concrete if all abstract
concepts its template is related to are replaced by concrete ones. The service finder or service identification
component supports citizens in specifying desires. It therefore makes use of specialisation and classification.
Once a service is identified, citizens can access them using the semantic forms component. This component
takes the services capability element to figure out the required input. Also here only instances of concrete
concepts are allowed as valid input. Thus, if any of the specified input concepts is abstract, it also has to be
replaced by a concrete sub-concept first.

To support the implementation of service end-points, ODEG automatically generates WSDL and XML
schema documents. Therefore every single service represented by a WSMO capability element is translated
into a WSDL file and the entire concept hierarchy that is used to define the types of the messages is
translated into XML schema. This allows to take these files as the interface of a BPEL process that can be
modelled using appropriate third-party tooling. The run-time component automatically translates collected
data into schema compliant XML structures and sends them as messages to the service end-point.

Figure 94: ODEG structural overview (own illustration)

167

8 Related Work
Semantic technologies have been intensively investigated over the last couple of years and there exist
several projects that try to apply these technologies to the field of E-Government. This chapter will present
some of these approaches and will compare them to ODEG.

8.1 Goal Oriented Discovery for Semantic Web Service
One very interesting approach that, however, focuses on the service identification phase only is called
GODO, which stands for Goal Oriented Discovery for Semantic Web Service [208]. Although GODO is not
specifically adapted to E-Government, it uses a similar goal based approach to look-up relevant services,
which is why it is discussed here. The ODEG service identification component presented in section 7.4 uses
a structured approach to specify desires/goals based on templates and concept taxonomies. This is similar
to GODO's approach since it also hosts a goal template repository. These templates, however, play a
different role, since they represent certain solution scenarios that might match a user-entered goal
description. To get the user's actual goal, GODO offers two different approaches. One is called ontology-
guided input. This technique produces structured goal descriptions that are built by the user by creating
sentences consisting of predefined terms. These terms are presented to the user, who can select the
appropriate one reflecting the current intention. This approach is equivalent to the one currently used by
ODEG's service identification components, except that ODEG uses different input elements to select
relevant terms. Like ODEG also GODO uses terms that are extracted from ontologies. Alternatively GODO
provides an interface to formulate desires in natural language. Such a desire could be a sentence like “I
want to buy an airline ticket from London to New York”. These goals are processed by a language analyser
called KAText[209]. The analyser tries to extract concepts (like “airline ticket”) and instances (like “London”
and “Heathrow”) as well as properties (like “to”, “from”, “want to buy”) and therewith relations. To successfully
perform this analysis, the component needs to be intensively trained by domain experts, so that all possible
goal formulations are known by the system. This has to be performed for every domain that should be
supported by GODO. On the other side, experience with GODO shows that people who start using the
system prefer the guided approach since their first results with natural language are relatively poor, whereas
more experienced users prefer the natural language approach. This leads to the conclusion that people first
learn the terms that are understood by the system. In the case of E-Government, however, where the system
is not used that frequently by an individual user, this learning effect will most likely not occur. Thus the natural
language approach does not seem to be very promising, when used in the E-Government domain.

8.2 Domain Knowledge-Based Automatic Workflow Generation
Domain Knowledge-Based Automatic Workflow Generation[210] is an approach that was developed in the
USA by a team from Rutgers University. It focuses on the creation of workflows that consist of different public
services that all have to be invoked in order to achieve a specific goal. In the context of service orientation
this kind of workflow is equivalent to a choreography of several services. Although the authors use
ontologies as a knowledge base, they do not make use of semantic frameworks but designed their own
domain specific language and interpretation for their models. In fact there exist two ontologies. The Service
or Task Ontology that contains all services known to the system and the Rules Ontology that contains
various rules that are derived from applicable regulations. An example service ontology for the business
registration domain is shown in Figure 95. Although this looks similar to an ODEG service hierarchy it is
semantically different since the relations between the individual nodes do not represent specialisation (i.e.
subconceptOf) but indicate that a child-node is a componentOf its parent node. Thus the image does not
represent a taxonomy but a de-composition of a root element. Consequently the different branches do not
indicate available alternatives but are potential parts of a workflow. However, not all components of a node
are always needed in order to achieve some particular goal. In order to determine when and how specific
nodes or services are actually needed, the rule or regulation ontology is needed.

168

Figure 96 shows such a rule ontology. The nodes here are organised by a topic/sub-topic relation and every
leaf is associated with a rule. Rules consist of conditions and some action that is executed in case the
condition evaluates to true. Besides this every rule refers to the text of the actual regulation that applies and
one or more services of the service ontology. Actions are used to add a service to the current workflow or
changes services that are part of the current workflow.

The actual goal of a specific citizen is captured by a so called user profile. A user profile is a set of attributes
that are hierarchically organised in a tree (see Figure 97). Every leaf represents an attribute that holds a
value. Determining the goal of a user means to traverse the tree and to associate values to some of the leafs
of the user profile. Whether all child-nodes of a node have to be visited (conjunction) or only one of them
(disjunction) is indicated by an arc. The attribute values gathered by the user are then used to determine the
required services by applying the rules stored in the regulations ontology (e.g. when the structure of the new
business is “incorporated” then add the services “register business' name” and “file original business
certificate” to the current workflow).

Figure 95: Example service component hierarchy used by the automatic workflow
generation approach ([210], page 4)

Figure 96: Regulation ontology used for business registration process ([210], page 5)

169

From the users point of view, this approach is almost identical to one provided by ODEG, since also the
ODEG service identification component uses a tree to determine the user's desire. This tree is spanned be
the current goal template and its related concepts, which are forming the child-nodes of the tree root. The
height of the tree is determined by the height of the concept hierarchy ranging from the probably abstract
related concept to one of its concrete sub-concepts. Although ODEG does not explicitly add any attributes to
a goal template the user might be asked for attribute values as well in case the system can automatically
infer a more specific sub-concept based on axioms (classification). In the example used above, there exists
a rule that says if the business (autobody shop) uses more than half a gallon of paint per hour, the applicant
has to apply for a so called air quality permit as well. This is why this attribute occurs in the user profile
shown in Figure 97. To achieve equivalent behaviour ODEG would introduce a concept called “ paint
emission relevant” with an attribute “spray paint (per hour)” and all businesses that might probably use spray
paint will be modelled as sub-concepts of this class. Additionally a classification axiom would classify every
“paint emission relevant” business as an “air polluting business” if it uses more than half a gallon of spray
paint per hour and as a “non-air polluting business” otherwise. Every “air polluting business” that is about to
be registered will need the “air quality permit service” as well (This is achieved by linking the “air quality
service” to the “Register business” goal template as well but constraining it to concepts of type “air polluting
business”). Thus, if the currently selected business is a sub-concept of “ paint emission relevant”, the service
finder component will automatically bring up a dialogue asking for the amount of spray paint used by the
business and will call the reasoner to perform the classification.

Although there are significant paradigmatic differences in this approach compared to the one used by ODEG,
the functionality is almost equivalent, when it comes to the service identification phase. The workflow
generation approach creates complete flows explicitly including the correct order in which the identified
services have to be used, whereas ODEG currently only identifies the set of relevant services. On the other
side, however, the user profile shown in Figure 97 only contains two concrete businesses (autobody shop
and restaurant). A profile that contains all possible options would be tremendously bigger and hard to
maintain. Since the presented approach does not support inheritance, all relevant attributes would have to
be modelled for every leaf node in which they are needed (e.g. the “spray paint” attribute has to be included
to every single business that might use spray paint). Besides the service and the rules ontology, there is no
domain ontology describing the elements used in the current application domain. This workflow centred
approach could probably be used to provide basic electronic forms (since every service can be mapped to a
set of input attributes), but these forms can not be compared to the adaptive forms created by ODEG due to
its use of specific domain relevant concepts as service input elements.

8.3 SemanticGov
The SemanticGov28 project represents a major European effort to incorporate semantic web services in the

28 http://www.semantic-gov.org/

Figure 97: A blank user profile ([210], page 9)

170

E-Government domain. It also contributed to the creation of the WSMO framework and uses this framework
to model ontologies and to implement semantic web services. Another important outcome of this project is
the GEA-PA reference model, which was also used by ODEG as an initial starting point for its meta-model.
SemanticGov focuses on the integration of electronic public services and therefore distinguishes between so
called PEGS (Pan European Governmental Service) and NEGS (National European Governmental Service)
[211]. Due to its strong connections with WSMO, it uses state machines (compare section 4.4.1) to describe
a sequence of semantic web service calls whenever orchestration of existing services is needed.

Figure 98 shows an example, where several services are combined to provide two different web service
operations. When comparing this scenario to ODEG, the two operations would be implemented by two
independent services and the orchestration would be modelled as BPEL processes. BPEL processes are
definitely more intuitively to model then state machines, especially when state machines require the strict
WSMO formalism as described in section 4.4.1. Taking this example it is also quite questionable whether it is
meaningful to expose process internal tasks like VerifyAge as an externally accessible semantic web service,
since an operation like this is rather integral part of other processes than a public service on its own.

Since the goal notation of WSMO services basically describes a service interface it is not very well suited to
express a user's need or desire. Consequently, also SemanticGov introduced its own approach to support
citizens in looking-up services that are appropriate for their specific situation. This approach is based on so
called goal trees, which are explicitly modelled data structures [212]. SemanticGov therefore introduced the
concept Node. Every instance of Node has a description, holds a reference to its parent node and has some
question text and a condition associated to it. To model an actual goal tree, two sub-concepts of Node are
used: InternalNode, which holds references to all its child-nodes and LeafNode, which holds a so called
post-condition.

Figure 99 shows an example of a goal tree. The tree starts with a root node, representing the overall goal. All
internal nodes are grey and all leaf nodes are white. Similar to ODEG, also SemanticGov considers internal
nodes to be abstract and only leaf nodes are related to actual services. Thus the tree needs to be traversed
till one of the leafs is reached. Thus, every leaf in this tree represents a specific situation a citizen is currently
faced with. To decide where to go next while traversing the tree, the user has to answer a question that is
explicitly modelled and assigned to every node in the goal tree.

Figure 98: Composing public services based on existing service operations ([211],page 37)

171

The actual definition of two of the nodes used in the example goal tree is shown in Listing 96. It is the
definition of the “Alien” node used in the left branch of the goal tree and its child-node labelled “Adult Alien”.

