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Abstract

In this thesis we consider several related topics in the field of computational geometry. We
are concerned with algorithmic problems fully determined by the order type of a point set,
that is, on the equivalence class defined by the orientation of point triples.

In the first part, we consider edge exchange flips in triangulations of point sets and
simple polygons. In particular, we are interested in the question whether the length of
the shortest sequence of flips for transforming one given triangulation into another can be
determined in polynomial time. We show that the corresponding optimization problem
is APX-hard for triangulations of point sets. For triangulations of simple polygons, we
give a reduction showing NP-completeness of the decision version of the problem. The
two proofs are fundamentally different, but use a common sub-structure, the well-known
double chain, whose properties with respect to flip graphs we investigate in detail.

In the second part, we focus on algorithms that do not operate on geometric graphs,
but solely on point sets. We are interested in the algorithmic power of sidedness queries,
that is, of using only the predicate indicating whether an ordered triple of points is oriented
clockwise or counterclockwise. In this context, we show that we can find an extreme point
of a point set in linear time using only sidedness queries, and prove that the algorithm also
works for abstract order types (solving a long-standing open problem). Further, we define
a counterpart to the concept of vertical lines in line arrangements in the more general
setting of pseudo-line arrangements. We show that an intersection of a given rank on that
counterpart can be selected in linear time. We apply this tool to the classic linear-time
ham-sandwich cut algorithm for bi-chromatic point sets, and thereby obtain a deterministic
linear-time ham-sandwich cut algorithm that uses only sidedness queries and works also for
abstract order types. Finally, we consider a recently introduced generalization of convexity,
the so-called k-convexity. We address the problem of deciding whether a set of points can
be polygonalized to obtain a k-convex polygonization, a question that can be answered
using only sidedness queries. We show that the problem is solvable in polynomial time for
k = 2, while the problem is NP-complete for k ≥ 3.
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Kurzfassung

In dieser Arbeit werden diverse verwandte Themen aus dem Bereich der algorithmischen
Geometrie behandelt. Wir betrachten algorithmische Probleme, die vollständig durch den
Ordnungstypus einer Punktmenge definiert sind, d.h. durch die Äquivalenzklasse, die durch
die Orientierung geordneter Punkt-Tripel definiert ist.

Im ersten Teil betrachten wir das Austauschen von Kanten in Dreiecksnetzen auf Punkt-
mengen und simplen Polygonen, die sog. Flip-Operation. Im Speziellen behandeln wir die
Frage, ob die Anzahl von Flip-Operationen, die benötigt werden, um ein gegebenes Drei-
ecksnetz in ein anderes zu transformieren, in polynomieller Laufzeit berechnet werden kann.
Wir beweisen, dass das Problem für Dreiecksnetze auf Punktmengen APX-schwer ist, und
zeigen NP-Vollständigkeit des entsprechenden Entscheidungsproblems für Dreiecksnetze in
simplen Polygonen. Obwohl sich beide Beweise grundlegend voneinander unterscheiden,
verwenden sie die gleiche Teilkonstruktion, die sog. Double-Chain, deren Eigenschaften
bezüglich der Flip-Operation wir detailliert untersuchen.

Im zweiten Teil konzentrieren wir uns auf Algorithmen, die ausschließlich auf Punkt-
mengen – und nicht auch auf geometrischen Graphen – arbeiten. Unser Interesse liegt in der
algorithmischen Aussagekraft von Prädikaten, die für ein gegebenes Punkt-Tripel angeben,
ob dieses im oder gegen den Uhrzeigersinn orientiert ist. In diesem Zusammenhang zeigen
wir, dass ein Extremalpunkt einer Punktmenge in linearer Laufzeit und nur unter Verwen-
dung dieses Prädikats gefunden werden kann, und beweisen auch, dass der Algorithmus für
abstrakte Ordnungstypen funktioniert (und lösen damit ein seit Langem offenes Problem).
Des Weiteren definieren wir ein Pendant zum Konzept einer vertikalen Linie in Linien-
Arrangements für die Verallgemeinerung letzerer durch Arrangements von Pseudo-Linien.
Wir zeigen, dass der Schnitt mit einem vorgegebenem Rang in der Reihenfolge, in der die
Pseudo-Linien des Arrangements dieses Pendant schneiden, in linearer Zeit ausgewählt wer-
den kann. Diese Erkenntnis lässt sich auf den klassischen Ham-Sandwich-Cut-Algorithmus
für zweigefärbte Punktmengen anwenden, und wir erhalten dadurch einen deterministi-
schen Algorithmus mit linearer Laufzeit, der nur die Orientierung von Punkt-Tripeln als
Informationsquelle verwendet, und der auch für abstrakte Ordnungstypen korrekt ist. Zum
Abschluss widmen wir uns einer erst vor Kurzem vorgestellten Verallgemeinerung des Kon-
vexitätsbegriffes, der sog. k-Konvexität. Wir behandeln die Frage, ob eine Punktmenge zu
einem k-konvexen Polygonzug verbunden werden kann. Auch diese Eigenschaft wird nur
durch den Ordnungstypus der Punktmenge definiert. Wir beschreiben einen Algorithmus
mit polynomieller Laufzeit für k = 2 und zeigen, dass das Problem für größere Werte von
k NP-vollständig ist.
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Chapter 1

Introduction

The topic of this thesis belongs to the field of computational geometry. In a general
phrasing, this field is concerned with the algorithmic aspects of geometric problems [122,
Chapter 8]. Often, these problems are settled in the field of discrete geometry, where we are
concerned with geometric entities like points, lines, polygons, circles, and subdivisions of
the plane [122, 135, 145]. The term “computational geometry” for this field was coined by
Shamos [145] in the seventies of the last century. As stated in Shamos’ historical account,
there were many developments in the history of geometry before the advent of computer
science that are related to algorithms and complexity considerations, and he points out
that such results need to be brought to an efficient algorithmic form [145, p. 2]: Euclid’s
axiomatic approach to geometry involves the algorithmic description of constructions and
the proof of their correctness, as well as the definition of allowable instruments and a set
of legal operations. However, some problems remained unsolvable within these constraints
(like, e.g., constructing regular polygons only with ruler and compass); it was the intro-
duction of coordinates by Descartes and the algebraic expression of geometric problems
that allowed to solve them [145, p. 7].

Discrete (and combinatorial) geometry has been a highly active field in mathematics
during the last century. This work laid a rich foundation for the development and analy-
sis of geometric algorithms, but also questions from computational geometry triggered
research on combinatorial problems [54, p. VII]. A notable example is the seminal work by
Goodman and Pollack on the combinatorial classification of configurations of points and
line arrangements by their circular sequence and their order type, as well as the abstraction
of these concepts to generalized configurations of points and pseudo-line arrangements.
One of their first papers on that topic, discussing circular sequences, was motivated by the
question on how a computer could generate a finite number of point sets of a given size
such that every point set of the same size is “essentially the same” as one of the generated
ones [77, p. 221]. For the equivalence of point sets defined by their order type, this goal
was achieved by Aichholzer, Aurenhammer, and Krasser [7], at least for sets of up to
eleven points [13]. While the study of circular sequences goes back to Perrin [130] in 1882,
and work on pseudo-line arrangements goes back to Levi [110] in 1926, the interaction
between computational and combinatorial geometry triggered the development of many
interesting results within the last 35 years. In this thesis, we present algorithmic problems
that have a very close relation to classic topics in combinatorial geometry. All problems
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presented herein are algorithmic problems on finite point sets and geometric graphs. In all
the problems, we do not address, e.g., metric properties, but only the order type of a point
set.

The first part of the thesis is concerned with triangulations of point sets and simple
polygons. Triangulations have well-known applications in the representation of surfaces,
for example in computer graphics, computer-aided design, geographic information systems,
and for finite element methods [93]. Besides these direct applications, triangulations are an
important data structure used in computational geometry [135, p. 234], classic examples
being point location queries and shortest path calculations inside polygonal domains. Also,
triangulations have been used to answer combinatorial questions, for example in Fisk’s [70]
simple proof of Chvátal’s Art Gallery Theorem. Triangulations of convex polygons have
particularly interesting combinatorial properties in combination with edge exchange flips;
they are one instance of the so-called Catalan structures (a large family of combinato-
rial structures [152, p. 173, pp. 219–229]). See [50] for a monograph devoted entirely to
triangulations in two and higher dimensions. We consider the problem of transforming
one triangulation to another by a sequence of edge exchange flips, in particular showing
computational intractability of the problem of determining the shortest sequence of such
flips in triangulations of point sets and simple polygons. Whether a geometric graph is a
triangulation of a point set is a property that is completely defined by the order type of
the point set, i.e., by the orientation of each point triple. For an extensive discussion of
this topic, also for the higher-dimensional setting, see [50]. In contrast to a point set given
by Cartesian coordinates, the order type does not encode information like the distance be-
tween two points. In particular, while flips are used in connection with metric properties of
triangulations (see, e.g., [31, 93, 109] for applications), the flip distance problem solely de-
pends on the source and target triangulation and on the order type of the underlying point
set. However, the presented hardness proofs are connected to the coordinate representation
of the input. Like for many hardness proofs in computational geometry, our reduction is
based on representing an instance of a problem on graphs by a geometric embedding. A
proof of the embeddability of the construction in polynomial time is needed. Further, an
ordinary representation of the problem is required for the hardness proof to be meaningful,
which, in our case, involves giving the point set in terms of Cartesian coordinates, each
being a rational number.

In the second part of this thesis, we move, to some extent, in the other direction.
While during the development of geometric algorithms we usually assume to be given
the points involved by their coordinates, we present results where we restrict ourselves
to only using sidedness queries on the point set that defines our geometric entities, i.e.,
querying the triple orientations, which determine the order type of the set. In terms of
the initial paragraph, we are restricting our set of legal operations. While, in the light
of the huge advance of geometry triggered by Descartes introduction of coordinates, it
might seem pointless to give up on such a powerful tool and to back down to a more basic
axiomatic setting, we give an overview of various reasons for this. These reasons include,
briefly, robustness and correctness of algorithms, their applicability to more general settings
like geodesic order types, and the possibility to exhaustively enumerate all different order
types (within computational limits). Further, as pointed out by Knuth [105], restricting
ourselves to the tools necessary to solve a problem might increase the insight into its core.
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It is an open question whether a problem whose solution is completely determined by the
order type of the point set admits an algorithm using the coordinate representation that
is asymptotically faster than any algorithm using sidedness queries [64].

In connection with algorithms in this restricted setting, Knuth [105] asked in 1992
whether one can select an extreme point of an abstract order type in linear time using
only sidedness queries. We answer this question in the affirmative. The resulting algo-
rithm is then used in the succeeding chapter, where we consider the problem of finding
a ham-sandwich cut of a bi-chromatic point set. The classic optimal algorithm uses (like
many other algorithms) the dual representation of the problem as a set of lines and the
intersection points of these lines with additional vertical lines. These intersection points
are not completely determined by the order type of the point set, and we show how to
use an abstraction of a vertical line that can be used by the algorithm in the same way as
in the classic version, making it an optimal approach even in our restricted setting. We
also consider a purely discrete generalization of the concept of convexity of a point set, the
so-called k-convexity introduced by Aichholzer et al. [5]. Just like a straight line intersects
a convex polygon in at most one connected component, a line intersects a k-convex polygon
in at most k connected components. We consider the problem of whether a point set ad-
mits a k-convex polygonization. Again, k-convexity of a point set is determined only by its
order type. We show the existence of a polynomial-time algorithm for deciding 2-convexity
of a point set and show NP-hardness of deciding 3-convexity.

1.1 Thesis Overview

In the first part of this thesis, we consider flips in triangulations of point sets and simple
polygons. Chapter 2 gives an introduction to this class of problems and then examines a
special configuration, the so-called double chain, that will be used in the remainder of that
part as an essential building block for our constructions. In Chapter 3, we use these results
to show that the problem of determining the flip distance between two triangulations of a
point set is not only NP-complete, but as hard to approximate as the Minimum Vertex
Cover problem. For simple polygons, a different approach has to be taken to show NP-
completeness of the flip distance problem. The reduction, also depending on double chain
constructions, is presented in Chapter 4. While the first part of this thesis is concerned
with geometric graphs on point sets, the second part issues algorithmic properties of the
point sets themselves. All problems are defined in terms of order types of point sets,
and the algorithms are generalized for abstract order types. In Chapter 5, we give an
introduction to the notion of combinatorial equivalence of point sets, to order types, and
to the abstraction of the concept of point sets in the plane. Further, the research on
algorithms using only sidedness queries, as well as on abstract order types, is motivated.
Chapter 6 presents our first result in this abstract setting, obtaining an extreme point of
an abstract order type in linear time. While being of interest in its own right, the result
will be reused in Chapter 7, where we present an abstraction of a vertical line in a line
arrangement, allowing the classic linear-time algorithm for finding a ham-sandwich cut of
a bi-chromatic point set to use only sidedness queries. Finally, in Chapter 8, we consider a
possible generalization of convexity, the so-called k-convexity of a point set. We show that
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determining 3-convexity of a point set is an NP-hard problem, while 2-convexity can be
decided in polynomial time. We first present an algorithm that uses the actual embedding
of the point set in the plane, and then show how the algorithm can be modified to obtain
an algorithm working with sidedness queries.

Parts of this thesis have been presented at conferences [15, 16, 124], and published
in journals [5, 14, 133]. The content presented in Chapter 7 is currently prepared for
publication [67].

1.2 Definitions and Notation

Our definitions mainly follow the classic textbook by Preparata and Shamos [135]. All
problems in this thesis are, to some extent, concerned with finite sets of points in the
plane. Let S be such a set of n points in E2 (the Euclidean plane). We say that S is in
general position if there are no three points in S that are on a common line. Throughout
this thesis, all finite point sets are assumed to be in general position, unless otherwise
stated. A geometric graph is a graph where each vertex is represented by a point, and
each edge by a straight line segment between the points representing its vertices. We will
make no difference between the vertices and the finite set S of points representing them,
and also not distinguish edges and the corresponding line segments. Since the underlying
point set S is considered to be in general position, the only points of S on an edge are
the endpoints representing the vertices connected by the edge. Two edges are crossing if
they share a point that is not an endpoint. A graph G is a spanning graph of a point
set S if S is the union of the endpoints of the edges of G. A polygonal chain is given by
a sequence 〈s1, . . . , sn〉 of n distinct points, and is a geometric graph with the edge set
{(si, si+1) : 1 ≤ i < n}. A polygonal cycle is obtained by adding the edge (sn, s1) to a
polygonal chain. A polygonal chain or cycle is simple if no two edges cross (recall that
all the points in the sequence are distinct). A simple polygon is the closed finite region
in E2 bounded by a simple polygonal cycle denoted by ∂P . We call ∂P the boundary of P ,
and call P \ ∂P the interior of P . The vertices and edges of P are the vertices and edges
of ∂P , respectively. We call a vertex v of P convex if the angle in the interior of P between
the two edges of ∂P incident to v is less than 180◦, and reflex otherwise (recall that we
assume general position of the vertices). A simple polygon is convex if all its vertices
are convex. The convex hull of a point set S is denoted by CH(S) and is the smallest
convex polygon that contains S.1 Note that the vertices of CH(S) are elements of S. A
simple polygon P is star-shaped if there exists a point z such that for all points p in P the
segment zp is contained in P . The kernel of P is the union of all such points z. A polygon
with non-empty kernel is star-shaped. Given a simple polygon P , a line intersecting ∂P in
exactly one connected component is called a supporting line of (the boundary of) P . The
supporting line of two points is the line that contains these two points. The supporting
line of an edge is the supporting line of its endpoints. Given two points a and b, we will
denote both the supporting line of a and b as well as the line segment (or edge) spanned

1Note that this definition differs, e.g., from the one by Preparata and Shamos [135, p. 18], who define
the convex hull as the boundary of this region, and, in essence, also define simple polygons equivalently to
our definition of simple polygonal cycles.
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by these two points by ab; it will be clear from the context whether the line or the segment
is addressed. We say that a point is left of a directed edge ab if the point is to the left of
the directed supporting line ab (i.e., the supporting line directed from a to b).





Part I

Flips in Triangulations
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Chapter 2

Triangulations, Flips, and Double
Chains

This first part of the thesis presents two hardness results on triangulations. Triangulations
are ubiquitous in computational geometry and related fields [93]. There is a considerable
amount of work on locally transforming triangulations, in particular by the repeated ex-
change of single edges, so-called edge flips. This chapter gives preliminary definitions and
discusses the so-called double chain, a sub-structure that we will use as the main building
block for proving our results in Chapter 3 and Chapter 4. The content of this chapter
(apart from Section 2.4) presents parts of two papers that have already been presented
in [16] and published in [133].

2.1 Introduction

In this chapter, we consider both triangulations of point sets and of simple polygons. Given
a finite set S of points in the Euclidean plane, a triangulation of S is a maximal straight-line
crossing-free graph on S. Analogously, given a simple polygon P , a triangulation of P is a
maximal straight-line crossing-free outerplanar graph whose outer face is the complement
of P . For both S and P , a triangulation is a tessellation into triangles, in one case of
CH(S) and in the other of P ; see Figure 2.1.

Figure 2.1: A triangulation of a point set (left) and of a simple polygon (right).

9
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Figure 2.2: Edge flips in triangulations. The replaced edge is shown dotted, flippable edges
are blue.

In the most general setting, an edge flip is the operation of removing one edge of a
graph of some predefined class and replacing it by a new one such that the resulting graph
is again of the same class. Edge flips were supposedly first considered by Wagner [160] for
the class of maximal planar graphs.1 He showed that every maximal planar graph on n
vertices can be transformed into any other by a sequence of O(n2) edge flips. This bound
was later reduced to O(n) by Komuro [106]. Bose and Hurtado [36] give an extensive
survey on the flip operation within various classes of graphs. In our work, we consider only
flips in triangulations of point sets and polygons. Let T be a triangulation of a point set
or a simple polygon. An edge flip is the operation of removing an edge e of T and adding
a different edge f such that the resulting graph T̃ is again a triangulation.2 This requires
the two empty triangles incident to e to form a convex quadrilateral, which is the same
as the one formed by the triangles incident to f in T̃ . Such edges are called flippable. In
particular, only the diagonals of a triangulation of a simple polygon (i.e., the edges not
on the boundary) can be flippable. Further, no edge on the convex hull boundary of a
point set is flippable. Since we are defining the operation on geometric graphs, a flip on a
triangulation of a point set S always results in a triangulation of S, and also a flip on a
triangulation of a simple polygon P results again in a triangulation of P . See Figure 2.2 for
an illustration. For every point set and every simple polygon, the flip operation defines the
graph G of triangulations, also called the flip graph. For a given point set S or a polygon P ,
the vertex set of G is the set of all triangulations of S or P , respectively. Two vertices in G
are adjacent if the corresponding triangulations can be transformed into each other by a
single edge flip (observe that the flip operation is reversible). A path σ in G is called a
flip sequence; i.e., σ is a sequence of triangulations such that two adjacent triangulations
can be transformed into each other by exactly one flip. The flip distance between two
triangulations is their distance in G (i.e., the length of a shortest flip sequence between
them.

1This class is sometimes also referred to as “triangulations” since every face in a plane straight-line
embedding of such a graph is a triangle. In contrast to triangulations (as geometric graphs), a straight-line
plane drawing of the edge added by a flip operation might not be possible. Throughout this work, a
triangulation is always understood to be a geometric graph.

2Note that the triangulation of a point set and the triangulation of a simple polygon are different classes
of graphs. Since for both classes our definitions and reasoning are virtually the same, we only point out
the difference when it is not clear from the context or of particular importance.
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Lawson [108] showed that G is connected for any point set S with diameter O(n2),
where n = |S|. Hurtado, Noy, and Urrutia [95] proved that this bound is tight by giving
a lower bound construction that holds for both point sets and simple polygons. They also
showed that the diameter of the flip graph of a simple polygon with n vertices of which
k are reflex is in O(n+ k2) (an O(n2) upper bound on the flip distance for triangulations
of simple polygons was probably first obtained by Bern and Eppstein [31] in terms of
constrained Delaunay triangulations).

Flips in triangulations are used for enumeration and as a local operation to generate
meshes of good quality according to a predefined criterion [36]. For example, Lawson [109]
showed that one can always obtain the Delaunay triangulation after O(n2) locally im-
proving flips. The same result can be obtained for polygons when considering the edges
of the polygon as fixed edges in a constrained Delaunay triangulation [31]. The Delau-
nay triangulation optimizes several criteria. Also, heuristic methods for improving other
properties of triangular meshes may apply local optimization using flips in combination
with techniques like simulated annealing. See [31, 93] for information on the topic of mesh
optimization. Another reason for the continuing interest in flips in triangulations is the
bijection between binary trees and triangulations of convex polygons. There, a flip corre-
sponds to a rotation in the binary tree. Properties of the flip graph for convex polygons
were studied in the landmark paper of Sleator, Tarjan, and Thurston [149]. They show
that, for n > 12, the flip distance between two triangulations is at most 2n− 10 and that,
for sufficiently large n, this bound is tight. In a recent preprint, Pournin [134] shows a
general lower bound construction for convex polygons, implying that the bound 2n− 10 is
tight for all n > 12.

Interestingly, the flip distance problem is still open for point sets in convex position
(or equivalently, convex polygons), regardless of the intensive investigation of that struc-
ture within the last 25 years. The problem was apparently first considered by Culik and
Wood [49] in 1982. Efforts were made in solving special cases and approximating the flip
distance in polynomial time. The results by Sleator et al. [149] lead to an algorithm to
obtain an approximation of the flip distance within a factor of 2. Li and Zhang [111]
give an algorithm that approximates the flip distance within a factor depending on the
maximal vertex degree ∆ in source and target triangulation, obtaining a performance ratio
bound of 2 − 2/(4(∆ − 3)(∆ + 4) + 1). Cleary and St. John [45] show that the problem
is fixed-parameter tractable in the flip distance. Bose et al. [37] most recently considered
edge-labeled triangulations, i.e., triangulations in which each edge has a distinct label,
and, after a flip, the new edge gets the label of the removed edge. For the flip distance
problem, not only the edges but also their labels are given for the target triangulation.
They show that, in this setting, the flip distance can be Θ(n log n) in the worst case, and
gave an O(log n)-factor approximation algorithm for computing the flip distance between
two edge-labeled triangulations.

For general point sets, Hanke, Ottmann, and Schuierer [89] show that the length of a
shortest path between two triangulations in G can be bounded from above by the number
of crossings between the edges of the two triangulations. They deviate from the common
proof pattern of flipping to a canonical graph within a certain number of flips (which was
demonstrated already by Wagner [160]) by instead showing that the number of crossings
in the union of the two triangulations can be reduced by a single flip. Eppstein [60] gives a
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polynomial-time algorithm for computing a lower bound; note that the point sets for which
Eppstein’s result is tight must not contain empty convex 5-gons. This property requires
that more than two points are placed on a common line if the set has 10 or more points
(see, e.g., [1]). For both of our hardness results, we make the common assumption that
the points of a point set and the vertices of a polygon are in general position.

Despite these results, the complexity of determining the flip distance between two tri-
angulations has been unknown both for point sets and simple polygons. In Chapter 3, we
show that the problem is APX-hard for triangulations of point sets (and actually is at least
as hard to approximate as Minimum Vertex Cover), which sheds light on a “fundamen-
tal open issue” [36] in the study of flip graphs. It has been addressed as an open problem
in [89] already in 1996, and, recently, in a monograph by Devadoss and O’Rourke [52,
p. 71]. NP-completeness of the problem has simultaneously and independently been shown
by Lubiw and Pathak [115]. However, their reduction is from the Planar Cubic Vertex
Cover problem, for which a PTAS exists [25, 28] (see also [23, p. 369]), and the reduction
can therefore not be adapted directly to show APX-hardness. Their reduction also uses
the double chain and some of its properties; see Section 3.2.4 for a sketch of their approach
and a comparison with ours. For triangulations of simple polygons, we present a reduction
to show that the problem is NP-complete in Chapter 4 (covering joint work with Oswin
Aichholzer and Wolfgang Mulzer that has already been presented in [16]).

In this connection, it seems also worth mentioning flips in pseudo-triangulations.
A pseudo-triangle is a simple polygon with exactly three convex vertices. A
pseudo-triangulation of a point set is the partition of the convex hull into pseudo-triangles
without additional vertices. A pseudo-triangulation is pointed if every vertex is incident
to an angle larger than 180◦. See [139] for a survey and detailed definitions. Since a
triangle is also a pseudo-triangle, pseudo-triangulations can be seen as a generalization
of triangulations. Comparable to flips in triangulations, any two pseudo-triangulations
can be transformed into each other by a sequence of operations comprising the removal,
addition, and exchange of edges (see [4] for details, where it is shown that a linear
number of such operations always suffices). A particularly interesting case are flips in
pointed pseudo-triangulations. There, every inner edge is flippable and the flip graph has
diameter O(n log n) [30]. In contrast to triangulations, no non-trivial lower bound is
known [139]. Also, the problem of determining the shortest flip sequence between two
pointed pseudo-triangulations is open.

2.2 A Single Double Chain

The construction shown by Hurtado, Noy, and Urrutia [95] to have a quadratic flip graph
diameter is the so-called double chain. The double chain was probably first used by García,
Noy, and Tejel [71] for giving lower bounds on the number of crossing-free geometric graphs
on given point sets. (The first written use of the name “double chain” for this class of point
sets seems to be in a paper by Santos and Seidel [141] on an upper bound for the number
of triangulations.) It plays a central role in both reductions in the following two chapters.
For this purpose, we provide the relevant properties of double chains in this section.
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u1 u2
un

l1 l2 ln

Figure 2.3: The points are divided in an upper and lower chain, each chain being in convex
position in a way that every point of the lower chain “sees” every vertex of the convex hull
of the upper chain, and vice-versa.

Figure 2.4: Two (partial) triangulations of the double chain with a flip distance of at
least (n− 1)2.

See Figure 2.3. A double chain D is a point set of 2n points, n on the upper chain
and n on the lower chain. Let these points be 〈u1, . . . , un〉 and 〈l1, . . . , ln〉, respectively,
ordered from left to right. Any point on one chain sees every point of D on the convex hull
boundary of the other chain (i.e., the interior of the straight line segment between these two
points does not intersect the convex hulls of the two chains), and any quadrilateral formed
by three points of one chain and one point of the other chain is non-convex. Hurtado, Noy,
and Urrutia [95] show that the flip graph of the double chain has quadratic diameter. Let
PD be the polygon 〈l1, . . . , ln, un, . . . , u1〉. The edges uiui+1 and lili+1 for 1 ≤ i < n have
to be part of every triangulation of D since there does not exist a straight-line segment
between two points of D that crosses any of them (such edges are called unavoidable).
Therefore, we only need to consider the triangulation inside PD for the following result,
and hence the result, while stated for D, is also valid for PD.

Theorem 2.1 (Hurtado, Noy, Urrutia [95]). Consider any triangulation T1 of D where
u1 is adjacent to each of l1, . . . , ln, and any other triangulation T2, where l1 is adjacent to
u1, . . . , un. The flip distance between T1 and T2 is at least (n− 1)2.

See Figure 2.4 for the relevant parts of the two triangulations. In their proof, Hurtado
et al. [95] label the triangles inside PD that have two points on the upper chain with 1
and the ones with two points on the lower chain with 0. Consider a horizontal line ` that
separates the two chains. The triangles crossed by ` define, from left to right, a sequence σ
of (n − 1) elements labeled 0 and (n − 1) elements labeled 1, see Figure 2.5. Note that
there are no triangles of a third type stabbed by `. Further note that we do not care
about the triangulation of the convex hull of either chain; the lower bound on the flip
distance stems from the part stabbed by `. It is easy to see that only an edge adjacent to
two differently labeled triangles can be flipped in the stabbed part. This corresponds to
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0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0

``

Figure 2.5: An illustration of the labeling argument for the lower bound. By the flip, the
sequence changes from 〈11000101〉 to 〈11001001〉.

u1 u2 un−1
un

l1
l2 ln−1 ln

Figure 2.6: The polygon PD (bounded by solid lines) and the hourglass HD (gray) of a
double chain D. The diamond-shaped flip-kernel can be stretched arbitrarily by flattening
the bend of the chains.

exchanging an adjacent pair of 0 and 1. Flipping the first triangulation to the second one
corresponds to transforming the sequence σ1 = 〈(0)n−1(1)n−1〉 to σ2 = 〈(1)n−1(0)n−1〉,
which leads to the desired bound. We call these two triangulations (shown in Figure 2.4)
the extreme triangulations of D. The triangulation Tu of PD where u1 has maximum
degree is called the upper extreme triangulation (observe that this triangulation is unique.)
The triangulation Tl of PD where l1 has maximum degree is called the lower extreme
triangulation.

In Section 4.3.2, we will observe a correspondence between double chain triangulations
and paths on the integer grid that also allows for rather intuitive proofs of lower bounds,
which will be useful for the construction used for triangulations of simple polygons.

Our next step will be to gain more insight into the way the flip graph is altered by the
addition of points. For the following definition refer to Figure 2.6.

Definition 2.1. Let D be a double chain of 2n points, and consider the convex hulls of
the upper and the lower chain. Let HD be the subset of the plane such that for any point
p ∈ HD there exist some i, j, 2 ≤ i, j ≤ n−1, with the triangle puilj being interior-disjoint
with the convex hulls of the upper and lower chain. We call HD the hourglass of the double
chain. The flip-kernel of a double chain D is the subset of the plane such that, for all
i, j, 1 ≤ i, j ≤ n, and every point p in the flip-kernel, the segments pui and plj are both
interior-disjoint with the convex hulls of the upper and lower chain.3

3Note that the flip-kernel of D may not be completely inside the polygon PD (but no point in the
flip-kernel is outside the hourglass of D). This is in contrast to the common use of the term “kernel” in
visibility problems for polygons.
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Observe that the flip-kernel is the intersection of the open half-planes below u1u2 and
un−1un, as well as above l1l2 and ln−1ln. The hourglass is an unbounded region defined
by the edges of PD and the rays defined by the first and the last vertex pair of each chain.

Let us add a point v inside the flip-kernel of D. From any triangulation of the resulting
set D ∪ {v}, we can flip the edges between the chains such that they are incident to v.
Reaching this canonical triangulation only requires a linear number of flips. This fact is
well-known folklore, see, e.g., [157] for a printed description. Consider the case where v
is placed outside PD but inside the flip-kernel of D (observe that the flip-kernel can be
stretched by flattening the bend of the chains). Add edges from v to un and ln to again
have a triangulation, as shown in Figure 2.7. Then, for flipping all possible edges to be
incident to v, we need at most 2n− 2 flips.

For our result on point sets in Chapter 3, we are only interested in this upper bound
of 4n− 4. In Chapter 4, we will also make use of the following lower bound.

Lemma 2.2. Let P be a polygon that contains PD and has 〈l1, . . . , ln〉 and 〈un, . . . , u1〉 as
part of its boundary. Further, let T1 and T2 be two triangulations that contain the upper
extreme triangulation and the lower extreme triangulation of PD as a sub-triangulation,
respectively. Then T1 and T2 have flip distance at least 4n− 4.

Proof. We slightly generalize a proof by Lubiw and Pathak [115] for double chains of
constant size.

The triangulation T1 has 2(n − 1) triangles with an edge on the upper or the lower
chain of D. For each such triangle, the point not incident to that edge is called the apex.
For each triangle with an edge on the upper chain, the apex must move from ln to l1, and
similarly for the lower chain. There are three types of flips: (1) exchange an edge between
the upper and the lower chain by another edge between the two chains; (2) exchange an
edge between the two chains by an edge between a vertex of D and a point outside D, or
vice versa; and (3) a flip where less than three of the four points involved are in D. A flip
of type (1) moves the apex of two triangles by one, a flip of type (2) moves the apex of
one triangle from D to a point outside D or back again, and a flip of type (3) does not
move any apex along a chain or between D and a point not in D. Hence, we can disregard
flips of type (3). If moving an apex involves at least one flip of type (2), then we can
charge at least two flips to the corresponding triangle, one to move the apex to a point
not in D and one to move it back again. If moving an apex uses no flip of type (2), then
the corresponding triangle needs at least n− 1 flips. Each such flip moves the apex of one
other triangle. Thus, we can charge (n− 1)/2 flips to each such triangle. Hence, for n > 5,
the cheapest method is to use flips of type (2). This yields the claimed bound.

The following result, which shows that the quadratic lower bound holds if no point
inside the hourglass is used to shorten the flip sequence, gives the main property of the
double chain we will use.

Theorem 2.3. Let D be a double chain of 2n points and let S ⊂ E2 \ PD be a finite
point set. Let T1 and T2 be two triangulations of S ∪D such that PD is triangulated with
one extreme triangulation of D in T1 and with the other extreme triangulation of D in T2.
Further, let σ be a flip sequence from T1 to T2. Assume that, throughout σ, no edge incident
to a point of S ∩HD intersects the interior of PD. Then |σ| ≥ (n− 1)2.
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Figure 2.7: An extra point v in the flip-kernel of D allows flipping one triangulation
of PD (a) to the other in 4n − 4 flips. Note that an edge common to source and target
triangulation is temporarily flipped (b).

While the theorem is stated in terms of triangulations of point sets, one can observe
throughout the proof that it holds as well for triangulations of any simple polygon with
vertex set S ∪D.

In order to prove Theorem 2.3, we consider a mapping L from the set of triangulations
of S ∪D in σ to the set of triangulations of the polygon PD. When flipping an edge in a
triangulation T of σ, at most one edge is flipped in the corresponding triangulation L(T )
of PD. Observe throughout the description that, informally, the mapping corresponds to
continuously introducing the edges of the chains along the arrows drawn in Figure 2.8,
while continuously sliding the edges of T accordingly.

Consider any triangulation T of S ∪ D in σ. If all edges of PD are present, L(T )
equals the triangulation of PD in T (note that this is also the case for the triangulations T1
and T2 of Theorem 2.1). Otherwise, consider the following construction (see Figure 2.8 for
an example). For any edge e of T that intersects the hourglass of D and does not have
any endpoint in the interior of the hourglass, we draw an edge e′ of L(T ) in the following
way. If one of the endpoints of e is on a vertex of PD, then also one endpoint of e′ is on
that vertex. If e passes through an edge uiui+1 or ljlj+1, then the corresponding upper or
lower endpoint of e′ is set to ui+1 or lj+1, respectively. If e passes through one of the rays
defining the hourglass, then the corresponding endpoint of e′ is mapped to the endpoint of
the chain defining the ray; for example, if e′ passes through the ray through u1 (starting
at u2) but not through the edge u1u2, then the upper endpoint of e′ is placed at u1, such
that e′ is contained in PD. If an edge of T does not intersect the hourglass of D or has an
endpoint in the interior of the hourglass, it is ignored by the mapping.

Let T ′ = L(T ) be the graph induced by the new edges, and let the edges of T that
pass through the hourglass but do not have an endpoint in D be called wide edges. We
call the construction T ′ the local triangulation of D when T is clear from the context. The
following lemmata show that T ′ actually is a triangulation of PD.
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Figure 2.8: Mapping a triangulation to a local triangulation of a double chain. To the left,
all triangles intersecting the hourglass of D are shown, the points of S are white. Visually,
one can think of “cutting” the edges at the boundary of the hourglass (middle) and moving
(and merging) the endpoints to the next point (right).

Lemma 2.4. For every wide edge e ∈ T that is mapped to e′ ∈ T ′, there is a different edge
ẽ ∈ T that is also mapped to e′ and that has an endpoint p ∈ D.

Proof. Let e′ be uilj . Consider first the case where both endpoints of e′ are on the same
side of (the directed line supporting) e. Consider the empty triangle t of T incident to e
that has its apex a on the same side of e as e′. If a is outside the hourglass of D, then
another wide edge f of t is also mapped to e′. In that case we continue the argument
with f , as e and f are both mapped to the same edge. If a is not outside the hourglass,
then a equals either ui or lj , as otherwise t would contain one of them (recall that no edge
of t is incident to a point of S inside the hourglass). Hence, one of the edges of t incident
to a is also mapped to e′.

For the case where the two endpoints of e′ are on different sides of e (i.e., one of the
endpoints of e′ is un or ln), the argument is almost the same. Without loss of generality,
let i = n and lj be to the right of e (note that j may be n). Therefore, un is to the left of e.
Again, consider the empty triangle t of T incident to e with apex a to the right of e. Again,
if a is outside the hourglass of D, there is another wide edge f of t that is also mapped
to e′. If a is not outside the hourglass, then a = lj ; this follows from the construction of D
and the fact that the lower endpoint of e is outside the hourglass. Hence, an edge of t
incident to a is also mapped to e′.

Lemma 2.5. Every point p of D is incident to at least one edge e of T such that e
disconnects the hourglass of D.

Proof. This follows directly from the construction of D. Suppose there is no such edge,
and recall that there is also no edge incident to a point in the interior of the hourglass.
Then there is an angle larger than π incident to p, and the wedge defined by this angle
contains points. This contradicts the fact that T is a triangulation.

Lemma 2.6. T ′ is a triangulation of PD.

Proof. We have to prove that T ′ is crossing-free and maximal in PD.
Lemma 2.4 allows us to only consider non-wide edges. With all relevant remaining

edges of T being incident to a point in D, the fact that T ′ is crossing-free follows from T
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li li+1

uj uj+1

Figure 2.9: The different possibilities for the triangle to the right of liuj in the triangula-
tion T .

being crossing-free, as the mapping only “moves” the endpoints of the edges of T to the
next point of D.

If T ′ were not maximal, there would exist a quadrilateral q inside PD that is spanned
by points of D and whose interior does not intersect any edge. If q is not convex, this
would mean that no edge of T is incident to the reflex vertex of the quadrilateral. But this
cannot happen due to Lemma 2.5 (an edge at that vertex in T that dissects the hourglass
is mapped to an edge with the same property). If q is convex, it is of the form lili+1uj+1uj .
If an edge of T would have passed through the side liuj , the quadrilateral would not be
empty of edges. Hence, liuj must have been a part of T . See Figure 2.9. Since there are
points to the right of the edge liuj , there has to be a triangle of T adjacent to liuj having
its third vertex to the right of that edge. If the third vertex of the triangle is to the right
of lili+1 or to the left of ujuj+1, one side of the triangle is mapped to a diagonal of q or
the triangle would contain li+1 or uj+1. However, if the third vertex of the triangle is to
the left of lili+1 and to the right of ujuj+1, it is inside the hourglass of the double chain.
Hence, there is no empty quadrilateral in PD, which completes the proof.

At first sight, it might be conceivable that a flippable edge e of T is mapped to a non-
flippable edge e′ and that flipping e to an edge f results in an illegal flip of e′ in the mapped
triangulation L(T ). Recall, however, that the flip operation is defined as removing one edge
of a triangulation and replacing it by another one. Since the previous lemma proves that
before and after the flip we have a triangulation given by mapping each edge, we know
that if flipping e changes L(T ), then e′ must be flippable as well. (Note, however, that if
flipping e does not change L(T ), there is another edge mapped to e′, and e′ may or may
not be flippable; this will be discussed in Lemma 2.8.)

Since any flip in T results in at most one edge being flipped in T ′, the lower bound
construction holds: a shorter flip sequence with points outside the hourglass would imme-
diately imply a shorter flip sequence between T1 and T2 in the proof of Theorem 2.1. This
completes the proof of Theorem 2.3.

