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Kurzfassung 
 
Numerische Berechnungsverfahren sind in den letzten Jahren ein gängiges 

Hilfsmittel in der geotechnischen Ingenieurspraxis geworden, sowohl für die 

Prognose von Bodenverformungen, als auch für die Bewertung von 

Standsicherheitsproblemen. Für eine sichere und erfolgreiche Anwendung 

derartiger Berechnungsverfahren sind jedoch neben einer sorgfältigen 

Beschreibung der Bodeneigenschaften auch hoch entwickelte Stoffmodelle 

erforderlich, die das komplexe mechanische Materialverhalten des Bodens 

abbilden können. 

 

In dieser Arbeit wird ein multilaminates Stoffgesetz für Finite Elemente 

Berechnungen vorgestellt, in dem anisotrope Steifigkeiten bei sehr kleinen 

Dehnungen und das Entfestigungsverhalten steifer, überkonsolidierter Tonböden 

berücksichtigt werden können. Plastische Dehnungen werden in multilaminaten 

Stoffgesetzen auf voneinander unabhängigen sogenannten Integrationsebenen 

berechnet, wodurch Anisotropie infolge plastischer Verformungen in einer 

physikalisch plausiblen Form abgebildet werden kann. Es wird gezeigt, dass der 

gewählte Ansatz zur Modellierung anisotroper elastischer Steifigkeit die 

Bandbreite physikalisch möglicher Parameter abdeckt. Die Anwendbarkeit des 

Stoffgesetzes wird mit numerischen Simulationen von Elementversuchen an 

verschiedenen Böden demonstriert. Zur Bewertung des Einflusses anisotroper 

Steifigkeit im Bereich kleiner Dehnungen in geotechnischen Problemstellungen 

wurden numerische Simulationen eines Baugrubenaushubs und eines 

Streifenfundaments durchgeführt.  

 

Die Scherfestigkeit und das Entfestigungsverhalten überkonsolidierter Tonböden 

werden im Modell durch eine zusätzliche Hvorslev-Fließfläche auf den 

Integrationsebenen gesteuert. Dilatantes Materialverhalten ist ein Resultat der 

Überkonsolidierung und erfordert keine zusätzlichen Materialparameter. 

Berechnungsergebnisse mit diesem Modell werden mit experimentellen Daten 

von undrainierten Triaxialversuchen an zwei überkonsolidierten Tonböden 

verglichen. Zur Vermeidung von Netzabhängigkeit und numerischer Instabilität 

durch die Reduzierung der Scherfestigkeit wird ein nichtlokales Kontinuum für 

die Entfestigungsvariable verwendet. Am Beispiel numerischer Berechnungen 

von Biaxialversuchen wird gezeigt, dass diese Methode in der Lage ist, 

numerische Ergebnisse weitestgehend unabhängig vom verwendeten Finite 

Elemente Netz zu liefern. 

 



Abstract 
 
Numerical calculation methods have become a common design tool in 

geotechnical praxis in recent years, both for the prediction of deformations at 

working load conditions and the evaluation of ultimate limit states. Successful 

application of these methods does not only require careful characterization of soil 

properties, but also depends on the availability of advanced constitutive models, 

which are able to reproduce the complex mechanical behaviour of soil. 

 

In this thesis a multilaminate constitutive model for application in finite element 

analysis is presented, in which anisotropic soil stiffness at small strains and the 

strain softening behaviour of stiff, overconsolidated clay can be taken into 

account. Due to the multilaminate framework, plastic strains are calculated 

independently on a number of so-called integration planes, which allows the 

simulation of strain induced anisotropy in a mechanically meaningful manner. 

The chosen approach to model anisotropic elastic stiffness in the multilaminate 

concept is shown to cover the full range of physically possible parameters. 

Numerical simulations of element tests on various soils demonstrate the validity 

of the model and its predictive capabilities. To evaluate the influence of 

anisotropic stiffness in the small strain range in geotechnical problems, numerical 

simulations of an excavation problem and of a strip footing have been performed.  

 

The shear strength and strain softening behaviour of heavily overconsolidated 

clays is governed by an additional Hvorslev yield surface on integration plane 

level. Dilatancy evolves as a function of overconsolidation without additional 

input parameters. Model predictions are compared with undrained triaxial test 

data of two overconsolidated clays. So-called non-local strain regularization is 

employed to overcome mesh dependency and numerical instability in the strain 

softening post-peak range. The effectiveness of the non-local approach to obtain 

virtually mesh independent results is demonstrated in biaxial test simulations. 
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List of symbols 
 
The symbols used in this thesis are listed in alphabetical order. Additional 

explanation is provided in the text at first appearance. Units and abbreviations are 

not included in this list.  

 

Small letters 

 

aII constant for determination of mobilised dilatancy angle 

bII constant for determination of mobilised dilatancy angle 

av power index for stress dependency of vertical stiffness 

ahh, avh power index for stress dependency of shear stiffness 

bh power index for stress dependency of horizontal stiffness 

bhh, bvh power index for stress dependency of shear stiffness 

c´ effective cohesion  

cII constant for determination of mobilised dilatancy angle 

c´HV cohesion intercept of Hvorslev surface in -´-diagram, normalised 

with ´ne 

c´pe cohesion intercept of Hvorslev surface in -´-diagram, normalised 

with p´e 

c´ve cohesion intercept of Hvorslev surface in -´-diagram, normalised 

with ´ve 

dII constant for determination of mobilised dilatancy angle 

d50 mean grain size 

e void ratio 

e0 initial void ratio 

emax maximum void ratio 

emin minimum void ratio 

f yield function 

fcap volumetric part of yield function 

fcone deviatoric part of yield function 

fHV Hvorslev yield function 

fi yield function for plane i 

ftens yield function in tension (tension cut-off) 

fi
trial

 value of yield function at elastic trial stress for plane i 

g plastic potential function 

gcap plastic potential function, volumetric part 

gcone plastic potential function, deviatoric part 

gh cohesion intercept of Hvorslev surface in normalised p´-q-diagram 



gHV plastic potential function, Hvorslev surface 

gi plastic potential function for plane i 

hsoft softening parameter for Hvorslev surface 

i index number of sampling plane 

k iteration number 

kII gradient of mobilised dilatancy at ’m=’ 

l internal length 

lcal internal length used in the calculation 

m power index, controlling stress dependency of stiffness 

m number of eigenvalues of global compliance matrix 

mH inclination of Hvorslev surface in normalised p´-q-diagram 

mSP number of stress points within radius of 2l around current stress 

point 

mt, mr stiffness recovery parameters in intergranular strain concept 

n number of integration planes 

n1,i, n2,i, n3,i components of vector perpendicular to integration plane 

n i vector perpendicular to integration plane 

nv vertical component of n i 

nvh, nhh, nhv power index for stress dependency of shear stiffness 

p´ mean effective stress 

p'0 initial mean effective stress 

p'c isotropic pre-consolidation stress 

p'e equivalent stress on isotropic normal compression line 

pref reference stress 

pw pore water pressure 

q Roscoe deviatoric stress invariant  

s1,i, s2,i, s3,i components of vector parallel to integration plane 

s i vector parallel to integration plane 

StepSize max. deviation from yield curve for next calculation step 

sv vertical component of s i 

t1,i, t2,i, t3,i components of vector parallel to integration plane 

t i vector parallel to integration plane 

tv vertical component of t i 

u pore water pressure 

w specific weight of beam elements 

wi weight coefficient for plane i 

x, y, z Cartesian coordinates 

 

 



