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Abstract

The pair formation in high temperature superconducting&i@s is believed to happen in the
two dimensional Cu®@layers, that are a common feature of most of these mateHaj$. tem-
perature superconductitvity, however, is not a totally-thimensional phenomenon. In fact, the
transition temperatureclis a dome shaped function of the number of neighbouring Ja®
ers per unit cell. Interactions between neighbouring lsygan happen by tunneling of pairs or
single particles. The materials are highly anisotropiched the conductance within the layers
is much larger than perpendicular to the layers.

In this work, we use the one band Hubbard model to describ€tl@ layers. To treat the
strong onsite correlation on copper d-shells and in ordactount for the hopping to neighbour-
ing sites, we solve the Hamiltonian on a cluster of lattitessand incorporate the inter-cluster
hopping perturbatively. The perturbative treatment ismtiveproved by adding a variational
condition within the Variational Cluster Approach (VCA). Weidy the phase diagram of this
model, which describes the competition between antifeagmatism and superconductivity for
both electron and hole doping. We obtain spectra for optyntidped and overdoped samples.
Our results indicate that the inter-layer coupling is areesal parameter to describe multilayer
cuprates.

Another important issue, connected to the inter-layer Bogpis the c-axis current.We adopt
a recently developed method to incorporate non-equilibr&reen’s functions within the VCA
formalism. This allows us to simulate the application of #age to a Hubbard monolayer or
bilayer, obtained by connecting two electrodes across thigblrd layer. Here we apply for
the first time an expression that is the natural extensioheoéquilibrium variational condition.
Using this non-equilibrium “Euler like” equation, we findatthe application of a bias voltage
not only leads to a change in particle density and a currewirflptrough the sample, but also
to a decrease of the superconducting order parameter ahd antl, for high enough coupling

strength to the electrodes, superconductivity vanishes.

non equilibrium, cuprates, high temperature, supercawdsicembedding cluster approaches,

Green'’s functions, bilayer






Zusammenfassung

Man nimmt an, dass die Paarbildung in keramischen Hochtexhpsupraleitern vor allem in
den zweidimensionalen Kupferdioxydschichten stattfindietdiesen Materialien gemein sind.
Hochtemperatursupraleitung ist aber kein rein zweidinoerzdes Phanomen. Die Ubergangs-
temperatur, z.B., ist eine Funktion der Anzahl von benadkba@u® Schichten in der Einheits-
zelle. Wechselwirkung zwischen benachbarten Schichteahgeht durch Tunneln von einzel-
nen oder gepaarten Teilchen. Die keramischen Hochtemysuataleiter sind aber trotzdem
stark anisotrop, sodass die Leitfahigkeit in der Schichejsenkrecht zu den Schichten, in
Richtung der c-Achse, bei weitem Ubertrifft.

In dieser Arbeit verwenden wir das Einband-Hubbardmodeildie CuGQ Schichten zu be-
schreiben. Damit sowohl die starke lokale Coulombwechskiwig in den d-Orbitalen der Kup-
feratome als auch das Hipfen zwischen benachbarten Kugfeza gut berticksichtigt werden
kann, l6sen wir den Hubbard Hamilton-Operator auf einemt€tuaus Gitterplatzen, und erfas-
sen the Hupfen von Teilchen zwischen den Clustern stéruegsgtisch. Wir verwenden eine
variationelle Variante der soeben beschriebenen Methibele Variationellen Cluster Ansatz,
um das Phasendiagramm dieses Modells zu untersuchen,eseleim Wettbewerb zwischen
Supraleitung und Antiferromagnetismus beschreibt. Walysieren den Einfluss der Hipfpro-
zesse zwischen den Schichten (inter-layer) auf SpektrériPiasendiagramm von Vielschicht-
Hochtemperatursupraleitern.

Ein wichtiges Thema, das mit dem inter-layer Hipfen im Zusemhang steht, ist der Strom in
Richtung der c-Achse, hervorgerufen durch das Anlegen &pannung. Wir verwenden eine
kirzlich entwickelte Methode, ndmlich den Variationel@nster Ansatz mit Greenschen Funk-
tionen im Nichtgleichgewicht. Damit berechnen wir was passwenn an eine dinne Schicht
von hochtemperatursupraleitendem Material GUber methkiKontakte eine Spannung ange-
legt wird. Die Ergebnisse zeigen, dass die Biasspannungratiideen supraleitenden Schicht
nicht nur zu Anderungen in der Dichte, und zu einem Stromftlussh die Schicht fiihrt, son-
dern auch zum Schrumpfen des supraleitenden Ordnungspi@rsund bei geniigend starker

Kopplungsstarke, zum Verschwinden der Supraleitung.

Nicht Gleichgewicht, Cuprate, Hochtemperatur, Supralei€eldysh Formalismus, Bilayer,
Schichten
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0.1 Preamble

Since their discovery in 1986 high transition temperatugesconductors have attracted much
interest and triggered a lot of both experimental and the@levork aiming at a better under-
standing of their mechanism and their other properties.

One of the mainstream ideas is, that pairing is mediated byfipctuations. The main dif-
ficulty in the numerical description of highsTmaterials lies in the strong local correlations
experienced by charge carriers. This means, that the legrticthese materials do not experi-
ence a mean field, but are interacting strongly with eachrothea numerical simulation, this
complex system of strongly correlated particles can onlyreated approximately. The first
simplification we make is to use the Hubbard model. This isaly a heavy approximation,
since only the copper dioxide layers are taken along andrh@epses now happen on lattice,
and not in continuous space. The Hubbard model, howeviénetids to be solved. This leads
to major problems, since both the correlations and the mgppeétween sites are relatively large,
and none of them can be treated perturbatively.

We want to make use of the Variational Cluster Approach toestie Hubbard model. It
combines the exact evaluation of a cluster’'s Green’s fonand its perturbation by inter-cluster
hopping terms with a variational calculation. This leadstgood description of both short-
range correlations and long-range symmetry broken phdsehkis way, we want to calculate
the properties of bilayer and monolayer superconductipgates.

The last years have seen a rising of the Keldysh formalismett systems out of equilibrium.
This method was developed in 1965 [1], and, due to the growavger of modern computers,
it can now be used to simulate complex systems in non-equitibsetups.

We simulate a metal - (single layer) superconductor - metattjon with a constant applied
voltage, that has evolved into a steady state. We will us&/génmtional Cluster Approach in
Keldysh space to describe such a junction, and presentafsepies as a function of initial
doping in the superconductor, applied voltage and bandvatithe metal. We also discuss the

simplifications and limitations that we have made, and thedaracies they introduce.



0.2 Organization

The work is organized as follows: In Chaptelr 1 we introduceréaeler to superconductivity,
justify the use of the Hubbard model, give notice of the mdghihat we use and finally lay out
in detail the problems that we want to tackle.

Chapter[2 treats the first part of the work, the simulation ohalayer and bilayer cuprates
in equilibrium. The model to be solved is laid out in Sectib@.2Section[ 213 gives an in-
depth description of the methods used. The results areriesbi| Sectiofi 2]4 and discussed in
Sectior 2.b. A great part of the results to this problem has lpaiblished in the Journal of Su-
perconductivity and Novel Magnetismi [2]. We have incorpedathis publication and marked
verbatim text by using the following fontCompeting Phases in High-T. Superconductors”.

In Chapter[B we focus on the non-equilibrium problem. Furthgpductory information on
the non-equilibrium setup is given in Sectiohs]3.1fo] 1.Xti®as [3.4 to[319 show the CPT
+ Keldysh formalism employed for the description of the nopsébrium problem, and some
applications to unterstand the peculiarities of our thriegedsional setup. Finally, we come to
the Variational Cluster Approach Keldysh method in Sectioh_3.110. We present the results of
our simulation of a normal metal - thin superconductor - redrmetal junction in Section_3.12

and thereafter discuss the model and method in Se€tiod 3.13.






Chapter 1

Introduction

We first address superconductivity generally in Secfiofy arfd high transition temperature
superconductivity in Sectidn 1.2. We motivate the use oHbbbard model in Sectidn 1.3, and

finally point out the problems that we want to solve in Sedfich

1.1 Superconductivity

Superconductivity was discovered at the beginning of trentieth century. The phenomenum
of electronic current had been known from the beginning ef 1fith century. B It was the
english physicist William Gilbert, who made first investiigas about electricity. From the be-

ginning of the 19th century electricity was used for lighhgeation.

Metals consist of atoms of elements that have only few eastin the outer shells. If the
valence band, the highest occupied band at zero temperatordy halffilled, the electrons can
be excited with an infinitesimal amount of energy (gaplesspbthe Fermi sea and move freely
through the material. If a voltage is applied, the mean nmotibthe electrons is towards the
positive pole. The resistence comes from electrons bemiesed at other electrons, impurities

and lattice vibrations.

Conventional Superconductors

At the beginning of the 20th century Heike Kamerlingh Onnesceeded in cooling helium

(He) into its liquid phase (4.2K). He then used the liquid Heobol metals down to low tem-
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peratures. He expected the resistivity to shrink, sincenbaght that resistivity is caused by
the electrons being scattered from the lattice. We now krioat, electrons are scattered from
lattice vibrations. In fact, what Kamerlingh Onnes foundsvitlaat the resistivity (of mercury)
decreased when the material was cooled down to low termpegatBut, all of a sudden, below
the critical temperatureclit was even zero. He called this state the superconductite. Storty
years later the explanation for superconductivity in netile so-called BCS theory, was found
[3]. A simple view of this is the following: An electron in aon lattice deforms the lattice.
This lattice deformation attracts another electron. Is thay, two electrons are coupled or at-
tracted by the lattice deformation. The lattice deformatimodes are termed phonons. Now,
each electron, since it is a fermion, occupies its own stBid. if two electrons couple, they
form a boson, the so called “Cooper pair”. These bosons carcealipy the same, lowest lying

state. This coherent state allows a current flow withouttasce.

Summing up, we find that at low temperatures, below the ttiansiemperature d; the de-
creased lattice motion not only does not hinder electronanainy more, it even allows the
charge carriers to pair up to bosons, which can form a Bosst&imcondensate.

There exist two types of conventional superconductorsgaeing on their reaction to an exter-
nal magnetic field: Type | superconductors are perfect digneis, so that the external magnetic
field smaller than the critical magnetic field is totally ekpe from the material. In type Il su-
perconductors there exists a range of critical field intgnaihere the magnetic field penetrates
into the material, it is however localized by the formatidm@agnetic flux tubes. Another im-
portant characteristic of conventional superconducwthe isotope effect [4]. Substitution of
atoms in the compounds by their isotopes changes the cougiliangth between the electrons.
This proved that phonons, which are influenced by the atoragses involved, are the coupling

particles.

1.2 High-T. Superconductors

High temperature superconductors are characterized bgheethtransition temperature. They
show a reduced isotope effect, which suggests that they daar& by the principle “electron
pairing by phonons”. A family of high-J superconductors are those containing gu&yers,

called “cuprates”. From now, when speaking about higlstperconductors or HTSC, we mean



cuprate high-T superconductors, even though there exist other classeatefials showing this

effect, like the iron pnictides [5], based on FeAs layers.

Structure of the Undoped (Parent) Compounds

Cuprate superconductors have a perovskite structure. Timesist of copper dioxide CuO
layers which sandwich other atoms. The Gu@yers are believed to carry the charge, while
the atoms in between act as charge reservoirs. There mayeberanore Cu@ layers in the
unit cell. Let us first just regard a single-layer materialky@en consists of 8 electrons (and
each 8 protons and neutrons). The lowest two electronsdilLthshell, next 2 electrons for the
2s shell. The remaining 4 electrons sit in the 2p, which wdddilled by another 2 electrons.
Copper has got the ordering number 29 and thus 29 electrons.el€latron configuration is
1828 2p°3823p° 3104, In the CuQ layer two electrons from copper move to oxygen which
has now a filled 2p shell. One could also say that the electaynsa hybridisation band which
has got its emphasis on the oxygen. Now the configurationygenx is 18 25> 2p° or [N¢g], and
that of Copper is %s28° 2p° 3¢ 3p° 3d® or [Ar]3d®. So the oxygen is inert while on the Copper
there is an unpaired electron and an unpaired spin. Becaule specific lattice structure, the
3d orbitals are not degenerate. The hole sits in the highlegbof d,._» symmetry. In this
orbital the Coulomb repulsion is very strong. which meansdioable occupancy costs a large
amount of correlation enerdy. The large correlation makes the material an insulatom eve
if it should be a metal considering the half filled valence dand according to simple LDA
calculations[[6]. Depending on the valueldfand the temperature the material can then be a

charge transfer insulator (see Secfiod 1.3) or an antifeaigmetic insulator.

Phase Diagram

The phase diagram of HTSC as a function of doping and temyeré schematically repro-
duced in Fig[1l1. At half filling the materials are insulatoior electron and hole doping the
long range antiferromagnetism vanishes and instead thevsupducting state forms, and van-
ishes again at higher dopings. The details vary from oneifspetaterial to the other, but the

general picture is the same.
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Figure 1.1: Schematic phase diagram in temperature and doping of copjkr materials|7].

Such a phase diagram is obtained experimentally for higmdterials.

Anisotropy and Other Characteristics

An important feature of high-dsuperconductors is their anisotropy. Electron dynamiess®
happen mainly in the Cufayers, but there is interaction between the layers in oitecah and
between different unit cells. This interaction leads tm$@ort phenomena in c-axis direction,
which is perpendicular to the Cyayers. The mechanisms that contribute to c-axis current ar
still under discussion, just like the enigmatic pseudogag.([8]) or an inter-layer contribution

to the superconducting order parameter.

Possible Pairing Mechanism

While it is known that charge carriers in normal superconaltscpair by bosonic interaction
(phonons), the mechanism in high-3uperconductors is still under discussion. Many theories
have been proposed, most of which succeed to explain orghi@tly some aspects. One idea is
that superconducting pairs are formed because of phoneraaiion, just like in normal super-
conductors[[B]. On the other hand, there is overwhelmindaenie for the coupling mediated
by spin fluctuations [10, 11] (also called magnons or, moregaly, spin-polarons[12]). Other
theories proposed include a bosonless coupling and thitbrstheory [13/14].

A schematical explanation of the spin fluctuation mediataapting in real space could be



the following: The spins on the copper are subject to a lacgeetation energy and order anti-
ferromagnetically by superexchange. An additional ho#uwilbs this order and creates a spin-
polaron (spin-polarisation of its surrounding). This splaron can enable the coupling to

other holes.

1.3 Map onto Hubbard model

In Sectior 1.2 we mentioned, that particles on the copperiBitebare subject to strong on-site
Coulomb interaction. The Cu 3d \»-orbital is thus only half-filled, which leads to an unpaired
spin on each copper site. Between two copper atoms therensitsygen atom, the p-orbitals
filled by two electrons with antiparallel spins. This resuhlt a superexchange interaction be-
tween the two copper atoms, with the unpaired spins ordamtiferromagnetically [15]. When
considering the copper and the oxygen bands around the le@mengy, one finds that the un-
doped parent compound is a charge-transfer insulator [Z]6, 1
Away from half-filling there is an asymmetry between elestemd hole doping, which is also
observed in experiments. Doped holes localize on the oxgtens, and destroy the antiferro-
magnetic coupling between Cu spins. On the other hand, ddpetians live on the Cu sites,
where they dilute the antiferromagnetically ordered sfili@}. This explains, why the antifer-
romagnetic phase is much more stable for electron than fler daping, as illustrated in Fig.
1.

Already in 1987 it was suggested, that Gu@yers in HTSC can be described by the Hubbard
model [19]. A generalized single-band Hubbard Hamiltomsads:

Ha=—>tj (¢l cio+ C}Lccio) + 5 Uinighyy, (1.1)
o) |

wherec; (ciT) is the annihilation(creation) operator on Sitg;j is the hopping amplitude between
sitesi and j andnj; denotes the particle number operator which counts thecpestof spin
o €7,] on sitei. The main ingredients for the Hubbard Hamiltonian are thensf correlations
U; and the hoppings between sites, weighted by pararheter the description of Cufayers,
the Hamiltonian is defined on a square lattice.

The above arguments could make us assume, that the phy<iegdpfplanes should be de-

scribed by a 3-band Hubbard model, with one Cu band and twoesxipgnds. The number of



orbitals per site that should be used is however still isgubscussion. Usually, a single-band
Hubbard Hamiltonian is used instead of the three-band ohe. single-band Hubbard model,
however, describes a Mott-insulator at half-filling. Why slbit still be useful for describing
Cu(Q, planes? The answer to this question is the Zhang-Rice silgldbped hole occupies
a quasi-localized state on the four neighbouring oxygematof a Cu-site. Such a hole then
forms a local spin-singlet with the hole on the central Ce;siéferred to as Zhang-Rice singlet
[20]. The Zhang-Rice singlets are the charge carriers, amtharcandidates to condense into
the superconducting state. When using the single-band Hdlohadel, the doped holes should
describe these Zhang-Rice singlets.

It fact, numerical simulations of the single-band Hubbaxtel yield physical observables like
the Fermi surfaces, spectral functions and others in @uiakt agreement with experimental
results [21] 22, 23]. It is however essential to include fredrest neighbour hopping terms,

which generate the difference between particle and holenddpat has been described above.

We decided to use the single-band Hubbard model, since itchmore simple and easier
in the numerical treatment, and still describes the esalefiettures of high-J cuprates. The
total single-band Hubbard Hamiltonian for a Gu@onolayer reads

Hy=-t% Z(CiTcho + C}rccio) +t Y Z(CiTcho + C}rcCio) +U S mgnjp —py nie, (1.2)

(i) © ((i)) © ' o
with hoppingt between nearest neighbour Cu sites, and next-nearest oeigihdpping’. The
chemical potentiaji fixes the doping of holes (or Zhang-Rice singlets), fior U /2 the sys-
tem is half filled. Most importantly, the strong onsite-iraetion of particles on the Cu sites is
accounted for by the correlation eneidy When treating the bilayer, we additionally need to

know the inter-layer hopping terms.

Even the single-band Hubbard model on a square lattice haseem solved exactly. The
main difficulty in the numerical treatment of the Hubbard relod our case is thatandU are
of the same order of magnitude and thus it does not justifyetat bne of them perturbatively.
A means to solve the Hubbard model numerically is the seddllluster Perturbation Theory
(CPT) [24/25], see Sectidn 2.8.1. We use an extension of the &&d Variational Cluster
Approach (VCA), to describe the competition between antif@agnetism and superconduc-

tivity. An introduction to VCA is given in Section 2.3.2.



