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Abstract

The pair formation in high temperature superconducting cuprates is believed to happen in the

two dimensional CuO2 layers, that are a common feature of most of these materials.High tem-

perature superconductitvity, however, is not a totally two-dimensional phenomenon. In fact, the

transition temperature Tc is a dome shaped function of the number of neighbouring CuO2 lay-

ers per unit cell. Interactions between neighbouring layers can happen by tunneling of pairs or

single particles. The materials are highly anisotropic so that the conductance within the layers

is much larger than perpendicular to the layers.

In this work, we use the one band Hubbard model to describe theCuO2 layers. To treat the

strong onsite correlation on copper d-shells and in order toaccount for the hopping to neighbour-

ing sites, we solve the Hamiltonian on a cluster of lattice sites and incorporate the inter-cluster

hopping perturbatively. The perturbative treatment is then improved by adding a variational

condition within the Variational Cluster Approach (VCA). We study the phase diagram of this

model, which describes the competition between antiferromagnetism and superconductivity for

both electron and hole doping. We obtain spectra for optimally doped and overdoped samples.

Our results indicate that the inter-layer coupling is an essential parameter to describe multilayer

cuprates.

Another important issue, connected to the inter-layer coupling, is the c-axis current.We adopt

a recently developed method to incorporate non-equilibrium Green’s functions within the VCA

formalism. This allows us to simulate the application of a voltage to a Hubbard monolayer or

bilayer, obtained by connecting two electrodes across the Hubbard layer. Here we apply for

the first time an expression that is the natural extension of the equilibrium variational condition.

Using this non-equilibrium “Euler like” equation, we find that the application of a bias voltage

not only leads to a change in particle density and a current flowing trough the sample, but also

to a decrease of the superconducting order parameter and in the end, for high enough coupling

strength to the electrodes, superconductivity vanishes.

non equilibrium, cuprates, high temperature, superconductors, embedding cluster approaches,

Green’s functions, bilayer





Zusammenfassung

Man nimmt an, dass die Paarbildung in keramischen Hochtemperatursupraleitern vor allem in

den zweidimensionalen Kupferdioxydschichten stattfindet, die diesen Materialien gemein sind.

Hochtemperatursupraleitung ist aber kein rein zweidimensionales Phänomen. Die Übergangs-

temperatur, z.B., ist eine Funktion der Anzahl von benachbarten Cu02 Schichten in der Einheits-

zelle. Wechselwirkung zwischen benachbarten Schichten geschieht durch Tunneln von einzel-

nen oder gepaarten Teilchen. Die keramischen Hochtemperatursupraleiter sind aber trotzdem

stark anisotrop, sodass die Leitfähigkeit in der Schicht jene senkrecht zu den Schichten, in

Richtung der c-Achse, bei weitem übertrifft.

In dieser Arbeit verwenden wir das Einband-Hubbardmodell um die CuO2 Schichten zu be-

schreiben. Damit sowohl die starke lokale Coulombwechselwirkung in den d-Orbitalen der Kup-

feratome als auch das Hüpfen zwischen benachbarten Kupferatomen gut berücksichtigt werden

kann, lösen wir den Hubbard Hamilton-Operator auf einem Cluster aus Gitterplätzen, und erfas-

sen the Hüpfen von Teilchen zwischen den Clustern störungstheoretisch. Wir verwenden eine

variationelle Variante der soeben beschriebenen Methode,den Variationellen Cluster Ansatz,

um das Phasendiagramm dieses Modells zu untersuchen, welches den Wettbewerb zwischen

Supraleitung und Antiferromagnetismus beschreibt. Wir analysieren den Einfluss der Hüpfpro-

zesse zwischen den Schichten (inter-layer) auf Spektren und Phasendiagramm von Vielschicht-

Hochtemperatursupraleitern.

Ein wichtiges Thema, das mit dem inter-layer Hüpfen im Zusammenhang steht, ist der Strom in

Richtung der c-Achse, hervorgerufen durch das Anlegen einerSpannung. Wir verwenden eine

kürzlich entwickelte Methode, nämlich den VariationellenCluster Ansatz mit Greenschen Funk-

tionen im Nichtgleichgewicht. Damit berechnen wir was passiert, wenn an eine dünne Schicht

von hochtemperatursupraleitendem Material über metallische Kontakte eine Spannung ange-

legt wird. Die Ergebnisse zeigen, dass die Biasspannung an der dünnen supraleitenden Schicht

nicht nur zu Änderungen in der Dichte, und zu einem Stromflussdurch die Schicht führt, son-

dern auch zum Schrumpfen des supraleitenden Ordnungsparameters, und bei genügend starker

Kopplungsstärke, zum Verschwinden der Supraleitung.

Nicht Gleichgewicht, Cuprate, Hochtemperatur, Supraleiter, Keldysh Formalismus, Bilayer,

Schichten
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0.1 Preamble

Since their discovery in 1986 high transition temperature superconductors have attracted much

interest and triggered a lot of both experimental and theoretical work aiming at a better under-

standing of their mechanism and their other properties.

One of the mainstream ideas is, that pairing is mediated by spin fluctuations. The main dif-

ficulty in the numerical description of high-Tc materials lies in the strong local correlations

experienced by charge carriers. This means, that the particles in these materials do not experi-

ence a mean field, but are interacting strongly with each other. In a numerical simulation, this

complex system of strongly correlated particles can only betreated approximately. The first

simplification we make is to use the Hubbard model. This is already a heavy approximation,

since only the copper dioxide layers are taken along and the processes now happen on lattice,

and not in continuous space. The Hubbard model, however, still needs to be solved. This leads

to major problems, since both the correlations and the hopping between sites are relatively large,

and none of them can be treated perturbatively.

We want to make use of the Variational Cluster Approach to solve the Hubbard model. It

combines the exact evaluation of a cluster’s Green’s function and its perturbation by inter-cluster

hopping terms with a variational calculation. This leads toa good description of both short-

range correlations and long-range symmetry broken phases.In this way, we want to calculate

the properties of bilayer and monolayer superconducting cuprates.

The last years have seen a rising of the Keldysh formalism to treat systems out of equilibrium.

This method was developed in 1965 [1], and, due to the growingpower of modern computers,

it can now be used to simulate complex systems in non-equilibrium setups.

We simulate a metal - (single layer) superconductor - metal junction with a constant applied

voltage, that has evolved into a steady state. We will use theVariational Cluster Approach in

Keldysh space to describe such a junction, and present its properties as a function of initial

doping in the superconductor, applied voltage and bandwidth of the metal. We also discuss the

simplifications and limitations that we have made, and the inaccuracies they introduce.



0.2 Organization

The work is organized as follows: In Chapter 1 we introduce thereader to superconductivity,

justify the use of the Hubbard model, give notice of the methods that we use and finally lay out

in detail the problems that we want to tackle.

Chapter 2 treats the first part of the work, the simulation of monolayer and bilayer cuprates

in equilibrium. The model to be solved is laid out in Section 2.2. Section 2.3 gives an in-

depth description of the methods used. The results are presented in Section 2.4 and discussed in

Section 2.5. A great part of the results to this problem has been published in the Journal of Su-

perconductivity and Novel Magnetism [2]. We have incorporated this publication and marked

verbatim text by using the following font:�Competing Phases in High-T
 Super
ondu
tors�.

In Chapter 3 we focus on the non-equilibrium problem. Furtherintroductory information on

the non-equilibrium setup is given in Sections 3.1 to 1.3. Sections 3.4 to 3.9 show the CPT

+ Keldysh formalism employed for the description of the non-equilibrium problem, and some

applications to unterstand the peculiarities of our three dimensional setup. Finally, we come to

the Variational Cluster Approach+ Keldysh method in Section 3.10. We present the results of

our simulation of a normal metal - thin superconductor - normal metal junction in Section 3.12

and thereafter discuss the model and method in Section 3.13.





Chapter 1

Introduction

We first address superconductivity generally in Section 1.1, and high transition temperature

superconductivity in Section 1.2. We motivate the use of theHubbard model in Section 1.3, and

finally point out the problems that we want to solve in Section1.4.

1.1 Superconductivity

Superconductivity was discovered at the beginning of the twentieth century. The phenomenum

of electronic current had been known from the beginning of the 17th century. B It was the

english physicist William Gilbert, who made first investigations about electricity. From the be-

ginning of the 19th century electricity was used for light generation.

Metals consist of atoms of elements that have only few electrons in the outer shells. If the

valence band, the highest occupied band at zero temperature, is only halffilled, the electrons can

be excited with an infinitesimal amount of energy (gapless) out of the Fermi sea and move freely

through the material. If a voltage is applied, the mean motion of the electrons is towards the

positive pole. The resistence comes from electrons being scattered at other electrons, impurities

and lattice vibrations.

Conventional Superconductors

At the beginning of the 20th century Heike Kamerlingh Onnes succeeded in cooling helium

(He) into its liquid phase (4.2K). He then used the liquid He to cool metals down to low tem-

1
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peratures. He expected the resistivity to shrink, since he thought that resistivity is caused by

the electrons being scattered from the lattice. We now know,that electrons are scattered from

lattice vibrations. In fact, what Kamerlingh Onnes found was that the resistivity (of mercury)

decreased when the material was cooled down to low termperatures. But, all of a sudden, below

the critical temperature Tc it was even zero. He called this state the superconducting state. Forty

years later the explanation for superconductivity in metals, the so-called BCS theory, was found

[3]. A simple view of this is the following: An electron in an ion lattice deforms the lattice.

This lattice deformation attracts another electron. In this way, two electrons are coupled or at-

tracted by the lattice deformation. The lattice deformation modes are termed phonons. Now,

each electron, since it is a fermion, occupies its own state.But if two electrons couple, they

form a boson, the so called “Cooper pair”. These bosons can alloccupy the same, lowest lying

state. This coherent state allows a current flow without resistance.

Summing up, we find that at low temperatures, below the transition temperature Tc, the de-

creased lattice motion not only does not hinder electron motion any more, it even allows the

charge carriers to pair up to bosons, which can form a Bose-Einstein condensate.

There exist two types of conventional superconductors, depending on their reaction to an exter-

nal magnetic field: Type I superconductors are perfect diamagnets, so that the external magnetic

field smaller than the critical magnetic field is totally expelled from the material. In type II su-

perconductors there exists a range of critical field intensity, where the magnetic field penetrates

into the material, it is however localized by the formation of magnetic flux tubes. Another im-

portant characteristic of conventional superconductors is the isotope effect [4]. Substitution of

atoms in the compounds by their isotopes changes the coupling strength between the electrons.

This proved that phonons, which are influenced by the atomic masses involved, are the coupling

particles.

1.2 High-Tc Superconductors

High temperature superconductors are characterized by a higher transition temperature. They

show a reduced isotope effect, which suggests that they do not work by the principle “electron

pairing by phonons”. A family of high-Tc superconductors are those containing CuO2 layers,

called “cuprates”. From now, when speaking about high-Tc superconductors or HTSC, we mean
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cuprate high-Tc superconductors, even though there exist other classes of materials showing this

effect, like the iron pnictides [5], based on FeAs layers.

Structure of the Undoped (Parent) Compounds

Cuprate superconductors have a perovskite structure. They consist of copper dioxide CuO2

layers which sandwich other atoms. The CuO2 layers are believed to carry the charge, while

the atoms in between act as charge reservoirs. There may be one or more CuO2 layers in the

unit cell. Let us first just regard a single-layer material. Oxygen consists of 8 electrons (and

each 8 protons and neutrons). The lowest two electrons fill the 1s shell, next 2 electrons for the

2s shell. The remaining 4 electrons sit in the 2p, which wouldbe filled by another 2 electrons.

Copper has got the ordering number 29 and thus 29 electrons. The electron configuration is

1s22s22p63s23p63d104s1. In the CuO2 layer two electrons from copper move to oxygen which

has now a filled 2p shell. One could also say that the electronsform a hybridisation band which

has got its emphasis on the oxygen. Now the configuration of oxygen is 1s2 2s2 2p6 or [Ne], and

that of Copper is 1s2 2s2 2p6 3s2 3p6 3d9 or [Ar]3d9. So the oxygen is inert while on the Copper

there is an unpaired electron and an unpaired spin. Because ofthe specific lattice structure, the

3d orbitals are not degenerate. The hole sits in the highest orbital of dx2−y2 symmetry. In this

orbital the Coulomb repulsion is very strong. which means that double occupancy costs a large

amount of correlation energyU . The large correlation makes the material an insulator, even

if it should be a metal considering the half filled valence band and according to simple LDA

calculations [6]. Depending on the value ofU and the temperature the material can then be a

charge transfer insulator (see Section 1.3) or an antiferromagnetic insulator.

Phase Diagram

The phase diagram of HTSC as a function of doping and temperature is schematically repro-

duced in Fig. 1.1. At half filling the materials are insulators, for electron and hole doping the

long range antiferromagnetism vanishes and instead the superconducting state forms, and van-

ishes again at higher dopings. The details vary from one specific material to the other, but the

general picture is the same.
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Figure 1.1: Schematic phase diagram in temperature and doping of copperoxide materials [7].

Such a phase diagram is obtained experimentally for high-Tc materials.

Anisotropy and Other Characteristics

An important feature of high-Tc superconductors is their anisotropy. Electron dynamics seem to

happen mainly in the CuO2 layers, but there is interaction between the layers in one unit cell and

between different unit cells. This interaction leads to transport phenomena in c-axis direction,

which is perpendicular to the CuO2 layers. The mechanisms that contribute to c-axis current are

still under discussion, just like the enigmatic pseudogap (e.g. [8]) or an inter-layer contribution

to the superconducting order parameter.

Possible Pairing Mechanism

While it is known that charge carriers in normal superconductors pair by bosonic interaction

(phonons), the mechanism in high-Tc superconductors is still under discussion. Many theories

have been proposed, most of which succeed to explain or predict only some aspects. One idea is

that superconducting pairs are formed because of phonon interaction, just like in normal super-

conductors [9]. On the other hand, there is overwhelming evidence for the coupling mediated

by spin fluctuations [10, 11] (also called magnons or, more generally, spin-polarons[12]). Other

theories proposed include a bosonless coupling and the bisoliton theory [13, 14].

A schematical explanation of the spin fluctuation mediated coupling in real space could be
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the following: The spins on the copper are subject to a large correlation energy and order anti-

ferromagnetically by superexchange. An additional hole disturbs this order and creates a spin-

polaron (spin-polarisation of its surrounding). This spin-polaron can enable the coupling to

other holes.

1.3 Map onto Hubbard model

In Section 1.2 we mentioned, that particles on the copper 3d orbital are subject to strong on-site

Coulomb interaction. The Cu 3dx2−y2-orbital is thus only half-filled, which leads to an unpaired

spin on each copper site. Between two copper atoms there sits an oxygen atom, the p-orbitals

filled by two electrons with antiparallel spins. This results in a superexchange interaction be-

tween the two copper atoms, with the unpaired spins orderingantiferromagnetically [15]. When

considering the copper and the oxygen bands around the Fermienergy, one finds that the un-

doped parent compound is a charge-transfer insulator [16, 17].

Away from half-filling there is an asymmetry between electron and hole doping, which is also

observed in experiments. Doped holes localize on the oxygenatoms, and destroy the antiferro-

magnetic coupling between Cu spins. On the other hand, doped electrons live on the Cu sites,

where they dilute the antiferromagnetically ordered spins[18]. This explains, why the antifer-

romagnetic phase is much more stable for electron than for hole doping, as illustrated in Fig.

1.1.

Already in 1987 it was suggested, that CuO2 layers in HTSC can be described by the Hubbard

model [19]. A generalized single-band Hubbard Hamiltonianreads:

HH =−∑
σ,i j

ti j (c
†
iσc jσ +c†

jσciσ)+∑
i

Uini↑ni↓, (1.1)

whereci(c
†
i ) is the annihilation(creation) operator on sitei, ti j is the hopping amplitude between

sites i and j andniσ denotes the particle number operator which counts the particles of spin

σ ∈↑,↓ on sitei. The main ingredients for the Hubbard Hamiltonian are the strong correlations

Ui and the hoppings between sites, weighted by parametert. For the description of CuO2 layers,

the Hamiltonian is defined on a square lattice.

The above arguments could make us assume, that the physics ofCuO2 planes should be de-

scribed by a 3-band Hubbard model, with one Cu band and two oxygen bands. The number of
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orbitals per site that should be used is however still issue of discussion. Usually, a single-band

Hubbard Hamiltonian is used instead of the three-band one. The single-band Hubbard model,

however, describes a Mott-insulator at half-filling. Why should it still be useful for describing

CuO2 planes? The answer to this question is the Zhang-Rice singlet: A doped hole occupies

a quasi-localized state on the four neighbouring oxygen atoms of a Cu-site. Such a hole then

forms a local spin-singlet with the hole on the central Cu-site, referred to as Zhang-Rice singlet

[20]. The Zhang-Rice singlets are the charge carriers, and are the candidates to condense into

the superconducting state. When using the single-band Hubbard model, the doped holes should

describe these Zhang-Rice singlets.

It fact, numerical simulations of the single-band Hubbard model yield physical observables like

the Fermi surfaces, spectral functions and others in qualitative agreement with experimental

results [21, 22, 23]. It is however essential to include next-nearest neighbour hopping terms,

which generate the difference between particle and hole doping that has been described above.

We decided to use the single-band Hubbard model, since it is much more simple and easier

in the numerical treatment, and still describes the essential features of high-Tc cuprates. The

total single-band Hubbard Hamiltonian for a CuO2 monolayer reads

HH =−t ∑
〈i j 〉

∑
σ
(c†

iσc jσ +c†
jσciσ)+ t ′ ∑

〈〈i j 〉〉
∑
σ
(c†

iσc jσ +c†
jσciσ)+U ∑

i
ni↑n j↓−µ∑

iσ
niσ, (1.2)

with hoppingt between nearest neighbour Cu sites, and next-nearest neighbour hoppingt ′. The

chemical potentialµ fixes the doping of holes (or Zhang-Rice singlets), forµ= U/2 the sys-

tem is half filled. Most importantly, the strong onsite-interaction of particles on the Cu sites is

accounted for by the correlation energyU . When treating the bilayer, we additionally need to

know the inter-layer hopping terms.

Even the single-band Hubbard model on a square lattice has not been solved exactly. The

main difficulty in the numerical treatment of the Hubbard model in our case is thatt andU are

of the same order of magnitude and thus it does not justify to treat one of them perturbatively.

A means to solve the Hubbard model numerically is the so-called Cluster Perturbation Theory

(CPT) [24, 25], see Section 2.3.1. We use an extension of the CPT, called Variational Cluster

Approach (VCA), to describe the competition between antiferromagnetism and superconduc-

tivity. An introduction to VCA is given in Section 2.3.2.
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t t ′

Figure 1.2: Intra-layer hopping processes. The filled circles denote the Cu sites, where strong

Coulomb interactionU takes place. Particles hop along the solid lines (nearest neighbour hop-

ping) and dashed lines (next-nearest neighbour hopping).

Cu

Y

Ba

La

O

LaCuO (monolayer) YBCO (bilayer)

Figure 1.3: Crystal structure of the LaCuO (left) and YBCO (right) parent compounds. They

represent two types of the high-Tc superconductors, namely monolayer and bilayer materials.
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1.4 Aim of the Work

We want to study the properties of cuprate high-Tc superconductors. The model that we use

to describe these materials, is the single-band Hubbard model. As solver we have chosen the

Variational Cluster Appoximation. Our focus will be on the difference between monolayer and

bilayer materials, see Fig. 1.3. These are materials containing one or two CuO2 layers per unit

cell, respectively.

