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Abstract

Finding solutions to eigenvalue problems is of great importance in computational electromag-

netics. Many technical problems and numerical approaches lead to eigenvalue problems. This

work deals with accurate and efficient algorithms to solve such problems arising from finite-

element discretizations. In the first part electromagnetic waveguide structures are investigated.

A formulation is presented to resolve the dispersion relation for these structures where the

focus is on a vectorial finite-element formulation and on gauging strategies to find solutions

free from spurious modes. The second part of this thesis is devoted to an analysis of pho-

tonic crystals, a class of material promising for interesting optical applications. The goal is an

efficient way to compute so called band structures, which significantly characterize these ma-

terials. Based on conventional finite-element formulations, model-order reduction schemes are

presented allowing for a considerable calculation speed-up. The parameter sweeps, required for

the computation of band structures, can thereby be carried out much faster. The principle of

the order-reduction techniques is to create a model of much lower dimension while keeping the

necessary information needed for an accurate solution. The cost of setting up the reduced-order

model is comparable to a conventional finite-element solution at selected parameter points. A

multi-point model-order reduction technique is presented that uses the eigen-solution at a few

parameter points to create a reduced basis. Band structures have been calculated using both

2d and 3d formulations. In the latter case special care has to be devoted to avoid spurious so-

lutions produced by the reduced model. Finally, a further method has been presented that uses

only one finite-element solution for creating a proper basis. Therein the respective quantities

are expressed as Taylor series. By mode matching an equation system is set up whose solution,

together with the eigenvector at the selected parameter, serve as the reduced basis.



Kurzfassung

Das Lösen von Eigenwertproblemen nimmt eine zentrale Rolle in der numerischen Simula-

tion von elektromagnetischen Feldern ein. Viele technische Fragestellungen sowie numerische

Zugänge führen zu Eigenwertproblemen. Diese Arbeit beschäftigt sich mit genauen und effizien-

ten Algorithmen, um Lösungen von solchen Problemen zu finden, welche durch Finite-Elemente

Diskretisierung entstehen. Im ersten Teil der Arbeit werden elektromagnetische Wellenleiter

untersucht. Eine Formulierung wird vorgestellt, um Dispersionsrelationen für diese Strukturen

zu berechnen, wobei der Fokus an einer vektoriellen Finite-Elemente Formulierung und an Eich-

strategien liegt. Das Ziel dabei ist, Lösungen zu finden, die frei von unphysikalischen Moden

sind. Der zweite Teil der Dissertation ist einer Untersuchung photonischer Kristalle gewidmet.

Diese Materialklasse verspricht interessante optische Anwendungen. Das Ziel ist die Berech-

nung von Bandstrukturen, die eine wichtige Kenngröße dieser Materialen darstellen. Aufbauend

auf konventionellen Finite-Elemente Formulierungen, werden Methoden zur Modellordnungsre-

duktion vorgestellt, mit deren Hilfe die Rechenzeit erheblich verringert wird. Das Prinzip

dieser Ordnungsreduktionstechniken ist das Erstellen eines Modells mit wesentlich kleinerer

Dimension, während die notwendige Information für eine genaue Lösung beibehalten wird.

Der Aufwand für die Erzeugung der Projektionsbasis ist vergleichbar mit jenem einer konven-

tionellen Finite-Elemente Lösung für ausgewählte Parameter. Ein Mehrpunktverfahren wird

vorgestellt, das die Eigenlösungen an einiger weniger Parameterpunkte verwendet, mit deren

Hilfe eine reduzierte Basis gebildet wird. Bandstrukturen werden sowohl für 2d als auch für

3d Formulierungen berechnet. Im letzteren Fall muss darauf geachtet werden, sodass vom re-

duzierten Modell keine unphysikalische Lösungen produziert werden. Schließlich wird eine weit-

ere Methode vorgestellt, die nur eine Lösung des vollen Finite-Elemente Problems benötigt, um

eine geeignete reduzierte Basis erzeugen zu können. In diesem Fall werden die entsprechenden

Größen des Eigenwertproblems in Taylorreihen entwickelt und mit Hilfe eines Modenabgle-

ichs wird ein Gleichungssystem erzeugt. Die Lösungen von letzterem System bilden hier das

reduzierte Modell.
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Part I

Introduction and Theory



1 Motivation and Outline

This work has been undertaken under a project of the doctoral school of Numerical Simulations

in Technical Sciences whose goal is to bridge theoretical and mathematical studies with engi-

neering disciplines. In this thesis the thematic umbrella is composed of eigenvalue problems

arising in the simulations of electromagnetic fields. The goal is to find efficient algorithms to ef-

ficiently describe various problems arising from electromagnetic wave phenomena. So, speaking

about the practical side of this work, the focus is on describing the transmission characteristics

of electromagnetic waveguide structures on the one hand and on computing dispersion relations

of photonic crystals on the other hand. Due to several complexities of the structure of these

systems under investigation analytical solutions are rarely available. Therefore one has to rely

on efficient numerical methods to solve these problems.

One of the most powerful tool in handling electromagnetic problems or, in general, systems

described by partial differential equations including boundary conditions, is the finite-element

method, see e.g. [1]. Thereby the solution of a given differential equation is discretized and

approximated by functions with local support, so called finite elements. This is in conceptual

contrast to the finite-difference method, where the operator itself is approximated rather than

its solution [2]. The latter method is commonly used in a time-domain context, since it allows

for explicit time step procedures without the need of computing costly matrix factorizations.

By the use of discontinuous Galerkin methods, however, also the finite-element performs well in

the time-domain [3]. The formulations being presented in this thesis are given in the frequency

domain, where the finite-element method is superior. Another advantage of the latter is that

it allows for a higher geometric flexibility, since the implementation of unstructured meshes is

straightforward there. Both methods have in common, that in the end the continuous boundary

value problem is transformed into either an algebraic linear system of equations or, as it will

be the case in this thesis, an algebraic eigenvalue problem. As already stated these methods

belong to the class of routines based on differential equations, in contrast to methods based on

integral equations, where the problem is formulated as an integral equation. The boundary-

element method is an example of this class. These methods lead to algebraic linear systems of
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equations where the respective matrices are fully occupied.

On the contrary, one feature of the methods belonging to the class solving differential equa-

tions is the fact that the matrices describing the discretized systems are usually very sparsely

occupied. As a consequence, iterative linear solvers and iterative eigenvalue solvers can be

applied efficiently since these routines profit from a small occupation density of the matrices in

question.

The topic of this thesis is the eigenvalue analysis of electromagnetic wave problems. In the

first part, the theoretical and mathematical fundamentals are reviewed, whereas in the second

part formulations and methods are presented to describe and analyze applications arising from

numerical field simulations. It is the latter part which contains the scientific achievements of

this thesis. Chapter 2 deals with an introduction into the electromagnetic field equations and

explains the concepts behind wave propagation. In Chapter 3, the above mentioned numerical

methods are outlined and explained in some detail. As the main method used in this thesis,

the finite-element method is described and parts are highlighted that are implemented later

on in this work. In the practical part, both scalar hierarchical and vectorial field formulations

are used. For the first case, used in two dimensional formulations, a hierarchical basis up to

third order is implemented. Vectorial elements are needed in the context of the electromagnetic

field equation, since they guarantee for an operator conforming description. Historically, the

finite-element method has been developed for scalar problems, and the natural component-wise

extension to vector valued cases has proven to be unfeasible due to the creation of spurious

modes. Using proper element basis functions, however, can avoid the latter. By using these

formulations the given differential equations will be transformed into algebraic eigenvalue prob-

lems. A systematic overview of iterative eigenvalue solvers and a mathematical description is

the content of the second part of Chapter 3. Krylov subspace iteration routines, like the Lanczos

or Arnoldi method, can be applied in an effective manner to extract a few eigenvalues with

largest magnitude. The desired spectral information can be adjusted upon the use of certain

preconditioners. This comes at the price of having to solve an additional linear system of equa-

tions. Since the Krylov subspace relies on a certain orthogonalization structure, these solutions

have to be computed very accurately. The Jacobi-Davidson method, on the other hand, only

requires approximate solution for the subspace expansion. The latter is therefore preferable

when the system size exceeds a certain value, where matrix factorizations get very time and

memory consuming.

As a first application of the theoretical background outlined in the opening chapters, Chap-

ter 4 deals with the analysis of electromagnetic waveguides structures. A quasi three dimen-
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sional finite-element formulation is presented where the cross section of the waveguide is meshed

and the degree of freedom in the direction of the axes of propagation is taken into account in the

differential equations. As mentioned above, special care has to be devoted to the use of proper

operator conforming elements that neither produce spurious modes nor give approximated null

solutions that can only hardly be distinguished from the physical ones, especially near the static

limit. For the used 2 + 1-d formulation different gauging strategies have been presented in [4].

Based on this work, one suggested gauging strategy is presented and analyzed in this thesis.

For this purpose a code has been programmed, based on an already existing in-house software

package, using rectangular second order finite elements.

The second major application is devoted to a band structure analysis of photonic crystals.

Chapter 5 starts with a physical introduction into this class of materials, serving as a research

motivation. The focus will be on numerical computations of band structure diagrams which

pose an important characteristics of the material’s optical properties. Certain photonic crystals

have the interesting property that waves with certain wavelengths may be prevented from

propagation through the material. To understand and quantify these so called band gaps a

band structure diagram is beneficial. There are a few methods to numerically compute these

quantities, but again the finite-element method will be the approach of choice in this thesis.

One popular method is a plane-wave expansion, where the respective quantities are expressed

as Fourier series and the problem is in the end transformed to an eigenvalue problem, which

in general is fully occupied. In the finite-element method, the strategy is to model solely one

unit cell and extend it via the use of periodic boundary conditions, relating each boundary to

its counterpart. Again, an eigenvalue problem remains to be solved, but its matrices will be

sparsely occupied in the FE case, since only entries from adjacent elements are different from

zero.

First a two dimensional formulation is given where the incoming wave’s electric field vector

is set to be linearly polarized, perpendicular to the crystal plane. Obviously, with this H-

plane formulation only singly and doubly periodic structures can be captured. Hence, a three

dimensional full wave formulation is required to capture triply periodic examples which will

also be outlined in this chapter. The focus and major scientific achievement, however, lie in

model-order reduction techniques to efficiently compute these dispersion relations. Since a

band structure calculation requires the evaluation of a generalized eigenvalue problem at many

different parameter points, the whole computation tends to get quite time consuming. Hence a

method will be presented that solves the full finite-element model for a few selected parameters

and thence uses the obtained eigenvectors to create a reduced model then serving as a basis
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for the parameter sweep. The idea of this so called multi-point model-order reduction scheme

is that the created model is of much lower dimension and therefore faster to solve. For the

two dimensional case it will be shown that the reduction works straightforward, whereas for

the full wave case one has to invest a bit more so that the model eventually does not produce

spurious solutions. This is due to the special structure of the differential operator. Although

this structure is correctly taken into account for the solutions at the selected parameters, it will

be shown that this is not the case for the evaluation points in between. Therefore a strategy

is suggested to overcome this problem by successfully filtering out the non-physical solutions

when performing the parameter sweep.

Finally a single-point model-order reduction scheme is presented using solely the solution

at one selected parameter for creating the reduced basis. Such techniques have been success-

fully applied to waveguiding structures. There the parameter dependence of the matrices is

polynomial whereas it is exponential in the case of photonic crystals. The model is created by

expanding the respective matrices of the generalized eigenvalue problems in Taylor series. Upon

mode matching a system of equations is established. The solution of the original eigenvalue

problem at the expansion point, along with the vectors solving the system, serve as a basis for

the reduced model with which the parameter sweep can be carried out efficiently.

Results are presented in the end of the chapter showing the accuracy of the methods and

demonstrating their efficiency.



2 Electromagnetic Theory

Let us start with reviewing the physics describing the phenomena used in this thesis. After a

few introductory arguments about Maxwell’s equations, the fundamentals of wave propagation

are shortly outlined. It will set the physical fundament for the mathematical analysis outlined

further on in the thesis.

2.1 Maxwell’s Equations

The fundamentals of electromagnetic theory are described by Maxwell’s system of equations

[5]

∮
∂Γ

H · ds =
d

dt

∫
Γ

D · dΓ +
∫

Γ
J · dΓ, (2.1a)∮

∂Γ
E · ds = − d

dt

∫
Γ

B · dΓ, (2.1b)∮
B · dΓ = 0, (2.1c)∮
D · dΓ =

∫
Ω
ρdΩ. (2.1d)

E and H denote the macroscopic electrical and magnetic field, respectively. D and B stand

for the displacement and magnetic induction fields. Free charge and electrical current densities

are represented by ρ and J.

With the help of the theorems of Gauß and Stokes one can derive the differential form of
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Maxwell’s equations:

∇×H =
∂

∂t
D + J, (2.2a)

∇×E = − ∂

∂t
B, (2.2b)

∇ ·B = 0, (2.2c)

∇ ·D = ρ. (2.2d)

If not explicitly stated differently in this work, materials are considered to be linear and there

are no free charges or currents. In other words, ρ and J are set to zero. With these assumptions

and additionally assuming isotropic materials the following relations are achieved for the field

quantities:

B(r) = µ(r)H(r), (2.3a)

D(r) = ε(r)E(r), (2.3b)

with ε and µ denoting the electrical permittivity and magnetic permeability, respectively. Under

these assumptions Maxwell’s equations finally read

∇×H− ε(r)
∂E(r, t)
∂t

= 0, (2.4a)

∇×E + µ(r)
∂H(r, t)
∂t

= 0, (2.4b)

∇×H(r, t) = 0, (2.4c)

∇×E(r, t) = 0. (2.4d)

Due to the linearity of these equations it is possible to split off the time dependence from

the spatial terms using an expansion into harmonic modes, see e.g. [6] pages 8f:

H(r, t) = H(r)ejωt, (2.5a)

E(r, t) = E(r)ejωt. (2.5b)

Inserting the last relation into the differential forms (2.2b)-(2.2d) yields Maxwell’s equations in
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the Fourier domain:

∇×H(r) = jωε(r)E(r), (2.6a)

∇×E(r) = −jωµ(r)H(r), (2.6b)

∇ · [µ(r)] H(r) = 0, (2.6c)

∇ · [ε(r)E(r)] = 0. (2.6d)

These can further be simplified combining the first two equations. Depending on which field

quantity is removed one obtains one of the following curl-curl-relations:

∇×
(

1
ε(r)
∇×H(r)

)
= ω2µ(r)H(r), (2.7a)

∇×
(

1
µ(r)
∇×E(r)

)
= ω2ε(r)E(r). (2.7b)

One of the last equations, along with the divergence conditions (2.6c)-(2.6d) provide all the

information needed to describe the electromagnetic field quantities. For a given geometrical

configuration the procedure will be to solve one of the major curl-curl-equations (2.7a) or (2.7b)

to get the respective field modes and the corresponding frequencies.

2.2 Wave Propagation

This section deals with a presentation of some fundamental concepts regarding wave propaga-

tion. Thereby some specific concepts are outlined which are used later in Chapters 4-5 where

practical applications are discussed. When analyzing the propagation behaviour of electro-

magnetic waves, one is often interested in the dispersion relation, i.e. the dependency of the

wavenumber on the frequency of the wave. This will also be the case in the applications here,

where first the propagation behaviour of waveguides is discussed, followed by an analysis of

propagating behaviour in periodic structures such as photonic crystals.

2.2.1 Waveguides

The first practical application of this thesis will be an investigation of dispersion relations of

waveguides in Chapter 4. Hence a few introductory words about waveguides are presented in

this subsection. Generally one speaks about waveguides when the transversal dimensions are

comparable to the wavelength, i.e. when electrically large systems are under investigation.
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Under the assumption of homogeneous systems electromagnetic fields can always be consid-

ered as a superposition of two classes of wave types. The first class of modes, called transverse-

electric (TE), is composed of waves whose electrical field is purely transversal and whose mag-

netic field has components in every direction. The opposite is the case for TM-modes, where

the magnetic field lies in the plane perpendicular to the axis of propagation. With the help of

single component vector potentials, the electromagnetic fields can be described by two scalar

potentials. Under the additional assumption of a lossless and a charge-free medium, a magnetic

vector potential A and an electric scalar potential V can be introduced such that H = 1
µ∇×A

and E + jωA = −∇V . Inserting into Maxwell’s equations (2.1) yields

−∆A− k2A = 0, (2.8a)

−∆V − k2V = 0, (2.8b)

with k = ω
√

(µε).