Figure 1.2: Intra-layer hopping processes. The filled circles denadeCh sites, where strong

Coulomb interactiotd takes place. Particles hop along the solid lines (nearéghipeur hop-

ping) and dashed lines (next-nearest neighbour hopping).
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represent two types of the high-$Superconductors, namely monolayer and bilayer materials.
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1.4 Aim of the Work

We want to study the properties of cuprate highstiperconductors. The model that we use
to describe these materials, is the single-band Hubbarckinds solver we have chosen the
Variational Cluster Appoximation. Our focus will be on théfelience between monolayer and
bilayer materials, see Fig._1.3. These are materials gungaone or two Cu@layers per unit
cell, respectively.

In the first part of the work, we study the equilibrium sitaati It is described by the Hubbard
model defined on a two dimensional (2D) lattice. For the l@itagystem, we add an inter-
layer hopping to describe two coupled 2D layers. We caletla phase diagram and compare
spectra of the monolayer and bilayer system to experimesgalts. The focus is on the splitting
caused by the inter-layer hopping, which is expected to bermalized by strong correlations.

In the second part of the work, we present a new version of VChedat systems out of
equilibrium. It can be used to investigate a strongly catexl central region in a symmetry
broken phase like superconductivity at time- —o, which is at timetg contacted by two leads
at different chemical potentials. In this way, a bias vadtasgapplied to the central region. After
some time, a steady state evolves, and with the new versig€Af one can analyse this state,
e.g. find out if it is still symmetry-broken and measure thaxes current. The setup that we
use for testing the new method, is a metal - (nano) superaodu metal (NNnSN) junction
with applied voltage, see Fid. _3.1. This is an interestingliaption of the non-equilibrium
VCA, and there exists a considerable amount of both expetahand theoretical work about
similar setups, but with wider superconducting centralaegEspecially experiments done to
analyse the anisotropy in high Buperconductors, like measuring the c-axis versus ab-axis

charge dynamics could be comparable to our setup.



Chapter 2

Copper Oxide Layer in Equilibrium

A large part of the results presented in this chapter has peakelished in Ref.[[2]. The author’s
contribution to the work was to use and modify where necgsmaexisting VCA code, mainly
written by the coauthor, in order to explore the bilayer Hatsbmodel. Moreover, the author
interpreted the results scientifically, made a literate@herche to investigate the status quo of
scientific research in this field and compared to experinhamic theoretical results. Since the
article is part of this PhD work, it is included in the pres#msis with the agreement of all
authors. However, since it is published work, parts takebatim from this article are marked
explicitly by using a special forfCopper Oxide Layer in Equilibrium”.

We carry out a theoretical study of the bilayer single-band Hubbard model in the undoped
and in the superconducting phases by means of the Variational Cluster Approach. In particular,
we focus on the effects of bilayer splitting induced by the inter-layer hopping, as well as
its interplay with strong correlation effects. We find that the bilayer splitting between the
antibonding and bonding is considerably suppressed in both the normal and superconducting
phases, in qualitative agreement with experiments on BipSroCaCuz0g, 5. In addition, in the

superconducting phase, the shape of the splitting in k space is modified by correlations.

2.1 Introduction

It is widely accepted that the fundamental physics of High-Tc superconductors (HTSC) takes
place in the two-dimensional CuO2-layers. On the other hand, several classes of HTSC exist

with a different number of CuOz-layers per unit cell, their transition temperature being strongly

9
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related to this number [26]. There have been several explanations for this phenomenon, among

them one could mention inter-layer interactions, charge imbalance or quantum tunneling of

Cooper pairs [27, 28] 29].

Experimental measurements, supported by theoretical investigations [30], show that the
inter-layer coupling and the third dimension more generally have a strong impact on angle-
resolved photoemission spectroscopy (ARPES) results |31} 32, 33]. Depending on photon
energy and polarisation, different features are accentuated in the measured spectra [34, 35],
while the “real” underlying quasiparticle spectrum remains hidden.

In the last decade, the BiSrCuO compounds BSCO-2212 and BSCO-2201 have been studied
thoroughly, and several conclusions have been drawn from the results: High resolution ARPES
on BSCO-2212 with suppressed superstructure reveals the presence of two Fermi surface pieces,
one hole-like, the other changing from electron to hole-like [35]. Heavily overdoped BSCO-
2212 shows a difference in bilayer band splitting for the normal and superconducting case
[36]. In the normal state this is about 88meV and gets renormalized to about 20meV in
the superconducting state. In the superconducting state each one of the two split bands
develops its own peak-dip-hump structure (PDH). This is most probably due to the strong

renormalisation at about 60 meV produced by the interactions with spin fluctuations [36].

Bilayer splitting in the normal state only weakly depends on doping [37]. In optimally
doped BSCO-2212 (bilayer) the quasiparticle in the (T1,0) region should look similar to that
of BSCO-2201 (monolayer) [34], the enhanced linewidth in the bilayer material is attributed
to correlation effects, more specifically (Tt TT) scattering due to antiferromagnic fluctuations.
In order to unravel the underlying mechanisms producing these effects, different theoretical
methods have been applied. LDA calculation done for YBCO [38] show that the inter-layer
hopping comes from copper s electrons. Different models were used to describe the system of
coupled 2D CuO planes, e.g. the bilayer Hubbard Model [39, 40], coupled two-leg spin ladders
[41], tight-binding extended Hubbard Model [42, 43], bilayer t-J model [44]. From these
calculations the following conclusions can be drawn. The PDH structure can be explained by a
coupling of the electronic excitations to magnetic resoncances or spin fluctuations [45)], [46]. At
low doping, the coupling between the layers should be antiferromagnic [40], and there might be
contributions to superconductivity by inter-layer Cooper pairs, being formed by holes belonging

to different layers. The reduction of the bilayer splitting with respect to the noninteracting
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tight-binding model is attributed to the formation of spin bags in the layers [44], which increases
the quasiparticle weight or/and antiferromagnetic inter-layer order.

We want to address these issues by an alternative approach, in which correlations are eval-
uated exactly at a short-range level of a cluster, and thus is expected to capture the interplay
between short-range antiferromagnetic coupling and quasiparticle excitations. Specifically, we
use the Variational Cluster Approach (VCA) [47, 48] treated in Sectioh 2.3.2to solve the
bilayer Hubbard model. VCA is an extension of Cluster Perturbation Theory (CPT) [24, [25],
Sectior[ 2.311). Due to its variational nature it allows for a treatment of symmetry breaking
phases, in our case antiferromagnetism and/or superconductivity. The method has already
been successfully been applied to a wide range of problems [48] 22, [49] 50|, 51] and is based
on the Self-Energy Functional Theory (SFT) [52, 53], described in Section 2.3.3. We will
illustrate the effects of bilayer splitting by displaying the spectral functions for the two bands.
Finally, we will discuss the reduction of bilayer splitting due to correlation in both the normal

as well as in the superconducting state.

2.2 Model

A single CuO2 layer is described by the standard two-dimensional Hubbard Hamiltonian (see
Sectior 1.B)

Hu=—-t> 3 ( clocjc,+cjcc.O )+t Y S c,ccjo-i—cjcc.g)-l—
{ij) o ({i5)) © (21)
+U S mignjp —p nie
1 10

~

in standard notation. As usual, we include a next-nearest hopping in order to reproduce the

band structure observed in ARPES experiments.

2.2.1 z-Hopping or Inter-Layer Hopping

For the description of bilayer materials the inter-layert pd the Hamiltonian is essentials
well known, for example from LDA calculations, the inter-layer hopping has a characteristic k|
structure, wherek| is the wave vector in the Cu(plane, the(x, y)-plane.

We use thek -dependent inter-layer hopping derived in Ref.1[38] for ¥BazO7 (YBCO),
which is a bilayer HTSC compound. They obtained the intgeddopping in the following
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way: The band structure of the material was described irotted density approximation. Then,
the high-energy and chain related degrees of freedom wergrated out, to arrive to two 8-
band Hamiltonians, for the even and odd bands of the bilasactively. Downfolding these
8-band Hamiltonians leads to a single-layer Hubbard Hamigin, with ark -dependent inter-

layer hopping ( which comes mainly from copper s and oxygenlatals) of the form

V2

(k) :tm (2.2)
with
_ cogkB) ZCOS(kxA) (2.3)
_ cogkyB) ;COS(kxA) (2.4)

andA, B the lattice constants. Sine#' /t << 1, we can Taylor expand the denominator in eq.
(2.2) in terms ofs = 2ut’/t to obtain

1
—— - ~1+2 2.
(1—92 +2s, (2.5)
We approximate the denominator by 1 and are left with
=t (k) ~ fv2 = %(coskyB — coskyA)? (2.6)

In VCA we need the hopping term in real space, and thus have wodfaransform the
hopping term into space coordinates.

The whole inter-layer hopping term in the Hamiltonian is
t t
He, = k% tL(kH)(camch + Cpi, Cak; ) (2.7)
Xy

with c;k(cbk) the creation(annihilation) operator of a particle with waxectork in the layer
a(b). Fourier transform of the creators and annihilators ffqr'mto real space siteR R in the

layer leads us to

1
HtL = kZ tJ_(k“)(\/N_ZD IkHR TR\/—g R Cor —|—h.C.) =
X, Ky N
" %
_ Zu k” Nz NoTE Z M RR) ek crp+h.c) = (2.8)

= t, (kEXRR)(cl _cap+h.c.
Z N2 Z e (CRaCrD+h-C)

J/

“T(R-R)
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The hopping amplitude in spatial coordinates becomes:

|k (R-R)
W;WZ“ k)€ i€ (2.9)

- - k| (R-R)
- 211/dk’(ZT[/dkytL(k>eI : ’

where we took the lattice constant to be 1.

Introducing the distance between lattice positions in(tg)-plane Qx,Ay) for R— R we get:
T (Ax, By) = / dk, / it (kj)gxeghony, (2.10)
And if we replace | (k) by the r.h.s. in eq[(216) we obtain
1 t 3 2 kX ky Ay
T(0x8Y) = 5 / dk / K 5 (COskyB — coskoA) 26k ko, (2.11)

Integrating this out (using = B = 1) gives:

f 2sin(mAx) 2sin(my) [(Ay)2 —
(2m2 X Dy {(AY)Z—

2
F BT _1)} (2.12)

or, using the Kroneckep,

f
(2m2

This means, that in real space there are three types oflayer-hopping terms, a vertical hop-

s s

T(Ax,4y) = [—T[25Ax,o5Ay,o + EéAx,iléAy,il - Z(éAx,ize_)Ay,O + 5Ax,05Ay,i2)} . (2.13)

ping (dax,00ay,0), @ diagonal hoppingdpx +10ay,+1), and one along the or y axis Oax,00ay,+2
anddpy00ax +2). This is illustrated in Figl_2]1.

Expressing the amplitude of the direct inter-layer hoppin@, 0) in terms of the amplitude
in k-spacd, which we have first used in equatidn (2.2) gives:

(2.14)

tgam:—i4qﬂ:—£

(2m)?

Values for the ratio of and nearest neighbour hoppihgppearing in the literature include
f/t =0.25/0.4 = 0.625 for YBCO (according td [38]) ant)/t ~ 0.3 for BSCO bilayers[[43].
We will usef = 0.2.
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Figure 2.1: Inter-layer hopping processes. We sketch the three typegestlayer hoppings.
The solid line labeled0, 0) corresponds to the direct terdny 0day,0. The dash-dot line labeled
(£1,+£1) corresponds to the diagonal termg, +1day+1. The dotted line labele(D, +2) cor-
responds to the terms along ther y axis, dax 00y, +2. For reasons of clarity, we only plot the

direct intra-layer hopping (dashed lines).

2.3 Method

The method used for approximating the ground-state properties of the system is VCA, which
is a variational extension of CPT. Theriational principle based on the self-energy functional
approach has been formulated by M. Potthoff [54]. By introducing additional variational
fields and “optimizing” the grand potential with respect to these fields, one can study broken-
symmetry phases, such as magnetism or superconductivity [48, 22 [49]. In the next three
Section, CPT, VCA and SFT are introduced.

2.3.1 Cluster Perturbation Theory

With the help of CPTI[24, 25], the single-particle Green’sdtion of strongly correlated elec-
tron systems can be calculated.
(a) The first step is to tile the lattice with identical clustevhere the cluster Hamiltoniathc

can be solved exactly, see Hig.12.2.
H= |'|CL + I'|inter-CL (2-15)

The single-particle Green’s function of a clust®fl, is calculated numerically, we do it by

Lanczos exact diagonalisatidn [55].



T
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Figure 2.2: CPT: Whole lattice (a) and tiled lattice (b). The circles densites with strong
correlation, the solid lines denote hoppings between ttes $0 be treated exactly, along the
dashed lines the hopping is treated perturbatively. Infigisre, the lattice is tiled with 2x2

clusters.

(b) By coupling the clusters within strong-coupling pertafibn theory at leading order, an

approximation to the Green'’s function on the whole lat@% " is recovered,

G1(2) = G(?'-(z);—l—'l' (2.16)
where T is a matrix describing intercluster hoppings (see e.g. Ref. [51] for details).

The CPT approximation consists in replacing the self-enefglye lattice system by the one
describing the cluster only. CPT gives very good results pectral functions, but it does not
allow for spontaneus symmetry breaking.

In order to study symmetry breaking phases like magnetissuperconductivity, a vari-
ational principle has been introduced in CPTI[48, [47, 51],chHeads us to the Variational

Cluster Approach.

2.3.2 Variational Cluster Approach

Doing a variational computation means to introduce pararsewhich are variated to obtain
a better solution. In variational CPT, these variationabpaaters multiply additional single-
particle operatorgy that are added to the cluster Hamiltonian, but are subtiantéhe pertur-
bation calculation. In order to find the optimum value of tnparameters, which we call one

looks for a saddle point of the grand canonical poteriial
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Q—-Qc(\)=Tr i (GC-(M)T)"

n=1

= TrInG®FT—TrinGCL(A), (2.17)

Sk

with T the temperature3C-(A) the cluster Green's function obtained té¢, (A), andGCPT the
approximatively recovered Green'’s function of the thergmainic limit (eq. [2.16). The cluster
grand potentiaQCL(X) at zero temperature is given lG;CL(X) = Eg(X) — uN, with theEg(X)
the ground state energy ahdthe total number of particles.

The self-energy functional theory (SFT, see Sedtion RiBtB)duces a self-energy functional
Q(Z), which is stationary at the exact self-enebggf the system. When restricting to the space
of self-energies resulting from the reference-clustes,sklf-energy functional can be evaluated
by eq. [2.1T7).

In summary, we have the following procedure:

e exact diagonalisation of the cluster HamiltoniagL(X) = HeL + Hy with added Weiss

fieldsH; = 3 AiAi, whereA; are additional single-particle operators.

e introduction of intercluster terms by first order perturbatcalculation, and subtraction of
Weiss fieIds:G_l(X) = Gcr (7\)_1 - ‘IA"(X). Here'IA"(X) contains the intercluster hopping

of the initial Hubbard Hamiltonian and the Weiss fields, thtdr with reversed spin.

e variational calculation: The condition is to find the statoy point on(X):

0Q

an =0 (2.18)

Improvements with respect to CPT:

(a) It allows for symmetry broken states.
(b) Variational hopping parameters can correct for theaisoh of the cluster from the rest of
the lattice in the exact diagonalisation.
(c) The use of a variational chemical potentigl; helps to simulate a smoothly evolving particle
density when doping the system by changing the chemicahpateL.

However, we have to keep in mind that the continuous partlelesity with doping is just
simulated, since the exact diagonalisation of the clustatiil done for a discrete number of
particles in the cluster. This leads to an overestimatiothefoptimal doping and of the super-

conducting gap, which can be overcome by the introductidratiisites/[56, 57].
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2.3.3 Self-Energy Functional Theory

The formulism of SFT is described in Ref._[54, 53] 52]. Here, WCA self-consistency con-
dition is derived in the SFT framework, mostly referring tof RB4]. One starts with a system

defined by a Hamiltonian, which contains interactiband one-particle parameters
H = Hp(t) + H1(U), (2.19)

and wants to find its grand potenti@} y and single-particle Green’s functid .
To do this, using VCA one has to solve the variational condjtieq. [2.1B). If the grand
potential is expressed as functional of the self-energypreergeneral form of this condition can

be written as )
Q¢ u [Z]
oz
This defines the stationary point of the grand potential astfanal of the self-energy.

But how does the condition ed.{2]120) justify?

= 0. (2.20)

First, one introduces the Luttinger-Ward functionay |G| defined in Ref. [[58], which maps
the dynamic Green’s functions to a static quantity. Evadadt the exact (physical) Green’s
function Gy described by the above Hamiltonian, it gives a quar(ii(tMGt7u] = @y which

contributes to the grand potential of the system via
Qtu =Py +TrinGy —Tr(ZuGru). (2.21)

The important thing considering the Luttinger-Ward fuootl dy [Gtu] is, that it contains
all information on the interactiob and is completely determined by it, and does not depend
explicitly ont (it can still depend on temperatufeand chemical potentiai).

A functional derivative of it with respect tG gives

15dy[G] -
g = (G (2.22)

which is again a functional of the Green’s function. Evadubat the physical Green’s function,
it gives the physical self-energy y of the system. The Luttinger-Ward functional is illustite

diagrammatically in Fig_2]3.

Eq. (2.21) can be verified by integrating oyeshown in Ref.[[54], or by a coupling constant
integration [58].
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Figure 2.3: Luttinger-Ward functionafby [G]. It was originally constructed diagrammatically,
see Ref. [[58]. Then the functional is the limit of the infiniteries of closed renormalized
skeleton diagrams. Dashed lines denote the interattiand double lines the fully interacting

propagatorss

To proceed with the proof of the condition ed._(2.20), oneeits the r.h.s. in eq.[(Z.22)
locally. This is possible unless the system is at a criticahipfor a phase transition. One
uses the resulting functionély [Z] to perform a Legendre tranformation of the Luttinger-Ward
functional

FulZ] = ®y[Gul[Z]] - Tr(ZGulz]) (2.23)

For the functional derivative with respectIoone finds

13Ry[E]
S - -G (2.24)
Now one defines the self-energy functioal [Z]:
. 1 .
Qtyu[Z] =Trin G_l_z—f—Fu[Z] (2.25)

Its functional derivative is ( using ed.(2124))

180u[3] 1_ _Gul3). (2.26)

T & Gt_Ol s

The root of the right hand side of this equation is a condif@rthe physical self-energy of the

system:
1 R
=Gy|Z 2.27

Giz u (] (2.27)
Thus, at the physical self-energy, also the r.h.s of[eq8jZRBould become zero,

13Qiu(2]

e (2.28)
g.e.d.

