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wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, am ............................... ................................................................

(Unterschrift)

I





Kurzfassung

Zeitvariante Systeme treten in vielen Bereichen der Signalverarbeitung auf. Sofern das

zeitvariante Verhalten des Systems unerwünscht ist, erzeugt das System ein verfälschtes

Ausgangssignal. Dedizierte zeitvariante Systeme können mit dem ursprünglichen System

kaskadiert werden, um die Auswirkung des unerwünschten zeitvarianten Verhaltens auf

das Ausgangssignal zu korrigieren. In Anwendungen, in denen mit hoher Genauigkeit kor-

rigiert werden soll, stellt der Rechenaufwand für den Entwurf und Einsatz von flexiblen

digitalen Korrektursystemem eine Herausforderung dar. Dieser Rechenaufwand ist im Be-

sonderen problematisch, wenn das Korrektursystem zur Laufzeit für jeden Zeitpunkt neu

entworfen werden muss. In dieser Arbeit werden Methoden mit geringer Komplexität für

den Entwurf von linearen zeitvarianten Korrekturfiltern vorgestellt. Diese Korrekturfilter

können lineare zeitvariante Systeme sowohl vor- als auch nachbearbeiten. Um den Rechen-

aufwand zu verringern, wurde ein Algorithmus mit geringer Komplexität für die Methode

der kleinsten Quadrate entwickelt, der Vorwissen für den Enwurf nutzt und sowohl für die

Vor- als auch für die Nachverarbeitung verwendet werden kann. Weiterhin wurden Struk-

turen zur Korrektur von schwach zeitvarianten linearen Systeme vorgestellt. Der Einsaz

dieser Stukturen ermöglicht eine starke Verringerung des Rechenaufwands, der für einen

neuen Entwurf des Korrektursystems notwendig ist, jedoch zu einer größeren Komplexität

der Korrekturstruktur führt. Zuletzt wird die Erweiterung des zuvor genannten Prinzips

auf schwach zeitvariante Volterra Systeme untersucht.
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Abstract

Time-varying systems are encountered in various fields of engineering. If the time-varying

behavior of a system is undesired, it produces a distorted output signal. Dedicated time-

varying systems can be cascaded with the original system to correct the impact of the

undesired time-varying behavior on the output signal. In applications where a high re-

construction accuracy is important, the computational cost of designing and employing

flexible digital correction systems remains challenging. In particular, the computational

load becomes a major challenge if the digital correction system needs to be redesigned for

each time instant. In this thesis, low complexity correction methods for the design of linear

time-varying correction filters are presented. These filters can be applied to postcorrect or

precorrect linear time-varying systems. In order to mitigate the computational complexity

of the filter design, a low complexity filter design algorithm for the least-squares norm is

derived which exploits prior knowledge for the design and can be applied to postcorrect

or precorrect linear time-varying systems. Furthermore, correction structures for weakly

time-varying linear systems are presented. Employing these structures provides a signif-

icant reduction of the computational effort, that is required to redesign the correction

system, at the expense of an increased complexity of the correction structure. Finally, the

extension of the latter concept to time-varying Volterra systems is explored.
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1
Introduction

Linear systems are encountered in various technical areas, e.g., in the field of mixed-signal

processing, automatic control and communications theory to characterize components in

the signal processing chain [1–5]. Although time-invariant systems are employed in many

technical areas for their superior properties, specific applications do require to take time-

varying behavior into account, e.g., in wireless communication systems [5, 6]. In this

thesis, time-varying systems are investigated whose impact on the signal is undesired,

and the compensation of this impact is required to ensure a desired signal quality [7–9].

Correction schemes can be found in different mixed signal applications, e.g., in terms

of the equalization of linear time-varying communication channels [10] and the digital

enhancement of time-varying analog circuits [11] such as time-interleaved analog-to-digital

converters (TIADCs) [9, 12]. In the first application, the equalization of communication

channels benefits from the robustness of digital modulation against noise which promoted

the success of wireless communication systems [13]. As analog systems lack this inherent

robustness, the digital enhancement of analog systems proves to be demanding since even

a small mismatch of the corrected system from an ideally corrected system results in

a considerable degradation of the performance [14, 15]. This problem is aggravated by

an undesired time-varying behavior of the analog system as it reduces the spurious-free

dynamic range (SFDR) of the system’s output signal [16].

On the system level, the interaction of a time-varying digital or analog system and

a dedicated time-varying correction filter can be represented as a cascade of two time-

varying systems [8]. In this context, the correction of the undesired system is performed by

designing the correction filter, i.e., the cascade system exhibits the desired characteristic,

e.g., an all-pass behavior in the frequency band of interest [9]. As the technological progress

of analog building blocks proceeds less rapidly than the progress of digital circuitry [11],

the digital enhancement of analog systems becomes increasingly attractive. Furthermore,

digitally assisted circuits are a promising approach to improve the performance of analog

1



1.2 Outline of the Thesis and Main Contributions

systems and to follow the trend to replace analog with digital circuitry as typified in the

software-defined radio concept [17]. Thus, the correction of undesired linear systems plays

an important role in modern communication systems alleviating the performance penalty

introduced by non-ideal analog circuits. Moreover, a low complexity implementation of the

correction scheme is important for the overall system’s power consumption and integration

in an existing system.

1.1 Scope of the Work

The objective of this work is to develop low complexity structures which facilitate the

correction of time-varying systems. Different figures of merit are used to evaluate these

structures with respect to their ubiquitous application, reconstruction performance, im-

plementation complexity and design complexity. The first figure of merit regards the

application of the developed structures in mixed-signal scenarios and considers possible

constraints which have to be imposed on the time-varying system for a given structure.

Additionally, the ability of structures to precorrect and postcorrect a time-varying sys-

tem is considered. The reconstruction performance of the correction structure refers to

the ability to suppress undesired signal components that are induced by the time-varying

system. Furthermore, the computational complexity of these structures is considered in

terms of their implementation complexity, which is mainly determined by the number of

multipliers and adders of the filters comprised in a correction structure. Moreover, the

design complexity evaluates the computational effort required to redesign the correction

structure with respect to the time-varying behavior of the system that is to be corrected.

Different correction structures and methods for their design and adaption are developed

in this thesis and their performance is assessed. To this end, simulation environments are

developed in Matlab c© to evaluate the aforementioned figures of merit. Filter designs are

performed by utilizing the Matlab software CVX for solving convex optimization problems

[18] unless stated otherwise. Furthermore, a fixed point implementation framework is

developed and utilized to investigate the stability of a proposed recursive filter design

algorithm.

1.2 Outline of the Thesis and Main Contributions

System Models In Chapter 2, mathematical representations of time-varying systems are

presented. To this end, the concepts of time-varying filters, polynomial impulse

response filters, modulator banks, filter banks and the requirements for their equiv-

alence are introduced. These representations provide a foundation for the following

2



1.2 Outline of the Thesis and Main Contributions

chapters of this thesis. Thus, correction schemes can be derived based on the most

suitable framework for a given problem, and the most favorable implementation of

the developed correction scheme can be chosen based on its implementation and

design complexity.

Correction of Linear Time-varying Systems In Chapter 3, a framework for the design of

time-varying filters of finite impulse response (FIR) type is presented. This frame-

work treats both the precorrection and postcorrection scenario and yields the same

cost function as the postcorrection method proposed in [19]. The presented correc-

tion methods provide a powerful and versatile approach to correct non-periodically

time-varying systems by performing a dedicated filter design for each time instant.

The filter order and the filter design norm can be adapted for each individual filter

design in order to meet the application’s requirements. To alleviate the computa-

tional burden introduced by the filter design process, a low complexity filter design

algorithm for the least-squares norm is derived which can be applied to postcorrect

and precorrect linear time-varying systems, respectively. Moreover, the proposed

filter design algorithm is analyzed in terms of its stability and computational com-

plexity. To allow a comparison of the presented algorithm, a reference algorithm

is presented whose computational complexity is identical to the complexity of the

algorithms presented in [9] and [20]. In this comparison, the proposed algorithm

proves to be more computationally efficient than the algorithms presented in [9], [20]

and [21]. Furthermore, a system model for the precorrection of a digital-to-analog

converter employing non-uniform zero-order-hold (ZOH) signals is introduced which

complements the postcorrection of analog-to-digital converters in [22]. Moreover,

the presented application example extends the precorrection of non-uniformly time-

varying ZOH signals from the periodic case as presented in [23] to the non-periodic

case. The work that is presented in this chapter is related to the following publica-

tions:

o M. Soudan, and C. Vogel, On the Correction of Linear Time-varying Systems

by Means of Time-varying FIR Filters, Proceedings of the 54th Midwest Sym-

posium on Circuits and Systems, MWSCAS, August 2011 [24].

o M. Soudan, and C. Vogel, Low Complexity Least Squares Filter Design for the

Correction of Linear Time-varying Systems, Proceedings of the 20th European

Conference on Circuit Theory and Design, ECCTD, August 2011 [25].

Correction Structures for Weakly Time-Varying Systems In Chapter 4, structures for

the correction of weakly time-varying systems are derived. The utilized structures

3



1.2 Outline of the Thesis and Main Contributions

are constituted by a cascade of correction stages which gradually reduce the error

induced by the weakly time-varying system. Furthermore, a condition for weakly

time-varying systems is presented which can be easily evaluated in real-time appli-

cations. The presented structures can be applied in weakly time-varying scenarios,

where the design complexity of the filter design based correction scheme, as pre-

sented in Chapter 3, can not be afforded. The proposed precorrection structure

complements postcorrection structures that have been presented in [26–29]. By es-

tablishing the commutativity of the precorrection structure and the undesired linear

system, results regarding reconstruction performance, conditions for convergence and

computational complexity, as presented in [26–29], can directly be applied to the pro-

posed precorrection structure. Additionally, the viability of the proposed structures

is demonstrated via the precorrection of non-uniform ZOH signals by an explicit

filter design of FIR correction filters. Moreover, a modified Farrow filter structure

is developed which can be redesigned by tuning a few time-varying multiplies only.

Applying this Farrow filter in the precorrection structure, a further reduction of the

design complexity is achieved. The resulting precorrection structure complements

the mixed-signal postcorrection scenarios in [30, 31]. The work that is presented in

this chapter is related to the following publications:

o M. Soudan, and C. Vogel, Correction Structures for Linear Weakly Time-

Varying Systems, Transactions on Circuits and Systems, Resubmitted after

Minor Revision, 2011.

o M. Soudan, and C. Vogel, On the Correction of Linear Time-varying Systems

by Means of Time-varying FIR Filters, Proceedings of the 54th Midwest Sym-

posium on Circuits and Systems, MWSCAS, August 2011 [24].

Correction of Weakly Time-Varying Volterra Systems In Chapter 5, the extension of

the principles as presented in Chapter 4 to nonlinear systems is explored as an

outlook for future research. To this end, the definition of the Pth-order inverse is

extended to time-varying Volterra systems to provide a reference correction scheme.

To alleviate the design complexity of the time-varying Pth-order inverse, structures

based on fixed point iteration methods are proposed to correct Volterra systems

with weakly time-varying linear components. A discussion of continuative research

concludes this chapter.

Conclusion In Chapter 6, a summary of the presented work is given.
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2
System Models for Time-Varying Systems

2.1 Introduction

Time-varying linear systems can be divided into non-periodically and periodically time-

varying systems, where the latter class of systems exhibits periodically recurring behavior

[32]. Non-periodically time-varying systems have been applied in various areas, e.g. for

the parameter estimation of autoregressive processes, in the equalization of multichannel

FIR systems [33, 34] and to characterize analog systems exhibiting time-varying behavior,

i.e., TIADCs [1, 16, 35]. Deterministic and statistical mathematical models have been

proposed in the literature to represent the behavior of time-varying systems [3–5, 26]. In

this chapter, the focus will be on a deterministic description of time-varying FIR filters,

polynomial impulse response FIR filters, modulator banks and filter bank representations

of M -periodically time-varying systems [19, 26, 36]. Furthermore, the requirements for

the equivalence of these representations will be investigated.

2.2 Time-Varying FIR Filter

The output y[n] of a time-varying system can be represented as the convolution of the

input signal x[n] with the filter’s time-varying finite impulse response hn[k] at a given time

instant n [19], i.e.,

y[n] =

∞∑

k=−∞
hn[k]x[n− k]. (2.1)

A block diagram illustrating the signal flow for the time-varying FIR filter is illustrated

in Fig. 2.1. In a scenario, where the impulse response hn[k] recurs with a period M , i.e.,

hn[l] = hn+M [l], the respective time-varying filter will be referred to as M -periodically

time-varying filter.
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2.2 Time-Varying FIR Filter

x[n] y[n]
hn[k]

Figure 2.1 Time-varying FIR filter.

A polynomial expansion of the impulse response of a linear time-varying system can

be performed in terms of the spectral parameter λ as first proposed in [37]. To this end,

each coefficient of the overall time-varying filter structure can be represented in terms of

a polynomial in λ, i.e.,

ĥ[k, λ] =
L∑

l=0

bl[k] λl, (2.2)

where bl[k] indicate the time-invariant coefficients of the subfilter with index l. Depending

on the given application, the coefficients of these L+1 subfilters could be either real-valued

as for the approximation of variable delay elements as presented in [37] or complex-valued,

e.g., for the processing of bandpass signals or in array signal processing applications [38].

In both cases, a time-varying behavior of the filter can be achieved without performing a

redesign of the time-invariant subfilters by updating the parameter λ in (2.2) in accordance

with a time-varying model parameter. Therefore, for model parameters with periodically

recurring values, a periodically time-varying filter can be obtained. The overall Farrow

structure is depicted in Fig. 2.2.

B0(e
jω)

B1(e
jω)

Bl(e
jω)

BL(e
jω)

λ

λ

λ

x[n] y[n]

Figure 2.2 Farrow structure comprising L+ 1 time-invariant FIR filters.
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2.3 Modulator Banks

2.3 Modulator Banks

A viable form of implementing M -periodically time-varying systems are modulator banks

[26]. As the periodically time-varying system’s impulse response hn[l] is periodic in l, it

may be represented in terms of the discrete-time Fourier series (DTFS) pair [26]

h̆k[l] =
1

M

M−1∑

m=0

hm[l]e−jkm
2π
M (2.3)

and

hm[l] =

M−1∑

k=0

h̆k[l]e
jkm 2π

M . (2.4)

Using (2.4) to rewrite the time-varying filtering operation in (2.1), we obtain

y[n] =

∞∑

l=−∞

M−1∑

k=0

(
h̆k[l]x[n− l]

)
ejkn

2π
M . (2.5)

Taking the discrete-time Fourier transform of (2.5), the frequency response of the time-

varying filter output is given as [26]

Y (ejω) =
M−1∑

k=0

H̆k

(
ej(ω−k

2π
M )
)
X
(
ej(ω−k

2π
M )
)
, (2.6)

where shifted images of the frequency response of the input signal X(ejω) and the filter

H̆k(e
jω) are multiplied and added to yield the spectrum of the output signal of the modu-

lator bank Y (ejω). In order to synthesize an equivalent implementation of (2.6), the input

signal is processed by the time-invariant filter characterized by H̆k(e
jω), and the resulting

signal is modulated via a complex exponential series ejkn
2π
M . Repeating this processing

for all occurring values of k and summing the individual outcomes, a modulator bank

implementation as shown in Fig. 2.3 can be derived [26].

2.4 Filter Banks

2.4.1 Preliminary

Filter banks constitute a type of multirate system, where the input signal is passed through

a set of time-invariant analysis filters, the sampling rate of the system is altered consec-

utively, and the resulting signals are processed by a set of time-invariant synthesis filter

before they are summed up in the final step. The alteration of the sampling rate can

be performed by two basic building blocks of multirate systems. The first building block

7



2.4 Filter Banks

H̆1(e
jω)

H̆0(e
jω)

H̆M−1(e
jω)

y[n]

ej1
2π
M

n

ej(M−1) 2π
M

n

x[n]

Figure 2.3 Modulator bank model of a time-varying filter employing M

time-invariant filters [26].

is a downsampler and utilized to decrease the sampling rate of the system by a factor

of Q, i.e., the resulting frequency is ω̃s = ωs
Q . The second block increases the sampling

rate by a factor of P , i.e., the resulting frequency results in ω̃s = ωsP , and is referred to

as an upsampler. A configuration of these two blocks is depicted in Fig. 2.4, where the

frequency response of the downsampled signal vq[n] can be calculated as [39]

Vq(e
jω) =

1

Q

Q−1∑

k=0

Uq(e
j
(
ω−k2π
Q

)
). (2.7)

The subsequent upsampling block increases the angular frequency by a factor of P , i.e.,

Wq(e
jω) = Vq(e

jωP ), and the frequency response of the final output signal wq[n] results in

Wq(e
jω) =

1

Q

Q−1∑

k=0

Uq(e
j
(
ωP
Q
− k2π

Q

)
). (2.8)

If the employed downsampling factor, upsampling factor and number of utilized signal

PQ

Wq(e
jω)Uq(e

jω) Vq(e
jω)

Figure 2.4 Downsampling and upsampling blocks altering the sampling rate

of the input signal.

branches in the filter bank have an identical value, the resulting structure is called a

maximally decimated filter bank. For a M -channel maximally decimated filter bank, the

discrete-time Fourier transform (DTFT) of the output signal of the upsampling block

results in [39]

Wm(ejω) =
1

M

M−1∑

k=0

Um(ej(ω−k
2π
M )) (2.9)
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2.4.2 Connection to Time-varying Filter

with 0 ≤ m ≤M − 1. This type of filter bank is of interest as it allows for the description

of M -periodically time-varying filters by means of multirate theory.