Since the divergence ∇ ·A is arbitrary, one can apply the Lorenz-gauge

∇ ·A + jωεµV = 0. (2.9)

The electrical and magnetic field strength can then be expressed in terms of potentials as

H =
1
µ
∇×A, (2.10a)

E = − 1
jωµε

(k2A +∇(∇ ·A)). (2.10b)

In the TM-case one can choose a single-component vector potential A(r) = A(r) · ez. This

ensures the magnetic field strength to be transverse, i.e. the component (Hz) into the direction

of propagation ez to be zero, since in Cartesian coordinates the field quantities are

H =
1
µ

[
∂A

∂y
ex −

∂A

∂x
ey

]
, (2.11a)

E =
1

jωµε

[
∂2A

∂x∂z
ex +

∂2A

∂y∂z
ey +

(
∂2A

∂z2
+ k2A

)
ez

]
. (2.11b)

Similarly, one can in general introduce an electric vector potential F and a magnetic scalar

potential ψ, such that D = ∇ × F and H = jωF − ∇ψ. In the TE-case a single-component

vector potential F(r) = F (r) ·ez can be chosen. Inserting into Maxwell’s equation and applying

the Lorenz gauge leads to a transverse electrical field. The TE-mode field quantities can be
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expressed as

E =
1
ε

[
∂F

∂y
ex −

∂F

∂x
ey

]
, (2.12a)

H = − 1
jωµε

[
∂2F

∂x∂z
ex +

∂2F

∂y∂z
ey +

(
∂2F

∂z2
+ k2F

)
ez

]
. (2.12b)

For the case of a rectangular waveguide, whose geometry is sketched in Fig. 2.1, an exact

solution can be derived.

(0,0)

y

x

z

x=a

y=b

Figure 2.1: Geometry of the rectangular waveguide with axis of propagation into z-direction

With waves propagating into z-direction the following ansatz is made for the single-component

vector potential in the TM-case

A(x, y, z) = A(x, y, z)ez = A(x, y) exp(−jβz)ez. (2.13)

Together with the condition of vanishing tangential components of the electrical field at the

walls, i.e. n×E = 0, the ansatz (2.13) is inserted into (2.8a). The resulting differential equation

can be easily solved in Cartesian coordinates by separating variables. The solution for the single

component vector potential is then given by

A(x, y, z) = C sin
(mπ
a
x
)

sin
(nπ
b
y
)

exp(−jβz), (2.14)

with C a constant and m,n integers characterizing the respective modes.

The eigenvalues of the respective modes, i.e. the wavenumbers kx = mπ
a and ky = nπ

b , are then

related to the propagation constant β by the following relation

k2
x + k2

y + β2 = ω2µε. (2.15)
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In practical application one can either prescribe the propagation constant β and solve for the

frequency, or fix the frequency and solve for the propagation constant. The latter case is

practically more relevant and will be investigated in Chapter 4. Looking in some greater detail

at (2.15) on sees that for certain frequencies β2 might get negative. As a consequence, in these

cases there is no propagation possible for the respective frequencies, the wave will be fully

damped, since for β2 < 0 one gets

β = ±jα ⇒ exp(∓αz). (2.16)

α is termed attenuation constant and the frequency where the transition from propagation to

damping occurs is termed cut-off frequency.

With the same ansatz a similar solution is obtained for the single component vector potential

describing TE-modes

F (x, y, z) = C cos
(mπ
a
x
)

cos
(nπ
b
y
)

exp(−jβz). (2.17)

From these potentials all the field quantities can be derived using (2.11) and (2.12), re-

spectively. Of course, these rather simple analytical solutions are only possible for specific

geometry configurations and under the assumption of homogeneous material parameters. For

heterogeneous materials and when losses are included, the general solution is no longer given

as a superposition of the transverse magnetic and transverse electrical modes. In order to

compute the propagation behaviour in a general setting, one has to rely on efficient numerical

methods. The finite-element method will be described in Chapter 3 and applied to waveguides

in Chapter 4.

2.2.2 Periodic Structures

In chapter 5 of this thesis the focus will be on the analysis of wave propagation in periodic

structures such as photonic crystals. Some theoretical concepts from solid state physics and

the methodology of describing lattice structures are necessary to understand the formulations

presented later on. This section serves as an introduction into the concept of reciprocal lattices

and Brillouin zones used to describe dispersion relations of photonic crystals.

Due to the translational invariance of photonic crystals, such structures can be described

by a periodic repetition of unit cells. The mathematical standard of solid state physics to

characterize this unit cell is by a real lattice L and a reciprocal lattice K [7]. The first is

mathematically defined by its three axis vectors L1,L2,L3 so that any node of the lattice can
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L
1

L
3

L
2

R

Figure 2.2: Lattice being composed of the basis vectors L1,L2,L3

be described by a vector R pointing to it

R = n1L1 + n2L2 + n3L3, (2.18)

for all integers n1, n2, n3. The standard definition of the reciprocal lattice K is such that any

vector K from the reciprocal lattice fulfills the following condition:

exp(jR ·K) = 1. (2.19)

With the help of (2.18) and (2.19) the basis vectors (K1,K2,K3) spanning the reciprocal

space are obtained as

K1 = 2π
L2 × L3

L1 · L2 × L3
, (2.20a)

K2 = 2π
L3 × L1

L1 · L2 × L3
, (2.20b)

K3 = 2π
L1 × L2

L1 · L2 × L3
. (2.20c)

Thus any vector from the reciprocal space is then given as K = m1K1 + m2K2 + m3K3 for

some integers m1,m2,m3.

The two spaces, real and reciprocal, are connected via a Fourier transform

f(r) =
∑
K∈K

f̃(K) exp(jKr) (2.21)

with

f̃(k) =
1
V

∫
cell

f(r) exp(−jK · r) dV. (2.22)

In a translationally invariant system electromagnetic modes can be written as Bloch or Floquet

modes, i.e. they are in the form of

Ek(r) = exp(jk · r)uk(r) = exp(jk · r)uk(r + R), (2.23)
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with uk being a periodic function. The exponential term can be interpreted as a phase shift

over one lattice cell. An important characteristics of such a Bloch mode is the fact that adding

a vector K from the reciprocal lattice to the wave vector k leads to the same mode, since

the phase increment is then precisely given by (2.19) which is one. This nice property allows

one to reduce the reciprocal space to its unit cell, termed Brillouin-zone, since every point in

the reciprocal space can be related to one of the Brillouin zone by adding multiplies of the

reciprocal unit vectors [6] p. 235.

For the simple cubic lattice, whose unit cell has dimension a, the reciprocal space is given as

sketched in Fig. 2.3. The volume surrounded by the dashed line represents the reduced Brillouin

zone. For the analysis of periodic structures it is sufficient to solely cover the reciprocal space

within one reduced Brillouin zone, since all other points in the reciprocal space can be reached

by mirror operations to the reduced Brillouin zone and by translations with reciprocal lattice

vectors.

The different symmetry points are labelled by letters whose coordinates are listed below:

Γ :
π

a


0

0

0

 X :
π

a


1

0

0

 , (2.24a)

R :
π

a


1

1

1

 M :
π

a


1

1

0

 . (2.24b)

Another important class of lattices is the one of body-centered cubic (bcc) and face-centered

cubic (fcc) lattices. In the bcc case an additional lattice point is placed in the interior of the

unit cell of the simple cubic lattice, whereas the fcc lattice is created by putting a lattice point

in the middle of each face of the simple cubic lattice. The Brillouin zones of the two lattices

are illustrated in Fig. 2.4.
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Figure 2.3: Reciprocal lattice of simple cubic lattice [8]

Figure 2.4: Reciprocal lattice of body-centered (bcc) and face-centered (fcc) cubic lattice [8]



3 Numerical Methods

This introductory chapter reviews the fundamental concepts of numerical methods used in this

thesis. The arising differential equations are treated by the finite-element method where special

focus is devoted to an appropriate representation of the respective differential operators. The

fundamentals of this method are shortly reviewed in the first part of this chapter, followed by

an overview of algebraic eigenvalue solvers. These methods will be used later on in this thesis

when applications are considered.

The FE method is the dominating instrument in scientific and computational treatment

of engineering problems since it allows for a very flexible geometric modeling of complicated

structures. It is widely used not only in the electrical engineering community but also in

disciplines of material sciences, fluid dynamics, thermodynamics or Geo sciences, to name a

few. Even the financial industry relies on the powers of these methods to correctly price

complicated financial instruments arising from derivative structured products.

The drawback of the FE method is the fact that, depending on the actual problem, it can

get computationally very challenging to obtain solutions. The fundamental principle of the FE

method is to transform a continuously posed problem stated as differential equations into a

discrete set of algebraic equations or algebraic eigenvalue problems, respectively. Depending on

the condition number of the matrix describing this set of equations a given method to compute

solutions may converge or not. Direct solutions are rare since the considered applications are

usually of sizes far too big to be handled with these methods. The finding of efficient algebraic

solving routines, along with an appropriate formulation of FE-methods, are research topics

currently pursued. In this work, the FE method will be used to compute dispersion relations

for waveguiding structures and photonic crystals. These problems are stated in such a way that

the discretizations will lead to eigenvalue problems
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3.1 Finite-Element Method

This section is based on the respective chapters of [1] and [9]. The basic idea of the FE is

based on the principle that a given boundary value problem is divided into a large number

of smaller sets and to approximate the solutions in these elements by polynomials of lower

dimension. Since these basis solutions have a common property of local support, the method

is called finite-elements. The basis functions are allocated to a specific degree of freedom, e.g.

a node or an edge of the mesh, and differ from zero only in domains within the respective or

adjacent elements.

In order to outline the fundamentals of the FE method, let us start with a typical differential

equation over a domain Ω

Lu = f. (3.1)

Together with appropriate conditions on the domain’s enclosure Γ, (3.1) is termed a boundary

value problem. Here, L is a the differential operator, f the source and u the physical quantity

that is sought.

In most applications, the finding of an analytical solution of (3.1) is impossible. Therefore

a numerical method, like the FE method, has to be applied. It is stated that FE is just one

choice of methods but it stands out for its geometric flexibility and is the method used in this

work. The basic step of a FE formulation is the finding of a variational scheme, i.e. the solution

of (3.1) formulated as the result of minimizing a certain functional. The functional space V (Ω)

has to contain functions of a definite level of smoothness and has to satisfy the prescribed

boundary conditions on Γ.

The differential operator involved is said to be self-adjoint if the following relation holds for

all functions of V :

〈Lu, v〉 = 〈Lv, u〉 , ∀v ∈ V, (3.2)

where 〈·, ·〉 denotes the inner product. This is a symmetric bilinear form. In the following only

self-adjoint operators are considered and the notation can be simplified to

L (u, v) ≡ 〈Lu, v〉 = 〈Lv, u〉 , ∀v ∈ V. (3.3)

By multiplying (3.1) with a test function v and integrating over the domain Ω, one obtains

the weak form

L (u, v) = 〈f, v〉 , ∀v ∈ V. (3.4)
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One way to discretize the weak form is to apply the Galerkin method by restricting the

functions u and v to a finite-dimensional subspace Vh ⊂ V . The weak form then transforms to

the problem of finding uh ∈ Vh such that

L(uh, vh) = (f, vh) , ∀vh ∈ Vh. (3.5)

Assuming that a proper discretization of the space V to a set with dimensionality n has

been carried out, i.e. the domain has been meshed, the approximated solution uh can then be

described as a linear combination of the discrete set’s basis functions ψi(i = 1, . . . , n):

uh =
n∑
i=1

uiψi = uTψ, (3.6)

where u represents the Eucledian vector of coefficients generally to be in C. Thus the original

problem has been transformed into the the algebraic task of finding proper coefficients u.

In the same spirit a relation is established between the differential operator L and the Eu-

clidean vectors u and v [9].

〈Su,v〉 = L(uh, vh). (3.7)

This relation holds for any two functions uh, vh ∈ Vh and their respective Euclidean vectors

u,v ∈ Rn. Here, the left hand side is the typical Euclidean scalar product with the square

matrix S given by

Sij = 〈Sei, ej〉 = L(ψi, ψj), (3.8)

where the vectors ei represents the i-th column of the identity matrix. This means that in the

end, after defining proper basis functions and computing the respective matrices, the contin-

uous differential equation has been transformed into an algebraic system of equations. This

equivalence is the main property of Galerkin methods and FEM in particular. The matrix Sij

is usually termed stiffness matrix since the method was originally developed for problems in

structural mechanics.

Since the Galerkin formulation (3.5) is only a restriction of the weak continuous formulation

to a finite-dimensional subspace, the numerical bilinear form has the same algebraic properties

as the continuous one [9], pp. 79f. For elliptic differential operators L, i.e. if

L(u, u) ≥ c(u, u), ∀u ∈ V, (3.9)

for some constant c > 0, the matrix S is strictly positive definite and, in addition, the following

relation holds:
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(Su,u) ≥ c(Tu,u), ∀u ∈ Rn, (3.10)

where T is such that the Euclidean form (Tu,v) corresponds to the L2 inner product of the

respective functions:

(Tu,v) = (uh, vh). (3.11)

This defines the so called mass matrix

Tij = (ψi, ψj) (3.12)

and is in complete analogy to the expressions (3.7) and (3.8).

Thus the continuous differential equation has to be transformed into an algebraic system or

into an eigenvalue problem, depending on the problem setting. A difficulty lies in choosing the

correct space for the basis functions ψi. This will be discussed in the next subsections where

the focus is on formulations regarding electromagnetic problems.

A general recipe for solving differential equations of the form (3.1) with the FE method,

is the following [10]. First the computational domain is divided into parts or elements, e.g.

triangles, quadrilaterals for 2D cases or tetrahedra, cuboids for 3D problems. As a second step,

the solution is expressed by a finite number of low order polynomial basis functions Wi, i.e.

u(r) ≈
∑n

i=1 uiWi(r). Then a residual quantity r = L[u]− f is computed, which is required to

be as small as possible in the weak sense. This is followed by choosing as many test functions

ωi as there are unknown functions for weighting the residual r. When test and basis functions

coincide one speaks from Galerkin’s method. Finally the weighted residual is set to zero and

one solves for the unknown coefficients ui:

〈Wi, r〉 =
∫

Ω
Wir dΩ = 0. (3.13)

To be mathematically correct, the term finite element contains the element together with

a polynomial space defined in the element and a set of degrees of freedom defined on this

space. The first can be a triangle, whereas the second stands for a certain space of polynomial

functions and the third represents the values on the polynomial functions in the corners of the

element [10].

3.1.1 Scalar Valued Quantities

For an analysis of 2d systems, the scalar Helmholtz equation quite often serves as a model

describing the problem setting at hand. This is the case in the first part of Chapter 5. For a
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scalar potential A = Aez the scalar Helmholtz equation reads

−∇ · ∇A− k2A = 0. (3.14)

Since A is a scalar quantity, node based elements can be used to approximate a solution. The

component of the potential pointing into the direction of propagation can thus be expressed as

A(r) =
nn∑
i=1

AiNi(r), (3.15)

with the vector r lying in the plane perpendicular to the axis of propagation and nn denoting

the number of nodes. The vector ri is pointing to the i-th node. Choosing triangular elements

with linear basis functions, the nodal basis functions Ni have the property Ni(ri) = 1 and

Ni(rj) = 0 for i 6= j. Thus there is one basis function associated with each node. Inserting

these trial functions into the weak form (3.5) of (3.14) and applying Galerkin’s method leads

to the following algebraic eigenvalue problem:

[
S− k2T

]
v = 0. (3.16)

Here S and T are termed stiffness and mass matrix, respectively. They are calculated by the

following relations

Sij =
∫
S
∇Ni · ∇Nj dS, (3.17a)

Tij =
∫
S
Ni ·Nj dS. (3.17b)

In the first part of Chapter 5 the scalar Helmholtz equation will reappear when discussing a

2d-formulation for photonic crystals. There the electrical field is considered to lie in a plane

perpendicular to the axis of propagation.

3.1.2 Vector Valued Quantities

When having vector valued differential equations at hand, like the vectorial Helmholtz equation,

the obvious extension of the FE method would be to simply describe each component separately

by node based elements. This procedure, however, leads to approximation errors, involving the

occurrence of spurious modes. As an outcome the basis functions have to be chosen from a

well-defined function space, taking care of the properties of the differential operator. A list of

conventional function spaces, used in electromagnetic problems is presented in subsection 3.1.3.