In the first part of the work, we study the equilibrium situation. It is described by the Hubbard

model defined on a two dimensional (2D) lattice. For the bilayer system, we add an inter-

layer hopping to describe two coupled 2D layers. We calculate the phase diagram and compare

spectra of the monolayer and bilayer system to experimentalresults. The focus is on the splitting

caused by the inter-layer hopping, which is expected to be renormalized by strong correlations.

In the second part of the work, we present a new version of VCA totreat systems out of

equilibrium. It can be used to investigate a strongly correlated central region in a symmetry

broken phase like superconductivity at timeτ =−∞, which is at timeτ0 contacted by two leads

at different chemical potentials. In this way, a bias voltage is applied to the central region. After

some time, a steady state evolves, and with the new version ofVCA, one can analyse this state,

e.g. find out if it is still symmetry-broken and measure the c-axis current. The setup that we

use for testing the new method, is a metal - (nano) superconductor - metal (NnSN) junction

with applied voltage, see Fig. 3.1. This is an interesting application of the non-equilibrium

VCA, and there exists a considerable amount of both experimental and theoretical work about

similar setups, but with wider superconducting central region. Especially experiments done to

analyse the anisotropy in high- Tc superconductors, like measuring the c-axis versus ab-axis

charge dynamics could be comparable to our setup.



Chapter 2

Copper Oxide Layer in Equilibrium

A large part of the results presented in this chapter has beenpublished in Ref. [2]. The author’s

contribution to the work was to use and modify where necessary an existing VCA code, mainly

written by the coauthor, in order to explore the bilayer Hubbard model. Moreover, the author

interpreted the results scientifically, made a literature recherche to investigate the status quo of

scientific research in this field and compared to experimental and theoretical results. Since the

article is part of this PhD work, it is included in the presentthesis with the agreement of all

authors. However, since it is published work, parts taken verbatim from this article are marked

explicitly by using a special font�Copper Oxide Layer in Equilibrium�.

We 
arry out a theoreti
al study of the bilayer single-band Hubbard model in the undoped

and in the super
ondu
ting phases by means of the Variational Cluster Approa
h. In parti
ular,

we fo
us on the e�e
ts of bilayer splitting indu
ed by the inter-layer hopping, as well as

its interplay with strong 
orrelation e�e
ts. We �nd that the bilayer splitting between the

antibonding and bonding is 
onsiderably suppressed in both the normal and super
ondu
ting

phases, in qualitative agreement with experiments on Bi2Sr2CaCu2O8+δ. In addition, in the

super
ondu
ting phase, the shape of the splitting in k spa
e is modi�ed by 
orrelations.

2.1 Introduction

It is widely a

epted that the fundamental physi
s of High-T
 super
ondu
tors (HTSC) takes

pla
e in the two-dimensional CuO2-layers. On the other hand, several 
lasses of HTSC exist

with a di�erent number of CuO2-layers per unit 
ell, their transition temperature being strongly

9
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related to this number [26℄. There have been several explanations for this phenomenon, among

them one 
ould mention inter-layer intera
tions, 
harge imbalan
e or quantum tunneling of

Cooper pairs [27, 28, 29℄.

Experimental measurements, supported by theoreti
al investigations [30℄, show that the

inter-layer 
oupling and the third dimension more generally have a strong impa
t on angle-

resolved photoemission spe
tros
opy (ARPES) results [31, 32, 33℄. Depending on photon

energy and polarisation, di�erent features are a

entuated in the measured spe
tra [34, 35℄,

while the �real� underlying quasiparti
le spe
trum remains hidden.

In the last de
ade, the BiSrCuO 
ompounds BSCO-2212 and BSCO-2201 have been studied

thoroughly, and several 
on
lusions have been drawn from the results: High resolution ARPES

on BSCO-2212 with suppressed superstru
ture reveals the presen
e of two Fermi surfa
e pie
es,

one hole-like, the other 
hanging from ele
tron to hole-like [35℄. Heavily overdoped BSCO-

2212 shows a di�eren
e in bilayer band splitting for the normal and super
ondu
ting 
ase

[36℄. In the normal state this is about 88meV and gets renormalized to about 20meV in

the super
ondu
ting state. In the super
ondu
ting state ea
h one of the two split bands

develops its own peak-dip-hump stru
ture (PDH). This is most probably due to the strong

renormalisation at about 60 meV produ
ed by the intera
tions with spin �u
tuations [36℄.

Bilayer splitting in the normal state only weakly depends on doping [37℄. In optimally

doped BSCO-2212 (bilayer) the quasiparti
le in the (π,0) region should look similar to that

of BSCO-2201 (monolayer) [34℄, the enhan
ed linewidth in the bilayer material is attributed

to 
orrelation e�e
ts, more spe
i�
ally (π,π) s
attering due to antiferromagni
 �u
tuations.

In order to unravel the underlying me
hanisms produ
ing these e�e
ts, di�erent theoreti
al

methods have been applied. LDA 
al
ulation done for YBCO [38℄ show that the inter-layer

hopping 
omes from 
opper s ele
trons. Di�erent models were used to des
ribe the system of


oupled 2D CuO planes, e.g. the bilayer Hubbard Model [39, 40℄, 
oupled two-leg spin ladders

[41℄, tight-binding extended Hubbard Model [42, 43℄, bilayer t-J model [44℄. From these


al
ulations the following 
on
lusions 
an be drawn. The PDH stru
ture 
an be explained by a


oupling of the ele
troni
 ex
itations to magneti
 reson
an
es or spin �u
tuations [45, 46℄. At

low doping, the 
oupling between the layers should be antiferromagni
 [40℄, and there might be


ontributions to super
ondu
tivity by inter-layer Cooper pairs, being formed by holes belonging

to di�erent layers. The redu
tion of the bilayer splitting with respe
t to the nonintera
ting
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tight-binding model is attributed to the formation of spin bags in the layers [44℄, whi
h in
reases

the quasiparti
le weight or/and antiferromagneti
 inter-layer order.

We want to address these issues by an alternative approa
h, in whi
h 
orrelations are eval-

uated exa
tly at a short-range level of a 
luster, and thus is expe
ted to 
apture the interplay

between short-range antiferromagneti
 
oupling and quasiparti
le ex
itations. Spe
i�
ally, we

use the Variational Cluster Approa
h (VCA) [47, 48℄ treated in Section 2.3.2to solve the

bilayer Hubbard model. VCA is an extension of Cluster Perturbation Theory (CPT) [24, 25℄,

Section 2.3.1). Due to its variational nature it allows for a treatment of symmetry breaking

phases, in our 
ase antiferromagnetism and/or super
ondu
tivity. The method has already

been su

essfully been applied to a wide range of problems [48, 22, 49, 50, 51℄ and is based

on the Self-Energy Fun
tional Theory (SFT) [52, 53℄, described in Section 2.3.3.We will

illustrate the e�e
ts of bilayer splitting by displaying the spe
tral fun
tions for the two bands.

Finally, we will dis
uss the redu
tion of bilayer splitting due to 
orrelation in both the normal

as well as in the super
ondu
ting state.

2.2 Model

A single CuO2 layer is des
ribed by the standard two-dimensional Hubbard Hamiltonian (see

Section 1.3)

HH =−t ∑
〈i j 〉

∑
σ
(c†

iσc jσ +c†
jσciσ)+ t ′ ∑

〈〈i j 〉〉
∑
σ
(c†

iσc jσ +c†
jσciσ)+

+U ∑
i

ni↑n j↓−µ∑
iσ

niσ

(2.1)

in standard notation. As usual, we in
lude a next-nearest hopping in order to reprodu
e the

band stru
ture observed in ARPES experiments.

2.2.1 z-Hopping or Inter-Layer Hopping

For the description of bilayer materials the inter-layer part of the Hamiltonian is essential.As

well known, for example from LDA 
al
ulations, the inter-layer hopping has a 
hara
teristi
 k‖

stru
ture, wherek‖ is the wave vector in the CuO2 plane, the(x,y)-plane.

We use thek‖-dependent inter-layer hopping derived in Ref. [38] for YBa2Cu3O7 (YBCO),

which is a bilayer HTSC compound. They obtained the inter-layer hopping in the following
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way: The band structure of the material was described in the local density approximation. Then,

the high-energy and chain related degrees of freedom were integrated out, to arrive to two 8-

band Hamiltonians, for the even and odd bands of the bilayer respectively. Downfolding these

8-band Hamiltonians leads to a single-layer Hubbard Hamiltonian, with ank‖-dependent inter-

layer hopping ( which comes mainly from copper s and oxygen d-orbitals) of the form

t⊥(k‖) = t̃
v2

(1−2ut ′
t )

2
(2.2)

with

u=
cos(kyB)+cos(kxA)

2
(2.3)

v=
cos(kyB)−cos(kxA)

2
(2.4)

andA,B the lattice constants. Sinceut′/t << 1, we can Taylor expand the denominator in eq.

(2.2) in terms ofs= 2ut′/t to obtain

1
(1−s)2 ≈ 1+2s, (2.5)

We approximate the denominator by 1 and are left with

⇒ t⊥(k‖)≈ t̃v2 =
t̃
4
(coskyB−coskxA)

2 (2.6)

In VCA we need the hopping term in real space, and thus have to Fourier transform the

hopping term into space coordinates.

The whole inter-layer hopping term in the Hamiltonian is

Ht⊥ = ∑
kx,ky

t⊥(k‖)(c
†
ak‖

cbk‖ +c†
bk‖

cak‖), (2.7)

with c†
ak(cbk) the creation(annihilation) operator of a particle with wave vectork‖ in the layer

a(b). Fourier transform of the creators and annihilators from~k‖ into real space sitesR,R′ in the

layer leads us to

Ht⊥ = ∑
kx,ky

t⊥(k‖)(
1√
N2D

∑
R

eik‖Rc†
aR

︸ ︷︷ ︸

c†
ak‖

1√
N2D

∑
R′

e−ik‖R
′
cbR′

︸ ︷︷ ︸

ck‖b

+h.c.) =

= ∑
kx,ky

t⊥(k‖)
1

(
√

N2D)2 ∑
R,R′

eik‖(R−R′)(c†
RacR′b+h.c.) =

= ∑
R,R′

1

(
√

N2D)2 ∑
kx,ky

t⊥(k‖)e
ik‖(R−R′)

︸ ︷︷ ︸

=T(R−R′)

(c†
RacR′b+h.c.)

(2.8)
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The hopping amplitude in spatial coordinates becomes:

T(R−R′) =
1

(
√

N2D)2 ∑
kx,ky

t⊥(k‖)e
ik‖(R−R′) =

=
1√
N2D

∑
kx

1√
N2D

∑
ky

t⊥(k‖)e
ik‖(R−R′)

→ 1
2π

∫
dkx

1
2π

∫
dkyt⊥(k‖)e

ik‖(R−R′),

(2.9)

where we took the lattice constant to be 1.

Introducing the distance between lattice positions in the(x,y)-plane (∆x,∆y) for R−R′ we get:

T(∆x,∆y) =
1

(2π)2

∫
dkx

∫
dkyt⊥(k‖)e

ikx∆xeiky∆y. (2.10)

And if we replacet⊥(k‖) by the r.h.s. in eq. (2.6) we obtain

T(∆x,∆y) =
1

(2π)2

∫
dkx

∫
dky

t̃
4
(coskyB−coskxA)

2eikx∆xeiky∆y. (2.11)

Integrating this out (usingA= B= 1) gives:

t̃
(2π)2

2sin(π∆x)
∆x

2sin(π∆y)
∆y

[
(∆y)2−2
(∆y)2−4

+
(∆x)2−2
(∆x)2−4

− 2(∆x)2(∆y)2

((∆x)2−1)(∆y)2−1)

]

(2.12)

or, using the Kroneckerδ,

T(∆x,∆y) =
t̃

(2π)2

[

−π2δ∆x,0δ∆y,0+
π2

2
δ∆x,±1δ∆y,±1−

π2

4
(δ∆x,±2δ∆y,0+δ∆x,0δ∆y,±2)

]

. (2.13)

This means, that in real space there are three types of inter-layer hopping terms, a vertical hop-

ping (δ∆x,0δ∆y,0), a diagonal hopping (δ∆x,±1δ∆y,±1), and one along thex or y axis (δ∆x,0δ∆y,±2

andδ∆y,0δ∆x,±2). This is illustrated in Fig. 2.1.

Expressing the amplitude of the direct inter-layer hoppingt⊥(0,0) in terms of the amplitude

in k-spacẽt, which we have first used in equation (2.2) gives:

t⊥(0,0) =
t̃

(2π)2(−π2) =− t̃
4

(2.14)

Values for the ratio of̃t and nearest neighbour hoppingt appearing in the literature include

t̃/t = 0.25/0.4 = 0.625 for YBCO (according to [38]) and̃t/t ≈ 0.3 for BSCO bilayers [43].

We will uset̃ = 0.2.
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(0,0)

(±1,±1)

(0,±2)

Figure 2.1: Inter-layer hopping processes. We sketch the three types ofinter-layer hoppings.

The solid line labeled(0,0) corresponds to the direct term,δ∆x,0δ∆y,0. The dash-dot line labeled

(±1,±1) corresponds to the diagonal terms,δ∆x,±1δ∆y,±1. The dotted line labeled(0,±2) cor-

responds to the terms along thex or y axis,δ∆x,0δ∆y,±2. For reasons of clarity, we only plot the

direct intra-layer hopping (dashed lines).

2.3 Method

The method used for approximating the ground-state properties of the system is VCA, which

is a variational extension of CPT. Thevariational prin
iple based on the self-energy fun
tional

approa
h has been formulated by M. Pottho� [54℄. By introdu
ing additional variational

�elds and �optimizing� the grand potential with respe
t to these �elds, one 
an study broken-

symmetry phases, su
h as magnetism or super
ondu
tivity [48, 22, 49℄. In the next three

Section, CPT, VCA and SFT are introduced.

2.3.1 Cluster Perturbation Theory

With the help of CPT [24, 25], the single-particle Green’s function of strongly correlated elec-

tron systems can be calculated.

(a) The first step is to tile the lattice with identical clusters, where the cluster HamiltonianHCL

can be solved exactly, see Fig. 2.2.

H = HCL +Hinter-CL (2.15)

The single-particle Green’s function of a cluster,GCL, is calculated numerically, we do it by

Lanczos exact diagonalisation [55].
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(a) (b)

Figure 2.2: CPT: Whole lattice (a) and tiled lattice (b). The circles denote sites with strong

correlation, the solid lines denote hoppings between the sites to be treated exactly, along the

dashed lines the hopping is treated perturbatively. In thisfigure, the lattice is tiled with 2x2

clusters.

(b) By coupling the clusters within strong-coupling perturbation theory at leading order, an

approximation to the Green’s function on the whole latticeGCPT is recovered,

GCPT(z) =
1

GCL(z)−1− T̂
, (2.16)

where T̂ is a matrix des
ribing inter
luster hoppings (see e.g. Ref. [51℄ for details).

The CPT approximation consists in replacing the self-energyof the lattice system by the one

describing the cluster only. CPT gives very good results for spectral functions, but it does not

allow for spontaneus symmetry breaking.

In order to study symmetry breaking phases like magnetism orsuperconductivity, a vari-

ational principle has been introduced in CPT [48, 47, 51], which leads us to the Variational

Cluster Approach.

2.3.2 Variational Cluster Approach

Doing a variational computation means to introduce parameters which are variated to obtain

a better solution. In variational CPT, these variational parameters multiply additional single-

particle operatorsAi that are added to the cluster Hamiltonian, but are subtracted in the pertur-

bation calculation. In order to find the optimum value of these parameters, which we call~λ, one

looks for a saddle point of the grand canonical potentialΩ,
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Ω−ΩCL(~λ) = Tr
∞

∑
n=1

(GCL(~λ)T)n1
n
= Tr lnGCPT−Tr lnGCL(~λ), (2.17)

with T the temperature,GCL(~λ) the cluster Green’s function obtained forHCL(~λ), andGCPT the

approximatively recovered Green’s function of the thermodynamic limit (eq. (2.16). The cluster

grand potentialΩCL(~λ) at zero temperature is given byΩCL(~λ) = EG(~λ)−µN, with theEG(~λ)

the ground state energy andN the total number of particles.

The self-energy functional theory (SFT, see Section 2.3.3)introduces a self-energy functional

Ω̂(Σ), which is stationary at the exact self-energyΣ of the system. When restricting to the space

of self-energies resulting from the reference-cluster, this self-energy functional can be evaluated

by eq. (2.17).

In summary, we have the following procedure:

• exact diagonalisation of the cluster HamiltonianH ′
CL(

~λ) = HCL +H~λ with added Weiss

fieldsH~λ = ∑i λiAi, whereAi are additional single-particle operators.

• introduction of intercluster terms by first order perturbation calculation, and subtraction of

Weiss fields:G−1(~λ) = GCL’ (~λ)−1− T̂ ′(~λ). HereT̂ ′(~λ) contains the intercluster hopping

of the initial Hubbard Hamiltonian and the Weiss fields, the latter with reversed spin.

• variational calculation: The condition is to find the stationary point ofΩ(~λ):

∂Ω
∂λi

= 0 (2.18)

Improvements with respect to CPT:

(a) It allows for symmetry broken states.

(b) Variational hopping parameters can correct for the isolation of the cluster from the rest of

the lattice in the exact diagonalisation.

(c) The use of a variational chemical potentialµvar helps to simulate a smoothly evolving particle

density when doping the system by changing the chemical potential µ.

However, we have to keep in mind that the continuous particledensity with doping is just

simulated, since the exact diagonalisation of the cluster is still done for a discrete number of

particles in the cluster. This leads to an overestimation ofthe optimal doping and of the super-

conducting gap, which can be overcome by the introduction ofbathsites [56, 57].
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2.3.3 Self-Energy Functional Theory

The formulism of SFT is described in Ref. [54, 53, 52]. Here, the VCA self-consistency con-

dition is derived in the SFT framework, mostly referring to Ref. [54]. One starts with a system

defined by a Hamiltonian, which contains interactionU and one-particle parameterst,

H = H0(t)+H1(U), (2.19)

and wants to find its grand potentialΩt,U and single-particle Green’s functionGt,U .

To do this, using VCA one has to solve the variational condition, eq. (2.18). If the grand

potential is expressed as functional of the self-energy, a more general form of this condition can

be written as
δΩ̂t,U [Σ]

δΣ
= 0. (2.20)

This defines the stationary point of the grand potential as functional of the self-energy.

But how does the condition eq. (2.20) justify?

First, one introduces the Luttinger-Ward functionalΦ̂U [G] defined in Ref. [58], which maps

the dynamic Green’s functions to a static quantity. Evaluated at the exact (physical) Green’s

functionGt,U described by the above Hamiltonian, it gives a quantityΦ̂U [Gt,U ] = Φt,U which

contributes to the grand potential of the system via

Ωt,U = Φt,U +Tr lnGt,U −Tr(Σt,UGt,U). (2.21)

The important thing considering the Luttinger-Ward functional Φ̂U [Gt,U ] is, that it contains

all information on the interactionU and is completely determined by it, and does not depend

explicitly on t (it can still depend on temperatureT and chemical potentialµ).

A functional derivative of it with respect toG gives

1
T

δΦ̂U [G]

δG
= Σ̂U [G], (2.22)

which is again a functional of the Green’s function. Evaluated at the physical Green’s function,

it gives the physical self-energyΣt,U of the system. The Luttinger-Ward functional is illustrated

diagrammatically in Fig. 2.3.