Capital letters 

Ai area of influence of integration plane 

Asphere surface area of unit sphere 

Amat deviatoric hardening parameter  

Ar anisotropy ratio 

Ar,Cn anisotropy ratio for normal compliance Cn 

Ar,Ct anisotropy ratio for tangential compliance Ct 

BCS auxiliary parameter defining the position of the critical state line 

C elastic compliance matrix of the soil mass 

Ci elastic compliance matrix of plane i 

Cd deviatoric compliance on integration plane 

Cn normal compliance on integration plane 

Cn0 mean normal compliance on integration plane 

Ct tangential compliance on integration plane 

Ct0 mean tangential compliance on integration plane 

Cts tangential compliance on integration plane in s-direction 

Ctt tangential compliance on integration plane in t-direction 

Cv volumetric compliance on integration plane 

D
e
 elastic stiffness matrix of the soil mass 

E Young’s modulus 

E50,ref deviatoric hardening modulus in Hardening Soil model at reference 

pressure 

E0 isotropic Young’s modulus at very small strains 

EA axial stiffness 

Ed second deviatoric strain invariant 

E´h elastic modulus in horizontal direction 

E´h0 small strain elastic modulus in horizontal direction 

E´h0,ref small strain elastic modulus in horizontal direction at reference 

pressure 

EI flexural rigidity 

Em idempotent matrices of C 

Emean average Young’s modulus of cross-anisotropic elastic material 

Eoed actual stiffness for primary oedometer loading 

Eoed,ref reference stiffness for primary oedometer loading 

Eur stiffness for un- and reloading at actual stress 

Eur,ref stiffness for un- and reloading at reference stress 

E´v elastic modulus in vertical direction 

E´v0 small strain elastic modulus in vertical direction 

E´v0,ref small strain elastic modulus in vertical direction at reference 

pressure 



G shear modulus 

G0 initial isotropic shear modulus at small strains 

G0,ref initial isotropic shear modulus at small strains at reference pressure 

Geq equivalent shear modulus 

Geq,0 equivalent shear modulus at small strains 

Ghh shear modulus within isotropic plane of cross-anisotropic material 

Gtan tangential shear modulus 

Gur unloading/reloading shear modulus at large strains 

Gvh independent shear modulus of cross-anisotropic material 

Gvh0 independent small strain shear modulus  

Gvh0,ref independent small strain shear modulus at reference pressure 

ID relative density 

J second deviatoric stress invariant 

K´ drained elastic bulk modulus 

K´ drained lateral stress ratio 

K0 lateral earth pressure coefficient at rest 

K0nc lateral earth pressure coefficient at rest for normally consolidated 

conditions 

Ke equivalent bulk modulus of the pore fluid 

Ku undrained bulk modulus for the soil 

L11, L22 Koiter coefficients 

L12, L21 Koiter coefficients 

Lel maximum length of element in the FE-mesh 

Mcom inclination of Mohr-Coulomb failure line in triaxial compression in 

p´-q-space 

MCP shape factor determining the shape of the volumetric part of the 

yield curve 

MCS inclination of critical state line in p´-q-space 

Mext inclination of Mohr-Coulomb failure line in triaxial extension in p´-

q-space 

Myield inclination yielding line in triaxial extension 

OCR over-consolidation ratio 

POP pre-overburden pressure 

Rf failure ratio 

S surface area of unit sphere 

Sh axial stiffness parameter in horizontal direction  

Shh shear stiffness parameter 

SSSgl macroscopic small strain stiffness degradation indicator 

Sv axial stiffness parameter in vertical direction 

Svh shear stiffness parameter (cross-anisotropic material) 



Ti transformation matrix of plane i 

Vw weighted volume 

Wmacro macroscopic virtual work 

Wmicro virtual work on integration plane 

 

 

Small Greek letters 

 parameter defining the shape of the cap yield function 

0 mean value of anisotropic quantatity 

i orientation angle of integration plane 

non over-nonlocal parameter  

u any material property at direction of unit vector u  

i orientation angle of integration plane 

  bulk unit weight of soil 

0.7 reference shear strain in Hardening Soil model 


p

cone plastic shear strain on integration plane from deviatoric yield 

surface 

e
s, 

e
t local elastic shear strains on integration plane 

p
s, 

p
t local plastic shear strains on integration plane 

s, t local shear strains on integration plane 

s1 local shear strains in s-direction, resulting from global axial strains 

s2 local shear strains in s-direction, resulting from global shear strains 

 sa t bulk unit weight of soil below ground water table 

s,centre centre of local deviatoric strain history contour, shear component in 

s-direction 

t1 local shear strains in t-direction, resulting from global axial strains 

t2 local shear strains in t-direction, resulting from global shear strains 

t,centre centre of local deviatoric strain history contour, shear component in 

t-direction 

unsa t bulk unit weight of soil above ground water table 

xy, yz xz global engineering shear strains 

 global strain tensor 

1, 2 3 major, intermediate and minor principal strain 


*
 non-local strain  


e
 elastic part of the strain tensor 

d local damage strain on the level of stress point 

di local damage strain on integration plane level 

di non-local damage strain on integration plane level 

d non-local damage strain on the level of stress point 



deg local degradation strain 

deg,1, deg,1 local degradation strains defining onset of stiffness degradation and 

transition to large strains  

di,peak local damage strain on integration plane level at peak strength 

di,peak non-local damage strain on integration plane level at peak strength 

 i plastic strain tensor on integration plane 

i
dev

 deviatoric strain tensor on integration plane 

 i
e
 elastic strain tensor on integration plane 

 i,m spectral stress modes of  i 

 i
p
 strain tensor on integration plane 

i
vol

 volumetric strain tensor on integration plane 

h horizontal strain 

n local normal strain on integration plane 

nd deviatoric part of local normal strain 

nd,centre centre of local deviatoric strain history contour, deviatoric normal 

component 

nv volumetric part of local normal strain 


p
 plastic part of the strain tensor 


p

n plastic normal strain on integration plane from all yield sufaces 


p

n,cap plastic normal strain from the cap yield surface 


p

n,cone plastic normal strain from the cone yield surface 


p

n,HV plastic normal strain from the Hvorslev yield surface 

v vertical strain 

vol volumetric strain 

 Lode’s angle 

 shear band inclination 

 slope of the swelling line in ln(p')--plane (swelling index) 

 slope of the normal compression line in ln(p')--plane (compression 

index) 

m eigenvalues of global compliance matric 

 specific volume (1+e) 

´, ´ur drained Poisson’s ratio at large strains 

´hh Poisson’s ratio within isotropic plane 

´hh0 initial Poisson’s ratio within isotropic plane 

´vh, ´hv cross-anisotropic Poisson’s ratios 

´vh,iso cross-anisotropic Poisson’s ratio at isotropic stress state 

´vh0, ´hv0 initial cross-anisotropic Poisson’s ratios 

´ effective stress tensor 

*
 non-local stress 

´0 initial effective stress state 



'1, '2 '3 major, intermediate and minor principal stress 

´h horizontal effective stress 

´h0 initial horizontal effective stress 

´i effective stress vector in terms of micro level components of plane i 

´i
dev

 deviatoric stress tensor on integration plane 

´i,m spectral stress modes of ´i 

´i,trial auxiliary trial stress vector on integration plane i 

´i
vol

 volumetric stress tensor on integration plane 

´m spectral stress modes of ´ 

'n, 'n,i effective normal stress on integration plane 

´nc local effective normal preconsolidation stress on integration plane 

´
*

nc non-local effective normal preconsolidation stress on integration 

plane 

´nc,0 initial effective normal preconsolidation stress on integration plane 

´nc,k effective normal preconsolidation stress in step k 

´nc,k+1 effective normal preconsolidation stress in step k+1 

´nd deviatoric part of effective normal stress on integration plane 

´ne equivalent normal stress on local normal consolidation line 

´nv volumetric part of effective normal stress on integration plane 

 ´previous previous state of stress 

´t tensile strength 

´trial global auxiliary trial stress vector 

´v vertical effective stress 

´v0 initial vertical effective stress 

´ve equivalent vertical stress on 1D normal consolidation line 

 shear stress on sampling plane 

s local shear stresses in s-direction  

s1 local shear stresses in s-direction, resulting from global axial 

stresses 

s2 local shear stresses in s-direction, resulting from global shear 

stresses 

t local shear stresses in t-direction  

t1 local shear stresses in t-direction, resulting from global axial 

stresses 

t2 local shear stresses in t-direction, resulting from global shear 

stresses 

xy, yz xz global shear stresses 

´0 initial mobilised effective friction angle 

´cs effective friction angle at critical state 

´e inclination of Hvorslev surface in -´-diagram 



´m mobilised friction angle 

´m* mobilised friction angle at minimum mobilised dilatancy 

´max maximum effective friction angle at peak strength 

´mod modified friction angle 

 ultimate dilatancy angle in basic model 

m mobilised dilatancy angle 

max maximum dilatancy angle in Hvorslev surface model 

mob,min minimum of mobilised dilatancy angle 

 Gaussian error function 

´ error function according to Galavi (2007) 

 

Capital Greek letters 

 hardening parameter 

i plastic multiplier of plane i 
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1 Introduction 

1.1 Motivation 

 

The prediction of ground movements, bearing capacity and stability of 

geotechnical structures is a key task in geotechnical engineering. The 

applicability of analytical methods to practical problems is in general limited, as 

the large variation in geometry and boundary conditions can hardly be taken into 

account in analytical solutions. As a consequence, numerical methods like the 

finite element method, in which the boundary value problem is solved in an 

approximate manner, have gained widespread application in the last decades.  

 

Numerical methods are, however, not a priori a suitable tool for the design of 

geotechnical structures. The mechanical behaviour of geomaterials is 

significantly more complex than that of most materials encountered in structural 

engineering. Soils deform plastically long before failure, their stiffness and 

strength depends on stress state, loading history and physical grain properties, 

and material response often changes with the direction of loading. Additionally, 

natural soils are characterized by considerable heterogeneity and spatial 

variability of material properties. If realistic predictions are to be obtained by 

numerical simulations, careful investigation of in-situ soil properties as well as 

advanced constitutive models are required. Still, no generally accepted soil 

model, which is able to reproduce all the relevant characteristics of soil with 

physically meaningful material parameters, prevailed so far.  

