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Abstract

In this thesis, we present novel methods to enhance speech corrupted by noise. All
methods are based on the processing of complex-valued spectral data. First, kernel
principal component analysis (PCA) for speech enhancement is proposed. Subse-
quently, a simplification of kernel PCA, called pre-image iterations (PI), is derived.
This method computes enhanced feature vectors iteratively by linear combination
of noisy feature vectors. The weighting for the linear combination is found by a
kernel function that measures the similarity between the feature vectors. The kernel
variance is a key parameter for the degree of de-noising and has to be set according
to the signal-to-noise ratio (SNR). Initially, PI were proposed for speech corrupted
by additive white Gaussian noise. To be independent of knowledge about the SNR
and to generalize to other stationary noise types, PI are extended by automatic de-
termination of the kernel variance for white and colored noise. This enables a setting
of the kernel variance without prior knowledge about the SNR. For colored noise
this setting is frequency-dependent.

PI are executed on feature vectors extracted from the spectral representation.
Analysis of PI shows that the convergence behavior of the feature vectors reveals
information about the signal content. We use this information to segment the spec-
tral representation in speech and non-speech regions and derive a mask for musical
noise suppression in enhanced speech as a post-processing step.

We evaluate the proposed methods by listening, visual inspection of the spectro-
grams, by objective quality measures and the word accuracy of an automatic speech
recognizer. Listening to the utterances and visual inspection of the spectrograms
confirm the suppression of noise. No musical noise occurs, however, there is some
residual noise around speech components. In terms of objective quality measures,
the proposed methods achieve similar results as the generalized subspace method,
spectral subtraction and the minimum mean-square error log-spectral amplitude
estimator evaluated on speech corrupted by white noise. PI with automatic deter-
mination of the kernel variance achieve better results than the initial PI method. For
colored noise, the performance of PI is better than the performance of the generali-
zed subspace method, but weaker than the performance of the other two reference
methods. In terms of automatic speech recognition, PI with automatic determinati-
on of the kernel variance achieve a performance superior to the generalized subspace
method and similar to spectral subtraction, while the minimum mean-square error
log-spectral amplitude estimator achieves higher recognition results.
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Kurzfassung

In dieser Dissertation werden neue Methoden zur Qualitätsverbesserung von ver-
rauschten Sprachaufnahmen vorgestellt. Alle Methoden basieren auf der Verarbei-
tung von komplexwertigen spektralen Daten. Als erste Methode wird die kernba-
sierte Hauptkomponentenanalyse für die Entrauschung der Sprachaufnahmen vor-
geschlagen. Davon wird eine Vereinfachung abgeleitet, die wir Urbilditerationen bzw.
pre-image iterations (PI) nennen. Diese Methode berechnet verbesserte Merkmals-
vektoren auf iterative Weise aus linearen Kombinationen von verrauschten Merk-
malsvektoren. Die Gewichtung der Linearkombinationen wird durch eine Kernfunk-
tion festgelegt, die die Ähnlichkeit zwischen den Merkmalsvektoren bestimmt. Die
Varianz der Kernfunktion ist ein wichtiger Parameter für den Grad der erreichten
Rauschunterdrückung und muss abhängig vom Signal-Rauschabstand (SNR) gesetzt
werden. Ursprünglich wurde die PI-Methode für additives weißes Gaußsches Rau-
schen vorgeschlagen. Um jedoch unabhängig von der Kenntnis des SNRs zu sein und
um die Method für andere stationäre Geräuscharten zu verallgemeinern, wurde die
PI-Methode mit einem Mechanismus zum automatischen Einstellen der Kernvarianz
für weißes und farbiges Rauschen erweitert. Im Fall von farbigem Rauschen ist der
Wert der Kernvarianz frequenzabhängig.

Die PI-Methode wird auf Merkmalsvektoren ausgeführt, die aus der spektralen
Darstellung extrahiert sind. Die Analyse der PI zeigt, dass das Konvergenzverhalten
Rückschlüsse auf den Inhalt des Signals zulässt. Wir verwenden diese Information
um die spektrale Darstellung in Regionen mit und ohne Sprache zu segmentieren
und um eine Maske zur Unterdrückung von musical noise für die Nachbearbeitung
von entrauschten Sprachaufnahmen abzuleiten.

Wir evaluieren die vorgeschlagenen Methoden durch Anhören, visuelles Überprüfen
der Spektrogramme, mit objektiven Qualitätsmaßen und der Worterkennungsrate
eines automatischen Spracherkenners. Anhören der Sprachaufnahmen und das visu-
elle Überprüfen der Spektrogramme bestätigen die Unterdrückung des Rauschens.
Musical noise tritt nicht auf, jedoch verbleiben Rauschkomponenten um die Sprach-
komponenten herum. Für Sprachaufnahmen, die durch weißes Rauschen gestört sind,
sind die erreichten Qualitätsmaße vergleichbar mit den Maßen der Referenzmetho-
den, der generalized subspace-Methode, der spektralen Subtraktion und dem mini-
mum mean-square error log-spectral amplitude estimator. Die PI-Methode mit auto-
matischem Setzen der Kernvarianz erreicht bessere Ergebnisse als die ursprünglich
vorgeschlagene PI-Methode. Mit farbigem Rauschen sind the Qualitätsmaße von
PI höher als die Maße der generalized subspace-Methode, jedoch niedriger als die
Maße der zwei anderen Referenzmethoden. Die Spracherkennungsergebnisse für PI
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mit automatischem Setzen der Varianz sind besser als die Ergebnisse der generalized
subspace-Methode und ähnlich den Ergebnissen der spektralen Subtraktion. Der mi-
nimum mean-square error log-spectral amplitude estimator hingegen erreicht höhere
Erkennungsraten.
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Chapter 1
Introduction

In speech processing, speech is captured by a microphone in order to be stored or
transmitted [1]. The presence of noise is often inevitable. For instance, it may not
be possible to position a microphone close to the speaker or there is high-level sur-
rounding sound, such as in traffic or in the presence of other speakers. Noise sources
influence the quality and the intelligibility of transmitted speech. In telecommu-
nications, reduced quality introduces listener fatigue and decreased intelligibility
impedes the communication. For listeners with hearing aids the reduced intelligi-
bility in the presence of noise constitutes an even bigger problem. Noise is not only
problematic for humans, but also for man-to-machine communication. In telecom-
munications, the remote end may be equipped with an automatic speech recognition
(ASR) system, or a mobile phone may provide ASR for voice dialing. In both scenar-
ios, the recognition accuracy will most probably decrease if the signal is corrupted
by noise [2].

In order to alleviate these problems, noise reduction or speech enhancement meth-
ods are applied. Ideally, noise should be attenuated and the speech components
should be left unaffected. However, in practice, this is hardly possible. Noise reduc-
tion mostly comes along with speech distortion. Therefore, the objective of most
enhancement algorithms is to reduce noise while keeping speech distortion as low
as possible. Speech distortion mostly degrades the intelligibility. Unfortunately, the
ideal case, where both quality and intelligibility are improved, is not reached by
most speech enhancement algorithms.

Speech enhancement addresses many scenarios, depending on the noise type and
the number of available microphones. The noise source can either be stationary,
such as car noise, or non-stationary, such as babble noise. Noise can be correlated
with the speech signal or not. It can be additive or the signal can be distorted by
the reverberation in a room. Enhancement usually becomes easier when more than
one microphone is used. For instance, if a microphone can be positioned close to
the noise source, the signal can be used for adaptive noise canceling techniques [2].
Furthermore, microphone arrays allow for multichannel processing, which covers an
own class of algorithms such as beamforming techniques [1].

1
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In this work, we only consider uncorrelated stationary additive noise sources and
signals captured by one microphone, such that only the noisy signal is available.
As we only consider this noise condition, we will use the term speech enhancement
equivalently to noise reduction. Our main objective is to improve the speech qual-
ity, which forms the basis for the used evaluation methods. Good intelligibility is
desirable, however we do not explicitly focus on its optimization.

Most speech enhancement algorithms are applied after transformation of the time-
domain signal. Usually, small segments of the time-domain signal, so-called frames,
are transformed, for instance using the discrete Fourier transformation. The re-
sulting transform coefficients – or spectral bins for the discrete Fourier transform
(DFT) – are then modified according to the gain function of the given algorithm.
In the case of the DFT, the gain function is usually applied on the magnitude of the
complex-valued DFT coefficients. For inverse transformation to the time domain,
the phase is required. Most speech enhancement algorithms do not estimate the
phase of the clean speech signal but use the phase of the noisy speech signal. This
can affect the speech quality at low signal-to-noise ratios [2].

The method proposed in this thesis is inspired by subspace methods which make
use of principal component analysis (PCA) to attenuate noise components in the
signal. The initial idea was to investigate if noise reduction can be improved by using
non-linear techniques instead of (linear) PCA. In machine learning, the application
of kernel methods constitutes a simple possibility to make linear algorithms non-
linear. For this purpose, it must be possible to formulate the original algorithm
in terms of inner products of feature vectors, which is the case for PCA. Then the
inner product can be substituted by a non-linear kernel function and the algorithm
becomes non-linear. The non-linear extension of PCA is known as kernel PCA [3, 4].
The kernel implicitly transforms the data to the so-called feature space where the
data is processed. For de-noising, the processed data needs to be transformed back
to the original input space. This is problematic if the transformation is non-linear,
because there is possibly no one-to-one mapping between input and feature space.
The data samples in input space that correspond to processed samples in feature
space are called pre-images and the problem of finding the input space samples is
therefore called the pre-image problem [5, 3].

In this work, we use an iterative pre-image method where the pre-image is com-
puted by a linear combination of noisy feature vectors that are weighted by the kernel
– which serves as similarity measure – and by weights derived from the projection
step in kernel PCA. We show that the weights from the kernel PCA projection are
negligible in comparison to the kernel weights and that they can be omitted for
de-noising. Hence, de-noising is realized by the computation of linear combinations
of noisy feature vectors based on their similarity, which is measured by the kernel.
The proposed method is denoted pre-image iterations (PI) due to is derivation from
an iterative pre-image method.

The feature vectors are quadratic patches extracted from the complex-valued
spectro-temporal representation of speech utterances. Thus, we do not need the
phase of the noisy speech signal for the inverse transformation to the time domain.
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Furthermore, neighboring bins are processed jointly. This impedes the creation
of musical noise, which mainly arises if the gains applied on neighboring bins vary
largely. The feature extraction is similar to the feature extraction in image de-noising
techniques, for instance kernel PCA for image de-noising [6] and the non-local means
algorithm [7].

For evaluation, we use objective measures for speech quality, as the focus in this
work lies on improvement of the quality (rather than the intelligibility). In addition,
listening to the enhanced utterances and visual inspection of the spectrograms are
used to derive conclusions about the effects of the applied methods. Finally, an au-
tomatic speech recognition experiment was conducted to test whether enhancement
by pre-image iterations can improve the recognition ability of a pre-trained speech
recognizer in comparison to noisy data.

In the following sections we will first give a short overview on existing speech
enhancement methods. Then, we will discuss related work and highlight the scientific
contributions of this work. Finally, we will give an outline of the thesis.

1.1 Overview on Speech Enhancement Algorithms
A vast number of algorithms for speech enhancement has been proposed in literature
[2]. Among the first were spectral subtractive algorithms, which are probably the
simplest. Spectral subtractive algorithms are based on the assumption that noise
and speech are additive in the time domain. As a consequence, the speech and the
noise spectrum are additive. To obtain the clean spectrum, the noise spectrum is
estimated and subtracted from the noisy spectrum. The phase of the clean spectrum
cannot be directly derived from the noisy spectrum, this is usually circumvented by
subtracting magnitude values and using the phase of the noisy signal for synthesis.
Boll describes magnitude spectral subtraction in [8].

Magnitude spectral subtraction can be extended to the power spectral domain.
Based on the assumption that noise and speech are uncorrelated, the power spectrum
of the noisy signal can be expressed as the sum of the power spectrum of the clean
signal and the noise [2]. The inverse Fourier transform of the power spectrum is equal
to the auto-correlation sequence. Therefore, after transforming the power spectra,
spectral subtraction can also be executed in the correlation domain, as proposed by
Weiss et al. in [9]. Furthermore, power spectral subtraction can be generalized by
using other values for the exponent p instead of p = 2 for power spectral subtraction
and p = 1 for magnitude spectral subtraction [2].

A major shortcoming of spectral subtraction is that it depends strongly on the
accuracy of the noise estimate. If the noise estimate is poor, negative values occur
in the clean spectrum estimate. This can be tackled by setting the corresponding
frequency bins to zero. On the other hand, some bins may not be attenuated enough.
If the frequency locations of these bins change from frame to frame, this is perceived
as tonal artifacts of varying pitch. Due to the tonal quality this is referred to as
musical noise [10]. Musical noise is not unique to spectral subtractive algorithms,
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it generally occurs if the time-varying gain function applied on the spectrum is
poorly estimated by an enhancement algorithm. For spectral subtractive algorithms,
Berouti et al. [10] proposed over-subtraction with spectral flooring to reduce musical
noise. This algorithm creates less musical noise by filling the gaps between residual
noise peaks.

While spectral subtraction aims to assess the clean signal by subtracting the noise
estimate, the concept of statistical model-based algorithms is to find an estimate of
the clean signal by formulation as an optimization problem. Usually, this is done in
the spectral domain, i.e., either the complex or the magnitude DFT coefficients are
determined. The optimization is based on the assumption that the DFT coefficients
of speech and noise obey a certain probability density function that is incorporated
in the optimization process. Mostly, a Gaussian probability distribution is used
to model the real and imaginary parts of the clean DFT coefficients. The Gaus-
sian distribution, however, does not optimally model speech DFT coefficients if a
typical analysis window of 20-30 ms is used. Therefore the Gamma and Laplacian
distribution have been proposed for more accurate modeling [2].

Among the statistical model-based algorithms, McAulay and Malpass [11] pro-
posed maximum likelihood estimation to derive the clean DFT coefficients from
the noisy DFT coefficients. Ephraim and Malah [12] proposed an estimator for the
short-time spectral amplitude (STSA), i.e., the clean magnitude spectrum, based on
the minimum mean-square error (MMSE). In addition to the magnitude, Ephraim
and Malah also proposed estimators for the phase. These are, however, only optimal
if the phase does not influence the magnitude estimate, as the magnitude estimate
is already optimal. Besides the MMSE spectral amplitude estimator, other estima-
tors were proposed that minimize the MMSE of the log-magnitude spectra or the
pth power spectrum (similar as for spectral subtraction). Alternatively to maximum
likelihood and MMSE estimators, maximum a posteriori estimators were suggested
[2, 13].

One further method based on the minimization of an error criterion is Wiener
filtering [2, 14]. Generally, the goal is to find an optimal filter – the Wiener filter –
that minimizes the estimation error between the filtered signal and a desired signal.
Usually, the mean square of the estimation error is applied as optimization criterion.
In speech enhancement, Wiener filters were first used by Lim and Oppenheim [15].

Subspace methods for speech enhancement represent another class of algorithms.
They are based on linear algebra theory. The key idea is, that the clean speech
signal only exists in a subspace of the noisy Euclidean space. If the Euclidean space
can be decomposed into a subspace that contains noise and another subspace that
contains the clean signal plus noise, an estimate of the clean signal can be retrieved
by setting the components in the noise subspace to zero. The decomposition can
be achieved by using orthogonal matrix-factorization techniques such as singular
value decomposition (SVD) or eigenvalue decomposition (EVD), which is applied in
PCA. Dendrinos et al. [16] proposed to use SVD on a matrix composed of time-
domain amplitude values. The signal in the clean signal subspace is retrieved by first
computing a low-rank approximation of the matrix [2]. Then, the de-noised time
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Figure 1.1: General structure of subspace methods and many other speech enhancement
methods [2].

signal is synthesized by averaging the values in the approximation matrix. Ephraim
and Van Trees [17] performed EVD on the signal covariance matrix. The noisy signal
is projected to the clean signal subspace by applying a projection matrix composed
of the principal eigenvectors on the vector containing the noisy signal. In practice,
projecting the signal vector might not by sufficient for de-noising. Therefore, the
signal vector is usually further modified, e.g., by some gain function g1[n], . . . , g[n]N .
Figure 1.1 shows the structure of most subspace methods. Generally, this structure
also describes spectral subtractive algorithms. The main difference are the used
transformations and the criteria to derive the gain functions. While in subspace
methods the eigenvector matrix is used for transformation (this is also known as
Karhunen-Loève transformation), spectral subtractive algorithms apply the Fourier
transformation as forward transformation in the analysis block. In the synthesis
block the respective inverse transformations are applied.

For many algorithms the availability of an accurate noise estimate is crucial. The
simplest possibility is to estimate and update the noise when speech is absent using
voice activity detection (VAD). This approach is mainly suitable for stationary or
slowly changing noise types. In more realistic scenarios, such as in a restaurant,
continuous updates of the noise estimate are preferable. Therefore, algorithms that
continuously track the noise have been developed. These algorithms can be sum-
marized in the following three classes: minimal-tracking algorithms, time-recursive
averaging algorithms, and histogram-based algorithms [2].

Minimal tracking algorithms are based on the assumption that the power of the
noisy speech signal in individual frequency bands often decreases to the power of
the noise, even when speech is present. Consequently, a rough estimate of the noise
can be found by tracking the minimum of the noisy signal power in each frequency
band [2]. Two algorithms based on this assumption were proposed. The minimum
statistics algorithm [18, 19] tracks the minimum within a finite analysis window,
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while the algorithm in [20] continuously tracks the minimum without application of
a window. Both algorithms use the noisy signal power spectrum for the estimation.
As this rapidly fluctuates, recursive smoothing is applied. The noise estimate of
minimum statistics is biased towards values smaller than the mean noise power,
therefore a bias correction factor was proposed for compensation.

Time-recursive algorithms estimate the noise spectrum as an average of past noise
estimates and the current noisy signal spectrum. They make use of the observation
that noise and speech power are not uniformly distributed over the frequency range.
Therefore, each frequency bin of the noisy spectrum has a different effective signal-
to-noise ratio (SNR). Whenever the SNR of a specific frequency bin is low, the
estimate of the noise at this frequency bin is updated. Depending on the method,
the weights for updating are based either on the SNR of each frequency bin or
on the speech presence probability. One example of time-recursive averaging is
the improved minima-controlled recursive averaging (IMCRA) algorithm [21]. This
method incorporates speech presence probabilities in the spectral domain which we
use for comparison of the proposed VAD derived from pre-image iterations.

Histogram-based techniques use the histograms of individual frequency bands of
the noisy speech power spectrum for noise estimation. Usually, the histograms
have either one or two modes, depending on the examined frequency band and
other factors like signal duration and noisy type. In the two mode case, one mode
corresponds to low energy segments, e.g., where speech is absent. The other mode
corresponds to high energy segments such as voiced speech segments. Histogram-
based techniques make use of the observation that the low energy mode is often the
maximum value in the histogram. Therefore the maximum often indicates the noise
level. A simple implementation of this algorithm is as follows: The noisy speech
spectrum is smoothed to remove outliers. The histogram is created and the noise
level corresponding to the maximum histogram bin is retrieved. This noise estimate
is smoothed using first-order recursion [2].

Besides the noise estimate, many speech enhancement methods rely on SNR es-
timates. The a priori SNR denotes the true SNR between clean signal and noise,
i.e., before noise is added to the clean signal. With a posteriori SNR we refer to the
SNR between noisy signal and noise. A widely adopted approach to estimate the a
priori SNR is the decision-directed approach [12], that derives the a priori SNR from
a weighted average of the past a priori SNR estimate and the present a posteriori
SNR estimate.

For a detailed description of speech enhancement methods, an extensive review is
provided in [2].

1.2 Relation to Other Work
PCA provides the basis for this thesis. For speech de-noising, PCA has been applied
in the context of subspace methods. Subspace methods have been proposed for white
noise by Ephraim and Van Trees in [17], where they derive two estimators for the
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clean signal that minimize the speech distortion while keeping the level of the resid-
ual noise below a certain threshold (in time and frequency domain, respectively).
Subspace methods are analyzed in the following theses: In [22], Hansen summarizes
different estimators for the gain functions in a unified notation and analyzes their
practical behavior. He discusses orthogonal rank-revealing matrix decomposition
techniques and proposes a recursive decomposition algorithm that is based on up-
dates after each new sample instead of frame-by-frame processing (as for instance
applied in the algorithm proposed by Ephraim and Van Trees). This algorithm
is numerically stable and achieves as good quality as the SVD-algorithm used for
comparison. The subspace method by Ephraim and Van Trees has been generalized
to colored noise by Hu in [23]. He proposes the generalized subspace method with
built-in pre-whitening and derives linear estimators for the gain function in time and
frequency domain. The suggested estimators lead to good performance on sentences
of the TIMIT database corrupted by speech-shaped and multi-talker babble noise.
In [24], Hermus derives an upper bound for the degree of de-noising in terms of
SNR and proposes noise-shaping according to the MPEG-1 Layer 1 masking model,
that aims to minimize speech distortion by only removing noise above the masking
threshold of the speech signal. ASR is performed on utterances enhanced by differ-
ent subspace methods and a performance gain in comparison to the noisy data is
shown.

The kernel PCA and the pre-image iteration method proposed in this thesis are
related to methods in both speech and image processing. Although subspace meth-
ods serve as idea for the proposed pre-image iteration method, there are substantial
differences. Pre-image iterations are based on complex-valued features extracted
from the sequence of short-time Fourier transforms, while subspace methods gen-
erally perform enhancement by transforming the time-domain signal and applying
a gain function to the transform coefficients (as illustrated in Figure 1.1). Kernel
PCA has been used in speech processing to extract robust features from reverberant
speech in order to improve speech recognition rates [25]. This approach does not
tackle the pre-image problem, as kernel PCA is used to extract the features which
are directly fed into the speech recognizer, so no pre-image has to be computed.

In image processing, kernel PCA has been proposed to de-noise images [3, 6].
Mika et al. proposed an iterative solution to the pre-image problem when a Gaus-
sian kernel is used and demonstrated its application to image de-noising [3]. The
experiments are based on the USPS database [26], which contains small images of
handwritten digits. Kernel PCA can also be applied to model images, i.e., for de-
noising or compression. This, however, is only possible with a limited amount of
data as the kernel grows quadratically with the number of training samples and
manipulation and storage become problematic with a large amount of data. Kim
et al. [6] proposed an iterative algorithm to apply kernel PCA on tasks involving a
large number of training examples. They reported experiments on de-noising and
super-resolution applications with a performance comparable to existing methods..

It can be shown that pre-image iterations are related to non-local neighborhood
filtering, another de-noising technique used in image processing. Non-local neigh-
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borhood filtering is based on the assumption that it can be beneficial to process
a signal value – i.e., the intensity of a pixel in the case of image de-noising – in
a similar way as signal values with similar neighborhoods. While other de-noising
algorithms often compute the value of the de-noised pixel solely based on the values
of its surrounding pixels, non-local filters average over pixels that are located all over
the image but have a similar neighborhood. This approach is favorable if images
contain repetitive patterns such as textures [27, 7]. The non-local means algorithm
is based on the same idea of exploiting neighborhoods [7]. With a specific choice
of neighborhoods and processed sub-regions, pre-image iterations are equivalent to
the first iteration of the non-local means algorithm except of the complex-valued
feature vectors.

Although proven to be successful in image processing, non-local neighborhood
filtering has only recently gained attention in speech processing. In [28], Talmon
proposes the usage of non-local diffusion filters – which are related to non-local
neighborhood filters – to suppress transient noise components in speech. However,
in difference to pre-image iterations, the filter is not directly applied for de-noising.
Non-local diffusion filters are used to gain an estimate of transient noise bursts,
that is robust due to averaging over several instances of transients. This estimate
is used as input for a noise suppression algorithm, jointly with an estimate for the
background noise.

1.3 Scientific Contributions and Publications
This thesis covers the following contributions:

• Kernel PCA is applied for speech enhancement in the complex spectral domain.
It is shown that additive white Gaussian noise is significantly reduced. The
enhanced signals are not affected by musical noise, however, a buzz-like artifact
occurs.