Theorem 2.3 will be used in Chapter 3 and also in Chapter 4. For the reductions for
simple polygons, we actually only need the following, more restricted variant of the result.

Corollary 2.7. Let P be a polygon that contains PD and has 〈un, . . . , u1, l1, . . . , ln〉 as
part of its boundary. Let T1 and T2 be two triangulations that contain the upper and the
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lower extreme triangulation of PD as a sub-triangulation, respectively. Consider any flip
sequence σ from T1 to T2 and suppose there is no triangulation in σ containing a triangle
with one vertex at the upper chain, the other vertex at the lower chain, and the third vertex
at a point in the interior of the hourglass of PD. Then |σ| ≥ (n− 1)2.

2.3 Multiple Double Chains

Theorem 2.3 is, however, of little use when we try to construct a point set that contains
many double chains and try to argue that the flip distance between two triangulations of
the set is bounded by the sum of the distances between the local triangulations of these
double chains. One could imagine that a flip in the overall triangulation leads to changes
in the local triangulations of several double chains. In this section, we prove that this is
not possible. Keep in mind that it is a necessary condition that, for any double chain D,
all other double chains are outside the hourglass of D and their polygons do not intersect.

Lemma 2.8. Let e be a flippable edge of any triangulation T of D ∪ S that is mapped to
the edge e′ in the corresponding local triangulation T ′ of a double chain D. Then flipping e
changes the local triangulation only if no other edge is mapped to e′.

Proof. Suppose e is not the only edge mapped to e′. If we remove e from T , the graph
on D defined by the mapping is still the local triangulation T ′. If we add the new edge f
after the removal of e, f must also be mapped to some existing edge f ′ in T ′ (which might
not be e′) or is not mapped at all, as otherwise T ′ would not be a triangulation.

Note that because of Lemma 2.8, flipping an edge that is wide for a double chain does
not change the local triangulation of that double chain. Therefore, a flip can only change at
most four local triangulations. Actually, we can prove the following more accurate result.

Lemma 2.9. Let D1 and D2 be two double chains in a point set S. If each of D1 and D2

is outside the hourglass of the other and PD1 ∩ PD2 = ∅, each flip in a triangulation of S
affects at most one of the two local triangulations.

Proof. If the flipped edge e or its replacement f do not both have an endpoint in the same
double chain D, then at least one of e or f either does not dissect the corresponding hour-
glass or is a wide edge of D. It follows from Lemma 2.8 that such a flip does not influence
the local triangulation of D. Hence, in the only remaining case there is a quadrilateral
that has two adjacent points in D1 and two adjacent points in D2 and contains a flippable
edge. Let the quadrilateral be abcd. Without loss of generality, let a and b be part of D1

and e = ac. See Figure 2.10. Suppose, for the sake of contradiction, that we flip the edge
ac and the flip changes the local triangulation of D1. Then ac has to dissect the hourglass
of D1. Then, however, ad, too, dissects the hourglass and crosses the same edge of PD1

as ac (since the triangle acd is empty). Hence, ac and ad are mapped to the same edge in
the local triangulation of D1, a contradiction due to Lemma 2.8.

Corollary 2.10. If a point set consists of m double chains, each of size 2n, and for every
double chain all other points are outside its hourglass, then the flip graph diameter of the
whole set is in Ω(mn2).
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Figure 2.10: An example illustrating why a flip cannot affect more than one local triangu-
lation. The edge ac is mapped to the same edge as ad in the local triangulation of D1.

Figure 2.11: Two pointed pseudo-triangulations of a double chain that can be augmented
(using the dotted edges) to extreme triangulations of the double chain.

2.4 A Note on Double Chains and Pseudo-Triangulations

In the introduction of this chapter, we also discussed pseudo-triangulations as a generaliza-
tion of triangulations. There is, as already mentioned, no non-trivial known lower bound
for the flip graph diameter of pointed pseudo-triangulations of a point set. However, we
can give such a bound in a restricted setting. Kettner et al. [99] showed that for every point
set there exists a pointed pseudo-triangulation where each pseudo-triangle has at most four
vertices, i.e., the face degree is bounded by four. While it is not known whether the flip
graph for such pointed pseudo-triangulations is connected at all (connectedness has been
shown for a combinatorial counterpart [10]), we can show that, for any constant face de-
gree bound, there exists a pair of pointed pseudo-triangulations that have a flip distance of
Ω(n2) by the following argument.4 Consider the two pointed pseudo-triangulations of the
double chain with maximal face degree four in Figure 2.11. Observe that we can add edges
to the pointed pseudo-triangulations to obtain two extreme triangulations of the double
chain. Hence, we know that their flip distance is Ω(n2) due to Theorem 2.1. Suppose
there exists a flip sequence of o(n2) flips between these two pointed pseudo-triangulations
in which no pseudo-triangle has more than k vertices, for some fixed k. Then in every
flip, at most 2k − 2 vertices are involved. In a triangulation that contains the initial
pointed pseudo-triangulation as a subgraph, we therefore only need a constant number of
flips to obtain a triangulation that has the succeeding pointed pseudo-triangulation as a
subgraph. We therefore would obtain a flip sequence of length o(n2) between two extreme
triangulations, a contradiction.

4This result has been obtained in joint work with Oswin Aichholzer.
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2.5 Chapter Summary

In this chapter, we gave an introduction and preliminaries on the problem of finding short
flip distances between triangulations of both point sets and simple polygons. In particular,
we described properties of the double chain. These will be used in the following two
chapters for our hardness results. As a by-product, Corollary 2.10 revealed an interesting
lower bound on distances in the flip graph. Further, we showed that the quadratic lower
bound for the triangulation flip distance can be transcribed to a lower bound for pointed
pseudo-triangulations whose face degree is bounded by a constant.





Chapter 3

Flipping in Triangulations of Point
Sets

In the previous chapter, we prepared the results on double chains which we will use in
the current chapter to examine the problem of determining the flip distance between two
triangulations of a point set. We give a reduction from the Minimum Vertex Cover
problem to the flip distance problem, showing that it is not only NP-complete (a result
simultaneously and independently obtained by Lubiw and Pathak [115], using a reduction
from a planar variant of the Minimum Vertex Cover problem; see Section 3.2.4), but
also hard to approximate within a factor of 1.36. The content of this chapter has already
been published in [133].

3.1 Introduction

While we know due to Lawson [108] that there is always such a flip sequence, For the
formal use throughout this chapter, we define the problem as follows.

Problem 1 (Point Set Triangulation Flip Distance). Given two triangulations T1
and T2 of a point set S of size n, choose a flip sequence σ from T1 to T2 such that |σ| is
minimized.

APX-hardness (see, e.g., [23, p. 261]) is defined for NP optimization problems, which
are the problems fulfilling the following three properties (see [23, p. 27]).

• The set of instances is recognizable in polynomial time.

• There exists a polynomial q such that, given an instance X, for any Y that is a
feasible solution for X, |Y | ≤ q(|X|) and, besides, for any Y such that |Y | ≤ q(|X|),
it is decidable in polynomial time whether Y is a feasible solution for X.

• The measure function (i.e., a function providing a positive integer that quantifies the
quality of the solution [23, pp. 22–23]) is computable in polynomial time.

Clearly, the problem instances for Point Set Triangulation Flip Distance are
trivially recognizable in polynomial time for any reasonable input representation. In the

23
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most natural formulation, a feasible solution for an instance of the flip distance problem
is a flip sequence between T1 and T2, over which we optimize, and the measure function
gives the length of these sequences. However, there is a lower bound of Ω(2.4317n) on the
number of triangulations of any point set of size n [146]. Still, all “interesting” solutions
will have a length in O(n2) and we can therefore virtually add this additional length
constraint to our problem definition to formally fulfill the requirements of the class of
NP optimization problems (a direct analysis of Lawson’s algorithm gives an upper bound
of 2

∑n
i=4(i − 3) = n2 − 5n + 6 on the flip graph diameter). The performance ratio of

an approximate solution to a minimization problem is the value of the measure function
applied to the approximate solution (in our case |σ|) divided by the optimal value (the flip
distance).

The complexity class APX consists of the NP optimization problems for which, for
some constant r, there is a polynomial-time algorithm that guarantees to find a solution
with performance ratio at most r [23, p. 93]. APX-hardness of the problem implies that
no polynomial-time approximation scheme (PTAS) exists (i.e., there is no polynomial-
time algorithm that approximates the flip distance by a ratio of at most 1 + ε for every
constant ε > 0), unless P = NP. However, as we are not aware of any constant-factor
approximations of the problem, we do not know whether it is also APX-complete.

To show APX-hardness, we first use an AP-reduction from the well-known Minimum
Vertex Cover problem. A formal definition of this kind of reduction will be given during
the analysis of the construction (Definition 3.1). Until we have to analyze the details of
the construction, the reader not familiar with that concept may use the usual NP-hardness
reductions as a mental model.

After having shown APX-hardness, we show how the parameters of the reduction can
be refined to prove a stronger result. Point Set Triangulation Flip Distance is
at least as hard to approximate as Minimum Vertex Cover. This means it cannot be
approximated by a factor less than 1.36−ε for any constant ε > 0 in polynomial time, unless
P = NP. This bound is even 2− ε if the Unique Games Conjecture is true. (The Unique
Games Conjecture was originally formulated in terms of so-called 2-prover-1-round games
by Khot [101]. Khot and Regev [102] give an equivalent, more combinatorial description
as a labeling problem.)

In Section 3.2, we present the gadgets used in our reduction and analyze the con-
struction. In that section, we only present a rough overview on how the points of the set
are placed, a more detailed description of how to calculate their coordinates is given in
Section 3.3.

3.2 The Reduction

Now we have gathered enough knowledge about double chains as sub-configurations in
order to use them as the main building blocks in a reduction. We reduce from Minimum
Vertex Cover, which is known to be APX-complete [129].1

1A previous version of our proof used a reduction from Minimum Vertex Cover on 3-regular graphs,
which is also known to be APX-complete [18]. However, as pointed out by an anonymous referee for the
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Figure 3.1: An embedding of a graph with the (almost straight) circular arcs at each edge
ending at a fixed distance around each vertex.

Problem 2 (Minimum Vertex Cover). Given a simple graph G = (V,E), choose a
set C ⊂ V such that every edge in E has at least one vertex in C and such that |C| is
minimized.

We follow the common approach of embedding the graph G and transforming its ele-
ments to geometric gadgets. The gadgets consist of points together with the corresponding
edges in the source triangulation T1 and in the target triangulation T2. We give the overall
idea of how to embed the gadgets; for a detailed description on how to exactly place the
points with rational coordinates having a representation bounded by a polynomial in the
input size using polynomial time see Section 3.3.

3.2.1 Gadgets

Given a graph G = (V,E) for which we have to solve the Minimum Vertex Cover
problem, with n = |V | and m = |E|, we place the elements of V as the vertices of a
convex n-gon and draw the straight-line edges between them (where the edges will not be
part of the final construction). Hence, we can consider G being a geometric graph in the
remainder of this section. For each edge e mark a point ce ∈ e that is not on a crossing.
Let ~t be a vector perpendicular to e of sufficiently small length (which will be specified in
Section 3.3). Make two copies of e and translate them by ~t and −~t, respectively, to obtain
the tunnel of the edge, i.e., the quadrilateral defined by the two copies of e. Then slightly
“bend” the copies towards the (geometric) midpoint of e to obtain two circular arcs Ae
and A′e. The endpoints of the original edge e have to see any point on Ae and A′e. See
Figure 3.1.

3.2.1.1 Edge Cores

Instances of the double chain are the main ingredient in our reduction. They are contained
in the gadgets representing the edges of G. See Figure 3.2 for an illustration of the con-
struction. Let e be a straight-line edge of G, drawn between the points v and v′. In a close

version in [133], reducing from the general version gives a better lower bound on the performance ratio
without any substantial changes to the reduction.
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e
ceece

Figure 3.2: The double chain at the center of an edge with the source and the target
triangulation.

neighborhood of ce, place a double chain De, the edge core, of 2d points (we will fix the
value of d later) along Ae and A′e such that the two chains are separated by the supporting
line of e. Note that the endpoints v and v′ of e are the only points that are not outside the
hourglass of De, and they are also in the flip-kernel of De (remember that Ae and A′e can
be chosen sufficiently flat). The edge cores are the only gadgets that have different edges
in the source and in the target triangulation. Draw the edges that define the polygon PDe

in both T1 and T2. Then triangulate the interior of PDe with one extreme triangulation
of De in T1 and with the other extreme triangulation in T2. We refer to the process of
flipping edges that are incident to an edge core as transforming an edge core.

3.2.1.2 Crossings

If two straight-line edges e and f of G cross, also their corresponding circular arcs cross.
The four circular arcs define a region bounded by four pieces of the original arcs. Place one
point at each of the four crossings of the arcs (we will actually place the points not exactly
on the crossings, but close, see Section 3.3). In both source and target triangulation draw
the edges connecting two points that are consecutive on any circular arc, which results
in a crossing being represented by a convex quadrilateral, to which we add an arbitrary
diagonal. Note that the crossing gadgets do not overlap with the edge core gadgets, as the
edge cores are placed in the neighborhood of ce, which was chosen not to be at a crossing.

3.2.1.3 Wirings

Wirings are gadgets that represent the elements of V . See Figure 3.3 for an illustration.
Consider any vertex v of G and a small circle C with v in the embedding as its center.
This point v is part of the triangulated point set. Place points on the crossings of C with
the arcs of the edges incident to v in G. Since the graph is embedded on a convex n-gon
and due to the small length of the vector ~t, these points occupy strictly less than half of C.
This allows us to place two chains L and R, each of w − 1 points (the value of w is to
be defined later) on C in a way that any line between one point of R and one point of L
separates v from the remaining construction. In both the source and target triangulation
draw the edges between consecutive points on C. Draw a zig-zag path through the points
of L, R, and the first and last point where C crosses the arcs of the edges (giving 2w points
in total). We call these edges the zig-zag edges of the wiring. Connect v to the first point
of L and to the first point of R. The remaining part may be triangulated arbitrarily.
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vv
L

R

L

R

Figure 3.3: Left: A wiring with its initial and final triangulation (solid). Right: A trian-
gulation that allows to quickly perform a transformation of the edge cores. The parts of
the auxiliary construction shown in Figure 3.1 are dotted.

The remaining faces in the two plane graphs we obtained so far are triangulated arbi-
trarily, however in a way that the resulting triangulations T1 and T2 have the same edges
except at the edge cores.

3.2.2 Analysis

The basic idea of the construction is that a flipping algorithm that gives the shortest flip
distance or a good approximation of it has to choose which wirings to flip (requiring 4w−2
flips each for flipping the zig-zag edges of a wiring away and back again) in order that the
triangulation of an edge core can be transformed using the point in its flip-kernel at the
chosen wiring. Also, the at most 4x+2 edges between and at the crossings need to be flipped
away. We will fix the values of w and d to force this behavior of any flipping algorithm
that uses fewer flips than a trivial upper bound. Every edge of G will be covered; using
a vertex of G for covering corresponds to flipping the zig-zag edges in the corresponding
wiring.

Let v and v′ be any two adjacent vertices in G. The exact number of edges in T1 or T2
intersected by the segment vv′ in the drawing may differ with the choice of v and v′ because
(i) the number of crossings of each edge of G may differ, and (ii) the triangulation of the
wiring gadget at the region where the edge gadgets enter it is not completely symmetric.
Let x be the maximum number of crossings of a single edge in G. For every wiring, the
number of edges that are intersected by the segment vv′ in addition to the zig-zag edges
is at most 2n− 3 (the remaining part is a 2n-gon, see Figure 3.3). We denote the sum of
these numbers over all wirings by τ ; we have τ ∈ O(n2).

The following lemma shows how to deduce a flip sequence in our construction from a
vertex cover of size k. Note that we do not claim that this is the optimum if k is optimal.

Lemma 3.1. If there exists a vertex cover of size k in G, then there exists a flip sequence
between T1 and T2 of length at most

δk = 2(k(2w − 1) +m(4x+ 2d) + τ) .

Proof. Let C be a vertex cover of G with k = |C|. Let v ∈ C be a vertex used to cover
an edge. We use v to transform the edge cores of the adjacent edges in G (if they have
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not already been transformed). We need to flip all zig-zag edges in the wiring to v, which
takes 2w − 1 flips. Then we need at most 2n − 3 flips (counted by τ) for the remaining
wiring edges, as well as two further flips for the edges before the first crossing and two flips
for the first crossing itself. All in all, with this method we need up to 4x+ 2 flips for the
crossing gadgets to make the first edge of the edge core visible to v. Then, we need 2d− 2
flips to make the edges incident to v (see Figure 2.7 (d)). Flipping in the desired way we
need at most δk flips.

On the other hand, a flip sequence should define a vertex cover. For the following
lemma, we fix

w >
c(m(4x+ 2d) + τ) + 1

2

for any constant c > 1; further, we choose d such that (d − 1)2 > δn = 2(n(2w − 1) +
m(4x + 2d) + τ) (note that since the term to the right is linear in d, such a value of d
clearly exists and is polynomial in the problem size).

Lemma 3.2. If there exists a flip sequence between T1 and T2 of length δ, then there exists
a vertex cover of size at most

k =

⌊
δ

4w − 2

⌋
. (3.1)

In particular, for the flip distance δopt between T1 and T2 and a minimum vertex cover of
size kopt, we have

kopt =
δopt −R
4w − 2

(3.2)

for some positive R < 4w−2
c .

Proof. We argue that the choice of d forces an effective algorithm to flip the zig-zag edges
of wirings (which corresponds to covering vertices), and that the choice of w allows to
transform the number of flips to the size of the corresponding vertex cover.

If δ ≥ (d− 1)2, then the choice of d implies that k ≥ n in (3.1), which trivially implies
that the lemma is true in that case. We therefore assume that δ < (d−1)2. If, for any edge
core, we do not use the corresponding central points v or v′ of a wiring, we need at least
(d− 1)2 flips due to Theorem 2.3. Now suppose that we want to transform an edge core D
using a point v. Then we need to flip all zig-zag edges in the wiring to v (as in the proof
of Lemma 3.1), taking 2w− 1 flips. Note that this is optimal since only one of the zig-zag
edges can be removed with each flip. The values of d and w have been chosen in a way
that flipping the edges of all wirings, crossings, and edge cores to the corresponding central
point and back, as described, uses fewer flips than transforming one edge core, due to the
bound of Lemma 3.1. For any algorithm, this means that flipping all edges at wirings and
crossings twice and transforming the edge cores with a point at the wiring is cheaper than
transforming one edge core without a point at a wiring. Due to Theorem 2.3 we know that
we need a point at a wiring for each edge core to be transformed in fewer than (d−1)2 flips,
as, for each edge core, the points at the two wirings are the only ones inside the hourglass
of the edge core. Therefore, we know that the (optimal) flip distance δopt is given by

δopt = kopt(4w − 2) +R for some R > 0 . (3.3)
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Equation (3.3) shows how to deduce kopt from δopt: Lemma 3.1 gives us an upper
bound on the flip distance, and hence R ≤ 2(m(4x + 2d) + τ). Note that if R < 4w − 2,
the size of the minimum vertex cover can be calculated from the flip distance by

kopt =

⌊
δopt

4w − 2

⌋
.

We actually require cR < 4w−2, for a given constant c > 1 (which is used for the reasoning
about approximation ratios later in this section). This requirement can be fulfilled by
choosing w under consideration of the bound R ≤ 2(m(4x + 2d) + τ), i.e., such that
2(m(4x + 2d) + τ) < (4w − 2)/c. Thus, we have chosen w such that, in an optimal flip
sequence, flipping the zig-zag edges of one wiring needs more flips than c times the number
of all flips of edges not in a wiring.

No matter how well an algorithm performs, it has to flip the zig-zag edges of at least
kopt wirings when using less than (d − 1)2 flips, and Lemma 3.1 tells us that c times the
number of flips of the edges not in a wiring are in total fewer than the number of the
zig-zag edges flipped for one wiring when the algorithm is optimal.

To show APX-hardness of the flip distance problem, we show that we have an AP-
reduction [23, pp. 256–261] from Minimum Vertex Cover using the previous lemmata.
Let kopt be the size of a minimum vertex cover for G and δopt be the flip distance between
T1 and T2. See [23, pp. 257–258] for the following definition (note that r is a bound on the
performance ratio of the approximate solution of the problem we reduce to, and that α is
a factor in the bound for the performance ratio of the solution to the initial problem).

Definition 3.1 (AP-reduction). Let P1 and P2 be two NP optimization problems. P1 is
AP-reducible to P2 if two functions f and g and a constant α ≥ 1 exist such that:

1. For any instance X of P1 and any rational r > 1, f(X, r) is an instance of P2.

2. For any instance X of P1 and any rational r > 1, if there is a feasible solution of X,
then there is a feasible solution of f(X, r).

3. For any instance X of P1 and any rational r > 1, and for any Y that is a feasible
solution of f(X, r), g(X,Y, r) is a feasible solution of X.

4. f and g are computable by two algorithms whose running time is polynomial for any
fixed rational r.

5. For any instance X of P1 and any rational r > 1, and any feasible solution Y for
f(X, r), a performance ratio of at most r for Y implies a performance ratio of at
most 1 + α(r − 1) for g(X,Y, r).

In our case, f corresponds to the construction of the point set and the two triangula-
tions. Requirements 1 and 2 follow from our construction. A vertex cover can be extracted
from a flip sequence Y from the zig-zag edges flipped at the wirings; this corresponds to g,
and requirement 3 is therefore fulfilled. Both f and g are polynomial-time algorithms, as
demanded by requirement 4 (the parameter r is actually not used by either of these two
algorithms, but will be used in the analysis).
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Intuitively, Lemmata 3.1 and 3.2 give evidence that the reduction described so far
fulfills also requirement 5 of Definition 3.1. However, because of the remainder term R,
the performance ratio of an approximation of the flip distance does not directly give the
performance ratio of the resulting approximate vertex cover; we have to show that R was
chosen small enough and therefore the performance ratio of the approximate vertex cover
stays within the bounds required by Definition 3.1. Let δ be an approximate solution for
the flip distance such that δ ≤ δoptr. Further, let R′ be the remainder produced by the
floor function in (3.1) of Lemma 3.2, that is, in the expression k =

⌊
δ

4w−2

⌋
. By Lemma 3.2,

we get

k ≤ δ −R′
4w − 2

≤ δoptr −R′
4w − 2

.

Let R be the remainder term for the optimal solution δopt as in (3.2) of Lemma 3.2, that
is, in the expression kopt =

δopt−R
4w−2 . Then introducing the term rR − rR in the numerator

of the previous upper bound for k yields

k ≤ r δopt −R
4w − 2

+
rR−R′
4w − 2

= rkopt +
rR−R′
4w − 2

≤ rkopt +
rR

4w − 2
< rkopt +

r

c
, (3.4)

where the equality and the last inequality are due to Lemma 3.2. Let α = 4 and c = 2.
Suppose first that r − 1 = ε ≥ 1

2kopt+1 . Then

rkopt +
r

2
= kopt + εkopt +

1

2
+
ε

2
= kopt + αεkopt +

1

2
− ε
(

3kopt −
1

2

)
. (3.5)

To get rid of the last part we use

ε

(
3kopt −

1

2

)
≥ 3kopt − 1/2

2kopt + 1
>

1

2
,

which, by (3.4) and (3.5), implies

k ≤ kopt + αεkopt .

On the other hand, suppose that r − 1 = ε < 1
2kopt+1 . Then from (3.4), we get

k < rkopt +
r

2
= kopt + εkopt +

1

2
+
ε

2
= kopt + ε

(
kopt +

1

2

)
+

1

2

< kopt +
kopt + 1/2

2kopt + 1
+

1

2
= kopt + 1 .

Since the solutions to vertex cover are integers, this implies that k = kopt and therefore
k ≤ kopt + αεkopt holds. Hence, in both cases k/kopt ≤ 1 + α(r − 1) and our reduction
fulfills all properties of an AP-reduction from Minimum Vertex Cover.

Theorem 3.3. The problem of determining a shortest flip sequence between two triangu-
lations of a point set is APX-hard.
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3.2.3 An Improved Bound on the Performance Ratio

The previous reduction did not use the performance ratio bound r. As pointed out by
an anonymous referee of the version in [133], a different choice of w actually allows to
prove a better lower bound on the tractable performance ratios. This reduction selects c
(the constant used in Lemma 3.2) according to r (recall that r is considered a constant).
Hence, this is an example of a reduction that actually uses the bound r as a parameter.
It is known that approximating Minimum Vertex Cover by any constant factor less
than 10

√
5− 21 ≈ 1.36 is NP-hard [53], and, if the Unique Games Conjecture is true, even

obtaining a performance ratio within any constant less than 2 is NP-hard [102]. However,
there exist approximation algorithms achieving a ratio of 2− o(1) [94, 98].

Let b be the bound for the performance ratio that a polynomial-time algorithm can
guarantee for Minimum Vertex Cover (note that b is between 1.36 and 2, unless P =
NP). Suppose we can approximate the flip distance by a performance ratio less than
b− ε for some constant ε. Due to (3.4), we can guarantee a performance ratio of at most
(b−ε)+ b−ε

koptc
for Minimum Vertex Cover. Hence, if ε > b−ε

koptc
+ε′, then the performance

ratio bound for Minimum Vertex Cover is better than b−ε′. This is fulfilled for c > b−ε
ε−ε′ .

In particular, this requires ε = κε′ for a constant κ > 1. Note, however, that κ cannot
be 1. The reason for this is that, in (3.4), R′ can be smaller than R. For example, there
may exist a 2-approximation for Minimum Vertex Cover for which the corresponding
flip sequence is less than twice the optimum. Still, we obtain the following result.

Theorem 3.4. For any given constant ε > 0, it is NP-hard to approximate the flip distance
between two triangulations by a factor less than 10

√
5− 21− ε, and, if the Unique Games

Conjecture is true, by a factor less than 2− ε.

3.2.4 A Comparison to Lubiw and Pathak’s Reduction

As already mentioned, Lubiw and Pathak [115] independently gave an NP-hardness re-
duction for the decision version of the flip distance problem.2 We sketch their reduction
to point out the similarities and differences between their approach and the one presented
herein.

Their reduction is from the vertex cover problem on 3-connected cubic (i.e., 3-regular)
planar graphs. Let G be the graph of such a problem instance. G can be embedded
in the plane such that the resulting drawing is a plane geometric graph in which every
bounded face is strictly convex [39] (where strictly convex means that the angle at all
vertices inside that face are strictly less than 180◦). The vertices at the unbounded face
are replaced by three vertices, one of degree 3 and two of degree 2, in a way that all
angles incident to vertices of degree 3 are less than 180◦. The reduction uses double chains
with seven points on each chain, which are called channels. Similar to the edge cores in
our reduction, they are placed on the edges of the initial graph, and triangulated with
different extreme triangulations (called “left-inclined” and “right-inclined” triangulations)
in the source and the target triangulation, in the same way as in the proof by Hurtado

2The proof of Lemma 2.2 in Chapter 2 is, as indicated, a generalization of a proof they give, but this
lemma is used in Chapter 4 only. The result presented in Chapter 4 (already published in [16]), were
obtained later than the main ideas of the result presented in this chapter.
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et al. [95]. For their analysis of the construction, they also have to show a lower bound
of 24 flips for flipping from one extreme triangulation to the other using a point in the
flip kernel (called the “narrow mouth”); see also Lemma 2.2. The vertex gadgets consist
of polygonal regions, triangulated in the same way in the source and target triangulation.
For vertices of degree 3, the vertex gadget contains three different points such that each
is in the kernel region of one channel; Further, no point of the vertex gadget is inside the
hourglass (called the “wide mouth”) of the channel. A vertex of degree 2 is represented by
a simpler variation of the gadget having the same properties. For each vertex gadget, there
is a special edge, called the lock. If the triangulation of a channel has to be transformed
from one extreme triangulation to the other in less than 36 flips, one of the incident locks
has to be flipped. (Hence, the lock is a single edge fulfilling a purpose similar to the zig-zag
path in our wirings.) Selecting a vertex for the vertex cover then corresponds to flipping
the lock of the corresponding vertex gadget. To assure that the edges of the gadgets are
flipped only in the intended way, the edges at the boundary of the resulting structure
are “repeated” n2 times (which requires placing additional points close to the ones on the
boundary of the gadgets). It is argued that it would require too many flips to “dismantle”
this construction, and therefore only the edges of the gadgets are flipped in an optimal
solution. The details on these additional edges are deferred to the full version of the paper
(which was not available at the time of writing this thesis).

Both reductions use the properties of the double chain of [95, 157], placing only two
points in the kernel region of a double chain and no further points in its hourglass. Selecting
vertices for the vertex cover corresponds to flipping certain edges. The main difference
between the reductions is that our reduction does not require the initial graph to be planar.
The analysis of Lubiw and Pathak’s construction requires an exact counting of the flips,
and therefore also a tight lower bound, which they provide. In our construction, we only
relied on the lower bound given by the zig-zag path in the wiring gadgets. This, however,
requires a construction of the gadgets that heavily depends on the size of the initial graph
(e.g., for the choice of the value of w). Still, this coarser counting of the necessary flips
easily allowed for handling the crossings in the initial graph using the crossing gadgets.
There is no direct way to use the reduction to show APX-hardness of the problem when
reducing only from the planar variant of Minimum Vertex Cover, since, as already
mentioned, there exists a PTAS for these instances (see Section 2.1 for the corresponding
references). Another difference between the reductions is that the extension with the n2

additional edges is not required in our proof. The reasons for this are twofold. First, our
detailed analysis of the double chain, presented in Chapter 2, shows that points outside the
hourglass can be disregarded for the quadratic lower bound on the flip distance. Second,
we do not have to argue about a lower bound for the case when a point inside the flip
kernel is used. (We use such a lower bound in the next chapter. There, we do not have
to “protect” the construction by additional edges since this is fulfilled by the boundary of
the polygon.) Their line of arguments implicitly relies on a concept equivalent to local
triangulations, which, in their case, is almost trivial due to the placement of the additional
edges around the construction, and is left to the reader. (Without further considerations
it would be conceivable that a vertex of such an additional edge could somehow be used
to shorten the flip distance. We know that this is not the case due to Theorem 2.3.)
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3.3 On the Coordinate Representation

Section 3.2 already contained a description of the gadgets we used in our reduction. How-
ever, the validity of gadget-based reductions when proving NP- or APX-hardness for prob-
lems on point sets requires that the coordinates of the points used can be calculated in
polynomial time.

The reader may have noticed that our high-level construction involves points placed at
the crossing of circular arcs, which, in general, leads to irrational coordinates, even if the
circular arcs are defined by rational points. We will give a construction that slightly varies
from the one described that uses only rational coordinates, with both the numerator and
denominator bounded by a polynomial in the input size.

One way to strengthen the result is to show that the problem remains APX-hard for
triangulations of point sets in general position. The gadgets in our reduction do not make
use of collinear points. However, we did not explicitly mention how to avoid three points on
a line when describing the construction. In this appendix we give an explicit construction
of the point set in general position, i.e., that no three points are collinear.

Note that the construction may not be “economical” in the sense that the construction
may be possible with coordinates having a smaller binary representation. We will always
prefer constructions that are easy to prove. We will place the points on and close to the unit
disc (meaning that a coordinate will never exceed 1 + ε, for some small ε > 0); therefore,
we can specify the size of a coordinate in terms of the size of its denominator.

3.3.1 Placing the Points of the Convex Polygon

As a first step, we give a simple construction of a convex n-gon for placing the central points
of the wiring gadgets with all vertex coordinates being rational and the denominators being
in O(n10). Further, we want to assure that no three diagonals cross in the same point.
For doing so, we will first choose n5 candidate points on the unit circle and then select n
points out of them.

Rational points on the unit circle are known to be given by
(
1−t2
t2+1

, 2t
t2+1

)
with t ∈ Q,

see, e.g., [40]. We define a sequence K of candidate points with t = i/n5 for the integers
1 ≤ i ≤ n5. (For consistency with later parts and ease of presentation therein we choose
the candidate points from the upper-right quadrant in counterclockwise ascending order;
hence, the value of t is between 0 and 1.) Now we select n points out of K such that there
are no three diagonals that cross at a single point. We choose the first five points of our
final set from the candidate points. Suppose we have chosen j ≥ 5 points such that no
three diagonals cross at a single point. We have n5 − j points in K to choose the next
point from. Consider all

(
j
5

)
combinations of five points among the already chosen ones.

Each combination gives exactly five points on the unit circle that cannot be chosen, and
none of these is among the j already chosen candidate points. Hence, we have 5

(
j
5

)
+ j

“forbidden” points (which may not all be among the candidate points). See Figure 3.4. We
have, however, n5 ≥ j5 > 5

(
j
5

)
+ j candidate points to choose from, and therefore we for

sure can choose point number (j + 1). We denote this set of points by PV ; the elements
of PV are the points representing the vertices of the input graph.
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Figure 3.4: Five points on the unit circle; a point at the (red) cross would introduce a
supporting line through a crossing of two other supporting lines and is therefore forbidden.
The image is rotated for representational reasons, our method chooses all points from the
upper-right quadrant.

Proposition 3.5. A point set of n points in convex position with all coordinates rational
having their denominators in O(n10) and no three diagonals crossing at the same point can
be found in polynomial time.

Note that the facts that no three diagonals of the resulting n-gon cross and that the
coordinates are bounded also give us a lower bound on the distance between intersection
points and other diagonals, which we will use in the next part.

3.3.2 A Sufficiently Small Value

In this section, we will define four values δe, δv, δn, and δr that will give sufficiently small
upper bounds on the construction of the gadgets. For any point p, let xp and yp denote
its x- and y-coordinate, respectively.

For the definition of δe, find the minimum squared distance from each of the
(
n
4

)
crossings of the diagonals of the n-gon to the diagonals not involved in the correspond-
ing crossing. Let the actual distance be δe. Since the squared distance δ2e , is given by
(xa − xb)2 + (ya − yb)2 between two points a and b, we can set δ′e = |xa − xb| to obtain
a “small”, rational and positive distance δ′e ≤ δe (at least one of the horizontal or verti-
cal distances is non-zero, in particular, up to here no two points can have the same x-
or y-coordinate). When we construct the tunnels that are formed around an edge of the
drawing of the input graph, we can choose, say, δ′e/3 as an upper bound for the distance
between the edge and the edges defining the tunnel. Then the intersection of any three
tunnels is always empty. (Our actual tunnels will be even narrower.)

The vertex gadgets used “small” circles around each point in PV . Let u, v, w be a triple
of consecutive vertices on the n-gon defined by PV . Let δ2v denote the smallest squared
distance between v and the line through u and w for every choice of the triple. As with
the tunnels, we can choose a rational δ′v ≤ δv by choosing only the horizontal or vertical
distance between v and the closest point on the supporting line of u and w.

Again, let v be a vertex on the n-gon. Let `v be the line through v that is perpendicular
to the line ov, where o is the origin. Consider the distances from u and w to `v. Let δ2n be
the smallest squared distance for all choices of v (and corresponding u and w), and choose
a rational δ′n ≤ δn as before. Further, let δr be the smallest horizontal or vertical distance
between two points in PV (which is non-zero by construction). See Figure 3.5. We define
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Figure 3.5: Construction to obtain bounds for δ.

δ = min{δ′e/3, δ′v, δ′n, δr}. If we now choose the radius of the cycle centered at each vertex
by rV = δ/6, then no two circles intersect (there is actually a distance of at least 4rV
between two circles), and each circle only intersects the edges of the input graph that are
incident to the vertex it is centered at. Further, no circle intersects the convex hull of two
other circles.

3.3.3 Tunnel Construction

For each edge e of the input graph connecting two vertices v and w, we now give the
construction of the tunnels. Let Cv and Cw be the circles around v and w, respectively.
The tunnel for the edge between v and w is given by two segments, each having one endpoint
on Cv and one endpoint on Cw. We want to get rational points on Cv and Cw. Since these
circles are not only defined by a rational center point, but also have a rational radius, the
problem boils down to finding a rational point on the unit circle, or, equivalently, a (possibly
irrational) angle α such that sin(α) and cos(α) are rational, within some interval given by
quadratic irrationals. Sines with this property are called rational sines, and correspond
with the parametrization of the unit circle that we already used before. Canny, Donald,
and Ressler [40] give an algorithm for finding a rational sine for a parameter t = p/q such
that |p/q − x| < ε, for given x and ε (we will use an extended method for non-rational
radii later). Their algorithm gives a denominator q in O(1/ε), and the running time is
polynomial in q. However, the input x is an approximation as well, and their goal is to get
rational sines with small binary representation. Our angle intervals, however, are given by
rational points and their relative position to the circle center. For finding a point within
this interval, the Farey approximation as used by Canny et al. [40] for t = p/q is sufficient
and easy to apply for our setting, as we do not need an explicit approximation of the angle
and the interval as input (this algorithm searches a point inside the interval in the fashion
of binary search, computing the mediant a+c

b+d of two rational values a
b and c

d in each step).
We, however, need an upper bound on the denominator q derived from the points defining
the angle.
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Now we show how to use the results by Canny et al. [40] for our needs. Consider the
unit circle and two points a and b. Let ∠a and ∠b be the polar angles of these points,
and, without loss of generality, let ∠a < ∠b. We describe only the case where both angles
are within [0, . . . , π/2], the other cases are similar (and can easily be distinguished); in our
setting we simply have to rotate the plane orthogonally. To approximate an angle between
∠a and ∠b using a rational number t, we reason about the (possibly irrational) values ta
and tb. For ta and ∠a we define

sin(∠a) =
2ta
t2a + 1

,

which, when choosing the appropriate root, gives

ta =
1

sin(∠a)
−
√

1

sin2(∠a)
− 1 .

The sine of ∠a is given by ay/
√
a2x + a2y. The values of ∠b and tb are defined analogously.

We therefore need to find a rational number t with ta ≤ t ≤ tb. The Cauchy bound
(see [161]) for an algebraic number g being the root of a polynomial

∑m
i=0 cix

i with rational
coefficients ci is given by

|g| ≥ |c0|
|c0|+ max{|c1|, . . . , |cm|}

.

The difference |ta−tb| is therefore bounded from below by a rational that has a denominator
polynomial in the problem size. Using Farey approximation, we can find a rational t whose
denominator exceeds the denominator of the bound only by a polynomial factor.

Since we can choose rational points on the unit circle inside an interval (and therefore
on instances of the unit circle that are translated and scaled by rational values), we now
have the tools to choose the endpoints of the tunnels. For two vertices v and w, let these
be called pv and qv (placed on Cv), as well as pw and qw (placed on Cw). Hence, a tunnel
between v and w consists of the quadrilateral pvqvqwpw. In order to prevent collinear triples
of points, we again select a set of candidate points on Cv and Cw and choose the four points
among them. Note that this results in tunnels that may not be exactly rectangular, but
this is irrelevant for our final construction. See Figure 3.6 for an accompanying illustration.