The question text associated to the internal node called AdultAlien is obviously used to directly select one of
its child-nodes, whereas the question text of the leaf node is intended to collect necessary information for
selecting the actual service provider. The answer to every question is fed to a reasoner and the response
leads to the next node. However, besides the definition of custom question texts this approach also requires
the creation of custom axioms that can be used to determine the next node, since the reasoner has to know
which of the current child-nodes has to be selected when the answer to the current question is “b”. On the
other side, it is also possible to register with the SemanticGov platform and to create a so called user profile.
If some required information can be inferred from this user profile (e.g. your current nationality is not Greek),

Figure 99: A sample goal tree used for the so called Greek Naturalization Service
([212],page 4)

instance AdultAlien memberOf prtl#InternalNode
hasDescription hasValue "Alien Service node"
hasChildNode hasValue AlienCitizen
hasChildNode hasValue SpouseofaGreekCitizen
hasChildNode hasValue OlympicAthlete
hasChildNode hasValue Honorary
hasParentNode hasValue Alien
hasQuestion hasValue "Please select the case that best fits your profile:

(a) Foreign citizen
(b) Foreign citizen married with a Greek
(c) Foreign Olympic Athlete
(d) Honorary Naturalization"

hasCondition hasValue "IsAdult"

instance AlienCitizen memberOf prtl#LeafNode
hasDescription hasValue "Alien that wants to get the greek citizenship"
hasParentNode hasValue AdultAlien
hasQuestion hasValue "In which region will you execute the service?"
hasCondition hasValue "IsAlienCitizen"
hasPostcondition hasValue "?x memberOf co#Citizen and ?x[co#hasCitizenship hasValue co#Greek]"

Listing 96: Ontology snippet showing two nodes of the goal tree shown in Figure 98 ([212],page
4)

172

it is used and the question is skipped. Generally, if any plausibility axiom that might be part of the underlying
domain ontology fails to validate the provided information, the current user is told not to be eligible for any of
the available services.

When comparing the goal tree approach used by SemanticGov to ODEG's desires some important
differences can be identified. Since ODED's desires typically refer to abstract super-concepts, the detailed
specification of a desire also requires to traverse one or more trees (considering every related concept a root
of a type-hierarchy tree). The set of reachable concrete concepts or the combination of such sets in the
common case that a desire refers to more than one concept, determines the number of concrete desires.
While by linking a few concepts to an ODEG desire template, a relatively large number of concrete desires is
covered, the goal tree approach used in SemanticGov requires to model every possible result as an explicit
leaf-node. This leads to no less then 18 leaf nodes in the example used above. On the other side, there is no
need to explicitly model any questions in ODEG. For example the question of the AdultAlien node shown in
Listing 96 is almost the same as ODEG's automatically rendered specialisation dialogue. To achieve the
same functionality, ODEG would need no more than two concepts that are linked to a NaturalizationDesire.
One necessary to capture the location of the service and one to determine the state of the applicant. Most of
the necessary classification could be done automatically. For example to decide whether the current
application is adult or not, one axiom based on the age of the applicant could be used. This would result in a
question like “What is your current age?”. In a similar way all the other decisions could be made.

8.4 TerreGov
TerreGov29 is another EU funded project that tries to adopt semantic technologies in the E-Government
domain. Its goals are to provide integrated public procedures that are made up of different, locally distributed
available public services and to provide easy access to these services. TerreGov, however, does not focus
on citizens as end-users but on civil servants that should be enabled to find the best available services for
their clients. The core of TerreGov is the so called eGovernment Interoperability Centre (EGIC)
Platform[213], which is shown in Figure 100.

The basic idea is that local agencies expose their services via semantic web service technology. The
implementation of these semantic services could be semantically enriched conventional web services or so
called “Semantic full TerreGov Web Services”. TerreGov adopts OWL-S (see section 4.2) as its semantic

29 http://www.terregov.eupm.net

Figure 100: The TerreGov eGovernment Interoperability Centre Platform(EGIC, [213], page
5)

173

web service framework. All of these locally distributed services are registered with the EGIC. The EGIC thus
holds a repository of semantic web services that can be searched by civil servant. EGIC also allows domain
experts to create new composite services that are based on the already registered ones. Although the initial
plan of the project was to create its own composition and modelling tool-stack, TerreGov uses BPEL to
define these composite procedures and a BPEL engine to execute them [214].

What distinguishes TerreGov from ODEG is first of all the fact that TerreGov does not aim at directly
supporting citizens but civil servants. This stems from its initial application domain which was arranged
around social services and welfare. Although TerreGov – like ODEG – uses BPEL to implement semantic
web services, there are significant differences between the usage scenarios. While ODEG uses BPEL to
define the internal choreography, TerreGov uses BPEL for orchestrating existing semantic web service in
order to create new ones.

8.5 SUPER - Semantics Utilized for Process management within and
between Enterprises
Although the SUPER30 project is not directly focusing on E-Government it is also discussed here since it
uses a similar technology stack as ODEG. The overall goal of SUPER is to provide a framework that would
allow enterprises to easily and quickly adapt their business processes to changing requirements, regulations
or business opportunities:

“The major objective of SUPER is to raise business process management from the IT level to
the business level” ([215],page 43)

This should be achieved by integrating semantic web services and business processing modelling
techniques. Therefore, a new graphical business process modelling tool will allow to compose business
processes out of semantically annotated artefacts (see Figure 101). The SUPER BPM (Business Process
Management) modelling approach introduces the following phases [215]:

● Semantic Business Process Discovery: This should facilitate the re-use of existing elements by
querying the semantic business process repository.

● Semantic Business Process Composition: This will automatically derive executable business
processes from conceptual models. This step should allow business experts to model processes
without having to take care of technical details.

● Semantic Business Process Mediation: This will enable the integration of heterogeneous artefacts
offered by various providers.

30 http://www.ip-super.org/

Figure 101: Business process composition based on semantic annotations of services and
processes ([215], page 43)

174

SUPER calls this approach to business process modelling sBPM (Semantic Business Process Management)
[216]. Executable business processes in SUPER are based on a modified version of BPEL called sBPEL
(semantic BPEL)[217]. This type of BPEL allows to directly integrate (WSMO) semantic web services in
BPEL processes. SBPEL is a WSML ontology consisting of concepts that in turn represent BPEL elements.
These concepts, that are based on BPEL's XML schema types were enriched with additional hierarchies,
attributes and axioms. This allows that every BPEL process can be represented by sBPEL as well.
Processes described in sBPEL are serialised to BPEL4SWS (BPEL for Semantic Web Services) [218], which
are then deployed to a so called Semantic Service Bus[219] (see Figure 102).

The semantic BPEL execution engine basically consists of Apache ODE 31 with some extensions.

Although SUPER as well ODEG try to integrate BPEL and semantic technologies, both approaches have a
different focus. While ODEG is aiming at the outside view of processes (by facilitating their identification and
their utilisation) SUPER concentrates on the internal structure of processes. In contrast to ODEG, SUPER
makes modifications to standards like BPEL in order to achieve its goal. The overall problem that arises
here, is the fact that this might hamper the adoption of future releases of systems and BPEL standards and
might therefore lead to a lock-in situation. ODEG, however, uses custom models and tools only for those
aspects that are not sufficiently covered by existing standards.

8.6 Access-eGov
The Access-eGov32 project is another EU-funded project that applies semantic technologies to the E-
Government domain. Its focus lies on front-office integration which is about supporting citizens in identifying
those services that are relevant based on a given situation. The framework does not make any assumptions
about the online-availability of public services and can also provide information about conventional face-to-
face services that are not electronically accessible at all. From a users point of view the functionality and the
results of the underlying system are very similar to the services provided by the workflow centred approach
presented in section 8.2. Also this project has decided to use WSMO as its underlying semantic framework.

Access-eGov's approach is centred on extended life events that are structured into goals and sub-
goals[220]. When analysing a particular scenario, the ontology modelling approach is not primarily driven by
the requirements and constraints of the public services available but by the needs of potential service
consumers who are citizens or businesses. Access-eGov therefore calls its modelling methodology
requirements-driven, which is a seven step procedure for ontology modelling[221]:

1. Identify Informational needs: Prior knowledge of citizens and the diversity of informational needs of

31 http://ode.apache.org/
32 http://www.accessegov.org

Figure 102: The SUPER architecture ([219], page 7)

175

different groups of citizens are analysed.

2. Identify required Information Quality (IQ): Depending on the particular needs of the different user
groups IQ properties like scope, relevance etc. are determined

3. Create glossary of topics and terms: All topics and terms that are needed to describe the services
are added to a glossary

4. Create controlled vocabulary: Based on a glossary a controlled vocabulary is created

5. Group and relate items: The items defined in the controlled vocabulary are grouped and related by
predefined relations like “is-input”, “is-output”, “is-reference-to-law” etc.

6. Design an ontology: The previously created items are transformed into a formal WSML ontology

7. Implement semantics: Concepts of the ontologies are used to model WSMO services (webservice
capability elements, see section 4.4.1)

This seven step model makes clear that the Access-eGov approach particularly considers the information
needs of different types of users when modelling a life event. This is one of the points that distinguishes this
project from the other ones discussed so far.

Although Access-eGov adopts WSMO, is also had to modify the service model in oder to keep up with its
project goals. The major modifications and extensions are[222]:

• Life Events: These are additional top level elements that represent a specific situation (e.g. building
a house) that requires interaction with public agencies. In the notion of Access-eGov a public service
is used to achieve a goal (e.g. obtaining a building permit) that is part of the current life event.

• Services: WSMO – as a framework used to describe semantic web services – has its own
webservice element to model services. However, since Access-eGov also wants to model services
that are not electronically available it requires its own implementation neutral notion of a service.
This is represented by the service element. Every service has functional properties that describe
preconditions and postconditions and non-functional properties that hold information about the
service (like service name, service provider, office hours, ...)

• Goals: These elements reflect the requirements of a user when invoking a service. This includes
requested output, effects and functionality.

Besides these additional elements Access-eGov has replaced WSMO's abstract state machines by a
workflow model to describe a service's choreography. More precisely it still uses WSMO's state signature but
instead of transition rules workflow constructs similar to those used within OWL-S are used. Technically
every life event in Access-eGov is a goal element that specifies WSMO interface element (compare section
4.4.1). To illustrate this, Listing 97 shows the definition of the so called “getting married” life event. The goal
of this scenario[223] is to assist citizens who want to get married in the German province Schleswig-Holstein
and was one of various case studies that were conducted as part of the Access-eGov project.

The actual life event is modelled as a goal element that consists of an interface specification. The central
part of this definition is the workflow element. To achieve the overall goal three sub-goals
(ApplyForMarriageGoal, WeddingPlaceReservationGoal and WeddingCeremonyGoal) need to achieved. The first
step of the workflow, however, requires some input as indicated by the receive workflow construct. The type
of this input has to be Q1. Actually Q1 is a concept that models various questions (see Listing 98) the user
has to answer as the initial part of the MarriageLifeEvent workflow. Thus in this example the variable ?q1 will
hold the answers to all four questions defined as properties of concept Q1. Beside the workflow node that
describes the various building blocks there are two additional nodes that describe different aspects of the
execution of the workflow. The controlFlow node describes the sequence and – if necessary – conditions of
the execution. In the case of the MarriageLifeEvent all four workflow elements are executed strictly
sequentially. The dataFlow node defines how data is passed along the various workflow nodes. In the
example shown in Listing 97 the answers of the user are passed to the first two sub-goals. Additionally the
answers are also passed as input ?p1 to a node called n2_1d. This node is a decision node within the
ApplyForMarriageGoal. The ontology snipped shown in Listing 99 illustrates the use of a decision node

176

together with WSMO's guard conditions. In this example there are three different scenarios.