Eq. (2.21) can be verified by integrating overµ, shown in Ref. [54], or by a coupling constant

integration [58].
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Φ̂U [G] = ++ + . . .

Figure 2.3: Luttinger-Ward functional̂ΦU [G]. It was originally constructed diagrammatically,

see Ref. [58]. Then the functional is the limit of the infinite series of closed renormalized

skeleton diagrams. Dashed lines denote the interactionU and double lines the fully interacting

propagatorsG

To proceed with the proof of the condition eq. (2.20), one inverts the r.h.s. in eq. (2.22)

locally. This is possible unless the system is at a critical point for a phase transition. One

uses the resulting functional̂GU [Σ] to perform a Legendre tranformation of the Luttinger-Ward

functional

F̂U [Σ] = Φ̂U [ĜU [Σ]]−Tr(ΣĜU [Σ]) (2.23)

For the functional derivative with respect toΣ one finds

1
T

δF̂U [Σ]
δΣ

=−ĜU [Σ] (2.24)

Now one defines the self-energy functionalΩ̂t,U [Σ]:

Ω̂t,U [Σ] = Tr ln
1

G−1
t,0 −Σ

+ F̂U [Σ] (2.25)

Its functional derivative is ( using eq. (2.24))

1
T

δΩ̂t,U [Σ]
δΣ

=
1

G−1
t,0 −Σ

− ĜU [Σ]. (2.26)

The root of the right hand side of this equation is a conditionfor the physical self-energy of the

system:
1

G−1
t,0 −Σ

= ĜU [Σ] (2.27)

Thus, at the physical self-energy, also the r.h.s of eq. (2.26) should become zero,

1
T

δΩ̂t,U [Σ]
δΣ

= 0, (2.28)

q.e.d.

The above equation can only be solved using an approximation. In VCA, the approximation

consists in restricting the domain of the self-energies in the functional using a so called reference
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system, i.e. a cluster with some changes in the one-particleoperators. The domain of self-

energies is thus restricted to the self-energies of the reference system.

2.3.4 Parameters and Variational Fields Used in this Work

In this work, for the description of the reference system, weadd the following variational fields

to the cluster Hamiltonian,whi
h within VCA are just used for the determination of the

self-energy and then subtra
ted perturbatively [51℄:

• staggered magneti
 �eld

HM = hM ∑
iσ
(−1)σei~Q~rc†

iσciσ , (2.29)

with Q= (π,π).

• super
ondu
ting �eld

HSC= hSC∑
i, j

ηi, j

2
(ci↑c j↓+c j↑ci↓) , (2.30)

where η is the form fa
tor whi
h determines the symmetry of the super
ondu
ting order

parameter, in our 
ase d-wave.

• on-site energy

Hn = εvar∑
iσ

niσ (2.31)

whi
h is needed for thermodynami
 
onsisten
y [51℄.

The nearest neighbour hopping t = 1 sets the energy s
ale, and we take typi
al values U = 8

and t ′ = 0.3t (see e.g. [59℄). The inter-layer hopping is 
hosen to be t̃ ≈ 0.2 
lose to the value

estimated for BSCO-2212 in [43℄.

2.4 Results

2.4.1 Phase Diagram

The phase diagram of the bilayer model witht̃ = 0.2 is very similar to the one of a mono-

layer system only. It consists of a very broad stable antiferromagnic zone around half filling

µ= U
2 [49, 22, 60]. Here, the superconducting order parameter is zero, and the particle density
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per site is 1. When going away from half filling, by changing thechemical potential, in both

directions (particle and hole doping) a d-wave superconducting phase forms (Fig. 2.6). The

critical chemical potential where superconductivity appears is different for particle and hole

doping. Moreover, doping in both directions at some point destroys the antiferromagnetic phase,

see Fig. 2.5. Antiferromagnetism is more extended for particle than for hole doping. To simulate

this difference between particles and holes observed in experiments, we have introduced the next

nearest neighbour hoppingt ′. The spectral function at half filling

A(k,ω) =−1
π

ImG(k,ω) (2.32)

on the path[(0,0),(0,π),(π,π),(0,0)] in the Brilloin zone is shown in Fig. 2.4.
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Figure 2.4: Spe
tral fun
tion A(k,ω) as a gray plot for the half �lled bilayer Hubbard model.

Results are shown for the bonding (kz = 0) and antibonding (kz = π) band.

It already hints an asymmetric behavour of particle and holefilling in the phase diagram,

since particles are expected to enter the Brillouin zone around (π/2,π/2), while holes appear at

(π,0).

At electron doping, the slope of the superconducting order parameter with doping is different

from the monolayer case, in fact one can see that first one bandin k-space becomes supercon-

ducting, and then the next one (Fig. 2.6(a) and 2.8). At hole doping, the inter-layer hopping

seems to delay the superconducting phase transition, always as a function of chemical potential.

Moreover, it shifts the range of densities, which are not realized, see Fig. 2.6(b). Note that the

density is not a linear function of chemical potentialµ and not even a continuous one as shown

in Fig. 2.7. Our results indicate that phase separation can occur. In this case distinct phases with
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Figure 2.5: Antiferromagnetic order parameter〈AF〉 as a function of (a) the chemical potential

µ, and (b) the densityn, for bilayer (black) and monolayer(red). The system is half-filled in the

region aroundµ=U/2, between 2< µ< 5.4.
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Figure 2.6: Superconducting order parameter∆SC as a function of (a) chemical potentialµ and

(b) dopingn for bilayer (black line) and monolayer(red line). For certain doping ranges, only

two parameters were variated (hM forced to zero) (dotted lines)
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Figure 2.7: Particle densityn as a function of the chemical potentialµ, bilayer (black line) and

monolayer (red line). The dotted line is obtained using onlytwo variational parameters,hSC and

εvar. The discontinuities inn are due to phase separation
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Figure 2.8: Spectral functionA(k,ω) as a gray plot for electron doping, atµ = 5.81. The

bonding (kz = 0) Fermi sheet has already crossed the Fermi surface. Thus, for kz = π particles

are already doped into theπ,π region. The antibonding band is still above the Fermi level.
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different particle densities form next to each other, if a homogeneous phase is not favourable at

a certain density. Then, the density averaged over a short region would be restricted to specific

ranges of values. The steps in density, which we obtain as a function of the chemical potential,

hint towards such a phase separation behaviour.

2.4.2 Correlation-Induced Suppression of Bilayer Splitting

Half filling The spe
tral fun
tion A(k,ω) at half �lling is plotted in Fig. 2.4. along the path

[(0,0),(0,π),(π,π),(0,0)] in the Brillouin zone. The spe
trum shows the asymmetri
 behavior

of ele
tron and hole �lling produ
ed by t ′: ele
trons are expe
ted to �rst enter the Brillouin

zone around (π,0), while holes �rst enter at (π/2,π/2). The inter-layer hopping introdu
es a

splitting of the bands into antibonding and bonding band [38℄. Without 
orrelations we would

expe
t the splitting of the bands to be 2∗ t⊥(k)
(cos(kxa)−cos(kya))2

2 . Looking at the Brillouin

zone this means that along the diagonal kx = ky the two Fermi points for the bonding and

antibonding bands are exa
tly one over the other. When going away from this diagonal the

splitting grows until rea
hing a maximum near the (0,π) and (π,0) points. In Fig. 2.9 we plot

the density of states of the bonding and antibonding bands at (0,π), whi
h 
learly shows the

inter-layer splitting. The splitting is approximately ∆U = 0.32t, whi
h is redu
ed with respe
t

to the value ∆0 = 0.4t in the nonintera
ting 
ase.

Optimal doping At optimal doping no bilayer splitting 
ould be resolved in ARPES mea-

surements of BSCO-2212 [34℄. In order to analyze this e�e
t, the spe
tral fun
tions for the

bonding and antibonding bands at (π,0) in the super
ondu
ting 
ase are displayed in Fig. 2.11

for optimal doping. The total spectral function of the optimally doped system isshown in Fig.

2.10. Our 
al
ulations indeed suggest that the antibonding and bonding spe
trum lie almost

exa
tly over ea
h other.

Moreover it was found that the shape of the quasiparti
le peak in the (π,0) region of the

optimally doped monolayer (BSCO-2201) and bilayer material (BSCO-2212) are similar [34℄.

This is also very well reprodu
ed in our data, as 
an be seen in Fig.2.11(b).

Overdoping Bilayer splitting has been measured by ARPES in several works (see. e.g.

[36, 34, 35, 37℄). In heavily overdoped samples the splitting is suppressed mu
h more in the
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Figure 2.9: Spe
tral fun
tions for the kz = 0 (solid line) and kz = π (dashed) bands at (0,π)

(maximum bilayer splitting) at half �lling.
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Figure 2.10: Spectral functionA(k,ω) as a gray plot at optimal doping in the superconducting

state. The used chemical potential isµ= 0.83, where we obtained the largest superconducting

order parameter.
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Figure 2.11: Density of states at the (0,π) point for the optimally doped system. (a) bonding

(solid line) and antibonding bands (dashed) of the bilayer. (b) 
omparison of bilayer bands

(dashed) to the monolayer (fat solid line).

super
ondu
ting 
ase than in the normal state, 
ontrary to the naive expe
tation that a global

phase 
oheren
e below Tc will enhan
e the c-axis 
oupling and thus 
ause larger splitting [36℄.

We 
he
ked these results by plotting the spe
tral fun
tion in the overdoped region [61℄ of the

bilayer Hubbard model both in the normal and super
ondu
ting state. These are displayed in

Figs. 2.12 and 2.13.

In Fig. 2.15, we fo
us on details of the energy splitting and plot its k‖-dependen
e in the

overdoped region. Our results suggest a redu
tion of the splitting at (0,π) by about 30% in

the normal and by about 70% in the super
ondu
ting phase with respe
t to the tight-binding

model. Moreover, in the super
ondu
ting phase also the k‖ dependen
e is modi�ed. This larger

suppression in the super
ondu
ting phase is in qualitative agreement with experiments [36℄.

In order to disentangle the e�e
ts of 
orrelation from the ones due to the super
ondu
ting

gap, we also display results obtained for U = 0 by introdu
ing �by hand� a super
ondu
ting

symmetry breaking �eld equal to the one obtained variationally at U = 8, for the whole spe
tral

fun
tion see Fig. 2.14.

As one 
an see from the �gure, the super
ondu
ting gap only produ
es a small (about 10%)

redu
tion, whi
h is uniform in k‖. The anomalous behavior of Fig. 2.15 is thus essentially due

to 
orrelations.
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Figure 2.12: Spe
tral fun
tion A(k,ω) as a gray plot in the overdoped (µ= 0.43) region in

the super
ondu
ting phase.
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Figure 2.13: Spe
tral fun
tion A(k,ω) as a gray plot in the overdoped region in the normal

phase.
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Figure 2.14: Spectral functionA(k,ω) as a gray plot forU = 0, µ= 0, imposed superconductiv-

ity (like in heavily overdoped solution). The splitting at (π,0) is here≈ 0.35t, which is already

reduced from the pure TB case.
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Figure 2.15: Energy bilayer splitting ∆ along the line 
onne
ting (0,π) and (π/2,π/2) in the

normal and super
ondu
ting state in the overdoped region (
rosses and lines with errorbars).

Results are 
ompared to the splitting for U = 0 (solid line). In the super
ondu
ting phase we

also display results obtained for U = 0 by introdu
ing �by hand� a super
ondu
ting symmetry

breaking �eld (dashed line, empty squares). At some positions in k-spa
e the band is splitted

in two features whi
h present di�erent bilayer splittings. For these k points we also show the

se
ond value of the splitting, shifted to the right for 
larity with thin errorbars. The errorbars

represent the estimated error due to the un
ertainty of the peak positions.
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The values of the splitting for U = 8 plotted in Fig. 2.15 are obtained in the following

way: In the normal state there is just one prominent dispersing peak for ea
h kz de�ning a

bonding and antibonding band. The k‖ dependent splitting is de�ned as the distan
e between

the maxima of these peaks for kz = 0,π, see Fig. 2.16.
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Figure 2.16: DOS for overdoped system at the antinodal (0,π) point in k-space. Bonding

(solid line) and antibonding (dashed line) bands. We have added horizontal lines to illustrate

the distance between the maxima, which is the bilayer splitting.

When going away from the antinodal point, ea
h quasiparti
le peak �rst broadens, whi
h

introdu
es an error in the determination of ∆, and then evolves into a two peak stru
ture,

whi
h resembles the peak-dip-hump stru
ture that is observed in ARPES [36℄. Measuring

the distan
e between the se
ond pair of peaks gives a se
ond set of data points, whi
h is

also displayed in the Figures. For the super
ondu
ting state we plot the splitting for the

quasiparti
le states below the Fermi level. We have 
he
ked that it very 
lose to the splitting

of the mirror states above it.
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2.5 Discussion

The simulation of a complex solid state using a simple model and solver in our case leads

to spectral functions and a phase diagram that are in qualitative agreement with experimental

results. In this section we want to point out, where we have made approximations and with

what effect. We distinguish between approximations made bythe choice of the model and those

introduced when solving it using VCA.

2.5.1 Physics to Model

(1) Map to Hubbard Model As pointed out in Section 1.3, we use a single-band Hubbard

model to describe the complex happenings in the CuO2 layers of HTSC. This surely is a strong

simplification, which has however already been used by many groups, and leads to qualitative

agreement with experimental results [21, 22, 23]. Moreover, only the CuO2 layers are included

in the simluation, neglecting the additional rare-earth ortransition-metal atoms. These are gen-

erally assumed to merely act as charge reservoirs.

(2) Neglecting the Inter-Cell Hopping In z-direction we only consider the hopping between

layers in one unit-cell, but not the hopping between different unit cells. We thus in fact describe

a pure monolayer or bilayer, and not the 3D compound. The inter-cell hopping that we neglect

is known to be much smaller than the inter-layer hopping, dueto the larger inter-cell Cu-Cu

distance, resulting in weak but non-vanishingkz dispersion [30]. If the extension of supercon-

ducting solid inz-direction is large, the inter-cell hopping leads to a broadening of both the

bonding and the antibonding band, thus reducing the bilayergap size.

(3) Form of the Inter-Layer Hopping We have simplified the inter-layer hopping, as de-

scribed in Section 2.2.1. In fact, the inter-layer hopping has not the same form for all bilayer

HTSC compounds, we opted for a simplified version of the depence ontained by ab-initio calu-

lations for YBCO [38]. A more recent description of the bilayersplitting in Bi-2212, based on

experimental results, can be found in Ref. [30].

(4) Neglecting Disorder We model the superconducting compound at temperatureT = 0, thus

neglecting temperature effects, like the thermal fluctuations of spins or lattice sites. Here we are
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interested only in effects at very low temperatures. Moreover, we neglect phonons, which are

believed to play an important role in high-Tc superconductors.

2.5.2 Solver

We now come to the systematic deviances introduced when solving the Model.

(1) Restricted Cluster Size The lattice is tiled with clusters, and the inter-cluster hopping

processes are treated only perturbatively. This leads to finite size effects. One important effect

is the discrete steps in cluster filling. In a 8-sites cluster, only fillings of 1
8, 2

8, 3
8, . . . 16

8 are treated

well, since the exact diagonalization of the cluster is madewith an integral number of particles

in it. This leads to steps in the density vs. chemical potential curve. We have used a variational

chemical potentialεvar to correct for this finite size effect. This however leads to an overesti-

mation of the optimal doping and superconducting order parameter, as described in Ref.[56].

Another possibility to avoid the discrete density lies in the introduction of bath sites[56, 57].

These additional sites, which can be regarded as additionalparameters in the reference system,

allow for continuous filling at the cluster level. Their implementation and use in VCA does

however lead to a substantial additional complexity, as theauthor has comprehended from her

attempts to take advantage of them. The main problem is the growing number in variational

parameters that arise.

(2) Perturbative Treatment of Inter-Layer Hopping We have tiled the lattice with clusters,

which contain sites of one layer only. Therefore, the inter-layer hopping is included only per-

turbatively. ForU = 0, this would still lead to exact results, but we work at high correlation

energies,U = 8. Treating the inter-layer hopping only perturbatively does only justify if it is

small. This is certainly the case, regarding the severe problem to resolve the bilayer splitting

experimentally, see e.g. [62, 63, 36, 64].

(3) Finite Number of Clusters For an optimal resolution of the spectra ink-space, one needs

to take into account infinite lattice sites. We do however useonly a finite number of clusters,

and apply periodic boundary conditions at the end. In the variational calulation we used 18×18

clusters in thex,y plane. The optimal values of the variational parameters areexpected to

converge fast with number of clusters. For the calculation of the spectra, we have increased the
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number of cluster to improve the resolution of the Green’s functions and spectral functions in

the Brioullin zone.

(4) Subset of Self-Energies In VCA, the self-energy of the physical systemΣt,U is approxi-

mated by the self-energy of the reference systemΣt,U with changed one-particle operators. One

searches for a saddle point of the grand potentialΩ in the subspace of the possible self-energy of

the reference system. Only a variation in all one-particle parameters (even dynamic ones) makes

the trial self energies fill the total space of self energies.We use a reduced space of self energies,

since we have restricted to three (sometimes two) variational parameters. A consequence is that

we can find only symmetry-broken phases, which we have included in our simulation. In fact,

there could be other phases, like the stripe phase [65].

(5) Choosing the Right Saddle Point The solution is a saddle point inΩ. There can however

exist more than one solution in the subspace of self-energies determined by the variational

parameters used. A systematic analysis of the quality and validity of solutions (stationary points

in Ω) obtained with VCA is found in Ref. [66]. In this work, we can finda superconducting

solution, and a trivial normal-state solution (hSC= 0). We consider here the superconducting

solution, since its ground state energy is lower.

2.6 Conclusion

We have studied the bilayer Hubbard model by means of the Variational Cluster approa
h, a

method appropriate to 
apture short range 
orrelation in strongly intera
ting latti
e systems.

As expe
ted, the interlayer hopping splits the spe
trum into a bonding and an antibonding

band. However, the 
orresponding bilayer splitting is strongly renormalized due to 
orrelations.

This is evident in the overdoped 
ase in both the normal and super
ondu
ting phase. In

qualitative agreement with ARPES measurements the suppression e�e
t is stronger in the

super
ondu
ting phase. We also found a changedk-dependence of the bilayer splitting in the

overdoped superconducting sample, where the splitting is still large between around(π
6,

5π
6 ), but

strongly renormalized around the anti-nodal and nodal points. Surprisingly, for optimal doping,

the bilayer splitting vanishes 
ompletely, as found in ARPES [34℄. The phase diagram is only

slightly changed from the monolayer system.
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Chapter 3

High-T c (Bi)Layer in Non-Equilibrium

3.1 Problem Statement

An area of research that recently drew renewed attention is the field of correlated quantum sys-

tems out of equilibrium. As an application, we want to treat athin layer (mono/bi-layer) of

high-Tc superconducting material where metal contacts are attached and a voltage applied, as

shown in Fig. 3.1. When a constant voltage is applied, after some time a steady state evolves.

This steady state should not depend on the start parameters any more.

Many questions arise when treating such a setup: Will there be a voltage treshold, below which

no current flows? Does the superconducing state in the monolayer survive the attachment of

electrodes, and application of voltage? How large is the critical value for the current (electric

field), that is, the current (field) where the superconducingorder breaks down?

We want to study this problem using an extension of the Variational Cluster Approach (VCA)

described in Section 2.3.2. By expressing the non-equilibrium Green’s functions within Keldysh

formalism, the VCA can be generalized into a non-equilibriumcapable variational approach.