 

In this thesis a novel constitutive model is presented, which can account for two 

phenomena commonly observed in heavily overconsolidated, stiff clays and 

dense sands: Anisotropic stiffness in the range of very small strains, and the 

strain softening behaviour after peak strength has been mobilised.  

 

It is well known that many natural soils exhibit anisotropy in both stiffness and 

strength, and thus the material response depends on the direction of loading. In 

the last 20 years much research has been devoted to investigate anisotropic 

properties of geomaterials. However, in surprisingly few cases these 

experimental results have been utilized in numerical simulations. This thesis 

focusses on anisotropy in the high initial stiffness at very small strains, which in 

many cases is the relevant strain level under working load conditions. Besides 

providing a tool for future application in numerical simulations, a major aim of 

this research was to obtain a better understanding of the influence of small strain 

stiffness anisotropy in geotechnical problems. In most engineering projects the 

anisotropic stiffness of the soil may not be known, or an anisotropic constitutive 

model may not be available. In these cases, estimating the range of material 
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parameters and their influence on calculation results can still provide a better 

prediction of soil behaviour. 

 

The second part of the thesis deals with the behaviour of stiff clays close to and 

beyond failure. These materials are known to possess much higher shear strength 

than their soft counterparts at the same stress level. After reaching peak strength, 

further deformations tend to concentrate in narrow shear bands, and the overall 

load bearing capacity of the soil body decreases due to loosening of the material. 

Such behaviour, however, diminishes at high stress levels. In conventional 

numerical analysis, peak strength is usually accounted for by increasing friction 

angle and cohesion, which fails to consider the stress dependency of peak 

strength as well as the reduction of soil strength in strain softening.  

 

Application of strain softening constitutive models in numerical analysis is 

hindered by significant mesh-dependency, if no regularization technique is 

employed. A modified non-local approach is adopted here, in which reduction of 

soil strength is governed by a weighted average of strains in the vicinity of the 

numerical shear band. 

 

The constitutive model is formulated within the multilaminate framework, as first 

introduced for soils by Pande & Sharma (1983). Material behaviour is defined by 

yield and plastic potential functions on so-called integration planes of predefined 

orientation. Plastic strains and strain hardening of yield surfaces are allowed to 

develop independently on these planes, thus accounting for strain induced 

anisotropy and rotation of principle stresses in a straightforward way. Recent 

developments at TU Graz, namely the work of Galavi (2007) and Scharinger 

(2007), form the basis of the current multilaminate model. Anisotropic shear 

strength as implemented by Galavi (2007) has been incorporated, but is not 

considered in this thesis. 

 

1.2 Outline of thesis 

 

A brief introduction to the concept of the multilaminate framework, which forms 

the basis of the constitutive model, and its historical development is given at the 

beginning of this thesis. The mathematical formulations and their underlying 

mechanical and geometric meaning are discussed. The principle of virtual work 

is shown to deliver mechanically sound micro-macro relations between local 

strains on integration planes and macroscopic strains. Applying the principle to 

isotropic elastic material, micro-macro relations for elastic parameters are 

established. Different assumptions with regard to the split of local stresses and 

their consequences for local strain distributions are discussed. 
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The basic version of the multilaminate model is presented in chapter 3. The yield 

criteria, hardening rules and plastic potential functions are explained. The stress 

point return algorithm is described only briefly, with a more detailed description 

provided in Appendix B. The numerical algorithm of the basic model has been 

modified to increase calculation speed and numerical robustness. It is shown that 

these improvements do not influence the accuracy of calculation results.  

 

Anisotropic soil stiffness at very small strains is considered in chapter 4. 

Experimental data of anisotropic small strain stiffness are reviewed and 

inconsistencies in the experimental results are discussed. Focus is set on inherent 

and stress induced anisotropy. Two approaches for modelling anisotropic 

stiffness in the multilaminate framework are compared with respect to their 

capability to cover the range of experimental data. The formulations adopted in 

the anisotropic small strain model to account for stress dependency of stiffness, 

stiffness degradation and dependency on load history are presented. The model is 

validated by comparing model predictions with element test data of various soils, 

both in the small strain and large strain range. 

 

The influence of anisotropic small strain stiffness in boundary value problems is 

investigated in chapter 5. Two simplified geotechnical problems, the excavation 

of a construction pit supported by a sheet pile wall and a shallow strip footing, 

are simulated numerically assuming various combinations of anisotropic small 

strain stiffness parameters. 

 

Chapter 6 starts with a discussion of the mechanical behaviour of heavily 

overconsolidated clays and dense sands. The enhancement of the basic model to 

account for peak strength and strain softening of these materials is based on the 

critical state framework. The mathematical formulations of a Hvorslev yield 

surface on integration plane level, the corresponding softening rule and plastic 

potential are given. The capability of the model to predict pre-peak deformation 

behaviour is shown in simulations of undrained triaxial tests on Pietrafitta clay 

and Vallericca clay at different stress levels. Different regularization techniques 

to overcome mesh dependency in strain softening analysis are briefly explained. 

The non-local approach is discussed in more detail, as this method is employed 

in the model in the post-peak range. Numerical simulations of biaxial tests 

demonstrate that mesh independent results can be obtained. The impact of 

employing non-local strain regularization in the pre-peak range on the 

mechanical behaviour and the evolution of shear bands is discussed at the end of 

this chapter. 

 

Chapter 7 summarizes the most significant findings of this work and gives some 

recommendations for further research on multilaminate models. References are 

provided in Chapter 8.  

 



4 1 Introduction 

 

In order to focus on modelling aspects in the main part of the thesis, details of 

implementation are provided in appendices. Appendix A gives the eigenvalues 

and idempotent matrices of the cross-anisotropic elastic compliance matrix, 

required in the spectral decomposition method. Appendix B explains the 

implementation of the model as a user-defined subroutine in the finite element 

code PLAXIS 2D 2010. Partial derivatives of yield and plastic potential 

functions are also given there. The mathematical derivation of the Hvorslev yield 

function from the normalized formulation of the Hvorslev surface is shown in 

Appendix C. Appendix D contains the source code of the model, written in the 

programming language FORTRAN. 
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2 Multilaminate framework 

2.1 Concept 

 

The multilaminate framework is based on the concept, that the macro-mechanical 

behaviour of materials can be related to processes at the micro-mechanical scale. 

This approach dates back to the slip theory of Taylor (1938), who described 

sliding phenomena in metals by considering contact planes of various 

orientations. The concept is particularly attractive for describing the behaviour of 

granular materials like soils. If such materials are considered as an assemblage of 

discrete, solid particles, elastic deformations can be assigned to the particles, and 

plastic deformation can be attributed to inter-particle sliding. Macroscopic 

deformation of the soil body can be obtained by summation of all the micro-

mechanical deformations.  

 

A stringent variant of such an approach is found in the discrete element method 

(Cundall & Strack 1979), which models the interaction of all the individual 

particles. However, numerical analysis of practical boundary value problems 

using this approach suffers from the massive computational effort caused by the 

large number of particles. Application of the method is further hampered by the 

difficulty in obtaining appropriate micro-mechanical parameters. 

 

To overcome these limitations, a major simplification is introduced in the 

multilaminate framework: Instead of modelling individual particles, soil is 

considered as a continuum with an infinite number of potential sliding planes of 

varying orientation. Elastic deformations are obtained from the continuum, and 

plastic deformation are derived from the sliding of planes once a predefined ratio 

of normal and shear stresses on the plane is exceeded. In numerical calculations, 

an infinite number of planes is obviously not feasible and a finite number of 

planes with predefined orientations is introduced. In this study these planes are 

called “integration planes”. A weighting factor is assigned to each integration 

plane in order to account for the area of influence represented by the respective 

plane.  

 

2.2 Development of multilaminate models 

 

The slip theory of Taylor (1938), which already comprised basic elements of the 

multilaminate framework, was further developed by Batdorf & Budiansky (1949) 

and Sanders (1955) to describe plastic straining of metal crystals. The first 

application to geomaterials dates back to Zienkiewicz & Pande (1977), who 
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modelled rock joints of fixed orientation as planes of weakness within an elastic 

continuum and introduced the term “multilaminate model”. Assuming that an 

infinite number of slip planes are present in the material, the concept was 

extended for modelling of sands and clays by Pande & Sharma (1983) and 

Sadrnejad & Pande (1989). The novel idea was to use integration planes as a 

representation of continuum plasticity rather than a modelling tool for discrete 

joints. They used the model to investigate strain induced anisotropy and rotation 

of principal axis during loading.  

 

An extensive comparison with predictions of standard invariant formulations has 

been given by Sharma (1980) and Varadarajan et al. (1990). Krajewski (1986) 

used a multilaminate model with volumetric and deviatoric strain hardening yield 

surfaces to back-calculate the load-displacement curves and bearing capacity of 

pile model tests. A summary on modelling elastoplastic material behaviour 

within the multilaminate framework was provided by Pietruszczak & Pande 

(1987). 