2.4.2 Connection to Time-varying Filter

The connection between periodically time-varying filters and filter banks can be found in

[19, 39]. The following derivation shows the relationship between modulator banks and

filter banks. To this end, the DTFT of the time-varying filter output, as presented in (2.6),

can be reformulated based on the M -periodic property of the time-varying system which

is valid both in the frequency and in the time domain [26]. We introduce an equivalent

frequency domain representation of the DTFS pair in (2.3) and (2.4) by calculating their

respective DTFTs which results in

H̆k(e
jω) =

1

M

M−1∑

m=0

Hm(ejω)e−jkm
2π
M (2.10)

and

Hm(ejω) =

M−1∑

k=0

H̆k(e
jω)ejkm

2π
M . (2.11)

Rewriting (2.6) using (2.10), we obtain

Y (ejω) =
1

M

M−1∑

m=0

M−1∑

k=0

X(ej(ω−k
2π
M

))Hm(ej(ω−k
2π
M

))e−jkm
2π
M . (2.12)

Expanding (2.12) with the term ejωme−jωm, the DTFT of the output signal becomes

Y (ejω) =
1

M

M−1∑

m=0

M−1∑

k=0

X(ej(ω−k
2π
M

))Hm(ej(ω−k
2π
M

))ej(ω−k
2π
M

)m e−jωm. (2.13)

The relation in 2.13 can be reformulated, i.e., the output depends on the downsampled

and upsampled signals Wm(ejω) by

Y (ejω) =
M−1∑

m=0

Wm(ejω)e−jωm, (2.14)

where the output of the upsampling blocks Wm(ejω) is given as

Wm(ejω) =
1

M

M−1∑

k=0

X(ej(ω−k
2π
M

))Hm(ej(ω−k
2π
M

))ej(ω−k
2π
M

)m. (2.15)

In order to derive a multirate implementation, the relation in (2.15) is compared with

(2.9), which results in the identity

Um(ejω) = X(ejω)Hm(ejω)ejωm. (2.16)

9



2.4 Filter Banks

Inspection of (2.16) reveals that the input signal um[n] of each downsampling block needs

to be preprocessed by the cascade of the time-invariant filters Hm(ejω) and ejωm. The

M cascades of these filters constitute the analysis part of the maximally decimated filter

bank. The synthesis part of the filter bank is described by the relation in (2.14), where the

output of the upsamplers are postprocessed by all-pass filters. A multirate implementation

of the overall M -channel maximally decimated filter bank is shown in Fig. 2.5 [19].

10



2.4.2 Connection to Time-varying Filter
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2.5 Concluding Remarks

2.5 Concluding Remarks

The concepts of time-varying filters, polynomial impulse response filters, modulator banks,

filter banks and the requirements for their equivalence have been presented in this chapter.

These representations provide the means for implementing a periodically time-varying

system choosing the most favorable form of representation in terms of its design complexity

in a given application. Different form of implementation could also be employed in order

to reduce the implementation complexity of the chosen representation, e.g., the Farrow

structure implementation employing signed power-of-two coefficients [40] or the polyphase

implementation of filter banks [39].

12



3
Correction of Linear Time-Varying Systems

3.1 Introduction

Linear systems can be classified in time-invariant and time-varying systems, where the

latter class offers a more general representation. Time-varying systems can be further

divided into non-periodically and periodically time-varying systems, where the second type

of system can be used to characterize the recurring behavior of physical devices [1, 41]. If

the impact of a linear system on the signal is undesired, an additional linear correction filter

may be introduced in order to precorrect or postcorrect the undesired system’s output.

In this case, two types of complexity can be identified. The implementation complexity is

determined by the computational complexity of the correction filter, whereas the design

complexity refers to the computational effort required to compute the coefficients of the

correction filter.

A means of performing the correction of linear systems are adaptive filters [42]. In this

scheme, a desired signal is required to determine the error of the adaptation process [7].

This error signal is in turn processed by an algorithm which adapts the coefficients of the

correction filter. Various algorithms with different design complexities and convergence

behaviors are available to perform the adaptation of the correction filter, e.g., the least-

squares or the recursive least-squares algorithm [42]. An adaptive system is illustrated

in Fig. 3.1, where the adaptive correction filter is indicated by the equalizer block which

postcorrects the undesired linear system.

In the absence of a desired signal, a different scheme can be employed which is based on

the explicit design of the correction filter as illustrated in Fig. 3.2 for the postcorrection

case. In this filter design based correction scheme, a dedicated functional block calculates

the coefficients of the correction filter by performing a filter design process. This functional

block computes the filter coefficients based on a characterization of the undesired linear

system. The respective characteristics of the undesired linear system could be its impulse

13



3.1 Introduction

Adaptation

Algorithm

signal

equalizedLinear

System

input

signal
Equalizer

signal

error

desired

signal

Figure 3.1 Adaptive equalizer performing a postcorrection of a linear system

[42].

response, DTFT or model parameters, e.g., the cut-off frequency of a low-pass filter. The

characteristics of the undesired system are either provided by an additional functional

block performing a blind identification [43] or are simply known a-priori, e.g., via an

offline calibration process [21]. For time-invariant systems, various techniques exist to

calculate the correction filter as the inverse filter of the undesired system, either exactly,

e.g., for minimum-phase systems [44], or via an approximation according to a specified

error criterion [9, 45, 46]. Schemes for the correction of periodically time-varying systems

have been proposed in [47] and [36] which alleviate the impact of non-uniform sampling

employing multirate theory. A structure for precorrecting 2-periodically non-uniform ZOH

signals of digital-to-analog converters (DACs) has been proposed in [48], and the digital

compensation of in-band spurious tones was presented in [23] for the M -periodic case.

In [9], a method has been presented which can be used for the design of FIR correction

filters postcorrecting non-periodically time-varying systems. This is achieved by perform-

ing a dedicated filter design of the correction filter for each time instant according to a

specified error norm.

Corretion

Filter

Linearinput

signal signal

orreted

harateristis of

linear system

Filter

Design

System

Figure 3.2 Correction scheme performing a postcorrection of a linear system

based on an explicit filter design process.
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3.1.1 Problem Statement

3.1.1 Problem Statement

The filter design based correction scheme exhibits a high design complexity and generates

a high computational load since matrix inversions have to be performed or optimization

problems need to be solved in the filter design process [9, 21, 45]. For time-invariant

systems and periodically time-varying systems, this computational load might be accept-

able as the filter design can be performed offline. The filters compensating periodically

time-varying systems can be updated during operation employing sets of offline calculated

coefficients [21, 49]. In non-periodically time-varying scenarios, e.g., scenarios where the

linear system continuously changes its characteristics during operation, the correction fil-

ter has to be continuously redesigned to meet the desired compensation performance. A

method for the design of correction filters has been presented in [22] for the postcorrection

scenario only. An example of how the performance of a time-varying system, which is

enhanced by an offline designed correction system, may deteriorate due to drift can be

found in [21].

3.1.2 Contributions

In this chapter, methods for designing time-varying FIR filters are presented that can

precorrect or postcorrect linear non-periodically time-varying systems. Moreover, a low

complexity algorithm for the least-squares design of these time-varying FIR filters is pro-

posed that can be applied to the precorrection and postcorrection scenario, respectively.

The contribution are listed in more detail as

a) Two methods for the design of time-varying FIR correction filters are presented.

The first proposed precorrection method can be applied to enhance the performance of

non-periodically time-varying systems. The second presented postcorrection method com-

plements the precorrection case and provides the same cost function as given in [19],

however, its derivation is different and presented for the sake of completeness.

b) An algorithm for the least-squares design of a time-varying correction filter is pro-

posed. Employing this algorithm, each coefficient vector of the time-varying filter of length

K can be obtained without resorting to computationally expensive matrix operations in

the filter design which would result in a complexity of O(RK2), with R ≥ K. Instead,

the filter design is determined by utilizing results from the previous filter design which

achieves a complexity of O(RK) and significantly reduces the computational complexity

of existing algorithms, i.e., [9, 20, 21].

c) A continuous-time system model of a DAC employing non-uniform ZOH signals is

introduced. To facilitate the digital precorrection, a discrete-time system model of the

ZOH is devised, and a time-varying filter representation is introduced. The presented
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3.2 Precorrection

scheme complements the postcorrection of analog-to-digital converters (ADCs) presented

in [22]. Furthermore, the presented application example extends the precorrection of non-

uniformly time-varying ZOH signals from the periodic case as presented in [23] to the

non-periodic case.

3.2 Precorrection

In this section, a method for the design of a correction filter hn[k] preprocessing an unde-

sired time-varying system gn[k], as illustrated in Fig. 3.3, is presented. To this end, the

output of the correction filter y[n] is described as the convolution of the input signal x[n]

with its time-varying impulse response hn[k], i.e.

y[n] =

∞∑

k=−∞
hn[k]x[n− k]. (3.1)

Consecutively, the precorrected signal y[n] is processed by the undesired time-varying

system gn[k] resulting in

x̂[n] =
∞∑

k=−∞
gn[k]y[n− k]. (3.2)

Rewriting (3.2) with (3.1), the reconstructed output of the overall system x̂[n] may be

represented as

x̂[n] =
∞∑

k=−∞
fn[k]x[n− k] (3.3)

where fn[k] is the impulse response of the two cascaded time-varying systems given as [7]

fn[k] =

∞∑

l=−∞
gn[l]hn−l[k − l]. (3.4)

A block diagram illustrating the signal flow for the cascade of the two time-varying systems

is depicted in Fig. 3.3. Calculating the DTFT of (3.4) results in a representation of the

gn[k]hn[k]
y[n] x̂[n]

fn[k]

x[n]

Figure 3.3 Block diagram illustrating the signal flow for a cascade of two

time-varying systems.

cascaded system that can be used for the design of a time-varying postcorrection filter
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3.2 Precorrection

as has been shown in [19]. For the precorrection case, a more complicated derivation is

required. The DTFT of the cascaded system has to be expressed as a function of the

impulse response of the precorrection filter and the DTFT of the subsequent time-varying

system. In order to allow for the calculation of the DTFT of the cascaded system and

the second time-varying system, the index controlling the time-varying behavior of the

precorrection filter has to depend only on the discrete time n. To ensure this property

prior to the calculation of the Fourier transform, the impulse response of the cascaded

system in (3.4) has to be rewritten using the transform pair

gn[k] = ĝn−k[k] (3.5)

ĝn[k] = gn+k[k] (3.6)

as

fn[k] =

∞∑

l=−∞
ĝn−l[l]hn−l[k − l]. (3.7)

By substituting the indexes p = k − l and l = k − p, we get

fn[k] =

∞∑

p=−∞
hn−k+p[p]ĝn−k+p[k − p]. (3.8)

Shifting the time index of fn[k] to fn+k[k] yields

fn+k[k] =

∞∑

p=−∞
hn+p[p]ĝn+p[k − p] (3.9)

and applying (3.6) to the terms fn+k[k] and hn+p[p] in (3.9), results in

f̂n[k] =

∞∑

p=−∞
ĥn[p]ĝn+p[k − p]. (3.10)

By calculating the DTFT of (3.10), we obtain the frequency response of the cascaded

system for each time instant n as

F̂n(ejω) =

∞∑

p=−∞
ĥn[p]Ĝn+p(e

jω)e−jωp. (3.11)

The relationship in (3.11) exhibits favorable properties. First, to characterize F̂n(ejω)

at the time instant n, the impulse response ĥn[p] can be treated as being time-invariant

which simplifies the design of the correction filter. Second, for the design of an FIR filter

with K coefficients, K − 1 states of Ĝn(ejω) are sufficient to determine F̂n(ejω). In order
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3.3 Postcorrection

to yield a cost function, an error function is defined as the deviation of F̂n(ejω) from a

desired frequency response D̂n(ejω) as

Ên(ejω) = F̂n(ejω)− D̂n(ejω) (3.12)

which is in turn used to formulate a filter design problem similar as in the time-invariant

case [19, 45] as

min ||Ên(ejω)||ne for ω ∈ ωD (3.13)

for a design domain ωD and error norm ne. By solving the optimization problem in (3.13)

[45], an FIR filter design of ĥn[k] for the time instant n is performed. Applying the relation

in (3.5) to the resulting design, we obtain hn[k].

3.3 Postcorrection

In order to yield a cost function for the design of the postcorrection filter gn[l], we calculate

the DTFT of (3.4) as [19]

Fn(ejω) =

∞∑

l=−∞
gn[l]Hn−l(e

jω)e−jωl. (3.14)

which complements the filter design for the precorrection scenario in (3.11). As in the

precorrection case, (3.14) does not rely on a periodically time-varying behavior of the

undesired time-varying system. Furthermore, Fn(ejω) can be characterized for each time

instant n by only resorting to present or past states of Hn(ejω). Analogously to the

precorrection case, the cost function is given as [19]

En(ejω) = Fn(ejω)−Dn(ejω), (3.15)

and the filter design is obtained by minimizing

min ||En(ejω)||ne for ω ∈ ωD (3.16)

for a design domain ωD and error norm ne. Employing the designed postcorrection filter

in (3.14), the cascade of the undesired time-varying system and of the correction filter

approximates Dn(ejω). If it is desired to compensate the impact of hn[l], then Dn(ejω)

can be chosen time-invariant as an all-pass filter with a group delay that equals the sum of

the delay of the undesired time-varying system and of the correction filter. However, the

presented relations are not limited to this time-invariant case as the designer may select

Dn(ejω) to be time-varying and thus an arbitrary time-varying behavior of the cascaded

system could be generated.
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3.4 Low Complexity Least-Squares Filter Design

3.4 Low Complexity Least-Squares Filter Design

3.4.1 Problem Statement

Before introducing a new low complexity filter design algorithm, an algorithm for the

least-squares design of a time-varying correction filter gn[k] is presented. This algorithm

provides an alternative derivation of the relation presented in [9] for the least-squares error

norm. The obtained algorithm will serve as a means of comparison with the proposed

low complexity filter design algorithm. This algorithm will also be referred to as the

reference algorithm. Without loss of generality only the postcorrection case is considered

in the following. The application of the presented theory to the precorrection case is

straightforward and changes which have to be performed to the presented framework will

be outlined in the mixed-signal application example in Section 3.5.

The discrete-time Fourier transform of (3.4) can be represented as

Fn(ejω) =

K−1∑

l=0

Mn,l(e
jω) gn[l] (3.17)

with

Mn,l(e
jω) = e−jωlHn−l(e

jω) (3.18)

which provides an alternative formulation of the design equation given in (3.14). In order

to allow for a least-squares design of the correction filter, the cost function [46]

J(gn[0], . . . , gn[K − 1]) =

∫

ω∈ωD

|En(ejω)|2dω (3.19)

is introduced with ωD specifying the design domain of the filter design. In order to deter-

mine the filter coefficient vector gKn = [gn[0], gn[1], . . . , gn[K − 1]]T with K coefficients, the

cost function in (3.19) is evaluated on a discrete set of R equally spaced frequency points.

This set is represented by the complex column vector w = [e−jω0 , e−jω1 , . . . , e−jωR−1 ]T ,

which spans the design domain of the filter design in (3.19). As a design rule, the param-

eter R, which determines the number of elements in w, can be obtained as R = 15(K− 1)

[45]. The cost function of the least-squares filter design can be expressed as the matrix

equation [46]

J(gKn ) =
((

gKn
)∗ (

MK
n

)∗ − (dn)∗
) (

MK
n gKn − dn

)
(3.20)

where the operator (.)∗ indicates the conjugate transpose, and the column vector dn is

constituted by the desired discretized frequency response
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3.4 Low Complexity Least-Squares Filter Design

dn =




Dn(ejω0)

Dn(ejω1)
...