The model Hamiltonian we map our problem onto is motivated inSection 3.3. However, to start

with, we want to review the status quo of non-equilibrium phenomena with superconductivity

in theory and experiment.

3.2 What has already been done?

In strong connection with our problem stands the c-axis transport in high-Tc materials, which is

a long standing issue. C-axis charge conductance has been treated experimentally [67, 68, 69,

33



34

z

2∆µ

3D

tL

tL

t

V

U,εC

εR

εL

x

z
L RC

Cross section

Figure 3.1: Scheme of the non-equilibrium setup discussed in this thesis. The left figure shows

the 3D view. A voltage 2∆µ is applied to a thin interacting region over two leads. On theright

hand side, the cross-section along the (x,z)-plane is illustrated. The central region (pink region,

C) is enclosed by two metal leads(dark and light cyan - R and L).Empty (full) circles denote

uncorrelated (correlated) sites. The leads are characterized by a tight-binding Hamiltonian with

nearest neighbour hoppingtL and an onsite energyεL/R for the left (L) and right (R) lead,

respectively. The interaction between central region and leads consists of a nearest neighbour

hopping, called hybridisationV, which conserves thek vector in the(x,y)-plane, denotedk‖. In

the central region, the Hamiltonian contains nearest and next-nearest neighbour hoppingt, t ′ and

additionally a strong onsite interaction, described by a HubbardU . The central region onsite

energyεC is used to fix the density atV = 0. The 2×2 cluster that we treat exactly, is encircled

by a dash-dot line, and extends 2 sites iny direction. We distinguish hoppings treated exactly

(solid lines) and perturbatively (dashed line).

70] and theoretically [71, 72, 73, 74, 75, 76], see 3.2.2 and 3.2.3 respectively. In Section 3.2.4

we review the picture of high-Tc materials as stacks of Josephson junctions [77, 78, 79, 80].

Most recently, the field effect has been used to influence the charge density in different materials

and induce a insulator-superconductor phase transition [81, 82, 83, 84]. We will refer to this

work in Section 3.2.5.

3.2.1 NSN junction

Our setup (see Fig. 3.1) is similar to that of a 2D normal conductor - superconductor - normal

conductor, short: NSN, junction, but with a very thin layer of superconductor (a monolayer or

bilayer) in the center, we will refer to it as NnSN, the small ndenoting nano. Transport proper-
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ties of NSN junctions have been measured by the authors of Ref.[67]. They report an increased

current at almost zero bias, which they attribute to interference of conjugate electron-hole pairs

and call the zero bias anomaly. Moreover, they find resistance peaks above the normal state

resistance at bias voltages above 2∆/e, where∆ denotes the superconducing gap, and e the

electron charge.

3.2.2 Measurement of C-Axis Transport Behaviour

Resistivity of a superconducing compound is usually measured by appling voltage to electrodes

attached to the material to be studied. In the normal state, the c-axis resistivity is much larger

than the ab-axis one, and its temperature dependence is mostly semiconductor-like, in contrast

to the metal-like ab-axis resistivity. Below the transitiontemperature, the resistivity is zero

along both axes.

Moreover, the number of interacting CuO2 layers per unit cell seems to influence the c-axis re-

sistivity: Measurements of the temperature-dependent resistivities of Tl-based cuprates yielded

a semiconductor-like temperature dependence for bilayer and a more metal-like behavior for

monolayer (Tl-2201) materials [68]. A complementary method to find out more on the c-axis

properties is to measure photon conductance, as described in Ref. [69]. For more details the

interested reader is referred to the review article [70] entitled “Sum Rules and Interlayer Con-

ductivity of High-Tc Cuprates”.

3.2.3 Theoretical Work on the Topic

The main facts on c-axis conductivityσc(ω,T) in superconducting compounds in the normal

state can be summarized in the following way [71]):

It strongly depends on the compound.

It is very low (below the minimum metallic conductivity expected).

It has a positive derivative in temperature,dσc/dT > 0.

There seems to be no Drude-like term in the electronic contribution toσc(ω)

Among the possible explanations it has been proposed:

(1) Charge carriers in the normal state of cuprate superconductors moving along the c-axis are
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damped because of the interaction with c-axis phonons [72].

(2) Some authors argue that the electrons in the CuO2 layers can be described as Luttinger

liquids. The Luttinger liquid behavior of the CuO2 layers generates the incoherence in the

tunneling process. The momentum in direction normal to the interface is not conserved [71].

Ref. [85] describes the coherent “ab” and “c” transport theory of high-Tc cuprates within a

bipolaron theory. The c-axis behaviour has also been described in terms of two Fermi liquids

(for the CuO2 layers), coupled by an inter-layer term [74]. Contributionsto the inter-layer

Hamiltonian come from quasiparticle hopping (t⊥), impurity scattering and bosonic scattering.

This inter-layer hamiltonian was expanded to second order,to simulate the incoherence that

was expected. The results agree with experimental findings,and the upturn of resistivity with

decreasing temperatureT is argued to be due to the freezing-out of the inelastic inter-layer

scattering.

3.2.4 Stacks of Josephson Junctions

The Josephson effect evidences the coherence of the superconducting phase in a material, and

has been used to check for the overlap of the superconductingorder parameters between differ-

ent materials, e.g. see [77]. It will allow a current of superconducting pairs to flow through

a superconducting - insulator - superconductor (SIS) junction, if the order parameters overlap.

Experiments described in [78, 79] show that high Tc superconductors behave like stacks of SIS

Josephson junctions, where the adjacent CuO2 planes represent the superconductors, and the re-

gion in between acts as insulator. The current-voltage characteristic of high Tc superconductors

can be described by a series connection of highly capacitivejunctions. We deduce that, in the

superconducting state, the tunneling of pairs contributesstrongly to the current.

Other experiments featuring the Josephson effect in high Tc cuprates include the work by

O’Donovan et al. in Ref. [80].

3.2.5 Phase Transition by Field Effect

Most recently, the field effect has been used to influence the charge density in different materials,

usually parent compounds of the high Tc superconductors, to induce an insulator-superconductor

transition [81, 82, 83, 84]. Different groups applied a gatevoltage to shift a superconductor

from the underdoped to the optimally doped regime. In their experimental setup, there is no cur-
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rent flowing through the superconductor in c-direction in the steady state , which distinguishes

this setup from our simulation. Another interesting experimental setup has found light-induced

superconductivity in stripe-ordered cuprate material [86].

The work that comes closest to our simulations, describes the application of fluctuation ex-

change [87] or FLEX+ Keldysh to a thin superconducting layer between two metal contacts.

The authors of Ref. [88] work in the wide band limit, and use a Hubbard model withU/t = 4.5

and no next-nearest neighbour hopping as central region.

3.2.6 Relevant Aspects

There are different contributions to the scattering-matrix representing an NSN junction: trans-

mission of an electron, Andreev reflection, normal reflection of an electron, consult [89] for

more details. The different mechanisms have different temperature dependences, leading to a

total temperature dependence of the total current. Our simulation is done at temperatureT = 0.

This excludes thermal fluctuations and we can focus on the effect of the electric field and c-axis

current. Because of the tiny size of the superconducting region in our simulation, Andreev scat-

tering [90] should not occur, and we thus also do not expect the zero bias anomaly to appear in

our simulation.

A normal material in contact with a superconductor is expected to show a small superconducing

order parameter, because of the diffusion of Cooper pairs through the interface. This proximity

effect has first been described by Meissner in 1960 [91]. Thus, in the setup we describe, Cooper

pairs can tunnel between leads and central region, resulting in a Josephson current.

The break-down of the superconducing order parameter because of the c-axis current can orig-

inate from two effects. On the one hand, one can expect the superconducing order to vanish

at a critical c-axis currentIc, since a normal current flowing through the superconducing layer

generates a magnetic field, which breaks the Cooper pairs (especially for high Tc materials,

because in this case the coupling presumably happens by spinfluctuations i.e. magnetic excita-

tions). Another effect is the disruption of superconducingorder by motion of the charge carriers

moving perpendicular to the superconducing layer. These two effects eventually break down

superconductivity. In our simulation, we neglect the magnetic field generated by the current

between the leads and instead focus on the many body effects of the charge carriers themselves.
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3.3 Map to Model and Organisation

The problem to be solved involves a very thin layer of high Tc material between two metal

contacts, where voltage is applied, as shown in Fig. 3.1. We describe the thin layer of high-Tc

material theoretically by the Hubbard model on a square lattice on the(z= 0)-plane, as we

have already done in equilibrium in Section 1.3. For the leads, tight-binding Hamiltonians with

different chemical potentials at timeτ = −∞ are used. To simulate the hybridisation between

superconducting layer and leads, we introduce at timeτ = τ0 a single-particle hopping inz-

direction between the superconducting layer and the edge ofthe leads. The full Hamiltonian is

thus

Hnon-eq= HR+HL +HC+Θ(τ− τ0)(HLC +HCR), (3.1)

whereHC denotes the Hamiltonian of the superconducting layer,HL/R the left/right lead Hamil-

tonian and(HRC+HCL) the hybridisation turned on atτ0.

3.3.1 Model

The full Hamiltonian is illustrated in Fig. 3.1, details aregiven in the corresponding caption.

Leads

For the description of each lead, we use a nearest neighbour tight-binding (TB) Hamiltonian,

defined on a semi-infinite cubic lattice with open boundary conditions, infinite in(x,y), with the

edge atz=±1:

HL/R =−tL ∑
<i j>

(d†
i d j +d†

j di)+(εL/R −µL/R)∑
i

mi , (3.2)

with di(d
†
i ) the annihilation (creation) operator on lead sitesi and j, mi = d†

i di the particle

number operator,µL/R the chemical potential,εL/R the onsite energy andtL the hopping ampli-

tude which is the same in both leads. Additionally a sum over spin is understood. To describe

non-equilibrium, we use different values of chemical potential µL/R in the left L and right R

lead. In this work we apply voltage by shifting both the onsite energy and chemical potential

by the same amount in one lead, and asymmetrically between the two leads. Therefore, for

µL = εL =−µR =−εR, a total voltage for 2∆µ is applied.

The leads are very large with respect to the central interacting region, and thus their state far
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away from the central region remains identical to the state at τ = −∞. The Green’s functions

for the semi-infinite cubic nearest neighbour TB model can beobtained analytically [92], as we

will point out in 3.6.

Central Interacting Region

The central region consists of a thin layer of superconducting material, described by the Hubbard

Hamiltonian on a square lattice in the(x,y)-plane, which has been introduced in Section 1.3:

HH =−t ∑
〈i j 〉

∑
σ
(c†

iσc jσ +c†
jσciσ)+ t ′ ∑

〈〈i j 〉〉
∑
σ
(c†

iσc jσ +c†
jσciσ)+U ∑

i
ni↑n j↓+(εC−µC)∑

iσ
niσ,

(3.3)

in standard notation. Here we also add variational parameters according to the VCA procedure.

We setµC = 0 in all calculations and useεC to fix the density of the uncoupled central region.

Interaction of Leads and Central Layer

The Hamiltonian connecting leads to central region is

HLC/CR =−V ∑
<i j>

(c†
i d j +d†

i c j +d†
j ci +c†

j di), (3.4)

with the hopping amplitude between leads and central regionV, denoted hybridisation, and

< i j > nearest neighbours terms across the interface. Additionally, a sum over spinsσ is un-

terstood. We note that there are only “direct” terms in this hybridisation, i.e. the hopping is

only in z-direction. Moreover, the hybridisation is translation invariant the(x,y)-plane, and thus

preserves thek-vector in the(x,y)-plane, denotedk‖.

3.3.2 Procedere for Solution

To solve the problem defined by this Hamiltonian, we use VCA in the space of non-equilibrium

(Keldysh) Green’s functions. Specifically, we proceed in the following way:

• We solve the lead HamiltonianHL/R exactly atτ = −∞, where each part of the system

(L,C,R) can be considered separately in equilibrium, to obtain the corresponding Green’s

functionsgL/R.
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• We introduce variational fields in the central region Hamiltonian to have an initial state

that is ‘close enough” to the steady state that will evolve, due to hybridisation with the

leads, and calculate the Green’s functiongC.

• We couple the Green’s functions of the leads to the central region Green’s function by

CPT, using a Dyson equation. This has to be done in the Keldysh space, since the chemical

potentials where distinct atτ =−∞.

• We repeat the procedure with different initial states, by changing the variational parame-

ters, until the variational condition described in Section3.10.2 is fulfilled.

3.3.3 Organisation

In Chapter 2 we have first presented the problem, and then introduced the methods before

presenting the results. Here we want to proceed in a similar way, but, since there are many new

instuments that we need, we have decided to tackle the problem in small steps. This means,

that we will introduce the ingredients to our simulation in smaller portions and blend in simple

applications where appropriate. In this way, we will evolveour method slowly and equip it with

further details where necessary.

The setup we describe is infinite in(x,y) from the beginning. We first restrict to the case of

a non-interacting 2D TB central region, and then introduce the hybridisation to the leads to

recover the three dimensional (3D) TB model in equilibrium (Section 3.7.1). Applying voltage,

we study the current vs. voltage characteristics and how they depend on the lead bandwidth.

Moreover, we investigate how the particle density in the central region behaves with respect to

voltage. For the noninteracting case, results are exact. However, obviously no superconductivity

sets in. Therefore, in a next step, the interactionU is introduced in the central region, and we

show in Section 3.9 how the current vs. voltage characteristic changes because ofU .

We use VCA to improve the description of the central region with applied voltage, with respect

to the results obtained by CPT coupling of leads and central region. Thus, in Section 3.10,

we generalize the equilibrium Euler equation (2.27) to obtain a variational condition for the

non-equilibrium setup. Then we are finally able to tackle theformulated problem: We describe

a superconducing layer between metal contacts with appliedvoltage in the steady state. The

results are presented in Section 3.12. In addition, we also apply the method to a bilayer central
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region. In the end, we summarize and discuss our results on the NnSN junction.

Before even starting with the description of non-equilibrium setups we need to introduce

non-equilibrium Green’s functions, which we do in Section 3.4. In Section 3.5, we show how

to describe a probe between contacts using CPT and Keldysh formalism. Especially the c-axis

current is an important observable in such a setup. We will mention how it can be obtained. In

order to calculate current and density, one needs to performa frequency integration over Green’s

functions. How this can be done numerically in Keldysh spaceis laid out in Section 3.11.

3.3.4 Expectations

We want to investigate how c-axis current, superconductingorder parameter and density in the

central interacting(z= 0)-plane depend on the applied voltage and on the properties ofthe leads.

We expect the c-axis current for the interacting (U 6= 0) and superconducing central region to be

smaller than forU = 0, because of the gaps opening due to correlation and superconductivity.

Moreover, the attached leads have a certain spectral function, which we expect to influence the

central region.

Much work has already been done regarding a small, mostly zero- or one-dimensional, interact-

ing region in non-equilibrium [93, 94, 95, 96, 97, 98, 99, 100, 101, 102]. In this work we focus

on two aspects of the problem,

(a) the fact that the interacting region is lies on a square lattice, thus the system is translation

invariant in the(x,y) plane,

(b) the variational procedure that is necessary to describesymmetry-broken phases in such a 2D

interacting region.
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3.4 Keldysh Formalism

We want to describe a system, consisting of two semi-infiniteleads coupled to a relatively small

interacting central region. At timeτ = −∞, both the left L and right R lead have their own

chemical potentialµL/R and the hybridizationV to the central region is turned off. At timeτ0,

V is switched on. We want to calculate expectation values of operators in the steady state that

evolves after some time.

In contrast to a non-equilibrium system, an equilibrium system is characterized by a well-

defined chemical potential, and perturbations are turned onand off adiabatically.

We present a superficial introduction to Green’s functions in general and the Keldysh formal-

ism, and refer the interested reader to standard textbooks on the topics, like [103] for equilibrium

Green’s functions, and [102] for non-equilibrium.

Green’s functions above all consist of expectation values of two operatorsA(τ) andB(τ′)

at different real timesτ,τ′, spins and places. We are presently only concerned with temporal

variables, and thus suppress all other variables (spatial,spin, . . . ).

In equilibrium, such an expectation value of the product〈T B(τ′)A(τ)〉, with time ordering

operatorT , can be written as

〈T B(τ′)A(τ)〉= 〈−∞|T B(τ′)A(τ) |−∞〉
〈−∞|−∞〉 =

〈∞|T B(τ′)A(τ)S(∞,−∞) |−∞〉
〈∞|S(∞,−∞) |−∞〉 , (3.5)

with the time evolution operatorS(τ′,τ). When going from the central expression to the right-

most, we have used that in equilibrium the system is in the same state atτ = −∞ andτ = ∞,

|∞〉= |−∞〉, apart from a phase. Since the phases introduced in nominator and denominator by

the time evolution of the ground state cancel, one can easilycalculate〈T B(τ′)A(τ)〉.

−∞ ∞

normal time axis

−∞
−∞ ∞τb2

c1
c2

τ1 τ′1

Keldysh time axis

Figure 3.2: Normal to Keldysh contour. The time line is folded back to−∞, with each time

now additionally labeled by the side of the contourc1,c2 it belongs to.

Out of equilibrium, the system does not necessarily relax into the state at−∞, so the states

|∞〉 and|−∞〉 are not just different by a phase factor.
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To be able to calculate expectation values, we employ the Keldysh formalism, which is de-

rived e.g. in [1, 102] and [104]. Essentially, the time line is folded to form a new axis in time,

called the Keldysh contour, which is displayed in Fig. 3.2. Then the time evolution can be per-

formed from〈−∞| to a specific timeτb and back to|−∞〉. Following this contour, the (contour

ordered byTC) expectation value〈TCB(τ′1)A(τ1)〉 can be expressed as

〈TCB(τ′)A(τ)〉= 〈−∞|TCS(−∞1,τ1)A(τ1)S(τ1,τ′1)B(τ
′
1)S(τ

′
1,τb1)S(τb1,τb2)S(τb2,−∞2) |−∞〉 ,

(3.6)

whereτ1(τ2) denotes thatτ belongs to side 1(2) of the contour. We conclude that Green’s

functions, containing expectation values of the kind in eq.(3.6), now depend additionally on

the side of the Keldysh contour of timesτ,τ′. The dependence on the side on the contour can be

folded into a 2×2 matrix, so that each Green’s function can be written as

Ĝ(τ,τ′) =




G(τ1,τ′1) G(τ1,τ′2)

G(τ2,τ′1) G(τ2,τ′2)



 (3.7)

These four parts are not independent, and by performingG = Lσ3ĜL†, a transformation in

Keldysh space and rotation1 described in Ref. [105], one can obtain the Keldysh Green’s func-

tions, which contain only three, linearly independent, parts:

G=




GR GK

0 GA



 . (3.8)

Keldysh Green’s functions can be written in several ways, for alternative conventions see Ref. [105].

In this work, we use the Keldysh Green’s functionsG in eq. (3.8), containing the retarded, the

advanced and a “Keldysh” component,GR,GA,GK respectively. The retarded componentGR is

defined as

GR
AB(τ,τ

′)≡
〈〈

A(τ);B(τ′)
〉〉ret

=−iΘ(τ− τ′)
〈[

A(τ),B(τ′)
]

−ε

〉

, (3.9)

with ε = −1 for fermions and+1 for bosons. The general expression for the “Keldysh” com-

ponent is

GK
AB(τ,τ

′) =−i 〈[A(τ),B(τ′)]+ε〉 . (3.10)

1L = 1√
(2
(σ0− iσ2), andσi for i = 1,2,3 denote the Pauli matrices in Keldysh space, andσ0 the unit matrix
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In the steady state (or in equilibrium),G should only depend on the distance in time. Fourier

transform then allows to express the Keldysh component asGK = GR f − f GA, where in equi-

librium and for fermions,f involves the fermion distribution function [101]

fF(ω) = 1−2nf(ω) = tanh

(
ω−µ
2T

)

(3.11)

3.5 CPT plus Keldysh

Usually, CPT is used to handle connected identical clusters,as we have described in Section

2.3.1. However, it can also be used to treat connected non-identical clusters. The setup of the

problem we want to address is sketched in Fig. 3.3 (a) and the corresponding Hamiltonian is

found in eq. (3.1). Left and right lead are semi-infinite inz-direction, while the central region is

a mono(bi)layer. Interaction between central region and leads takes place on two 2D (infinite)

planes, as illustrated in Fig. 3.1. The single-particle Hamiltonian matrix for times afterτ = τ0

is sketched in Fig. 3.3 (b).