 

A rate-independent multilaminate model has also been applied by Karstunen 

(1999) to study strain localization in dense sand, using a homogenisation 

technique to mitigate mesh dependency in the post-peak range. More recently, 

Schuller (2000) used a viscoplastic model based on the multilaminate framework 

for plane strain analysis of strain localization. His model employed deviatoric 

strain hardening in the pre-peak range and strain softening for post-peak 

behaviour, but no strain regularization was taken into account.  

 

Wiltafsky (2003) developed the Multilaminate Model for Clay, which utilizes a 

deviatoric and a volumetric strain hardening yield surface. His model has been 

implemented into the finite element code PLAXIS (Brinkgreve et al. 2006) for 

the analysis of normally and slightly overconsolidated Scandinavian clays. The 

latest developments have been achieved by Scharinger (2007), who implemented 

inherently isotropic small strain stiffness and a new deviatoric plastic potential 

function, and by Galavi (2007), who added anisotropic shear strength, 

destructuration and strain softening with non-local strain regularization to 

Wiltafsky’s model. 

 

At the beginning of the 1980ies, another class of conceptually similar models has 

been developed by Bažant and co-workers (Bažant & Oh 1983, Bažant 1984, 

Bažant & Prat 1988). Originally proposed for modelling fracturing and softening 

of concrete, these so-called “microplane” models employ the kinematic 

constraint (strains on integration planes are the projection of macroscopic strains) 

rather than the static constraint (stresses on integration planes are the projection 

of macroscopic stresses) used in multilaminate type models. In the first 

microplane models the material behaviour was described by explicit stress-strain 

curves, which were hard to compare to e.g. Mohr-Coulomb type failure criteria 
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known in soil mechanics. Even though more recent developments introduced 

classical plasticity concepts (Carol & Bazant 1997, Kuhl & Ramm 2000, Sanchez 

& Prat 2008), application of microplane models to geotechnical boundary value 

problems is still rare. 

 

2.3 Mathematical formulation 

 

Multilaminate constitutive models are based on the concept that the global three-

dimensional stress state can be represented by the sum of local, two-dimensional 

stress states at planes of varying orientation. The macroscopic strain 

corresponding to a global stress increment is obtained by integration of the local 

strains over all orientations, which are calculated according to the constitutive 

model defined locally.  

 

Except for very basic material models and simple stress states, such integration 

cannot be carried out analytically. Therefore a predefined number of orientations 

is taken into account, and the integration over all orientations is replaced by the 

summation over these integration planes. Each plane represents a sector of a 

virtual sphere of unit radius around the stress point and is assigned a weight 

factor according to the proportion of its sector with regard to the volume of the 

unit sphere. 

 

The orientation of plane i is fully defined by its normal vector ni, whose 

orientation with respect to the global coordinate system x, y, z is given by the 

angles i and i. The stress-strain behaviour is formulated locally in terms of 

local stresses and strains. In order to uniquely define the direction of the local 

stresses and strains parallel to the integration plane, local unit vectors si and ti are 

introduced, with ni, si and ti forming a system of mutually orthogonal local axes. 

While the choice of si and ti is in principle arbitrary (provided they are mutually 

orthogonal), it is convenient to choose si and ti parallel to the dip and strike 

direction of plane i, respectively. 
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Fig. 1: Definition of integration plane orientation 

 

The stress-strain state varies from plane to plane for all non-isotropic loading 

paths. If an elastoplastic strain hardening constitutive model is used, anisotropic 

hardening induced by plastic strains is automatically taken into account in the 

framework. Local stress increments d'i are a projection of the global stresses, 

which is a fundamental assumption in multilaminate constitutive models and 

known as the static constraint. The global stress increment d', defined by 6 

components and written as a vector in Equation 3, is projected on integration 

plane i by the transformation matrix Ti. 

 
 Txzyzxyzzyyxx ddd'd'd'd' dσ  (3) 

 

   Ttsn
T

ii dd'd''  dσTdσ  (4) 

 

 
 
Fig. 2: Definition of local stress components 

 

The transformation matrix Ti contains the derivatives of the local stress 

components with respect to the global axes, represented by the direction cosine 

of ni, si and ti. 
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Local strain increments are calculated according to the local constitutive model. 

If an elasto-plastic constitutive model is employed, the local strain increment di 

can be decomposed into elastic and inelastic contributions: 

 

  p
i

e
i

T
tsni ddd dεdεdε   . (6) 

 

The local elastic strain increment d
e
i is obtained as 
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Ci is the local compliance matrix, which in the case of isotropic linear elastic 

material is equal for all planes. For non-linear elasticity (small strain stiffness), 

Ci depends on the strain history of each plane and therefore differs from plane to 

plane, resulting in anisotropic global behaviour, even though initially the material 

was isotropic. Further explanation regarding the structure and elements of Ci is 

given in subsequent chapters. The local plastic strain increment of the i
th

 

integration plane is calculated according to plasticity theory by 
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di is the increment of the local plastic multiplier, which is obtained from the 

derivatives of local yield functions fi, plastic potential functions gi and the value 

of the yield function at the elastic trial stress, fi
trial

. Further details on the 

calculation of plastic strains are given in Appendix B. 
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Micro-macro relations between local and global strains can be established by 

enforcing the equivalence of virtual work at the macro- and micro-scale for small 

variations of the stress state ' and 'i (Bažant & Gambarova 1984). At the 

macroscale, virtual work Wmacro is taken over the volume of a unit sphere, while 

the sum of microscopic virtual work Wmicro equals the integral over the surface S 

of a unit sphere. 

 

  

S

ii

S

micromacro dS'dSW'W dεσdεσ 
3

Π4
 (10) 

 

Following the static constraint, small local stress variations 'i are projections of 

the macroscopic stress variation '. 

 

''
T

ii σTσ    (11) 

 

Substituting Equation 11 into Equation 10 and taking ' (which is independent 

of plane orientation) out of the integral, a straightforward relation between 

macroscopic and local strain increments is obtained. 

 

     

S

ii

S

i
T

i dS'dS'' dεTσdεσTdεσ 
3

Π4
 (12) 

 

 













  dεdεTσ

3

Π4
0

S

ii dS'  (13) 

 

    
 



Π

0

Π2

0

sin
Π4

3

Π4

3

 

 dddS ii

S

ii dεTdεTdε  (14) 

 

In Equation 14 the infinitesimal surface area dS of the unit sphere is expressed in 

terms of the infinitesimal angles d and d. If the full integration is replaced by a 

numerical summation over a distinct number of predefined planes, with each 

plane representing a sector of the unit sphere, the infinitesimal angles d and d 

turn into finite values  and . The weight factors wi are defined as the share 

of the surface area of each sector with respect to the total surface area of the unit 

sphere. 
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The weight factors wi depend on the chosen integration rule and thus on the 

number and distribution of planes used for approximating the full integration 

over the sphere. While increasing the number of integration planes leads to more 

accurate results, and thus a higher number of planes would be favourable, for 

large boundary value problems the number of planes is limited by the 

computational effort required. Previous studies have shown that an integration 

rule based on 2 × 33 planes balances reasonably well between accuracy and 

computational effort (Bažant and Oh 1986, Scharinger 2007, Ehret et al. 2010). 

The direction cosines and corresponding weight factors are listed in Table 1 for 

this integration rule, which is used in the numerical simulations presented in this 

study. 
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Tab. 1: Direction cosines n1,i, n2,i, n3,i, and weighting factors wi of the 

integration planes for the symmetric 2 x 33-plane integration rule 
(Bazant & Oh 1986) 

 

i n1,i n2,i n3,i wi 

1 1 0 0 0.00985353993 

2 0 1 0 0.00985353993 

3 0 0 1 0.00985353993 

4 0.7071067811 0.7071067811 0 0.01629696858 

5 0.7071067811 -0.7071067811 0 0.01629696858 

6 0.7071067811 0 0.7071067811 0.01629696858 

7 0.7071067811 0 -0.7071067811 0.01629696858 

8 0 0.7071067811 0.7071067811 0.01629696858 

9 0 0.7071067811 -0.7071067811 0.01629696858 

10 0.9338989563 0.3575370459 0 0.01347888440 

11 0.9338989563 -0.3575370459 0 0.01347888440 

12 0.3575370459 0.9338989563 0 0.01347888440 

13 0.3575370459 -0.9338989563 0 0.01347888440 

14 0.9338989563 0 0.3575370459 0.01347888440 

15 0.9338989563 0 -0.3575370459 0.01347888440 

16 0.3575370459 0 0.9338989563 0.01347888440 

17 0.3575370459 0 -0.9338989563 0.01347888440 

18 0 0.9338989563 0.3575370459 0.01347888440 

19 0 0.9338989563 -0.3575370459 0.01347888440 

20 0 0.3575370459 0.9338989563 0.01347888440 

21 0 0.3575370459 -0.9338989563 0.01347888440 

22 0.4372636760 0.4372636760 0.7858759158 0.01757591298 

23 0.4372636760 0.4372636760 -0.7858759158 0.01757591298 

24 0.4372636760 -0.4372636760 0.7858759158 0.01757591298 

25 0.4372636760 -0.4372636760 -0.7858759158 0.01757591298 

26 0.4372636760 0.7858759158 0.4372636760 0.01757591298 

27 0.4372636760 0.7858759158 -0.4372636760 0.01757591298 

28 0.4372636760 -0.7858759158 0.4372636760 0.01757591298 

29 0.4372636760 -0.7858759158 -0.4372636760 0.01757591298 

30 0.7858759158 0.4372636760 0.4372636760 0.01757591298 

31 0.7858759158 0.4372636760 -0.4372636760 0.01757591298 

32 0.7858759158 -0.4372636760 0.4372636760 0.01757591298 

33 0.7858759158 -0.4372636760 -0.4372636760 0.01757591298 
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2.4 Micro-macro relations for isotropic elasticity 