• We propose pre-image iterations derived from kernel PCA to de-noise speech
corrupted by stationary white noise. This method is not affected by the buzz-
like artifact in kernel PCA and free from musical noise. We extend the frame-
work by automatic determination of the kernel variance, which serves as tuning
parameter. This is abbreviated as PID – PI with determination of the kernel
variance. Furthermore, we generalize pre-image iterations to the application
on speech corrupted by stationary colored noise. We call this PIDF – PI
with frequency-dependent determination of the kernel variance. The perfor-
mance is evaluated in terms of objective quality measures. For white noise, the
achieved scores are similar to the scores of the reference methods, namely the
generalized subspace method, spectral subtraction and the MMSE log-STSA
estimator. For colored noise, the scores achieved by PIDF are higher than the
scores of the generalized subspace method but lower than the scores of the
other two reference methods.
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• A voice activity detector in the spectral domain is derived from pre-image
iterations. The VAD can either be derived from noisy or enhanced signals. We
show that the VAD can be used to derive a mask for musical noise suppression
in enhanced speech. The application on enhanced signals allows for post-
processing of speech enhanced by arbitrary enhancement methods.

• We perform ASR on the utterances enhanced by the proposed pre-image it-
eration methods. Compared to the noisy signals and to the signals enhanced
by the generalized subspace method we obtain significantly better recognition
rates with PID and PIDF in almost all SNR conditions.

The contributions in this thesis are divided between the author and co-workers as
follows: The experimental work on speech enhancement for quality improvement
was all conducted by the author. Several ideas arose from discussion with Franz
Pernkopf and – to a minor amount – with Gernot Kubin. The work on ASR is joint
work with Juan A. Morales Cordovilla, who contributed the trained speech models
and the evaluation system, while the phonetic transcriptions and the grammar were
provided by the author. The presented recognition results are from experiments
conducted by the author. The following articles have been published during the
course of this thesis:
• Christina Leitner, Franz Pernkopf, and Gernot Kubin, “Kernel PCA for speech

enhancement,” 12th Annual Conference of the International Speech Commu-
nication Association (Interspeech), pp. 1221–1224, 2011.

• Christina Leitner and Franz Pernkopf, “The pre-image problem and kernel
PCA for speech enhancement,” in Advances in Nonlinear Speech Processing,
vol. 7015 of Lecture Notes in Computer Science, pp. 199–206. 2011.

• Christina Leitner and Franz Pernkopf, “Speech enhancement using pre-image
iterations,” International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 4665–4668, 2012.

• Christina Leitner and Franz Pernkopf, “Musical noise suppression for speech
enhancement using pre-image iterations,” International Conference on Sys-
tems, Signals and Image Procesing (IWSSIP), pp. 478–481, 2012.

• Christina Leitner and Franz Pernkopf, “Suppression of musical noise in en-
hanced speech using pre-image iterations,” 20th European Signal Processing
Conference (EUSIPCO), pp. 345–349, 2012.

• Christina Leitner and Franz Pernkopf, “Extension of pre-image speech de-
noising by voice activity detection using a bone conductive microphone,” In-
ternational Workshop on Acoustic Signal Enhancement (IWAENC), 2012.

• Christina Leitner and Franz Pernkopf, “Generalization of pre-image iterations
for speech enhancement,” International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 7010–7014, 2013.
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1.4 Outline of the Thesis
This thesis is organized as follows: In Chapter 2, we give a short introduction
on kernel methods and the derivation of kernel PCA. The transformation of the
processed samples in feature space back to the original input space is addressed
by discussion of the pre-image problem. An overview of solutions to the pre-image
problem is provided and several pre-image methods are compared experimentally
for de-noising of synthetic data.

In Chapter 3, the application of kernel PCA for speech enhancement is presented.
For de-noising, different pre-image methods are compared. Pre-image iterations
derived from kernel PCA are proposed. Techniques to automatically determine
the kernel variance are introduced and employed to generalize PI to colored noise.
From the convergence behavior of pre-image iterations, information about the voice
activity in the spectro-temporal representation can be derived. We show that this
information can be used to perform musical noise suppression as post-processing of
enhanced speech.

In Chapter 4, the airbone and the Noizeus databases used for the experiments are
described. Evaluation is performed by state-of-the-art objective quality measures
and by ASR. The applied measures – the perceptual evaluation of speech quality
(PESQ) measure and the measures of the perceptual evaluation methods for audio
source separation (PEASS) toolbox – are described and details about the speech
recognizer are provided. Furthermore, the used reference methods are explained.

In Chapter 5, the results of kernel PCA, the variants of PI and the musical noise
suppression methods in terms of objective quality measures and ASR are presented
and discussed.

Chapter 6 concludes the thesis and provides a perspective on future work.



Chapter 2
Kernel Methods and the Pre-Image
Problem

Kernel methods have gained considerable interest since the 1990ies [29]. One popular
example are support vector machines. Kernels are defined as inner products in a
so-called feature space. Kernel methods involve two processing steps: First, the
data is mapped to a (possibly high-dimensional) feature space, then the algorithm
at hand is executed in this feature space [4]. However, generally it is not necessary
to compute the mapping of the data vectors. It is sufficient to evaluate the kernel
of two data vectors in input space instead.

Given a set X of input samples xi, a kernel – or kernel function – is defined as
follows

k : X × X → R (2.1)
(xi,xj) 7→ k(xi,xj),

where the kernel k(·, ·) returns a scalar that describes the similarity of the samples
xi and xj. A simple example for such a similarity measure is an inner product. For
example, the canonical inner product between two sample vectors is defined as

〈xi,xj〉 =
N∑
l=1

xilxjl = xTi xj, (2.2)

where xil is the lth entry of xi and N is the dimension of xi.
To compute the data vectors mapped to feature space F , let us define the map

Φ : X → F (2.3)
x 7→ Φ(x).

Now we are able to define the kernel as a similarity measure based on the inner
product in F

k(xi,xj) = Φ(xi)TΦ(xj). (2.4)

11
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Figure 2.1: Binary classification problem with two classes (crosses and circles). In
the two-dimensional input space the data is not linearly separable. Af-
ter mapping to the three-dimensional feature space by the non-linear map
Φ(x) = (x2

1, x
2
2,
√

2x1x2) the data is separable by a hyperplane (figure from
[4]).

By means of this relation, the inner product between the data vectors mapped to
feature space can be evaluated by computing the kernel between the data vectors
in input space. This is often referred to as the kernel trick [4]. For instance,
assume the mapping Φ(x) = (x2

1, x
2
2,
√

2x1x2) for the problem in Figure 2.1. The
inner product in F is Φ(xi)TΦ(xj) = x2

i1x
2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2. This can

equivalently be expressed by the kernel k(xi,xj) = (xTi xj)2 in input space, i.e.,
(xTi xj)2 = (xi1xj1 + xi2xj2)2 = x2

i1x
2
j1 + 2xi1xj1xi2xj2 + x2

i2x
2
j2 = Φ(xi)TΦ(xj). As

a consequence, any algorithm that can be formulated in terms of inner products
can be generalized by substituting inner products with kernels. The freedom to
choose the kernel and, equivalently, the map Φ allows for adaption to a wide class
of problems. Typically the map Φ will be non-linear to generalize to non-linear
problems. The simple example in Figure 2.1 illustrates how two datasets that are
not linearly separable in input space become separable after a non-linear mapping to
feature space. It has to be noted that in practice, the mapping will not be computed
explicitly and often is even not known but only the kernel will be chosen according
to the problem at hand. Usually the kernel is selected empirically.

2.1 Kernel Principal Component Analysis1

PCA is a widely used technique applied for dimensionality reduction, lossy data
compression, feature extraction and data visualization [29, 31]. It is also referred to
as the Karhunen-Loève transformation.

PCA is an orthogonal transformation of the coordinate system of the input data,
i.e., the data is projected onto so-called principal axes. The new coordinates are

1 This section is partly based on [30].
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called principal components. Often the structure in data can be described with suf-
ficient accuracy while using only a small number of principal components. This gives
rise to applications like data compression where only components of large variance
are retained as they are assumed to sufficiently cover the important information in
the data. Similarly, for de-noising components with low variance are dropped as
they are assumed to originate from noise [4, 32, 3].

PCA finds the principal axes by diagonalizing the estimated covariance matrix

S = 1
M

M∑
i=1

xixTi , (2.5)

of a set of M data samples xi ∈ RN , with i = 1, . . . ,M , assuming zero mean∑M
i=1 xi = 0 or, equivalently, centered samples. This leads to the eigenvalue equation

λlul = Sul, (2.6)
which has to be solved for eigenvalues λl ≥ 0 and nonzero eigenvectors ul ∈ RN \
{0}, where l = 1, . . . , N and the eigenvectors are normalized, i.e., uTl ul = 1. The
size of an eigenvalue λl corresponding to an eigenvector ul is equivalent to the
amount of variance in the direction of ul. Therefore, the principal components
corresponding to the n largest eigenvalues cover the largest amount of variation in
the data. Substituting (2.5) into (2.6) leads to

λlul = 1
M

M∑
i=1

(xTi ul)xi. (2.7)

This denotes a projection of the eigenvectors ul with λl 6= 0 onto the samples xi.
Consequently, all eigenvectors lie in the span of xi, . . . ,xM , i.e., all ul are linear
combinations of xi and can be written as expansions of xi [29].

As PCA is linear, its ability to retrieve the structure within a given data set is
limited. If the principal components of variables are non-linearly related to the input
variables, a non-linear feature extractor is more suitable. This is realized by kernel
PCA [4, 3].

To derive kernel PCA from standard PCA, let us assume a mapping Φ(x) from
input space X to feature space F , as given in (2.3). As before, we assume that the
data is centered in feature space ∑M

i=1 Φ(xi) = 0. In feature space, the estimated
covariance matrix is

C = 1
M

M∑
i=1

Φ(xi)Φ(xi)T . (2.8)

To diagonalize the covariance matrix we have to solve the eigenvalue equation

λkvk = Cvk (2.9)

for eigenvalues λk ≥ 0 and non-zero eigenvectors vk ∈ F \ {0}, vTk vk = 1. Equiv-
alently to (2.7), all eigenvectors vk that solve this equation lie in the span of
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Φ(x1), . . . ,Φ(xM). Therefore, each eigenvector vk can be written as linear com-
bination of the mappings Φ(xi) using the coefficients αk1, . . . , αkM

vk =
M∑
i=1

αkiΦ(xi). (2.10)

Substituting(2.8) and (2.10) into (2.9) leads to

λk
M∑
i=1

αkiΦ(xi) = 1
M

M∑
j=1

Φ(xj)Φ(xj)T
M∑
i=1

αkiΦ(xi) (2.11)

for all k = 1, . . . ,M . To enable an expression in terms of kernel functions we
multiply both sides by Φ(xk)T such that

λk
M∑
i=1

αkiΦ(xk)TΦ(xi) = 1
M

M∑
j=1

Φ(xk)TΦ(xj)
M∑
i=1

αkiΦ(xj)TΦ(xi) (2.12)

for all k = 1, . . . ,M . The multiplication of the mappings Φ(xi)TΦ(xj) can be
expressed as kernel in terms of input samples k(xi,xj) = Φ(xi)T ·Φ(xj). Now, let
us define an M ×M matrix K called kernel matrix or Gram matrix with the entries

Kij = k(xi,xj). (2.13)

Then, Equation (2.12) can be reformulated as

MλkKαk = K2αk, (2.14)

where αk is the kth eigenvector with the entries αk1, . . . , αkM . The eigenvectors of
this system equivalently solve the eigenvalue problem

Mλkαk = Kαk. (2.15)

To find the eigenvectors αk the matrix K has to be diagonalized. Let us denote
the eigenvalues of K in the following by λ1, . . . , λM (which are equivalent to the
eigenvalues Mλk solving (2.15)). By requiring a normalization of the eigenvectors
in feature space, i.e., vTk vk = 1, we can derive the normalization condition for the
eigenvectors αk

1 = vTk vk =
M∑
i=1

M∑
j=1

αkiαkjΦ(xi)TΦ(xj) (2.16)

=
M∑
i=1

M∑
j=1

αkiαkjKij = αT
kKαk = λkα

T
kαk,

using (2.10) and (2.15).
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The projection of a test sample x onto the eigenvectors vk in F can then be
determined as

βk = (vk)TΦ(x) =
M∑
i=1

αkiΦ(xi)TΦ(x) =
M∑
i=1

αkik(xi,x). (2.17)

In summary, to project x onto the eigenvectors vk in F the following steps are
required: (i) compute the kernel matrix K, (ii) compute its eigenvectors αk and
normalize them using (2.16), (iii) project the data sample x using (2.17). The
computation only requires evaluation of kernels, the evaluation of the map Φ(x) is
not necessary.

2.1.1 Centering
Until so far, we have assumed that the data in feature space is centered. This can
easily be ensured in input space X , but is harder to achieve in feature space F , as
we usually do not explicitly compute the mapped data and therefore the quantity∑M
i=1 Φ(xi) cannot be assessed. However, as shown in [4, 32] centering can be done

by modifying the kernel matrix K such that the centered kernel matrix K̃ is

K̃ = K− 1MK−K1M + 1MK1M , (2.18)

where 1M is an M ×M matrix with all entries equal to 1/M . The eigenvectors αk

can then be computed by diagonalizing K̃ instead of K.

2.1.2 Kernel PCA for De-noising
To de-noise data, we assume that the directions of eigenvectors corresponding to
small eigenvalues only contain information about noise, as small eigenvalues denote
small variances. In contrast, eigenvectors corresponding to large eigenvalues are
assumed to contain relevant information, e.g., speech. Therefore, the data sample
Φ(x) is projected onto the eigenvectors vk corresponding to the n largest eigenvalues
while the directions of small eigenvalues are dropped to remove the noise [3]. To
reconstruct the mapping Φ(x) after projection we define a projection operator Pn
that is given as

PnΦ(x) =
n∑
k=1

βkvk, (2.19)

where the eigenvectors are assumed to be ordered by decreasing eigenvalue size.
Consequently, PnΦ(x) is a linear combination of the first n eigenvectors vk using
the projections βk of (2.17) as weights. In case of using all vk, the data sample after
projection equals the original data sample PnΦ(x) = Φ(x).

The drawback of de-noising in feature space is that in common applications the de-
noised data is required in input space. The problem of finding the samples in input
space that map to the projected samples in feature space is called the pre-image
problem. This is addressed in the next section.
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X Φ

Ψ

F

Φ(X )

Figure 2.2: The pre-image problem: Points like Ψ, which lie in the span of mapped
input samples, are not necessarily images of input samples, i.e., they do not
belong to the subspace Φ(X ) (figure after [4]).

2.2 Kernel PCA and the Pre-image Problem
With kernel methods, generally all computations in feature space F are done implic-
itly. Consequently, the solutions of kernel algorithms are expressed as expansions
Ψ in terms of mapped input data – such as the eigenvectors vk for kernel PCA (c.f.
(2.10)),

Ψ =
M∑
i=1

αiΦ(xi). (2.20)

The map Φ is usually non-linear and therefore not necessarily invertible. Hence, it
cannot generally be assured that each expansion in feature space Ψ has a pre-image
under Φ, i.e., a sample z ∈ X such that Φ(z) = Ψ. This is illustrated in Figure
2.2). The pre-image problem has widely been studied and several solutions have
been proposed [3, 33, 34, 35, 36, 37].

If the pre-image exists and if the kernel k(·, ·) is an invertible function fk then the
pre-image can be computed by

z =
N∑
i=1

f−1
k

 M∑
j=1

αjk(xj, ei)
 ei (2.21)

where e1, . . . , eN is any orthonormal basis of the input space [4, 32]. This is based on
the fact that Φ(z) is an expansion of the mappings in F as given in (2.20) and that z
can be written as expansion of the orthonormal basis vectors, i.e., z = ∑N

i=1(zTei)ei.
Equation (2.21) returns the exact pre-image, because z is given by

z =
N∑
i=1

f−1
k

 M∑
j=1

αjk(xj, ei)
 ei =

N∑
i=1

f−1
k

 M∑
j=1

αjΦ(xj)TΦ(ei)
 ei (2.22)

=
N∑
i=1

f−1
k

(
Φ(z)TΦ(ei)

)
ei =

N∑
i=1

f−1
k (k(z, ei)) ei =

N∑
i=1

(zTei)ei.
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Figure 2.3: Visualization of the feature map Φ : X → RX ,x 7→ k(·, x) using a Gaussian
kernel. Each sample in feature space Φ(x) is represented by a function
sitting on the sample x (figure from [4]).

One example for the computation of the pre-image based on an invertible function
are polynomial kernels

k(xi,xj) = (xTi xj + c)d, where c ≥ 0 and d odd. (2.23)

However, in many cases no pre-image exists. For example, let us define a map Φ from
X into the space of functions RX := {f : X → R}, i.e., Φ : X → RX ,x 7→ k(·,x).
This means that each sample is turned into a function on the domain X . Under
this map, pre-images only exist for functions in feature space that can be written as
k(·,x). To give a specific example, consider the Gaussian kernel

k(xi,xj) = exp
(
−‖xi − xj‖2

c

)
, (2.24)

where c is the kernel variance. Using the map Φ, each input is mapped to a Gaussian
centered on this point (see Figure 2.3). An arbitrary expansion of Gaussians has
no pre-image (except of trivial cases with one term), because a Gaussian cannot be
written as linear combination of Gaussians centered at different points, but only a
Gaussian would have an exact pre-image with this map [4].

The next section summarizes methods proposed in the literature that aim to
solve the pre-image problem for Gaussian kernels and kernel PCA with regard to
de-noising. Subsequently, an experimental evaluation on a subset of methods using
synthetic data is given.

2.2.1 Overview on Pre-Image Methods
In the case of applying kernel PCA with a Gaussian kernel, one solution for the
pre-image problem is to approximate the pre-image z by minimizing the Euclidean
distance between Φ(z) and the projection in feature space PnΦ(x)

ρ(z) = ‖Φ(z)− PnΦ(x)‖2. (2.25)

Mika et al. [3] showed that for kernels that satisfy k(x,x) = 1 for all x ∈ X (such as
the Gaussian kernel) the minimization of ρ(z) can be done by fixed point iterations.
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To minimize ρ(z), we reformulate (2.25) to

ρ(z) = Φ(z)TΦ(z)− 2Φ(z)TPnΦ(x) + (PnΦ(x))TPnΦ(x) (2.26)

= Φ(z)TΦ(z)− 2Φ(z)T
n∑
k=1

βkvk + Ω, (2.27)

by using (2.19) and the definition of βk in (2.17). The terms independent of z are
replaced by Ω. Expanding the eigenvector vk and substituting the inner products
of mappings by kernels leads to

ρ(z) = Φ(z)TΦ(z)− 2Φ(z)T
n∑
k=1

βk
M∑
i=1

αkiΦ(xi) + Ω (2.28)

= k(z, z)− 2
n∑
k=1

βk
M∑
i=1

αkik(z,xi) + Ω. (2.29)

As the term k(z, z) is constant and Ω independent of z, we need to maximize

J =
n∑
k=1

βk
M∑
i=1

αkik(z,xi) =
M∑
i=1

γik(z,xi), (2.30)

where γi = ∑n
k=1 βkαki and ∑M

i=1 γiΦ(xi) = ∑n
i=1 βkvk equals the projection PnΦ(x)

in feature space. For kernels of the form k(‖z − xi‖2), e.g., Gaussian kernels, the
gradient with respect to z evaluates to

∇zJ = 2 ·
M∑
i=1

γik
′(‖z− xi‖2)(z− xi), (2.31)

where k′(·, ·) denotes the derivative of k(·, ·). Setting the above equation to zero
leads to the extremum

z =
∑M
i=1 γik

′(‖z− xi‖2)xi∑M
i=1 γik

′(‖z− xi‖2)
. (2.32)

For the Gaussian kernel this results in

z =
∑M
i=1 γi exp(−‖z− xi‖2/c)xi∑M
i=1 γi exp(−‖z− xi‖2/c)

. (2.33)

The Gaussian kernel is smooth and therefore we assume that there is a neighborhood
around the extremum of (2.30) where the denominator of (2.33) is 6= 0. Hence, we
can execute (2.33) iteratively such that

zt+1 =
∑M
i=1 γik(zt,xi)xi∑M
i=1 γik(zt,xi)

, (2.34)

where t denotes the iteration index. The weighting coefficients γi contribute infor-
mation about the projection and the kernel provides a weight corresponding to the



2.2. Kernel PCA and the Pre-image Problem 19

similarity between the pre-image z and the data samples xi. Note that the resulting
pre-image z is always a linear combination of the input data xi. This algorithm
is sensitive to initialization which, however, can be tackled by reinitializing with
different values.

Several variations of this iterative pre-image solution were proposed. Kwok and
Tsang [33] suggested to use normalized weighting coefficients in (2.34) to account
for centering

γ̃i = γi + 1/M(1−
M∑
m=1

γm). (2.35)

Abrahamsen and Hansen [34] further extended the method by a regularization term

zt+1
j =

2
c

∑M
i=1 γ̃ik(ztj,xi)xi + ηxj

2
c

∑M
i=1 γ̃ik(ztj,xi) + η

, (2.36)

where η is a non-negative regularization parameter and xj is the noisy sample. They
show that the method is more stable than the method of Mika et al.

In our experiments, we compare these three methods. In addition, we test the
non-iterative pre-image method by Honeine and Richard [35], that preserves inner
product measures in both spaces using least square techniques. A pre-image is
computed by

zj = X(XTX)−1(XTX− ηK−1)γ̃, (2.37)

where X = [x1 x2 . . . xM ], η is a regularization parameter and γ̃ = [γ̃1 γ̃2 . . . γ̃M ]T
with γ̃i from (2.35). This method does not require the computation of distances but
relies only on inner products in input space and on kernel values in feature space.
Furthermore it is numerically stable.

Further suggested methods comprise a non-iterative method of Kwok and Tsang
[33] that finds the pre-image based on distance constraints in the feature space.
Rathi et al. [36, 38] relaxed the method of Mika et al. by an approximation that
allows for direct computation without iterations. Zheng et al. [37] proposed a two-
step method, where the pre-image is modeled by a weighted combination of the data
samples and the weights are learned by an optimization function that incorporates
convexity constraints and a penalty function.

2.2.2 Experimental Comparison of Pre-Image Methods2

To compare the behavior of different pre-image methods, four methods were tested
on synthetic data sets for de-noising with and without centering similar as in [35].
The following data sets were used:

• The square dataset consists of samples on a 1 × 1 square, where the samples
for each edge are drawn from a uniform distribution and corrupted by additive
white Gaussian noise of variance 0.01.

2 This section is based on [39].
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Centered

Dataset n c Noisy IP NIP RIP NP
Square 6 0.25 0.1417 ± 0.0005 0.1242 ± 0.0005 0.1173 ± 0.0004 0.1168 ± 0.0004 0.1168 ± 0.0004
Sine 15 0.10 0.0711 ± 0.0005 0.0629 ± 0.0005 0.0600 ± 0.0004 0.0602 ± 0.0004 0.0602 ± 0.0004
Spiral 20 0.10 0.1004 ± 0.0005 0.0907 ± 0.0005 0.0887 ± 0.0004 0.0875 ± 0.0004 0.0875 ± 0.0004
Complex 6 0.25 0.1420 ± 0.0005 0.1233 ± 0.0005 0.1164 ± 0.0004 0.1161 ± 0.0004 0.1161 ± 0.0004

Uncentered

Dataset n c Noisy IP NIP RIP NP
Square 6 0.25 0.1417 ± 0.0005 0.1227 ± 0.0004 0.1233 ± 0.0004 0.1198 ± 0.0004 0.1198 ± 0.0004
Sine 15 0.10 0.0711 ± 0.0005 0.0603 ± 0.0004 0.0603 ± 0.0004 0.0603 ± 0.0004 0.0603 ± 0.0004
Spiral 20 0.10 0.1004 ± 0.0005 0.0899 ± 0.0004 0.0900 ± 0.0004 0.0880 ± 0.0004 0.0880 ± 0.0004
Complex 6 0.25 0.1420 ± 0.0005 0.1225 ± 0.0004 0.1230 ± 0.0004 0.1196 ± 0.0004 0.1196 ± 0.0004

Table 2.1: RMSE and standard deviation for different pre-image methods on synthetic
data. n denotes the number of components used for projection and c is the
variance of the Gaussian kernel.
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Figure 2.4: De-noising with different pre-image methods on centered (top) and uncen-
tered (bottom) data of the square dataset with the kernel variance c = 0.25
and n = 6 components for projection. The green lines illustrate the distance
between de-noised (red) and noisy samples.
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• The sine dataset is specified by samples with the coordinates (x, sin(2πx)) with
x uniformly distributed on the interval [0, 4π] plus additive white Gaussian
noise of variance 0.0025.