If the answer to question q2 of Q1 (“What is your nationality?”) is “German” then the workflow proceeds with
node n2_q3.

If the answer was “Slovakian” then the next node is n2_Xd otherwise the workflow will go on with node n2_2e.

goal MarriageLifeEvent
 nfp
 dc#title hasValue "Marriage"
 endnfp
 interface MarriageLifeEventInterface
 orchestration
 workflow
 perform n1_q1 receive ?q1 memberOf Q1.
 nfp
 aeg#configuration hasValue _boolean("true")
 endnfp
 perform n1_1g achieveGoal ApplyForMarriageGoal
 perform n1_2g achieveGoal WeddingPlaceReservationGoal
 perform n1_3g achieveGoal WeddingCeremonyGoal

 controlFlow
 source n1_q1 target n1_1g
 source n1_1g target n1_2g
 source n1_2g target n1_3g

 dataFlow
 source n1_q1{?q1} target n1_1g{?q1}
 source n1_q1{?q1} target n1_2g{?q1}
 source n1_q1{?q1} target n2_1d{?q1}
 source n2_1o{?a1} target n1_1g{?a1}
Listing 97: The MarriageLifeEvent (taken from the file shg/MarriageLifeEvent.wsml available as
part of the public deliverable D 7.1 from http://www.accessegov.org)

concept Q1
 q1 ofType (1 1) _boolean
 nfp
 dc#title hasValue "Are you 18 years or older?"
 endnfp
 q2 ofType (1 1) Nationality
 nfp
 dc#title hasValue "What is your nationality?"
 dc#description hasvalue "If you are not German, the system can only provide very limited information
for your case. If you have more than one citizenship and one of them is German, please select German."
 aeg#enumType hasValue _iri("http://www.accessegov.org/ontologies/shg#Nationality")
 endnfp
 q3 ofType (1 1) Municipality
 nfp
 dc#title hasValue "Where is your place of residence in Germany?"
 dc#description hasvalue "Please enter the place of residence where you would preferably want to get
married. This can be either your primary or your secondary place of residence."
 aeg#enumType hasValue _iri("http://www.accessegov.org/ontologies/shg#Location")
 endnfp
 q4 ofType (1 *) Region
 nfp
 dc#title hasValue "Where do you like to have your wedding ceremony?"
 dc#description hasvalue "You can choose any location in Germany for this, independently of where
you live."
 aeg#enumType hasValue _iri("http://www.accessegov.org/ontologies/shg#Region")
 endnfp
Listing 98: Definition of questions used in the MarriageLifeEvent (taken from the file
shg/Concepts.wsml available as part of the public deliverable D 7.1 from
http://www.accessegov.org)

177

It is worth to mention that every goal might consist of sub-goals. Thus, the hierarchy of goals can become
arbitrarily deep. As can be seen from the MarriageLifeEvent example, especially modelling the data flow is
not very intuitive and might easily lead to errors due to the naming convention that has to be used along the
goal and sub-goals hierarchy. Whereas the ontologies presented so far are making up the semantic core of
Access-eGov the overall system architecture[224] is shown in Figure 103.

The platform offers tools for three different user groups. Ontology designers create the core concepts that
are needed to support life events following the requirements-driven modelling approach. The results are
ontologies like the ones that have been discussed above. Service providers can use the so called annotation
tool to provide semantic annotations for their services regardless whether they are electronically accessible
or not. The so called personal assistant client (PAC) is the actual front end that can be used by citizens and
businesses. Starting with a life event, users have to answer the questions that are modelled for a life event's
workflow. Based in these answers sub-goals are selected that might require answers to additional questions.
As a final result the user will be provided with a detailed description of the individual services that are
required and the order in which they have to be accessed.

When comparing Access-eGov to ODEG the most obvious difference is the fact that Access-eGov focuses

workflow
…
perform n2_1d decision
...

controlFlow
 source n2_q2 target n2_1d

 source n2_1d target n2_q3 guard ?q1[q2 hasValue iso_3166_deu].
 source n2_1d target n2_Xd guard ?q1[q2 hasValue iso_3166_svk].
 source n2_1d target n2_2e guard neg (?q1[q2 hasValue iso_3166_deu] or ?q1[q2 hasValue
iso_3166_svk]).

 ...
Listing 99: Fragment of the ApplyForMarriageGoal showing a decision state (taken from the file
shg/ApplyForMarriageGoal.wsml available as part of the public deliverable D 7.1 from
http://www.accessegov.org)

Figure 103: Architecture of the Access-eGov platform ([224], page 3)

178

on the service identification phase whereas ODEG is a comprehensive approach to offer E-Government
services. ODEG, however cannot determine an explicit order in which services that match a specific
concrete desire have to be invoked. It simply identifies a set of services. On the other side there are also
some similarities. The concept of a life event as it is used within Access-eGov is very similar to a desire or
goal template as used with ODEG. Although sub-goals that are part of a life event and organised via
workflow constructs are conceptually different to a desire template's related concepts, they have a similar
consequence from a users point of view, since they might trigger additional questions that have to answered
in order to fully specify the user's situation. Whereas these questions are created automatically by ODEG,
they have to be explicitly modelled as part of the Access-eGov ontologies. The modelling approach is also
different. Access-eGov focuses on life events and identifies flows of services that meet these life events.
ODEG's focus is on public services. Based on a service, one or various desire templates that represent
goals from a user's point of view are created and mapped to a service. Services can also be mapped to
already existing desire templates. Than the selection process is constraint to a specific combination of
concrete concepts that are related to the desire templates. Access-eGov is not limited to electronic service
but can also provide information about face-to-face services. ODEG can achieve the same functionality by
means of so called information services.

9 Conclusion & Outlook
The initial research question of this work was to show whether there exists an approach to combine MDA
principles with semantic technologies in order to provide a framework that allows to efficiently create and
maintain electronic public services. Therefore several candidate technologies and frameworks were
analysed and compared. The capabilities as well as the limits of these frameworks were identified. After this
the principles of MDA were examined and discussed. This allowed to identify some key success-factors for
any such approach. One of these factors is that the need for any type of manual coding should be eliminated
or at least reduced to a minimum, since model generated and manual code always lead to problems in
round-trip engineering. Additionally experience with MDA has shown, that approaches, which are limited to
well known and clearly defined domains tend to be more successful than more general ones. A third
success-factor is the point that the generated functionality has to keep up with features provided by other,
manually created applications. Thus, there must not be any trade-off in functionality. In the case of web-
based E-Government applications this means that modern web-functionality like auto-completion or
sophisticated plausibility checks have to be available. In order to justify the effort for creating a formal model,
the functionality created based on this model should cover as much of the entire application as possible.

The presented approach meets all of these success-factors. The coding effort was reduced to the creation of
optional auxiliary services. These implementations do not interfere with any other components, thus, there
are no update anomalies. As pointed out in section 7.5 the functionality of auxiliary services is integrated
dynamically based on existing marks in the model and the availability of these services. Any update of the
model will show immediate effect when deployed to the server. There is no need for any programming at all
in case of such modifications.

Due to the approach's close alignment to the E-Government domain and its focus on Citizen-to-Government
(C2G) scenarios several simplifications compared to general purpose semantic web service frameworks
could be achieved. A clear and lean reference model mainly consisting of a service and a desire concept
together with some application domain specific concepts allows for rapid and easy development of new
services.

One outstanding feature of ODEG is its service identification component. In section 8 several approaches to
look-up (public) services based on a user's goal were presented. All of them focus on a user-centric view
when capturing a goal or desire since this is one point that is not sufficiently supported by existing semantic
web service frameworks. ODEG tries to decouple the user's point-of-view from the public agency's point-of-
view. Thus, it does not include desire's like “I would like to get a building permit” but uses desires like “I want
to build something”, which better reflects the actual goal of the user. Getting a permit might be just one sub-
goal but as we saw in the examples its not even necessary to get a permit in any case. ODEG takes basic
intentions and sets them in relation to concepts of the application domain, which forms desire templates.
These related concepts are typically abstract according to ODEG's convention of abstract and concrete

179

concepts in a taxonomy. Thus desire templates like “I want to build a construction”, require the user to
substitute the abstract concept construction with one of its concrete sub-concepts. Basically this requires to
traverse a tree like in some of the approaches discussed in section 8. One thing that distinguishes ODEG
from these other approaches is that the tree does not need to be modelled explicitly since it is represented
by concept hierarchies as they naturally occur in the application domain. This refinement of concepts allows
for the unique feature of automatic classification where the user has to answer some automatically
generated questions based on the variables of classification axioms. We have seen, how this feature
provides graceful alternatives for complex goal trees as they are for example used inside SemanticGov (see
section 8.3).

As it was shown in sections 7.4 and 8 ODEG's approach to support service identification is very well suited
to assist citizens in finding relevant services even in complex situations. However, what was not covered at
all yet, is how a larger number of desire templates could be presented to the end-user in an E-Government
portal. Desire templates are bound to particular application domains like building, health care and so on.
Currently E-Government portals use so called life-events or business episodes to structure their services in a
way that should make them easy to find by citizens [225]. The life-event approach, however, falls short in
more complex scenarios when there exist several services that serve the same or at least very similar life-
events (like in our building permit example, where depending on the type and size of the building one of
three different services might be relevant). To overcome this shortcoming [226] was also one goal of the
automatic workflow generation approach and has led to the tree based approach presented in section 8.2.
Consequently a combination of life-events and desire templates, where the selection of a life-event leads to
the related desire templates, seems an to be an optimal solution. This approach is actually used by one site
that makes already use of ODEG.

Another feature, which makes ODEG unique when compared to other approaches is its capability to
interactively access its modelled services. As shown in section 7.5 the run-time infrastructure manages to
render interactive electronic forms that are automatically and dynamically created based on a service's
required input. In fact, there is no longer anything like a form, which is needed as a separate central artefact.
The forms used are simply a mean to collect information that is needed in order to invoke a public service.
This is a major paradigmatic shift in E-Government, since this approach no longer reflects an electronic
version of paper driven procedures but is focusing on services and their prerequisites. The specialisation and
classification mechanism used by the semantic forms component to specify the current user's situation
furthermore introduces a whole new paradigm of adaptive forms, where the system selectively adapts to the
user. Since the system knows whether you are about to build a residential house or a garden wall, it always
only collects information – indicated by the attributes of the currently defined concepts – that is relevant.
Thus, there is no longer any need for generic general-purpose description fields like they were used on
paper forms and probably are still used in most conventional E-Government applications.