The above equation can only be solved using an approximdtdviCA, the approximation

consists in restricting the domain of the self-energieb@ftinctional using a so called reference



19

system, i.e. a cluster with some changes in the one-padmeators. The domain of self-

energies is thus restricted to the self-energies of thearbe system.

2.3.4 Parameters and Variational Fields Used in this Work

In this work, for the description of the reference systemadé the following variational fields
to the cluster Hamiltonian, which within VCA are just used for the determination of the

self-energy and then subtracted perturbatively [51]:

e staggered magnetic field

Hw = hw ¥ (~1)°¢¥clcio (2.29)
10
with Q = (Tt 1M).
e superconducting field
Hsc = hSCZ %(CiTCN—I—CjTCu) , (2.30)

)
where N is the form factor which determines the symmetry of the superconducting order

parameter, in our case d-wave.

e on-site energy

Hn = Svarz Nig (2.31)
10
which is needed for thermodynamic consistency [51].

The nearest neighbour hopping t = 1 sets the energy scale, and we take typical valuesU =8
and t' = 0.3t (see e.g. [89]). The inter-layer hopping is chosen to be t 2 0.2 close to the value
estimated for BSCO-2212 in [43].

2.4 Results

2.4.1 Phase Diagram

The phase diagram of the bilayer model witk- 0.2 is very similar to the one of a mono-
layer system only. It consists of a very broad stable amtifeagnic zone around half filling

= % [49,(22/60]. Here, the superconducting order parameteasris, and the particle density
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per site is 1. When going away from half filling, by changing temical potential, in both
directions (particle and hole doping) a d-wave supercomagi@hase forms (Figl_2.6). The
critical chemical potential where superconductivity aguseis different for particle and hole
doping. Moreover, doping in both directions at some poisteig's the antiferromagnetic phase,
see Fig[ 2b. Antiferromagnetism is more extended for garthan for hole doping. To simulate
this difference between particles and holes observed iareéxents, we have introduced the next

nearest neighbour hopping The spectral function at half filling
Ak, w) = —%ImG(k,oo) (2.32)

on the pattj(0,0), (0, ), (1T, 71), (0, 0)] in the Brilloin zone is shown in Fig.2.4.

7.5 7.5
= | 2N = | 2N
2.5 = 25| | # '-
w/t 0O 0
A p— . 25, e
5 | - 5| =
-75 -7.5
00 (Om (tm (0,0) 00 (Om (tm (0,0)
k, =Tt k,=0

Figure 2.4: Spectral function A(k,w) as a gray plot for the half filled bilayer Hubbard model.

Results are shown for the bonding (k; = 0) and antibonding (k, = TT) band.

It already hints an asymmetric behavour of particle and fitieg in the phase diagram,
since particles are expected to enter the Brillouin zonerat¢m/2, 11/2), while holes appear at
(T1.0).

At electron doping, the slope of the superconducting ordeapeter with doping is different
from the monolayer case, in fact one can see that first one indadpace becomes supercon-
ducting, and then the next one (Fig. 12.6(a) 2.8). At holeiry, the inter-layer hopping
seems to delay the superconducting phase transition, slags function of chemical potential.
Moreover, it shifts the range of densities, which are nolized, see Fig[2]6(b). Note that the
density is not a linear function of chemical potentigdnd not even a continuous one as shown

in Fig.[2.7. Our results indicate that phase separation canroln this case distinct phases with
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Figure 2.5: Antiferromagnetic order parametgkF) as a function of (a) the chemical potential
u, and (b) the density, for bilayer (black) and monolayer(red). The system is-filléfd in the
region aroungi=U /2, between 2 pu < 5.4.
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Figure 2.6: Superconducting order paramefgyc as a function of (a) chemical potentjabnd
(b) dopingn for bilayer (black line) and monolayer(red line). For certdoping ranges, only

two parameters were variateal[ forced to zero) (dotted lines)



22

1.2
1 ‘/
-
c 0.8 /
0.6 ) |
0 05 1 15 57 59 6.1 6.3

Figure 2.7: Particle densityr as a function of the chemical potentjalbilayer (black line) and
monolayer (red line). The dotted line is obtained using dwly variational parameterkgc and

€var- The discontinuities im are due to phase separation
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Figure 2.8: Spectral functionA(k, w) as a gray plot for electron doping, pt= 5.81. The
bonding k; = 0) Fermi sheet has already crossed the Fermi surface. Tarls,= 1 particles

are already doped into thretregion. The antibonding band is still above the Fermi level.
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different particle densities form next to each other, if alogeneous phase is not favourable at
a certain density. Then, the density averaged over a stiparr@vould be restricted to specific
ranges of values. The steps in density, which we obtain ascifun of the chemical potential,

hint towards such a phase separation behaviour.

2.4.2 Correlation-Induced Suppression of Bilayer Splitting

Half filling  The spectral function A(k, w) at half filling is plotted in Fig. 2.4l along the path
[(0,0), (0, 1), (T, 17), (0,0)] in the Brillouin zone. The spectrum shows the asymmetric behavior
of electron and hole filling produced by t’: electrons are expected to first enter the Brillouin
zone around (TT,0), while holes first enter at (1/2,71/2). The inter-layer hopping introduces a
splitting of the bands into antibonding and bonding band [38]. Without correlations we would

(k) (cogkya) —2cos(kya))2 .

expect the splitting of the bands to be 2xt Looking at the Brillouin

zone this means that along the diagonal ky = ky the two Fermi points for the bonding and
antibonding bands are exactly one over the other. When going away from this diagonal the
splitting grows until reaching a maximum near the (0, 1) and (11,0) points. In Fig. 2.9 we plot
the density of states of the bonding and antibonding bands at (0O, 1), which clearly shows the
inter-layer splitting. The splitting is approximately Ay = 0.32, which is reduced with respect

to the value Ag = 0.4t in the noninteracting case.

Optimal doping At optimal doping no bilayer splitting could be resolved in ARPES mea-
surements of BSCO-2212 [34]. In order to analyze this effect, the spectral functions for the
bonding and antibonding bands at (11,0) in the superconducting case are displayed in Fig. 2.11]
for optimal doping. The total spectral function of the optimally doped systershiswn in Fig.
[Z.10. Our calculations indeed suggest that the antibonding and bonding spectrum lie almost
exactly over each other.

Moreover it was found that the shape of the quasiparticle peak in the (11,0) region of the
optimally doped monolayer (BSCO-2201) and bilayer material (BSCO-2212) are similar [34].

This is also very well reproduced in our data, as can be seen in Figl2ZII|(b).

Overdoping Bilayer splitting has been measured by ARPES in several works (see. e.g.

[36], 34} 35, 37]). In heavily overdoped samples the splitting is suppressed much more in the
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Figure 2.9: Spectral functions for the k; = 0 (solid line) and k; = 1t (dashed) bands at (0, )

(maximum bilayer splitting) at half filling.
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Figure 2.10: Spectral functiorA(k, w) as a gray plot at optimal doping in the superconducting
state. The used chemical potentialis- 0.83, where we obtained the largest superconducting
order parameter.
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Figure 2.11: Density of states at the (0, TT) point for the optimally doped system. (a) bonding
(solid line) and antibonding bands (dashed) of the bilayer. (b) comparison of bilayer bands

(dashed) to the monolayer (fat solid line).

superconducting case than in the normal state, contrary to the naive expectation that a global
phase coherence below T¢ will enhance the c-axis coupling and thus cause larger splitting [36].
We checked these results by plotting the spectral function in the overdoped region [61] of the
bilayer Hubbard model both in the normal and superconducting state. These are displayed in

Figs. .12 and 2.13]

In Fig. .15 we focus on details of the energy splitting and plot its kj-dependence in the
overdoped region. Our results suggest a reduction of the splitting at (0,17) by about 30% in
the normal and by about 70% in the superconducting phase with respect to the tight-binding
model. Moreover, in the superconducting phase also the k| dependence is modified. This larger
suppression in the superconducting phase is in qualitative agreement with experiments [36].
In order to disentangle the effects of correlation from the ones due to the superconducting
gap, we also display results obtained for U = 0 by introducing “by hand” a superconducting
symmetry breaking field equal to the one obtained variationally at U = 8, for the whole spectral

function see Fig. 2141

As one can see from the figure, the superconducting gap only produces a small (about 10%)
reduction, which is uniform in k. The anomalous behavior of Fig. 2.15]is thus essentially due

to correlations.
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Figure 2.12: Spectral function A(k,w) as a gray plot in the overdoped (p= 0.43) region in

the superconducting phase.
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Figure 2.13: Spectral function A(k,w) as a gray plot in the overdoped region in the normal

phase.
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Figure 2.14: Spectral functiom\(k, w) as a gray plot fod =0, u= 0, imposed superconductiv-
ity (like in heavily overdoped solution). The splitting at, Q) is herex~ 0.35%, which is already

reduced from the pure TB case.
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Figure 2.15: Energy bilayer splitting A along the line connecting (0,T) and (11/2,11/2) in the
normal and superconducting state in the overdoped region (crosses and lines with errorbars).
Results are compared to the splitting for U = 0 (solid line). In the superconducting phase we
also display results obtained for U = 0 by introducing “by hand” a superconducting symmetry
breaking field (dashed line, empty squares). At some positions in k-space the band is splitted
in two features which present different bilayer splittings. For these K points we also show the
second value of the splitting, shifted to the right for clarity with thin errorbars. The errorbars

represent the estimated error due to the uncertainty of the peak positions.
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The values of the splitting for U = 8 plotted in Fig. are obtained in the following
way: In the normal state there is just one prominent dispersing peak for each k; defining a
bonding and antibonding band. The k| dependent splitting is defined as the distance between
the maxima of these peaks for k; = 0, 1T, see Fig.

2.5 ‘ ‘ ‘ 14 — ‘ —
12

11
308
S3
=06

0.4

w/t

Normal state Superconducting state

Figure 2.16: DOS for overdoped system at the antinodalmjOpoint in k-space. Bonding
(solid line) and antibonding (dashed line) bands. We haweddhorizontal lines to illustrate

the distance between the maxima, which is the bilayer sgitt

When going away from the antinodal point, each quasiparticle peak first broadens, which
introduces an error in the determination of A, and then evolves into a two peak structure,
which resembles the peak-dip-hump structure that is observed in ARPES [36]. Measuring
the distance between the second pair of peaks gives a second set of data points, which is
also displayed in the Figures. For the superconducting state we plot the splitting for the
quasiparticle states below the Fermi level. We have checked that it very close to the splitting

of the mirror states above it.
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2.5 Discussion

The simulation of a complex solid state using a simple moadel solver in our case leads
to spectral functions and a phase diagram that are in guaditagreement with experimental
results. In this section we want to point out, where we havderapproximations and with

what effect. We distinguish between approximations madiéyhoice of the model and those

introduced when solving it using VCA.

2.5.1 Physics to Model

(1) Map to Hubbard Model As pointed out in Sectioh 1.3, we use a single-band Hubbard
model to describe the complex happenings in the £la@ers of HTSC. This surely is a strong
simplification, which has however already been used by maoyps, and leads to qualitative
agreement with experimental resultsl[21}, 22, 23]. Moreawely the CuQ layers are included

in the simluation, neglecting the additional rare-eartkransition-metal atoms. These are gen-

erally assumed to merely act as charge reservoirs.

(2) Neglecting the Inter-Cell Hopping In z-direction we only consider the hopping between
layers in one unit-cell, but not the hopping between diffiérenit cells. We thus in fact describe
a pure monolayer or bilayer, and not the 3D compound. The-o&k hopping that we neglect
is known to be much smaller than the inter-layer hopping, tduthe larger inter-cell Cu-Cu
distance, resulting in weak but non-vanishigglispersion[[30]. If the extension of supercon-
ducting solid inz-direction is large, the inter-cell hopping leads to a beyadg of both the

bonding and the antibonding band, thus reducing the bilgsprsize.

(3) Form of the Inter-Layer Hopping We have simplified the inter-layer hopping, as de-
scribed in Section 2.2.1. In fact, the inter-layer hoppig hot the same form for all bilayer
HTSC compounds, we opted for a simplified version of the dep@mtained by ab-initio calu-
lations for YBCO [38]. A more recent description of the bilaggptitting in Bi-2212, based on

experimental results, can be found in Ref.|[30].

(4) Neglecting Disorder We model the superconducting compound at temperatu®, thus

neglecting temperature effects, like the thermal flucturegtiof spins or lattice sites. Here we are
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interested only in effects at very low temperatures. Moegowe neglect phonons, which are

believed to play an important role in high-$uperconductors.

2.5.2 Solver

We now come to the systematic deviances introduced whemgdive Model.

(1) Restricted Cluster Size The lattice is tiled with clusters, and the inter-clustepping
processes are treated only perturbatively. This leadsite Bize effects. One important effect
is the discrete steps in cluster filling. In a 8-sites clyssly fillings of 3, 2, 3, ... are treated
well, since the exact diagonalization of the cluster is matle an integral number of particles
in it. This leads to steps in the density vs. chemical potéotirve. We have used a variational
chemical potentiaty to correct for this finite size effect. This however leads nooaeresti-
mation of the optimal doping and superconducting orderrpatar, as described in Réf.[56].
Another possibility to avoid the discrete density lies ie thtroduction of bath sites[56, 57].
These additional sites, which can be regarded as additpamameters in the reference system,
allow for continuous filling at the cluster level. Their ingohentation and use in VCA does
however lead to a substantial additional complexity, asathtbor has comprehended from her
attempts to take advantage of them. The main problem is thigg number in variational

parameters that arise.

(2) Perturbative Treatment of Inter-Layer Hopping We have tiled the lattice with clusters,
which contain sites of one layer only. Therefore, the imdger hopping is included only per-
turbatively. ForU = 0, this would still lead to exact results, but we work at highrelation
energieslJ = 8. Treating the inter-layer hopping only perturbativelyedmnly justify if it is
small. This is certainly the case, regarding the severel@molbo resolve the bilayer splitting

experimentally, see e.d. [62,163,36] 64].

(3) Finite Number of Clusters For an optimal resolution of the spectrakispace, one needs
to take into account infinite lattice sites. We do however arslg a finite number of clusters,
and apply periodic boundary conditions at the end. In thetianal calulation we used 1818
clusters in thex,y plane. The optimal values of the variational parameterseapected to

converge fast with number of clusters. For the calculatioth® spectra, we have increased the



31

number of cluster to improve the resolution of the Greenrgfions and spectral functions in

the Brioullin zone.

(4) Subset of Self-Energies In VCA, the self-energy of the physical systeiyy is approxi-
mated by the self-energy of the reference sysigmwith changed one-particle operators. One
searches for a saddle point of the grand potefig the subspace of the possible self-energy of
the reference system. Only a variation in all one-partiel@meters (even dynamic ones) makes
the trial self energies fill the total space of self energi¥s.use a reduced space of self energies,
since we have restricted to three (sometimes two) variatiparameters. A consequence is that
we can find only symmetry-broken phases, which we have iredund our simulation. In fact,

there could be other phases, like the stripe pHase [65].

(5) Choosing the Right Saddle Point The solution is a saddle point @. There can however
exist more than one solution in the subspace of self-eredgtermined by the variational
parameters used. A systematic analysis of the quality aiityaof solutions (stationary points
in Q) obtained with VCA is found in Ref.L[66]. In this work, we can fiadsuperconducting
solution, and a trivial normal-state solutioms¢c = 0). We consider here the superconducting

solution, since its ground state energy is lower.

2.6 Conclusion

We have studied the bilayer Hubbard model by means of the Variational Cluster approach, a
method appropriate to capture short range correlation in strongly interacting lattice systems.
As expected, the interlayer hopping splits the spectrum into a bonding and an antibonding
band. However, the corresponding bilayer splitting is strongly renormalized due to correlations.
This is evident in the overdoped case in both the normal and superconducting phase. In
qualitative agreement with ARPES measurements the suppression effect is stronger in the
superconducting phase. We also found a changdddependence of the bilayer splitting in the
overdoped superconducting sample, where the splittinigliasge between aroun(f, %"), but
strongly renormalized around the anti-nodal and nodaltpoiBurprisingly, for optimal doping,
the bilayer splitting vanishes completely, as found in ARPES [34]. The phase diagram is only

slightly changed from the monolayer system.
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Chapter 3

High-T . (Bi)Layer in Non-Equilibrium

3.1 Problem Statement

An area of research that recently drew renewed attentidreiie¢ld of correlated quantum sys-
tems out of equilibrium. As an application, we want to tredhia layer (mono/bi-layer) of
high-T; superconducting material where metal contacts are atteahe a voltage applied, as
shown in Fig. [31l. When a constant voltage is applied, afterestme a steady state evolves.
This steady state should not depend on the start parameiensae.

Many questions arise when treating such a setup: Will thera \wltage treshold, below which
no current flows? Does the superconducing state in the mygerotarvive the attachment of
electrodes, and application of voltage? How large is thigcativalue for the current (electric
field), that is, the current (field) where the superconduairtgr breaks down?

We want to study this problem using an extension of the Vianal Cluster Approach (VCA)
described in Section 2.3.2. By expressing the non-equilibsreen’s functions within Keldysh
formalism, the VCA can be generalized into a non-equilibreapable variational approach.
The model Hamiltonian we map our problem onto is motivate8iention[3.8. However, to start
with, we want to review the status quo of non-equilibrium pdvaena with superconductivity

in theory and experiment.