• The spiral dataset is given by samples with the coordinates (At cos(t), At sin(t))
where A = 0.1 and t is uniformly distributed on the interval [0, 4π]. White
Gaussian noise of variance 0.005 is added.

• The complex-valued square dataset is created in a similar way as the square
dataset, however here the real part of the complex number corresponds to the
first coordinate and the imaginary part to the second.

The following pre-image methods are compared on all datasets:

1. Iterative pre-imaging (IP) in (2.34).

2. Normalized iterative pre-imaging (NIP) : IP with normalization of the weight-
ing coefficients as given in (2.35).

3. Regularized iterative pre-imaging (RIP) in (2.36).

4. Non-iterative pre-imaging (NP) (2.37).

For evaluation the root mean squared error (RMSE) between reconstructed samples
and noise-free reference samples is computed. For each dataset the RMSE is av-
eraged over 100 realizations. Table 2.1 shows selected results for the four datasets
with and without centering using the IP, NIP, RIP, and the NP method. Figure 2.4
illustrates the de-noising and projection onto 6 principal components for one real-
ization of the square dataset. Figure 2.5 shows de-noising for the sine and the spiral
dataset with projection on 15 and 20 components, respectively (plots for uncentered
data are omitted due to their similarity).

From the experiments, it can be concluded that NIP and RIP yield the best results.
In contrast to IP, these methods perform normalization of the weighting coefficients
which seems to be necessary to achieve good reconstruction quality of the pre-image.
NP does not perform as good. It has to be noted that our experiment is different
from [35], because we use the same data for training and testing – i.e., for projection
and pre-image reconstruction – while they use different datasets. We encountered no
problems of stability of the iterative algorithms, as we always use the noisy sample
for initialization which seems to be very robust. Since the pre-image methods are
used on complex-valued data in the case of speech enhancement we performed one
further experiment on the complex-valued square dataset. The results are shown in
Table 2.1 and illustrated in Figure 2.6. The example demonstrates that the pre-
image methods can be applied to complex-valued data as well.

In literature, centering is noted to be important for kPCA. In our experimental
setup with synthetic data we could, however, not observe any significant difference
in the performance with and without centering.
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Figure 2.5: De-noising of the sine dataset with the variance c = 0.1 and n = 15 compo-
nents for projection, and the spiral dataset with c = 0.1 and n = 20. For
both cases centering is applied.
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Figure 2.6: De-noising of the complex-valued square dataset with c = 0.25 and n = 6,
with and without centering.



Chapter 3
Kernel PCA and Pre-Image Iterations for
Speech Enhancement

PCA has been successfully applied for speech enhancement in the context of subspace
methods [17, 40]. Kernel PCA – the non-linear extension of PCA – has first been
applied to de-noise images [3, 6]. In speech processing, kernel PCA has been used
to extract robust features from reverberant speech for ASR [25].

In this chapter, we introduce the application of kernel PCA for speech enhance-
ment. We apply kernel PCA on feature vectors extracted from complex-valued
spectral data. As we are interested in the enhanced signal in time domain, the
pre-images of the processed samples have to be found. We first compare different
pre-image methods and propose a combined method, which results in fewer arti-
facts in the time domain signal. We observed that the number of components n
used in the projection step of kernel PCA and the weighting coefficients γi have
only a minor influence on the result of the de-noising process. The experiments
indicate that de-noising does not result from the projection operation but rather
from the pre-image computation. These observations form the basis for our method
called pre-image iterations for speech enhancement. PI constitute a simplification of
an iterative pre-image method while the enhancement performance is maintained.
De-noising of a feature vector is achieved by forming linear combinations of noisy
feature vectors that are weighted by a kernel measuring the similarity between the
currently enhanced vector and the other noisy feature vectors.

We show that pre-image iterations are related to non-local neighborhood filtering
and to the non-local means algorithm which have been applied for de-noising in
image processing [7, 27, 41, 42]. Recently, these methods have gained attention for
speech enhancement, namely for the application of transient noise suppression in
speech [43]. Finally, we use the knowledge derived from the convergence behavior of
pre-image iterations for VAD in the spectral domain. This can be used to derived a
mask for musical noise suppression in enhanced speech.

23
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3.1 Time-Frequency Processing
Before describing the experimental framework in detail, we will provide a general dis-
cussion of time-frequency processing, which is often applied in audio and speech pro-
cessing applications. By time-frequency processing, we mean that a two-dimensional
representation is created from the time-domain signal, with one dimension corre-
sponding to time and the other to frequency – the graphical representation of the
magnitude is known as spectrogram. The time-frequency representation is modi-
fied according to the respective signal processing application, then the processed
time-domain signal is reconstructed [44, 45, 46, 47].

Time-frequency processing is characterized by three steps: In the analysis step,
the time-domain signal is transformed using a transformation such as the short-time
Fourier transformation. In the modification step, modifications are applied to the
resulting time-frequency representation. Finally, in the synthesis step, the inverse of
the modified short-time Fourier transform (STFT) is computed and the time-domain
signal is reconstructed from the resulting frames by either the filter bank summation
method or by overlap-add (OLA) synthesis [44, 45, 2, 48]. In speech enhancement,
typically the overlap-add synthesis is applied.

Let us consider a discrete-time signal x[n], where n denotes the time index. In
the analysis step, time segments – so-called frames – are extracted from the signal,
windowed, and the discrete STFT is computed by application of

X[n, k] =
∞∑

m=−∞
x[m]w[n−m]e−jωkm, (3.1)

where ωk = 2πk
K

, k is the index of the discrete frequencies, K is the number of Fourier
coefficients (or frequency bins), and w[n] is the analysis window [44, 2]. In speech
processing, usually a Hamming window with a duration of 20-40 ms is applied [47].

In the modification step, the frequency representation is modified, i.e., the values
of the frequency bins are changed, e.g., by a gain function. Mostly, modifications
are only applied to the magnitude values and for synthesis the phase of the original
signal is used.

In the synthesis step, the inverse short-time Fourier transformation is applied on
the modified spectrum Ỹ [n, k] of each frame and the resulting frames are combined
by overlap-add synthesis [44, 45, 49]. For an explanation of the overlap-add method,
assume that in the analysis step the STFT is computed every R samples and that no
modification is applied. Let us denote the STFTs by X[rR, k] [2, 44]. The inverse
discrete STFT for one time frame is

yr[n] = 1
K

K−1∑
k=0

X[rR, k]ejωkn, (3.2)

which is equivalent to
yr[n] = x[n]w[rR− n]. (3.3)
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The frames yr[n] are summed in an overlapping manner such that

y[n] =
∞∑

r=−∞
yr[n] = x[n]

∞∑
r=−∞

w[rR− n]. (3.4)

If the window is chosen such that the summation over the window in (3.4) equals a
constant, the original signal x[n] can be reconstructed perfectly up to the constant,
such that

y[n] = C · x[n], (3.5)

assuming no modification in the modification step.
In [49], Griffin and Lim address the issue that the STFT is modified in many

speech processing applications such as enhancement. Let us denote the modified
continuous STFT by Ỹ (rR, ω). An arbitrary Ỹ (rR, ω) may not be a valid STFT,
i.e., there is possibly no signal whose STFT is Ỹ (rR, ω). For reconstruction we need
to find a time-domain signal y[n] that has an STFT Y (rR, ω) that approximates
Ỹ (rR, ω). Griffin and Lim propose to minimize the distance between y[n] and
Ỹ (rR, ω)

d(y[n], Ỹ (rR, ω)) =
∞∑

r=−∞

1
2π

∫ π

ω=−π
|Y (rR, ω)− Ỹ (rR, ω)|2dω, (3.6)

which they define as squared error between Y (rR, ω) and Ỹ (rR, ω) integrated over
ω and summed over all r, where ω denotes the frequency and the STFT is computed
every R samples as before. The distance d is written as function of y[n] and Ỹ (rR, ω)
to make explicit that Y (rR, ω) is a valid STFT while this is not guaranteed for
Ỹ (rR, ω). Equation (3.6) can be rewritten by application of Parseval’s theorem for
the continuous STFT [45]

∞∑
n=−∞

|x[n]|2 = 1
2π

∫ π

−π
|X(ω)|2dω, (3.7)

such that
d(y[n], Ỹ (rR, ω)) =

∞∑
r=−∞

∞∑
n=−∞

[yr[n]− ỹr[n]]2, (3.8)

where yr[n] = y[n]w[rR − n] and ỹr[n] = 1
2π
∫ π
ω=−π Ỹ (rR, ω)ejωndω. Now, d can be

minimized by setting the gradient with respect to y[n] to zero

∇y[n]d = 2
∞∑

r=−∞
(y[n]w[rR− n]− ỹr[n])w[rR− n] = 0. (3.9)

This results in the closed form solution [49, 50]

y[n] =
∑∞
r=−∞ ỹr[n]w[rR− n]∑∞
r=−∞w

2[rR− n] . (3.10)
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Figure 3.1: General processing chain of many speech enhancement algorithms. Process-
ing is performed on the magnitude, for synthesis the phase of the noisy signal
is used.

So the difference to the standard overlap-add method is that the inverse ỹr[n] of
the modified STFT is windowed by a synthesis window before adding and that the
values of the window w[rR − n] are squared before the summation for normaliza-
tion. The synthesis window is usually directly deduced from the analysis window.
Similar to the standard overlap-add method, the window can be chosen such that
the summation ∑∞r=−∞w2[rR− n] is unity for all n.

To get a more precise idea about the method, consider a signal x[n] for which the
STFT X[rR, k] is computed using (3.1). The original time-domain signal without
modification is recovered by application of the the inverse short-time Fourier trans-
formation (3.2) and the result yr[n] is windowed with the synthesis window, which
leads to yr[n]w[rR − n]. For simplicity, we use the same window for analysis and
synthesis. After summation and normalization in (3.10) the re-synthesized signal is

y[n] =
∑∞
r=−∞ yr[n]w[rR− n]∑∞
r=−∞w

2[rR− n] =
∑∞
r=−∞ x[n]w2[rR− n]∑∞
r=−∞w

2[rR− n] = x[n]. (3.11)

Thus, the original signal is reconstructed if no modification is applied on the STFT
X[rR, k]. Otherwise, if the STFT is modified, a signal is constructed corresponding
to an STFT that optimally approximates Ỹ [rR, k] in the least squares sense [50].

3.2 General Structure of Speech Enhancement
Methods

Now, let as take a look on the general structure of speech enhancement algorithms.
Many speech enhancement algorithms perform enhancement by modifying the mag-
nitude spectrum of the noisy signal while leaving the phase untouched. The phase
is only used for the inverse transformation F−1 from frequency to time domain as
illustrated in Figure 3.1. At low signal-to-noise ratios, this can reduce the speech
quality [2].
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To gain further insights, let us consider a speech signal s[n] that is corrupted by
additive noise d[n]. Then the noisy signal x[n] is

x[n] = s[n] + d[n]. (3.12)

By application of (3.1), the transform of the time-domain signal x[n] is given as

X[n, k] = S[n, k] +D[n, k] (3.13)

where X[n, k], S[n, k] and D[n, k] are the STFTs of the noisy signal, the clean
speech signal and the noise, respectively. Each STFT can be expressed in terms of
magnitude |X[n, k]| and phase θX , such that

X[n, k] = |X[n, k]|ejθX = |X[n, k]|(cos θX + j sin θX). (3.14)

The phase of the noisy signal is determined by the phases of the clean signal and
the noise. Let us denote the phases of the clean speech signal and the noise by θS
and θD, respectively. The phase of the noisy signal θX can be derived as follows (for
convenience we drop the indices n and k) [2]: First, we treat the real and imaginary
parts of (3.13) separately, such that

|X| cos θX = |S| cos θS + |D| cos θD (3.15)

|X| sin θX = |S| sin θS + |D| sin θD (3.16)
Squaring (3.15) and (3.16) and adding the two equations together leads to

|X|2 = |S|2 + |D|2 + 2|S||D| cos(θS − θD). (3.17)

In the case of speech enhancement the aim is to estimate the clean signal spectrum
S[n, k] from X[n, k]. The above equation shows, that the phase of the clean signal
cannot be estimated exactly from the noisy signal as neither the phase of the clean
signal θS nor the phase of the noise θD are known but only the difference between
them.

3.3 System Overview of Kernel PCA and Pre-Image
Iterations1

In contrast to most speech enhancement methods, we propose a method that pro-
cesses complex-valued feature vectors extracted from the sequence of STFTs. Figure
3.2 illustrates the general structure. As the processing is based on the complex-
valued spectral bins, we do not explicitly use the phase of the noisy signal for
reconstruction of the time-domain signal. The handling of complex-valued data is
facilitated by using kernel methods and especially the Gaussian kernel.

1 This section is based on [51].
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Figure 3.2: General system overview of our speech enhancement methods. Processing
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Figure 3.3: Left hand side: Extraction of frequency bands covering a time range of 10
patches and a frequency range of 8 patches (with 50% overlap along the time
axis and no overlap along the frequency axis). Right hand side: Extraction
of patches from one frequency band, where the patches cover 12 × 12 bins
with an overlap of 10 bins in time and frequency. (Here shown on the clean
signal for better visibility.)

For enhancement by kernel PCA and pre-image iterations we use the same feature
extraction and synthesis. First the 256-point STFT is computed from frames of 16
ms. The frames have an overlap of 50% and a Hamming window is applied. The
resulting time-frequency representation is split into time segments of 0.25 ms. Each
segment is split on the frequency axis to reduce computational costs which results in
so-called frequency bands. Sample vectors are retrieved from these frequency bands
by first extracting quadratic patches in an overlapping manner, where the size of
each patch is 12×12 with an overlap of 11. This is illustrated in Figure 3.3. On the
left hand side, frequency bands are marked as black rectangles, on the right hand
side, quadratic patches within one frequency band are marked as red squares. In
previous experiments, windowing of the patches was beneficial, so a 2D Hamming
window is applied. Then, the values in the patches are re-ordered in column-major
order to form the sample vectors xi ∈ C144. The frequency bands cover a frequency
range corresponding to 8 patches (i.e. 19 bins) and a time range corresponding to
20 patches (i.e. 31 bins). Along the frequency axis bands have an overlap of 50% or
no overlap – depending on the experiment – and along the time axis the overlap is
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Figure 3.4: Kernel PCA for speech enhancement.

10 patches. This configuration was chosen due to good empirical results.
After processing, the enhanced audio signal is synthesized by reshaping the en-

hanced sample vectors zi to patches. The patches of all frequency bands belonging
to one time segment are rearranged using the overlap-add method with weighting
as described in [49], generalized for the 2D domain. Then, the STFT bins of over-
lapping time segments are averaged, the inverse Fourier transform is applied on the
bins of each frame and the audio signal is synthesized with the weighted overlap-add
method as in (3.10).

3.4 Kernel PCA for Speech Enhancement2

The application of kernel PCA for speech enhancement is illustrated by the block
diagram in Figure 3.4. First, the STFT and the feature extraction as described in
Section 3.3 are performed. One kernel matrix is built from the feature vectors of
each frequency band. Each kernel matrix is centered according to (2.18), then the
eigenvalue decomposition (2.15), normalization of the eigenvectors αk (2.16) and the
projection of the data onto the eigenvectors vk (2.17) are performed. A Gaussian
kernel is used

k(xi,xi) = exp
(
−‖xi − xj‖2

c

)
. (3.18)

The kernel variance c strongly influences the degree of de-noising. Therefore, the
value is set by testing several values on a development set and choosing the one
with the best performance. The pre-images, i.e., the enhanced sample vectors are
computed iteratively using iterative pre-imaging with normalization (cf. (2.34)),

zt+1
j =

∑M
i=1 γ̃ik(ztj,xi)xi∑M
i=1 γ̃ik(ztj,xi)

, (3.19)

where zt+1
j is the jth enhanced sample within a frequency band at iteration t + 1,

xi are the noisy samples, γ̃i is given by (2.35) and M is the number of samples
2 This section is based on [30].
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Figure 3.5: The utterance “Britta schenkt fünf grüne Ringe.” produced by a female
speaker of the airbone database. Note that the beginning is free of speech
but contains a lip smack and breath noise. Spectrogram of the (a) signal
corrupted by additive white Gaussian noise at 10 dB SNR, (b) clean signal,
(c) signal enhanced by the kernel PCA method, and (d) enhanced by kernel
PCA and plotted with higher frequency resolution. (e) phase of the noisy
signal, (f) phase after kernel PCA. The pattern visible in the phase plot (f)
causes the harmonic artifacts in (d).
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Figure 3.6: Phase of the feature vectors xi before kernel PCA and zi after kernel PCA
for one frequency band, in the top left and top right plot, respectively.
The matrix columns contain the feature vectors. The processing causes an
alignment of the phase that induces the artifacts visible in Figure 3.5 (d).
The bottom right plot illustrates the alignment of the phase after kernel
PCA in comparison to the phase before kernel PCA (left) by showing the
first four feature vectors.

in the frequency band. To enhance the sample vector xj we initialize z0
j with the

noisy sample xj and iterate (3.19) until convergence. Finally, the sample vectors
are rearranged to patches and the audio signal is synthesized as described in Section
3.3.

Figure 3.5 shows the spectrograms of an utterance of the airbone database. The
utterance is spoken by a female speaker and has been corrupted by additive white
Gaussian noise (AWGN) at 10 dB SNR. Figure 3.5 (a) and (b) show the spectrograms
of the corresponding noisy and clean signal, respectively. Figure 3.5 (c) shows the
spectrogram after enhancement by the kernel PCA method using n = 1 component.
Listening to the utterance reveals that noise is removed. No musical noise occurs,
however, a buzz-like artifact is introduced. Looking at the spectrogram with a
higher frequency resolution in Figure 3.5 (d) shows that the artifacts correspond to
harmonics that smoothly change over time. The frequency of the artifact is related
to the number of Fourier coefficients used for the STFT.

Further investigation revealed that these artifacts appear because different feature
vectors converge to the same solution and their phase is aligned. Figure 3.5 (e) and
(f) show the phase of the noisy signal and after enhancement, respectively. In some
parts the plot in Figure 3.5 (f) shows a regular structure. It can be shown that
the phase of the feature vectors shows an alternating pattern. After enhancement,
the aligned feature vectors induce the harmonic structure visible in Figure 3.5 (d).
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Figure 3.6 illustrates the phase of the samples vectors xi and zi, i.e., before and after
kernel PCA within one frequency band, in the left and right top plot, respectively.
Each column of the plotted matrices represents one feature vector. The bottom
plots in Figure 3.6 show the phase of the first four feature vectors. Before kernel
PCA the phase is not aligned (left), while after processing it is aligned (right). This
results in the changed phase values after enhancement. If the window length and the
number of Fourier coefficients are changed, the pattern in the spectrogram persists
but the frequencies change.

3.5 Kernel PCA with Combined Pre-Imaging3

The applied pre-image method strongly influences the outcome of the de-noising
process. Therefore, similar to the experiments on synthetic data described in Section
2.2.2, we compare the same four pre-image methods for the application of speech
enhancement. The following observations were made:

1. Iterative pre-imaging (IP) by Mika et al. [3] without normalization of γi often
fails to converge and the audio signal is mostly zero.

2. Normalized iterative pre-imaging (NIP) proposed by Kwok and Tsang [33] is
stable. The audio signal is de-noised, however a buzz-like artifact occurs that
is related to the frame rate of the analysis window. This method is already
discussed in Section 3.4.

3. Regularized iterative pre-imaging (RIP) by Abrahamsen and Hansen [34] re-
sults in good de-noising, depending on the value of η. The same artifact as for
NIP appears.

4. Non-iterative pre-imaging (NP) introduced by Honeine and Richard [35] re-
turns no meaningful audio signal. If the regularization parameter η is set to
zero the audio signal contains similar artifacts as the signal from NIP while
the speech signal is suppressed. When η = 0 the reconstruction of a pre-image
is z = Xγ (cf. (2.37). Consequently, each z is a linear combination of data
samples xi like for kernel PCA but with different weights. In the case of ker-
nel PCA the speech signal is not attenuated. This is caused by the kernel
weights k(zj,xi) in the linear combination in (3.19). If a feature vector mainly
contains speech components the kernel values between this feature vector and
all the other feature vectors are close to zero while the kernel value between
the feature vector and itself is one (see also the discussion in Section 3.6.1).
Therefore, the pre-image is close to the original noisy feature vector. With the
reconstruction of Honeine and Richard with η = 0, no kernel is used and the
speech feature vectors are averaged, which leads to attenuation. In the case of
feature vectors containing mostly noise the weighting of kernel PCA with NIP

3 This section is based on [39].
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(a) (b)

Figure 3.7: Spectrograms of the speech utterance in Figure 3.5 corrupted by white noise
at 10 dB SNR and enhanced using (a) kPCA with NIP and (b) kPCA
with combined pre-imaging (CO). The method with combined pre-imaging
introduces considerably fewer artifacts.

and NP is similar as the kernel weights k(zj,xi) in (3.19) are not dominated
by one value. Therefore, the resulting signal mostly consists of the artifact
while the speech is attenuated.

From these observations we deduced that the combination of NIP with NP could
reduce the buzz-like artifact since NP with η = 0 basically only models the artifacts
also occurring in NIP. Indeed, a subtraction of the signal of NP from the signal of
NIP in time domain results in a signal of better quality as the buzz-like artifact
is significantly reduced. A comparison of the spectrogram after enhancement by
kernel PCA with NIP in Figure 3.7 (a) with the spectrogram after enhancement by
the combined method in Figure 3.7 (b) shows the reduction of the artifact, while
a reduction of the speech quality cannot be perceived. Listening to the enhanced
utterances confirms better audio quality.

3.6 Pre-Image Iterations for Speech Enhancement4

When subspace methods are applied for speech enhancement, the number of compo-
nents used for the projection step of PCA is a key parameter. In our framework with
kernel PCA, we empirically observed that the number of components used for pro-
jection has only a minor, almost no, effect on the outcome of the de-noising process.
The de-noising quality is rather the same whether projection is performed on one
or more components. De-noising is primarily influenced by the kernel weights and
by the value of the kernel variance. Therefore, we completely neglect the projection

4 This section is based on [52].
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Figure 3.8: Pre-image iterations for speech enhancement.

coefficients γ̃i in (3.19) by setting them to one. We call this pre-image iterations for
speech enhancement.

The pre-image in (3.19) is always a linear combination of the noisy input samples
xi. In the case of kernel PCA, the weights of the linear combination are determined
by the kernel k(·, ·) and the projection coefficients γ̃i (or γi if centering is omitted).
With pre-image iterations, the linear combination only depends on the kernel. The
Gaussian kernel serves as similarity measure between two samples. If the samples
are equal, it is one, if they are very distinct, it is close to zero. The variance c is
used as parameter to scale the degree to which samples are treated as similar.

The PI method is illustrated in the block diagram in Figure 3.8. The equation
used for computation of an enhanced feature vector is

zt+1
j =

∑M
i=1 k(ztj,xi)xi∑M
i=1 k(ztj,xi)

. (3.20)

It can be reformulated as
zt+1
j =

M∑
i=1

k̃(ztj,xi)xi, (3.21)

where
k̃(ztj,xi) =

k(ztj,xi)∑M
m=1 k(ztj,xm)

(3.22)

is the normalized kernel. As the kernel function can only take values between zero
and one, k̃(·, ·) is also constrained to values within the interval [0, 1] and it is nor-
malized such that ∑M

i=1 k̃(ztj,xi) = 1. Due to these constraints, the pre-image zj can
be seen as a convex combination of the training samples xi [53]. In other words the
de-noised sample lies in a convex hull spanned by the noisy samples.

We further extended (3.20) with additional regularization similar as in [34] (cf.
(2.36)), such that

zt+1
j =

2
c

∑M
i=1 k(ztj,xi)xi + ηxj

2
c

∑M
i=1 k(ztj,xi) + η

, (3.23)
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(a) (b)

Figure 3.9: Spectrograms after enhancement by pre-image iterations with regularization
plotted with (a) low and (b) high frequency resolution. Note that there is
still a harmonic artifact, however, its magnitude is lower than in the case of
kernel PCA and hence it cannot be perceived.

where xj is the noisy sample, for which the pre-image should be found and η ≥ 0 is
the regularization parameter that determines the influence of the noisy sample xj
in the pre-image iterations.