There is one class of elements, called edge-elements, fulfilling the continuity properties of the
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curl-operator [11]. There the degrees of freedom correspond to the edges of the elements, rather

than to the nodes. In addition to a numbering of edges in the mesh, a reference direction of

each edges has to be defined in this case. The electrical field strength E can then be expressed

in terms of edge element basis functions Ni as

E(r) =
Ne∑
i=1

EiNi(r). (3.18)

Theses basis functions are formed such that they have continuous tangential components across

element interfaces, whereas they allow their normal components to jump. This property insures

that an electrical field expanded in terms of edge elements has a curl that is square integrable,

since their continuous tangential components imply that the curl of an edge element does not

contain jumps at element interfaces [10]. The most important property, however, is the fact

that the gradient functions ∇Ni are contained in the discrete space N spanned by the edge

element basis functions Nk:

∇Ni ⊂ N. (3.19)

This ensures the avoidance of spurious modes when using edge elements to approximate the

solution of the electromagnetic wave equation.

In the remainder of the thesis, boundary value problems of the following type play an im-

portant role, whose solutions describe the propagation properties of electromagnetic waves

∇×∇×E− k2E = 0 in S (3.20a)

n×E = 0 on ∂S. (3.20b)

In order to apply the FE method to the above BVP, the problem has to be transformed into

the weak form given by

∫
S

(∇×Wi) · (∇×E) dS = k2

∫
S

Wi ·E dS. (3.21)

The electrical field is then approximated by edge element basis functions Ni tested with Wi =

Ni, i.e. applying Galerkin’s method. Thus one again arrives at a generalized eigenvalue problem

[
S− k2T

]
v = 0, (3.22)
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with the entries of the stiffness S and the mass matrix T now given by

Sij =
∫
S

(∇×Ni) · (∇×Nj) dS (3.23a)

Tij =
∫
S

Ni ·Nj dS. (3.23b)

The reason for node based elements to fail for this kind of differential operators is the fact

that they do not contain the proper null-space of the curl-operator, which is given by the

electrostatic modes E = −∇V . Node based elements can only approximate these modes and

therefore pollute the spectrum between zero and the values of the physical modes. On the other

hand, edge-based elements yield exactly one zero eigenvalue for each interior node. This is the

case, since the electrostatic modes E = −∇V , with piecewise bilinear V , belong to the set of

edge elements according to the property of (3.19).

3.1.3 Function spaces

In this subsection, referring to [12], some theoretical concepts about function spaces of finite-

element basis functions are discussed which are needed for an analysis of electromagnetic prob-

lems posed by the Maxwell’s equations. There are four important function spaces, each de-

scribing a particular electromagnetic quantity:

H1(Ω,Γφ) := {φ ∈ L2(Ω)|∇φ ∈ L2(Ω) ∧ φ = 0 on Γφ}, (3.24a)

H(curl; Ω,ΓE) := {E ∈ L2(Ω)|∇ ×E ∈ L2(Ω) ∧ n× (E× n) = 0 on ΓE}, (3.24b)

H(div; Ω,ΓB) := {B ∈ L2(Ω)|∇ ·B ∈ L2(Ω) ∧ n ·B = 0 on ΓB}, (3.24c)

H0(Ω) := {ρ ∈ L2(Ω)} (3.24d)

Here Ω stands for the whole domain and Γi for the respective boundary. L2 denotes the space

of Lebesgue integrable functions

L2(Ω) := {f(x)|‖f(x)‖L2 <∞}, (3.25)

with ‖ · ‖ standing for the norm induced by the scalar product

(f1 , f2) =
∫

Ω
fH2 (x)f1(x) dΩ. (3.26)

In order to make the above function spaces to Hilbert spaces, i.e. complete under the scalar

product, the latter (3.26) has to be slightly modified for each function space. With the following
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definitions of scalar products, the so called Sobolev spaces are obtained:

(φ, φ)H1(Ω) := (φ1, φ2)2
L(Ω) + (∇φ1,∇φ2)L2(Ω), (3.27a)

(E1,E2)H(curl;Ω) := (E1,E2)L2(Ω) + (∇×E1,∇×E2)L2(Ω), (3.27b)

(B1,B2) := (B1,B2)L2(Ω) + (∇ ·B1,∇ ·B2)L2(Ω), (3.27c)

(ρ1, ρ2)H0(Ω) := (ρ1, ρ2)L2(Ω). (3.27d)

The clue about the presented function spaces is such that elements form these spaces ensures

the physically correct continuity properties. This means that an electrical scalar potential has

to be an element from H1 since it is a continuous spatial function. The electromagnetic field

quantities E and H, on the other hand, are tangentially continuous so that they belong to

the space H(curl; Ω). The latter is tangentially continuous due to the L2-integrability of the

curl. Since the flux quantities D and B are normally continuous they have to be members of

the third function space H(div; Ω). There the property of normal continuity is due to the L2-

integrability of the divergence. Finally volume charges do not posses any continuity properties.

Therefore they belong to the last space H0(Ω). In the FE method one approximates these

function spaces by discrete functions. Depending on the quantity a certain subspace is chosen.

The space spanned by node based elements corresponds to a discrete subspace of H1 of (3.24a),

whereas edge elements are constructed so that they are members of a discretized subspace of

H(curl) of (3.24b).
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3.2 Review of Eigenvalue Solvers

The definition of an eigenvalue problem is to find eigenvectors vi and eigenvalues λi to a matrix

A such that the following equation holds:

Avi = λivi. (3.28)

The set of eigenvalues λi is termed eigenspectrum. Generalized eigenvalue problems, like

in (3.16) and (3.22), are defined for the matrix pencil (A,B) according to the following re-

lation:

Avi = λiBvi. (3.29)

This section deals with a systematic overview of routines to solve algebraic eigenvalue prob-

lems. FE-formulations as described in the last section lead to generalized eigenvalue problems.

The matrices obtained from the discretizations of the differential operators are in general far

too big to be fully diagonalized by a direct application of conventional eigenvalue routines. In

other words, the full eigenspectrum cannot be computed in practical applications. In many

cases, however, it is sufficient to resolve the spectrum for extremal eigenvalues or for eigenval-

ues, located around a selected target. This is achieved by the use of so called iterative methods,

that transform the original matrices into certain structures for which direct methods can be

applied. These iterative methods work the more efficiently the lower the occupation number

of the matrices in question is. The number of matrix entries different from zero defines the

occupation number. Since one characteristic of matrices stemming from FE-discretizations is

that they are sparsely occupied, iterative methods will be well suited in our context. (Subspace)

iteration methods have in common, that first a subspace of much lower dimension is created

which is then solved by direct methods. All one has to know about the matrix in question

is its action on a vector. In the latter expression the matrix is understood as an algebraic

representation of a linear tensorial operator, where the matrix-vector multiplication represents

the action of the operator. This matrix-vector multiplication can be efficiently implemented

and is treated as a black-box by the algorithm. Whereas the information about the full spec-

trum cannot be cheaply obtained by iterative methods, the computed solutions are more or less

accurate approximations of the eigenvalues and eigenvectors near a selected target value.

It is noted that the above categorization of eigenvalue routines is somewhat misleading, since

also direct methods rely on an iterative procedure to compute the eigensolutions. In [13] it

is stated that any eigenvalue solver has to be iterative. This is to understand in comparison

to solving linear systems, where certain methods are capable of producing exact solutions in a
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finite number of steps. In the context of eigenvalue problems, however, sequences are computed

with the goal of a rapid convergence towards the true eigenvalues. Although this means that

computing eigenvalues is in principle an unsolvable problem, the convergence of this sequence

is very rapid and in practice differs from the solution of linear systems only by a small fraction.

To close the picture, direct methods will be stated as such in this thesis, although they imply

an intrinsic iterative behaviour. Iterative methods in the context of the thesis refer to methods,

where a subspace is created. So, subspace iteration methods would be a more appropriate term,

this class will be often denoted by the name iterative methods in the context of this thesis.

This chapter starts with a short description of direct routines, which are implicitly used

to solve the transformed eigenproblems when applying the iterative schemes, followed by a

description of the most traditional iterative schemes. Finally, it is outlined how these concepts

can be extended, for the computation of generalized eigenvalue problems, defined in (3.29).

3.2.1 Direct Methods - Complete Spectrum

When speaking about direct routines applied to solving eigenproblems, a slightly better term

is to speak about methods to solve the complete eigenspectrum of a certain matrix. The

ultimate goal there is to transform the matrix to diagonal form by similarity transformations,

i.e. transformation that do not alter the eigenvalues of the matrix. A prominent representative

of this class of methods is the Jacobi method. The basic idea of this method is to transform a

matrix A,

A =

a11 a12

a21 a22

 , (3.30)

into a diagonal matrix JTAJ, where the orthogonal matrix J is given by

J =

 cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ).

 (3.31)

This can be accomplished by selecting the angle φ so that the off-diagonal entries of JTAJ

will vanish, which is the case when

cos2(ϕ)− sin2(ϕ
sin(ϕ) cos(ϕ)

=
a22 − a11

a12
. (3.32)

Applying this scheme to larger matrices, one manages to eliminate a pair of column and

row indices (i, j). Repeating this scheme will lead to a diagonal matrix even though in some

steps previously eliminated off-diagonal elements might be refilled. Details to this method
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can be found in [14] and [15]. To close the gap another important representative of the class

of methods for solving the full eigenspectrum is the QR-method. It makes use of the power

iteration described below. The QR-method, e.g described in detail in [15] ch. 10, starts with

a QR-decomposition, factorizing the matrix A into a orthogonal matrix Q times an upper

triangular matrix R:

A = QR. (3.33)

The QR-factorization is unique, as long as the matrix A is invertible. The factorization is

followed by a QR transformation Ã = RQ = QTAQ. The algorithm then consists of the

following iteration

A1 = A (3.34a)

Ak = QkRk k = 1, 2, . . . (3.34b)

Ak+1 = RkQk = QTAkQk. (3.34c)

For non-symmetric cases this procedure converges to an upper triangular matrix, where the

eigenvalue can be taken from the entries on the diagonal . For symmetric matrices, the limit

matrix is diagonal.

3.2.2 Subspace Iteration Methods - Selective Spectrum

In practical applications for solving large eigenvalue problems, subspace iteration methods

are the most important class of eigenvalue routines. The simplest approach of employing an

iterative scheme is the power method. It is based on the idea that successive action of the

matrix on a vector will converge to an extreme eigenvector. It yields the dominating eigenvalue

λ1 and its corresponding eigenvector x1. Consider the eigenvalue problem

Avi = λivi. (3.35)

Starting with an initial starting vector v1 taken from a random guess, the following iteration

prescription can be employed:

ṽ2 = Av1, (3.36a)

ṽ3 = Aṽ2 = A2v1, (3.36b)
...

ṽm = Am−1v1. (3.36c)
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The convergence of this method is characterized by the ratio of the two eigenvalues with

largest magnitude
∣∣∣λ2
λ1

∣∣∣ . If this ratio is small, as it is the case in many applications, the

convergence behaviour is quite poor [16]. Another problem arises when the eigenvalues are

degenerate. In this case only one eigenvalue and its corresponding eigenvector is found. For

real matrices having complex eigenvalues the method cannot be applied at all, since there are

two eigenvalues with largest modulus in these cases, since they appear as complex pairs. One

possibility to improve convergence is to apply the power method to a shifted matrix B with

B(λ0) = A + σI, (3.37)

where σ represents a user defined target value. The shifted matrix has the same eigenvectors

with the corresponding shifted eigenvalues. If one wants the iteration to converge to the lowest

eigenvalues instead, the power iteration should be applied to the inverse, thus having the

iteration

vm = A−1vm−1. (3.38)

Of course the inverse need not be computed directly, since only its action on a vector is of

interest. This can be easily achieved by a pre computation of its LU -factorization, followed

by solving an upper and lower triangular system at each step. The same techniques will be

used when transforming generalized eigenvalue problems to standard form, outlined later in

this chapter. The inverse iteration will converge to eigenvalues with lowest modulus, since the

eigenvalues of A and A−1 are inversely related to each other, yet having the same eigenvector.

The last two extensions of the power method can be combined to the inverse power iteration

with a shift. Here the iteration is applied to the matrix C with

C = (A− σI)−1 , (3.39)

with σ again a user-selected shift. The algorithm will converge to the eigenvalue closest to the

shift, since the eigenvalue of C with largest modulus is 1
λ1−σ . The convergence of this routine

is characterized by the ratio ∣∣∣∣λ1 − σ
λ2 − σ

∣∣∣∣ , (3.40)

with λ1 and λ2 being the closest and next closest eigenvalue to the shift σ.

For Hermitian matrices, an efficient possibility for a shift is to take the Rayleigh quotient of

the latest approximated eigenvector vk. The algorithm for this Rayleigh quotient iteration is

to start with a normalized initial vector v0 and applying the inverse power iteration, where in
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each step the shift σk and the following iterated vector vk are given by

σk = vHk−1Avk−1, (3.41)

vk =
1
‖vk‖

(A− σkI)−1 vk−1. (3.42)

Although this process is globally convergent for Hermitian matrices, it is not widely used in

practice, since it requires an expensive LU -factorization in each iteration step [16].

In the following the ideas of the power iteration is extended in such a way that the iterated

vectors are used to span a subspace, called Krylov subspace, in which the eigenpairs are sought.

The principal idea behind these iterative subspace methods is to first project the matrices into

the lower-dimensional Krylov subspace. Given a certain matrix A and an initial vector v0, the

associated Krylov sub-space is spanned by the vectors

Km = {v0, Av0, A2v0, . . . ,Am−1v0}. (3.43)

Depending on the algorithm, this sequence will lead to a matrix structure, being either of upper

Hessenberg or of tridiagonal form which will then be diagonalized by direct methods. An upper

Hessenberg matrix is a matrix whose entries are zero for any pair of indices i, j with i > j + 1.

Lower Hessenberg matrices are defined accordingly. A tridiagonal matrix can be viewed as

both an upper and a lower Hessenberg matrix, since it only has nonzero elements in the main

diagonal, and the first diagonal below and above the main diagonal.

3.2.2.1 Arnoldi

The Arnoldi algorithm can be applied to general non-Hermitian matrices. The orthogonal

projection onto the Krylov subspace Km will lead to an upper Hessenberg form. The basic pro-

cedure of the algorithm is to build an orthogonal basis of Km by first applying the matrix onto

a starting vector, followed by an orthogonalization of the resulting vector to a randomly chosen

starting vector. This process is repeated where in each step the new vector is orthogonalized to

all previous ones. The applied orthogonalization scheme is the modified Gram-Schmidt routine.

The ordinary Gram-Schmidt orthogonalization scheme might lead to sever cancellations [16].

The iteration will stop when the norm of the corrected vector falls below a certain threshold.

The method is described in Algorithm 1 below. The quantities in the lines 5 and 8 define the

Hessenberg matrix Hm which can then be diagonalized by direct routines.

The fact, that the eigenvalues of Hm are identical to those the original matrix A, can be

illustrated by looking at the following relation [16]:
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Algorithm 1 Arnoldi method
1: v1 = v1/||v1||
2: for j = 1, 2, . . . ,m do

3: w = Avj

4: for i = 1, 2, . . . , j do

5: Hij = wH · vi
6: w = w −Hijvi

7: end for

8: Hj+1,j = ||w||
9: vj+1 = w/Hj+1,j

10: test for convergence

11: end for

AVm = VmHm + hm+1,mvm+1eHm, (3.44)

VH
mAVm = Hm. (3.45)

Here the columns of the matrix Vm are the iterated vectors v1, . . . ,vm and em denotes the

m-th canonical basis vector of the Eucledian space.

It is noted that it may happen in certain cases, that the new iterated vector is already

orthogonal to the previous vectors. In this case the algorithm stops and the found eigensolutions

are exact.

3.2.2.2 Lanczos

When having Hermitian matrices at hand, the Arnoldi method can be simplified to get the

Lanczos algorithm. The basic principle is similar, but in the Lanczos case one only has to

store three rather than all vectors. The upper Hessenberg matrix of the Arnoldi method is a

tridiagonal and symmetric matrix in the Lanczos case. The method is outlined in Algorithm 2

The eigenvalues of the tridiagonal matrices Tm will be equal to the lowest eigenvalues of

the original matrix A, since the matrices Tm of the Lanczos iterations are the corresponding

projections

Tm = VH
mAVm. (3.46)



3.2 Review of Eigenvalue Solvers 31

Algorithm 2 Lanczos method
1: v1 = v1/||v1||, β1 = 0,v0 = 0

2: for j = 1, 2, . . . ,m do

3: w = Avj − βjvj−1

4: Tj,j = wH · vj
5: w = w −Tj,jvj

6: Tj,j+1 = Tj+1,j = ||w||
7: vj+1 = w/βj+1

8: test for convergence

9: end for

3.2.2.3 Generalized Eigenvalue Problems

In this subsection attention is paid to the practically relevant case, where an iterative compu-

tation of eigenpairs to the generalized eigenvalue problem is sought. The problem is then given

as

Avi = λiBvi, (3.47)

where A and B are general n× n- matrices.