Note that atτ = −∞ the chemical potentials are different for left and right lead, and we thus

have to resort to Green’s functions in the Keldysh space, which we denote by an underline.

HL HC HRHLC HCR
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HR

HLC
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(b) Hamiltonian matrix

gL

gC

gR

(c) g0

Figure 3.3: Clusters with differing Hamiltonians to be treated with CPT. In (a) we have sketched

the system to be addressed. In (b) we schematically show the single-particle Hamiltonian matrix

and in (c) the unperturbed Green’s functions for the decoupled system atτ =−∞.

If the many-body Hamiltonian matrix is not too large, one canfully diagonalize it. Other-

wise, if the inter-cluster hopping is small, the method of choice is to use CPT, i.e. treat the

hybridization between the clusters perturbatively. We calculate the Green’s function for each
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cluster HamiltonianHi (i =R,L,C) separately, to obtain the unperturbed Green’s function in

Keldysh spaceg0 made up of thegi, see Fig. 3.3 (c). In our case, the left and right lead are in

fact semi-infinitely large and so their Hamiltonian matrix is. As already pointed out in Section

3.3.1, we use the exact analytical Green’s function for the edges of the leads atτ = −∞. To

obtain the Green’s function of the central interacting region gC, one has to solve a many-body

problem.

We then introduce the hybridization between the regions, bya perturbation calculation:

G−1 = g−1
0

− (T̂LC + T̂CR), (3.12)

where Green’s functions and̂TLC andT̂CR are matrices in lattice sites, spin, Keldysh space and

two time variablesτ,τ′. The matrices containing the inter-cluster hoppingT̂LC/CR, are diagonal

in Keldysh space and constant in time. The usual equilibriummatrix is used for the retarded

and advanced component, while the Keldysh component is empty.

In the variational calculation (described later), one needs to restrict to the central interacting re-

gion. Thus, we only calculate the full Green’s function of the central region, using the following

equation:

GC = gC+gC(T̂CL gL T̂LC + T̂CR gR T̂RC) GC, (3.13)

whereGC, gC are matrices in the space of central region sites, spins,τ,τ′, Keldysh space.

Like in equilibrium, we have additionally tiled the centralregion with 2×2 clusters (lx× ly),

and perform a Fourier transform in the superlattice, because of its translation invariance. This

procedure is well described in Ref. [24].

Then GC, gC, T̂CR, T̂CL . . .gL/R are relatively small matrices in cluster sites,τ,τ′, spin and

Keldysh space. On the other hand, one obtains an equation of type eq. (3.13) for each superlat-

ticeK‖-vector, the superlatticek-vector in the(x,y)-plane. The in-plane inter-cluster hopping in

the interacting region is taken into account by the hopping matrix T̂, like in equilibrium (com-

pare to eq. (2.16)).

Eq. (3.13) can also be written in form of a Dyson equation, with Σ̃ = ∑ j∈L,R T̂C j g j T̂j C:

GC
−1 = gC

−1− T̂ − Σ̃ (3.14)
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3.5.1 Steady State

In non-equilibrium, Green’s functions usually depend on timesτ andτ′, so generally

G(τ,τ′) =




GR(τ,τ′) GK(τ,τ′)

GA(τ,τ′)



 (3.15)

We want to investigate the steady state, when Green’s functions just depend on the distance in

time G(τ,τ′)⇒ G(τ− τ′). Then eq. (3.14) can be Fourier transformed to obtain

G−1(ω) = g−1(ω)− T̂ − Σ̃(ω) (3.16)

which can be solved independently for each value ofω.

When considering only a single free level as central region Green’s function, one can easily

understand that the effect ofΣ̃(ω) is that of a shift of the excitations by ReΣ̃(ω), and that of a

broadening of the excitations ofg−1(ω) provided for by ImΣ̃(ω), thus changing their lifetime.

3.5.2 Current

In non-equilibrium, the evaluation of the current flowing between different sites is of great in-

terest. For a detailed derivation of the formula for the current calculation we refer the interested

reader to Ref. [102].

The current flowI j from a sitej, where particles are created (annihilated) byd†
j (d j), is described

by the time evolution of the particle number operator on sitej

I j =−e
∂
∂τ

d†
j d j =−ei[H,

∂ d†
j d j

∂τ
]. (3.17)

H denotes the Hamiltonian of the full system and e the particlecharge. Using this, one can

derive an expression for the current between sitej and sitei [102],

Ii j =
e
2
Vji ReGK

i j , (3.18)

whereGK
i j is the Keldysh part of the Green’s function connecting sitesi and j, Vi j denotes the

corresponding hopping amplitude, and e is the charge of the particle.

We do not solve the full Hamiltonian exactly, since it is too large. Instead, we use CPT to

couple the leads to the central region. To calculate the current between sitesi and j, wherei

belongs to the left lead L andj to the central region we make use of the Dyson equation (3.12).

GK
i j = (GR

C V gK
L +GK

C V gA
L ) = (GC V gL)

K (3.19)
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Restricting to the steady state, one finds that for a small central region, which is dominated by

the leads

I = e
∫

dω
2π

T(ω)νL(ω)νR(ω)( fF(ω−µL)− fF(ω−µR)), (3.20)

with νL(νR) the density of states in left (right) lead andfF the fermion distribution function.

T(ω) is the transmission coefficient of the central region, defined by T(ω) = 4π2V4|GR
C(ω)|2.

At temperatureT = 0, the fermion distribution function becomesΘ(µ−ω), and we conclude

that for current flow, the leads DOS need to overlap betweenµL andµR, as shown schematically

in Fig. 3.4. In the next section, we want to find out what happens to the current and CPT

equations in our specific model.
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Figure 3.4: Schematical illustration of current on voltage dependencefor TB leads. The grey

DOS regions denote occupied states. (a)∆µ= 0: Maximal overlap of the left and right lead

DOS, i.e.νL(ω)νR(ω)> 0 in the wholeω range. The resulting current is however zero, because

no voltage is applied (∆µ= 0), and there is no difference in the occupation in the leads,fF(ω−
µL) = fF(ω−µR). (b) ∆µ= 2tL : Maximal contribution to the current from the leads, since for

0< ω < 2tL the right lead is occupied and the left lead is empty,fF(ω−µL)− fF(ω−µR) 6= 0.

(c)∆µ= 4tL: No current can flow, because there is no overlap of the densities,νL(ω)νR(ω) = 0

3.5.3 Implications of Our Specific Setup

For most of our calculations we use a monolayer central region. Then, considering that the

hybridization is perpendicular to(x,y), the above formulae can be further simplified. Let us

write the Dyson equation (3.13) in the space of sites of the central (x,y)-plane,

GC
−1(r, r ′,ω) = gC

−1(r, r ′,ω)− T̂(r, r ′)− ∑
r ′′,r ′′′

∈L,R

∑
i

T̂(r, r ′′)gi(r
′′, r ′′′,ω)T̂(r ′′′, r ′). (3.21)
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The hybridization between leads and central region in eq. (3.4) is diagonal in the space of lattice

sites in the(x,y)-plane, independent ofω and identical for left and right lead,VL =VR=V. Then

what remains of the sum term on the right hand side of eq. (3.21) is ∑i∈L,RVgi(r ′, r,ω)V, and

we find:

GC
−1(r, r ′,ω) = gC

−1(r, r ′,ω)− T̂(r, r ′)−VgL(r, r
′,ω)V −VgR(r, r

′,ω)V. (3.22)

Since the leads Green’s function is obtained exactly and thus is translation-invariant in the(x,y)-

plane,

GC
−1(r, r ′,ω) = gC

−1(r, r ′,ω)− T̂(r, r ′)−VgL(r − r ′,ω)V −VgR(r − r ′,ω)V. (3.23)

When the central region Hamiltonian can be solved exactly, too, e.g. forU = 0, it is also

translation-invariant in(x,y), and the last Fourier transform from cluster sites to the full k‖-

vector gives

GC
−1(k‖,ω) = gC

−1(k‖,ω)− T̂(k‖)−V(gL(k‖,ω)+gR(k‖,ω))V. (3.24)

We are thus left with a set of decoupled equations, and can solveGC
−1= gC

−1−T̂−V(gL +gR)V

for each pair of (k‖,ω) separately.

If one applies the analogous procedure to the Keldysh component in the current formula eq.

(3.18), one finds that generally in the steady state, with a(x,y) translation invariant lead Green’s

function, the currentI(ω) is proportional to

I(ω) ∝ ReGK
LC = ∑

r ′′
Re( gL(r − r ′′,ω)V GC(r − r ′′, r ′,ω) )K . (3.25)

If the central region Green’s function can be calculated exactly as well (e.g. forU = 0), it

should be translation invariant as well, and we can Fourier transform the last equation from sites

in (x,y) into k‖ to obtain

ReGK
LC(k‖) = Re( gL(k‖,ω)V GC(k‖,ω) )K . (3.26)

We conclude that in this case the particles moving through the central region conservek‖ andω.

When a current is measured, the lead Green’s function has to overlap with the central Green’s

function for a specific frequencyω andk‖-vector, in order for the integral over all (k‖,ω) not to

vanish.
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3.6 Leads

We show here the analytic expression we use for the lead Green’s function. Furthermore, we

mention what has to be considered when applying a one-sided particle-hole transformation to

the full Hamiltonian. Such a transformation is one possibility to allow for a superconducting

variational field in the interacting layer.

3.6.1 Green’s function forτ =−∞

For the simulation of the NnSN junction, we need the Green’s function at the contact surface of

the leads. At timeτ = −∞, when the system parts are decoupled and in equilibrium, it corre-

sponds to the Green’s function at the edge of the semi-infinite cubic TB Hamiltonian.

An analytical expression for the single-particle Green’s functionG(~l ,~m;γ,ε, tL) of the TB Hamil-

tonian on an infinite cubic lattice is derived in Ref. [92]:

G∞(lx−mx, ly−my, lz−mz) = G(~l ,~m;γ,ε, tL) =
1

(2π)3

∫ π/a

−π/a
dkx

∫ π/a

−π/2
dky

∫ π/a

−π/a
dkz

× cos[(lx−mx)kxa]+cos[(ly−my)kya]+cos[(lz−mz)kza]

γ− ε−2|tL|(cos(kxa)+cos(kya)+cos(kza))
,

(3.27)

whereγ is the analytic continuation of the energyω into the complex plane,a is the lattice

constant andl i(mi) is the coordinates of lattice site~l(~m) in the i = x,y,z direction,ki are the

corresponding wave vectors,ε is the onsite energy andtL the hopping amplitude in the lead. We

have used a notation different from Ref. [92].

Taking the Green’s function of the infinite cubic latticeG∞ and regarding the open boundary

condition atz= 0, it can be shown [106] that the Green’s function to the semi-infinite cubic

lattice is

Gsemi−∞(lx−mx, ly−my; lz,mz) = G∞(lx−my, lx−my, lz−mz)−G∞(lx−mx, ly−my, lz+mz).

(3.28)

For the edge layer,lz = mz = 1, one finds

Gsemi−∞(lx−mx, ly−my;1,1) = G∞(lx− ly,mx−my,0)−G∞(lx−mx, ly−my,2). (3.29)
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3.6.2 One-Sided Particle-Hole Transformation

We later want to use the operator of superconducting pairingfield as perturbation term in the

central region Hamiltonian. However, as one can see in eq. 2.30, it is an anomalous operator,

i.e. it contains pair creators and annihilators and does notconserve the total particle number. It

is thus convenient to transform the Hamiltonian. We apply a one-sided PH transformation to the

Hamiltonian, like we have done in equilibrium.

c↑ ⇒ b†
↑ c†

↑ ⇒ b↑ and c↓ ⇒ b↓ c†
↓ ⇒ b†

↓ (3.30)

By a simple calculation one can find that this causes some sign changes for parameters for one

spin species. The superconducting coupling operator is transformed into a “hopping” with spin

flip. The Green’s functions are expanded to account for thesespin flip terms.

Application of the one-sided PH transformation to the Hamiltonian of the central region only,

yields a two particle operator for the hybridization term:

V(c†d+d†c)⇒V(bd+d†b†) (3.31)

To avoid this, the PH transformation for up spins is also donein the leads:d↑ ⇒ a†
↑, and

d†
↑ ⇒ a↑. The tight-binding Hamiltonian for the left lead is now

HL =−tL ∑
<i j>

(a†
i,↓a j,↓+h.c.)+(εL−µL)∑

i
a†

i,↓ai,↓+tL ∑
<i j>

(a†
i,↑a j,↑+h.c.)−(εL−µL)∑

i
a†

i,↑ai,↑

= HTB,↓(tL,εL −µL)+HTB,↑(−tL,−εL +µL) (3.32)

plus a constant. The right lead Hamiltonian is treated in thesame way. The different spins in the

lead Hamiltonian do not mix, thus the Green’s function for the down spin can be calculated as

before. For calculating〈a†
↑a↑〉 we use the relation from [92] (page 81) to transform the Green’s

function of the cubic tight-binding model in eq.(3.27):

G(l ,m;ω+ i0+,εL −µL, tL) = G(l ,m;−ω− i0+,−εL +µL,−tL), (3.33)

with ω the energy, 0+ a positive infinitesimal (for the retarded Green’s function) εL, tL the pa-

rameters of the lead Hamiltonian, andl ,m the lattice sites.

This means that〈a↑a†
↑〉 is calculated like〈a†

↓a↓〉, only the energyω has to be inverted.
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3.7 Test: TB Central Region

3.7.1 Recovering the 3D TB Model

Coupling the semi-infinite leads to a 2D TB central region, in equilibrium (µL = µR = εL = εR =

εC) should recover the 3D TB model. The setup is in principle thesame as shown in Fig. 3.1,

but with a TB Hamiltonian instead of a Hubbard Hamiltonian defined on the interacting layer.

We want to perform this test and use the opportunity to give information on the lead spectral

function and density of states. Moreover, we calculate the current flow through a non-interacting

central region, if voltage is applied. As already pointed out, the central region Hamiltonian is

here of TB type

HC =−t ∑
<i j>

∑
σ
(c†

iσc jσ +c†
jσciσ)+(εC−µC)∑

i
ni , (3.34)

with c†
i (ci) the creation(annihilation) operator on nearest neighboursites< i j > in the central

(z= 0)-plane,ni = c†
i ci the particle number operator, the hopping amplitudet, the onsite energy

εC and the chemical potentialµC = 0. The Hamiltonian of the 3D semi-infinite lead and the

hybridization have been described in Section 3.3.1.

The DOS and spectral function for the central region decoupled from the leads (V = 0) is

shown in Fig. 3.5, it is the solution for a TB Hamiltonian on a 2D lattice. The spectral function

is obtained from the retarded Green’s function according toeq. (2.32) and the density of states

(per site) is calculated using

ν(ω) =
1
N

N

∑
i=1

ImGR
ii (ω) =

1
N

N

∑
i=1

∑
k‖

ImGR
ii (k‖,ω) = ∑

k‖

ν(k‖,ω), (3.35)

where the sum is performed over sitesi = 1, ...,N, and in the second step we introduced the

dependence of the Green’s function onk‖.

If the central region is a bilayer, i.e. the extension in z-direction= 2 (while it is infinite in x

and y), the density of states and spectral function change, see Fig. 3.6.

In this case, the spectral function consists of two parts, the antibonding band is shifted up by

t, the bonding band down. The density of states is as well a sum of two (monolayer) densities,

one centered around−t, the other around+t. The results are exact, sinceU = 0.

Now we change the hybridization with the leads fromV = 0 toV = 1. Since the magnitude of

V is equal to the hopping within the probe and the leads,V = t = tL, at voltage 2∆µ= 0 and

εC = εL/R = 0 and for timesτ > τ0 we obtain a 3D TB Hamiltonian.
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Figure 3.5: Spectral functionA(k,ω) as color plot (l.h.s.) and density of statesν(ω) summed

over thek-vector in the(x,y)-plane, denotedk‖ (r.h.s.) for the 2D tight-binding Hamiltonian,

with t = 1 andεC = 0.
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Figure 3.6: Spectral functionA(k,ω) as color plot (l.h.s.) and density of statesν(ω) (r.h.s) for

the bilayer 2D tight-binding Hamiltonian. The oscillations in the DOS vanish if more k-points

are calculated, i.e. more clusters are used in the(x,y) plane as pointed out in the Discussion 2.5.



53

The TB Hamiltonian contains no correlation energy (U = 0), thus at 2∆µ= 0 CPT solves the

model exactly. Accordingly, we obtain the spectral function and DOS of the 3D tight-binding

Hamiltonian, as shown in Fig. 3.7.
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Figure 3.7: Spectral functionA(k,ω) as color plot (l.h.s) and density of statesν(ω) (r.h.s) of

the 3D TB model, recovered byV = t = tL = 1 andµL/R = εC = εL/R = 0

3.7.2 Lead DOS and Dispersion Relation

Coupling to one lead only,VR = 0 andVL = 1, we obtain the spectral function and DOS for the

edge of the semi-infinite TB model, which we use as lead. The DOS is shown in Fig. 3.8. The

total bandwidth of the DOS,∑k‖ ν(k‖,ω), amounts to 12tL , but in fact we need to consider the

k‖-dependence in our calculations, as pointed out in Section 3.5.2.

The dispersion has the same form as the spectral function forthe 2D tight-binding Hamiltonian

(Fig. 3.6), namely(−2t(cos(kx) + cos(ky))), see eq. (3.27).t here denotes the respective

hopping amplitude. In fact, the bandwidth is 4tL for eachk‖-vector.

In our simulation of the NnSN junction, we useGsemi−∞ from eq. (3.29) to obtain the Green’s

function for the lead contact regiongL/R = Gsemi−∞(lx−mx, ly−my;1,1) = Gsemi−∞(∆x,∆y),

where in the last step we have introduced the distance in lattice sites(∆x,∆y) like in Section

2.2.1. To change the bandwidth of the leads, we will use different amplitudes for the hopping

tL .
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Figure 3.8: Density of statesν(ω) according to eq. (3.35) in the end layer of the semi-infinite

cubic nearest neighbour tight-binding model.

3.7.3 Applying Voltage

Now we apply different chemical potentials to the leads and measure the current flowing through.