The spectrogram of the pre-image iteration method with regularization in Figure
3.9 (a) shows that there are fewer artifacts compared to the kernel PCA method
with NIP in Figure 3.7 (a). Figure 3.9 (b) shows the spectrogram with higher
frequency resolution. It can be seen that there is still a harmonic artifact, however,
its magnitude is considerably lower than in the case of kernel PCA. Listening to
the utterance confirms that the artifact cannot be perceived. Compared to the
method with combined pre-imaging (Figure 3.7 (b)), PI have a slightly higher low
pass behavior and a little more residual noise is left. The enhanced signals of the
pre-image iteration method and the method with combined pre-imaging sound very
similar. With additional regularization in (3.23), the audio signal sounds similar as
without regularization but with slightly more background noise that changes with
the value of η. This result can be explained by equation (3.23). The different levels
of background noise are caused by the weighting of the noisy samples by η in the
regularization term.

In the next sections, we will first point out why pre-image iterations lead to de-
noising and then discuss relations to other methods.

3.6.1 Analysis of Pre-Image Iterations
Pre-image iterations effect de-noising by a linear combination – or weighted average
– of noisy feature vectors, where the weights are determined by the kernel. To



36 3. Kernel PCA and Pre-Image Iterations for Speech Enhancement

50 100 150 200 250 300

20

40

60

80

100

120

Figure 3.10: Magnitude of the spectral data for PI, shown for the example utterance
corrupted by AWGN at 10 dB SNR. The frequency bands illustrated in
Figure 3.11 and 3.12 are marked by boxes.

analyze the de-noising, we define the vector of kernel values

kj = [k(xj,x1), k(xj,x2), . . . , k(xj,xM)]T (3.24)

computed between a feature vector xj and all vectors {xi|i = 1, . . . ,M} from one
frequency band. This kernel vector always contains one large element, which equals
one, because it denotes the similarity of the feature vector xj with itself. The values
of the other elements depend on the signal content in the examined feature vector.
If the feature vector contains mostly speech, the other elements are only large if
there are similar in-phase speech components within the frequency band, otherwise
the other elements are close to zero. If the feature vector contains mostly noise,
there are other elements larger than zero besides the element equal to one.

De-noising in the PI framework is therefore effected by the following means:
• Feature vectors containing in-phase speech components are combined, because

the degree of similarity is high. Noise within these feature vectors is averaged
out because it is randomly distributed. In practice and with the described
configuration of the feature extraction, there are usually no in-phase feature
vectors within a frequency band. Therefore, a feature vector containing speech
components is only similar to itself and the noise reduction for this feature
vector is limited. This is illustrated in Figure 3.11. The first and second
column represent the noisy magnitude and the enhanced magnitude in a seg-
ment where speech is present. The third column shows a frequency band with
speech components over several iterations. The marked patch (equivalent to
a feature vector) and the corresponding kernel vector in the fourth column do
not change in course of the iterations and no noise reduction is achieved for
this patch.

• Feature vectors containing mostly noise do not exhibit a high degree of simi-
larity (except to themselves), however, there is some similarity between all of
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Figure 3.11: PI in a speech segment shown on the magnitude of the spectral data of
the utterance in Figure 3.10. The columns show from left to right: (i)
Noisy segment with one frequency band and a patch marked. The noise
level is 10 dB SNR. (ii) Enhanced segment. (iii) The marked frequency
band before de-noising and after one to three iterations. (iv) Kernel values
between the marked patch and all other noisy patches in the band before
de-noising and after one to three iterations. The kernel vector contains
only one value significantly larger than zero and no averaging is performed
for this patch. Note that the patches are extracted row-wise from left to
right and from top to bottom.
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Figure 3.12: PI in a noisy segment. The columns show from left to right: (i) Noisy
segment with one frequency band and a patch marked. (ii) Enhanced
segment. (iii) The marked frequency band before de-noising and after one
to three iterations. (iv) Kernel values between the marked patch and all
other noisy patches in the band before de-noising and after one to three
iterations. Note that in contrast to Figure 3.11, other kernel vector entries
besides the entry equal to one are larger than zero and therefore contribute
to the averaging in PI.
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them. So, in contrast to feature vectors or patches where speech is present,
there are other kernel values larger than zero, as illustrated in Figure 3.12.
Consequently, feature vectors are averaged in the first iteration. In the next
iteration, the kernel vector is computed between the enhanced feature vector
and the noisy feature vectors. It turns out that the enhanced feature vec-
tor is even more similar to the noisy feature vectors than the original noisy
feature vector. Therefore the kernel vector contains even larger elements and
stronger averaging is performed. This is repeated until the weights are stable
and convergence is reached. Note that the feature vectors are complex-valued
and that the phase and magnitude are randomly distributed. Therefore the
feature vectors add up destructively and the noise is canceled. If feature vec-
tors based on the magnitude were averaged, the overall energy would not be
reduced because magnitude vectors do not add up to zero as complex-valued
feature vectors do.

One further observation can be explained by the behavior described above. Spectro-
grams of de-noised utterances show, that there is often noise left in between speech
components, such as short speech pauses or generally around speech components.
As patches containing speech are mostly similar to itself, no averaging is applied and
there is no de-noising effect. To improve the de-noising ability, smaller patches could
be beneficial. Furthermore, it could be useful to process longer frequency bands, as
in this case the probability of finding in-phase patches similar to patches containing
speech components would increase. In this case, however, the higher computational
costs are a drawback.

3.6.2 Relation to the Soft k-Means Algorithm
Pre-image iterations are related to the soft k-means algorithm [54], which is used
for clustering. The mean of one cluster is defined as

mk =
∑M
i=1

exp(−βd(mk,xi))
Ni

xi∑M
i=1

exp(−βd(mk,xi),)
Ni

(3.25)

where
Ni =

K∑
l=1

exp(−βd(ml,xi)), (3.26)

d(ml,xi) is the distance between the two points ml and xi, β is the so-called stiffness
parameter and K is the number of clusters. When the squared Euclidean distance
is used, the exponential term is equivalent to the Gaussian kernel, where c = 1/β.
So the soft k-means update of the cluster mean is the same as the update of the
pre-image zj apart from the normalization factor Ni (which is different for every xi).
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3.6.3 Relation to Non-Local Neighborhood Filtering and to the
Non-Local Means Algorithm

Performing de-noising on the time-frequency representation of speech incorporates
some similarities to methods popular for image de-noising. Therefore, we give a
short excursion on these image de-noising methods. However, they did not provide
the basis for our methods.

Let us assume an image that is composed of pixels at the locations xi that have
an intensity value y(xi). In many approaches for image and signal de-noising the
de-noised value yd(xj) of the signal y(xj) at point xj is based on the signal values
y(xi) at points neighboring xj. Gaussian or Gabor filters and anisotropic diffusion
are examples for such de-noising approaches. Using these methods, image de-noising
often is a trade-off between de-noising and distorting the image, e.g., blurring the
image [7] – similar as speech enhancement often is a trade-off between de-noising
and speech distortion.

Most of these methods, however, do not take into consideration one property of
many signals and images, namely their repetitive behavior, which means that in most
signals, patterns of the original noise-free signal occur at different time instances or
spatial locations [27]. For time-domain signals this is the case for every periodic or
nearly periodic signal, for instance neuronal spikes or heart beats. In images, there
may as well be patches that occur at different spatial locations, e.g., in textures. For
de-noising, it is preferable to exploit the occurrence of similar patterns in distant
regions of the signal. Instead of using the values in the neighborhood of a point xi,
de-noising is performed over pixels belonging to similar patterns found anywhere in
the signal. This gives directly rise to different meanings of neighborhood. Often, a
neighborhood is understood as points that are spatially close. However, it can also
be defined in terms of similarity of the pixels’ intensity values. Yaroslavsky describes
these different possibilities of defining a neighborhood of a pixel in [42].

Non-local neighborhood filtering and bilateral filtering are based on this notion
of neighborhood. For a continuous one-dimensional signal, neighborhood filtering
(NF) is defined as [27]

yNF (xj) = 1
D(xj)

∫
k(y(xj), y(xi))y(xi)dxi, (3.27)

where yNF (xj) is the de-noised pixel, k(·, ·) denotes a kernel, for instance the Gaus-
sian kernel, and

D(xj) =
∫
k(y(xj), y(xi))dxi (3.28)

is the normalization factor.
While neighborhood filtering as described above is based on the similarity between

signal values at different locations, this approach can be extended to benefit also
from spatial information. In this case, weighted averaging is performed over values
where both the signal value y(xi) is close to y(xj) and the location xi is close to
xj. This is also known as bilateral filtering [27, 55]. One popular example is the
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Yaroslavsky filter that considers the spatial distance by only using pixels in the
neighborhood Bρ, which is defined as a ball with center at xj and radius ρ. The
filter can be formulated as [27, 7]

yY NFρ(xj) = 1
D(xj)

∫
Bρ(xj)

k(y(xj), y(xi))y(xi)d(xi) (3.29)

where D(xj) =
∫
Bρ(xj) k(y(xj), y(xi))d(xi) is the normalization factor.

Iteration of Non-Local Neighborhood Filters

The simple application of (3.27) is often not sufficient to achieve de-noising [27]. This
can be improved by the iterative execution of non-local filtering. For simplicity, let
us consider a one-dimensional signal. For a discrete signal y(xi) the above equation
changes to

yd(xj) = 1
D(xj)

N∑
i=1

k(y(xj), y(xi))y(xi), (3.30)

where yd(xj) is the de-noised signal, D(xj) = ∑N
i=1 k(y(xj), y(xi)) denotes the nor-

malization factor. and k(·, ·) is a kernel.
For iterative execution, the above equation can be rewritten as

yt+1(xj) = 1
Dt(xj)

N∑
i=1

k(yt(xj), yt(xi))yt(xi), (3.31)

where t denotes the iteration index, y0(xj) = y(xj) is the original noisy sample at
t = 0 and Dt(xj) = ∑N

i=1 k(yt(xj), yt(xi)) (for convenience we drop the superscript
d).

In detail, three possible ways to iterate Equation (3.31) are described in [27].
The first way is to update the signal value, the kernel and the normalization factor
according to the signal value in the previous iteration, as given in (3.31). The second
way is to keep the kernel and the normalization factor fixed and only update the
signal value

yt+1(xj) = 1
D0(xj)

N∑
i=1

k(y0(xj), y0(xi))yt(xi), (3.32)

where yt+1 is the de-noised signal value at iteration t+ 1. The third possibility is
to keep the signal value for weighted averaging fixed to the original noisy value and
update the kernel value and the normalization factor, such that

yt+1(xj) = 1
Dt(xj)

N∑
i=1

k(yt(xj), yt(xi))y0(xi). (3.33)

Pre-image iterations apply a slightly different scheme, where only the currently de-
noised patch is updated. For a single signal value this iteration scheme is

yt+1(xj) = 1
D̃t(xj)

N∑
i=1

k(yt(xj), y0(xi))y0(xi), (3.34)

where the normalization factor is D̃t(xj) = ∑N
i=1 k(yt(xj), y0(xi)).
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Non-Local Means

Buades [7] proposed the non-local means (NL) algorithm, which is inspired by non-
local filtering. We comared PI to the block-wise implementation of the NL algorithm.
Consider a discrete noisy image y = {y(xi)|xi ∈ I} where y(xi) is the intensity value
of the pixel at location xi, I is a 2D grid of pixels and {x1, . . . , xn} forms a subset
of I. Now, for each xj define a neighborhood Wj = xj + B that is centered in xj.
B defines the size and the shape of the neighborhood. We now assume that all Wj

form a connected subset of I, where intersections between the neighborhoods are
allowed.

Then, for each Wj the NL algorithm evaluates to

yNL(Wj) = 1
Cj

∑
xi∈I

y(xi +B)e−
‖y(xj+B)−y(xi+B)‖22

h2 , (3.35)

where Cj = ∑
xi∈I e

−
‖y(xj+B)−y(xi+B)‖22

h2 , h2 is a filtering parameter equivalent to the
kernel variance in pre-image iterations and y(xi +B) denotes all intensity values of
the neighborhood Wi centered at xi. As overlapping neighborhoods are allowed, one
pixel is generally assigned to several neighborhoods and the NL algorithm computes
for each pixel one different value per neighborhood. To find the final value of a
de-noised pixel at location xi, the values corresponding to that pixel in different
neighborhoods are averaged, such that

yNL(xi) = 1
|Ai|

∑
j∈Ai

yNL(Wj)(xi) (3.36)

where Ai = {j|xi ∈ Wj} indicates all neighborhoods containing xi and yNL(Wj)(xi)
denotes the value at xi in the neighborhood Wj after application of (3.35).

To make the connection to the pre-image iteration method explicit, we reformulate
Equation (3.35) in vector notation and insert the kernel function

wk =
∑
i∈I k(wj,wi)wi∑
i∈I k(wj,wi)

. (3.37)

where wj is the vector resulting from reordering the elements of Wj in column major
order and k(·, ·) is the Gaussian kernel. This is equivalent to the first iteration of
the pre-image iteration equation (3.20)

zt+1
j =

∑M
i=1 k(ztj,xi)xi∑M
i=1 k(ztj,xi)

if the neighborhoods are equivalently chosen and if the search region for neighbor-
hoods is reduced from the whole image to a sub-region of the image. One image
sub-region then corresponds to a frequency band and a neighborhood corresponds
to a patch of the pre-image iteration method. A substantial difference, however, is
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that in the case of speech enhancement the frequency bins – which correspond to the
pixels – are complex-valued. Furthermore, for speech enhancement the patches are
weighted by a 2D Hamming window. In the block-wise implementation of the non-
local means algorithm no weighting is applied. Note, however, that in the original
algorithm proposition a weighted Euclidean distance is used to assess the similarity
between neighborhoods.

3.6.4 Relation to Diffusion Filters for Speech Enhancement
We have now shown the similarities between neighborhood filtering, non-local means,
and the proposed pre-image iteration algorithm. It is interesting to note, that a con-
nection can be established between neighborhood filtering and diffusion equations.
In [55], Barash demonstrates first the relation between adaptive smoothing and
anisotropic diffusion and then the relation between adaptive smoothing and bilat-
eral filtering, i.e., neighborhood filtering, in image processing. In [27], the connection
between neighborhood filtering and diffusion processes is analyzed in more detail.

In speech enhancement, non-local filtering techniques have only been adopted re-
cently. In [28, 43], non-local neighborhood filters are employed to suppress transient
noise. Transient noise consists of short bursts that most speech enhancement al-
gorithms fail to suppress as they are restricted to stationary noise. The repetitive
structure of transient noise that causes other enhancement algorithms to be unsuit-
able for suppression can be exploited by application of non-local filtering. Talmon et
al. [43] note that the non-local neighborhood filter in their application is equivalent
to non-local diffusion filters as described in [27]. Therefore, we further refer to their
work as non-local diffusion filters (NLDF) .

They use a variant of the optimally modified log-spectral amplitude (OM-LSA)
estimator [56] that takes into consideration both a noise estimate for transient noise
and a noise estimate for stationary noise. The transient noise is estimated using
a non-local filter, that averages similar occurrences of transient noise bursts. Non-
local filtering is applied on the STFTs with normalized Gaussian kernels as weights

k̃(φ(n),φ(m)) = k(φ(n),φ(m))∑M
i=1 k(φ(n),φ(i))

, (3.38)

where φ(n) is the short-time power spectral density (PSD) in time frame n computed
by smoothing periodograms over time frames and k(·, ·) is the Gaussian kernel. Note
that the normalized kernel k̃(·, ·) can be interpreted as a transition probability in
a graph. Hence, Talmon et al. formulate the non-local filtering as iterations on a
graph with STFTs as nodes and normalized kernels as weights.

To draw a relation between the application of non-local diffusion filters for tran-
sient noise reduction and pre-image iterations, we shortly provide an overview on
differences and commonalities:

• Features For NLDF the STFTs of each frame are used as feature vectors. For
PI quadratic patches are extracted from the sequence of STFTs and vectorized.
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• Kernel Both methods employ a Gaussian kernel. In the case of NLDF the
kernel is computed between short time power spectral densities and it is nor-
malized, while in the case of PI the kernel is evaluated on the complex-valued
feature vectors.

• Phase The usage of the PSD for the kernel computation in NLDF implies
that the phase information is neglected when the similarity between frames is
measured. This proceeding is intentional, as the phase depends on the location
of a transient within the frame and a transient should be identified regardless
of the exact location within the frame. However, the phase is taken into
consideration when the OM-LSA estimator is applied. Pre-image iterations use
the phase as a consequence of processing complex-valued Fourier coefficients.

• Effects The two algorithms have different intentions and therefore consider-
ably different effects. NLDF employ non-local filtering for constructive averag-
ing of transients, that results in a robust estimate of the PSD of the transient
noise, which is further used for de-noising. Pre-image iterations aim at re-
ducing stationary noise by relying on the assumption that noise is randomly
distributed and averaging between feature vectors is consequently destructive,
i.e., the noisy feature vectors cancel each other.

Thus, although NLDF and PI are related via non-local filtering, the purpose of the
methods is different.

3.6.5 Role of the Phase
In this section, we provide a discussion on the role of the phase in speech enhance-
ment. Many speech enhancement algorithms perform processing on the magnitude
and use the phase of the noisy signal for reconstruction of the enhanced time-domain
signal. The authors of [57] argue that the phase is of minor importance while in
[47] its importance is highlighted. Besides speech enhancement, the estimation of
the phase has also been subject of recent investigations in the field of single-channel
source separation [58, 59]. We first discuss some experimental results reported in
literature and then present experiments realized with pre-image iterations.

Generally, when reconstructing a signal from its Fourier representation, the phase
plays an important role. In [57], Oppenheim and Lim discuss this issue and demon-
strate examples from image and speech processing. It is shown that an image or
a speech signal, that is reconstructed by using only the phase, contains more iden-
tifiable features than a signal that is reconstructed from the magnitude only. For
speech, a signal reconstructed from the phase of a long segment of speech and unity
magnitude is reported to preserve a high degree of intelligibility. Hence, for both
speech and image signals the phase seems to cover much of the relevant informa-
tion. Under certain assumptions about the signal, it is even possible to construct
the complete signal – magnitude and phase – up to a scaling factor from the phase
only (for details and examples see [57]). However, Oppenheim and Lim note that the
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importance of a the long-time phase does not necessarily imply that the short-time
phase is of equal importance.

In [60], Wang and Lim discuss the unimportance of phase in speech enhancement.
They start from the assumption that the short-time phase is relatively unimportant
in speech enhancement relying on short-time analysis. They also note that the ear
does not express any preference among either changes in the phase of a sinusoidal
signal or changes in the relative phase of sinusoidal components of a signal. However,
they remark that rapid fluctuations of the relative phases of sinusoidal components
in speech are reported to cause considerable degradation of the speech quality.

In order to investigate the role of the phase in the field of speech enhancement,
Wang and Lim conducted a subjective listening test. In short, they corrupted signals
with AWGN at several SNRs in time-domain and created new signals by combining
the magnitude and the phase obtained with different SNRs. Pairs of these mixed
signals and the original noise-corrupted signals were presented to listeners who had
to vote which signal had better quality. Through the presentation of the original
signals with different SNR levels, Wang and Lim derived an equivalent SNR for
which the signals with mixed magnitude and phase were preferred 50% of the time
and the original noisy speech was preferred 50% of the time. The equivalent SNR
was then used to determine the relative importance of the magnitude and the phase
for speech enhancement.

The results in [60], lead to the conclusion that a more accurate phase estimate only
results in higher equivalent SNRs for a limited number of conditions. In particular,
this is the case when a long frame length for the Fourier transform is used (4096
samples at a sampling rate of 10 kHz) and at the same time the SNR is very low.
Low SNRs are, however, the case where an accurate phase estimation will be difficult
anyway, if it is estimated in addition to the magnitude. Further experiments showed
that a decrease in the accuracy of the phase estimate can cause a considerable
decrease in the equivalent SNR. Due to the difficulty of estimating the phase in
low SNR conditions and the risk of degrading the signal be erroneous estimation,
phase estimation is not recommended by Wang and Lim in low SNR scenarios.
In a further experiment, the magnitude of the combined signal was replaced by a
magnitude estimated using spectral subtraction. This, however, did not lead to a
considerable improvement of the equivalent SNR.

The following conclusions are drawn from the experimental results in the frame-
work of Wang and Lim: Estimating the phase independently from the magnitude
might only slightly improve the quality and is therefore probably not worth the
effort. On the other hand, an approach jointly based on phase and magnitude
estimation might benefit from a more accurate phase estimation.

In [47], Paliwal et al. conducted a series of experiments, which were evaluated
objectively by using the PESQ measure (see Section 4.3.1 for details on the PESQ
measure) and subjectively by listening tests. In their experiments, they reproduced
the results of Wang and Lim. However, with a different setup for the Fourier trans-
formation they could show that processing the phase can improve the performance
assessed by both objective and subjective evaluation.
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Clean clean signals
Noisy noisy signals
MMSE signals with the magnitude enhanced by the

MMSE STSA method
MMSE-Matched-O signals with the magnitude enhanced by the

MMSE STSA method, matched analysis windows,
and clean phase

MMSE-Mismachted-O signals with enhanced magnitude, mismatched
windows and clean phase

MMSE-Mismachted-N signals with enhanced magnitude, mismatched
windows and noisy phase

PSC noisy signals with phase estimation
MMSE-PSC enhanced signals with phase estimation

Table 3.1: Signal combinations evaluated in the study by Paliwal et al. [47].

To be more precise, in a first experiment they combined the noisy magnitude with
the phase of the clean signal and evaluated the performance after inverse transfor-
mation and overlap add – this is called the oracle experiment. One set of utterances
was created by using the same setup as Wang an Lim, namely by application of a
Hamming window with 50% in the analysis step. These signal set is denoted by
Wang-O. Another set of utterances was produced by using a different setup, again
by application of a Hamming window but with 82.5% overlap and additional zero
padding such that the number of Fourier coefficients was doubled. The same window
was used for magnitude and phase computation, hence it is termed Matched-O. A
third set of signals was created by using different windows for the magnitude and the
phase computation – this is termed the mismatched case (Mismatched-O). Namely,
a Hamming window was used for computation of the magnitude and a Chebyshev
window was used for computation of the phase. For the utterances created by the
Wang-O procedure, no significant improvement by using the phase of the clean sig-
nal could be explored. However, for the Matched-O approach the PESQ measure
returned higher scores and the results in the listening test were superior as well. The
signals created by the Mismatched-O procedure even attained significantly higher
results than the other methods. This is explained by the fact that noise can be re-
duced by appropriately choosing the dynamic range5 of the Chebyshev window, as
the dynamic range controls the tradeoff between preservation of fine spectral detail
and spectral smoothing.

In two further experiments, signals created with knowledge of only the noisy
phase and signals with additionally enhanced magnitude were compared. In the
experiments based on the noisy phase, the signals created using the mismatched
analysis windows showed higher performance than the noisy signal, both by objective

5 Attenuation of the side lobes or highest side lobe with respect to the main lobe, depending on
the used definition.
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Figure 3.13: Comparison of the performance of signals after enhancement by pre-image
iterations (PI) with signals obtained by combination of the magnitude of
PI and the clean phase (PI-Clean) and the magnitude of PI and the noisy
phase (PI-Noisy) in terms of (a) the PESQ measure and (b) the global
SNR (SNR) for signals corrupted by AWGN at 0, 5, 10, and 15 dB SNR.

and subjective evaluation. Thus, similar to the oracle experiment, noise reduction
can be achieved by the sole application of windows with different dynamic range for
computation of magnitude and phase. If a low dynamic range is chosen for phase
computation this apparently leads to noise reduction as the fine spectral detail is
lost due to smoothing.

For the experiments including enhancement of the magnitude, the MMSE STSA
estimator [12] was applied. Additionally, signals where the phase was estimated
using the phase spectrum compensation (PSC) method [61, 62] were used for com-
parison. In total, eight types of signals as listed in Table 3.1 were evaluated. The
main conclusions from these experiments are: The signals obtained by using the
clean phase (MMSE-Matched-O and MMSE-Mismatched-O) perform best in objec-
tive evaluation. The signals created by enhancing the magnitude and in addition
the phase by PSC achieve the next best score. The results of the subjective evalua-
tion are slightly different. For this case, the score for MMSE-PSC is similar to the
score for MMSE-Matched-O. This performance difference is explained as follows:
The MMSE-Matched-O signal contains more spectral details while the MMSE-PSC
signal provides better noise reduction. While the PESQ measure seems to focus on
the spectral details, human listeners prefer a stronger noise reduction. In summary,
these experiments suggest that processing the phase is promising to further improve
the quality of enhanced speech.