Following chapter X of [15] a few methods to treat such generalized eigenproblems are out-

lined. A common strategy for solving the large-scaled generalized eigenvalue problem is to find

a reduction to standard form, i.e. a standard eigenvalue problem like in (3.35), and then apply

the routines from the previous sections, like Arnoldi or Lanczos. In order to get to standard-

form, a linear system involving one or both matrices has to be solved in each iteration. The

mentioned reduction to a standard eigenvalue problem can be carried out using the following

routines. An obvious possibility is to compute the inverse of the matrix on the right-hand side,

B, presuming that B is nonsingular and well conditioned. This procedure is then equivalent to(
B−1A

)
vi = λivi. (3.48)

In iterative schemes, however, there is no need to explicitly compute the matrix product B−1A,

since only its action on a vector is required. This is important for sparse matrices, where the

above product would generally be dense. Thus, all that is required, is the computation of

matrix-vector products, like

p =
(
B−1A

)
q, (3.49)

for a given vector q. This computation is most efficiently carried out via a single LU -factorization

of the matrix B, i.e. B = LU. When evaluating the matrix-vector product of (3.49), one solves
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p from Bp = Aq applying forward backward substitutions with the lower and upper triangular

matrices L and U.

The rather expensive LU -factorization can be pre-calculated and the resulting triangular

matrices are stored. Attention has to be devoted to the tempting strategy of considering an

approximate solution of systems like Bp = q, instead of the costly LU -factorization. In this

case the obtained approximate solution might only satisfy some nearby system, with a matrix

B′ which might significantly differ from iteration to iteration in forming the Krylov subspace.

Thus, this iterative solution technique can only be used, if it leads efficiently to high accuracy,

comparable to a stable direct solution method [16].

If the matrix on the right-hand side is Hermitian, i.e. BH = B, one can compute a sparse

Cholesky decomposition

B = LLH , (3.50)

where L represents a lower triangular matrix. As a consequence, the equivalent standard

eigenvalue problem reads (
L−1ALH−1

)
LHvi = λiLHvi. (3.51)

Of course, like in the previous case, the matrix product in the brackets should not be computed

explicitly, since only its action on a given vector is of interest:

p =
(
L−1ALH−1

)
q. (3.52)

The suggested reduction methods have the disadvantage that they can only be applied when

the matrix B is well conditioned. If this is not the case and when one further wishes to look for

eigenvalues close to a selected target, a so-called shift and invert spectral transformation can be

carried out. For a user-specified shift σ the generalized eigenvalue problem can be transformed

to

C−1Bvi = µivi, (3.53)

where C = A − σB and µi = 1
λi−σ . Note that the eigenvalues closest to the specified target

will be transformed to the eigenvalues with largest magnitude and thence most routines will

converge first to those eigenvalues. Furthermore, a proper shift not only amplifies the desired

eigenvalues, but also might lead to a well-conditioned matrix C.

Applying the shift and invert spectral transformation requires in each iteration the evaluation

of matrix-vector products of the following form

p = C−1Bq =
(

(A− σB)−1 B
)

q, (3.54)
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with q a given vector. Like in the previous cases, efficiency can be improved by the use of a

pre- LU - factorization of the matrix C = LU . As a consequence, the matrix-vector product

p = C−1Bq can then be computed by first forming v = Bq, followed by solving Lw = v for

w and finally solving Up = w for p. Again the expensive LU -factorization needs to be carried

out once only.

Finally a short discussion is outlined how to handle quadratic eigenproblems like

(
λ2
iA + λiB + C

)
vi = 0. (3.55)

The most common way of solving such problems is to convert them to generalized eigenvalue

problems which are treated by the routines presented above. Thereby one has to pay the price

of increasing the dimensionality of the system. One possible way [16] is to define the vector ui

ui =

λivi
vi

 (3.56)

and then rewrite (3.55) to −B C

I 0

ui = λi

A 0

0 I

ui. (3.57)

It is noted that this is only one out of a large number of different possibilities of rewriting (3.55).

3.2.2.4 Jacobi-Davidson

Finally another algorithm, quite related to the previous two Krylov subspace methods, is the

Jacobi-Davidson algorithm (JDA). Like Arnoldi or Lanczos, the JDA extracts eigenpair ap-

proximations residing in a search space, which is iteratively extended. Unlike Krylov subspace

methods, this extension is performed by correction vectors which have to be solved approxi-

mately only, since there is no special structure to be taken care of. The JDA can be decomposed

in several steps as illustrated in Algorithm 3 and outlined in detail in [17] and [18]. The aim

is to extract eigenpairs (Λ,Q) of the matrix pencil (A,B). The matrix Λ is a diagonal matrix

with the eigenvalues λi as diagonal entries and the matrix Q is composed of the eigenvectors

qi as columns.

The algorithm is broken down into several steps, which will be explained separately. The first

step, line 4, is the one of extracting eigenvalues out of an already found subspace V, e.g. by the

use of a Ritz-Galerkin extraction. Thereby one tries to find an eigenpair candidate (θi,Vzi),

whose residual r(θi,Vzi) = (A − θiB)Vzi should be orthogonal to the search space V. Thus
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Algorithm 3 Jacobi-Davidson Method
1: JacobiDavidson (A,B, σ,V, ε,v0){
2: V = v0 (Initialize the search space with the starting vector v0)

3: do

4: [θ,Z] := Extract(A,B,V, σ) (Find eigenpairs from the subspace V)

5: [Λ,Q,V, θ,Z, r] := Convergence/Deflation(θ,Z, ε)

(Check for convergence of the suggested eigenpairs)

6: Solve(A− σB)c ≈ −r (Expand the search space V by a new vector c)

7: [V, θ,Z] := Restart(V, θ,Z, smin, smax) (Control the size of the subspace)

8: end

9: }

one has to solve a tiny EVP, involving the matrix G, defined as G := VTAV, since

VT r = Gzi − θizi = 0. (3.58)

The eigenpairs (θi,Vzi), termed Ritz pairs, have to undergo a test in line 5, where the residual

norm is compared to a required tolerance ε. If

‖r(θi,Vzi)‖2 = ‖AVzi − θiBVzi‖2 ≤ ε‖Vzi‖2, (3.59)

the tested eigenpair is considered to be accurate enough and added to the space of already

converged eigenpairs. Thus θi is added to Λ, and Vzi is added to Q. In order to not search

twice in the same directions, all the components pointing into directions of the found eigenvector

are purged, an action termed deflation. Alternatively, if the residual norm is above the threshold

ε, the algorithm continues by expanding the search space V, i.e. finding a new vector c which is

added to the search space. This is done by solving the correction equation, see [19] for details,

PT (A− σB)Pc = −PT r(θ,q) = −r(θ,q), Q̂TBc = 0, (3.60)

where q is the most recent eigenvector and Q̂ = (Q,q) is composed of the already accepted

eigenvectors Q and q. The matrix P is projecting into the B-orthogonal complement of Q̂,

ensuring that the new search direction c is B-orthogonal to the already found eigenvectors.

B-orthogonality means that for two vectors vi and vj the following relation holds:

vTi Bvj = 0 for i 6= j. (3.61)

The last step, line 6, is needed in order to limit storage requirements. There the search space

V is reduced as soon it exceed an upper limit smax. This is achieved by keeping the smin − 1
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best Ritz vectors. The whole process is iterated until the required number of eigenpairs has

been found.

This rather qualitative description should outline the basic ideas of the algorithm. Details of

how to extract eigenpairs of the subspace and how to solve the correction equation can be found

in [18]. The method becomes interesting for practical applications when the dimensionality of

the problem increases.



Part II

Applications



4 Eigenvalue Analysis of Electromagnetic

Waveguides

This chapter is devoted to an eigenvalue analysis of electromagnetic waveguides. It is the first

applications of the fundamentals outlined in the previous chapters. The content of this chapter

has been presented by me at the COMPUMAG 2009 in Florianopolis, Brazil [20].

4.1 State of Research

Various numerical methods and different formulations have been presented in the past for

solving dielectric waveguide problems. Typical methods are the method of moments [21],

spectral-domain methods [22], finite difference methods [23], and finite element methods [24].

Among them, the latter has proved to be a very general and efficient tool. A serious problem for

the description of electromagnetic field quantities involving finite elements is the occurrence of

spurious modes. In order to overcome these difficulties mainly two approaches have been taken.

One is to impose the divergence-free condition, mostly in the case of nodal finite elements

approaches. The other is to use H(curl)-tangential elements that are capable of correctly

representing the properties of the curl-curl operator [25].

In [26] a waveguiding structure showing lossy material properties is considered using tri-

angular hybrid elements. A study covering the anisotropic case is presented in [27]. The

work [28] suggests a method to overcome unreliabilities for low frequencies by presenting an

algorithm for employing a tree-cotree splitting in order to accomplish an inexact Helmholtz

decomposition. There, hierarchical elements are used.

The authors of [29] present a very general framework for the investigation of inhomogeneous

waveguiding structures. In their work the above mentioned Helmholtz decomposition is also

employed which gives rise to different possible gauges. The authors have presented three gauges

and have shown a superior performance of one of the gauges, termed axial gauge, over a field

description. The latter differs only by a scaling factor from a gauge where the scalar potential

is set to zero. They also use hierarchical elements on triangles.
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4.2 Formulation

Let us consider an A − V -formulation for a source free region and isotropic, lossy material

properties. Using εc as a complex quantity describing both permitivity (ε) and conductivity

(σ),

εc = ε− j σ
ω
, (4.1)

and sinusoidal time dependencies the Maxwell equations in the frequency domain can be written

as

∇×E = −jωµH, (4.2a)

∇×H = jωεcE, (4.2b)

∇ ·D = 0, (4.2c)

∇ ·B = 0 (4.2d)

Introducing a magnetic vector potential A and a scalar potential φ, the electromagnetic field

quantities can be rewritten as

B = ∇×A, (4.3a)

E = −jωA− c∇φ, (4.3b)

0 = ∇× µ−1
r ∇×A− k0εr (k0A− j∇φ) , (4.3c)

0 = ∇ · εr (k0A− j∇φ) , (4.3d)

where c is the velocity of light and k0 the free space wave number.

The material properties for a waveguiding structure being uniform in the z-direction and

with the splitting of the nabla operator ∇ → ∇τ − γêz the fields and the potentials can be

described as

E(r, t) = E(x, y)e−γzejωt, (4.4a)

H(r, t) = H(x, y)e−γzejωt, (4.4b)

A = e−γz (Aτ (x, y) +Az(x, y)êz) , (4.4c)

φ = e−γzV (x, y), (4.4d)
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with r being a space vector in the waveguide with its cross-section lying in the x, y-plane.

γ = α + jβ is the propagation constant built up by the attenuation constant α and the phase

constant β.

As it is pointed out and explained in [28] and [29] it is very important to additionally split

the transverse vector potential At into a solenoidal part Acτ and a transverse gradient ∇τψ in

order to separate the null solution resulting from the curl-curl operator:

Aτ (x, y) = Ac
τ +∇τψ. (4.5)

Taking the same approach and additionally consider a gauging with the gradient part of the

transverse vector potential set to zero leads to the following system of partial differential equa-

tions

0 = ∇τ × µ−1
r ∇τ ×Ac

τ

+ γ2ez × µ−1
r ez ×Ac

τ − k2
0εrA

c
τ

+ γez × µ−1
r ez ×∇τAz + k0εr∇τ (jV ), (4.6a)

0 = −γez ·
(
∇τ × µ−1

r ez ×Ac
τ

)
− ez ·

(
∇τ × µ−1

r ez ×∇τAz
)

− k2
0εrAz − γk0εr(jV ), (4.6b)

0 = ∇τ · εr (k0Ac
τ −∇τ (jV ))

− γεr(jV )− k0Az. (4.6c)

In order to ensure a unique solution of the boundary value problem, the following boundary

conditions are imposed for the simplest case of a perfect electric conductor (PEC):
n×Ac

τ = 0

Az = 0

V = 0

on PEC, (4.7)

with n being the normal vector to the boundary.

4.3 Finite Element Representation

We represent Az and V by H1 basis functions (Ni) and Ac
τ by H(curl) basis functions (Ni)

according to the function space definitions (3.24), presented in section 3.1.3. The trial functions
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aτ and az can be expressed as

Ac
τ =

nτ∑
i=0

cτiNi, Az =
nz∑
i=0

cAziNi, jV =
nz∑
i=0

c(jV )iNi. (4.8)

Applying Galerkin’s method to (4.6a) - (4.6c) and considering the boundary conditions, the

following polynomial eigenvalue equation is obtained:



AAA − k2

0BAA 0 k0CAV

0 k2
0HV V − EV V 0

k0C
T
AV 0 −DV V



−γ


0 FAV 0

F TAV 0 −k0HV V

0 −k0HV V 0



−γ2


GAA 0 0

0 0 0

0 0 −HV V





cAτ

cAz
cjV

 =


0

0

0

 , (4.9)

where cAτ is the coefficient vector for the edge basis functions and cAz , cjV are the respective

vectors for nodal basis functions. The matrices are given by

[AAA]ij =
∫

Ωe

∇t ×Ni · µ−1
r ∇t ×Nj dΩ, (4.10a)

[BAA]ij =
∫

Ωe

Ni · εrNj dΩ, (4.10b)

[CAV ]ij =
∫

Ωe

Ni · εr∇tNj dΩ, (4.10c)

[DV V ]ij =
∫

Ωe

∇tNi · εr∇tNj dΩ, (4.10d)

[EV V ]ij =
∫

Ωe

(êz ×∇tNi)
(
µ−1
r êz ×∇tNj

)
dΩ, (4.10e)

[FAV ]ij =
∫

Ωe

(êz ×Ni) ·
(
µ−1
r êz ×∇tNj

)
dΩ, (4.10f)

[GAA]ij =
∫

Ωe

(êz ×Ni) ·
(
µ−1
r êz ×Nj

)
dΩ, (4.10g)

[HV V ]ij =
∫

Ωe

Ni · εrNj dΩ. (4.10h)
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With the variable transformationsAz =: γg1 and g2 := −jV the quadratic eigenvalue problem

can be linearized resulting in a generalized eigenvalue problem for γ2:


AAA − k2
0BAA 0 −k0CAV

0 0 0

−k0CT
AV 0 −DV V



−γ2


GAA FAV 0

FT
AV k2

0HV V −EV V k0HV V

0 k0HV V −HV V




×


cAτ
cg1
cg2

 =


0

0

0

 , (4.11)

4.4 Basis Functions

TheH1-nodal basis functions are built from a linear combination of quadratic polynomials in the

x-and y-directions. The H(curl)-edge basis functions can be expressed as a linear combination

of the nodal basis functions (fi(ξ, η)) times the gradient of the respective local coordinate. For

the reference element they are obtained by

Ni(ξ, η) = fi(ξ, η) · ∇ξ for i = 1, 5, (4.12a)

Ni(ξ, η) = fi(ξ, η) · ∇η for i = 6, 10, (4.12b)

where ξ and η are the coordinates of the reference cell ranging from −1 to 1. The geometry

of the finite elements used is depicted in Fig. 4.1.