We place the points in the following way. Without loss of generality, suppose that
xv < xw. To obtain the set of candidate points for pv, consider the segment between w
and the point (xw, yw + rV ), where rV is the radius of the circles, which we call the
upper spoke of w. Let the lower spoke of w be defined analogously between v and the
point (xw, yw−rV ). Find the two parameters t1 and t2 for rational points pt1 and pt2
on Cv such that the line through v and pt1 intersects the upper spoke of w at a point
above (xw, yw + 7rV /8) and the line through v and pt2 intersects the upper spoke between
(xw, yw + rV /2) and (xw, yw + 5rV /8). We can now select our set Kv of candidate points
from the interval [t1, t2]. The same can be done for two parameters t3 and t4, with the
roles of v and w interchanged. We select a point pv ∈ Kv and a point pw ∈ Kw as the
endpoints of one side of the tunnel gadget between v and w.
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lw

uv

Kv

Kw

Figure 3.6: Construction for the tunnel endpoints: The two extremal candidate points for
pv are chosen inside the two gray wedges. Note that v and w in the drawing do not fulfill
the required vertical distance since the drawing would get too small.

Let us now argue the correctness of this construction. Note that we do not need to
require the sides to be parallel to the supporting line of v and w (we could do so by
increasing the number of candidate points). The crucial property of the points we need
is that pvvwpw forms a convex quadrilateral and we therefore have to prove that pv is
always left of the directed line through v and pw (and, analogously, that pw is right of the
directed line through w and pv). Let lw = (xw, yw + rV /2) and uv = (xv, yv + rV ). The
diagonals vlw and uvw of the trapezoid uvvwlw intersect each other at a ratio of (rV /2)/rV ,
i.e., at two thirds of the interval [xv, xw]. Recall that the radius rV was chosen in a way that
the disc centers have a horizontal distance of at least 6rV . Hence, the segments intersect
outside Cw; the topmost candidate point on Cw is below the line through v and the lowest
candidate point on Cv, and vice versa. Note that since the candidate points on Cv are
chosen inside the convex hull of Cw and v, no two tunnels from v can intersect.

It remains to find the correct number of candidate points. Suppose we already con-
structed all but one tunnel point. Since at every circle there are at most 2(n − 1) tunnel
points there are at most

(
n(2n−1)

2

)
lines on which we are not allowed to place a point. Every

line intersects the circle on which we place the last point at most twice. Hence, if we choose
more than twice the number of points as we have lines, we can always choose a point such
that the resulting point set is in general position.

3.3.4 Points in the Tunnels

For each tunnel, we construct two circular arcs, one for each segment defining the tunnel,
on which we place the points of the edge core. The crucial property of such an arc is that
for two wire centers v and w, these points are the only ones in the flip-kernel. Let qv and qw
be the two endpoints of a tunnel edge, such that qw is to the right of qv and the interior of
the tunnel is above the line qvqw. See Figure 3.7. The constructed arc will start at qw and
end at qv. We consider four rays, namely the ones that leave qv to the right in an angle
of 0, (−π/4), and π/4 with the x-axis and the upward vertical ray at qv. Let r be the one
that opens the smallest positive angle α with qvqw. If the angle between qv and qw and qvw
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Figure 3.7: We want to choose rational points on the (blue) arc inside the gray region by
Farey approximation on the slope t. Note that the gray region actually is, for presentational
reasons, drawn too close to w.

is smaller than α, then let s be the ray through w starting at qv; otherwise, let s = r. We
perform the analogous operation (i.e., with the plane being mirrored horizontally) at qw,
obtaining a ray s′. Without loss of generality, let the angle between qvqw and s be smaller
than or equal to the one between qwqv and s′. Construct the circle A that passes through
both qv and qw such that A is tangent to the supporting line of s. The coordinates of the
center of A are still rational. It is well-known that, when given any rational point p on A
and a line ` with rational slope that intersects A at p and a second point p′, the point p′ is
rational as well, see, e.g., [96, p. 5]. Hence, we need to appropriately choose lines through a
point p. The crossings of the segments that define all the tunnels identify the region where
the edge core should be placed. Let R be the region we have to place the points in (marked
gray in Figure 3.7). By the choice of r, we constructed A in a way that we can mirror and
rotate the plane orthogonally such that the intersection of A and R is within an angle of
0 and π/4 from qv. This means that any line ` through qv and this intersection will have
a slope t between 0 and 1. This reasoning is similar to the one of Burnikel [38] to adapt
the techniques of [40] for such rational circles (i.e., circles given by three rational points).
As before, we can use, e.g., Farey approximation for the slope t of `. At each iteration,
we check whether the second intersection of ` with A is inside the quadrilateral R, and, if
not, on which side it is. Since the denominators of the coordinates of the points defining
A and R are polynomial, there is a polynomial lower bound on the difference between
the (possibly non-rational) parameters for the two points where A enters and leaves R
(as for the construction of the tunnel endpoints). Hence, after a polynomial number of
steps, we have a rational slope for ` such that ` passes through A inside R; therefore, also
this intersection point has rational coordinates and its denominator is polynomial in the
problem size. To obtain a second such point, the process can be continued. Now we have
two points in the intersection of A and R which define two slopes of lines through qv. Any
line through qv with a slope in the interval between these two slopes gives a rational point
on A ∩R. Hence, we can choose our candidate points by dividing that interval.

The remaining problem is the one of choosing the points for the crossing gadgets.
Two arcs in crossing tunnels will, in general, cross at a point that does not have rational
coordinates. The crucial property of the points of the crossing gadgets, however, is that
they are outside the hourglasses of the edge cores (recall Definition 2.1) and that the edges



3.3. On the Coordinate Representation 39

qv
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w

Figure 3.8: Construction of tunnel crossings. The drawing shows the lower part of a tunnel
between v and w and a part of another tunnel (indicated by the near-vertical strokes).

between them can “quickly” be flipped to the center of the corresponding wiring gadget.
Placing the points for the crossing gadgets at the crossings of the segments that define the
tunnels would satisfy these constraints, but would lead to collinear triples. So we have to
slightly perturb each point p to obtain a point p′ without loosing these properties. See
Figure 3.8. Between every consecutive pair of crossing points on a tunnel segment qvqw we
can choose the rational midpoint. If the perturbed point p′ remains on the same side of
the line through the wire center and the midpoint as p, the order around the wire center
is maintained. Further, the perturbed points have to remain on the same sides of the lines
that define the hourglasses of the edge cores involved. Together with the tunnel edges,
these constraints give a convex region from which we can choose our perturbed point. We
may again place a circular arc inside this region (marked gray in Figure 3.8) on which we
select a sufficiently large number of candidate points, analogously to the construction of
the other gadgets.

3.3.5 Points for the Wiring

Finally, we place the points at the wiring gadgets that allow us to draw the wiring edges,
see Figure 3.9. The circles for the wiring gadgets are scaled versions of the unit circle.
For a vertex v, let `v be the line through v that is perpendicular to the supporting line of
the origin o and v. Since the coordinates of v are rational sines, the intersection points
of `v with the circle Cv are rational as well. Due to the choice of δ′n, all points on Cv that
define tunnels are on the same side of `v as o. We are given two intervals, each between
two rational sines, i.e., between the “extremal” tunnel endpoints on Cv and the intersection
points of `v with Cv. Therefore, we can choose a sufficient number of rational candidate
points on Cv to choose the points for the wiring from.

3.3.6 Concluding Remarks on the Embedding

The crucial part throughout the whole embedding procedure is that each (intermediate)
point that is not a candidate point is constructed using only a constant number of other
points. The candidate points were constructed with polynomial parameters. Hence, all
denominators are polynomial in the input size. In particular, note that even though some
intervals were defined by points with algebraic coordinates, a lower bound on the interval
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Figure 3.9: Construction of the wiring points. The small gap (indicated by the arrow)
on the circle Cv of v between the intersection point with `v and the neighboring tunnel
endpoint can be used for the candidate points.

can be given in terms of the other, rational coordinates that were used in the construction.
This allowed us to find rational points with polynomial denominators within these intervals.

3.4 Chapter Summary

In this chapter, we showed that it is APX-hard to minimize the number of flips to transform
two triangulations T1 and T2 of a point set S into each other, using properties of the double
chain presented in Chapter 2. Further, we gave a detailed description on how the points for
the construction can actually be embedded. The techniques used can be applied similarly
to the exact constructions of other hardness reductions for problems on point sets, as those
presented in Chapter 4 and Chapter 8.

We are not aware of any constant-factor approximation of the flip distance. For the
upper bound given by Hanke et al. [89], it is easy to construct examples (like the one in Fig-
ure 2.7) where the bound is quadratic while the flip distance is linear. From an algorithmic
point of view, proving the existence or non-existence of a constant-factor approximation
algorithm is consequently a next step. Another next step, of course, is to simplify the prob-
lem setting. As we will argue in the next chapter, problems on triangulations are often
easier for simple polygons than for point sets. Still, we obtain an NP-completeness result
for the flip distance problem for triangulations of simple polygons in the next chapter.



Chapter 4

Flipping in Triangulations of Simple
Polygons

While in the previous chapter we showed that the flip distance problem for triangulations of
point sets is hard to approximate, we consider the flip distance problem for triangulations
of simple polygons in this chapter. We show that the problem is NP-complete, using again
the results on double chains from Chapter 2. However, this time, our reduction does not
allow for a similar APX-hardness result. The content of this chapter has already been
presented in [16].

4.1 Introduction

Some triangulation-related problems can be solved faster for simple polygons than for point
sets. One example would be the problem of constructing a minimum weight triangulation,
which can be solved in O(n3) time using dynamic programming [74, 104], while it is NP-
hard for general point sets [127]. Another example would be the problem of counting
the number of triangulations; practically the same dynamic programming approach can
be applied for simple polygons, but there is no known polynomial-time algorithms for
point sets, but only heuristics (see [3, 20]). However, the flip distance problem is neither
concerned with constructing a special triangulation, nor is it an actual counting problem.
This difference is emphasized by the hardness result we show for the flip distance problem.

In contrast to Chapter 3, we aim for an NP-completeness proof and therefore formulate
our problem as a decision problem.

Problem 3 (Polygon Triangulation Flip Distance). Given two triangulations T1
and T2 of a simple polygon P , and an integer l, decide whether T1 can be transformed
into T2 by at most l flips.

The problem is obviously in NP. To show NP-hardness, we give a polynomial-time
reduction from Rectilinear Steiner Arborescence. Rectilinear Steiner Ar-
borescence was shown to be NP-hard by Shi and Su [147]. In Section 4.2, we describe
the problem in detail, and in Section 4.3, we describe our reduction and prove that it is
correct.

41
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4.2 The Rectilinear Steiner Arborescence Problem

Let S be a set of N points in the plane whose coordinates are nonnegative integers. The
points in S are called sinks. A rectilinear tree T is a connected acyclic collection of
horizontal and vertical line segments that intersect only at their endpoints. The length
of T is the total length of all segments in T (cf. [97, p. 205]). The tree T is a rectilinear
Steiner tree for S if each sink in S appears as an endpoint of a segment in T . We call T
a rectilinear Steiner arborescence (RSA) for S if (i) T is rooted at the origin; (ii) each
leaf of T lies at a sink in S; and (iii) for each s = (x, y) ∈ S, the length of the path in T
from the origin to s equals x+ y, i.e., all edges in T point north or east, as seen from the
origin [136]. In the RSA problem, we are given a set of sinks S and an integer k. The
question is whether there is an RSA for S of length at most k. Shi and Su showed that
the RSA problem is strongly NP-complete; in particular, it remains NP-complete if S is
contained in an n×n grid, with n polynomially bounded in N , the number of points [147].1

We recall an important structural property of the RSA. Let A be an RSA for a set S
of sinks. Let e be a vertical segment in A that does not contain a sink. Suppose there is
a horizontal segment f incident to the upper endpoint a of e. Since A is an arborescence,
a is the left endpoint of f . Suppose further that a is not the lower endpoint of another
vertical edge. Take a copy e′ of e and translate it to the right until e′ hits a sink or another
segment endpoint (this will certainly happen at the right endpoint of f); see Figure 4.1.
The segments e and e′ define a rectangle R. The upper and left side of R are completely
covered by e and (a part of) f . Since a has only two incident segments, every sink-root
path in A that goes through e or f contains these two sides of R, entering the boundary
of R at the upper right corner d and leaving it at the lower left corner b. We reroute every
such path at d to continue clockwise along the boundary of R until it meets A again (this
certainly happens at b), and we delete e and the part of f on R. In the resulting tree we
subsequently remove all unnecessary segments (this happens if there are no more root-sink
paths through b) to obtain another RSA A′ for S. Observe that A′ is not longer than A.
This operation is called sliding e to the right. If similar conditions apply to a horizontal
edge, we can slide it upwards. The Hanan grid for a point set P is the set of all vertical
and horizontal lines through the points in P . In essence, the following theorem can be
proved constructively by repeated segment slides in a shortest RSA.

Theorem 4.1 (Rao et al. [136]). Let S be a set of sinks. There is a minimum-length
RSA A for S such that all segments of A are on the Hanan grid for S ∪ {(0, 0)}.

We use a restricted version of the RSA problem, called YRSA. An instance (S, k) of
the YRSA problem differs from an instance for the RSA problem in that we require that
no two sinks in S have the same y-coordinate.

Theorem 4.2. YRSA is strongly NP-complete.

Proof. Due to the Hanan grid property, the YRSA problem is in NP, as the RSA prob-
lem [147]. We show how to reduce RSA to YRSA. Let (S, k) be an instance for an

1Note that a polynomial-time algorithm was claimed [156] that later has been shown to be incor-
rect [136].
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Figure 4.1: The slide operation. The dots depict sinks; the rectangle R is drawn gray. The
dotted segments are deleted, since they do no longer lead to a sink.

RSA problem, and label the sinks as S = 〈s1, s2, . . . , sN 〉 in an arbitrary fashion. For
i = 1, . . . , N , let (xi, yi) be the coordinates of si and define s′i := (xiN

4, yiN
4 + i). Set

S′ := {s′1, s′2, . . . , s′N}. Note that the y-coordinates of the sinks in S′ are pairwise distinct.
Now let A be a rectilinear Steiner arborescence for S of length at most a. We can

scale A by the factor N4 and draw a vertical segment from each leaf to the corresponding
sink in S′. It follows that there exists an RSA A′ of length a′ ≤ aN4 +N2.

Suppose there exists an RSA B′ of length at most b′. Due to Theorem 4.1, we can
assume that B is on the Hanan grid. We can replace every y-coordinate ys of every
segment endpoint in B′ by bys/N4cN4 (ignoring possible segments of length 0). Then this
results in an arborescence B for S that was scaled by N4 (because the resulting drawing
remains connected, every path to the origin remains monotone and no cycles are produced
since the segments are on the Hanan grid). Any arborescence on the Hanan grid is a union
of N paths changing directions at most N times, and every vertical part of such a path
is stretched by at most N by the way we changed the y-coordinates. This gives a (very
conservative) bound of bN4 ≤ b′ +N3 for the length b of B.

Hence, S has an arborescence of length at most k if and only if S′ has an arborescence
of length at most kN4 +N3, provided that N4 > 2N3, that is, N > 2. Since the instance
(S′, kN4 +N3) can be computed in polynomial time from (S, k), and since the coordinates
in S′ are polynomially bounded in the coordinates of S, it follows that the YRSA problem
is strongly NP-complete.

4.3 Reducing RSA to Polygon Triangulation Flip Dis-
tance

We reduce YRSA to Polygon Triangulation Flip Distance. Let S be a set of N
sinks on an n×n grid with root at (1, 1) (recall that n is polynomial in N). We construct a
polygon P ∗D and two triangulations T1, T2 in P ∗D such that a shortest flip sequence from T1
to T2 corresponds to a shortest RSA for S. To this end, we will describe how to interpret
any triangulation of P ∗D as a chain path, a path in the integer grid that starts at the origin
and uses only edges that go north or east. It will turn out that flips in P ∗D essentially
correspond to moving the endpoint of the chain path along the grid. We choose P ∗D, T1,
and T2 in such a way that a shortest flip sequence between T1 and T2 moves the endpoint of
the chain path according to an Eulerian traversal of a shortest RSA for S. To force the chain
path to visit all sites, we use the observations from Chapter 2: the polygon P ∗D contains
a double chain for each sink, so that only for certain triangulations of P ∗D it is possible to
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Figure 4.2: The sink gadget for a site (x, y) is obtained by replacing the edge lβylβy+1 by
a double chain with d vertices on each chain. The double chain is oriented such that uβx
is the only point inside its hourglass and its flip-kernel. In our example, β = 1.

flip the double chain quickly. These triangulations will be exactly the triangulations that
correspond to the chain path visiting the appropriate site.

4.3.1 The Construction

Our construction has two integral parameters, β and d. With foresight, we set β = 2N
and d = nN . We imagine that the sinks of S lie on a βn× βn grid, with their coordinates
multiplied by β. We use the following auxiliary definition.

Definition 4.1. Let D be a double chain of n vertices whose flip-kernel contains a
point v to the right of the directed line lnun. The polygon P vD is given by the sequence
〈l1, . . . , ln, v, un, . . . , u1〉. The upper and the lower extreme triangulation of P vD contain
the edge unln and otherwise are defined in the same way as for PD.

We take a double chain D with βn vertices on each chain such that the flip-kernel
of D extends to the right of lβnuβn. We add a point z to that part of the flip-kernel, and
we let P+

D = P zD be the polygon defined by 〈l1, . . . , lβn, z, uβn, . . . , u1〉. Next, we add
double chains to P+

D in order to encode the sinks. For each sink s = (x, y), we remove the
edge lβylβy+1, and we replace it by a (rotated) double chain Ds with d vertices on each
chain, such that lβy and lβy+1 correspond to the last point on the lower and the upper
chain of Ds, respectively. We orient Ds in such a way that uβx is the only point inside
the hourglass of Ds and so that uβx lies in the flip-kernel of Ds; see Figure 4.2. We refer
to the added double chains as sink gadgets, and we call the resulting polygon P ∗D. For β
large enough, the sink gadgets do not overlap, and P ∗D is a simple polygon. Since the
y-coordinates in S are pairwise distinct, there is at most one sink gadget per edge of the
lower chain of P+

D . The precise placement of the sink gadgets is flexible, so we can make
all coordinates polynomial in n; see Section 4.4 for details.

Next, we describe the source and target triangulation for P ∗D. In the source triangu-
lation T1, the interior of P+

D is triangulated such that all edges are incident to z. The
sink gadgets are all triangulated with the upper extreme triangulation. The target trian-
gulation T2 is similar, but now the sink gadgets are triangulated with the lower extreme
triangulation.

To get from T1 to T2, we must go from one extreme triangulation to the other for each
sink gadget Ds. By Corollary 2.7, this requires (d − 1)2 flips, unless the flip sequence



4.3. Reducing RSA to Polygon Triangulation Flip Distance 45

creates a triangle that allows us to use the vertex in the flip-kernel of Ds. In this case, we
say that the flip sequence visits the sink s. For d large enough, a shortest flip sequence
must visit each sink, and we will show that this induces an RSA for S of similar length.
Conversely, we will show how to derive a flip sequence from an RSA. The precise statement
is given in the following theorem.

Theorem 4.3. Let k ≥ 1. The flip distance between T1 and T2 with respect to P ∗D is at
most 2βk + (4d− 2)N if and only if S has an RSA of length at most k.

We will prove Theorem 4.3 in the following sections. But first, let us show how to use
it for our NP-completeness result.

Theorem 4.4. Polygon Triangulation Flip Distance is NP-complete.

Proof. As mentioned in the introduction, the flip distance in polygons is polynomially
bounded, so Polygon Triangulation Flip Distance is in NP. We reduce from YRSA.
Let (S, k) be an instance of YRSA such that S lies on a grid of polynomial size. We
construct P ∗D and T1, T2 as described above. This takes polynomial time (see Section 4.4
for details). Set l = 2βk + (4d − 2)N . By Theorem 4.3, there exists an RSA for S of
length at most k if and only if there exists a flip sequence between T1 and T2 of length at
most l.

4.3.2 Chain Paths

Now we introduce the chain path, our main tool to establish a correspondence between flip
sequences and RSAs. Let T be a triangulation of P+

D (i.e., the polygon P ∗D without the
sink gadgets, cf. Section 4.3.1). A chain edge is an edge of T between the upper and the
lower chain of P+

D . A chain triangle is a triangle of T that contains two chain edges. Let
e1, . . . , em be the chain edges, sorted from left to right according to their intersection with
a line that separates the upper from the lower chain. For i = 1, . . . ,m, write ei = (uv, lw)
and set ci = (v, w). In particular, c1 = (1, 1). Since T is a triangulation, any two
consecutive edges ei, ei+1 share one endpoint, while the other endpoints are adjacent on
the corresponding chain. Thus, ci+1 dominates ci and ‖ci+1 − ci‖1 = 1. It follows that
c1c2 . . . cm is an x- and y-monotone path in the βn× βn-grid, beginning at the root. It is
called the chain path for T . Each vertex of the chain path corresponds to a chain edge,
and each edge of the chain path corresponds to a chain triangle. Conversely, every chain
path induces a triangulation T of P+

D ; see Figure 4.3. In the following, we let b denote the
upper right endpoint of the chain path. We now investigate how flipping edges in T affects
the chain path.

Observation 4.5. Suppose we flip an edge that is incident to z. Then the chain path is
extended by moving b north or east.

Observation 4.6. Suppose that T contains at least one chain triangle. When we flip the
rightmost chain edge, we shorten the chain path at b.

Finally, we can flip an edge between two chain triangles. This operation is called a
chain flip.
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Figure 4.3: A triangulation of P+
D and its chain path. Flipping edges to and from z moves

the endpoint b along the grid. A flip between chain triangles changes a bend.

Observation 4.7. A chain flip changes a bend from east to north to a bend from north to
east, or vice versa.

Proof. If a chain edge uilj is incident to two chain triangles and is flippable, then the two
triangles must be of the form uiui−1lj and ljlj+1ui, or ui+1uilj and lj−1ljui. Thus, flipping
uilj corresponds exactly to the claimed change in the chain path.

Corollary 4.8. A chain flip does not change the length of the chain path.

We summarize the results of this section in the following lemma:

Lemma 4.9. Any triangulation T of P+
D uniquely determines a chain path, and vice versa.

A flip in T corresponds to one of the following operations on the chain path: (i) move the
endpoint b north or east; (ii) shorten the path at b; (iii) change an east-north bend to a
north-east bend, or vice versa.

4.3.3 From an RSA to a Short Flip Sequence

Using the notion of a chain path, we now prove the “if” direction of Theorem 4.3.

Lemma 4.10. Let k ≥ 1 and A an RSA for S of length k. Then the flip distance between
T1 and T2 with respect to P ∗D is at most 2βk + (4d− 2)N .

Proof. The triangulations T1 and T2 both contain a triangulation of P+
D whose chain path

has its endpoint b at the root. We use Lemma 4.9 to generate flips inside P+
D so that b

traverses A in a depth-first manner. This needs 2βk flips.
Each time b reaches a sink s, we move b north. This creates a chain triangle that allows

the edges in the sink gadget Ds to be flipped to the auxiliary vertex in the flip-kernel of Ds.
The triangulation of Ds can then be changed with 4d− 4 flips; see Lemma 2.2. Next, we
move b back south and continue the traversal. Moving b at s needs two additional flips, so
we take 4d− 2 flips per sink, for a total of 2βk + (4d− 2)N flips.

4.3.4 From a Short Flip Sequence to an RSA

Finally, we consider the “only if” direction in Theorem 4.3. Let σ1 be a flip sequence on P+
D .

We say that σ1 visits a sink s = (x, y) if σ1 has at least one triangulation T that contains
the chain triangle uβxlβylβy+1. We call σ1 a flip traversal for S if (i) σ1 begins and ends
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Figure 4.4: Triangulations of Ds in P ∗D with ∆s = ∆ (left), and with ∆ being an ear (red)
and ∆s an inner triangle (right). The fat tree indicates the dual.

in the triangulation whose corresponding chain path has its endpoint b at the root and
(ii) σ1 visits every sink in S. Lemma 4.11 will show that every short flip sequence in P ∗D
can be mapped to a flip traversal. The basic idea behind the flip traversal is the same as
for local triangulations. In the proof of Lemma 4.11, we map the triangulations of P ∗D to
triangulations of P+

D and to triangulations of polygons defined for each sink gadget.

Lemma 4.11. Let σ be a flip sequence from T1 to T2 with respect to P ∗D with |σ| < (d−1)2.
Then there is a flip traversal σ1 for S with |σ1| ≤ |σ| − (4d− 4)N .

Proof. We show how to obtain a flip traversal σ1 for S from σ. Let T ∗ be a triangulation
of P ∗D. A triangle of T ∗ is an inner triangle if all its sides are diagonals. It is an ear if
two of its sides are polygon edges. By construction, every inner triangle of T ∗ must have
(i) one vertex incident to z (the rightmost vertex of P+

D ), or (ii) two vertices incident to
a sink gadget (or both). In the latter case, there can be only one such triangle per sink
gadget. The weak (graph theoretic) dual of T ∗ is a tree in which ears correspond to leaves
and inner triangles have degree 3.

Let Ds be a sink gadget placed between the vertices ls and l′s. Let us be the vertex
in the flip-kernel of Ds. We define a triangle ∆s for Ds. Consider the bottommost edge e
of Ds, and let ∆ be the triangle of T ∗ that is incident to e. By construction, ∆ is either an
ear of T ∗ or is the triangle defined by e and us. In the latter case, we set ∆s = ∆. In the
former case, we claim that T ∗ has an inner triangle ∆′ with two vertices on Ds: follow the
path from ∆ in the weak dual of T ∗; while the path does not encounter an inner triangle,
the next triangle must have an edge of Ds as a side. There is only a limited number of
such edges, so eventually we must meet an inner triangle ∆′. We then set ∆s = ∆′; see
Figure 4.4. Note that ∆s might be lsl′sus.

For each sink s, let the polygon P usDs
consist of the Ds extended by the vertex us

(cf. Definition 4.1). Let T ∗ be a triangulation of P ∗D. We show how to map T ∗ to a
triangulation T+ of P+

D and to triangulations Ts of P usDs
, for each s.

We first describe T+. It contains every triangle of T ∗ with all three vertices in P+
D . For

each triangle ∆ in T ∗ with two vertices on P+
D and one vertex on the left chain of a sink

gadget Ds, we replace the vertex on Ds by ls. Similarly, if the third vertex of ∆ is on the
right chain of Ds, we replace it by l′s. For every sink s, the triangle ∆s has one vertex at a
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Figure 4.5: Obtaining T+ and Ts from T ∗.

point ui of the upper chain. In T+, we replace ∆s by the triangle lsl′sui. No two triangles
overlap, and they cover all of P+

D . Thus, T+ is indeed a triangulation of P+
D .

Now we describe how to obtain Ts, for a sink s ∈ S. Each triangle of T ∗ with all
vertices on P usDs

is also in Ts. Each triangle with two vertices on Ds and one vertex not in
P usDs

is replaced in Ts by a triangle whose third vertex is moved to us in Ts (note that this
includes ∆s); see Figure 4.5. Again, all triangles cover P usDs

and no two triangles overlap.
Eventually, we show that a flip in T ∗ corresponds to at most one flip either in T+ or

in precisely one Ts for some sink s. We do this by considering all the possibilities for two
triangles that share a common flippable edge. Note that by construction no two triangles
mapped to triangulations of different polygons P usDs

and P utDt
can share an edge (with t 6= s

being another sink).
Case 1. We flip an edge between two triangles that are either both mapped to T+ or

to Ts and are different from ∆s. This flip clearly happens in at most one triangulation.
Case 2. We flip an edge between a triangle ∆1 that is mapped to Ts and a triangle ∆2

that is mapped to T+, such that both ∆1 and ∆2 are different from ∆s. This results in
a triangle ∆′1 that is incident to the same edge of P usDs

as ∆1, and a triangle ∆′2 having
the same vertices of P+

D as ∆2. Since the apex of ∆1 is a vertex of the upper chain or z
(otherwise, it would not share an edge with ∆2), it is mapped to us, as is the apex of ∆′1.
Also, the apex of ∆′2 is on the same chain of Ds as the one of ∆2. Hence, the flip affects
neither T+ nor Ts.

Case 3. We flip the edge between a triangle ∆2 mapped to T+ and ∆s. By construc-
tion, this can only happen if ∆s is an inner triangle. The flip affects only T+, because the
new inner triangle ∆′s is mapped to the same triangle in Ts as ∆s, since both apexes are
moved to us.

Case 4. We flip the edge between a triangle ∆ of Ts and ∆s. Similar to Case 3, this
affects only Ts, because the new triangle ∆′s is mapped to the same triangle in T+ as ∆s,
since the two corners are always mapped to ls and l′s.

Thus, σ induces a flip sequence σ1 in P+
D and flip sequences σs in each P usDs

so that
|σ1|+

∑
s∈S |σs| ≤ |σ|. Furthermore, each flip sequence σs transforms P usDs

from one extreme
triangulation to the other. By the choice of d and Corollary 2.7, the triangulations Ts have
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to be transformed so that ∆s has a vertex at us at some point, and |σs| ≥ 4d − 4. Thus,
σ1 is a flip traversal, and |σ1| ≤ |σ| −N(4d− 4), as claimed.

In order to obtain a static RSA from a changing flip traversal, we use the notion of
a trace. A trace is a domain on the βn × βn grid. It consists of edges and boxes: an
edge is a line segment of length 1 whose endpoints have positive integer coordinates; a
box is a square of side length 1 whose corners have positive integer coordinates. Similar
to arborescences, we require that a trace R (i) is (topologically) connected; (ii) contains
the root (1, 1); and (iii) from every grid point contained in R there exists an x- and y-
monotone path to the root that lies completely in R. We say R is a covering trace for S
(or, R covers S) if every sink in S is part of R.

Let σ1 be a flip traversal as in Lemma 4.11. By Lemma 4.9, each triangulation in σ1
corresponds to a chain path. This gives a covering trace R for S in the following way. For
every flip in σ1 that extends the chain path, we add the corresponding edge to R. For every
flip in σ1 that changes a bend, we add the corresponding box to R. Afterwards, we remove
from R all edges that coincide with a side of a box in R. Clearly, R is (topologically)
connected. Since σ1 is a flip traversal for S, every sink is covered by R (i.e., incident to a
box or edge in R). Note that every grid point p in R is connected to the root by an x- and
y-monotone path on R, since at some point p belonged to a chain path in σ1. Hence, R is
indeed a trace, the unique trace of σ1.

Next, we define the cost of a trace R, cost(R), so that if R is the trace of a flip
traversal σ1, then cost(R) gives a lower bound on |σ1|. An edge has cost 2. Let B be a
box in R. A boundary side of B is a side that is not part of another box. The cost of B
is 1 plus the number of boundary sides of B. Then, cost(R) is the total cost over all boxes
and edges in R. For example, the cost of a tree is twice the number of its edges, and the
cost of an a × b rectangle is ab + 2(a + b). An edge can be interpreted as a degenerated
box, having two boundary sides and no interior.

Proposition 4.12. Let σ1 be a flip traversal and R the trace of σ1. Then cost(R) ≤ |σ1|.

Proof. We argue that every element of R has unique corresponding flips in σ1 that account
for its cost. Let e be an edge of R. Then e corresponds to at least two flips in σ1: one that
extends the chain path to create e, and one that removes e (because the chain path starts
and ends in a single point). Next let B be a box in R. The interior of B corresponds to
at least one chain flip in σ1. Moreover, when adding the box for a chain flip to the trace,
we either transform edges to boundary sides or make boundary sides disappear from the
boundary of the new trace. See Figure 4.6 for examples. However, when a chain flip adds
a new box B to a trace, B is adjacent to at least two already existing elements (edges or
boundary sides). Hence, by induction, the new boundary edges of a box add at most the
cost that the box removes.

Now we relate the length of an RSA for S to the cost of a covering trace for S, and
thus to the length of a flip traversal. Since each sink (sx, sy) is connected in R to the root
by a path of length sx + sy, traces can be regarded as generalized RSAs. In particular, we
make the following observation.
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(a) (b) (c) (d)

Figure 4.6: Examples of how boundary sides (red) are added to a trace. To a trace of cost
16 (a) a box (gray) is added (b), which transforms two edges in boundary sides and adds
two boundary sides, resulting in an overall cost of 17. The next box removes one boundary
side and one edge and adds three boundary sides (c), the cost becomes 18. A box might
also remove more than two elements (d), reducing the overall cost to 17.
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Figure 4.7: Parts of traces to be modified; the boundary sides are shown in red. (a) A
box that has a corner c with no incident elements can be removed. (b) Two adjacent boxes
that have a shared corner c without any incident elements can be removed. (c) Replacing
a single edge. (d) Sliding an edge.

Observation 4.13. Let R be a covering trace for S that contains no boxes, and let Aσ1 be
a shortest path tree in R from the root to all sinks in S. Then Aσ1 is an RSA for S.

If σ1 contains no flips that change bends, the corresponding trace R has no boxes.
Then, R contains an RSA Aσ1 with 2|Aσ1 | ≤ cost(R), by Observation 4.13. The next
lemma shows that, due to the size of β, there is always a shortest covering trace for S that
does not contain any boxes.

Lemma 4.14. Let σ1 be a flip traversal of S. Then there exists a covering trace R for S
in the βn× βn grid such that R does not contain a box and such that cost(R) ≤ |σ1|.

Proof. There exists at least one trace of cost at most |σ1|, namely the trace of σ1. Let R1

be the set of all covering traces for S that have minimum cost. If R1 contains a trace
without boxes, we are done. Otherwise, every covering trace in R1 contains at least one
box.

Let R2 ⊆ R1 be those covering traces among R1 that contain the minimum number of
boxes. Let Q ∈ R2, and let B be a maximal box in Q, i.e., Q has no other box whose lower
left corner has both x- and y-coordinate at least as large as the lower left corner of B. We
investigate the structure of Q. Note that the property of being a trace is invariant under
mirroring the plane along the line x = y; in particular, the choice of B in Q as a maximal
box remains valid.

Observation 4.15. Every corner c of B is incident either to a sink, an edge, or another
box.
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Proof. If not, we could remove c and B while keeping the sides of B not incident to c as
edges, if necessary; see Figure 4.7(a). The resulting structure would be a trace with smaller
cost, contradicting the choice of Q.

Observation 4.16. Suppose B shares a horizontal side with another box B′. Let c be the
right endpoint of the common side. Then c is incident either to a sink, an edge, or another
box.

Proof. Suppose this is not the case. Then we could remove B and B′ from Q while keeping
the sides not incident to c as edges, if necessary; see Figure 4.7(b). This results in a valid
trace that has no higher cost but less boxes than Q, contradicting the choice of Q.

Observation 4.17. Let c be the lower right corner of B. Then c has no incident vertical
edge.

Proof. Such an edge would be redundant, since c already has an x- and y-monotone path
to the root that goes through the lower left corner of B.

Now we derive a contradiction from the choice of Q and the maximal box B. Note that
since β is even, all sinks in S have even x- and y-coordinates. We distinguish two cases.
Case 1. There exists a maximal box B whose top right corner c′ does not have both
coordinates even. Suppose that the x-coordinate of c′ is odd (otherwise, mirror the plane
at the line x = y to swap the x- and the y-axis). By Observation 4.15, there is at least one
edge incident to the top right corner of B (it cannot be a box by the choice of B, and it
cannot be a sink because of the current case). Recall the slide operation for an edge in an
arborescence. This operation can easily be adapted in an analogous way to traces. If there
is a vertical edge v incident to c′, it cannot be incident to a sink. Thus, we could slide v
to the right (together with all other vertical edges that are above v and on the supporting
line of v). Hence, we may assume that c′ is incident to a single horizontal edge e; see
Figure 4.7(c). By Observation 4.15, the bottom right corner c of B must be incident to an
element. We know that c cannot be the top right corner of another box (Observation 4.16),
nor can it be incident to a vertical segment (Observation 4.17). Thus, c is incident to an
element f that is either a horizontal edge or a box with top left corner c. But then e could
be replaced by a vertical segment e′ incident to f , and afterwards B could be removed as
in the proof of Observation 4.15, contradicting the choice of Q.
Case 2. The top right corner of each maximal box has even coordinates. Let B be the
rightmost maximal box. As before, let c be the bottom right corner of B. The y-coordinate
of c is odd; see Figure 4.7(d). By the choice of B, we know that c is not the top left corner
of another box: this would imply that there is another maximal box to the right of B. We
may assume that c is not incident to a horizontal edge, as we could slide such an edge up, as
in Case 1. Furthermore, c cannot be incident to a vertical edge (Observation 4.17), nor be
the top right corner of another box (Observation 4.16). Thus, B violates Observation 4.15,
and Case 2 also leads to a contradiction.

Thus, the choice of Q forces a contradiction in either case. No trace of minimum cost
contains a box, so every minimum trace is an arborescence. This completes the proof of
Lemma 4.14.
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Now we can finally complete the proof of Theorem 4.3 by giving the second direction of
the correspondence.

Lemma 4.18. Let k ≥ 1 and let σ be a flip sequence on P ∗D from T1 to T2 with |σ| ≤
2βk + (4d− 2)N . Then there exists an RSA for S of length at most k.

Proof. Trivially, there always exists an RSA on S of length less than 2nN , so we may
assume that k < 2nN . Hence (recall that β = 2N and d = nN),

2βk + 4dN − 2N < 2× 2N × 2nN + 4nN2 − 2N < 12nN2 < (d− 1)2,

for n ≥ 14 and positive N . Thus, since σ meets the requirements of Lemma 4.11, we can
obtain a flip traversal σ1 for S with |σ1| ≤ 2βk+2N . By Lemma 4.14 and Observation 4.13,
we can conclude that there is an RSA A for S that has length at most βk + N . By
Theorem 4.1, there is an RSA A′ for S that is not longer than A and that lies on the
Hanan grid for S. The length of A′ must be a multiple of β. Thus, since β > N , we get
that A′ has length at most βk, so the corresponding arborescence for S on the n× n grid
has length at most k.

4.4 A Note on Coordinate Representation

Since it is necessary for the validity of the proof that the input polygon can be represented
in size that is bounded by a function polynomial in the size of the YRSA instance, we
give a possible method on how to embed the polygon with vertices at rational coordinates
whose numerator and denominator are polynomial in N . We only sketch an approach for
the construction, the main techniques were already presented in-depth in Section 3.3.

As in Section 3.3, one can use the parametrization of the unit circle, choosing n points
with rational coordinates inside the hourglass defined by the two common tangents of
two instances of the unit circle for the upper and lower chain. Given these points, we
now construct the small double chains for each sink. See Figure 4.8. Recall that, since
β is a multiple of two, there are no small double chains on neighboring positions on the
lower chain. Hence, for each sink we can define an orthogonal region within which we can
safely draw the small double chain; we call this region the bin of the sink (outlined gray
in Figure 4.8). Consider a sink (i, j). We first partition the segment ljlj+1 into thirds to
obtain two points a and b, which again have rational coordinates; note that these points
are not part of the polygon but “helper points” for our construction. Let ta and tb be the
lines through ui and a, and through ui and b, respectively. The lines ta and tb intersect
the bin at the points pa and pb, respectively. These two points will be the endpoints of
the two chains. In addition to ta the supporting lines of ui−1lj , as well as ljpb and palj+1

define the triangular region ljpaxb (shaded gray in Figure 4.8) wherein we may place the
chain incident to lj (note that, e.g., only one of ta and palj+1 will bound the triangular
region). The chain incident to lj+1 is constrained analogously. We place a circular arc C
through pa and lj inside ljpaxa. C can be chosen to be tangent to either paxa or xlj ,
in order to be contained in ljpaxa. It is well-known that, for a line with rational slope
through a point with rational coordinates on C that intersects C in a second point, this
second point has rational coordinates as well. Suppose that C is tangent to paxa. Then
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Figure 4.8: Construction of a small double chain for a sink.

we divide the line segment ljxa into (d − 1) parts (where d is the number of elements on
a small chain). A line through a point defined by this subdivision and pa gives a rational
point on C. Likewise, we can choose the points if C is tangent to ljxa. The points for the
second chain are chosen analogously.