Like in all our later calculations we useεL = µL = −µR = −εR, i.e. the onsite energy and the

chemical potential in the leads are changed coherently, andasymmetrically for the left and right

lead. The applied voltage amounts toµL −µR = 2∆µ. The current between left lead and central

region per unit contact-area is measured according to eq. (3.18) and shown in Fig. 3.9 in units

of the electron charge e, intra-layer hoppingt = 1 and~= 1 and lattice spacinga= 1.
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I

Figure 3.9: Current per unit contact-areaI over potential 2∆µ through a TB monolayer (dashed

line) and bilayer (solid line) central region, forµL = εL andµR = εR, by CPT. For the bilayer, the

current is much smaller for voltages 1< 2∆µ< 4tL , because the bands are split and are shifted

away from the center, where the leads overlap is highest. Thecurrent is in units of electron

charge e= 1, lattice spacinga= 1, t = 1, ~= 1. All energies are in units oft = 1.
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Let us refer to eqs. (3.20,3.26) and Fig. 3.4 to understand what happens. The overlap of left

and right lead DOS is maximal at zero voltage, but here, the voltage difference is also zero, thus

there can be no current. Even though thek‖-independent bandwidth is 12tL , we find that current

flows only in the range 0< |2∆µ|< 4tL . The reason is that forU = 0 there is no scattering and

each particle conserves momentum.

3.7.4 Particle Density

When the leads are attached to the central region, and a voltage is applied, the doping or density

in the central region changes. We investigate this for a TB central region. If the central region

onsite energyεC = 0, the central region is half-filled and stays so, even if two half-filled leads

are attached, and a voltage applied according toµL = εL = −µR = −εR. However, when the

sample is not half-filled before coupling to the leads (e.g.εC =−0.2), then the resulting particle

density in the central region depends on the applied voltage. We show the central region doping

vs. voltage characteristics in Fig. 3.10.
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Figure 3.10: Doping(n−1) in arbitrary units vs. voltage 2∆µ for a TB central region (U = 0),

and different small values of onsite energyεC for tL = 5 andV = 0.2236, by CPT. Contrary

to our other results, here we have not extrapolated the density to a broadening factorδ = 0, as

described in Section 3.11. The central region onsite energyεC is shown as label for each graph.

Further conventions are as in Fig. 3.9.

Considering the effect of the leads on the central region described in eq. (3.21) one can

naively expect that:
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• An overlap of lead DOS and central region DOS causes a change in the central region

particle density, if the filling is different.

• For density changes induced by the contact with the leads, contact with both leads is not

necessary. So, the density might be changed, even when no steady state current flows.

Our results show that:

• Close to∆µ= 0, the overlap of lead and central region bands is maximal, thus the central

region density is drawn towards the leads filling (half-filling), see Fig. 3.10.

• For zero overlap, the central region filling is only related to the central region Hamiltonian,

here characterized by the onsite energyεC.

3.8 Coupling StrengthΓ

It is convenient to introduce a measure of the coupling between leads and central region. The

coupling strengthΓ is defined as

ΓL/R = πνL/RV2 (3.36)

whereνL/R = i Im gR
L/R denotes the density of states of the leads andV is the hybridization.

The total impact of the hybridization between the leads and the central region Green’s function

has been expressed in equation 3.13. If we split the leads Green’s functiongL/R into real and

imaginary part we can see there are two main effects that arise because of the hybridization with

the leads:

πV2gR
L/R =−iΓL/R +πV2RegR

L/R (3.37)

The real part of the lead’s Green’s function shifts the the excitation energy from the unperturbed

central region Green’s functions, while the imaginary partbroadens the quasiparticle excitation,

thus changing its lifetime.

The definition of the coupling strengthΓ makes most sense in the wide band limit, whereνL/R

does not depend onω andk‖. In our simulation, we useGsemi−∞(∆x,∆y), the Green’s function

at the edge of the semi-infinite 3D TB lattice, where the resulting densityν does depend onk‖

vector and energyω. In order to facilitate a comparison of our results to those of other groups

e.g. [88], we still speak about a coupling strength, and use for νL/R the summed DOS atω = 0,

ν = ∑k‖ νL/R(k‖,0).
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For hoppingtL = 1 in the TB leads, the density of statesνL/R aroundω = 0 is about 0.16.

When changing the lead bandwidth, we find thatν is inversely proportional totL.

3.9 Effect of Lead Bandwidth and InteractionU

Here we investigate how the current vs. voltage characteristic is influenced by (a) the form of

the lead density of states and (b) interactionU in the central interacting layer. Therefore, we

add an interaction termU ∑i ni↑ni↓ to the TB Hamiltonian on the central layer and calculate the

current vs. voltage characteristic for different values ofhopping amplitude in the leadstL . The

Hamiltonian of the central region is

HC =−t ∑
<i j>

∑
σ
(c†

iσc jσ +c†
jσciσ)+(εC−µC)∑

i
ni +U ∑

i
ni↑ni↓. (3.38)

3.9.1 Non-Interacting Central Region

First, we setU = 0 and focus on the effect of the hopping amplitude in the leadstL. tL fixes

the bandwidth of the leads, the total bandwidth being equal to 12tL , as shown in Section 3.7.1.

The results are shown in Fig. 3.11(a). Note that current again only flows in the 0< 2∆µ< 4tL

range, as pointed out in Section 3.7.3, and that the current peaks around 2∆µ≈ 5 and then starts

to decrease quickly.

Fig. 3.11(b) shows how the central region influences the current vs. voltage characteristic:

We change the hopping amplitudet in the central region and note, that the maximum of the

current flow for wide lead bands (heretL = 9) is achieved at 2∆µ = 4t. At this voltage, all

central region states contribute to the current flow.

3.9.2 Interacting Central Region

For the description of superconductivity we need to introduce a term of onsite interaction in

the Hamiltonian, the so called HubbardU , motivated in Section 1.3. Without interactionU

we can not have superconductivity. Here, however, the central region is interacting but not

superconducting. The method we apply is CPT.

Figure 3.12(a) shows the current vs. voltage for different values of interactionU . We find that

the current in the 0< 2∆µ< 4tL voltage range decreases with growing correlation energyU .
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Figure 3.11: Current per unit contact-areaI vs. voltage 2∆µ through a TB monolayer central

region (U = 0), by CPT.

(a) Results for constant coupling strengthΓ = 0.005 but different lead bandwidth,tL = 10 (solid

line), tL = 5 (dashed with dots) andtL = 1 (dashed). Note the range where current flows is 4tL

wide. (b) Results for constant coupling strengthΓ = 0.005,tL = 9, and two different values of

central region hoppingt = 1 (solid line) andt = 1.5 (dashed line). Further conventions are as in

Fig. 3.9.

However, forU > 0 a second feature appears for 2∆µ> tL, which grows with interactionU . The

cluster size we use here and later is 2×2×1 (lx× ly× lz). For the current calculation we make

an extrapolation in the broadening factorδ, as described in Section 3.11.

In Fig. 3.12(b) the dependence of the current vs. voltage characteristic on the onsite energy

of the center regionεC is illustrated. Whereas forεC = 0 the second peak is only small, for

εC =−U/2 (half-filled central region atV = 0) the first peak looses much of its intensity and the

second (broad) peak is emphasized. This can be explained by considering the spectral function

of the central region: ForεC = 0 a lot of spectral weight can contribute for small voltages,while

at half-filling, the Hubbard bands have been shifted away from ω = 0, which reduces the current

in the first peak regime. One could also say, that forεC = 0 the double occupation should be

small and so the effects ofU are small.

The use of wide lead bands should put forward the effect of theinteractionU on the interact-

ing region. We settL = 9 and plot the corresponding current vs. voltage characteristics in Fig.

3.13. We find that for the originally half-filled central layer the current peaks at∆µ≈ 2×4 and
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Figure 3.12: CurrentI per unit contact-area vs. voltage 2∆µ through a non-superconducting

interacting monolayer with nearest neighbor hoppingt = 1, by CPT. The hybridization isV = 1,

so for correlation energyU = 0 we retrieve the TB solution shown in Fig. 3.9. (a) Results for

different values ofU = 0,2,4,6,8, and onsite energyεC = 0. (b) Results for a originally half-

filled central layerεC = −U/2 (dashed lines) andεC = 0 (solid lines) and different interaction

valuesU = 8 (black) andU = 4 (red). Further conventions are as in Fig. 3.9.

∆µ≈ 2×7. For the central layer shifted away from half-filling by theonsite energyεC = −2,

the peaks are found at∆µ≈ 2×2 and∆µ≈ 2×6. The corresponding spectra at half-filling and

hole doping (in equilibrium) are shown in Figures 2.4 and 2.13, however witht ′ = 0.3t while

we uset ′ = 0 here. The amount of current obviously depends on whether the Hubbard bands

can contribute or not.
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Figure 3.13: Current I vs. voltage 2∆µ through an interacting non-superconducting central

layer with nearest neighbor hoppingt = 1 and onsite interactionU = 8 , half-filling εC = −4

(solid line) andεC = −2 (dashed line), by CPT. The leads have wide bands,tL = 9, and the

hybridization amounts toV = 0.3. Further conventions are as in Fig. 3.9.
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3.10 Variational Cluster Approach for Non-Equilibrium

Now that we have introduced all ingredients for the description of a non-equilibrium system,

like the Keldysh formalism, the leads TB Green’s function, and how to calculate the current, we

turn towards the variational calculation.

CPT [24, 25] allows to treat large systems with strong local correlations. It is exact in three

limits, for correlation energyU = 0, for dimensionN = ∞ and for hoppingt = 0. For the

description of symmetry-broken phases like antiferromagnetism or superconductivity, CPT has

been extended to the VCA. VCA has been successfully applied to awide range of problems

[48, 50, 51, 22] and proven to be exact in certain limits in theframework of SFT [52, 53]. A

description of CPT and VCA in equilibrium has been given in Chapter 2, Sections 2.3.1 and

2.3.2.

Non-equilibrium setups present a new playground, with all kinds of problems, including e.g.

short time dynamics [107], or the steady state [100]. They can be treated using the Keldysh

formalism, introduced in Section 3.4, where the time dependence of each function is folded into

a matrix. For short times, the CPT+ Keldysh [107] works well, since a voltage turned on for

a short time∆τ represents a small perturbationV∆τ, which we already know that CPT is up to.

VCA + Keldysh has already been used to describe the steady state, which evolves when the

voltage has been turned on for some time [100]. In that case, variational parameters have been

included that serve to minimize the difference between the “initial” reference cluster solution

and the final steady state. The corresponding self-consistency condition was to minimize the

cluster to CPT difference for expectation values of the operators corresponding to the variational

parameters.

But what if one wants to include symmetry-broken phases in thestart configuration? We present

here the application of a variational condition which allows to treat a symmetry broken phase,

e.g. superconductivity, in the central region. We describethis new condition in Section 3.10.2.

The theory and parts of the results will be published in Ref. [108].

3.10.1 Variational Cluster Approach+ Keldysh

We will again step through the VCA procedure, treated in Section 2.3.2, and hope the vigilant

reader apologizes the repetitions. The starting point is a central region HamiltonianH, defined
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on a lattice geometry. In order to be able to treat the strong correlations exactly, a cluster is

chosen which can be solved exactly or by Lanczos diagonalization, and the Hamiltonian is split

into a cluster and intercluster part,H = HCL +Hinter-CL. HCL is complemented by fields of

arbitrary one-particle operators summarized inH~λ,

H ′
CL = HCL +H~λ (3.39)

H ′
inter-CL = Hinter-CL−δa,bH~λ (3.40)

whereδa,b denotes thatH~λ is diagonal in cluster indicesa,b. The variational fieldsH~λ help to

make the dynamics of the cluster problem coincide with the exact dynamics of the system. The

advantages that arise when using variational fieldsH~λ are listed in 2.3.2. Using the SFT one can

show that finding a saddle point in the grand potential as a function of the variational parameters

~λ gives an approximation to the true ground state of the system, see Section 2.3.3 or [52, 53].

In order to account for the interaction with the leads, we have to consider the hybridisation

with the leads Green’s function in the perturbation calculation: The Green’s function of the

central regiong
C

is coupled to the Green’s functions of the leadsgL/R,

GC
−1 = gC

−1(~λ)− T̂(~λ)− T̂CL gL T̂LC − T̂CR gR T̂RC. (3.41)

The chemical potential in the leadsµL/R is not uniform at timeτ = −∞, which hinders the

treatment of this problem with the usual (eqilibrium) Green’s functions. Thus we use Green’s

functions in the Keldysh space, marked by the underline.

3.10.2 Variational Condition

The problem that now arises is the question as to how to choosethe right values of the variational

parameters~λ. In equilibrium we look for a saddle point in the grand canonical potential in the

space of variational parameters~λ. In non-equilibrium, however, the grand canonical potential is

not defined.

A simple self-consistency criterion is to ask for values of variational parameters, that make

the difference between the corresponding expectation values in the reference system (defined by

H ′
CL) and the original system (defined byH, and calculated using CPT) vanish. We will denote

the Green’s functions and their observables by cluster/CL/reference system and lattice/CPT,

respectively, and express this condition as〈Ai〉CL = 〈Ai〉CPT, whereAi is the single-particle
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operator to which the variational parameterλi is the coefficient. When using a variational onsite

energyεvar, this condition asks for a value ofεvar that results in equal densities in the reference

system and the lattice (CPT) Green’s functions. This self-consistency criterion has already been

used and proved helpful [109, 100]. It corresponds to some kind of minimizing the “difference”

between the initial state atτ =−∞ and the final (steady) state. [100].

A variation of all possible parameters (including dynamic ones) would lead to perfectly equal

Green’s function in reference system and lattice,gC(~λ) = GC

Does the condition〈Ai〉CL = 〈Ai〉CPT work for our problem?

We found, that the condition〈Ai〉CL = 〈Ai〉CPT does not work with superconductivity as vari-

ational field, introduced ashSC in eq. (2.30). The problem is, that the superconducting field

causes (new) anomalous terms in the Green’s function to emerge. These contain information
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Figure 3.14: Expectation value of the superconducting order parameter∆SC, in reference cluster

(solid line) and lattice (dashed line) vs. variational pairing field hSC at two different values

of variational onsite energyεvar. The central region is the monolayer Hubbard model with

U = 8. The onsite energy ofεC = −1.7 moves the system away from halffilling, so that it can

be superconducting. On the l.h.s. the variational onsite energy ofεvar=−2.3 shifts the reference

system back to half-filling, where superconductivity is notfavoured. When subtracting the field

again, the system is doped and the superconductivity order parameter could be larger than in the

(half filled) reference system. It is, however, not like that.

on the dynamics of the pair creationc†
i c†

j and pair annihilationcic j . If the pairing field term is
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set to zero, the expectation values in reference system and lattice are both zero. Thus, there is

always a solution at zero pairing field. We did not succeed in finding any other but this trivial

solution. The perturbation calculation reduces the magnitude of the anomalous Green’s function

terms, and we claim there cannot be another but the zero solution for superconductivity, for the

discussed type of self-consistency.

Fig. 3.14 features the results of our search for a non-trivial solution to〈HSC〉CL = 〈HSC〉CPT,

whereHSC is the superconducting pairing operator.

A New Variational Condition

Since we cannot equalize the expectation value of the pairing field in cluster and lattice, we

need a new criterion for the search of the stationary point. We introduce an expression, which

is analogous to the equilibrium Euler equation in eq. (2.26).

∫
dω
2π

Tr σ̂1
∂Σ
∂λi

(g(~λ)−G) = 0 (3.42)

whereσ1 is the Pauli matrix in Keldysh space, and∂Σ
∂λi

is the derivative of the cluster self-

energy with respect to the variational parametersλi , which is a subset of the set of one-particle

parameterst ′ of the reference systemH ′
CL. g(~λ) and G are the reference cluster and lattice

Green’s functions of the central region, respectively. Eq.(3.42) describes a vector of the same

size as~λ. The expression can be written as

∫
dω
2π

Tr
[∂ΣR

∂λi
(gK(~λ)−GK)+

∂ΣK

∂λi
(gA(~λ)−GA)

]
= 0. (3.43)

and the part in square brackets is the Keldysh part of

∂Σ
∂λi

(g(~λ)−G). (3.44)

The analogous Euler equation for equilibrium has been derived in Refs. [54, 53]. We feature

the derivation in Appendix A.

For non-equilibrium we have replaced the self-energy and Green’s functions by their coun-

terparts in Keldysh space. This would give us a 2×2 matrix with the three entries (Keldysh,

advanced and retarded). The main standing question is how toconduct the trace in the Keldysh

space. In this work, as variational condition, we use the Keldysh component of the matrix in

Keldysh space. A check showed exact accordance with equilibrium results for an uncoupled
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system, see Fig. 3.15.

As variational parameters we take the superconducting pairing fieldhSC and a variational onsite

energyεvar in the central region. These have been introduced in Section2.3.4. Every addi-

tional parameter makes the search in the parameter space much more complicated, therefore we

restrict to these two variational parameter, and renounce the use of an antiferromagnetic field.

We calculate the derivative of the reference cluster self-energyΣ according to

∂Σ(~λ)
∂λi

=
Σ(~λ|λi +∆λ)−Σ(~λ|λi −∆λ)

2∆λ
=

=
gU

−1(~λ|λi +∆λ)−gU
−1(~λ|λi −∆λ)−g0

−1(~λ|λi +∆λ)+g0
−1(~λ|λi −∆λ)

2∆λ
,

(3.45)

with ∆λ = 0.005 andgU/0 the cluster Green’s functions with correlation energyU and 0 respec-

tively.

For a check, we simulated the equilibrium setup with a seriesof input parameters (likeU and

εC). Both the non-equilibrium program that uses equation (3.43) and the equilibrium program

using equation (2.18) yield the same results for variational parameters and expectation values of

operators. However, the frequency integral in eq. (3.43) has to be done in an appropriate way.

We find that a poor integration, with not enoughk‖-vectors or energy steps, leads to oszillations

of the expression in the variational condition in equation (3.43) as a function ofεvar.

3.11 Frequency Integration over Objects in Keldysh Space

Frequency integration of Green’s functions as required forthe evaluation of the variational con-

dition eq. (3.42) faces us with a problem: the Green’s functions have poles at the excitation

energies.

3.11.1 Equilibrium

In equilibrium, there are several possibilites to carry outsuch a frequency integration, described

in Refs. [103, 50, 51, 22, 110, 111], among them the Q-matrix technique [50] and the direct sum

over Matsubara frequencies [110]. When investigating the equilibrium problem in Chapter 2,
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we have distorted the integration path to an appropriate contour in the complex frequency plane,

as discussed in [111].

In non-equilibrium, the Keldysh Green’s functions have poles not just on one side of the real

axis, but on both. This makes the integration more difficult,and the usual methods can not be

applied.

What can be done, is to replace the infinitesimal 0+ by a finiteδ to shift the poles away from the

real axis, up (down) for retarded (advanced) poles, and integrate directly over the real axis. Of

course, a finiteδ does not give the exact result any more. But the expression in equation (3.43)

does show a linear dependence onδ for values ofδ larger then a treshold, which depends on

the accuracy of the integration. For very small values ofδ we resolve the features of the single

cluster.

In fact, we have to keep in mind that there are two limits to be taken:

• (a) thermodynamic limit: lattice (and cluster) to infinity

• (b) reduction of the error introduced by non-zeroδ

The limits have to be taken in the listed order. To (a): The useof a finite cluster size results in

delta peaks, e.g. in the self-energy and the Green’s functions. A finiteδ causes a broadening of

the peaks and thus simulates an infinite (or larger) lattice.On the other hand, the finiteδ makes

the frequency integration less accurate. We settled for thefollowing procedure for calculating

the expresson in eq. (3.43). Integrations over Keldysh objects to obtain observables like current

and density are done in the same way.

• The integration is performed for two different values ofδ (namely 0.03 and 0.045).

• The “virtual” result atδ = 0 is extrapolated linearly.

The appropriate values ofδ can be found by plotting the “gradient” in eq. (3.42) as a function

of εvar. A wavy curve signals that the chosenδ-values are too small to compensate for the finite

size effect, or the integration inω needs more supporting points. The wavy dependence onεvar

comes from the integration over the derivative of delta peaks in the self-energy. We need the

function smooth enough to be able to find a root using the Newton Raphson algorithm.

