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Abstract 
 

Calibration parameters of space-borne magnetometers can change in-flight, 
compared to their values that were measured on ground before launch. This thesis 
contains a variety of methods for recovering calibration parameters in-flight. The theory 
of previously published methods for finding magnetometer zero levels inside the 
interplanetary magnetic field has been generalized and an improved method that provides 
error estimates is presented. Furthermore, a new method for finding zero levels and their 
error estimates, inside the low field regions of a magnetosphere is described. Three 
improvements on in-flight orthogonalization of sensor triads on spinning spacecraft are 
presented. First, the existing equations have been improved, so that they converge for 
large errors in the spin axis tilt angles. Second, a new method for orthogonalization of 
sensor triads onboard fast moving and slow spinning spacecraft where FFT based 
methods do not work is introduced. Third, a method for recovering short term variations 
of calibration parameters is described. Methods for recovering calibration parameters via 
comparisons with model fields for spinning, as well as three axis stabilized spacecraft are 
provided. Magnetometer calibration has been combined with attitude determination for 
spinning spacecraft. Additionally, a method that allows recovering attitude, calibration 
parameters and varying spin angle corrections is described, which is especially important 
for eclipsed periods of spacecraft that only have a Sun sensor. A new method for finding 
spin axes offsets via comparison of accurate measurements of the field magnitude is 
presented, that additionally matches the gains of the two instruments that are being 
compared. The technique has been applied to EDI and FGM data for the Cluster 3 
satellite and EDI noise distributions were analyzed. Results of minimizing curl and 
divergence of the magnetic field via adjustment of calibration parameters are presented, 
using data measured by the four Cluster satellites inside the tail lobes with equations that 
are an order of magnitude shorter than the previously published ones. 
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Kurzfassung 
 

Kalibrierparameter von Magnetometern, die sich auf Raumsonden befinden, 
können sich im Flug ändern, sodass sie von den Werten, die vor dem Start gemessen 
wurden abweichen. Diese Dissertation beinhaltet eine Reihe von Verfahren, die dazu 
dienen, Kalibrierparameter im Flug neu zu berechnen. Die Theorie von bereits 
publizierten Methoden, die dazu verwendet werden um Offsets im interplanetaren Raum  
zu bestimmen, wurde vereinheitlicht und eine neue Methode, die auch 
Fehlerabschätzungen beinhaltet, wird präsentiert. Zusätzlich wurde eine neue Methode 
entwickelt, mit der man Offsets und deren Fehlerabschätzungen, in den Regionen 
innerhalb der Magnetosphäre, die niedriges Feld aufweisen, bestimmen kann. Drei 
Verbesserungen von Methoden zur Orthogonalisierung von dreiachsigen Sensoren, die 
sich  auf rotierenden Raumsonden befinden, wurden entwickelt. Erstens: Die 
Gleichungen wurden so geändert, dass sie auch bei grösseren Neigungswinkeln der 
Rotationsachse konvergieren. Zweitens: Eine Methode wurde entwicket, die auch bei 
langsam rotiernenden und schnellen Raumsonen funktioniert, wo Methoden die auf FFT 
basieren nicht funktionieren. Drittens: Eine Methode wurde entwickelt, die kurzzeitige 
Schwankungen der Kalibrierparameter bestimmen kann. Methoden um 
Kalibrierparameter von Vergleichen mit dem Erdmagnetfeldmodell zu bestimmen 
werden präsentiert für rotierende und für dreiachsenstabilisierte Raumsonden. Die 
Berechnung von Kalibrierparametern wurde mit der Berechnung der Ausrichtung einer 
Raumsonde kombiniert. Zusätzlich wurde eine Methode entwickelt die, die Ausrichtung, 
Kalibrierparameter und zeitlich veränderliche Korrekturen des Sonnenwinkels bestimmt. 
Das ist insbesondere für Raumsonden die nur einen Sonnensensor haben wichtig, wenn 
sie sich im Schatten (z.B. Erdschatten) befinden. Eine Methode zur Bestimmung des 
Rotationsachsen-Offsets durch Vergleich mit genauen Messungen der totalen Feldstärke, 
die auch den Verstärkungskaktor der beiden Instrumente abgleicht, wird präsentiert. 
Diese Methode wurde mit Daten von EDI und FGM (auf dem Cluster 3 Satelliten) 
angewandt und auch die Verteilungen des Rauschens von EDI wurde undersucht. 
Resultate vom Minnimierungen (durch Kalibrierparameter) von Rotor und Divergenz der 
Magnetfelder werden präsentiert, mit Daten von den vier Cluster Satelliten, die innerhalb 
des Magnetfeldschweifes gemessen wurden. Die Minimierungen wurden mit Hilfe von 
Gleichungen die um Faktor 10 kürzer sind als die, die bisher publiziert wurden bewirkt.  
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1.   Introduction 
 

The spirit of exploration is an important characteristic of modern human societies. 
Inspiring new discoveries through space exploration increase knowledge, imagination 
and thus human capabilities.  

 
Our home star, the Sun provides energy input via radiation to sustain the terrestrial 

biosphere. Our Sun also generates magnetic fields and emits plasma. A plasma is a gas of 
charged particles having equal numbers of free positive and negative charge carriers. The 
Sun’s emitted plasma is called solar-wind plasma and travels away from the Sun far 
beyond the known planets of our solar system. The solar-wind plasma is highly 
conducting and carries along the Sun’s magnetic field. The region in interstellar space 
that is filled with solar-wind plasma and its accompanying magnetic field (interplanetary 
magnetic field) is called heliosphere. Solar-wind plasma travels from the Sun to Earth 
typically within several days. Earth has an internal magnetic field also called a planetary 
magnetic field that is generated by flow patterns in the conducting liquid of its core 
similar to a Faraday’s disk dynamo. The interaction of the solar-wind plasma with the 
Earth’s magnetic field forms a cavity called the Earth’s magnetosphere. The 
interplanetary environment that is created and influenced by the Sun is highly variable 
and has effects on Earth as well as in space. Such effects can cause telecommunication 
problems, power outages, malfunctioning electronic systems, satellite damage, radiation 
hazards to astronauts and airline passengers as well as effects on biological systems on 
the surface of Earth. Long term variability of the interplanetary environment may cause 
climate changes. Recent studies have proposed a relevant connection of solar combined 
with cosmic ray activity to Earth’s climate. A positive effect is the generation of beautiful 
auroras. 

 
Space-borne magnetometers are devices that are carried by spacecraft to measure 

magnetic fields in space. Typically the sensors of such magnetometers are mounted on a 
boom so that the influence of spacecraft generated magnetic fields at the location of the 
sensor is minimized. It is possible to check important performance parameters of such 
magnetometers (calibration parameters) by examination of the very data that the 
magnetometer transmitted back to Earth. How this can be done in different environments 
in the magnetized plasmas of the solar system is the underlying theme of this dissertation. 
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1.1.   Basic Equations 
 

Charged particles at rest cause an electrostatic field which is the origin of the 
Coulomb force. 

 
 FC=qE 
 

 E  electrostatic field 
 q single point charge 
 FC Coulomb Force 
 
Charged particles in motion are current elements that generate a magnetic field which is 
the origin of the Lorentz force. 
 
 FL=q(vB) 
 
 v velocity of the charged particle  

B magnetic induction 
 

The equation of motion for a single point charge in the presence of Coulomb and Lorentz 
forces is 
 

 )( BvE
v

 q
dt

d
m  

 
 m particle mass 

t time 
 

The coupling between electric and magnetic fields can be expressed by two of Maxwell’s 
equations namely, Ampere’s and Faraday’s law. 
 

 
t




B
jB 000   Ampere’s law 

 
 j electric current density 
 

 
t




B
E    Faraday’s law 

 
As one can see from Ampere’s and Faraday’s laws the electric and the magnetic fields 
are coupled via their spatial as well as their temporal variations. The above equations 
need to be supplemented by two more of Maxwell’s equations namely the Gauss’s law 
for magnetism and the Gauss’s law. 
 
 0 B    Gauss’s law for magnetism 



- 3 - 

 
0


 E    Gauss’s law, often called Poisson equation 

 
   electric space charge density (see below) 
 
 
Gauss’s law for magnetism means that magnetic field lines are always closed. This 
statement is equivalent to the statement that magnetic monopoles do not exist. Gauss’s 
law means that the electric space charge density is the source of the electric field. The 
difference between the charge densities of the ions and electrons gives the space charge 
density. 
 
 )( ei nne   

 
 e  unit charge (e = 1.602176487 × 10−19 C) 
 in  positive ion number density (assumed single charged) 

 en  electron number density 

 
Another definition of the current density besides Ampere’s law is the difference between 
the electron and ion fluxes that can be seen as current density as well 
 
 )( eeii nne vvj   

 
 ev  electron velocity  

 iv  ion velocity 
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1.2.   Magnetic Field Measuring Techniques 
 

1.2.1.  Scalar Magnetometers 
 

Scalar magnetometers are magnetic field measuring devices that measure the total 
strength or magnitude of the magnetic field but provide no directional information of the 
magnetic vector field. 

 
 

1.2.1.1.  Proton Precession Magnetometer 
 

Many kinds of atoms possess a net magnetic moment and thus behave as small 
magnets. If electromagnetic pulses are applied to such atoms they can absorb the applied 
energy and radiate it out again at a certain resonance frequency which depends on the 
ambient magnetic field strength. This phenomenon is called nuclear magnetic resonance. 
 

A proton precession magnetometer basically consists of a sample of a liquid that is 
rich in protons (hydrogen nuclei). The sample is surrounded by a coil to magnetically 
polarize the protons so that all of the small magnetic moments are aligned with the 
applied magnetic field. The applied magnetic field is then removed (switched off) and the 
sample is exposed to the ambient magnetic field. The protons will then start to precess 
around the ambient magnetic field (similar to spinning tops in a gravity field) and induce 
an AC-signal in the coil that was used to polarize the protons. The frequency of the signal 
is proportional to the magnitude of the ambient field and is called Larmor frequency. 
 

 



2

B
f p    Larmor frequency 

 
 B magnitude of the external field 
 p  gyromagnetic ratio of the proton 

 
The gyromagnetic ratio is very accurately derived from quantum mechanical principles 

(
p
2

=23.4874
Hz

nT
), thus the proton precession magnetometer is an absolute reference 

magnetometer. 
 
 

1.2.1.2.  Overhauser Magnetometer 
 

The overhauser magnetometer can achieve polarization much more effectively than 
the proton precession magnetometer. Additionally it can produce a continuous Larmor 
precession signal. The proton-rich sample is doped with a free radical as a source of 
electrons. The electrons are pumped with RF-energy at ~20-60 MHz and are efficiently 
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coupled to the protons which are then polarized dynamically by the pumping RF. The 
achievable Larmor signal amplitudes with this principle are 100 times larger than the 
amplitudes from the DC-method that is used for the traditional proton precession 
magnetometer as described in Sec. 1.2.1.1. Additionally the power consumption for 
excitement is reduced from tens of watts to just a few watts. 
 
 

1.2.1.3.  Optically Pumped Magnetometers 
 

Optically pumped magnetometers use energy that is required to transfer atomic 
electrons from one energy level to another as means of measuring magnetic fields. Such 
magnetometers consist of a certain gas which is irradiated by a discharge lamp. A certain 
quantum level becomes overpopulated (due to forbidden transitions) when the irradiation 
is done at a proper frequency. The gas cell then becomes transparent to the irradiating 
beam. Such a process is called optical pumping. The electrons in the gas cell then start to 
precess about the axis of the external magnetic field at the Larmor frequency of the 
element in the gas cell. 
 

 



2

B
f e  Larmor frequency 

 
 B magnitude of the external field 
 e  electron gyromagnetic ratio 

 
 
 A photodetector is used to measure the intensity-modulated light at the same rate 
(Larmor frequency). The cell can be made opaque again by an RF-signal at the proper 

energy level. For helium 
 2

 e =28 
nT

Hz
 and is much larger than the value for proton 

precession magnetometers of 0.04257602 
nT

Hz
. Thus higher time resolution can be 

achieved with optically pumped magnetometers. Besides helium, alkali metals such as 
cesium, rubidium and sodium are as well used for optically pumped magnetometers. 
 

If the external magnetic field is aligned with the gas cell, the amplitude of the signal 
that is modulated with the Larmor frequency decreases to a minimum (‘null zones’). This 
is the reason why most optically pumped magnetometers for space missions consist of 
two cells oriented at different angles. 
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1.2.2.  Vector Magnetometers 
 

Vector magnetometers can measure the total field strength or magnitude as well as 
the direction of the magnetic vector field. 

 
 

1.2.2.1.  Search Coil Magnetometer 
 

The search coil magnetometer cannot measure DC-magnetic fields, but it is capable 
of measuring AC-magnetic fields extremely accurately up to high frequencies. It obtains 
the AC-magnetic field vector using Faraday’s law of magnetic induction. 
 

 
t




B
E    Faraday’s law 

 
It consists of orthogonal coils. The voltage induced in the coils by time varying magnetic 
fields is proportional to the ambient AC-magnetic field. 
 

 A
B

AEsE d
dt

d
ddV 


  

  
 

1.2.2.2.  Fluxgate Magnetometer 
 

The fluxgate magnetometer is based on a saturated transformer. If a transformer 
operates in saturation, even harmonics are produced that are proportional to the ambient 
magnetic field. The largest of the even harmonics is the second harmonic which is used 
for magnetic field detection. The fluxgate magnetometer basically consists of three 
orthogonal transformers which are tuned in a way that the excitation signals do not 
appear on the pick up coils (balanced arrangement) and are optimized for the second 
harmonic. The signals at the pick up coils are fed into an electronic system that can 
generate a feedback current in an additional feedback coil so that the ambient field is 
canceled out. 
 
 

1.2.2.3.  Vector Helium Magnetometer 
 

The vector helium magnetometer consists of an optically pumped helium scalar 
magnetometer with an added Helmholtz coil system around the gas cell, which is used to 
derive directional information of the ambient field. The directional information is derived 
electronically and thus is not directly related to mechanical alignments. The Helmholtz 
coil is used to generate synchronous orthogonal sweep fields in two planes that intersect 
along the optical axis and thus synchronously modulate the photodetector light output. 
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The photodetector light output is synchronously rectified to cancel out the field applied, 
via current feed back, similar to the fluxgate magnetometer. 
 
 

1.2.2.4. Coupled Dark State Magnetometer 
 

This is a new type of magnetometer that is currently under development for 
space-borne applications.  In principle it can be configured as a scalar and a vector 
magnetometer. It is based on two-photon spectroscopy of free alkali atoms. Compared to 
other scalar magnetometers it has much lower mass and power consumption. 
Additionally, it produces no artificial magnetic fields for excitation. For more 
information see Pollinger et al. (2010) and references therein. 

 
 

1.2.3.  Comparison of Space-borne Magnetometers 
 

The table below represents the typical instrument specifications of each type. 
Specific applications may require magnetometers to have different specifications than in 
the table. 

 
 dynamic 

range 
[nT] 

noise 
[pT/sqrt(Hz)] 

frequency 
range 
[Hz] 

power 
[W] 

weight 
[kg] 

zero 
level 

stability 
proton 
precession 
(scalar) 

20000-100000 10 @ 1 Hz 0-1 >20 3-4  absolute 
  0.1 nT 

overhauser 
(scalar) 

20000-200000 10 @ 1 Hz 
 

0-1 >2 1-2 absolute 
0.1 nT 

optically 
pumped 
(scalar) 

20000-200000 10 @ 1 Hz 
 

0-2 >2 1-2 absolute 
0.1 nT 

search coil 
(vector) 

0.01-1000  
@ 1 Hz 

10 @ 1 Hz 
0.01 @10 kHz

1-50000 0.5 0.8 N A 

fluxgate 
(vector) 

0.05-60000 10 @ 1 Hz 0-100 0.5 0.5 1-10 
[nT/year]

vector 
helium 
(vector) 

0.05-150000 10 @ 1 Hz 0-10 4-6 2-3 0.05-0.2 
[nT/year]

Table 1.1. Typical specifications of space-borne magnetometers. 
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1.3.   The Interplanetary Magnetic Field 
 

The perfectly conducting solar-wind plasma that flows radially out of the solar 
corona carries the Sun’s magnetic field with it. While the Sun rotates with a 27 day 
rotation period (as observed from Earth) the magnetic field lines stay anchored at the 
same footprint in the solar atmosphere. This causes the field lines to be bent due to the 
radially out flowing plasma to form an Archimedean spiral (also referred to as “Parker 
Spiral”). Field lines that are carried by a highly conducting plasma flow are called 
“frozen-in” field lines (see Fig. 1.1). At the distance of 1 AU the angle between the spiral 
and the Earth-Sun line is about 45° (the Sun-Earth distance is referred to as an 
astronomical unit, 1 AU = 149.597.870 km ). The typical solar-wind speed is 500 km s-1. 
At this speed the solar-wind needs 4 days to travel from Sun to Earth. The typical range 
of solar-wind velocity lies between 300 km s-1 and 1400 km s-1. Regions of flow with 
velocities below 400 km s-1 are called low-speed streams, whereas regions with flow 
velocities exceeding 600 km s-1 are called high-speed streams. Because of the azimuthal 
velocity of Earth of about 30 km s-1 the solar-wind arrives at Earth with about 5° 
aberration from the radial direction. The typical magnetic field strength of the 
interplanetary field at 1 AU is in the order of 5 nT rarely exceeding 20 nT. The solar 
wind propagates faster than its speed of sound as well as faster than magnetic signals can 
be transported inside the solar-wind. Thus the solar-wind can be seen as a supersonic as 
well as a super-Alfvénic flow. At 1 AU the solar-wind plasma is fully ionized and 
consists of protons, electrons and α–particles. 

 
There are several periodic cycles of solar activity. The Sun’s activity varies with an 

11 year cycle. The direction of the Sun’s magnetic field changes polarity during each 
11 year cycle, thus forming a 22 year magnetic cycle, commonly referred to as “Hale 
Cycle”. Other cycles are the roughly 90 year Gleissberg cycle and the roughly 210 year 
De Vries or Suess cycle. At low solar activity the Sun’s magnetic field is more similar to 
the field of a magnetic dipole. 

 
High-speed streams originate from coronal holes that rotate with the Sun’s surface. 

Thus an observer at e.g. in front of the magnetosphere of Earth sees a repeating pattern of 
high-speed streams and low-speed streams with a 27 day periodicity, especially during 
low solar activity (see Fig. 1.2). The proton density for high-speed streams is ~3 cm-3 and 
the proton temperature is 2105 K. The proton density for low-speed it is ~7-10 cm-3 and 
the proton temperature is 4104 K. The magnetic field fluctuations of the high-speed 
streams are mostly Alfvénic fluctuations (changes in direction of the field rather than 
changes in magnitude). Magnetic fluctuations of the low-speed streams are mostly 
changes in field magnitude related to density fluctuations.  
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Figure 1.1. The “Parker Spiral” in the solar equatorial or ecliptic plane. The 

spirals are magnetic field lines that start out radially and make a large angle to the 
radial direction by the time they reach 1AU (the dotted cycle). Arrows added to the field 
directions indicate their polarity at the Sun. The pluses designate outward-directed 
(positive) fields and the minuses inward-directed (negative) fields. The field lines divide 
the circle into two magnetic ‘‘sectors’’. Two of the spirals are the boundaries between 
the sectors (designated S/B for sector boundary). The straight lines emanating from the 
Sun at the center are radial solar-wind velocity vectors with speeds of 300 km/s 
(considered slow wind today). Taken from Smith (2007). 

 

Slow
Fast

Slow

Sun

Rarefaction

noisserpmoC

Ambient
Solar Wind

Ambient
Solar Wind

 
Figure 1.2. Interaction of fast and slow solar wind that form a so-called corotating 
interaction region. Adapted from Russell (2001). 
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The average direction of the interplanetary magnetic field along the Parker spiral is 
pointing away from the Sun in one hemisphere and towards the Sun in the other 
hemisphere (directions are reversed during each 11 year solar cycle). The magnetic field 
goes though zero in between the hemispheres and thus the interplanetary current sheet is 
formed (see Fig. 1.3). An observer in front of Earth’s magnetosphere sees a sector 
structure of alternating polarities of the interplanetary magnetic field. Typically there are 
two to four sectors (see Fig. 1.1). 

 

 
Figure 1.3. Heliospheric current sheet near the Sun. The magnetic axis is tilted with 
respect to the rotation axis. Taken from Smith (2007). 

 
The interplanetary magnetic field has a so-called termination shock where the 

supersonic solar-wind plasma becomes subsonic and enters the heliosheath. Both 
Voyager spacecraft have crossed the termination shock taking first in-situ measurements 
of this boundary. Voyager 1 crossed on 11 Nov., 2004 at a distance from the Sun of 
94 AU (Burlaga et al., 2005). Voyager 2 followed on 30 Aug., 2007 at 84 AU (Burlaga et 
al., 2008). The next boundary past the termination shock is the heliopause where the field 
lines stop being “frozen” into the solar-wind plasma and is expected to be located at 
around 200 AU. Additionally, if the local interstellar medium is supersonic, a bow shock 
may exist as well (see Fig. 1.4). The magnetic field strength at the termination shock is 
roughly 0.1 nT (Burlaga et al., 2005). 
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Figure 1.4. Artist’s view of the heliosphere, (the magnetosphere of our Sun) carved by 
the solar wind into the flow of the interstellar medium. Taken from Blanc (2005). 
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1.4.   Planetary Magnetic Fields 

 
Magnetohydrodynamic dynamos create planetary magnetic fields also called 

internal fields in many of the planets. Such dynamos are formed inside liquid cores. 
Basically the dynamo creates (induces) an electromotive force (EMF) because of motion 
of a conducting liquid across magnetic field lines. The EMF causes currents that produce 
a magnetic field in such a way that the dynamo is self-exciting. For more information see 
Parker (1979). Magnetic fields generated by such dynamos can be modeled by using the 
negative gradient of the scalar potential that satisfies Laplace’s equation. For the case that 
the solution to Laplace’s equation was found in spherical coordinates it is called a 
spherical harmonic expansion. The required parameters are called Gauss coefficients. 

 
Besides the magnetohydrodynamic dynamos another important component of 

planetary magnetic fields are crustal magnetic fields, generated from magnetic material of 
the planet’s crust. The crustal magnetic field is often called an anomaly field because of 
its general high spatial variability. 

 
 

1.4.1.  Earth’s Geomagnetic Field 
 

The geomagnetic field is observed by ground based geomagnetic stations, ship-
towed magnetometers, magnetometers on aircraft as well as by space-borne 
magnetometers (MAGSAT, Ørsted and CHAMP see Sec. 1.7.).  The Earth’s magnetic 
field can roughly be approximated by a dipole that is located at the center and tilted with 
respect to the rotation axis by about 10°. The magnetic field strength at the surface ranges 
from 24,000 nT to 66,000 nT. For more data about Earth see Table 1.2 and Figure 1.6. 
Significant derivations from a pure dipole field exist. Several spherical harmonic models 
exist, commonly used is the International Geomagnetic Reference Model (IGRF) (see e.g. 
Maus et al., 2005). 

 
The Earth’s magnetic field is not constant. Studies of the magnetic field of rocks 

revealed that reversals of the geomagnetic field have occurred in the past. When a rock is 
formed it can acquire a magnetic field that is parallel to the ambient field. The time frame 
between reversals is several thousand years. Reversals take place slowly and without a 
constant periodicity. Currently the strength of Earth’s magnetic dipole is decreasing with 
a rate of about 6% per century. The so-called westward drift is another change of the 
geomagnetic field. During the last century the field drifted westward at a rate of about 
0.15° per year (Wei and Xu, 2001). There are changes of the Earth’s field called 
Geomagnetic Jerks. Such changes of secular variations have happened in 1925, 1969, 
1978 and 1992 and are currently not predictable (see Fig. 1.5). The crustal magnetic field 
can vary as well. Such changes occur mainly along mid-ocean ridges when liquid 
material from molten mantle reaches the ocean bottom. The new material pushes older 
material aside that has the current geomagnetic field frozen into it, thus causing local 
magnetic field changes.  

 



- 13 - 

 

 

Figure 1.5. Rate of change of declination at Greenwich (GRW), Abinger (ABN), 
Hartland (HAD), Eskdalemuir (ESK) and Lerwick (LER) observatories 1900-2008. 
Courtesy of British Geological Survey. 

Additionally, ocean currents and tidal flows can generate magnetic fields. For 
more details on the interaction of ocean currents and magnetic fields see Manoj et al. 
(2006). 

 

1.4.2.  Internal Magnetic Fields of Other Planets 
 

Similar to Earth, other planets are likely to have magnetohydrodynamic dynamos. 
Figure 1.6 shows the magnetic dipole fields of all the planets of our solar system that 
have measurable internal fields. Their dipole strengths and directions vary. There is 
evidence that Mars once had an internal field until the dynamo stopped generating a 
magnetic field. Venus is a likely candidate for having a liquid outer core but magnetic 
field measurements show no sign of an internal magnetic field. See Table 1.2 for data 
about planets. 
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 Radius 

[km] 
Surface 

equatorial 
field [nT] 

Dipole 
tilt and 
sense 

Sidereal 
rotation 
period 

Density of 
external 

plasma** 
 

Dynamic 
pressure 

of 
external 
plasma 
[nPa]** 

Magnetic 
field of 
external 
plasma 
[nT]** 

Mercury 2440 140 - 400 ~10°* 59 days ~50/cm-3 15 20 
Venus 6052 - - 243 days   16/cm-3 4 10 
Earth 6373 31000 +10.8° 23.9 h 8/cm-3 2 8 
Mars 3390 <10 - 24.6 h 3.5/cm-3 1 3.5 

Jupiter 71398 428000 -9.6° 9.8 h 0.3/cm-3 0.1 1 
Saturn 60330 22000 0.0° 10.7 h 0.1/cm-3 0.03 0.5 
Uranus 25559 23000 -59° 15.5 h 0.02/cm-3 0.005 0.3 
Neptune 24764 14000 -47° 15.8 h 0.008/cm-3 0.002 0.2 

Ganymede 2634 720 4° 7.2 days 100 
AMU/cm-3

1 100 

* Value from Slavin (2004) 
** The properties of the solar-wind vary greatly; hence the values are approximate. 
Table 1.2. Planetary data. Adapted from Kivelson (2007). 
 