3.2 What has already been done?

In strong connection with our problem stands the c-axisspart in high-T materials, which is

a long standing issue. C-axis charge conductance has be¢edtiexperimentally [67, 68, 59,

33



34

3D Cross section

Figure 3.1: Scheme of the non-equilibrium setup discussed in thissh@sie left figure shows
the 3D view. A voltage 2u is applied to a thin interacting region over two leads. Onrtgbt
hand side, the cross-section along the)plane is illustrated. The central region (pink region,
C) is enclosed by two metal leads(dark and light cyan - R andeb)pty (full) circles denote
uncorrelated (correlated) sites. The leads are charaeteby a tight-binding Hamiltonian with
nearest neighbour hoppirtg and an onsite energgi,r for the left (L) and right (R) lead,
respectively. The interaction between central region aads consists of a nearest neighbour
hopping, called hybridisatiow, which conserves thievector in the(x,y)-plane, denoted. In

the central region, the Hamiltonian contains nearest ardmearest neighbour hopping’ and
additionally a strong onsite interaction, described by &b&rdU. The central region onsite
energyec is used to fix the density & = 0. The 2x 2 cluster that we treat exactly, is encircled
by a dash-dot line, and extends 2 sitey igdirection. We distinguish hoppings treated exactly

(solid lines) and perturbatively (dashed line).

[70] and theoretically [71, 72, 73,774,175) 76], dee_3.2.2 [aid33espectively. In Section_3.2.4
we review the picture of high-<Tmaterials as stacks of Josephson junctions [777, 78, 79, 80].
Most recently, the field effect has been used to influencelihege density in different materials
and induce a insulator-superconductor phase trans(tityigs,[83/ 84]. We will refer to this
work in Section[3.2]5.

3.2.1 NSN junction

Our setup (see Fig_3.1) is similar to that of a 2D normal cetalu superconductor - normal
conductor, short: NSN, junction, but with a very thin layésaperconductor (a monolayer or

bilayer) in the center, we will refer to it as NnSN, the smatlenoting nano. Transport proper-
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ties of NSN junctions have been measured by the authors of[B€J. They report an increased
current at almost zero bias, which they attribute to interfiee of conjugate electron-hole pairs
and call the zero bias anomaly. Moreover, they find resistgeaks above the normal state
resistance at bias voltages above/2, whereA denotes the superconducing gap, and e the

electron charge.

3.2.2 Measurement of C-Axis Transport Behaviour

Resistivity of a superconducing compound is usually meabyeappling voltage to electrodes
attached to the material to be studied. In the normal stagec{axis resistivity is much larger
than the ab-axis one, and its temperature dependence i/reesticonductor-like, in contrast
to the metal-like ab-axis resistivity. Below the transitimmperature, the resistivity is zero
along both axes.

Moreover, the number of interacting Cu@yers per unit cell seems to influence the c-axis re-
sistivity: Measurements of the temperature-dependerdtrgses of Tl-based cuprates yielded
a semiconductor-like temperature dependence for bilaydraamore metal-like behavior for
monolayer (TI-2201) materiald_[68]. A complementary meiho find out more on the c-axis
properties is to measure photon conductance, as descrildeefi [69]. For more details the
interested reader is referred to the review arti¢lel [70itlext“Sum Rules and Interlayer Con-

ductivity of High-Tc Cuprates”.

3.2.3 Theoretical Work on the Topic

The main facts on c-axis conductivitg(w, T) in superconducting compounds in the normal
state can be summarized in the following way![71]):

It strongly depends on the compound.

It is very low (below the minimum metallic conductivity exged).

It has a positive derivative in temperatude:/dT > O.

There seems to be no Drude-like term in the electronic dautinn too¢(w)

Among the possible explanations it has been proposed:

(1) Charge carriers in the normal state of cuprate superadodumoving along the c-axis are
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damped because of the interaction with c-axis phonons [72].

(2) Some authors argue that the electrons in the Lla@ers can be described as Luttinger
liquids. The Luttinger liquid behavior of the CyQayers generates the incoherence in the
tunneling process. The momentum in direction normal toniterface is not conserved [71].
Ref. [85] describes the coherent “ab” and “c” transport theafrhigh-T. cuprates within a
bipolaron theory. The c-axis behaviour has also been de=stin terms of two Fermi liquids
(for the CuQ layers), coupled by an inter-layer term_[74]. Contributiagaghe inter-layer
Hamiltonian come from quasiparticle hopping), impurity scattering and bosonic scattering.
This inter-layer hamiltonian was expanded to second otdesjmulate the incoherence that
was expected. The results agree with experimental findengsthe upturn of resistivity with
decreasing temperatuiie is argued to be due to the freezing-out of the inelastic -lager

scattering.

3.2.4 Stacks of Josephson Junctions

The Josephson effect evidences the coherence of the sandantimg phase in a material, and
has been used to check for the overlap of the superconduartiley parameters between differ-
ent materials, e.g. see [77]. It will allow a current of sugmerducting pairs to flow through
a superconducting - insulator - superconductor (SIS) jancif the order parameters overlap.
Experiments described ir_[78,]179] show that higlstiperconductors behave like stacks of SIS
Josephson junctions, where the adjacent £pi@nes represent the superconductors, and the re-
gion in between acts as insulator. The current-voltageadhearistic of high T superconductors
can be described by a series connection of highly capagitietions. We deduce that, in the
superconducting state, the tunneling of pairs contribstiengly to the current.

Other experiments featuring the Josephson effect in higltuprates include the work by
O’Donovan et al. in Ref.[[80].

3.2.5 Phase Transition by Field Effect

Most recently, the field effect has been used to influencelthsge density in different materials,
usually parent compounds of the highsuperconductors, to induce an insulator-superconductor
transition [81/8P2] 83, 84]. Different groups applied a gattage to shift a superconductor

from the underdoped to the optimally doped regime. In thgieeimental setup, there is no cur-



37

rent flowing through the superconductor in c-direction ia steady state , which distinguishes
this setup from our simulation. Another interesting expemtal setup has found light-induced

superconductivity in stripe-ordered cuprate material].[86

The work that comes closest to our simulations, describesypiplication of fluctuation ex-
change [[817] or FLEX+ Keldysh to a thin superconducting layer between two metatamis.
The authors of Ref.[ [88] work in the wide band limit, and use &bhard model witiJ /t =4.5

and no next-nearest neighbour hopping as central region.

3.2.6 Relevant Aspects

There are different contributions to the scattering-matpresenting an NSN junction: trans-
mission of an electron, Andreev reflection, normal reflectad an electron, consult[_[89] for
more details. The different mechanisms have different tzatpre dependences, leading to a
total temperature dependence of the total current. Ourlation is done at temperatufie= 0.
This excludes thermal fluctuations and we can focus on tleetdf the electric field and c-axis
current. Because of the tiny size of the superconducting@neigi our simulation, Andreev scat-
tering [90] should not occur, and we thus also do not expecténo bias anomaly to appear in
our simulation.

A normal material in contact with a superconductor is expetd show a small superconducing
order parameter, because of the diffusion of Cooper paiosigir the interface. This proximity
effect has first been described by Meissner in 1960 [91]. JTinuke setup we describe, Cooper
pairs can tunnel between leads and central region, reguitia Josephson current.

The break-down of the superconducing order parameter beczithe c-axis current can orig-
inate from two effects. On the one hand, one can expect thersoipducing order to vanish
at a critical c-axis current, since a normal current flowing through the superconduayegr
generates a magnetic field, which breaks the Cooper pairsdiedly for high T. materials,
because in this case the coupling presumably happens bfisgimations i.e. magnetic excita-
tions). Another effect is the disruption of supercondu@ngder by motion of the charge carriers
moving perpendicular to the superconducing layer. Theseetffects eventually break down
superconductivity. In our simulation, we neglect the maignield generated by the current

between the leads and instead focus on the many body effatis charge carriers themselves.
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3.3 Map to Model and Organisation

The problem to be solved involves a very thin layer of highmaterial between two metal
contacts, where voltage is applied, as shown in Fig] 3.1. ¥8eribe the thin layer of highgT
material theoretically by the Hubbard model on a squaré&céatin the(z = 0)-plane, as we
have already done in equilibrium in Sectibn]1.3. For thede#ight-binding Hamiltonians with
different chemical potentials at timee= —co are used. To simulate the hybridisation between
superconducting layer and leads, we introduce at tiraetg a single-particle hopping iz
direction between the superconducting layer and the edgeedéads. The full Hamiltonian is

thus

whereHc denotes the Hamiltonian of the superconducting layigg the left/right lead Hamil-

tonian and Hrc + Hey ) the hybridisation turned on ag.

3.3.1 Model

The full Hamiltonian is illustrated in Figl_3.1, details agiwen in the corresponding caption.

Leads

For the description of each lead, we use a nearest neighightrbinding (TB) Hamiltonian,
defined on a semi-infinite cubic lattice with open boundanyditions, infinite in(x,y), with the

edge az = +1:
Hur=—tL ) ( de-l-d di) + (ELr — MUR) Y M, (3.2)

B |
with di(diT) the annihilation (creation) operator on lead sitend j, my = ddei the particle
number operatogy ;g the chemical potentiak jr the onsite energy artgd the hopping ampli-
tude which is the same in both leads. Additionally a sum oper s understood. To describe
non-equilibrium, we use different values of chemical pttny R in the left L and right R
lead. In this work we apply voltage by shifting both the oashergy and chemical potential
by the same amount in one lead, and asymmetrically betweetwit leads. Therefore, for
W =€ = —MR = —€R, a total voltage for & is applied.

The leads are very large with respect to the central inteigecegion, and thus their state far
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away from the central region remains identical to the state=a—~. The Green’s functions
for the semi-infinite cubic nearest neighbour TB model canltitained analytically [92], as we

will point out in [3.8.

Central Interacting Region

The central region consists of a thin layer of supercondgetaterial, described by the Hubbard

Hamiltonian on a square lattice in twe y)-plane, which has been introduced in Section| 1.3:

Hy = —t {Z Z(c;rocjc + c}rccio) +t' (Z} Z(CiTono- + c}rocio) +U S mignj + (Ec — Ke) ) Mio,
ij) o ({i5)) ° ' o
(3.3)
in standard notation. Here we also add variational parasatzording to the VCA procedure.

We setyc = 0 in all calculations and us: to fix the density of the uncoupled central region.

Interaction of Leads and Central Layer

The Hamiltonian connecting leads to central region is

Hicicr=-V ) (c'dj+dcj+dci +cld, (3.4)
7>

with the hopping amplitude between leads and central regiodenoted hybridisation, and
< 1] > nearest neighbours terms across the interface. Additipreasum over sping is un-

terstood. We note that there are only “direct” terms in thybridisation, i.e. the hopping is
only in z-direction. Moreover, the hybridisation is translatiomanant the(x, y)-plane, and thus

preserves thi-vector in the(x,y)-plane, denoted .

3.3.2 Procedere for Solution

To solve the problem defined by this Hamiltonian, we use VCAadpace of non-equilibrium

(Keldysh) Green’s functions. Specifically, we proceed i fibllowing way:

e We solve the lead HamiltoniaA jr exactly att = —oo, where each part of the system
(L,C,R) can be considered separately in equilibrium, to olitaé corresponding Green’s

functionsgy/r.
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e We introduce variational fields in the central region Haamilan to have an initial state
that is ‘close enough” to the steady state that will evoluee tb hybridisation with the

leads, and calculate the Green'’s functgen

e We couple the Green’s functions of the leads to the centgabneGreen’s function by
CPT, using a Dyson equation. This has to be done in the Kelgyastes since the chemical

potentials where distinct at= —co.

e We repeat the procedure with different initial states, bgrgding the variational parame-

ters, until the variational condition described in SecBoh0.2 is fulfilled.

3.3.3 Organisation

In Chapter (2 we have first presented the problem, and thendintesl the methods before
presenting the results. Here we want to proceed in a simégr lut, since there are many new
instuments that we need, we have decided to tackle the pnoiblesmall steps. This means,
that we will introduce the ingredients to our simulation maler portions and blend in simple
applications where appropriate. In this way, we will evateg method slowly and equip it with
further details where necessary.

The setup we describe is infinite {®,y) from the beginning. We first restrict to the case of
a non-interacting 2D TB central region, and then introduee lybridisation to the leads to
recover the three dimensional (3D) TB model in equilibrie¢tion[3.7.1). Applying voltage,
we study the current vs. voltage characteristics and how dlepend on the lead bandwidth.
Moreover, we investigate how the particle density in theti@@megion behaves with respect to
voltage. For the noninteracting case, results are exaeteMer, obviously no superconductivity
sets in. Therefore, in a next step, the interactibrs introduced in the central region, and we
show in Sectior 319 how the current vs. voltage charactegbfinges because 0f

We use VCA to improve the description of the central regiomhwipplied voltage, with respect
to the results obtained by CPT coupling of leads and centgame Thus, in Section_3.10,
we generalize the equilibrium Euler equatién (2.27) to iwbtavariational condition for the
non-equilibrium setup. Then we are finally able to tackleftrenulated problem: We describe
a superconducing layer between metal contacts with appbéidge in the steady state. The

results are presented in Section 3.12. In addition, we gdptydahe method to a bilayer central
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region. In the end, we summarize and discuss our resultseoNri$N junction.

Before even starting with the description of non-equilibrigetups we need to introduce
non-equilibrium Green’s functions, which we do in Sectlodl. 3n Section[315, we show how
to describe a probe between contacts using CPT and Keldystalism. Especially the c-axis
current is an important observable in such a setup. We wititrae how it can be obtained. In
order to calculate current and density, one needs to peddraguency integration over Green'’s

functions. How this can be done numerically in Keldysh spadaid out in Sectior_3.11.

3.3.4 Expectations

We want to investigate how c-axis current, superconducindgr parameter and density in the
central interactingz= 0)-plane depend on the applied voltage and on the properttbe t#ads.
We expect the c-axis current for the interactibig=€ 0) and superconducing central region to be
smaller than fotJ = 0, because of the gaps opening due to correlation and sujokrcivity.
Moreover, the attached leads have a certain spectral @matihich we expect to influence the
central region.

Much work has already been done regarding a small, mostby peione-dimensional, interact-
ing region in non-equilibrium [93, 94, 95, 96,/97, 98] 99, 1001,/102]. In this work we focus
on two aspects of the problem,

(a) the fact that the interacting region is lies on a squdte&eda thus the system is translation
invariant in the(x,y) plane,

(b) the variational procedure that is necessary to dessyitvenetry-broken phases in such a 2D

interacting region.
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3.4 Keldysh Formalism

We want to describe a system, consisting of two semi-infiesels coupled to a relatively small
interacting central region. At time = —o, both the left L and right R lead have their own
chemical potentialy ;g and the hybridizatiov to the central region is turned off. At tinm,

V is switched on. We want to calculate expectation values efatprs in the steady state that
evolves after some time.

In contrast to a non-equilibrium system, an equilibriumtegsis characterized by a well-
defined chemical potential, and perturbations are turnezhdroff adiabatically.

We present a superficial introduction to Green'’s functionganeral and the Keldysh formal-
ism, and refer the interested reader to standard textbaokedopics, like[[103] for equilibrium
Green'’s functions, and [102] for non-equilibrium.

Green'’s functions above all consist of expectation valuesvo operatorsA(t) and B(T')
at different real timeg, 1/, spins and places. We are presently only concerned withdeahp
variables, and thus suppress all other variables (spapi, . . . ).

In equilibrium, such an expectation value of the prodtB(t')A(T)), with time ordering
operator7, can be written as
(=00 TB(T)A(T) | =) _ (oo TB(T")A(T)S(o0, —00) |—0)

(—oo| —c0) B (00| K00, —00) | —00) ’

with the time evolution operatd®(t’,t). When going from the central expression to the right-

(TB(T)A(T)) =

(3.5)

most, we have used that in equilibrium the system is in theesstate at = —co andT = oo,
|oo) = |—o0), @apart from a phase. Since the phases introduced in nomisadocdenominator by
the time evolution of the ground state cancel, one can eeaitplate{7B(T')A(1)).

T

—00 - C1
- > © % = “Tpy C

normal time axis Keldysh time axis

Figure 3.2: Normal to Keldysh contour. The time line is folded back-te, with each time

now additionally labeled by the side of the contayyc, it belongs to.

Out of equilibrium, the system does not necessarily rel&x tine state at-o, so the states

|oo) and|—o0) are not just different by a phase factor.
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To be able to calculate expectation values, we employ thdysal formalism, which is de-
rived e.g. in[1[102] and [104]. Essentially, the time lisefalded to form a new axis in time,
called the Keldysh contour, which is displayed in Fig.] 3.Beifl the time evolution can be per-
formed from(—oo| to a specific timay and back tg—). Following this contour, the (contour

ordered by7c) expectation valuéZcB(1})A(T1)) can be expressed as

(TcB(T)A(T)) = (—oo| TeS(—001,T1)A(T1)S(T1,T1) B(T1) (11, To1) S(Th1, Top) S(Thp, —02) [—0) ,
(3.6)

where11(12) denotes that belongs to side 1(2) of the contour. We conclude that Green'’s
functions, containing expectation values of the kind in &}8), now depend additionally on
the side of the Keldysh contour of times’. The dependence on the side on the contour can be

folded into a 2< 2 matrix, so that each Green'’s function can be written as

G(t,7) = Gltm) Gt t) (3.7)
’ G(12,T;) G(12,Th)

These four parts are not independent, and by perforriing Lo3GLT, a transformation in
Keldysh space and rotatiHﬁescribed in Ref [105], one can obtain the Keldysh Greems-fu

tions, which contain only three, linearly independentigqar

GR K
G= 0 o) (3.8)

Keldysh Green’s functions can be written in several waysafi@rnative conventions see Réf. [105].
In this work, we use the Keldysh Green'’s functidgdsn eq. [3.8), containing the retarded, the
advanced and a “Keldysh” compone6i}, G*, GK respectively. The retarded compon&ftis

defined as

GRa(T. ) = ((A:B(Y)))"™ = ~ie(t—1) ([A[),B(T)] _, ). (3.9)

with € = —1 for fermions and+1 for bosons. The general expression for the “Keldysh” com-

ponent is

GEp(t.T) = —i (JA(T). B(T)]:). (3.10)

IL= -1 (6°—i0?), andd' fori = 1,2 3 denote the Pauli matrices in Keldysh space, ahthe unit matrix

1
V(2
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In the steady state (or in equilibriunty should only depend on the distance in time. Fourier
transform then allows to express the Keldysh compone@‘as: GRf — fG*, where in equi-
librium and for fermionsf involves the fermion distribution function [101]

fe(w) = 1— 2 (w) :tanh<%l> (3.11)

3.5 CPT plus Keldysh

Usually, CPT is used to handle connected identical clustersye have described in Section
[2.3.1. However, it can also be used to treat connected remtigél clusters. The setup of the
problem we want to address is sketched in FFig] 3.3 (a) anddiresponding Hamiltonian is

found in eq. [(3.11). Left and right lead are semi-infinitezidirection, while the central region is
a mono(bi)layer. Interaction between central region aaddgakes place on two 2D (infinite)
planes, as illustrated in Fig._3.1. The single-particle Hi@mmian matrix for times after = 19

is sketched in Fid._313 (b).