The coordinates are rational, and since every point can be constructed using only
a constant number of other points, the numerator and denominator of each point are
polynomial.

4.5 Chapter Summary

In this chapter, we showed that determining the shortest flip distance between two tri-
angulations of a simple polygon is an NP-complete problem. In contrast to the analogue
result on triangulations of point sets, our reduction does not give any hint whether there
exists, say, a PTAS for the problem. There exits a PTAS for the Rectilinear Steiner
Arborescence problem [114]. Given the general techniques for developing approxima-
tion algorithms for Traveling-Salesman-like problems [22, 125], it seems unlikely that an
APX-hardness proof can be obtained using a similar approach with paths on the integer
grid. A possibly existing approximation algorithm would also have to be valid for the
convex case. But even for convex polygons, there has not been a breakthrough up to now,
as discussed in Chapter 2. Determining the complexity of the flip distance problem for
convex polygons is definitely a very interesting and supposedly challenging open problem.
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Chapter 5

Combinatorial Problems on Point
Sets

This second part of the thesis is concerned with algorithms for combinatorial problems on
point sets and their abstractions. In particular, we are interested in properties that can
be described using sidedness queries. For a point set in the plane, a sidedness query1 asks
whether a point r lies to the left, on, or to the right of the directed supporting line of two
points p and q. In this part of the thesis, we are interested in algorithms that only use these
sidedness queries. In combinatorial geometry, it is a common concept to classify the infinite
number of sets of points in E2 into a finite number of equivalence classes. In this chapter,
we provide an introduction and preliminaries on combinatorial properties of point sets and
their abstractions, aiming to provide a basis for the presentation of our algorithms in the
following chapters. In addition, we discuss some motivation for developing algorithms that
use only combinatorial properties and point out related work.

5.1 Point Set Classification

The aim of this section is to give a compact introduction to the aspects of combinato-
rial properties of point sets that are relevant for the results presented in this part of the
thesis, with the goal of giving a self-contained basis for the following chapters while si-
multaneously introducing a common notation and putting emphasis on certain properties.
For more details, the reader is referred to the work by Goodman and Pollack, in partic-
ular [82] and [84], where most of the concepts we use herein are presented, as well as to
Edelsbrunner’s book [54] on combinatorial and computational geometry. Knuth also pro-
vides a self-containing monograph [105] on the topic from a different point of view. We
do not cover any of the results and the terminology of the closely related field of oriented
matroids; the interested reader is referred to [32]. A self-contained overview is also given
by Krasser [107], aiming at the enumeration of different order types. This section can
be considered as a (rather informal) collection of the relevant concepts, where we restrict

1The term was probably introduced by Erickson and Seidel [63] for determining the orientation of a
simplex in arbitrary dimensions.
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Figure 5.1: Sketch of the setting analyzed by Perrin.

our considerations to dimension 2, even though some of the results mentioned are valid in
arbitrary dimensions and are presented in this way in the original publications.

5.1.1 Circular Sequences

Historically, work on the circular sequence of finite sets of points in the plane has already
been published in 1882 by Perrin [130]. For a point set in the plane, Perrin considered an
additional point p moving along a line that is sufficiently far from the point set (meaning
that all points as well as the crossings of the supporting lines of all point pairs are on one
side of the line); see Figure 5.1. For simplicity, we call these the supporting lines of the point
set. The radial order of the points around p changes every time p traverses a supporting
line of two points. He observed that these two points on this supporting line change their
relative position in the circular order around p, and that these points are adjacent in the
circular order around p at that time. In 1980, Goodman and Pollack [77] again considered
this sequence of permutations, based on which they defined the combinatorial equivalence
of point sets.

A configuration of n points is an ordered n-tuple of distinct labeled points in the
plane.2 A configuration of points is non-degenerate if no three points are collinear and
no two pairs define two parallel lines. Let ` be a line not orthogonal to the supporting
line of any two points of a configuration C of points. The orthogonal projection of C on `
gives a permutation of the labels of the points when traversing the line. When rotating `
in counterclockwise direction, ` will at some point be orthogonal to a supporting line of
two points; right after that, the labels of these two points will have switched their position
in the permutation. After having rotated ` by 180◦, the initial permutation of the points

2In the computational geometry community it is also common to refer to finite point sets instead of
to configurations of points (as is also done in the first part of this thesis). Without the order of the
n-tuple being defined, there is no real formal difference between a configuration of points and a point
set. However, the former term will be useful when looking at generalized configurations of points. We
therefore will refer to a finite point set as a configuration when considering properties that have a dual
interpretation in arrangements of lines, as suggested by Edelsbrunner [54, p. 13]. We also follow Goodman
and Pollack [77, 82, 84] in requiring that the points of a configuration are labeled, usually from 1 to n.
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will be inverted, and after a rotation of 360◦, we again obtain the initial permutation;
see Figure 5.2. We obtain a doubly-infinite sequence of permutations with period 2

(
n
2

)
.

This sequence is called the circular sequence of C. The circular sequence of C fulfills the
following two properties [77]:

1. Successive permutations differ only by two adjacent labels that have been switched.

2. Any
(
n
2

)
consecutive permutations make use of all

(
n
2

)
possible switches in passing

from each to the next.

The second property implies that, after some pair (i, j) is switched, all other pairs of ele-
ments are switched before i and j are switched again (see also [82]). An infinite periodic
sequence of permutations that satisfies these two properties is called an allowable sequence
of permutations.3 Hence, a circular sequence is an allowable sequence. Goodman and Pol-
lack [77] show that an allowable sequence is determined by its sequence of ordered switches.
If a configuration of points is mirrored, the sequence of ordered switches in its circular se-
quence is inverted. Inverting the sequence of ordered switches of any circular sequence
to obtain a different one is called reflection. Two allowable sequences are combinatorially
equivalent if one can be transformed into the other by relabeling its elements, by reflection,
or by both. Two configurations of points are combinatorially equivalent if their circular
sequences are combinatorially equivalent.4

Combinatorial equivalence allows us to partition the infinite number of point sets of
size n into a finite number of combinatorially equivalent classes (such a class is also called
the combinatorial type of a configuration [84, p. 104]). Perrin [130] claimed not only
that every circular sequence fulfills the properties that define allowable sequences, but also
that every allowable sequence is also the circular sequence of some configuration of points.
Goodman and Pollack [77] gave a counterexample of five elements for this claim. Hence,
while allowable sequences provide a means of enumerating all combinatorially different
configurations of points, not all allowable sequences can be realized by a point configuration.
An allowable sequence is called realizable if it is the circular sequence of some configuration
of points.

For simplicity, we restricted the explanation of circular sequences to non-degenerate
configurations of points. However, the theory extends in a natural way to configurations
containing collinear triples of points and parallel supporting lines [82]. We will consider
degenerate cases only when necessary. The reader is referred to the literature mentioned
at the beginning of this section for explanations of the degenerate setting.

Concerning the number of combinatorially equivalent allowable sequences, the following
bound exists (see also [76, pp. 117–118]).

3In [77], such sequences were called “allowable circular sequences”. Goodman and Pollack later switched
to the term “allowable sequences” [82].

4We follow the definition in [77]. Note that, e.g., in [84] two labeled point sets are defined to be com-
binatorially equivalent if their circular sequence is equivalent (respecting the labeling), and two unlabeled
point sets are combinatorially equivalent if there is a labeling such that the circular sequences are equiv-
alent (after possibly mirroring one point set). Also in [82], equivalence is actually only defined by strictly
respecting the labeling. Since in this work it appears to be more useful to not strictly rely on a given
labeling, we follow [77].
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Figure 5.2: The orthogonal projection of a configuration of points on a rotating line gives
its circular sequence.

Theorem 5.1 (Stanley [151]). The number of simple allowable sequences on 1, . . . , n con-
taining the permutation (1, . . . , n) is given by(

n
2

)
!

1n−13n−2 . . . (2n− 3)1
.

Consider the extreme points of a configuration C of points. It is easy to see that (the
label of) any extreme point h1 has to occur at the first position in at least one of the
permutations of the circular sequence of C. When looking at the subsequent permutations,
h1 will at some instant of time be replaced by another point h2 at the first position. We
observe that h2 is the counterclockwise neighbor of h1 on the boundary of the convex hull
of C. Therefore, the circular sequence of C gives us the vertices of CH(C). If we consider
an allowable sequence that is not the circular sequence of any set of points, we can also
obtain such a sequence of extremal elements, just as we did for C. So in some way, these are
the vertices of the convex hull of a point set that does not even exist. We will encounter
this kind of abstraction again when discussing order types, and we will see that there
are settings where this abstraction actually makes sense. However, we used the classic
definition that the convex hull of a point set is the convex polygon of smallest area that
contains all points of the set. The concept of area is no longer applicable to a configuration
that is not realized as a point set. It is therefore sometimes more convenient to handle
the convex hull as the cycle of points defining its boundary, i.e., the convex hull then is a
polygonal cycle and not a polygon.
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The circular sequence does not only give us the convex hull of a configuration of points.
We can actually obtain more general information from it. Consider two points u and v, and
the two permutations where they switch such that u first precedes v and then succeeds v.
The two permutations tell us that the points preceding that pair lie on one side of the
directed line uv, whereas the points succeeding the pair lie on the other side. Hence,
the orientation of each (ordered) triple of points is given by the circular sequence, and
is therefore the same for all combinatorially equivalent configurations of points (up to
mirroring the point set). Now consider two points s and t that are disjoint from u and v
and that are switched next in the sequence. If we modify the sequence such that s and t
are switched before u and v, we get a different allowable sequence that still has the same
orientations of triples. We will revisit this observation when defining order types and their
abstraction.

5.1.2 Duality and Pseudo-Line Arrangements

For the following discussion of duality, we make use of the projective plane for the first time
herein. Similarly to the Euclidean plane, there is a synthetic definition of the projective
plane by a set of axioms for points and lines. However, we use the analytic realization as
it probably suits our needs best. See [29, Chapter 2] for definitions that concisely cover
both the formal definition by axioms and the corresponding analytic embodiment. An
affine plane is a plane in which any two points determine a unique line, and through any
point not on a line `, there is a unique line parallel to ` [29, Chapter 1]. Since we restrict
ourselves to planes coordinatized using real numbers, we will, in general, not distinguish
between the affine and the Euclidean plane. Suppose that we add, for any maximal set of
parallel lines, a point (not having any coordinates), called a point at infinity , where these
lines are defined to cross. The union of these points is called the line at infinity . The
real projective plane P2 is the extension of the (coordinatized) affine plane by the line at
infinity [29, p. 43]. It will be useful to consider the following definition. The points in the
real projective plane can be defined as lines in E3 that pass through the origin; a line in P2

corresponds to a plane in E3 containing the origin [29, pp. 42–43]. Note that by intersecting
the lines in E3 with a plane A, we obtain points in an affine plane. Observe that it can be
shown that the real projective plane is non-orientable: When performing a transformation
in P2 by continuously rotating A around the origin, each point on a small oriented closed
curve on A will vanish at infinity and return to the plane (at the “opposite side”); however,
the orientation of the curve has changed (see, e.g., [57, pp. 28–29]). Another convenient
model of P2 is by points on the unit sphere; each point is identified with its antipodal
point, and lines become great circles. This is equivalent to the intersection of the unit
sphere with the lines and planes through the origin in the previous model (see, e.g., [29,
p. 42]).

The concept of duality is known since around 200 years in connection with the axiomatic
definition of the projective plane: a proposition remains true if one interchanges the terms
“point” and “line” as well as “joint” and “intersection” [47, pp. 15–16] (where “joint” denotes
the supporting line of a pair of points).5 In the real projective plane, such a duality
can be obtained by a construction that may be explained by the model of P2 in E3 the

5This duality should not be confused with the graph theoretic dual used in Chapter 4.
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Figure 5.3: A configuration of points in the primal and its dual arrangement of lines.

following way. A point in P2 is represented by a line through the origin. The dual line
of this point is represented by the plane through the center of the sphere such that the
plane is normal to the line (see, e.g., [135, pp. 24–26, 316–319]). Goodman and Pollack [80]
extended their concept of circular sequences to arrangements of lines, first in the Euclidean
and then in the projective plane. A finite set of lines in the plane dissects the plane into
a cell complex, called an arrangement of lines or line arrangement.6 An arrangement is
simple if no three lines of the arrangement have a point in common. Consider a simple
line arrangement A in the (coordinatized) Euclidean plane not containing (i) any vertical
line, (ii) any two parallel lines, or (iii) any two crossings that have the same x-coordinate.
Consider a vertical line `−∞ (not part of A) such that all crossings of two lines of A have a
larger x-coordinate than `−∞.7 The intersection points of `−∞ with A ordered along `−∞
give a permutation of the lines defining A. If we move a vertical line ` starting at `−∞
in the positive x-direction and ` traverses the crossing of two lines of A, then we obtain
a new permutation with exactly these two lines interchanged. Obviously, these two lines
were neighbored in the initial permutation. If we continue sweeping A with the vertical
line, we get a half-period of an allowable sequence and afterwards reach the permutation
that is the reverse of the initial permutation. Goodman and Pollack [80] identify each
point p = (a, b) with a line p∗ : y = −ax+ b (which is one variant of a dual transform, see,
e.g., [54, pp. 13–14]). We call p∗ the dual line of the point p, and p is the primal point
of the line p∗ (the dual point q∗ of a line q is defined analogously). See Figure 5.3 for an
example. This identification is used to show the following result.

Theorem 5.2 (Goodman, Pollack [80]). An allowable sequence of permutations can be
obtained from an arrangement of lines if and only if it is realizable by a configuration of
points.

As already mentioned at the beginning of this section, the main property of duality is
incidence preservation. Fixing a vertical direction also allows for stating the property of

6There has, up to now, not been a proper reason to distinguish between a set of lines and an arrangement
of lines. This necessity will become more obvious during the discussion of pseudo-line arrangements.

7In the Euclidean plane, we use the convenient terms “above”/“below” and “left”/“right”, while the left
and right side of a directed line only depends on its direction.
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order preservation. In particular, the following two statements are fulfilled by the given
dual transform (see, e.g., [54, p. 14]; the signs herein are inverted to conform with [80]).

1. A point p is on a non-vertical line ` if and only if the point `∗ is on the line p∗.

2. A point p lies above a non-vertical line ` if and only if the point `∗ lies below the
line p∗.

Observe that, under the given dual transform, the half-period of the circular sequence
given by an arrangement of lines corresponds to the half-period defined by rotating a
line ` with starting slope 0 counterclockwise by 180◦ and orthogonally projecting the cor-
responding configuration C of points on it (for this observation, we restrict our discussion
to configurations of points without any pair of points sharing the same x-coordinate, anal-
ogously to not considering arrangements with parallel lines). In this setting, choosing a
different half-period in the circular sequence of C is equivalent to rotating C in this setting
(or choosing a different starting slope for `). By performing this rotation in the primal,
both the slope and the intercept of each line in the dual line arrangement change. Still,
the circular sequence of the rotated point set is the same. Hence, we can have “differ-
ent” line arrangements that give different half-periods of the same circular sequence and
are therefore dual to combinatorially equivalent configurations of points. We postpone
the discussion about the “difference” of line arrangements to Section 5.1.3.2 until having
discussed pseudo-line arrangements and line arrangements in the projective plane.

The definition of circular sequences for arrangements of lines did not use the fact that
the lines are straight curves, but only that they intersect exactly once (since they are
straight) and that a line in E2 is an x-monotone plane curve. The concept of straight lines
is generalized by pseudo-lines. A pseudo-line in the Euclidean plane is an x-monotone
plane curve.8 An arrangement of pseudo-lines (or pseudo-line arrangement) is a dissection
of the Euclidean plane into a cell complex by a set of pseudo-lines such that each pair of
pseudo-lines intersects in exactly one point, at which these two pseudo-lines cross.9 An
arrangement of pseudo-lines is simple if no three of these pseudo-lines have a point in
common. In the same way as an arrangement of lines, an arrangement of pseudo-lines
gives a half-period of an allowable sequence. Recall that there are allowable sequences that
are not realizable by point sets and therefore also not by an arrangement of straight lines.
Goodman [75] provides the following construction that shows that this limitation does
not hold for pseudo-lines. Consider any half-period of an allowable sequence of permuta-
tions, denoted by 〈Π1, . . . ,Πm〉, with m =

(
n
2

)
. From this half-period, an arrangement of

piecewise-linear pseudo-lines, called wiring diagram, is constructed in the following way.
We place a sequence of m + 1 vertical lines (not part of the arrangement), ordered from
left to right, with each neighboring pair of distance, say, 1. For each of the n elements of
the permutations, we place a point on each vertical line with the y-coordinate of the point

8We follow the definition of Edelsbrunner [54, p. 37], who uses the Euclidean rather than the projective
space. While x-monotonicity of the pseudo-lines in the Euclidean plane will be a convenient property
throughout this thesis, this property is sometimes dropped, and pseudo-lines are defined as simple curves
approaching a point at infinity in either direction (see, e.g., [66, p. 87]).

9Observe that this justifies the separation of the concepts of an arrangement and a set of lines. A set
of x-monotone curves might very well contain two distinct elements that intersect in more than one point.
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Figure 5.4: A wiring diagram.

representing its position in the corresponding permutation (the rightmost vertical line cor-
responds to the reverse of the initial permutation). When we connect the points of each
element of the permutations and extend the leftmost and rightmost point by a horizontal
ray in negative and positive x-direction, respectively, we end up with a simple pseudo-line
arrangement realizing the given allowable sequence. For an example, Figure 5.4 provides
a wiring diagram of the configuration shown in Figure 5.3.

5.1.3 Semispaces, Order Types, and Stretchability

Recall that two allowable sequences were defined to be combinatorially equivalent if one
sequence can be obtained from the other by relabeling its elements, by reflection, or by
both. In this section, we examine a coarser classification of point sets in the Euclidean
plane. To this end, we will sometimes replace the formulation of relabeling by a bijection
between two point sets.

5.1.3.1 From Circular Sequences to Order Types

In Section 5.1.1, we already observed that the circular sequence of a configuration of
points encodes, for every pair of points, which points are on one side of the supporting
line of the points and which ones are on the other. A semispace of a configuration C of
points is a point set consisting of all points of C lying on one side of a single line [82].
As can be seen from the definition of circular sequences, a set of points is a semispace
of C if and only if the labels of the points occur as the prefix of a permutation in the
(infinite) circular sequence of C (see [82] for a formal proof even for the degenerate case),
and therefore two semispaces are also given by the set of all pseudo-lines above a point in
the dual pseudo-line arrangement in E2 and the set of pseudo-lines below it. Two point
sets are semispace-equivalent if there exists a bijection between them such that the set of
semispaces of one point set is equivalent to the set of semispaces of the other point set.
While a configuration of points is, due to these observations, semispace-equivalent to its
mirrored counterpart, this mirroring changes the orientation of each ordered triple. Still,
for any two points u and v of a configuration of points, its circular sequence (in contrast to
its combinatorial equivalence class) encodes which points are to the left of the directed line
uv and which ones are to the right. Equivalently, for any (ordered) point triple (u, v, w), we
know whether it is oriented clockwise or counterclockwise when given the circular sequence
of the configuration of points, i.e., the circular sequence can be used to answer all sidedness
queries on the point set. However, for two combinatorially equivalent configurations of
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Figure 5.5: Two point sets having the same order type (adapted from [7]). The labeling
indicates one possible bijection between the sets indicating that the sets have the same
order type.

points, three identified points may not have the same orientation, as one of the circular
sequences may have been reversed. This case, however, corresponds to having mirrored
one of the two configurations of points, and therefore, the orientation of all point triples
have been inverted. The notion of order types is introduced by Goodman and Pollack [81].
Two point sets have the same order type if there exists a bijection π between the two point
sets such that either each point triple (u, v, w) of one set is oriented in the same direction
as the point triple (π(u), π(v), π(w)) of the other set, or, for each point triple (u, v, w), the
triple (π(u), π(v), π(w)) has the opposite orientation.10 See Figure 5.5 for two point sets
exemplifying such a bijection. It is rather easy to see that two point sets having the same
order type are also semispace-equivalent; more surprisingly, also the opposite holds [82]. In
this connection, Goodman and Pollack [81] provide the basic theorem of geometric sorting:
being given, for each directed supporting line of two points, the number of points to the
left of this line is equivalent to being given the set of points to the left of this line (which
also holds for arbitrary dimensions).

The classification of point sets by their order type has many useful properties. For
example, it captures all the properties that are invariant under affine transformations. In
particular, given two line segments by their endpoints, the order type determines whether
these two segments cross. Also, the convex hull of the point set is given by the order type.
This makes the order type useful for working with geometric graphs (as long as we are
not concerned with properties like angles, distances, or circles defined by point triples).
For example, whether a geometric graph is a triangulation of the point set (or of a simple
polygon spanning the point set) is determined by the order type. The order type also
determines whether an edge in a triangulation is flippable. See [12] for an extensive list
of properties depending on the order type. For other problems, the order type does not
define the solution of the problem. One example would be the minimum spanning tree
of a point set. While this is also a crossing-free graph, it changes when applying affine
transformations to the point set.

10In [81], the corresponding triples have to have the same orientation. However, the given definition
implies that a point set and its mirror image have the same order type, following, e.g., Krasser [107].
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Let us analyze how the order type is defined by the circular sequence by a detailed
example. Consider any two points u and v of a configuration C of points. An example
can be seen in Figure 5.6 with u being point 1 and v being point 2 in both configurations
shown. In the circular sequence of C, consider the two adjacent permutations Πv and Πu

such that v precedes u in Πv and v succeeds u in Πu. Since the rotating line ` that defines
the circular sequence rotates counterclockwise, we know that any point w that precedes v
in the first permutation Πv is to the left of the directed line uv. In this way, a half-period
gives us the orientation of each triple in a configuration of points. Let us observe this fact
under the aspect of order preservation. Consider the dual line arrangement A of C. If the
x-coordinate of u is larger than the one of v, then the slope of the line u∗ is smaller than
the one of v∗. Hence, the line u∗ “starts” above v∗ when going from left to right (i.e., u
precedes v in the half-period defined by A). Since w is to the left of uv, it is below the
line uv. Therefore, in the dual, the intersection point of u∗ and v∗ (i.e., (uv)∗) is above
the line w∗. In this manner, the lines above and below a crossing in the line arrangement
gives us the orientation of each triple in which the two points defining the crossing are
involved. However, it is necessary to know which of the two points precedes the other in
the first permutation of the half-period given by the arrangement. Again, this reasoning is
not limited to arrangements of lines, it works equally well if we are given a dual pseudo-line
arrangement of a configuration of points.

Consider the two configurations of points in Figure 5.6. Let the one at the top be C1
and the one at the bottom be C2. With this fixed labeling, these two configurations do not
have the same circular sequence, and it can be verified that they are not combinatorially
equivalent. This can be observed in the dual line arrangements by the dashed vertical
line, which passes through the intersection between line 1 and line 6. In C1, the switch
between the lines 2 and 4 happens before the switch between the lines 1 and 6; the inverse
happens in C2. Still, in the two dual arrangements and under the bijection indicated by
the labels, the set of lines above and below each crossing are the same. Hence, the two sets
have the same order type. Observe that, while the circular sequence captures on which
sides the supporting lines of four points in convex position meet, this is not indicated by
the order type. Recall that we defined line arrangements in the Euclidean plane as cell
complexes. The two arrangements (A1 and A2 in Figure 5.6) are isomorphic. This gives
evidence that there is a connection between the isomorphism of arrangements and the
order type. But if we rotate C2, the order type naturally stays the same, but this alters A2

to represent a different half-period of the circular sequence of C2. On the other hand, if we
rotate A2, the arrangement stays isomorphic but the order type of the primal configuration
of points changes. However, as pointed out in [82], a connection between order types and
isomorphism of arrangements can be seen in the projective plane.

5.1.3.2 Arrangements in the Projective Plane

In [80], the duality between configurations of points and arrangements of lines is extended
to the real projective plane P2 in the following way. In order to get a circular sequence
from a configuration C of points in P2, we have to fix a line at infinity (not passing through
any point of C or the crossing of two supporting lines) and an orientation of its complement
(as P2 is non-orientable), which brings us basically back to E2, where we can obtain the
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Figure 5.6: Two point sets having the same order type but a different circular sequence.

circular sequence. (To be more precise, removing the line at infinity brings us to the affine
plane, and the choice of the line at infinity prevents any two supporting lines of point pairs
to become parallel.) For an arrangement A of lines, we choose a distinguished point ψ not
on A and fix a line at infinity passing through ψ but not through any crossing of A. Let `
be a rotating line through ψ. With the choice of the line at infinity, we can identify ` with
a vertical line sweeping the arrangement in the Euclidean plane (the rotation of ` gives
the direction from left to right, and ψ is the point at “vertical infinity”, i.e., the point at
infinity where two vertical lines meet). See Figure 5.7 for an illustration. Observe that,
for configurations of points in P2, different circular sequences can be obtained by choosing
a different line at infinity. For arrangements of lines in P2, different circular sequences can
be obtained by a different choice of the distinguished point ψ; however, the line at infinity
can be chosen arbitrarily among the lines passing through ψ but not through any crossing
of the arrangement.

The combinatorial equivalence between the circular sequences of arrangements of lines
is more natural in the projective plane. The choice of the line at infinity does not play
a role here, but only the choice of the distinguished point defining the vertical direction.
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ψ

ψ

Figure 5.7: Sweeping a line arrangement in P2 by a line rotating through ψ, shown in the
sphere model of P2.

As can be observed using the correspondences given in [80], the distinguished point ψ in
the dual line arrangement is the dual of the line at infinity chosen for the configuration of
points. Therefore, the lines defining that cell correspond to the points on the boundary of
the convex hull of the configuration.

Let us further analyze this extension to the projective plane (see [82] for a more formal
discussion). For configurations of points, the choice of the line at infinity and the orienta-
tion basically brings us back to the Euclidean plane (we do not have to choose a vertical
direction). Suppose we can move the line at infinity `∞ in such a way that we sweep over
a crossing of two supporting lines of the configuration of points, but not over any point
of C. When projecting back to the Euclidean plane, the resulting configuration C′ has the
same order type as C, but, similar to the example in Figure 5.6, the circular sequence of C′
will, in general, be different. If we move `∞ even further until it sweeps over a point of
the configuration, then, in general, the order type changes as well (there can, of course, be
symmetries, like for a configuration of only three points). Similarly, in the dual, consider
the distinguished point ψ = `∗∞ and the cell containing ψ, which is called the marked cell.
If ψ can be moved around in the marked cell such that it traverses a supporting line of two
crossings in A, then, in general, the circular sequence of A changes (this would correspond
to slightly changing the vertical direction, as can be observed the example of Figure 5.6).
If we continue moving ψ until it is in a different cell of A, then, in general, also the order
type of the primal configuration of points changes. As already discussed, the choice of the
line at infinity for A does not influence the circular sequence (and therefore also not the
order type); only the choice of ψ does this. Hence, if we have two arrangements that are
isomorphic in the projective plane and if, for both, we place the distinguished point in the
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same cell (given by the isomorphism), then these arrangements represent the same order
type.

5.1.3.3 Abstract Order Types and Pseudo-Line Stretchability

As the order type of a circular sequence is only defined by the set preceding and succeeding
a switched pair in the circular sequence, we can also obtain the orientation of each triple
out of a non-realizable allowable sequence. Intuitively, we can therefore answer sidedness
queries on a point set that may not even exist. Such a mapping of orientations to all
triples defined by an allowable sequence defines a so-called abstract order type. Given a
non-realizable allowable sequence Σ does not mean that there is no configuration of points
with a different circular sequence that has the order type defined by Σ. To analyze when an
abstract order type is the order type of a configuration of points, we consider arrangements
of pseudo-lines in the projective plane (see [82]). A pseudo-line in the projective plane is
a non-contractible simple closed curve (observe that this means that the curve intersects
the line at infinity and that therefore two such curves cross an odd number of times). An
arrangement of pseudo-lines in the projective plane is a dissection of the projective plane
into a cell complex by a set of pseudo-lines that pairwise meet at exactly one point, at which
they cross. Intuitively, a projection of a pseudo-line arrangement from the projective plane
to the Euclidean plane should result in “something similar” to a pseudo-line arrangement
in the Euclidean plane. However, x-monotonicity (or, more general, fixing a “vertical”
direction) is crucial for the definition of allowable sequences of arrangements of pseudo-
lines. Goodman and Pollack [82] show how to establish a correspondence between the two
concepts. For this, they use a result by Levi [110] (which will be used again several times
throughout this thesis).

Lemma 5.3 (Levi Enlargement Lemma [110]). Given a pseudo-line arrangement A in P2

and two points that do not both lie on the same pseudo-line of A, there exists a pseudo-line
arrangement A ∪ {χ} such that the pseudo-line χ passes through these two points.

Suppose now we apply the Levi Enlargement Lemma to obtain a pseudo-line χ passing
through the distinguished point ψ and some crossing c of A, obtaining an extended, non-
simple pseudo-line arrangement A′. If we traverse χ starting at ψ in some direction, we
meet the pseudo-lines of A in a fixed cyclic order. If the arrangement A′ would consist
of straight lines, then χ would represent a vertical line and therefore determine the points
on each side of the primal line c∗. By continuously adding pseudo-lines through ψ and all
crossings of A, Goodman and Pollack [82] obtain a ψ-augmentation of A, denoted by A.11

After choosing a direction of rotation around ψ in A, we get a sequence of permutations
of the pseudo-lines by traversing all the pseudo-lines through ψ in the chosen direction of
rotation. This sequence can be shown to be an allowable sequence. Hence, by constructing
the wiring diagram of the allowable sequence and projecting it to the projective plane, we
get an arrangement of pseudo-lines in the projective plane isomorphic to A.

Clearly, not only the choice of the arrangement in the projective plane, but also the
choice of the marked cell containing ψ determines the abstract order type. When project-

11The original name is “P -augmentation”, we use ψ instead of P to make the point more distinguishable
throughout this work.
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ing the arrangement to the Euclidean plane, the marked cell is split into two vertically
unbounded cells. Following Felsner [66, p. 88], we call the upper one the north face, and
the lower one the south face.

Suppose that A is isomorphic (in the projective plane) to a line arrangement (i.e., it
is stretchable). Then we can use the straight lines to obtain a point set that realizes the
abstract order type defined by A. Using these arguments, one can obtain the following
result.

Theorem 5.4 (Goodman, Pollack [82]). An abstract order type defined by a pseudo-line
arrangement is realizable by a configuration of points if and only if the pseudo-line arrange-
ment is stretchable.

As mentioned in Section 5.1.1, Goodman and Pollack [77] gave an example of an al-
lowable sequence Σ with five elements that is not realizable by a configuration of points.
However, the abstract order type defined by Σ can be realized by a point set. For the
corresponding arrangement of pseudo-lines in the projective plane this means that it can
be stretched, but the relative position of the crossings is different from the one in Σ for
any choice of the distinguished point ψ. However, this changes for larger sets. Ringel [138]
provided a simple arrangement of nine pseudo-lines in the projective plane that is not
stretchable, derived using Pappus’ Theorem. This is in fact the smallest such configura-
tion [78].

Theorem 5.5 (Goodman, Pollack [78]). Any arrangement of eight pseudo-lines is stretch-
able.

Interestingly, it follows from the Schoenflies Theorem that two pseudo-line arrange-
ments in P2 are isomorphic if and only if they are homeomorphic [82]. The intuition
behind the term “stretchable” actually reflects this.

Note that we defined stretchability for pseudo-lines in the projective plane. There is a
subtle difference between stretchability of pseudo-lines in the Euclidean plane and in the
projective plane. Recall that we defined arrangements as cell complexes. An isomorphism
for pseudo-line arrangements in the Euclidean plane does not capture the equivalence we
are interested in. Krasser [107, p. 18] provides the following example. Suppose we are given
a non-stretchable pseudo-line arrangement of nine lines in P2. We can alway stretch one
pseudo-line `, obtaining an isomorphic arrangement. If we take ` as the line at infinity and
project to the Euclidean plane, we obtain an arrangement in E2 of eight curves that pairwise
cross exactly once (i.e., a “pseudo-line arrangement” where we drop the requirement of
x-monotonicity). If there would be a homeomorphism transforming this arrangement of
curves to an arrangement of straight lines, we would obtain an isomorphic line arrangement
of the nine lines in P2, a contradiction. If we remove ` from the arrangement in P2,
we can stretch it to an arrangement of eight lines. When projecting these back to the
Euclidean plane by again choosing ` as the line at infinity, we get a “different” (by the
isomorphism in E2) arrangement of lines in E2. Intuitively, a continuous transformation
of the arrangement of curves to the arrangement of lines in the Euclidean plane includes
at least one crossing “jumping” over the line at infinity. Therefore, in contrast to, e.g.,
Krasser [107], we do not define stretchability in terms of an isomorphism in the Euclidean
plane, which is inadequate to directly indicate when two arrangements with a marked cell
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define the same order type, and leads to a counterintuitive difference between stretchability
in the Euclidean and the real projective plane (see [107, p. 18]).

Deciding whether an arrangement of pseudo-lines is stretchable has been shown to be
NP-hard by Shor [148]. However, the problem is even more interesting under the aspect of
computational complexity. Mnëv [126] showed that the problem of stretchability of simple
pseudo-line arrangements is as hard as the existential theory of the reals. Schaefer [143]
gave more examples of similar problems and suggested that this class of problems should
be handled as a special complexity class. Further, it is known that there exist order types
that can only be embedded on a grid of doubly-exponential size [85].

Consider an allowable sequence that is not realizable as a circular sequence of a con-
figuration of points. The wiring diagram obtained from the allowable sequence may still
be stretchable. However, the resulting configuration of points then will have a different
circular sequence. Deciding whether an allowable sequence is realizable is closely related
to the problem of stretchability, but they are not the same, as follows from the existence
of a non-realizable allowable sequence with five elements in contrast to the statement of
Theorem 5.5. The problem can be reduced to deciding stretchability of a pseudo-line ar-
rangement by deciding whether the corresponding ψ-augmentation is stretchable. In the
other direction, it seems that there is no obvious way to add a ψ-augmentation to Shor’s
construction [148] without breaking it, in order to make the reduction also applicable
to show NP-hardness of realizability of allowable sequences. While intractability of the
construction problem is implied by the fact that there are order types that can only be
embedded on a grid of doubly-exponential size [85], the corresponding decision problem
seems to have been overlooked due to its close relation to the pseudo-line stretchability
problem. See also [9] for a discussion of this issue in connection with simultaneous mono-
tone embeddings of paths.

Open Problem 1. What is the complexity of deciding whether an allowable sequence is
the circular sequence of some point set?

For the number of realizable point sets, Goodman and Pollack [83] give an upper bound
of n6n. Felsner [65] gives an upper bound of 20.6974·n

2 on the number of abstract order types
by encoding each abstract order type in a binary n × (n − 1) matrix. It is a curious fact
that there are far more non-realizable abstract order types than realizable ones. Goodman
and Pollack [81] provide a lower bound of 2n

2/8 on the number of abstract order types.
We have seen that, while pseudo-line arrangements in P2 that represent the same ab-

stract order type are isomorphic, there are, in general, several different pseudo-line arrange-
ments in E2 that represent the same order type (at least when defining the isomorphism
in E2 in the same way as in P2). For example, consider again the wiring diagram in Fig-
ure 5.4. The crossing between pseudo-line 2 and pseudo-line 3 is the first crossing of both
lines from the left. If we “untangle” the crossing and let the two pseudo-lines cross to the
right of the rightmost crossing, the resulting wiring diagram represents the same order
type. (In the projective plane, this would correspond to moving the pseudo-line at infinity
over this crossing.) See Figure 5.8. In this way, we can always obtain a wiring diagram
such that for a fixed pseudo-line h on the upper or lower envelope of the arrangement, the
first n − 1 crossings from left to right are with line h (see again Figure 5.8, where this
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Figure 5.8: A wiring diagram representing the same abstract order type as the one in
Figure 5.4 on page 64.

happens for pseudo-line 1). This representation is, e.g., conceptually used by Aichholzer,
Aurenhammer, and Krasser [7] when generating all order types of up to eleven points.

5.1.3.4 Axioms for Abstract Order Types

In the (coordinatized) Euclidean plane, a sidedness query for an ordered tripe (u, v, w) can
be answered by evaluating

det

 ux uy 1
vx vy 1
wx wy 1

 > 0 ,

which indicates whether the triple is oriented counterclockwise (i.e., w is to the left of the
directed line uv). The truth value of this inequality therefore gives a predicate ∇(u, v, w)
that is true if and only if the triple is oriented counterclockwise. This is equivalent to the
sidedness test on the point triple. Recall that we assume that all point sets are in general
position, and therefore either ∇(u, v, w) or ∇(u,w, v) is true, i.e., the determinant never
becomes 0. Knuth [105] extracts five propositions that are fulfilled by the predicate ∇.
He makes these propositions the following five axioms of a ternary predicate P on a finite
set S.

Axiom 1 (cyclic symmetry): P (p, q, r)⇒ P (r, p, q).

Axiom 2 (antisymmetry): P (p, q, r)⇒ ¬P (p, r, q).

Axiom 3 (nondegeneracy): P (p, q, r) ∨ P (p, r, q).

Axiom 4 (interiority): P (t, p, q) ∧ P (t, q, r) ∧ P (t, r, p)⇒ P (p, q, r).

Axiom 5 (transitivity): P (p, q, r)∧P (p, q, s)∧P (p, q, t)∧P (p, r, s)∧P (p, s, t)⇒ P (p, r, t).

Knuth [105] calls a predicate obeying these axioms a CC system. Hence, two point
sets have the same order type if they represent the same CC system with either P = ∇
or P = ¬∇. But there are further such sets. As shown by Knuth, the equivalence class
defined by P and its negation is exactly the one of abstract order types. While the first three
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Figure 5.9: Illustrations for Axioms 4 and 5 for CC systems.

axioms capture the properties of three points in general position, Axiom 4 and Axiom 5
give properties fulfilled by four and five points, respectively. Roughly speaking, Axiom 4
states that if the counterclockwise radial order of three points around a fourth point t
is circular, then the triangle formed by these three points is oriented counterclockwise.
Axiom 5 formalizes that, for all points in the left halfplane defined by the directed line pq,
the predicate defines a transitive order on these points around p (Knuth also gives a formal
derivation of the symmetric statement for the right halfplane using only the axioms). See
Figure 5.9 for an illustration of the properties captured by these two axioms. We will see
in Section 5.2.3 that these axioms make it rather straightforward to show that order types
appear in the related setting of shortest paths between points inside a simple polygon.