The overall design goal of ODEG was to provide a framework for the creation of new electronic public
services. There are basically two scopes in doing so. One is to create and provide all elements that are
needed to find and access a public service and binding these elements to an already existing service end-
point. The other possible scope is to create the implementation of the service end-point as well. This means
that an electronic version of a public procedure has to be created. ODEG supports both scopes. Depending
on the filler of the implementationType attribute of the corresponding PublicService instance the nature of the
actual service end-point can be defined. The analysis of candidate SWS frameworks (see section 4)
revealed that these frameworks show significant shortcomings in modelling business processes. This is
based on the general nature of ontologies that are good knowledge bases but fall short in modelling
procedural knowledge. This, however, directly effects ODEG's capabilities to keep this procedural knowledge
inside the application model. Therefore the decision was made not to include the description of processes
inside the semantic model but to delegate this use-case to techniques that more apt to capture processes.
The technology that is recommended to be used together with ODEG is BPEL. The same choice was also
made by some of the approaches presented in section 8. BPEL fits nicely into ODEG since it is basically
representing executable models of processes just like the semantic service model used by ODEG. Unlike the
SemanticGov project, ODEG did not make any modifications to BPEL but defines WSDL and XML schemes
as the freeze-point between the semantic model and the process model. This allows to use standard BPEL
tools and execution engines together with ODEG.

180

While one focus of MDA is the automatic generation of running applications based on PIMs and PSMs,
ODEG has decided to directly interpret the annotated semantic model. This allows to use the capabilities of
semantic reasoners during run-time without any data transformation. As it was pointed out in sections 3.1.4
and 3.4.2 algorithms for entailment and stratification show a poor computational complexity. Thus, integrating
such algorithms in interactive systems is critical. A crucial factor for acceptable performance is the number
instances that are registered with the reasoner, since they are basically representing additional facts that
have to be used in substitution steps. Therefore the number of instances has be kept as small as possible.
ODEG regularly removes instances that are no longer needed, which improves the overall performance of
the system. Another aspect is the number and the form of the axioms available to the reasoner. Axioms
including negation-as-failure conditions (indicated by the naf-operator) show significantly worse performance
than other axioms. Critical steps are typically those, were entire instance trees have to be validated, which
happens when a user completes a semantic dialogue. Thus, ODEG selectively adds axioms to the reasoner
whenever they are needed. A general problem with using reasoners is the fact that changes to the
information space cannot be performed incrementally. There is no way to simply add a new instance to the
reasoner. Instead all ontologies with all concepts, axioms and instances have to be re-registered, which
causes the re-evaluation of the information space. Despite these facts, ODEG achieves reasonable
response times which are bellow two seconds in the aforementioned critical worst case steps and
significantly bellow one second otherwise. Nevertheless, for intensively used web-sites standard up-scaling
mechanisms like load-balancing are necessary.

Although the current ODEG framework could prove the research hypothesis, there are still some issues that
need further research and improvement. What is still a major issue is the strong mathematical formalism of
ontologies. Although the skills needed to create an ODEG compliant model are minimised due to the clear
meta-model, ontology modelling requires some significant methodological background. Thus, it would be
highly desirable to see some future research with the goal to make ontology modelling more intuitive.

Another aspect that could be improved in follow-up work is usability of the web interface. Data that is
collected by the semantic forms component represents a tree structure. Thus a conventional form or wizard
paradigm can hardly be used here. Although the current version has done its best to provide an intuitive user
interface that is compliant with the Austrian style guide for electronic forms, usability experts could probably
come up with new paradigms that are better suited to navigate through tree structures more intuitively.

ODEG has already left the laboratory stage and is currently deployed at two different governmental levels.
The Austrian Federal Chancellery uses ODEG's service identification component to support enterprises from
other EU countries in offering their services in Austria according to the EU service directive. At municipal
level the City of Graz uses all of ODEG's components to run several of their E-Government services.
Additional new public services offered by the City of Graz shall be based on ODEG and BPEL.

181

Bibliography
[1] von Lucke J., Reinemann H., Speyerer Definition von Electronic Government (german), Deutsche

Hochschule für Verwaltungswissenschaften, foev.dhv-speyer.de/ruvii/Sp-EGov.pdf, 2000, p1
[2] Layne, K and Lee, J., Developing Full Functional E-government: A Four Stage Model in Government

Information Quarterly,18 (2) , 2001, pp122-136
[3] Wauters, P. and Van Durne, P, eGovernment Benchmarking 2005, European Commission,

http://europa.eu.int/information_society/soccul/egov/egov_benchmarking_2005.pdf, 2005, p7
[4] Irani Z., Al-Sebie M., Elliman T., Transaction Stage of e-Government Systems: Identification of its

Location & Importance in Proceedings of the 39th Hawaii International Conference on System Sciences
- 2006, HICSS, 2006, pp1-9

[5] Miller J., Mukerji J. (Ed.), Model Driven Architecture (MDA), OMG, http://www.omg.org/cgi-bin/doc?
ormsc/01-07-01.pdf, 2001

[6] OMG, Meta Object Facility (MOF) Specification, OMG, http://www.omg.org/docs/formal/02-04-03.pdf,
2002

[7] Alonso G., Casati F., Kuno H., Machiraju V., Web Services - Concepts, Architectures and Applications ,
Springer, 2004

[8] Christensen E., Curbera F., Meredith G., Weerawarana S., Web Services Description Language
(WSDL) 1.1, W3C, http://www.w3.org/TR/2001/NOTE-wsdl-20010315s, 2001

[9] Clement L., Hately A., von Riegen C., Rogers T. (Ed.), UDDI Version 3.0.2, W3C,
http://uddi.org/pubs/uddi_v3.htm#_Toc85907968, 2004

[10] McIlraith, Sheila A. and Son, Tran Cao and Zeng, Honglei, Semantic Web Services in IEEE Intelligent
Systems,2 16, 2001, pp 46-53

[11] James Hendler, Agents and the Semantic Web in IEEE Intelligent Systems,2 16, 2001, pp. 30-37
[12] Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K., Mcguinness, D. L., Sirin,

E., and Srinivasan, N., Bringing Semantics to Web Services with OWL-S in World Wide Web,10 10,
2007, pp 243-277

[13] W3C, OWL Web Ontology Language - Overview, W3C, http://www.w3.org/TR/owl-features/, 2004
[14] Jos de Bruijn, Holger Lausen, Axel Polleres and Dieter Fensel, The Web Service Modeling Language

WSML: An Overviewin Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen (Ed.), The Semantic
Web: Research and Applications, Lecture Notes in Computer Science, vol. 4011, Springer,2006, pp590-
604

[15] Tim Berners-Lee, Semantic Web Road map, W3C, http://www.w3.org/DesignIssues/Semantic.html,
1998

[16] Tim Berners-Lee, James Hendler and Ora Lassila, The Semantic Web - A new form of Web content that
is meaningful to computers will unleash a revolution of new possibilities in Scientific American,5 284,
2001, pp. 34-43.s

[17] Thomas R. Gruber, Toward Principles for the Design of Ontologies Used for Knowledge Sharing in
International Journal Human-Computer Studies,43 , 1993, p.907-928

[18] Genesereth, M. R., & Nilsson, N. J., Logical Foundations of Artificial Intelligence, Morgan Kaufmann
Publishers, 1993

[19] Thomas R. Gruber, Ontology, , http://tomgruber.org/writing/ontology-definition-2007.htm, 2007
[20] M. Ehrig and P. Haase and N. Stojanovic, Similarity for ontologies - a comprehensive framework in In

Workshop Enterprise Modelling and Ontology: Ingredients for Interoperability, at PAKM 2004, DEC
2004, , 2004,

[21] Drummond, N. and Shearer, R., The Open World Assumption, The University of Manchester,
http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf, 2006

182

[22] Clark, K. L. 1987, Negation as failurein M. L. Ginsberg (Ed.), Readings in Nonmonotonic Reasoning,
Morgan Kaufmann Publishers, San Francisco,1987, pp 311-325

[23] Tim Berners-Lee, Semantic Web - XML2000, W3C, http://www.w3.org/2000/Talks/1206-xml2k-
tbl/slide10-0.html, 2000

[24] Berners-Lee T., Fielding R. and Masinter L., RFC 2396 - Uniform Resource Identifiers (URI): Generic
Syntax, IETF, http://www.isi.edu/in-notes/rfc2396.txt, 1998

[25] Allen, Julie D. and Becker, Joe (Ed.), The Unicode Standard, Version 5.0, Addison-Wesley Longman,
Amsterdam, 2006

[26] Bray T., Paoli J., Sperberg-McQueen C.M. and Maler E., Extensible Markup Language (XML) 1.0,
Second Edition, World Wide Web Consortium, http://www.w3.org/TR/REC-xml, 2000

[27] Lasila, Ora and Ralph R. Slick (Ed), Resource Description Framework (RDF) Model and Syntax, W3C,
http://www.w3.org/TR/WD-rdf-syntax-971002/, 2007

[28] Klyne G. and Carroll J.J. (Ed.), Resource Description Framework (RDF):Concepts and Abstract Syntax,
W3C, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-data-model, 2004

[29] Brickley D. and Guha R.V., RDF Vocabulary Description Language 1.0: RDF Schema , W3Cs,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, 2004

[30] Manola F. and Miller E. (Ed), RDF Primer, W3C, http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/s, 2004

[31] Grant J. and Beckett D., RDF Test Cases, W3C, http://www.w3.org/TR/2004/REC-rdf-testcases-
20040210/#ntriples, 2004

[32] Beckett D. (Ed.), RDF/XML Syntax Specification (Revised), W3C, http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/#section-Data-Model, 2004

[33] Hayes P., RDF Semantics, W3C, http://www.w3.org/TR/rdf-mt/#glossInterpretation, 2004
[34] Cahng C.C and Keisler H.J., Model Theory, North Holland, 1990
[35] Seaborne, Andy, RDQL - A Query Language for RDF, W3C,

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/, 2004
[36] Horroks, I. and Patel-Schneider, P. F. and van Harmelen F., From SHIQ and RDF to OWL: The Making

of a Web Ontology Language in Journal of Web Semantics,1 1, 2003, 7-26
[37] Dan Connolly, Web Ontology (WebONT) Working Group Charter, W3C,

http://www.w3.org/2002/11/swv2/charters/WebOntologyCharter, 2004
[38] Mike Dean and Guus Schreiber (Ed), OWL Web Ontology Language Reference, W3C,

http://www.w3.org/TR/owl-ref/s, 2004
[39] McGuinnes, D. and van Harmelen, F (Ed), OWL Web Ontology Language Overview, W3C,

http://www.w3.org/TR/owl-features/, 2004
[40] Luke, S., Spector, L., Rager, D., and Hendler, J., Ontology-based Web agents in Proceedings of the

First international Conference on Autonomous Agents (Marina del Rey, California, United States,
February 05 - 08, 1997), , 1997, pp. 59-66

[41] Heflin, J., Hendler, J., and Luke, S, SHOE: A Knowledge Representation Language for Internet
Applications. Technical Report CS-TR-4078 (UMIACS TR-99-71), University of Maryland at College
Park,1999,pp 1-30

[42] Chaudhri, V.K. and Farquhar, A. and Fikes, R. and Karp, P.D. and Rice, J.P., Open knowledge base
connectivity 2.0. Technical Report KSL-98-06, Knowledge Systems Laboratory, Stanford,1997,

[43] Horroks, I. et al, The Ontology Inference Layer OIL, OIL, http://xml.coverpages.org/OIL-inference.pdf,
2000

[44] Horrocks I., Sattler U., and Tobies S., Practical reasoning for expressive description logics in , Springer,
1999, pp 161-180