 

An important issue in multilaminate, microplane and micromechanical models is 

consistency between local and global material parameters, which are often 

referred to as micro-macro-relations (Carol et al. 1992). For plastic material 

behaviour such relations can only be established for rather simple elastic-

perfectly plastic constitutive models based on Drucker-Prager, Tresca or Von 

Mises failure criteria (Leukart 2005). The global stress-strain behaviour of more 

advanced, multilaminate strain hardening models is a result of formulating yield 

surfaces and hardening rules on local level rather than by direct input. 

Accordingly, there is limited benefit to relate local hardening parameters to 

parameters used in other models which are formulated macroscopically.  

 

However, establishing micro-macro-relations is much more relevant for elastic 

material behaviour, as in that case the stress-strain behaviour is unambiguously 

defined on global level. Any local constitutive model should not only deliver 

exactly the desired elastic stress-strain behaviour, but furthermore the local 

strains should be mechanically meaningful, if local parameters are supposed to 

vary with local strains. 

 

In order to enforce consistency between local and global elastic stiffness 

parameters, micro-macro-relations can be determined analytically by comparing 

local and macroscopic strain increments for a general macroscopic stress 

increment. As the integration over all local orientations can be carried out 

analytically, no error is induced by assuming a numerical integration rule. 

 

The global compliance matrix C for an isotropic elastic material is defined by 

two parameters, the Young’s modulus E and Poisson’s ratio ' (Equation 17), 

while the local normal and shear compliance Cn and Ct form the local compliance 

matrix Ci. It should be noted, that the diagonal structure of Ci (Equation 18) 

already involves the assumption, that on local level elastic normal and shear 

deformations are decoupled and only caused by the respective normal and shear 

stresses. 
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Equating the macroscopic strain increment d with the integral over all local 

strain increments (Equation 19) delivers a unique relationship between local and 

global compliance (Equation 21). 
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As the global stress increment d' is independent of plane orientation, it can be 

taken out of the integral and omitted from Equation 21. A direct relationship 

linking C and Ci is obtained, and local parameters Cn and Ct are found by 

equating the elements of C in Equation 23 to those in Equation 17. 
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If the kinematic constraint is utilized, a different set of local parameters are 

obtained (Carol & Bažant 1997), which shows that the proposed split of local 

stresses in normal and tangential components (N-T-split) does not fulfil the 

double constraint (i.e. both static and kinematic constraint). Although this is not 

strictly necessary for formulating multilaminate material models, by fulfilling the 

double constraint thermodynamic inconsistency and spurious energy dissipation 

can be avoided (Carol et al. 2001).  

 

However, it is not straightforward to define a local elastic compliance matrix 

which satisfies the double constraint. Introducing some sort of coupling between 

local shear and normal strains leads to a non-diagonal local compliance matrix, 

and requires at least one additional local parameter. As in this case three local 

parameters are employed, these may not be uniquely related to the two global 

elastic parameters E and ' anymore. 

 

Another, more promising approach is to introduce a different split of the local 

stresses and strains, as first proposed for microplane models by Bažant & Prat 

(1988) and later derived theoretically by Kuhl & Ramm (2000) and Leukart 

(2005). Macroscopic elastic stress-strain behaviour can be split into a volumetric 

(p', vol) and deviatoric (q, Ed) part, with each part being governed by one 

corresponding material parameter, bulk modulus K' and shear modulus G (Potts 

and Zdravković 1999). 
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The same can be achieved on local level by projecting both the macroscopic 

volumetric and deviatoric stress components separately into the plane coordinate 

system. Doing so delivers local volumetric and deviatoric stresses, 'i
vol

 and i
dev

. 
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As local stresses are split into components according to their origin in 

macroscopic volumetric and deviatoric stresses, this approach is known as the 

volumetric-deviatoric split or V-D split (Leukart 2005). The volumetric 

component is independent of plane orientation and equals the macroscopic mean 

stress p', while the deviatoric normal component is obtained as nd = 'n - 'nv. 

Local stresses are rearranged according to Equation 29 in order to retain the local 

stress-strain relationship i = Ci · 'i. It should be noted, that the first two 

components 'nv and nd have the same spatial orientation. 
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As the shear stresses s and t and the deviatoric normal stress nd are projections 

of the macroscopic deviatoric stress, the same local compliance Cd can be 

assigned to these local stress components. Following the same procedure as for 

the N-T-split, local elastic compliance parameters are found for the V-D-split as 
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The same set of micro-macro-relations is obtained with the kinematic constraint 

as demonstrated by Carol and Bažant (1997), thus indicating that the V-D-split 

fulfils the double constraint for linear elastic material. 

 

Local elastic compliance must be strictly positive to be physically meaningful. 

As Ct becomes negative for ' < -1/3 in the N-T-split, and Cn and Cv become zero 

for ' = 0.5 in the N-T and V-D-split, respectively, this condition is not fulfilled 

for the full range of mechanically possible Poisson’s ratios (-1 ≤ ' ≤ 0.5). 
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However, negative isotropic Poisson’s ratios (i.e. horizontal contraction in 

vertical compression) are typically not encountered in geomaterials. A Poisson’s 

ratio '= 0.5 is only relevant in undrained total stress analysis, in which case a 

value of 0.495 ≤ ' < 0.5 can be chosen, as suggested by Potts and Zdravković 

(1999). Consequently, no restrictions on the applicability of N-T and V-D-split in 

geotechnical problems are imposed by the limits of '. 

 

N-T and V-D split differ in the distribution of local strains for macroscopic 

deviatoric loading, which is illustrated by the following example. The response 

of an isotropic elastic material (E = 10 MPa, ' = 0.2) to an isotropic stress 

increment of 'v = ’h = -100 kPa and to a triaxial stress increment of 

'h = 0, 'v = -100 kPa is examined. For these simple cases the distribution of 

local strains can be worked out analytically using Equations 1, 2, 4 and 6.  

 

Figure 3 and Figure 4 show local strain distributions over the plane orientation 

angle , with  = 0 denoting a horizontal plane and  = 90° a vertical plane. For 

the V-D-split the volumetric and deviatoric normal strains have been summed up 

to obtain the local normal strain n. As the triaxial stress increment is symmetric 

to the vertical axis, local stresses and resulting elastic strains are independent of 

the orientation angle . 

 

Both N-T and V-D-split deliver identical macroscopic strain increments of v = 

-1.0%, h = 0.2%. However, local normal and shear strain distributions differ 

considerably. The V-D split delivers local normal strains n ≠ 0 for a vertically 

orientated plane (even though 'n = 0 on that plane), as the deviatoric normal 

strain (expansion) outweighs the contribution of the volumetric normal strain 

(compression). The N-T split delivers n = 0 in that direction, as plane normal 

strain exclusively depends on plane normal stress 'n, which does not change 

for a vertically orientated plane. The difference in the local strains between N-T 

and V-D split becomes larger with increasing deviation from the isotropic stress 

state. 
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Fig. 3: Distribution of local strains in isotropic compression 
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Fig. 4: Distribution of local strains in triaxial compression 
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3 Basic multilaminate model for soils 
 

In this chapter the basic version of the multilaminate constitutive model for soils 

is presented, which is based on the model proposed by Scharinger (2007). This 

model has been shown to predict soil behaviour of loose to medium dense sand 

or normally to slightly overconsolidated clays with good accuracy (Schweiger et 

al. 2009). In order to apply the multilaminate model to heavily overconsolidated 

clay and dense sand, further developments have been necessary, which are 

described in detail in chapter 4 and chapter 6. 

 

3.1 Yield criteria, hardening rules and plastic 

potentials 

 

Three yield surfaces are defined on each integration plane in terms of local shear 

stress  and normal stress 'n: A volumetric hardening surface fcap for normal 

compression, a shear hardening surface fcone for deviatoric loading and a non-

hardening tension cut-off ftens to limit allowable tensile stresses (Figure 5). The 

local shear stress  is the resultant tangential stress on the integration plane, 

obtained as the geometrical sum of shear stresses in direction s and t.  