5.1.4 Generalized Configurations of Points

We have seen that there exist allowable sequences that are not realizable, and also that non-
realizable abstract order types exist. Nevertheless, we have seen that pseudo-lines allow
us to give a representation of both. In the figures used so far, we made use of straight
strokes representing the supporting lines of pairs of points in the configuration (see, e.g.,
Figure 5.5 and Figure 5.9). This helped in visualizing the circular sequence and the order
type. Informally speaking, we will see in this section that replacing straight supporting lines
by pseudo-lines gives us the flexibility of representing all allowable sequences. Goodman
and Pollack [82] give a formal definition of such generalized configurations of points, based
on the transform described by Goodman [75]. (This concept was described simultaneously
by Cordovil [46] in connection with oriented matroids of rank 3.) In the projective plane,
a generalized configuration of points is a pair (C,A) of a configuration C of n points, a
pseudo-line arrangement A defined by m pseudo-lines and a directed pseudo-line `∞ such
that

1. each pair of points in C lies on some pseudo-line of A,

2. each pseudo-line of A except `∞ contains at least two points of C, and

3. the pseudo-line `∞ contains no point of C.
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The pseudo-line `∞ is the pseudo-line at infinity, the other pseudo-lines of A are the
supporting pseudo-lines.12 In particular, a configuration of points in E2 and the (straight)
supporting lines of every pair of points defines a generalized configuration of points (with `∞
being implicitly given by E2). Analogously to our general position assumption for point
sets in E2, we require, unless otherwise stated, that every supporting pseudo-line contains
exactly two points of the configuration (hence, m =

(
n
2

)
). Observe that A cannot be simple

for n > 3, and if the crossing of two pseudo-lines is on `∞, the two pseudo-lines correspond
to parallel lines.

An example is given in Figure 5.10. The pseudo-line at infinity is given by the dashed
Jordan curve. Similar to Perrin’s setting (see Section 5.1.1), the order of the intersections
of the connecting pseudo-lines with `∞ give the switches of adjacent labels in an allowable
sequence. In particular, if we consider the straight supporting lines of each pair of points
in a point set in E2, the circular sequence of this point set is the same as the allowable
sequence determined by traversing the line at infinity in P2. Goodman and Pollack [82]
prove the following result.

Theorem 5.6 (Goodman, Pollack [82]). Every allowable sequence can be realized by a
generalized configuration of points.

Intuitively, generalized configurations of points allow us to draw all possible combinato-
rially equivalent allowable sequences as point sets by “bending” the supporting lines. Also,
the orientation of each point triple is given by the orientation of the triangle spanned by
three pseudo-lines. A corresponding wiring diagram is shown at the bottom of Figure 5.10.
The point set is the same as the one used in previous examples. However, as can be seen
from, e.g., the wiring diagram, the order type of the generalized configuration is the one
of six points in convex position. Using simple topological arguments, one can see that the
actual position of the points is not of any importance when drawing a generalized con-
figuration of points. We will sometimes denote a generalized configuration of points by C
only.

By considering again Figure 5.10, we can observe that a generalized configuration con-
tains more information than the corresponding allowable sequence. Consider the connect-
ing pseudo-lines of the point pairs 1 and 4, 2 and 5, as well as 3 and 6. There is a cell defined
by exactly these three pseudo-lines. If we extend the configuration by a point x inside this
cell, then x will be to the left of the directed connecting line of 3 and 6. Consider again the
original configuration (without x). We can slightly move the pseudo-line for, say, the point
pair 2 and 5, to get a new arrangement that does not contain this cell, but another one.
This new configuration realizes the same allowable sequence as the original one. However,
if we extend this configuration by placing a point x′ in the newly created cell, then x′

has to be to the right of the directed connecting line of 3 and 6. The Levi Enlargement
Lemma allowed us to extend a pseudo-line arrangement by giving two points. The relative
position of the new pseudo-line and the crossings in the arrangement is determined for
some but not all of the crossings. Similarly, we can always extend a configuration of points
by placing a point. While, algorithmically, when extending a pseudo-line arrangement in

12The term used by Goodman and Pollack [82] is “connecting pseudo-lines”. Our naming is chosen to
remain consistent with the remainder of this thesis.
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Figure 5.10: A generalized configuration of points and the corresponding wiring diagram.

the projective plane by another pseudo-line, we have some nondeterministic choices, these
choices were already made when embedding the pseudo-line arrangement of the generalized
configuration of points. It seems that, while these facts are well-known and implicitly used,
there is no written examination of these facts and their consequences. Observe that this
is also an issue for realizable configurations of points; the order type does not capture all
information on the cells in the arrangement of supporting lines.

In our summary, we considered pseudo-line arrangements and generalized configurations
of points separately. However, the construction by Goodman [75] works for pseudo-line
arrangements and generalized configurations of points at the same time, just like a set of
points and a set of lines in the primal can be transformed to a dual set of lines and a dual
set of points in the same plane. Goodman’s construction is in P2. Agarwal and Sharir [2]
adapt Goodman’s work by considering a dual transform of points and pseudo-lines that
are given by x-monotone curves with an explicit representation.

There is an interesting aspect under which there is a non-obvious combinatorial sepa-
ration between non-realizable generalized configurations of points and realizable configura-
tions of points in connection with the crossing number of a graph. The crossing number of
a graph is the minimum number of crossings required in any drawing of the graph (see [142]
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for a survey). The rectilinear crossing number of a graph is determined by all drawings of
the graph as a geometric graph. Hence, an edge consists of the part of a supporting line
between two points. This notion has been extended to generalized configurations of points
by Pan [128] to the so-called pseudo-linear crossing number. We are therefore concerned
with points being connected by curve segments in a way that the curve segments pairwise
intersect at most once, and, in addition, the curve segments can be elongated to form the
arrangement of the generalized configuration of points. This can be seen as an intermedi-
ate step between so-called good drawings of graphs (in which we do not have to be able
to elongate such curve segments, see [142]), and the rectilinear case. It was conjectured
that the rectilinear crossing number and the pseudo-linear crossing number of a graph are
actually the same [27] (see also [142, p. 53]). Very recently, Hernández-Vélez, Leaños, and
Salazar [92] showed that this is not the case; in particular, they showed how to construct,
for any number m, a graph such that the rectilinear crossing number and the pseudo-linear
crossing number of that graph differ by m. Hence, under this combinatorial aspect, there
is a clear distinction between non-realizable generalized configurations of points and real-
izable configurations of points. It would be interesting to know whether there is also a gap
for the complete graph, i.e., whether the rectilinear crossing number of the complete graph
differs from the pseudo-linear crossing number.

5.2 Motivation

While combinatorial equivalence and the order type of point sets are definitely interesting
from a combinatorial point of view, they are also relevant from an algorithmic point of
view. The second part of this thesis, in particular Chapters 6 and 7, will present algo-
rithms that use only sidedness queries, and will also work for abstract order types (i.e.,
the calculation of the determinant as discussed in Section 5.1.3.4 can be replaced by any
predicate fulfilling the axioms). Informally, we are interested in algorithms on point sets
that do not (directly) use the coordinates. In this section, we present some examples that
motivate the development of algorithms that use only sidedness queries. These examples
span the range between application-driven developments and the investigation of purely
theoretic interest.

5.2.1 Robust Implementations

Usually, algorithms in computational geometry are described under the assumption that
computations can be carried out with infinite precision (like in the real RAM model [135,
p. 28]). However, when implementing an algorithm using a certain programming language,
it is often overseen that the data types and the operators used by the programming lan-
guage do not fulfill this. Geometric algorithms often handle entities like line intersections,
for which the precision required increases rapidly, and therefore, robustness of computation
is a topic that is of interest in particular for algorithms that implement geometric algo-
rithms. Even when given rational variables as input, intersecting, say, a circle with a line
may already results in algebraic numbers. (We have already discussed such issues in the
hardness reduction of Section 3.3; there, however, we were only concerned with keeping the
representation rational and within a polynomial bound.) To circumvent these problems,
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two major approaches are to provide means to ensure exact computations and to design
algorithms that are able to handle inaccuracies. See [144] for further details.

When requiring exact computations, it is a straightforward goal to minimize the pre-
cision needed by the algorithm for the exact computations. Boissonnat and Snoeyink [34]
take the approach of reducing the algebraic degree of predicates needed to solve a ge-
ometric problem. They investigate the following classic problem in computational ge-
ometry: given a set of n line segments in the plane (represented by their end points),
report each pair in the set that crosses. Naturally, since there are instances of the prob-
lem where every pair crosses, the worst-case running time of the algorithm is in Θ(n2).
Therefore, output-sensitive algorithms have been designed whose running time depends
on the number k of pairwise crossing segments. Several output-sensitive algorithms have
been developed (see [34, Table 1] for a selection), where the one of Balaban [26] runs in
optimal O(n log n+ k) time. To measure the precision requirements of an algorithm, Bois-
sonnat and Snoeyink use the algebraic degree of the basic predicates used by the algorithm.
When testing the sign of a homogeneous multivariate polynomial whose arguments are the
input variables, the algebraic degree of the test is the maximum degree of its polynomial
factors that are irreducible over the rationals and have non-constant sign [34]. A sidedness
query (see Section 5.1.3.4) has algebraic degree 3. For example, testing the x-order of
intersections of line segments has algebraic degree 5. See [34, Table 2] for an extensive
listing of operations and their algebraic degrees. While the trivial Θ(n2) time algorithm
that tests all segment pairs uses only operations of algebraic degree 2, Balaban’s algorithm
uses predicates of algebraic degree 3, as pointed out by Boissonnat and Snoeyink. In their
paper, they provide an O(n log2 n−k log n) time algorithm (that is an adaption of the one
by Balaban) using sidedness queries. Whether the additional logarithmic factor can be
removed is left as an open problem.

Hence, using only sidedness queries for problems defined on order types may assist in
the design of more robust implementations. For integer coordinates, sidedness queries can
be performed in a quite reliable way. Avnaim et al. [24] provide a method to evaluate the
sign of a 3 × 3 determinant with b-bit integer entries using only (b + 1)-bit arithmetic.
However, using only sidedness queries is no universal remedy for robustness problems in
computational geometry. Kettner et al. [100] give an illustrative account on robustness
problems, in particular in connection with testing the sign of the determinant for sidedness
queries and floating point arithmetic. Still, the approach by Boissonnat and Snoeyink [34]
motivates the development of algorithms using only sidedness queries.

Note that these considerations do not only apply to sidedness queries. Guibas and
Stolfi [87] obtain an algorithm for constructing Delaunay triangulations by using a predicate
that indicates whether a point lies inside a circle defined by a point triple; this facilitates
robust implementation. We will discuss this again at the beginning of Chapter 6, as this
work actually motivated Knuth’s question for which we present a solution in that chapter.

Sidedness queries are also used as an interface to configurations of points when working
with triangulations in any dimension. A detailed account on such algorithms can be found
in the book of De Loera, Rambau, and Santos [50, Chapter 8]. Experiences with an actual
implementation of these concepts are reported in [131].



78 Chapter 5. Combinatorial Problems on Point Sets

5.2.2 Mechanically Proving the Correctness of Algorithms

Geometric algorithms do not only fail because of wrong assumptions on the number rep-
resentation in computers. In several cases, the description of an algorithm is incorrect per
se. A prominent example for a problematic task is computing the convex hull of a simple
polygon in linear time. Several algorithms have been developed that later turned out to be
incorrect [19]. One method proposed to increase the confidence in algorithms is formal and
mechanic verification of the algorithms. Pichardie and Bertot [132] take Knuth’s work on
axiomatizing abstract order types [105] (see Section 5.1.3.4) as a basis to develop formal
descriptions of convex hull algorithms. In their work, they use a theorem proving software
to verify the correctness of two convex hull algorithms. Due to an extension of the basic
axiomatic system to degenerate cases, they are able to separate the task into two dis-
tinct parts; first, it is verified that the axioms hold for implementations of the predicates,
and then the main part of the algorithm can be verified based on the axioms. A similar
approach, using Hoare logic, is also taken by Meikle and Fleuriot [123].

5.2.3 Geodesic Order Types

Order types occur naturally in point sets and, by duality, in line arrangements. As already
mentioned, there are far more non-realizable abstract order types than realizable ones. In
addition to generalized configurations of points and pseudo-line arrangements, abstract
order types also have a realization in connection with geodesics in simple polygons.

A pointgon [17] is a pair (S, P ) of a point set S and a simple polygon P with S ⊂ P and
such that S contains all vertices of P (however, S may contain additional points inside the
simple polygon). Hence, for any point set S, the pair (S,CH(S)) is also a pointgon. While
for such a pointgon, the shortest path between two points is given by the straight line
segment between them, the shortest path inside a pointgon with a general simple polygon
is a simple polygonal chain, called a geodesic. Toussaint [155] defines a generalization of
the convex hull of a point set for point sets S′ ⊆ S of a pointgon. Let P be a simple
polygon and let Q be a subset of P . Then Q is geodesically convex if for every two points
p and q in Q (not necessarily part of a finite point set), the geodesic path between p
and q in P is also in Q. Observe that Q may not be a simple polygon, but may contain
1-dimensional components. Still, the whole boundary of the region can be traversed by
starting and ending in the same point of the boundary such that the sum of all the angles
turned is equal to 360◦. Such a region is called a weakly simple polygon (see [155] for a
more formal definition). For a set S of points in P , the geodesic convex hull of S in P is the
intersection of all geodesically convex sets containing S. Hence, for a pointgon (S,CH(S)),
the geodesic convex hull of S′ ⊆ S is the convex hull of S′. Apart from the convex hull,
several other entities defined for point sets have been generalized to the geodesic setting,
like linear separators [51] and ham-sandwich cuts [35] (see [8] for further examples).

For points in the plane we can observe that an ordered triple (p, q, r) of points is
oriented counterclockwise if and only if there exists a counterclockwise traversal of the
triangle CH({p, q, r}) such that the points appear in that order. We can generalize this
way of performing a sidedness query by taking the geodesic convex hull of the triple inside
a simple polygon P . This leads to the definition of geodesic order types [11] analogous
to unconstrained point sets in the plane. Observe that encapsulating a triple of points in
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a simple polygon might change the orientation of the triple (in the geodesic order type).
Aichholzer et al. [11] show that the triples of points in a pointgon actually fulfill all five
axioms given by Knuth (see Section 5.1.3.4). Therefore, every geodesic order type is an
abstract order type. We already discussed in Section 5.1.3.3 that Ringel [138] gave an
example of a set of non-realizable abstract order types (in terms of a non-stretchable
pseudo-line arrangement) of nine elements. In [11], an example is provided showing that
one of these abstract order types can actually be realized as the geodesic order type of nine
points inside a simple polygon. Hence, geodesic order types are a proper superset of order
types. Up to now, it is not clear whether there is a large class of non-realizable abstract
order types that can be realized in the geodesic setting. It is even conceivable that for
every abstract order type there is a set of points in a pointgon realizing the abstract order
type (given a simple polygon with a sufficiently large number of vertices).

From an algorithmic point of view, the following result on sidedness queries is known.

Theorem 5.7 (Aichholzer et al. [8, Corollary 5]). A simple polygon P of m vertices out
of which r > 0 are reflex can be preprocessed in O(m) time and space such that, for any
three points a, b, c ∈ P , their orientation can be determined in O(log r) time.

Hence, algorithms that work on order types in the plane using only sidedness queries
can be adapted to the geodesic setting without large overhead. One example is given at
the end of Chapter 7. In particular, this allows for separating the part of the algorithm
that is specific to the problem from the one that handles the sidedness queries on points
in the simple polygon.

5.2.4 Generation of Order Types and Abstract Extension

There is one important consequence of the combinatorial classification of point sets that
we have not discussed so far. Since we have a finite number of equivalence classes, it is, in
theory, possible to generate a member for each such class. Of course, from a computational
point of view, this problem is highly intractable; the number of order types increases expo-
nentially, checking whether an abstract order type is realizable is an NP-hard problem, and
the realization may require an exponential-size representation. Aichholzer, Aurenhammer,
and Krasser [7] managed to generate a data base of all distinct order types of up to ten
points by giving for each an explicit representation as a point set with integer coordinates.
The data base was later extended to eleven points [13]. The data base has successfully
been used to investigate a large number of problems on point sets in the plane; see [12]
for a list of applications, including, e.g., counting the number of triangulations, determin-
ing the rectilinear crossing number and determining the number of empty and non-empty
convex k-gons every set of a given size must have. The applications of the order type data
base can be grouped into disproving or supporting conjectures, and to provide values for
small point sets to use them as a basis for more general bounds for combinatorial prop-
erties. Finschi and Fukuda [69] extend this work by considering abstract order types also
in higher dimensions and allow collinear triples (or, in general, d+ 1 points not forming a
d-simplex).

For eleven points, the data base requires nearly 100 Gigabyte of storage. The increasing
storage requirements as well as the calculation time are reasons for not extending the data
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base to larger sets. Still, for several problems it is interesting to consider small point sets of
more than eleven points. For doing this, the technique of abstract order type extension [13]
has been developed. We give a short explanation using an example given in [13]. Erdős
and Szekeres [61] asked for the smallest number g(k) such that each point set of size at
least g(k) contains a convex k-gon. Suppose we want to identify all sets of twelve points in
the data base that do not have a 6-gon. We know that no such point set contains a proper
subset that contains a convex 6-gon (in general, this is called the subset property). Hence,
a naive approach would be to take all point sets of size eleven not containing a convex
6-gon and try all combinatorially different ways to add a twelfth point (i.e., by placing
the point in a cell of the arrangement of all supporting lines of point pairs). However, as
we have seen in Section 5.1.4, the cells in the arrangement of the supporting lines do not
offer all possibilities to extend a point set, but the corresponding pseudo-line arrangement
does. Having a representation of a pseudo-line arrangement as a graph, we can enumerate
all different possibilities to extend it with another pseudo-line using standard algorithmic
tools. Even though we may not have a coordinate representation of the resulting abstract
order type, the presence of a 6-gon in the abstract order type can be tested. If it contains
a 6-gon, it is filtered out, otherwise, the extension process is continued. Abstract extension
has in particular been used to gain insight into the properties of the rectilinear crossing
number; see [13] for details.

For abstract order type extension the main challenge is again the fast growing number
of different sets to consider. Algorithmic aspects of the problem considered are of minor
interest, as for relatively small instances, less sophisticated approaches may lead to faster
implementations. Nevertheless, abstract order type extension imposes a field where non-
realized abstract order types occur naturally that is worth being mentioned in our context.

5.2.5 Algorithmic Properties

Finally, let us emphasize that the development of algorithms that use only sidedness queries
is of interest in its own right, with the goal of getting more insight into algorithmic prop-
erties of problems on point sets. Edelsbrunner considers arrangements of hyperplanes
(generalizing 2-dimensional order types to higher dimensions) to be “at the very heart
of computational geometry” [54, p. VII]. Using geometric artifacts in the algorithm de-
scription or as actual elements it operates on might hide the combinatorial properties the
algorithm is actually using. This is apparently a motivation for Knuth’s work [105] on
CC systems. (Computing the convex hull of disks by the most basic predicates possible is
also given as a motivation by Habert and Pocchiola [88], who use a setting comparable to
that of point set order types.) In this connection, there is of course one major intriguing
question. Does there exist a problem for which an algorithm exists that, by using the
realization of an order type, is asymptotically faster than any algorithm that uses only
sidedness queries?

Of course, the answer to this question depends on the model of computation, or, more
generally, on our “rules”. Using the real RAM model, the asymptotic running time of
most order-type-related problems can be given in terms of the number of points. Using a
more strict model, we would give the running time as a function of the size of the binary
representation of the input. How to compare an algorithm getting the answer to each
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sidedness query in constant (or even polynomial) time from an oracle to an algorithm using
the coordinates when, e.g., given an order type that requires a coordinate representation
of exponential size (whose existence has been shown in [85]) depends on the model of
computation (independent of the actual running time of an implementation on a computer).
Also, one can come up with problems that, e.g., involve preprocessing, where the algorithm
that is given the realization can make use of the restricted possibilities to add points to
the set. Such an example can be easily obtained by slightly modifying algorithms and
lower time bound proofs for the half-space emptiness problem (see, e.g., [64, pp.92–93] for
details) to a setting where half-planes are given by pairs of points.13

However, in a more “fair” setting, there seems to be no known algorithmic separation
of these two types of geometric algorithms. Similarly, the question for an algorithmic sep-
aration of order types and non-realizable abstract order types can be asked when limiting
both algorithms to the same set of predicates, e.g., to only sidedness queries. As formu-
lated by Erickson, “there is no known problem that can sensibly be asked about both lines
and pseudolines [...], such that an efficient algorithm is known for the straight line version
that doesn’t also work for the pseudoline version” [64, p. 29]. In this connection, Erickson
also mentions a result by Steiger and Streinu [153], that shows that any decision tree for
x-sorting the crossings in a pseudo-line arrangement must have depth Ω(n2 log n), but the
vertices for line arrangements can be sorted using a decision tree of depth O(n2). However,
the x-order of the crossings is not a property of the corresponding order type.

Summing up, many classic algorithms only use sidedness queries (their authors often
do not mention this fact), or can easily be modified to do so, but there are others that
make explicit use of the coordinates of the given point set. In the following two chapters,
we provide two non-trivial examples where, asymptotically, there is no difference in the
running time between the general and the restricted setting.

5.3 Chapter Summary

In this chapter we summarized some of the basic knowledge on the vast topic of combina-
torial classification of point sets. We gave definitions and properties of configurations of
points, line arrangements, and their generalizations in both the Euclidean and the projec-
tive plane. Further, we gave a selection of examples of topics that motivate the research
on algorithms that use only sidedness queries. The intention of this chapter was to provide
a sound foundation and intuition for the concepts used in the remainder of this thesis,
in particular in Chapter 6 and Chapter 7, as well as motivation and work related to the
contribution presented there.

13Personal communication with Wolfgang Mulzer, 2013.





Chapter 6

Extreme Point Search in Abstract
Order Types

In this chapter, we will develop our first algorithm that uses only sidedness tests. In
computational geometry, constructing the convex hull is a basic building block of many
algorithms. In his monograph on that topic, Knuth [105] discusses convex hull algorithms
for abstract order types. An even more basic problem is selecting an extreme point. As it
turns out, while this problem is trivial to solve when using the coordinate representation,
it is apparently not that straightforward when using only sidedness tests.

A preliminary version of this chapter’s content has been presented [124] and also a full
version has been published [14].

6.1 Introduction

While sidedness queries are sufficient to define many structures on point sets, there are
further, more “metric” properties of a point set that are not determined by the order
type. This includes the set’s Delaunay triangulation; it is straightforward to construct
two sets having the same order type that have different Delaunay triangulations. Never-
theless, the problem can still be considered as being discrete. Analogously to the predi-
cate ∇(p, q, r) that indicates whether a triple of points is oriented counterclockwise (recall
Section 5.1.3.4), Guibas and Stolfi [87] separate topological from geometric aspects, using
a predicate InCircle(p, q, r, s) that is true if and only if the triple (p, q, r) is oriented coun-
terclockwise and the point s lies inside the circle defined by the first three points. This
predicate is equivalent to

det


px py p2x + p2y 1

qx qy q2x + q2y 1

rx ry r2x + r2y 1

sx sy s2x + s2y 1

 > 0.

Their Delaunay triangulation algorithm depends almost entirely on this predicate, making
it a robust approach, that is intended to be easy to implement and to prove. Knuth’s
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axiomatic approach (see Section 5.1.3.4) was motivated by the work of Guibas and
Stolfi [105, p. v].

The concept of the convex hull of a point set generalizes to all CC systems. (This
follows from the mentioned correspondence of CC systems with abstract order types [105,
pp. 29–31]; Knuth also gives an independent proof [105, p. 45]).1 Knuth also extends his
axiomatic approach to cover Delaunay triangulations. In the axiomatic settings, Knuth
provides O(n log n) time algorithms for constructing the convex hull and the Delaunay
triangulation, where the time bound for the latter holds in the expected case. He points
out that the algorithm of Guibas and Stolfi uses the coordinate representation to find a
line that partitions the point set into two equally-sized subsets (cf. [87, pp. 110–111]).
Open Problem 1 in [105, pp. 97–98] therefore asks for an algorithm to find such a partition
of a CC system in linear time. The problem is straightforward when given an extreme
point of the set (i.e., an element of the convex hull boundary). Proving the existence of
a linear-time algorithm for finding a single extreme point is also explicitly part of Open
Problem 1.

In [14], both parts of the open problem are answered in the affirmative.

• There exists an O(n) time algorithm that, given a point c of a set S of size n, finds
a halving edge through c (more specifically, it finds a second point c′ ∈ S such that
not more than

⌈
n−2
2

⌉
points are on each side of the supporting line of c and c′).

• There exists an O(n) time algorithm that, given two points p and q, finds the edge
of the convex hull that is crossed by the ray from p through q.

Both algorithms also work for general CC systems (i.e., abstract order types). In this
chapter, we present the second algorithm. We first show that the algorithm runs in O(n)
time for realizable sets. We then show that the time bound is also correct for non-realizable
sets, that is, for all abstract order types.

While an arbitrary halving edge can easily be found by picking a point with median, say,
x-coordinate (using the linear-time selection algorithm by Blum et al. [33]), the problem
is more sophisticated when the halving line should pass through a predefined point. For
example, the linear time ham-sandwich cut algorithm of Lo, Matoušek, and Steiger [112]
can be adapted to find a halving line through a point. The straightforward way of finding
an extreme point of a set given by coordinates is selecting the one with, say, lowest x-
coordinate. Finding a convex hull edge that is traversed by a given line in linear time is a
subroutine of the so-called Ultimate Convex Hull Algorithm of Kirkpatrick and Seidel [103].
There, the median of the slopes of an arbitrary matching of the points is used for the prune-
and-search approach. An extreme point is actually searched in every iteration using the
coordinates.

We first give the algorithm for realizable point sets using some reasoning on the actual
realization of the point set in Section 6.2, and then show that the algorithm works, without
modifications, for all abstract order types (Section 6.3).

1Knuth actually defines the convex hull as a cycle.
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pr

m

Figure 6.1: An arbitrary matching of edges that partition S, and m, the result of Ba-
sicMin.

6.2 Realizable Sets

As a first step we describe an algorithm called BasicMin, which plays a crucial role as
a subroutine. Let S be a point set in the plane and suppose we are given two points
p, r ∈ S. We assume that pr is a halving edge of S and that n = |S| is even. Without
loss of generality, let r be the coordinate origin and let p be on the positive part of the
x-axis. Let M be an arbitrary perfect matching between the points above and below the
x-axis, i.e., for any edge s = ab ∈M we have ∇(p, r, a) 6= ∇(p, r, b). See Figure 6.1 for an
illustration.

Let n be the binary operator that accepts two edges s, s′ ∈ M as input and returns
the edge on the convex hull boundary of s ∪ s′ that crosses the x-axis at the smallest x-
coordinate, i.e., the pair of endpoints whose upward-directed supporting line has all other
points of s and s′ to the right. The relevant property of the operator is that the crossing
of n(s, s′) with the x-axis is not to the right of the crossings of s and s′ with the x-axis.

BasicMin takes a point set S and two points p and r as input, partitions S arbitrar-
ily into the matching M = {s1, . . . , s(n−2

2 )}, and computes a special edge m = m(n−2
2 )

iteratively via
m1 = s1
m(i+1) = n(mi, s(i+1))

Obviously, the running time of BasicMin is linear in n. Note that m does not need
to be on the convex hull of the whole set. Also, m may depend on the (undefined) order
in which the elements of M are processed by BasicMin. However, m has the following
useful property.

Lemma 6.1. Let ` be a line directed upwards, crossing the x-axis to the left of the crossing
of m with the x-axis. Then at least n−2

2 points of S are to the right of `.

Proof. Note that the crossing of ` with the x-axis is further to the left than any other such
crossing of M . Assume, for the purpose of contradiction, that there is an edge in M for
which both points lie to the left of `. Then also the crossing with the x-axis is to the left
of the crossing of m, a contradiction. Hence, for each of the n−2

2 edges in M , at least one
endpoint lies to the right of `.
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Figure 6.2: The order on U defined by removing vertices of the intersected convex hull
edge.

Note that, even though the argumentation of Lemma 6.1 involves relative positions of
crossings, the constant-time operation n can be expressed by using only ∇. Now we are
ready to give the main algorithm.

Theorem 6.2. Given two points p, q of a point set S ⊂ E2 of size n in general position,
one can find the edge e of the set’s convex hull that passes through the ray pq in O(n) time
using only sidedness queries.

Proof. Without loss of generality, let pq be horizontal with q to the left of p. Note first
that the case where q is a vertex of the convex hull can be identified in linear time. We
therefore concentrate on the setting where one endpoint of e is below pq and the other
one is above. Let U be the set strictly above pq, whereas L is the set strictly below pq.
Without loss of generality, let |U | ≥ n−2

2 .
Consider the endpoint u1 ∈ U of e. If we remove u1, the ray pq intersects the boundary

of the (new) convex hull at a new edge e′ with an endpoint u2 ∈ U . Note that the
other endpoint of e′ might now be q. In any case, iteratively removing points from U of
the intersected convex hull edge induces an order on U (see Figure 6.2). Note that this
corresponds to the order in which the points of U are traversed by a line t that supports
the boundary of CH(L∪{p, q}) in one connected component and that is rotated clockwise
around that hull, starting at e and ending at pq. The main observation is that in the search
for u1, given a point ui and the line t passing through ui, we can discard all points of U
to the right of ui with respect to the point l where t touches CH(L∪ {p, q}), since none of
these points can be u1. The support l ∈ L∪ {q} of t can be found in linear time, since the
radial order of L ∪ {p, q} around any ui is linear.

Note that these observations already imply the following randomized approach. Select
any element ui of U at random. The other support l of the line t (recall that this might
as well be q) can be found in linear time. We discard the points of U to the right of lui
and iterate. However, consecutive “bad” choices of ui result in overall quadratic worst-case
behavior. We therefore have to make a “good” choice of ui in order to discard a linear
number of points per iteration.

The points of U are ordered linearly around p. Let ur be the median of this order,
which we select in linear time. LetM be an arbitrary perfect matching between the points
of U to the left and to the right of pur (maybe omitting one point), see Figure 6.3. Now we
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Figure 6.3: The edge uaub allows to prune half of the upper points.

apply BasicMin on M with r = ur, which results in an edge m = uaub. By construction,
all edges of M as well as uaub cross the ray pur. Now, find the lines ta and tb that support
the boundary of CH(L∪{p, q}) in one connected component and that pass through ua and
ub, respectively (we consider them being directed upwards). Let ` = ta if ub is to the right
of ta, otherwise let ` = tb. Note that p is to the right of ` since q is included in the set in
which we search for the second support of ` (see the example to the right in Figure 6.3).
There are two cases to consider. If ` crosses the ray pur at a point x, then the crossing of
uaub is on the ray between p and x (by definition of `). Due to Lemma 6.1, at least half of
the points of M are to the right of `. Otherwise, if ` does not cross the ray pur, then all
points of U to the right of the ray are also to the right of `. In both cases, we can discard
at least half of the points, which is at least a quarter of the overall set S (recall that U
was, without loss of generality, larger than L; in each iteration, the process is applied to
the larger of the two sets). We can therefore in linear time reduce this problem to constant
size such that it then can be solved by a brute-force approach.

Note that the transitivity of the order on U directly follows from the definition of the
convex hull and carries over to general CC systems. Also, the transitivity of L ∪ {p, q}
around any point of U holds for CC systems due to Axiom 5. This already implies that
the algorithm is correct for any CC system. However, the linear time bound depends on
the number of points that are to the right of `. In order to show that the bound also
holds for abstract order types, we need to prove that BasicMin also works as expected on
non-realizable sets, and that then also ` has at least half of the points of U to the right.

6.3 A General Proof of the Time Bound

To see why care has to be taken when we deal with non-realizable order types, note that
in general the order type does not capture the relative position of the supporting lines of
point pairs and the crossings of these lines. However, abstract order types capture some
of the information that is related to crossings of supporting lines, which allows us to show
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that the properties needed for BasicMin are also present in the abstract setting.2 We
use the dual representation of abstract order types by arrangements of pseudo-lines in
the Euclidean plane (this allows us to use the obvious meaning of terms like “above” and
“below” when describing an arrangement A).

Let us recall the problem setting. We are given a set S of n elements (which we call
points, even though S might not be a realizable point set), containing two special points p
and q. The set S is separated by pq into a set U to the right of pq, and a set L to the left
of it (where “left” and “right” are indicated by a predicate P , recall Section 5.1.3.4). We
want to obtain the pair l1u1, l1 ∈ L, u1 ∈ U that is consecutive on the convex hull of S,
where p is to the right of l1u1. This is done by obtaining a pair ` = ljui such that at least
half of the points of U (minus a constant) are to the right of ` and no point of L is to the
left of `.

Consider the dual pseudo-line arrangement A representing the abstract order type of S.
Keep in mind that p is an extreme point of the set U ∪{p}, and that r = ur is the median
of the points in U ordered radially around p. We can represent the arrangement such that
the crossing of the pseudo-lines p and r (which corresponds to the supporting line of pr
in the primal3) is the leftmost crossing in A and p starts above r. The linear order of the
points around p in the primal splits the set U \ {ur} into left and right points, separated
by pr. In the dual, the right pseudo-lines are above the crossing pr, and the left pseudo-
lines are below it. Recall the description of BasicMin. M is an arbitrary perfect matching
between the left and the right points. The operator n accepts two point pairs, each pair
consisting of a left and a right point. The output of the operator is a pair z consisting of a
left and a right point such that all other points are to the right of the oriented line through
these points. This pair z is well-defined in the abstract setting as well (and there is always
a geometric representation due to Theorem 5.5). Recall that we compute a special pair
m = m(n−2

2 ) iteratively via

m1 = s1
m(i+1) = n(mi, s(i+1))

The crucial property of the pair m = uaub (and later the line ` through ua or ub) is that
at least one endpoint of each pair si ∈ M lies on the same side of m as the pivot p. (We
assume that m and the elements of M are directed from the left point to the right point
and hence p is to the right of m.) In the dual, each element of M is represented as the
crossing of a right and a left pseudo-line in A (this corresponds to the supporting line of
the matched pair of points in the primal). The crucial property for m in the dual therefore
is to have at least one pseudo-line of each pair si ∈ M passing below its crossing in A.
For realizable point sets, we were able to argue for the correctness of BasicMin using the
intersection χ of a matched pair s with the supporting line of p and r. In the dual, this
intersection χ corresponds again to a pseudo-line that can be added to A; this pseudo-line

2This observation is due to an anonymous referee of [14], a previous version proved these properties
using a lengthy case distinction.

3For simplicity, from now on we use the same name in the primal and the dual, for example we denote
the dual a∗ of a point a by a as well, i.e., omitting the star indicating the transform. In the following,
we will less often change between the primal and the dual, and hence it should be clear from the context
which representation is used. Hence, e.g., a line pr becomes the crossing pr in the dual.
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Figure 6.4: Observation 6.3: A pseudo-line χ′ (not part of the arrangement) witnesses that
no element is to the left of z′ in the primal.

passes through the crossing pr and s. Also for non-realizable sets, such a pseudo-line χ
exists due to the Levi Enlargement Lemma (stated as Lemma 5.3 herein). In fact, in
non-realizable settings the intersections behave in the same transitive manner as in the
realizable setting; see Figure 6.4 for an illustration of the following statement.

Observation 6.3. Let z = (a, b) and z′ = (c, d) be two pairs such that the point p is to the
right of both pairs (i.e., in the dual the pseudo-line p is below the crossings z and z′). Let
χ (χ′) be a dual pseudo-line through the crossings pr and z (z′). If none of a and b is to
the left of the primal line z′, then the dual pseudo-line χ′ is above χ in the part of the dual
arrangement that is to the right of the dual crossing pr. This also holds if a = c or b = d.

Hence, after applying BasicMin to the matchingM , we obtain in the dual a pseudo-line
crossing m on a pseudo-line χm that passes through the crossing pr, such that no crossing
of M is above χm. Suppose, for the sake of contradiction, that there is a pair (a, b) such
that both dual pseudo-lines a and b pass above the crossing m, but the crossing ab is below
χm. If the crossing ab is to the left of m in the arrangement (recall that our pseudo-lines
are x-monotone curves), then, when traversing a from left to right, one would have to pass
below χm and then go above it again before m. Otherwise, if the crossing ab is to the right
of m, then b would have to intersect χm to be above it at m and then has to be below χm
again to reach the crossing ab. Both cases contradict the fact that a pair of pseudo-lines
intersects exactly once in the x-monotone arrangement. Hence, half of the pseudo-lines
are below the pseudo-line crossing m in A. This corresponds to at least half of the points
being on the same side of m as p.

Recall that in the proof of Theorem 6.2, we chose a directed line ` passing through a
point l ∈ L ∪ {q} and either ua or ub such that no elements of L ∪ {p, q, ua, ub} are to the
left of it. We now proceed to show that at least one point of each pair (v, w) inM is to the
right of the directed line `, as demanded in the proof of Theorem 6.2. The points involved
are {p, q, r, l, ua, ub, v, w}, where l and q might be the same point. Since these are at most
eight points, we are allowed to use geometric arguments due to Theorem 5.5. However, we
must not rely on the positions of the crossing points on the ray pr. Suppose, for the sake
of contradiction, that neither of v and w is to the right of `. At least one of v or w has to
be to the right of uaub. The line ` separates v and w from the remaining subset. Further,
v and w are separated by pr. These observations imply that vw is an edge of the convex
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hull of {p, ua, ub, v, w}. However, this means that the crossing of the pseudo-lines v and w
is above ua and ub in A, which contradicts the fact that uaub is m. Thus, we conclude

Theorem 6.4. Theorem 6.2 also holds for non-realizable CC systems, i.e., abstract order
types.

6.4 Chapter Summary

We presented an algorithms that only uses sidedness queries on point sets in the plane.
A convex hull edge crossing a specified ray can be found in linear time, without being
given the coordinate representation. We showed that the algorithm also works for general
CC systems (i.e., abstract order types), and thus answer a long-standing open problem of
Knuth [105] in the affirmative.

Note that the parts of the so-called Ultimate Convex Hull Algorithm by Kirkpatrick
and Seidel [103] that depend on coordinates are essentially the ones in which the convex
hull edge on the ray that separates a subproblem into two parts is found. Also, Chan’s
output-sensitive algorithm [41] can be implemented in our setting using Theorem 6.2.
Both allow to improve the time bound given in [105] for realizable point sets4 regarding
output-sensitivity to O(n log h) for h extreme points.

The proof of Theorem 6.2 is based on the order defined on the set U above and the set L
below the given ray pq. While the order on, say, U changes when removing elements from L
in the defined way, the first element u1 remains always the same. The problem solved in the
next chapter will turn out to be almost a generalization of this problem; we are essentially
looking for the point ui for a given i. While looking for an extremal element allowed for a
relatively simple way to deterministically pick an element with a small index for pruning,
we will have to apply a more sophisticated method for this generalization. Interestingly,
the algorithm of the generalization will use the one presented here as a subroutine.

4We omit a detailed analysis of these two algorithms in the abstract setting.



Chapter 7

Pseudo-Verticals and Ham-Sandwich
Cuts for Abstract Order Types

Many algorithms in computational geometry are concerned with finding partitions of point
sets by halving lines such that the partitions fulfill certain properties. A prominent example
is finding the ham-sandwich cut of a bi-chromatic point set. A pattern frequently used by
linear-time algorithms of that type is to partition the dual line arrangement of the point
set by vertical lines and find the median of the crossings of (a subset of) the lines with
each vertical line. This can easily be done by using standard techniques when the point set
is given by the coordinates. In this chapter we consider the setting where only the order
type of the point set is known, i.e., we are only allowed to use sidedness queries. We give a
deterministic linear-time algorithm for the mentioned sub-algorithm and show that this is
sufficient to give a linear-time algorithm for constructing a ham-sandwich cut even in our
restricted setting. We also show that our methods are applicable to abstract order types.
This chapter presents joint work with Stefan Felsner [67].