4.5 Tree co-tree algorithm

The decomposition of the transverse vector potential into a rotational part and a gradient part

is accomplished by a tree co-tree splitting of our finite element mesh [30]. Thereby, the set of

tree-edges is removed from the finite element graph. The remaining ones, the co-tree edges,

are then used to approximate the rotational part of the transverse vector potential. The nodes

of the tree-edges would be used for describing the scalar potential if we had not gauged the

transverse gradient part to zero in the first place. The algorithm of this splitting is described

below.
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Figure 4.1: Geometry of an element, edges referring to the transverse vector potential are depicted in red,

knots referring to the scalar potential in blue

Algorithm 4 Tree co-tree splitting
1: for every edge {i, j}, reset Mark({i, j}) = CO-TREE

2: for every node Vi, reset Mark(i) = NOT DONE

3: add one inner node to set Nodes

4: while Nodes 6= EMPTY

5: Set Ni last entry of Nodes and remove it from Nodes

6: for every inner node Vj ∈ Nneighbour(i) and Mark(j) = NOT DONE do

7: Mark ({i, j}) = TREE

8: Mark (j) = DONE

9: Add Nj to Nodes

10: end while

11: remove DOFs associated to tree-edges
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4.6 Eigenvalue Solver

In order to solve the generally complex-symmetric eigenvalue problem we use a Krylov subspace

method, namely the Arnoldi method described in section 3.2.2.1 implemented in the public

domain software ARPACK. Since we are only interested in a small part of the spectrum, i.e.

the dominant modes, and Krylov subspace methods tend to converge to extremal eigenvalues

first, we spectrally transform our EVP with a shift-and-invert preconditioner as described below:

Sv = λTv, (4.13a)

ε := λ− λG, |ε| � λ, (4.13b)

(S− λGT)−1Tv =
1
ε
v, (4.13c)

where λG has to be guessed. Since the action of the inverse has to be computed in every

subspace iteration step, this step is done implicitly. The preconditioning matrix is thereby

LU-factorized once in order to quickly solve the resulting linear systems by backward and

forward substitutions. It is however mentioned that the LU-factorization is limited by memory

restraints for very large problems. In such cases a Jacobi-Davidson method is preferable, as it

is described in section 3.2.2.4

Special care has to be devoted to the orthogonalization against non-physical solutions as

presented in detail in [29]. Although the non-physical solutions in this formulation all yield zero

eigenvalues, this still constitutes a challenge at their respective cut-off frequencies. There the

propagation constants tend to zero and the physical solution may mix with the approximated

null-space eigenvalues. Therefore we employ an orthogonalization of the initial and iterated

vectors of the following form

vTi Tvk = 0 for i 6= k. (4.14)

For the generalized eigenvalue problem resulting from the ψ-gauge formulation, i.e. setting

the solenoidal part of the vector potential to zero, the above condition (4.14) can be fulfilled

through the following prescription for the initial and iterated vectors during the Arnoldi scheme

[29]:

cg1 = (GV V − k2
0HV V )−1 ·

(
FT
AV cAτ + k0HV V cg2

)
. (4.15)
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Figure 4.2: Geometry of the waveguide of the numerical example. The dimensions are a = b = 2.5 mm,

h = w = 0.25 mm and t = 0.05 mm. The electrical properties of the substrate are εr = 9.0, µr = 1 and

σ = 0.05 S/m

4.7 Numerical Application

As numerical example we consider the case of a microstrip in a dielectric medium. The geom-

etry and the material properties of the substrate are chosen as described in [26] and sketched

in Fig. 4.2. The width and the height of the cross-section is 2.5 mm, the height of the substrate

0.25 mm is equal to the width of the microstrip, and the thickness of the microstrip is taken

to be 0.05 mm. The material properties of the substrate used in the simulation are εr = 9.0

and σ = 0.05 S/m. We are interested in the determination of the dominant propagation modes

and therefore are only considering one half of the geometry due to symmetry, as done in [26]

too. For the five dominant modes, the variation of the attenuation and the phase constant with

the frequency is depicted in Fig. 4.3 and 4.4. Since the propagation constant is in general a

complex quantity for lossy waveguides, there is an ambiguity for judging which mode is more

dominant than the other. Here, this problem is resolved by simply comparing the values of the

phase constant for different modes.

Due to the non-vanishing conductivity of the substrate the attenuation constant is different

form zero even for propagating modes. One cannot clearly see this effect from Fig. 4.3 and 4.4.

Therefore Fig. 4.5 is presented, where in addition a comparison is given to a calculation

from [26]. The phase and attenuation constant of the dominant mode is depicted depend-
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Figure 4.3: The dispersion of the attenuation constant for the five dominant modes

0 2 4 6 8 10

x 10
10

−1000

0

1000

2000

3000

4000

5000

6000

Frequency [Hz]

be
ta

 [r
ad

/m
]

 

 

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

Figure 4.4: The dispersion of the phase constant for the five dominant modes
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Figure 4.5: The dispersion of the attenuation and the phase constant of the microstrip line. The crosses

represent our numerical solution compared to the results of [26].

ing on the frequency. In our calculations we are using a finite element mesh consisting of 1100

elements. This corresponds to a matrix size of 6501 after the enforcement of the homogeneous

Dirichlet boundary conditions and the removal of the degrees of freedom related to tree edges.

Considering the target value in the shift-and-invert preconditioner, we have chosen the strategy

to take the square of the TE01 propagation constant of a fictitious rectangular waveguide ho-

mogeneously filled with a material having the highest permittivity of our problem. It is worth

pointing out that even near the static limit and near cut-off frequencies of certain modes the

results are correct.

4.8 New scientific results

In this chapter, a finite-element description for waveguiding structures has been presented. The

formulation is capable of yielding solutions free from spurious modes. The work is motivated

by the analysis [29], where the authors stressed the importance of an additional splitting of

the transverse vector potential. As it is also pointed out there, this splitting gives rise to three

possible gauging strategies, involving either the scalar potential, the axial component of the

vector potential or the gradient part of the transverse vector potential. The novelty in the

present work has been the investigation of the performance of the so called ψ gauge, where the
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gradient part of the transverse vector potential is set to zero. The formulation has been applied

to a waveguiding structure consisting of materials allowing for losses. In addition, a tree-cotree

algorithm has been used to accomplish the decomposition of the transverse vector potential into

a rotational and a gradient part, and rectangular second-order finite-element basis functions

are used. As demonstrated above, the formulation leads to satisfying results, even in the static

limit. For future studies, it is certainly of great interest to additionally consider open waveguide

problems, including losses due to radiation.



5 Photonic Crystals

Photonic crystals - the optical materials for the future? In recent years numerous scientists

have developed novel materials in which light waves show a very similar behaviour to that of

electronic signals in semiconductor crystals. This motivates the above question as a possible

shift from the electronic to photonic era. Indeed, if one could manipulate light in an as powerful

way as one is able to with electronic devices, one could open the door to many fascinating

phenomena and promising applications [31].

After summarizing and outlining the basic concepts of photonic crystals and their mathemat-

ical description, an overview of photonic band structure calculations is given. The application

of the finite-element method is the one chosen in this work and together with an incorporation

scheme of periodic boundary conditions the details are described for both the 2D and 3D case.

The computation of band structure diagrams requires the repeated calculation of numerically

expensive eigenvalue problems. To improve the performance of these computations different

model-order reduction schemes are presented and in detail discussed in section 5.4. These meth-

ods have in common that the full and expensive eigenvalue problem is only solved for selected

parameter points, whereas for the remaining evaluation points a considerably reduced model is

set up. This has a strong and positive impact on the run-times whereas the error levels remain

comparable to the underlying FE calculation. Finally, the obtained results are systematically

discussed in section 5.5.

5.1 Introduction and Fundamental Concepts

Closely following [31], a short introduction is given and the physical background of photonic

crystals is demonstrated. In an electronic crystal of a semiconductor, electrons are interacting

with a potential created by the periodic arrangement of atoms. The allowed energies of electrons

in the crystal are given by so called bands which could be separated from each other. The

concept of these possible energy gaps is fundamental for describing the fascinating physics of

semiconductors. In 1987, Yablonovitch [32] carried over this concept to what would happen
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if one considered certain crystalline materials showing this behaviour for light waves. Such

a wave, with a frequency within the bandgap of this material, could not propagate therein,

independent of the direction of propagation. This is the concept of a photonic crystal opposed

to the electronic counterpart of solid state physics.

Historically, in 1991 the authors of [33] have successfully constructed an artificial material

showing a photonic band gap. They have been drilling holes in each geometrical dimension of

a ceramic block. The honeycomb structure of the holes has resulted in a photonic band gap of

centimeter wave length. A band gap for infrared light has been designed 10 years later by [34].

The authors have constructed artificial opal stones out of silicate bowls which are oriented in

a face-centered cubic lattice structure. This material shows a bandgap at 1500nm. Some more

revolutionary methods for the construction of photonic crystals can be found in [35],[36] and [37].

Photonic crystals are significant in various applications. An improvement of radiation char-

acteristics of planar antennas is presented in [38] and [39]. The works of [40] and [41] show how

photonic crystals can be used in laser technology. The way two dimensional photonic crystals

can be built out of silicon or gallium arsenide is demonstrated in [42]. If a line defect is added to

such a two dimensional crystal, the material can be used to assemble a perfect waveguide [43].

Waves with a frequency in the bandgap of the crystal can propagate along the defect. In this

spirit it is even possible to bend waves in a crystal like it is shown in [44].

In nature, photonic crystals can be encountered for example in certain opal stones, whose

iridescent colours are due to such materials. The same is true of various butterflies. Also

diatoms as a part of plankton show these shining colors originated by photonic crystals.

5.2 State of Research

As stated in the introductory paragraphs above, photonic crystals are artificial materials built

by periodic arrangements of identical unit cells. In analogy to solid-state physics, photonic

crystals possess well-defined band structures and possibly bandgaps where electromagnetic

waves cannot propagate. In order to engineer the microwave or optical properties [6] of such

materials, the accurate knowledge of their band structures, i.e. their k−β dispersion diagrams,

is of utmost importance.

Many numerical methods for computing such band structures have been adapted from solid-

state physics. They include, but are not restricted to, plane-wave expansions [45], the Korringa-

Kohn-Rostoker method [46], and shell methodologies [47]. Recent developments include spe-

cialized versions of the finite-element (FE) method [48] and the flexible local approximation
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method [49].

The finite-element method, which stands out for its flexibility in modelling materials and

complicated geometry, is the approach chosen in this work. The general procedure is to re-

duce the computational domain to one unit-cell with the help of periodic boundary conditions

(PBCs), specify the value of the phase-coefficient β, and solve an eigenvalue problem for the

dominant wavenumbers kp. However, for the calculation of band structures, i.e., broadband

k-β diagrams, the EVP has to be solved a great number of time for different values of β. In

consequence, computational costs tend to become very high.

5.3 The photonic bandgap problem

This section gives a short introduction to the concept of the photonic bandgap focussing on

computational aspects. This is a review of reported facts and follows mainly the respective

chapters in the books [6] and [9].

The main equation for the analysis of these compounds is given by the vector Helmholtz

equation (2.7)

∇×
(

1
p(r)
∇× F(r)

)
= ω2q(r)F, (5.1)

where F represents either the electric field E or the magnetic field H. In the first case p is

the magnetic permeability and q the electric permittivity, whereas it is opposite in the latter

case. ω and r stand for the angular frequency of the wave and the space coordinate vector,

respectively.

Together with the divergence conditions

∇ · [µ(r)H(r)] = 0, (5.2a)

∇ · [ε(r)E(r)] = 0, (5.2b)

(5.1) gives all information for the electromagnetic field quantities E and H. The procedure is

to solve the main equation for a given structure ε(r) subject to the transversality requirement,

find the modes (F(r)) and the corresponding frequencies.

Due to the translational invariance of the crystal, Bloch’s theorem can be applied and the

whole system can be reduced to one unit cell which is infinitely many times repeated with

the help of periodic boundary conditions. According to Bloch’s theorem a solution to this
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translationally invariant problem is given by a periodic function multiplied with an exponential

term, referred as the Floquet or Bloch term,

Fk(r) = exp(jk · r) · uk(r), (5.3)

k is the Bloch wave vector lying in the Brillouin zone, which itself only depends on the crystal

structure. The function uk is periodic for all lattice vectors R, as illustrated in Fig. 2.2, so that

uk(r) = uk(r + R) (5.4)

is satisfied. For each value of the wave vector k the allowed frequencies ω are given by solving an

eigenvalue problem. The obtained dispersion relation ω(k) is then the sought band structure of

the photonic crystal. Note that one can solve the problem also in a reverse order, meaning that

one specifies the frequency and solves for the Bloch vector. The chosen approach, however, is to

solve for the frequencies. The reason for this will be apparent when the model-order reduction

method is discussed.

5.3.1 Plane-Wave Expansion

Among a few methods, one way of computing band structures of photonic crystals is the use

of a spectral method employing a planewave basis. In the following a short description of this

method is presented. Details can be found in [45].

The idea is to describe the quantities of the governing equation as Fourier series. The periodic

part of the electromagnetic quantity, u, can then be written down as

u =
∑

m∈Z2

ũ(km) exp(jkm · r), (5.5)

with km = 2π
a m and a being the crystal dimension. The Fourier coefficients, ũ, are yet to be

determined. In the E-formulation the full electrical field is given by

E = u exp(jK · r) =
∑

m∈Z3

= ũ(m) exp(j(km −K) · r). (5.6)

Since the dielectric permittivity ε is also periodic it can be expanded into a Fourier series as

well. To avoid coordinate-dependent coefficients on the right side of the equation, it is better

to work with the inverse of the dielectric permittivity γ = ε−1.

γ =
∑

m∈Z3

γ̃(m) exp(jkmr). (5.7)
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Having the quantities at hand, a Fourier transform of (5.1) leads to the following equation:

∑
s∈Z3

|km −K|2γ̃(m− s)ũ(s) = ω2µũ(m). (5.8)

This last equation can be interpreted as an infinite eigenvalue problem which has to be truncated

to a finite size in practice. The number of equations which are taken into account is a parameter

for the whole computation. Speaking about accuracy it is worth mentioning that the method

has to deal with Gibbs phenomenon stating that Fourier transformed quantities show oscillating

behaviour at sharp material edges.

5.3.2 FEM for photonic band structure calculations

As already stated above, the finite-element method is the choice in this thesis. Due to its

flexibility it is well suited for analyzing complicated structures including sharp material edges.

The FE scheme can be applied only to the spatially periodic function u or directly to the full

electromagnetic field quantity. In the latter case one has to explicitly enforce periodic boundary

conditions in order to fulfill the Bloch boundary requirement. This will be illustrated in the

following sections.

As it is explained above, the FE method considers the weak form of the governing differential

equations and uses appropriate functional spaces for the approximation of the quantities in

question. The right choice for these spaces depend on the special character of the differential

operator. In a 2D analysis, the system is described by the scalar Helmholtz equation which

can be approximated by ordinary scalar elements. In a full wave 3D consideration, however,

vectorial edge elements, H(curl) elements, have to be used, in order to correctly represent the

properties of the vectorial Helmholtz equation. Additionally a further complication results in

the rather large null space of the curl− curl-operator. This will be discussed in section 5.3.2.2

where the full wave analysis is presented.

The following subsections closely follow published work that I have authored during my PhD

time. The first one considers a 2D-treatment of periodic structures, followed by a description

of the full-wave case. The emphasis will be on a model-order reduction scheme allowing for

an efficient computation of the quantities of interest, i.e. the band structures. The different

order-reducing models are presented separately in the sections below.
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5.3.2.1 Photonic bandgaps in 2D

We consider the two-dimensional case in the H plane, with lossless and isotropic material

properties, ∂z ≡ 0, and E = Ezêz for the electrical field. For a rectangular unit cell Ω of size

Dx ×Dy, the governing BVP reads

−∇ · µ−1
r ∇Ez(x, y)− k2

pεrEz(x, y) = 0, (5.9a)

Ez(Dx, y) = cxEz(0, y)

Ez(x,Dy) = cyEz(x, 0)

 (5.9b)

µ−1
r ∂xEz(Dx, y) = cxµ

−1
r ∂xEz(0, y)

µ−1
r ∂yEz(x,Dy) = cyµ

−1
r ∂yEz(x, 0)

 . (5.9c)

Here, kp = ωp/c stands for the wavenumber, and ωp and c denote the angular frequency and the

speed of light, respectively. The Floquet coefficients cx and cy, linking the fields on opposite

boundaries, take the form

cx = e−jβxDx , (5.10a)

cy = e−jβyDy , (5.10b)

wherein βx and βy are the components of β in the coordinate directions, satisfying

β2
x + β2

y = β2. (5.11)

By enforcing (5.9b) as an essential interface condition on Ez and choosing test functions W

with

W (Dx, y) =
1
cx
W (0, y), (5.12a)

W (x,Dy) =
1
cy
W (x, 0), (5.12b)

the weak form [50] of the BVP (5.9) simplifies to∫
Ω

(
∇W · µ−1

r ∇Ez − k2
pWεrEz

)
dΩ = 0. (5.13)

Note that (5.10), (5.12), and (5.13) provide a generalization of the formulation for periodically

loaded waveguides of [51].