[45] Baader, F. and Horrocks, I. and Sattler, U., Description Logicsin Staab, S. and Studer, R. (Ed.),
Handbook on Ontologies, Springer Verlag,2004, pp 3-28

[46] Fensel, D. and van Harmelen, F. and Horrocks, I. and McGuinness, D. L. and Patel-Schneider, P. F.,

183

OIL: An ontology infrastructure for the semantic web in IEEE Intelligent Systems,16 (2) 16, 2001,
[47] Horrocks, I., Fensel, D., Harmelen, F., Decker, S., Erdmann, M, Klein, M., OIL in a Nutshell, ,

http://www.cs.vu.nl/~ontoknow/oil/downl/oilnutshell.pdf, 2000
[48] Bechhofer, S. et al., An informal description of Standard OIL and Instance OIL , ontoknowlegde.org,

http://www.ontoknowledge.org/oil/downl/oil-whitepaper.pdf, 2000
[49] Hendler, J. and McGuinness, D., The DARPA Agent Markup Language in IEEE Intelligent Systems,6

15, 2000, pp 67-73
[50] McGuinness, D., Fikes, R., Stein L.A., Hendler J., DAML-ONT: An Ontology Language for the Semantic

Webin Fensel, D., Hendler, J., Lieberman, H., Wahlster (Ed.), Spinning the Semantic Web, MIT
Press,2003, pp 65-94

[51] Horroks, I. and Patel-Schneider, P. F. and van Harmelen F., From SHIQ and RDF to OWL: The Making
of a Web Ontology Language in Journal of Web Semantics,1 1, 2003, 7-26

[52] Horrocks, I., DAML+OIL: a Description Logic for the Semantic Web in IEEE Data Engineering Bulletin,
25, 2002, pp 4-9

[53] Heflin, J. (Ed), OWL Web Ontology LanguageUse Cases and Requirements , W3C,
http://www.w3.org/TR/2004/REC-webont-req-20040210/, 2004

[54] Horrocks, I. and Patel-Schneider, P. F., Reducing OWL Entailment to Description Logic Satisfiability in
Springer (Ed.), Lecture Notes in Computer Science, Volume 2870/2003, Springer Berlin /
Heidelberg,2003, 17-29

[55] Motik, B., On the Properties of Metamodeling in OWL in Journal of Logic and Computation,4 17, 2007,
pp 617-637

[56] Patel-Schneider, P. F. and Horrocks, I., OWL Web Ontology Language Semantics and Abstract Syntax
Section 3. Direct Model-Theoretic Semantics, W3C, http://www.w3.org/TR/2004/REC-owl-semantics-
20040210/direct.html, 2004

[57] Smith, K. and Welty C. and McGuinnes,D.L. (Ed.), OWL Web Ontology Language Guide, W3C,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#ComplexClasses, 2004

[58] Motik, B. and Horrocks, I., Problems with OWL Syntax., CEUR-WS.org, http://ceur-ws.org/Vol-
216/submission_13.pdf, 2006

[59] W3C OWL Working Group, OWL 2 Web Ontology Language Document Overview, W3C,
http://www.w3.org/TR/owl2-overview, 2009

[60] Ian Horrocks, Oliver Kutz, and Uli Sattler, The Even More Irresistible SROIQ in Proc. of the 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), AAAI Press, 2006,

[61] B. Motik, P.F. Schneider-Patel and B. Cuenca Grau (Ed.), OWL 2 Web Ontology Language Direct
Semantics, W3C, http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/, 2009

[62] B. Motik and P.F. Patel-Schneider and B. Parsia (Ed.), OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax, W3C, http://www.w3.org/TR/2009/REC-owl2-syntax-
20091027/, 2009

[63] B. Motik, B. Parsia and P.F. Patel-Schneider (Ed.), OWL 2 Web Ontology Language XML Serialization ,
W3C, http://www.w3.org/TR/2009/REC-owl2-xml-serialization-20091027/, 2009

[64] S. Gao, C.M. Sperberg-McQueen, H.S. Thompson (Ed.), W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures, W3C, http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430/, 2009

[65] M. Horridge and P.F. Patel-Schneider, OWL 2 Web Ontology Language Manchester Syntax , W3C,
http://www.w3.org/TR/2009/NOTE-owl2-manchester-syntax-20091027/, 2009

[66] D. Beckett and T. Berners-Lee, Turtle - Terse RDF Triple Language, W3C,
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/, 2008

[67] Christine Golbreich and Evan K. Wallace (Ed.), OWL 2 Web Ontology Language New Features and
Rationale, W3C, http://www.w3.org/TR/2009/REC-owl2-new-features-20091027/, 2009

[68] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue and C. Lutz (Ed.), OWL 2 Web Ontology
Language Profiles, W3C, http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/, 2009

184

[69] Franz Baader, Sebastian Brandt and Carsten Lutz, Pushing the EL Envelope in Proc. of the 19th Joint
Int. Conf. on Artificial Intelligence (IJCAI 2005), IJCAI, 2005, pp 346-352

[70] IHTSDO, Systematized Nomenclature of Medicine - Clinical Terms, Int. Health Terminology Standards
Development Org., http://www.ihtsdo.org/snomed-ct/, 2009

[71] Jos de Bruijn (Ed.), The Web Service Modeling Language WSML, wsmo.org,
http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/, 2005

[72] Roman D., Lausen H., Keller U. (Ed.), Web Service Modeling Ontology (WSMO), wsmo.org,
http://www.wsmo.org/TR/d2/v1.3/20061021/, 2006

[73] Roman D., de Bruijn J., Mocan A., Toma I., Lausen H., Kopecky J., Bussler Ch., Fensel D., Domingue
J., Galizia S. and Cabral L., Semantic Web Services - Approaches and Perspectives in Davies J., Studer
R., Warren P. (Ed.), Semantic Web Technologies: Trends and Research in Ontology-based Systems,
Wiley,2006, pp 191-236

[74] Grosof B.N., Horrocks I., Volz R., Decker S., Description Logic Programs: Combining Logic Programs
with Description Logic in Proceedings of International Conference on the World Wide Web (WWW-
2003), , 2003, 1-10

[75] Steinmetz N., de Bruijn J., WSML/OWL Mapping, DERI, http://www.wsmo.org/TR/d37/v0.1/20080125/,
2008

[76] Michael Kifer and Georg Lausen and James Wu, Logical foundations of object-oriented and frame-
based languages in Journal of the ACM (JACM), Volume 42 , Issue 4 (July 1995) , 1995,

[77] de Bruijn, J., WSML Abstract Syntax and Semantics, WSML Working Group,
http://www.wsmo.org/TR/d16/d16.3/v1.0/d16.3v1.0_20080808.pdf, 2008

[78] Steinmetz N., Toma I., WSML Language Reference, WSML Working Group,
http://www.wsmo.org/TR/d16/d16.1/v1.0/20080728/, 2008

[79] de Bruijn J., Lausen H., Polleres A., Fensel D., The WSML rule languages for the Semantic Web, W3C,
http://www.w3.org/2004/12/rules-ws/paper/128/, 2005

[80] Duerst M. and Suignard M., Internationalized Resource Identifiers (IRIs), IETF RFC3987,
http://www.ietf.org/rfc/rfc3987.txt, 2005

[81] Gelfonf M. and Lifschitz V., The stable model semantics for logic programming in Proceedings of the
Fifth International Conference on Logic Programming, The MIT Press, Cambridge, Massachusetts,
1988, 1070-1080

[82] Austin D. and Barbir A. and Ferris Ch. and Garg S., Web Services Architecture Requirements, W3C,
http://www.w3.org/TR/2002/WD-wsa-reqs-20020819, 2002

[83] Roberto Chinnica, Jean-Jacques Moreau, Arthur Ryman and Sanjiva Weerawarana (Ed.), Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language , W3C,
http://www.w3.org/TR/2007/REC-wsdl20-20070626/, 2007

[84] White, James E., A high-level framework for network-based resource sharing in AFIPS '76: Proceedings
of the June 7-10, 1976, national computer conference and exposition, ACM, 1976, pp 561-570

[85] Object Management Group, Common Object Request Broker Architecture: Core Specification , OMG,
http://www.omg.org/cgi-bin/doc?formal/04-03-12.pdf, 2004

[86] A. Gokhale, B. Kumar, A. Sahuguet, Reinventing the Wheel? CORBA vs. Web Services in WWW2002
Conference Proceedings, University of Hawaii, 2002, 1

[87] Burner, Mike, The Deliberate Revolution in Queue,1 1, 2003, pp 28-37
[88] Mitra, Nilo and Lafon, Yves, SOAP Version 1.2 Part 0: Primer (Second Edition), W3C,

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/, 2007
[89] Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen, Henrik Frystyk; Masinter, Larry; Leach, Paul

J.; Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, IETF, http://tools.ietf.org/html/rfc2616, 1999
[90] Postel, Jonathan B., Simple Mail Transfer Protocol, IETF, http://tools.ietf.org/html/rfc821, 1982
[91] Chinnici R., Haas H., Lewis A., Moreau J., Orchard D. and Weerawarana S. (Eds.), Web Services

Description Language (WSDL) Version 2.0 Part 2: Adjuncts , W3C, http://www.w3.org/TR/2007/REC-
wsdl20-adjuncts-20070626/#patterns, 2007

185

[92] Lewis, Amelia A. (Ed.), Web Services Description Language (WSDL) Version 2.0: Additional MEPs ,
W3C, http://www.w3.org/TR/2007/WD-wsdl20-additional-meps-20070326/, 2007

[93] Booth, David and Lui, Canyang Kevin (Eds.), Web Services Description Language (WSDL) Version 2.0
Part 0: Primer, W3C, http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/, 2007

[94] Nitzsche, Jörg and Lessen, Tammo van and Leymann, Frank, WSDL 2.0 Message Exchange Patterns:
Limitations and Opportunities in ICIW '08: Proceedings of the 2008 Third International Conference on
Internet and Web Applications and Services, IEEE Computer Society, 2008, pp 168-173

[95] Padmanabhuni S., Chaudhari A.P., Bharti S. and Kumar S., WSDL 2.0: A Pragmatic Analysis and an
Interoperation Framework, wldj, http://weblogic.sys-con.com/node/219029?page=0,0, 2007

[96] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B.
Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara, OWL-S: Semantic Markup for Web Services, W3C,
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/, 2004

[97] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B.
Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara, OWL-S: Semantic Markup for Web Services,
DAML.org, http://www.ai.sri.com/daml/services/owl-s/1.2/overview/, 2008

[98] Horrocks I., Patel-Schneider P., Boley H., Tabet S., Grosof B. and Dean M., SWRL: A Semantic Web
Rule Language Combining OWL and RuleML, W3C, http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/, 2004

[99] Hirtle D., Boley H., Grosof B., Kifer M., Sintek M., Tabet S. and Wagner G., Schema Specification of
RuleML 0.91, RoleML.org, http://ruleml.org/0.91/, 2006