Note that att = —o the chemical potentials are different for left and rightdeand we thus

have to resort to Green'’s functions in the Keldysh spaceghwwve denote by an underline.

HL % o
Hig Heh
0 e ﬂ e %
(a) system % Hr R
(b) Hamiltonian matrix (c) %o

Figure 3.3: Clusters with differing Hamiltonians to be treated with CRil{d) we have sketched
the system to be addressed. In (b) we schematically shovintje garticle Hamiltonian matrix

and in (c) the unperturbed Green’s functions for the de@alipystem at = —oo.

If the many-body Hamiltonian matrix is not too large, one ¢alty diagonalize it. Other-
wise, if the inter-cluster hopping is small, the method obick is to use CPT, i.e. treat the

hybridization between the clusters perturbatively. Wedlalte the Green’s function for each
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cluster HamiltoniarH; (i =R,L,C) separately, to obtain the unperturbed Green’s fundtio
Keldysh spacgo made up of they;, see Fig[ 3.8 (c). In our case, the left and right lead are in
fact semi-infinitely large and so their Hamiltonian matisx As already pointed out in Section
331, we use the exact analytical Green'’s function for thges of the leads at= —». To
obtain the Green’s function of the central interacting oedic, one has to solve a many-body
problem.

We then introduce the hybridization between the regions pgrturbation calculation:
G t=g,'— (Tic+Tcr), (3.12)

where Green’s functions aﬁfﬂ_c and@ are matrices in lattice sites, spin, Keldysh space and
two time variableg, 1. The matrices containing the inter-cluster hoppm, are diagonal

in Keldysh space and constant in time. The usual equilibmoatrix is used for the retarded
and advanced component, while the Keldysh component isyempt

In the variational calculation (described later), one sdedestrict to the central interacting re-
gion. Thus, we only calculate the full Green’s function af tentral region, using the following

equation:

>
>
>

Ge =gc+0c(TeL oL Tic +

rROR Trc) Gc, (3.13)

whereGc, gc are matrices in the space of central region sites, spirisKeldysh space.

Like in equilibrium, we have additionally tiled the centragion with 2x 2 clusters l x ly),
and perform a Fourier transform in the superlattice, bezafigts translation invariance. This
procedure is well described in Ref. [24].

Then Gc, gc, Ter, TeL .- .gur are relatively small matrices in cluster sitasy’, spin and
Keldysh space. On the other hand, one obtains an equatigpegq. [(3.113) for each superlat-
tice K-vector, the superlattidevector in the(x, y)-plane. The in-plane inter-cluster hopping in
the interacting region is taken into account by the hoppiadgrixT, like in equilibrium (com-
pare to eq.[{Z2.16)).

Eq. (3.IB) can also be written in form of a Dyson equationhiit= 5 < g Tc; gj Tjc:

Gel=gct-T-% (3.14)
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3.5.1 Steady State

In non-equilibrium, Green’s functions usually depend ongst andt’, so generally

Glt.t) = GR(1,7) GX(1,7) (3.15)
0 GA(1,T) '

We want to investigate the steady state, when Green’s fumeiust depend on the distance in

time G(1,17') = G(1—1'). Then eq.[(3.14) can be Fourier transformed to obtain
G Hw) =g Hw)-T-2(w) (3.16)

which can be solved independently for each valuev.of
When considering only a single free level as central regioee@s function, one can easily
understand that the effect afw) is that of a shift of the excitations by Réw), and that of a

broadening of the excitations gfl(w) provided for by I (w), thus changing their lifetime.

3.5.2 Current

In non-equilibrium, the evaluation of the current flowingween different sites is of great in-
terest. For a detailed derivation of the formula for the eaticalculation we refer the interested
reader to Ref[[102].

The current flow j from a sitej, where particles are created (annihilated)jgimj), is described

by the time evolution of the particle number operator on gite

= —eldld; LI 3.17
j=—e5djdj=—ei[H,——]. (3.17)
H denotes the Hamiltonian of the full system and e the partiblerge. Using this, one can

derive an expression for the current between gaead site [102],
e
lij = Evji ReGﬁ, (3.18)

WhereGﬁ is the Keldysh part of the Green’s function connecting sitesd j, Vij denotes the
corresponding hopping amplitude, and e is the charge ofdhec|e.

We do not solve the full Hamiltonian exactly, since it is t@oge. Instead, we use CPT to
couple the leads to the central region. To calculate theentitsetween sitesand j, wherei

belongs to the left lead L angto the central region we make use of the Dyson equalfionl(3.12)

G = (GRV ¢ +GEV oY) = (GcV )" (3.19)
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Restricting to the steady state, one finds that for a smaltalertgion, which is dominated by

the leads

dw—

l=e [ > T(WVL(@VR(W)(fr(w— ) — fr(w—HR)), (3.20)

with v (vr) the density of states in left (right) lead arfigl the fermion distribution function.
T(w) is the transmission coefficient of the central region, defibe T (w) = 412V*4|GR(w)|?.

At temperaturel = 0, the fermion distribution function becom@gu — w), and we conclude
that for current flow, the leads DOS need to overlap betwgeandpg, as shown schematically
in Fig. [34. In the next section, we want to find out what hagpenthe current and CPT

equations in our specific model.

@1=0 (0) Imax (c)1=0

Figure 3.4: Schematical illustration of current on voltage dependdocdB leads. The grey
DOS regions denote occupied states. Ap)= 0: Maximal overlap of the left and right lead
DOS, i.e.vi (w)vr(w) > 0 in the wholewrange. The resulting current is however zero, because
no voltage is applied\p = 0), and there is no difference in the occupation in the legdsy —

M) = fr(w—pRr). (b) Ap= 2t : Maximal contribution to the current from the leads, since f

0 < w< 2 theright lead is occupied and the left lead is emptyw— ) — fr(w—pr) # 0.

(c)Ap = 4t : No current can flow, because there is no overlap of the desgit (w)Vr(w) =0

3.5.3 Implications of Our Specific Setup

For most of our calculations we use a monolayer central regibhen, considering that the
hybridization is perpendicular t(x,y), the above formulae can be further simplified. Let us

write the Dyson equatiof (3.1L3) in the space of sites of timérak(x, y)-plane,

eLR X
Ge H(r,r,w) = gc H(r,r,w) —T(r,r') - Z S T(rnr)g(r" r" )T, r).  (3.21)
e T
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The hybridization between leads and central region in[ed)) (8 diagonal in the space of lattice
sites in thgx,y)-plane, independent of and identical for left and right leally, =Vr=V. Then
what remains of the sum term on the right hand side ofleq. (3s21;c; gV g (r',r,w)V, and

we find:

Ge (rr',w) =gc (', w) —T(r,r) = Vg (rr, @V —Ve(r, wV. (3.22)

Since the leads Green'’s function is obtained exactly anslignanslation-invariant in the, y)-

plane,

G H(rr,w) =gc Hr,r,w) = T(rr) Vo (r—r 0V -Vg(r—r,wV. (3.23)

When the central region Hamiltonian can be solved exactly, éog. forU = 0, it is also
translation-invariant in(x,y), and the last Fourier transform from cluster sites to thée K

vector gives

&_1“(“,(,0) = g_c_l(kH , (JL)) —i(ku) —V(g_._(kH , (JL)) —f—%(ku,&)))v. (3.24)

A

We are thus left with a set of decoupled equations, and caa@;@I‘l = g_c_l—I—V(gL +or)V

for each pair of k|, w) separately.

If one applies the analogous procedure to the Keldysh coemgan the current formula eq.
(3.18), one finds that generally in the steady state, withy translation invariant lead Green’s
function, the currenk(w) is proportional to

() OReGlc = S Re( gu(r—r", @)V Ge(r —r",1',w) )*. (3.25)
r//

If the central region Green’s function can be calculatecctyas well (e.g. fold = 0), it

should be translation invariant as well, and we can Fourdasform the last equation from sites

in (x,y) into k; to obtain
ReGc (k) = Re( gi(kj,w) V Ge(kj,w) ). (3.26)

We conclude that in this case the particles moving througltémtral region conserke andow.
When a current is measured, the lead Green'’s function haserdapwvith the central Green’s
function for a specific frequenay andk-vector, in order for the integral over al(,w) not to

vanish.
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3.6 Leads

We show here the analytic expression we use for the lead Grierction. Furthermore, we
mention what has to be considered when applying a one-siaeitlp-hole transformation to
the full Hamiltonian. Such a transformation is one posgibtb allow for a superconducting

variational field in the interacting layer.

3.6.1 Green’s function fort = —

For the simulation of the NnSN junction, we need the Greamigfion at the contact surface of
the leads. At tima = —o, when the system parts are decoupled and in equilibriunariee
sponds to the Green'’s function at the edge of the semi-iafaubic TB Hamiltonian.

An analytical expression for the single-particle Greeut&n‘tionG(r, m;y, &, t ) of the TB Hamil-
tonian on an infinite cubic lattice is derived in Réf.[92]:

- 1 /a /a /a
Gwax—mx,ly—my,lz—rnz):G(l,m;v,s,mzw/ d [ iy [ dic

—T7/a —11/2 —Tr/a
cog(lx — my)kya] + cog(ly —my)kyal + cog(l; — my)k.a
© T y—e— 2t |(cogka) + cogkya) + coska))

)

(3.27)
wherey is the analytic continuation of the energyinto the complex planea is the lattice
constant and;(m) is the coordinates of lattice sitém) in thei = x,y,z direction, k; are the
corresponding wave vectoisis the onsite energy and the hopping amplitude in the lead. We
have used a notation different from Ref.[92].

Taking the Green'’s function of the infinite cubic lattiG, and regarding the open boundary
condition atz= 0, it can be shown[[106] that the Green’s function to the sifitite cubic

lattice is

Gsemi—m (Ix — My, ly — my; 17, my) = Geo(Ix — My, Ix — my, 1 — my) — Goo (Ix — my, Iy — my, 1,4+ my).
(3.28)
For the edge layel; = m, = 1, one finds

Gsemi—oo(Ix — My, ly = my; 1, 1) = Goo(Ix — ly, My —my, 0) — Goo (Ix — My, Iy —my, 2).  (3.29)
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3.6.2 One-Sided Particle-Hole Transformation

We later want to use the operator of superconducting pafreld as perturbation term in the
central region Hamiltonian. However, as one can see i &), &.is an anomalous operator,
l.e. it contains pair creators and annihilators and doesoserve the total particle number. It
is thus convenient to transform the Hamiltonian. We applpe-sided PH transformation to the

Hamiltonian, like we have done in equilibrium.
= bl cT:>bT and c,=0b ¢l = bl (3.30)
“G=0 & L= B e =h '

By a simple calculation one can find that this causes some bigmges for parameters for one
spin species. The superconducting coupling operatornsfitamed into a “hopping” with spin
flip. The Green’s functions are expanded to account for tepseflip terms.

Application of the one-sided PH transformation to the H&onilan of the central region only,

yields a two particle operator for the hybridization term:

V(c'd+d'c) = V(bd+d'b") (3.31)
To avoid this, the PH transformation for up spins is also donthe leads:d; = a“% and
dl = a;. The tight-binding Hamiltonian for the left lead is now

Ho=-t ) (a11aj7¢+h.c.)+(eL—pL)Za]laWLtL > (aITamth.c.)—(aL—uL)ZaITai,T

7> 7>
=Hrg (tL, &L — W) +Hr 4 (—tL, —&L + 1) (3.32)

plus a constant. The right lead Hamiltonian is treated irstiiae way. The different spins in the
lead Hamiltonian do not mix, thus the Green'’s function fag thown spin can be calculated as
before. For calculatinga‘%aﬁ we use the relation fromi [92] (page 81) to transform the Gseen

function of the cubic tight-binding model in €lg.(3127):
G(l,mw+i0" e —p ,t ) =G, m—w—i0", —& +u,—t), (3.33)

with w the energy, 0 a positive infinitesimal (for the retarded Green'’s funcjien,t, the pa-
rameters of the lead Hamiltonian, ahdhthe lattice sites.

This means tha{raTa%r} is calculated Iike(aIaQ, only the energyv has to be inverted.
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3.7 Test: TB Central Region

3.7.1 Recovering the 3D TB Model

Coupling the semi-infinite leads to a 2D TB central region,gaiBbrium (. = ylr =€ = €r=

€c) should recover the 3D TB model. The setup is in principleshme as shown in Fig.3.1,
but with a TB Hamiltonian instead of a Hubbard Hamiltoniafimmed on the interacting layer.
We want to perform this test and use the opportunity to givermation on the lead spectral
function and density of states. Moreover, we calculate tineeat flow through a non-interacting
central region, if voltage is applied. As already pointed, ¢tlve central region Hamiltonian is

here of TB type
He=—t 3 S (chCio+CloCio) +(Ec—ke) 3 i, (3.34)
|

J7>0
with ciT(ci) the creation(annihilation) operator on nearest neighsdas< ij > in the central
(z=0)-plane,nj = ciTci the particle number operator, the hopping amplitydee onsite energy
€c and the chemical potentigl: = 0. The Hamiltonian of the 3D semi-infinite lead and the
hybridization have been described in Secfion 3.3.1.

The DOS and spectral function for the central region deaalifiom the leads = 0) is
shown in Fig[3b, it is the solution for a TB Hamiltonian ona @&ttice. The spectral function
is obtained from the retarded Green’s function accordingoto[Z2.32) and the density of states

(per site) is calculated using
V(w) = LS Im GR(w) _1g IMGR(kj,w) = $ v(kj,w), (3.35)
N2 N Zl; @) =2 vk

where the sum is performed over siies 1,...,N, and in the second step we introduced the
dependence of the Green’s functionign

If the central region is a bilayer, i.e. the extension in ediion= 2 (while it is infinite in x
and y), the density of states and spectral function charger-g [3.5.

In this case, the spectral function consists of two partsattitibonding band is shifted up by
t, the bonding band down. The density of states is as well a $umoamonolayer) densities,
one centered aroundt, the other arouné-t. The results are exact, sinde= 0.
Now we change the hybridization with the leads fréme= 0 toV = 1. Since the magnitude of
V is equal to the hopping within the probe and the ledts; t =t , at voltage 2 = 0 and

€c = €yr = 0 and for timeg > 19 we obtain a 3D TB Hamiltonian.
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Figure 3.5: Spectral functiorA(k, w) as color plot (I.h.s.) and density of statgs) summed

over thek-vector in the(x,y)-plane, denoted; (r.h.s.) for the 2D tight-binding Hamiltonian,
witht =1 andec = 0.
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Figure 3.6: Spectral functiorA(k, w) as color plot (I.h.s.) and density of statgso) (r.h.s) for
the bilayer 2D tight-binding Hamiltonian. The oscillat®im the DOS vanish if more k-points

are calculated, i.e. more clusters are used ir{xhg plane as pointed out in the Discussion 2.5.
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The TB Hamiltonian contains no correlation enerly=€ 0), thus at Au = 0 CPT solves the
model exactly. Accordingly, we obtain the spectral functamd DOS of the 3D tight-binding

Hamiltonian, as shown in Fid._3.7.

w/t
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Figure 3.7: Spectral functiomA(k,w) as color plot (I.h.s) and density of state@v) (r.h.s) of
the 3D TB model, recovered b=t =t =1 andwr=ec=€Rr =0

3.7.2 Lead DOS and Dispersion Relation

Coupling to one lead onlyr = 0 andV_ = 1, we obtain the spectral function and DOS for the
edge of the semi-infinite TB model, which we use as lead. Th& E3hown in Fig[Z318. The
total bandwidth of the Doqk” v(k”,oo), amounts to 12, but in fact we need to consider the
k|-dependence in our calculations, as pointed out in Selctiag.3
The dispersion has the same form as the spectral functicghédD tight-binding Hamiltonian
(Fig. [3.8), namely(—2t(cogky) + cogky))), see eq. [(3.27).t here denotes the respective
hopping amplitude. In fact, the bandwidth ig 4or eachk-vector.

In our simulation of the NnSN junction, we u&emi_« from eq. [3.29) to obtain the Green’s
function for the lead contact regiaii/r = Gsemi—w(Ix — Mk, ly — My; 1, 1) = Gsemi—w (AX,AY),
where in the last step we have introduced the distance iodatites(Ax,Ay) like in Section

[2.2.1. To change the bandwidth of the leads, we will use iiffeamplitudes for the hopping

L.
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Figure 3.8: Density of states(w) according to eq.[(3.35) in the end layer of the semi-infinite

cubic nearest neighbour tight-binding model.

3.7.3 Applying Voltage

Now we apply different chemical potentials to the leads aedsure the current flowing through.
Like in all our later calculations we usg = | = —Ur = —¢€R, i.€. the onsite energy and the
chemical potential in the leads are changed coherentlyasyiimetrically for the left and right
lead. The applied voltage amountsio— pr = 2A. The current between left lead and central
region per unit contact-area is measured according td_ef8)and shown in Fid._3.9 in units

of the electron charge e, intra-layer hopping 1 ands = 1 and lattice spacing= 1.

0.25

0 1 2 3
2Ap
Figure 3.9: Current per unit contact-aréaver potential Apthrough a TB monolayer (dashed
line) and bilayer (solid line) central region, far = €. andpr = €R, by CPT. For the bilayer, the
current is much smaller for voltages<12Ap < 4t , because the bands are split and are shifted
away from the center, where the leads overlap is highest. client is in units of electron

charge e=1, lattice spacing@=1,t =1, 2~ = 1. All energies are in units df= 1.
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Let us refer to eqs[(3.70,3]26) and Hig.l3.4 to understarat hvdppens. The overlap of left
and right lead DOS is maximal at zero voltage, but here, titage difference is also zero, thus
there can be no current. Even though kfpendependent bandwidth is 42 we find that current
flows only in the range & |2Ap| < 4t . The reason is that fdd = O there is no scattering and

each particle conserves momentum.

3.7.4 Particle Density

When the leads are attached to the central region, and a gastagplied, the doping or density
in the central region changes. We investigate this for a Tigraéregion. If the central region
onsite energgc = 0, the central region is half-filled and stays so, even if had-filled leads
are attached, and a voltage applied according.te- ¢, = —r = —€r. However, when the
sample is not half-filled before coupling to the leads (eqg= —0.2), then the resulting particle
density in the central region depends on the applied valtageshow the central region doping

vs. voltage characteristics in Fig.3110.