For the integration inω we use a Gauss-Legendre integrator, instead of an adaptive integrator,

since there are two expressions in eq. (3.42) for the two corresponding variational parameters,

to be integrated at the same time.
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The pairing field and the hybridisation to the leads should help to make the integration inω

space simpler, since both terms are expected to broaden the features.

Comparison To Equilibrium VCA Results: We have used an equilibrium Hubbard model to

test the above method of frequency integration over functions in Keldysh space. Extrapolating

the variational condition in eq. (3.42) for finite values ofδ to δ = 0 gave good accordance with

equilibrium VCA results. Moreover, we found that the extrapolation of observables toδ = 0

helps to reproduce the values obtained by the equilibrium frequency integration.

This is shown in Fig. 3.15 for the density, the observable which belongs to the particle

number operator.
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Figure 3.15: Densityn vs. correlation energyU for a monolayer Hubbard model in equilibrium,

with µ = U/2 andt ′/t = 0.3, by CPT. We compare results from the equilibrium frequency

integration (black squares) [111] and direct real axis integration used for non-equilibrium. The

density obtained by the non-equilibriumω integration is shown forδ = 0.12 (dotted line),δ =

0.09 (dashed-dotted) andδ = 0.06 (dashed line). Note theδ = 0 extrapolated density (solid

black line) corresponds well with former results for correlation energiesU > 3.5. For smaller

U it would have been necessary to adaptδ and the integration accuracy.
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3.12 NnSN in Non-Equilibrium: Results

We present here the results we obtained when simulating a NnSN junction, using the non-

equilibrium variational method introduced in Section 3.10. The setup is illustrated in Fig. 3.1,

and the full Hamiltonian has been described in Section 3.3.1. Some of the results will be pub-

lished in [108]. The contribution of coauthor M. Knap to thiswork was to furnish the author

with a basis for the code needed to do this work. The coauthor developed the code to investigate

2D non-equilibrium setups, like the one described in Ref. [100].

The most important parameter, in addition to the parametersof the central region Hubbard

model, is the coupling strengthΓ, defined in Section 3.8. For our simulations we have chosen

two different values ofΓ, namelyΓ = 0.005 andΓ = 0.01.

Another group used the fluctuation exchange approximation (FLEX) in Keldysh space to

describe a similar setup [88]. They chooseΓ = 1×10−3, and report that forΓ > 0.1 no super-

conducting ordering takes place.

We represent the central superconducting region by a Hubbard monolayer or bilayer in the

(z= 0)-plane. We will first describe the results obtained for the monolayer, and in the next

section show how we investigated the bilayer superconducting interacting region. In Section

3.12.3 we present what we obtain for the a nearest-neighbourHubbard monolayer, which is the

same interacting layer as used by the authors of Ref. [88]. At the end, we summarize our results

on the NnSN junction in non-equilibrium.

3.12.1 Monolayer as Central Region

We have carried out calculations forΓ = 0.01 with two different lead bandwidths: The results

for a narrow lead bandwidth,tL = 1, and those for a wide bands,tL = 9, are both given in

Section 3.12.1.1. The large lead bandwidth allows to focus on the influence of the central

region features, and to compare with [88]. In Section 3.12.1.2 we show results for a weaker

coupling strengthΓ = 0.005, and wide lead bands.

While the parameters determining the interaction with the leads are different for each data

set, the central region is always the same as the one in the equilibrium problem, i.e. eq. (3.3)

with parametersU/t = 8 andt ′/t = 0.3. The central region onsite energyεC is used to fix

the initial density, which is the density of the central region before the hybridisation with the
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leads happens. The chemical potentialµC is zero. We use four different values forεC, namely

εC=−1.4,−1.5,−1.6,−1.7. When the central region is decoupled from the leads, for each value

of εC one obtains a specific initial densityn0 in the superconducting state. The uncoupled inter-

acting layers are always hole-doped, with densitiesn0(εC) in the superconducting state ranging

from optimal doping to underdoping:n0(−1.4) = 0.887,n0(−1.5) = 0.914,n0(−1.6) = 0.934

andn0(−1.7) = 0.954.

For each value ofεC, we do variational calculations for a series of applied voltages up to the

voltage where the superconducting order parameter∆SC has vanished. The results obtained are

shown in various figures to make clear the dependencies of themost important quantities on

each other, namely the currentI flowing perpependicular to the central region, voltage 2∆µ,

superconducting order parameter∆SC and densityn. The current through an infinitely large

surface is of course infinitely large. Thus, when speaking about currentI we in fact mean the

current per unit contact-area, in units of electron charge e= 1, hoppingt = 1 and~ = 1 and

lattice spacinga= 1. The observables are obtained byδ extrapolation, as explained in Section

3.11.

The nature of the variational condition is such, that there can exist more solutions (saddlepoints).

In equilibrium, we ruled out additional saddlepoints by comparing their corresponding energies.

Here we show both solutions that we find, one with normal-state and the other with supercon-

ducting central region. For the coupling strengthsΓ that we have chosen, and our central region

parameters, the superconducting solution vanishes at somevoltage treshold, while we always

find a normal state solution.

3.12.1.1 Γ = 0.01, Narrow and Wide Lead Bands

Narrow Lead Bands We start with narrow lead bands,tL = 1. In order to reach a coupling

strength ofΓ = ν(0)πV2 = ∑k‖ νL/R(k‖,ω)|ω=0πV2 ≈ 0.01, we set the hybridisation toV =

0.145̇6. On the next pages, we show various figures featuring the dependencies of currentI ,

central region densityn, superconducting order parameter∆SC and applied voltage 2∆µ on each

other. We describe them and summarize the main points at the end.

Fig. 3.16 shows the current vs. voltage characteristics. Ifone oversees the smaller features,

the dependence of current on voltage (in the voltage range shown) is almost linear. What sur-

prises us, is, that different initial densities may lead to different amounts of current is some
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Figure 3.16: CurrentI per unit contact-area vs. voltage 2∆µ through a Hubbard monolayer, for

Γ = 0.01 and narrow lead bandstL = 1, by VCA. Four values ofεC are used to fix the initial

density, and the other parameters of the Hubbard model areU/t = 8, t ′/t = 0.3 andµC = 0. In

(a) and (b), the black lines represent the current through the superconducting central region for

different initial densities. The upper and lower bound of the initial densitiesn0 are noted next to

the graphs. In (b) the current through the normal state central region is additionally shown (red

lines).

The different dashing denotes different central region onsite energiesεC, εC =−1.4 (solid line),

εC =−1.5 (dash-dotted line),εC =−1.6 (dashed line),εC =−1.7 (dotted line). All energies are

in units of the intra-layer hoppingt = 1, and the current is in units ofa= 1,e= 1, t = 1,~= 1.

regions (e.g. at voltage 2∆µ≈ 0.5t), or to only one value, e.g. at 2∆µ≈ 0.8t.

In Fig. 3.16(b) we compare the current through the superconducting and normal-state central

region. We find, that in the superconducting state the current is reduced. We attribute the

reduction to the superconducting gap, which impedes statesat the Fermi energy in the(π,0)

region to emerge. These states would contribute a lot to the current.

In Fig. 3.17(a) we present the dependence of superconducting order parameter on voltage.

The superconducting order parameter decreases when voltage is applied, the main fall-off hap-

pening around 2∆µ≈ 1. This is in the order of the gap size obtained in VCA. Superconductivity

has totally vanished for 2∆µ= 2.

The changes in the central region density are illustrated inFig. 3.17(b). In the superconduct-

ing state, the density change is much smaller than in the normal state, where doping happens
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almost linearly with voltage, in the featured voltage range. Here one can also see, that the cen-

tral region initial density is in fact not the same for the superconducting and the normal state: In

the normal state, the identical onsite energyεC leads to a density much closer to half filling.

In Fig. 3.24(b) we will plot the density vs. voltage characteristics for a much larger range of

voltages. The linear behaviour does not continue untiln= 0, but instead there are two peaks of

minimal density at 2∆µ≈ 4 and 2∆µ≈ 9, more or less where there are maxima in the current

flowing. As pointed out already in Section 3.9.2, these are the regions, where the Hubbard bands

are overlap with a large density of states in the leads.

The relation of current and density is displayed in Fig. 3.18. In the normal state, we can

observe an almost linear dependence of dopingn−1 on current, especially for voltages 2∆µ>

0.6, but not so in the superconducting state.

In Fig 3.19(a) we see the superconducting order parameter vs. density. For equivoltage line

2∆µ= 0 we have used equilibrium data, where the central region is not coupled to the leads.

Unlike field effect experiments, we observe that changes in the central region density towards

optimal doping do not lead to a larger superconducting orderparameter.

Fig. 3.19(b) illustrates the superconducting order parameter vs. current behaviour. One

could say, that the effect of the transverse current on the superconducting order parameter is

qualitatively similar to the effect of temperature or magnetism.

Let us summarize:

• The current through the superconducting central region is smaller than through the normal

state central region. We can attribute this reduction to thegap, that hinders the emergence

of states at the Fermi energy.

• In the superconducting state, at some values of voltage, thecurrent does not depend on the

initial density of the central region. Taking a closer look,we found that at these points, for

all different central-region onsite energiesεC, the variational onsite energyεvar corrects

εC to only one value of effective cluster onsite energy.

• When the applied voltage reaches the size of the superconducting gap, the superconduct-

ing order parameter is reduced or destroyed, depending on the coupling strengthΓ.

• The effect of the transverse current on the superconductingorder parameter qualitatively

resembles that of temperature.
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Figure 3.17: (a) Superconducting order parameter∆SC and (b) density vs. applied voltage, for a

Hubbard monolayer as central region, forΓ = 0.01 and narrow lead bandstL = 1. (a) Numbers

represent the initial density. (b) The normal state densityis shown as well (red lines). Further

conventions are as in Fig. 3.16.
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Figure 3.18: Current per unit contact-areaI vs. densityn through a Hubbard monolayer for

Γ = 0.01 andtL = 1. In (a) we show the current in the superconducting state, labels denote the

applied voltage. In (b) the current in the normal state is shown additionally (red lines). Further

conventions are as in Fig. 3.16.
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Figure 3.19: Superconducting order parameter∆SC, (a) vs. densityn and (b) vs. current for a

Hubbard monolayer as central region andΓ = 0.01 andtL = 1. In (a) equivoltage lines (gray

full lines) are labeled with size of 2∆µ. In (b) numbers indicate the initial density. Further

conventions are as in Fig. 3.16.

Wide Lead Bands Wider lead bands should emphasize the effect of the central regions spec-

tral function, or better: reduce the effect of the lead DOS. We usetL = 9 andV = 0.437 for the

same four values ofεC as above. The coupling strength again amounts toΓ = n(ω)πV2 ≈ 0.01

at ω = 0. Fig. 3.20 shows the results in the same format as was used for the figures containing

the results obtained using narrow band leads.

Summarizing, we find two main differences from the results for narrow lead bands, regarding

the superconducting state: There is a second region in voltage where all initial densitiesn0

collapse to the same current, namely 2∆µ = 1.5. At this voltage, for the narrow bands, the

sample was only superconducting for optimal doping. Moreover, we find that for wide lead

bands, superconductivity survives up to higher values of voltage. This is remarkable, since the

pure size of coupling strengthΓ is larger in a wide range of energies. An explanation could

be, that for narrow lead bands, the changes in coupling strength (or lead DOS) in energyω are

larger. We suggest that any band in the central regions avoids overlapping with sharp edges of

lead bands. In the variational calculation, doing the derivative of the self-energy with respect to

εvar (which shifts the central region up/down in energy) will result in a large gradient in these

regions. This effect should be softer using wide lead bands.
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Figure 3.20: Illustration of the dependencies between currentI , voltage 2∆µ, densityn and

superconducting order parameter∆SC for a Hubbard monolayer as central region andΓ = 0.01

and wide lead bandstL = 9. In (e) and (g), equivoltage lines are drawn in blue. Conventions are

as in Figs. 3.16,3.17,3.18,3.19.
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3.12.1.2 Γ = 0.005, Wide Lead Bands

We now show results for wide lead bandstL = 9, but with a reduced coupling strength ofΓ =

0.005. The hybridisation amounts toV = 0.3. As we hoped for, the superconducting solution

survives up to much larger voltages, especially for the optimally doped central region.

The depencence of the observables currentI , densityn and superconducting order parameter

∆SC on voltage and on each other are illustrated in Fig. 3.21.

The current vs. voltage characteristics are shown in Fig. 3.21 (a) and (b). At low voltages,

the dependence is similar to results forΓ = 0.01 (shown in the previous section), see inset of

Fig. 3.21(b). Then, above 2∆µ≈ 4, there exits a wide region in voltage, where the differential

conductance∂I/∂(2∆µ). 0, the current is almost constant, but rather decreasing with increasing

voltage. Regarding the central region only, the current should not decrease. It is the diminishing

overlap between the leads here, that results in the lightly dropping current. At 2∆µ≈ 9, there

is again a fast upturn in current. This corresponds to the second peak in current, that we have

obtained previously for an interacting (U = 8) central region (compare to Fig. 3.13). Note that

for strong doping, there exists a superconducting solutionup to this position 2∆µ≈ 9. The main

features in the current vs. voltage characteristics are very similar for the superconducting and

the normal state central region.

In Figures 3.21(c),(d) one can observe the constancy of superconducting order parameter∆SC

and density over a wide voltage range. We also see, in Fig. 3.21(f), that while below 2∆µ. 8

the current behaves almost linear with doping, for larger values of voltage, the dependence is

still linear, but in the other direction: Now for decreasingdoping the current increases again.

This is always the case for an interacting central region, and just not shown in previous figures,

since the superconductivity did not survive up to these voltage values. The character of the

dependence is the same in the normal state.

We summarize:

• For low values of voltages, 2∆µ . 3.5, the density, superconducting order and current

have a strong dependence on 2∆µ.

• In the range of 3.5. 2∆µ. 8.5, both current and density are almost constant, probably

because in this voltage range there are no heavy changes in the amount of central region

DOS contained between the lead bands and the chemical potentials µL,µR.
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Figure 3.21: Dependencies of the observablesI , n, ∆SC and voltage 2∆µ and on each other

for a Hubbard monolayer as central region, forΓ = 0.005 andtL = 9.In (e) and (g) we

have added equivoltage lines (cyan and blue lines, respectively). Conventions are as in Figs.

3.16,3.17,3.18,3.19.
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• At 2∆µ≈ 9, however, the current starts to grow again, the doping moves closer to half

filling and, most importantly, superconductivity vanisheseven for optimal doping. We

suppose, this is because at 2∆µ≈ 9 the upper Hubbard band gets enclosed into the current

conducting energy range.

Fig. 3.21(h) shows, that the superconducting order parameter is not reduced monotonically with

current. There are some small regions, where a growing current coexists with an upturn of the

superconducting order, and vice versa. This means, that notonly the pure amount of current can

be the reason for the cancellation of superconductivity.

3.12.2 Bilayer as Central Region

We now want to find out what happens if the monolayer central region is substituted by a bilayer

central region, as illustrated in Fig. 3.22. Will the secondlayer help to stabilize superconductiv-

ity in the central region? Is the current reduced, with respect to the monolayer, and how is the

density of the two layers going to evolve? The results shouldhint towards what to expect for a

thicker superconducting central region, which is already accessible to experiments. We can sim-

2∆µ

TB

Figure 3.22: Non-equilibrium bilayer setup,TB denotes thek‖-dependent inter-layer hopping

ulate this problem using the previous methods, the VCA in Keldysh space. However, we have

to adapt the equations for calculating the central region Green’s function and the variational

condition. We will outline the necessary changes in the nextsection. Then, in Section 3.12.2.2,

we present the results for a Hubbard bilayer as central region, and compare to the monolayer

results.
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3.12.2.1 Adaptions in Model and Method

The central region is now a bilayer, with the usual hopping amplitudet =−1 in the layers and a

smallk‖-dependent hopping parameterized byt̃ = 0.4t between the layers (interlayer hopping),

as described in Section 2.2. This problem can be treated in several ways, we will sketch two of

them and use only one for the simulation.

(1) Take a 2× 2× 2 cluster as reference cluster. Most inter-layer hopping terms are then

treated exactly in the cluster. However, this is very time consuming in the numerical calcula-

tion, because of the large Hilbert space.

(2) Another possibility is to choose two 2×2 reference clusters, one in each layer, couple

the two clusters by CPT, and couple the bilayer to the leads:

The intra-layer inter-cluster hopping matrixT(K‖) recovers the Green’s function of the layers,

with K‖ the superlattice wave vector in the(x,y)-plane. The hopping matrixTB(K‖) between

the two layers recovers the bilayer Green’s function. Then the central region Green’s function

becomes

gB
−1 =




g2

−1−T(k‖) −TB(K‖)

−TB(K‖) g1
−1−T(k‖)



 , (3.46)

whereg1 andg2 are the Green’s functions to the reference cluster Hamiltonians of layers 1,2.

Moreover, each single layer is coupled to its neighbouring lead, described by the Green’s func-

tion gL/R. Then the full bilayer Green’s function in Keldysh space

GB
−1 =




g2

−1−T(K‖)−VL gL VL −TB(K‖)

−TB(K‖) g1
−1−T(K‖)−VR gR VR



 , (3.47)

depends onz, so that we can measure the current directly.

We settle for option (2), the CPT-coupling of two identical layers in order to obtain a larger

unit cell. To simplify the problem, we use the same referencecluster for both layers, and allow

only one set of variational parameters. Thusg2 = g1 = g0 and

GB
−1 =




g0

−1−T(K‖)−VL gL VL −TB(K‖)

−TB(K‖) g0
−1−T(K‖)−VR gR VR



 , (3.48)
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When doing VCA,T(K‖) also contains information on the variational fields to be subtracted,

T(K‖) = Tinter-CL(K‖)−Tintra. The variational fields are contained in matrixTintra(~λ). Moreover,

also the reference cluster Green’s functiong0 depends on the variational parameters~λ.

Variational Condition for Bilayer Now we come to the search for the solution of the model

with the bilayer central region. Remember we need to stay at the root of eq. (3.43), which can

be written as ∫
dω
2π

Tr[
∂Σ
∂λi

(g(~λ)−G)]K = 0, (3.49)

where K denotes the Keldysh component. As reference system in the variational calculation we

use a bilayer, consisting of two disconnected 2×2 clusters. Thusg(~λ) andG are the Green’s

functions of the bilayer system. It would also be possible touse just one of the two layers as

reference system, such thatg(~λ) andG are the Green’s functions of one layer.

Since the clusters are disconnected, the self-energy is diagonal in the layers,

Σ =




Σ0

Σ0



 . (3.50)

Using this, we write eq. (3.43) as

∫
dω
2π

Tr




∂Σ0

∂λi








g0

g0



−GB









K

= 0, (3.51)

with GB from eq. (3.48). Here we have used as reference system the twodistinct layers, not

coupled to each other. In that way, we obtain forg(~λ) a diagonal matrix, containing only the

single layer Green’s functiong0. The other possibility is to use a reference system consisting of

a 2×2×2 cluster connecting the layers. Since the steady state should not depend on the initial

state, this should not make a difference. On the other hand, the reference system is modified

by variational parameters on purpose, in order to move the initial state close to the steady state,

where certainly inter-layer hopping occurs. Thus it would be important to include the inter-layer

hopping in the reference cluster Green’s functions in future work.