[100]Patel-Schneider Peter F., A Proposal for a SWRL Extensionto First-Order Logic, DAML.org,
http://www.daml.org/2004/11/fol/proposal, 2004

[101]McCermott, Drew, DRS: A Set of Conventions for Representing Logical Languages in RDF, DAML.org,
http://cs-www.cs.yale.edu/homes/dvm/daml/DRSguide.pdf, 2004

[102]Genesereth, Michael R., Knowledge Interchange Format - draft proposed American National Standard
(dpANS) NCITS.T2/98-004, Stanford University, http://logic.stanford.edu/kif/dpans.html, 1998

[103]Prud'hommeaux, Eric and Seaborne Andy, SPARQL Query Language for RDF, W3C,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, 2008

[104]Pèrez, Jorge and Arenas, Marcelo and Gutierrez, Claudio, Semantics and complexity of SPARQL in
ACM Trans. Database Syst.,3 34, 2009, pp 1-45

[105]Martin D., Burstein M, Lassile O., Paolucci M., Payne T. and McIlraith S., Describing Web Services
using OWL-S and WSDL, daml.org, http://www.ai.sri.com/daml/services/owl-s/1.2/owl-s-wsdl.html, 2008

[106]Battle S., Bernstein A., Boley H., Grosof B., Gruninger M., Hull R, Kifer M., Martin D., McIlraith S.,
McGuiness D., Su J. and Tabet S., Semantic Web Services Framework (SWSF) Overview, W3C,
http://www.w3.org/Submission/2005/SUBM-SWSF-20050909/, 2005

[107]Battle S., Bernstein A., Boley H., Grosof B., Gruninger M., Hull R, Kifer M., Martin D., McIlraith S.,
McGuiness D., Su J. and Tabet S., Semantic Web Services Language (SWSL), W3C,
http://www.w3.org/Submission/2005/SUBM-SWSF-SWSL-20050909/, 2005

[108]Battle S., Bernstein A., Boley H., Grosof B., Gruninger M., Hull R, Kifer M., Martin D., McIlraith S.,
McGuiness D., Su J. and Tabet S., Semantic Web Services Ontology (SWSO), W3C,
http://www.w3.org/Submission/2005/SUBM-SWSF-SWSO-20050909/, 2005

[109]Weidong Chen and Michael Kifer and David S. Warren, HiLog: A foundation for higher-order logic
programming in Journal of Logic Programming,3 15, 1993, pp 187-230

[110]Yang, Guizhen and Kifer, Michael, Well-Founded Optimism: Inheritance in Frame-Based Knowledge
Basesin Meersmann R. and Zahir T. et al. (Eds.) (Ed.), On the Move to Meaningful Internet Systems,
2002 - DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS and
ODBASE 2002, Springer-Verlag,2002, pp 1013-1032

[111] Michael Grüninger, A guide to the ontology of the process specification language in Staab, Steffen and
Studer, Rudi (Ed.), Handbook on Ontologies, Springer-Verlag,2003, pp 575-592

[112] ISO/IEC, ISO/IEC 24707 Information technology - Common Logic (CL): a framework for a family of

186

logic- based languages, ISO/IEC,
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip, 2007

[113]Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael Stollberg, Axel
Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel, Web Service Modeling Ontology in
Applied Ontology,1 1, 2005, pp 77-106

[114]de Bruijn J., Bussler Ch., Domingue J., Fensel D., Hepp M., Kifer M., König-Ries B., Kopecky J., Lara
R., Oren E., Polleres A., Scicluna J. and Stollberg M., D2v1.4. Web Service Modeling Ontology
(WSMO), wsmo.org, http://www.wsmo.org/TR/d2/v1.4/20070216/, 2007

[115]Dieter Fensel and Axel Polleres and Joerg Nitzsche, D14v1.0. Ontology-based Choreography,
wsmo.org, http://www.wsmo.org/TR/d14/v1.0/, 2007

[116]Nathalie Steinmetz and Ioan Toma, WSML Language Reference, WSML Working Group,
http://www.wsmo.org/TR/d16/d16.1/v1.0/, 2008

[117]James Scicluna (Ed.) and Alex Polleres (Ed.) and Dumitru Roman (Ed.) and Dieter Fensel, D14v0.2.
Ontology-based Choreography and Orchestration of WSMO Services , wsmo.org,
http://www.wsmo.org/TR/d14/v0.2/20060203/, 2006

[118]Egon Börger and Robert Stärk, Abstract State Machines: A Method for High-Level System Design and
Analysis, Springer Verlag Berlin Heidelberg, 2003

[119]Egon Börger, High Level System Design and Analysis Using Abstract State Machines in , Springer,
1998, pp 1-43

[120]Jacek Kopecky and Dumitru Roman and James Scicluna, D3.4v0.2. WSMO Use Case: Amazon E-
commerce Service, wsmo.org, http://www.wsmo.org/TR/d3/d3.4/v0.2/20060113/, 2006

[121]U. Keller, R. Lara, H. Lausen, and D. Fensel, Semantic Web Service Discovery in the WSMO
Frameworkin Jorge Cardoso (Ed.), Semantic Web Services: Theory, Tools and Applications, Idea
Publishing Group,2006, pp 281-316

[122]Stollberg, M. and Norton, B., A Refined Goal Model for Semantic Web Services in Proceedings of the
Second international Conference on internet and Web Applications and Services (May 13 - 19, 2007).
ICIW, IEEE Computer Society, Washington, DC, 2007, 17

[123]Uwe Keller, Holger Lausen, and Michael Stollberg, On the Semantics of Functional Descriptions of
Web Services in Lecture Notes in Computer Science, 4011/2006, 2006, pp 605-619

[124]Stollberg, M., Keller, U., Lausen, H., and Heymans, S, Two-Phase Web Service Discovery Based on
Rich Functional Descriptionsin E. Franconi, M. Kifer, and W. May (Ed.), Lecture Notes In Computer
Science vol. 4519, Springer-Verlag, Berlin, Heidelberg,,2007, pp 99-113

[125]Jacek Kopecky and Dumitru Roman and Matthew Moran and Dieter Fensel, Semantic Web Services
Grounding in Proceedings of the Advanced Int'l Conference on Telecommunications and Int'l
Conference on Internet and Web Applications and Services, IEEE Computer Society, Washington, DC,
2006, 127

[126]Kopecky J., Moran M., Vitvar T., Roman D. and Mocan A., D24.2v0.1. WSMO Grounding, WSMO,
http://www.wsmo.org/TR/d24/d24.2/v0.1/20070427/, 2007

[127]Farell J. and Lausen H., Semantic Annotations for WSDL and XML Schema, W3C,
http://www.w3.org/TR/2007/REC-sawsdl-20070828/, 2007

[128]Lara R., Roman D., Polleres A. and Fensel D., A Conceptual Comparison of WSMO and OWL-Sin
Springer (Ed.), Lecturer Notes in Computer Science - Volume 3250/2004, Springer Berlin /
Heidelberg,2004, pp 254-269

[129]Axel Polleres, Ruben Lara and Dumitru Roman, D4.2v01 Formal Comparison WSMO/OWL-S, DERI,
http://www.wsmo.org/2004/d4/d4.2/v0.1/20040315/, 2004

[130]Keller U., Lara R., Lausen H., Polleres A. and Fensel D., Automatic Location of Servicesin Springer
(Ed.), The Semantic Web: Research and Applications, Springer Berlin / Heidelberg,2005, pp 1-16

[131]Paolucci, Massimo and Kawamura, Takahiro and Payne, Terry R. and Sycara, Katia P., Semantic
Matching of Web Services Capabilities in ISWC '02: Proceedings of the First International Semantic
Web Conference on The Semantic Web, Springer-Verlag, 2002, pp 333-347

187

[132]Li, Lei and Horrocks, Ian, A Software Framework for Matchmaking Based on Semantic Web Technology
in Int. J. Electron. Commerce,4 8, 2003, pp 39-60

[133]Naveen Srinivasan and Massimo Paolucci and Katia Sycara, Semantic Web Service Discovery in the
OWL-S IDE in Proceedings of Hawaii International Conference on System Sciences, IEEE Computer
Society, 2006, 109b

[134]Gudgin M. and Lewis A. and Schlimmer J., Web Services Description Language (WSDL) Version 2.0
Part 2: Message Patterns, W3C, http://www.w3.org/TR/2003/WD-wsdl20-patterns-20031110/, 2003

[135]Selic, Bran, The Pragmatics of Model-Driven Development in IEEE Software,5 20, 2003, pp 19-25
[136]Miller, Joaquin and Mukerji, Jishnu (Eds.), MDA Guide Version 1.0.1, OMG,

http://www.omg.org/docs/omg/03-06-01.pdf, 2003
[137]OMG, OMG Unified Modeling LanguageTM (OMG UML), Infrastructure Version 2.2 , OMG,

http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/, 2009
[138]OMG, MOF 2.0/XMI Mapping, Version 2.1.1, OMG, http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm,

2007
[139]OMG, Common Warehouse Metamodel (CWM) Specification, ,

http://www.omg.org/spec/CWM/1.1/PDF/, 2003
[140]ISO, ISO/IEC 10746-2 Information technology -- Open Distributed Processing -- Reference Model:

Foundations, ISO, http://www.iso.org/iso/catalogue_detail.htm?csnumber=18836, 1996
[141]Frankel, David S., Model Driven Architecture - Applying MDA to Enterprise Computing , Wiley Publishing

Inc., 2003
[142]Debnath, N., Leonardi, M. C., Mauco, M. V., Montejano, G., and Riesco, D., Improving Model Driven

Architecture with Requirements Models in Proceedings of the Fifth international Conference on
information Technology: New Generations (April 07 - 09, 2008). ITNG., IEEE Computer Society,
Washington, DC, 2008, 21-26

[143]Meertens, L. O., Iacob, M. E., and Nieuwenhuis, L. J., Goal and model driven design of an architecture
for a care service platform in Proceedings of the 2010 ACM Symposium on Applied Computing (Sierre,
Switzerland, March 22 - 26, 2010). SAC '10, ACM, New York, NY, 2010, 158-164

[144]Garrido, J. L., Noguera, M., González, M., Hurtado, M. V., and Rodríguez, M. L., Definition and use of
Computation Independent Models in an MDA-based groupware development process in Sci. Comput.
Program.,1 66, 2007, 25-43

[145]Poernomo, I. and Tsaramirsis, G. and Zuna V., A methodology for requirements analysis at CIM level in
Proceedings of the 1st International Workshop on Business Support for MDA, CEUR-WS.org, 2008, 1-
7

[146]Arlow, Jim and Neustadt Ila, Enterprise Patterns and MDA, Addison-Wesley, 2004
147: Mall, Rajib, Fundamentals of Software Engineering, 2004
[148]Rodríguez, A. and Fernández-Medina, E. and Piattin, M.i, CIM to PIM Transformation: A Realityin

Springer (Ed.), Research and Practical Issues of Enterprise Information Systems II, Springer Boston,,
pp. 1239-1249