Dn(ejωR−1)



. (3.21)

Furthermore, the time-varying R-by-K matrix MK
n in (3.20) is composed of K column

vectors, i.e.,

MK
n = [mn,0, mn,1, . . . , mn,K−1] . (3.22)

The column vectors constituting MK
n in (3.22) are given as

mn,l = Wl hn−l (3.23)

with

hn−l =




Hn−l(e
jω0)

Hn−l(e
jω1)

...

Hn−l(e
jωR−1)




(3.24)

and

Wl =




e−jω0l 0 . . . 0

0 e−jω1l . . . 0
...

. . .
. . . 0

0 . . . 0 e−jωR−1l


 . (3.25)

As an abbreviation, the matrix

W = W1 (3.26)

is introduced and referred to as the modulation matrix. Furthermore, the matrix MK
n will

be referred to as the design matrix at time instant n which is in turn composed of K

observation vectors. The matrix MK−1
n will be referred to as the design matrix at time

instant n which is in turn composed of K observation vectors. The optimum solution in

the least-squares sense results in the filter design [45]

gKn =
(
MK

n

)†
dn (3.27)

where the Moore Penrose or generalized inverse is indicated by [45]

(
MK

n

)†
= PK

n

(
MK

n

)∗
(3.28)

with

PK
n =

((
MK

n

)∗
MK

n

)−1
. (3.29)
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3.4.2 Shared Information in Subsequent Filter Design Problems

3.4.2 Shared Information in Subsequent Filter Design Problems

Basic Idea

The filter design equations of the previous Section 3.4.1 solve a dedicated filter design

problem for each time instant n independent of previous filter design problems performed.

This approach disregards the fact that only parts of the design matrix contain new in-

formation while the remainder was already part of the previous design problem at time

instant n− 1 in a modified form.

In the following, the principle is described that facilitates a low complexity least-squares

filter design. To this end, the dependencies of subsequent filter design problems are illus-

trated in Fig. 3.4.

Gen. Inv.

Gen. Inv.

Gen. Inv.

Calulate

Calulate

Calulate

WMK−1
n−1mn,0

W

W

MK−1
n mn,K−1

Filter Design n− 1

Filter Design n

Filter Design n+ 1

(MK
n )†

(MK
n+1)

†

?

?

MK−1
n−1 mn−1,K−1

(MK
n−1)

†MK
n−1 =

[
hn−1, Whn−2, . . . , WK−2hn−K+1, WK−1hn−K

]

MK
n+1 =

[
hn+1, Whn, . . . , WK−2hn−K+3, WK−1hn−K+2

]

MK
n =

[
hn, Whn−1, . . . , WK−2hn−K+2, WK−1hn−K+1

]

WMK−1
nmn+1,0

MK−1
n+1 mn+1,K−1

Figure 3.4 Illustration of subsequent filter design problems and the compo-

sition of their respective design matrices.

The topmost box represents a filter design at time instant n−1 in this illustration. The

design matrix associated with this filter design problem is MK
n−1 of the form as described
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3.4 Low Complexity Least-Squares Filter Design

in (3.22). Employing the relation (3.28), the generalized inverse can be calculated from

this design matrix which is depicted by the horizontal arrow. To show the relationship of

the design matrix MK
n−1 with the design matrix of the subsequent filter design problem at

time instant n, the matrix MK
n−1 is partitioned in the lower order design matrix MK−1

n−1 ,

aggregating the first K − 1 column vectors, and the last column vector mn−1,K−1, i.e.,

MK
n−1 =

[
MK−1

n−1 , mn−1,K−1

]
. (3.30)

The subsequent filter design problem at time instant n with design matrix MK
n is repre-

sented by the center box. The first column of MK
n represents the new observation vector

mn,0 and the last K − 1 columns are identical to the matrix product WMK−1
n−1 , which is

the modulated lower order design matrix of the previous filter design problem. Since the

modulated previous design matrix of lower order is part of the current design matrix, it

seems a reasonable assumption that the current generalized inverse may also be described

by a modified version of the previous generalized inverse.

Update of the Generalized Inverse

To formulate an update relation of the generalized inverse, two tasks need to be performed.

An additional task is the actual filter design that is carried out by employing the updated

generalized inverse. The required steps for the update of the generalized inverse are

illustrated in Fig. 3.5. First, the lower order generalized inverse of the previous design

problem
(
MK−1

n−1

)†
is computed based on the provided generalized inverse

(
MK

n−1

)†
, which

is indicated by the block ”Backward Projection” in Fig. 3.5. Second, in the resulting matrix(
MK−1

n−1

)†
, the new observation vector mn,0 and the altered structure of the current design

needs to be taken into account. This task is indicated by the block ”Forward Projection”

in the illustration. Consecutively, the filter design can be performed using the updated

generalized inverse
(
MK

n

)†
and the desired vector dn which results in the coefficient vector

gKn . An adaptation of the number of rows R of the design matrix could also be employed

to update the generalized inverse in terms of the design domain of the filter design problem

by using the recursive least-squares algorithm [42]. However, the following derivations are

based on a fixed design domain to promote a clear representation.

3.4.3 Order Recursive Least-Squares Filter Design

The computationally efficient reduction of the order and the update of the generalized

inverse according to the current design problem will be investigated in this section. The

objective is to obtain the filter design for the time instant n without performing the
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Figure 3.5 Steps for the update of the generalized inverse and the consecu-

tive filter design.

computationally intensive calculation of the generalized inverse
(
MK

n

)†
as presented in

(3.28) and (3.29). To this end, the lower order generalized inverse
(
MK−1

n−1

)†
is computed

from the matrix
(
MK

n−1

)†
, which has been calculated in the previous filter design at time

instant n −1. Consecutively, it is shown how the new observation vector in the design

matrix and the knowledge of
(
MK−1

n−1

)†
can be used to calculate

(
MK

n

)†
by means of

an order recursive update relation. Having determined
(
MK

n

)†
the current filter design

problem can be solved by employing the relation in (3.27).

Backward Projection

In order to find a relationship between the a-priori known matrix
(
MK

n−1

)†
and the matrix(

MK−1
n−1

)†
, a backward projection of the filter design problem with K coefficients is per-

formed. The presented framework is in certain aspects similar to the theory presented for

joint process estimation [50]. However, in joint estimation theory, the filter coefficients are

adapted employing the input and desired signal, whereas the presented algorithm relates

two time-varying systems by employing a desired characteristic of the cascaded system.

Furthermore, the design matrix changes its structure as a new observation vector becomes

available and the old observation vector needs to be discarded which is a consequence

of the time-varying nature of the design problem, cf., (3.17) and (3.18). Moreover, the

devised algorithm does not only update the quadratic matrix PK
n in (3.29) but recursively

updates the overall generalized inverse, as presented in (3.28) and (3.29). This is a prereq-

uisite for a computationally efficient filter design algorithm as to obtain the filter design

by using PK
n , an additional matrix multiplication of

(
MK

n

)∗
with the updated quadratic
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3.4 Low Complexity Least-Squares Filter Design

matrix would be required, cf., (3.28). This approach would diminish the computational

gain achieved by updating the generalized inverse directly as is proposed in this section.

In order to determine the lower order equivalent of the generalized inverse
(
MK

n−1

)†
,

this matrix is partitioned in the upper matrix U and the row vector v∗, i.e.,

(
MK

n−1

)†
=

[
U〈K−1×R〉
(v∗)〈1×R〉

]
(3.31)

where the subscript operator 〈.〉 indicates the dimensions of the respective partition. To

promote a clear representation, the subscript notation is not going to be used for further

calculations involving the matrix partitions.

The lower order generalized inverse can be determined as the K−1-by-R matrix (see

Appendix (A.1)-(A.12)) (
MK−1

n−1

)†
= U + wbv

∗. (3.32)

The backward projection vector wb in (3.32) is of length K−1 and derived by partitioning

the a-priori known matrix

PK
n−1 =



S〈K−1×K−1〉, t〈K−1×1〉

mt∗〈1×K−1〉, c〈1×1〉


 (3.33)

where S represents a real-valued K−1-by-K−1 matrix, t∗ a real-valued row vector of

length K−1 and c a real scalar value. The backward projection vector can be determined

as

wb = −t

c
(3.34)

based on the partitions of PK
n−1. The lower order equivalent of PK

n−1 can be calculated as

(see Appendix (A.1)-(A.8))

PK−1
n−1 = S−wbt

∗. (3.35)

Forward Projection

Having established the lower order generalized inverse
(
MK−1

n−1

)†
, we introduce the for-

mulation for the current design matrix

MK
n = [ Wm̂n,0︸ ︷︷ ︸

mn,0

, WMK−1
n−1 ] (3.36)

with

m̂n,0 = W∗mn,0. (3.37)
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It is important to note that the first column vector in (3.36) is identical to mn,0 since W

is orthogonal, and thus the matrix product WW∗ yields the identity matrix.

In order to relate the new observation vector m̂n,0 with the generalized inverse(
MK−1

n−1

)†
, a forward projection is performed, and to this end, we introduce the forward

projection vector [51]

wf =
(
MK−1

n−1

)†
m̂n,0, (3.38)

the forward projection error

f = m̂n,0 −MK−1
n−1 wf, (3.39)

and the scaling factor

εf = (m̂n,0)∗ f (3.40)

which determine the generalized inverse of the current design matrix MK
n as

(
MK

n

)†
=




f∗

εf(
MK−1

n−1

)†
− wf f

∗

εf


W∗. (3.41)

Using (3.41), the optimum filter design of gKn in the least-squares sense for the time instant

n can be calculated by (3.27). In order to allow for an efficient computation of wb during

the next filter design process, the matrix PK
n is calculated as

PK
n =




1

εf
, −w∗f

εf

−wf

εf
, PK−1

n−1 +
wfw

∗
f

εf


 , (3.42)

and the backward projection vector wb required for the subsequent filter design problem

can be obtained using (3.33) and (3.34). The relations in (3.38)-(3.41) and (3.27) suffice

to determine the filter design of gKn for the time instant n. These relations rely on the

a-priori known matrices
(
MK

n−1

)†
and PK

n−1 that were calculated while performing the

previous filter design.

Complexity Comparison

The computation of the generalized inverse, as described by (3.27)-(3.29), provides an

algorithm for a filter design in the least-squares sense. The complexity of this algorithm

proves to be identical to the complexity of the filter design methodology presented in [9,

20]. In [20], the authors proved the superior efficiency of this least-squares algorithm

compared to the method presented in [21]. For the computation of the filter coefficient
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3.4 Low Complexity Least-Squares Filter Design

in (3.27), Gaussian elimination is used since the linear system of equations can be solved

without explicitly calculating the inverse in (3.29) [52]. The resulting algorithm is used

as a reference to compare the performance of the proposed order recursive least-squares

algorithm for the design of time-varying FIR filter calculation of (3.27)-(3.29).

To this end, we introduce the column vector

rn =
(
MK

n

)∗
dn (3.43)

and formulate the augmented matrix

[ (
MK

n

)∗
MK

n , rn
]
. (3.44)

Applying an elimination method to (3.44) results in the reduced row echelon form given

as [
I, gKn

]
(3.45)

where I indicates the K-by-K identity matrix, and the last column of (3.45) provides the

desired solution vector after the elimination process. Employing this formulation to solve

the filter design problem, the matrix multiplication in (3.29) is saved [52].

The complexity of the resulting filter design is illustrated in Table 3.1. It can be noted

that the computationally most expensive operation for the least-squares filter design algo-

rithm is the inversion of the matrix product
(
MK

n

)∗
MK

n , where the matrix multiplication

has a complexity of O
(
RK2

)
[53], with K<R, and the inversion of the resulting K-by-K

matrix has a complexity of O
(
K3
)
, when applying the Gaussian elimination.

The computational complexity of the reference algorithm and the proposed algorithm

are illustrated in Table 3.1 and 3.2 in terms of the O-notation and of the required multi-

plications and additions.

Comparing the proposed order recursive least-squares filter design algorithm with the

matrix inversion based least-squares filter design, a complexity of O (RK) for the pro-

posed algorithm can be observed which proves to be one order of magnitude less than the

complexity O
(
RK2

)
of the reference algorithm.

A comparison of the number of multiplications and additions required by each algorithm

for a given filter length is depicted in Fig. 3.6. For very short filter lengths of up to four

coefficients, the proposed algorithm requires more multiplications but still less additions

than the least-squares algorithm. The proposed algorithm offers reduced complexity both

in terms of multiplications and additions for filter designs with more than four coefficients.

The ratio of the required multiplication and additions of least-squares and order recursive

least-squares based algorithm, respectively, is depicted in Fig. 3.7, where a ratio of one

represents identical complexity (dashed line in Fig. 3.7). For any ratio exceeding one, the
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3.4.3 Order Recursive Least-Squares Filter Design

Table 3.1 Summary and computational complexity of the least-squares filter

design algorithm.

Least-Squares Design Complexity # Mult. # Add.

1) MK
n = [mn,0, mn,1, . . . ,mn,K−1]† n.a.

2) rn =
(
MK

n

)∗
dn O (RK) 2RK 2(R− 1)K

3)
[ (

MK
n

)∗
MK

n , rn
]

O
(
RK2) 2RK2 2(R− 1)K2

4)
[
I, gKn

]
O
(
K3) a K3

3
+K2 − K

3

K3

3
+
K2

2
− 5K

6

Overall Complexity O
(
RK2) 1

3
K3 + (2R+ 1)K2 1

3
K3 +

(
2R− 3

2

)
K2

+

(
2R− 1

3

)
K +

(
2R− 17

6

)
K

a Matrix inversion via Gaussian elimination
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Figure 3.6 Comparison of the computational efficiency of the least-squares

and the order recursive least-squares based algorithm. The num-

ber of multiplications and additions required for the order recur-

sive least-squares and least-squares based algorithm are shown

for different filter lengths K.

order recursive least-squares based algorithm performs more computationally efficient than

the least-squares based algorithm. The concrete number of multiplications and additions

for selected filter designs are illustrated in Table 3.3.
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3.4 Low Complexity Least-Squares Filter Design

Table 3.2 Summary and complexity comparison of the order recursive least

squares based filter design algorithm. Values that are passed

within the algorithm from the previous to the current filter de-

sign problem are partitioned in 1). Input values for the algorithm

are the modulated observation vector m̂n,0 and the desired vector

dn.

Order Recursive Least-Squares Design Complexity # Mult. # Add.

1)
(
MK

n−1

)†
=

[
U∗

v∗

]
; PK

n−1 =

[
S∗, t

t∗, c

]
n.a.a

MK
n−1 =

[
MK−1

n−1 , mn−1,K−1

]
n.a.a

Backward Projection

2) wb = −t

c
O (K) K − 1

3) PK−1
n−1 = S∗ −wbt

∗ O
(
K2) K2 −K (K − 1)2

4)
(
MK−1

n−1

)†
= U∗ + wbv

∗ O (RK) 2R (K − 1) 2R (K − 1)

Forward Projection

5) wf =
(
MK−1

n−1

)†
m̂n,0 O (RK) 2R (K − 1) (2R− 1)

(K − 1)

6) f = m̂n,0 −MK−1
n−1 wf O (RK) 2R (K − 1) 2R (K − 2)

+R

7) εf = m̂∗n,0 f O (R) 2R 2R− 1

8)
(
MK

n

)†
=

 f∗

εf(
MK−1

n−1

)†
− wf f

∗

εf

W∗ O (RK) 4RK +K 2R(K − 1)

9) PK
n =

 1

εf
, −w∗f

εf

−wf

εf
, PK−1

n−1 +
wfw

∗
f

εf

 O
(
K2) K2 (K − 1)2

Filter Design

10) gKn =
(
MK

n

)†
dn O (RK) 2RK (2R− 1)K

Overall Complexity O (RK) 12RK − 4R 10RK − 7R

+2K2 +K − 1 +2K2 − 6K + 2

a Partitioning of matrices
(
MK

n−1

)†
, PK

n−1 and MK
n−1
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Figure 3.7 Comparison of the computational efficiency of the least-squares

and the order recursive least-squares based algorithm. The ratio

of the number of multiplications and additions required for the

order recursive least-squares and least-squares based algorithm

are shown for different filter lengths K.

Table 3.3 Number of required multiplications and additions for selected filter

designs with R = 15(K − 1).