 
 

 
Figure 1.6. The relative geometries of the solar-wind direction (opposite to vector R 
here), planetary spin vectors Ω  and dipole moments M are illustrated in this figure for 
Earth, Mercury and the giant planets. They play an important role in the way solar-wind 
forcing and planetary motion interplay to determine a global pattern of plasma and 
magnetic flux circulation in each magnetosphere. In addition the planetary obliquity 
angle determines the importance of seasonal variations in magnetospheric phenomena, 
and the angle between M and Ω determines the importance of diurnal variations in 
magnetospheric flows. Taken from Blanc (2005). 
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1.4.3.  Internal Magnetic Field of Ganymede 
 

Ganymede is a moon of Jupiter. It is the only moon in our solar system for which an 
internal magnetic field has been observed, thus it is likely to have a 
magnetohydrodynamic dynamo. Ganymede is the smallest known body within or solar 
system to have such a dynamo. For data on Ganymede see Table 1.2. 
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1.5.   Solar System Magnetospheres 
 

Planets can be seen as obstacles that slow down the supersonic solar wind, divert 
and heat its flow around the planetary obstacle. There are three different types of such 
obstacles. The solar wind can be slowed down by: 

1) a planet that does not have a magnetic field nor a dense atmosphere or 
ionosphere may have an “induced magnetosphere” in an electrically conducting 
core. This magnetosphere is transient with a time scale dependent on the size and 
conductivity of the core. 
2) a planet’s atmosphere (or ionosphere), the resulting magnetosphere is called 
“induced magnetosphere” as well 
3) or by a planet’s magnetic field, the resulting magnetosphere is then called 
“intrinsic magnetosphere”. 
 
Mars represents a special case because of larger crustal fields that reach up to the 

ionosphere. The solar wind is slowed down by the planets atmosphere/ionosphere and 
magnetic field (Winterhalter et al., 2004). 

 
The so-called standoff distance of the magnetopause (see Figure 1.7) is the distance 

from the “nose” of the magnetopause (subsolar point) to the planet, moon or comet 
(obstacle). This standoff distance is a result of an equilibrium (pressure balance) of 
pressures of the surrounding plasma with pressures of generated by the obstacle. 

 

SUBSOLAR
POINT  

Figure 1.7. Earth’s magnetosphere. Adapted from Parks (1991). 
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1.5.1.  Earth’s Magnetosphere 
 

Earth’s magnetosphere falls under category three as described above. The 
interaction of the supersonic solar wind with the Earth’s magnetosphere causes a bow 
shock (see Fig. 1.7) which precedes the magnetosphere and is located at a distance of 
about 13 Re (1 Re is the average radius of Earth of 6371 km) in front of Earth. Behind the 
bow shock there is another boundary called the magnetopause where the hydrodynamic 
pressure of the solar wind of about 0.17 nPa (nano Pascal) is balanced by the magnetic 
pressure of the internal magnetic field of Earth, thus the plasma flow is diverted around 
the magnetopause including the “frozen-in” magnetic field lines. This boundary is about 
10 Re in front of Earth. The region between bow shock and magnetopause is called 
magnetosheath. Inside the magnetosheath the solar-wind plasma is slowed down while its 
thermal energy increases. The plasma types outside and inside of the magnetosphere are 
very different. The magnetosheath plasma mainly comes from the solar wind (see 
Sec. 1.3.) while the plasma on the opposite side of the magnetopause is mainly fed by 
ions from the ionosphere. The Archimedean spiral shaped magnetic field that is carried 
by the solar wind arrives at Earth at an average angle of 45°. This generally causes so-
called parallel shocks at the morning side and perpendicular shocks at the afternoon side. 
Parallel shocks are highly oscillatory and cause upstream waves that are observable 
within a region called foreshock region, thus “letting the plasma know” that a shock is 
ahead. Towards the night side the magnetosphere extends far beyond the orbit of the 
Moon to about 1000 Re. 
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Figure 1.8. Magnetospheric current systems. Modified from Kivelson and Russell (1995). 
 

There are several current systems within the Earth’s magnetosphere as well as 
several regions of different charged particles (see Figure 1.8). The coupling of the solar-
wind plasma together with the interplanetary magnetic field to the Earth’s magnetosphere 
causes flow and an electric field (   ) which leads to magnetospheric current 
systems. The innermost region of the magnetosphere, the plasmasphere consists of low 
energy plasma and represents the extension of the ionospere. The latter can be seen as a 
transition region between the fully ionized magnetospheric plasma to the neutral 
atmosphere. Ionospheric ionization of neutral atmospheric particles is caused by solar 
ultraviolet as well as extreme solar ultraviolet radiation. The mantle is a layer of plasma 
with tail ward bulk flow. Mantle plasma eventually reaches the center of the magnetotail 
where it can be accelerated to higher energy levels. The dashed lines in Figure 1.8 show 
the average flow of low-energy particles both inside and outside the magnetosphere. 
Together with the presence of magnetic fields, those flows cause electric fields which can 
accelerate charged particles to very high energies that populate the so-called Van Allen 
radiation belts. The discovery of the radiation belts was made by Van Allen’s group (Van 
Allen, 1959) with Geiger-Müller tubes onboard the Explorer 1 spacecraft (launched on 
1958-02-01). The Van Allen radiation belts are located between about 2 Re and 6 Re 
(geocentric distances) and consist of high energy particles (electrons and ions) that 
bounce back and fourth along dipolar field lines. Currents are generated when the 
magnetic field is not curl free (in the mathematical sense). The thick, red arrows in 
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Figure 1.8 show flows of major electric currents. The pressure gradient of the shocked 
magnetosheath plasma when it reaches the magnetic field of Earth causes the 
magnetopause currents. The tail current (or also called neutral sheet current) is part of the 
magnetopause current. It separates both tail lobes which contain magnetic fields of 
opposite directions. The ring current consists of charged particles that are trapped by the 
Earth’s dipolar field. The most energetic of those particles comprise the radiation belts.  
The trapped particles drift azimuthally due to gradient and curvature of the magnetic 
field. Ions and electrons drift in opposite directions, thus generating a current. The ring 
current extends from about 2 Re to 9 Re (geocentric distances) and flows westward thus 
causing a magnetic field that is opposite to the Earth’s dipolar field. Currents that flow 
along magnetic field lines are called field-aligned currents. Field-aligned currents apply 
drag to the ionospheric plasma via Lorentz or JB force as they close inside the resistive 
ionosphere and cross field lines on pressure gradients. Thus field-aligned currents can 
transport stresses from the outer magnetosphere to the ionosphere and hence to the 
atmosphere. Such an energy transfer as well depends on the direction of the 
interplanetary field (see Sec. 1.6.). 
 
 

1.5.2.  Magnetospheres of Other Planets 
 

Venus has no measurable internal magnetic field. It has an induced magnetosphere 
(see Fig. 1.9). Due to its dense atmosphere it falls under category two in Sec. 1.5. 
Mercury, Earth, Jupiter, Saturn, Uranus and Neptune have intrinsic magnetospheres 
(category three in Sec. 1.5.).  
 

 
Figure 1.9. Induced magnetosphere of Venus. Taken from Zhang et al. (2008). 
 

The magnetosphere of Mercury is a “mini magnetosphere” because of the relative 
small planetary size and the short standoff distance of Mercury’s magnetosphere (see 
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Fig. 1.10). Due to the small size radiation belts cannot form and due to the slow rotation 
period there is no Earth-like plasmasphere. 

 

 
Figure 1.10. Magnetosphere of Mercury. Taken from Kivelson (2007). 

 
Mars represents a special case because its magnetohydrodynamic dynamo has 

stopped but crustal magnetic fields in some regions are large enough to prevent the solar 
wind from reaching its surface and form so-called solar arcs. 

 
The magnetospheres of Jupiter and Saturn represent so-called “giant 

magnetospheres”. Large magnetic moments together with fast rotation, moons and rings 
form extremely large and complex magnetospheres (see Fig. 1.11). 

 
Uranus and Neptune as well produce very large magnetospheres but their dipole 

tilts are extremely large. Large dipole tilts produce highly varying structural features and 
asymmetries in these magnetospheres throughout a planetary rotation (see Fig. 1.11). 
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Figure 1.11. Giant magnetosphers. Taken from Bennet (2004). 
 
 

1.5.3.  Other Magnetospheres 
 

Magnetospheres can be inside magnetospheres. The magnetospheres of moons 
orbiting planets are such cases. Most moons in our solar system do not have an internal 
magnetic field, their magnetospheres are “induced magnetospheres” (categories one and 
two in Sec. 1.5.). The Jupiter moon Titan has a dense atmosphere but no internal 
magnetic field (category two in Sec. 1.5.). Our moon is a typical example of surface 
interaction with the ambient plasma (category one in Sec. 1.5.). 
 

The Jupiter moon Ganymede is an exception. Ganymede has an internal magnetic 
field, thus has an “intrinsic magnetosphere” that is inside another “intrinsic 
magnetosphere” (see Fig. 1.12). The magnetic pressure dominates the plasma pressure at 
Ganymede’s orbit inside Jupiter’s magnetosphere. This causes Ganymede’s 
magnetosphere to be more cylinder-shaped. 
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Figure 1.12. Magnetosphere of Ganymede. Taken from Kivelson (2007). 

 
Magnetospheres of comets are “induced magnetospheres”. A comet emits neutral 

gas and dust. There are two boundary regions. One is the cometary bow-shock and the 
other is the boundary between the region where the pressure of gas and dust dominate 
and the region where solar-wind plasma pressure and magnetic field dominate. 

 
Most asteroids and moons without dense atmosphere and magnetic field do not 

form bow shocks. The surrounding plasma directly interacts with the surface of such a 
body (absorption). 
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1.6.   Space Weather  

 
The field of research that describes how interplanetary space, Earth and its 

technological systems, biological systems as well as its climate are affected by solar 
activity and other cosmic sources is called ‘space weather’. Examples of affected 
technological systems are space probes and satellites, telecommunication systems, 
transformers connected to electric energy supplying power grids as well as electronic 
systems and very long conductors (power lines or telecommunication cables). Examples 
that fall under the category biological systems are humans as astronauts and airline 
passengers (see Fig. 1.13). More recent studies suggest that even humans that are located 
on the surface of Earth are as well influenced by space weather conditions. Besides 
humans other species such as pigeons and whales on the Earth’s surface can be 
influenced by space weather as well. The general processes of influence are magnetic 
field reconnection and plasma acceleration processes as well as direct impacts of highly 
charged particles. The solar wind controls both, the size of the magnetosphere and the 
amount of energy that enters the magnetosphere.  
 

 
Figure 1.13. Effects of space weather. Adapted from Lanzerotti et al. (1997). 
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1.6.1.  Reconnection 
 

If the magnetic field is northward at the subsolar point (parallel to the internal 
field), the energy transfer into the Earth’s magnetosphere is minimal (see Fig. 1.14). If 
the interplanetary magnetic field (IMF) turns southward the field lines at the subsolar 
point become anti-parallel and reconnect (see Fig. 1.14). The size of this dayside 
reconnection region is highly variable and thus the amount of energy that is transported 
into the magnetosphere is highly variable as well. The reconnection processes described 
below were first suggested by Dungey (1961; 1963), and are still hot scientific topics (see 
e.g. Treumann et al., 2010). 
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Figure 1.14. The reconnecting magnetosphere for northward (top panel) as well as 
southward IMF (bottom panel). The points labeled “N” are neutral points where the 
magnetic field goes to zero (also called X-points). Straight arrows show regions with 
accelerated flow. Taken from Russell (2007). 
 
 

1.6.1.1.  Northward IMF 
 

In case of northward IMF, reconnection regions form behind Earth as marked with 
“N” in Fig. 1.14 (top panel). As depicted with arrows, plasma flows into the reconnection 
region from above and below and is accelerated towards and away from the Sun by 
straightening field lines. Magnetic flux is transported towards the dayside magnetosphere 
and removed from the back. Magnetic flux that was removed from the night side is 
eventually replenished from the dayside. This reconnection transfers momentum from the 
solar wind into the magnetosphere. This energy transfer is much weaker compared to the 
energy transfer that occurs for southward IMF.  
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1.6.1.2.  Southward IMF 
 

For southward IMF the reconnection region can become as large as the entire 
dayside magnetopause (see Fig. 1.14). Reconnection regions are marked with “N”. 
Additionally the field strength on the dayside is higher and the field geometry altogether 
is encouraging reconnection. Thus the entry of mass, momentum and energy into the 
magnetosphere can be much larger then it is for northward IMF. Plasma is transported 
from the subsolar point over the polar caps into the tail where reconnection occurs. 
Plasma is then further transported towards Earth and away from Earth. 

 
 

1.6.1.3.  Substorm 
 

The process of magnetospheric energy storage and release is called a substorm. 
Such a substorm consists of three phases: growth, expansion and recovery. During the 
growth phase magnetic flux builds up in the tail (see top panel in Fig. 1.15). This process 
typically lasts about one hour (inside Earth’s magnetosphere). After that too much energy 
has built up in the tail and it becomes unstable. This is the beginning of the expansion 
phase which typically lasts between 30 and 60 minutes and can cause bright auroras. A 
second reconnection region on the night side forms (see second panel in Fig. 1.15) which 
is closer to Earth (near-Earth neutral line). Between the two reconnection regions on the 
night side a plasmoid is formed. This plasmoid grows and is eventually ejected towards 
the night side and thus energy is released (see bottom panel in Fig. 1.15). After that, the 
recovery phase starts and the magnetosphere goes back to the quiet state typically within 
1 to 2 hours. 
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Figure 1.15. Dynamics of a magnetospheric substorm. Depicted is the noon-midnight 
meridian. Taken from Russell (2007). 
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1.6.2.  Slow and Fast Solar-wind Streams 
 

As described in Sec. 1.3., there is a 27-day recurrence period of fast and slow solar- 
wind streams which is linked to the rotation period of the Sun. Sources of fast solar-wind 
streams are coronal holes. Co-rotating interaction regions are formed when fast solar 
wind catches up with slow solar wind (see Fig. 1.2). This feature is especially 
pronounced during declining solar cycles. Inside the co-rotating interaction regions both 
the fast as well as the slow solar-wind streams are compressed, the magnetic field 
strength is enhanced and (interplanetary) shocks can occur. Fast solar-wind streams lead 
to so-called geomagnetic storms as described in Sec. 1.6.5. 
 
 

1.6.3.  Coronal Mass Ejection (CME) Events 
 

CMEs are large ejections of magnetized plasma from the Sun, expanding outwards 
from the corona and rapidly develop into objects that are larger than the Sun itself. The 
average speed of CMEs ranges from below 400 km s-1 to above 3000 km s-1 and the mass 
estimate for a typical CME is 1012 kg. As a CME propagates outward from the Sun into 
the interplanetary medium it becomes an interplanetary coronal mass ejection (ICME). 
Ahead of the fastest CMEs particle accelerations of up to 100 MeV can take place. Such 
accelerated particles travel along interplanetary magnetic field lines. CMEs cause large 
scale disturbances of the solar-wind plasma and can cause geomagnetic storms as 
described in Sec. 1.6.5. 
 
 

1.6.4.  Flares and Solar Energetic Particles (SEP) 
 

Solar flares are sudden and rapid releases of magnetic energy that take place in the 
solar atmosphere. Energy is explosively released in various forms such as particle 
acceleration, plasma heating and acceleration as well as increased radiation fields. The 
amount of energy that can be released by solar flares is in the order of 1025 J.  High 
energy particles propagate away from the Sun along interplanetary field lines and can 
cause geomagnetic storms as described in Sec. 1.6.5. 
 
 

1.6.5.  Geomagnetic Storms 
 

Besides substorms which are caused by the general variability of the interplanetary 
magnetic field, geomagnetic storms occur. Such geomagnetic storms are caused by 
continuous (over many hours) enhanced stress imposed onto the magnetosphere by the 
solar wind. Similar to a substorm a geomagnetic storm consists of three phases. The first 
phase is called sudden commencement. During this phase the magnetic field is 
compressed caused by an increase of the solar-wind dynamic pressure. The second phase 
is called the main phase where the magnetic field rapidly decreases. This is caused by a 
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higher amount of energetic plasma in the tail and thus a higher than usual amount of 
particles is injected into the ring current, mainly by an enhanced dusk ward electric field 
(EB-drift). An enhanced ring current causes a weakening of the overall magnetic field. 
If the field strength decreases by more than 50 nT a geomagnetic storm is said to have 
occurred. Finally the third phase is called the recovery phase where the field strength 
returns to normal. 
 

The Dst-index represents the disturbance of the Earth’s magnetic field close to the 
equator. It is calculated from four low latitude magnetic observatories. Fig. 1.16 shows 
the Dst-index for two different geomagnetic storms. One is caused by an ICME (see 
Sec. 1.6.3.) and the other is caused by a co-rotating interaction region (see Sec. 1.6.2.). 
 

 
Figure 1.16. The top panel shows the Dst-index a ICME storm during solar maximum. 
The bottom panel shows a geomagnetic storm caused by a co-rotating interaction region 
during solar minimum. Taken from Tsurutani (2000). 
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1.6.6.  Galactic Cosmic Rays 
 

The most energetic particles with energies up to 1021 eV, that can be found in our 
Solar System, originate from far outside of our Solar System. Such particles are called 
galactic cosmic rays (GCRs). All GCRs consist of nuclei only and thus are fully ionized. 
Acceleration processes in space strip off electrons, leaving behind separated nuclei and 
electrons. The ratio of nuclei to electrons is such that there are about one percent 
electrons. As GCRs travel through space they collide with matter and are deflected by 
magnetic fields so that directional information obtained inside our solar system does not 
contain information about their origins. Since GCRs are deflected by magnetic fields, 
there are less GCRs in the inner solar system than in the outer solar system. The 
termination shock of the solar wind as well provides some shielding against GCRs (see 
Fig. 1.17). As described above the strength of the interplanetary field undergoes an 
eleven year cycle and thus the amount of GCRs that reach the inner solar system shows 
an eleven year modulation. 
 

A

B

 
Figure 1.17. Magnetic field strength (top panel) and cosmic ray intensity (bottom panel) 
at the termination shock as measured by the Voyager 1 spacecraft. Taken from Burlaga 
et al. (2005). 
 
 

1.6.7.  Consequences of Space Weather 
 

In interplanetary space, exposure to SEPs (see Sec. 1.6.4.) and GCRs (see 
Sec. 1.6.6.) represent the major threats for space probes and astronauts. SEPs can lead to 
large electron densities in the D-region of the ionosphere and together with the large 
electron to neutral collision frequencies cause strong absorption of electromagnetic 
waves. This can cause interruptions for short (MHz) and medium (kHz) wave 
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communication systems that use the ionosphere as a reflector. The production of 
‘bubbles’ in ionospheric densities can cause interruptions of satellite-to-ground signals. 
During geomagnetic storms, disturbed ionospheric currents can cause severe problems 
for the accuracy of the Global Positioning System (GPS) as well as the forthcoming 
European Galileo Navigation Satellite System (GNSS), thus causing problems for e.g. air 
traffic control or ship navigation. Another consequence of SEPs is that via a complicated 
chain of reactions SEPs can cause a reduction of ozone in the mesosphere. Thus frequent 
flares may have an influence on Earth’s climate (Kallenrode, 2003). All the consequences 
of ionization of SEPs as well apply to GCRs. Additionally the flux of GCRs is anti-
correlated with solar activity (as described in Sec. 1.6.6.). Thus the ionization of the 
mesosphere and the stratosphere is generally higher during solar minimum years. There is 
evidence that this has consequences for the Earth’s climate (see e.g. Scherer et al. 2007 
and references therein) but this is still a controversial topic (see e.g. Kristjansson et al., 
2004). Changes of the magnetic field as seen on the Earth’s surface caused by disturbed 
ionospheric currents during geomagnetic storms can induce large potential differences 
across large areas of the surface of Earth. Such potential differences can drive additional 
currents through power lines. Transformers connected to power lines can see large 
potential differences, thus operating in saturation and overheat. Telecommunication lines 
that use ground as return for their circuits are also affected as well as certain rail 
equipment. Today’s fiber optic cables are not directly affected but power supplies to 
amplifiers that compensate signal damping can be affected. Pipelines corrode faster due 
to enhanced pipe-to-soil voltages and their electronic protection systems and control 
surveys may experience problems. Satellite attitude control is often managed by 
measuring the Earth’s magnetic field. During enhanced geomagnetic activity the 
magnetotail plasma sheet can convect earthward due to an enhanced cross-magnetosphere 
electric field. Thus surface charging of geosynchronous satellites may occur that can lead 
to malfunctioning onboard electronics. This effect is strongest seen in the midnight-to-
dawn sector. Enhanced solar- wind dynamic pressure can push the magnetopause much 
closer towards Earth than its usual position of about 10 Earth radii distance. In extreme 
cases the magnetopause can pushed in as close to Earth as the geosynchronous orbit. The 
magnetic field then changes so dramatically that it points into the opposite direction. 
Thus geosynchronous satellites that control their attitude via magnetic field 
measurements might be unable to maintain the desired attitude. 
 

Some species use magnetoreception as a tool for navigation. Such species are e.g. 
pigeons, sea dwellers, lobsters, sea turtles, salmon, trout and certain bacteria (e.g. 
Kirschvink, 1997; Walker et al., 1997; Scheffel et al., 2005; Lohmann et al., 1995; Irwin 
et al., 2004). Geomagnetic activity can have an influence on their ability to navigate. It 
has recently been suggested that there is a correlation between fatal whale strandings and 
solar activity (Vanselow and Ricklefs, 2005). 
 

There is evidence that humans on the surface of Earth are also influenced by space 
weather conditions. After the second largest SPE event of the space era on 29 September 
1989 a doubling of heart attacks was registered in Tbilisi, Georgia. Some studies 
suggested a link between solar activity and numbers of car accidents (see e.g. Roederer, 
1995; Temuriantz et al., 2007 and references therein). 
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1.6.8.  Space Weather Forecasting 
 

Space weather forecasting relies on the ability to model different space 
environments. Space weather modeling is used to predict space weather conditions. It is 
desirable that such models predict in an accurate, reliable and timely manner. For that 
reason accurate input data are required. The magnetic field is one of the most important 
input parameters because charged particles move more easily along magnetic field lines. 
Their transverse motion is opposed by the Lorentz force. Real-time input data are much 
desired for space weather models in order to predict in a timely manner. 
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1.7.   Historical Overview and Magnetometer Configurations 
 

Sputnik III was the first satellite that measured magnetic fields in space. Launched 
on 1958-05-15 it surveyed the magnetic field from 225 km to 800 km altitude mainly 
above the former Soviet Union for a 22 day period. Prior to Sputnik III sounding rockets 
carried magnetometers up to a height of 200 km. The magnetometer onboard of 
Sputnik III was a self-orientating triaxial fluxgate magnetometer (Dolginov et al., 1960). 
The orientation of the sensor triad was adjusted so that the field at two of the three 
orthogonal sensors became zero. From the required angular adjustments it was possible to 
determine the orientation of the spacecraft by comparison with magnetic field models of 
Earth. Fig. 1.18 shows some of the early Sputnik III data (Dolginov et al., 1962). 
Magnetic interferences from the spacecraft had to be modeled and subtracted from the 
measured data (see curves 3 and 5 in Fig. 1.18). For an introduction to fluxgate 
magnetometers see Sec. 1.2.2.2. More detailed information can be found in e.g. Ness 
(1970) or Acuña (2002) and references herein. 
 

 
Figure 1.18. Curves 1 and 2 represent calculated magnetic field models along the 
trajectory from two different magnetic field models. Curve 3 (short dashes) represents the 
measured and corrected magnetic field data. Curve 4 represents the height of the 
spacecraft. Curve 5 represents the measured (uncorrected) data (Dolginov et al., 1962). 
 