[149]Kherraf, S., Lefebvre, É., and Suryn, W., in Proceedings of the 19th Australian Conference on Software
Engineering (March 26 - 28, 2008). ASWEC, IEEE Computer Society, Washington, DC, 2008, 338-346

[150]Mellor, S.J. and Balcer M.J., Executable UML - A Foundation for Model-Driven Architecture , Addison-
Wesley Longman, Amsterdam, 2002

[151]OMG, Meta Object Facility (MOF) 2.0 Core Specification, OMG, http://www.omg.org/cgi-bin/doc?ptc/03-
10-04.pdf, 2003

[152]OMG, Unified Modeling Language: Infrastructure, v2.0 , OMG,
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/, 2005

[153]OMG, Human-Usable Textual Notation (HUTN) Specification, Object Management Group,
http://www.omg.org/spec/HUTN/1.0/PDF, 2004

[154]Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/ Transformation Specification ,
OMG, http://www.omg.org/spec/QVT/1.0/PDF/, 2008

188

[155]OMG, Object Constraint Language, Object Management Group, http://www.omg.org/cgi-bin/doc?
formal/06-05-01.pdf, 2006

[156]OMG, Ontology Definition Metamodel Version 1.0, OMG, http://www.omg.org/spec/ODM/1.0/, 2009
[157]ISO/IEC, ISO/IEC 24707 Information technology - Common Logic (CL): a framework for a family of

logic- based languages, ISO/IEC, Geneve, Switzerland, 2007
[158]Lars Marius Garshol and Graham Moore, Topic Maps - Data Model, ISO/IEC,

http://www.isotopicmaps.org/sam/sam-model/2008-06-03/, 2008
[159]Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., and Mei, H., Towards automatic model synchronization

from model transformations in Proceedings of the Twenty-Second IEEE/ACM international Conference
on Automated Software Engineering (Atlanta, Georgia, USA, November 05 - 09, 2007). ASE '07, ACM,
New York, NY, , pp 164-173

[160]France, R. and Rumpe, B., Model-driven Development of Complex Software: A Research Roadmap in
2007 Future of Software Engineering (May 23 - 25, 2007). International Conference on Software
Engineering, IEEE Computer Society, Washington, DC, 2007, 37-54

[161]Portier B. and Ackerman L., Model Driven Development Misperceptions and Challenges, InfoQ,
http://www.infoq.com/articles/mdd-misperceptions-challenges, 2009

[162]Kovari, Peter, Explore model-driven development (MDD) and related approaches: Applying domain-
specific modeling to Model-Driven Architecture, IBM Technical Library,
http://www.ibm.com/developerworks/library/ar-mdd4/, 2007

[163]Cao, Lan and Ramesh, Balasubramaniam and Rossi, Matti, Are Domain-Specific Models Easier to
Maintain Than UML Models? in IEEE Softw.,4 26, , 19-21

[164]Tanler, Martin, Visualizing WSML using an UML Profile, Univ. of Innsbruck, Digital Enterprise Res. Inst.,
http://www.sti-innsbruck.at/fileadmin/documents/thesis/Wsml2Uml_Final.pdf, 2006

[165]Na, H., Choi, O., and Lim, J., A Method for Building Domain Ontologies based on the Transformation of
UML Models in Proceedings of the Fourth international Conference on Software Engineering Research,
Management and Applications (August 09 - 11, 2006), IEEE Computer Society, Washington, DC, 2006,
332-338

[166]Yuxiao Z., Assmann U. and Sandahl K., OWL and OCL for Semantic Integration, Linkoeping University,
Dep. of Comp. and Inf. Sc., http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.2.7683&rep=rep1&type=pdf, 2004

[167]Timm, J. T. and Gannod, G. C., A Model-Driven Approach for Specifying Semantic Web Services in In
Proceedings of the IEEE international Conference on Web Services, IEEE Computer Society,
Washington, DC, 2005,

[168]Brambilla, M., Ceri, S., Facca, F. M., Celino, I., Cerizza, D., and Valle, E. D., Model-driven design and
development of semantic Web service applications in ACM Trans. Internet Technol.,1 8, 2007, 3

[169]White, Stephen and Miers, Derek, BPMN Modeling and Reference Guide, Future Strategies Inc.,
Lighthouse Pt, FL, 2008

[170]Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M., Designing Data-Intensive
Web Applications, Morgan Kaufmann Publishers Inc., 2002

[171]Pahl C. and Barrett R., Semantic Model-Driven Development of Service-centric Software Architectures
in Proceedings of the SEMSOA Workshop 2007 onSoftware Engineering Methods for Service-Oriented
Architecture, Leibniz University Hannover, Germany, 2007, 31-45

[172]Pahl, Claus, An ontology for software component matching in Int. J. Softw. Tools Technol. Transf.,2 9,
2007, 169-178

[173]V. Peristeras and K. Tarabanis, Reengineering the public administration modus operandi through the
use of reference domain models and Semantic Web Service technologies in 2006 AAAI Spring
Symposium, The Semantic Web meets eGovernment (SWEG), Stanford University, California, USA, ,
2006,

[174]X.Wang et al, WSMO-PA: Formal Specification of Public AdministrationService Model on Semantic
Web Service Ontology in Proceedings of the 40th Hawaii International Conference on System Sciences

189

- 2007, HICSS, 2007, 1-10
[175]V. Peristeras and K. Tarabanis, Reengineering the pub- lic administration modus operandi through the

use of reference domain models and Semantic Web Service technologies in 2006 AAAI Spring
Symposium, The Semantic Web meets eGovernment (SWEG), Stanford University, California, USA, ,
2006,

[176]Vitvar T. and Nazit S. (Ed.), D3.2 - SemanticGov Architecture v2.0, SemanticGov.org,
http://www.semantic-gov.org/index.php?name=UpDownload&req=getit&lid=373, 2007

177: Bernd Stadlhofer, Semantische E-Government Formulare, 2007
[178]Freitter M., Gradwohl N., Denner R., XML-Schema EDIAKT II, E-Government Bund-Laender-

Gemeinden, http://reference.e-government.gv.at/XML-Schema_zu_Ediakt_II__ediak.739.0.html, 2005
[179]J. M. Boyer, D. Landwehr, R. Merrick, T. V. Raman, M. Dubinko, L. L. Klotz Jr., XForms 1.0 (Second

Edition), W3C, http://www.w3.org/TR/xforms/, 2006
[180]J. J. Kratky, K. E. Kelly, K. Wells, S. Speicher, XML Forms Generator, IBM,

http://www.alphaworks.ibm.com/tech/xfg,, 2006
[181]J. Turner, Chiba UserGuide, Chiba Project, http://chiba.sourceforge.net/ChibaUserGuide.pdf, 2008
[182]Terziev I. and Kiryakov A. and Manov D., D1.8.1 Base upper-level ontology (BULO) Guidance, SEKT

Project, http://proton.semanticweb.org/D1_8_1.pdf, 2005
[183]Marin Dimitrov, Alex Simov, Vassil Momtchev, and Mihail Konstantinov, WSMO Studio --- A Semantic

Web Services Modelling Environment for WSMO in 4th European conference on The Semantic Web:
Research and Applications (ESWC '07), Enrico Franconi, Michael Kifer, and Wolfgang May (Eds.),
Springer-Verlag, 2007, 749-758

[184]Vassilios Peristeras, Adrian Mocan, Tomas Vitvar, Sanullah Nazir, Sotirios Goudos and Konstantinos
Tarabanis, Towards Semantic Web Services for Public Administration based on the Web Service
Modeling Ontology (WSMO) and the Governance Enterprise Architecture , DERI,
http://library.deri.ie/resource/YhlntUkT, 2006

[185]Brickley, D. and Miller, L., FOAF Vocabulary Specification 0.98, foaf-project.org,
http://xmlns.com/foaf/spec/20100809.html, 2010

[186]Erich Schweighofer and Andreas Rauber and Michael Dittenbach, International Conference on Artificial
Intelligence and Law in Proceedings of the 8th international conference on Artificial intelligence and law,
ACM, 2001, pp78-87

[187]Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., and Soria, Automatic semantics extraction
in law documents in Proceedings of the 10th international Conference on Artificial intelligence and Law,
ACM, 2005, pp133-140

[188]Heike Wagner-Leimbach and Gerhard Kainz, E-Government Styleguide für E-Fomulare, reference.e-
government.gv.at, http://reference.e-government.gv.at/uploads/media/sg-stg_2_1_1_2010-06-
24_01.pdf, 2010

[189]Keith Donald and Erwin Vervaet and Jeremy Grelle and Scott Andrews and Rossen Stoyanchey, Spring
Web Flow Reference Guide, Springsource, http://static.springsource.org/spring-
webflow/docs/2.3.0.RELEASE/spring-webflow-reference/pdf/spring-webflow-reference.pdf, 2010

[190]Herbert Leitold, Arno Hollosi, and Reinhard Posch, Security Architecture of the Austrian Citizen Card
Concept in Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC '02),
IEEE Computer Society, Washington, DC, USA, 2002, 391-

[191]Peter Salhofer, David Ferbas, A Business Process Engine Based E-Government Platform in Second
International Conference on Internet and Web Applications and Services (ICIW'07), IEEE Computer
Society, Washington, DC, USA, 2007, 54ff

[192]Jesse James Garrett, Ajax: A New Approach to Web Applications, adaptive path,
http://www.robertspahr.com/teaching/nmp/ajax_web_applications.pdf, 2005

[193]Rod Johnson et al., Spring Framework 3.0 Reference Documentation, Springsource.org,
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-
reference.pdf, 2010

190

[194]Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Softwre, Addison Wesley, 1994

[195]Michel Klein and Dieter Fensel and Frank van Harmelen and Ian Horrocks, The relation between
ontologies and XML schemas, Linköping,
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2001/etai01.pdf, 2001

[196]Dieter Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce ,
Springer, 2000

[197]David C. Fallside and Priscilla Walmsley (Eds.), XML Schema Part 0: Primer Second Edition, W3C,
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/, 2004

[198]Paul V. Biron and Ashok Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C,
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/, 2004

[199]Larissa, Naber and Peter, Reichstaedter and Arne, Tauber and Thomas Roessler, Elektronische
Zustellung - Technische Spezifikation 1.2.0 [german] , e-government.gv.at, http://reference.e-
government.gv.at/uploads/media/zusespec_1-2-0_20070425.pdf, 2007

[200]Frank Leymann, Dieter Roller, and Satish Thatte, Goals of the BPEL4WS Specification, OASIS,
http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf, 2003

[201]Alves et al., Web Services Business Process Execution Language Version 2.0 , OASIS,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, 2007

[202]Charlton Barreto et at., Web Services Business Process Execution Language Version 2.0 Primer,
OASIS, http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf, 2007

[203]J. Kohl and C. Neuman, The Kerberos Network Authentication Service (V5), IETF,
http://www.ietf.org/rfc/rfc1510.txt, 1993

[204]L. Zhu, P. Leach, K. Jaganathan and W. Ingersoll, The Simple and Protected Generic Security Service
Application Program Interface (GSS-API) Negotiation Mechanism , IETF,
http://tools.ietf.org/html/rfc4178, 2005