By restricting Ez and W to a space of FE basis functions Ni, the weak form (5.13) leads to

a generalized algebraic EVP of the type

S(cx, cy)ep = −k2
pT(cx, cy)ep, (5.14)
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wherein S(cx, cy) and T(cx, cy) are parameter-dependent stiffness and mass matrices, respec-

tively, and e denotes the FE solution vector. Provided that the FE mesh is conforming in

the sense that there exist matching pairs of nodes and edges on each of the two surfaces of

a periodic boundary, the constraints (5.9b) and (5.12) are easy to enforce, by eliminating one

half of the periodic boundaries. Let the subscripts (i,W,E, S,N, c) denote the FE degrees of

freedom in the interior (i) of the domain, on the western (W), eastern (E), southern (S) and

northern (N) boundaries, and in the four corners, respectively, see Fig. 5.1. Then, the PBC

(5.9b) leads to

e = Pē, (5.15)

with

e =



ei

eW

eS

eE

eN

ec1

ec2

ec3

ec4



, ē =


ei

eW

eS

ec1

 , P =



I 0 0 0

0 I 0 0

0 0 I 0

0 cxI 0 0

0 0 cyI 0

0 0 0 1

0 0 0 cx

0 0 0 cy

0 0 0 cxcy



. (5.16)

In (5.16), I stands for the unity matrix. Similarly, the constraints on the test functions (5.12)

result in a restriction matrix R(cx, cy) defined by

R =


I 0 0 0 0 0 0 0 0

0 I 0 1
cx

I 0 0 0 0 0

0 0 I 0 1
cy

I 0 0 0 0

0 0 0 0 0 1 1
cx

1
cy

1
cxcy

 . (5.17)

By (5.10), cx and cy lie on the unit circle. Hence we have

1/cx = c∗x, 1/cy = c∗y, (5.18)

R(cx, cy) = PH(cx, cy). (5.19)

Here, superscript ∗ and H denote complex conjugate and conjugate transpose, respectively. By

substituting (5.16) and (5.17) for the solution vector and test functions in (5.14), we arrive at

the final EVP

S̄(cx, cy)ēp = k2
pT̄(cx, cy)ēp. (5.20)
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In view of (5.19), the system matrices in (5.20) are given by

S̄(cx, cy) = PH(cx, cy)SFEP(cx, cy), (5.21a)

T̄(cx, cy) = PH(cx, cy)TFEP(cx, cy), (5.21b)

with

SFEij =
∫

Ω
∇Ni · µ−1

r ∇NjdΩ, (5.22a)

TFE
ij =

∫
Ω
NiεrNjdΩ. (5.22b)

Since the FE matrices of (5.22) are real-valued and symmetric, S̄ and T̄ become Hermitian.

They may also be represented as

S̄(cx, cy) = S0 +
(
cxS1 + c∗xS

T
1

)
+
(
cyS2 + c∗yS

T
2

)
+
(
cxcyS3 + c∗xc

∗
yS

T
3

)
+
(
cxc
∗
yS4 + cyc

∗
xS

T
4

)
, (5.23a)

T̄(cx, cy) = T0 +
(
cxT1 + c∗xT

T
1

)
+
(
cyT2 + c∗yT

T
2

)
+
(
cxcyT3 + c∗xc

∗
yT

T
3

)
+
(
cxc
∗
yT4 + cyc

∗
xT4

)
. (5.23b)

Here, the matrices S0, . . . ,S4 and T0 . . .T4 are obtained by partitioning the FE matrices

of (5.22), performing the pre- and post-multiplications in (5.21), and collecting terms of equal

parameter-dependence. Eq. (5.23) is particularly useful for band structure computations, where

the EVP (5.20) has to be solved a great number of times, for different values of cx and cy,

according to the parameters βx and βy, respectively. Since the matrices Si and Ti in (5.23)

are parameter-independent, most of the assembly process needs to be carried out only once.

The PBC formulation of [52] is reported to deliver similar results regarding accuracy and

computational cost.

Our FE code is based on hierarchical basis functions of third order and uses the ARPACK

implementation of the Arnoldi method with shift-and-invert preconditioning to solve for the

dominating eigenvalues of the EVP (5.20).

To track a specific mode (k2
p, ēp) over a wide range of phase coefficients, even when cross-over

occurs as in Fig. 5.9, we exploit the modal orthogonality equation

ēHi T̄ēj = δij , (5.24)
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which holds for any Hermitian EVP. Provided that consecutive evaluation points (cx, cy)n are

sufficiently close, the dominant eigenvectors do not vary substantially, and the approximations

ēHi ((cx, cy)n−1) T̄((cx, cy)n) ēi((cx, cy)n) ≈ 1, (5.25a)

ēHi ((cx, cy)n−1) T̄((cx, cy)n) ēj((cx, cy)n) ≈ 0, (5.25b)

provide a good indicator for tracking a mode pattern from one evaluation point to the next.

5.3.2.2 Photonic Bandgaps in 3D

In contrast to the formulation in the H-plane, in the 3d-case the governing equation is the

vectorial Helmholtz equation

∇×
(

1
µr
∇×E

)
− εrk2

0E = 0. (5.26)

Again we consider one unit cell of the photonic crystal and link the the cells with the help

of periodic boundary conditions. These constraints are then given by

Et(Dx, y, z) = cxEt(0, y, z), (5.27a)

Et(x,Dy, z) = cyEt(x, 0, z), (5.27b)

Et(x, y,Dz) = czEt(x, y, 0), (5.27c)(
1
µr
∇×E

)
t
(Dx, y, z) = cx

(
1
µr
∇×E

)
t
(0, y, z), (5.27d)(

1
µr
∇×E

)
t
(x,Dy, z) = cy

(
1
µr
∇×E

)
t
(x, 0, z), (5.27e)(

1
µr
∇×E

)
t
(x, y,Dz) = cz

(
1
µr
∇×E

)
t
(x, y, 0). (5.27f)

Here, cx = exp(−jβxDx) represents the Floquet coefficient.

In a similar way, these periodic conditions can be enforced by choosing test functions satis-

fying

Wt(Dx, y, z) = 1
cx

Wt(0, y, z), (5.28)

Wt(x,Dy, z) = 1
cy

Wt(x, 0, z), (5.29)

Wt(x, y,Dz) = 1
cz

Wt(x, y, 0). (5.30)

The weak form then simplifies to∫
Ω

(
∇×W 1

µr
∇×E− k2

0W · εrE
)
dΩ = 0. (5.31)



5.3 The photonic bandgap problem 57

That the last relation holds can be easily verified [48]. The weak form of (5.26) is obtained by

applying the vector form of Green’s theorem to the residual

R =
∫

Ω

(
∇×W · 1

µr
∇×E− k2

0W · εrE
)
dΩ. (5.32)

This gives

R =
∫

Ω
W ·

(
∇× 1

µr
∇×E− k2

0εrE
)
dΩ−

∮
∂Ω

(
W × 1

µr
∇×E

)
· n dS. (5.33)

Setting the last equation to zero requires that the curl-curl equation (5.26) is fulfilled and that

the surface integral above vanishes. The latter is the case when the test functions are chosen

periodically according to (5.28), since the parts of the surface integral on opposite boundaries

cancel. For the x-direction and with the normal vector n on one boundary being anti-parallel

to the counterpart on the other boundary, the boundary integral reads∫
x=0

n×Wt(0, y, z) ·
[(

1
µr
∇×E

)
t
(0, y, z)− 1

cx

(
1
µr
∇×E

)
t
(Dx, y, z)

]
dS = 0. (5.34)

Since this relation remains true for all test functions, the natural boundary condition (5.27d)

follows.

Restricting the trial functions E and the test functions W to the space of vectorial curl-

conforming FE basis functions Ni results again in a generalized eigenvalue problem of the

form

S(cx, cy, cz)ep = k2
pT(cx, cy, cz)ep, (5.35)

with the stiffness and mass matrix defined as

Sij =
∫

Ω
∇×Ni · 1

µr
∇×NjdΩ, (5.36)

Tij =
∫

Ω
Ni · εrNjdΩ. (5.37)

The implementation of the periodic boundary conditions follows in complete analogy to the

2d case. The usual principle is to reorder the degrees of freedom into blocks of the same type of

boundary followed by an elimination of the slave variables. Their contribution is then linked to

the master variables with the help of the Floquet coefficients. The complexity, however, slightly

increases for the 3d case given the existence of 27 different types of boundaries. To close the

picture let us recall the procedure for singly and doubly periodic structures. In the first case,
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there is only one pair of periodic boundaries, i.e. three different types. Thus with the notation

of section 5.3.2.1 the vector of variables and the expansion matrices have the form

e =


ei

e−

e+

 , ē =

 ei

e−

 ,P =


I 0

0 I

0 cxI

 ,R =

I 0 0

0 I 1
cx

I

 , (5.38)

where the subscript − denotes the master, + the slave boundary and i stands for the inner

degrees of freedom.

For the model-order reduction purposes of the following chapters the matrices are needed in

a Floquet-parameter independent form. This is obtained by substituting (5.38) for the solution

vector. The generalized eigenvalue problem then reads(
S0 + cxS1 + 1

cx
ST1
)

ēp = k2
p

(
T0 + cxT1 + 1

cx
TT

1

)
ēp, (5.39)

with the reduced matrices S0, S1 given as

S0 =

Sii Si−

S−i S−− + S++.

 , S1 =

0 Si+

0 S−+

 . (5.40)

The expressions for the mass submatrices are calculated similarly.

In the case of two pairs of periodic boundaries, there are nine different types. Variables on

the corner of the unit cell have to be treated separately since they are subject to both periodic

counterparts. With the expansion matrices of section 5.3.2.1 the parameter independent EVP

is now built out of 32 = 9 different terms

(
S0 + cxS1 + 1

cx
ST1 + cyS2 + 1

cy
ST2 + cxcyS3 + 1

cxcy
ST3 + cx

cy
S4 + cy

cx
ST4
)

ēp =

k2
p

(
T0 + cxT1 + 1

cx
TT

1 + cyT2 + 1
cy

TT
2 + cxcyT3 + 1

cxcy
TT

3 + cx
cy

T4 + cy
cx

TT
4

)
ēp. (5.41)

With the notation of Fig. 5.1 the parameter independent matrices S0, . . . ,S4 are related to
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Figure 5.1: Unit cell for the singly and doubly periodic unit cell
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Figure 5.2: Unit cell for the triply periodic unit cell
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the original FE matrix S by

S0 =


Sii SiW SiS Sic1

SWi SWW + SEE SWS SWc1 + SEc2

SSi SSW SSS + SNN SSc1 + SNc3

Sc1i Sc1W + Sc1E Sc1S + Sc1N
∑

i Scici

 , (5.42a)

S1 =


0 SiE 0 Sic2

0 SWE 0 SWc2

0 SSE 0 SSc2 + SNc4

0 Sc1E 0 Sc1c2 + Sc3c4

 , (5.42b)

S2 =


0 0 SiN Sic3

0 0 SWN SWc3 + SEc4

0 0 SSN SSc3

0 0 Sc1N Sc1c3 + Sc2c4

 , (5.42c)

S3 =


0 0 0 Sic4

0 0 0 SWc4

0 0 0 SSc4

0 0 0 Sc1c4

 , (5.42d)

S4 =


0 0 0 0

0 0 0 0

0 SNE 0 SNc2

0 Sc3E 0 Sc3c2

 . (5.42e)

In a completely similar way one calculates the expressions for the mass matrices T0, · · · ,T4.

If we now consider the most general case of a triply periodic unit cell, i.e. with three pairs of

periodic boundaries, we have 27 types of boundaries. This is illustrated in Fig. 5.2. In this case

it is no longer useful to directly evaluate the expansion matrices P and R, but to separate the

matrices directly in the assembly process. The parameter independent form is then composed

of 33 = 27 entries ∑
k,l,m={−1,0,1}

ckxc
l
yc
m
z Sklm

 ēp = k2
p

 ∑
k,l,m={−1,0,1}

ckxc
l
yc
m
z Tklm

 ēp. (5.43)
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5.3.2.3 Solving the eigenvalue problem

Finally we are again confronted with the problem of finding a few selected eigen-functions of a

sparse generalized eigenvalue problem. Given the specific null space of the curl-curl operator

a orthogonalization scheme is required that filters out all solution with corresponding zero

eigenvalue so that the Arnoldi algorithm will converge to the desired eigen-solutions.

Thus each suggested new vector in the Arnoldi iteration (ē) has to be projected into the

orthogonal complement of the null space, i.e.

e = ē−Gg, (5.44)

so that the resulting vector e fulfills

GTTe = 0. (5.45)

Here G denotes the gradient matrix connecting nodes and edges in the finite-element mesh.

The vector g remains to be calculated.

Inserting (5.44) into (5.45) leads to

GTT (ē−Gg) = 0

GTTG︸ ︷︷ ︸
EV V

g = GTT︸ ︷︷ ︸
CT
AV

ē. (5.46)

Here the notation of section 4.3 is chosen for the matrices EV V and CAV . Thus the required

correction vector g can be calculated as

g = E−1
V V CT

AV ē. (5.47)

In each Arnoldi iteration, such a correction has to be done. Of course, the matrix inversion

need not be computed directly, since only its action on a vector is needed. Hence the matrix

SV V is factorized only once resulting in a very efficient solving routine. The matrices EV V and

CAV can be calculated directly using the matrix G.

There is, however, one complication to this scheme stemming from the fact that some vari-

ables are of slave nature. As a consequence there are some master edges having only one

corresponding node. Since the eigenvalue problem is solved after eliminating the slave vari-

ables, we have to take care of the contribution of the edges pointing into slave nodes. Thus the

gradient matrix G cannot simply be reduced to its master coordinates. We want to accomplish

that the product gE = GgN results in a vector of active edge variables given a vector of active



5.3 The photonic bandgap problem 62

node variables. Before the truncation of the slave variables, the gradient matrix cast in blocks,

reads:  gaE
gsE

 =

 Gaa Gas

Gsa Gss

 ·
 gaN

gsN

 , (5.48)

where the superscripts a and s denote active and slave variables, respectively. In the end, the

vector gaE is sought given the input gaV .

First the slave component of the the vector corresponding to the nodal variables has to be

calculated. This vector is linked to the active variables by the respective Floquet coefficients,

properly collected into the matrix Zsa:

gaN = Zsa · gaV . (5.49)

Once Zsa is built, the sought vector gaE is then computed by the following relation

gaE =
[
Gaa Gas

] I

Zsa

gaV . (5.50)
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5.4 Model-Order Reduction

This chapter is devoted to the problem of an efficient evaluation of the eigenvalue problems of

the previous sections for a set of varying parameters. This is needed to obtain a band structure

diagram of a photonic crystal, but the goal here is to avoid a repetitive diagonalization of

the usually big matrices for each point of the curve. The proposed outcome is to construct a

specific reduced model that covers the necessary information but is much easier to solve. The

field quantities of the original problem can then be recovered from the solutions of the reduced

model.

In the following section, two different approaches are presented. The first uses solutions at

selected so called expansion points to construct the model. The original problem is then pro-

jected onto the space spanned by the model and all the eigenvalue computations are performed

with matrices of heavily reduced size. Of course, error levels should remain comparable to the

underlying finite-element solutions. By the way of construction, it is obvious that this is the

case in the expansion points, but the results below will demonstrate that for all evaluation

points the error is reasonably low. The section is divided into subsections discussing the 2d

and 3d case. As it is outlined above, the first case is captured by the scalar Helmholtz equation

whereas the latter is described by its vectorial counterpart. This has a consequence for the re-

duced model, since the null space of the curl-curl operator will cause non-physical solutions in

the parameter sweep even though the solutions at the expansion points are correctly computed.

A possible way to deal with this fact will be presented below.

On the other hand, it is possible to construct a model-order reduction scheme out of only

one full solution of the original problem. Further information for the model stems form a series

expansion of the respective quantities followed by a mode matching procedure. This creates a

system of equations which has to be solved only once. The solution of the latter, along with the

solution of the original eigenvalue problem at the expansion point creates the reduced model.

This serves as basis for the parameter sweep.

5.4.1 Multi-Point Approach

In the following the main ideas of multi-point approaches are presented. The formulations and

results of the two-dimensional case have been presented at the CEFC-conference in Chicago

2010. This chapter follows quite closely the outlines of our published work [53]. After that the

discussion is extended to the three dimensional full-wave case. The novelty of this work has

been presented at the FEM workshop in Meredith 2010 [54].
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5.4.1.1 Two dimensional case

Motivated by [55], the key idea of the multi-point approach of this work is to restrict the trial

and test functions in (5.20) to the subspace spanned by the dominant P eigenvectors at a small

number N of expansion points (cx, cy)n. Hence the original EVP (5.20) needs to be solved N

times only. From its solutions, we construct a unitary matrix Q ∈ CM×PN with

colsp Q = {ē11, . . . , ēPN} , (5.51)

where colsp denotes the column space, restrict the solution to

ēp = Qẽp, (5.52)

and replace Si and Ti in (5.23) by the Galerkin projections

S̃i = QHSiQ, (5.53)

T̃i = QHTiQ, (5.54)

with i = 0, 1, 2, 3, 4.