To gain more insights about the role of the phase in PI, we compared the signals
obtained by PI to signals based on the magnitude after PI and the phase of (i) the
clean and (ii) the noisy signal. Note that, although we use the magnitude after
PI, PI are still applied on the complex-valued feature vectors. We used the speech
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(a)
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Figure 3.14: Spectrograms of the sample utterance corrupted by AWGN at 5 dB SNR
and (a) obtained by combination of the magnitude of PI with the clean
phase, (b) obtained by combination of the magnitude of PI with the noisy
phase, (c) after PI. The arrow in (a) indicates slightly stronger de-noising.
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Figure 3.15: Comparison of the performance of signals after enhancement by pre-image
iterations (PI) with signals obtained by combination of the magnitude after
PI and the clean phase (PI-Clean) and the magnitude after PI and the
noisy phase (PI-Noisy) for signals corrupted by AWGN at 0, 5, 10, and
15 dB SNR in terms of overall perceptual score (OPS), target perceptual
score(TPS), interference perceptual score (IPS), and artifact perceptual
score (APS).

utterances of the airbone database (see Section 4.1.1) with additive white Gaussian
noise at four different SNRs, namely 0, 5, 10, and 15 dB. For evaluation we employed
the PESQ measure. The results are presented in Figure 3.13 (a). The PESQ measure
shows that the signals based on the clean phase attain higher scores than the other
signals, thus the clean phase leads to an improvement. The scores achieved with
the PI method are almost equal to the scores achieved by combination with the
phase of the noisy signal. From these results, we conclude that handling the phase
implicitly in PI has no disadvantage in comparison to using the phase of the noisy
signal. However, as there is also no improvement an explicit phase estimation might
be beneficial. Furthermore, it has to be considered that the results are influenced
by the choice of the frame length, frame overlap and STFT size [47]. This is subject
to future investigations.

Figure 3.14 shows the spectrograms of an utterance corrupted by white noise at
5 dB SNR and enhanced by PI, where (a) is created using the magnitude of PI and
the clean phase, (b) is created using the magnitude of PI and the noisy phase and
(c) is the signal obtained by the application of PI. A comparison of plot (a) and (b)
reveals that noise in the signal with the clean phase is slightly better attenuated,
as for instance in the region marked by the arrow. The computation of the global
SNR confirms this impression, as can be seen in Figure 3.13 (b).

Listening to the utterance plotted in Figure 3.14 leads to further observations.
First, the recording reconstructed with the clean phase contains a “crackling” artifact
in the background. The recording based on the noisy phase and the recording
obtained by PI are not affected by such an artifact. In all recordings, there is
residual noise present in the background and the high frequency components are
damped. The speech attenuation is a consequence of the lower energy in high
frequency bands and of the large value for the kernel variance, which is necessary to
achieve de-noising. Interestingly, the PESQ measure does not reflect the distortions
that can clearly be perceived when listening to the signal with the clean phase.
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The individual scores for the investigated utterance show the same tendency as the
overall scores given in Figure 3.13.

Figure 3.15 shows the scores achieved by the PEASS measures [63]. The PEASS
measures comprise the overall perceptual score (OPS), target perceptual score (TPS),
interference perceptual score (IPS), and artifact perceptual score (APS) (see Section
4.3.3 for details on the PEASS measures). It is interesting to note that the APS is
lower for the signal with the clean phase in the lower noise conditions, while the IPS
is very high.6 These tendencies are consistent with the impressions from listening.
Furthermore, the OPS of the signal with clean phase is slightly lower than for the
other methods at 0 and 5 dB SNR. This also agrees with the impression from listen-
ing, as for these SNR conditions the crackling artifact is perceivable. For the higher
SNR cases this is a minor problem. As the PESQ and PEASS quality measures do
not agree a systematic subjective evaluation is necessary to gain certainty about the
subjectively perceived quality. This is, however, beyond the scope of this thesis.

3.7 Pre-Image Iterations with Determination of the
Kernel Variance7

The kernel variance c is the key parameter to achieve good noise attenuation with
PI. In the first pre-image iteration experiments [52], the SNR was assumed to be
known and a suitable value for c was chosen according to the de-noising performance
on a development dataset.

For the utterances of the airbone database there is some variation of the noise
level in the same SNR condition. Therefore, it is difficult to choose one value for
c that is optimal for all utterances in one SNR condition. Thus, we investigated
how an optimal value of c can be chosen for each utterance based on an estimate of
the noise level. For the determination of a suitable value of c we estimate the noise
at the beginning of the utterance, assuming that there is no speech and stationary
noise.

The power of a finite zero-mean signal x[n] is equivalent to the signal variance
and estimated using

σ2 = 1
N

N−1∑
n=0
|x[n]|2, (3.39)

where N is the length of the frame used for estimation. We use the signal power at
the beginning of the noisy speech signal as noise estimate. To find a good setting
for the frame length, we computed the noise estimates for frame lengths of 256,
512, 1024, and 2048 samples for the airbone database and compared them with the
measured noise power of the entire recordings. The noise estimate with a frame
length of 2048 has the lowest deviation from the power measured for the entire
signal. With a sampling rate of 16 kHz, 2048 samples correspond to 128 ms. For

6 Higher scores always denote better performance.
7 This section is based on [51].
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this time frame the assumption that there is no speech present holds for the airbone
database.

We propose two variants of PI depending on the noise type. In the case of white
noise, a mapping function is learned that maps the noise power to an appropriate
value of c. In the case of colored noise, the noise power is not uniformly distributed
over the frequency range. A single value for c therefore does not result in optimal
de-noising. To account for this, c is determined separately for each frequency band
from feature extraction. The two variants of PI, PI with determination of the kernel
variance (PID) for white noise and PI with frequency-dependent determination of
the variance (PIDF) for colored noise are explained in the next two sections.

3.7.1 Determination of the Kernel Variance for White Noise
To find the mapping function, PI are applied to each sentence in the development
set with different values of c and the enhanced recordings are evaluated using the
measures of the PEASS toolbox (see Section 4.3.3 for details). As optimization
criterion S for the best setting of c, a linear combination of the four scores is used,
i.e.,

S = 0.5
(

OPS + 1
3 (TPS + IPS + APS)

)
. (3.40)

Additionally, the IPS score has to be greater than 10 to avoid the situation where
S is large due to good TPS and APS scores but no de-noising is achieved. Figure
3.16 shows the scores S as functions of the noise estimate for each sentence of the
development set of the airbone database. The different curves represent the scores
achieved with different values of c during pre-image iterations. The value of c is
coded in color. Three conclusions can be drawn from the graphs: First, the noise
estimates are scattered along the x-axis so the noise power of utterances in the same
SNR condition varies. Second, with increasing noise greater values of c lead to better
performance. Third, the overall achievable performance decreases with increasing
noise as expected.

The first observation is caused by the fact that at the same SNR the noise power
is different for different utterances of the airbone database if the active speech level
is not considered (see Section 4.1.4 for details). This is the consequence of rather
short recordings which lead to a different amount of speech energy from recording
to recording and to different noise levels for given SNRs.

Results of the first PI experiments showed that a value of c that is suitable for
de-noising is rather related to the noise power than to the overall SNR. This is
consistent with the following formulation: Let us consider a part of the spectrum
that contains only noise. The degree of de-noising depends on the similarity of the
feature vectors. The kernel, which is used to measure the similarity, is scaled by c. If
the noise is stronger, the difference between the feature vectors is larger. Therefore,
the value of c has to be larger to achieve an equivalent degree of similarity and
de-noising.
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Figure 3.16: Overall performance score S in dependence of the estimated noise level with
different values for the kernel variance c. The performance was evaluated
on a development set of 12 sentences with an SNR of 0, 5, 10, 15, and 20
dB.

While the noise power gives us the information how to set c for noise attenuation,
the SNR is related to the speech signal degradation. If the SNR is high, the speech
signal will not or barely be affected by de-noising. If the SNR is low, however,
some speech components may not be distinguishable in the noise anymore. These
components are attenuated such as noise and the speech signal therefore is distorted.

The mapping function between the noise estimate and the kernel variance c is
derived by polynomial curve fitting based on least squares. A polynomial of degree
two is used. The fit is computed from the root mean square noise estimate σ. Figure
3.17 (a) shows the fitted function when all data points are used. It can be seen that
the fit is not optimal, especially in the regions where the noise power is close to zero.

To improve the fit, outliers are removed. The data points marked by a cross in
Figure 3.17 (b) are labeled as outliers since the values of c are not in the appropriate
range for the noise estimate. For instance, for the data point marked with the arrow,
the SNR is 0 dB and the predicted c is 0.5, which is not reliable as in previous
experiments a value around 4 has been identified as a good setting for c at 0 dB.
The value of 0.5 rather suitable for 10 dB.

3.7.2 Frequency-Dependent Determination of the Kernel
Variance for Colored Noise

For colored noise, a single value for c for all frequencies is not suitable as the noise
power is not equally distributed over the frequencies. To approach this problem,
we first use a development set with utterances corrupted by white noise to derive
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Figure 3.17: Mapping function for pre-image iterations with automatic determination
of the kernel variance c for white noise, (a) before and (b) after removal of
outliers.

a mapping function as in the previous section. For the utterances corrupted by
colored noise, we estimate the equivalent noise power σ2

k at each frequency bin and
use it to find a suitable value for c from the mapping function for white noise. This
leads to a frequency-dependent estimation of ck.

The estimate of the noise power for each frequency bin is based on Parseval’s
theorem [45], which states that the mean of the squared magnitude values of the
discrete Fourier transform of a signal, Y [k], is equal to the sum of the squared
samples in time domain y[n], i.e.,

K−1∑
n=0
|y[n]|2 = 1

K

K−1∑
k=0
|Y [k]|2. (3.41)

White noise is equally distributed over all frequencies and if the exact power spec-
trum could be estimated from one time frame the power spectrum was flat. There-
fore, in the ideal case, the power of the time domain signal could be estimated from
one Fourier coefficient, i.e.,

σ2 = 1
N

1
K

K−1∑
k=0
|Y [k]|2 ideal case= 1

N
|Y [k]|2 ∀k. (3.42)

Based on this relation, we estimate the power spectrum of colored noise and derive
the equivalent noise power σ2

k in time domain for each Fourier coefficient Y [k].
In particular, 256-point STFTs are computed from 128-sample frames by appli-

cation of zero-padding. The squared magnitude bins |Y [k]|2 are averaged over the
first 15 frames to get a more reliable estimate. Dividing the average by N gives
the equivalent noise power σ2

k for the kth frequency bin, that is subsequently used
to derive a suitable value for ck from the mapping function. During processing,
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Measure Agreements

Global SNR 6
Segmental SNR (segSNR) 1
Frequency-weighted segmental SNR (fwsegSNR) 0
fwsegSNR variant 1
fwsegSNR MARS8 2
Composite measure 0
Perceptual evaluation of speech quality (PESQ) 1
Itakura-Saito distance (IS) 0
Weighted spectral slope distance (WSS) 0
Log-likelihood ratio (LLR) 0

Table 3.2: Agreement counts of cases where objective measures and subjective listening
agree on the best parameter setting for 10 dB SNR, evaluated on the devel-
opment set of the Noizeus database (six sentences). Detailed explanations of
the evaluation measures can be found in [2].

frequency bins are grouped to frequency bands as explained in Section 3.3. For the
frequency bins within one band the values for ck are averaged and this average is
used for pre-image iterations within the band.

The PIDF method was tested on utterances of the Noizeus database (see Section
4.1.2 for details) corrupted by car noise. Listening to the enhanced utterances
reveals that there is a certain amount of residual noise left when the measure S in
(3.40) is used to derive the mapping function. We therefore performed an informal
subjective listening test to find the objective evaluation measures that achieve the
highest agreement on the perceived degree of de-noising. The test was performed
at a single noise condition (10 dB SNR) on the development set of the Noizeus
database (six speakers). The test person had to find the parameter resulting in
good de-noising while preserving good speech quality. The tested measures are
listed in Table 3.2. For a detailed description of all measures see [2]. The second
column of Table 3.2 shows the counts how often subjective and objective evaluation
agreed on the parameter setting leading to the best performance. The table shows
that the global SNR achieves the highest agreement with the subjective evaluation.
Therefore we use the global SNR instead of S in (3.40) to derive a mapping function
for the estimate of a suitable value of c in further experiments. (A comparison of
mapping functions is provided in Section 5.3.)

8 MARS: Multivariate adaptive regression splines
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3.8 Pre-Image Iterations for Voice Activity Detection
and Musical Noise Suppression9

During analysis of pre-image iterations we observed that the convergence behavior
of the sample vectors xi (or patches, equivalently) reveals information about the
content of the underlying signal. To be more precise, the number of iterations until
convergence indicates if the sample belongs to a region containing predominantly
noise or speech. We use this information for voice activity detection (VAD) and
perform musical noise suppression on enhanced speech in a post-processing step.

Figure 3.18 (a) and (b) show the spectrograms of the clean and the noisy signal
of a tested utterance. The signal is corrupted by AWGN at 10 dB SNR. Figure
3.18 (c) shows the enhanced signal using PI. Figure 3.18 (d) provides the number of
iterations for each bin averaged over the patches the bin belongs to. Figure 3.18 (e)
shows the result after thresholding the number of iterations to get a binary decision
for voice activity. For comparison, Figure 3.18 (f) shows the result of IMCRA [21],
which returns a probability if the voice is active or not for each frequency bin. The
figures show that the VAD from pre-image iterations and IMCRA lead to similar
results.

Figure 3.19 shows the results of the iteration analysis for the same utterance as
in Figure 3.18 but with lower SNRs. The spectrograms of the noisy utterances
corrupted by AWGN at 0 and 5 dB SNR are shown in Figure 3.19 (a) and (b),
respectively. Figure 3.19 (c) and (d) show the PI VAD and the VAD of IMCRA for
0 dB, Figure 3.19 (e) and (f) show the corresponding figures for 5 dB. In these noise
conditions, the VAD of PI and IMCRA are similar as well. However, a comparison
of the plots with different SNR makes clear that the kernel variance considerably
influences the outcome. Note that the kernel variance is set according to the em-
pirical results on a development set. For 0 dB SNR the VAD seems more robust
although the SNR is lower than for 5 dB SNR. For 0 dB the kernel variance is
set to 3, which is a rather low value in comparison to the value 4 used in the de-
noising experiments (see Section 5.1). Obviously, the lower value is more suitable
for VAD. These experiments confirm that pre-image iterations can be used for VAD
and speech/non-speech separation in the spectrogram in several noise conditions.
However, as in the case of de-noising, the value of the kernel variance has to be
chosen carefully.

The occurrence of musical noise is a major problem in speech enhancement. Mu-
sical noise is caused by inaccuracies of the enhancement algorithm at hand, it origi-
nates from a random amplification of frequency bins that change quickly over time.
Musical noise is perceived as “twittering” and can severely degrade the perceptual
quality of enhanced speech recordings. If it is too prominent, it may even be more
disturbing than the interference before enhancement. Figure 3.20 shows the spec-
trogram of the speech utterance in Figure 3.18 that has been corrupted by additive
white Gaussian noise at 10 dB SNR and enhanced by the generalized subspace

9 This section is partly based on [64] and [65].
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Figure 3.18: Spectrograms of the iteration analysis and voice activity detection for the
sample utterance of the airbone database. (a) Clean signal. (b) Signal
corrupted by AWGN at 10 dB SNR. (c) Spectrogram after enhancement
by pre-image iterations. (d) Average number of pre-image iterations until
convergence for each bin (with stopping after six iterations). (e) Binary
mask after threshold operation. (f) VAD of IMCRA for comparison.
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Figure 3.19: Spectrograms and VAD for the sample utterance corrupted by AWGN at
0 and 5 dB SNR. (a) Noisy signal with 0 dB SNR. (b) Noisy signal with 5
dB SNR. (c) VAD of PI and (d) VAD of IMCRA for 0 dB SNR. (e) VAD
of PI and (f) VAD of IMCRA for 5 dB SNR. The different performance of
the VAD in (c) and (e) is caused by a different value of the kernel variance
as explained in the text.
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Figure 3.20: The sample utterance shown in Figure 3.18, corrupted by AWGN at 10 dB
SNR and enhanced by the generalized subspace method. Musical noise is
visible as “blobs” in the spectrogram.

method [40]. The “blobs” in the non-speech region of the spectrogram are perceived
as musical noise.

Much research has been carried out on how to combat musical noise, either by
modifying the enhancement method at hand or by post-processing. The post-
processing method in [66] for spectral subtraction is based on musical noise/speech
classification from the spectrum and subsequent processing of the spectral values.
In [67], post-filtering with a perceptually inspired filter is applied to the outcome of
the used subspace method. The method proposed in [68] can be applied as post-
processing for any speech enhancement method, it performs smoothing of weighting
gains using a robust detector for speech pauses and low SNR conditions.

We use the VAD derived from the convergence behavior of pre-image iterations
to perform musical noise suppression (MNS). Musical noise is most disturbing in
non-speech regions. Therefore we use pre-image iterations to discriminate between
speech and non-speech regions in the spectro-temporal representation. Then, we
apply a mask to attenuate musical noise in non-speech regions. Two application
scenarios are proposed: In the first scenario, PI are executed on the noisy signal
– in the same manner as for speech enhancement. In the second scenario, PI are
executed on the enhanced signal. This way, the method can be applied as post-
processing step to any speech enhancement algorithm without knowing the original
noisy utterance. Both methods are explained in detail in the next sections.

3.8.1 Musical Noise Suppression with PI Applied on the Noisy
Signal

In this scenario, we apply a continuous mask to suppress musical noise in non-speech
regions of enhanced signals. A continuous mask – in comparison to a binary mask
– has the advantage to reduce potential artifacts from inaccuracies of the mask
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Figure 3.21: Block diagram for musical noise suppression after speech enhancement (SE)
with pre-image iterations applied on the noisy signal.

estimation. The block diagram in Figure 3.21 illustrates the method. The mask is
computed by application of the sigmoid function

m = 1
1 + exp(t · a− b) (3.43)

to the number of iterations t for each frequency bin, where a and b are scaling
parameters. Figure 3.22 shows the mapping function with the parameters set to
a = 1.2 and b = 9.

To perform musical noise suppression, first the magnitude STFTs of all time
frames of the enhanced signal with musical noise y[n] are transformed to the logarith-
mic domain. Then, the mask of all time-frequency bins is multiplied in element-wise
manner with the magnitude STFTs after subtraction of the minimum of all magni-
tude values. This minimum is added again, the inverse Fourier transform is applied
and overlap-add is performed. Figure 3.23 (a) illustrates the resulting mask for the
recording plotted in Figure 3.18. Figure 3.23 (b) shows the spectrogram after musi-
cal noise suppression performed on the signal enhanced by the generalized subspace
method in Figure 3.20. Musical noise is still visible in the spectrogram, however its
amplitude is decreased. Listening to the utterance confirms the reduction of musical
noise.

3.8.2 Musical Noise Suppression with PI Applied on the
Enhanced Signal

To be independent of the noisy signal, we experimented with PI executed on the
enhanced signal as illustrated in Figure 3.24. For demonstration, the same test
utterance is used as before. Figure 3.25 shows the spectrograms of (a) the noisy
signal, (b) the signal after enhancement by the generalized subspace method and
(c) the average number of iterations when PI are applied on the enhanced signal. As
before, we can discriminate between different regions in the iteration plot, however
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Figure 3.22: Sigmoid mapping function from the number of iterations t to the weight of
the mask m. The parameters are set to a = 1.2 and b = 9. The function is
used for maximally 6 iterations (see operating region). Note that the spec-
trum is transformed to the logarithmic domain and that it is normalized
to the minimum. Therefore the resulting suppression is stronger than with
simple multiplication by the mask and the suppression factors relatively
close to one in the operating region are sufficient.
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Figure 3.23: (a) Mask computed with the sigmoid function from (3.43) with a = 1.2
and b = 9 and maximally 6 iterations. (b) Resulting speech utterance with
suppressed musical noise after application of the mask.
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Figure 3.24: Block diagram for musical noise suppression after speech enhancement (SE)
based on pre-image iterations applied on the enhanced signal.

the relation between the number of iterations and the content of the signal is not as
clear as in the former case. Empirically, we observed that few iterations correspond
mainly to speech regions, an intermediate number of iterations corresponds mostly
to noise, and more iterations again correspond to speech regions.

For the discrimination between speech and non-speech regions we set two thresh-
olds, such that the iteration map is segmented as shown in Figure 3.25 (d): Regions
in green cover areas corresponding to speech, while regions in blue cover speech and
noise areas. The operation for obtaining the mask m for each bin is

m =
{

1 if t < a or t > b
0 otherwise, (3.44)

where m = 1 if there is speech, t is the number of iterations for a specific bin in the
map and a and b are the two threshold values. The values for the thresholds are
derived experimentally (see Chapter 5, Section 5.4).

To distinguish between noise and speech, the parts of the blue region within
speech areas have to be removed. This is realized with techniques from image
processing, namely morphological filtering such as dilation and erosion [69]. The
consecutive execution of these operations results in the so-called closing operation
that closes the holes in Figure 3.25 (d). As structural element a disk of radius
10 is used. Figure 3.25 (e) shows the resulting contiguous binary mask, which is
subsequently applied to filter the magnitude of the STFT of the signal in the same
way as explained in Section 3.8.1. Figure 3.25 (f) represents the spectrogram after
musical noise suppression. A comparison of the resulting spectrograms after musical
noise suppression by the two methods shows, that the application of the binary mask
leads to stronger suppression with the given parametrization.
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Figure 3.25: Spectrograms of the iteration analysis and suppression mask of the sample
utterance of the airbone database. (a) Signal corrupted by AWGN at
10 dB SNR. (b) Signal enhanced by the generalized subspace method.
(c) Average number of iterations for each frequency bin computed from
the enhanced signal (with stopping after six iterations). (d) Binary mask
after the threshold operation (3.44). (e) Smoothed mask after the closing
operation. (f) Spectrogram of the signal after musical noise suppression.





Chapter 4
Experimental Setup and Evaluation

To test the proposed algorithms, enhancement experiments were performed on two
databases: the airbone database and the Noizeus database. The speech enhance-
ment methods are evaluated using objective quality measures, by listening, by visual
inspection of the spectrograms, and by automatic speech recognition (ASR). For the
speech recognition experiments, a recognizer was trained on the BAS PD1 database
[70]. As a benchmark, the proposed methods are compared to the generalized sub-
space method, to spectral subtraction with oversubtraction and spectral flooring,
and to the MMSE log-spectral amplitude estimator.

In this chapter, we first give an overview on the databases, then we discuss the
evaluation including a summary of applied objective quality measures and a descrip-
tion of the speech recognizer. Finally, we provide a summary about the methods
used for reference.

4.1 Databases
Three databases were used: The airbone database and the BAS PD1 database con-
tain recordings in German and the Noizeus database contains recordings in English.

4.1.1 Airbone Database
The airbone database consists of utterances recorded with a headset supplied with a
bone conduction microphone in addition to the standard air conduction microphone,
hence the name airbone database. The bone microphone is placed at the temporal
bone behind the ear and captures sound waves propagating through the cranial
bones. The bone channel is robust to environmental noise and can therefore be used
to improve the performance of speech processing applications in noisy environments.
The air and the bone channel are directly processed as stereo recording by using a
specially developed recording device. A prototype of this device was built at the lab
[71] and is shown in Figure 4.1.

63
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@
@@R

bone microphone

Figure 4.1: Headset with integrated bone conduction microphone [71].

The database consists of recordings of six individuals, three female and three
male, speaking the Austrian variety of German. Each speaker read a list of 20
sentences that were randomly generated from a word list of 50 words. The sentences
have the grammatical structure subject verb numeral adjective object. The phoneme
distribution of the basic list is consistent with the phoneme distribution of the
German language.