[205]Stabsstelle IKT-Strategie, Spezifikation Module für Online Anwendungen - SP und SS , cio.gv.at,
http://egovlabs.gv.at/docman/view.php/6/20/MOA-SPSS-1.3.pdf, 2005

[206]David Chappell, Enterprise Service Bus: Theory in Practice, O'Reilly Media, 2004
[207]Ron Ten-Hove and Peter Walker, JavaTM Business Integration (JBI) 1.0, JCP,

http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html, 2005

[208]Juan Miguel Gomez, Mariano Rico and Francisco Garc � a-Sanchez, GODO: Goal Oriented Discovery
for Semantic WebServices, GODO, http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.91.4476&rep=rep1&type=pdf, 2006

[209]Valencia-García R., Ruiz-Sánchez J.M., Vivancos-Vicente P.J., Fernández-Breis J.T., and Martínez-
Béjar R., An incremental approach for discovering medical knowledgefrom texts in Expert Systems with
Applications 26,3 26, 2004, 291-299

[210]Soon Ae Chun, Vijayalakshmi Atluri, and Nabil R. Adam, Domain Knowledge-Based Automatic
Workflow Generation in Proceedings of the 13th International Conference on Database and Expert
Systems Applications (DEXA '02), Springer-Verlag, London, UK, 2002, 81-92

[211]S. Bonomi, M. Mecella, D. Pozzi, V. Colaianni, N. Loutas, D6.2 Methodology to Design and Develop
NEGS and PEGS with SWS Technologies, SemanticGov, http://www.semantic-gov.org/index.php?
name=UpDownload&req=getit&lid=549, 2009

[212]Loutas Nikolaos, Peristeras Vassilios, Goudos Sotirios K., Tarabanis Konstantinos, Facilitating the
Semantic Discovery of eGovernment Services: The SemanticGov Portal in EDOC Conference
Workshop, 2007. EDOC apos;07. Eleventh International IEEEVolume, , 2007, pp. 157-164

[213]Maria Perez and Saúl Labajo and Tom Lyons, Citizen meets the new semantic eGovernment revolution
in Proceedings of the eChallenges e-2007 Conference & Exhibition, 24-26 October 2007, The Hague,
Netherlands, echallenges.org, 2007, 1-8

[214]Terregov Project Team, D4.6- Revised Definition of TERREGOV Prototype, terregov.eupm.net,
http://80.14.185.155/egovinterop/www.egovinterop.net/Res/8/D4.6%20-%20Revised%20Definition

191

%20of%20TERREGOV%20Prototype.pdf, 2006
[215]Matthias Born, Christian Drumm, Ivan Markovic, Ingo Weber, SUPER - Raising Business Process

Management Back to the Business Level in ERCIM News,1 70, 2007, 43-44
[216]J. Frankowski, H. Kupidura, P. Rubach, E. Szczekocka, Business Process Management for Convergent

Services Provisioning Using the SUPER Platform in International Conference on Intelligence in service
delivery Networks (ICIN), Bordeaux, France, ICIN Events Ltd, 2008, 1-6

[217]Jörg Nitzsche, Daniel Wutke, Tammo van Lessen, An Ontology for Executable Business Processes in
SBPM 2007Semantic Business Process and Product Lifecycle Management, CEUR, 2007, 1-12

[218]Jörg Nitsche and Tammo van Lessen, BPEL for Semantic Web Services (BPEL4SWS) - final Version ,
SUPER, http://www.ip-super.org/res/Deliverables/M24/D1.10.pdf, 2008

[219]Alessio Carenini and Jörg Nitzsche and Tammo van Lessen, D 4.7 sBPEL to BPEL4SWS Lifting and
Lowering, ip-super, http://www.ip-super.org/res/Deliverables/M24/D4.7.pdf, 2008

[220]P. Bednár, K. Furdík, M. Paralič, T. Sabol, M. Skokan, Semantic integration of government services -
the Access-eGov approachin P. Cunningham, M. Cunningham (Ed.), Collaboration and the Knowledge
Economy: Issues, Applications, Case Studies. Proc. of conference eChallenges 2008, Stockholm,
Sweden, IOS Press, Amsterdam,2008, 22 - 24

[221]R. Klischewski and S. Ukena, Designing semantic e-Government services driven by user requirements
in Electronic Government, 6th International EGOV Conference. Proceedings of ongoing research,
project contributions and workshops (September 3-6, 2007, Regensburg, Germany), Trauner Verlag,
Linz, Austria, 2007, 133-140

[222]Ralf Klischewski, Stefan Ukena, Karol Furdik, Andrzej Marciniak, Jan Hreno and Marek Skokan, D7.1:
Public administration resource ontologies, Access-eGov,
http://www.accessegov.org/acegov/uploadedFiles/webfiles/cffile_2_20_08_5_50_43_PM.zip, 2007

[223]Bednar, P. et al, Semantic Integration of eGovernment Services in Schleswig-Holstein in Electronic
Government, 7th International EGOV Conference, LNCS 5184, Springer, 2008, 315-327

[224]K. Furdík, R. Klischewski, M. Paralič, T. Sabol, M. Skokan, E-Government Service Integration and
Provision Using Semantic Technologies in Electronic Government. Proceedings of Ongoing Research,
General Development Issues and Projects of EGOV 09, 8th International Conference, Linz, Austria,
August 31 - September 3, 2009, Trauner Verlag, Linz, 2009,

[225]Anamarija Leben, Mateja Kunstelj and Marko Bohanec, Evaluation of Life-Event Portals: Trends in
Developing E-Services Based on Life-Events in Proceeding of the 4th European Conference on e-
Government, 17/18 June 2004, ACI, 2004, 1-15

[226] Efthimios Tambouris, Mirko Vintar and Konstantinos Tarabanis, A life-event oriented framework and
platform for one-stop government: The OneStopGov project in Proceedings of Eastern European eGov
days conference. (19-21 April, Prague), OCG, 2006,

	1 Motivation & Research Question
	2 The Semantic Web
	2.1 Ontologies
	2.2 Open vs. Closed World Assumption

	3 Semantic Web Technologies
	3.1 Resource Description Framework – RDF
	3.1.1 RDF Abstract Syntax
	3.1.2 RDF XML Syntax
	3.1.3 RDF Schema – The RDFS Vocabulary
	3.1.3.1 RDFS Classes
	3.1.3.2 RDF Properties

	3.1.4 RDF Semantics
	3.1.4.1 Interpretation
	3.1.4.2 Entailment
	3.1.4.3 RDF Vocabulary Interpretation
	3.1.4.4 RDFS Interpretation
	3.1.4.5 Entailment Rules

	3.1.5 Conclusions

	3.2 The Web Ontology Language (OWL)
	3.2.1 SHOE
	3.2.2 OIL
	3.2.3 DAML
	3.2.4 OWL Language Variants
	3.2.5 Important OWL Constructs
	3.2.5.1 OWL Classes
	3.2.5.2 OWL Properties
	3.2.5.3 Property Restrictions

	3.2.6 Discussion

	3.3 OWL 2
	3.3.1 Syntaxes
	3.3.2 OWL 2 Features
	3.3.2.1 Negative Property Assertions
	3.3.2.2 Qualified Cardinality Restrictions
	3.3.2.3 Property Chain Inclusion
	3.3.2.4 Keys

	3.3.3 OWL 2 Sub-Languages
	3.3.3.1 OWL EL
	3.3.3.2 OWL QL
	3.3.3.3 OWL RL

	3.3.4 Discussion

	3.4 The Web Service Modeling Language WSML
	3.4.1 WSML Syntax and Structure
	3.4.2 WSML Semantics
	3.4.2.1 WSML DL Extension
	3.4.2.2 WSML Core, Flight and Rule Semantic

	3.5 Comparing OWL and WSML
	3.5.1 The WSML Solution
	3.5.2 The OWL Solution
	3.5.3 Comparison of Results

	4 Semantic Web Services
	4.1 Web Services
	4.1.1 WSDL 1.1
	4.1.2 WSDL 2.0

	4.2 Semantic Markup for Web Services (OWL-S)
	4.2.1 Service Profiles
	4.2.2 Service Model
	4.2.3 Service Grounding

	4.3 Semantic Web Service Framework (SWSF)
	4.4 Web Service Modelling Ontology (WSMO)
	4.4.1 The WebService Element
	4.4.2 The Goal Element
	4.4.3 WSMO Grounding

	4.5 Comparison
	4.5.1 Goal based discovery
	4.5.2 Service Choreography
	4.5.3 Service Execution
	4.5.4 Summary

	5 Model Driven Architecture
	5.1 Idea/Motivation
	5.1.1 Computational Independent Model
	5.1.2 Platform Independent Model
	5.1.3 Platform Specific Model
	5.1.4 Model Transformation

	5.2 	Meta Object Facility (MOF)
	5.3 Object Constraint Language (OCL)
	5.3.1 Invariants
	5.3.2 Pre- and Postconditions
	5.3.3 Initial and Derived Values
	5.3.4 Operation Body Expressions

	5.4 	Ontology Definition Metamodel (ODM)
	5.5 Discussion

	6 Ontology Modelling
	6.1 General Ontology Modelling Guidelines
	6.2 Governance Enterprise Architecture (GEA)
	6.2.1 GEA Object Model for Service Provisioning

	6.3 Discussion

	7 Ontology Driven E-Government
	7.1 Initial Feasibility Study
	7.1.1 Prototype Requirements and Example Scenario
	7.1.2 Semantic Service Model and Ontologies
	7.1.3 Generating Forms to Access the Permanent Parking Permit Service
	7.1.4 Lessons Learned

	7.2 Technology Selection
	7.3 Meta-Model
	7.3.1 How to create the ODEG meta-model
	7.3.2 WMSO-PA – An WSMO implementation of GEA-PA
	7.3.3 GEA-SeGoF – Specialising WSMO/GEA-PA
	7.3.4 PersonData Ontology

	7.4 Service Locator
	7.4.1 Selecting a Desire
	7.4.2 Refining a Desire
	7.4.3 The Service Finding Algorithm

	7.5 Semantic Forms
	7.5.1 Determining Required Service Input
	7.5.2 Rendering the Electronic Forms
	7.5.3 Marking the Model

	7.6 Auxiliary Service Modelling
	7.6.1 The Auxiliary Service Ontology
	7.6.2 Implementing Auxiliary Services
	7.6.3 Enabling Auxiliary Services

	7.7 WSDL and XSD Generation
	7.7.1 Converting Ontologies to XML Schema
	7.7.2 Generation of WSDL Files

	7.8 Implementing ODEG web services
	7.9 The Big Picture

	8 Related Work
	8.1 Goal Oriented Discovery for Semantic Web Service
	8.2 Domain Knowledge-Based Automatic Workflow Generation
	8.3 SemanticGov
	8.4 TerreGov
	8.5 SUPER - Semantics Utilized for Process management within and between Enterprises
	8.6 Access-eGov

	9 Conclusion & Outlook

		http://www.signature-verification.gv.at
	PDF-AS
	Information about the verification can be found at http://www.signature-verification.gv.at