After taking magnetic field measurements in space one of the next challenges was 
taking precise vector measurements of the weak interplanetary magnetic field. The 
expected strength of the interplanetary field at 1 AU is about 7 nT. This task requires 
stable zero levels of the magnetometer and digitization steps that are smaller than 1 nT. 
Additionally magnetic interferences from the spacecraft at the location of the 
magnetometer sensors should be kept at low levels. For example the magnetometer that 
was placed on Sputnik III had a zero level drift of about 12 nT per day (Dolginov et al., 
1962) and digitization steps of ±40 nT (Ness, 1970). From Fig. 1.18 curve 5 one can see 
that there were substantial interferences from the spacecraft. Pioneer 5 launched on 
1960-03-11 was the first spacecraft to take in situ measurements of the interplanetary 
magnetic field. It carried a search coil magnetometer (Coleman et al., 1960) that only 
measured the component perpendicular to the spacecrafts spin axis. The vector 
measurements taken by the triaxial fluxgate magnetometer onboard the Mariner II 
spacecraft launched on 1962-08-27 were contaminated by spacecraft magnetic 
interferences in a way that studies of the interplanetary magnetic field were hindered 
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(Coleman, 1966). It was not until after the launch of the IMP 1 (Explorer 18) spacecraft 
until precise vector measurements of the weak interplanetary field could be obtained 
(Ness et al., 1964). The spacecraft was launched on 1963-11-27, equipped with two 
mono-axial fluxgate magnetometers and a rubidium vapor magnetometer for in-flight 
calibration of the fluxgate magnetometers (Ness et al., 1964). Fluxgate magnetometers 
tend to have slight drifts of the zero levels (see Table 1.1). Each of the three 
magnetometers was capable of producing full vector measurements. This was possible 
because they were oriented at angles that were neither perpendicular nor parallel to the 
spin axis of the spacecraft. In such a placement a mono-axial magnetometer measures a 
constant component that is proportional to the field parallel to the spin axis plus a spin 
modulated component that is proportional to the field perpendicular to the spin axis. 
Separation of the two components yields full vector measurements in steady fields if the 
phase angle of the spin modulated component is taken into account as well. For more 
information see Ness (1970) or Ness et al. (1964). Fig. 1.19 shows an example of IMP 1 
measurements of the interplanetary magnetic field. The digitization steps were ±0.25 nT. 
One surprising outcome of the IMP 1 interplanetary magnetic field investigation was that 
fluctuations of the interplanetary field are primarily changes in the direction rather than in 
the magnitude so that the field magnitude is more constant than any of its three 
component axes (Ness et al., 1964). After a high amount of post processing the power 
spectra and histograms of the Mariner II data in Coleman (1966) reflected this property of 
the solar wind as well. 
 

 
Figure 1.19. Some of the first precise measurements of the interplanetary magnetic field. 
The top three panels show the magnetic field in the two angle representation and the 
bottom three panels show the show the variance of the solar ecliptic components (Ness et 
al., 1964). 
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Early magnetometer experiments on spinning spacecraft used a variety of sensor 
configurations to achieve redundancy and low weight but conserve the ability to obtain 
vector measurements in quiet fields. If a sensor is placed at an angle of 54° 45’ from the 
spin axis, vector measurements can be obtained simply by using a sampling frequency 
that is three times the spin frequency (Ness et al., 1966). This configuration was placed 
on the Pioneer 6, 7 and 8 spacecraft launched on 1965-12-16, 1966-08-17 and 
1967-12-13. Another configuration that was used on the ATS-1 satellite (launch date: 
1966-12-07) consisted of two sensors that were placed at angles of 45° from the spin axis 
(see Fig. 1.20). This configuration allows the separation of the magnetic field 
components that are parallel and perpendicular to the spin axis by calculating the sum and 
the difference of the two sensor outputs (Barry and Snare, 1966). 
 

 
Figure 1.20. Magnetometer configuration on the ATS-1 satellite (Barry and Snare, 
1966).  
 

The magnetic field experiment on the Pioneer Venus Orbiter launched on 
1978-05-20 had another interesting configuration. It consisted of two sensors parallel and 
perpendicular to the spin axis. A third sensor was placed at two thirds of the 
magnetometer boom. This sensor was tilted with respect to the spin axis by 45° and at 
right angles with respect to the spin plane sensor. This configuration ensured redundancy 
and gave the possibility to provide two full vector measurements at the end of the boom 
as well as at two thirds of the boom length for steady fields (Russell et al., 1980, Snare 
1998). Additionally vector measurements at high resolution were also possible. The 
differences in the vector measurements at the end of the boom and at two thirds of the 
boom length could be used to determine spacecraft-generated fields (gradiometer 
configuration). This technique was first proposed by Ness et al. (1971) and conceptually 
generalized by Neubauer (1975). 
 

Voyager 1 and Voyager 2 are three-axis stabilized spacecraft launched on 
1977-09-05 and 1977-08-20. Both spacecraft are identically equipped with four triaxial 
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fluxgate magnetometers (Behannon et al., 1977) forming two dual magnetometers 
(gradiometers), one for low fields and one for high fields. The magnetometers for low 
fields are equipped with mechanic as well as electronic flippers. The mechanic flippers 
can rotate each sensor by 180° so that it points in the opposite direction. Flipping of 
sensors by 180° yields the zero levels. The electronic flippers reverse the sensor signal 
polarity for determination of zero level drifts due to radiation effects, component aging 
and temperature and voltage variation but not those due to changes in the magnetic 
properties of the materials used in the sensors. The boom length of the spacecraft is 13 
meters. Tests on ground have shown that the boom deployment could cause an unknown 
angle around the boom axis (torosional) of up to ±7°, thus requiring in-flight correction. 
This can be done by generating a known field on the spacecraft. For this purpose a coil 
was wound around the periphery of the high gain antenna. For more details see Behannon 
et al. (1977). 
 

Explorer 33 launched on 1966-07-01 carried a triaxial fluxgate magnetometer (Ness 
et al., 1967). The triaxial sensor set could be flipped by 90° so that the sensor that is 
aligned with the spin axis could be rotated into the spin plane for zero level 
determination. After Explorer 33 various different flipper mechanisms have been flown 
on a number of different missions. Flipper mechanisms that flip only one or two sensors 
instead of the whole sensor triad, can cause a change of the cross coupling between the 
individual sensors. Such a change of cross coupling can lead to a slightly non-orthogonal 
sensor triad (Russell et al., 1995). Examples of magnetometer experiments that flipped 
two sensors are ISEE 1, ISEE 2 (Russell, 1978) both launched on 1977-10-22 and Galileo 
(Kivelson et al., 1992) launched on 1989-10-18. 
 

Besides fluxgate magnetometers, another common type of magnetometer that is 
used for magnetic field investigations in space is the Vector Helium Magnetometer also 
called Low-Field Vector Helium magnetometer. A scalar Helium Vapor Magnetometer 
can be turned into a Low-Field Vector Helium Magnetometer by adding a Helmholtz 
Coil around the gas cell (Shapiro et al., 1960). Another way of obtaining vector 
measurements is the use two sets of deflection coils. This configuration gives the total 
field and two angles that can define a field vector. On a spinning spacecraft and for the 
case of a steady field only one set of deflection coils is required (Heppner et al., 1963). It 
is important to point out that there are fundamental differences between the Low-Field 
Vector Helium Magnetometer and the scalar Helium Vapor Magnetometer, besides 
vector versus scalar measurements. Unlike the scalar Helium Vapor Magnetometer, the 
different types of Alkali Vapor Magnetometers and the Proton Precession Magnetometer 
and its modified version the Overhauser Magnetometer, the accuracy of the Low-Field 
Vector Helium Magnetometer is not directly derived from intrinsic magnetic properties 
of the fundamental particles in the atom. Thus it is not an absolute magnetometer. Its 
operation is somewhat similar to the fluxgate magnetometer (Ness, 1970) because it 
operates with field cancellation loops. Vector Helium Magnetometers outperform 
fluxgate magnetometers in sensitivity and stability but at the expense of lower bandwidth, 
weight, power consumption and cost (Acuña, 2002). Some of the space missions that 
carried Low-Field Vector Helium Magnetometers were, Mariner 3, 4 and 5 (launched on 
1964-11-05, 1964-11-28 and 1967-06-14), Pioneer 10 and 11 (launched on 1972-03-03 
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and 1973-04-06), ISEE 3 (launched on 1978-08-12), Ulysses (launched on 1990-10-06), 
Cassini-Huygens (launched on 1997-10-15). More information on Vector Helium 
Magnetometers can be found in, Frandsen et al. (1978), Balogh et al. (1992), Southwood 
et al. (1992), Acuña (2002) and Dogherty (2004). 
 

Proton Precession Magnetometers have been flown on early space missions such as 
Vanguard 3 launched on 1959-09-18 (Cain et al., 1962), Cosmos 26 launched on 
1964-03-18 and Cosmos 49 launched on 1964-10-24. Another interesting reference is 
Hurwitz and Nelson (1960). Proton Precession Magnetometers have not been carried into 
space recently. Overhauser magnetometers are onboard the Danish Ørsted satellite 
launched on 1999-02-23 (Duret et al., 1995) as well as on the German satellite CHAMP 
launched on 2000-07-15. 
 

Precise scalar magnetometer can be put together with triaxial fluxgate 
magnetometers onto a spacecraft. Such a configuration can improve the in-flight 
calibration of the fluxgate magnetometer. Space missions with such a configuration are 
MAGSAT (Langel et al., 1982) launched on 1979-10-30, Ulysses, Cassini-Huygens, 
Ørsted and CHAMP. The theory behind this type of cross-calibration was published by 
Merayo et al. (2000). The application of this type of calibration is described in Olsen 
(2003). Another interesting reference is Dougherty (2004). 
 

An Electron Drift Instrument can measure the scalar magnetic field with high 
precision and can be used to cross-check the calibration of fluxgate magnetometers. 
Electron Drift Instruments together with fluxgate magnetometers have been flown on the 
ESA-GEOS 1 satellite (Melzner, 1978) launched on 1977-04-20, on the EQUATOR-S 
mission (Paschmann et al., 1999) launched on 1997-12-02 and on the four Cluster 
satellites launched on 2000-07-16 and 2000-08-09 (Paschmann et al., 1988 and 1997). 

 
Another common type of space-borne magnetometer is the Search Coil 

Magnetometer. Search coil magnetometers have been carried into space on various space 
missions starting as early as Pioneer 1 launched on 1958-10-11 (Sonett, 1962) until more 
recently on the Cluster mission (CornilleauWehrlin 1997) and the THEMIS mission 
launched on 2007-02-17 (Roux, 2008). 
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1.8.  Introduction to Calibration of Space-borne 
Magnetometers 

 
1.8.1.  Ground Calibration and Magnetic Cleanliness 
 

Space-borne magnetometers are calibrated before launch most commonly inside a 
ground calibration facility (see Fig. 1.21). Helmholtz coils are used to compensate the 
Earth’s magnetic field. Well-defined reference fields are then generated inside the 
Helmholtz coil. Long term noise and offset stability can be tested inside a temperature 
controlled mu-metal can. There are additional as well as alternative ground calibration 
techniques which exceed the scope of this introduction (Acuña, 2002; Lohr et al., 1997; 
Risbo et al., 2003; Auster, 2002 and Hinkal, 1980). 
 

 
Figure 1.21. Helmholtz coil system for ground calibration (Photo: Imperial College, 
London).  
 

Another important task besides ground calibration of the magnetometer itself is the 
magnetic cleanliness program. At the location of the magnetometer sensor, there should 
be no spacecraft-generated fields or a well known stable magnetic field. This task starts 
with the definition of the magnetic cleanliness requirements. All components and 
instruments onboard the spacecraft need to have such magnetic properties that the 
magnetic cleanliness requirements can be reached. Common problematic devices are fuel 
tanks, all kinds of electric motors, electromagnetic valves, electromagnetic switches, 
heater currents, power supply currents and solar panel currents. For more information see 
Ludlam et al. (2008), Narvaez (2004), Lohr (1997). An example of magnetic disturbances 
measured in space due to heater currents can be found in Anderson et al. (2001). Usually 
a magnetic model of the spacecraft is being put together from magnetic measurements of 
sub-systems before launch (Mehlem, 1978). Such a model can also be used to optimally 
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position multiple magnetometers on a spacecraft (Delva et al., 2002). The magnetic 
properties of spacecraft sub-systems are typically measured inside transportable 
Helmholtz coil systems, ground calibration facilities (see Fig. 1.21) or gradiometer setups 
(see Fig. 1.22). 

 
 

 
Figure 1.22. Gradiometer setup for magnetic measurements on spacecraft sub-systems 
(as used for the Rosetta Lander magnetic cleanliness program). 

 
 

The magnetic cleanliness requirements can be verified at large facilities that can 
compensate the magnetic field of Earth, thus making it possible to put the whole 
spacecraft into a space that is free of magnetic fields. Examples of such facilities are at 
the Ames Research Center in Sunnyvale (California), IABG near Munich (Germany) and 
another one is at Goddard Space Flight Center (Maryland). At such facilities the magnetic 
fields that are generated by the spacecraft can be measured at the location of the 
magnetometer sensor and well known reference fields can be generated. An example can 
be found in (Lohr, 1997). The soft-magnetic properties of the spacecraft can be analyzed 
as well. In some cases permanent magnets that compensate the DC-magnetic field that is 
generated by the spacecraft (at the location of the magnetometer sensor) are permanently 
attached (glued) to the spacecraft (Kügler, 2001). Some of the shortcomings of such 
facilities are that the conditions that the spacecraft will encounter in space cannot be 
simulated, such as thermal vacuum and zero gravity. Additionally not all the devices on 
the spacecraft that generate magnetic fields may be fully operational in such a facility 
(e.g. power supplies). Another important disadvantage is the very high cost of 
transporting the spacecraft to such a facility and renting the facility. Even if the magnetic 
testing in such a facility shows that not all the magnetic cleanliness requirements have 
been reached, required changes to spacecraft sub-systems often cannot be made due to 
cost and overall schedule of the mission. A cheaper solution is just to measure the sub-
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systems of the spacecraft and build a magnetic model. Such reduced magnetic cleanliness 
programs are described in Kuhnke et al. (1998) and Narvaez (2004). In case of the 
THEMIS mission, consisting of five small satellites, a whole satellite could fit into the 
JPL Helmholtz coil facility (Ludlam et al., 2008). After completion of the magnetic 
testing the spacecraft should not be exposed to very large magnetic fields. The soft-
magnetic materials on the spacecraft might simply change their generated magnetic fields 
and the results of the magnetic testing may be obsolete. Changes of the spacecraft after 
magnetic testing, especially close to the magnetometer sensor, must be done with 
additional emphasis on magnetic cleanliness of the changes. 

 
In a nutshell, the magnetic cleanliness program forces additional requirements onto 

a large number of spacecraft sub-systems and may cause design changes such as 
magnetic shielding of sub-systems and components, changes in the wiring diagrams of 
solar panels, heaters and other circuits (Acuña et al., 1996; Ludlam et al., 2008; Narvaez 
2004; Lohr, 1997). This is the reason why a lot of space missions have reduced magnetic 
cleanliness programs. In some cases even magnetometer booms are too expensive or too 
heavy or both. Examples of missions with magnetic field experiments but without 
magnetometer booms are NEAR launched on 1996-02-17, where the magnetometer was 
placed onto the high gain antenna (Lohr, 1997) and Mars Global Surveyor (Acuña et al., 
1998) launched on 1996-11-07 where magnetometers were attached to the solar panels. 
Magnetometer data from such missions are usually not perfect and require large amounts 
of post processing. Examples of such post processing procedures can be found at Acuña 
et al. (2001) and Anderson et al. (2001). For example, magnetometer data of very high 
quality were obtained from the four Cluster satellites (Balogh, et al., 2001). This was due 
to well built magnetometers, decent magnetic cleanliness program (Kügler, 2001) and a 
relatively long radial boom (5 m). Magnetic disturbances from dipole-like sources 
decrease with distance with one over distance cubed. Magnetic disturbances from higher 
order multipoles decrease even faster. With other words a small increase in boom length 
can lead to a large decrease of magnetic disturbances at the location of the magnetometer 
sensors. 

 
The Venus Express (launched on 2005-11-09) magnetic field experiment had no 

magnetic cleanliness program and a very short boom of only 1 m. One magnetometer was 
directly placed onto the spacecraft surface and the other was placed at the tip of the 
boom. The dual magnetometer technique is described in Zhang et al. (2008). A very high 
amount of sophisticated post processing had to be done to successfully clean the data (see 
Pope et al., 2011). 

 
As described above actual implementations of magnetic field experiments on spacecraft 
are often the result of many compromises. Important factors of consideration are 
scientific goals, budget, weight, power consumption, risk factors (e.g. redundancy and 
radiation protection) and time constraints as well as communication efforts for 
implementation.  
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1.8.2.  Calibration Parameters and In-flight Calibration of 
Space-borne Magnetometers from Natural Constraints 
and Comparisons to Model Fields (Thesis Overview) 

 
After introducing various magnetometer configurations, ground calibration and 

magnetic cleanliness, an introduction to calibration parameters and in-flight 
magnetometer calibration from natural constraints and model fields will be given. 

 
There are three major types of calibration parameters: offsets (also referred to as 

zero levels), gains (also referred to as scale factors) and angles. Offsets are additive errors 
that add or subtract a certain value from the true value of the measured quantity. Gains 
are multiplicative errors (scaling errors). Angles describe the misalignments of the sensor 
triad. Altogether there are three offsets, three gains and six angles that need to be 
resolved in order to calibrate the magnetometer. How the magnetic field that is measured 
by the magnetometer sensors and the calibrated magnetic field are related via calibration 
parameters is described by equation (1.1). 
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1SB , 
2SB , 

3SB  non-orthogonal field components as measured by the 

magnetometer sensors 

xB , yB , zB  orthogonalized field components 

1G , 2G , 3G  gain corrections of each of the sensors 

1 , 2 , 3  elevation angles of each of the sensors 

1 , 2 , 3  azimuthal angles of each of the sensors 

1O , 2O , 3O  offsets of each of the sensors 

 
The twelve calibration parameters are determined before launch via ground 

calibration procedures (see Sec. 1.8.1.). The matrix in equation (1.1) is the inverse of a 
calibration matrix. A calibration matrix corrects the measurements in sensor coordinates 
(

1SB , 
2SB and

3SB ). There are a number of different techniques to adjust the ground 

calibration parameters in-flight. Such adjustments may be necessary because the 
calibration parameters may change in time throughout the mission. Especially zero levels 
of fluxgate magnetometers have a general tendency to change. Zero levels and scale 
factors tend to drift due to changes in temperature, aging of the electronics and exposure 
to radiation. Another source of drifting zero levels that is independent of the 
magnetometer itself are spacecraft generated fields (see Sec. 1.8.1.). Angles can be 
divided into two major groups. First: angles that determine the orthogonalization of the 
sensor triad (see Chapter 3.). Second: angles that determine the absolute orientation of the 
sensor triad in space or with respect to the orientation of the spacecraft (see Chapter 4.). 
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Changes of the orthogonalization of the sensor triad can be due to slight mechanical 
changes e.g. caused by vibration during launch and fast temperature changes. Another 
source of changes in orthogonalization can be flipper mechanisms that do not flip the 
whole sensor triad but one or two individual sensors (Russell et al., 1995). Changes of the 
absolute orientation can be caused by boom deployment mechanisms and flipper 
mechanisms as well as vibration during launch and temperature changes. Bending of a 
slightly flexible magnetometer boom can be another source of changes in absolute 
orientation. Such changes can occur during spacecraft maneuvers, temperature changes, 
change of spin period on spinning spacecraft and aging on non-radial booms on spinning 
spacecraft. Non-radial booms on spinning spacecraft continuously experience a 
centrifugal force that is not aligned with the boom axis. Boom bending can be estimated 
via a dual magnetometer system (Farrell et al., 1995). The change of absolute orientation 
is smaller for the inboard magnetometer. 

 
Chapter 2. describes the magnetometer zero level determination on three axis 

stabilized spacecraft as well as the zero level determination of the magnetometer sensors 
that are aligned with the spin axis on spinning spacecraft. Techniques are presented that 
can be applied inside the interplanetary magnetic field and techniques that can be applied 
inside a magnetosphere. To the best of the author’s knowledge, there are no published 
techniques for finding magnetometer zero levels inside the low field regions of a 
magnetosphere. For the first case (inside the interplanetary magnetic field) zero levels are 
calculated via the property that fluctuations of the interplanetary field are primarily 
changes in the direction rather than in the magnitude so that the field magnitude is more 
constant than any of its three component axes (Ness et al., 1964). Wrong zero levels lead 
to an increase of the fluctuations of the field magnitude (Davis and Smith 1968; 
Rosenberg 1971; Belcher 1973; Hedgecock, 1975; Acuña, 2002). The theory of 
previously published calibration methods is generalized and an improved calibration 
method (Leinweber et al., 2008) that also provides error estimates is presented. I apply 
the technique to THEMIS (Auster et al., 2008), STEREO (Acuña et al., 2008) and Venus 
Express (Zhang et al., 2008) magnetic field data data.  For the second case (inside the 
low field regions of a magnetosphere), pure changes of the field magnitude are used to 
obtain the zero levels. Such pure changes of the field magnitude inside a magnetosphere 
can be caused by mirror-mode waves (Chandrasekhar, 1958; Fazakerley and Southwood, 
1994) as well as drift mirror-mode waves (Hasegawa, 1969; Tsurutani et al., 1982). 
Erroneous zero levels cause artificial changes in the direction of a field that should only 
change its magnitude. A novel new calibration technique for finding zero levels inside the 
magnetosphere is presented and applied to THEMIS data. 

 
Chapter 3. describes the orthogonalization of the sensor triad on spinning 

spacecraft. The orthogonalization procedure removes the spin tone that is left when 
magnetometer data are transformed from a spinning to a non-spinning coordinate system. 
This spintone consists of first and second harmonics of the spacecraft spin frequency for 
the spin plane sensors and a first harmonic for the spin axis sensor. The three different 
types of harmonics can be linked to specific calibration parameters (Kepko et al., 1996). 
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1. First harmonics in the spin plane sensors are produced by miscalibrated 1O , 2O , 1  and 

2 . 
   
2. Second harmonics in the spin plane sensors are produced by miscalibrated 21G and 

21 . Where 1221 GGG   and 1221   , thus the second harmonics depend on 
the relative spin plane gains and the relative azimuthal angles of the spin plane sensors 
and are independent of their absolute values. 
   
3. First harmonics in the spin axis sensor are produced by miscalibrated 3  and 3 . 

 
The calibration parameters 3O , 3G , the absolute values 1G , 2G , the absolute values of 1  

and 2  cannot be linked to spin harmonics. First, the technique described in Kepko et al. 
(1996) is presented. This technique is FFT-based and thus does not converge for fast 
changes of the spin harmonics. Furthermore, an improved version of the technique for 
fast changing magnitudes of the spin harmonics is presented which was used for 
recalibration of the Galileo magnetic field data (Kivelson et al., 1992 and Yu et al., 
2010). Additionally, the theory and the application of an orthogonalization technique for 
relatively fast changing calibration parameters that was developed for the Cluster (Balogh 
et al., 2001) mission is presented. Such fast changes can occur during and after eclipsed 
periods of a spacecraft. 
 

Chapter 4. describes the calibration of the absolute values of gains as well as 
determination of absolute orientations via comparison of the magnetometer data with 
geophysical model fields (e.g. Tsyganenko, 2002a; b). The theory and its application to 
the magnetic field experiments onboard the spinning spacecraft Galileo (Kivelson et al., 
1992), the three axes stabilized STEREO-B (Acuña et al., 2008) spacecraft as well as the 
attitude determination for the spinning Polar (Russell et al., 1995) and THEMIS 
spacecraft (Angelopoulos, 2008) is described. 

 
Chapter 5. describes the calibration of triaxial fluxgate magnetometers from 

accurate measurements of the field magnitude (Merayo et al., 2000; Olsen, 2003; 
Dougherty et al., 2004). This type of cross calibration can yield all calibration parameters 
except absolute orientation of the sensor triad. The scalar magnetic field from the 
Electron Drift Instrument (Paschmann et al., 1997) onboard the Cluster-3 satellite to 
cross calibrate the fluxgate magnetometer (Balogh et al., 2001) is described. Calibration 
parameters are calculated that are independent of orthogonalization, except those for 
absolute orientation. For a spinning spacecraft, the calibration parameters are absolute 
values of gains 1G , 2G , 3G  and the spin plane offset 3O . 

 
Chapter 6. describes inter spacecraft calibration techniques. The application of the 

inter spacecraft calibration technique that was first developed for the Cluster mission but 
with new much shorter equations that yield the same results as the original equations 
(Khurana et al., 1996) is described. The new equations are roughly an order of magnitude 
shorter (76 shorter terms vs. 342 longer terms). At times when the four Cluster satellites 
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flew in a tetrahedron configuration it was possible to determine the curl and the 
divergence of the magnetic field. When the tetrahedron crosses the tail lobes both the 
divergence and the curl of the magnetic field should be zero. Because of small calibration 
errors of the calibration parameters that cannot be found by orthogonalization, the values 
for curl and divergence are not exactly zero. Thus the following calibration parameters 
can be determined: 1G , 2G , 3G , 1 , 2  and 3O . These calibration parameters can only be 

corrected for three spacecraft because the technique requires a so-called mother 
spacecraft. Additionally the orientation of the spin axes of three spacecraft (except for the 
mother spacecraft) can be corrected. In Appendix B, a simple technique for zero level 
matching of multiple spacecraft is described. 
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1.8.2.1.  Summary 
 
 For convenience of the reader, Table 1.3 summarizes the advances of this thesis to 
the field of calibration of space-borne magnetometers. 
 

 topic previous state of the 
art 

advance 

Finding magnetometer 
zero levels inside the 
interplanetary magnetic 
field 

Various published 
methods 

Generalization of the 
theory of previously 
published methods. 
Development of an 
improved method that 
provides error estimates 

Chapter 2 

Finding magnetometer 
zero levels inside the 
low field regions of a 
magnetosphere 

No published method Development of a new 
method that provides error 
estimates 

Chapter 3 Orthogonalization of a 
sensor triad on a 
spinning spacecraft 

FFT-based method 
 

Development of a method 
for fast changing spin 
harmonics.  
Development of a method 
for fast changing 
calibration parameters. 

Chapter 4 Model comparisons Various published 
methods for attitude 
determination from 
magnetic field 

Combination of attitude 
determination and 
magnetometer calibration. 
Recovering the attitude 
plus spin phase and 
calibration parameters e.g. 
during eclipsed periods, 
for missions that only 
have a Sun sensor. 