The recordings were performed with 16 kHz sampling frequency. To avoid clipping
they were normalized to -2 dBFS1. The recordings of two speakers (speaker 1 and
3) are corrupted by a hum at 50 Hz, presumably caused by the recording device.
As the disturbing signal is well below the frequency range of the speakers, who are
both female, it was removed by filtering with a high-pass filter.

AWGN and car noise were added at 0, 5, 10, and 15 dB SNR. For a subset of
the experiments noise was added depending on the active speech level (ASL) (see
Section 4.1.4) while for the other experiments the SNR was computed using the
entire recordings. Note that the experiments reported in this work make only use
of the air channel.

4.1.2 Noizeus Database
Noizeus is a speech corpus developed at UT Dallas to enable comparison of speech
enhancement algorithms among different research groups [2, 72]. The database
contains recording of 30 IEEE sentences [73] spoken by 6 speakers, three female and
three male, each producing five sentences. The utterances were corrupted by eight
different real-world noises, which were taken from the AURORA database [74]. The
noise types comprise suburban train, babble, car, exhibition hall, restaurant, street,
airport, and train-station noise. The IEEE sentences were selected because they are
phonetically balanced and have relatively low word-context predictability.

1 dB full scale
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The sentences were recorded in a sound-proof booth and with a sampling fre-
quency of 25 kHz. The recordings were down-sampled to 8 kHz and then filtered
by the modified intermediate reference system (MIRS) filters used for the PESQ
measure (see Section 4.3.1) to simulate the frequency characteristics of a telephone
handset. The noise was filtered by the MIRS independently of the speech signal.
To determine the SNR, the ASL of the filtered clean speech signal was computed
using method B of the ITU-T recommendation P.56 [75]. Noise was added at 0, 5,
10, and 15 dB SNR. To add the noise, a noise segment of the same length as the
speech utterance was randomly cut out of the noise recording, rescaled according to
the ASL and the desired SNR, and added to the filtered speech signal.

We used the data contaminated by car noise and additionally corrupted clean
recordings by AWGN for the experiments with the PIDF method.

4.1.3 BAS PhonDat 1 Database
The BAS PhonDat 1 (BAS PD1) database belongs to the Bavarian Archive for
Speech Signals Corpora [70]. The database was created to have access to different
regional variants of German, for both documentation of phonological forms and
improvement of speech processing systems, e.g., for ASR. Therefore, the recording
was performed at four sites in Germany (Kiel, Bonn, Bochum, Munich). The BAS
PD1 corpus contains read speech uttered by 201 different speakers of German. In
total 21587 utterances were recorded with a sampling rate of 48 kHz. The data
was downsampled to 16 kHz. The entire database is phonologically segmented by
automatic segmentation.

4.1.4 SNR Computation
For adding noise to the speech signals of the airbone database, we employed two
different approaches of SNR computation. The first is based on the power of the
entire clean signal and the second is based on the ASL as it is done for the Noizeus
database.

The global SNR is computed by

SNR = 10 log10

∑N−1
n=0 |s[n]|2∑N−1
n=0 |d[n]|2

, (4.1)

where s[n] is the speech signal, d[n] is the noise signal and N is the length of the
signals [76]. For computation based on the ASL, only the frames with active voice
are taken into consideration. The power estimate for the signal is higher when
only speech frames are used instead of the entire signal including silent regions with
relatively low power. Hence, the measured global SNR is lower when the SNR
computation is based on the ASL.

To get an estimate of the difference in SNR, we computed the power with and
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dSNR [dB]

Database Mean Std. dev. Minimum Maximum

airbone 1.7838 0.3613 0.7835 2.7083
Noizeus 0.5547 0.2007 0.2983 1.1246

Table 4.1: SNR difference dSNR between SNR computation with and without ASL de-
tection.

without ASL detection and derived the difference in SNR as

dSNR = 10 log10

(
σ2

ASL
σ2

)
. (4.2)

Table 4.1 shows the dSNR averaged over all utterances of the airbone and the Noizeus
database. For the airbone database the average difference is larger. This is reflected
by the speech activity factor, which gives a percentage for the amount of active
speech. For the airbone database the average activity factor is 0.67 while for the
Noizeus database it is 0.88. This implies that the airbone database contains more
silent periods, i.e., frames where speech is not active. Consequently, the difference
between the two SNRs is larger than for the Noizeus database.

4.2 Evaluation of Speech Enhancement Methods
The objective of speech enhancement can be manifold. One objective is to improve
perceptual aspects such as the perceived speech quality or the intelligibility. A
different objective is to enhance speech signals not for humans but for machines,
such as for ASR. For all of these tasks, a speech enhancement method with good
performance for one task may not be performing as well on a different task. For
instance, speech can be highly intelligible while of poor quality or, on the other
hand, of good quality but not fully intelligible [2]. Speech quality and intelligibility
are not equivalent and the relationship between the two is not yet fully understood
[77]. For ASR, enhancement has an even different objective, namely the increase of
recognition rates by improving the features for the recognizer.

Accordingly, evaluation of speech enhancement methods can be performed with
the focus on different aspects. Perceptual evaluation covers speech quality and
intelligibility. Speech quality is highly subjective and therefore difficult to evaluate.
This is caused by the different internal standards of individual listeners for what is
considered to be “good” or “bad” quality. Quality evaluation can be done either by
subjective listening tests or by objective quality measures. For subjective evaluation,
listeners are asked to rate the quality of original and processed speech along a given
scale. Listening tests have to be designed with caution such that valid conclusions
can be derived [78]. As carefully designed listening tests are time consuming and
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therefore expensive, there is a great interest in objective quality measures, which are
easier to apply and faster. Objective evaluation is done by comparing the processed
speech signal with the original (clean) signal by mathematical means. Objective
quality measures are derived from the numerical “distance” between processed and
original signals. An objective quality measure can only be valid if it correlates well
with the outcome of subjective listening tests. Therefore, research is ongoing to
investigate the correlation of objective quality measures and listening tests [79, 63].

While quality measures “how” a speech utterance is produced, intelligibility relates
to “what” a speaker said. In contrast to quality, speech intelligibility is not subjective
and can be easily assessed by asking a group of listeners to identify words in given
speech material. The intelligibility is then measured by counting the number of
correctly identified words or phonemes.

Besides the discussed enhancement with focus on perceptual aspects, speech can
be optimized for automatic processing by machines. If an automatic speech recog-
nizer is trained on clean data, its performance in general suffers if noise is present
in the tested signal. One possibility for improvement is to enhance the speech sig-
nal before recognition. Note that high ASR rates do not necessarily indicate good
perceptual quality.

4.3 Objective Quality Measures
As listening tests are time consuming and expensive and often require access to
trained listeners [2], much afford has been made to develop objective quality mea-
sures that provide high correlations with the scores of subjective listening tests [76].
Most of these measures were originally designed to measure distortions introduced
by speech codecs and/or communication channels. These distortions are, however,
different from the distortions introduced by speech enhancement algorithms. In the
case of speech enhancement, two types of distortions can be observed: the distortion
of the speech signal component and the distortion by the background noise. This
is caused by the suppression of the background noise that also affects and possibly
degrades the speech signal [79]. For instance, speech components may erroneously
be attenuated.

In [79], Hu and Loizou present experiments that analyze the correlation between
results of subjective listening tests and objective quality measures. For this purpose
the speech utterances were enhanced by 13 different enhancement algorithms and
subsequently tested by subjective listening tests. The listening tests were performed
according to the ITU-T P.825 standard (see Section 4.4.3) and correlations were
computed for signal distortion, background distortion and overall quality. Among
the tested quality measures, the perceptual evaluation of speech quality (PESQ) mea-
sure showed the highest correlation with the overall quality and the signal distortion
from listening tests. The log-likelihood ratio (LLR) and the frequency-weighted seg-
mental SNR (fwsegSNR) achieved an almost similar performance. As they are easier
to compute than the PESQ measure, they represent simple alternatives.
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Figure 4.2: Block diagram of the PESQ measure computation [2].

A comprehensive overview on objective quality measures for speech enhancement
is given in [2]. In the next sections, we shortly summarize the PESQ, the fwsegSNR,
and the perceptual quality measures of the PEASS toolbox for source separation as
we use them for evaluation.

4.3.1 Perceptual Evaluation of Speech Quality Measure
The PESQ measure was developed for evaluation of distortions in real telecommu-
nication networks. These include packet loss and signal delays in VoIP or linear
filtering and coding distortions [80, 2]. In the 1990s, several objective measures ad-
dressing these problems were proposed [81, 82, 83]. A competition was held in 2000
to find a measure that reliably performs in many codec and network conditions.
The competition was jointly won by the perceptual analysis measurement system
(PAMS) [81] and by PSQM99, an unpublished version of the perceptual speech qual-
ity measure (PSQM), which was standardized in ITU-T P.861 [84]. Parts of these
two measures were combined to a new measure called perceptual evaluation of speech
quality (PESQ) measure [85]. PESQ was standardized as ITU-T P.862 [86]. In the
ITU-T evaluation, a high correlation with subjective listening tests was found for
both known and unknown test data (average Pearson correlation coefficient of 0.935
[86]).

Figure 4.2 shows the structure of the PESQ measure computation. First, the ref-
erence (clean) signal and the degraded (processed) signal are equalized to a standard
listening level. Then, the signals are filtered by the MIRS filter in the pre-processing
stage. The signals are aligned in time to compensate for delay errors and then trans-
formed by an auditory transform that returns loudness spectra. Then, the absolute
difference between the degraded and the reference spectrum is computed and further
used as an error measure in the next processing stage. Note that the computation
of the difference is not symmetric as in other measures, where the difference is
squared. Positive and negative differences are treated differently. This is based
on the observation that positive and negative differences influence the perception
differently. While a positive difference indicates the addition of a component, such
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as noise, a negative difference indicates that a component has been attenuated. In
telecommunication applications, attenuation is considered to be less objectionable
than additive components, i.e., the omitted components may not be perceivable due
to masking effects. The differences between loudness spectra, called disturbances,
are averaged over time and frequency. The final mean opinion score (MOS, see Sec-
tion 4.4.1) is derived by linear combination of the symmetric disturbance value and
the asymmetric disturbance value. The PESQ measure covers the range from -0.5
to 4.5, however, for most cases the score will be between 1 and 4.5 such as the MOS.

Although designed for speech codecs and assessment of transmission errors, PESQ
was reported to show high correlation with the outcome of subjective listening tests
on speech enhancement algorithms in the study of Hu and Loizou [79]. They there-
fore recommended it for evaluation of speech enhancement algorithms.

4.3.2 Frequency-Weighted Segmental SNR
Besides the global SNR in (4.1), which is evaluated on the entire signal, the SNR
can be computed for frames that are subsequently averaged leading to the segmental
SNR. In addition to the evaluation in time domain, the segmental SNR can also be
evaluated in frequency domain. Hu and Loizou showed in [79] that the segmental
SNR in time domain yields a very poor correlation coefficient with the overall quality.
The frequency-weighted segmental SNR (fwsegSNR) achieves a higher correlation –
similar to the PESQ measure – and is therefore more suitable for evaluation.

The fwsegSNR is defined as

fwsegSNR = 10
N

N−1∑
n=0

∑K
k=1 Bk log10

[
F 2(n,k)

(F (n,k)−F̂ (n,k))2

]
∑K
k=1 Bk

(4.3)

where Bk is the weight of the kth frequency band, K is the number of bands, N
is the total number of frames in the signal, F (n, k) is the filter-bank amplitude of
the clean signal in the kth frequency band at the nth frame, and F̂ (n, k) is the filter
bank amplitude of the enhanced signal in the same band. The fwsegSNR is superior
to the time-domain segmental SNR by providing additional flexibility to choose the
weights for different bands of the spectrum. For instance, perceptually motivated
frequency spacing can be applied such as critical band spacing or the weighting
can be chosen in order to achieve maximal correlation with the results of subjective
listening tests [2].

For the evaluation of our experiments, we used octave bands with the weights for
the speech transmission index reported in [87].

4.3.3 Objective Quality Measures Proposed for Source
Separation

Audio source separation is a technique related to speech enhancement. In speech
enhancement one target speaker signal is extracted from a noisy speech recording,
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while in audio source separation one or more sources are separated from a mixture
of sources. Depending on the “noise”, which – broadly defined – can be any inter-
fering signal, both tasks have a similar goal. The main difference is that in speech
enhancement only one speaker is retrieved while in source separation the objective
is in general to retrieve more signals separately.

Similar as in speech enhancement, source separation requires evaluation by subjec-
tive listening tests or by objective quality measures proven to correlate well with such
tests. In [63], a set of new objective quality measures for audio source separation was
proposed. These measures are based on the estimation of distortion components and
the use of the perception model quality assessment (PEMO-Q) auditory model [88]
to derive salience features of the overall distortion and each distortion component.
These features are non-linearly combined by a neural network to optimally match
the scores of subjective listening tests. This results in four scores testing different
aspects of the processed signal: the global quality (OPS - overall perceptual score),
the preservation of the target signal (TPS - target perceptual score), the suppression
of other signals (IPS - interference perceptual score), and the absence of additional
artificial noise (APS - artifact perceptual score).

The measures were developed and evaluated using the results of subjective lis-
tening tests. The performance evaluation showed a high correlation to subjective
scores and an improvement compared to the state-of-the-art evaluation measures
such as signal-to-distortion ratio (SDR), source image-to-spatial distortion ratio
(ISR), signal-to-interference ratio (SIR) and signal-to-artifacts ratio (SAR) [89].
The set of measures and source code for evaluation is publicly available as Per-
ceptual Evaluation Methods for Audio Source Separation (PEASS) toolbox [63].

Although originally proposed for source separation, we use these measures to
evaluate the performance of speech enhancement algorithms as the two domains
are closely related. The interference signals used in [63] are speech and music, so
the application to our scenario with white and car noise as interference is probably
not optimal. However, listening to the decomposed audio signals containing target,
interference and artifact signal provided by the PEASS toolbox confirmed that the
decomposition works well. One open question is if the non-linear mapping from the
salience features to the scores is optimal for speech enhancement, as there may be a
mismatch between the data used to derive the mapping and the data of the speech
enhancement experiments. Despite this issue, the usage of the PEASS measures is
interesting, because they provide better insight to the effects of different algorithms
due to the computation of the four scores. This is not possible with evaluation
measures that only return one overall quality score such as PESQ.

4.4 Subjective Listening Tests
To gain full understanding about the perceived speech quality after processing by
speech enhancement methods, a perceptual listening test is necessary. We, however
refrained from doing so. In [78], the authors suggest to carefully investigate if it
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Rating Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible, but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 4.2: Mean opinion score for sound quality evaluation [90].

is efficient to conduct a listening test to answer a given research question. Among
other considerations, they suggest that no perceptual listening test is necessary if
the magnitude of perceptual differences is either very large or very small. If the
magnitude is expected to be large, the outcome of the test might be obvious so no
verification is needed. On the other hand, if the differences are very small a large
number of subjects or repetitions will be necessary to gain information that obeys a
certain statistical confidence level. The results of the objective quality measures we
use for evaluation indicate that the perceptual difference between the investigated
methods is rather small. Applying the arguments in [78], a perceptual evaluation
would need too much effort to achieve results with a certain statistical confidence.

Though we did not realize a formal listening test, for completeness we give a short
overview on experimental setups that are commonly employed to evaluate speech
enhancement algorithms. For audio evaluation in general, the authors of [78] differ-
entiate between perceptual and affective evaluation. In perceptual evaluation, certain
attributes of the tested stimuli are rated. These attributes have to be well defined
and chosen by a proper procedure in advance of the execution of the experiment. In
affective evaluation the preference for stimuli is evaluated without explicitly looking
at certain attributes of the stimulus. The listener is asked to rate “overall” im-
pression about the stimuli. The listener is assumed to be in an integrative state of
mind, where several factors are combined to one overall impression of the stimulus.
Influencing factors contain of course the individual perceived attributes, but also
the mood of the listener, the context, the previous experience, and the expectation.

Note that in contrast to [78] we refer to all methods involving subjective tests as
perceptual evaluation. In the next sections, we will describe tests that are suitable
to assess the quality of enhanced speech such as the mean opinion score, preference
tests, and tests that are designed to assess different attributes of the enhanced signal
such as the diagnostic acceptability measure.

4.4.1 Mean Opinion Score
The Mean opinion score (MOS) is widely used to rate the speech quality [2]. The
listeners are required to judge the quality on an absolute scale consisting of five
points from 5 meaning “excellent” to 1 denoting “bad” quality (see Table 4.2). The
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Rating Description

5 Very natural, no degradation
4 Fairly natural, little degradation
3 Somewhat natural, somewhat degraded
2 Fairly unnatural, fairly degraded
1 Very unnatural, very degraded

Table 4.3: Signal rating scale of the ITU-TP.835 standard [95].

scores of all listeners are averaged and the resulting MOS is taken as measure for
the quality. The MOS is recommended by the IEEE Subcommittee on Subjective
Measurements [73] and by the ITU [91, 92, 90].

Generally, expert listeners are preferred to non-expert listeners. A listening test
using the MOS is conducted in two phases: First the listeners undergo a training
phase, then the actual test is executed. The training phase is required to familiarize
the listeners with the test procedure, material and environment. In the test phase,
the test signal is presented to the listeners who are asked to rate it according to the
five categories listed in table 4.2. More detailed guidelines on the test procedure are
provided in the ITU-R BS.1284-1 standard [90].

4.4.2 Diagnostic Acceptability Measure
Besides the overall quality of an enhanced speech signal, it is often useful to ask
listeners for certain attributes of the signal. In [93], a multidimensional approach
based on the diagnostic acceptability measure (DAM) was proposed. This test
is motivated by the work of McDermott [94]. The DAM test contains evaluation
on three scales, the parametric, metametric and isometric scale. The metametric
and the isometric scale assess the quantities “intelligibility”, “pleasantness”, and
“acceptability”. The parametric scale measures signal and background distortions.
The scales result in 16 measurements in total, containing several attributes that are
evaluated on the speech signal and on the background. For instance, the listener
is asked to rate on a scale from 0 to 100 how muffled the speech signal sounds
while ignoring the background distortion. The listener is also asked to quantify on
a scale from 0 to 100 if there is hissing, buzzing, chirping, or rumbling perceivable
in the background. The DAM test requires trained listeners and therefore is time
consuming.

4.4.3 The ITU-T P.835 Standard
The MOS and DAM tests were originally designed for the evaluation of speech
coders. Speech enhancement algorithms, however, have different effects on a speech
signal than speech coders [2]. Typically, besides the suppression of background noise
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Rating Description

5 Not noticeable
4 Somewhat noticeable
3 Noticeable but not intrusive
2 Fairly conspicuous, somewhat intrusive
1 Very conspicuous, very intrusive

Table 4.4: Background rating scale of the ITU-T P.835 standard [95].

they also also influence the speech signal. This makes the subjective evaluation
difficult as it is not clear whether the rating of a listener is based on the signal
distortion, the background suppression, or both. The lack of knowledge about the
listeners motivation for the rating introduces an uncertainty of the measures and
reduces the reliability of the results. The ITU-T P.835 standard was designed to
overcome this issue. The listener is asked to rate only the speech signal, only the
background noise, and the overall effect of speech and noise quality alternately.
To be precise, each trial contains a three-sentence sample of speech, where each
sample is followed by an appropriate silent interval for rating. In the first half of the
experiment, the listener rates “signal – background – overall quality”, in the second
half ”background – signal – overall”. This procedure is applied to prevent influence
by the scale order. The rating scales for the signal quality and the background
intrusiveness are given in Table 4.3 and 4.4, respectively. For the third rate in each
trial, the overall quality scale used in MOS tests is applied (Table 4.2).

4.4.4 Preference Tests
Preference tests are one example for affective evaluation according to [78]. Pairs of
samples are presented to listeners and they are asked to express their preference for
one sample. The pair of samples can either contain one modified signal and one
reference signal, or signals modified by two different systems.

The probably simplest form of preference test is the forced-choice paired com-
parison test. Test samples of two systems A and B are presented to listeners and
they have to choose which signal they prefer. As result, the percentage of preference
votes for system A is given [2]. Although a paired comparison test tells us whether
system A or B is preferred, it does not provide information about the degree of
preference [2]. The comparison category rating (CCR) test assesses the preference
of one system over the other on a seven-point scale including ratings for positive
and negative preference [92]. These ratings are listed in Table 4.5.

In contrast to the above preference tests, the method described in [96] requires
reference signals. The method is based on the comparison of the test signal with five
differently distorted speech signals as reference. Pairs including all combinations of
reference signals and all combinations of the test signal with the reference signals
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Rating Quality of second stimulus
compared to first

3 Much better
2 Better
1 Slightly better
0 About the same
-1 Slightly worse
-2 Worse
-3 Much worse

Table 4.5: Comparison category rating scale [92].

are presented to the listeners. The listeners are asked to express their preference.
The ratings obtained by comparison of the test signal with the reference signals are
plotted against the ratings obtaind by comparison of the reference signals with all
other reference signals. This way, the reference signal that is of equal preference as
the test signal can be found [96]. This method is recommended for speech quality
measurements by the IEEE Subcommitee on Subjective Measurements [73].

In the context of paired comparison tests, Bech and Zarachov mention the “law
of comparative judgments” [78]. It is based on the assumption that the comparison
leads to a distribution of responses for each stimulus. From these distributions, a
scale with scores for each stimulus can be derived. To be valid, however, one basic
assumption has to be fulfilled: “the unidimensionality of the attribute continuum
that is assumed to exist in the mind of the subject” [78]. This means, that it is
possible to represent the perceived differences of the stimuli on a single scale. This
further implies, that all derived differences between stimuli can be represented on a
single scale as well. So, if a stimulus A is preferred to B and B is preferred to C,
then A should be preferred over C.

In speech enhancement, we encounter two types of signal degradations: The back-
ground noise and the signal distortion due to processing. Now, assume an exper-
iment where the following signals are presented to a listener: (i) a signal without
noise suppression, (ii) a signal processed by weak noise suppression resulting in
some de-noising with no effects on the speech components, (iii) a signal processed
by strong de-noising with distortion of speech components. It is questionable if the
speech samples are rated such that the scores lie on a scale that is proportional to the
degree of processing. For instance, the speech sample with strong processing might
obtain lower preference than the unprocessed sample due to disturbing artifacts,
while the weakly processed sample might by preferred over the unprocessed sample
as noise is reduced. Therefore, the assumption of unidimensionality is possibly not
fulfilled and a preference test probably is not the best method to assess the quality
of speech enhancement methods.
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4.5 Automatic speech recognition2

In ASR, recognition rates of recognizers trained on clean data generally drop when
data is corrupted by noise due to the mismatch between the clean training condition
and the noisy testing condition. Speech enhancement has the potential to improve
the recognition results if noise is removed properly. However, enhancement methods
that result in good perceptual quality may not be optimal for ASR. In reverse, it
is not generally valid to expect good quality from good recognition rates on noise-
contaminated data. We performed some experiments reported in Section 5.5 to test
whether our speech enhancement methods are suitable to improve speech recognition
rates.

To test the enhanced utterances of the airbone database, we use a speech recog-
nizer trained on clean data of the BAS database (see Section 4.1.3). For training,
4999 sentences of the BAS database, spoken by 50 speakers were used. This amounts
to around 100 sentences per speaker. The training set contains 1504 different words
and the test set of the the airbone database 50, which do not necessarily coincide
with each other.

The automatic speech recognizer is based on the Hidden Markov Toolkit (HTK)
[97]. The front-end (FE) and the back-end (BE) are both derived from the standard
recognizer of the Aurora-4 database [98]. The FE computes Mel frequency cepstral
coefficients (MFCCs) by using a sampling frequency of 16kHz, a frame shift of 10
ms, a window length of 32 ms, 1024 frequency bins, 26 Mel channels, and 13 cepstral
coefficients. Cepstral mean normalization is employed on the MFCCs. Furthermore,
delta and delta-delta features are computed with a window length of 5 (half length
2). This finally leads to a feature vector of 39 components.

For training, the BE uses a dictionary based on 34 SAMPA-monophones. The
transcriptions in this dictionary are derived from more detailed transcriptions based
on 44 SAMPA-monophones by clustering of monophones that are less common in
the corpus. For each triphone, a hidden Markov model (HMM) is trained, which
consists of 6 states and Gaussian mixture models of 8 components per state. To
reduce the complexity and to overcome the lack of training data for some triphones,
a tree-based clustering based on monophone-classification is applied. With tree-
based clustering also triphone models that have not been observed in the training
data can be created. The grammar used for training is probabilistically modeled.
In contrast to that, a rule-based grammar is applied for testing as the utterances of
the airbone database obey very strict grammar rules.