Filter length K # Mul. LS # Add. LS # Mul. ORLS # Add. ORLS

3 737 719 980 692

5 3665 3620 3414 2602

31 903681 902193 167552 138088

41 2091041 2088458 296202 244918

Initialization and Adaptation of the Filter Order

In the previous sections considering the backward and forward projection, it was assumed

that the matrices
(
MK

n−1

)†
and PK

n−1 are known from the previous filter design. At the

startup of the algorithm, this assumption does not hold and two different approaches

could be employed to resolve this issue. An obvious solution to this problem would be to

aggregate observation vectors until a fully populated design matrix with K column vectors

is obtained and to calculate
(
MK

n−1

)†
, PK

n−1 and gKn subsequently. However, this option
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is computationally expensive for the same reason brought forward, when comparing the

matrix inversion based filter design and the proposed order recursive least-squares based

solution (see Table 3.1 and 3.2).

Alternatively, the order update relationship presented in Section 3.4.3 can be utilized

to gradually increase the filter order, without discarding old observations as required to

maintain a constant filter order. The generalized inverse is calculated for the time instant

n = 0, i.e., (
M1

0

)†
= P0

(
M1

0

)∗
(3.46)

with

P0 =
((

M1
0

)∗
M1

0

)−1
(3.47)

and

M1
0 = m0,0. (3.48)

During the time period 1 ≤ n < K, the order of the matrices in (3.46) and (3.47) is

increased employing (3.36)-(3.42). The corresponding filter coefficients are obtained using

(3.27). The latter alternative is the more favorable one since the matrix inversion can

be avoided. Furthermore, the signal reconstruction can be performed immediately by

utilizing the coefficients of the filter whose order is gradually increased.

The initialization is completed after performing K − 1 filter designs. The initialization

case is illustrated in the signal flow graph depicted in Fig. 3.8 by configuration a), where

the backward projection block is bypassed and the filter order of the design is increased by

the forward projection process for each time instant. This configuration can also be used

to increase the filter order during the runtime of the algorithm if a better reconstruction

performance is desired. A constant order of the filter design is obtained in configuration

b), where the lower order equivalents of
(
MK

n−1

)†
and PK

n−1 are calculated during the

backward projection process. In order to obtain a filter design of reduced order, the back-

ward projection process is performed twice before the forward projection is performed as

illustrated in configuration c). In the latter configuration, the computational complexity

of the algorithm rises as the calculations 2)-4) in Table 3.2 are repeated with the inter-

mediate results from the first backward projection process, however, the same number of

calculations is saved in configuration a).

Stability Analysis

The stability of the proposed algorithm is investigated numerically both in terms of quan-

tization effects due to finite coefficients lengths and incorrect observations. Although, the
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Figure 3.8 Signal flow graph representation of the proposed algorithm for

configuration a) initialization/increasing the order of the filter

design, configuration b) constant order filter design and configu-

ration c) decreasing the order of the filter design.

proposed algorithm is recursive in nature since results from the previous filter design prob-

lem are used, the algorithm exhibits only finite memory. Inspection of (3.36) reveals that

any new observation m̂n,0 does only influence the current and the following K − 1 design

matrices. Disregarding finite precision effects, the generalized inverse is directly related to

the design matrix via the matrix inversion lemma [42]. Thus, any incorrect observation

will only have an impact on K generalized inverses affecting K filter designs before being

discarded in the next filter design problem. This behavior of the algorithm corresponds

to a memory of K − 1.

The respective behavior of the algorithm is illustrated by means of a numerical experi-

ment, where the reconstruction performance of two correction systems is compared. The

objective of the presented experiments is to demonstrate the ability of the proposed algo-

rithm to recover from incorrect observations. This will be investigated for implementations

employing floating point double precision arithmetic in Matlab and fixed point arithmetic.

Initially, both correction systems employ floating point double precision arithmetic to de-

sign a reconstruction filter of order 4 (K = 5).

In the first system, the reconstruction filter is designed utilizing the proposed algorithm

whose input observations are wrong for parts of the simulation time. In the following,

each incorrect observation is synthesized by generating a random impulse response selected

according to a standard normal Gaussian distribution (µ = 0, σ2 = 1). The second system

which serves as a reference determines the reconstruction performance in the least-squares
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sense, where the filter design is performed by the reference algorithm presented in Section

3.4.1. The squared error of the reconstructed signals ĕ[n]2 will serve as a figure of merit to

determine the reconstruction performance of the proposed algorithm. The experimental

setup is illustrated in Fig. 3.9.

In Fig. 3.10(a), the system behavior for a single incorrect observation affecting the pro-

posed algorithm is depicted. The incorrect observation occurs at n = 20 and deteriorates

the system’s performance for K samples as K filter designs are affected by the incor-

rect observation while this observation is still comprised in the design matrix, cf., (3.36).

A related case is shown in Fig. 3.10(b), where the proposed algorithm is initialized and

executed with incorrect observations up to the time instant n = 20 and with correct obser-

vations for n > 20. As in Fig. 3.10(a), the performance returns to the optimum solution in

the least-squares sense after all incorrect observation have been replaced by correct obser-

vations in the design matrix (for n ≥ 25). In the presented examples, where both systems

were implemented with floating point double precision arithmetic, the proposed algorithm

regains the optimum reconstruction performance in the least-squares sense immediately

after all incorrect observations are discarded and no longer comprised in the design matrix.

The behavior of the proposed algorithm, implemented in fixed point arithmetic, will be

investigated in the remainder of this section.

To this end, the effects of a series of incorrect observations is investigated for two

fixed point implementations of the proposed algorithm. In these implementations, the

filter coefficients and each intermediate variable in the proposed algorithm are calculated

using two’s complement fixed point fractional numbers. Two different two’s complement

formats are employed, where the first format describes a fixed point fractional number

with 15 integer bits and 16 fractional bits (Q15.16) and the second format describes a 15

integer bits and 32 fractional bits (Q15.32). The achieved performance of each system is

again compared with the performance of the reference algorithm employing floating point

double precision arithmetic in Matlab. The reconstruction performance of the Q15.16

implementation is illustrated in Fig. 3.11(a), where a recurring series of 500 incorrect

observations followed by 1000 correct observations is utilized for the filter design. Each

cycle with 500 incorrect observations provides a large number of incorrect observations to

ensure that the design matrix is constituted by incorrect observations, and the respective

generalized inverse is based on incorrect observations only. As soon as correct observations

are available to the filter design algorithm, the squared error returns to approximately -

60 dB. The Q15.32 fixed point implementation offers a similar behavior for a minimum

reconstruction error of approximately -155 dB. Introducing several cycles with incorrect
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y[n] +
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x[n] ĕ[n]
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gls,n[k]

hn[k]

Figure 3.9 Experimental setup for determining the deviation of the per-

turbed filter design from the optimum filter design in the least-

squares sense. The latter filter design is obtained employing the

reference algorithm with floating point double precision arith-

metic.
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(a) Single incorrect observation for n = 20.

The occurrence of the incorrect observation is

marked by the dashed line
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(b) Wrong observation for n ≤ 20. The occur-
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by the dashed line

Figure 3.10 Squared difference of the reconstructed signals in dB. The least-

squares reconstruction performance is regained for n ≥ 25 in

both cases.
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observations does not have a negative effect on the achieved reconstruction performance

of the proposed algorithm.

However, the fixed point arithmetic has an impact on the time the algorithm requires

to regain the minimum reconstruction error after correct observations are available. The

relationship of this delay and the employed arithmetic is illustrated in Fig. 3.12. In this

experiment, the proposed filter design algorithm processes incorrect observations up to

the time instant n = 20 and the incorrect observations are not part of the design matrix

for n ≥ 25, similar to the simulation scenario depicted in Fig. 3.10(b). In Fig. 3.12,

three different fixed point implementations and an implementation using floating point

double precision are employed by the proposed algorithm and compared with the reference

algorithm employing floating point double precision. Each line represents an ensemble

average of 500 simulation outcomes of the respective implementation. The fixed point

filter designs at time instant n = 25 achieve a reconstruction error which is about 20 dB

larger than their respective minimum reconstruction errors. This minimum reconstruction

error is reached by each implementation after performing about nine consecutive filter

designs at time instant n = 35.
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n
]2
)

K = 5, Q 15.16 .

(a) Two’s complement fixed point implementation with 15 integer bits and 16 fractional bits

(Q15.16)
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Figure 3.11 Squared difference of the signal reconstructed by the fixed point

implementations of the proposed filter design algorithm and the

reconstructed signal obtained by the least squared filter design

with floating point double precision.
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Figure 3.12 Ensemble average of the signal ĕ[n]2. The signal ĕ[n] repre-

sents the difference of the output of two correction schemes

employing the proposed and the reference algorithm, respec-

tively. The correction scheme utilizing the proposed algorithm

is implemented either in three different fixed point implemen-

tations or in floating point double precision arithmetic. The

correction scheme that utilizes the reference algorithm employs

floating point double precision arithmetic.
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3.5 Application Example

In the following, the presented theory in Section 3.2 and the filter design algorithm as

proposed in Section 3.4.3 are employed to precorrect non-uniform sample-and-hold (SH)

signals in a DAC. As an example of an SH circuit, we chose the ZOH type due to its

practical importance.

3.5.1 Continuous-Time System Model

It is well-known that ZOH signals shape the analog output signal according to the

continuous-time Fourier transform (CTFT) of its impulse response [44]. Moreover, spuri-

ous tones are introduced if the uniform sampling instants deviate by a time-varying jitter

term ∆nT [54]. Both effects can be modelled by the time-varying impulse response [23]

ã(t) = T (u(t−∆nT )− u(t− T −∆n+1T )) (3.49)

with T indicating the sampling period. The system employing ã(t) to represent the non-

uniform ZOH behavior is depicted in Fig. 3.13.

ãn(t)

∑∞
n=−∞ δ(t− nT )

x̂(t)v[n]
hid(t)

Figure 3.13 DAC model employing a non-uniform ZOH model in

continuous-time.

Calculating the CTFT of (3.49) leads to [23]

Ãn(jΩ) =
sin
(

ΩT
2 (1 + ∆n+1 −∆n)

)

ΩT
2

e−j
ΩT
2

(1+∆n+1+∆n). (3.50)

The output signal of the presented model is obtained as

x̂(t) =
∞∑

k=−∞
v[k]ãk(t− kT ) ∗ hid(t) (3.51)

where v[n] indicates the discrete-time input of the overall model. Furthermore, the impulse

response of the ideal low-pass filter hid(t) with a cut-off frequency 0 < ΩD ≤ π
T , is given

as [44]

hid(t) =
ΩD

π
sinc

(
ΩD

π
t

)
. (3.52)
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3.5.2 Discrete-Time System Model

In order to devise an equivalent formulation of (3.51), we define a representation of a

discrete-time filter as [44]

Ân(ejω) = Ãn

(
j
ω

T

)
Hid

(
j
ω

T

)
for− π ≤ ω < π (3.53)

which is constituted by the discrete-time representation of the CTFT of (3.49), as it was

presented in [23], and the CTFT of (3.52). With a cut-off frequency ΩD = ωD
π , the output

of the discrete-time filter results in

x̂[n] =

∞∑

l=−∞
v[l]âl[n− l] (3.54)

where ân[k] is the inverse DTFT of Ân(ejω). The continuous-time signal x̂(t) is obtained

by

x̂(t) =

∞∑

n=−∞
x̂[n]hid(t− nT ) (3.55)

which represents the same continuous-time signal as obtained by the system in (3.51).

Rewriting (3.54) using k = n− l and l = n− k, we obtain

x̂[n] =

∞∑

k=−∞
ân−k[k]v[n− k], (3.56)

and comparing it to the time-varying system in (3.2) reveals the identity

gn[k] = ân−k[k] (3.57)

which agrees with (3.5). Applying this identity to the time-varying system in (3.2), we

can represent the ZOH behavior in discrete-time as illustrated in the system model shown

in Fig. 3.14.

ân−k[k]
v[n] x̂(t)x̂[n]

∑∞
n=−∞ δ(t− nT )

hid(t)

Figure 3.14 DAC model employing a discrete-time ZOH model.
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ân−k[k]

∑∞
n=−∞ δ(t− nT )

hn+D[k]
x̂[n]x[n] v[n] x̂(t)

hid(t)

DAC Model

Figure 3.15 System precorrecting the input signal of the DAC that is af-

fected by non-uniform sampling.

3.5.3 Precorrection Scheme and Filter Design

In this section, the overall system is presented, where the time-varying filter hn[k] precor-

rects the non-uniform DAC model as shown in Fig. 3.15 where D indicates the delay of the

discrete-time ZOH model. The design of the precorrection filter is obtained by defining a

design objective in terms of the desired frequency response as

D̂n(ejω) = e−jωDs (3.58)

whereDs is the accumulated delay induced by the filter delay and the delay of the undesired

time-varying system. By specifying D̂n(ejω) as a delay Ds, the impact of the undesired

in-band attenuation and of the non-uniform sampling are mitigated at the same time. As

a consequence, the ideally reconstructed output signal results in x̂[n] = x[n−Ds].

For the precorrection of the DAC model, we obtain for Ĝn(ejω) = Ân(ejω) the reformu-

lation of the design equation in (3.11) which results in

F̂n(ejω) =
K−1∑

l=0

M̂n,l(e
jω) ĥn[l] (3.59)

with

M̂n,l(e
jω) = Ân+l(e

jω)ejωl. (3.60)

The design equations (3.19)-(3.42) of the proposed order recursive filter design algorithm

can be adapted accordingly by replacing Dn(ejω) with D̂n(ejω), Hn−l(ejω) with Ân+l(e
jω)

and W with W∗. Employing this filter design algorithm, the filter coefficients ĥn[l] are

calculated for each time instant. By using (3.57), the coefficients hn[l] are obtained.

Furthermore, the coefficients hn[l] are employed to continuously update the precorrection

filter within the system which is depicted in Fig. 3.15.

To verify the proposed scheme, numerical simulations were performed in Matlab and

the achieved correction performance was characterized in terms of the signal-to-noise ratio

(SNR) given as

SNR = 10 log10

( ∑N−1
n=0 |x[n−Ds]|2∑N−1

n=0 |x[n−Ds]− x̂[n]|2

)
dB (3.61)
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where N indicates the number of investigated samples. The non-uniform ZOH signals are

generated, i.e., ∆n follows a zero-mean Gaussian distribution with a standard deviation

of σz = 0.039 and 212 samples were drawn from this distribution to characterize the non-

uniform ZOH behavior. The same number of samples was evaluated, and a coherently

sampled multitone input signal was used for the simulations. The impact of the non-

uniform ZOH behavior is illustrated in Fig. 3.16, where the spectrum of a non-bandlimited

output signal is shown, when the DAC input signal is not precorrected. The depicted

spectrum exhibits an in-band attenuation of up to -2 dBc for the highest frequent signal

component and a multitude of spurious tones are created in-band and out-of-band.

0 0.5 1 1.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (Ω T/(2π))

E
n
er

g
y

 D
en

si
ty

 S
p
ec

tr
u

m
 (

d
B

c)

 

 

Spurious Tones .

Signal Tones

Figure 3.16 Uncorrected output spectrum.

In order to suppress the spurious tones within the bandwidth |ω| < 0.75π, a time-

varying precorrection with a filter length K = 13 and a design domain of ωD = 0.75π

was designed according to the L2 norm. The precorrected output spectrum of the DAC

before the low-pass filter hid is shown in Fig. 3.17 illustrating a considerable attenuation

of the in-band spurious tones. Moreover, the in-band attenuation of the signal tones was

compensated. The spectrum of the output signal x̂[n] is depicted in Fig. (3.18), where

the dashed line indicates the spectral components removed by hid. The signal x̂[n] offers a

SNR value of 77.96 dB within the bandwidth |Ω| < 0.75π
T which enhances the initial SNR

value for the uncorrected case by 59.92 dB.
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Figure 3.17 Spectrum of precorrected output signal before the low-pass fil-

ter hid (K = 13).
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Figure 3.18 Spectrum of precorrected output signal x̂[n] (K = 13). The

dashed lines indicate the spectral components removed by hid.

3.6 Concluding Remarks

In this chapter, the design of time-varying FIR filters facilitating the precorrection and

postcorrection of linear time-varying systems has been presented. By updating the coeffi-

cients of a time-varying FIR filter, the impact of a non-periodically time-varying systems
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can be corrected. However, in this case, a dedicated filter design for each time instant is

required which is computationally intensive. For the design of correction filters enhancing

the performance of time-invariant and periodically time-varying systems, an offline design

is feasible and the computational burden might be acceptable. To alleviate the computa-

tional burden in non-periodically time-varying scenarios, a low complexity algorithm for

the design of the correction filter has been presented. The time-varying filter design prob-

lem has been posed in terms of a backward and forward projection problem employing

order update relations. Moreover, the computational complexity of the proposed algorithm

has been compared with a reference filter design algorithm which is based on an explicit

matrix inversion and whose computational complexity is identical to the algorithms pre-

sented in [9] and [20]. The proposed algorithm proved to be computationally more efficient

than the algorithms presented in [9], [20] and [21] both in terms of the O-notation and

in terms of the number of operations for filter orders greater than three. This reduced

complexity was achieved by formulating the time-varying filter problem, i.e., the results

of the previous filter design process could be reused for the current filter design.