 

The yield surfaces separate the elastic region from the plastic domain and are 

defined by Equations 32-34. At the end of any calculation step the local stress 

state must either be situated inside the elastic domain or on the yield surface. 

Mobilisation of the yield surfaces is formulated according to strain hardening 

plasticity, i.e. the change of the yield surface is driven by the change of local 

plastic strains. 
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Fig. 5: Local yield surfaces 

 

The position of the cap yield surface fcap is defined by the intersection 'nc with 

the 'n –axis and the cap shape parameter MCP, which controls the intersection 

with the -axis. MCP is found by an iterative procedure at the beginning of the 

calculation, as described in chapter 3.4. Mobilisation of the cap yield surface is 

governed by the change of local plastic normal strains pn,cap, calculated from 

the cap yield surface (Equation 35). The hardening parameter K contains the 

volumetric stiffness in primary loading, Eoed, and the elastic unloading/reloading 

Young’s modulus, Eur, both at reference pressure pref. Compared with the 

equation proposed by Scharinger (2007), K has been multiplied by a factor of 3.0 

in order to account for the multiplication with 3.0 in the summation of local 

plastic strain contributions (Equation 16). 

 

Dependency of stiffness on stress level is taken into account by an exponential 

law using the power index m (Equation 37). Fully associated plastic flow is 

assumed for the cap yield surface, hence the cap plastic potential equals the yield 

function (Equation 38). 
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capcap fg   (38) 

 

The strain hardening deviatoric yield surface fcone is defined by the maximum 

friction angle, 'max, the mobilised friction angle, 'm, and the effective cohesion 

c'. At full mobilisation the cone yield surface equals the Mohr-Coulomb failure 

line with 'm = 'max. Mobilisation of the cone yield surface with change of local 

plastic shear strain cone
pl

 is controlled by the hardening parameter Amat. A 

failure ratio Rf = tan'max/tan'mod has been introduced to ensure that 'max is 

reached at finite shear strains. The minimum mobilised friction angle '0 can be 

used to model an elastic range at low shear stresses. 
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Plastic flow of the cone yield surface is controlled by the non-associated plastic 

potential function gcone, which is defined by the mobilised angle of dilatancy, m. 

Mobilisation of dilatancy is governed by a cubical function in dependency on the 

mobilised friction angle 'm as proposed by Scharinger (2007). 
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Fig. 6: Mobilisation of dilatancy (Scharinger 2007) 

 

The tension cut-off ftens is fixed by the input value of the allowable tensile normal 

stress, t. Fully associated plastic flow is assumed for the tension cut-off. 

 

3.2 Stress point return algorithm 

 

The model is implemented as a user-defined soil model (UDSM) into the finite 

element code PLAXIS. The UDSM is called to return the stress increment 

according to the constitutive equations of the model for each strain increment d 

which is provided by PLAXIS. Calculation of plastic strains is carried out in an 

iterative procedure using a modified Newton-Raphson scheme (Potts & 

Zdravković 1999) on local level. Only a very brief overview is given here. A 

more detailed description of the UDSM facility and the stress point return 

algorithm (including the partial derivatives of the yield and plastic potential 

functions) can be found in Appendix B. 
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The change in macroscopic trial stress 'trial is calculated from the global elastic 

compliance matrix C and the global strain increment d, which is assumed to be 

elastic in the first iteration. 
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Local plastic strains are calculated according to plasticity theory from the active 

yield surface, and subsequently summed up to obtain the global plastic strain 

increment d
p
. 
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The new global trial stress is then calculated with the difference of the total strain 

increment and the plastic strain increment.  

 

  previous
p

trial '' σdεdεCσ  1  (53) 

 

This iterative procedure is repeated until the plastic strain contribution of the 

current stress point iteration is less than 0.1% of the total plastic strains 

increment calculated in that step. In previous multilaminate models, the condition 

to terminate the calculation of plastic strains was defined such that the trial stress 

must be sufficiently close to or inside the current yield surface on all planes. 

While such an approach is in principle correct, it typically results in a very high 

number of stress point iterations. After the first few iterations, the global trial 

stress 'trial as well as the local stresses 'i,trial do not change significantly 

anymore due to the limited impact of the remaining plastic planes on the global 

plastic strain increment, as illustrated in Figure 7. Furthermore, the local trial 

stress of the last planes remaining in plasticity is just slightly outside the yield 

surface, hence local plastic strain contributions from these planes are small and 

further hardening of the local yield surfaces is marginally. Local plastic strains 

are multiplied with the weight factors wi before being summed up to obtain the 

global plastic strain increment of that iteration, which further reduces the impact 

of these local contributions, and in return leads to even smaller change of the 
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global stress state. Eventually, the favourable quadratic convergence of the 

Newton-Raphson scheme is lost due to the updating of the trial stress on global 

level and the evaluation of the yield criteria on local level. 
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Fig. 7: Convergence of trial stress and final stress within a sample calculation 
step 

 

This deficiency of the return algorithm cannot be overcome easily. At first glance 

it may seem appealing to finish iterations on integration plane level one after 

another for all planes without intermediate summation of local plastic strains and 

updating of the global trial stress. However, such an approach lacks physical 

meaning, as neither the local stresses nor the local strains would be projections of 

the global stresses and strains, and so neither the static nor the kinematic 

constraint would be fulfilled. 

 

With the new convergence criterion the number of iterations could be 

considerably reduced without compromising notably on the accuracy of 

calculation results, as shown in Figure 8. Undrained triaxial stress point 

simulations of normally consolidated soil are compared, in which strains of h = 

7.5%, v = -15% are applied in 500 steps. Both approaches deliver virtually 

identical stress paths, but the new convergence criterion requires only 30-50% of 

the iterations of the old approach. 
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Fig. 8: Stress paths in undrained triaxial compression (left) and required 
number of stress point iterations (right) 

 

3.3 Corner and apex points 

 

Non-smooth intersections of yield surfaces or plastic potential functions require 

special attention, as the return stress path is influenced by the derivatives of all 

the adjacent yield surfaces and plastic potentials. In the basic multilaminate 

model that case arises at the intersection of the cone yield surface with the 

tension cut-off and the cap yield surface. Plastic strains at corner points can be 

decomposed into contributions of the neighbouring yield surfaces, which are 

denoted here as 1 and 2. The corresponding incremental local plastic multipliers 

d1 and d2 are then obtained as the solution of a linear system of equations 

(Potts & Zdravković 1999) as 
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It should be noted, that this approach requires strictly convex yield surfaces and 

plastic potentials, as otherwise negative or infinite values of d are obtained. 

Furthermore, it is necessary to work out beforehand, whether the stress path 

returns to yield surface 1, 2 or the corner point. For that end an iterative 

procedure is applied, which resembles the approach employed by Maudlin et al. 

(1996). First, the yield condition is evaluated at the trial stress 'i,trial for all local 

yield surfaces. Negative values of the yield criteria f indicate that the 

corresponding yield surface is inactive in the current loading step. If positive 

values of f are obtained for more than one yield surface, local plastic multipliers 

are calculated according to Equations 55 and 56. Positive values of d1 and d2 

indicate that the stress path returns to the corner point, and that both yield 

surfaces are active. In case negative values are computed for either d1 or d2, 

the corresponding yield surface is removed from the set of potentially active 

surfaces and the local plastic multiplier is calculated from the remaining active 

yield surface according to Equation 9. As pointed out by Maudlin (1996), the 

maximum number of active yield surfaces equals the dimension of the stress 

space in which the yield surfaces are defined, which is 2 in multilaminate models 

and 3 for models formulated in principal stress space '1, '2, '3. 

 

In previous multilaminate models, the return stress path was calculated without 

consideration of the Koiter rules. The stress path was returned to the cone yield 

surface if the trial stress was above the mobilised cone yield surface, and to the 

cap yield surface if below. Even though this approach lacks mechanical 

consistency, comparison of undrained triaxial and drained oedometer test 

simulations delivers only marginal differences between the two approaches 

(Figure 9, Figure 10).  
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Fig. 9: Stress paths in undrained triaxial compression (left) and drained 
oedometric compression (right) with and without Koiter rules 
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Fig. 10: Undrained triaxial compression (left) and drained oedometric 

compression (right) with and without Koiter rules 

 

The limited impact of the Koiter rules results from the small number of 

integration planes on which the trial stress state is actually in the relevant area, 

and their small contribution to the global plastic strain increment. This is 

demonstrated for integration plane #12 for a strain increment in undrained 

triaxial compression in Figure 12. The initial stress state is assumed to lie at the 

intersection of the cap and cone yield surface (Figure 11). The elastic trial stress 

of plane 12 is within that section of the stress space, which activates both the cap 

and the yield surface according to the Koiter rules, while according to the old 

approach the stress state would return exclusively to the cone yield surface. 