4.6 Reference Methods
For evaluation, we compared our methods to spectral subtraction with oversubtrac-
tion and spectral flooring [10], the generalized subspace method [40], and to the

2 The evaluation of our speech enhancement methods with ASR is joint work with Juan A.
Morales Cordovilla.
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MMSE log-spectral short-time amplitude estimator [99]. Spectral subtraction is
used because it is simple in implementation. The generalized subspace method was
tested because it provides the basis of applying kernel PCA for speech enhancement.
The MMSE log-STSA estimator was taken to include a statistical model-based algo-
rithm in the comparison. The implementations of all three algorithms are provided
in [2]. As far as not noted differently, we use the default parametrization.

The noise is estimated from the beginning of each recording, where speech is
assumed to be absent. Each method includes a simple VAD for noise updates in
speech pauses. We further tested more sophisticated noise estimation algorithms
in combination with the MMSE log-STSA estimator, namely, the IMCRA method
[21] and the minimum statistics method [19]. These methods, however, did not
improve the quality (perceived subjectively and measured objectively). The tested
noise types are stationary, so the noise tracking methods probably have no advantage
over estimating the noise at the beginning with updates in speech pauses.

4.6.1 Spectral Subtraction with Oversubtraction and Spectral
Flooring

Spectral subtractive methods are based on the assumption that noise is additive.
Hence, the noisy speech signal can be enhanced by subtracting a noise estimate
from the noisy speech in the spectral domain. If the noise estimate is not exact,
residual noise is left that mostly appears as tonal components changing from frame
to frame, as the gain function applied on the noisy speech signal is time-varying.
This is called musical noise. Berouti et al. [10] proposed a spectral subtraction
method less prone to musical noise. The reduction of musical noise is addressed by
two measures: First, an overestimate of the noise is subtracted, this leads to better
suppression of noise components. Second, the noise is prevented to drop below a
certain noise floor. This way, gaps between remaining residual noise peaks are filled
and the residual noise has rather the characteristic of broad-band noise than musical
noise.

The algorithm suggested by Berouti et al. computes the enhanced power spectrum
|X̂(ω)|2 as

|X̂(ω)|2 =
{
|Y (ω)|2 − α|D̂(ω)|2 if |Y (ω)|2 > (α + β)|D̂(ω)|2
|D̂(ω)|2 else,

(4.4)

where |Y (ω)|2 is the power spectrum of the noisy speech signal, |D̂(ω)|2 is the
estimate of the noise power spectrum, α is the oversubtraction factor (α ≥ 1) and
β is the spectral floor parameter (0 < β � 1 ). For inverse transformation to
time-domain, the phase of the noisy speech signal is used [2].

The parameter α determines the trade-off between speech distortion and residual
noise. Hence, it is varied from frame to frame depending on the estimated SNR such
that

α = α0 − SNR/s for− 5 dB < SNR < 20 dB, (4.5)
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where α0 is the value of α at SNR = 0 dB and 1/s is defined as the slope of the linear
function to determine α. In [10], it is recommended to set α to 1 for SNR > 20 dB,
and to keep α fixed for SNR < −5 dB.

In our experiments, the parameter α0 is set to 4 and 1/s is set to 20/3, hence
α = 4.75 for SNR ≤ −5 dB. The spectral flooring parameter β is set to 0.01. These
parameters have been determined empirically.3

4.6.2 The Generalized Subspace Method
The generalized subspace method proposed by Hu and Loizou [40] generalizes the
subspace method by Ephraim and Van Trees [17] – proposed for white noise – to
colored noise. Ephraim and Van Trees suggested to perform eigenvalue decompo-
sition on the signal covariance matrix to decompose the vector space of the noisy
signal into a signal and a noise subspace. To enhance the signal, the components
in the signal subspace are modified by a gain function while the components in the
noise subspace are set to zero as they correspond to noise.

The subspace methods of Hu and Loizou and Ephraim and Van Trees are based
on the assumption that the clean signal in time domain can be modeled as

x = Ψs, (4.6)

where Ψ is a K × M matrix with rank M(M < K) and s is an M × 1 vector.
The matrix Ψ contains complex-valued linearly independent basis vectors [17]. The
covariance matrix of x is

Rx = E{xxT} = ΨRsΨT , (4.7)

where Rs is the covariance matrix of s. Due to the signal model in (4.6), Rx is of
rank M and has K −M zero eigenvalues. The noise is assumed to be additive and
uncorrelated, i.e.,

y = Ψs + n = x + n, (4.8)
where y, x, and n are the K-dimensional vectors containing the noisy speech, the
clean speech and the noise signal. To estimate the clean speech vector, a linear
estimator H is defined such that the clean signal estimate is

x̂ = Hy, (4.9)

where H is a K × K matrix. The error signal between estimated and true clean
signal is given by

ε = x̂− x = H(x + n)− x = (H− I)x + Hn = εx + εn, (4.10)
3 The results in the published articles are partly based on different parameter settings. Spectral

subtraction is executed on the magnitude while the other parameters are left as provided by [2].
These settings are preferred due to minor occurrence of musical noise, that, however, comes at
the price of reduced overall quality.
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where ε is composed of the error occurring from speech distortion εx and the error
occurring from residual noise εn. The optimal linear estimator based on constraints
in the time-domain can be found by minimizing the optimization problem

minH ε̄2
x (4.11)

subject to: 1
K
ε̄2

n ≤ τ 2 ,

where τ 2 is a positive constant and ε̄2
x and ε̄2

n are energies of signal distortion and
residual noise, defined as

ε̄2
x = E{εTx εx} = tr(E{[εxεTx ]}) (4.12)
ε̄2

n = E{εTnεn} = tr(E{[εnεTn ]}). (4.13)

Thus, the speech energy is minimized while the noise energy is kept below τ 2. The
solution for this problem was proposed by Ephraim and Van Trees and is

Hopt = Rx(Rx + µRn)−1, (4.14)

where Rx and Rn are the covariance matrices of clean speech and noise, respec-
tively, and µ is the Lagrange multiplier. Using the eigenvalue decomposition Rx =
U∆xUT , (4.14) is equivalent to

Hopt = U∆x(∆x + µUTRnU)−1UT , (4.15)

where U is the orthogonal eigenvector matrix and ∆x is the diagonal eigenvalue
matrix of Rx. In the case of white noise Rn = σ2

nI, UTRnU is diagonal. In the case
of colored noise, however, Rn is not diagonal and UTRnU is not diagonal, as the
eigenvector matrix U only diagonalizes Rx. To generalize the subspace approach to
colored noise, Hu and Loizou proposed to find an eigenvector matrix V that jointly
diagonalizes Rx and Rn, such that

VTRxV = Λx (4.16)
VTRnV = I.

This can be done by solving the eigenvalue equation

ΣV = VΛx, (4.17)

where Σ = R−1
n Rx [100]. Note that V is generally not orthogonal because Σ

is normally not symmetric. Using the relations in (4.16), the optimal estimation
matrix in (4.14) can be rewritten as

Hopt = (VT )−1ΛxV−1
[
(VT )−1ΛxV−1 + µ(VT )−1V−1

]−1
(4.18)

= (VT )−1 Λx(Λx + µI)−1︸ ︷︷ ︸
G

VT
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For enhancement, the noisy signal is multiplied by this matrix to find the estimator
of the clean signal x̂ = Hopty. This is equivalent to the following steps: First, the
transformation VT is applied to the noisy signal y, then, the components of VTy
are modified by the gain matrix G and finally the inverse transformation (VT )−1 is
applied. The gain matrix G is diagonal and composed of the entries

gkk =
{

λxk
λxk+µ , k = 1, 2, . . . ,M
0, k = M + 1, ..., K, (4.19)

where λxk is the kth diagonal element of Λx and M is the rank of the matrix Σ and
the assumed dimension of the signal subspace. The Lagrange multiplier µ controls
the tradeoff between residual noise and speech distortion and is set depending on
the short-time SNR

µ = µ0 − (SNRdB)/s, (4.20)

where µ0 and s are constants defining the degree of noise suppression. This is similar
to spectral subtraction with oversubtraction (cf. (4.5) in Section 4.6.1).

In the transform domain, the energy along an eigenvector is equal to the corre-
sponding eigenvalue. Thus, the SNR can by derived as

SNRdB = 10 log tr(V
TRxV)

tr(VTRnV) =
∑M
k=1 λxk

K
. (4.21)

Based on the assumption that noise and speech are uncorrelated, Rx is estimated
from Ry - Rn, where Rn is estimated in speech absent frames.

For our experiments, we empirically set the parameter µ0 to 5 and s to 6.25. In
the implementation provided in [2] µ0 = 4.2. Increasing the value to 5, however, led
to a reduction of musical noise.

4.6.3 The Minimum Mean-Square Error Log-Spectral Amplitude
Estimator

Ephraim and Malah [99] proposed an estimator for the short-time spectral amplitude
based on the minimization of the mean-square error of the log-magnitude spectra.
Distortion measures based on the mean-square error of the log-magnitude spectra
have been suggested to be more meaningful than distortion measures based on the
mean-square error of magnitude spectra [2]. For instance, low speech signal ampli-
tude values are important for speech intelligibility. Therefore, distortion measures
that emphasize on small amplitude values are beneficial [48].

The estimation is based on the same statistical model as the MMSE STSA esti-
mator based on the magnitude (proposed by Ephraim and Malah in [12]). The DFT
coefficients of speech X[k] and noise D[k] are modeled as statistically independent
Gaussian random variables. The motivation for this model is that each Fourier co-
efficient is a weighted sum of random variables, i.e., the time samples [12]. Under
certain mild conditions, the central limit theorem states that the sum of a set of
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random variables tends to a Gaussian distribution. Hence, the probability density of
the Fourier coefficients is modeled as a Gaussian distribution. The statistical inde-
pendence assumption of DFT coefficients follows from the fact that the correlation
between the DFT coefficients decreases when the analysis window length increases.
Although the above assumptions are not always fulfilled in practice, i.e., by using
shorter and overlapping windows, the derived methods have proven to be useful in
practice [2].

For better readability we further denote the magnitude spectra by Xk = |X[k]|.
The MMSE log-STSA estimator is derived by minimizing the mean-square error
between the log-magnitude spectrum of clean speech Xk and its estimate X̂k, given
by

E{(logXk − log X̂k)2}. (4.22)

The optimal estimator can be found by computing the expectation value of logXk

conditioned on the observations of the DFT coefficients of the noisy speech signal
Y [k], .i.e.,

log X̂k = E{logXk|Y [k]}, (4.23)

where Y [k] are the DFT coefficients of the noisy speech signal. Hence, the estimator
X̂k evaluates to

X̂k = exp(E{logXk|Y [k]}). (4.24)

The computation of E{logXk|Y [k]} can be realized by using the moment-generating
function of logXk conditioned on Y [k]. Using the statistical model discussed above,
the estimator can be derived as

X̂k = ξk
ξk + 1 exp

{
1
2

∫ ∞
νk

e−t

t
dt

}
Yk, (4.25)

where ξk is the a priori SNR, νk = ξk
1+ξk

γk and γk is the a posteriori SNR. The a
priori SNR is defined as ξk = σ2

x(k)
σ2
d
(k) and the a posteriori SNR is given by γk = Y 2

k

σ2
d
(k) ,

where σ2
d(k) and σ2

x(k) are the variances of the noise and the clean speech signal,
respectively. (For further details on the derivation refer to [99, 2]).



Chapter 5
Results and Discussion

In this chapter, we present the evaluation results of the proposed methods. Evalua-
tion was done using objective quality measures and by means of ASR. In addition,
visual inspection of spectrograms and listening to the enhanced utterances was useful
to gain further insights about the methods.

Objective evaluation is performed by both the PEASS measures and the PESQ
measure (see Section 4.3). The PEASS measures allow to evaluate the signal with
respect to four aspects. The PESQ measure has shown a high correlation to the
scores assessed by subjective listening tests [79]. However, we experienced that it
does not seem to consider the presence of musical noise. In addition, we apply the
frequency-weighted segmental SNR.

As a benchmark, the proposed methods are compared to the generalized subspace
method [40], to spectral subtraction with oversubtraction and spectral flooring [10],
and to the MMSE log-STSA estimator [99].

5.1 Kernel PCA and Pre-Image Iterations
The Figures 5.1 and 5.2 compare the results of kernel PCA with the two different pre-
image methods NIP and CO as presented in Section 3.4 and 3.5 and published in [39],
and the results of PI as explained in Section 3.6 and proposed in [52]. Experiments
were conducted on the airbone database corrupted by AWGN at 0, 5, 10, and 15 dB
SNR. The SNR is computed on the basis of the overall energy of the clean signal
(the ASL is not considered). The parameter settings for the kernel variance c and
the regularization parameter η are derived from a development set consisting of one
sentence per speaker in each SNR condition, which makes six sentences per SNR.
For each SNR, c is set to the same value for all utterances. The choice of a suitable
value is based on the performance in terms of the PEASS scores, with main focus
on the overall quality. For kernel PCA the values for c are 4, 2.5, 0.5, and 0.25 for
0, 5, 10, and 15 dB, respectively. For PI c is set to 4, 2.5, 0.75, and 0.25 for 0, 5, 10,
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Figure 5.1: Results of kernel PCA with normalized pre-imaging (kPCA-NIP), kernel
PCA with combined pre-imaging (kPCA-CO), pre-image iterations (PI),
the generalized subspace method (Subspace), spectral subtraction (Spec-
Sub), and the MMSE log-STSA estimator (LogMMSE) in terms of overall
perceptual score (OPS), target perceptual score(TPS), interference percep-
tual score (IPS), and artifact perceptual score (APS) on the test set of the
airbone database corrupted by additive white Gaussian noise (AWGN).

and 15 dB, respectively.1 For PI, regularization is employed and the regularization
parameter η is set to 0.5 for all SNR conditions.

Figure 5.1 shows the performance evaluated by the PEASS measures. Kernel
PCA with normalized iterative pre-imaging (kPCA-NIP) and the PCA method with
combined pre-imaging (kPCA-CO) achieve similar scores, with exception of the TPS.
This indicates that not only the disturbing buzz in kPCA-NIP is removed by the
combined method kPCA-CO but that also components of the speech are suppressed.
PI are slightly superior to the kernel PCA methods and to the generalized subspace
method in terms of overall quality (OPS). For low SNRs, the performance of the PI
method is similar to spectral subtraction and the MMSE log-STSA estimator, while
for high SNRs the other methods are superior. The APS for PI is better than for
the other methods in most SNR conditions, indicating that there are few artifacts
such as, for instance, musical noise in the case of the generalized subspace method
and spectral subtraction. Listening to the files reveals that there is a different
type of artifact for PI, namely there is some background noise left around speech
components, which is reflected by the rather low IPS.

Figure 5.2 shows the PESQ and the fwsegSNR. In terms of PESQ, the scores for
all methods are relatively close, while the reference methods achieve higher scores
than the kernel PCA methods and than PI. The presence of musical noise in the
recordings enhanced by spectral subtraction and the generalized subspace method
is not reflected by the PESQ measure. In terms of fwsegSNR, spectral subtraction
performs best, the kPCA-NIP method and the MMSE log-STSA estimator achieve
the second best performance depending on the SNR and the other methods achieve
little lower SNRs.

1 The usage of the development set is a difference to the results presented in [39] and [52], where
the parameters were set after listening to several example files.
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Figure 5.2: Results of kernel PCA with normalized pre-imaging (kPCA-NIP), kernel
PCA with combined pre-imaging (kPCA-CO), pre-image iterations (PI), the
generalized subspace method (Subspace), spectral subtraction (SpecSub),
and the MMSE log-STSA estimator (LogMMSE) in terms of the perceptual
evaluation of speech quality (PESQ) measure and the frequency-weighted
segmental SNR (fwsegSNR) on the test set of the airbone database corrupted
by AWGN.

5.2 Pre-image Iterations with Automatic
Determination of the Kernel Variance for White
Noise

To be independent of the knowledge about the SNR, PI were extended by automatic
determination of the kernel variance for each individual utterance, as explained in
Section 3.7. The results of the PID method presented in this section are published in
[51]. AWGN was added at 0, 5, 10, and 15 dB SNR by using the ASL (see Section
4.1.4). Regularization was applied with η equal to 0.25 for 0 dB SNR and 0.75
for the other SNRs. The development set for estimation of the mapping function
was extended to two sentences per speaker and SNR condition, in contrast to the
PI experiments, where only one sentence was used. In total this amounts to 48
sentences that are derived from 12 clean sentences. The experiments of PI were
repeated on the utterances corrupted by noise based on the ASL, which leads to
slightly different results in comparison to Section 5.1. For PIASL c was set to 6,
3.5, 0.75, and 0.2 for 0, 5, 10, and 15 dB SNR, respectively, and regularization was
applied with η as above.

Figure 5.3 and Figure 5.5 show the PEASS and the PESQ scores. The PID
approach performs best in terms of OPS for 0 and 5 dB SNR. For higher SNRs,
the MMSE log-STSA estimator and spectral subtraction achieve higher scores. The
plots with the standard deviation of the scores in Figure 5.4 show that the standard
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Figure 5.3: Results of pre-image iterations (PIASL), pre-image iterations with automatic
determination of the kernel variance (PID), the generalized subspace method
(Subspace), spectral subtraction (SpecSub), and the MMSE Log-STSA es-
timator (logMMSE) in terms of the PEASS scores on the test set of the
airbone database corrupted by AWGN.
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Figure 5.4: The same results as in Figure 5.3 plotted with standard deviation. For
better visibility the scores a plotted with a small horizontal offset.
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Figure 5.5: Results of pre-image iterations (PIASL), PI with automatic determination
of the kernel variance (PID), the generalized subspace method (Subspace),
spectral subtraction (SpecSub), and the MMSE Log-STSA estimator (log-
MMSE) in terms of the PESQ measure and the fwsegSNR on the test set of
the airbone database corrupted by AWGN.
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Figure 5.6: Comparison of PI with automatic determination of the kernel variance (PID)
and the reference algorithms for parameter settings that effect similar noise
reduction measured by the IPS.

deviation of PID is smaller than the standard deviation of PIASL. This indicates not
only an overall improvement but an individual improvement for most sentences.

In terms of PESQ all methods are relatively close in performance. PID is superior
to PIASL in all conditions except for 15 dB SNR – presumably the mapping function
is not optimal in this condition. In high SNR conditions, the performance of PID
is worse than the performance of the reference methods. This also indicates that
for high SNRs the mapping function is not optimal and the applied processing is
probably too harsh such that speech components are distorted. The suboptimality
for high SNRs is as well reflected by the fwsegSNR, for which the performance of
PID is good except for 15 dB SNR.

For further analysis, we varied the parameter settings of the reference algorithms
in order to achieve a similar noise suppression as with the PID method.2 This way,
the effect of different methods on the speech signal can be compared better. Figure
5.6 shows the PEASS scores of the different enhancement methods with similar IPS.
It can be seen that the tendencies of the scores in Figure 5.6 and 5.3 are similar.
In terms of TPS, spectral subtraction performs best, however, the OPS and APS
are rather low. Listening confirms that the target speaker signal is only mildly dis-
torted, however, there is a lot of residual noise left. In comparison, the generalized
subspace method has a lower TPS for low SNRs. Listening and inspection of the
spectrograms reveal that this method results in stronger attenuation of high fre-
quency components, although the difference is not as significant as indicated by the
difference in TPS.

5.3 Pre-image Iterations with Frequency-Dependent
Determination of the Kernel Variance

For colored noise, experiments were conducted on the Noizeus and the airbone
database. The experiments on the Noizeus database are more extensive while the

2Instead of the basic MMSE log-STSA estimator we use the variant with noise estimation by
IMCRA because it results in similar noise suppression as the PID method.



86 5. Results and Discussion

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1

1.5

PIDF
PEASS

RMS σ

K
er

ne
l v

ar
ia

nc
e 

c

 

 

Used data

Mapping function

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1

1.5

RMS  σ

K
e

rn
e

l 
v
a

ri
a

n
c
e

  
c

Mapping functions

 

 
PIDF

MIRS

PIDF
PEASS

PIDF
SNR

(b)

Figure 5.7: (a) Mapping function of the PIDFPEASS approach and (b) a comparison of
the PIDFMIRS, PIDFPEASS, and PIDFSNR mapping functions.

experiments on the airbone database are rather provided as supplement to the ASR
experiments discussed in the subsequent section. In both cases, car noise of the
NOISEX-92 database is added at 0, 5, 10, and 15 dB SNR, which is computed with
consideration of the ASL. The development set consists of one sentence per speaker
and SNR for the Noizeus database and two sentences per speaker and SNR for the
airbone database.

In total, we tested four variants of the PIDF method on data of the Noizeus
database. The PIDFMIRS method was published in [51]. It uses a mapping function
that is optimized using the criterion S based on the PEASS scores achieved on the
development set. For the experiments presented in [51], data corrupted by white
noise and filtered by the MIRS filter is used for development. For simplicity, the
noise is assumed to be uniformly distributed over the frequency range. This is,
however, not valid if the MIRS filter is applied and leads to an underestimation of
the noise. The noise variance of the time-domain signal cannot be used as measure
for the noise in frequency domain, because in the frequency range where noise is
present the noise level is larger. Therefore, the experiments are repeated with data
where only the speech data is filtered by the MIRS filter and then the white noise
is added. We denote this method by PIDFPEASS. Though the method is more
consistent, the noise suppression is rather reduced in comparison to the PIDFMIRS
method.

Two observations can be made when examining the mapping function and the
data points used for its estimation in Figure 5.7 (a). First, the distribution of the
data points chosen for fitting by the optimization criterion is not optimal: Normally,
the mapping function should be monotonously increasing in the used range. The
derived mapping function for PIDFPEASS, however, is not monotonous in this range.
Apparently, the estimation of data points is poor, i.e., not all values determined for
c are suitable. Second, listening to sample utterances reveals that the noise suppres-
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Figure 5.8: Results of pre-image iterations with automatic frequency-dependent de-
termination of the kernel variance (PIDFMIRS), the generalized subspace
method (Subspace), spectral subtraction (SpecSub), and the MMSE log-
STSA estimator (LogMMSE) in terms of the PEASS scores on the test set
of the Noizeus database corrupted by car noise.

0dB 5dB 10dB 15dB

2

3

PESQ

SNR

M
O

S

 

 

PIDF
MIRS

Subspace

SpecSub

LogMMSE

(a)

0dB 5dB 10dB 15dB
0

2

4

6

8

10

12

14

16

18

20
fwsegSNR

SNR

 

 

PIDF
MIRS

Subspace

SpecSub

LogMMSE

(b)

Figure 5.9: Results of PI with automatic frequency-dependent determination of the
kernel variance (PIDFMIRS), the generalized subspace method (Subspace),
spectral subtraction (SpecSub), and the MMSE log-STSA estimator (Log-
MMSE) in terms of the PESQ measure and the fwsegSNR on the test set of
the Noizeus database corrupted by car noise.
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Figure 5.10: Further results for PIDF evaluated on the Noizeus database with different
mapping function as listed in the text.
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sion is limited in comparison to the PIDFMIRS method – this is consistent with the
IPS and the mapping function that mostly results in lower c values for intermediate
SNRs as can be seen in Figure 5.7 (b). This causes minor noise suppression in com-
parison to the mapping function for PIDFMIRS. To achieve better noise suppression
a better choice of data points for derivation of the mapping function is required. As
the optimization procedure based on the PEASS scores is not satisfying, we tested
further measures to determine proper values for c, as explained in Section 3.7.2, and
finally used the global SNR. This results in the method denoted by PIDFSNR.

Furthermore, we tested different configurations of the feature extraction. For
instance, longer frequency bands lead to stronger noise attenuation as averaging is
performed over more samples. For the results denoted by PIDFSNR-Var we used the
mapping function of PIDFSNR but we processed the signal with frequency bands of
0.4 seconds length and 3 patches height. (For all other experiments the segment
length is 0.25 seconds and the number of patches 8.)

In summary, the evaluated variants therefore are:

• PIDFMIRS The estimation of c is based on AWGN data filtered by the MIRS
filter. For estimation of the mapping function the criterion S derived from the
PEASS scores in (3.40) is applied (see Section 3.7.1).