Chapter 5 Calibration of a 
spinning fluxgate 
magnetometer from 
EDI gyro-times.  

Various suggested 
methods that do not 
match the gains 

Development of a method 
that matches the 
instrument gains before 
finding the zero levels. 
Analysis EDI of noise 
distributions.  

Chapter 6 Minimizing of curl and 
divergence of B inside 
the lobe regions of a 
magnetosphere 

Method that uses 
equations that have 
342 longer terms. 

Solve the same problem 
with only 76 shorter 
terms. Application of the 
minimization for the first 
time to measured data. 

   
Table 1.3. Advances to the field of in-flight calibration of space-borne magnetometers. 
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2.  In-flight Determination of Magnetometer Zero 
Levels 

 
2.1.   Introduction 

 
Post-launch spacecraft magnetometer zero levels can differ from their pre-launch 

values for many reasons. Some of the most common issues are temperature changes of 
the sensor and the electronics, varying magnetic fields of the spacecraft due to electric 
currents or magnetic permeability, aging of electronic parts, exposure to strong radiation, 
and other causes. See Acuña (2002) for a general review on space-based magnetometers. 
A historical review on measurements of the interplanetary magnetic field can be found in 
Ness and Burlaga (2001). Also see Snare (1998) for historical review on vector 
magnetometry in space. For a spinning spacecraft the zero levels of the component axes 
that lie in the spin plane can be estimated by averaging in the spinning spacecraft frame 
over many spin periods when gains and angles are known to high enough precision and 
the magnetic field is constant during the averaging period. However spacecraft generated 
AC-magnetic fields at the spin frequency in the spinning frame will cause erroneous zero 
levels in the despun spacecraft frame, that cannot be found by averaging. For a discussion 
of the calibration of magnetometers on spinning spacecraft such as determining relative 
gains and orientations see Kepko et al. (1996). Farell et al. (1995) is another reference on 
the calibration of magnetometers on spinning spacecraft but it omits relative gains. A 
commonly used term for zero level is offset. Both terms are being used interchangeably 
throughout this chapter. 
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2.2.  An Advanced Approach to Finding Magnetometer 
Zero Levels in the Interplanetary Magnetic Field 

 
In the solar wind a simple method that can be used to determine constant or 

extremely slowly varying zero levels, is averaging of the magnetic field values over a few 
solar rotations. The averages of all three component axes should be zero since the 
divergence of B is zero, and the configuration of the solar magnetic field should not be 
correlated with the spacecraft location. However, there are field configurations that can 

be symmetric about the Sun’s rotation axis such as those associated with the 0
1g , 0

2g , 
0

3g , … coefficients of the Legendre polynomial expansion (see, for example, Altschuler 
et al. 1977 and references therein), so this technique is not foolproof. Furthermore this 
technique requires that the spacecraft stays in the interplanetary magnetic field 
continually and it returns an average zero level at most only monthly. It is desirable to 
determine offsets much more often and to not rely on the Sun having a favorable 
magnetic configuration. Fluctuations of the interplanetary field are primarily changes in 
direction rather than in magnitude so that the field magnitude is more constant than any 
of its three component axes (Ness et al., 1964). See also power spectra and histograms in 
Coleman (1966). Fortunately, the Alfvénic nature (Belcher et al., 1969) of the solar wind 
fluctuations allows us to determine offsets comparatively rapidly, much faster than once 
per month. 

 
There are three documented methods for finding zero levels in the interplanetary 

magnetic field, based on the above described property of the interplanetary magnetic field 
to determine slowly changing zero levels. The first method developed is called the Davis-
Smith method (Davis and Smith, 1968). This method optimizes the zero levels so that the 
variance of the squared magnitude of the magnetic field is minimized. Rosenberg (1971) 
provides a detailed derivation of this technique. The Davis-Smith equation (2.22) was not 
published until Belcher (1973) developed his own method and compared it with the 
Davis-Smith method. Below an alternative derivation of the Davis-Smith method and to 
the variant of Belcher (1973) is described, which gives greater insight into the 
methodology. The Belcher method optimizes the zero levels so that the maximum 
variance vector is orthogonal to the background field. The third method, (Hedgecock, 
1975) is based on the assumption that averaged over a suitable time interval, there should 
be no correlation between changes in field magnitude and changes in the inclination of 
the field to any one of the three component axes. 

  
All three methods must be applied with some caution because the assumptions, on 

which each particular method is based, might not always be true. Their results stand and 
fall with the appropriate selection criteria for data intervals. The Davis-Smith method has 
no published selection criteria. Davis and Smith selected by eye (Belcher, 1973). Belcher 
and Hedgecock published rather loose selection criteria that require long intervals (a few 
days to weeks) of input data. 

 
In this work, the Davis-Smith method has been modified to determine 

magnetometer zero levels on much shorter time scales than previously possible. While 
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this can be useful for all missions, it is particularly useful when the spacecraft spends 
most of the time inside a magnetosphere and only occasionally enters the interplanetary 
magnetic field. The magnetic field usually is observed close to the bow shock and in 
many cases highly disturbed by non-Alfvénic upstream waves, or the spacecraft might 
observe the interplanetary field only because of very unusual solar wind conditions that 
have higher than average dynamic pressure values. The revised method herein can also be 
used for missions that require adjustment of zero levels at more frequent intervals than a 
few days as required for the published selection criteria of Belcher and of Hedgecock. 
Such missions may not have had an appropriate magnetic cleanliness program and 
therefore the magnetic field at the location of the magnetometer is heavily disturbed by 
the spacecraft’s own time varying magnetic field, or they may experience diurnal 
variations due to changing spacecraft or sensor fields as the solar illumination or 
spacecraft temperature vary with orientation or orbital position. 

 
For convenience of the reader below all three methods are reviewed. This review 

gives us further insight into the differences between the three techniques and serves to 
illuminate the new improvements. The Belcher and the Hedgecock methods are discussed 
first. 

 
 

2.2.1.  Belcher’s Method 
 

This method is based on the assumption that the fluctuations of the solar wind are 
predominantly transverse to the background field (2.1). It optimizes the zero levels so 
that the maximum variance vector (Sonnerup, 1967) is orthogonal to the background field 
(2.2). Triangular brackets denote averages.  
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Assuming that the measured field MB


 consists of the actual field AB


 plus a constant 

offset vector O


 the following equation can be obtained 
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writing the sum over n data-windows (triangular brackets denote averages over single 
data-windows) 
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and using 0
Od

dD
  Belcher’s matrix equation can be obtained 

 

i
M

n

i

i
n

i

i BTOT






11

                    (2.5) 

 
where 
i  index of data-window  

Ti  outer product of iB


   (T is a matrix) 
n  number of data-windows 

 
The matrix on the left hand side of (2.5) is singular for n=1 but (2.5) can still be 

used by selecting several data-windows and solving the system of equations by using a 
least squares approach. Belcher’s method has two selection criteria that need to be 
applied to each data-window. The method requires the precise knowledge of the 
maximum variance direction and therefore one of his selection criteria is: 3 / 1    0.1. 
Where 1 , 2  and 3  are the eigenvalues (in descending magnitude) of the same 
covariance matrix that was used to find the maximum variance direction (Sonnerup, 
1967). His other selection criterion requires the sum of the eigenvalues to be several 
times above the noise level. For more detailed information see Belcher (1973). 
 
 

2.2.2.  Hedgecock Method 
 

This method is based on the assumption that averaged over a suitable time interval, 
there should be no correlation between changes in field magnitude and changes in the 
inclination of the field to any one of the three coordinate axes. The word “changes” refers 
to first differences (differences of consecutive measurements, a simple approximation to 
the time derivative). Figure 2.1 shows the relationship between the actual field magnitude 

AtB , the measured field magnitude 
Mt

B  and the offset O . Using the law of cosines to 

write 
 

 cos2222 OBOBB
MMA ttt             (2.6) 

 
where   is the elevation angle. 
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Figure 2.1. Relationship between the actual field magnitude 

AtB , the measured field 

magnitude 
Mt

B  and the offset O . 

 
Taking 

AtB  and O  as constants, differentiating and collecting terms to obtain 
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Assuming that the term cos
Mt

B

O
 is small (offset is small or the measured field is 

approximately normal to the Z-axis) to further obtain 
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Since sin  is positive for 1800  , the sign of 

Mt
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sign of O . The covariance  OC  between 
Mt

B  and   changes sign as O  crosses 

through zero (    OO CC   and   00 C ). Writing the equation 
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where 
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  difference between two consecutive measured field values at kth iteration 
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The method requires that )( kOC  is calculated for a range of different offsets (eg. 

using 0.1 nT steps for the offsets). The offset at the zero crossing of the covariances is the 
desired offset. Hedgecock’s selection criteria are such that pairs of measurements are 
rejected if )( kO  lies outside of the range 30 < )( kO  < 150 or 

)( kOMt
B > 1 nT. For more 

details see Hedgecock, (1975). 
 
 

2.2.3.  Davis-Smith Method 
 
 The original derivation of the Davis-Smith method was never published in a 
refereed journal. It is based on minimization of the variance of the squared magnitude of 
the magnetic field of several (n) data-windows. The initially observed uncorrected 
variance is 
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which reduces to 
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If the magnetic field measurement is corrected by subtracting an offset vector iO


 the 

variance of the correction becomes 
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Expanding again 
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which reduces to 

 
iiiiiiiiii MiMMiMMiMiiMMiMM

c
i BOBBOBBOBOOBBOBBV


 22224 4444

 
            (2.11c) 

 



- 51 - 

where 

iV   variance of the squared field magnitude of data-window i 
c

iV   variance after offset adjustment 

iMB


   measured magnetic field vectors of data-window i 

iO


  offset vector of data-window i 
 
Let: 
 

224
ii MMi BBQ     scalar             (2.12) 

 

iiii MMMMi BBBBW
 22   vector              (2.13) 

 

iiii MMMMi BBBBD


   dyadic (covariance matrix)     (2.14) 

 
 
The above values (2.12 to 2.14) are all constants depending only on the measured values 
of MB


. 

Then:  
 

  iiiiii
c

i WOODOQV
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44                 (2.15) 
 

Minimization of c
iV  by differentiating with respect to iO


 gives 
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i
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W
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
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                        (2.16) 

 
which is the Davis-Smith equation. For a mathematically less abstract version of this 
equation see (2.22). Combination of all data-windows leads to 
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i
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11 2
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           (2.17) 

 
where  
n  number of data-windows 
O


 offset for all combined data-windows 
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2.2.4.  Mathematical Insights on the Davis-Smith Equation 
 
2.2.4.1.  Derivation of the Davis-Smith Equation using 

Correlations 
 

It is instructive to show that if one starts with the assumption that 2
MB  is 

uncorrelated with the variance along any one of the three component axes the same result 
can be obtained. 
 
Recall that the sample covariance can be written in three different ways: 
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yxxy           (2.18c) 

 
Adding an offset to any or all three component axes will not alter their mutual 
covariances. Setting Sxy to zero using (2.18c) the assumption of the lack of correlation 

between 2
AB  and each of the three component axes implies that 
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                (2.19) 

 

where 2
AB  is the actual squared magnitude of the field. 

Introducing offsets 1O , 2O  and 3O  along each of the sensors 
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Writing the equations 
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From (2.18a) it is easy to see since 2
1O , 2

2O  and 2
3O  do not change in time they do not 

change the covariance and for that reason can be omitted from (2.21).  
 
After bringing all offsets to one side one can write the equation as: 
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Equation (2.22) is the same as (2.16). This demonstrates that the Davis-Smith method is 
also a correlation technique. The matrix on the left hand side of (2.22) is the covariance 
matrix that is independent of offset. 
 
 

2.2.4.2.  Davis-Smith Equation for First Differences 
 
 It is similarly instructive to derive the Davis-Smith method for first differences. 
Equation (2.23) is the time derivative of (2.20). 
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       (2.23) 

 

In (2.23) the terms 12O , 22O  and 32O  are still present and 
dt

Bd A
2

 is constant for a pure 

rotation as well as linear change of the field magnitude. Thus making the covariance 

between 
dt

Bd M

2

 and 
dt

dB1 , 
dt

dB2  and 
dt

dB3  zero yields 12O , 22O  and 32O .  
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Formulating equation (2.21) for first differences yields: 
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(2.24) 

 
Bringing all offsets to one side yields the same equation as (2.16) and (2.22) but for first 
differences as input. This means that equations (2.16) and (2.22) can be used for both 
magnetic field data and first differences of magnetic field data. At this point I would like 
to mention that there is another computationally less expensive solution to (2.24). 

Assuming 
dt

Bd A
2

 is zero (which is true for a pure rotation) the offsets can be directly 

brought to one side which leads to a simpler equation: 
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Interestingly enough for first differences equation (2.25) is identical to equation (2.16) in 
Acuña et al. (2002) even though their equation was derived completely differently. 
 
 

2.2.4.3.  Davis-Smith Equation for Filtered Data 
 
 It is again instructive to derive the Davis-Smith method for filtered data (see 
equation 2.26). 
 

         332211
22

222 BFOBFOBFOBFBF AM              (2.26) 

 
Where  F  denotes the filter function. 
 
Similarly as for first differences equation (2.21) can also be formulated for filtered data. 
Equation (2.25) can also be used for filtered data if the filter removes the DC-components 
and low frequencies. The cutoff frequency needs to be higher than one divided by the 
length of the data-window. 
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Using filters makes it possible to filter out slow changes in the field magnitude. 
Figure 2.2 shows an example of artificially generated data by using simple mathematical 
functions. The data set contains pure rotations around two non-parallel axes while the 
magnetic field strength is smoothly decreasing (slightly non-linear). I added 2 nT offset 
in each component leading to small ripples in the field magnitude tB . I then applied the 
Davis-Smith equation to this data set in three different ways. First I used the unfiltered 
data which returned 1O = 11.92 nT, 2O =-3.08 nT and 3O =4.80 nT. Second I used first 
differences which returned 1O = 1.58 nT, 2O =2.21 nT and 3O =1.88 nT which is in this 
case a great improvement (due to the almost linear decrease of the field). Third I applied 
a high-pass filter to remove the decrease of the total field while keeping the ripples 
unchanged which yielded the correct 1O =2.00 nT, 2O =2.00 nT and 3O =2.00 nT. 
Additionally I calculated the offset using (2.25) which yielded 1O =11.83 nT, 

2O = 2.87 nT, 3O = 4.88 nT. This result is in this case not as good as using the full Davis-

Smith equation and first differences as input (see above). The assumption of 
dt

Bd A
2

 

equals zero is violated due to the continuous decrease of the field magnitude. 
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Figure 2.2. Artificially generated data that contain pure rotations while the field strength 

tB  is smoothly and slightly non-linearly decreasing. 
 



- 56 - 

At this point, a postulate stated by Hedgecock should be discussed: “A possible 
criticism of the above two methods (methods by Davis-Smith and Belcher) is that they 
tend to maximize the Alfvénic character (i.e. field magnitude conserving) of the selected 
fraction of observations even though there is no a priori reason why the disturbances 
should be strictly Alfvénic in nature. In the following we present a technique for zero 
level determination which does not suffer from this objection …. ”. Also the fact that 
Hedgecock correlates the field magnitude with an inclination angle rather than the 
component itself does not make a significant difference. The component and the 
inclination angle are directly related. However this does make it impossible to find a 
simple analytical solution. First differences are often very small quantities and small 
compressional disturbances can have an undesired influence on the outcome of zero level 
calculations. In general for relatively long intervals (as used by Belcher and Hedgecock) 
there is no significant difference if one uses first differences or not. For shorter intervals 
however there is often a difference (see example above). 
 

Major advantages can be achieved when a filter is applied. This makes it possible 
to filter out disturbances such as slow changes in the field magnitude or stray fields 
caused by the spacecraft. With the exception of shocks, fast magnetosonic waves tend to 
smooth out compressional disturbances in the solar wind while Alfvénic structures 
persist. For example a high-pass filter (with a cutoff frequency of a few mHz) does not 
reduce the variance of the magnetic field measurements as drastically as taking the 
derivative. This conserves a larger range of input values. Correlations are very sensitive 
to phase shifts; therefore it is crucial that the filter is a zero-phase filter. Additionally, the 
filter should conserve the amplitude of the pass-band and thus for this work Butterworth-
type filters were used. The Davis-Smith equation (2.22) can handle all types of filters 
(high-pass, low-pass, band-bass, and band-stop) no matter how much of the DC- 
components of the data are preserved.  
 
 For a spinning spacecraft with no AC-fields at the spin frequency, say due to 
asymmetries in the solar panel configuration, only the offset along the spin axis needs to 
be calculated and the Davis-Smith equation can be simplified to: 
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with the assumption that the third component is the spin axis. 
 
 

2.2.4.4.  Mathematical Superiority of the Davis-Smith Equation 
 
 The main advantage of the Davis-Smith equation over the equations by Belcher 
and Hedgecock is its versatility. It works for unaltered as well as for filtered data and for 
first differences. Another advantage over the method by Hedgecock is that it provides 
analytical solutions for all three component axes if needed and therefore omitting the 
need for iterations through various offset values. A third major advantage over Belcher’s 
method is that the Davis-Smith equation is not singular if applied to just one data-
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window. This is critical for establishing sophisticated selection criteria for data-windows 
(see Section 2.2.5). Belcher’s matrix is singular for one data-window because two of its 
eigenvalues are zero. This means that each data-window only provides information along 
one direction whereas the Davis-Smith equation is capable of providing information 
along all three component axes of the principal coordinate system of each data-window. 
In other words Belcher’s equation does not use all available information.   
 
 

2.2.5.  Selection Criteria for the Davis-Smith Method 
 

After having established the mathematical superiority of the Davis-Smith 
equation the optimum selection criteria need to be found. At first, previously published 
selection criteria by Belcher and Hedgecock are being discussed. As mentioned above 
Belcher uses the criterion 3 / 1    0.1. The eigenvalues of the covariance matrix are a 
measure of variance along the principal axes. As mentioned in the previous section 
Belcher’s equation allows each data-window only to contain information along one 
direction (the maximum variance direction). The ratio 3 / 1  is therefore a suitable 
criterion for his method, even though occasionally this leads to the selection of data-
windows that contain pure compressions. This can happen (but not necessarily) when 
both 3  and 2 are small compared to 1 . Hedgecock’s selection criteria are dependent on 
the zero level. This means that for each iteration the selected data set changes. This can 
lead to multiple zero crossings of the calculated set of covariances thus failing to provide 
a unique solution. The Davis-Smith equation can handle information (variance) along all 
three axes of the principal coordinate system therefore all three eigenvalues of each data-
window should be as large as possible (additional criteria needed see below). 
 

Figure 2.3a shows an example of STEREO-A magnetic (Acuña et al., 2008) field 
data that start at 2007-03-26, 13:40:51 and are displayed in spacecraft coordinates. 
Figure 2.3b, contains the same data as Figure 2.3a but rotated into minimum variance 
coordinates to show that variance is present along all three principal axes. The third panel 
of Figure 2.3b contains the component with the smallest variance. For a pure rotation of 
the interplanetary magnetic field a plot of the squared field magnitude versus either one 
of its component axes should look like a straight line with zero gradient (assuming all 
zero levels are correct). Figure 2.3c shows slopes before and after the correct zero levels 
have been applied. The gray slopes are nonlinear because the zero levels are incorrect for 
all three components, the black horizontal lines are close to being linear due to the 
presence of rotations around various non-parallel axes and corrected zero levels. For the 
case that there are rotations and that the zero levels are correct for two axes but incorrect 
for one axis, the slope is still linear and its gradient is equal to twice the required offset 
correction (see black points in Figure 2.3d). If an incorrect zero level in another 
component is introduced, the slope becomes nonlinear (see gray points in Figure 2.3d). 
Application of the correct zero levels to the data in Figure 2.3a yields an extremely flat 
field magnitude confirming that the variances along all three components are mostly 
rotational (see Figure 2.3e). 
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In case of pure compressions along one component axis (while the other two 
components stay constant) the plot of the squared magnitude versus that particular 
component resembles a parabola (see Figure 2.4). In reality there are neither pure 
rotations nor pure compressions; the field behavior is somewhat in between. The task is 
to separate rotations that are pure enough to give reliable offset estimates from those that 
are too heavily disturbed by compressions. Let us take a closer look at the second case, 
where there are pure compressions, along one component axis. If one naively makes the 
correlation between the field magnitude and that component go to zero by changing the 
zero level, the average of that component will be removed because the derivative of x2 (a 
parabola) is 2x. For this reason the Davis-Smith method tends to remove the averages of 
the component axes if applied to data with too much compressional content. 

 
 For intervals that have small variance in the component axes it is difficult to 
decide whether a slope is truly linear. The data points from the data-window, once 
corrected, should lie on a straight line with zero gradient. There is a certain minimal 
required variance that allows us to find linear slopes. For the description of most of the 
criteria that are being used for finding zero levels, the term mcs which is the minimal 
compressional standard deviation that should be resolved is introduced. 
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Figure 2.3a. A short example of STEREO-A data in the spacecraft coordinate system. 
The thin black lines are the magnetic field magnitude and its negative value plotted on 
the same scale to illustrate when the field was largely along or orthogonal to the sensors. 
The zero levels are incorrect. 1O =1 nT, 2O =-1 nT and 3O =2 nT.  
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Figure 2.3b. Same data as in Figure 2.3a but rotated into the minimum variance 
coordinate system to show that there is variance along all three axis of the principal 
coordinate system. The square roots of the eigenvalues (same as standard deviations in 
the minimum variance coordinate system) are given in descending order: 3.03 nT, 
0.48 nT and 0.38 nT.
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Figure 2.3c. Squared magnitude ( 2

tB ) versus component plots. The averages have been 
subtracted to center the plots at the origin. 
Gray: before zero Levels have been applied. 
Black: after zero levels have been applied. 
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Figure 2.3d. 
Black: 1O  is incorrect whereas 2O  and 3O  are correct. This causes a slope with 

gradient of 2 1O  that is close to linear. 1O =1 nT. 

Gray: 1O  and 3O  are incorrect whereas 2O  is correct. The introduction of an offset in 

another component causes a highly nonlinear slope. 1O =1 nT and 3O =2 nT. 
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Figure 2.3e. The data in Figure 2.3a after the zero levels have been applied. The thin 
black traces are the mirrored field magnitude. The variance of the squared magnitude 
(thin black traces) has been greatly reduced compared to Figure 2.3a confirming that the 
variances in the component axes are mostly rotational.  
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Figure 2.4. A theoretical example of a pure compression. Magnitude squared versus the 
component along which there is a pure compression. For this example I chose the other 
two components ( 1B  and 2B ) to be zero. 
Black: upper and lower quartile of B3. 
The straight slopes represent twice the offsets that would be calculated using only the 
upper and lower quartile. The difference of those offsets is used for the third selection 
criterion (the linearity criterion).
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2.2.5.1.  First Selection Criterion 
 

In order to solve for all three zero levels significant rotations around various non-
parallel axes are required. As stated above, many data-windows are being combined to 
perform a single large inversion. Each data-window is required to contain fluctuations 
that lie at least within a single plane. A combination of such data-windows can still 
contain fluctuations that lie inside multiple non-parallel planes. Thus the first criterion 
requires that the square root of the second eigenvalue of the covariance matrix is greater 
than a certain threshold, namely 12   . I usually set mcs1  (see Table 2.1). For a 

spinning spacecraft the criterion changes to 13)( Bstd  (the third axis is assumed to be 
the spin axis).  

 
 

2.2.5.2.  Second Selection Criterion 
 

The second selection criterion describes how “clean” particular rotations within a 

certain data-window are. By computing the ratio   22
2 


ABstd

, a measure of this 

property can be obtained. I normally choose 2.02   to 0.5. This selection criterion is 
applied after the zero levels have been calculated using equations (2.22) or (2.27) because 

 2
MBstd  changes towards  2

ABstd  when the zero levels change towards their correct 

values (see black curves in Figure 2.3c or compare the thin black traces in Figure 2.3a 
with the corresponding traces in Figure 2.3e). For a spinning spacecraft 2  can be 
replaced by )var( 3B  (the third axis is assumed to be the spin axis). 
 
 

2.2.5.3.  Third Selection Criterion 
 

The third selection criterion decides whether a particular slope exhibits sufficient 
linearity with a gradient of zero. Since this selection criterion requires much 
computational effort it is only applied if the first two selection criteria are fulfilled. 
Additionally, this selection criterion is applied after the zero levels have been calculated 
(using equations (2.22) or (2.27)) and subtracted from the data. The magnetic field 
measurements of a data-window are being sorted in three different ways, according to B1, 

B2 and B3 and the values of 2
AB  are always exchanged according to the corresponding 

sorting procedure. After the sorts have been performed B1, B2 and B3 are in ascending 

order and their corresponding values of 2
AB  ( 2

AB  in three different sequences). For the 

first quarter of the values of B1, offset O11 is calculated using the Davis-Smith 
equation (2.27) that solves for only one component. Similarly, the offset O12 for the 
second quarter of values is calculated and so on. Then the maximum and minimum 
values of the four calculated offsets are taken and the criterion 3min1max1 )( OOabs  
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(see Figure 2.4) is applied. For a long data interval with pure compressions having a 
standard deviation of mcs, )( min1max1 OOabs   should be ~2mcs (if the sum of the squares 
of the other two components is constant). As a conservative threshold 3 =mcs can be 
used. The same procedure is applied to the other two component axes. In case of a 
spinning spacecraft only one component has to be taken into account. 
 