Thus, the ROM takes the form

(S̃0 + cxS̃1 + c∗xS̃
T
1 + · · · + cyc

∗
xS̃

T
4 )ẽp = k2

p(T̃0 + cxT̃1 + c∗xT̃
T
1 + · · · + cyc

∗
xT̃

T
4 )ẽp. (5.55)

Note that (5.55) preserves the parameterization and Hermitian structure of the original EVP.

Since PN �M , the reduced EVP (5.55) is very fast to solve. The high speed of the proposed

method offers the possibility to compute band structures not only along lines between symmetry

points on the boundary of the reduced Brillouin zone [6], which are usually sufficient for bandgap

calculations, but at any point in the (cx, cy) or (βx, βy) spaces, respectively.

5.4.1.2 Adaptivity issues

A priori, it is neither known how many expansion points are needed to produce an accurate

ROM, nor where they should be placed. To fill this gap, an adaptive method is proposed that

subdivides the parameter domain successively by placing a new point in the middle of the sub-

region that exhibits the worst error indicator for the eigenvalue kp. For brevity, Algorithm 5

just presents the one-parameter case, with βy = 0. First, a strictly increasing sequence of

evaluation phase coefficients B is defined, then the FE problem is solved at the end points

of the interval, followed by a modified Gram-Schmidt (MGS) step to generate the projection

matrix Q2. Lines 5–8 compute the initial ROM, which is then solved at each evaluation point.
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At the end of the initialization phase, the whole interval is marked as the region of worst

error. The main loop starts with computing the location of the expansion point, splitting the

associated sub-interval, and solving the FE system. In Lines 18–22, the ROM is updated. The

following loop is over all evaluation points: it computes the solution of the ROM as well as a

simple incremental error indicator ∆kqp for mode p at iteration step q, defined by

∆kqp(cx, cy) = kqp(cx, cy)− kq−1
p (cx, cy). (5.56)

The algorithm tracks the three error measures

E1(q) =
1

Nb ·Ne

Nb∑
p=1

Ne∑
i=1

|∆kqp((cx, cy)i)|, (5.57a)

E2(q) =

 1
Nb ·Ne

Nb∑
p=1

Ne∑
i=1

|∆kqp((cx, cy)i)|2
1/2

, (5.57b)

E∞(q) = max
i,p
|∆kqp((cx, cy)i)|, (5.57c)

where Nb and Ne stand for the number of bands under consideration and the number of eval-

uation points, respectively. The measure E∞ is taken as the error indicator, which is checked

against a user-defined tolerance E∞,tol in Line 28 to signal convergence.

5.4.1.3 Three dimensional full wave case

This section summarizes my work presented at the FEM 2010 workshop in Meredith, New

Hampshire [54]. It can be regarded as a natural extension of the previous chapter to a full

wave analysis. The novelty of this work is the application of a model-order reduction scheme

to photonic band structure cases. The governing equation of the three dimensional formulation

is the vectorial Helmholtz equation as described in section 5.3.2.2. This requires the use of

H(curl) - elements which have to be treated with some care when constructing the reduced

order multi-point model. Although a proper orthogonalization scheme guarantees the solutions

at the expansion points to be free of non-physical solutions, this is no longer the case for the

evaluation points in between when performing the parameter sweep.

The strategy remains the same as in the 2d case: The full finite-element problem is solved

at selected expansion points. The obtained eigenvectors are collected into a matrix Q. Due to

stability reasons it is orthogonalized and serves as a projection basis.

Q = [q1, . . . ,qn] , (5.58)
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Algorithm 5 Adaptive multi-point MOR
1: B = {β1, . . . , βNe};
2: Solve S̄(cx(β1), 1)X1 = k2

pT̄(cx(β1), 1)X1

3: Solve S̄(cx(β2), 1)X2 = k2
pT̄(cx(β2), 1)X1

4: Q2 = MGS([X1,X2]) {Calculate projection matrix}
5: for i = 0 to 4 do

6: S̃i = QH
2 SiQ2

7: T̃i = QH
2 SiQ2

8: end for

9: for all βi ∈ B do

10: Compute eigenvalues k2
p(cx(βi), 1)

11: end for

12: B1 = [β1, βNe ] {First sub-interval}
13: n̂ = 1 {Index of sub-interval with highest error indicator}
14: for q = 3 to qmax do

15: β̂ = 1
2(min(Bn̂) + max(Bn̂))

16: Bn̂ ← [min(Bn̂), β̂] and Bq−1 = [β̂,max(Bn̂)]

17: Solve S̄(cx(β̂), 1)X = k2
pT̄(cx(β̂), 1)X

18: Qq = [Qq−1,Q∗] = MGS([Qq−1,X])

19: for i = 0 to 4 do

20: S̃i =

 S̃i QH
q−1SiQ∗

QH
∗ SiQq−1 QH

∗ SiQ∗

 ,

21: T̃i =

 T̃i QH
q−1TiQ∗

QH
∗ TiQq−1 QH

∗ TiQ∗


22: end for

23: for all βi ∈ B do

24: Compute eigenvalues k2
p(cx(βi), 1)

25: ∆kqp(cx, 1) = kqp(cx, 1)− kq−1
p (cx, 1)

26: end for

27: Update E1(q), E2(q), E∞(q)

28: if E∞(q) < E∞,tol then

29: return(converged)

30: end if

31: n̂← index of sub-interval with highest error indicator

32: end for
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with the range of

ran Q = span(ē11, . . . , ēPN ). (5.59)

In complete analogy to the 2d-case, the system matrices (Si, Ti) are replaced by the projected

ones (S̃i, T̃i)

S̃i = QHSiQ, (5.60a)

T̃i = QHTiQ, (5.60b)

and the resulting eigenvalue problem of much smaller dimension is solved for the set of param-

eters. In order to choose the correct modes, the same mode tracking strategy is applied as in

the 2d-case.

Unfortunately it turns out, that although the gradients are successfully filtered out when

solving the full problem, the reduced model produces non-physical solutions. Since these are

difficult to distinguish from the correct modes, a scheme is required to get rid of them. In the

most ideal case, an algorithm should be used capable of intrinsically filtering out those modes.

Since such a procedure is very complicated we employ a different solution. Instead of avoiding

those modes in the first place, they will be detected and thence disregarded.

For all physical solutions the mode-orthogonality relation

GTTe = 0 (5.61)

holds. This correspond to the divergence condition in its weak form.

The idea is now to simply test this condition for the modes resulting from the reduced model.

In other words, the test condition tc,

tc =
∥∥GTTê

∥∥
2
, (5.62)

should be very small for physical and relatively big for non-physical modes. Here, ê stands for

the eigenvector of the full problem being calculated from the ROM-modes ē

ê = Qē. (5.63)
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5.4.2 Single-Point Approach

In the next section, a topic summarized that I have been presenting at the IGTE Symposium

2010 [56]. It is devoted to a model-order reduction scheme, now created out of one finite-element

solution only.

We consider the singly-periodic case along the x-direction. Following the arguments above,

a FE-discretizations with periodic boundary conditions results in a generalized wave-number

dependent eigenvalue problem:

(
S0 + cxS1 + 1

cx
S2

)
︸ ︷︷ ︸

S

v(cx) = k2(cx)
(
T0 + cxT1 + 1

cx
T2

)
︸ ︷︷ ︸

T

v(cx), (5.64)

where S and T stand for the global finite-element matrices and cx = e−jβxDx for the Floquet

coefficient linking the periodic boundaries with respect to the x-direction. The relations S2 =

ST1 and T2 = T T1 hold, but the notation will be easier to read if the matrices are defined

separately. The structure of the matrices S and T, formulated in the dimensionless quantity

ν := βxDx, is given by:

S(β) = S0 + e−jνS1 + ejνS2, (5.65)

T(β) = T0 + e−jνT1 + ejνT2, (5.66)

with S2 = ST1 and T2 = TT
1 .

In contrary to the previous section where we solved the full-model at different parameter

points, our goal is now to use the solution at one expansion point (ν) only. The obtained

solution will be used to construct a proper model for the parameter sweep, similar to the

analysis of waveguides described in [57]. In contrast to those cases, the matrix structure in our

problem is not polynomial, but exponential in the parameter βx. Let us take on a similar idea

and expand the quantities in (5.64) by Taylor series around the central parameter ν0. This

yields

k2(ν) =
N∑
i=0

k2
i (ν − ν0)i, (5.67)

v(ν) =
N∑
i=0

vi(ν − ν0)i, (5.68)
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S(ν) =S0 + e−jν0S1 + ejν0S2 +
N∑
i=1

(j(ν − ν0))i

i!
[
(−1)ie−jνS1 + ejνS2

]
, (5.69)

T(ν) =T0 + e−jν0T1 + ejν0T2 +
N∑
i=1

(j(ν − ν0))i

i!
[
(−1)ie−jνT1 + ejνT2

]
. (5.70)

The following equations for the derivative of v(ν) and k2(ν) with respect to ν can be obtained

by collecting equal powers of βx:

ν0 :
[
S(ν0)− k2

0T(ν0)
]
v0 = 0,

ν1 :
[
S(ν0)− k2

0T(ν0)
]
v1 = k2

1T(ν0)v0 − j
[
−S1 + S2 − k2

0 (−T1 + T2)
]
v0,

ν2 :
[
S(ν0)− k2

0T(ν0)
]
v2 = k2

2T(ν0)v0 − j
[
−S1 + S2 − k2

0 (−T1 + T2)
]
v1

− 1
2
[
−S1 − S2 − k2

0 (−T1 −T2)
]
v0,

+
1
2
k2

1 [T(ν0)v1 + j (−T1 + T2) v0]

...

νP :
[
S(ν0)− k2

0T(ν0)
]
vP = k2

PT(ν0)v0

−
P∑
i=1

ji

i!
[
(−1)iS1 + S2 − k2

0

(
(−1)iT1 + T2

)]
vP−i

+
P−1∑
i=1

k2
i ·

[
T(ν0)vP−1 +

P−i∑
m=1

(j)m

m!
((−1)mT1 + T2) vP−i−m

]
.

(5.71)

This system of equations is solved recursively. First, the full eigenvalue problem is solved

for ν0 to obtain v0 and k2
0. Then the procedure is to pre-multiply the equations in (5.71) with

vH0 , to calculate k2
i and in the following vi. The eigenvalues are obtained from a ROM that is

created as the projection of the matrices in (5.64) by a matrix V with

range(V) = span{v0,v1, . . . ,vP }. (5.72)

For stability reasons, the model matrix V is again orthogonalized using a Gram-Schmidt

scheme. The resulting eigenvalue problem is of course of much smaller dimension and hence

faster to solve.
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5.4.2.1 Singularity of the linear system

One problem arises from the fact that the left-hand side of the above system of equation is

singular for an exact eigenvalue k2
0. Since the eigenvalue is only approximately computed, one

can factorize the matrix and the method will yield useful results. In a mathematically proper

way one would have to solve iteratively the projected linear system

PTAP = Pb, (5.73)

with A = S(ν0)− k2
0T(ν0) and P being the orthogonal projector

P = I− v0vTo . (5.74)

This comes at the expense of two drawbacks. First, one can no longer factorize the matrix A

once and then simply calculate the forward/backward substitutions. The other and major

disadvantage is the fact that an iterative solver has to be implemented. A standard CG-

method would not function in a very efficient way, especially for electrically large field regions,

even when an incomplete Cholesky-decomposition is used as a pre-conditioner.

A less rigorous outcome, however, is employed in [57]. The authors suggest to simply remove

one row and its corresponding column from the matrix making it non-singular. When the

corresponding component is also removed form the right-hand side, the condition number can

be improved. More importantly, the eigenvalues, resulting from a model with the input vectors

stemming from the changed linear system remain unchanged. In this thesis I stick to the

mathematically less rigorous but practically working case. In practice, one first selects the

component of the eigenvector v0 having the largest magnitude and removes the corresponding

rows and columns of the matrix A to get A′. The linear equation system A′ will be factorized

once, so that the frequency derivatives vi(i = 1, 2, . . . , P ) can be computed efficiently. Note

that the corresponding entry of the right hand side has to be modified accordingly.
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5.5 Results

Finally, this chapter presents the results obtained from the formulations presented in the previ-

ous sections. It is organized as follows. As a first step singly-periodic structures are investigated

serving as a benchmark. The calculated band-structures stemming from direct FE-calculations

are compared to reported results and the model-order reduction performance is analyzed there-

after. These structures, along with doubly-periodic crystals, are calculated using both 2d and

3d formulations. The results are presented separately and then compared. Of course, for crys-

tals periodic in each spatial dimension, only a three dimensional full wave simulation can serve

as a proper model. The multi-point model-order reduction scheme is applied to all three cases,

whereas the single-point expansion technique is analyzed solely on cases with periodicity in one

dimension.

5.5.1 2D - formulation

Keeping consistent to the logic of the thesis an overview of the results stemming from the

H-plane discretization is given first. Thereby structures showing singly and doubly periodic

repetition of their material properties are distinguished. Triply periodic structures cannot be

captured with a 2D-formulation and will be treated later on. In presenting the results, focus will

be put on the behaviour of the model-order reduction schemes. The 2d problems are treated

with a finite-element code using scalar hierarchical basis functions up to third order. The code

is written in MATLAB and the same FE code is used for both the single-point and multi-point

model-order reduction schemes.

5.5.1.1 Singly-Periodic Case

Let us consider a simple photonic crystal consisting of a dielectric material and periodic in

one dimension. The unit cell, sketched in Fig. 5.3, consists of a dielectric inset repeated in

x-direction and having an electric permittivity of εr = 9. The band structure obtained by a

ROM resulting from a two-dimensional formulation is depicted in Fig. 5.4. The results are in

perfect agreement with the first example of [48]. In this example, the structure is obtained

by varying the exponent βxDx of the Floquet coefficient cx = exp(−jβxDx) from 0 to π. The

component in y-direction, cy, is set to one which means that the unit cell is extended to infinity

in the y-direction. We note the appearance of bandgaps, i.e. frequency regions in which a wave

cannot propagate through this crystal. The gap between the lowest and the second mode is

calculated to have the range [4.24, 8.19] rad/m, whereas the second gap between mode two and
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three is at [11.47, 13.87]rad/m.

Figure 5.3: Unit cell of a crystal periodic in one dimension.
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Figure 5.4: Band structure of the single periodic crystal

Fig. 5.5 and Fig. 5.6 demonstrate the accuracy of solutions based on a ROM calculation.
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In the first case two expansion points are used for setting up the ROM, one at βx = 0 and

the second at βx = π/Dx. The eigenvalues are compared to the results of the underlying FE

calculation solved with conventional eigenvalue routines. One can see that the absolute error

always remains below 10−5 and consequently drops to zero at the expansion points. Since the

present crystal is of rather simple structure, the band structure problem is rather smooth, and

so the error is just a noise around 10−6 when adding a third expansion point at βx = π/(2∗Dx).

In other words a reduced-order model stemming from three solutions is adequate to describe

the band structure. Of course, in the general case one does not have the a priori information,

how many solutions are needed for a proper model. Therefore, the described adaptive scheme

should be applied. Results of this scheme are presented for the doubly-periodic case. Given

that the three point solution is already adequate enough here, the adaptive algorithm stops

after having compared the eigenvalues of the three point solution with the two-point one.
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Figure 5.5: Absolute error of eigenvalues obtained by a ROM calculation compared to the underlying FE

solution; 2 expansion points for the ROM creation

Although this first case can be solved rather efficiently with traditional methods, a look at

the run-times demonstrate the superiority of the reduced-order model case. A comparison can

be found in Table. 5.1. The ROM calculation is almost 15 times faster than the full FE case.

Finally a ROM solution obtained from a single-point model order reduction scheme is investigated.
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Figure 5.6: Absolute error of eigenvalues obtained by a ROM calculation compared to the underlying FE

solution; 3 expansion points for the ROM creation

Table 5.1: Computational Data

Parameter FE ROM Run-time (s) FE ROM

Matrix assembly 0.87 0.89

Model dimension 1897 1897 FE solver 27.94 0.78

Evaluation points 100 100 ROM generation - 0.09

Expansion points - 3 ROM evaluation - 0.17

TOTAL 28.81 1.93

The obtained band structure is identical to the one depicted in Fig. 5.4. When looking at the

error of the single-point method compared to an FE calculation, Fig. 5.7 illustrates the conver-

gence behaviour with increasing model order P . The expansion points are chosen to be βx = 0

and βx = π/(2 ∗ Dx). Comparing these error diagrams to the one obtained for a multi-point

solution one notes that the error levels are similar for a model-order of around p = 10.
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(a) Expansion point βx = 0
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(b) Expansion point βx = π/(2 ∗Dx)

Figure 5.7: Error plot for the single-point model-reduction calculation for various model orders p.
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5.5.1.2 Doubly-Periodic Case

Figure 5.8: Unit cell of a crystal being composed of dielectric rods.