Furthermore, the numerical stability of a fixed point implementation of the algorithm

and its behavior in the presence of incorrect observations were investigated.
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4
Correction of Weakly Time-Varying Linear

Systems

4.1 Introduction

This chapter introduces low-complexity structures to correct the effects of these time-

varying systems. To significantly reduce the computational complexity, we will narrow

the discussion to linear weakly time-varying systems. Similar to the definition of weakly

nonlinear systems [55], we can roughly classify linear weakly time-varying systems as

systems where we have a dominant time-invariant behavior disturbed by a time-varying

behavior reducing the signal quality. This work is presented in the context of digitally

enhanced mixed-signal systems, however, the results can be applied to arbitrary linear

weakly time-varying systems.

A frequently occurring problem in mixed-signal circuits is non-uniform sampling which

can be modeled as a sampled time-varying system. Recently, low-complexity algorithms

for signal reconstruction from its non-uniform samples have attracted a lot of research

interest [8, 19, 31, 49, 56–58]. As a more general case, the correction of general frequency

response mismatches in time-varying systems has been investigated in [9, 59, 60]. Vari-

ous methods exist to compensate the effect of M -periodically time-varying systems, for

example by means of a subsequent M -periodically time-varying reconstruction filter [9],

synthesis filters in a filter bank [47] or by utilizing a multichannel bank of filters employ-

ing multirate theory [20]. These techniques offer great flexibility to correct for general

frequency characteristics, however, the design complexity of these reconstruction filters is

challenging as matrix inversions have to be performed or optimization problems need to

be solved. The resulting computational load is especially a disadvantage if the character-

istics of the time-varying system change during operation, and the correction system has

to be redesigned to meet the desired compensation performance. An example of how the
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performance of a time-varying system, which is enhanced by an offline designed correction

system, may deteriorate as the time-varying system is subject to drift, can be found in [21].

To reduce the computational burden, recently introduced postcorrection systems rely

on an approximated solution to correct the time-varying behavior affecting the signal.

The utilized structures are constituted by a cascade of correction stages each comprising

a time-varying filter to gradually refine the approximated solution. Such a structure was

initially proposed in [31], where a cascade of differentiator stages was employed to mitigate

the error induced by non-uniform sampling. To enhance the SNR performance for a given

number of FIR filters, the number of subfilters comprised in each stage was increased

linearly over the number of utilized stages. This approach was extended in [26] to correct

for mismatches of general frequency responses. A related approach employing cascades of

differentiator banks has been presented in [30], where in each correction stage an equal

number of differentiators of higher orders compensate frequency response mismatch errors.

Recently, the link between the correction structures in [26, 31] and stationary iterative

methods for the solution of systems of linear equations [61] has been introduced in [62]

and [28]. Thanks to this significant observation, structures to compensate linear weakly

time-varying systems can be seen in a completely different context.

The mathematical framework of time-varying systems may also be used to enhance

the performance of a system by precorrecting it, which is required for a different type

of application. For example, DACs suffer from timing jitter, which can be modeled by

a time-varying system [54]. In [48], a structure to precorrect 2-periodically non-uniform

ZOH signals in a DAC was presented. As a result, the in-band spurious frequencies in the

DAC spectrum were mitigated considerably. An extended mathematical framework was

presented in [23] for the M -periodic case. However, a precorrection structure which can

be adapted online was only demonstrated for the 2-periodic case.

4.1.1 Contributions

This chapter presents correction structures for the precorrection and postcorrection of

bandlimited signals in order to compensate for the impact of linear weakly time-varying

systems. The characteristics of such a system are assumed to be known, which can be

achieved by using a method for the blind identification of the time-varying system [42]

or simply by means of a-priori knowledge obtained, e.g., via calibration. Although many

of the results can be extended to other stationary iterative methods [61], for the sake of

consistency we will only utilize the Richardson iteration [61] for our correction structures.

a) Polynomial Transfer Function: In Section 4.3.1, a polynomial transfer function based
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on the recurrence relation of the Richardson iteration is derived. Furthermore, the com-

mutativity of this polynomial transfer function with the time-varying system that needs

to be corrected is established. Therefore, results regarding reconstruction performance,

conditions for convergence and computational complexity obtained for the postcorrection

case, as presented in [26–29] can be directly applied to the presented precorrection case.

b) Correction of weakly time-varying systems: In Section 4.3, the recurrence relation

is used to devise a causal representation of the postcorrection structure as it has been

presented in [28] and [31] to correct for non-uniform sampling and in [26] to postcorrect

general frequency response mismatches. By applying the property of commutativity, a

correction structure for the precorrection case is established.

c) Precorrection of DACs (online filter design): The precorrection of non-uniform ZOH

signals in DACs is employed to illustrate the precorrection of weakly time-varying analog

systems. The design of the time-varying filter comprised in each correction stage is per-

formed during operation of the system. This proposed online filter design complements

the filter design for the ADC case as presented in [26].

d) Precorrection of DACs (offline filter design): A precorrection of the same system by

means of polynomial filters is presented in order to reduce the complexity and avoid the

computational burden induced by the online filter design. The presented application of

the proposed precorrection structure extends the work in [23] to the non-periodic case.

4.1.2 Outline

In Section 4.2, the principle of time-varying systems, represented by time-varying impulse

responses and transition matrices, and the Richardson iteration is reviewed. Furthermore,

a definition of weakly time-varying systems is presented. In Section 4.3, a polynomial

transfer function is derived characterizing the Richardson iteration, and a causal repre-

sentation of precorrection and postcorrection structures for weakly time-varying systems

is derived. Moreover, the precorrection of non-ideal DACs in a mixed-signal scenario is

discussed in Section 4.4.

4.2 Weakly Time-Varying Systems

In this section, the basic input/output relations of time-varying systems and the cascading

of time-varying systems is reviewed as has been presented in [7]. Furthermore, an alge-

braic representation of time-varying systems is presented and the Richardson iteration is

reviewed [61, 63].
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4.2.1 Input/Output Relations

The output y[n] of a time-varying system is the result of the convolution of the input

signal x[n] with the system’s time-varying impulse response hn[k] that is

y[n] =
∞∑

k=−∞
hn[k]x[n− k]. (4.1)

Alternatively, a time-varying system may be described as an algebraic system. By defining

the infinite input vector x as

x = [. . . , x[−1], x[0], x[1], . . .]T (4.2)

and the infinite output vector y as

y = [. . . , y[−1], y[0], y[1], . . .]T (4.3)

we can rewrite (4.1) as

y = Hx (4.4)

where the time-varying impulse response hn[k] is represented by the transition matrix

H =




. . .
...

...
...

. . .

. . . h−1[0] h−1[−1] h−1[−2] . . .

. . . h0[1] h0[0] h0[−1] . . .

. . . h1[2] h1[1] h1[0] . . .

. . .
...

...
...

. . .



. (4.5)

4.2.2 Definition

Linear time-varying systems which can be represented by a transition matrix as defined

(4.5), while fulfilling the criterion [61]

∞∑

k=−∞
|δ[k]− hn[k]| < 1 (4.6)

for −∞ < n < ∞ and where δ[k] is the discrete-time impulse [44], will be referred to

as linear weakly time-varying systems in the remainder of this work. The criterion in

(4.6) restricts the impulse response hn[k] at each time instant n independent of past or

future states of the time-varying system. Thus, the maximum deviation of the system

is also restricted in terms of its time-varying behavior when progressing from one to the

subsequent time instant.
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GH
y

y[n]x[n]

x̂

x̂[n]

x

gn[k]hn[k]

F

fn[k]

Figure 4.1 Cascade of two time-varying systems.

4.2.3 Correcting Time-Varying Systems

As illustrated in Fig. 4.1, the output x̂[n] of a system characterized by the time-varying

impulse response gn[k] is given by

x̂[n] =
∞∑

k=−∞
gn[k]y[n− k] (4.7)

and leads with (4.1) to [7]

x̂[n] =
∞∑

k=−∞
fn[k]x[n− k] (4.8)

where

fn[k] =
∞∑

l=−∞
gn[l]hn−l[k − l] (4.9)

is the resulting time-varying impulse response of the cascaded system.

The output of the two cascaded time-varying systems can also be written as

x̂ = Fx (4.10)

where the output vector x̂ is

x̂ = [. . . , x̂[−1], x̂[0], x̂[1], . . .]T , (4.11)

the transition matrix F is

F = GH, (4.12)

and the transition matrix G is of the same form as the transition matrix H in (4.5).

If the input x should be reconstructed from the output y of the first system H via the

second system G, i.e.,

x̂ = Gy, (4.13)

a straight forward approach would be to design the second system G as the inverse of the

first system H, i.e., G = H−1. In the ideal case, G corrects perfectly for the impact of
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w[n](r−1)

w(r−1)

w[n](0)

w(0)

H

+

+

− w[n](r)

w(r)

Figure 4.2 Recurrence relation of the Richardson iteration.

the first time-varying system H and the output x̂ equals the input x. This case will be

referred to as the postcorrection of the system H in the remainder of this work. The other

possible scenario, where a time-varying system H is designed to alleviate the impact of

a subsequent time-varying system G, which is ideally H = G−1, will be referred to as

precorrection. In most situations, a correction system resulting in a delayed version of the

input signal, i.e.,

x̂[n] = x[n−Ds] (4.14)

with Ds being the delay of the overall system, can also be regarded as to yield perfect

reconstruction [9, 39]. Consequently, for this case the time-varying impulse response fn[k]

of the cascaded systems results in fn[k] = δ[k −Ds].

4.2.4 Richardson Iteration

Direct methods allow for the computation of the inverse of a time-varying filter represented

by its transition matrix as shown in (4.5), however, these methods are computationally

intensive. Thus, we utilize an iterative method to approximate the inverse characteristics of

the weakly time-varying system. Although many iterative methods are possible [26, 28, 31],

we only employ the Richardson method to make the further discussion more concise.

The Richardson iteration determines the solution of a linear system of equations, i.e.,

x̂ = H−1y (4.15)

in terms of a linear fixed point iteration [61]. The approximation of the solution vector x̂

after a number of r iterations is indicated by w(r) and given by the recurrence relation [61]

w(r) = w(r−1) + w(0) −Hw(r−1) (4.16)

where the input vector w(0) = y for the given system in (4.15). Fig. 4.2 represents this

recurrence relation as a block diagram.
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P
(R)
H

w(R) = x̂y = w(0)

Figure 4.3 Richardson iteration characterized by the polynomial transfer

function P
(R)
H .

The Richardson method solves a system of linear equations in an element-wise manner

by eliminating the nth element of the residual vector y −Hx̂ [61]. As a consequence, an

element in w(r) can be iterated independently from other elements of the same vector

which can be clearly seen from its line-wise formulation given as

w[n](r) = w[n](r−1) + w[n](0) −
∞∑

k=−∞
hn[k]w[n− k](r−1) (4.17)

where hn[k] is an acausal time-varying impulse response as it was presented in [28].

The component-wise iteration in (4.17) is bound to converge for the given time instant

n, if hn[k] fulfills the criterion in (4.6) for all values of n, and, as a consequence, the system

with impulse response hn[k] is weakly time-varying. Thus, the inverse of the weakly time-

varying system can be approximated using the relation in (4.17). The rate of convergence

for the Richardson iteration and alternative methods have been compared and examples

for mixed-signal and communication applications have been presented in [26, 28] and [62]

respectively.

4.3 Precorrection and Postcorrection

After introducing a polynomial transfer function for the Richardson iteration, causal cor-

rection structures which can be applied in postcorrection and precorrection scenarios are

derived. The precorrection structure is devised by establishing the commutativity of the

undesired system and the postcorrection structure. The proposed causal precorrection

structure complements the work presented on the postcorrection case [26–29], and the

presented postcorrection structure illustrates the causal implementation for the postcor-

rection case.

4.3.1 Polynomial Relation

In order to characterize the performance of the Richardson iteration, a transfer function is

devised. The investigated postcorrection system is depicted in Fig. 4.3 where the output

of the Richardson iteration w(R) for R iterations and input vector w(0) is given by

w(R) = P
(R)
H w(0) (4.18)
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H P
(R)
H

x y = w(0) w(R) = x̂

Figure 4.4 Richardson iteration of order R postcorrecting the weakly time-

varying system H.

and the matrix P
(R)
H can be obtained in closed form using the relation

P
(R)
H = I +

R∑

r=1

(
R

r

)(
(−H)r + (−H)r−1

)
(4.19)

as shown in Appendix A.3. Therefore, the input x and the postcorrected output x̂ can be

related by means of (4.13), (4.4) and the derived transfer function in (4.19) with G = P
(R)
H ,

w(0) = y and x̂ = w(R) as

x̂ = P
(R)
H Hx. (4.20)

The corresponding postcorrection scenario is depicted in Fig. 4.4. It is important to note

that (4.19) represents an univariate matrix polynomial in H. This type of matrix poly-

nomial commutes under matrix multiplication with its matrix variable as shown in [64],

i.e., P
(R)
H H = H P

(R)
H . Accordingly, we might rewrite (4.20) by using the commutativity

of P
(R)
H as

x̂ = GP
(R)
G x (4.21)

where H = P
(R)
G , w(0) = x, v = w(R), and H is replaced with G in order to comply with

the notation of the precorrection case that has been used so far. The respective system

is shown in Fig. 4.5. A consequence of the commutativity is that for the postcorrection

and precorrection case in (4.20) and (4.21), respectively, identical corrected output vec-

tors are obtained for identical transition matrices G and H when performing the same

number of iterations. Under these conditions, the Richardson iteration achieves the same

correction performance for both the postcorrection and precorrection case. Due to this

commutativity, results that have been presented for the postcorrection case regarding re-

construction performance, conditions of convergence and computational complexity can

be directly applied to the precorrection case [26–29]. Moreover, it is interesting to note

that the mentioned permutation is also possible when utilizing a correction system based

on the modified Richardson iteration, where the result of the convolution sum in (4.17) is

multiplied by an additional time-invariant factor µ [28].
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x = w(0)

P
(R)
G

G

x̂w(R) = v

Figure 4.5 Richardson iteration of order R precorrecting the weakly time-

varying system G.

4.3.2 Correction Structures

In order to determine a causal implementation of the line-wise Richardson iteration in

(4.17), we approximate the characteristics of the acausal time-varying impulse response

hn[k] by the causal impulse response hc
n[k]. To this end, the DTFT of hn[k] is calculated

as

Hn(ejω) =

∞∑

k=−∞
hn[k]e−jωk. (4.22)

The causal representation of the time-varying system is obtained by performing an ap-

proximation of hn[k] by minimizing the approximation error in the frequency domain

En(ejω) = Hn(ejω)−Ha
n(ejω) (4.23)

according to

min ||En(ejω)||norm for ω ∈ ωD (4.24)

within a desired design bandwidth ωD for a given norm. Moreover, the DTFT Ha
n(ejω) of

the resulting time-varying filter is delayed by D samples to obtain the causal system

Hc
n(ejω) = Ha

n(ejω)e−jωD. (4.25)

For a more general case, where the undesired time-varying impulse response is h̆n[k] =

hn[k − k0] and k0 is some delay, we can use the relation

hn[k] = h̆n[k + k0] (4.26)

to approximate h̆n[k] by utilizing (4.22)-(4.25) as well.

Applying the obtained causal filter hcn[k] in the recurrence relation as given in (4.17), a

single correction stage as depicted in Fig. 4.6 may be derived. Replicating this correction

stage R times, an overall correction structure is realized by a cascade of R stages as

proposed in [26]. The implementation of the overall postcorrection structure is shown in

Fig. 4.7. The adaptation of each filter Hc
n(ejω) is performed by delaying each filter’s time

index n by k0 in order to take the delay of the undesired time-varying system into account.

In addition to this delay, the time indices are adapted according to the delay introduced
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H
n−k0−rD(e

jω)
− +

e−jωrD

e−jωD

+

w[n](0)

w[n](r−1) w[n](r)

Figure 4.6 Causal representation of the recurrence relation.

by the cascade of filters preceding the respective filter, which accumulates to rD for the rth

correction stage. Various implementations of these time-varying filters would be feasible,

e.g., via a look-up table or by means of the Farrow structure [37].