7.1 Introduction

A considerable fraction of problems in computational geometry deals with partitioning
finite sets of points by hyperplanes while imposing constraints on both the subsets of the
partition as well as on the hyperplanes. In the plane, this class of problems contains
finding, e.g., a ham-sandwich cut of a bi-chromatic point set [112], a four-way partitioning
by orthogonal lines, and a six-way partitioning by three concurrent lines [140], as well as
finding three concurrent halving lines that pairwise span an angle of 60◦ [62].

Given a pair (a, b) of points of a bi-chromatic point set S of n points that are either red
or blue, the supporting line of a and b is a ham-sandwich cut if not more than half of the
red and half of the blue points are on either side of ab. This can be verified by using only
sidedness queries (implying a brute-force algorithm running in Θ(n3) time). Megiddo [121]
presented a linear-time algorithm for the case in which the points of one color are separable
from the points of the other color by a line. Edelsbrunner and Waupotitsch [59] gave an
O(n log(min{nr, nb})) time algorithm for the general case, with nr red and nb blue points.
Eventually, a linear-time algorithm was provided by Lo, Matoušek, and Steiger [112] for
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Figure 7.1: Ordering the crossings along a vertical line.

the general setting, which also generalizes to arbitrary dimensions. As already mentioned
in Section 5.2.3, Bose et al. [35] generalize ham-sandwich cuts to pointgons, obtaining a
randomized O((n + m) log r) time, where m is the number of vertices of the polygon, of
which r are reflex.

The linear-time ham-sandwich cut algorithm works on the dual line arrangement of the
point set and has to solve the following sub-problem.

Problem 4. Given a dual line arrangement A in the plane and two lines p and q of that
arrangement, let v be the vertical line passing through the crossing of p and q. For a subset
B of the lines in A and an integer k ≤ |B|, find a line m ∈ B such that the y-coordinate of
the point v∩m is of rank k in the sequence of y-coordinates of the finite point set v∩⋃b∈B b.

This problem can be solved in linear time by directly applying the linear-time selection
algorithm [33] to the y-coordinates of the intersections of all lines in B with v. Clearly,
the order of the intersections of lines with a vertical line at a crossing is not a property of
the order type represented by the arrangement (recall the example given in Figure 5.6 on
page 67). The order type only determines the set of lines above and below a crossing. In
particular, for abstract order types (or for order types not given by a realization), there
are two liabilities of the formulation of Problem 4. First, the vertical direction is not
determined by the order type (this is a property of the circular sequence of the point set);
even though we can represent the abstract order type by a pseudo-line arrangement in the
Euclidean plane (where there is a vertical direction), there is, in general, an exponential
number of different ways to draw a wiring diagram representing the abstract order type,
each giving a different order of the pseudo-lines along the vertical line through a crossing.
Second, even when given such a vertical line, directly applying the linear-time selection
algorithm relies on comparing the relative order of any two intersections with the vertical
line in constant time.

In this chapter, we show how to overcome these two problems by defining a “vertical”
pseudo-line through each crossing in a pseudo-line arrangement and show how a pseudo-
line of a given rank in the order defined by such a “vertical” pseudo-line can be selected.
We give the definition in Section 7.2, where we also examine important properties of our
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construction. Our result will be presented in terms of a dual pseudo-line arrangement in
the Euclidean plane. However, in our model we are not given an explicit representation
but are only allowed sidedness queries. In Section 7.3, we first explain how several queries
about a (not explicitly given) pseudo-line arrangement can be mapped algorithmically to
sidedness queries, and then give a linear-time algorithm for selecting a pseudo-line with a
given rank. We then give an application of our result to replace the vertical lines in the
linear-time ham-sandwich cut algorithm by Lo, Matoušek, and Steiger [112] in Section 7.4,
showing that the algorithm, with the proposed modification, also works for abstract order
types.

Throughout this chapter, let A be a simple arrangement of n pseudo-lines in the Eu-
clidean plane. The k-level of A is the set of all points that lie on a pseudo-line of A and
have exactly k − 1 pseudo-lines strictly above them. The level of a crossing pq is denoted
by lv(pq) (i.e., pq is separated from the north face by lv(pq)− 1 pseudo-lines). The upper
envelope of an arrangement is its 1-level, i.e., the union of the segments of pseudo-lines
that are incident to the north face.

7.2 Levels at a Crossing

It will be convenient to consider all pseudo-lines being directed towards positive x-direction.
Let p and q be two pseudo-lines in A and let p start above q. We denote the latter by
p ≺ q. In the following, we define a pseudo-line that replaces a vertical line through a
crossing in our abstract setting.

For a crossing pq with p ≺ q let γpq be a curve described by the following local proper-
ties. Initially, γpq passes through the crossing pq and enters the cell C directly above pq; see
Figure 7.2 (a). Above p and q, γpq follows p against its direction in C until a pseudo-line r
of A crosses p (in C). If r crosses p from below (i.e., p ≺ r), γpq crosses r and continues
following p in the new cell C ′. Otherwise, if r crosses p from above, γpq follows r in its
opposite direction, remaining inside C. In general, every time the pseudo-line ai currently
followed by γpq is crossed by a pseudo-line aj from below, γpq also crosses aj , enters the
new cell directly above aiaj and continues following ai; see Figure 7.2 (b). If ai is crossed
by aj from above, γpq now follows aj against its direction, but remains in the same cell of
the arrangement; see Figure 7.2 (c). This is continued until all crossings of A are to the
right of the current position along γpq. At that point, γpq continues vertically in positive y-
direction to infinity (intuitively, γpq follows the line at infinity); see Figure 7.3 (a). Below p
and q, γpq continues in a similar manner. It follows p along its direction in the cell directly
below pq. If the currently followed pseudo-line ai is crossed by a pseudo-line aj from below,
then γpq crosses aj , entering the cell directly below the crossing aiaj ; see Figure 7.2 (d).
Otherwise, γpq continues along aj , remaining in the same cell of A; see Figure 7.2 (e).
If there are no more crossings to the right of the current position on γpq, γpq continues
vertically in negative y-direction to infinity; see Figure 7.3 (b).

See Figure 7.4 and Figure 7.5 for two overall examples. We call γpq a pseudo-vertical
and, in the following, identify several properties of such a curve. Note that, while we used
the (rather informal) notion of “following” a pseudo-line, γpq is actually defined by the cells
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Figure 7.2: Local definition of a pseudo-vertical γpq. The curve γpq (dotted) passes through
the crossing pq (a). It follows a pseudo-line ai above (b, c) or below (d, e) the crossing pq.
A pseudo-line aj crossing ai from below is crossed by γpq (b, d), if aj crosses ai from above,
γpq continues in the same cell along aj against (c) or along (e) its direction.
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Figure 7.3: The first (a) and the last (b) pseudo-lines of an arrangement defining γpq (dot-
ted). The conceptual line at infinity is denoted by the bold vertical line.
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Figure 7.4: A pseudo-vertical γpq in a pseudo-line arrangement.

it traverses (i.e., two paths in the dual graph of the cell complex starting at the cells above
and below pq).

7.2.1 Properties of a Pseudo-Vertical

As γpq always follows a pseudo-line of A or continues in a vertical direction, we can observe
the following.
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pq

Figure 7.5: A pseudo-vertical γpq in an arrangement of straight lines.

Observation 7.1. For any crossing pq in a pseudo-line arrangement A, the curve γpq is
x-monotone.

The following observation can easily be made by visualizing the arrangement as a wiring
diagram.

Observation 7.2. Consider the number of pseudo-lines above a point moving along γpq in
positive x-direction. At every crossing of γpq with a pseudo-line of A, this number increases.

Lemma 7.3. For any crossing pq in a pseudo-line arrangement A, the curve γpq is a
pseudo-line such that A can be extended by γpq to a new pseudo-line arrangement.

Proof. Let n be the number of pseudo-lines in A. Since γpq continues to vertical infinity
in both positive and negative y-direction, it crosses every pseudo-line of A at least once.
From Observation 7.2, it follows that γpq crosses at most n pseudo-lines. As γpq is an
x-monotone curve that crosses each pseudo-line of A exactly once, an extension of A is
again a (non-simple) pseudo-line arrangement.

Our definition of a pseudo-vertical γpq is symmetric above and below pq. It will be useful
to distinguish between the two parts of the pseudo-line. We call the part of γpq reaching pq
through the north face the northbound ray , and the part starting at pq towards the south
face the southbound ray . Nevertheless, γpq is, like any pseudo-line of the arrangement,
considered to be directed in positive x-direction.

Just like for a vertical line in a line arrangement, a pseudo-vertical defines a total order
on the pseudo-lines of A by the order it crosses them. We denote the rank of a pseudo-line
m ∈ A in this order by rkpq(m). The following lemma shows how we can identify the
rank of an element by the pseudo-lines above crossings in A. Let L(pq) be the subset of
pseudo-lines in A such that each a ∈ L(pq) is below pq and a ≺ p.

Lemma 7.4. Traversing the northbound part of γpq from the crossing pq in negative x-
direction until reaching an unbounded cell for the first time, we visit only cells directly above
the upper envelope of the sub-arrangement defined by L(pq) ∪ {p}.
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Proof. The proof is by induction on the sequence 〈p = a1, a2, . . .〉 of pseudo-lines that we
follow. Clearly, the point pq is on the upper envelope of L(pq)∪ {p}. Suppose we traverse
γpq in negative x-direction, following a pseudo-line ai ∈ L(pq) ∪ {p}. If γpq crosses a
pseudo-line r (i.e., r crosses ai from below), then r cannot be below pq as it would have to
cross γpq again. If a pseudo-line ai+1 crosses ai from above, then ai+1 cannot be above pq
as it would have to cross ai again. Further, γpq continues on ai+1, keeping the invariant
that no element of L(pq) is above the point traversing γpq.

Intuitively, the northbound part of γpq can be considered as being arbitrarily close
to the upper envelope of (the sub-arrangement defined by) L(pq) ∪ {p}, and hence, every
pseudo-line that passes through the upper envelope (from below) will cross γpq immediately
after that crossing.

Corollary 7.5. Let m be a pseudo-line in A that is above pq and for which there exists
a pseudo-line a ∈ L(pq) ∪ {p} such that a ≺ m. Then the rank rkpq(m) of m along γpq
is given by lv(a′m) for some a′ ∈ L(pq) ∪ {p} with a′ ≺ m and a′m being on the upper
envelope of the sub-arrangement defined by L(pq) ∪ {p}.

If m does not intersect the upper envelope of these pseudo-lines, it crosses q before
crossing any of the pseudo-lines of L(pq). Therefore, we observe the following.

Observation 7.6. If a pseudo-line m starts above every pseudo-line in L(pq), then the
rank of m along γpq is given by the number of pseudo-lines starting above m increased by 1,
i.e., |{a ∈ A : a ≺ m}|+ 1.

7.2.2 Ordering Pseudo-Verticals

Given two different crossings pq and rs in A, it is easy to see that γpq and γrs may follow
the same part of a pseudo-line. Nevertheless, one can show that γpq and γrs will never
intersect when drawn appropriately. See Figure 7.6 for an illustration accompanying the
proof of the following lemma.

Lemma 7.7. The set of pseudo-verticals for all crossings of a pseudo-line arrangement A
can be drawn such that no two pseudo-verticals intersect.

Proof. Recall that the pseudo-verticals are fully defined by the sequence of cells they
traverse. Further, recall that each bounded cell has a unique leftmost and rightmost
crossing. For two pseudo-verticals to intersect, they have to enter a common cell C.

Suppose first that C is bounded. Observe that, when traversing, say, γpq in positive
x-direction, then γpq enters C from above. Let C be between the levels k and (k + 1). If
the current part of γpq is northbound, it enters C at the k-level through the pseudo-line
defining the leftmost crossing of C (in A). If it is southbound, it leaves C at the (k+1)-level
through the pseudo-line defining the rightmost crossing of C. For two pseudo-verticals to
cross inside C, they would have to enter and leave C through four different pseudo-lines
(otherwise, we could draw them without crossing in C, probably changing their relative
order in the next cell). But this can only happen when one pseudo-vertical is northbound
and the other is southbound in that cell (as otherwise they would either enter or leave C
through the same pseudo-line), and in that case, there cannot be a crossing inside C, as the
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Figure 7.6: Four pseudo-verticals (two northbound and two southbound parts) meeting in
a common cell.

pseudo-lines follow the different levels. Once two, say, southbound rays meet in a cell (i.e.,
they leave a cell through the same pseudo-line of A), they follow the same pseudo-lines
until reaching the south face (i.e., they pass through the same sequence of cells), and hence
they can be drawn without intersecting each other.

For unbounded cells, the same argument works, with the exception that along the
northbound part a pseudo-vertical enters the cell through the leftmost upper pseudo-line
(i.e, at level k), and the southbound part leaves the cell through the rightmost pseudo-line
at level (k + 1).

Recall the construction of a wiring diagram from a given pseudo-line arrangement in P2

(see Section 5.1.3.3) using a ψ-augmentation of the initial pseudo-line arrangement. While
the abstract order type defined by the arrangement specifies which pseudo-lines in the
wiring diagram are above pq, the ψ-augmentation fixes an allowable sequence for the wiring
diagram. However, this allowable sequence is not determined, only its existence is shown
using the Levi Enlargement Lemma. Lemma 7.7 shows that we can add pseudo-verticals to
an arrangement such that they only intersect at vertical infinity. Hence, pseudo-verticals
can be considered as a ψ-augmentation of the initial arrangement A, and we can actually
draw a wiring diagram where all the pseudo-verticals are represented by vertical lines.

This ψ-augmentation defines an order on the crossings of A that is also given by the
sequence of switches in the corresponding allowable sequence. Let us examine this order.
We saw that the circular sequence of an arrangement of lines is given by a vertical line
sweeping the arrangement. Given an arrangement of lines, Edelsbrunner and Guibas [55,
56] defined the so-called topological sweep, that, informally, corresponds to sweeping an
arrangement of lines with a curve that intersects each line exactly once. Just like sweeping
the arrangement with a vertical line, a topological sweep defines one allowable sequence for
the order type given by the line arrangement. The topological sweep has been generalized
to pseudo-line arrangements by Snoeyink and Hershberger [150]. At any point in time
during the sweep, the sweeping curve can pass over at least one crossing of the arrangement
maintaining the property that it intersects each line exactly once. However, in contrast
to a straight vertical line, there can be several crossings that may be swept next. It can
be observed that we obtain the order of crossings determined by the pseudo-verticals by
always sweeping over the lowest-possible crossing in a topological sweep. In the wiring
diagram shown in Figure 7.4, the x-order of the crossings represents this order.
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Since we know that there is an order on the pseudo-verticals, let us discuss how this
order can be obtained. For two pseudo-verticals γpq and γrs (we have p ≺ q and r ≺ s),
this means we have to determine whether r crosses s before or after crossing γpq, i.e.,
whether rs is to the left or to the right of γpq. The two pseudo-lines defining a crossing
naturally partition the plane into four regions, which we call the upper, lower, left, and
right quadrant of the crossing. If rs is in the left quadrant of pq (i.e., below p and above q),
then rs is definitely to the left of γpq. Similarly, if rs is in the right quadrant of pq then rs is
to the right of γpq. The analogous holds when exchanging the roles of pq and rs. Therefore,
we can assume without loss of generality that rs in the upper quadrant of pq (as the other
case is symmetric), and that pq is either in the upper or lower quadrant of rs. Consider
first the case where pq is in the upper quadrant of rs. If r ≺ p, then r is part of L(pq),
and rs is, by Lemma 7.4, to the left of γpq. Analogously, if p ≺ r, then p is part of L(rs),
and therefore rs is to the right of γpq. We are therefore left with the case where pq is
in the lower quadrant of rs. If there exists a pseudo-line a ∈ L(pq) that is above rs, we
again know by Lemma 7.4 that rs is to the left of γpq. If no such pseudo-line exists, then
rkpq(r) < rkpq(s), and therefore, the crossing rs is to the right of γpq.

7.3 Linear-Time Pseudo-Line Selection

We now discuss algorithmic properties of pseudo-verticals. The definition of pseudo-
verticals and the rank they define for each pseudo-line of the arrangement used a certain
local information on the arrangement. In particular, we assumed to know the relative or-
der in which two pseudo-lines start and whether a pseudo-line is above or below a crossing
of an arrangement. In our setting, however, we cannot expect an explicit representation
of the arrangement. We therefore describe an oracle that gives an implicit representation
of an abstract order type as a pseudo-line arrangement by answering these two types of
queries using in turn only a constant number of sidedness queries. We then show how to
use the oracle to select a pseudo-line of a certain rank along a pseudo-vertical in linear
time.

7.3.1 An Oracle for an Arrangement

Before answering queries on a pseudo-line arrangement, we need to have an internal repre-
sentation of the arrangement (without explicitly building it) using only sidedness queries
for point triples, i.e., a predicate P that indicates whether a triple in the primal point set S
is oriented counterclockwise. The two main queries to answer are whether a pseudo-line a
starts before a pseudo-line b (formally, a ≺ b), and whether a pseudo-line r is above a
crossing pq.

Recall the discussion of the order-preserving properties of line arrangements in Sec-
tion 5.1.2. There, in order to relate the orientation of a triple to the above-below relation-
ship in the dual, we needed to know whether one line started above or below the other line.
Hence, we will start the description of our representation by defining the order in which
the pseudo-lines start.

First, we select an extreme point x of S (see Chapter 6). We then use the internal
representation indicated at the end of Section 5.1.3.3; see Figure 5.8 on page 72 and also
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Figure 7.4. For all a ∈ S\{x}, we define that x ≺ a. For two points a, a′ ∈ S\{x}, we define
that a ≺ a′ if and only if a′ is to the left of a with respect to x, i.e., we have P (x, a, a′).
For two points p, q ∈ S with p ≺ q, the dual pseudo-line r is below the crossing pq if and
only if r is counterclockwise of q with respect to r, i.e., we have P (p, q, r). Hence, for three
points u, v, w ∈ S \ {x}, the dual line r is below the crossing defined by the (unordered)
pair (u, v) if and only if P (u, v, w) = P (u, v, x). After selecting the extreme point x once in
linear time, every query can be answered in constant time (assuming that the orientation
of each triple can be determined in constant time).

Observe that, with this representation, the first unbounded cell we meet when travers-
ing γpq against its direction is the north face, because every pseudo-line is crossed by the
pseudo-line x from above (see again Figure 7.4). However, we will not make use of this
fact in the remainder of this chapter, in particular since we use the fact that the prob-
lem is symmetric when exchanging the role of the north face and the south face (which
corresponds to rotating the arrangement by 180◦).

Our final linear-time algorithm will depend on removing a linear fraction of the pseudo-
lines in each iteration. However, the oracle must not remove the extreme point x, in order
to keep the representation consistent. If x is kept in the internal representation, the relative
order in which all remaining pseudo-lines start stays the same.

7.3.2 Selecting a Pseudo-Line

For our abstract version of Problem 4, we want to select the pseudo-line m of a given
rank k along γpq. In particular, m should be an element of a subset B of pseudo-lines,
and we want to determine its rank in that order among the elements of B. We denote this
restricted rank by rkpq(m,B).

In the straight-line version, the linear-time selection algorithm is used to find an element
of rank k in O(n) time. This relies on the fact that the relative position of two pseudo-
lines can be computed in constant time. When discussing the relative position of two
pseudo-verticals, we have seen that checking whether a crossing rs, r ≺ s is below γpq (in
which case we have rkpq(s) < rkpq(r)), may require to determine whether rs is below a
pseudo-line a ∈ L(pq), which, in the worst case, results in a linear number of comparisons.
If we would directly use this method for comparing the rank of two pseudo-lines on γpq for
the selection algorithm, we would end up with an Ω(n2) worst-case behavior. We therefore
need a more sophisticated method.

Let m be the (unknown) pseudo-line of rank k < |B|. We use a prune-and-search
approach to identify m. By counting the elements of B above pq, we determine whether
m is above or below pq (using a linear number of queries to our oracle). Without loss of
generality, assume m is above pq (the other case is symmetric) and let U be the set of
pseudo-lines above pq. Since removing pseudo-lines from U does not change the structure
of the northbound part of γpq, we can (temporarily) remove the elements in U \B from U .
We can also remove the pseudo-lines below pq that are not in L(pq), i.e., each pseudo-line l
below pq such that p ≺ l.

As a next step, we can, in linear time, verify whether m starts above all pseudo-lines
in L(pq) ∪ {p}. If this is the case, the rank of m is determined by the order in which
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the pseudo-lines start, and we can apply the standard selection algorithm using this order
(recall Observation 7.6).

We are therefore left with the case where m starts below some element a ∈ L(pq)∪{p}.
By Corollary 7.5, we know that we have to find the pseudo-line a′ where m crosses the
upper envelope of L(pq) ∪ {p} (recall that we have a′ ≺ m).

Basically, the algorithm continues as follows. We alternatingly remove elements in U
and L(pq) such that the pseudo-lines a′ and m remain in the set until we are left with only
a constant number of pseudo-lines in the arrangement. The details of these two pruning
steps are given in the next three subsections.

7.3.2.1 Pruning the Pseudo-Lines Below the Crossing

We first show how to remove pseudo-lines from L(pq). Suppose we are given any cross-
ing vw, with v, w ∈ L(pq) and v ≺ w, on the (relevant part of) the upper envelope of
L(pq) ∪ {p}; see Figure 7.7. Depending on the value of lv(vw), we remove the pseudo-
lines of L(pq) that cannot be on the part of the upper envelope that contains the crossing
with m (recall that lv(vw) is the level of the crossing vw, as defined on page 93). Let us
examine how these pseudo-lines can be identified. Consider the crossings vp and wp. The
only elements of L(pq) that can contribute to the upper envelope along the northbound
ray of γpq between vw and pq are the ones above wp. Similarly, the only elements of L(pq)
that can contribute to the other relevant part (between the north face and vw) of the
upper envelope are the ones below vp. Hence, depending on lv(vw), we can remove the
pseudo-lines in L(pq) above vp or below wp. In both cases, the elements that are both
above vp and below wp cannot contribute to the upper envelope.

It remains to choose vw appropriately. See Figure 7.7 for an accompanying illustration.
Consider the order in which the pseudo-lines of L(pq) intersect p. A pseudo-line ai precedes
a pseudo-line aj in this order if aj is above aip. Since these are basic queries to our oracle,
we can determine the median pseudo-line r in linear time by the standard linear-time
selection algorithm. Hence, L(pq) is partitioned into the set L1 of pseudo-lines below pr
and the set L2 = L(pq) \ L1 of approximately equal size. If the pseudo-line of L(pq) that
starts above all other pseudo-lines in L(pq) is in L2 (which be determined by a linear
number of queries to the oracle), then no pseudo-line of L1 can be part of the upper
envelope of L(pq) ∪ {p} and we can remove the elements of L1. Otherwise, there exists
exactly one pair (v, w) of pseudo-lines with v ∈ L1 and w ∈ L2 such that the crossing vw
is on the upper envelope. Hence, depending on the value of lv(vw), we can prune at least
either L1 or L2, and therefore at least approximately half of the pseudo-lines in L(pq). In
order to find vw, we use the result presented in Chapter 6. Observe that, in the primal,
the upper envelope is a part of the convex hull of the abstract order type. The sets L1

and L2 are semispaces defined by the pair rp. Hence, vw is an edge of the convex hull of
L(pq)∪{p} connecting a point of L1 to a point of L2. We are therefore looking for a bridge
edge defined by the pair rp. By applying Theorem 6.4 (see page 90), we get vw after a
linear number of queries.

Note that by removing pseudo-lines from L(pq), we obtain a new arrangement A′. In
this arrangement, the pseudo-vertical γpq will, in general, follow different pseudo-lines from
L(pq) along its northbound ray. Still, the number of pseudo-lines above the crossing a′m
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vw

pqrv
w

Figure 7.7: Partitioning the pseudo-lines in L(pq) along p by a pseudo-line r.

that we look for remains the same, and m will have the same rank with respect to the new
pseudo-vertical γ′pq in the reduced arrangement.

7.3.2.2 Pruning the Pseudo-Lines Above the Crossing

To remove elements of U , we pick a pseudo-line ui ∈ U . For now, let us suppose that ui is
chosen randomly; we will show later how to make a good selection of ui in a deterministic
way. Recall that we already removed the elements of U\B, and hence we have rkpq(ui, B) =
rkpq(ui). We compute the rank rkpq(ui) by finding the corresponding pseudo-line b ∈
L(pq)∪{p} at which ui passes through the upper envelope of L(pq)∪{p}. Clearly, this can
be done in linear time using our basic operations. If ui = m, we are done. If rkpq(ui) < k,
then all pseudo-lines in U below bui can be removed (we will later see how to choose ui in
order to be able to remove a constant fraction of the pseudo-lines). Otherwise, we remove
all pseudo-lines in U above bui and update k accordingly.

Note that, while by this operation we obtain a new arrangement A′, the northbound
ray of γpq in A′ is defined by the same pseudo-lines as in A, and we can therefore safely
continue with the next iteration.

It remains to show how to pick ui in a deterministic way such that at least a constant
fraction of U can be removed in each iteration. To this end, we use the mighty concept of
ε-approximation of range spaces.

7.3.2.3 Using ε-Approximation for Pruning

Our definitions follow [118]. A range space is a pair Σ = (X,R) where X is a set and R
is a set of subsets of X. The elements of R are called ranges. For X being finite, a subset
A ⊆ X is an ε-approximation for Σ if, for every range R ∈ R, we have∣∣∣∣ |A ∩R||A| − |X ∩R||X|

∣∣∣∣ ≤ ε .
A subset Y of X is shattered by R if every possible subset of Y is a range of Y . The

Vapnik-Chervonenkis dimension (VC-dimension) of Σ is the maximum size of a shattered
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subset of X. For sets with finite VC-dimension, Vapnik and Chervonenkis [159] give the
following seminal result.

Theorem 7.8 (Vapnik, Chervonenkis [159]). Any range space of VC-dimension d admits
an ε-approximation of size O(d/ε2 log(d/ε)).

For |X| = n, the shatter function πR(n) of a range space (X,R) is defined by

πR(n) = max{|{Y ∩R : R ∈ R}| : Y ⊆ X} .

Vapnik and Chervonenkis [159] show that, for a range space (X,R) of VC-dimension d,
πR(n) ∈ O(nd) holds. Matoušek [117, 119] gives a linear-time algorithm for computing
an ε-approximation for range spaces of finite VC-dimension d (simplified by Chazelle and
Matoušek [44]), provided there exists an appropriate subspace oracle.

Definition 7.1. A subspace oracle for a range space (X,R) is an algorithm that returns,
for a given subset Y ⊆ X, the set of all distinct intersections of Y with the ranges in R,
i.e., the set {Y ∩ R : R ∈ R} and runs in time O(|Y | · h), where h is the number of sets
returned.

Theorem 7.9 (Matoušek [117, Theorem 4.1]). Let Σ = (X,R) be a range space with the
shatter function πR(n) ∈ O(nd), for a constant d ≥ 1. Given a subspace oracle for Σ and a
parameter r ≥ 2, a (1/r)-approximation for Σ of size O(r2 log r) can be computed in time
O(|X|(r2 log r)d).

Observe that, for such a range space, the running time of the subspace oracle is bounded
by O(|Y |d+1), as h is at most πR(|Y |).

Suppose that, e.g., X is a point set in the Euclidean plane and R consists of all possible
subsets of X defined by half-planes, defining a range space Σ = (X,R). Hence, R is the
set of semispaces defined by the order type of X. It is easy to see that the VC-dimension
of Σ is 3. Hence, as pointed out by Lo, Matoušek, and Steiger [112], a constant-size
ε-approximation of a point set for R exists; given this approximation, an approximate
ham-sandwich cut can be constructed in constant time, such that on every side of the cut
there are no more than 1/2+ε of the points of each class. The subspace oracle returns, for
any subset Y of points, all possible ways a line can separate Y , which can easily be done
in time O(|Y |3).

We apply a very similar approach for derandomizing our algorithm. Note that the
above setting works equally well for abstract order types: Since all abstract order types of
8 elements are realizable (see Theorem 5.5), the VC-dimension of 3 for the range space of
semispaces holds also for abstract order types. (A more general approach to this setting is
taken by Gärtner and Welzl [73], who study the range spaces of arrangements of oriented
pseudo-hyperplanes by grouping, for each cell C, the pseudo-hyperplanes having C on their
positive side to a range.)

A subspace oracle for semispaces of a given set can easily be implemented using the
definition of a semispace by allowable sequences [82]; for each pair f, g ∈ Y, f ≺ g, in the
dual pseudo-line arrangement, we report the pseudo-lines above the crossing fg and, say,
f as a semispace, and the pseudo-lines below fg and g as a second semispace.
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Consider again the set U of pseudo-lines above the crossing pq in our arrangement A.
Using Theorem 7.9, we obtain an ε-approximation A ⊂ U for the range space of semispaces,
i.e., the pseudo-lines of U above and below a point in A. Recall that A is of constant size
for a fixed ε. For each pseudo-line o ∈ A, we obtain, in linear time, the crossing of o with
the pseudo-lines in L(pq) that defines the rank rkpq(o). This gives us the pseudo-line ui ∈ A
that has the median rank among the elements of A. Hence, we obtained a pseudo-line ui
such that not less than 1/2− ε pseudo-lines of U are above and below the crossing bui on
the upper envelope of L(pq). This allows us to prune a constant fraction of the elements
in U .

7.3.2.4 Analysis

In each iteration, our problem consists of the remaining pseudo-lines in U and in L(pq), plus
a constant number of additional pseudo-lines (i.e., p, q, and the pseudo-lines needed by the
oracle, in our case the pseudo-line x). Let n be the number of these pseudo-lines. In each
iteration we prune the larger of U and L(pq). In both cases, we remove at least half of the
pseudo-lines on one side of pq, and therefore n/4− c pseudo-lines in each iteration. Since
each iteration takes O(n) time, we have overall a linear-time prune-and-search algorithm.

Theorem 7.10. Given an arrangement A of pseudo-lines, a subset B of its pseudo-lines,
a crossing pq, and a natural number k ≤ |B|, the pseudo-line m ∈ B of rank k in B
on the pseudo-vertical through pq, i.e., rkpq(m,B), can be found in linear time using only
sidedness queries on the corresponding abstract order type.

7.4 Revisiting the Ham-Sandwich Cut Algorithm

In this section, we describe an application of pseudo-verticals for a bisection algorithm,
namely the linear-time ham-sandwich cut algorithm by Lo, Matoušek, and Steiger [112].
To this end, we revisit the description given in [112]; we adapt some of the terminology
(like replacing “line” with “pseudo-line”) and argue for the correspondence between entities
in the original description and their abstract counterpart.

Lo, Matoušek, and Steiger [112] describe two different variants of the algorithm, one
for points in the plane and the other one for points in arbitrary dimension (their work
is a generalization of a 2-dimensional version by Lo and Steiger presented in [113]). For
the 2-dimensional case, a result by Matoušek [116, Theorem 3.2] is used for appropriately
selecting a set of vertical lines. In higher-dimensions, they use a different approach (given
in [117]) based on an ε-approximation with the ranges being defined as sets of hyperplanes
that are stabbed by segments (we will give a formal definition later). While the higher-
dimensional variant appears to be less instructive, it is easier to apply to our setting.
We therefore will use this variant for our 2-dimensional setting; here, we do not give
the description for arbitrary dimension, but transcribe it to dimension 2 only. Still, our
exposition closely follows [112], while merely pointing out the parts where the applicability
to our abstract setting might not be obvious.

Let P be a finite set of n points in the Euclidean plane. A line h bisects P if no more
than n/2 points lie in either of the open half-planes defined by h. We call h a bisector. If P
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is a disjoint union of two point sets P1, P2, a ham-sandwich cut is a line that simultaneously
bisects both P1 and P2 (a red and a blue set). This definition extends to abstract order
types in a natural way. It is well-known that a ham-sandwich cut always exists. Let T be
an interval on the x-axis, and let V (T ) be the vertical slab between the two vertical lines
defining T . The interval has the odd intersection property with respect to the levels λ1
and λ2 if |(λ1 ∩ λ2) ∩ V (T )| is odd. If k = b(n+ 1)/2c, the k-level is called median level.
In our case, each slab is defined by two pseudo-verticals.

The algorithm works in a prune-and-search manner. Let us first consider the setting
where we are given an actual set of points in E2. In every iteration, we are given

• an interval T on the x-axis,

• two sets G1 and G2 of lines dual to a subset of points in P1 and P2, respectively,
with |G1| = n1 and |G2| = n2, and

• two integers k1 and k2, with 1 ≤ k1 ≤ n1 and 1 ≤ k2 ≤ n2, denoting the k1-level λ1
and the k2-level λ2, respectively.

Further, we know that T has the odd intersection property for the k1-level and the k2-level.
We denote the arrangements corresponding to G1 and G2 with A1 and A2, respectively.
Initially, λ1 and λ2 are the median levels of the two arrangements (for which the odd
intersection property holds). Without loss of generality, suppose n1 ≥ n2. The algorithm
consists of the following four steps:

1. Divide T into a constant number of subintervals T1, . . . , TC , to limit the number of
pseudo-lines that are on λ1 within each subinterval.

2. Find a subinterval Tj with the odd intersection property.

3. Construct a trapezoid τ ⊂ V (Tj) such that

(a) λ1 ∩ V (Tj) ⊂ τ , and
(b) at most half of the lines of A1 intersect τ .

4. Discard the lines of A1 that do not intersect τ , update k1 accordingly and continue
within the interval Tj .

In our abstract setting, the interval T is given by a pair of pseudo-verticals. Recall that
there is a total order on the pseudo-verticals of a pseudo-line arrangement. The trapezoid τ
will also be replaced by a corresponding structure that will be described later.

7.4.1 Obtaining Intervals

Step 1 in the algorithm is the one that is technically most involved. The straight-line
version can be solved using the following result by Matoušek.1

1Lo, Matoušek, and Steiger [112] refer to [116], where [90, Lemma 4.5] (Lemma 7.12 herein) is used, and
also refer to [117] in this context, where a general algorithm for constructing ε-approximations is given.
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Lemma 7.11 (Matoušek). Let H be a collection of n hyperplanes in Ed and let R be
all subsets of H of the form {h ∈ H : h ∩ s 6= ∅} where s is a segment in Ed. An ε-
approximation for the range space (H,R) of size O(ε−2 log(1/ε)) can be computed in time
O(f(ε)n), where f(ε) is a factor depending on ε and d only.

Let us go into the details why this lemma also holds for arrangements of pseudo-lines.
To this end, a general result by Haussler and Welzl [90] is used.

Lemma 7.12 (Haussler, Welzl [90, Lemma 4.5]). Assume k ≥ 1 and (X,R) is a range
space of VC-dimension d ≥ 2. Let R′ be the set of all sets of the form

⋃k
i=1Ri −

⋂k
i=1Ri,

where Ri is a range in R, 1 ≤ i ≤ k. Then (X,R′) has VC-dimension less than 2dk log(dk).

We already discussed that a range space defined by the semispaces of an abstract order
type has VC-dimension 3. We can combine this fact with Lemma 7.12 in the following way.
Consider two semispaces S1 and S2 of an abstract order type, defined by the pseudo-lines
above two points p1 and p2 in the corresponding pseudo-line arrangement A (for simplicity,
suppose that none of p1 and p2 lie on a pseudo-line ofA). Let R = (S1∪S2)\(S1∩S2). Then
R consists exactly of the pseudo-lines that separate p1 from p2. By the Levi Enlargement
Lemma (see Lemma 5.3), we can obtain a pseudo-line χ for A containing both p1 and p2.
Consider the part of χ between p1 and p2. We call such a part a pseudo-segment. The
pseudo-lines crossed by this pseudo-segment are exactly those in R. Applying Lemma 7.12,
we can therefore obtain a range space that is defined by the pseudo-lines that can be
crossed by pseudo-segments from the range space defined by the semispaces; this new
range space has again finite VC-dimension. (Note that, while we explained the application
of Lemma 7.12 using points p1 and p2, the argument also holds for pseudo-segments defined
by crossings of A, as the endpoints of the pseudo-segment can be perturbed to be in one
of the four cells adjacent to a crossing.) Using Theorem 7.9, we can state the following
counterpart to Lemma 7.11 for abstract order types in the plane.

Corollary 7.13. Let Σ = (X,R) be a range space where X is the set of pseudo-lines in a
pseudo-line arrangement A and R consists of the sets of pseudo-lines of A that are crossed
by pseudo-segments obtained on A. Then a (1/r)-approximation of constant size for Σ can
be computed in O(|X|) time for a given r ≥ 2.

For future reference, let us call this range space the pseudo-segment range space of the
arrangement.

For the ham-sandwich cut algorithm, we can now proceed in the following way. Using
Corollary 7.13, we obtain an ε-approximation A for the pseudo-segment range space of A1;
we choose ε = 1/12 with foresight. Sort the crossings of A by the order implied by
the pseudo-verticals through the crossings on the original arrangement A. Since A is of
constant size, this can be done in O(|A|) time. We use Theorem 7.10 to determine the
k1-level of A1 at the pseudo-vertical of each crossing in A. Hence, for each pseudo-vertical,
we get a crossing in A that has level k1 in A1. Counting the elements of A2 above each
such crossing allows us to find a crossing pq and a crossing p′q′ consecutive in A with the
odd intersection property. We again use Theorem 7.10 to select the pseudo-lines that are
of rank k1 − cεn1 and k1 + cεn1 in A1 at the pseudo-vertical γpq, and do the same at γp′q′
for a constant c (we fix c = 3/2 with foresight). Hence, we have six crossings in A of which
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we know the level within A1. Let gl and gr be the crossings at the k1-level along γpq and
γp′q′ , respectively. We denote the crossings at the (k1 − cεn1)-level by d−l and d−r . Their
counterparts at the (k1 + cεn1)-level are denoted by d+l and d+r .

7.4.2 Properties of a Trapezoid-Like Structure

In the original algorithm [112], the points at the given levels were determined by the
intersections of the levels with the vertical lines. These points formed a trapezoid. However,
the actual properties used are the ones of the points and not the ones of the trapezoid as
a geometric object. In this part, we reproduce the line of arguments used in [112] to show
that at least half of the pseudo-lines in A1 are either above both d−l and d−r or below both
d+l and d+r , and that these pseudo-lines are not on the k1-level between gl and gr.

Consider the arrangement A1. We bound the number of pseudo-lines that separate d−l
from d−r , i.e., the pseudo-lines crossing a pseudo-segment between d−l and d−r . The levels of
d−l and d−r are the same. Therefore, the numbers of pseudo-lines of the approximation A
above these two crossings differ by at most 2ε |A|. If there would be more than 2ε |A|
pseudo-lines of A separating d−l from d−r , then at least one of these pseudo-lines would
have to be above d−l and below d−r , and another one would have to be below d−l and
above d−r . Hence, the crossing between these two pseudo-lines would have to be in the
interval between γpq and γp′q′ . But this contradicts the choice of γpq and γp′q′ , as there is
no pseudo-vertical through a crossing of two pseudo-lines of A between them. Hence, any
pseudo-segment between d−l and d−r crosses at most 2ε |A| of the pseudo-lines in A. By
the ε-approximation property, at most 3εn1 pseudo-lines of A1 intersect such a pseudo-
segment.