Consequently, local plastic strains differ considerably over iterations (Figure 12 

right): Without the Koiter rules, plastic strains are initially calculated solely from 

the cone yield surface, and zero plastic normal strains are obtained in the first 

two iterations (assuming  = 0 at the cone yield surface in this particular case). 

In later iterations also the cap yield surface gets activated, but only minor plastic 

normal strains are calculated. However, cap and cone yield surface are 
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simultaneously activated with the Koiter rules already in the first iteration, and 

consequently larger plastic normal strains are calculated.  

 

Comparing the local return stress paths (Figure 12 left), surprisingly little 

difference is found. This can be related to the calculation of the new global stress 

state from the macroscopic plastic strain increment, which is obtained as the sum 

of all local plastic strain contributions. As on most planes the trial stress is 

outside the area marked as “cap & cone active” in Figure 11, calculation of local 

plastic strains for these planes is not influenced by the difference in the return 

algorithm. As global plastic strains and the global trial stress state differ only 

marginally, also the new local trial stress of plane 12 is not significantly 

influenced by whether local plastic strains are calculated according to the Koiter 

rules or not. 
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Fig. 11: Sample local stress state of integration plane #12 in undrained triaxial 
compression 
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Fig. 12: Local return stress path (left) and local plastic strains (right) of 
integration plane #12 in subsequent iterations 
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3.4 Determination of cap shape parameter 

 

The shape of the cap yield surface strongly influences the prediction of the earth 

pressure coefficient at rest in normal consolidation, K0nc. In macroscopic models 

with only one yield surface of constant shape (e.g. Cam Clay model, Schofield 

and Wroth 1965), the value of K0nc can be derived analytically (Federico et al. 

2009). If multiple yield surfaces and non-associated plastic flow are involved, 

such analytical evaluation becomes increasingly difficult.  

 

In multilaminate models the shape of the local cap yield surface is defined by the 

parameter MCP, and relating local cap shape analytically to the value of 

macroscopic K0nc is not feasible. However, if a certain value of K0nc is desired, 

the shape of the cap yield surface can be determined by calculating an 

oedometric strain increment and varying the cap shape until the desired value of 

K0nc is obtained in the simulation.  

 

Wiltafsky (2003) reported that MCP =  · tan' with a fixed value of  = 1 – 

sin(2/3') provides a reasonable reproduction of K0nc = 1- sin' in oedometric 

compression. However, stress paths tend to deviate from the K0nc-line at higher 

stress levels for some combinations of ', Amat and Eoed/Eur (Figure 13 for ' = 

30°, Amat = 0.06 and Eur/Eoed = 3.0). With the iterative determination of the cap 

shape parameter the desired value of K0nc is obtained for all combinations of 

input parameters. 
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Fig. 13: Predicted stress path in oedometric normal compression – fixed cap 
shape parameter and iterative determination of cap shape 
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3.5 Macroscopic representation of local yield surfaces 

 

One slight drawback of multilaminate soil models is the lack of a macroscopic 

yield surface, as yield criteria are formulated locally on integration planes. While 

this has little practical implications, comparison with soil models formulated in 

macroscopic stress invariants would be alleviated by a macroscopic 

representation of local yield surfaces. However, such representation is only 

possible for selected stress states and stress histories, as the initial stress state 

determines the position of local yield surfaces and hence the shape of the 

macroscopic yield surface. 

 

Local stress states can be considered as points on a Mohr’s circle representing the 

global stress state (Figure 14). In the case of isotropic overconsolidation, the 

initial position of all local volumetric yield surfaces is identical and defined by 

the normal pre-consolidation stress 'nc. Isotropic unloading and subsequent 

deviatoric loading results in macroscopic yielding, once the first local stress path 

reaches the local yield surface.  

 

By analytically finding the Mohr’s circle which first touches any of the local 

yield surfaces, the corresponding principal yielding stresses '1 and '3 can be 

derived. Assuming either triaxial compression (Lode’s angle θ  -30°) or triaxial 

extension (θ  +30°), the corresponding macroscopic stress invariants p' and q 

are found. Due to the curvature of the elliptical volumetric yield surface, the 

orientation  of the integration plane which yields first changes with the 

magnitude of the local normal stress.  
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Fig. 14: Initial local yield surfaces of isotropically overconsolidated soil and 
Mohr’s stress circle in triaxial compression 
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The orientation of the most critical plane for the Mohr-Coulomb failure line is 

constant at  = /4+'/2 with regard to the minor principal stress direction, 

which leads to the well-known inclination of the failure line in the p'-q-diagram 

of Mcom = 6sin'/(3-sin') in triaxial compression and Mext = 6sin'/(3+sin') in 

triaxial extension. The analytically derived macroscopic yield surface for 

isotropically consolidated soil (' = 30°, c' = 0, MCP = 0.346, p'c = -100 kPa) is 

shown in Figure 15, as well as undrained stress paths predicted by the basic 

multilaminate model. Both the macroscopic failure line and the macroscopic cap 

yield surface are non-symmetric with regard to the isotropic axis. The non-

smooth intersection of the cap yield surfaces in extension and compression at the 

intersection with the isotropic axis does not pose numerical problems, as plastic 

strains are calculated at integration plane level. 
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Fig. 15: Macroscopic yield surface of the basic multilaminate model for 
isotropically overconsolidated soil (cone yield surface fully mobilised) 
and predicted undrained stress paths 

 

If the initial stress state is not isotropic, the position of initial yield surfaces 

varies among the planes, as shown schematically in Figure 16. The boundaries of 

the elastic domain in terms of macroscopic stress invariants can be found by 

applying virtual triaxial stress increments and monitor whether they result in 
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local stresses violating local yield criteria. It is evident that any horizontal 

translation of the Mohr’s circle (i.e. varying p' while holding q constant) results 

in activation of either local cap or cone yield surfaces, and therefore delivers 

plastic strains on macroscopic level. Reducing q while holding p' constant also 

results in plastic strains, as in this case the minor principal stress '3 is forced to 

increase in order to keep p' constant. Again, this would activate the volumetric 

yield surfaces on vertically orientated planes.  

 

 
 

Fig. 16: Local yield surfaces for K0-consolidated initial stress state (K0 < 1) 

 

The boundary between elastic and plastic behaviour is found by the stress path in 

drained triaxial unloading (reducing '1 while holding '3 constant), which 

enables the Mohr’s circle to shrink without increase in local shear and normal 

stresses. This boundary is a straight line in the p'-q diagram and independent of 

the shape of the local volumetric yield surface.  

 

Once the isotropic axis is reached in unloading, 'v and 'h exchange positions in 

the Mohr’s circle and the critical orientation of  for a certain integration plane 

switches from clockwise to anticlockwise. The initial deviatoric yield surfaces 

get activated, once the local stress ratio /'n exceeds the initial value tan'0 = 

/'n. The stress ratio K'1 = 'h/'v which fulfils this requirement can be found 

analytically as 
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which for  = 0° approaches the limiting value of  

 

01 2 K'K  . (65) 
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The macroscopic yield surface in triaxial extension is consequently obtained as a 

straight line in the p'-q-diagram with the inclination Myield = (3·K0 - 3)/(2·K0 - 5). 

The resultant macroscopic yield surfaces for K0-consolidated soil (K0 = 0.5) are 

shown in Figure 17. 

 

 
 

Fig. 17: Macroscopic elastic domain of K0 - consolidated soil in the basic 
multilaminate model 
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4 Anisotropic small strain stiffness 
 

Soils exhibit much higher stiffness at very small strains (< 10
-5

) than in the strain 

range typically applied in laboratory tests. After a small initial range of constant 

high stiffness, which is often considered as the true elastic range of soils, shear 

stiffness decreases monotonically with accumulating strains (Figure 18). The 

stiffness of soils in the very small strain range and its degradation with 

accumulation of strain has been researched in laboratory and field investigations 

since the early 1970ies. The importance of that phenomenon for the static design 

of engineering structures and the prediction of realistic ground deformations has 

been recognized not much later (Cole & Burland 1972, Simpson et al. 1979), and 

was highlighted by Burland (1989), Atkinson & Sallfors (1991) and Simpson 

(1992). With the advent of constitutive models accounting for small strain 

stiffness in commercial finite element packages, this aspect of soil behaviour is 

more and more routinely taken into account in engineering practice. 

 

However, in most numerical simulations soil is still assumed to behave 

isotropically, even though the anisotropic nature of soil stiffness has already been 

emphasized by Atkinson (1975). Much research was devoted to investigate the 

anisotropic characteristics of soil stiffness in the small strain range in the last two 

decades (Bellotti et al. 1996, Jiang et al. 1997, Lings et al. 2000). In some cases, 

discrepancies between numerical simulation and field measurements are 

attributed to anisotropy (in both small and large strain behaviour), but only rarely 

the impact of anisotropy is thoroughly studied (Addenbrooke et al. 1997, Ng et 

al. 2004).  