Using the established commutativity of the Richardson iteration, an implementation

of the precorrection structure as illustrated in Fig. 4.8 is derived. In Fig. 4.8, the first

precorrection filter is updated with Gc
n+k0+RD(ejω). Therefore, the overall precorrection

structure requires knowledge of at least k0 + RD states of the undesired time-varying

system prior to the time-instant n. The reconstruction performance of the postcorrection

and precorrection structure can be ensured by the lower bound of the SNR improvement

presented in [26] and [29] for a given number of correction stages.
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t
(n+ 2 +∆n+2)T (n+ 4 +∆n+4)T

(n+ 3 +∆n+1)T

(n+∆n)T

(n+ 1 +∆n+1)T

t
(n+ 1)T (n+ 2)T (n+ 4)T(n+ 3)TnT

ZOH Output

ZOH Output

Figure 4.9 (top) Uniform and (bottom) non-uniform ZOH signals.

4.4 Application Example

In the following, we discuss the precorrection of mixed-signal systems by investigating the

correction of non-uniform ZOH devices in a DAC. This scenario complements the research

on postcorrecting the time-varying behavior of TIADCs [26, 28, 30, 31, 62]. In [23], a

framework for describing M -periodically non-uniform SH signals has been introduced and

the compensation of 2-periodic ZOH signals has been shown. By using the introduced

framework for weakly time-varying systems, we extend the description to non-periodic SH

signals and demonstrate the precorrection for non-periodic ZOH signals.

4.4.1 Problem statement

In addition to the well-known shaping of the output spectrum, non-uniform ZOHs induce

spurious images in the output spectrum as has been shown in [23, 54]. These undesired

spectral components are caused by variation of the ideal sampling instants of period T by

a time-varying delay ∆nT . This delay is in turn a consequence of the clock source that is

affected by non-idealities, e.g, jitter and clock skew. Fig. 4.9 (top) depicts uniform ZOH

signals representing the ideal case, whereas Fig. 4.9 (bottom) illustrates how the time-

varying delay ∆nT results in non-uniform ZOH signals. This time-varying delay is caused

by jitter in the clock signal inducing a deviation from the ideal sampling instants nT . In

order to show the impact non-uniform ZOH signals have on the performance of the overall

system, numerical simulations were performed in Matlab. To this end, the time-varying
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Figure 4.10 Spectrum of the non-uniform ZOH output signals.

delays ∆n were selected according to a zero mean Gaussian distribution with a standard

deviation of σ∆ = 0.0391. A total of 212 samples were drawn from this distribution to

characterize the ZOH behavior. As an input signal, we employed a coherently sampled

multitone signal constituted by six equally spaced fundamental tones with amplitudes

of one and random phases. The fundamental frequencies of the tones were located at

ω0 = [0.098, 0.217, 0.336, 0.455, 0.574, 0.693] π. In order to assess the correction

performance, the SNR was calculated according to (3.61), where Ds represents the overall

delay of the system, cf. (4.14), and N specifies the number of considered samples. The

output spectrum of the non-uniform ZOH signals is shown in Fig. 4.10. The random

variations of the time shifts result in a multitude of undesired spectral components creating

a floor of tonal components located at approximately -45 dBc, considerably degrading the

SNR of the analog output signal. In accordance with Fig. 4.9, the output of a non-uniform

ZOH can be described by the time-varying impulse responses ãn(t) as [23]

ãn(t) = T (u(t−∆nT )− u(t− T −∆n+1T )) (4.27)

with ∆nT < ∆n+1T +T and where u(t) denotes the unit step function. The scaling factor

T is used to simplify the derivation of the discrete-time model as shown in the next section.
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4.4.2 System Modeling and Precorrection structure

As presented in [23], the output of a non-uniform ZOH x̂(t) including an ideal low-pass

filter hid(t) may be described as

x̂(t) =

∞∑

k=−∞
v[k]ãk(t− kT ) ∗ hid(t) (4.28)

where the CTFT of hid(t) is defined as

Hid(jΩ) =




T for |Ω| < ω̂D

T ≤ π
T

0 for |Ω| ≥ ω̂D
T .

By specifying a discrete-time filter as [44]

An(ejω) = Ãn

(
j
ω

T

)
Hid

(
j
ω

T

)
for− π ≤ ω < π, (4.29)

we can find an equivalent representation that produces with

x̂[n] =
∞∑

k=−∞
v[k]ak[n− k] (4.30)

where an[k] is the inverse DTFT of An(ejω), and

x̂(t) =
∞∑

n=−∞
x̂[n]hid(t− nT ) (4.31)

the same output as the continuous-time system in (4.28). Changing the indices of the

discrete-time model of the time-varying ZOH in (4.30) to

x̂[n] =
∞∑

k=−∞
an−k[k]v[n− k] (4.32)

and comparing it to the time-varying system in (4.7), which has been used to derive our

precorrection structure, reveals that the filter gn[k] is given by

gn[k] = an−k[k]. (4.33)

A possible implementation of the precorrection structure has been presented in Sec-

tion 4.3.2. As mentioned in Section 4.3.2, the precorrection structure requires knowledge

of RD future jitter values due to the delay induced by the causal correction filter preceed-

ing the ZOH. In contrast to [23], the correction structure developed in this section is not

restricted to M -periodically time-varying impulse responses but valid for non-periodically

time-varying systems. Although we used a particular ZOH model as defined in (4.27), we

can apply the same framework to arbitrary linear weakly time-varying bandlimited analog

reconstruction filter.
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4.4.3 Convergence

4.4.3 Convergence

The convergence of the correction process can be ensured by evaluating each impulse

response gn[k] according to the criterion in (4.6). For the given application, a more

convenient criterion can be obtained by determining the bounds of the parameters ∆n,

which control the time-varying behavior of gn[k], with respect to the convergence criterion.

Rewriting the convergence criterion in (4.6) with (4.33), we obtain

∞∑

k=−∞
|δ[k]− an−k[k]| < 1 (4.34)

where the terms |an−k[k]| depend on time instants other than the current time instant n.

By bounding the time-varying parameter ∆n according to

|∆n| < ε, (4.35)

the convergence criterion in (4.34) can be exploited as

∞∑

k=−∞
max
|∆n|<ε

|δ[k]− an−k[k]| < 1 (4.36)

to find ε. The maximization in (4.36) gives a conservative convergence bound but can

be easily evaluated resulting in a bound of ε = 0.047 for the given application, where

the utilized impulse responses are highly oversampled instances of (4.29) and an overall

number of 212 samples were utilized. Additionally, the reconstruction performance of a

multistage scheme (R = 6) precorrecting the input signal, as specified in Section 4.4.1,

was investigated by means of Monte Carlo simulations, achieving a bound of ε = 0.5 which

represents the overall viable parameter space according to the constraint of (4.27). Thus,

it can be concluded that the application specific convergence criterion in (4.36) offers a

signal-independent but conservative convergence bound compared to the simulation-based

results.

4.4.4 FIR Filter Design

The precorrection structure in Fig. 4.8 is used to preprocess the input of the non-uniform

ZOH model as specified in Section 4.4.1 with respect to the simulation-based convergence

results presented in Section 4.4.3. As a consequence, the spectral purity of the output

signal within the bandwidth ω̂D is enhanced. The utilized filters are designed by approx-

imating the discrete-time frequency response of the ZOH

An(ejω) = e−jω
1
2

sin
(
ω
2 (1 + ∆n+1 −∆n)

)
ω
2

e−j
ω
2

(∆n+1+∆n). (4.37)
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which is obtained following the reasoning in Section 4.4.2. The delay term e−jω
1
2 does not

introduce any distortions and can be neglected to simplify the precorrection task. The

resulting discrete-time frequency response of the ZOH is approximated by Aa
n(ejω) using

the framework outlined in Section 4.3.2 to obtain the frequency response

Ac
n(ejω) =

K∑

k=0

ac
n[k]e−jωk (4.38)

where ac
n[k] indicates the coefficients and K the order of the causal FIR filter. Using

the relationship in (4.33), the time-varying FIR filter gc
n[k] is obtained which can be

employed in the correction structure. By designing gc
n[k] and updating the correction filter

coefficients as described in Section 4.3.2 on a sample-by-sample basis, the precorrection

structure is continuously adapted with respect to the time-varying behavior of the non-

uniform ZOH signals.

To verify the proposed structure, we designed filters of order K = [12, 24, 36], delay

D = 6 within the band ωD = [0, 0.75π] according to the L2 norm utilizing the Matlab

software CVX for solving the convex optimization problem [18]. Furthermore, the input

signal as defined in Section 4.4.1 was used for this simulation.

The output spectrum of the non-uniform ZOH precorrected by three correction stages

employing filters of order 12 is shown in Fig. 4.11. The undesired tones within the band-

width ω̂D = 0.75π are reduced considerably, and the initial SNR of the output bandlimited

to ω̂D is enhanced from an initial value of 19.19 dB for the uncorrected case to 62.78 dB

via the proposed processing. The achieved SNR performance for an increasing number

of precorrection stages and different filter orders are shown in Fig. 4.12. The SNR per-

formance is increased in an approximately linear manner up to a SNR value of about

75.9 dB for four correction stages when filters of order 12 are employed in the correction

structure. A maximum SNR value of 80 dB can be achieved by appending additional cor-

rection stages. This SNR value can be enhanced when filters of higher order are utilized

as exemplified by the SNR performance of reconstruction structures using filters of order

14 and 16, respectively.

Though the obtained improvement of the figures-of-merit are substantial, the presented

time-varying filter design suffers from two main drawbacks. The solution of an optimiza-

tion problem at each instant n is computationally intensive and the set of previously

approximated channel responses must be stored and continuously updated in the memory.

These two problems will be addressed in the following section.
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Figure 4.11 Spectrum of the non-uniform ZOH output signals, using the

proposed precorrection constituted by three correction stages

(R = 3).
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Figure 4.12 SNR performance over the number of correction stages for dif-

ferent filter orders employing Modified Farrow filters.
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4.4.5 Farrow Filter Design

To significantly reduce the complexity of an online FIR filter design, a tunable precorrec-

tion structure will be devised to adapt to the non-uniform ZOH behavior. This structure

can be designed offline and is adapted online by updating a few time-varying multipli-

ers only. To this end, we approximate the ZOH frequency response An(ejω) in terms of

two parallel Farrow structures [37] which will be modified to obtain an online tunable

time-varying filter that can be employed in the precorrection structure.

The frequency response of a ZOH given in (3.50) can be written as

An(jΩ) = e−jΩT
1
2

1

jΩT

(
e−jΩT (− 1

2
+∆n) − ejΩT (− 1

2
−∆n+1)

)
. (4.39)

As in Section 4.4.4, the delay term e−jΩT
1
2 is neglected to simplify the precorrection task,

and by using the relation in (4.29), we can write

An(ejω) = Â(ejω,∆n) + Â∗(ejω,−∆n+1) (4.40)

where (.)∗ denotes the conjugate complex value and Â(ejω, λ) is a prototype filter given

by

Â(ejω, λ) =
1

jω
e−jω(− 1

2
+λ). (4.41)

Since Â(ejω, λ) is an univariate function in λ, it can be approximated in terms of a poly-

nomial in λ by defining the error of the polynomial approximation as

E(ejω, λ) = Â(ejω, λ)− Âa(ejω, λ) (4.42)

and by solving the optimization problem

min ||E(ejω, λ)||2 (4.43)

according to the L2 norm for ω ∈ ωD and λ ∈ λD. After delaying the approximation result

by D samples, the causal Farrow filter is obtained as

Âc(ejω, λ) =
K∑

k=0

âc[k, λ]e−jωk (4.44)

with

âc[k, λ] =

L∑

l=0

bl[k] λl. (4.45)

The resulting Farrow filter is constituted by a set of L+1 filters of FIR type that define the

impulse response âc[k, λ]. Each subfilter is of order K and bl[k] indicates the kth coefficient

of the lth subfilter.
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∆n
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∆n
B1(e

jω)

B0(e
jω)

Bl(e
jω)

BL(e
jω)

Gc
1,n(e

jω)

Figure 4.13 Modified Farrow filter.

The inverse discrete-time Fourier transform of (4.40) results with (4.45) in

âc
n[k] = âc[k,∆n] + âc[−k,−∆n+1]. (4.46)

Applying the relationship in (4.33) to the parallel Farrow filter in (4.46), the modified

parallel Farrow filter, representing a single correction filter, is obtained as

gc
n[k] = gc

1,n[k] + gc
2,n[k] (4.47)

where

gc
1,n[k] = âc[k,∆n−k] (4.48)

gc
2,n[k] = âc[−k,−∆n−k+1]. (4.49)

Rewriting the modified Farrow filter gc
1,n[k] in terms of the FIR coefficients as

gc
1,n[k] =

L∑

l=0

bl[k] ∆l
n−k (4.50)

reveals its time dependency on previous values of ∆n for all but the first FIR coefficient.

Therefore, it presents a cascaded time-varying system as given in (4.9) with gn[k] = bl[k]

and hn[k] = ∆l
nδ[k]. Thus, by introducing (4.33) the initial order of the Farrow filter is

reversed and a modified Farrow filter is obtained as illustrated in Fig. 4.13. A detailed

derivation is presented in Section A.4. The same principles can be applied to the modified

Farrow filter ga
2,n[k]. In order to verify the viability of the proposed correction scheme,

the numerical simulations of Section 4.4.4 are repeated. However, the parallel modified
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Figure 4.14 SNR performance over the number of correction stages for dif-

ferent filter orders.

Farrow filter is employed in each stage of the correction structure. For these simulations,

the same settings, input signal, number of correction stages and realizations of ∆ were

used as in the previous section. To provide a meaningful comparison with the online filter

design, the two modified Farrow filters were approximated according to the L2 norm with

a filter order K = 12, which agrees with the previous design. The polynomial order of the

prototype Farrow filter was selected as L = 2 with a design band of ωD = [0.1π, 0.75π]

and a parameter vector of λD = [−0.08, 0.08].

The obtained output spectrum of the precorrected DAC is depicted in Fig. 4.11. Again,

the distortions in the band |ω| < ω̂D with ω̂D = 0.75π are reduced considerably. The

obtained result and the achieved SNR performance over the number of precorrection stages

for different filter order, as shown in Fig. 4.14, compares favorably with the results of the

previous section. A similar reconstruction performance compared to case presented in

Section 4.4.4 can be observed. The only notable difference is constituted by the increase

of the number of Farrow subfilters required to meet an enhanced maximum SNR value for

a designed reconstruction system employing filters of higher order [31].

4.5 Concluding Remarks

In this chapter, structures were presented which allow for the precorrection and postcor-

rection of linear weakly time-varying systems. These structures were derived from the

Richardson iteration while the exploration of other stationary iterative methods enabling
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the precorrection of time-varying systems was beyond the scope of this chapter. The via-

bility of the precorrection structure was demonstrated by the preprocessing of non-uniform

ZOH signals in a DAC. To this end, a correction structure employing modified Farrow fil-

ters was presented which can be updated online by tuning a few time-varying multipliers

only and considerably enhances the performance of the overall system. Employing more

efficient Farrow implementations, e.g., in [65], and Farrow filters with an unequal num-

ber of subfilters could be a promising approach to create more computationally efficient

structures.
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5
Correction of Weakly Time-Varying Volterra

Systems

5.1 Introduction

Linear systems are utilized in various fields of engineering. However, for specific appli-

cations in the field of communications theory, propagation theory and mixed-signal pro-

cessing, the capabilities of linear systems might not suffice to adequately represent the

behavior of blocks in the signal processing chain [66]. In these applications, an inher-

ent nonlinear behavior of a system block, e.g., of an amplifier or SH device [67], requires

nonlinear signal processing [68, 69]. Depending on the type of nonlinear system that is

encountered, different mathematical representations could be employed. Nonlinear order

statistics, homomorphic, morphological filters and filters based on the Volterra series have

been successfully applied in image and seismic signal precessing and the modeling of bi-

ological systems [66]. In this chapter, the focus will be on Volterra systems which are

able to characterize nonlinear systems with fading memory [70]. Volterra systems and

specific types of Volterra systems, i.e., the Hammerstein and Wiener system, have been

proposed in order to improve the performance of nonlinear systems in various applications.