Figure 3.10: Doping (n— 1) in arbitrary units vs. voltageu for a TB central regiony = 0),
and different small values of onsite energyfor t =5 andV = 0.2236, by CPT. Contrary
to our other results, here we have not extrapolated the tgensa broadening factay = 0, as
described in Sectidn 3.1L1. The central region onsite ergt@y shown as label for each graph.

Further conventions are as in Fig._]3.9.

Considering the effect of the leads on the central regionridest in eq. [(3.21) one can

naively expect that:
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e An overlap of lead DOS and central region DOS causes a chantie icentral region

particle density, if the filling is different.

e For density changes induced by the contact with the leadgacbwith both leads is not

necessary. So, the density might be changed, even whenaty st&ate current flows.
Our results show that:

e Close toAp = 0, the overlap of lead and central region bands is maximas, tihhe central

region density is drawn towards the leads filling (half+fid}), see Figl_3.10.

e Forzerooverlap, the central region filling is only relatedite central region Hamiltonian,

here characterized by the onsite eneggy

3.8 Coupling Strengthl

It is convenient to introduce a measure of the coupling betweads and central region. The
coupling strengtli is defined as
MUR = TWURV? (3.36)

wherev r =1 1m gﬁ,R denotes the density of states of the leads\amslthe hybridization.
The total impact of the hybridization between the leads aedcentral region Green’s function
has been expressed in equafion B.13. If we split the leadsnGréunctiongyr into real and
imaginary part we can see there are two main effects tha besause of the hybridization with
the leads:

V2gRg = —iMur + V2 Reglr (3.37)

The real part of the lead’s Green'’s function shifts the thetakion energy from the unperturbed
central region Green'’s functions, while the imaginary jpasadens the quasiparticle excitation,
thus changing its lifetime.

The definition of the coupling strengfhmakes most sense in the wide band limit, wherg
does not depend an andk;. In our simulation, we us&semi-«(AX,Ay), the Green’s function
at the edge of the semi-infinite 3D TB lattice, where the tasyldensityv does depend ok
vector and energg. In order to facilitate a comparison of our results to thoketber groups

e.g. [88], we still speak about a coupling strength, and osefr the summed DOS ab= 0,
V= 2"\\ VL/R(kH7O>'
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For hoppingt, = 1 in the TB leads, the density of statgsrg aroundw = 0 is about 016.
When changing the lead bandwidth, we find thad inversely proportional tq .

3.9 Effect of Lead Bandwidth and Interaction U

Here we investigate how the current vs. voltage charatiterssinfluenced by (a) the form of
the lead density of states and (b) interactibnn the central interacting layer. Therefore, we
add an interaction tertd 3; ni+n;; to the TB Hamiltonian on the central layer and calculate the
current vs. voltage characteristic for different valuebopping amplitude in the leads. The
Hamiltonian of the central region is

He = —t Z Z(CiTO-CjO' + c}r(,cic) + (ec— He) Z n+U Z NN - (3.38)
| |

<iJ>'0

3.9.1 Non-Interacting Central Region

First, we setJ = 0 and focus on the effect of the hopping amplitude in the l¢adg fixes
the bandwidth of the leads, the total bandwidth being equal , as shown in Sectidn 3.7.1.
The results are shown in Fig._3]11(a). Note that currentragaly flows in the 0< 2Ap < 4t
range, as pointed out in Section 3]7.3, and that the cureaksgparound2u~ 5 and then starts
to decrease quickly.

Fig. 3.11(b) shows how the central region influences theectivs. voltage characteristic:
We change the hopping amplitutien the central region and note, that the maximum of the
current flow for wide lead bands (hetie = 9) is achieved at &4 = 4t. At this voltage, all

central region states contribute to the current flow.

3.9.2 Interacting Central Region

For the description of superconductivity we need to intceda term of onsite interaction in
the Hamiltonian, the so called Hubbddd motivated in Section 113. Without interactidh
we can not have superconductivity. Here, however, the gerggion is interacting but not
superconducting. The method we apply is CPT.

Figure[3.12(a) shows the current vs. voltage for differatti@s of interactiotd. We find that

the current in the G 2Ap < 4t voltage range decreases with growing correlation energy
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Figure 3.11: Current per unit contact-ardavs. voltage Apu through a TB monolayer central
region U = 0), by CPT.

(a) Results for constant coupling strengtk= 0.005 but different lead bandwidth, = 10 (solid
line), t. =5 (dashed with dots) antgd = 1 (dashed). Note the range where current flowd,is 4
wide. (b) Results for constant coupling strengtk- 0.005,t, = 9, and two different values of
central region hopping= 1 (solid line) and = 1.5 (dashed line). Further conventions are as in

Fig.[39.

However, folU > 0 a second feature appears féq2> t; , which grows with interactiob). The
cluster size we use here and later is 2 x 1 (Ix x Iy x |;). For the current calculation we make

an extrapolation in the broadening factras described in Section 3111.

In Fig. [3.12(b) the dependence of the current vs. voltageacheristic on the onsite energy
of the center regionc is illustrated. Whereas fac = 0 the second peak is only small, for
ec = —U /2 (half-filled central region &t = 0) the first peak looses much of its intensity and the
second (broad) peak is emphasized. This can be explaineohsydering the spectral function
of the central region: Fac = 0 a lot of spectral weight can contribute for small voltagesile
at half-filling, the Hubbard bands have been shifted awayn o= 0, which reduces the current
in the first peak regime. One could also say, thate@e= O the double occupation should be

small and so the effects of are small.

The use of wide lead bands should put forward the effect ointieeactionU on the interact-
ing region. We seti =9 and plot the corresponding current vs. voltage charatiesiin Fig.

[3.13. We find that for the originally half-filled central laythe current peaks @~ 2 x 4 and
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Figure 3.12: Currentl per unit contact-area vs. voltagédj2through a non-superconducting
interacting monolayer with nearest neighbor hoppirgl, by CPT. The hybridization i¢ =1,

so for correlation energy = 0 we retrieve the TB solution shown in Fig. 8.9. (a) Results for
different values ofJ = 0,2,4,6,8, and onsite energse = 0. (b) Results for a originally half-
filled central layeec = —U /2 (dashed lines) angt = O (solid lines) and different interaction

valuesU = 8 (black) andJ = 4 (red). Further conventions are as in [figl] 3.9.

Ap~ 2 x 7. For the central layer shifted away from half-filling by thesite energgc = —2,
the peaks are found AjL~ 2 x 2 andAp ~ 2 x 6. The corresponding spectra at half-filling and
hole doping (in equilibrium) are shown in Figufes]2.4 and3? However witht’ = 0.3t while
we uset’ = 0 here. The amount of current obviously depends on whetleeHttbbard bands

can contribute or not.
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Figure 3.13: Currentl vs. voltage Ap through an interacting non-superconducting central
layer with nearest neighbor hoppihg= 1 and onsite interactiod = 8 , half-filling ec = —4
(solid line) andec = —2 (dashed line), by CPT. The leads have wide batds; 9, and the

hybridization amounts t¥ = 0.3. Further conventions are as in Hig.]3.9.
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3.10 Variational Cluster Approach for Non-Equilibrium

Now that we have introduced all ingredients for the desioipbf a non-equilibrium system,
like the Keldysh formalism, the leads TB Green’s functiamg &iow to calculate the current, we
turn towards the variational calculation.

CPT [24,[25] allows to treat large systems with strong locatalations. It is exact in three
limits, for correlation energy = 0, for dimensionN = c and for hoppinggt = 0. For the
description of symmetry-broken phases like antiferronedigm or superconductivity, CPT has
been extended to the VCA. VCA has been successfully applieditme range of problems
[48,(50,[51/22] and proven to be exact in certain limits in fifaenework of SFT[[52, 53]. A
description of CPT and VCA in equilibrium has been given in Cheg@t Sections 2.3.1 and
2.3.2.

Non-equilibrium setups present a new playground, with edti& of problems, including e.g.
short time dynamicd [107], or the steady state [100]. Theylatreated using the Keldysh
formalism, introduced in Sectidn 3.4, where the time depend of each function is folded into
a matrix. For short times, the CPF Keldysh [107] works well, since a voltage turned on for
a short timeAt represents a small perturbatigt, which we already know that CPT is up to.
VCA + Keldysh has already been used to describe the steady staitéh @wolves when the
voltage has been turned on for some time [100]. In that casetional parameters have been
included that serve to minimize the difference between thiidl” reference cluster solution
and the final steady state. The corresponding self-consigteondition was to minimize the
cluster to CPT difference for expectation values of the dpesacorresponding to the variational
parameters.

But what if one wants to include symmetry-broken phases istibue configuration? We present
here the application of a variational condition which akoie treat a symmetry broken phase,
e.g. superconductivity, in the central region. We desdtilinew condition in Sectidn 3.10.2.
The theory and parts of the results will be published in Re38]1

3.10.1 \Variational Cluster Approach + Keldysh

We will again step through the VCA procedure, treated in $a.3.2, and hope the vigilant

reader apologizes the repetitions. The starting point esrdral region Hamiltoniaik, defined
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on a lattice geometry. In order to be able to treat the stramgetations exactly, a cluster is
chosen which can be solved exactly or by Lanczos diagori@izand the Hamiltonian is split
into a cluster and intercluster pat, = Hcp + Hinter-cL- HcL IS complemented by fields of

arbitrary one-particle operators summarizettin

HE = Hew + Hy (3.39)

inter-cL = Hinter-cL — 8abH5 (3.40)

whered, , denotes thakt; is diagonal in cluster indices b. The variational fieldst; help to
make the dynamics of the cluster problem coincide with trecesdynamics of the system. The
advantages that arise when using variational fieldare listed inZ.312. Using the SFT one can
show that finding a saddle point in the grand potential as etiom of the variational parameters
A gives an approximation to the true ground state of the systemSectioh 2.3.3 dr [62,153].

In order to account for the interaction with the leads, weeht@vconsider the hybridisation
with the leads Green’s function in the perturbation caltafa The Green’s function of the

central regiorgC is coupled to the Green'’s functions of the legds,

—

Gc'=gc'N) -

A

Lo Tic —Tergr Tre. (3.41)

—

() —

=

The chemical potential in the leagg/;r is not uniform at timet = —co, which hinders the
treatment of this problem with the usual (eqilibrium) Grednnctions. Thus we use Green’s

functions in the Keldysh space, marked by the underline.

3.10.2 Variational Condition

The problem that now arises is the question as to how to chibeseght values of the variational
parameter§. In equilibrium we look for a saddle point in the grand camahpotential in the
space of variational parametérsln non-equilibrium, however, the grand canonical potdns
not defined.

A simple self-consistency criterion is to ask for values afiational parameters, that make
the difference between the corresponding expectatioregafuthe reference system (defined by
H¢) and the original system (defined by, and calculated using CPT) vanish. We will denote
the Green’s functions and their observables by cluster&érence system and lattice/CPT,

respectively, and express this condition (@¢)c; = (Ai)cp, WhereA is the single-particle
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operator to which the variational paramekers the coefficient. When using a variational onsite
energyevar, this condition asks for a value efa, that results in equal densities in the reference
system and the lattice (CPT) Green'’s functions. This satis@iency criterion has already been
used and proved helpful [109, 100]. It corresponds to some &f minimizing the “difference”
between the initial state at= — and the final (steady) staté. [100].

A variation of all possible parameters (including dynammes) would lead to perfectly equal

Green’s function in reference system and Iatt@fx) = G¢c

Does the condition(Ai)c; = (Ai)cpr Work for our problem?

We found, that the conditiofAi), = (Ai)cpt does not work with superconductivity as vari-
ational field, introduced assc in eq. [2.30). The problem is, that the superconducting field

causes (new) anomalous terms in the Green’s function togamérhese contain information
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Figure 3.14: Expectation value of the superconducting order parandgignn reference cluster
(solid line) and lattice (dashed line) vs. variational pajrfield hsc at two different values
of variational onsite energg,s. The central region is the monolayer Hubbard model with
U = 8. The onsite energy & = —1.7 moves the system away from halffilling, so that it can
be superconducting. On the I.h.s. the variational onsigeggrofe, o = —2.3 shifts the reference
system back to half-filling, where superconductivity is fastoured. When subtracting the field
again, the system is doped and the superconductivity oaetanpeter could be larger than in the

(half filled) reference system. It is, however, not like that

on the dynamics of the pair creatiujtc}r and pair annihilatiortic;. If the pairing field term is
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set to zero, the expectation values in reference systemadincklare both zero. Thus, there is
always a solution at zero pairing field. We did not succeedndifig any other but this trivial
solution. The perturbation calculation reduces the mageibf the anomalous Green'’s function
terms, and we claim there cannot be another but the zera@ofor superconductivity, for the
discussed type of self-consistency.

Fig. [3.13 features the results of our search for a non-treeéution to (Hsc)c, = (Hsc)cpr

whereHsc is the superconducting pairing operator.

A New Variational Condition

Since we cannot equalize the expectation value of the afigld in cluster and lattice, we
need a new criterion for the search of the stationary poirg.iMfoduce an expression, which

is analogous to the equilibrium Euler equation in €gq. (2.26)
/ d—;’ 6192 (g(k) ~ G) =0 (3.42)

where o is the Pauli matrix in Keldysh space, a@é is the derivative of the cluster self-

energy with respect to the variational parameigysvhich is a subset of the set of one-particle
parameters’ of the reference systetd/,, . 9(7\) and G are the reference cluster and lattice
Green’s functions of the central region, respectively. &342) describes a vector of the same

size as\. The expression can be written as

dw_ 03R - A Avi
ETr[a—}\i(g AN -G )+a—)\i(g (A\)—-GY)] =0. (3.43)

and the part in square brackets is the Keldysh part of

@M -0). (3.44)

The analogous Euler equation for equilibrium has been ddiiiv Refs. [[54, 53]. We feature
the derivation in AppendixA.

For non-equilibrium we have replaced the self-energy arek@s functions by their coun-
terparts in Keldysh space. This would give us a 2 matrix with the three entries (Keldysh,
advanced and retarded). The main standing question is hoanttuct the trace in the Keldysh
space. In this work, as variational condition, we use thelitgh component of the matrix in

Keldysh space. A check showed exact accordance with equitibresults for an uncoupled
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system, see Fid. 3.115.

As variational parameters we take the superconductinghgdield hsc and a variational onsite
energyevar in the central region. These have been introduced in Se@ii@d. Every addi-
tional parameter makes the search in the parameter spademawe complicated, therefore we
restrict to these two variational parameter, and renoume@se of an antiferromagnetic field.

We calculate the derivative of the reference cluster sedirgy> according to

0Z(\) TN +AN) — Z(AA —AN)
oN 2A\ -
g_m%MAi +AN) —g_ufl()\|)\i —AN) — @*1()\|Ai +AN) +@*1()\|)\i —AAN)

2AN ’

(3.45)

with AA = 0.005 andyy /o the cluster Green’s functions with correlation eneldggind O respec-

tively.

For a check, we simulated the equilibrium setup with a serfi@gpout parameters (like and
€c). Both the non-equilibrium program that uses equation {3a4@l the equilibrium program
using equatiorf (2.18) yield the same results for variatippeameters and expectation values of
operators. However, the frequency integral in €g. (3.43)tbhde done in an appropriate way.
We find that a poor integration, with not enoughvectors or energy steps, leads to oszillations

of the expression in the variational condition in equat®@8) as a function of, 4.

3.11 Frequency Integration over Objects in Keldysh Space

Frequency integration of Green’s functions as requiredhferevaluation of the variational con-
dition eq. [(3.4R) faces us with a problem: the Green'’s fumgtihave poles at the excitation

energies.

3.11.1 Equilibrium

In equilibrium, there are several possibilites to carrysuth a frequency integration, described
in Refs. [103, 50, 51,22, 110, 111], among them the Q-matcri@ue [50] and the direct sum
over Matsubara frequencids [110]. When investigating theliegum problem in Chapterl2,
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we have distorted the integration path to an appropriatéocoim the complex frequency plane,
as discussed in_[111].

In non-equilibrium, the Keldysh Green’s functions havegsahot just on one side of the real
axis, but on both. This makes the integration more difficutid the usual methods can not be
applied.

What can be done, is to replace the infinitesimahb a finited to shift the poles away from the
real axis, up (down) for retarded (advanced) poles, andjiate directly over the real axis. Of
course, a finité does not give the exact result any more. But the expressioguatien [3.4B8)
does show a linear dependencedfor values ofd larger then a treshold, which depends on
the accuracy of the integration. For very small valued ofe resolve the features of the single
cluster.

In fact, we have to keep in mind that there are two limits toddeh:

e (a) thermodynamic limit: lattice (and cluster) to infinity

e (b) reduction of the error introduced by non-zéro

The limits have to be taken in the listed order. To (a): Theafsefinite cluster size results in
delta peaks, e.g. in the self-energy and the Green’s fumtia finite d causes a broadening of
the peaks and thus simulates an infinite (or larger) lat@ioethe other hand, the finilemakes
the frequency integration less accurate. We settled fofdl@ving procedure for calculating
the expresson in ed.(3143). Integrations over Keldyshatbj® obtain observables like current

and density are done in the same way.

e The integration is performed for two different valuesddhamely 003 and 0045).

e The “virtual’ result atd = O is extrapolated linearly.

The appropriate values @fcan be found by plotting the “gradient” in ed._(3.42) as a fiorc

of evar. A wavy curve signals that the chosévalues are too small to compensate for the finite
size effect, or the integration w needs more supporting points. The wavy dependenegen
comes from the integration over the derivative of delta paakhe self-energy. We need the
function smooth enough to be able to find a root using the NeWw@&phson algorithm.

For the integration i we use a Gauss-Legendre integrator, instead of an adaptegrator,
since there are two expressions in dqg. (3.42) for the twaesponding variational parameters,

to be integrated at the same time.
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The pairing field and the hybridisation to the leads shoulg temake the integration iw

space simpler, since both terms are expected to broadeedheds.

Comparison To Equilibrium VCA Results:  We have used an equilibrium Hubbard model to
test the above method of frequency integration over funstia Keldysh space. Extrapolating
the variational condition in eql_(3.42) for finite valuesdab & = 0 gave good accordance with
equilibrium VCA results. Moreover, we found that the extrigpion of observables td6 =0
helps to reproduce the values obtained by the equilibri@guency integration.