 

2.2.5.3.1.  Making the Third Selection Criterion Robust 
 
It is likely that not all three component axes fulfill the third selection criterion for 

the same data-window. A particular data-window can still be used if at least one 
component passes the selection criteria. In this case the other two component axes that do 
not pass the selection criteria should not have a significant influence on the calculation of 
the offset of the component that passes. The component axes influence one another via 
the off-diagonal terms (covariances) in (2.22). Off-diagonal terms should not dominate 
the matrix in such a way that the offsets of the components that pass cannot be 
determined correctly. As an example, it is assumed that only the first component passes. 
The covariances of the other components can be checked in the following way: 
    3131min3max32121min2max2

2
1

2
1 )()( BBBBabsOOabsBBBBabsOOabsBB   

where )( min2max2 OOabs   and )( min3max3 OOabs   are used as estimates of how much the 
offsets O2 and O3 are being compromised. Now let’s assume that the first two 
components pass. It is possible to check against the third component by doing two 
checks: 

 
 3232min3max3
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Similarly, checks for all other possible cases are performed.  
 

If one looks at just one data-window, the checks of the covariances are rather 
loose because the estimated errors used for cross checking might not always be accurate 
but statistically a large error of the offset of another component combined with a large 
covariance reduces the chance of correct offset estimate of the component of interest. The 
checks are to avoid large outliers. Section 2.2.7 describes how all data-windows are 
combined. All data-windows are combined under the assumption that the influence of the 
components that did not pass cancel each other out to a large extent. For a spinning 
spacecraft the covariances do not need to be taken into account. 
 

After all of the selection criteria have been applied, it is still possible to get 
outliers. It can be expected that the offsets that pass the third selection criterion are 
correct to a certain extent. The standard deviation of all offsets that pass the tests is 
calculated. Offsets that have a larger difference from the median than a multiple c1 of the 
standard deviation are dismissed. In this work c1=1.25 has usually been used. For a 
spinning spacecraft only one component needs to be taken into consideration. 

 



- 66 - 

The value that can be used for mcs is dependent on the distance from the Sun as 
well as noise in the data and disturbances introduced by the spacecraft’s magnetic field 
and the chosen high-pass filter. Table 2.1, shows three example sets of criteria used in 
this work. The value for each criterion has been determined empirically. In general the 
same values are used for filtered and unfiltered data. The selection criteria were chosen in 
such a way that in general mcs is the only parameter that needs to be changed according 
to the distance from the Sun. 

 
 

2.2.6.  Windowing  
 

The method works with a data-window length that varies from about 5 min to 
about 1 hour (parameters: wp1 minimal data-window length, wp2 maximal data-window 
length). The shift step s is constant and smaller than half of the smallest data-window 
length. Each data-window regardless of its length is shifted with shift step s over the 
whole set of input data. This means that a single data point can be part of several data-
windows. The variable data-window length gives us three advantages: the method scales 
itself towards optimal data-window length; more accurate tracking of the beginnings and 
ends of pure rotations is obtained and long consistent intervals of pure rotations are more 
heavily weighted. 
 

The smallest data-window length of 320 sec is increased subsequently by wp3 
percent until the largest data-window length of 3600 sec is reached. For this work wp3=5 
to 20 percent was used. Shift steps from s=3 sec. to 16 sec. were used. All selected data-
windows regardless of their length are combined and one large inversion is performed. 
Variable data-window length greatly increases the number of data-windows and thus the 
number of required computations. I implemented the algorithm in such a way that 
cumulative sums are used as often as possible. All averages in equations (2.22), (2.24) 

and (2.26) can be efficiently calculated from cumulative sums. Additionally,  2

ABstd  in 

the second selection criterion (see Section 2.2.5.2) can be efficiently calculated by taking 
equation (2.20) squared and introducing sums: 
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with previously calculated sums 
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the second criterion can be calculated using previously calculated sums. 
 
 

Similarly for first differences 
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with previously calculated sums 
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the second criterion can be obtained for first differences using previously calculated 
sums. 
 

For high pass filtered data the second selection criterion can be efficiently 
calculated in a similar fashion. 
 
 

2.2.7.  Combination of Data-windows and Overall Inversion 
 

It is possible to combine all selected data-windows in a very simple way which 

avoids large matrices. For each data-window all the averages from B1, B2, B3 and 2
MB  

are subtracted. Then the following equation is used to combine all the values of all data-
windows, which is a simpler form of (2.22). 
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For a spinning spacecraft: 
 

''
2

1
'

2
33

2
3 MO             (2.29) 

 

Where '1B , '2B , '3B  and '
2

MB  are all magnetic field values of all data-windows that had 

the averages removed. 
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Even after the input has passed all the selection criteria a decision must be made 
whether the overall inversion has produced meaningful results. Checks are performed to 
see if it contains rotations around various non-parallel axes by the requirement that the 
standard deviation of each component that went into the final inversion is greater than 
c2*mcs. If a particular component fails to meet this criterion the offset for that component 
cannot be trusted. In this work c2=1.5 to 2 has been used. Another criterion is the number 
of independent points npts that went into the inversion (each measurement is only 
counted once even if it is part of several data-windows). Usually this value is set to 
npts=1000 for one second data. This value largely depends on the resolution of the data. 
The next criterion is the number of different data-windows ni that went into the overall 
inversion. This value is usually set to 10. For a spinning spacecraft the offset from all 
combined data-windows can be calculated using (2.29). 

 
 If none of the components fulfill the criteria of the overall inversion one could 
loosen criteria one, two and three so that more data-windows get selected. In some cases 
it is better to have more data-windows that were chosen using less tight criteria than very 
few data-windows chosen with strict criteria. In some cases changing the cutoff 
frequency of the high-pass filter can produce a higher number of valid data-windows. 
 
 

2.2.8.  Monte Carlo Simulation 
 

Once the overall inversion has been performed checks are required to see if the 
obtained solutions are stable solutions. As a Monte Carlo simulation a modified version 
of the so-called Bootstrap-method (Efron, 1982) has been chosen. This method reduces 
the information content of the data set which consists of n independent measurements by 
randomly choosing n-times a measurement out of the n measurements. This leads to a 
new data set that has roughly 1/e measurements more than once. This procedure is done a 
large number of times and each time a new inversion is performed. The variance of the 
solutions is then used as a measure of stability. In the case of interplanetary magnetic 
field measurements, two consecutive measurements are generally not independent (e.g. 
for 1 sec resolution). In order to achieve some degree of independence in this work two 
minute intervals instead of single points were used. Since the variable window length is 
variable, the same two minute interval can be part of several data-windows. If a particular 
two minute interval was not chosen it was removed from all data-windows. For this work 
300 to 500 inversions (parameter: nmc) were performed. The decision whether an offset 
is determined in a stable fashion is based on the difference between the maximum and the 
minimum estimate. The difference must be smaller than c3*mcs. It is possible that not all 
three offset estimates are stable. If at least one estimate is stable, the stable offset(s) is 
(are) applied to the data and the overall inversion and the Monte Carlo Simulation is 
repeated for the remaining component(s) but the data-windows that fulfill the third 
selection criterion only for the stable component(s) are left out. This leads to a data set 
that was especially chosen in order to solve for the remaining component(s). If only one 
component remains the algorithm is the same as for a spinning spacecraft. The maximum 
and minimum estimates are used to define the error-bars. 
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If no stable solution can be found one could try “tweaking” the selection criteria. 
For example if the noise level of the data is rather low one could loosen the criteria that 
are based on eigenvalues or variance ( 1 , 2  and c3). One could also try lowering the shift 
step s in order to better track beginnings and ends of pure rotations or decrease the 
increment of the widow length wp3 from e.g. 20 percent to 10 percent. Another 
possibility would be that too many compressions slipped through. In this case increasing 
mcs could help in finding stable solutions. 

 
 

2.2.9.  Application of the Algorithm to Space-borne 
Magnetometer Data 

 
Figure 2.5, shows an example of magnetic field data where the field magnitude is 

continuously declining throughout the interval. The data were measured on the three-axis 
stabilized STEREO-A while passing through the interior of an ICME. For this interval I 
could only obtain zero levels by high-pass filtering the data. First differences as well as 
unfiltered data did not yield results because no data-windows were selected by the 
algorithm. 
 
 Tables 2.2a and 2.2b show the results of a calibration performed with STEREO-B 
data for day 224 in 2007. The input parameters are given in Table 2.1. The first run did 
not return a value for 3O  for the unfiltered case and for the filtered case 1O  and 3O  could 
not be determined. The criteria that caused the program to dismiss some of the offset 
calculations are marked in light gray. Since both methods (filtered and unfiltered) did not 
yield 3O  the software applied 1O  from the unfiltered case and the averaged 2O  from both 
cases to the data and reran the algorithm only to solve for 3O . The outcome of the rerun 
is displayed in Table 2.2b. The algorithm finds 3O  for the unfiltered case. I chose this 
particular example also to show that the criteria that were chosen do not represent strict 
boundaries between finding accurate and inaccurate calculations. As can be seen in 
Table 2.2b the estimate of 3O  for the filtered case is being dismissed by the algorithm 
even though the value of -38.07 nT appears to be very close to the result of the unfiltered 
case which is -37.99 nT. The chosen selection criteria usually are on the safe side. After I 
had applied the calculated offsets to the data I reran the algorithm for testing purpose and 
all zero levels came out zero ( 1O =0.00 nT, 2O =0.00 nT, 3O =0.00 nT). The algorithm is 
mathematically not iterative; thus the algorithm will run the second time (with correct 
offsets) exactly as the first time (same error bars, same offset calculations will be 
dismissed etc.). Slight differences can arise for the filtered case because the right hand 
side and the left hand side of equation (2.26) are not exactly equal. 
 
 Magnetic field data of THEMIS-B (Auster et al., 2008) are displayed in Figure 
2.6. The data show multiple bow shock crossings. The roughly seven hour long subset of 
the data that is marked in gray has been selected as input for an offset calculation. The 
selected data contain several intervals of large upstream waves which do not disturb the 
algorithm. The result of the offset calculation is displayed in Table 2.3. The length of the 
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error bar of the calculated offset is only 0.29 nT. Because of the use of spin-averaged data 
the accuracy of the spin-plane offsets has no influence on the calculation of the spin-axis 
offset. 
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Figure 2.5. Magnetic field data of STEREO-A as it passes through the interior of an 
ICME. Shown in black are the outputs of the three magnetometer sensors at 1 sec 
resolution. The light gray lines are the magnetic field magnitude tB  and its negative 
value plotted on the same scale to illustrate when the field was largely along or 
orthogonal to the sensors. Zero-phase high-pass filtering is applied on these data before 
the zero level determination algorithm. The filter is a fourth order (eighth order when 
zero-phase filtering) butterworth-type filter with a cutoff frequency of 8.9 mHz. 
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mission STEREO THEMIS VEX 
data resolution 1 sec 3 sec 1 sec 
Selection: 
mcs 0.25 nT 0.25 nT 0.3 nT 
ε1 1*mcs 1*mcs 1*mcs 
ε2 0.5 0.5 0.5 
ε3 1*mcs 1*mcs 1*mcs 
c1 1.25 1.25 1.25 
Windowing: 
wp1 320 sec 300 sec 320 sec 
wp2 3600 sec 3000 sec 3600 sec 
wp3 20% 5% 20% 
s 8 sec 3 sec 8 sec 
Inversion: 
c2 1.5 1.5 2.0 
npts 1000 300 1000 
ni 10 10 10 
Monte Carlo: 
nmc 300 300 300 
c3 2.0 2.0 3.0 

 
Table 2.1. Three examples of empirically determined criteria used in calculations. 
STEREO is a dual-spacecraft mission with three-axis stabilization where the zero levels 
of all three component axes need to be calibrated. THEMIS is a five-spacecraft mission 
with spin stabilization where only the zero level of the component that lies along the spin 
axis needs to be calculated. Venus Express (VEX) is a three-axis stabilized spacecraft. 
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      unfiltered input data filtered input data 
Inversion: 
Number of independent points 13648 >npts=1000 12727 >npts=1000 
Number of data-windows 359 >ni=10 570 >ni=10 

)( 1Bstd  (nT) 1.408 >c2*mcs= 0.375 0.338 >c2*mcs= 0.375 

)( 2Bstd  (nT) 0.614 >c2*mcs= 0.375 0.398 >c2*mcs= 0.375 

)( 3Bstd  (nT) 0.555 >c2*mcs= 0.375 0.185 >c2*mcs= 0.375 

1O  (nT) -43.63 -43.99 

2O  (nT) 19.92 20.10 

3O  (nT) -37.85 -37.50 

Monte Carlo Simulation: 
)(

maxmin 11 OOabs   (nT) 0.321 <c3*mcs= 0.5    --- <c3*mcs= 0.5 

)(
maxmin 22 OOabs   (nT) 0.196 <c3*mcs= 0.5 0.147 <c3*mcs= 0.5 

)(
maxmin 33 OOabs   (nT) 0.525 >c3*mcs= 0.5    --- <c3*mcs= 0.5 

Result: 

1O  (nT) -43.63 --- 

2O  (nT) 19.92 20.10 

3O  (nT) --- --- 

Error Bars: 

min1O  to max1O  (nT) -43.89 to -43.57 --- 

min2O  to max2O  (nT) 19.83 to 20.02 20.03 to 20.17 

min3O  to max3O  (nT) --- --- 

Combined Result: 

1O  (nT) -43.63 

2O  (nT) 20.01 (averaged) 

Combined Error Bars: 

min1O  to max1O  (nT) -43.57 to -43.89 

min2O  to max2O  (nT) 19.83 to 20.17 (worst case of both estimates) 

 
Table 2.2a. Example of STEREO-B zero level calculations for day 224, of 2007. For the 
filtered case the cutoff frequency of the high-pass filter is 3.3 mHz. The fields that are 
marked in gray represent violations of criteria which lead to dismissal of 1O  from the 

filtered case and the dismissal of 3O  from both cases. The full set of selection criteria is 

given in Table 2.1. 
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          unfiltered input data filtered input data 
Inversion: 
Number of independent points 19687 >npts=1000 12879 >npts=1000 
Number of data-windows 331 >ni=10 1035 >ni=10 

)( 3Bstd  (nT) 0.575 >c2*mcs= 0.375 0.373 >c2*mcs= 0.375 

3O  (nT)      -37.99 -38.07 

Monte Carlo Simulation: 
)(

maxmin 33 OOabs   (nT) 0.17 <c3*mcs= 0.5 0.19 <c3*mcs= 0.5 

Result: 

3O  (nT) -37.99 --- 

Error Bars 

min3O  to max3O  (nT) -38.06 to -37.89 --- 

Combined Result: 

3O  (nT) -37.99 

Combined Error Bars: 

min3O  to max3O  (nT) -38.06 to -37.89 

 
Table 2.2b. Rerun of the algorithm in order to solve for 3O . Before I performed the 

rerun I applied the corrected zero levels 1O  and 2O  as given in Table 2.2a to the input 
data. 
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Figure 2.6. Example of spin averaged THEMIS-B data. The roughly 7 hour long subset 
that is marked in gray has been used as input for an offset calculation. 3B  represents the 
spin-plane component. The spin period of the THEMIS spacecraft is roughly 3 sec. 
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         unfiltered input data filtered input data 
Inversion: 
Number of independent points 3302 >npts=300 3425 >npts=300 
Number of data-windows 215 >ni=10 1915 >ni=10 

)( 3Bstd  (nT) 1.835 >c2*mcs= 0.375 1.259 >c2*mcs= 0.375 

3O  (nT) -0.04 -0.09 

Monte Carlo Simulation: 
)(

maxmin 33 OOabs   (nT) 0.233 <c3*mcs= 0.5 0.257 <c3*mcs= 0.5 

Result: 

3O  (nT)           -0.04 -0.09 

Error Bars: 

min3O  to max3O  (nT)        -0.16 to 0.07 -0.22 to 0.04 

Combined Result: 

3O  (nT)           -0.07 (average) 

Combined Error Bars: 

min3O  to max3O  (nT) -0.22 to 0.07 (worst case of both estimates) 

 
Table 2.3. Example of a zero level calculation for THEMIS-B. For the filtered case the 
cutoff frequency of the high-pass filter is 3.3 mHz. The full set of selection criteria is 
given in Table 2.1. 
 
 

The example that I chose for Venus Express uses a slightly different approach. 
Venus Express had no magnetic cleanliness program. At the positions of the 
magnetometers the spacecraft’s magnetic field interferes with the natural magnetic field. 
Initial cleaning of the Venus Express data has been performed (Zhang et al., 2007) using 
the gradiometer configuration of the dual triaxial sensors. The initial cleaning of the data 
provides AC-accuracy of better than 0.1 nT (Zhang et al., 2007). The inboard sensor is 
placed directly onto the spacecraft’s surface. The outboard sensor is mounted on a short 
boom of only one meter in length. The magnetic field strength caused by the spacecraft 
ranges from 2000 to 6000 nT at the inboard sensor and is roughly 200 nT at the outboard 
sensor.  For Venus Express, detecting changes of the zero levels with as rapid a cadence 
as possible is necessary. The whole novel technique is applied using an overlapping 
three-hour window that is shifted by one hour. Whenever it is not possible to determine a 
zero level for a particular component the window is extended by one hour towards later 
times and so on. However the calculations after the next shift (one hour) again start with 
a three hour window (see Figures 2.7a and 2.7b). In order to be able to track offsets the 
selection criteria should be such that changes in offset are not mistakenly dismissed as 
compressions by the algorithm. Table 2.1 shows the selection criteria that I used for 
tracking offsets using Venus Express data. The values for mcs, c2 and c3 are different 
from the corresponding values for the other two spacecraft. A compromise between 
accuracy and the tracking ability was made. Large discontinuities of the zero levels occur 
from one day to the next because the initial data cleaning was done for day-files. An 
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algorithm has been applied (by the data cleaning team) to join the day- files. This 
algorithm occasionally leaves behind slight jumps in the offsets. I applied the technique 
using separate day-files so that no windows can cross day-boundaries. 
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Figure 2.7a. Example of detection of changing offsets using four days of Venus Express 
data. The input data are unfiltered. The horizontal lines show the timeframe for a 
particular offset estimate. The vertical black lines represent the error bars for the offset 
estimates. 
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Figure 2.7b. Example of detection of changing offsets using four days of Venus Express 
data. The input data are high-pass filtered using a cutoff frequency of 8.9 mHz. The 
horizontal lines show the timeframe for a particular offset estimate. The vertical lines 
represent the error bars for the offset estimates. 
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2.3.  An Advanced Approach to Finding Magnetometer Zero 
Levels Inside the Low-field Regions of a 
Magnetosphere 

 
2.3.1.  Introduction 
 
 Inside the Earth’s magnetosphere, the plasma is much different from the solar-
wind plasma and the magnetic fluctuations are generally not as Alfvénic as they are 
inside the interplanetary magnetic field. Inside a magnetosphere, magnetic field 
fluctuations are mostly compressional, which means that the field magnitude fluctuates 
strongly as the three components of the field fluctuate. In low-field regions within a 
magnetosphere the precision of magnetic field models is insufficient for calibration 
purposes. Magnetometer zero levels can be calculated from purely compressional 
fluctuations of the magnetic field. For a data interval that consists of pure changes of the 
field magnitude, the cross product of each magnetic field vector with the maximum 
variance vector (Sonnerup, 1967) is zero because all vectors point towards the maximum 
variance direction. If the zero level of the magnetometer is incorrect pure changes of the 
field magnitude are measured as changes of magnitude plus changes in direction of the 
field (see Figure 2.8). The maximum variance direction is given by the eigenvector of the 
covariance matrix that corresponds to the largest eigenvalue and is independent of the 
zero level. Geophysical phenomena that produce pure compressional fluctuations 
(amongst others) are mirror-mode waves, drift mirror-mode waves and magnetic nulls. 
The latter are observed rather scarcely and attempts to use them for zero level 
determination did not yield reasonable results. Mirror-mode waves are magnetic/plasma 
signatures that are frozen into the flowing magnetosheath plasma (Fazakerley and 
Southwood, 1994). Drift mirror-mode waves (Hasegawa, 1969; Tsurutani et al., 1982) 
are as well observed in the magnetosheath and generally have larger amplitude as well as 
lower frequency as mirror-mode waves. Figure 2.9 depicts mirror-mode waves and 
Figure 2.10 drift mirror-mode waves, as observed by the THEMIS mission 
(Angelopoulos, 2008, Auster et al., 2008). 
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Figure 2.8. Example of an interval consisting of four magnetic field vectors in the XZ-
plane. The black vectors are all aligned and represent a pure change of field magnitude. 
The red arrows introduce a change of the zero level along the Z-axis. The blue vectors 
are the result of the changed zero level. Thus the blue vectors do not have uniform 
direction. 
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Figure 2.9. Example of mirror-mode waves as observed by the THEMIS-B spacecraft. 
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Figure 2.10. Example of drift mirror-mode waves as observed by the THEMIS-B 
spacecraft. 
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2.3.2.  Algorithm 
 

Similarly to the algorithm for finding zero levels in the interplanetary magnetic 
field, the algorithm in this section was designed with emphasis on automation. It searches 
for purely compressional changes of the magnetic field, calculates the zero level using a 
robust technique and checks the stability of the solution via Monte Carlo simulation. It 
was implemented to solve for the spin axes offsets of the five THEMIS magnetometers 
(Auster et al., 2008). 
 

The search algorithm for purely compressional changes of the magnetic field uses 
filtered as well as unfiltered data in despun spacecraft coordinates. All the given values 
below were determined empirically with spin averaged THEMIS magnetic field data 
(3 sec. resolution). Please note that the empirical values have not been tested for a 
different mission other than THEMIS. The filtered data are high-pass filtered with a 
cutoff frequency of 0.83 mHz (period of 20 minutes). The window length is variable and 
ranges with 30 sec. steps from 2 minutes to 10 minutes. The shift step of each window 
length is 3 sec. 

 
There are two categories of criteria. The first category contains basic checks that 

each possible interval for zero level calculation has to pass. The second category contains 
checks that are applied after calculation of the zero levels for each interval separately. If 
an interval does not pass the checks of the first category, the checks of the second 
category do not need to be applied. This speeds up the whole process of finding suitable 
intervals. Additionally, cumulative sums are used whenever possible to shorten 
computation times. 

 
 

2.3.2.1.  Criteria: First Category 
 

As stated above, this first set of criteria is for finding possible intervals for zero 
level calculation. Further checks are required for intervals that pass the checks of this 
category. 

 
Criterion 1: tB <30 nT 

If the zero level 3O  is roughly known beforehand, this criterion can be 

used to select small fields as input. 
 

Criterion 2: 12B <25 nT ( 2
2

2
112 BBB  ) 

Additional criterion that supports Criterion 1 in case of high uncertainties 
of 3O  before starting. 
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Criterion 3: 25.0)( 12 BF  nT and 25.0)( 3 BF  nT 

The average of the filtered spin plane component and the spin axis 
component should be less than 0.25 nT. This ensures that the interval 
contains only varying magnetic fields (together with Criterion 4). 
 

Criterion 4: 1.0
1

2 



 and 1 >1 

1  and 2  are the eigenvalues of the covariance matrix between )( 12BF  and 

)( 3BF in descending magnitude. 

 
F denotes the filter function 
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This ensures that the field changes towards a single direction and that the change 
is substantial. 
 

Criterion 5: 







180
65tan

'

'

12

3 
V

V
 

The vector 









'

'
'

3

12

V

V
V


 is the eigenvector that corresponds to the largest 

eigenvalue of the covariance matrix (Criterion 4 above). It points towards the 
maximum variance direction. The more the maximum variance direction points 
towards the spin axis, the less of an effect has a change of 3O  on the cross 

product between the magnetic field and the maximum variance direction. 
This criterion ensures that there is at least a 25 degree angle between the 
spin axis and the maximum variance direction. 
 

Criterion 6: |corr ))(),(( 312 BFBF |>0.95 

 The filtered components  12BF  and  3BF  should be highly correlated. 

   
 

2.3.2.2.  Criteria: Second Category 
 
 This set of criteria is applied to each interval after the zero level for that interval 
has been calculated and applied to 3B . Intervals that pass the checks of the first and 

second category are added to the set of intervals that is used for the overall least squares 
inversion and Monte Carlo simulation. 
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 There are two options of how to calculate the spin axis offset. Both options yield 

similar results. The first option is to set 'BV


  equal to zero, whereas V


 is the maximum 
variance direction of the filtered magnetic field data in all three dimensions (similar to 
matrix in Criterion 4 above but for three dimensions) and 'B


 is the magnetic field vector. 

Here, the vector 'B


 is a combination of filtered and unfiltered data: 
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  This gives the following equations: 
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        (2.30) 

After setting 'BV


  to zero and some algebra, two equations with one unknown are 
obtained: 

 





















1331

2332
3

1

2

''

''

VBVB

VBVB
O

V

V
         (2.31) 

 
 The second option is to use the sum of the squares of the spin plane components. 
Writing the two dimensional cross product: 
 

   '"'""' 1233312 VOBVBBV 


         (2.32) 

with 'V


 as in Criterion 5 above and 
 
  
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After setting "' BV


  to zero and some algebra: 
 
 '"'"' 123312312 VBVBOV           (2.33) 

 
  
 Criterion 7: 12RMS >0.5 nT, 3RMS >0.5 nT, tRMS >0.8 nT 

The root-mean-square deviations of three line fits to the components of "B


 
and its magnitude must be larger than the above thresholds. This ensures 
variance of the field with respect to a line (for this purpose, this is a better 
criterion than variance with respect to the mean). 
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Criterion 8: 12k <0.15, 3k <0.15, tk <0.15 

The slopes of the linear fits in Criterion 7 must be smaller than a 
threshold.  
 