• PIDFPEASS The estimation of c is based on data corrupted by AWGN that is
not filtered by the MIRS. The criterion S is employed for derivation of the
mapping function.

• PIDFSNR The estimation of c is based on data corrupted by AWGN not filtered
by the MIRS. The global SNR is applied for derivation of the mapping function
(see Section 3.7.2).

• PIDFSNR-Var The same mapping function as for PIDFSNR is used, but the
configuration for the patch extraction is modified to achieve stronger noise
suppression.

The results of PIDFMIRS in comparison to the generalized subspace method, spec-
tral subtraction and the MMSE log-STSA estimator are shown in Fig 5.8 and 5.9.
The overall quality of PIDFMIRS is better than the subspace method and compara-
ble to spectral subtraction for low SNR conditions. For high SNR conditions, the
performance of spectral subtraction is superior. The MMSE log-STSA estimator
is superior in terms of OPS. It is interesting to note that PIDFMIRS achieves con-
sistently high APS scores, however, the IPS indicates a rather limited de-noising
performance. This is also reflected by the fwsegSNR, which is lower than for the
other methods. In terms of PESQ, the reference methods show superior perfor-
mance, however, for low SNRs the difference is small.

Figure 5.10 and Figure 5.11 show the comparison of the four PIDF variants.
The PIDFMIRS and the PIDFSNR-Var method achieves the highest scores for overall
quality. The overall performance of the other methods is relatively similar. The
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Figure 5.11: Results of the PIDF methods with different mapping functions in terms of
(a) PESQ and (b) global SNR on the test set of the Noizeus database.
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Figure 5.12: Comparison of PI with automatic frequency-dependent determination of
the kernel variance (PIDFSNR-Var) and the reference algorithms for param-
eter settings that effect similar noise reduction measured by the IPS.
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Figure 5.13: Results of pre-image iterations with automatic frequency-dependent deter-
mination of the kernel variance (PIDF), the generalized subspace method
(Subspace), spectral subtraction (SpecSub), and the MMSE log-STSA es-
timator (LogMMSE) in terms of the PEASS scores on the test set of the
airbone database corrupted by car noise.
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Figure 5.14: Results of pre-image iterations with automatic frequency-dependent deter-
mination of the kernel variance (PIDF), the generalized subspace method
(Subspace), spectral subtraction (SpecSub), and the MMSE log-STSA es-
timator (LogMMSE) in terms of the PESQ measure and the fwsegSNR on
the test set of the airbone database corrupted by car noise.

IPS for PIDFMIRS is lower than for PIDFSNR and PIDFSNR-Var. Listening to the files
confirms that the noise suppression with PIDFSNR and PIDFSNR-Var is stronger than
with the initial PIDFMIRS method. These results are consistent with the mapping
functions in Figure 5.7 (b). In terms of PESQ, PIDFSNR and PIDFSNR-Var perform
better than the other methods. Furthermore, the frequency-weighted segmental
SNR in Figure 5.11 (b) confirms that the noise suppression with PIDFSNR-Var is
stronger than with the other variants.

In summary, PIDFSNR and PIDFSNR-Var are preferable if strong noise suppression
is desired. However, the stronger noise suppression also leads to an attenuation of
speech components, especially in the high frequency range. This can reduce the
intelligibility.

Figure 5.12 shows the scores of the reference algorithms with a parametrization to
effect a similar IPS as achieved by PIDFSNR-Var. As for the experiment with the PID
method, the tendencies of the scores in Figure 5.12 and 5.8 are similar. In comparison
to the results of PID with white noise, the performance of the PIDF method is lower
in reference to the other methods. This suggests that the generalization to colored
noise is not optimal and probably can be further improved.

Figure 5.13 and 5.14 show the evaluation results of the PIDF method on the
airbone database, where the mapping function is based on the critertion S derived
from the PEASS measures (see Section 3.7.1). Note, however, that in contrast to
the Noizeus database the MIRS filter is not applied on the speech data. In terms
of OPS the PIDF method competes with spectral subtraction, while the MMSE
log-STSA performs better and the generalized subspace method worse. Note the
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good APS for PIDF in low SNR conditions which is of special interest for evaluation
by ASR. In terms of PESQ and fwsegSNR the performance of all methods is in a
similar range, with the PIDF achieving lower scores than the other methods and the
MMSE log-STSA achieving the highest scores.

5.4 Musical Noise Suppression
For musical noise suppression we propose two methods. Both derive a mask to
suppress musical noise in enhanced recordings. In the first method, a continuous
mask is derived by executing PI on the noisy signal. In the second method, PI are
performed on the enhanced recording and a binary mask is derived. The methods
have been published in [64] and [65].

For execution of PI on the enhanced signal, the two thresholds in (3.43) to derive
the mask are set as follows: The lower threshold a is fixed to 1.5, as there are few
iteration counts in this range and only the interior of the speech region is affected,
which is properly treated by the closing operation anyway. For the upper threshold
b, several values are tested on the development set. The one providing the best
tradeoff between OPS and APS is taken, ensuring good quality as well as good
musical noise suppression. Figure 5.15 shows the results on the development set in
four noise conditions when the threshold is varied from 3 to 5. The final values 4,
4, 4.25, and 4.5 are chosen for the noise conditions of 0, 5, 10, and 15 dB SNR,
respectively. For these values, the APS is maximized and good artifact suppression,
i.e. musical noise suppression, is achieved, while the overall quality is still in the
upper range (or maximized as well).

Figure 5.16 shows the results of the musical noise suppression as post-processing
step with a continuous mask (CM-MNS) and a binary mask (BM-MNS). Musical
noise is poorly reflected by the PESQ measure, therefore we use the PEASS measures
to judge the amount of artifacts. The enhanced files, on which the musical noise
suppression is applied, have been enhanced by the generalized subspace method.
The scores on the data after enhancement are shown as a benchmark. In addition
the results after application of the continuous mask on the noisy speech signal are
presented (CM-Noisy). Interestingly, the sole application of the mask on the noisy
data results in the highest ratings for the overall score. One possibly explanation is
that this introduces only few artifacts, as indicated by the APS. However, it has to
be noted that the noise suppression is weaker in terms of IPS than for the compared
methods.

Regarding the overall quality, the scores before and after post-processing by CM-
MNS and BM-MNS are in the same range, while BM-MNS results in slightly higher
scores. To judge the effectiveness of the post-processing, we use the APS and the
IPS, as musical noise can be seen as an artifact that is caused by the background
noise. Indeed both the APS and the IPS improve after post-processing, so the
measures reflect that the musical noise is effectively reduced.

Figure 5.17 (a) shows the results when the PESQ measure is used for evaluation.
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Figure 5.15: Overall perceptual score (OPS), target perceptual score (TPS), interference
perceptual score (IPS), and artifact perceptual score (APS) computed from
the development set of the airbone database for different values of the
upper threshold b in different SNR conditions. For the final experiments
the threshold maximizing the APS was chosen.
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Figure 5.16: Results of musical noise suppression by a binary mask (BM-MNS) and
a continuous mask (CM-MNS), compared to the generalized subspace
method (Subspace), the noisy signal filtered by the continuous mask (CM-
Noisy), and the noisy signal (Noisy) in terms of the PEASS scores on the
test set of the airbone database corrupted by AWGN.
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Figure 5.17: Results of musical noise suppression by a binary mask (BM-MNS) and
a continuous mask (CM-MNS), compared to the generalized subspace
method (Subspace), the noisy signal filtered by the continuous mask (CM-
Noisy), and the noisy signal (Noisy) in terms of PESQ and fwsegSNR on
the test set of the airbone database corrupted by AWGN.
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The scores achieved with the PESQ do not agree with the results achieved with
the OPS. The performance achieved by simple application of the mask on the noisy
signal is lowest. The scores achieved with the subspace method are similar to the
scores of CM-MNS, while the performance of BM-MNS is lower. The lower score
for BM-MNS can be explained by the fact that it is more unnatural to use a binary
mask and that the regions where musical noise is reduced are over-attenuated. The
lower performance after MNS indicates that the PESQ measure is no sensitive to
musical noise. For reference, the score computed for the unprocessed noisy data is
shown. All methods achieve a performance gain in comparison to the unprocessed
data (Noisy).

Figure 5.17 (b) shows the results in terms of the frequency-weighted segmental
SNR. In all noise conditions, the SNR of the enhanced data is larger than the SNR
of the noisy data. The SNR of the subspace method is highest, while the SNR after
post-processing by BM-MNS and CM-MNS are lower. One possible reason for this
result is that the energy after MNS is lower than the energy in the clean signal,
which negatively affects the SNR.

5.5 Automatic Speech Recognition Results3

To evaluate speech enhancement in other scenarios than the improvement of per-
ceptual quality, we tested the performance of ASR after enhancement of noise-
contaminated data. As explained in Section 4.5, the recognition system was trained
on data different from the test data. For training, data of the BAS database was
used, while recognition was performed on data of the airbone database. PI and
PID were evaluated on data corrupted by AWGN, and PIDF was tested on data
contaminated by car noise. All experiments were performed for 0, 5, 10, and 15 dB
SNR. As a benchmark, the results achieved after enhancement by the generalized
subspace method and by spectral subtraction are presented.

For evaluation, we computed the word accuracy (WAcc) in percent achieved on
the noisy, enhanced and clean data. The word accuracy is defined as

WAcc = N − S −D − I
N

× 100%, (5.1)

where N is the number of words, S is the number of substitutions, D is the number
of deletions and I is the number of insertions [97].

In addition to the WAcc, we evaluated if the performance difference between the
PI methods and the compared methods is statistically significant. We use a matched
pairs test as recommended in [101]. This test is suitable to test the significance of
ASR results on speech segments that are statistically independent, i.e., an error
in one segment is not influenced by an error in a preceding segment. This is the
case for the experiments on the airbone database, as we test utterances independent
from each other, while errors within one utterance can cause more errors due to

3 The results presented in this section are based on joint work with Juan A. Morales Cordovilla.
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Condition 0 dB 5 dB 10 dB 15 dB Average

Noisy 3.52 20.93 48.70 73.15 36.58
PI [52] 32.59 58.15 68.52 72.78 58.01
Subspace 2.59 8.33 24.44 54.07 22.36
SubspaceMNS 19.63 39.63 54.07 75.56 47.22
SpecSub 35.56 63.15 78.89 88.89 66.62
LogMMSE 47.41 63.70 80.37 90.74 70.56
Clean 97.78

Table 5.1: Word accuracy (WAcc) in percent achieved on the noisy data, after enhance-
ment (i) by pre-image iterations (PI) as proposed in Section 3.6 and in [52],
(ii) by the generalized subspace method, (iii) by the generalized subspace
method post-processed by BM-MNS as explained in Section 3.8.2, and (iv)
by spectral subtraction (SpecSub), evaluated on the test set of the airbone
database corrupted by AWGN at 0, 5, 10, and 15 dB SNR. The SNR com-
putation is done without consideration of the ASL.

PI 0 dB 5 dB 10 dB 15 dB

Noisy * * *
Subspace * * * *
SubspaceMNS * * *
SpecSub - -
LogMMSE - - -

Table 5.2: Results of the statistical significance test between PI and the compared meth-
ods for the WAcc in Table 5.1. The asterisk indicates a significantly better
performance of PI with a significance level of 0.01, while the minus sign in-
dicates a lower performance.

the restricted grammar. For instance, in each sentence of the database the first
element is a name. If this name is not recognized, the recognizer will try to match
the remaining words to a name and this results in wrong recognition. The matched
pairs test is based on the pair-wise comparison of the recognition rates on the same
utterance processed by two algorithms. The difference of errors is computed for each
pair and the mean of differences is tested with respect to equality to zero. A mean
different from zero indicates a statistical difference of the WAcc of two algorithms.
For all evaluations, we employ a significance level of 0.01.

Table 5.1 and 5.3 show the results of PI and PID for AWGN. Table 5.5 shows the
results of PIDF for colored noise as described in Section 3.7.2 with derivation of the
mapping function for the airbone database based on the PEASS scores (see Section
3.7.1). Table 5.2, 5.4, and 5.6 show the results of the significance test between the
PI methods and the compared methods for the reported WAcc.

The WAcc for the noisy data clearly states that the recognizer performance suffers
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Condition 0 dB 5 dB 10 dB 15 dB Average

Noisy 0.00 15.56 38.89 65.56 30.00
PIASL 27.22 53.89 68.33 72.59 57.15
PID [51] 35.93 58.70 72.22 77.59 61.11
Subspace 2.59 4.63 16.30 42.96 16.62
SpecSub 25.74 53.15 73.89 85.56 59.59
LogMMSE 37.78 58.15 74.63 89.07 64.91
Clean 97.78

Table 5.3: WAcc achieved on the noisy data, after enhancement (i), by PI evaluated
on noise-contaminated data based on the ASL, (ii) by PI with automatic
determination of the kernel variance (PID) as proposed in Section 3.7.1 and in
[51], (iii) by the generalized subspace method, and (iv) by spectral subtraction
(SpecSub), evaluated on the test set of the airbone database corrupted by
AWGN at 0, 5, 10, and 15 dB SNR. The SNR computation is based on the
ASL.

PID 0 dB 5 dB 10 dB 15 dB

Noisy * * * *
PIASL *
Subspace * * * *
SpecSub * -
LogMMSE - - -

Table 5.4: Results of the statistical significance test between PID and the compared
methods for the WAcc in Table 5.3. The asterisk indicates a significantly
better performance of PID with a significance level of 0.01.

from the noise contamination. The PI methods increase the WAcc in comparison
to the noisy data, except for PI in the 15 dB SNR case in Table 5.1, where the
enhancement algorithm probably causes artifacts while the SNR is relatively high
and the WAcc for noisy data is relatively good.

The results achieved by PI in Table 5.1 show a performance superior to the gener-
alized subspace method. In comparison to spectral subtraction and the MMSE log-
STSA estimator the performance is similar or worse. Table 5.2 shows that the WAcc
of PI is significantly higher than the WAcc for the noisy signal and the generalized
subspace method for all noise conditions except 15 dB SNR. Spectral subtraction
is significantly better than PI at high SNR conditions and the MMSE log-STSA
estimator is significantly better in almost all conditions. The WAcc of PID and
PIDF in Table 5.3 and 5.5 is in all cases superior to the WAcc of the generalized
subspace method, similar to the WAcc of spectral subtraction and lower than the
WAcc of the MMSE log-STSA estimator. The superior performance is significant
for the generalized subspace method, for spectral subtraction at 0 dB SNR and the
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Condition 0 dB 5 dB 10 dB 15 dB Average

Noisy 1.30 25.93 62.78 85.19 43.80
PIDF [51] 34.95 62.04 81.48 89.26 66.93
Subspace 8.52 27.04 66.85 81.48 45.97
SpecSub 29.26 61.11 79.26 90.74 65.23
LogMMSE 52.78 75.74 86.11 94.07 77.17
Clean 97.78

Table 5.5: WAcc achieved on the noisy data, after enhancement (i) by PI with automatic
frequency-dependent determination of the kernel variance (PIDF) as proposed
in Section 3.7.2 and in [51], (ii) by the generalized subspace method, and (iii)
by spectral subtraction, evaluated on the test set of the airbone database
corrupted by car noise at 0, 5, 10, and 15 dB SNR. The SNR computation is
based on the ASL.

PIDF 0 dB 5 dB 10 dB 15 dB

Noisy * * *
Subspace * * * *
SpecSub *
LogMMSE - - - -

Table 5.6: Results of the statistical significance test between PIDF and the compared
methods for the WAcc in Table 5.5. The asterisk indicates a significantly
better performance of PIDF with a significance level of 0.01.

noisy data except for 15 dB SNR. The comparison of PIASL to PID in Table 5.3 re-
veals that the PID method always achieves higher word accuracies.4 This confirms
that the automatic determination of the kernel variance is preferable over using a
fixed value for one noise condition. The results for the experiments with car noise
in Table 5.5 show that this type of noise is less harmful to the performance of the
recognizer. This can be explained by the fact that the noise energy is concentrated
below 1kHz, where the speech components are relatively strong and the distortion
by the noise therefore is limited.

The good performance of the PI methods in terms of WAcc is a substantial dif-
ference to the results of objective quality measures such as PESQ, where the scores
of the reference methods are rather higher. One reason for the good performance
is presumably, that spectral subtraction and the generalized subspace method are
prone to musical noise – especially for the experiments with white noise. In contrast,
PI and the MMSE log-STSA estimator do not create such artifacts. The drawback
of PI is rather that the high-frequency components may be affected by attenuation.
This is a problem if the recordings are evaluated perceptually or by objective qual-

4 This is statistically significant with a significance level of 0.05.
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ity measures, because this affects the speech quality. The ASR system, however,
obviously is relatively robust to these degradations.

To test the hypothesis that musical noise is problematic for the speech recognizer
we further evaluated the WAcc on the data enhanced by the generalized subspace
method and subsequently post-processed by the MNS method proposed in Section
3.8.2. The results are included in Table 5.1 and denoted as SubspaceMNS. Indeed,
the WAcc is much better after the MNS and the performance difference is significant.
Hence, the musical noise is a problem for the recognizer and speech enhancement
methods introducing too many artifacts may be counterproductive, as shown for the
generalized subspace method.

Finally, the high WAcc on clean data suggests that the recognizer trained on the
BAS database generalizes well to the test data of the airbone database, although
the speakers have different accents (German and the Austrian variety of German)
and the vocabulary is not entirely the same.





Chapter 6
Conclusion and Future Work

Speech enhancement is a wide field of research. Since the 1970ies many methods
to improve the quality of speech have been proposed. In this work, we propose
methods inspired by machine learning techniques and show relations to image de-
noising methods. Their power to enhance the quality of noise-corrupted speech
is demonstrated. First, we investigate kernel PCA – the non-linear extension to
PCA – which has already been successfully applied for image de-noising. Kernel
PCA includes an implicit transformation of data samples to the so-called feature
space, where the data samples are processed. After processing, a transformation
of the processed samples back to input space is necessary. The samples in input
space corresponding to the processed samples in feature space are called pre-images.
Due to non-linear transformations these pre-images can often only be approximated.
Commonly, finding the pre-image is referred to as the pre-image problem.

Experimental results show evidence that for the iterative pre-image methods the
weighting factor derived from the projection of kernel PCA only contributes little to
de-noising. Therefore, we simplify kernel PCA and an iterative pre-image method
and derive the so-called pre-image iterations (PI) for noise reduction.

The feature vectors for kernel PCA and PI are complex-valued and extracted from
the sequence of short-time Fourier transforms of the speech signal. The de-noising
relies on forming linear combinations of noisy feature vectors that are weighted
according to their similarity. The similarity is measured by a Gaussian kernel. This
method exhibits similarities to non-local filtering and non-local means, which have
been used for image de-noising, and to non-local diffusion filters recently applied
in speech enhancement for suppression of transient noise. The major difference to
these methods, however, is that we apply processing on the complex-valued feature
vectors.

Both, kernel PCA and PI, depend on the kernel variance as tuning parameter,
which influences the degree of de-noising. Therefore, the performance crucially de-
pends on the setting of the kernel variance. In other words, the tradeoff between
de-noising and the possible distortion of speech components, which is inherent to any
speech enhancement application, is controlled by the value of the kernel variance.
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We therefore generalized the pre-image iteration method by automatic determina-
tion of the kernel variance for white noise (PID) and with frequency-dependent
determination for colored noise (PIDF). In these modified methods, the noise is es-
timated from the beginning of a recording which is assumed to be free of speech.
Then, the noise estimate is used to derive a suitable value for the kernel variance
from a mapping function learned from development data.

Furthermore, analysis of PI shows that information derived from the convergence
behavior can be used to discriminate between speech and non-speech regions in
time-frequency representations. We use this information to apply musical noise
suppression on speech utterances previously enhanced by the generalized subspace
method.

In speech enhancement, performance evaluation is still an issue of many open
research questions. Several standards exist to assess the speech quality, for instance,
for speech coding. In speech enhancement evaluation is more tricky as two aspects
have to be covered: (i) background noise is reduced, which results in a quality gain
if it is done properly. (ii) any speech enhancement algorithm may also affect the
speech components and possibly distort them. Hence, the more the noise is reduced,
the higher the probability that speech is degraded. Therefore, the evaluation has to
consider both the performance gain by noise reduction and the performance loss by
speech distortion originating from noise reduction. In addition, it is problematic if
the noise reduction algorithm suppresses noise inconsistently which causes artifacts
such as musical noise.

In general, the perceptual quality evaluation can be done objectively by quality
measures or subjectively by listening test. There exists a variety of objective quality
measures, which more or less correlate with the outcome of subjective listening tests.
We considered the PESQ measure, as it has been shown to have high correlation
with subjective ratings. Furthermore we used the measures of the PEASS toolbox,
which has recently been proposed in the context of source separation. The PEASS
measures provide the advantage that the signal is evaluated with regard to four
aspects. Therefore deeper analysis is possible in comparison to the PESQ, which
provides only a single score.

The evaluation in terms of PESQ and PEASS shows that the performance of
the kernel PCA method and of PI for speech enhancement is comparable to the
performance of spectral subtraction and superior to the performance of the general-
ized subspace method, while the MMSE log-STSA estimator achieves rather higher
scores. The performance of PID is superior to the performance of PI. This result
makes sense, as the individual setting of the kernel variance for each utterance in
PID is more advantageous than one value for all utterances of the same SNR. PIDF
result in similar performance as spectral subtraction in low SNRs while the per-
formance is weaker in high SNRs. As these are the less difficult conditions, the
algorithms can presumably be improved by refining the approach of finding a suit-
able value for the kernel variance. The reduction of musical noise artifacts by the
proposed musical noise suppression methods is confirmed by the artifact perceptual
score of the PEASS measures, while the overall quality remains almost unchanged.
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Subjective evaluation – by listening tests – was not performed as the objective
measures indicated rather small performance differences. In this case only a large-
scale listening test could provide statistical evidence, which was not the scope of this
work. Listening to the utterances confirms that noise is suppressed. In contrast to
the compared methods, no musical noise occurs but there is residual noise around
speech components.

In addition to objective quality evaluation, we tested the effect of enhancing speech
for automatic speech recognition. The word accuracies on speech enhanced by the PI
methods are superior to the word accuracies achieved on noisy speech. In compari-
son to the generalized subspace method the rates of PID and PIDF are significantly
better while they are competing with spectral subtraction and lower than the rates
of the MMSE log-STSA estimator. An explanation for the performance difference is
the different type of artifacts: While the generalized subspace method and spectral
subtraction suffer from musical noise, PI are rather prone to attenuation of high
frequency components, which can to a certain degree be controlled by careful choice
of the kernel variance. We tested the conjecture that musical noise is problematic for
the speech recognizer by comparing the results of the generalized subspace method
to the results achieved after post-processing by one of the proposed musical noise
suppression algorithms. Indeed, the word accuracies after musical noise suppression
are significantly higher, this confirms that the presence of musical noise is problem-
atic for the speech recognizer. In summary, PI provide moderate improvement in
speech quality and considerable improvement of recognition rates for the most noise
conditions.

The following points are subject to future work:

• Presently, the application of PI is restricted to stationary noise, as the noise
is estimated once at the beginning of the utterance. The method can be
generalized to non-stationary noise types, such as babble noise, by adding
voice activity detection to update the noise estimate in speech pauses or by an
extension with state-of-the-art noise tracking methods. Extension by VAD has
already been proposed in [102]. However, it was not used for noise estimation
but for the separation of speech and non-speech frames, which were processed
differently.

• For PID and PIDF the derivation of the mapping function can further be
improved. First, other optimization criteria than the currently applied com-
bination of PEASS scores and SNR possibly make the choice of data points
for the derivation of the mapping function more robust. Second, a different
algorithm to estimate the noise and more elaborate methods than polynomial
curve fitting may improve the result.

• PI are computationally demanding, e.g., an utterance of several seconds needs
up to around – depending on the parameter settings – 10 minutes processing
time on a standard PC. In order to apply PI as pre-processing for automatic
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speech recognition a speed up is necessary. Furthermore, computational opti-
mization would allow for processing of longer time segments or, equivalently,
frequency bands. The application of PI on longer frequency bands has po-
tential to improve de-noising of speech components, as is is more likely to
find similar feature vectors within speech regions than it is with the current
configuration.
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