The enhancement of analog integrated circuits, the digital predistortion of radio frequency

(RF) amplifiers and the modeling of SH circuits are selected examples, where an undesired

behavior could be mitigated by modeling and correcting the respective nonlinear system

[71–73]. In the correction case, it is desired to compensate the impact a Volterra system

has on a signal, and the inverse characteristic of the Volterra system is required to pro-

cess the affected signal [74]. In this scenario, the Volterra system will be referred to as

the undesired Volterra system to distinguish this system from correction structures that

comprise or are constituted by Volterra systems themselves, e.g., in [75]. Not all Volterra

systems possess an inverse [74], and for this reason, the theory of the Pth-order inverse
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5.2 Volterra Systems

was proposed in [74]. Cascading this Pth-order inverse with the undesired Volterra system

results in an overall Volterra system whose 1st-order up to the Pth-order components of

the Volterra kernel are canceled. The residual Volterra kernels of the overall system are

not extinguished, and as a consequence, the Pth-order inverse as presented in [74] does

not provide a unique solution since other methods do exist which yield different residual

kernels, while still canceling the 1st-order up to the Pth-order components of the Volterra

kernel. This degree of freedom was exploited in [75] to present recursive methods for syn-

thesizing Pth-order inverses which have a lower implementation complexity and are easier

to derive. In this recursive method, a truncated instance of the undesired Volterra system

was employed, whose order of the Volterra series is gradually increased while the order of

the Pth-order inverse that is synthesized is gradually increased. Derivations of this meth-

ods were reported in [55, 76] which do not alter the order of the Volterra systems employed

in the recursive synthesis of the Pth-order inverse. In [55], the fixed point framework is

employed to investigate the theory on Pth-order inverses and their convergence behavior.

In this chapter, the representation of time-varying Volterra systems and their correction

in terms of a time-varying Pth-order inverse will be explored. Furthermore, a correction of

time-varying Volterra systems that is based on fixed point iteration methods is presented

[77]. The presented work serves as an outlook for further research.

5.2 Volterra Systems

5.2.1 Input/Output Relations

The output y[n] of a nonlinear system can be expressed as the Volterra series expansion

for bounded input bounded output (BIBO) stable systems with a time-varying Volterra

kernel [78, 79], i.e,

y[n] = Hn {x[n]}

=
∞∑

p=1

yp[n]
(5.1)

where Hn {x[n]} indicates the time-varying Volterra system Hn{.} of infinite order applied

to the input signal x[n]. The intermediate signals in (5.1) are defined as

yp[n] = Hp,n {x[n]} . (5.2)

where Hp,n{.} represents the pth-order operator of the Volterra system Hn{.}. The 0th-

order operator in (5.1) is omitted since the correction of the resulting time-varying offset

added to the signal is straightforward. The 1st-order operator will also be referred to as
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H
〈P 〉
n

H1,n

H2,n

y1[n]

y2[n]

HP,n

Hp,n

yp[n]

yP [n]

y[n]x[n]

Figure 5.1 Volterra system H
〈P 〉
n {.} that processes the input signal x[n] and

results in the output signal y[n]. The overall Volterra system

generates P intermediate signals yp[n].

the linear component and the pth-order operators for p > 1 as the nonlinear components

of the Volterra system.

The pth-order operators are obtained as the convolution of the input signal x[n] with

the respective time-varying multivariate function hp,n[k1, k2 . . . kp] [78, 79], i.e.,

Hp,n {x[n]} =
∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kp=0

hp,n[k1, k2, . . . , kp]x[n− k1]x[n− k2] . . . x[n− kp]. (5.3)

The Pth-order truncation of the Volterra system Hn{.} results in a time-varying Volterra

system of order P [74], its time-varying formulation is obtained as

y[n] = H〈P 〉n {x[n]}

=
P∑

p=1

yp[n].
(5.4)

The signal flow, when employing the Volterra system H
〈P 〉
n {.} to process the signal x[n],

is illustrated in Fig. 5.1, and the relationship between the Volterra system H
〈P 〉
n {.} and

its time-varying coefficients hp,n[k1, k2, . . . , kp] of the pth-order Volterra operator Hp,n{.}
in (5.3) is exemplified in the Appendix (see Fig. A.3).

5.2.2 Cascade of Time-Varying Volterra Systems

A representation for a cascade of a Volterra system Hn{.} that is postprocessed by a

second Volterra system G
〈P 〉
n {.} of order P can be obtained by following the approach in
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5.2 Volterra Systems

y[n]x[n] x̂[n]
Hn G

〈P 〉
n

Fn

Figure 5.2 Cascade of two Volterra systems, where the first system is of

infinite order and the second system is of order P .

[74] and extending it to time-varying Volterra systems. The output of the second Volterra

system is given as

x̂[n] = G〈P 〉n {y[n]} (5.5)

and rewritten with (5.1) as

x̂[n] = Fn {x[n]} (5.6)

where

Fn {x[n]} = G〈P 〉n {Hn {x[n]}} . (5.7)

The overall cascaded system is illustrated in Fig. 5.2.

Using (5.6), (5.7) and (5.4), the Volterra series expansion of the cascade in (5.6) can be

rewritten as

x̂[n] =
P∑

p=1

Gp,n {Hn {x[n]}} . (5.8)

By utilizing the definition of the intermediate signals in (5.1), we obtain

x̂[n] =

P∑

p=1

Gp,n




∞∑

p=1

yp[n]



 (5.9)

which describes the input/output relationship of a time-varying Volterra system cas-

caded with a subsequent time-varying Volterra system of order P . An equivalent repre-

sentation of the cascaded system is obtained with
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5.2.2 Cascade of Time-Varying Volterra Systems

x̂[n] =

∞∑

p=1

Fp,n {x[n]} . (5.10)

In order to relate (5.9) and (5.10), a scaled input signal c x[n], where c is a time-invariant

coefficient, is applied to both representations. The definition of the pth-order operator in

(5.3) allows the factoring out of the time-invariant coefficient c, cf., (5.3), and the two

representations of the cascaded system in (5.9) and (5.10) can be rewritten as

x̂[n] =

∞∑

p=1

Fp,n {c x[n]}

=

∞∑

p=1

cpFp,n {x[n]}
(5.11)

and

x̂[n] =
P∑

p=1

Gp,n




∞∑

p=1

cpyp[n]



 . (5.12)

Employing the definition of the pth-order operator presented in (5.3) to the relation in

(5.12), the result can be reordered and is rewritten as

x̂[n] =

P∑

p=1

∞∑

k1=1

∞∑

k2=1

· · ·
∞∑

kp=1

ck1+k2+...kpGp,n
{
yk1 [n], yk2 [n], . . . , ykp [n]

}
(5.13)

with the multivariate pth-order operator

Gp,n
{
yk1 [n], yk2 [n], . . . , ykp [n]

}
=
∞∑

l1=0

∞∑

l2=0

· · ·
∞∑

lp=0

gp,n[l1, l2, . . . , lP ]

yk1 [n− l1]yk2 [n− l2] . . . ykP [n− lp].
(5.14)

A comparison of the coefficients c regarding its exponents p in (5.11) and k1 +k2 + . . . kp

in (5.13), respectively, can be used to relate the operators Fp,n {x[n]} to functions of

Gp,n
{
yk1 [n], yk2 [n], . . . , ykp [n]

}
for 1 ≤ p ≤ P .

The resulting first three operators of Fp,n {x[n]} are listed in (5.15)-(5.17), where the

employed multivariate operators are expanded in (5.18) utilizing the approach in [80].
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5.2 Volterra Systems

F1,n {x[n]} = G1,n {y1[n]} (5.15)

F2,n {x[n]} = G1,n {y2[n]}+G2,n {y1[n]} (5.16)

F3,n {x[n]} = G1,n {y3[n]}+G3,n {y1[n]}+ 2G2,n {y1[n], y2[n]} (5.17)

with the expansions of the multivariate operators [80]

2G2,n {y1[n], y2[n]} = G2,n {y1[n] + y2[n]} −G2,n {y1[n]} −G2,n {y2[n]} (5.18)

A cascade of two 2nd-order Volterra systems is exemplified in the Appendix A.4.

5.2.3 Pth-Order Inverse

In the following, the Pth-order inverse for time-varying Volterra systems is derived. To

this end, the strong assumption is made that there exists a time-varying linear operator

G1,n{.} which facilitates the perfect correction of the linear component H1,n{.} of the

undesired Volterra system, i.e.,

x[n] = G1,n {H1,n {x[n]}} . (5.19)

This assumption will be relaxed in Section 5.2.5 where implementation aspects of the

correction schemes are discussed. By applying the Pth-order inverse, it is desired to obtain

a cascaded Volterra system Fn {x[n]} with the pth-order operators [74]

Fp,n {x[n]} =




x[n] for p = 1

0 for 1 < p ≤ P.
(5.20)

The 1st-order operator of the Pth-order inverse is obtained by rewriting (5.15) using

(5.2), i.e.,

F1,n {x[n]} = G1,n {H1,n {x[n]}} . (5.21)

In order to meet the requirement in (5.20) for p = 1, G1,n{.} is designed to fulfill the

assumption in (5.19). Furthermore, the 2nd-order operator of the Pth-order inverse is

obtained by rewriting (5.16) using (5.2) and (5.20) for p = 2, i.e.,

0 = G1,n {H2,n {x[n]}}+G2,n {H1,n {x[n]}} .
(5.22)
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y[n]

−
+

+

+

G1,n

z[n]

y[n]

G
〈p−1〉
n H

〈P 〉
n

H
〈1〉
n

G
〈p〉
n

Figure 5.3 Recursive scheme for the composition of the Pth-order inverse.

The order of the undesired Volterra system employed in the Pth-

order inverse remains constant.

In order to use the relation in (5.20) for p = 1, the output of H1,n {x[n]} is postprocessed

by G1,n{.} yielding

G2,n {x[n]} = −G1,n {H2,n {G1,n {x[n]}}} . (5.23)

The higher order operators of the Pth-order inverse can be developed analogously.

In [75], the synthesis of the Pth-order inverse was proposed based on a recursive scheme.

The derivation of the synthesis equation for time-varying Volterra systems can be derived

analogously as in [75] and is given in recursive form as

G〈p〉n {y[n]} = G1,n

{
y[n]−H〈p〉n

{
G〈p−1〉
n {y[n]}

}
+H1,n

{
G〈p−1〉
n {y[n]}

}}
. (5.24)

Applying the recursive synthesis relation in (5.24), the order of the instance of the unde-

sired Volterra system H
〈p〉
n {.} is gradually increased with increasing order of the Pth-order

inverse, while the linear component of the undesired Volterra system is subtracted. Alter-

natively, an instance of the undesired Volterra system could be employed which comprises

only 2nd-order up to pth-order operators.

A derivations of this recursive synthesis relation was reported in [55, 76] where the order

of the Volterra systems employed in the recursive scheme remains constant with order P .

The respective recursive synthesis relation is obtained by substituting H
〈p〉
n in (5.24) with

H
〈P 〉
n . The resulting scheme is depicted in Fig. 5.3.

5.2.4 Fixed Point Iteration Based Correction

The synthesis of the Pth-order inverses, as presented in (5.2.3), involves G1,n{.} which

cancels the linear component of the undesired Volterra system (cf., (5.24) and (5.21) with
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5.2 Volterra Systems

(5.20)). In a scenario, where the linear component of the undesired Volterra system is

non-periodically time-varying this is an unfavorable property in terms of the required de-

sign complexity of G1,n{.}. To reduce this design complexity, correction schemes based

on a fixed point iteration are proposed in the following. To this end, the perfect recon-

struction of the signal y[n] that is affected by the undesired Volterra system Hn {.} can

be represented as

x̂[n] = H−1
n {y[n]} (5.25)

where the existence of H−1
n {.} is assumed. Applying a fixed point iteration, x̂[n] can be

approximated iteratively using a fixed point iteration [63], to correct time-varying Volterra

systems, i.e.,

w[n](r) = w[n](r−1) + w[n](0) − T 〈P 〉n

{
w[n](r), w[n](r−1)

}
(5.26)

where w[n](0) = y[n] and T
〈P 〉
n {.} indicates a Volterra system of order P that is employed

in the rth iteration. The principle scheme is illustrated in Fig. 5.4.

+
− w[n](r)

+

w[n](0)

w[n](r−1)

T
〈P 〉
n

Figure 5.4 Proposed fixed point iteration for the correction of a Volterra

system.

The relation in (5.26) can be employed to synthesize a recurrence relation for the suc-

cessive over-relaxation, Richardson, Jakobi and Gauss-Seidel iteration [77]. However, in

the following only correction structures for the nonlinear Richardson iteration and for a

modified Gauss-Seidel iteration will be investigated as G1,n{.} will not be required in the

resulting structures. To obtain the nonlinear Richardson iteration [63], an instance of the

undesired Volterra system of order P can be utilized in (5.26) by applying the identity

T
〈P 〉
n

{
w[n](r), w[n](r−1)

}
= H

〈P 〉
n

{
w[n](r−1)

}
. For a different structure, the already cor-

rected output samples w[n](r) obtained for the current iteration can be used in the same

iteration r in the nonlinear filtering operation. To this end, a recursive system is utilized

by rewriting (5.26) using the identity T
〈P 〉
n

{
w[n](r), w[n](r−1)

}
= H̃

〈P 〉
n

{
w[n](r), w[n](r−1)

}
.

The causal system can be defined as
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5.2.5 Correction Structures

H̃〈P 〉n

{
w[n](r), w[n](r−1)

}
=

P∑

p=1

H̃p,n

{
w[n](r), w[n](r−1)

}
(5.27)

with

H̃p,n

{
w[n](r), w[n](r−1)

}
=

D∑

k1=0

D∑

k2=0

· · ·
D∑

kp=0

hp,n[k1, k2, . . . , kP ]

w[n− k1](r−1)w[n− k2](r−1) . . . w[n− kp](r−1)

+

∞∑

l1=D+1

∞∑

l2=D+1

· · ·
∞∑

lp=D+1

hp,n[l1, l2, . . . , lP ]

w[n− l1](r)w[n− l2](r) . . . w[n− lp](r)

(5.28)

where D indicates the delay induced by the system.

5.2.5 Correction Structures

In [74, 75], the linear component of the undesired time-invariant Volterra system is assumed

to be minimum phase which can be perfectly inverted [44]. An equivalent assumption for

a time-varying scenario would be the perfect invertibility of time-varying systems fulfilling

the relation presented in (5.19). However, in general the linear component of the undesired

Volterra will not be perfectly invertible for time-variant and time-invariant scenarios, and

thus an approximation of the inverse characteristics of the linear component is required.

To facilitate this approximation, the first order operators H1,n{.} and G1,n{.} are rewritten

in terms of the time-varying impulse responses hn[k] and gn[k], respectively, yielding

H1,n {x[n]} =

∞∑

k=−∞
hn[k]x[n− k]

G1,n {x[n]} =
∞∑

k=−∞
gn[k]x[n− k]

(5.29)

where the cascaded linear component F1,n {x[n]}, as shown in (5.21), is characterized

by fn[k] as shown in (3.4). The explicit design of the time-varying postcorrection filter

gn[k] is presented in Section 3.3, and to this end, the desired characteristic of the cascaded

linear time-varying system is specified in terms of the desired DTFT of the cascade, i.e.,

Dn(ejω) = e−jω(DH+DG) (5.30)
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5.2 Volterra Systems

where DH is the delay introduced by H1,n{.} and DG specifies the delay introduced by

G1,n{.}. Applying the design framework for time-varying filters, the coefficients of G1,n{.}
can be obtained by solving the optimization problem in (3.15) according to a given norm

using (5.30). The imperfect approximation of the coefficients and a non zero delay induced

by H1,n{.} and G1,n{.} relax the assumption in (5.19).

The implementation of the overall postcorrection structure obtained from the recursive

synthesis relation in (5.24) is shown in Fig. 5.5 for the example of a 3rd-order inverse.

The adaptation of each block in the correction structure is performed by delaying its time

index n with DH and (p − 1)DG, where p indicates the order in the recursive relation

in (5.24). This structure will be referred to as correction structure A for the remainder

of this work. Correction structure B implements the fixed point iteration given in (5.26)

with T
〈P 〉
n

{
w[n](r), w[n](r−1)

}
= H

〈P 〉
n

{
w[n](r−1)

}
and is illustrated in Fig. 5.6.

Applying the recursive system defined in (5.27) and (5.28) to the fixed point iteration

in (5.26), correction structure C is obtained as presented in Fig. 5.7.
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5.3 Correction Example

5.3 Correction Example

In the following example, the presented correction structures A, B and C are compared in

terms of their performance correcting the linear and nonlinear components of a Volterra

system. These correction structures are applied to postcorrect a Volterra system of order

3 with a memory depth of 4, comprising a weakly time-varying linear component. In

order to consider the worst-case scenario in terms of the weakly time-varying criterion

in (4.6), while still allowing for a variety of possible outcomes, the coefficients of the linear

component H1,n{.} are obtained by

h1,n[k] =





1 for k = DH

c[k] otherwise
(5.31)

for 0 ≤ k ≤ 4 and DH = 2. The time-varying behavior of the coefficients in (5.31)

is determined by the zero-mean uniform distribution c ∼ U(−s1, s1) with 0 ≤ s1 ≤ 1
4

and c[k] indicates a single sample drawn from this distribution. The coefficients of the

higher order operators follow independent and identically distributed zero-mean uniform

distributions, i.e., hp,n ∼ U(−s2, s2) for 2 ≤ p ≤ P . Thus, the parameters s1 and s2 control

the magnitude of the time-varying behavior of the linear and nonlinear components of the

Volterra system, respectively. To investigate a non-periodically time-varying system, a

distinct set of coefficients was generated individually for each time instant n to characterize

these components.