Criterion 9: tc ,12 >0.95, tc ,3 >0.95 3B >0, tc ,3 <-0.95 3B <=0 

 tc ,12  is the correlation coefficient between "12B  and "B


 

 tc ,3  is the correlation coefficient between "3B  and "B


 

Since 3B  can be positive or negative, the check of the correlation 

coefficient tc ,3  must be done with respect to the sign. A very high 

correlation between the components and the magnitude of "B


 is desired. 
 

Criterion 10: The phase shift between the components and the magnitude of "B


 
must be zero. The highest correlations or anti-correlations must be 
obtained without shift. 

 

Criterion 11: 
m

BB

B

B

B

B
std

2

3

2

12

3

3

12

12 '''' 











  

 This criterion is very effective in determining whether or not an interval is 
supposed to be a pure compression. It relates the differences between the 
components to field strength, after correction of the zero level. Useful 
values for m range from 1000 to 2000. 

 
 

2.3.2.3.  Overall Inversion and Monte Carlo Simulation 
 
 The median and standard deviation of the zero levels of all intervals that pass the 
above eleven criteria is calculated. Intervals that have zero levels that are within one 
standard deviation of the median are combined to a subset of intervals that is used for the 
overall inversion. 
 
 For diagnostic purposes the number of all the intervals as well as the number and 
length of all the independent intervals is calculated.  Additionally a Monte Carlo 
simulation is performed. 
 
 For the Monte Carlo simulation a modified blocked Bootstrap-method is used 
(Efron, 1982). The independent intervals are blocked to three minute intervals. Out of all 
n three-minute intervals, n intervals are randomly chosen. This yields a data set with 
reduced information that contains 1/e intervals more than once. For this new reduced data 
set the least squares solution of the zero level is calculated. This is done 1000 times. For 
diagnostic purposes the standard deviation, mean and median of all 1000 zero levels is 
computed. As error bars three times the standard deviation of the zero levels is used.  
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 The evaluation of all the diagnostics parameters requires some experience. 
Tweaking the value m (see Criterion 11 above) as well as the amount of input data may 
be required. There are time intervals of several month of THEMIS data that do not yield a 
single interval that passes all 11 Criteria, which is due to absence of proper waves at the 
locations of the spacecraft. 
  
 

2.3.2.4.  Application 
 

The algorithm was routinely applied to THEMIS data whenever a spacecraft did 
not go into the interplanetary field for longer periods. As an example I choose to show 
results for the THEMIS-A magnetometer with data from January to July 2011. The 
algorithm found 693 intervals (due to variable window length and overlap) that cover 
eight independent intervals. The independent intervals are altogether 40 minutes long and 
lie within a time range from March 29 to July 31, 2010. Thus, no intervals were found 
from January 1 to March 29. Figures 2.11 and 2.12 show two examples of such intervals. 
The algorithm produced results that are summarized in Table 2.4. The three sigma error 
bar is approximately 1 nT long. All four estimates of the zero level (-0.59 nT, -0.12 nT, 
-0.32 nT and -0.31 nT) are relatively close together and were calculated across 8 
independent intervals that lie within a 4 month time period. 

 
When examining the results, the outputs of the Monte Carlo simulation (error 

bars, mean and median), together with the number of independent intervals are most 
important. Additionally, the independent intervals should lie across a longer time frame. 
Please note that a 1 nT error bar is much better than what one would expect from model 
comparisons. 

 
 

Number of intervals 693 
Number of independent intervals 8 
Combined length of independent intervals 40 min 
Least squares 3O  of all 693 intervals -0.59 nT 

Least squares 3O  after cleaning (443 intervals left) -0.12 nT (taken) 

Mean least squares  3O  of Monte Carlo simulation -0.32 nT 

Median least squares  3O  of Monte Carlo simulation -0.31 nT 

Standard deviation of 3O   (Monte Carlo simulation) 0.21 nT 

Three times standard deviation (error bar) -0.32 nT 0.63 nT 
Table 2.4. Table of results. 
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Figure 2.11. THEMIS-A magnetic field data. The area highlighted in gray is one 
independent interval that was chosen by the algorithm. 12B  (4th panel) is the sum of the 
squares of the spin plane components. 
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Figure 2.12. THEMIS-B magnetic field data. The area highlighted in gray is one 
independent interval that was chosen by the algorithm. 12B  (fourth panel) is the sum of 
the squares of the spin plane components.
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2.4.   Conclusions 

 
Because of its mathematical superiority (see Section 2.2.4.4.), the Davis-Smith 

method represents the method of choice for magnetometer calibrations inside the 
interplanetary magnetic field. The technique described herein is an improved 
implementation of the Davis-Smith method that provides error estimates. The author is 
aware of the fact that there are possibilities to further improve the presented novel 
technique. In this chapter the mathematical underpinnings of the procedure was 
documented and the relationship to the Belcher technique and the Hedgecock technique 
and their limitations were explained. 
 

Additionally an automated technique for finding zero levels inside a 
magnetosphere that provides error estimates has been developed. 
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3.  Orthogonalization of a Sensor Triad on Spinning 
Spacecraft 

 
3.1.   Introduction 
 
 The magnetometer sensor triad combined with the electronics produce vector 
measurements in sensor coordinates (S1,S2,S3). This coordinate system is not perfectly 
orthogonal and spins with the spacecraft. Its orthogonalized version (x,y,z), as it is used in 
this thesis, has the z-axis aligned with the spin axis and the y-axis leads the x-axis by 
90 degrees. Both coordinate systems can be transformed into non-spinning (despun) 
coordinate systems by multiplication with a despin matrix (see equation 3.8). After 
despinning, the coordinate systems are called the non-orthogonal despun coordinate 
system ( , , )  X Y Z  and the orthogonal despun coordinate system ( , , )X Y Z  which is often 
referred to as spacecraft coordinate system. A common definition of spacecraft 
coordinates is that the Sun lies in the XZ-plane with X pointing roughly towards the Sun. 
The Z axis is aligned with the spin axis and the Y-axis completes a right handed system. 
Via attitude information the spacecraft coordinates can be further transformed into 
various geophysical coordinate systems. Most scientific data analysis is done in 
geophysical coordinate systems. 
 
 There are twelve calibration parameters that are required to fully calibrate a 
magnetometer. The parameters are three gains ( 1G , 2G , 3G ), three offsets (zero levels), 

( 1O , 2O , 3O ), and six angles. The six angles consist of three azimuthal angles ( 1 , 2 , 

3 ) and three elevation angles ( 1 , 2 , 3 ), as shown in Figure 3.1. 

 
 Figure 3.2 shows an example of magnetic field data as measured by one of the 
four Cluster satellites (Balogh et al., 2001). The data are in a despun coordinate system 
that is slightly non-orthogonal. Data given in such a coordinate system usually contain 
first and second harmonics in the spin plane components and first harmonics in the spin 
axis component (see Figures 3.3 and 3.4). The first and second harmonics can be linked 
to certain calibration parameters.  In the given example the magnetometer uses ranges 2, 
3 and 4. The ranges are different gain states that are used to measure magnetic field 
values of certain values. In this example range 2 is used for small magnetic field values 
(-64 to 63.992 nT), range 3 for intermediate- (-256 to +255.97 nT) and range 4 for large 
magnetic field values (-1024 to 1023.9 nT). As can be seen from Figures 3.3 and 3.4 the 
spin harmonics are different at the range changes, thus each range requires a different set 
of calibration parameters. 
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Figure 3.1. Definition of the six angles that are required to calibrate a magnetometer. 
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Figure 3.2. Example of Cluster magnetic field data that were measured in 3 different 
ranges (magnetometer gains). 
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Figure 3.3. First and second harmonics in a spin plane component for three different 
ranges (magnetometer gains). 
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Figure 3.4. First harmonics in the spin axis component for three different ranges 
(magnetometer gains). 
 

The derivation of the calibration parameters that are linked to certain harmonics is 
published in Kepko et al. (1996). Below, I provide the derivation for convenience of the 
reader. Equation (3.1) transforms magnetic field values that are given in orthogonal 
spinning coordinates back to non-orthogonal sensor coordinates. 
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                (3.1) 

 

1SB , 
2SB , 

3SB  non-orthogonal field components as measured by the 

magnetometer sensors 

xB , yB , zB  orthogonalized field components 

1G , 2G , 3G  gain corrections of each of the sensors 

1 , 2 , 3  elevation angles of each of the sensors 

1 , 2 , 3  azimuthal angles of each of the sensors 

1O , 2O , 3O  offsets of each of the sensors 
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Please note that the matrix in equation (3.1) is the inverse of a calibration matrix. As can 
be seen in Figure 3.1, some of the angles are close to 90° and 3  can be large. The 

following transformations can be used to transform all angles (except for 3 ) to small 

values (see equations 3.2a to 3.2f). 
 

11 90              (3.2a) 

11              (3.2b) 

22 90              (3.2c) 

22 90              (3.2d) 

33              (3.2e) 

33               (3.2f) 

 
The azimuthal angle of the spin axis 3  has a small effect if the corresponding 

elevation angle 3  is small (no matter how large 3  is). With help of small angle 

approximations ( 1cos   and  sin ) and equations (3.2a) to (3.2f) it is possible 
to write equation (3.1) in a simpler form. 
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At this point it is worth mentioning, that using the small angle approximation for 

33sin    is not necessary but the equations will be given in the same form as they 

were published in the original publication. Not using this small angle approximation can 
improve convergence during iterations (the iteration process is described in 
Section 3.2.2). 
 
With 
 

2112 GGG              (3.4) 
and 

2112               (3.5) 
 

it is possible to write 
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The quantities 21  and 21G  are relative corrections. As shown below 

(equations 3.9a to 3.9c), the absolute values of 1  and 2  cannot be linked to spin 

harmonics. Additionally, the absolute values of any gains ( 1G , 2G  and 3G ) cannot be 

calculated from the equations that are given in this chapter. 
With 
 

   tBB Hx cos           (3.7a) 

   tBB Hy sin           (3.7b) 

Zz BB             (3.7c) 
 

it is possible relate the data in the spinning- and non-spinning frames. Where 
22
YXH BBB   is the magnitude of the spin plane components. Multiplying both sides 

of (3.6) with the despin matrix 
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yields 
   

XB  =     sincos
2

sincos 221121  G
B

GBG H
H  

       +  111cos OBtG z   

       +  221sin OBtG z    

       +   sincos
2

2cos 21211  G
B

tG H  

       +   cossin
2

2sin 21211  G
B

tG H                  (3.9a) 

YB =     cossin
2

cossin 221121  G
B

GBG H
H  

       +  221cos OBtG z   

       +  111sin OBtG z   

       +   cossin
2

2cos 21211 G
B

tG H  

       +   sincos
2

2sin 21211  G
B

tG H       (3.9b) 

ZB  =  33 OBG z   

       +   sinsincoscoscos 33333 HBtG  

       +   sincoscossinsin 33333 HBtG      (3.9c) 
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where the magnetic phase angle in the spin plane 
 

)/(tan 1
XY BB           (3.10) 

 
and additional simplifications 
 

1

1
1 G

O
O  , 

1

2
2 G

O
O  , 

3

3
3 G

O
O   and 

1

21
21 G

G
G


  

were used. 
 

 
The equations (3.9a to 3.9c) are the fundamental equations for the rest of this 

chapter. Terms that contain tsin  and tcos  describe first harmonics. Similarly, terms 
that contain t2sin  and t2cos  describe second harmonics. From equations (3.9a) and 
(3.9b) one can learn that the first harmonics in the spin plane components are linked to 

'1O , '2O , 1 and 2 . Additionally it can be seen that the second harmonics in the spin 

plane components are linked to 21G  and 21 . Furthermore it is possible to learn from 

equation (3.9c) that, the first harmonics in the spin axis component are linked to 3  and 

3 . One also can learn that there are no second harmonics in the spin axis component.  

 
In summary it is possible to state that the calibration parameters that can be 

resolved by removal of the spin harmonics in the despun spacecraft frame are: '1O , '2O , 

1 , 2 , 21G , 21 , 3  and 3 . 
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3.2.   Removal of Spin Harmonics via Fourier Transforms 
 

This method has been described in Kepko et al. (1996). Herein the method is 
provided for convenience of the reader. 

 
Equations (3.9a to 3.9c) contain amplitudes of various spin harmonics. Such 

amplitudes can be expressed by the real and imaginary terms of Fourier transformations. 
Fourier transforming both sides of  (3.9a to 3.9c) via the relation 

 

dtetfTF
T

ti 
0

)(/1)(           (3.11) 

yields the following equations 
  

   sincos
2

cos)0( 212111  GG
B

GBB H
HX    (3.12a) 

  111)}({ OBGB zspX          (3.12b) 

  221)}({ OBGB zspX          (3.12c) 

   sincos
2

)}2({ 21211   G
B

GB H
spX    (3.12d) 

   cossin
2

)}2({ 21211   G
B

GB H
spX    (3.12e) 

  cossin
2

sin)0( 212111  GG
B

GBB H
HY     (3.12f) 

 221)}({ OBGB zspY          (3.12g) 

 111)}({ OBGB zspY          (3.12h) 

  cossin
2

)}2({ 21211   G
B

GB H
spY      (3.12i) 

  sincos
2

)}2({ 21211   G
B

GB H
spY     (3.12j) 

 33)0( OBGB zZ          (3.12k) 

  sinsincoscos)}({ 33333   HspZ BGB     (3.12l) 

  cossinsincos)}({ 33333   HspZ BGB              (3.12m) 

 
The zeroth-order harmonics ( 0 ) represent the estimates of averages of the 

field in the X, Y, and Z directions. The estimates are required to calculate HB , ZB  and  . 
The three quantities are assumed to be constant over an interval where a Discrete Fourier 
Transformation (DFT) is performed. This assumption is violated for fast changing fields. 
An alternative technique has been developed and is presented in Section 3.3. 
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3.2.2.  Least Squares Inversions and Iterations 
 
 From (3.12b) and (3.12h) a system of equations can be formed so that it is 
possible to solve for '1O  and 1 . 
 
 11 OBU Z             (3.13) 
 
Where U consists of 1' /)}({ GB spX    and 1/)}({ GB spY    . 

 
Similarly, from (3.12c) and (3.12g) a system of equations can be formed so that it 

is possible to solve for '2O  and 2 . 
 

22 OBV Z             (3.14) 
 
Where V consists of 1' /)}({ GB spX    and 1' /)}({ GB spY   . 

 
 From (3.12d), (3.12e), (3.12i) and (3.12j) a system of equations can be formed so 
that it is possible to solve for 21G and 21 . 
 
 jjj GW  21214...1           (3.15) 
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The last system of equations can be formed from (3.12l) and (3.12m) so that it is 

possible to solve for 3  and 3 . 

 

jjjP  33332,1 sincos          (3.16) 
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With 
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As stated above a better way of solving this equation is to use 3sin   instead of just the 

small angle approximation 3 . 

 

jjjP  33332,1 sinsinsincos               (3.17) 

 
Defining in (3.17) 33 sincos  a , 33 sinsin  b  and solving for a and b yields  

 
ab /tan 3   

22
3sin ba   

 
The described least squares equations represent approximations of the full 

equations, thus iterations are required in order to calculate exact calibration parameters. 
Each iteration yields approximate calibration parameters which are applied using the full 
equation (3.1). Data that have the new calibration parameters applied are then used to 
further calculate improved calibration parameters until convergence is reached. 

 
 

3.2.3.  Application of the Technique 
 

It is important to note that the DFTs must be applied to an integral number of spin 
periods in order to get the best possible estimates of the amplitudes of the spin harmonics.  
In this work, intervals that are in the order of 20 spin periods long were used. Sets of such 
intervals are formed so that they cover a range of magnetic field values that is as large as 
possible (significant portions of a spacecraft orbit). This ensures that the equations are 
stable and converge. The background field of each interval should be as quiet as possible. 

 
Figures 3.5 and 3.6 show dynamic spectra of data that were calibrated using the 

above technique. It is the same interval as shown in Figures 3.2, 3.3 and 3.4. Each of the 
three different ranges (2, 3, and 4) must be calibrated separately. The dynamic spectra 
show that the spin tone has been reduced greatly. 
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Figure 3.5. Removed spin tone in one of the spin plane components. Shown are data that 
cover three different ranges (magnetometer gains). 
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Figure 3.6. Removed spin tone in the spin axis component. Shown are data that cover 
three different ranges (magnetometer gains). 
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3.3.  Removal of Spin Harmonics for Fast Changing 
Magnetic Fields (Envelope-Method) 

 
3.3.1.  Introduction 
 
 The technique described in the previous section is working well for slowly 
changing magnetic fields. I tried applying it to data that were measured during the 
Galileo Earth flybys. The method did not converge and for that reason, produced 
completely unrealistic results. The slow spin period (~20 sec) together with fast changing 
magnetic fields (as encountered by the fast moving spacecraft) are a problem for the 
Fourier based method. Figure 3.7 shows that not only the magnetic field changes fast but 
also the amplitudes of the spin harmonics change significantly even within a single spin 
period.  The Galileo magnetometer is described in Kivelson et al. (1992). 
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Figure 3.7. Magnetic field data in non-orthogonal despun spacecraft coordinates as 
measured by the Galileo spacecraft during its second Earth flyby. 
 

Additionally, it can be seen that the noise level is very small compared to the 
amplitudes of the magnetic field and the spin harmonics. A better approach is to use 
envelopes to calculate time varying amplitudes of the magnetic field (see Figure 3.8). An 
example of such amplitudes of spin harmonics is shown in the bottom panel of 
Figure 3.8. Having amplitudes of spin harmonics for every point in time allows us to 
directly work with the fundamental equations (3.9a to 3.9c). It is important to point out 
that the amount of information that is being gained by using envelopes is extremely large. 
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The DFTs produce a single amplitude value for each harmonic per DFT-window. The 
envelope technique has as many times more values as measurements were taken during a 
DFT-window (usually several hundred times to thousands more). This vast increase of 
information easily allowed us to successfully calibrate the Galileo Earth flybys.  
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Figure 3.8. The first and second panels show magnetic field values that contain spin 
harmonics plus envelopes. The first panel shows the first harmonic of BX’ after filtering 
(see Sec. 3.3.2.). The second panel shows the second harmonic of BX’ after filtering (see 
Sec. 3.3.2.). The bottom panel shows the amplitudes of the spin harmonics as calculated 
from the envelopes. 
 
 

3.3.2.  Algorithm 
 
 The algorithm is fairly simple. Calculating the envelope requires a program that 
searches for valleys and peaks and interpolates. In the spin plane there are first and 
second harmonics. In order to get the first harmonics the data need to be low-pass filtered 
so that they do not contain second harmonics. In order to get the second harmonics the 
data need to be high-pass filtered so that they do not contain first harmonics. The applied 
filters must be zero phase filters that do not change the amplitude of the pass-band. To 
reduce the influence of high-frequency noise, the data can be low-pass filtered with cutoff 
frequencies above the frequencies of interest. From the amplitude of a certain harmonic 
and phase with respect to spacecraft spin phase it is easy to calculate the required sine- 
and cosine terms of the amplitudes as needed in the fundamental equations (3.9a to 3.9c). 



- 102 - 

3.3.3.  Application of the Envelope-Method 
 
 I successfully applied the method to Galileo Earth flyby data. The equations for 
the Least-Squares fits (3.13, 3.14, 3.15 and 3.17) were slightly changed so that they 
minimize the error in percent of the field magnitude, by dividing both sides with one 
hundredth of the field magnitudes. Figure 3.9 shows a comparison between the non-
orthogonalized and orthogonalized data. 
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Figure 3.9. Magnetic field data in non-orthogonal despun spacecraft coordinates as well 
as in orthogonalized (red) despun spacecraft coordinates (measured by the Galileo 
spacecraft during its second Earth flyby). 
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3.4.  Resolving Short Term Variations in the Calibration 
Parameters via Spin Tone Removal 

 
3.4.1.  Introduction 
 

There are also short term variations in the calibration parameters which cannot be 
resolved with the least squares approaches that are described in Sections 3.2 and 3.3. One 
of the most common reasons for fast changing calibration parameters is fast changing 
temperature. Fast changes of temperatures commonly happen when a spacecraft goes 
into- or comes out of an eclipse. There are many other reasons why short term variations 
of the calibration parameters may occur. For example: a highly charged spacecraft due to 
photo electrons or exposure to strong radiation. 

 
Before the method is described in greater detail a review of the used coordinate 

systems is given. The first coordinate system is the so-called spacecraft coordinate 
system (x,y,z) which is orthogonal and spins with the spacecraft. For the same coordinate 
system but spinning with twice the spin frequency (x”,y”,z”) is used. The z-axis is 
aligned with the spacecraft spin axis. The x- and y-axes (also x” and y”) lie in the spin 
plane so that y leads x by 90 in the direction of rotation. The second coordinate system is 
the sensor coordinate system (S1,S2,S3) which is similar to the spacecraft coordinate 
system meaning that the sensors of the triad S1, S2 and S3 are roughly pointing towards x, 
y and z. The difference is that this coordinate system is not orthogonal due to the 
misalignment of the sensors. For the rest of this chapter, horizontal bars above symbols 
mean that the quantity represented by the symbol is averaged. 

 
The basic principal of the new method is that the contributions of the first 

harmonics on the left hand sides in (3.9a, 3.9b and 3.9c) become constants in a frame 
which spins with the spacecraft’s spin frequency. Similarly the second harmonics become 
constants in a frame that spins with twice the spin frequency. 
 

The starting point for the explanations is the magnetic field data in the 
orthogonalized spacecraft coordinate system as expressed in equations (3.9a, 3.9b and 
3.9c). The orthogonalization is done using the calibration parameters from the initial least 
squares solution. 
 
 

3.4.2.  Equations and Algorithm 
 

Starting with the first harmonics in the spin plane, there are the terms 
 111cos OBtG z  ,  sin tG B Oz1 2 2    in equation (3.9a) and the terms 

 cos tG B Oz1 2 2    and  sin tG B Oz1 1 1    in (3.9b). Equation (3.18) shows how 

the inverse of the despin matrix (3.8) can be applied to the above terms of the first 
harmonics in order to show that the terms  111 OBG z   and   221 OBG z   are  
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constants in the spinning spacecraft frame. Therefore, by using running averages on xB  

and yB  denoted as xB  and yB  the terms  111 OBG z   and  221 OBG z   can be 

calculated for each point in time. 
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(3.18) 
 

In the above equation the DC-component and the second harmonics of 
equations (3.9a) and (3.9b) were not rotated since they become harmonics in the spinning 
frame and go to zero because of the averaging. 

 
Similarly, for resolving the second harmonics in the spin plane the data need to be 

transformed into a coordinate system that spins with twice the spin frequency. The DC-
component in the despun frame usually becomes a big second harmonic in the frame that 
spins with twice the spin frequency. This big second harmonic would seriously affect any 
averaging, thus subtracting a running average in the orthogonal despun frame and then 
going into a frame that spins with twice the frequency solves this problem. The average 
in this frame is proportional to the second harmonics in the despun coordinate system. In 
the despun frame the second harmonics are expressed by the terms  
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in (3.9a) and by  
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 in (3.9b).    
 
After transforming these terms to a spinning coordinate system that rotates with twice the 
spin frequency yields: 
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with 
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In equation (3.19) the terms for the first harmonics in equations (3.9a) and (3.9b) 

were left out since they become harmonics in the frame that spins with twice the spin 
frequency and become zero because of averaging. 
 
By using 
 

cosHx BB   and sinHy BB   it is possible to write 
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        (3.22b)                         

                                                                
 

This two by two system of equations can be solved for 21G  and 21 .
 
Since 

previously calibrated data were used, 1G  can be set to 1. 
  

After solving the system of equations:  
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with 
1

1

2

G
Z


  and 

1
2

2

G
Z


 . 

 
 
And the last type of harmonics that need to be discussed are the first harmonics in the 
spin axis component. Those harmonics are described in equation (3.9c), by the terms 
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  sinsincoscoscos 33333 HBtG , 
  sincoscossinsin 33333 HBtG . 

 
Let us use the following simplifications 
 

  sinsincoscos 33333  HBGa , 

  sincoscossin 33333  HBGb . 

 
Equation (3.9c) now can be written as BZ  =   tbtaOBG z  sincos33  . 

If BZ   is transformed into a spinning frame and averaged the following equations can be 

obtained 
 

tbttatBZ  sincoscoscos 2  ,                                                                        (3.23a) 

tbtattBZ  2sincossinsin  .                                                                          (3.23b) 
 

Because  tt  2cos1
2

1
cos2  ,  tt  2cos1

2

1
sin 2   and ttt  2sin

2

1
sincos    

equations (3.23a) and (3.23b) simplify to   
 

 atBZ 2

1
cos   sinsincoscos

2

1
33333 HBG     (3.24a) 

 btBZ 2

1
sin   sincoscossin

2

1
33333 HBG    (3.24b) 

 
This two by two system of equations can be easily solved by again using cosHx BB   

and sinHy BB  . After some algebra  
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where 3G  can be set to 1 due to previous calibration. 