Suppose there is a pseudo-line w of A1 that is above both d−l and d−r , but still w is
an element of the k1-level between gl and gr. The part of the arrangement where this
can happen is bounded by γpq and γp′q′ . Then also any pseudo-segment s between d−l
and d−r would have to cross the relevant part of the k1-level (recall that the pseudo-
segment can be considered as a part of a pseudo-line in an extended arrangement). At
both d−l and d−r , the pseudo-segment s is at level (k1 − cεn1), and therefore has to cross
2(k1 − (k1 − cεn1)) = 2cεn1 pseudo-lines to reach the k1-level and then return to level
(k1 − cεn1). By the choice of c, this is exactly 3εn1, the maximum number of crossings
the pseudo-segment s can have. Hence, s cannot go below the k1-level and therefore the
pseudo-line w cannot intersect the k1-level. For our prune-and-search approach, we can
therefore remove all pseudo-lines of A1 that are above both d−l and d−r , and, by symmetric
arguments, can do the same for the ones below both d+l and d+r .

It remains to count how many pseudo-lines are removed. There are exactly 2cεn1
pseudo-lines separating d+l from d−l , as well as d

+
r from d−r . Further, we argued that there

are at most 3εn1 pseudo-lines between d−l and d−r , as well as between d+l and d+r . This
amounts to (4c + 6)εn1 = 12εn1, where each pseudo-line is counted twice. Therefore, we
have to keep at most 6εn1 = n1/2 pseudo-lines of A1.



7.5. Connections with Extreme Point Search and the Two-Line Partitioning Problem 107

7.4.3 A Note on the Intervals

After having pruned a linear fraction of pseudo-lines, the algorithm performs another
iteration within a smaller interval for which the odd-intersection property holds. Note
that we need to continue within this interval, as the k1-level (for an updated k1) equals the
median-level only within that region. In the geometric variant, the interval was explicitly
given by the vertical lines of the current slab. For pseudo-verticals, we have no such fixed
position, and actually the pseudo-verticals will, in general, be different when pseudo-lines
are removed from the arrangement (even the relative order of two crossings may change).
However, we can safely define the interval for the subproblem by the two crossings gl and gr,
as the odd intersection property can be seen as a property of two points on one of the two
levels (only the number of pseudo-lines of A2 above each of the two points is relevant here).
It is interesting to observe that also γgl and γgr do not have a different relative position in
the new arrangement.

Corollary 7.14. A ham-sandwich cut of an abstract order type can be found in linear time
using only sidedness queries.

7.5 Connections with Extreme Point Search and the Two-
Line Partitioning Problem

Let us have an informal look at the problem of selecting an element of rank k on a given
pseudo-vertical γpq in the primal. For simplicity, suppose there is no pseudo-line start-
ing above the upper envelope of L(pq) ∪ {p}. Consider the upper envelope of the whole
arrangement A. The set of pseudo-lines can be partitioned into those above and those
below pq. The crossing that witnesses the rank of the first pseudo-line crossed by γpq is
the crossing e at the upper envelope of A where one pseudo-line from above pq crosses a
pseudo-line below pq. In the primal, this crossing corresponds to the supporting line of
one of the two bridge edges on the convex hull of the set, which is separated by the line pq.
When subsequently removing the pseudo-lines of U that participate in such a crossing e,
we get the order as defined in the proof of Theorem 6.2. (See again Figure 6.2; the roles of
p and q are interchanged in our description.) So while for Theorem 6.2 we were essentially
looking for an element of rank 1 in U (keep in mind that we disregarded the pseudo-lines
starting above the upper envelope of L(pq) ∪ {p}), we can find an element of any given
rank k by Theorem 7.10. The algorithm BasicMin, which we used for pruning in The-
orem 6.2, seems essentially to be only suitable when we want to find a minimal element
in that order. This is why we utilized the more sophisticated method of ε-approximation
in Section 7.3.2. However, it can be shown that BasicMin can be used to prune the
set L(pq), where in the final step we would not look for the first element in the radial order
of U around the two endpoints of the last edge m, but for the one of rank k. Conversely,
it can also be seen that, by adapting the proof of Theorem 7.10, the ε-approximation for
the range space defined by the semispaces of the abstract order type can also be used to
obtain Theorem 6.4.

Several years before the linear-time algorithm for ham-sandwich cuts [112] was devel-
oped, Megiddo [121] considered the following restricted version of the ham-sandwich cut
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problem. Given a set of red and a set of blue points with disjoint convex hulls, find a line
that bisects both the red and the blue point set. Actually, the resulting line does not have
to be a bisector, but the number of red and blue points on one side of the line can be
chosen arbitrarily. In the dual representation, we are given m blue lines with positive slope
and n red lines with negative slope, and we want to find the intersection point between a
k1-level in the blue lines and the k2-level in the red lines. If we consider the pseudo-lines in
L(pq)∪ {p} as red pseudo-lines and the pseudo-lines in U as the blue ones, we are looking
for the intersection point between the k-level in U and the 1-level in L(pq)∪{p}. However,
Megiddo’s algorithm also depends on the realization of the line arrangement; the algorithm
requires selecting the median of a subset of crossings ordered by their x-coordinate and
selecting the intersections of a given rank at vertical lines. These problems also had to be
solved when abstracting the general ham-sandwich cut algorithm.

7.6 Chapter Summary

In this chapter, we defined a possible replacement of a vertical line in line arrangements for
arrangements of pseudo-lines and showed that it fulfills important algorithmic properties.
In particular, we were able to show how to select the kth pseudo-line crossed by this
pseudo-vertical line and the crossing where this pseudo-line (locally) enters the k-level in
linear time, using only sidedness queries. As an application, we showed how these pseudo-
vertical lines replace vertical lines in the linear-time ham-sandwich cut algorithm by Lo,
Matoušek, and Steiger [112].

In essence, the order of the pseudo-verticals through all crossings of a pseudo-line ar-
rangement fix one specific allowable sequence for an abstract order type. Theorem 7.10
allows us to select certain elements of a permutation in that allowable sequence in linear
time. We have seen that this approach is a generalization of the result presented in Chap-
ter 6. (Note that the oracle also uses the extreme point x, which, in turn, requires applying
Theorem 7.10; any internal representation that can answer queries of the form a ≺ b in
constant time allows us to find an extreme point in linear time.) It would be interesting
to see whether the ε-approximation used can be replaced by a less sophisticated method
similar to the BasicMin algorithm.

The observation that the approach by Lo and Steiger [113] in principle also works for
pseudo-line arrangements in the Euclidean plane is not new. It has been used by Bose et
al. [35] for their randomized linear-time algorithm for geodesic ham-sandwich cuts inside
a pointgon (see also Section 5.2.3). However, in their setting, the pseudo-lines are given
by (weakly) x-monotone polygonal paths with a constant number of edges. Hence, the
intersection of such a path with a vertical line can be computed in constant time, like in
the straight-line setting. Their algorithm is randomized and runs in O((n+m) log r) time,
where n is the number of red and blue points, m is the number of vertices of the polygon, of
which r are reflex. They show that the algorithm is optimal in the algebraic computation
tree model when the running time is parameterized by (n+m) and r.

As discussed in Section 5.2.3, geodesic order types are a subset of abstract order types.
When we apply Theorem 5.7 to get, after O(m) preprocessing time, the orientation of
each triple of points in a pointgon in O(log r) time in combination with the ham-sandwich
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cut algorithm for abstract order types, we obtain a deterministic O(n log r + m) time
algorithm for geodesic ham-sandwich cuts “for free”. Note that this does not contradict
the lower bound on the worst-case behavior shown by Bose et al. [35], as their analysis
is parameterized by the sum of the number of points and the number of vertices of the
polygon. We emphasize that a detailed analysis of their approach may give a more fine-
grained runtime analysis, and may allow for directly applying common derandomization
techniques. But nevertheless, our technique results in a complete separation of the part
that is specific to the geodesic setting, implementing a general subroutine, and the ham-
sandwich cut algorithm.





Chapter 8

Algorithmic Aspects of k-Convex
Point Sets

8.1 Introduction

The concept of convexity in Euclidean spaces (or, more general, in vector spaces of ordered
fields) is ubiquitous in geometry. As we already saw in the previous chapters, the notion
of convexity for 2-dimensional domains (such as convex polygons) has been transcribed to
point sets in convex position in the field of combinatorial geometry. Various generalizations
and relaxations of convexity have been considered in the literature [5]. For example, in the
concept of restricted-orientation convexity (or D-convexity), a set is considered D-convex
if the intersection with any line having a direction contained in a set D of vectors is either
empty or connected [68, 120].

This chapter is concerned with another generalization of convexity. The notion of
k-convexity was recently introduced in [5] for 2-dimensional subsets of the (Euclidean)
plane. In particular, this comprises simple polygons. While the definition of k-convexity is
rather involved for 2-dimensional subsets of the Euclidean plane, we will use the definition
restricted to simple polygons. In this case we say that a simple polygon is k-convex if
the intersection of any straight line with the polygon consists of no more than k disjoint
intervals. This implies that 1-convexity refers to the classic concept of convexity of a simple
polygon. Among other results, several properties of k-convex planar polygons are presented
in [5]. This work has been generalized by extending k-convexity to finite point sets in the
plane [6]. A point set S is said to be k-convex if there exists a k-convex polygon whose
vertex set is S. In other words, we are interested in point sets which admit a k-convex
polygonization. This chapter presents algorithmic aspects of k-convex point sets that have
already been published in [6]. That paper also covers combinatorial aspects of k-convexity
of point sets, which are not presented in this thesis. In addition to the results presented
in [6], we give a short account on k-convexity for abstract order types in Section 8.5.

With the previous chapters in mind, the reader might already have noted that k-
convexity for simple polygons and point sets is a combinatorial rather than an algebraic
concept (as opposed to D-convexity). Also, it directly migrates to the domain of abstract
order types. We will consider this abstract setting at the end of this chapter (Section 8.5).

111
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The introduction of k-convexity of 2-dimensional domains [5] follows the common ap-
proach to generalize the notion of convexity under various aspects. As for point sets in
convex position, we can make the step from k-convex polygons to k-convexity of point sets,
motivated by the importance of Erdős-Szekeres-type results in combinatorial and compu-
tational geometry. A comparable line of research is taken by Arkin et al. [21], who consider
the minimum number of reflex vertices among all simple polygonizations of a point set.

We devote Section 8.2 to a precise definition of our generalization. The closely related
concepts of stabbing number and j-stabber (of a polygon or a geometric graph) are also
discussed. Further, we give some basic combinatorial properties of point sets regarding
k-convexity, mainly to give some intuition for the algorithmic results presented. In Sec-
tion 8.3, a polynomial-time algorithm is given for deciding whether a point set is 2-convex.
In contrast, in Section 8.4 the problem of deciding k-convexity is proved to be NP-complete,
for all k ≥ 3. Finally, we address the concept of k-convexity for abstract order types in
Section 8.5.

8.2 Preliminaries and Basic Properties

As usual, let S be a finite set of points in the plane. We again assume general position
for all point sets, unless otherwise stated. We follow the definitions in [5]. Suppose a
line ` has non-empty intersection with ∂P . At each component of the intersection, ` either
crosses ∂P , or locally supports P along the component (which is either an edge or a single
vertex of P ). A line ` is a j-stabber of P if it crosses ∂P at least j times. The stabbing
number of P is the largest number of crossings between ∂P and a line. Let ` be a line
that intersects the interior of P in exactly k connected components. Since all vertices are
in general position, there exists a perturbation of ` that is a 2k-stabber of P . Therefore a
polygon is k-convex but not (k − 1)-convex if and only if its stabbing number is 2k.

Given a point set S, let P be the set of all polygonizations of S, i.e., the set of all
simple polygons whose vertex set is exactly S. If P contains at least one polygon that is
k-convex, then we call S a k-convex point set.

Let G be a (possibly self-intersecting) geometric graph. A line ` is a j-stabber of G if it
crosses at least j edges of G. Note that the degenerate cases where a line passes through a
vertex of G can be disregarded due to the same perturbation arguments as for the stabbing
number of a simple polygon, resulting in a consistent definition of the stabbing number of
geometric graphs. We can therefore define that if G has stabbing number at most 2k, then
G is a k-convex graph. Now any simple k-convex polygonal cycle C is the boundary of a
k-convex polygon, and for every k-convex polygon P , ∂P is a k-convex polygonal cycle.
For the sake of brevity, we will sometimes refer to a line ` as a local j-stabber if ` is a
j-stabber of a subgraph, where the subgraph will be clear from the context.

The following result formalizes that also a non-simple polygonal cycle can be taken to
determine the degree of convexity of a set of points.

Lemma 8.1 (Aichholzer et al. [6]). Let C be a spanning (non-simple) k-convex polygonal
cycle of a set S of points. Then S is k-convex.

In order to reason about the degree of convexity of a point set, it is useful to know its
bounds, which are given by the following theorem.
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`

`′

`

`′

`

`′

Figure 8.1: Lines stabbing a polygon. An inflection edge (left) is contained in `; its
perturbation `′ is a 6-stabber. An edge with two convex vertices (middle) is contained in
`; `′ is a 4-stabber. An inner tangent and its perturbation is shown to the right.

Theorem 8.2 (Aichholzer et al. [6]). Any set S of n points is O(
√
n)-convex, and this

bound is tight.

Further, it will be useful to keep in mind, in particular throughout the NP-hardness
construction, that adding points to a point set that is not k-convex cannot make it k-
convex.

Lemma 8.3 (Aichholzer et al. [6]). Every subset of a k-convex point set is k-convex.

8.3 Deciding 2-Convexity of Point Sets

In this section we turn our attention to algorithmic aspects of 2-convexity. We study
the problem of deciding whether a point set is 2-convex and show that if a 2-convex
polygonization of a point set exists, it can be constructed in polynomial time.

8.3.1 The Structure of 2-Convex Polygons

Let us first recall basic definitions and facts about 2-convex polygons given in [5]. An edge
of a simple polygon P is called an inflection edge if it joins a convex and a reflex vertex
of P . An inflection line is the supporting line of an inflection edge. A line ` is an inner
tangent if it is the supporting line of two nonconsecutive reflex vertices such that there are
points interior to the polygon in each of the three intervals in which these two vertices split
the line. See Figure 8.1. The following result shows the interrelation between 2-convexity,
inner tangents, and stabbers.

Lemma 8.4 (Aichholzer et al. [5, Lemma 10]). A simple polygon P is 2-convex if and only
if P has no inner tangent, and no inflection line that can be infinitesimally perturbed to a
6-stabber.

We give some further preliminary definitions; see Figure 8.2 for an accompanying il-
lustration. Unless stated otherwise, the edges of a polygon are considered to be directed
counterclockwise around the polygon, and all polygonal chains are simple.

Definition 8.1. A lid of a polygonization of S is an edge of CH(S) (not necessarily part
of the polygonization).

Definition 8.2. A pocket of a polygon is the polygonal chain between the first and second
end-vertex of a lid. A pocket consisting solely of the lid is called a trivial pocket.
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ei

ri

ci

inner ray

outer raylid

Figure 8.2: A pocket of a 2-convex polygon. The interior of the polygon is gray. The
dotted edge illustrates the lid. The two dashed lines illustrate the two inflection lines of
the pocket, consisting of the inner ray, the inflection edge, and the outer ray.

Definition 8.3. For an inflection edge ei, let ci and ri denote the convex and reflex vertex
of ei respectively. We partition an inflection line into the inflection edge and two rays; the
inner ray, starting at ri and the outer ray, starting at ci.

Lemma 8.5 (Aichholzer et al. [5, Lemma 12]). Given a 2-convex polygonization P of S, let
C = 〈p1, p2, . . . , pt〉 be the chain of vertices that connects (counterclockwise) two consecutive
vertices p1, pt on CH(S) (i.e., C defines a pocket). Then the vertices of the chain can be
partitioned into three chains C1 = 〈p1, . . . , pu〉, C2 = 〈pu+1, . . . , ps〉, C3 = 〈ps+1, . . . , pt〉,
such that all the elements in C1 and C3 are convex vertices of P , while all the elements in
C2 are reflex.

Hence, each non-trivial pocket in a 2-convex polygonization has exactly one pair of
inflection edges. The chain of reflex vertices in a pocket of a 2-convex polygon is called the
reflex chain.

8.3.2 Deciding 2-Convexity of Polygons

If we are given a polygonization, we can determine in O(n log n) time whether this simple
polygon is 2-convex [5, Theorem 11]. We will use this as a sub-procedure for our algorithm
in Section 8.3.4.2. Here, we give a sketch of the proof presented in [5] to provide further
intuition for the problem setting, and for our reasoning in Section 8.5.

Lemma 8.4 implies that the algorithm has to check for the existence of 4-stabbing
inflection lines and of inner tangents.

For testing the existence of 4-stabbing inflection lines, the rays emanating from edges
at reflex vertices are checked using a result of [42], which shows that ray shooting queries
in a simple polygon can be done in O(log n) time after a linear-time preprocessing step.
(Observe that, after the edge where a ray leaves the polygon has been determined, it can
be checked in O(log n) time whether it re-enters the polygon at that pocket.)

For determining whether the polygon has an inner tangent, one uses the geometric dual
in the following way. For each reflex vertex, the set of lines supporting it gives a double
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wedge, whose dual is a line segment. The polygon has an inner tangent if and only if two
such segments intersect. This can be tested in O(n log n) time [135, Theorem 7.9].

8.3.3 Outline of the Algorithm

Recognizing 2-convexity of a point set S can be done in polynomial time if it has a star-
shaped 2-convex polygonization. A brute-force approach would be to consider all Θ(n4)
cells of the arrangement of lines spanned by two points of S as part of the potential
kernel. For each choice, the resulting star-shaped polygon can be constructed and checked
for 2-convexity in O(n log n) time [5], resulting in an O(n5 log n) algorithm. Hence, for
the remainder of this section, we assume that the point set S does not have a 2-convex
star-shaped polygonization.

Suppose we have fixed a non-trivial pocket that is part of the 2-convex polygonization.
Consider any line ` that crosses the pocket exactly twice in such a way that ` intersects
the pocket in exactly two points (i.e., ` does not contain an edge of the pocket). The
two crossing points partition ` into a segment and two rays. Each of these rays crosses ∂P
exactly once, since otherwise ` would be a 6-stabber. The key observation for the algorithm,
which will be proven formally in Lemma 8.8, is that if we rotate ` in such a way that it
always crosses the pocket twice, the order in which ` traverses points not in the pocket is
the same as the order of these points along ∂P . We look for a triple of pockets that give
us the order for all points and show that if the point set has a 2-convex polygonization,
but no star-shaped polygonization, such a triple must exist. The polygonization is found
by iterating over all pocket triples. Instead of choosing a polygonization of a pocket, we
only consider the O(n4) possible pairs of inflection edges for each lid. We show that the
choice of the inflection edges suffices to find a 2-convex polygonization, if one exists.

8.3.4 Observations and Lemmas

Since no inflection line can be a 4-stabber (see Lemma 8.4), we make the following obser-
vations for 2-convex polygons.

Observation 8.6. Consider the pair of inflection lines of a pocket. The lines must not
cross any other part of this pocket.

This immediately implies the next observation.

Observation 8.7. For the pair of inflection lines of any pocket, an intersection between
them occurs either at both the inner or both the outer rays.

Consider the 2-convex polygon drawn in Figure 8.3. Any line that passes through a
pocket twice can only pass through ∂P two more times. In particular, if such a line also
passes through a point of the point set not in the pocket, it separates the neighbors of that
point along ∂P . Therefore, the order in which the points appear along the polygonization
is constrained by the pocket. We formalize this in the following lemma; see Figure 8.3 for
an accompanying illustration.

Lemma 8.8. Let P be a 2-convex polygon and let e1 and e2 be the inflection edges of a
pocket K directed from the convex to the reflex vertex. Without loss of generality, c1 is left
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Figure 8.3: The order of the vertices defined by the inflection edges of a pocket. The gray
wedge is the kernel region.

of e2. Let C be the part of ∂P defined by the vertices that are to the left of e2 and not
part of the pocket (starting at v1, the left endpoint of the lid of K). Then the order of the
points in C is the same as the radial order around any point p on e2. This also holds for
any point on e1 and the points of ∂P to the right of e1.

Proof. We claim that a ray r starting at p ∈ e2 and contained in the left halfplane of e2
cannot cross C more than once. Otherwise, consider the supporting line ` of r. If p is an
extreme point, slightly perturb ` such that it crosses ∂P twice in a neighborhood of p. In
any case, ` (or its perturbation) crosses the pocket twice, once through e2 and once to the
left of e2. There is another crossing with ∂P to the right of e2. Crossing C more than once
would make ` a 6-stabber, contradicting 2-convexity. Therefore the order around p is the
same as the order in C.

Again let e1 = c1r1 and e2 = c2r2 be the two inflection edges of a pocket in counter-
clockwise order. Further, let H−(ab) and H+(ab) be the closed half-planes to the left and
to the right, respectively, of the directed line through the points a and b. We associate two
regions to each pocket; see again Figure 8.3. The kernel region of the pocket is the inter-
section of H−(c1r1), H+(c2r2), and, if r1 6= r2, H−(r1r2). For a trivial pocket (i.e., only a
convex hull edge), the kernel region is the closed half-plane to the left of it. Analogously,
the pocket region is the intersection of the half-planes H+(c1r1), H−(c2r2), and H−(r1r2)
if r1 6= r2; if r1 = r2, then the pocket region is the empty set. Lemma 8.8 tells us that
once we know one pocket, the remaining polygonization is fixed except for the points in the
kernel region. The most sophisticated part of our proof will be concerned with determining
the pocket (which is, as we will see, relevant when there are no points in the kernel region
but in the interior of the pocket region).

8.3.4.1 Pocket Triples

For the next lemma, we need a strong result by Helly.
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Theorem 8.9 (Helly’s Theorem [91], [158, p. 70]). Let F be a finite family of convex sets
in En containing at least n+ 1 members. A necessary and sufficient condition that all the
members of F have a point in common is that every n + 1 members of F have a point in
common.

Lemma 8.10. If a point set S admits a 2-convex polygonization P that is not star-shaped,
then there exist three pockets of P that completely determine P .

Proof. The kernel of a polygon is determined by the intersection of all half-planes to the
left of the edges. For each pocket, the kernel region defines this intersection for all the
edges of that pocket. Therefore the kernel of P is determined by the intersection of all
the kernel regions. Since P is not star-shaped, its kernel is empty. Thus, due to Helly’s
Theorem, there must exist a triple of pockets such that the intersection of their kernel
regions is empty. Since the order in the polygonization is now determined for all vertices
due to Lemma 8.8, the result follows.

Checking all triples of possible pockets and the consistency of the implied orders clearly
gives us a 2-convex polygonization if one exists. There may, however, exist an exponential
number of pocket candidates for any lid. But there are only O(n4) possible pairs of
inflection edges per lid. For every pair of inflection edges we distinguish two cases:

• If the kernel region contains points of S, we show that the inflection edges completely
determine the pocket; we can then check every pocket triple according to Lemma 8.10.

• If the kernel region does not contain any point of S, the pocket is not defined for
the part in the pocket region; however, any valid pocket with these two inflection
edges determines the whole remaining polygonization, and we show how to find such
a pocket in polynomial time, if one exists.

We first prove the case with a non-empty kernel. The second case is more involved and
is handled in Section 8.3.4.2.

Lemma 8.11. Given only the lid and the inflection edges of an unknown pocket in a
2-convex polygonization, the convex vertices of that pocket are determined.

Proof. Let v1, e1, c1, and r1 be defined as in the proof of Lemma 8.8. If v1 6= c1, then there
is a triangular region t defined by H−(c1r1), H+(v1c1), and the closed half-plane to the
left of the lid. Due to the characterization of 2-convex polygons in Lemma 8.5, the convex
chain between v1 and c1 is defined by the convex hull of the points in t (after removing
the edge v1c1). The second convex chain can be determined symmetrically.

Lemma 8.12. Suppose a pair of inflection lines of a polygonization P of a point set S
defines a kernel region containing points of S. Then the corresponding pocket is determined
by the inflection edges.

Proof. What is left after Lemma 8.11 is to determine the vertices of the reflex chain.
Obviously, all vertices of the reflex chain must be in the pocket region. We claim that all
points in the pocket region are in the reflex chain. Suppose there is a point p inside the
pocket region that does not belong to the reflex chain. Then the part of the polygonization
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Figure 8.4: A mighty pocket. The empty dots depict points of T , of which s dominates v.

other than the pocket must pass through p. If it enters and leaves the pocket region through
the same inflection line, the inflection line is a local 3-stabber, which means that there
would exist a 6-stabbing perturbation of the inflection line. Otherwise, each inflection line
is traversed once. Since there are still points of S in the kernel region, the polygonization
crosses at least one inflection line again, and thus one of the inflection lines could be
perturbed to a 6-stabber. Therefore, all points in the pocket region belong to the reflex
chain.

8.3.4.2 Mighty Pockets

The more complicated case arises if there are no points of S in the kernel region, but some
points in the pocket region. Note that this case may occur when either the inner or outer
rays cross, but we do not need to distinguish between these two possibilities. Let T ⊂ S
be the subset of points in the pocket region. Recall that the points in T are the ones for
which we do not know the position in a 2-convex polygonization of S. We now have to
split T into the vertices of the reflex chain of the pocket and the rest, which then define
the part of the 2-convex polygonization that passes through the pocket region but is not
part of the pocket. We call the latter the opposite chain. It follows from Lemma 8.8 that
after we have correctly split T , the whole 2-convex polygonization is determined. We call
such a pocket mighty.

Consider two points s ∈ S, v ∈ T ⊂ S and the inflection edges e1 = c1r1 and e2 = c2r2.
Suppose the triangle r1r2s contains v. We then say that s dominates v. See Figure 8.4 for
an illustration. Note that s might not be an element of T . Nevertheless, we have to check
the dominance in order to get a subset of T that contains only non-dominated vertices; as
soon as we have decided which of these points should be part of the opposite chain, we
know the order in which all points appear along ∂P .

Lemma 8.13. If s dominates v, then v has to belong to the reflex chain, and s cannot be
part of the reflex chain.

Proof. Having s in the reflex chain would contradict the chain’s reflexivity. The points s
and v have a different radial order around r1 and r2; if none of them were in the reflex
chain, these different orders would contradict Lemma 8.8.



8.3. Deciding 2-Convexity of Point Sets 119

(a)

`

(b)

`

(c)

`

Figure 8.5: Possible conflicts: an inner tangent ` (a) between two vertices on the opposite
chain; (b) between a vertex on the reflex chain and a vertex of the opposite chain; and
(c) a 4-stabbing inflection line `.

Note that the polygonization is already determined for all points not in T . From an
algorithmic point of view, this polygonization needs to be checked for 2-convexity, and its
pockets may also determine some points that have to belong to the reflex chain and that
must go to the opposite chain. A conflict implies that such a polygonization does not exist.

So far, we might not have decided the position of all points of T in the polygonization.
There exist configurations with |T | ∈ Θ(n) in which any point can be put either to the op-
posite or the reflex chain, resulting in an exponential number of 2-convex polygonizations.
On the other hand, there exist configurations that do not allow a 2-convex polygonization
at all. Also note that the two chains might not be linearly separable. In the following
lemmas we develop a constructive approach for finding a 2-convex polygonization, if one
exists, in polynomial time. More precisely, we try to find a polygonization with the given
inflection edges having the smallest possible number of vertices on the reflex chain. See
Figure 8.5 for some illustrations of possible conflicts.

Let an intermediate polygonization be a polygonization that fulfills the following two
properties:

• The radial order of the points not on the mighty pocket around any point on an inflec-
tion edge of the mighty pocket is the same as on the polygonization (in conformance
with Lemma 8.8).

• All points contained in the reflex chain of the mighty pocket have to be in the reflex
chain in every 2-convex polygonization of the underlying point set with the chosen
inflection edges of the mighty pocket.

In particular, the first property implies that the sub-chains consisting of points not in T
are the same in any intermediate polygonization.

The basic idea of the algorithm is to apply a greedy approach. We build an intermediate
polygonization with as few points on the reflex chain of the mighty pocket as possible. If it
is not a 2-convex polygonization, we find further points that have to be on the reflex chain
of the mighty pocket in every 2-convex polygonization of the underlying point set with
the chosen inflection edges of the mighty pocket. Then we iterate on the new intermediate
polygonization until a 2-convex polygonization is found or there is an unresolvable conflict.
We start by showing some properties of intermediate polygonizations.

Let us first consider possible inner tangents in an intermediate polygonization. In
the following, let ` be an inner tangent defined by the vertices t and t′ in an intermediate
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Figure 8.6: The inflection edges of the mighty pocket are on the other side of ` from
the neighbors of the tangent points (left). The contrary case would disrespect the order
induced by the inflection edges (middle and right). The gray regions depict parts of the
polygon’s interior.

polygonization (we call t and t′ the contact points of `). We will see later that the point set
only allows a 2-convex polygonization using the two inflection edges of the mighty pocket
if both t and t′ are points in T . However, to obtain this result, we make no assumptions
on t and t′. Lemma 8.13 gives us the following property.

Corollary 8.14. In an intermediate polygonization, the two inflection edges of the mighty
pocket are on the same side of an inner tangent `.

Obviously, we have two different types of inner tangents, one where both t and t′ are
not part of the mighty pocket in the intermediate polygonization, and one where one point
is on the mighty pocket and the other is not. For both types, the following result holds.

Lemma 8.15. Let p be any point on an inflection edge of the mighty pocket and, without
loss of generality, let the inflection edges of the mighty pocket be below the inner tangent `.
Suppose, without loss of generality, that t is not part of the mighty pocket. Then the two
neighbors of t are above ` and the line through p and t crosses ∂P at t.

Proof. Recall that there are no points of S in the kernel region of the mighty pocket. The
result immediately follows from the fact that the order of all points with respect to any
point p on the inflection edges is determined (as stated in Lemma 8.8). If the neighbors of
t (a contact point not at the mighty pocket) would also be below `, the ray starting at p
passing through t would not leave the polygon at t, which contradicts the order determined
by the mighty pocket (see Figure 8.6). As shown in Lemma 8.8, the supporting line of the
ray would be at least a 6-stabber, as it would have to leave the polygon at another point.
Similarly, if the neighbors of t are above ` but the ray does not leave the polygon at t,
there is as well a contradiction with the order of the polygon.

We will use the previous lemma to show that both t and t′ have to be in the mighty
pocket in the final 2-convex polygonization, if there is one. If we do not have an inner
tangent but the intermediate polygonization is not 2-convex, then there has to be a 4-
stabbing inflection line. The next lemma will allow us to assume a certain structure of the
pockets when there is no inner tangent.
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Figure 8.7: A conflict induced by the inflection line `. The vertices in C are separated
from the rest of their pocket by `. If the mighty pocket is involved in the conflict (b), there
also exists an inner tangent (dotted).

Lemma 8.16. Consider an intermediate polygonization that contains a pocket with more
than two inflection edges. Let e1 and e2 be the first and the last inflection edge, respectively,
when traversing the pocket. Then either it is the case that one of the two corresponding
inflection lines crosses that pocket at least two more times, or there also exists an inner
tangent with both tangency points contained in that pocket.

Proof. The proof is similar to that of Lemma 12 in [5]. Without loss of generality, we
assume that the lid of the pocket is horizontal, and the polygon is below it. Let e1 be the
first inflection edge encountered when traversing the pocket counterclockwise. Let pk be
the point of the pocket with lowest y-coordinate; pk is obviously reflex. Let the line ` be
the supporting line of e1. If ` crosses the pocket another time we are done. Otherwise,
rotate ` clockwise keeping it supporting the chain between e1 and pk. If there is a convex
vertex between e1 and pk, then we will find an inner tangent having a contact point at the
pocket. The same argument holds for the other side with e2.

We consider now the situation where there is no inner tangent. Since the radial order
of all points not in the mighty pocket is fixed for any intermediate polygonization, the
relative position of an inflection edge ei = ciri and the mighty pocket is determined. We
formalize this in the following two lemmas.

Lemma 8.17. Consider an intermediate polygonization without inner tangents but con-
taining an inflection edge ei supported by a 4-stabbing inflection line `. Then ` cannot
intersect the mighty pocket.

Proof. Let x1, . . . , xk be the sequence of points where the inner ray of ei crosses ∂P .
Now suppose xj and xj+1 are the two crossing points of ` with the mighty pocket (see
Figure 8.7 (b)). Again, any ray starting at a point p on an inflection edge of the mighty
pocket crossing ei has to leave the polygon through ei, which follows from the order induced
by the inflection edges of the mighty pocket, as already handled in the proof of Lemma 8.15.
Consider the shortest path inside the intermediate polygon from the convex vertex of ei
to xj+1, the second intersection point of the inner ray with the mighty pocket. This path
has at least one left turn and one right turn. Therefore one of the edges of the path would
define an inner tangent; a contradiction.
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Intuitively, if we want to “repair” a situation in which a 4-stabbing inflection line occurs,
we move the points that are “cut off” by the inflection line to the mighty pocket (if possible).
We argue about the position of such points in the following lemma.

Lemma 8.18. Consider an intermediate polygonization without inner tangents but con-
taining an inflection edge ei supported by a 4-stabbing inflection line `. The first two
crossings of the inner ray of ei with ∂P partition it into two sub-chains. Among these two
chains, let C be the one that does not contain ei (see Figure 8.7). Then C is on the same
side of ` as the inflection edges of the mighty pocket.

Proof. This again follows directly from Lemma 8.8, with similar arguments as in the proof
of Lemma 8.17. Without loss of generality, let the mighty pocket be to the right of ei = ciri.
Let x1 and x2 be the first two crossing points of the inner ray of ei with ∂P in the order
as they occur along the ray. The inner ray leaves and then enters the polygon at these
points. (Intuitively, ` “cuts off” C at x1 and x2.) Suppose the points of C are to the left
of ei. From Lemma 8.8 we know that ∂P turns left at ri. However, the shortest path from
ci to x2 inside P has to turn right again before reaching x2 (at some point of C). Hence,
there is an inner tangent, a contradiction.

We have now obtained enough insight into the structure of the intermediate polygo-
nization to state the main lemmas for assigning the points in T to a chain. For both of
the following lemmas, recall the invariant that, for a given choice of inflection edges of the
mighty pocket, all points that are in the reflex chain of the mighty pocket in an intermedi-
ate polygonization have to be there in any 2-convex polygonization of the underlying point
set.

Lemma 8.19. Let t and t′ be two tangency points of an inner tangent ` in an interme-
diate polygonization. Then both t and t′ have to be in the reflex chain in any 2-convex
polygonization of the underlying point set (with the given inflection edges of the mighty
pocket).

Proof. See Figure 8.8. We know that any point that is not fixed is either at the opposite
chain or at the reflex chain of the mighty pocket in any 2-convex polygonization, if one
exists.

First, suppose that neither t nor t′ is part of the reflex chain. Then we know due to
Lemma 8.15 that their neighbors are on the other side of the inner tangent `, say above
it, and that any point p on one of the inflection edges of the mighty pocket t defines a line
that separates the two neighbors of t. The same holds for p and t′. Let `′ be a perturbation
of ` that is a 6-stabber. To prevent ` from being an inner tangent and moving neither t
nor t′ to the reflex chain, one would have to get rid of some of the edges adjacent to them
in some way. Suppose we repolygonize the point set with a neighbor of t now being part of
the reflex chain (which is the only way of getting rid of an edge). Both ` and `′ then would
have to cross the reflex chain twice. However, this can only happen either to the left of
pt, between pt and pt′, or to the right of pt′, and the reflex chain cannot pass through the
rays starting at p more than once. Hence, at most two edges adjacent to t and t′ can be
removed. However, `′ now crosses the reflex chain twice and therefore remains a 6-stabber.
Thus, at least one of t or t′ must be part of the reflex chain.
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Figure 8.8: Moving a neighbor of t to the reflex chain either preserves the conflict or results
in a non-simple polygonization.

Suppose now, without loss of generality, that t′ is part of the reflex chain. Again, let
the two inflection edges of the mighty pocket be below ` and t′ be to the right of t. For
any point p on the inflection edges, the supporting line of p and t separates the neighbors
of t. Therefore only the right edge adjacent to t can be removed by changing the reflex
chain while keeping t on the opposite chain, but since the number of times `′ crosses the
boundary of the polygon is even, `′ remains a 6-stabber. Hence, also t has to be part of
the reflex chain. The lemma follows.

Lemma 8.20. Consider an intermediate polygonization without inner tangents but con-
taining an inflection edge ei supported by a 4-stabbing inflection line `. Let C be a part of a
pocket that is separated by ` from the polygonization (as in Lemma 8.17). Then the points
of C must be part of the reflex chain of the mighty pocket in any 2-convex polygonization
of the point set (with the given inflection edges of the mighty pocket).

Proof. See Figure 8.7 (a). Due to Lemma 8.16 we can assume that the inflection edge ei
that causes the conflict is the first or the last inflection edge encountered when traversing
its pocket. Due to Lemma 8.17, we know that C is not part of the reflex chain. Suppose we
do not want all of the points in C be part of the reflex chain of the mighty pocket. Again,
let `′ be a perturbation of ` that is a 6-stabber. We can now use exactly the same line of
argument as in the proof of Lemma 8.19; the reflex chain would have to pass through `′,
but we can only remove at most two edges crossed by `′. The only difference is that the
conflict might be resolved after just adding the points of C to the reflex chain of the mighty
pocket, but not when adding only the reflex vertex of ei (and keeping some points of C on
the opposite chain). The lemma follows.

These lemmas now immediately imply an algorithm for finding a valid reflex chain for
a 2-convex polygonization with a given pair of inflection edges for a mighty pocket (i.e.,
the pair of inflection edges defines a kernel region not containing any point of S). We start
with an intermediate polygonization that includes all dominated points on the reflex chain.
If we find an inner tangent (in O(n log n) time), then we add both vertices involved to the
reflex chain. If there is no inner tangent but a 4-stabbing inflection line, we add the points
of C of Lemma 8.20 to the reflex chain. During any step we know that all points in the
reflex chain have to be there. Hence, we either arrive at a 2-convex polygonization after
adding O(n) points, or we cannot change the position of a point, which means that there
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is no 2-convex polygonization of the underlying point set with the given pair of inflection
edges of the mighty pocket. This implies the following lemma.

Lemma 8.21. Whether two inflection edges can be completed to a mighty pocket in a
2-convex polygonization using the points of T can be decided in O(n2 log n) time.

8.3.5 Putting Things Together

The overall algorithm for checking 2-convexity of a point set is the following.

1. Check whether there is a star-shaped 2-convex polygonization by creating the ar-
rangement of all lines defined by two points of the set S. Radially sort the points
around a pivot in each cell inside CH(S) and check all the resulting polygonizations
for 2-convexity.

2. For each convex hull edge (i.e., a lid), iterate over all possible inflection edges that
have no points of S in the kernel region. Try to construct a mighty pocket giving a
2-convex polygon (see Section 8.3.4.2).

3. If there is no mighty pocket, check all triples of lid/inflection-edge combinations
having points of S in their kernel regions (see Section 8.3.4.1).

Theorem 8.22. 2-convexity of a point set can be decided in time polynomial in the size of
the point set.