In order to provide a comparison of the different correction structures with similar

implementation complexity, the number of employed Volterra systems in the correction

structures is determined by correction structure A. Thus, two Volterra systems of order 3

are comprised in correction structure A, B and C. For correction structure B and C, this

results in a two stage correction scheme. In order to minimize the error introduced by

the imperfect approximation of G1,n{.} in correction structure A, the SNR performance

of G1,n{.} was evaluated. A filter design of order 80, performed according to the L2

norm, provided the maximum SNR value possible when using double precision arithmetic

in Matlab for the utilized input signal. As an input signal x[n], the bounded multitone

signal as specified in Section 4.4.1 was used, however, the signal was coherently sampled to

obtain 8192 samples. The contour lines of different SNR values for the uncorrected Volterra

system are illustrated in Fig. 5.8(a). The ordinate and abscissa in this figure indicate the

parameters s1 and s2 which control the magnitude of the time-varying behavior of the

linear and nonlinear component, respectively. The contour lines for the SNR values 75,

55 and 35 dB that were achieved by the correction structures A, B and C are depicted in

Fig. 5.8(b), Fig. 5.9(a) and Fig. 5.9(b), respectively.
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Figure 5.8 (a) Contour lines indicating the SNR performance of the un-

corrected Volterra system and of (b) correction structure A: The

ordinate indicates the magnitude of the linear component’s time-

varying behavior (s1) and the abscissa indicates the magnitude

of the nonlinear component’s time-varying behavior (s2).
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Figure 5.9 (a) Contour lines indicating the SNR performance of correction

structure B and of (b) correction structure C: The ordinate in-

dicates the magnitude of the linear component’s time-varying

behavior (s1) and the abscissa indicates the magnitude of the

nonlinear component’s time-varying behavior (s2). The 3 con-

tour lines mark the SNR values 75, 55 and 35 dB.
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In Fig. 5.8(b), the SNR performance of the correction structure A is independent of the

variation of s1. This independence reflects the ability of this structure to suppress signal

contributions induced by the time-varying linear component of the undesired Volterra

system. However, this advantage comes at the cost of a high design complexity of G1,n{.}.
In Fig. 5.9(a), the SNR performance of the correction structure B depends on both

parameters s1 and s2. Furthermore, for a low magnitude of the time-varying behavior

of the linear component, the SNR performance of this correction structure is identical

to the performance of correction structure A, whereas the performance decreases with an

increasing magnitude. This dependency results from the implicit iterative correction of the

linear component H1,n{.} without resorting to a dedicated correction filter as in correction

structure A. In Fig. 5.9(b), the SNR performance of the correction structure C is depicted

which shows a similar behavior as the results of correction structure B, however, with an

enhanced performance.

5.4 Future Research

In this chapter, the correction of time-varying Volterra systems with weakly time-varying

linear components has been investigated as an outlook for future research. The investigated

structures have been implemented based on the time-varying equivalent of the Pth-order

inverse and on fixed point iterative methods. Their reconstruction performance has been

compared for different magnitudes of the linear and the nonlinear behavior of a Volterra

system.

A point for further research could be the comparison of the presented methods in terms

of their convergence for time-varying scenarios. This work could include the proof of the

optimality of a correction structure with respect to its implementation complexity and a

possible extension of the convergence criterion in (4.6) to nonlinear systems. Furthermore,

employing the presented correction structures in blind parameter identification schemes

could also prove beneficial. Identification schemes have been presented which utilize an

approximated and parameterized inverse of the system to facilitate the gradual adaptation

of the identification algorithm, e.g., in [2]. Two beneficial properties of the iteration based

correction structure could enhance the identification performance of those algorithms.

First, the parameters modeling the undesired system are directly related to the inverse

characteristic of the system since the approximated inverse is a function of the undesired

system itself. Second, the correction performance in an identification algorithm could be

easily improved by increasing the number of employed correction stages. As a consequence,

the effect of an inaccurate correction on the identification performance could be mitigated.
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6
Conclusion

In this thesis, low complexity methods and structures for the correction of time-varying

systems have been presented. In Chapter 2, the mathematical representation of period-

ically time-varying linear systems as time-varying filters, polynomial filters, modulator

banks and filter banks was established. Furthermore, the requirements for the equivalence

of these representations were investigated. Thus, a correction scheme can be developed

by using the most favorable framework, and the resulting scheme can be implemented

choosing the most efficient representation.

In Chapter 3, the problem of correcting non-periodically time-varying linear systems

was addressed. Depending on the application, this correction could either result in the

compensation of the undesired time-varying linear system or in the synthesis of a desired

time-varying behavior of the overall system. To this end, a postcorrection and precorrec-

tion method for the design of time-varying FIR correction filters were presented. Applying

a different derivation, the derived postcorrection method resulted in the same cost func-

tion as was presented in [19]. These correction methods provide a powerful and versatile

approach to correct non-periodically time-varying systems since the filter order and the

filter design norm can be adapted for each time instant individually in order to meet the

application’s requirements. However, this filter design process relies on computationally

intensive operations, e.g numerical integration or matrix operations [9]. In order to re-

duce the computational requirements, a low complexity filter design algorithm for the

least-squares norm was derived which can be applied to postcorrection and precorrection

systems, respectively. This algorithm exploits the time-varying nature of the design prob-

lem and reuses results from the previous filter design. As a consequence, the computational

complexity of the proposed algorithm was considerably reduced compared to an algorithm

performing a dedicated filter design for each time instant. Furthermore, a system model

for the precorrection of DAC employing nonuniform ZOH signals was introduced which
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complements the postcorrection of ADCs in [22]. The presented application example ex-

tends the precorrection of nonuniformly time-varying ZOH signals from the periodic case,

as presented in [23], to the non-periodic case.

In Chapter 4, structures for the correction of weakly time-varying systems have been

developed. These structures can be applied in weakly time-varying scenarios where the

design complexity of the filter design based process, as presented in Chapter 3, can not

be afforded. The proposed precorrection structure complements postcorrection structures

that have been presented in [26–29]. Furthermore, a condition for weakly time-varying

systems has been presented which can be easily evaluated in real-time applications, and

the commutativity of the correction structure and the undesired linear system has been

established. Therefore, results regarding reconstruction performance, convergence and

computational complexity obtained for the postcorrection case, as presented in [26–29]

can be directly applied to the proposed precorrection structures. Additionally, the via-

bility of the proposed structures was demonstrated via the precorrection of nonuniform

ZOH signals. For this precorrection of nonuniform ZOH signals, a modified Farrow filter

structure was developed which can be adapted by tuning a few time-varying multiplies

only. Thus, a further reduction of the design complexity could be achieved by applying

modified Farrow filters in the precorrection structure.

In Chapter 5, the extension of the principles presented in Chapter 4 to nonlinear systems

was explored. To this end, the definition of the Pth-order inverse was extended to time-

varying Volterra systems to provide a reference correction scheme. Furthermore, fixed

point iteration based methods were proposed as a means of correcting Volterra systems

with weakly time-varying linear components.
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A
Appendix

A.1 Order Update of the Inverse PK
n−1

The design matrix MK
n−1 can be partitioned as the backward prediction problem

MK
n−1 =

[
MK−1

n−1 , mn−1,K−1

]
. (A.1)

In order to derive PK
n−1 =

((
MK

n−1

)∗
MK

n−1

)−1
, we first consider the matrix product(

PK
n−1

)−1
=
(
MK

n−1

)∗
MK

n−1, using (A.1), i.e.,

(
PK
n−1

)−1
=




(
MK−1

n−1

)∗
MK−1

n−1 ,
(
MK−1

n−1

)∗
mn−1,K−1

m∗n−1,K−1M
K−1
n−1 , m∗n−1,K−1mn−1,K−1


 . (A.2)

The matrix inversion lemma for partitioned matrices can be employed to obtain the inverse

of (A.2) as [81]

PK
n−1 =



PK−1
n−1 +

wbw
∗
b

εb
, −wb

εb

−w∗b
εb
,

1

εb


 (A.3)

where the notation for joint process estimation in [51] has been used.

The backward projection vector wb is given as

wb =
(
MK−1

n−1

)†
mn−1,K−1 (A.4)

and the backward scaling factor is

εb = m∗n−1,K−1

(
mn−1,K−1 −MK−1

n−1 wb

)
. (A.5)

There are two possible interpretations of the relation in (A.3). A straight-forward applica-

tion of (A.3) would be to determine PK
n−1 by evaluating its right handside employing the
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A.2 Order Update of the Generalized Inverse
(
MK

n−1

)†

lower order matrix PK
n−1 and the vector mn−1,K−1. However, if it is desired to determine

the lower order matrix PK−1
n−1 from PK

n , the latter matrix needs to be partitioned, i.e.,

PK
n−1 =

[
S, t

t∗, c

]
(A.6)

where S represents a real-valued K−1-by-K−1 matrix, t∗ is a real-valued row vector of

length K−1 and c is a real scalar value. The backward projection vector can be determined

as

wb = −t

c
(A.7)

based on the partitions of PK
n−1. For this scenario, (A.7) provides an alternative to the

relation in (A.4) without requiring the matrix
(
MK−1

n−1

)†
.

The lower order equivalent of PK
n−1 can be calculated as

PK−1
n−1 = S−wbt

∗ (A.8)

The presented derivations can be applied analogously to the respective forward projection

problem.

A.2 Order Update of the Generalized Inverse
(
MK

n−1

)†

Multiplying (A.3) with the partitioned version of
(
MK−1

n−1

)∗
given in (A.1), an order update

relation for the generalized inverse is obtained as

(
MK

n−1

)†
=




(
MK−1

n−1

)†
+

wbw
∗
b

(
MK−1

n−1

)∗
−wbm

∗
n−1,K−1

εb

−
w∗b
(
MK−1

n−1

)∗
+ m∗n−1,K−1

εb




(A.9)

for the backward projection scenario. Introducing the backward projection error

b = mn−1,K−1 −MK−1
n−1 wb, (A.10)

(A.9) can be rewritten in a more concise form as

(
MK

n−1

)†
=




(
MK−1

n−1

)†
− wbb

∗

εb
b∗

εb


 . (A.11)
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A.3 Transfer Function as Matrix Polynomial

For determining
(
MK

n−1

)†
from the lower order generalized inverse

(
MK−1

n−1

)†
, the back-

ward projection vector wb and the backward projection error b are required to calculate

the right handside of (A.9). In order to determine the lower order equivalent of the gen-

eralized inverse
(
MK

n−1

)†
, this matrix is partitioned in the upper matrix U and the row

vector v∗, i.e.,
(
MK

n−1

)†
=

[
U

v∗

]
(A.12)

where the matrix U represents the upper K − 1 rows and the vector v∗ the Kth row of(
MK

n−1

)†
.

The lower order generalized inverse can be determined as the K−1-by-R matrix

(
MK−1

n−1

)†
= U + wbv

∗. (A.13)

The presented derivations can be applied analogously to the respective forward projection

problem.

A.3 Transfer Function as Matrix Polynomial

The output vector w(R) after R iterations with respect the input vector x is given by

w(R) =
(
I− (I−H)R+1

)
x. (A.14)

In order to relate w(R) and the input vector of the iteration y, (A.14) is rewritten as

w(R) =
(
I− (I−H)R(I−H)

)
H−1y (A.15)

Developing the term (I−H)R in terms of a binomial series results in

w(R) = P
(R)
H y (A.16)

with

P
(R)
H = I +

R∑

r=1

(
R

r

)
(−H)r(I−H−1)

= I +

R∑

r=1

(
R

r

)(
(−H)r + (−H)r−1

)
(A.17)
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A.4 Modified Farrow Filter

A.4 Modified Farrow Filter

The output of the modified Farrow filter w1[n] may be described relative to the input

signal u[n], as depicted in Fig. A.1, i.e.

w1[n] =
∞∑

p=−∞
ga

1,n[p]x[n− p]. (A.18)

The impulse response of the modified Farrow filter is given, according to the derivation

in Section 4.4.5, as

ga
1,n[p] =

∞∑

q=−∞

L∑

l=0

bl[q] ∆̂l
n−q[p− q] (A.19)

where ∆̂n−q[p] is defined as

∆̂n−q[p] =





∆n−p for p = q

0 otherwise.
(A.20)

Thus, we rewrite (A.18), using (A.19) as

w1[n] =
∞∑

p=−∞

∞∑

q=−∞

L∑

l=0

bl[q] ∆̂l
n−q[p− q]x[n− p] (A.21)

Substituting the index k = p− q and p = q + k, we obtain

w1[n] =

∞∑

k=−∞

∞∑

q=−∞

L∑

l=0

bl[q] ∆̂l
n−q[k]x[n− q − k] (A.22)

Introducing a set of intermediate signal sl[n], (A.21) can be split into two convolutions,

i.e.

w1[n] =
∞∑

q=−∞

L∑

l=0

bl[q] sl[n− q] (A.23)

and

sl[n] =
∞∑

k=−∞
∆̂l
n[k]x[n− k] (A.24)

ga1,n[p]
x[n] w1[n]

Figure A.1 Signal model for a single modified Farrow filter ga1,n[p].
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B0(e
jω)

B1(e
jω)

B1(e
jω)

BL(e
jω)

Ga
1,n(e

jω)

w1[n]

∆l
n

∆n

s0[n]

s1[n]

sl[n]

sL[n]∆L
n

x[n]

Figure A.2 Modified Farrow filter approximating ga1,n[p].

Using the relationship in (A.20), i.e. for p = 0 the auxiliary impulse response is only

non zero for k = 0, we can simplify (A.24), i.e.,

sl[n] = ∆l
nx[n] (A.25)

The resulting simplified structure is shown in Fig. A.2.

A.5 Volterra Systems

A.5.1 Discrete-Time Volterra Filter

An example second order discrete-time Volterra filter with time-varying coefficients and a

memory of 2 is illustrated in Fig. A.3.

A.5.2 Cascade of Time-Varying Volterra Filters

In this subsection the time-varying operators Fp,n{.} that represent a cascade of two first

order Volterra systems is exemplified. Applying the relation in (5.2) to the operators of

the cascaded Voltera systems as presented in (5.15)-(5.17), we obtain the operators in

(A.26).

F1{x[n]} = G1,n{H1,n{x[n]}}
F2{x[n]} = G1,n{H2,n{x[n]}}+G2,n{H1,n{x[n]}}
F3{x[n]} = G1,n{H3,n{x[n]}}+G3,n{H1,n{x[n]}}+ 2G2,n{H1,n{x[n]}, H3,n{x[n]}}

(A.26)
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h2,n[2, 2]

h2,n[1, 1]

h2,n[1, 2]

h2,n[0, 1]
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z−1

z−1

z−1

H2,n

H1,n

z−1

x[n]2

x[n]x[n− 1]

x[n]x[n− 2]

x[n− 1]2

x[n− 1]x[n− 2]

x[n− 2]2

x[n− 1]

x[n− 2]

x[n]

x[n] y[n]

h1,n[0]

h1,n[1]

h1,n[2]

Figure A.3 Discrete Volterra filter of order 2.
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A.5.2 Cascade of Time-Varying Volterra Filters

.

Since the operator Hp,n{.} and Gp,n{.} are zero for p > 2 in this example, the relation

in (A.26) reduces to

F1{x[n]} = G1,n{H1,n{x[n]}}
F2{x[n]} = G1,n{H2,n{x[n]}}+G2,n{H1,n{x[n]}}
F3{x[n]} = 2G2,n{H1,n{x[n]}, H2,n{x[n]}}

(A.27)

.

where F3{x[n]} can be expanded, i.e.,

F3{x[n]} = G2,n{y1[n] + y2[n]} −G2,n{y1[n]} −G2,n{y2[n]}. (A.28)

The 4th-order operator can be obtained as shown in [74] resulting in a time-varying

formulation given as

F4{x[n]} = G1,n{H4,n{x[n]}}+G4,n{H1,n{x[n]}}+ 2G2,n{H1,n{x[n]}, H3,n{x[n]}}
+G2,n{H2,n{x[n]}}+ 3G3,n{H1,n{x[n]}, H1,n{x[n]}, H2,n{x[n]}}
= G2,n{H2,n{x[n]}}

(A.29)

The resulting structure is depicted in Fig. A.4.
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Figure A.4 Cascade of two Volterra systems of order 2.
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