 
 In case a previous calibration did not provide accurate values for 1G  and 3G , the 

spin tone can still be removed because the required corrections to 1G  and 3G  are then 

included in the 6 parameters that are obtained in this section. 
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3.4.3.  Application of the Technique to Cluster Data 

 
 As an example I chose Cluster magnetic field data (Balogh et al., 2001) that were 
measured after Cluster-3 came out of an eclipse (see Figure 3.10). The eclipse lasted for 
roughly 43 minutes and ended at 13:45:30 on March 06, 2002. Due to rapidly changing 
temperature after eclipsed periods, the required zero levels, gains as well as angles 
change slightly. The small changes are enough to cause faint spin harmonics that vary in 
strength. Thus, a single calibration matrix plus a single set of three zero levels does not 
completely remove the spin harmonics when temperatures are changing. Figures 3.11, 
3.12 and 3.13 show dynamic amplitude spectra of data that were calibrated with a single 
set of calibration parameters. As can be seen, there are faint changing spin harmonics left. 
The time varying calibration parameters that are required to completely remove the spin 
harmonics are given in Figure 3.14. Some outliers were detected by quick visual 
inspection and replaced with linearly interpolated values. The required corrections are 
rather small. Except for 3  in the bottom panel, all calibration parameters show 

systematic changes. The top two panels of Figure 3.14 actually contain four time varying 
calibration parameters that do not need to be separated (see figure caption). The dynamic 
spectra after application of the time varying calibration parameters are given in 
Figures 3.15, 3.16 and 3.17.  
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Figure 3.10. Cluster-3 magnetic field data in range 4 (range 4: ±1024 nT). 
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Figure 3.11. Dynamic amplitude spectrum of Cluster-3 data after application of a single 
set of calibration parameters, in despun spacecraft coordinates (spin plane component). 
 

 
Figure 3.12. Dynamic amplitude spectrum of Cluster-3 data after application of a single 
set of calibration parameters, in despun spacecraft coordinates (spin plane component). 
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Figure 3.13. Dynamic amplitude spectrum of Cluster-3 data after application of a single 
set of calibration parameters, in despun spacecraft coordinates (spin axis component). 
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Figure 3.14. Time varying calibration parameters that are required to completely 
remove faint spin harmonics. The vertical labels of the top two panels ( '1O  and '2O ) are 

a simplification. The fully correct labels should be 11 OBz   and 22 OBz   which 
leads to altogether eight time varying parameters.  
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Figure 3.15. Dynamic amplitude spectrum of Cluster-3 data after application of a single 
set of calibration parameters, plus time varying calibration parameters, in despun 
spacecraft coordinates (spin plane component). 
 

 
Figure 3.16. Dynamic amplitude spectrum of Cluster-3 data after application of a single 
set of calibration parameters, plus time varying calibration parameters, in despun 
spacecraft coordinates (spin plane component). 
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Figure 3.17. Dynamic amplitude spectrum of Cluster-3 data after application of a single 
set of calibration parameters, plus time varying calibration parameters, in despun 
spacecraft coordinates (spin axis component).
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3.5.   Conclusions 
 
 The method for orthogonalization of a sensor triad on a spinning spacecraft as 
first published by Kepko et al. (1996) has been improved and extended. 
 

Small angle approximation for the spin axis elevation angle has been replaced by 
its full expression (see Equation 3.17). This allows convergence also for larger errors in 
the spin axis elevation angle. 
 

Fourier transforms have been replaced by envelopes of spin harmonics in the 
despun frame. This allows orthogonalization during periods with fast changing magnetic 
fields such as the Galileo Earth flybys. The envelope-method may also be a method of 
choice for the upcoming Magnetospheric Multiscale (MMS) mission (currently scheduled 
to be launched on 2014-08-14). Similar to the Galileo spacecraft, the four MMS satellites 
will have slow spin periods of 20 sec. 

 
Additionally, a method for resolving fast changing calibration parameters has 

been developed and successfully applied for time periods with large temperature changes. 
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4.   Comparison with Model Fields 
 
 There are internal as well as external field models for the Earth’s magnetic field. 
One commonly used internal field model is the International Geomagnetic Reference 
Model (IGRF) (see e.g. Maus et al., 2005). Often used external field models are various 
so-called Tsyganenko models (e.g. Tsyganenko, 2002a; b). See also Sections 1.4. and 1.5. 
For a general introduction to calibration parameters see Section 1.8.2.  
 

Model fields are usually not accurate enough to solve for magnetometer zero 
levels, which would require the model fields to be accurate to fractions of a nano Teslas. 
Only crude estimates of zero levels can be calculated via Earth field comparisons. If the 
spacecraft travels inside the interplanetary field or encounters mirror-mode waves, the 
methods described in Chapter 2 can be applied. If a magnetometer has multiple ranges, 
zero levels that were determined using the methods described in Chapter 2 can be 
propagated to magnetometer ranges for higher fields by using a method described in 
Appendix A. 
 
 



- 114 - 

4.1.  Transformation of Model Fields into Spacecraft 
Coordinates 

 
 It is easiest to do the Earth field comparisons in spacecraft coordinates. Thus, the 
model field needs to be transformed into spacecraft coordinates. Spacecraft coordinates 
are usually defined that the Z axis points roughly towards north, the Sun lies inside the 
XZ-plane and the Y-axis completes the right handed system. The transformation is 
different for spinning and three axis stabilized spacecraft because of different attitude 
information. Spacecraft attitude is usually provided in inertial coordinates such as, for 
example the Geocentric Equatorial Inertial of epoch 2000 (GEI2000) coordinates. This 
coordinate system has the Z-axis pointing along the Earth’s rotation axis (positive 
towards north). The X-axis points towards the first point of Aries. The direction of the 
Earth’s rotation axis is not constant. This is the reason why often an epoch is defined. For 
more information on coordinate systems see Hapgood, M. A.  (1995). Standard 
geophysical coordinate transformations provide transformations from inertial to the 
Geocentric Solar Ecliptic (GSE) system. This system has X pointing from Earth to Sun. 
The Y-axis lies inside the ecliptic plane and points towards dusk. The Z-axis is 
perpendicular to the ecliptic plane and positive towards north. 
 
 

4.1.1.  Spinning Spacecraft (Transformation to Spacecraft 
Coordinates) 

 
 The attitude information for a spinning spacecraft is given as direction of the spin 
axis in inertial coordinates. As a first step the inertial coordinates are being transformed 
into GSE coordinates and GSEz


 of the direction of the spin axis can be obtained. The 

direction of the Sun in GSE coordinates is (1,0,0). Thus, the direction of GSEy


 is given 
by: 
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The direction of GSEx


 is then: 

 

 GSEGSEGSE zyx


  
 
The three vectors GSEx


, GSEy


 and GSEz


 are the rows of a transformation matrix: 
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 TGSEGSEGSE zyxT


  
The magnetic field can be transformed to despun spacecraft coordinates (DSL) as 
follows: 

 
GSEDSL BTB


  
 
The transformation from DSL back to GSE can be done by using the transpose of T. The 
three vectors GSEx


, GSEy


 and GSEz


 are then columns of the matrix TT . 
 
 

4.1.2.  Three Axis Stabilized Spacecraft (Transformation to 
Spacecraft Coordinates) 

 
 For a three axis stabilized spacecraft an attitude matrix is given. The matrix 
contains the directions of all three axes in inertial coordinates. The model field can be 
transformed into inertial coordinates and then brought directly into spacecraft coordinates 
via the attitude matrix. 
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4.2.   Spinning Spacecraft (Model Comparison) 
 
 Removal of spin harmonics (see Chapter 3) can not resolve four calibration 
parameters. These calibration parameters are absolute value of the azimuthal angles 12 , 

absolute value of the spin plane gains 12G , absolute value of the spin axis gain 3G  and the 

spin axis offset 3O . Please note that model fields are usually not accurate enough to solve 

for magnetometer zero levels.  
 
 For resolving calibration parameters the model, as well as the data need to be 
transformed into orthogonal despun spacecraft coordinates. 
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      (4.1) 

 

1mB , 2mB , 2mB   model field in orthogonal despun spacecraft coordinates 

1scB , 2scB , 3scB   measured field in pseudo orthogonal despun spacecraft coordinates 

   
 Equation (4.1) can be split into two parts. 
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The calibration parameters can be calculated as follows: 
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If the spin axis offset 3O  is not required equation (4.3) becomes: 

 
 333 msc BGB   

 
 

4.2.1.  Application to Galileo’s Second Earth flyby 
 

The Galileo magnetometer is described in Galileo Kivelson et al. (1992). After 
removal of the spin harmonics (orthogonalization), the magnetic field data were 
compared with the Earth’s magnetic field model (Tsyganenko, 2002a; b). I solved for 

12 , 12G , and 3G . The equations for the Least-Squares fits were slightly changed (4.2 and 

4.3) so that they minimize the error in percent of the field magnitude, by dividing both 
sides with one hundredth of the field magnitudes.  As can be seen from Figure 4.1, the 
residuals are generally better than 0.2 percent of the field magnitude. For more details see 
Z. J. Yu et al. (2010). 
 

 
Figure 4.1. Galileo’s second Earth flyby:  Top two panels show the field magnitude and 
the field values of the three components. The bottom three panels show the residuals in 
percent of the field magnitude. 
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4.3.   Three Axis Stabilized Spacecraft (Model Comparison) 

 
 It is possible to solve for all twelve calibration parameters via model comparison. 
Please note that model fields are usually not accurate enough to solve for magnetometer 
zero levels. 
 
 First, the model field needs to be transformed into spacecraft coordinates (see 
Section 4.1). The equations can be written as follows (without solving for offsets): 
 

msc BB


              (4.1) 

mB


  model field in spacecraft coordinates 

scB


  measured field in pseudo spacecraft coordinates 

   transformation matrix 
 
The matrix  can be calculated from n measurements as follows: 
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From the elements of  , various calibration parameters can be calculated (see equation 
1.1). The gains are the norms of the row-vectors. 
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The azimuthal angles are 
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The elevation angles are 
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 Equation (4.1) is written so that   corrects the model field. Usually, the 
measured data need to be corrected. This can be done with the inverse of   as 
calibration matrix. 
 
 If zero levels must be calculated as well, the equations can be written as follows: 
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 After some algebra: 
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The calibration parameters can be calculated the same way as described above. 
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4.3.1.  Application to STEREO Data 
 
 The closest magnetic field measurements to Earth were taken on Nov. 06, 2006, 
during a perigee pass that took place a relative short time period after launch on Oct. 25, 
2006. This perigee pass was used to calculate alignments and gain factors, since the 
largest possible range of magnetic field values were measured during this pass. During 
the pass, the magnetometer was in high range (±65,536 nT). For more information on the 
STEREO triaxial fluxgate magnetometers see Acuña et al. (2008). The zero levels were 
determined according to Leinweber et al. (2008), at a later stage of the mission when the 
spacecraft was inside the solar wind, in low range (±512 nT). 
 

The zero levels were propagated from the low range to the high range by 
removing the steps that occur when a magnetometer switches from one range to another. 
The propagated zero levels were used as input for the Earth field comparison.  Thus, only 
alignments and gain factors needed to be determined. The obtained calibration matrix 
was applied to both ranges and the steps at the range changes were double checked. 

 
Figure 4.2 shows the residuals of the Earth field comparison for STEREO-B. At 

relevant field strength, the residuals stay well within 0.3 percent. The residuals (in 
percent) increase towards smaller fields but their absolute values stay small. The RMS 
errors for all three components are: RMS1= 4.5 nT; RMS2= 11.7 nT; RMS3= 9.0 nT; 
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Figure 4.2. The top panel shows the perigee pass of STEREO-B with the closest magnetic 
field measurements to Earth. The bottom three panels show the residuals of the Earth 
field comparison in percent of the field magnitude. 
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4.4.  Attitude Determination of a Spinning Spacecraft (First 
Method) 

 
 In some cases space probes are not equipped with accurate star sensors but with 
Sun sensors instead. Sun sensors are cheaper but not as accurate. At low enough perigee 
passes the spacecraft attitude can be refined using Earth field comparisons. Besides the 
refined attitude, magnetometer calibration parameters can be determined as well. It is 
useful to calculate calibration parameters that can not be found by spin tone removal (see 
Chapter 3). The calibration parameters are absolute value of the azimuthal angles 12 , 

absolute value of the spin plane gains 12G , absolute value of the spin axis gain 3G  and the 

spin axis offset 3O . Please note that model fields are usually not accurate enough to solve 

for magnetometer zero levels. 
 
 First a different way of transforming the model field from GSE coordinates into 
spacecraft coordinates must be found. The method described in Section 4.1.1 is not useful 
for refining attitude information. A mathematical formulation that is based on rotations 
instead of cross products can be used (see Figure 4.3). 
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θ1 θ2

 
Figure 4.3. Required rotations for transformation into spacecraft coordinates. 
   
 The first rotation is around the XGSE-axis. The angle 1  can be calculated from the 
projection of the attitude vector onto the YZGSE-plane. The second rotation is around the 
new Y-axis. The angle 2  can be calculated from the projection onto the XZGSE-plane. 
 
 The full equation can be written as follows 
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(4.5) 
The three rotations in equation (4.5) represent a valid set of Euler angle rotations. 

Since model field (
TSYscB 1 , 

TSYscB 2 ,
TSYscB 3 ) and the measured field ( 1scB , 2scB , 3scB ) are both 

close to true spacecraft coordinates, small angle approximations ( sin   and 
1cos  ) can be used and the gains can be written as differences. 
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               (4.6) 
 
After some algebra and neglecting second order terms an equation that is suitable for 
least squares inversion can be obtained. 
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 Since small angle approximations were used and second order terms were 
neglected, iterations are required. The preliminary parameters can be calculated using 
equation (4.7). Then the full equation (4.5) is used to calculate a new model field as well 
as a new spacecraft field. The parameters  1d  and 2d  are used to calculate the new 

model field. The other parameters 12d , 12dG , 3dG  and 3dO  are magnetometer 

calibration parameters and are used to calculate the new spacecraft field. Iterations are 
performed until convergence of the system. 
 
 

4.4.1.  Attitude Determination of a Spinning Spacecraft with 
Variable Phase Angle Correction (Second Method) 

 
 For a large number of perigee passes it was necessary to allow time varying 
corrections to the phase angle. This is especially important during eclipsed periods where 
the Sun sensor cannot operate. Additionally, slight uncertainties in timing or inaccuracies 
of the Sun sensor can be causes for the need of time varying corrections of the phase 
angle, during perigee passes. For example a timing uncertainty of 1/128 sec on a 
spacecraft that spins with 3 sec (e.g. THEMIS) causes an apparent 0.94 degree error in 
phase angle. 
 
 In case a variable phase angle correction is required, the direction of the measured 
spin plane component can be matched with the direction of the spin plane component of 
the model field. This can be done for every point (see equation 4.8). 
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After some algebra: 
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Since only the direction needs to be corrected, normalization with the field magnitudes is 
applied 
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with 
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After solving the 2 by 2 system, the phase angle can be calculated as follows: 
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 As one can see, there is no small angle approximation required. Thus, this method 
can be used for very large errors of the phase angle (e.g. during eclipsed periods when a 
Sun sensor cannot operate). 
 

Additionally, it can be used to double check shadow correction models (models of 
the moments of inertia of a spacecraft for varying temperature) during perigee passes. 
When a spacecraft cools down during eclipse, mechanical contractions occur so that the 
spin period decreases slightly. Such models are used to correct phase information during 
eclipsed periods. This has been done for the THEMIS mission (Angelopoulos, 2008) and 
goes beyond the scope of this thesis. For more details see Georgescu et al. (2011). 
 
 After the spin phase components are aligned, a simpler system of equations that 
does not contain phase corrections, can be solved. 
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With '1scB  and '2scB  containing the time varying phase corrections. 

 Since the system of equations contains small angle approximations and second 
order terms were neglected, iterations are necessary. The iterations are similar to the ones 
in Sec. 4.4, except that the phase correction is left out of the full equation (4.5). The 
parameters  1d  and 2d  are used to calculate the new model field. The other parameters 

12dG , 3dG  and 3dO  are magnetometer calibration parameters and are used to calculate 

the new spacecraft field. The iterations also contain recalculation of the time varying 
phase corrections every time before equation (4.9) is being solved. Iterations are 
performed until convergence of the system. 
 
 

4.4.2.  Application to Polar Data with Constant Phase 
Corrections 

 
The Polar spacecraft has a Sun sensor instead of a more expensive star sensor. 

The polar magnetic field investigation is described in Russell et al. (1995). Sun sensors 
are not as accurate as star sensors. I applied the above techniques to data from February 
2004 to December 2004. During this time period, perigee was roughly at 1.5 Re distance 
from Earth’s center. The field strength at perigee was about 12000 nT. This field strength 
is generally large enough for model comparisons during a “quieter” magnetosphere. The 
spin period of Polar is ~6 sec which is fast enough so that small uncertainties in timing 
can cause large angular errors in the spin plane (e.g. a timing error of 1/64 sec causes a 
0.94 degree error). 

 
 The above described methods (see Sec. 4.4 and 4.4.1) have been applied to all 
perigee passes between February, 2004 to December, 2004. Data inside 2 Re distance 
from the center of Earth were used. The spacecraft stayed inside 2 Re for about 
50 minutes. Even though the second method does not provide a constant phase 
correction, the mean of the time varying phase was calculated. The RMS error of the spin 
plane components was used as indicator if the mean value can be used for calibration. A 
threshold of 
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
   

 
was chosen. 
 

The second method often converges better than the first one. If both methods 
provided a valid constant phase correction, the one with the smaller RMS error was 
chosen. When both methods failed to provide valid constant phase corrections, the other 
parameters ( 12dG , 3dG , 3dO , 1d  and 2d ) of the second method were often valid. 
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 All parameters that were calculated from least square fits needed to pass a Monte 
Carlo simulation. A blocked Bootstrap-method (Efron, 1982) was used. The block size 
was calculated dynamically for every perigee pass. 
 

3*3 nperignblock   

nblock  number of points per block 
nperig  number of points for each perigee pass 
 

Spin averaged data were used (~6 sec period). Out of all n intervals with length of 
nblock , n intervals are randomly chosen. This yields a data set with reduced information 
that contains 1/e intervals more than once (for each perigee pass). For this new reduced 
data set the least squares solutions of the calibration parameters is calculated. This is 
done 1000 times. The thresholds are given in Table 4.1. 
 

Parameter threshold 
3*std( 12dG ) <0.002 

3*std( 3dG ) <0.002 

3*std( 12d ) <0.25 deg (first method only) 

3*std(dRAS) <0.35 deg 
3*std(dDEC) <0.25 deg 
3* std( 3dO )/(B3 range) <0.0008 

Table 4.1. Thresholds for interpreting the Monte Carlo simulation.  
 

The angles dRAS and dDEC are the corrections to right ascension and declination 
in geophysical coordinates. The quantity B3 range is the range of B3 across a perigee pass. 
The threshold for dRAS was chosen to be larger than the one for dDEC because the spin 
axis during the chosen one year period was closer to be perpendicular to the ecliptic plane 
than parallel to the ecliptic plane. 

 
Figure 4.4 shows the results for the chosen one year period. The obvious long gap 

from mid of February to beginning of April, 2004 is due to self similarities of the 
magnetic field components (see Figure 4.5). The least squares fit has many possible sets 
of calibration parameters that make the RMS error small. The Monte Carlo simulation 
identifies such perigee passes. 

 
Another obvious feature is that the phase correction has long intervals with the 

same value. The same values come from nearest neighbor interpolation. Those are the 
cases where both methods did not find a valid constant phase but the second method 
produced five other calibration parameters that passed the thresholds of the Monte Carlo 
simulation, thus variable phase corrections would be required for those intervals. At the 
time of writing, large time intervals of Polar magnetic field data are being recalibrated.  
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4.4.3.  Application to THEMIS Data with Variable Phase 
Corrections 

 
 Correction of THEMIS data (Auster et al., 2008) during eclipses is being done by 
models of the moments of inertia of a spacecraft for varying temperature. For more 
information see Georgescu et al. (2011). For THEMIS, time varying phase corrections 
have only been used for double checking of the models of moments of inertia. 
 

Figure 4.6 shows that the data and the model of the spin plane components have 
large deviations during an eclipsed perigee pass. The bottom panel shows the required 
time varying phase angle correction. Figure 4.7 shows the calibrated data after 
application of the second method. 
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Figure 4.6. Data (black) and the model (red) before calibration with the second method. 
The required time varying correction to the phase angle ( 12d ) is given in degree. 
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Figure 4.7. Data (black) and the model (red) after calibration with the second method. 
The black traces are below the red traces.
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4.5.   Conclusions 
 

The required equations for resolving calibration parameters from Earth field 
comparisons for spinning as well as three axes stabilized spacecraft were described. 
Furthermore, equations for solving for calibration parameters as well as attitude for 
spinning spacecraft, including error estimates were derived. Additionally, a method for 
large and time varying Sun-angle corrections was developed. 
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5.  Calibration of Triaxial Fluxgate Magnetometers 
from Accurate Measurements of the Field 
Magnitude 

 
Precise scalar magnetic field measurements provided by magnetometers as well as 

the Electron Drift Instrument can be used to calibrate triaxial magnetometers. Fluxgate 
magnetometers as well as vector helium magnetometers are known to have small drifts of 
the zero levels. In case of a three axis stabilized spacecraft, 9 calibration parameters can 
be resolved. The ones for absolute orientation cannot be resolved. The method was 
derived by Merayo et al. (2000) and applied e.g. to calibrate the triaxial magnetometer 
onboard the Ørsted satellite (Olsen et al., 2003). For a spinning spacecraft it makes sense 
to solve for absolute spin plane gains ( 12G ), spin axis gain ( 3G ) and spin axis offset ( 3O ). 

 
In this chapter the field magnitude measured by the Electron Drift Instrument 

(Paschmann et al., 1988 and 1997) onboard the spinning Cluster-3 satellite was used to 
calibrate its triaxial fluxgate magnetometer (e.g. Balogh et al., 2001). 
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5.1.  Measuring Scalar Magnetic Fields with the Electron 
Drift Instrument (EDI) 

 
 The basic principle of an electron drift instrument is that, if a beam of electrons is 
sent away from a spacecraft, the electrons gyrate inside the ambient magnetic field, and 
deviations from a spiral-shaped trajectory as one expects in a uniform magnetic field 
indicate the presence of an electric field and possibly also a gradient of the magnetic 
field. The energy of the electrons varies between 0.5 to 1 keV in the Cluster EDI. For the 
right starting direction of the beam, the right combination of electric field and magnetic 
field, the beam can be detected again on the other side of the spacecraft. Additionally the 
angular velocity of the spacecraft has to be compensated. The electrons do not have 
circular orbits because they drift with a drift velocity. This velocity consists of two parts. 
The first part is caused by the electric field and the second part is caused by the gradient 
of the magnetic field according to equation (5.1). 
 
 BEd vvv                                                                                                         (5.1) 
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 W energy of the electrons 
 e charge of an electron 
 
The drift velocity causes a drift step 
 
 gdTvd   

 
with  
 gT  time of flight 

 
If there are two electron guns and two detectors (see Figure 5.1), the drift step can 

be continuously monitored via triangulation (see Figure 5.2).  
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Figure 5.1. The basic operating principle of an electron drift instrument. 
 

 
Figure 5.2. The triangulation process. 
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 For small fields (and therefore large gyro radii) the triangulation becomes less 
accurate but the measured times of flight, which are important for calculating the field 
magnitude, increase in accuracy. Additionally the difference of the times of flight for the 
two beams increases in accuracy, thus the drift velocity can be calculated more precisely. 
 
 Electrons that are emitted parallel to dv  have shorter times of flight than electrons 

that are emitted anti-parallel to dv . 
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The drift due to the electric field is independent of the energy of the electrons. 

Thus, by using different energies the part of the drift that is caused by the electric field 
and the part that is caused by the gradient of the magnetic field can be separated. 

 
For 12 2WW   the equations can be written as: 
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The difference of the times of flight yields the drift velocity 
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the magnitude of the magnetic field can be calculated 
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 em  mass of an electron 

  
 For more information on the Electron Drift Instrument see Paschmann et al. (1988 
and 1997). 
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5.2.  Calibration of a Triaxial Magnetometer with the 
Electron Drift Instrument (EDI) Onboard a Spinning 
Spacecraft 

 
After EDI data has undergone appropriate data cleaning procedures, 

magnetometer spin axes offsets can be cross checked by comparison of the field 
magnitude as derived from EDI times of flight with the field magnitudes as measured by 
the magnetometer (see equation 5.2). The used EDI times of flight as well as 
magnetometer data were downloaded from the Cluster data archive. For information on 
the archiving and cleaning of EDI data see Georgescu et al. (2005) and for Cluster 
magnetometer (FGM) data see Gloag et al. (2005). 

 
 Figures 5.3, 5.4 and 5.5 show a comparison between EDI field magnitudes and 
FGM spin averaged field magnitudes for different field strengths. The figures show that 
there is a dramatic increase of noise towards higher fields in the EDI data.  
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Figure 5.3. Comparison of EDI magnetic field magnitude and FGM magnetic field 
magnitude (red) at ~88 nT. 
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Figure 5.4. Comparison of EDI magnetic field magnitude and FGM magnetic field 
magnitude (red) at ~325 nT. EDI changes ranges at 325 nT. 
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Figure 5.5. Comparison of EDI magnetic field magnitude and FGM magnetic field 
magnitude (red) at ~590 nT. 
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 To better characterize the noise behavior for calibration work I used EDI and 
FGM data that were measured during relatively quiet times between Jan. 02, 2003 and 
Mar. 22, 2003. Within this interval EDI measured ~5.4 million valid data points. The spin 
averaged FGM data were interpolated to match the points in time of EDI. The 
measurements were binned to 40 nT bins. Figure 5.6 shows the number of measurements 
per bin. For reach bin the RMS difference between the field magnitudes of EDI and FGM 
was calculated (see Figure 5.7). For the bins with the highest fields the RMS differences 
are above 3 nT. Additionally, the distributions (via histograms) of the RMS differences 
for each of the bins were analyzed. Figure 5.8 shows systematic deviations from zero 
towards positive differences that increase with the field. To find if the increase is linear, I 
did a linear fit to the averages of all the differences for each bin. Figure 5.9 shows that the 
increase of the differences is generally along a straight line. This suggests that there is a 
significant difference of the gains between EDI and FGM. 
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Figure 5.6. Number of EDI measurements per bin. 
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Figure 5.7. RMS differences between EDI and FGM per bin (before calibration). 
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Figure 5.8. Histograms of differences between EDI and FGM (before calibration). 
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Figure 5.9. Linear fit across all the mean differences between EDI and FGM of all the 
bins (before calibration).  
 