This is shown in Fig.[[3.15 for the density, the observablecitielongs to the particle

number operator.
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Figure 3.15: Densitynvs. correlation energy for a monolayer Hubbard model in equilibrium,
with p=U /2 andt’/t = 0.3, by CPT. We compare results from the equilibrium frequency
integration (black squares) [111] and direct real axisgragon used for non-equilibrium. The
density obtained by the non-equilibriuemintegration is shown fod = 0.12 (dotted line)p =
0.09 (dashed-dotted) amil= 0.06 (dashed line). Note th&= 0 extrapolated density (solid
black line) corresponds well with former results for coateln energiet) > 3.5. For smaller

U it would have been necessary to adapind the integration accuracy.



68

3.12 NnSN in Non-Equilibrium: Results

We present here the results we obtained when simulating aNNuafction, using the non-
equilibrium variational method introduced in Section 3.The setup is illustrated in Fig. 3.1,
and the full Hamiltonian has been described in Sedfion 3. 8dme of the results will be pub-
lished in [108]. The contribution of coauthor M. Knap to thisrk was to furnish the author
with a basis for the code needed to do this work. The coautveldped the code to investigate
2D non-equilibrium setups, like the one described in Ref0]10

The most important parameter, in addition to the parameikethe central region Hubbard
model, is the coupling strengfh defined in Sectioh 3/8. For our simulations we have chosen
two different values of’, namelylr = 0.005 and™ = 0.01.

Another group used the fluctuation exchange approximafdiX) in Keldysh space to
describe a similar setup [88]. They chodse- 1 x 102, and report that foF > 0.1 no super-
conducting ordering takes place.

We represent the central superconducting region by a Hdlibanolayer or bilayer in the
(z= 0)-plane. We will first describe the results obtained for thenolayer, and in the next
section show how we investigated the bilayer superconagdtiteracting region. In Section
[3.12.3 we present what we obtain for the a nearest-neighthalibard monolayer, which is the
same interacting layer as used by the authors of Ref. [88hé\ehd, we summarize our results

on the NnSN junction in non-equilibrium.

3.12.1 Monolayer as Central Region

We have carried out calculations for= 0.01 with two different lead bandwidths: The results
for a narrow lead bandwidtl, = 1, and those for a wide bands, = 9, are both given in
Section[3.12.1]1. The large lead bandwidth allows to foaushe influence of the central
region features, and to compare with |[88]. In Secfion 3.PPvle show results for a weaker
coupling strengttir = 0.005, and wide lead bands.

While the parameters determining the interaction with tlaeléeare different for each data
set, the central region is always the same as the one in thibegm problem, i.e. eq.[{313)
with parameterd) /t = 8 andt’/t = 0.3. The central region onsite energy is used to fix

the initial density, which is the density of the central mmgbefore the hybridisation with the
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leads happens. The chemical potentialis zero. We use four different values fax, namely
ec=-14,-15,-1.6,—1.7. When the central region is decoupled from the leads, fdr ealcie

of ec one obtains a specific initial density in the superconducting state. The uncoupled inter-
acting layers are always hole-doped, with densitigsc) in the superconducting state ranging
from optimal doping to underdopingip(—1.4) = 0.887,np(—1.5) = 0.914,np(—1.6) = 0.934
andng(—1.7) = 0.954.

For each value ofc, we do variational calculations for a series of appliedagés up to the
voltage where the superconducting order parantsieas vanished. The results obtained are
shown in various figures to make clear the dependencies ahtis important quantities on
each other, namely the currehflowing perpependicular to the central region, voltagg.,2
superconducting order paramet®sc and densityn. The current through an infinitely large
surface is of course infinitely large. Thus, when speakinguaburrentl we in fact mean the
current per unit contact-area, in units of electron chargele hoppingt = 1 andh =1 and
lattice spacinga = 1. The observables are obtaineddgxtrapolation, as explained in Section
B.11.

The nature of the variational condition is such, that thareexist more solutions (saddlepoints).
In equilibrium, we ruled out additional saddlepoints by garing their corresponding energies.
Here we show both solutions that we find, one with normalkesaaid the other with supercon-
ducting central region. For the coupling strendthttiat we have chosen, and our central region
parameters, the superconducting solution vanishes at soltage treshold, while we always

find a normal state solution.

3.12.1.1 T =0.01, Narrow and Wide Lead Bands

Narrow Lead Bands We start with narrow lead bands,= 1. In order to reach a coupling
strength ofl = v(0)V? = zkHvL/R(kH,u))\m:on\/2 ~ 0.01, we set the hybridisation ¢ =
0.145%. On the next pages, we show various figures featuring thergigmcies of currerit
central region density, superconducting order paramefgyc and applied voltage/41on each
other. We describe them and summarize the main points atthe e

Fig. [3.16 shows the current vs. voltage characteristicanéf oversees the smaller features,
the dependence of current on voltage (in the voltage rang@rshis almost linear. What sur-

prises us, is, that different initial densities may lead iftecent amounts of current is some
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Figure 3.16: Currentl per unit contact-area vs. voltaga|2through a Hubbard monolayer, for
I = 0.01 and narrow lead bands = 1, by VCA. Four values ofc are used to fix the initial
density, and the other parameters of the Hubbard modéJ Are- 8,t'/t = 0.3 anduc = 0. In
(a) and (b), the black lines represent the current througlstiperconducting central region for
different initial densities. The upper and lower bound & ithitial densitiesy are noted next to
the graphs. In (b) the current through the normal state akrggion is additionally shown (red
lines).

The different dashing denotes different central regionterenergiegc, ec = —1.4 (solid line),
€c = —1.5 (dash-dotted linegc = —1.6 (dashed linegc = —1.7 (dotted line). All energies are

in units of the intra-layer hopping= 1, and the currentisinunitsef=1,e=1t=1hA=1.

regions (e.g. at voltageAp1 ~ 0.5t), or to only one value, e.g. ai\p ~ 0.8t.

In Fig.[3.16(b) we compare the current through the supenectitty and normal-state central
region. We find, that in the superconducting state the cuirereduced. We attribute the
reduction to the superconducting gap, which impedes stédtéee Fermi energy in that 0)
region to emerge. These states would contribute a lot toufremat.

In Fig. [3.17(a) we present the dependence of superconduatder parameter on voltage.
The superconducting order parameter decreases wheneatagplied, the main fall-off hap-
pening around&u~ 1. This is in the order of the gap size obtained in VCA. Supeiaaotivity
has totally vanished for/4u= 2.

The changes in the central region density are illustraté&dgr3.17(b). In the superconduct-

ing state, the density change is much smaller than in the alastate, where doping happens
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almost linearly with voltage, in the featured voltage ranigere one can also see, that the cen-
tral region initial density is in fact not the same for the srgopnducting and the normal state: In
the normal state, the identical onsite eneggyeads to a density much closer to half filling.

In Fig.[3.24(b) we will plot the density vs. voltage charaistécs for a much larger range of
voltages. The linear behaviour does not continue un#l0, but instead there are two peaks of
minimal density at 2y~ 4 and 2\~ 9, more or less where there are maxima in the current
flowing. As pointed out already in Sectibn 319.2, these age¢hions, where the Hubbard bands
are overlap with a large density of states in the leads.

The relation of current and density is displayed in Hig. B.Ii8the normal state, we can
observe an almost linear dependence of dopirgdL on current, especially for voltageA2 >
0.6, but not so in the superconducting state.

In Fig[3.19(a) we see the superconducting order parametetersity. For equivoltage line
2Ap = 0 we have used equilibrium data, where the central regiotisoupled to the leads.
Unlike field effect experiments, we observe that changekencentral region density towards
optimal doping do not lead to a larger superconducting opdesmeter.

Fig. [3.19(b) illustrates the superconducting order patames. current behaviour. One
could say, that the effect of the transverse current on tpersaonducting order parameter is
qualitatively similar to the effect of temperature or matigra.

Let us summarize:

e The current through the superconducting central regiomadler than through the normal
state central region. We can attribute this reduction tg#ye that hinders the emergence

of states at the Fermi energy.

¢ Inthe superconducting state, at some values of voltageuttient does not depend on the
initial density of the central region. Taking a closer lowle found that at these points, for
all different central-region onsite energigs the variational onsite energy, corrects

gc to only one value of effective cluster onsite energy.

e When the applied voltage reaches the size of the superconguygtp, the superconduct-

ing order parameter is reduced or destroyed, dependingearotlipling strength.

e The effect of the transverse current on the superconduotithey parameter qualitatively

resembles that of temperature.
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Figure 3.17: (a) Superconducting order parameieg and (b) density vs. applied voltage, for a

Hubbard monolayer as central region, fox 0.01 and narrow lead bandis= 1. (a) Numbers

represent the initial density. (b) The normal state densigshown as well (red lines). Further

conventions are as in Fig._3]16.
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Figure 3.18: Current per unit contact-ardavs. densityn through a Hubbard monolayer for

I =0.01 andt = 1. In (a) we show the current in the superconducting stabe]dadenote the
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applied voltage. In (b) the current in the normal state isxghadditionally (red lines). Further

conventions are as in Fig.3]16.
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Figure 3.19: Superconducting order paramefgyc, (a) vs. densityn and (b) vs. current for a
Hubbard monolayer as central region dne- 0.01 andt; = 1. In (a) equivoltage lines (gray
full lines) are labeled with size of&1 In (b) numbers indicate the initial density. Further

conventions are as in Fig.3]16.

Wide Lead Bands Wider lead bands should emphasize the effect of the ceefyams spec-
tral function, or better: reduce the effect of the lead DO®.We, = 9 andV = 0.437 for the
same four values afc as above. The coupling strength again amounfson(w)mv2 ~ 0.01
atw = 0. Fig.[3.20 shows the results in the same format as was us#ukeffigures containing
the results obtained using narrow band leads.

Summarizing, we find two main differences from the resultsrrow lead bands, regarding
the superconducting state: There is a second region ingeMeéhere all initial densitiesg
collapse to the same current, nameljp2= 1.5. At this voltage, for the narrow bands, the
sample was only superconducting for optimal doping. Moegepwe find that for wide lead
bands, superconductivity survives up to higher values tibge. This is remarkable, since the
pure size of coupling strength is larger in a wide range of energies. An explanation could
be, that for narrow lead bands, the changes in couplinggtindor lead DOS) in energy are
larger. We suggest that any band in the central regions awierlapping with sharp edges of
lead bands. In the variational calculation, doing the dénre of the self-energy with respect to
€var (Which shifts the central region up/down in energy) willuksn a large gradient in these

regions. This effect should be softer using wide lead bands.



74

x10°3
5 |

0.16

0.12

0.04 -

0.16

014 | _, | | (9)-

012 05

01 | v N

Asc

0.08 | \ ‘
0.06 | S
0.04 | 2 7 ;
0.02 | )

0.86 088 09 0.92 094 0096

Asc

0.95 f---
09 [
0.85 |

08

0 0.5 1 15 2 25 3 35

0.84 0.88 0.92 0.96 1

0.16

014
0.12 | .0.932
01 -0,

0.08 |
0.06 |
0.04 |
002

| x1073

Figure 3.20: lllustration of the dependencies between curdentoltage 2\u, densityn and

superconducting order paramefgyc for a Hubbard monolayer as central region &ing 0.01

and wide lead bands = 9. In (e) and (g), equivoltage lines are drawn in blue. Congestare

as in Figs[3.16.3.17.3.18.3]19.
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3.12.1.2 T =0.005 Wide Lead Bands

We now show results for wide lead bartgs= 9, but with a reduced coupling strengthlof=
0.005. The hybridisation amounts Yo= 0.3. As we hoped for, the superconducting solution
survives up to much larger voltages, especially for thenoplly doped central region.

The depencence of the observables curredénsityn and superconducting order parameter
Asc on voltage and on each other are illustrated in Eig.]13.21.

The current vs. voltage characteristics are shown in[Eg1 &) and (b). At low voltages,
the dependence is similar to results foe= 0.01 (shown in the previous section), see inset of
Fig.[3.21(b). Then, aboveMpi = 4, there exits a wide region in voltage, where the diffeadnti
conductancél /0(2Ap) < 0, the current is almost constant, but rather decreasirigiméteasing
voltage. Regarding the central region only, the current khoot decrease. It is the diminishing
overlap between the leads here, that results in the lightdpuing current. At 2pu~ 9, there
is again a fast upturn in current. This corresponds to thergepeak in current, that we have
obtained previously for an interacting (= 8) central region (compare to Fig._3113). Note that
for strong doping, there exists a superconducting solutto this position 2u~ 9. The main
features in the current vs. voltage characteristics ang siemilar for the superconducting and
the normal state central region.

In Figureg 3.211(c),(d) one can observe the constancy ofsapeucting order parametgc
and density over a wide voltage range. We also see, in[Eidl(f3,2hat while below 2p < 8
the current behaves almost linear with doping, for largémes of voltage, the dependence is
still linear, but in the other direction: Now for decreasidgping the current increases again.
This is always the case for an interacting central regiod,jast not shown in previous figures,
since the superconductivity did not survive up to theseagdtvalues. The character of the
dependence is the same in the normal state.

We summarize:

e For low values of voltages,/1 < 3.5, the density, superconducting order and current

have a strong dependence a2

e In the range of 3 < 2Au < 8.5, both current and density are almost constant, probably
because in this voltage range there are no heavy changes amtbunt of central region

DOS contained between the lead bands and the chemical iaddgnt Ur.
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e At 2Ap = 9, however, the current starts to grow again, the doping sol@ser to half
filling and, most importantly, superconductivity vanishe&n for optimal doping. We
suppose, this is because &2~ 9 the upper Hubbard band gets enclosed into the current

conducting energy range.

Fig.[3.21(h) shows, that the superconducting order pamsehot reduced monotonically with
current. There are some small regions, where a growing mucaexists with an upturn of the
superconducting order, and vice versa. This means, thaintypthe pure amount of current can

be the reason for the cancellation of superconductivity.

3.12.2 Bilayer as Central Region

We now want to find out what happens if the monolayer centrabreis substituted by a bilayer
central region, as illustrated in F[g._3122. Will the sectagkr help to stabilize superconductiv-
ity in the central region? Is the current reduced, with respethe monolayer, and how is the
density of the two layers going to evolve? The results shbiritdtowards what to expect for a

thicker superconducting central region, which is alreatbeasible to experiments. We can sim-

Figure 3.22: Non-equilibrium bilayer setuplg denotes thé-dependent inter-layer hopping

ulate this problem using the previous methods, the VCA in {&hdspace. However, we have
to adapt the equations for calculating the central regioee@s function and the variational
condition. We will outline the necessary changes in the segtion. Then, in Sectidn 3.12.P.2,
we present the results for a Hubbard bilayer as central megind compare to the monolayer

results.



78

3.12.2.1 Adaptions in Model and Method

The central region is now a bilayer, with the usual hoppingl#odet = —1 in the layers and a
smallk -dependent hopping parameterizedby 0.4t between the layers (interlayer hopping),
as described in Secti@n 2.2. This problem can be treated/@raevays, we will sketch two of

them and use only one for the simulation.

(1) Take a 2< 2 x 2 cluster as reference cluster. Most inter-layer hoppimgseare then
treated exactly in the cluster. However, this is very timastoning in the numerical calcula-

tion, because of the large Hilbert space.

(2) Another possibility is to choose two>22 reference clusters, one in each layer, couple
the two clusters by CPT, and couple the bilayer to the leads:
The intra-layer inter-cluster hopping matiiXK; ) recovers the Green’s function of the layers,
with K the superlattice wave vector in tifg y)-plane. The hopping matriXs(K;) between
the two layers recovers the bilayer Green’s function. Tlencentral region Green’s function

becomes
gtz (B 10 Tk ) (3.46)
~Te(K)) g1t -T(k))
whereg; andg are the Green’s functions to the reference cluster Handtenof layers 1,2.
Moreover, each single layer is coupled to its neighbouraagl] described by the Green’s func-
tion g, /r. Then the full bilayer Green’s function in Keldysh space

“1_T(K)) =V gLV —Tg(K

—Ts(K)) 9 1-T(K)—VrROR VR

depends oz, so that we can measure the current directly.

We settle for option (2), the CPT-coupling of two identicatdes in order to obtain a larger
unit cell. To simplify the problem, we use the same refereamaster for both layers, and allow
only one set of variational parameters. Tlgds= g1 = go and

“1_T(Ky)—VL oL M ~Te(K
Gelo (2 T(K) -V g Ta(K) , (3.48)

—Ts(K)) g "= T(K)) —VRgr VR
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When doing VCA,T (K) also contains information on the variational fields to betisadted,
(KH) Tinter- CL(KH) Tintra. The variational fields are contained in mafﬂpﬁra(X). Moreover,

also the reference cluster Green’s functggrdepends on the variational parameters

Variational Condition for Bilayer  Now we come to the search for the solution of the model
with the bilayer central region. Remember we need to stayeatdbt of eq. [(3.43), which can

be written as

T @) -G o0 (3.49)

where K denotes the Keldysh component. As reference systéme variational calculation we
use a bilayer, consisting of two disconnected 2 clusters. Thug(?\) andG are the Green’s
functions of the bilayer system. It would also be possiblege just one of the two layers as
reference system, such trgﬁ\) andG are the Green'’s functions of one layer.

Since the clusters are disconnected, the self-energygeda in the layers,
=" . (3.50)

Using this, we write eq[(3.43) as
K

—Gg| | =0 (3.51)
%

o, (2 [ (2
21 OA;

with Gg from eq. [3.48). Here we have used as reference system thdistinct layers, not
coupled to each other. In that way, we obtain g()i) a diagonal matrix, containing only the
single layer Green’s functiogy. The other possibility is to use a reference system congist

a 2x 2 x 2 cluster connecting the layers. Since the steady statddshotidepend on the initial
state, this should not make a difference. On the other h&wedretference system is modified
by variational parameters on purpose, in order to move tiialistate close to the steady state,
where certainly inter-layer hopping occurs. Thus it wouddrbportant to include the inter-layer
hopping in the reference cluster Green'’s functions in fituork.

One can easily find that only the intra-layer parts of they@itaGreen’s function contribute,
because of the trace that is performed over cluster sitasce3ig(K) is not present in our

reference cluster we are then left with

dw 02,

o 10 [0)\. (2go—G1— Gp)|* =0, (3.52)
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whereG; andG; are the intra-layer parts @g. The trace in the layer indices 1,2 has already

been performed, and that in cluster sites and spin is left.