One can easily find that only the intra-layer parts of the bilayer Green’s function contribute,

because of the trace that is performed over cluster sites. SinceTB(K‖) is not present in our

reference cluster we are then left with
∫

dω
2π

Tr[
∂Σ0

∂λi
(2g0−G1−G2)]

K = 0, (3.52)
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whereG1 andG2 are the intra-layer parts ofGB. The trace in the layer indices 1,2 has already

been performed, and that in cluster sites and spin is left.

Current Calculation The current flowing through the setup can be measured at the interface

between lead and central region, or between the two layers ofthe central region. In the second

case, thek‖-dependent hopping amplitude between the layers is the multiplicative factorVi j in

eq. (3.18) and

I ∝ ∑
k‖

TB(k‖)ReGK
12(~k‖), (3.53)

whereGK
12 is the Keldysh component of the inter-layer part of the bilayer Green’s functionGB.

The two currents should in fact coincide as described by Kirchhoff’s current law. However,

in the interacting case deviation might occur, since the method is not conserving.

We therefore only calculate the current between left lead and central region, where we do not

have to consider thek‖-dependence of the interlayer hopping.

3.12.2.2 Bilayer,Γ = 0.01, Wide Lead Bands

We now come to the results obtained for the bilayer central region. The two layers are described

by the usual monolayer parameters,U/t = 8, t ′/t = 0.3, and the additionalk‖-dependent inter-

layer hopping,̃t/t = 0.4. We restrict ourselves to a single value of central region onsite energy,

εC = −1.4, with the corresponding initial densityn0 = 0.887 in the superconducting sample.

The coupling strength arises toΓ ≈ 0.01,tL = 9 andV = 0.437. We will compare the results for

the bilayer to those of the monolayer setups with the same value ofεC.

In Figure 3.23(a) we present the current vs. voltage characteristic of the bilayer setup, wit

the central region in the superconducting state and in the normal state. Again, we find that the

current is slightly larger if the central region is in the normal state.

Fig. 3.23(b) displays the current-voltage characteristics of the bilayer together with that of

the monolayer system. One can observe, that the current is ofthe same order of magnitude

as that through theΓ = 0.01 monolayer system. It seems, that for small voltages the coupling

strengthΓ determines the amount of current. DividingΓ by 2 also divides the current by 2.

We also want to point out, that in the normal state, the narrowband in the leads produces two

separate peaks in the current, while the wide band has at the same positions ascending slopes.
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Figure 3.23: CurrentI (per unit contact-area) vs. voltage 2∆µ through a Hubbard bilayer with

U/t = 8, t ′/t = 0.3, εC =−1.4 andk‖ dependent inter-layer hopping, forΓ = 0.01 andtL = 9,

by VCA. In (a) we show the current through the superconductingcentral region (solid line)

and the normal state central region (dashed line). In (b) and(c) we compare the bilayer results

(black, as in (a)) to the results obtained for the monolayer:wide bandΓ = 0.005 (blue), wide

bandΓ = 0.01 (green) and narrow bandΓ = 0.01 (red). In (b) we plot the current through the

superconducting sample, and in (c) we plot the current through the normal state sample. The

current is in units of lattice spacinga= 1, ~= 1, intra-layer hoppingt = 1 and electron charge

e= 1. All energies are in units oft = 1.
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Figure 3.24: Dependence of the densityn on voltage 2∆µ for a Hubbard bilayer as central

region, forΓ = 0.01 andtL = 9. In (a) we show the bilayer results, we distinguish between

the densities in the two layers (dashed and solid line) and superconducting (black) and normal

(red) state. In (b) we compare the mean bilayer density (black) to the density obtained for a

monolayer central region. The color-code and further conventions are as in Fig. 3.23.
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We observe this contrast between wide and narrow bands in thesuperconducting state as well,

for small enough coupling strength.

In Figure 3.24(a) we display the density as a function of voltage. The density of the two

layers is drawn separately, and we find that the difference between the density in the two layers

strongly depends on the applied voltage. For voltage 2∆µ= 0, the difference is about 0.05, but

for very large voltage 2∆µ≈ 12 it is as large as 0.15, and while one layer is still hole doped, the

other is electron doped. Actually, we found that forU = 0 this effect of asymmetric doping of

the layers shows already at small voltages, and it is the interaction energyU that delays it.

Comparing to the results of the monolayer central region in Fig. 3.24(b) we see, that regard-

ing the density, the bilayer withΓ = 0.01 behaves more like the monolayer with half coupling

strength,Γ = 0.005.

Fig. 3.25(a) shows the dependence of∆SC on density, compared to the monolayer results.

We cannot identify a simple pattern, and conclude that the density is not the driving force in the

superconductor - normal state transition. Also the currentshows not simple dependence on the

central region density, see Fig. 3.25(b).

The dependence of the superconducting order parameter∆SC on the applied voltage is il-

lustrated in Fig. 3.26(a), again together with monolayer results. One can clearly see, that∆SC

shows rather the behaviour of the monolayerΓ = 0.005 system, than the monolayerΓ = 0.01

one, which is surprising. We can also see, that for narrow bands the decrease in∆SC happens

most quickly. This could be, because the lead DOS has steep outer ranges. This steepness itself

seems to lead to the fast decrease in superconductivity.

How the superconducting order parameter decreases with growing current can be seen in

Fig. 3.26(b). Comparison to the monolayer data gives us the proof, that in the bilayer the

superconducting solution is more stable against voltage and current than in the monolayer.
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Figure 3.25: (a) Superconducting order parameter∆SC and (b) current vs. average density for

the Hubbard bilayer as central region, forΓ = 0.01 andtL = 9. In (a) we compare to monolayer

data. In (b) we show the current through the central region inthe superconducting state (black

line) and in the normal state (red line). The numbers represent the corresponding voltage 2∆µ.

The color-code and further conventions are as in Fig. 3.23.
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Figure 3.26: Superconducting order parameter∆SC vs. (a) voltage and (b) current for the

bilayer Hubbard model as central region, forΓ = 0.01 andtL = 9. We show additionally the

corresponding data for the monolayer. The color-code and further conventions are as in Fig.

3.23.
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3.12.3 Nearest-Neighbour Hubbard Monolayer as Central Region

A numerical investigation with a setup similar to ours is reported in Ref. [88]. The authors

apply FLEX [87] with the Keldysh formalism to describe the phase transitions in a Hubbard

model withU/t = 4.5 and only nearest neighbour hopping, under the influence of abias voltage.

They find that a bias-voltage of 2∆µ= 0.1 with Γ = 1×10−3 is sufficient to break down the

superconducting phase. They however work in the wide band limit, whereΓ is constant in

frequencyω and wave vector in the(x,y)-plane.

We want to examine the NnSN model with the central region parameters they use, to see what

we obtain with VCA in Keldysh space. We setεC =−1.56. As starting variational parameters,

we useεvar=−0.154 andhSC= 0.54, which fulfill the self-consistency condition of equilibrium

VCA, when the central region is decoupled from the leads.
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Figure 3.27: Spectral function as a color plot for a Hubbard monolayer, with U/t = 4.5 and

t ′/t = 0, by VCA. The line of maximum density in the lead is added in red.(a) In equilibrium,

superconducting state, for hybridisationV = 0. (b) For a coupling strengthΓ = 0.01, and a

voltage of 2∆µ= 0.08. In the frequency integration, here we had to use adapted values forδ and

integration accuracy.

When coupling this central region to TB leads and applying voltage, we found two solutions,

depending on the coupling strenghtΓ:

(1) For a very small coupling strength,Γ = 5×10−5, and wide lead bandstL = 9 andV = 0.1,
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the system appears to remain in the equilibrium state. We could observe only minimal changes

in the variational parameters as a function of applied voltage (O(10−2)). To obtain this solution,

it was however necessary to accept much larger gradients than usually, as large as 10−3. The

corresponding spectral function of the central region is shown in Fig. 3.27 (a).

(2) For a larger coupling strengthΓ = 0.01, and againtL = 9, we observed the pinning of the

central region spectral function to the leads spectral function, as shown in Fig. 3.27 (b). The

variational parameters at this solution amount toεvar= 0.44625827 andhSC= 1.9738683. This

solution should be taken with care, because of the unphysical values of the variational parame-

ters.

The problem seems to be, that the spectrum of the leads is verysimilar to the spectrum of

the central region. ForU/t = 4.5 the gap is quite small, and forΓ = 0.01 both the Hubbard and

the superconducting gap are apparently eliminated by the hybridisation to the leads, however at

variational parameters which are quite different from the usual values.

In order to compare our methods to FLEX + Keldysh, it would be necessary for us to work in

the true wide band limit. Ak‖-independent dispersion relation for the electrodes can beobtained

by setting thex andy directed hoppings in the leads to zero.

3.12.4 Summary of the Results

We here summarize the results obtained when simulating a superconducting mono(bi)layer be-

tween metal contacts using VCA and Keldysh Formalism, and formulate predictions for exper-

iments.

We found that currentI , central region densityn and superconducting order parameter∆SC

strongly depend on the applied voltage. Current grows with voltage, as long as the leads provide

enough overlap in the density of states. Current peaks can appear where the Hubbard bands are

struck by a high density of states in the leads. On the other hand, the superconducting order

parameter descreases with voltage, even thought the dopingat the same time moves closer to

optimal doping.

We distinguish four different regimes of coupling strengthΓ:

• strong coupling:Γ > 0.01 leads to increasing difficulties to find solutions for the varia-
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tional parameters, for the central region both in the normalstate as well as in the super-

conducting state. The bands in the impurity might tune in with the lead bands, where

possible.

• For Γ ∼ 0.01 we find a phase transition when the voltage equals the superconducting gap

size. The critical voltage depends on the initial density, the central region density when

still uncoupled to the leads, which influences the gap size.

• For smaller coupling strength, in our caseΓ ∼ 0.005, the superconductor - normal state

transition can also occur at much larger voltages, presumably when the upper Hubbard

bands get involved in current transport.

• For small enoughΓ nothing happens, with the system staying superconducting even at

high voltages.

Possible Realization of the NnSN Junction in Experiment Our NnSN setup could be real-

ized by exitaxially growing metallic contacts on a mono(bi)layer of superconducting material,

e.g. by molecular beam epitaxy. The coupling strength depends on the atomic assembly be-

tween CuO2 layers and the leads. It can be reduced by additional insulating material between

the superconducting and metallic regions, or by atoms with adifferent band dispersion from the

leads or central region.
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3.13 Discussion and Conclusion

Like for the copper oxide layer in equilibrium, we are now going to discuss the approxima-

tions introduced by choosing model and solver. Moreover, wetry to interpret the action of the

variational condition.

3.13.1 Physics to Model

The approximations we make regarding a CuO2 (bi)layer have already been described in Section

2.5, here we focus on the description of leads and hybridisation.

(1) Lead Hamilonian We use a 3D tight binding model to describe the metallic leads. The TB

model is appropriate for materials with limited overlap between atomic orbitals on neighbouring

atoms, like Si, GaAs, SiO2 and diamond, which are semiconductors. In transition metals, the

narrow d-bands are TB bands, but these metals also contain broad conduction bands, which are

not TB-like.

We found that the form of the lead bands, and their overlap with the central region bands, is

deciding for reaction of the central region to voltage. When one wants to know what to expect

from a specific realization of the NnSN junction, the dispersion of the lead bands should be

considered. On the other hand, only the characteristics of the contact region is important for the

properties obtained. Therefore, fine details of the band structure should not be important.

(2) Neglecting Disorder We describe a perfect crystal at temperatureT = 0 and thus neglect

scattering of electrons at impurities and phonons. In fact,what we simulate is the scattering of

conductance electrons from electrons and superconductingpairs in the interacting region.

3.13.2 Solver

We now come to the systematic errors introduced by our methodto solve the model. VCA

generally, and the perturbative treatment of intra-layer and inter-layer hopping have been treated

in Section 2.5. We will discuss here what has additionally tobe considered when coupling to

the leads and applying voltage.
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(1) Reference Cluster Size To describe superconductivity in the central region, it wasneces-

sary to use a cluster of at least 2x2 in the (x,y) plane. On the other hand, because of the large

numerical effort, we could not include more than 4 sites. Thus our reference system contains

only sites of the central region, as illustrated in Fig. 3.1.Consequently, the hybridisation be-

tween central region and leads is only considered perturbatively, which should hold for small

values of the coupling strengthΓ. Moreover, we can not describe the direct interaction between

particles on the leads and the central region. Because of the restricted cluster-size, we also ne-

glect long-range Coulomb interaction in the interacting region. One assume that the important

effects are sufficiently accounted for by a local self-energy, which can be well generated by a

cluster of finite size [51].

(2) Variational Parameters The choice of the variational parameters affects the solutions

that we can find. We have started with variational parameters, that describe the superconducting

central region, when it is not in contact with the metal, namely a superconducting fieldhSC and

the central region onsite energyεC.

It is also possible that in a NnSN junction phase separation occurs, where some in some regions

in the(z= 0)-plane current flows through, and in other regions the superconducting order pre-

vails. Localized current flux can not be described with our model, which is translation invariant

and does not contain impurities, to which c-axis current tubes could pin.

We use no variational field to introduce an antiferromagnetic order in the interacting region. An-

tiferromagnetism could moreover provoke proximity magnetism in the leads. We do however

simulate the NnSN junction in the hole-doped to heavily hole-doped regime, where a long-range

antiferromagnetic order is not found in experiment, as shown in the phase diagram, Fig. 1.1.

(3) Finite Number of Clusters and Frequency Integration Like for the equilibrium prob-

lem, we have used a small number of clusters in the(z= 0)-plane, namely 8×8 in the variational

calculation. This leads to a reduced resolution ink‖. We found that the quality of the evalua-

tion of the variational condition is rather limited by the cluster size than the number of clusters.

From our investigations we conclude, that the choice of appropriate broadening factorsδ and

the extrapolation toδ = 0 is crucial in order to obtain meaningful results.
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(4) Variational Condition We have used a Keldysh version of the equilibrium “Euler” equa-

tion eq. 2.26. In principle, that Euler equation is justifiedonly, if the central region is in equi-

librium with a certain grand potentialΩ. The grand potential can be used for a system at given

temperatureT, volumeV and chemical potentialµ. However, here the chemical potential (and

alsoT, Ω, et cetera) are not defined because the system is not in equilibrium.

(5) Choosing the Right Stationary Point In analogy to equilibrium, we find solutions to

the variational condition in eq. 3.43. There is always a normal-state solution, and often a

superconducting solution. Which of the two solutions is found, depends on the initial values of

the variational parameters and the algorithm used for the search in variational parameter space.

For the case in which multiple solutions occur, we do not havea minimum energy criterion

as in equilibrium. Therefore, there is no criterion to say which one is the stable one. It is

also possible, that the state in the central region depends on the previous state, in that case the

junction shows a hysteresis-like behaviour as a function ofthe applied voltage. This however

means, that the steady state depends on the initial state. Ifthe voltage is increased very slowly,

the system might always remain in a local stationary point and stay superconducting until the

perturbation by the leads is too strong. On the other hand, a quick application of the voltage

might destroy the information on the superconducting state, and the system could settle into

a new state, where current can flow through the central regionmore easily, like in the normal

state. In fact, we have simulated a slow increase of voltage,since the variational parameters at

the start of each calculation for a voltage point was the result of the previous voltage point.



90

3.13.3 Summary

We have studied a three dimensional non-equilibrium setup with a two dimensional Hubbard

interacting region using the Variational Cluster Approach in Keldysh space. As variational con-

dition we use the analogon of the equilibrium “Euler” condition in Keldysh space, introduced in

Ref. [53]. This allows us to investigate the steady state, which evolves in the central interacting

layer when a constant bias voltage is applied. Most notably,this variational condition is suitable

to study symmetry breaking phases, like superconductivity, in non-equilibrium.

The simulated setup describes a monolayer of high-Tc superconducing material, contacted

by two metal leads at different chemical potentials. Using the Variational Cluster Approach in

Keldysh space, we have performed calculations for this setup for four values of inital doping,

coupling strengthsΓ = 0.005 andΓ = 0.01, distinguishing wide and narrow lead bands. We

found that the applied bias voltage and the bands of the leadsstrongly influence the interacting

region, reducing the superconducting order parameter, changing the density in the supercon-

ducting region and causing a c-axis current to flow. Moreover, we have used a bilayer Hubbard

model as central region, and compare the results of the bilayer to the monolayer system. As

expected, we find that the superconducting order is more stable in the bilayer central region, as

compared to the monolayer central region.

Analysing the dependence of the results on the coupling strengthΓ we find that

(a) for relatively strong couplingΓ = 0.01 the superconducting order is destroyed, when the

bias voltage reaches the size of the superconducting gap and

(b) for intermediate couplingΓ = 0.005 superconductivity exists up to a large bias voltage.

The superconducting order vanishes, when the upper Hubbardbands enter in the current con-

ducting frequency range.

Based on our results, we formulate predictions for the physical experiment, distinguishing four

regimes of coupling strengthΓ. Our results indicate that the discussed model, investigated with

the Variational Cluster Approach, represents a good description of a normal state - nano super-

conductor - normal state junction (NnSN) , with tight-binding metal leads. We suggest, that the

Variational Cluster Approach in Keldysh space could also be applied to simulate similar NnSN

junctions with different parameters, or other non-equilibrium systems where strong correlations

play a role.



Appendix A

Derivation of the Equilibrium Euler

Equation

In this appendix, we revisit the derivation of Potthoff published in [54, 53], and thus make use

of the same notation. One uses the self-energy functionalΩ̂[Σ]

Ω̂t,U [Σ] = F̂U [Σ]+Tr ln(G−1
t,0 −Σt,U)

−1, (A.1)

wheret are the physical one-particle parameters andFU [Σ] is the Legendre transform of the

Luttinger-Ward functional. The Luttinger-Ward functional is a universal functional of the self-

energyΣ, that is, it is the same for all systems with different one-particle parameterst but the

same interactionU . We have sketched it in Fig. 2.3.

The approximation made by VCA is to replace the original self-energyΣt,U by Σt ′,U = Σ(t ′),

the self-energy of the reference system with one particle parameterst ′, which is accessible.

Ω̂t,U [Σ] = FU [Σ(t ′)]+Tr ln(G−1
t,0 −Σ(t ′))−1 (A.2)

One wants to find the saddlepoint ofΩ̂t,U [Σt ′,U ] in t ′ and obtains:

∂Ω̂t,U [Σ]
∂t ′

=
∂FU [Σ(t ′)]

∂Σ(t ′)
∂Σ(t ′)

∂t ′
+Tr[(G−1

t,0 −Σ(t ′))−1∂Σ(t ′)
∂t ′

] = 0 (A.3)

Evaluating∂FU [Σ]
∂Σ for Σ(t ′) gives−TĜU [Σ(t ′)] =−TGt ′,U .

Gt ′,U is the Green’s function of the reference system, calledg(~λ) in eq. (3.42). Writing the trace

as a sum over frequencies and sites, TrA= T ∑ω ∑α Aαα(ω), one is left with
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0= T ∑
ω

∑
α
(

1

G−1
t,0 −Σ(t ′)

−Gt ′,U)αβ
∂Σβα(t

′)

∂t ′
. (A.4)

The first expression in the brackets corresponds to the CPT Green’s function:(G−1
t,0 −Σ(t ′))−1 =

GCPT, denotedG in eq. (3.42), so one has obtained

0=−T ∑
ω

∑
α
(g(~λ)−G)αβ

∂Σβα(t
′)

∂t ′
. (A.5)

In VCA, the additional approximation is that not all the one-particle parameterst ′ of the refer-

ence system are variated, i.e.~λ 6= t ′, and we thus replacedGt ′,U by g(~λ)
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