While we achieved our goal of showing that the problem is solvable in polynomial time,
the approach we propose is far from being efficient. Clearly, checking all triples of pocket
candidates is the most time-consuming step. There are O(n12) choices for the inflection
edge combinations. For each pair of inflection edge candidates, there are at most two
possible lids, and these can be stored beforehand for every inflection edge candidate. Since
we can also store the radial order of the point set around each point of the set, we only
need linear time to check whether the orders induced by the inflection edge candidates are
compatible. This approach leads to a running time of O(n13).

8.4 Deciding k-Convexity of Point Sets

The algorithm shown in the previous section is quite involved, but has polynomial running
time. A natural next step is to consider algorithmic properties when the degree of convexity
is increased. This section shows NP-completeness of the problem of deciding whether a
point set in the plane allows a 3-convex polygonization. The proof can easily be adapted
for any higher degree of convexity.

For ease of presentation we first consider the setting where some edges of the polygo-
nization are fixed and then extend the result to point sets without any fixed edges.
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8.4.1 Fixed Edges

Our proof of the following proposition can be seen as purely instructional, as it is not
directly used for showing NP-hardness of the problem without fixed edges. The goal is to
give the general idea of the construction, and to address the parts we have to alter later
when no edges are fixed.

Proposition 8.23. Let S be a set of points in the plane and let E be a set of edges with
E ⊂ S × S. Suppose there exists a polygonization of S that contains all edges of E. Then
it is NP-complete to decide whether there exists such a polygonization that is 3-convex.

Note that the problem is in NP as k-convexity of a polygon can be decided in quadratic
time [5]. Further note that E is required to allow polygonizations of S, as otherwise the
problem would be at least as hard as the NP-complete problem of deciding the existence
of a polygonization of a set of line segments [137], rendering the result meaningless.

The NP-completeness is shown by reducing 3SAT [72, p. 259] to our problem. We
build gadgets using fixed edges that represent the variables, literals, and clauses of a 3SAT
formula and show that there exists a 3-convex polygonization if and only if the given
formula is satisfiable. We refer to a literal as the occurrence of a variable within a single
clause (negated or unnegated). Hence, a literal occurs only once in a formula.

For any given 3SAT formula φ, let Vφ be the set of its variables, Lφ the set of its
literals, and Cφ its set of clauses. Further, let T be a temporary point set in convex position
consisting of three disjoint sets TV , TL, and TC (we will later replace them by other points)
in which each point corresponds to a variable, literal, or clause of φ, respectively. Place the
points of T in convex position such that the points of each group are consecutive on the
convex hull boundary of T . Further, every triple of points in TV ×TL×TC should define a
triangle that is “roughly equilateral” (this latter informal requirement is intended to ease
the presentation of the construction). The literal points are sorted by the variable they
represent and unnegated literals of a variable are encountered before the negated literals
when traversing the points of TL on ∂ CH(T ) counterclockwise. Between each consecutive
pair of the same class, place another temporary point. The set of these points is called TS .
Let T ′ = T ∪ TS .

In the final construction each point in T ′ is replaced by a corresponding gadget. In order
to obtain a valid reduction we have to ensure that we can place the points in polynomial
time, in particular, the coordinates of all points need to have a representation that is
polynomial in the size of φ. One way to do this is to select all the points that are on the
convex hull of the final construction among the dense rational points on the unit circle
(Canny et al. [40] provide appropriate algorithmic tools), and those from inner points
that are adjacent to these points in the final construction on a smaller circle (where the
difference in the radii of the circle depends on the number of gadgets needed). The reader
can observe throughout the description of the gadgets that the remaining points can be
chosen with respect to the arrangement of the supporting lines of these points.

8.4.2 Gadgets

The basic idea is that the information in the construction is transported by lines that are
potential 8-stabbers, between the variable gadgets and the literal gadgets, and between the
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literal gadgets and the clause gadgets. We call sets of such lines common to two gadgets
a beam1. More precisely, a beam is defined by the union of potential 8-stabbers through a
gadget pair. Hence, the beams “transport” the truth assignment of variables.

We introduce the gadgets by describing their intended behavior. We then show that
the gadgets actually have to behave in the intended way. Note that the graphical repre-
sentations of the gadgets are sketches.

t

Figure 8.9: Placement of some gadget (gray), replacing a temporary point t, in order to
prevent a line passing through three gadgets.

Every gadget replaces a point t ∈ T and therefore some of its parts are in extreme
position. The gadgets need to be “small” enough such that there is a line through the two
edges incident to t that separates the gadget from the remaining domain; see Figure 8.9.
This, in connection with the construction of the gadgets, will ensure that there exists no
8-stabber through gadgets of the same class.

8.4.2.1 Variables

The variable gadget is shown in Figure 8.10. The dotted lines in Figure 8.10 are part of
beams leading to literals of the variable, one to an unnegated literal and the other to a
negated literal. Note that several beams pass through a variable in this way, one for each
literal of the variable. The intended behavior of the variable gadget with assignment “true”
is that no line to the unnegated literals is a local 3-stabber but the lines to the negated
ones are local 3-stabbers, and vice-versa (see Figure 8.10 (b) and (c), respectively).
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v2
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v2
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v3

v4

(c)

Figure 8.10: A variable gadget: its fixed edges (solid), its intended polygonizations (dashed)
for true (b) and false (c), and two potential 8-stabbers in it (dotted).

1Culberson and Reckhow [48] use a similar terminology.
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8.4.2.2 Literals

The literal gadgets relate each clause to the variables contained in the respective clause.
The literals of a variable are placed on neighboring points of T , the unnegated literals
below the supporting line of v3v4, and the negated literals above. Figure 8.11 shows two
literal gadgets xi and ¬xj and their interaction with their variable x.

xi
¬xj

v2

v1
v3

v4

x

l1 l2

l3 l4

F

5-stabber: False

l5

l6

l1 l2

l3 l4

T

3-stabber: True

l5

l6

Figure 8.11: The interaction between literals and their variable.

In the example in Figure 8.11, the variable is set to false, as indicated by the dashed
edges v2v4 and v1v3. Literals are defined by the fixed edges l1l3, l2l4, and l5l6. Their beams
are defined by the lines through l1l6 and l3l5, and the lines through l2l6 and l4l5. Let the
former beam be the clause beam and the latter the variable beam. Note that the edges
have to be short enough and need to be placed appropriately such that the variable beam
is narrow enough to pass through v3v4. (This can, e.g., be done by first choosing l1, l2, l3,
and l4; the arrangement of supporting lines of the points together with v3, v4 and points
at the clause gadgets defines a convex region in which the edge l5l6 can be placed.)

Consider literal xi. Its variable beam contains local 3-stabbers at the variable, which
is therefore assigned to “false”. Hence, the polygonization of xi is chosen such that the
variable beam does not contain any local 5-stabbers at xi. The variable beam of literal
¬xj , however, contains no 3-stabbers at the variable. Therefore it can be polygonized the
opposite way to xi. This makes the clause beam of ¬xj contain no local 5-stabbers at the
literal, whereas the clause beam of xi already contains local 5-stabbers. We define a literal
to be “false” if its clause beam contains local 5-stabbers, and true otherwise. The intended
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behavior of the literal construction is that an unnegated and a negated literal of the same
variable cannot both be true (they may both be false but that obviously does not influence
the satisfiability properties of the formula).

8.4.2.3 Clauses

We defined a clause beam to transport an assignment of “false” if it contains lines that are
local 5-stabbers at the literal. This means that its lines cannot be local 3-stabbers at the
clause. The clause gadget is constructed in a way that it allows a 3-convex polygonization
if at least one of the beams does not contain any lines that are local 5-stabbers at the
variable, which therefore can also be local 3-stabbers at the clause. We will later show
that a 3-convex polygonization exists only if one of the beams of each clause transports
“true”.

T − −(a)

c1

c8

c3

− T −(b)

c1

c8

c3

− − T(c)

c1

c8

c3

F F F(d)

c1

c8

c3

Figure 8.12: The clause gadget and its expected polygonizations (a–c). If no beam contains
a local 3-stabber at a clause gadget then there has to be an 8-stabber, indicated by the
dotted line and the fat segments (d).

The clause gadget is shown in Figure 8.12. The beams pass through fixed edges whose
end vertices are placed along two flat arc segments (light gray). If one of the beams is
true, a 3-convex polygonization can be done as shown in (a) to (c). Note that in (a) the
point c8 is below the line through c1c3. To have no local 3-stabber in any of the three
beams one could sequentially connect the edges, as shown in Figure 8.12 (d). However,
this would introduce an 8-stabber, as depicted by the bold-style segments. The intended
behavior of a clause gadget is that there is no 3-convex polygonization if all its literals are
“false”. Observe that lines that are local 5-stabbers at the gadget (e.g., a line passing by
close to c8 in Figure 8.12 (b)) leave any polygonalization in a close neighborhood of the
gadget if the two flat arcs on which we place the points are sufficiently close to each other.
Hence, no line passing, say, through two clause gadgets can become an 8-stabber. (We give
a short account on placing all points such that they have coordinates with a polynomial
representation at the end of Section 8.4.6.)

8.4.3 Necessity of Satisfiability

By construction, such a set of edges allows a 3-convex polygonization whenever the formula
is satisfiable. What remains to be shown is that a non-satisfiable formula prevents a 3-



8.4. Deciding k-Convexity of Point Sets 129

convex polygonization; i.e., that the gadgets behave in the intended way. The major
difficulty in showing this is that the whole configuration needs to be considered. It is
insufficient to inspect the gadgets only locally. We can, however, restrict our attention to
the local behavior with the help of a construction we call a separator.

A separator gadget is constructed by slightly moving apart the two convex hull edges
incident to a temporary point of Ts. The resulting gap is filled by edges as shown in
Figure 8.13. A line in the beam is a local 5-stabber at the separator. Together with
the antipodal edge through which the beam passes, such a line becomes a 6-stabber and
therefore there cannot be any more edges crossing the separator beam. If we place a
separator between all neighboring gadgets (see Figure 8.14), we may return to our local
view.

Figure 8.13: A separator produces a beam of 6-stabbers between the two dotted lines.

Variables

Literals

Clauses

Figure 8.14: The whole configuration representing a formula. The dots denote the position
of the gadgets of the formula, and the thick strokes denote the beams of the separators.

The following simple observations are useful when proving the correct behavior of the
gadgets.

Observation 8.24. When walking along the boundary of a polygon, any intersection of
half-planes is entered as many times as it is exited.

Observation 8.25. A polygonal chain connecting two points separated by a line crosses
that line an odd number of times.
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Lemma 8.26. Given any pair of lines through a variable gadget, one to an unnegated and
one to a negated literal, one of these lines must be (at least) a local 3-stabber.

Proof. Consider again Figure 8.10. As the clause is isolated by two separators, it contains
a path from v1 to v2, which means that the dotted stabbers are crossed locally an odd
number of times. The two lines separate the plane into four regions. Let A be the one that
contains v3. A is already entered (or left) by the edge v3v4. This means that there has to
be another edge leaving A, crossing one of the lines. As that line is crossed twice, it needs
to be crossed at least a third time to result in an odd number of crossings.

Lemma 8.27. Given two literal gadgets, one representing an unnegated and the other one
a negated literal of the same variable, at least one of their clause beams contains lines that
are local 5-stabbers at the literal.

Proof. Take any pair of lines, of which one is contained in the clause beam and the other
one is contained in the variable beam of the first literal. Arguing analogously to the proof
of Lemma 8.26, it is obvious that one of the lines is a local 5-stabber. If it is in the
clause beam, we are done. As it otherwise has to be in the variable beam, we know from
Lemma 8.26 that the variable beam of the second literal contains local 3-stabbers at the
variable. Hence, the clause beam of the other literal contains local 5-stabbers.

Note that two literals of the same variable might both be set to false, but this obviously
does not impose a problem for the overall argumentation. Further note that the proofs of
the previous two lemmas are kept quite general, as we will use similar techniques when
proving the correctness of gadgets for point sets.

Lemma 8.28. There is no 3-convex polygonization with a clause gadget having all its
literals set to false.

Proof. Consider again Figure 8.12(d). As the gadgets are divided by separators and all
beams contain local 5-stabbers when set to false, the beams define isolated regions. As
each region contains only two points, the only choice is to draw an edge between each of
these pairs. This, however, yields exactly the polygonal path shown in Figure 8.12(d). As
this path creates an 8-stabber, the proof follows.

Proof of Proposition 8.23. As already discussed, the problem is in NP. For any given 3SAT
formula φ we can construct a set of edges E in polynomial time representing φ. By
construction, E has a 3-convex polygonization if φ is satisfiable. Lemma 8.27 shows that
an unnegated and a negated literal of the same variable cannot both be true in a 3-convex
polygonization of E, and Lemma 8.28 shows that if all literals of a clause are false, then
there cannot be a 3-convex polygonization of E. This establishes that there is a 3-convex
polygonization of E only if φ is true.

8.4.4 General Point Sets

The proof of Proposition 8.23 relies on fixed edges. In fact, we did not make use of any
isolated points. To transfer the previous result to the domain of point sets, we need a way
to force edges to a more or less fixed position.
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Figure 8.15: A chain of at least ten points inside a triangle defined by any three lines
implies an edge between two of the points.

Lemma 8.29. Let R be any subset of a point set S contained in the triangle defined by
three lines. If |R| > 9, then there has to be at least one edge between two points in R in
any 3-convex polygonization of S.

Proof. See Figure 8.15 for an accompanying illustration. Suppose that there is no edge
between any two points in R. Then every edge incident to a point in R must cross at
least one of the lines defining the triangle region. Every line may only be crossed six times
for the polygonization to be 3-convex. As every point is incident to two edges, the bound
follows by the pigeonhole principle.

Note that this bound may be tightened when considering that there has to be a path
between the edges entering and leaving the triangular region. For ease of presentation, at
least ten points are chosen.

Let such a subset of ten points along a flat arc segment be called a bunch. We will
need that the supporting lines of the edges of the bunch lie within a given wedge. For a
sufficiently flat arc segment, all the edges spanned by two points of the bunch will fulfill
that property. Thus, we can suppose, without loss of generality, that the edge in the
statement of Lemma 8.29 is similar in that sense to an edge which connects two successive
points on the arc segment.

During the construction of the gadgets using fixed edges, the positions of the beams
were fixed. We show that we can still guarantee the existence of the beams using bunches
(but not their exact position). We demonstrate a construction that, by cascading bunches,
allows us to place in a defined region any number of edges that all cross a common stabber.

(a)
(b)

Figure 8.16: The first two bunches define the width of the hyperbeam (a). Bunches at the
intersection of each beam with an arc segment increase the stabbing number of the lines
in the part of the beam (b).
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The main idea is to replace the fixed edges with flat arc segments on which the bunches
are placed. Let a hyperbeam be the union of potential beams. A hyperbeam is defined by
these arc segments and is directed in the same way as the beams in the previous section.
Now consider the first two arc segments of a hyperbeam, as depicted in Figure 8.16(a). The
length of these two segments defines the width of the hyperbeam, and they should therefore
be sufficiently narrow. Place a bunch on each of these two segments. Any pair of edges,
one on the first segment and the other one on the second, would define a beam within
the hyperbeam defined by the two segments. Each of these beams intersects a part of the
third segment. We now place a bunch at each of these intersections, which thus guarantees
a local 3-stabber inside the hyperbeam (the intersections might intersect themselves, but
it is only necessary that each intersection contains 10 points). This construction can be
continued in the same way for all further segments. Hence we may now determine not the
exact, but the approximate position of potential 8-stabbers.

8.4.5 Point Set Separators

In the previous section, the use of separators allowed the correctness of the construction
to be verified. Using bunches, we can create a similar construction (as in Figure 8.17)
and therefore prevent other edges from crossing such a separator. However, paths from
one side of the domain to the other could still use the edges of such a separator (as
shown in Figure 8.18), since we can no longer say for sure which edges are adjacent. In
order to prevent this we apply the following construction, shown in Figure 8.19. We place
two separators (instead of one) indicated by bunches between every formula gadget. The
separator beams are directed to the antipodal side of the polygon, intersecting each other.
We then place a separator on the antipodal side between the beams. Recall that by using
bunches we cannot exactly define the position of a separating line, but can assure its
existence somewhere inside the hyperbeam. Hence, such a separator array again allows us
to consider the formula gadgets only locally.

Figure 8.17: A separator constructed using points. The bold-style arc segments sketch the
regions where bunches can be placed, and the dashed line sketches a possible sequence in
the polygonization.

8.4.6 Adaption of the Gadgets

With the help of the bunches, the gadgets can be constructed, up to a certain extent, in
a manner similar to the fixed-edges case. When placing the arc segments for the bunches
like the fixed edges, a 3-convex polygonization is possible if the formula is satisfiable.
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Figure 8.18: An example of an unintended behavior of a separator gadget.

a

b

c

Figure 8.19: A separator array preventing unintended paths from passing through it.

v2

v1

v3

v4

(a)
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Figure 8.20: A point set variable gadget (a) and a literal gadget (b). The gray arc segments
denote the position of the bunches, the dotted lines denote a pair of potential stabbers,
and the solid segments denote edges that have to exist somewhere within the bunches.

A variable and a literal gadget are shown in Figure 8.20. Instead of fixing edges, we
cascade the bunches as described above. The proof of Lemmas 8.26 and 8.27 can be applied
directly to these gadgets, since one of the (many) edges on the innermost arc segment of
the variable or the literal takes the role of v3v4 or l5l6, respectively.

Showing the correctness of the adapted clause gadget is more involved. The sketch in
Figure 8.21 accompanies the description. There, the gray regions depict the hyperbeams
carrying the literal assignment. When points are placed along the dark arc segments, there
obviously exists a 3-convex polygonization if at least one literal is true. Suppose, without
loss of generality, that h is a horizontal line. Recall that a hyperbeam is a union of beams.
Place at least one point in the interior of each beam on the arc segments between c2 and
c3, c4 and c5, and c6 and c7, respectively. Observe that all of these points are above h.
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Figure 8.21: A clause gadget. The points to the right ensure the existence of an 8-stabber
if all literals are assigned false.

Then place four points in the vicinity of the line h on the arc segment between c6 and c7,
and three further points in a similar manner between c8 and c9, such that when sorted
along the y-axis no point has its successor on the same arc segment.

Lemma 8.30. There is no 3-convex polygonization of the point set with all literals of a
point clause gadget set to false.

Proof. The interesting case is the one where the hyperbeams contain lines that are local
5-stabbers at the corresponding literals. Since the beams may now only be crossed once,
every region between two such 5-stabbers is entered and left once. Consider the dashed
line h, which should be an 8-stabber if the clause evaluates to false (as in Figure 8.21). It
is essential for the behavior of the gadget that in this case h is crossed twice between two
beams (Property 1). Further, it has to be crossed once in the region of c1 (Property 2)
and three times in the region of c7 (Property 3).

Property 1: Observe that if all literals for the clause are set to false, there exists a
beam that contains an infinite number of 5-stabbers at each of the dark arc segments.
Since there is a point placed inside the region of each such beam, there is an infinite
number of 5-stabbers through the neighborhood of such a point. This means that the path
consisting of the two edges incident to this point has to cross each of these 5-stabbers in
that neighborhood. Recall that all these points are placed above h. Therefore, the region
between such 5-stabbers (containing the region between two hyperbeams) is entered and
left above h by the path defining the overall polygonization. Since the path has to “fetch”
the point below h, it has to cross h twice within that region.

Property 2: The line h is obviously crossed within the region of c1 and c2, since the
gadgets are isolated by separator arrays, and c1 and c2 are on different sides of h.

Property 3: The path enters the region above h (by the same arguments as used for
Property 1) and leaves it below h, hence h is crossed an odd number of times. Suppose
that the path is y-monotone through the points on the arcs. Then the path zig-zags through
these seven points, provoking an 8-stabber. If the path is not monotone and crosses h only
once, there is a vertex m with both edges leaving it in the same y-direction. Translate h
to another horizontal line h′ past m. The new line h′ crosses the path twice in the vicinity
of m, which means that it crosses the path three times.

Finally, observe that we can choose the points in such a way that all coordinates are
rational and have numerators and denominators that are polynomial in the size of the
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input. The points on the convex hull of the construction can be selected from the (dense)
set of rational points on the unit circle. The additional interior points for the gadgets
can be placed inside convex regions defined by the supporting lines of a constant number
of pairs of initial points. That is, they can be chosen inside the solution space of linear
programs with a constant number of polynomial-sized constraints. Note that the bunches
for the hyperbeams do not necessarily have to lie on an arc as in the sketches; they simply
have to lie inside a triangle, as demanded by Lemma 8.29, without increasing the stabbing
number in an unintended way.

From these arguments our final theorem follows.

Theorem 8.31. It is NP-complete to decide whether a point set is 3-convex.

8.5 Abstract Order Types and 2-Convexity

Clearly, k-convexity of a point set S in the Euclidean plane does only depend on the order
type of the point set. For any j-stabber `, we can rotate ` until we obtain a line `′ that is
the supporting line of two points in S. Depending on the relative position of the vertices
before and after the points on `′ in the polygonization, we can determine j. While the
definition of k-convexity carries over to abstract order types, our algorithm for deciding
2-convexity of S used properties of the point set that required more information than the
order type. In this section, we revisit the main part that relied on the embedding and
argue why 2-convexity can also be determined in polynomial time for abstract order types.

8.5.1 Star-Shaped 2-Convex Polygonizations

For deciding whether a point set S admits a star-shaped 2-convex polygonization (see
Section 8.3.3), we considered the arrangement of all supporting lines of two points of S.
As already discussed, this information is not encoded in the order type for all pairs of
lines (and also not in the circular sequence). Being allowed only sidedness queries on the
vertices of a simple polygon, we can, in general, not decide whether it is star-shaped or
not, see Figure 8.22 for a counterexample. More generally, we cannot obtain the radial
order of the points around the crossing of two supporting lines.

However, if the kernel of the polygonization contains a point of S, then the radial order
around this point gives the polygonization. In the opposite extreme, if the pocket region
of a pocket in the polygonization contains points not part of the pocket (which means that
the pocket is a mighty pocket), we know that the polygonization cannot be star-shaped.

But what about all the other configurations? Consider the point set S and its ar-
rangement of supporting lines as a generalized configuration C of points. Consider a poly-
gonization of (the points of) C that is not star-shaped, like the example to the left of
Figure 8.22. When changing the arrangement of the supporting pseudo-lines accordingly
(without moving a pseudo-line over a point), we get a generalized configuration of points
that can be extended by a point that then is in the kernel of the polygon. The resulting
arrangement of supporting lines may even be stretchable again, like in the example to the
right in Figure 8.22. It is intriguing that for one embedding we are allowed to apply Helly’s
Theorem to see that we have a non-empty triple of kernel regions, while for the other we
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Figure 8.22: The order type of the vertices does not encode whether a polygon is star-
shaped. The polygon to the left is not star-shaped, the one to the right is star-shaped,
with the kernel marked gray. Both vertex sets have the same order type.

are not, even though we have two instances with the same combinatorial structure and we
want to solve a combinatorial problem on them. (Streinu [154] considers the realizability
of so-called star-like pseudo-polygons on generalized configurations of points; however, this
class is restricted to a convex region with triangular spikes attached to it.) In order to get
closer to the core of the problem (or at least to better understand our solution), we take a
look at a variant of Helly’s Theorem.

8.5.2 Helly’s Theorem for Pseudo-Lines

Among their several seminal papers on order types and arrangements of pseudo-lines,
Goodman and Pollack [79] have proven a dual of Helly’s Theorem for (non-simple) ar-
rangements of pseudo-lines.

Theorem 8.32 (Goodman, Pollack [79]). Let A be an arrangement of pseudo-lines in P2,
not all meeting in one point. If A1, . . . ,Am are subsets of A, and ψ is a point not on any
pseudo-line of any Ai, such that, for any i, j, k, A contains a pseudo-line `i,j,k such that ψ
cannot be moved continuously to `i,j,k without meeting each of Ai,Aj ,Ak, then there is an
extension A′ of A containing a pseudo-line ` such that ψ cannot be moved continuously
to ` without meeting each of A1, . . . ,Am.

In the primal, we get a generalized configuration of points corresponding to A with ψ
as the line at infinity. Not being able to continuously move ψ to `i,j,k without meeting each
of Ai,Aj ,Ak corresponds to the point ` being inside the convex hull of each of Ai,Aj ,Ak
in the primal.

The formulation of Theorem 8.32 suggests that the convex sets we considered for ap-
plying Helly’s Theorem in Lemma 8.10 can be replaced by a combinatorial counterpart.
If, for each pocket, we look at the convex hull of the (possibly empty) set of points inside
its kernel region, we have a more combinatorial definition of the convex sets that we are
interested in. We call this the kernel hull of the pocket. Theorem 8.32 tells us that if we
cannot find an extension point x to the abstract order type defined by S such that x is
in the kernel region of every pocket, then there exists a triple of pockets such that their
kernel hulls do not share any point of S.
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Figure 8.23: An extension of a configuration for which Theorem 8.32 does not apply.

If x could always be chosen from S, then we would be done, as we could check for each
point in S whether it is inside the kernel of a 2-convex polygonization of S and otherwise
we would know that there is a pocket triple whose intersection of points in the kernel region
is empty. However, one can construct examples where there is an extension point x and x
cannot be chosen from S (and hence, it is hopeless to try obtaining a stronger Helly-type
theorem for our needs).

Interestingly, Theorem 8.32 does not allow `i,j,k to be an extension, it has to be an
element of A; this assumption somehow weakens the statement in the way it is stated
compared to the setting where the convex hull is a convex subset of E2. Assume there is
a triple that does not contain a common point of S inside its convex hull. There could
still be an extension of the configuration of points by a point x such that x is inside the
convex hull of each triple. However, we cannot extend the triples beforehand, since, if
the extension of one triple is chosen in the wrong way, there could be triples that would
have had such an extension in the original configuration, but not in the extended one.
See Figure 8.23 for an example; there, the convex hulls of the subsets are shown in gray.
Theorem 8.32 does not apply in that case, as no point of the initial configuration is part
of the intersections of the convex hulls of any triple of subsets. Still, there is an extension
(depicted by the cross). Since we need the inversion of the theorem for our purposes, this
difference does not affect us.

Suppose there is an extension point x for the abstract order type of S such that x is
in each kernel hull of the pockets, but there is no point in S that could take the role of x
(i.e., the intersection of the kernel hulls does not contain a point of S). Observe that x
can be chosen to be on the intersection of the boundaries of two kernel hulls, therefore
being a crossing point of two line segments defined by four points that are contained in
only two of the subsets of S. Even with this extra information, the order type does not
always allow us to answer sidedness queries involving the point x. What happens if we fix
the arrangement of the supporting pseudo-lines in the generalized configuration of points
arbitrarily, and then proceed in checking for a star-shaped 2-convex polygonization around
every node of the arrangement?

It turns out that a result in this setting can (conceptually, not algorithmically) easily be
obtained. Recall that Theorem 8.32 holds also for non-simple arrangements of pseudo-lines.
Consider the arrangement of supporting lines of a generalized configuration of points C
(representing the order type of S or some abstract order type) in P2. We extend C by adding
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Figure 8.24: An extension of a configuration of points by two points and the corresponding
wiring diagram.

a point at every crossing of two supporting pseudo-lines in CH(S) to a new generalized
configuration of points C. See Figure 8.24 for an intermediate step in such an extension.
Let X be the set consisting of these points. Note that this extension depends on the
arrangement of supporting lines and not only on the order type. Now suppose there exists
a 2-convex polygonization P of C. This does not depend on the arbitrary extension of C.
The kernel hull of a pocket in C now contains the points of S ∪X in the kernel region of
the pocket (which includes the points on the boundary of the kernel region). Hence, the
convex hull of the kernel extension points is identical to the intersection of the kernel region
with CH(S). We can now apply Theorem 8.32 to these kernel hulls in the following way
(as the theorem is applicable to non-simple arrangements). If there is an extension of C
by a point x such that x is inside the convex hull of each kernel hull, then there is a point
p ∈ S∪X such that the radial order of S around p is the same as the one around x (since x
is contained in a cell of the arrangement of supporting lines of S). Otherwise, there is a
triple of pockets such that the union of the points in their kernel hulls in C is empty, and
hence, the inflection edges of the three pockets define the order of all points of S around P .
Note that the radial order of X around x might differ from the one around p, but we are
interested only in the order of S.

This approach is analogous to the one when we are given a realization of the point set;
we do not consider the kernel hulls, but rather the kernel region itself. The choice of the
kernel regions by fixing the supporting pseudo-lines of C is, within the constraints implied
by the order type, arbitrary, but has to be consistent (recall Figure 8.22). It remains to
show how to obtain the elements of X algorithmically.

8.5.3 A Conceptually Simple Extension Algorithm

Suppose we are given the dual pseudo-line arrangement A of S represented as a planar
graph. Such a representation can be constructed in O(n2) time: Edelsbrunner, O’Rourke,
and Seidel [58] gave an algorithm to construct an incidence graph of a line arrangement in
O(n2) time (see also [54, Chapter 7]); this has also been shown independently by Chazelle,
Guibas, and Lee [43] (in [58], arbitrary dimensions are handled as well). In both papers,
the so-called zone theorem is used, stating that the number of edges in the faces of the
graph intersected by an added line is linear. The proof given, e.g., in [43] directly extends
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to pseudo-line arrangements (see also [86] where arrangements of more general curves are
discussed). The zone theorem allows adding pseudo-lines of the arrangement incrementally
to the graph in linear time using straight-forward graph manipulation techniques.

We observe that we can also extend the arrangement by a pseudo-line through two
crossings within the same time bounds due to the zone theorem. Given two crossings a
and b, we can, in constant time, determine how such a pseudo-line has to pass through
each of the crossings. To create a pseudo-segment between a and b, let B be the set of
pseudo-lines that separates the two crossings. We walk from a to b, greedily passing only
over pseudo-lines that are in B and that we did not cross so far. The Levi Enlargement
Lemma (Lemma 5.3 on page 69 herein) shows that we can never “get stuck”: the pseudo-
lines in B are exactly those on a pseudo-segment from a to b (recall that we defined a
pseudo-segment as part of a pseudo-line compatible with the arrangement); after a walk
from a to some point p in the described way, the pseudo-segment between p and b crosses a
subset of B. (This can actually be seen as an algorithmic interpretation of the constructive
proof given by Levi [110].) The same procedure then can be done for the pseudo-lines not
in B.

If we do this for all pairs of crossings in A we end up with an arrangement A′ of O(n4)
pseudo-lines. This takes O(n8) time, as the number of pseudo-lines of the intermediate
arrangements is in O(n4) and we extend it by O(n4) pseudo-lines. The added pseudo-lines
correspond to the extension points in X. When traversing such a pseudo-line, we get
the radial order of the points around the primal extension points (there are actually four
different possible orders, depending on which relative order we choose for the pseudo-line
pair defining a crossing through which we extend the arrangement). If one such radial
order defines a 2-convex polygonization, we are done. Otherwise, due to Theorem 8.32 and
the above arguments, we know that there is a triple of kernel hulls whose intersection does
not contain a point of S.

8.5.4 Discussion of the Extension

It is interesting to observe that this approach has some intrinsic non-determinism. Suppose
the point set has a 2-convex polygonization but there is no point of S inside its kernel. The
extension of C can be arbitrary, but depending on this choice, the 2-convex polygonization
will be found as a star-shaped one or by applying Helly’s Theorem. This behavior suggests
that we may actually be missing a property of 2-convex point sets that is at the heart of
the problem.

Looking for a star-shaped polygonization is actually an artifact of the initial geometric
approach. As already discussed, we actually want to have no points in the intersection of
three kernel hulls. When looking for an extension point in the interior of the intersection of
all kernel hulls, we observed that this point can be represented by (a perturbation of) the
crossing point of two pseudo-segments between two points of the generalized configuration.
While it does not make a difference whether we extend only such points instead of all
crossing points of the arrangement of supporting pseudo-lines from an asymptotic point of
view, it could be interesting for an algorithmic approach that does not explicitly construct
the dual arrangement and its extension. In Chapter 7, we defined pseudo-verticals and
showed that there exists an extension of the underlying arrangement by the set of these
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pseudo-lines. However, we did not actually construct this extension, but it was possible
to select an element of a given rank in linear time. To reduce the O(n8) upper bound on
fixing an extension, it would be interesting whether there is an implicit representation of all
crossing points in the arrangement of supporting lines. In such an implicit representation,
the set of corresponding pseudo-lines could be added to the arrangement, but the extended
arrangement does not have to be constructed explicitly to get the order of the original points
around the extension points.

In any case, by extending the generalized configuration of points in this (rather blunt)
way, we can apply the same approach as when given the point set by coordinates. For
the remaining part of the proof of the algorithm, the reader may observe that we only
used properties that can be evaluated by sidedness queries; the arguments merely remain
the same when arguing about generalized configurations of points. Deciding 2-convexity
of a given polygon [5] (see Section 8.3.2) makes use of rather involved sub-algorithms in
connection with ray shooting queries. However, 2-convexity of a polygon can easily be
tested using only sidedness queries in quadratic time.

8.6 Chapter Summary

In this chapter, we considered the algorithmic question whether a point set admits a k-
convex polygonization, i.e., a polygonization such that every line intersects the boundary
of the polygon at most 2k times. While 1-convexity of a point set coincides with the
point set being in convex position, deciding 2-convexity of a point set seems to be a more
complicated problem. We showed that deciding whether a point set admits a 2-convex
polygonization is a problem that can be solved in polynomial time, but still our algorithm
is far from being efficient. The problem changes for higher degrees of convexity. We gave
a reduction showing that deciding 3-convexity is an NP-complete problem. The reduction
can easily be modified to cover higher degrees of convexity. Finally, we gave an account
on 2-convexity in connection with abstract order types and showed how to extend the
concepts used for the geometric variant to the abstract version.

Note that for 2-convexity, our primary goal has been to show that the problem is
solvable in polynomial time at all. In presence of the large upper bound on the running
time of the algorithm, it would be interesting to know the running time of an optimal
algorithm. In that respect, the most significant part is looking at all triples of inflection
edge pairs. Recall that each pair defines a wedge, i.e., a convex region allowing us to apply
Helly’s Theorem. However, a half-plane would be sufficient, and actually, when there is
no star-shaped 2-convex polygonization but a non-star-shaped one, there will be three
inflection edges such that the intersection of the three half-planes they define is empty.
However, when given only one inflection edge of a pocket, Lemma 8.12 (see page 117),
giving us the polygonization of the pocket, is not applicable. Some further insight into
the problem may allow us to use only one inflection edge of a pocket, in particular since
in that case we have the information that the pocket region of each pocket contains only
points of that pocket.

Concerning the application of our algorithm to abstract order types, it would be in-
teresting whether the pseudo-lines we added to the explicit representation of the dual
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arrangement can be replaced by a well-defined set of pseudo-lines that are not explic-
itly constructed, similar to pseudo-verticals in Chapter 7. Such an extension would have
to allow us to obtain the order of intersections with the other pseudo-lines of the initial
arrangement in a consistent way.





Chapter 9

Conclusion

In this thesis, we presented several results on algorithmic problems on finite point sets in
the plane and geometric graphs.

In the first part, we considered flips in triangulations. In Chapter 2, we investigated
the properties of the double chain as a special point set with respect to the flip distance.
In particular, we showed that the desired properties of the double chain also hold when it
is used as a subset of a set of points. The double chain was a crucial part of our construc-
tions in the following two chapters, where we considered the complexity of the flip distance
problem for triangulations of point sets (Chapter 3) and simple polygons (Chapter 4). We
showed that the problem is APX-hard for triangulations of point sets, using a reduction
from Minimum Vertex Cover. For this, we provided an extensive account on how to
embed the points of the gadgets used in the reduction. A different approach had to be
taken in Chapter 4 to show NP-completeness of the flip distance problem for triangula-
tions of simple polygons. Our reduction from a variant of the Rectilinear Steiner
Arborescence problem allowed us to show that the problem is NP-complete. However,
the reduction does not provide any insight in the complexity of the approximation variant
of the problem.

In the second part of this thesis, the focus was on algorithms on point sets, in particular
on algorithms that use only sidedness queries and that work also for abstract order types.
In Chapter 5, we provided a revision of the topic of combinatorial classification of point
sets, describing circular and allowable sequences, order types of point sets and abstract
order types, as well as of properties of the dual pseudo-line arrangements in the Euclidean
and real projective plane, for use in the following chapters. Further, we provided several
examples of related work that motivated the research on geometric algorithms using only
a restricted set of predicates. The first algorithm we described for this setting finds an
extreme point in linear time (see Chapter 6), thus solving a long-standing open problem
posed by Knuth. In particular, given a pair of points from the set, the algorithm returns the
edges of the convex hull that are intersected by the supporting line of these two points. In
Chapter 7, we defined an abstraction of a vertical line in a pseudo-line arrangement that had
desirable algorithmic properties. We were able to provide an algorithm to select a crossing
of the pseudo-lines of the arrangements that has a given rank along such a pseudo-vertical,
using only a linear number of sidedness queries. Further, we showed that there is a total
order on these pseudo-verticals with respect to any pseudo-line in the arrangement, just
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like for vertical lines in line arrangements. We then gave an application of pseudo-verticals,
showing that the classic linear-time ham-sandwich cut algorithm also works for abstract
order types when replacing vertical lines by pseudo-verticals. In Chapter 8, we considered
a combinatorial generalization of convexity, the so-called k-convexity. In particular, we
addressed the problem of deciding whether a point set allows for a k-convex polygonization.
We provided a polynomial-time algorithm that determines whether a point set has a 2-
convex polygonization. For k ≥ 3, we showed that deciding k-convexity of a point set
is an NP-complete problem. We closed that chapter with a short account on deciding
2-convexity of abstract order types by showing how Helly’s Theorem, a key ingredient of
our algorithm for deciding 2-convexity, is replaced by its counterpart for arrangements of
pseudo-lines. Of course, the results presented in the different chapters provoke further
related questions.

For the triangulation flip graph, the question on the complexity of the flip distance
problem for convex polygons is probably the most important one. The problem has resisted
a large number of attempts to solve it for around 30 years. Therefore, it seems that
getting more insight into closely related problems could be a successful approach. This
would comprise, e.g., finding a PTAS for the flip distance problem in triangulations of
convex polygons, or, in the other direction, showing that the problem is APX-hard for
triangulations of simple polygons. For the latter, we already discussed that the reduction
may have to differ significantly from the one presented in Chapter 4. Naturally, showing
that there is a PTAS for a problem always requires to also bound the optimal solution from
below. Analyzing the recent progress in lower-bound constructions from an algorithmic
point of view may be helpful with this respect.

For algorithms using sidedness queries and working on abstract order types, we have
seen that adding “imaginary” pseudo-lines to the arrangement allowed us to prove the cor-
rectness of our algorithm. This has been done for replacing an argument using crossings of
supporting lines, and for replacing vertical lines by pseudo-verticals. For applying Helly’s
Theorem for pseudo-line arrangements, we actually extended the arrangement to have a
consistent order defined by the additional pseudo-lines. As already mentioned, it would be
interesting to have a more light-weight approach, in which the additional pseudo-lines do
not have to be created explicitly, but where the order defined by all of them is consistent.
Using similar techniques as in Chapter 7, it seems plausible that there exists such a defini-
tion. In general, of course, it would be interesting to know an answer to the long-standing
problem on whether there is a computational gap between abstract order types and order
types, or between using only sidedness queries and using the coordinates of a point set,
within an expressive model of computation.
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