Since there are almost no measurements of EDI in low fields, finding zero levels 
is not possible without matching the gains between the two instruments. The equation for 
the gains and offsets can be written as shown below. A decision was made to change the 
gains for FGM but there is no proof that the FGM gains are incorrect. 
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which transforms to 
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 A simple linear fit can be used to solve for four unknowns. The unknowns are: 

2
121 Gx  , 2

32 Gx  , 3
2

33 OGx  and 2
3

2
34 OGx  . Since the gains are always positive 

values it is possible to calculate 
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 23 xG p   
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3 x

x
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where the last term 2
3

2
34 OGx   was neglected because the zero level can be positive and 

negative. It can be assumed that the result for 12G  is correct and final because the 

neglected term does not contain 12G . Since the fourth term was neglected, the results for 

pG3  and pO3  can still be improved. After application of 12G  a simple two dimensional 

minimum search algorithm can be used to find the final 3G  and 3O . The finest steps for 

offset and gain are 0.02 nT and 0.05%, respectively. Table  5.1 shows the results of the 
fits. The first fit has the lowest RMS value and the highest number of parameters (four) 
but yields only starting values for 3G  and 3O . After application of the results of the first 

fit the RMS goes up again. After the minimum search the RMS is almost as low as for the 
first fit but with altogether one parameter less.  
 
 

 RMS Parameters 
before fit 1.2275 nT N/A 
after first fit 0.9045 nT 

12G =1.0034, pG3 =1.0030, pO3 =-0.15 nT 

after application of pG3  and pO3  0.9184 nT same 

after minimum search 0.9049 nT 
12G =1.0034, 3G =1.0025, 3O =-0.28 nT 

after using data below 120 nT 0.2872 nT 
12G =1.0034, 3G =1.0025, 3O =-0.41 nT 

Table 5.1. Results of various fits. 
 
 For the data with applied calibration parameters the box chart of the RMS values 
for each bin is depicted in Figure 5.10. This figure shows that the differences are smallest 
up to 120 nT. After matching the gains, I did another fit only with data below 120 nT and 
solved only for 3O  via a simple one dimensional minimum search algorithm with a finest 

step size of 0.01 nT. I get a new value of 3O =-0.41 nT (see also Table 5.1). 
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Figure 5.10. RMS differences between EDI and FGM for each bin after minimum search. 
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Figure 5.11. Histograms of differences between EDI and FGM (after calibration). 
 
 
 
 After application of all the calibration parameters in the last row of Table 5.1, the 
distributions for each bin have shifted towards zero. The distributions look symmetric 
except for the one for the highest fields (see Figure 5.11). This could be because EDI 
gives the times of flight in coarse steps for higher fields (see Figure 5.5). 
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Figure 5.12. Linear fit across all the mean differences between EDI and FGM of all the 
bins (after calibration). 
 
 Additionally the line fit across the mean differences of all the bins (see 
Figure 5.12) is repeated. It has dramatically improved. The steepness of the slope is now 
very small. The larger deviations from the line before and after ~325 nT could be due to a 
range change of EDI at 325 nT. The magnetometer shows extremely linear behavior of 
the spin plane sensors, as can be seen in Figures 3.15 and 3.16. If the magnetometer 
would be non-linear, various higher harmonics of the spin frequency would be visible. 
There is no strong reason to assume that the spin axis sensor is non-linear. 
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Figure 5.13. Zero level calculations for fields smaller 120 nT. The data were binned to 
10 bins with equal number of points. The data in the first bin were measured before the 
data in the second bin and so forth. 

 
Additionally, I bin the newly calibrated data that are smaller than 120 nT to 10 

bins with equal number of measurements but this time I bin according to time. This 
means that the data in the first bin were measured before the data in the second bin and so 
forth. I calculate the zero levels ( 3O ) for each bin and see if a trend can be seen. 

Figure 5.13 shows the results. It can be seen that the offset values are not random but 
follow a trend. This trend could be due to a number of eclipses that occurred during the 
selected test interval. 

 
It is possible to conclude that after the gains between EDI and FGM have been 

matched, the spin axis zero levels can be calculated for relatively short time intervals. 
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5.3.   Conclusions 
 

This chapter shows that the noise distributions of EDI (differences to spin 
averaged magnetic field data) are mostly symmetric, which is important for least squares 
fitting. There is a significant difference in gains between the magnetometer (FGM) and 
EDI on Cluster 3. For this work, I used data from the official Cluster data archive. After 
the gains between EDI and FGM have been matched, the spin axis zero levels can be 
calculated for relatively short time intervals. The technique and the results herein may be 
useful for the upcoming Magnetospheric Multiscale (MMS) mission (currently scheduled 
to be launched on 2014-08-14). Each of the four MMS satellites will be equipped with 
two fluxgate magnetometers as well as an Electron Drift Instrument. 
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6.  Precise Calculation of Current Densities via Four 
Spinning Spacecraft in a Tetrahedron Configuration 

 
The European Cluster mission was the first mission specifically designed to 

measure spatial gradients of physical quantities in three dimensions. Four spacecraft were 
flying in a tetrahedron configuration which allowed calculation of spatial gradients such 
as current densities. Ampere’s law provides an equation that allows the calculation of 
current densities 

 

JB


0  

 

B

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Similar to Khurana et al. (1996), the derivation herein also starts with first order 

Taylor-series expansion but the method below is derived differently and the problem is 
solved with only four relatively short equations compared to 18 long equations in the 

Khurana paper. If measurements from four spacecraft are obtained the curl of B


 can be 
calculated from Taylor Series expansion (first order) 
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After subtraction of the equation for spacecraft 1 
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Where 1i
xB  is the difference of the x-component between the ith spacecraft and the 

first spacecraft. Similarly 1idx  is the difference in the x-direction between the ith spacecraft 
and the first spacecraft. The equations for the y- and the z-components of the magnetic 

fields ( 1i
yB  and 1i

zB ) are similar. Equations (6.1a to 6.1c) can be written in matrix form 
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The 3x3-matrix in equation (6.2) is called distance matrix. The spatial gradients 

can be calculated via the inverse of the distance matrix 
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The curl and the divergence of B


 can be calculated as follows 
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As can be seen from the above equations, the spatial gradients only depend on 

differences of magnetic field measurements and inter spacecraft distances. An 
assumption was made that the inter spacecraft distances are determined with high enough 
accuracy. As can be seen from equations 6.1a to 6.1c, the inter spacecraft distances are 
being multiplied with the spatial gradients. Any errors in inter spacecraft distances 
directly influence the accuracy of the spatial gradients. Small uncertainties in the 
magnetometer calibration can introduce very large errors in the differences of magnetic 
field values and thus errors in the spatial gradients. 

 
There are regions inside the Earth’s magnetosphere where the current density is 

negligibly small. Such regions are inside the tail lobes and high latitude regions in the 
middle magnetosphere (but away from the cusp regions). Without performing inter 
spacecraft calibration the measured current density is usually not zero at such regions. 

Calibration parameters can be calculated by minimizing curl of B


 and divergence of B


 
at regions where these quantities are negligibly small. 

 
After spacecraft one was chosen as the mother spacecraft, an assumption was 

made that the other three spacecraft have slight errors in their absolute orientations with 
respect to the mother spacecraft. These errors can be expressed as Euler angle rotations. 
Contrary to Khurana et al. (1996), the same rotations as in equation (4.5) were used. Two 
rotations (angles 1d  and 2d ) were used to adjust the directions of the spin axes of three 

spacecraft and another rotation was used (angle 12d ) to adjust the azimuthal angles of 

the spin plane components. Similarly as in equation (4.5) the same gain matrix (gains 12G  

and 3G ) was used and the spin axes offset ( 3dO ) was added. These calibration parameters 

cannot be found by spin tone removal (see Chapter 3). 
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After small angle approximations and writing the gains as deltas yields 
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Combination of the three rotation matrices to a single matrix yields 
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Writing without matrix form and neglecting second order terms yields 
 

'''' 21212 zyxxx BdBdBdGBB    
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3213 '''' dOBdBdBdGBB xyzzz    

 
Equation (6.3) shows that the spatial gradients only depend on differences of magnetic 
field values between spacecraft, thus the field of spacecraft one can be subtracted out. 
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with i =2,3,4 
 
Inserting the equations into (6.3) yields 
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Similarly 
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and 
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After introducing the calibration parameters that need to be calculated, equations that 

minimize curl of B


 and divergence of B


 can be written. 
 

 Setting curl of B


 and divergence of B


 equal to zero yields four equations 
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 After writing equations (6.7 to 6.9) in non-matrix form, inserting the appropriate 
terms into the above four equations and after some algebra four equations with 18 
unknowns can be obtained. 
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With 'B


  and 'B


  calculated from ( '1i
xB , '1i

yB , '3i
zB ) , i =2,3,4 and the inverse 

distance matrix (see equation 6.3). The elements of matrix X are given in Appendix C. 

 
Small angle approximations were made and second order terms were neglected. 

Thus iterations must be used to accurately calculate the calibration parameters. Estimates 
of calibration parameters are calculated using approximate equations (6.10). The 
estimates are then applied using the full equations (6.4). The approximate equations are 
used again but with the corrected data as input. This is done until the system converges. 

 
The above derived equations yield exactly the same results as the equations 

published in Khurana et al. (1996), however the equations herein are much more compact 
(roughly by an order of magnitude). 
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6.1.   Application to Cluster Data 
 
 Inter spacecraft calibration is most important for small separations of the four 
Cluster spacecraft. During the so-called: “2003 Cluster tail season”, the inter spacecraft 
distances were roughly only 100 km. For this season inter spacecraft calibration had a 
large effect on the calculation of current densities. For more information on the Cluster 
magnetic field investigation see Balogh et al. (2001). 
 

Figure 6.1 shows an example of current density before and after inter spacecraft 
calibration. The figure shows a typical plasma sheet crossing with xB  changing sign. One 

can easily see that without inter spacecraft calibration there is a large current density in 
the quiet lobe regions. In the figure caption the term “best effort calibration” is used. This 
calibration consists of orthogonalization via spin tone removal (see Sec. 3.2), calculation 
of the spin axes offsets inside the solar wind (similar to Sec. 2.2) and removal of the 
jumps between range changes (see Appendix A). 

 
Inter spacecraft calibrations were done with roughly one to two weeks of input 

data that contain several plasma sheet crossings. From the data regions in the lobes of the 
magnetosphere where the curl and the divergence should be zero were selected. It is also 
important to try to get an as high as possible range of input data. Additionally, paying 
attention to the tetrahedron quality factor Q is important.  

 
Q=1+(true volume)/ (ideal volume)+(true area)/ (ideal area) 
 

The “ideal volume” and the “ideal area” are calculated for a regular tetrahedron with the 
mean separation as base. When Q =1 all spacecraft are collinear; when Q =2 all 
spacecraft are planar; Q=3 for a regular tetrahedron.  In this work, input data at times 
when Q is greater than 2 were used. For doing the minimization of curl and divergence 
all four spacecraft were transformed into spacecraft coordinates of the mother spacecraft.  
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Figure 6.1. Blue:best effort calibration; Red: best effort calibration plus inter spacecraft 
calibration. The top panel shows a comparison of current density before and after inter 
spacecraft calibration. The second panel shows a comparison of divergence before and 
after inter spacecraft calibration. The third panel shows xB  and the bottom panel shows 

the inter spacecraft distances from a principal coordinate system. The three traces are 
largest, intermediate and smallest spacecraft distance. 
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6.2.   Conclusions 
 
 Much shorter equations as previously published in Khurana et al. (1996) were 
derived that yield the same results. Additionally, I successfully applied the technique to 
measured data for the first time and show its importance. Current density as well as 
divergence of the magnetic field inside the tail lobes is significantly improved (much 
closer to zero) especially for 100 km spacing. The upcoming Magnetospheric Multiscale 
(MMS) mission (currently scheduled to be launched on 2014-08-14) will have much 
smaller spacecraft separations of <25 km. The method described herein may be crucial 
for calculating spatial gradients with MMS. 
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7.   Discussion and Future Work 
 

7.1.   Chapter 2.2 
 

In Section 2.2.4.4, the mathematical superiority of the Davis-Smith equation is 
pointed out. Based on this knowledge, a novel new technique is presented.  Zero level 
calibrations of past missions might profit from the application of the technique herein but 
the recalibration must be done on the data in sensor coordinates and not all investigators 
have chosen to archive data in this coordinate system.  

 
When a spacecraft is in a planetary magnetosheath or even an ICME 

magnetosheath the field variations along a component direction may correlate with the 
magnetic field magnitude for long periods because the shock changes the field only in the 
direction perpendicular to the shock normal. Inside a planetary magnetosphere a similar 
situation arises but with three-axis stabilized spacecraft, rolls or rocking of the spacecraft 
about its axes can be effective in determining the zero levels. Further studies need to be 
done for the application of the novel new technique to data from rocking or rolling 
spacecraft inside a magnetosphere. For example the change of the Earth’s internal field 
strength at the position of the spacecraft could be filtered out leaving only the pure 
rotations of the magnetic field data from rocking or rolling. Additionally the technique 
could be applied to purely Alfvénic transverse waves inside a magnetosphere (Cummings 
et al., 1969) while filtering out the Earth’s internal field.  For a spin stabilized spacecraft 
this is generally not possible to rock or roll the spacecraft perpendicular to the spin-axis 
but in multiple spacecraft missions it is sometimes possible to fly with spin axes at a large 
angle to one another. This was done on ISEE 1 and 2 for brief periods and recently on 
THEMIS (Angelopoulos, personal communication, 2007). Another technique to obtain 
the offset of the third axis is to rotate the sensor along the spin axis into the rotational 
plane of the spacecraft. This was done on ISEE 1 and 2 (Russell, 1978) and Polar 
(Russell et al., 1995). 
 
 Further work could also be done by validating the presented novel technique 
using cross-instrument calibrations on a single spacecraft. For example a vector 
magnetometer can be calibrated using a reference scalar field strength (Merayo et al., 
2000, Chapter 5 of this thesis) such as provided by the gyro-times of an electron drift 
instrument (e.g. Paschmann et al., 1997) or a precise scalar magnetometer. See Olsen et 
al. (2003) for information on the scalar calibration of the Ørsted vector magnetometer. 
 
 Analysis of the Alfvénic nature of the solar wind (Belcher et al., 1969) as well as 
Alfvénic transverse waves inside a magnetosphere (Cummings et al., 1969) could be 
done with emphasis on calibration e.g. for finding ideal frequency bands for zero level 
determination. Those studies could include data from particle instruments as well. For 
further information see e.g. Tsurutani and Ho, (1999) and Russell, (2000). 
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7.2.   Chapter 2.3 
 

 An automated technique for finding zero levels inside a magnetosphere that 
provides error estimates was developed. Similarly, as stated in the previous section: past 
missions could benefit from the application of the new technique herein. 

 
Cross checks between the new technique and the technique in Leinweber et al. 

(2008) could be performed with missions that go trough the magnetosheath and into the 
interplanetary field within shorter time periods. Additional cross checks could be done by 
applying Leinweber et al. (2008) to rolling and rocking spacecraft inside the 
magnetosphere. Furthermore, all other cross checks (EDI, precise scalar field 
measurements and perpendicular spin axes) described in the previous section could be 
done as well. Another cross check could also be done by solving for the spin plane offsets 
of spinning spacecraft after orthogonalization (see Chapter 3). 

 
Future research could also include solving for all three zero levels on three axis 

stabilized spacecraft. 
 
 

7.3.   Chapter 3 
 
 It is often necessary to determine in flight, the deviation of the actual direction of 
the spin axis with respect to a mechanical axis of the spacecraft. For example, 
comparisons of data between different instruments may require precise knowledge of 
such a deviation. Orthogonalization provides the angular deviations between the true spin 
axis and the magnetometer sensor that is (more or less) aligned with the spin axis. 
Measurements on ground provide information on the orientation of the magnetometer 
sensors versus spacecraft body axes. Unfortunately, there are some uncertainties that 
arise after launch. For example, the deployment of the boom was not exactly as it was on 
ground or a non-radial boom can bend due to a constant force. Effects of gravity may 
have compromised measurements on ground and temperatures were different. Knowing 
the spin axis with respect to one of the sensor axes may not necessarily provide very 
accurate information on spacecraft spin axis versus body axes.  
 

Housekeeping data of a spacecraft often contain temperature measurements at 
various positions on a spacecraft. The method for resolving of short term variations of 
calibration parameters (described in Section 3.4.) could be used to track changes (in 
flight) due to varying temperatures. 

 
The envelope-method could be further tested with data that have higher noise 

levels. Filtering out noise may improve the versatility of the method. The limits of the 
envelope- as well as the DFT-based method could be further investigated. There may be 
situations where the DFT-based method is advantageous. 
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The algorithm for resolving short term variations of calibration parameters as 
described in Sec. 3.4.2., has worked well for a large number of applications. However, 
modifications to the algorithm seem possible. First: Instead of averaging in various 
coordinate systems, envelopes could be used to get the time-varying harmonics (similar 
to Sec. 3.3.). Second: Running sine wave fits seem to be another possibility. 
 
 

7.4.   Chapter 4 
 
 This chapter describes various methods for comparisons of magnetic field data 
with model fields in order to resolve magnetometer calibration parameters, attitude 
information as well as Sun angle information. It would be interesting to study the results 
of comparisons with different models. Additional studies on the stability of the obtained 
parameters versus varying perigee distances could be done. The influence of the accuracy 
of the input parameters of a model on the results could also be explored.  
 
 

7.5.   Chapter 5 
 
 Matching the gain factor between EDI and the fluxgate magnetometer is 
necessary in order to obtain correct magnetometer zero levels. The described method 
could be double checked with Leinweber et al. (2008) for Cluster orbits that pass quickly 
from higher fields into the interplanetary magnetic field. Such further research could 
potentially be very valuable for the upcoming Magnetospheric Multiscale (MMS) 
mission (currently scheduled to be launched on 2014-08-14). Each of the four MMS 
satellites will be equipped with two fluxgate magnetometers as well as an Electron Drift 
Instrument. MMS orbits will be such that entering the interplanetary field will only occur 
during unusual solar wind conditions. 
 
 

7.6.   Chapter 6 
 
 This chapter points out that current density as well as divergence of the magnetic 
field inside the tail lobes was significantly improved especially for 100 km spacing. The 
upcoming MMS-mission will have spacecraft spacing that is much smaller (<25 km). The 
method described herein may be crucial for calculating spatial gradients with MMS. 
 
 Since MMS will have much lower perigee passes than the Cluster mission, 
changing gains and angles with the method herein may be problematic. The field inside 
the tail lobes is relatively small (~30 nT). This could lead to high uncertainties of gains 
and angles. Further research is necessary to combine the method described herein with 
Earth field comparisons so that gains and angles stay well defined. 
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Appendix A 

 
Removing the jumps between the range changes 
 

After orthogonalization calibration parameters that were impossible to determine 
via spin tone removal can be used, to remove jumps between range changes. The jumps  
can be fixed for the spin plane sensors by changing their gain and their azimuthal angle. 
The same gain and angle is applied to both spin plane sensors. The gain correction is 
applied to the lower range and the angle correction is applied to the higher range. For the 
spin axis a change of the zero level and a gain change can be used to fix jumps. The gain 
correction is applied to the lower range and the zero level correction is applied to the 
higher range. Information from several jumps is combined and a least squares solution, to 
derive the calibration parameters is performed. Combination of several jumps yields a 
range of input data which is required to derive stable solutions. Especially combining 
range changes at increasing fields with range changes at decreasing fields is important, 
since those range changes occur at different levels of the field.  
 
Spin Plane: 
 

The spin plane magnetic fields of the lower range are denoted as BPL1 and BPL2. 
Similarly for the upper range: BPU1  and BPU2. The subscript P means “prime” and is used 
to denote uncorrected values. The subscripts 1 and 2 denote the spin plane sensors. 
 
First calculating the gain 
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The changes are applied as follows: 
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Spin Axis:

The magnetic field of the uncorrected lower range spin axis sensor is denoted as BPL3. 
Similarly for the upper range: BPU3. The subscript 3 denotes the spin axis sensor. 
 
 
The following equation can be solved in the least squares sense: 
 

3333 0 PUPL BGB  

The changes are applied as follows: 
 
Upper range: 

333 OBB PUU   

 
Lower range: 

333 PLL BGB   

 
 

Please note that the delta gains are close to one, whereas the delta angle and delta 
offsets are close to zero. 
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Appendix B 
 
Matching of zero levels from multiple spacecraft 
 

E.g. in the solar wind, differences of the magnetic fields measured at two points 
that are relatively close together are zero over sufficient long time periods. If the 
magnetometers have offsets the measured differences do not go to zero. For a cluster of 
four spacecraft 6 differences between the spin axes components can be used to correct the 
offsets. 
 
In terms of equations this can be expressed as follows: 
 

0)( 32233113  OBOB  

0)( 33333113  OBOB  

0)( 34433113  OBOB  

0)( 33333223  OBOB  

0)( 34433223  OBOB  

0)( 34433333  OBOB  

 
where e.g. 13B  means the spin axis component of spacecraft 1 and similarly 23O  means 

the spin axis offset of spacecraft 2 and so on. 
 
Written as matrix equation of the form bAx   the above becomes: 
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This matrix equation can be solved by singular value decomposition (SVD). The 

rank of A is only 3 which means that there is one free parameter. The free parameter will 
be set to zero. In other words the method chooses automatically a mother spacecraft. The 
mother spacecraft can be easily changed to another spacecraft by subtracting its offset 
from all spacecraft. E.g. the mother spacecraft can be chosen so that the overall change of 
the zero levels is smallest. 


Figure B.1 shows the 6 differences for all four Cluster spacecraft for all three 
components of the magnetic field. The spin plane components (upper two panels) show 
no systematic differences whereas the bottom panel shows small systematic differences. 
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After matching the zero levels the bottom panel in Figure B.2 shows no systematic 
differences anymore.   


 

dB
1

[n
T

]

-0.2

0.0

0.2

dB
2

[n
T

]

-0.2

0.0

0.2

dB
3

[n
T

]

DOY: 43
2001-Feb-12

08:00 15:00 22:00 05:00 12:00
-0.2

0.0

0.2

 
Figure B.1. Six differences before zero level matching, of three components of four 
Cluster spacecraft (one component per panel). 
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Figure B.2. Six differences after zero level matching, of three components of four Cluster 
spacecraft (one component per panel).
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Appendix C 
 
Elements of matrix X in equation (6.10): 
 
Row 1: 
 

 '241
1,1 yBaxx   

 '341
2,1 yBayx   

 '441
3,1 yBazx   

 '231
4,1 zBaxx   

 '331
5,1 zBayx   

 '431
6,1 zBazx   

 '241
7,1 xBaxx   

 '341
8,1 xBayx   

 '441
9,1 xBazx   

 '' 231241
10,1 yz BaxBaxx   

'' 331341
11,1 yz BayBayx   

'' 431441
12,1 yz BazBazx   

'231
13,1 xBaxx   

'331
14,1 xBayx   

'431
15,1 xBazx   

31
16,1 axx   

31
17,1 ayx   

31
18,1 azx   

 
Row 2: 
 

 '241
1,2 xBaxx   

 '341
2,2 xBayx   

 '441
3,2 xBazx   

 '221
4,2 zBaxx   

 '321
5,2 zBayx   

 '421
6,2 zBazx   



- A7 - 

 '241
7,2 yBaxx   

 '341
8,2 yBayx   

 '441
9,2 yBazx   

 '221
10,2 yBaxx   

 '321
11,2 yBayx   

 '421
12,2 yBazx   

 '' 241221
13,2 zx BaxBaxx   

 '' 341321
14,2 zx BayBayx   

 '' 441421
15,2 zx BazBazx   

21
16,2 axx   

21
17,2 ayx   

21
18,2 azx    

 
Row 3: 
 

 '' 221231
1,3 yx BaxBaxx   

 '' 321331
2,3 yx BayBayx   

 '' 421431
3,3 yx BazBazx   

 04,3 x  
05,3 x  
06,3 x  

'' 221231
7,3 xy BaxBaxx   

'' 321331
8,3 xy BayBayx   

'' 421431
9,3 xy BazBazx   

 '221
10,3 zBaxx   

 '321
11,3 zBayx   

 '421
12,3 zBazx   

 '231
13,3 zBaxx   

 '331
14,3 zBayx   

 '431
15,3 zBazx   

 016,3 x  
 017,3 x  



- A8 - 

018,3 x  

 
Row 4: 
 

'' 231221
1,4 yx BaxBaxx   

'' 331321
2,4 yx BayBayx   

'' 431421
3,4 yx BazBazx   

'241
4,4 zBaxx   

'341
5,4 zBayx   

'441
6,4 zBazx   

'' 221231
7,4 yx BaxBaxx   

'' 321331
8,4 yx BayBayx   

'' 421431
9,4 yx BazBazx   

'' 231241
10,4 zy BaxBaxx   

'' 331341
11,4 zy BayBayx   

'' 431441
12,4 zy BazBazx   

'' 221241
13,4 zx BaxBaxx   

'' 321341
14,4 zx BayBayx   

'' 421441
15,4 zx BazBazx   

41
16,4 axx   

41
17,4 ayx   

41
18,4 azx   
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