For the doubly-periodic case we consider a photonic crystal consisting of dielectric rods; see

the inset of Fig. 5.8. The band structure obtained by the multi-point ROM, which is depicted

in Fig. 5.9, is in perfect agreement with [49]: for the first two photonic bandgaps, we have

obtained the intervals [0.2455, 0.2676] and [0.4075, 04519], respectively, and, in [49], they were

reported to be [0.2457, 0.2678] and [0.4081, 0.4527]. We have computed the band structure

along the symmetry lines M-Γ-X-M, i.e. for a path around the whole reduced Brillouin zone.

For a termination criterion of E∞,tol = 10−6, the adaptive procedure uses 9 expansion points.

Fig. 5.10 presents an error plot with respect to full FE calculations. It can be seen that the true

error for any of the modes considered is always below the threshold of 10−6. Computational

data are given in Table 5.2. The total computer run-time for the MOR process, covering

matrix assembly, 9 FE solutions at the expansion points, the ROM generation process, and 450

evaluations, is 82.71s, which is 17 times faster than the corresponding FE solutions. When the

overhead of the adaptive procedure is included, run-times rise to 254.71s, still 5.5 times faster

than conventional FE calculations. It is emphasized that the adaptive loop, including mode

tracking and error estimation, is purely experimental MATLAB code that leaves great room

for improvement.

In a final test, we have investigated the asymptotic convergence properties of the proposed

adaptive procedure. Fig. 5.11(a) illustrates the behaviour of the error measures E1, E2, and E∞

of (5.57) for the method above, proceeding along the symmetry lines M-Γ-X-M, and Fig. 5.11(b)
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Table 5.2: Computational Data

Parameter FE ROM Run-time (s) FE ROM

Matrix assembly 14.84 14.35

Model dimension 9361 9361 FE solver 1391.86 25.99

Evaluation points 450 450 ROM generation - 3.59

Expansion points - 9 ROM evaluation - 38.78

TOTAL (non-adapt.) 1405.69 82.71

Expansion points - 9 Adaptive loop - 183.46

TOTAL (adaptive) - 254.71

shows the corresponding locations of the expansion points after 13 iterations. Fig. 5.12 presents

similar data for a more general two-parameter ROM that covers the entire domain of the

Brillouin zone. In both approaches, the behavior of the error measures indicates a very rapid

rate of convergence.

(a) Error indicators. (b) Expansion points.

Figure 5.11: Asymptotic behavior of adaptive single-parameter ROM along the symmetry lines M-Γ-X-M.
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(a) Error indicators. (b) Expansion points.

Figure 5.12: Asymptotic behavior of adaptive two-parameter ROM for the whole Brillouin zone.
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5.5.2 3D - formulation

Regarding the full-wave case of the three dimensional formulations, we will investigate struc-

tures periodic in one, two and three dimensions. For the first two cases, the models from the 2d

formulation are extended to the 3d case in order to compare the results. The need to apply an

additional scheme to filter out non-physical modes will be demonstrated. Having demonstrated

this on the benchmark cases, attention will be devoted to two triply periodic structures.

For the 3D cases, the MATLAB FE-code based on scalar basis functions cannot be used, since

this is based on a two-dimensional H-plane formulation. Instead the in-house software package

Elefant3D has been extended to capture periodic boundary conditions. As it is outlined in

section there are 27 different types of boundaries in a three dimensional calculation. Therefore

a scheme has to be developed to correctly identify these types in the program. This information

together with the FE-matrices is then transformed in order to get the splitting into parameter

independent matrices. So, for our purposes the assembly process is carried out in Elefant3D,

whereas the solutions of the eigenvalue problems and the model-order reduction schemes have

been programmed in MATLAB.

5.5.2.1 Singly-Periodic Case

As the first case serves the example of a crystal being periodic in the x-direction only. Applying

the full-wave formulation without any further orthogonalization as described in section 5.4.1.3

results in a structure correctly capturing the true modes but also producing additional solutions

which are non-physical. As described above, this is due to the fact that the model does not

capture the correct operator structure although it is generated out of true solutions since no

non-physical modes are present at the expansion points. The band structure including these

non-physical modes is depicted in Fig. 5.13. The Floquet coefficient is varied along the x-

direction, keeping the y and z values at zero. The expansion points for creating the reduced-

order model are at βxDx = 0, π/2, π. The eigensolutions printed in blue coincide with the

true modes obtained from the 2d formulation. The green modes denote the spurious solutions

polluting the spectrum, since one does not know a priori how two distinguish between them.

Applying the filtering scheme described in section 5.4.1.3 yields the correct structure as

already computed in the two dimensional formulation, see Fig. 5.4. When evaluating the

ROM, i.e. performing the parameter sweep in the reduced matrices, each obtained solution is

tested for the testing condition, tc of Eq. (5.62). As sketched in Fig. 5.14, the values for tc

remain below 10−10 for the physical modes. These values for the spurious modes, are found
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Figure 5.13: Band structure of the single periodic crystal; Blue modes donate correct modes whereas green

modes are spurious solutions

to be between 10−1 to 100. In the code, the threshold value for the mode-filtering is set to to

10−6.

Again, the accuracy of the ROM calculation is demonstrated by a comparison with the results

of the underlying FE calculation. Fig. 5.20 shows that when using three expansion points the

error is already negligible.
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Figure 5.14: Testing condition tc for the physical modes
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Figure 5.15: Error of a ROM calculation for the singly-periodic crystal
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5.5.2.2 Doubly-Periodic Case

For the doubly-periodic case let us reconsider the crystal being composed of dielectric rods,

see Fig. 5.8. The results of the full-wave calculation are depicted in Fig. 5.16. There the

parameters are varied along the line Γ−X in the Brillouin zone, i.e. βx varied from 0 to π/a,

where a denotes the dimension of the unit cell. Again it is remarkable to notice the appearance

of non-physical modes depicted in green in Fig. 5.16. Applying the filtering scheme against

these non-physical modes, the band structure of diagram Fig. 5.17 is obtained. Of course, the

structure should be consistent with the one obtained from a 2d-calculation. Comparing Fig. 5.17

with the Γ-X-part of Fig. 5.9, one notes additional physical modes depicted in red. These modes

are physical solutions belonging to an E-plane formulation. These cannot be captured with the

H-plane formulation in the two dimensional example.
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Figure 5.16: Band structure of a crystal consisting of dielectric rods stemming from a 3d-calculation. The blue

modes coincide with the 2d-case, red modes donate correct solutions whereas the green solutions are non-physical

The threshold value tc for accepting a mode to be physical is set to be 10−2 in this. The

value for all non-physical modes is tested to lie above this value. On the contrary the value

for the physical modes, also being captured by the H-plane formulation lie in a region of 10−6,

whereas the additional true modes have value of around 10−2. The corresponding values for

the spurious modes are not smaller than 10−1.
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Figure 5.17: Band structure of a crystal consisting of dielectric rods stemming from a 3d-calculation without

non-physical solutions
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5.5.2.3 Triply-Periodic Case

Figure 5.18: Unit cell of a crystal being periodic in three dimensions. εr = 12.96 in the yellow area, εr = 1

elsewhere;

Finally let us put our focus on crystals being periodic in three dimensions. The first structure

we are analyzing is depicted in Fig. 5.18. Continuing the unit cell along the three axes, the

crystal looks like a scaffold. The ratio of the thickness of the yellow rods and the dimension

of the unit cell is chosen to be 1/10. The relative permittivity of the dielectric medium is

εr = 12.96. Fig. 5.19 shows a band structure when varying the wave vector along the Brillouin

zone’s symmetry points Γ − X −M − R, as it is explained in section 2.2.2. The results are

obtained from a multi-point model order reduction scheme, when using 9 expansion points,

placed along the chosen symmetry lines. One can see a nice qualitative agreement with [58].

The small discrepancy in absolute values is attributed to the fact, that the exact dimensions

of the unit cell are not reported and could only be guessed. The performance of the ROM is

tested against the underlying full FE calculation and an error plot can be found in Fig. 5.20.

The absolute error of the computed modes always remains below 10−3.
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Figure 5.19: Band structure of the triply periodic scaffold structure
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Figure 5.20: ROM error of the triply periodic scaffold crystal
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Finally let us put our focus onto a crystal structure having a complete bandgap. The unit

cell of the so called woodpile crystal is depicted in Fig. 5.21. The structure is composed of

layers of dielectric rods with a stacking sequence repeating itself every four layers with a repeat

distance of d. Within the layers, the rods are arranged with their axes parallel and separated

by the distance a. The orientations of the axes are rotated by 90 degrees between adjacent

layers [59]. Setting d =
√

2a the lattice can be considered as a face-centered cubic lattice [60].

In contrast to the symmetric scaffold case the unit cell of this woodpile structure is asymmetric

in the three dimensions.

(a) Unit cell.

(b) Lattice.

Figure 5.21: Woodpile photonic crystal.

The band structure was obtained on successive runs along the symmetry points of the Bril-

louin zone. The complete band structure diagram over the whole Brillouin zone is depicted
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in Fig. 5.22. A full photonic band gap from 0.465c/a to 0.568c/a is observed, comparing per-

fectly well with reported results [60]. c denotes the vacuum speed of light. To justify the

accuracy of the ROM, Fig. 5.23 and Fig. 5.24 show plots of the absolute error of the ROM

solutions compared to the underlying FE calculations. In the latter diagrams the first two

symmetry lines are investigated, the lines Γ−X and X −M . In the first case, three expansion

points are used to create the reduced-order model, whereas in the second case a fourth point is

added. The diagrams demonstrate a perfect convergence of the ROM solutions.
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Figure 5.22: Band structure of the woodpile structure; Notation according to section 2.2.2
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varied along the line Γ −X.
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5.6 New scientific results

This chapter has dealt with methods capable of fast and accurate computations of photonic

band structure diagrams. The finite-element method, along with an implementation of periodic

boundary conditions, has led to a parameterized generalized eigenvalue problem which has to be

solved many times in order to resolve a band structure. The scientific contribution consists of

the presentation and application of efficient model-order reduction schemes allowing for accurate

computations at considerably reduced computational costs. Multi-point model-order reduction

schemes have been presented for two and three dimensional photonic crystal structures. The

run-time advantage of these methods over conventional finite-element calculations has been

demonstrated, and it has been shown that the approximation error of the reduced-order models

is negligibly low. For two dimensional structures, the presentation of an adaptive algorithm

has addressed the question of how to choose the expansion points for the model. In addition,

a possibility of a direct evaluation of the whole Brillouin zone, instead of the surroundings

only, has been discussed. A single-point model-order reduction scheme has been applied to a

two dimensional structure. In contrast to previous studies, where single-point methods have

been applied to polynomial matrix structures, the reduced-order model has been set up for an

exponential structure in this thesis. Again, the accuracy and computational efficiency of the

suggested scheme has been demonstrated.



6 Conclusion and Outlook

In this thesis eigenvalue problems in the context of electromagnetic field simulations are treated.

The finite-element method has served as numerical tool to analyze wave propagation problems.

In the opening chapters, the necessary physical and mathematical theory is outlined and re-

viewed in order to put the applications into an appropriate thematic context. Thereby, the

electromagnetic wave equation has been derived and it has been shown how to formulate a

feasible discretization using the finite-element method. In this way, boundary value problems

are transformed into algebraic systems of equations, or as it is the case in this thesis, eigen-

value problems. Therefore an overview of iterative eigenvalue solvers has been given focusing

on routines taking advantage of sparsely occupied matrices.

The first application consists of a consistent description of dispersion relations of waveguiding

structures. Based on the studies of [4] a formulation has been tested that successfully describes

these quantities without polluting the spectrum with non-physical modes. As it is shown,

this is of special importance near the static limit. A focus of ongoing studies is to look at

open waveguiding structures, thereby including losses due to radiation. The application of fast

frequency sweeps, similar to the methods presented in the second part of this thesis, thereby

considerably improves the computation times.

In the second part of the applications, photonic crystal are investigated. Thereby the focus

is again on an efficient finite-element formulation, paired with the implementation of periodic

boundary conditions. Both multi-point and single-point model-order reduction methods have

been presented that allow for a very efficient computation of band structure diagrams. So

far these reduction-techniques have been presented for polynomial matrix structures. In this

work’s context the parameter dependence is of exponential nature. Especially for the single-

point scheme, there is no comparable case reported in the literature so far. In this chapter it

is briefly mentioned that there exists a problem when solving the equations systems needed for

the model creation. This is due to the singularity of the linear system’s matrices needed to be

solved in each step. Here, a feasible but mathematically rather ambiguous approach is applied,

but in the future a nice and rigorous description poses an interesting research topic. In this



6 Conclusion and Outlook 92

work the single-point scheme has been applied for singly periodic structures in the physical

context of photonic crystals. In the future, an extension to two or multi-dimensional cases is

certainly of great interest.

On the other hand, multi-point routines have been suggested and their application to photonic

crystals has been demonstrated, for both a 2d and 3d formulation. An adaptive scheme has

been outlined that regulates where to put the expansion points for the model creation, since

this is a priori not known. In the three dimensional full wave case it has been pointed out

that some care has to be devoted to the fact that the model produces non-physical solutions.

A scheme is introduced how to handle these modes by successfully filtering out the spurious

solution when performing the parameter sweep. As a suggestion for future studies, a routine

could be of great interest where the reduced model does not produce non-physical solution in

the first place.
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[56] C. Scheiber, O. B́ıró, and R. Dyczij-Edlinger, “A single point model-order reduction scheme

for band structure calculations of photonic crystals,” Proceedings of the 14th International

IGTE Symposium, pp. 103–103, 2010. 68

[57] S.-H. Lee, T.-Y. Huang, and R.-B. Wu, “Fast waveguide eigenanalysis by wide-band finite-

element model-order reduction,” IEEE Trans. Microw. Theory Techniques, vol. 53, no. 8,

pp. 2552–2558, Aug. 2005. 68, 70



Bibliography 101

[58] D. Dobson, J. Gopalakrishnan, and J. Pasciak, “An efficient method for band structure

calculations in 3d photonic crystals,” Journal of Comp. Physics, vol. 161, pp. 668–679,

2000. 85

[59] K. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three

dimensions: New layer-by-layer periodic structures,” Solid State Comm., vol. 89, no. 5,

pp. 413–416, 1994. 87

[60] S. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. M. Ho, M. Sigalas, W. Zubrzy-

cki, S. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared

wavelengths,” Nature, vol. 394, pp. 251–253, 1998. 87, 88


	Introduction and Theory
	Motivation and Outline
	Electromagnetic Theory
	Maxwell's Equations
	Wave Propagation
	Waveguides
	Periodic Structures


	Numerical Methods
	Finite-Element Method
	Scalar Valued Quantities
	Vector Valued Quantities
	Function spaces

	Review of Eigenvalue Solvers
	Direct Methods - Complete Spectrum
	Subspace Iteration Methods - Selective Spectrum
	Arnoldi
	Lanczos
	Generalized Eigenvalue Problems
	Jacobi-Davidson




	Applications
	Eigenvalue Analysis of Electromagnetic Waveguides
	State of Research
	Formulation
	Finite Element Representation
	Basis Functions
	Tree co-tree algorithm
	Eigenvalue Solver
	Numerical Application
	New scientific results

	Photonic Crystals
	Introduction and Fundamental Concepts
	State of Research
	The photonic bandgap problem
	Plane-Wave Expansion
	FEM for photonic band structure calculations
	Photonic bandgaps in 2D
	Photonic Bandgaps in 3D
	Solving the eigenvalue problem


	Model-Order Reduction
	Multi-Point Approach
	Two dimensional case
	Adaptivity issues
	Three dimensional full wave case

	Single-Point Approach
	Singularity of the linear system


	Results
	2D - formulation
	Singly-Periodic Case
	Doubly-Periodic Case

	3D - formulation
	Singly-Periodic Case
	Doubly-Periodic Case
	Triply-Periodic Case


	New scientific results

	Conclusion and Outlook
	List of Figures
	Bibliography