Current Calculation  The current flowing through the setup can be measured at tindaioe
between lead and central region, or between the two laydtseafentral region. In the second
case, thex-dependent hopping amplitude between the layers is thephedtive factorVj; in
eq. [3.18) and
| O ZTB(kQRerZ(R ), (3.53)
I

wherer2 is the Keldysh component of the inter-layer part of the l®la@reen’s functiorGg.
The two currents should in fact coincide as described byHiodf’s current law. However,
in the interacting case deviation might occur, since thehotkts not conserving.
We therefore only calculate the current between left leaticamtral region, where we do not

have to consider thie -dependence of the interlayer hopping.

3.12.2.2 Bilayer[' =0.01, Wide Lead Bands

We now come to the results obtained for the bilayer centgabre The two layers are described
by the usual monolayer parametddst = 8,t'/t = 0.3, and the additiondt|-dependent inter-
layer hoppingf/t = 0.4. We restrict ourselves to a single value of central regiusite energy,
ec = —1.4, with the corresponding initial densityy = 0.887 in the superconducting sample.
The coupling strength arisesfio~ 0.01,t,. =9 andV = 0.437. We will compare the results for
the bilayer to those of the monolayer setups with the sames\afiec.

In Figure[3.2B(a) we present the current vs. voltage chanatt of the bilayer setup, wit
the central region in the superconducting state and in thealcstate. Again, we find that the
current is slightly larger if the central region is in the mal state.

Fig. [3.23(b) displays the current-voltage charactessticthe bilayer together with that of
the monolayer system. One can observe, that the currenttliecdame order of magnitude
as that through thé = 0.01 monolayer system. It seems, that for small voltages thelocw
strength” determines the amount of current. DividiRdy 2 also divides the current by 2.

We also want to point out, that in the normal state, the nalvand in the leads produces two

separate peaks in the current, while the wide band has aathe positions ascending slopes.
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Figure 3.23: Currentl (per unit contact-area) vs. voltag@2through a Hubbard bilayer with
U/t =8,t'/t = 0.3,ec = —1.4 andk dependent inter-layer hopping, for= 0.01 andt_ =9,

by VCA. In (a) we show the current through the superconductigtral region (solid line)
and the normal state central region (dashed line). In (b)endie compare the bilayer results
(black, as in (a)) to the results obtained for the monolayede bandl = 0.005 (blue), wide
bandl" = 0.01 (green) and narrow barid= 0.01 (red). In (b) we plot the current through the
superconducting sample, and in (c) we plot the current tiindhe normal state sample. The
current is in units of lattice spacirm= 1, h = 1, intra-layer hopping = 1 and electron charge

e=1. All energies are in units df= 1.
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Figure 3.24: Dependence of the densityon voltage 2u for a Hubbard bilayer as central
region, forl = 0.01 andt,. = 9. In (a) we show the bilayer results, we distinguish between
the densities in the two layers (dashed and solid line) apdrsonducting (black) and normal
(red) state. In (b) we compare the mean bilayer density kblecthe density obtained for a

monolayer central region. The color-code and further cotiwas are as in Fig. 3.23.
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We observe this contrast between wide and narrow bands sugberconducting state as well,
for small enough coupling strength.

In Figure[3.2%(a) we display the density as a function ofagdt The density of the two
layers is drawn separately, and we find that the differented®n the density in the two layers
strongly depends on the applied voltage. For voltafye 2 0, the difference is about @5, but
for very large voltage 2u~ 12 it is as large as.@5, and while one layer is still hole doped, the
other is electron doped. Actually, we found that fbe= O this effect of asymmetric doping of
the layers shows already at small voltages, and it is theaatien energy) that delays it.

Comparing to the results of the monolayer central region gn[Bi24(b) we see, that regard-
ing the density, the bilayer with = 0.01 behaves more like the monolayer with half coupling
strength]” = 0.005.

Fig. [3.2%(a) shows the dependenceat on density, compared to the monolayer results.
We cannot identify a simple pattern, and conclude that tmsiteis not the driving force in the
superconductor - normal state transition. Also the cursbotvs not simple dependence on the
central region density, see FIg._3.25(b).

The dependence of the superconducting order parameteon the applied voltage is il-
lustrated in Fig[Z3.26(a), again together with monolaysuits. One can clearly see, th&ic
shows rather the behaviour of the monolales 0.005 system, than the monolayier= 0.01
one, which is surprising. We can also see, that for narrovdgdme decrease ifisc happens
most quickly. This could be, because the lead DOS has stdepramges. This steepness itself
seems to lead to the fast decrease in superconductivity.

How the superconducting order parameter decreases withirggccurrent can be seen in
Fig. [3.26(b). Comparison to the monolayer data gives us thefpthat in the bilayer the

superconducting solution is more stable against voltagecarrent than in the monolayer.
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Figure 3.25: (a) Superconducting order paramefeg and (b) current vs. average density for
the Hubbard bilayer as central region, fo= 0.01 andt; = 9. In (a) we compare to monolayer
data. In (b) we show the current through the central regidhénsuperconducting state (black
line) and in the normal state (red line). The numbers reptebe corresponding voltagé\@.

The color-code and further conventions are as in[Eig.] 3.23.
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Figure 3.26: Superconducting order paramet®c vs. (a) voltage and (b) current for the
bilayer Hubbard model as central region, foe= 0.01 andt. = 9. We show additionally the
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B.23.
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3.12.3 Nearest-Neighbour Hubbard Monolayer as Central Region

A numerical investigation with a setup similar to ours isoepd in Ref. [88]. The authors
apply FLEX [87] with the Keldysh formalism to describe theaghk transitions in a Hubbard
model withU /t = 4.5 and only nearest neighbour hopping, under the influencéiafsavoltage.
They find that a bias-voltage of\p = 0.1 with ' = 1 x 10~3 is sufficient to break down the
superconducting phase. They however work in the wide band, livherel” is constant in
frequencyw and wave vector in théx, y)-plane.

We want to examine the NnSN model with the central regionipatars they use, to see what
we obtain with VCA in Keldysh space. We sgf = —1.56. As starting variational parameters,
we Useeyvar = —0.154 andchsc = 0.54, which fulfill the self-consistency condition of equiiitbm

VCA, when the central region is decoupled from the leads.
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Figure 3.27: Spectral function as a color plot for a Hubbard monolayethwi/t = 4.5 and
t'/t =0, by VCA. The line of maximum density in the lead is added in(@din equilibrium,
superconducting state, for hybridisatih= 0. (b) For a coupling strength = 0.01, and a
voltage of 2u= 0.08. In the frequency integration, here we had to use adapiedvford and

integration accuracy.

When coupling this central region to TB leads and applyingag®, we found two solutions,

depending on the coupling strenght
(1) For a very small coupling strength,= 5 x 102, and wide lead bands = 9 andV = 0.1,
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the system appears to remain in the equilibrium state. Wielalhserve only minimal changes
in the variational parameters as a function of applied galt@(10-2)). To obtain this solution,
it was however necessary to accept much larger gradiemsuthaally, as large as 18. The
corresponding spectral function of the central region @shin Fig.[3.27 (a).

(2) For a larger coupling strength= 0.01, and agait. = 9, we observed the pinning of the
central region spectral function to the leads spectraltfancas shown in Figi_3.27 (b). The
variational parameters at this solution amourgp = 0.44625827 antisc = 1.9738683. This
solution should be taken with care, because of the unpHysbaes of the variational parame-

ters.

The problem seems to be, that the spectrum of the leads issirailar to the spectrum of
the central region. Fdd /t = 4.5 the gap is quite small, and fér= 0.01 both the Hubbard and
the superconducting gap are apparently eliminated by thadigation to the leads, however at

variational parameters which are quite different from theal values.

In order to compare our methods to FLEX + Keldysh, it would beassary for us to work in
the true wide band limit. A-independent dispersion relation for the electrodes carbtsned

by setting thex andy directed hoppings in the leads to zero.

3.12.4 Summary of the Results

We here summarize the results obtained when simulatingesoipducting mono(bi)layer be-
tween metal contacts using VCA and Keldysh Formalism, antdidate predictions for exper-
iments.

We found that currenit, central region densitg and superconducting order parameiee
strongly depend on the applied voltage. Current grows wittage, as long as the leads provide
enough overlap in the density of states. Current peaks caaaaphere the Hubbard bands are
struck by a high density of states in the leads. On the othed,hihe superconducting order
parameter descreases with voltage, even thought the dapithg same time moves closer to
optimal doping.

We distinguish four different regimes of coupling strenfth

e strong coupling:l” > 0.01 leads to increasing difficulties to find solutions for tlagia-
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tional parameters, for the central region both in the nostetle as well as in the super-
conducting state. The bands in the impurity might tune irite lead bands, where

possible.

e Forl ~0.01 we find a phase transition when the voltage equals the supducting gap
size. The critical voltage depends on the initial densltg, ¢entral region density when

still uncoupled to the leads, which influences the gap size.

e For smaller coupling strength, in our case- 0.005, the superconductor - normal state
transition can also occur at much larger voltages, preslynveltren the upper Hubbard

bands get involved in current transport.

e For small enough™ nothing happens, with the system staying superconductiag at

high voltages.

Possible Realization of the NnSN Junction in Experiment Our NnSN setup could be real-
ized by exitaxially growing metallic contacts on a mond@yer of superconducting material,
e.g. by molecular beam epitaxy. The coupling strength dépem the atomic assembly be-
tween CuQ layers and the leads. It can be reduced by additional insglataterial between

the superconducting and metallic regions, or by atoms witiff@rent band dispersion from the

leads or central region.
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3.13 Discussion and Conclusion

Like for the copper oxide layer in equilibrium, we are now rgpito discuss the approxima-
tions introduced by choosing model and solver. Moreoverirywéo interpret the action of the

variational condition.

3.13.1 Physics to Model

The approximations we make regarding a Giid)layer have already been described in Section

[2.3, here we focus on the description of leads and hybridisat

(1) Lead Hamilonian We use a 3D tight binding model to describe the metallic ledtes TB
model is appropriate for materials with limited overlapvee¢n atomic orbitals on neighbouring
atoms, like Si, GaAs, Si©and diamond, which are semiconductors. In transition ragthe
narrow d-bands are TB bands, but these metals also contzad lbpnduction bands, which are
not TB-like.

We found that the form of the lead bands, and their overlap tié central region bands, is
deciding for reaction of the central region to voltage. Whae wants to know what to expect
from a specific realization of the NnSN junction, the disperof the lead bands should be
considered. On the other hand, only the characteristidseoddntact region is important for the

properties obtained. Therefore, fine details of the banat&ire should not be important.

(2) Neglecting Disorder We describe a perfect crystal at temperaflire 0 and thus neglect
scattering of electrons at impurities and phonons. In fahgt we simulate is the scattering of

conductance electrons from electrons and supercondygdiing in the interacting region.

3.13.2 Solver

We now come to the systematic errors introduced by our meth@blve the model. VCA
generally, and the perturbative treatment of intra-layefiater-layer hopping have been treated
in Section 2.b. We will discuss here what has additionallpeécconsidered when coupling to

the leads and applying voltage.



88

(1) Reference Cluster Size To describe superconductivity in the central region, it wases-
sary to use a cluster of at least 2x2 in tleyf plane. On the other hand, because of the large
numerical effort, we could not include more than 4 sites. sTaur reference system contains
only sites of the central region, as illustrated in Hig.] 3Consequently, the hybridisation be-
tween central region and leads is only considered periudbgtwhich should hold for small
values of the coupling strength Moreover, we can not describe the direct interaction betwe
particles on the leads and the central region. Because oésiiected cluster-size, we also ne-
glect long-range Coulomb interaction in the interactingaeg One assume that the important
effects are sufficiently accounted for by a local self-egevghich can be well generated by a

cluster of finite size [[51].

(2) Variational Parameters The choice of the variational parameters affects the swiati
that we can find. We have started with variational paramgetieas describe the superconducting
central region, when it is not in contact with the metal, ngnaesuperconducting fieldsc and
the central region onsite energy.

It is also possible that in a NnSN junction phase separatonrg, where some in some regions
in the (z= 0)-plane current flows through, and in other regions the supehacting order pre-
vails. Localized current flux can not be described with oudeipwhich is translation invariant
and does not contain impurities, to which c-axis currenegsutould pin.

We use no variational field to introduce an antiferromagratiler in the interacting region. An-
tiferromagnetism could moreover provoke proximity maggratin the leads. We do however
simulate the NnSN junction in the hole-doped to heavily Fadped regime, where a long-range

antiferromagnetic order is not found in experiment, as shiwthe phase diagram, Fig.1L.1.

(3) Finite Number of Clusters and Frequency Integration Like for the equilibrium prob-
lem, we have used a small number of clusters in#e0)-plane, namely & 8 in the variational
calculation. This leads to a reduced resolutiotkin We found that the quality of the evalua-
tion of the variational condition is rather limited by theister size than the number of clusters.
From our investigations we conclude, that the choice of gate broadening factosand

the extrapolation t@& = 0 is crucial in order to obtain meaningful results.



89

(4) Variational Condition We have used a Keldysh version of the equilibrium “Euler’a&qu
tion eq.[2.26. In principle, that Euler equation is justif@y, if the central region is in equi-
librium with a certain grand potenti&. The grand potential can be used for a system at given
temperaturd’, volumeV and chemical potentigl. However, here the chemical potential (and

alsoT, Q, et cetera) are not defined because the system is not inkequnh.

(5) Choosing the Right Stationary Point In analogy to equilibrium, we find solutions to
the variational condition in eq[_3.43. There is always a raistate solution, and often a
superconducting solution. Which of the two solutions is futepends on the initial values of
the variational parameters and the algorithm used for taeckan variational parameter space.
For the case in which multiple solutions occur, we do not havainimum energy criterion
as in equilibrium. Therefore, there is no criterion to sayichhone is the stable one. It is
also possible, that the state in the central region depemdseoprevious state, in that case the
junction shows a hysteresis-like behaviour as a functiothefapplied voltage. This however
means, that the steady state depends on the initial states Voltage is increased very slowly,
the system might always remain in a local stationary poiwt stay superconducting until the
perturbation by the leads is too strong. On the other handick @pplication of the voltage
might destroy the information on the superconducting statel the system could settle into
a new state, where current can flow through the central regiore easily, like in the normal
state. In fact, we have simulated a slow increase of voltsigege the variational parameters at

the start of each calculation for a voltage point was theltesthe previous voltage point.
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3.13.3 Summary

We have studied a three dimensional non-equilibrium setitip avtwo dimensional Hubbard
interacting region using the Variational Cluster ApproatKeldysh space. As variational con-
dition we use the analogon of the equilibrium “Euler” comatitin Keldysh space, introduced in
Ref. [53]. This allows us to investigate the steady stateclvbiolves in the central interacting
layer when a constant bias voltage is applied. Most noté#tikyyariational condition is suitable
to study symmetry breaking phases, like superconductivityon-equilibrium.

The simulated setup describes a monolayer of higlstperconducing material, contacted
by two metal leads at different chemical potentials. Ushng Variational Cluster Approach in
Keldysh space, we have performed calculations for thispstetufour values of inital doping,
coupling strength$ = 0.005 andl" = 0.01, distinguishing wide and narrow lead bands. We
found that the applied bias voltage and the bands of the ktaoisgly influence the interacting
region, reducing the superconducting order parametengihg the density in the supercon-
ducting region and causing a c-axis current to flow. Moreawverhave used a bilayer Hubbard
model as central region, and compare the results of thedsiteythe monolayer system. As
expected, we find that the superconducting order is mordesitakhe bilayer central region, as
compared to the monolayer central region.

Analysing the dependence of the results on the couplinggting we find that

(a) for relatively strong couplingl = 0.01 the superconducting order is destroyed, when the
bias voltage reaches the size of the superconducting gap and

(b) for intermediate coupling = 0.005 superconductivity exists up to a large bias voltage.
The superconducting order vanishes, when the upper Hulllzardis enter in the current con-
ducting frequency range.

Based on our results, we formulate predictions for the playsixperiment, distinguishing four
regimes of coupling strengfh. Our results indicate that the discussed model, investibaith
the Variational Cluster Approach, represents a good degmmipf a normal state - nano super-
conductor - normal state junction (NnSN) , with tight-bingimetal leads. We suggest, that the
Variational Cluster Approach in Keldysh space could alsopgp#iad to simulate similar NnSN
junctions with different parameters, or other non-equilitm systems where strong correlations

play a role.



Appendix A

Derivation of the Equilibrium Euler

Equation

In this appendix, we revisit the derivation of Potthoff pshkd in [54 58], and thus make use

of the same notation. One uses the self-energy funct(ﬂl
Qulz) = F[Z] + Trin(G ¢ — =) 2, (A.1)

wheret are the physical one-particle parameters &p{| is the Legendre transform of the
Luttinger-Ward functional. The Luttinger-Ward functidnsia universal functional of the self-
energyz, that is, it is the same for all systems with different onetipke parameters but the
same interactiob). We have sketched it in Fig.2.3.

The approximation made by VCA is to replace the original selérgy>; y by Zy y = Z(t’),

the self-energy of the reference system with one partialamaters’, which is accessible.

Qulz] = Ru[E(t)] + Trin(Gd — =(t)) (A.2)
One wants to find the saddlepoint@f [Zvy] int” and obtains:

0Qiu(Z] ARy [Z(t)] oZ(t)
o az(t)) o

_10Z(t)
ot’

+Tr[(Geg — Z(t)) ]=0 (A.3)

Evaluating”@2 for 5(t') gives—TGy [2(t)] = —TGyy.
Gy is the Green’s function of the reference system, cajled in eq. [342). Writing the trace

as a sum over frequencies and SiteAFH T 5,5 ¢ Aqa (W), ONe is left with
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1 GZBG('[’)
O:Tz z — Gy — . A.4
@ (Gt_’ol—Z(t’) t’U)GB ot’ (A.4)

The first expression in the brackets corresponds to the CPé’nGrﬁmnction:(G{Ol —3(t))t=

I

Gcpr, denoteds in eq. [3.42), so one has obtained
; %54 (1)
0=-TY S (g}) - G)GB%. (A.5)
w o

In VCA, the additional approximation is that not all the orestjle parameters of the refer-

ence system are variated, i7e;é t’, and we thus replace@ y by g(7\)
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