 

 
 

Fig. 18: Variation of stiffness at small strains (after Atkinson & Sallfors 1991) 
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The relatively small number of numerical studies accounting for anisotropic 

small strain stiffness in boundary value problems may be partly due to the 

difficulty in obtaining the necessary input parameters, but is also related to the 

lack of appropriate constitutive models. 

 

The following chapter focusses on cross-anisotropic elasticity, which is the type 

of stiffness anisotropy most common in naturally deposited geomaterials. 

Experimental results for fine and coarse grained soils are reviewed to obtain 

realistic ranges of anisotropic parameters. Different approaches to model 

anisotropic stiffness in multilaminate constitutive models are compared, and the 

issue of stress dependency of elastic moduli is addressed. A constitutive model is 

formulated, which can account for cross-anisotropic stiffness at small strains and 

the dependency of stiffness on load history and the initial stress state. The model 

is validated in simulations of element tests, and the strengths as well as the 

limitations of the model are evaluated. 

 

4.1 Cross-anisotropic elasticity 

 

In most cases the concept of cross anisotropy or transverse isotropy is utilized to 

describe the anisotropic stiffness characteristics of natural soils (Kuwano and 

Jardine 2002, Gasparre et al. 2007, Pennington et al. 1997). Cross anisotropy 

exhibits one axis of symmetry, which for most naturally deposited soils and 

sedimentary rocks equals the vertical axis. Deformation behaviour depends on 

the loading direction with regard to the axis of symmetry, while it is independent 

of any rotation perpendicular to the axis of symmetry. Assuming a horizontal 

bedding plane (parallel to the x-z-plane), the stress-strain behaviour can be 

formulated according to Equation 66. 
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with E'v …  Effective Young’s modulus in vertical direction 

E'h …  Effective Young’s modulus in horizontal direction 

Gvh …  Shear modulus in all vertical planes 

Ghh …  Shear modulus in horizontal plane 

'hh …  Poisson’s ratio linking horizontal loading and horizontal 

strain perpendicular to loading direction 

'vh …  Poisson’s ratio linking vertical loading and horizontal strain 

'hv …  Poisson’s ratio linking horizontal loading and vertical strain 

 

Enforcing symmetry of the elastic compliance matrix requires 

 

v

vh

h
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. (67) 

 

Material behaviour within all planes parallel to the bedding plane is isotropic, 

which leads to  
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Stress strain behaviour of a cross anisotropic elastic material is therefore fully 

defined by five independent material parameters. 

 

From the thermodynamic requirement that for any type of loading a strictly 

positive strain energy must be ensured, the following bounds of the anisotropic 

material parameters can be derived (Theocaris & Philippidis 1991): 
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It should be noted, that the limits of Poisson’s ratios 'vh and 'hh of cross 

anisotropic materials are wider than for isotropic materials, which in the case of 

isotropic elasticity are restricted to -1 ≤ ' ≤ 0.5. For a ratio of axial moduli 

E'v/E'h = 4.0 and 'hh = 0.2, the Poisson’s ratio 'vh can take values in the range 

-1.79 ≤ 'vh ≤ 1.79. 
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4.2 Review of anisotropic small strain stiffness of soils 

 

Due to sedimentation processes, non-spherical particle shapes and load history, 

most soils exhibit a certain degree of anisotropy in both shear strength and 

stiffness characteristics. Consideration of anisotropy is focussed on small strain 

stiffness here, i.e. soil stiffness at very small strains (< 110
-5

), which can be 

regarded as the true elastic region of soil behaviour.  

 

Stiffness anisotropy of soils can be split into two parts:  

1. An inherent component due to loading history and soil structure, which is 

independent of the current stress state.  

2. Stress induced anisotropy, which is solely a result of anisotropic stress 

states and adds up to the inherent anisotropy of the material. 

 

The magnitude of these two components is addressed in separate sections of this 

chapter. Further distinction is made between fine and coarse grained soils. 

 

4.2.1 Inherent anisotropy 

 

In order to separate inherent from stress induced anisotropy, only experimental 

small strain stiffness data at isotropic stress states are summarized in Table 2. 

The degree of anisotropy displayed in the ratios E'h/E'v and Gvh/Ghh as well as in 

the difference between 'vh and 'hh can therefore be attributed solely to inherent 

stiffness characteristics.  

 

It should be noted that the experimental data were obtained by a variety of static 

and dynamic measurement techniques. Small vertical triaxial load amplitudes are 

the most common strategy to determine E'v and 'vh directly. In order to find E'h 

and 'hh (which cannot be measured directly in triaxial stress conditions), either 

assumptions are made with regard to 'hh (Jiang et al. 1997, Hoque & Tatsuoka 

2004), or the shear modulus Ghh is measured by shear wave velocity 

measurements and is than related to E'h and 'hh by Equation 68 (Kuwano 1999, 

Pirijakul 2007, Yimsiri & Soga 2011). Bellotti et al. (1996) obtained the full set 

of cross anisotropic parameters by seismic wave measurements in a large 

calibration chamber. AnhDan et al. (2006) used a large scale true triaxial 

apparatus for their studies, in which it is possible to vary the horizontal stresses 

independently und thus determine the horizontal modulus E'h directly. 
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Tab. 2: Stiffness anisotropy at isotropic stress states 

 

Soil name E'h/E'v Gvh/Ghh 'vh 'hh Reference 

Chiba gravel, 

medium dense 

0.72
1
 / 

1.45
2
 

-- -- -- 
AnhDan et al. 

2006 

Chiba gravel, 

very dense 

1.0
1
 / 

2.07
2
  

-- 0.12-0.30 -- 
AnhDan et al. 

2006 

Chiba gravel 0.46 -- 0.22-0.30 (= vh) 
3
 

Jiang et al. 

1997 

Colorado shale 1.99 0.53-0.66 0.0-0.3 0.00 
Gautam et al. 

2006 

Dunkerque 

sand 
0.91-1.08 0.72-0.80 0.25-0.40 0.10-0.15 Kuwano 1999 

Ham River 

sand 
0.69-0.89 0.86-0.95 0.20-0.40 0.05-0.20 Kuwano 1999 

Hime gravel 0.56-0.62 -- 0.14-0.16 (= vh) 
3
 

Hoque & 

Tatsuoka 2004 

Hostun Sand, 

dense 
1.35 0.85 0.17 0.32 

Sadek et al. 

2007 

Ticino sand 1.21-1.22 0.82-0.85 0.17-0.19 0.16-0.18 
Bellotti et al. 

1996 

Ticino sand ~0.95 -- ~0.16 (= vh) 
3
 

Hoque & 

Tatsuoka 2004 

Toyoura sand 1.10-1.30 -- 0.12-0.22 -- 
AnhDan & 

Koseki 2005 

Toyoura sand 0.88-0.94 -- 0.16-0.18 (= vh)
3
 

Hoque & 

Tatsuoka 2004 

London clay, 

undisturbed 
2.18 0.83 0.07 0.18 

Yimsiri & 

Soga 2011 

Gault clay, 

undisturbed 
2.32 0.60 0.13 0.21 

Yimsiri & 

Soga 2011 
1
 during isotropic primary loading at p' = -100 kPa 

2
 during isotropic unloading from p' = -500 kPa to p' = -100 kPa 

3
 assumption at isotropic stresses to determine E'h 

 

There is some discrepancy regarding the inherent ratio E'v/E'h reported for sandy 

and gravelly soils by various authors. While Bellotti et al. (1996), AnhDan & 

Koseki (2005) and AnhDan et al. (2006) reported E'h > E'v, Kuwano (1999), 
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Hoque & Tatsuoka (2004) and Jiang et al. (1997) found E'h < E'v. The source for 

these differences – in some cases obtained for the same soil type – is not entirely 

clear. Within the experimental setup of Hoque & Tatsuoka (triaxial tests with 

local strain transducers), 'hh and E'h could not be obtained directly. The 

evaluation of E'h was therefore based on the assumption that 'hh equals 'vh at 

isotropic stresses. Taking into account the results of Bellotti (1996), who 

obtained 'hh ≈ 'vh for Ticino sand by wave measurements, such an assumption 

appears to be valid for Ticino sand and can hardly be regarded as the source of 

these differences. AnhDan et al. 2006 attributed the discrepancies in E'v/E'h to 

different soil fabric evolving in loading and unloading and thus to 

overconsolidation, as their tests on Chiba gravel (true triaxial small load cycles) 

delivered E'h < E'v in isotropic primary loading and E'h > E'v after the sample is 

isotropically unloaded from a previously higher stress level. However, they could 

not establish a similar trend for Toyoura sand, and the large scatter within their 

experimental results on Chiba gravel also casts this explanation into doubt.  

 

Furthermore, Bellotti (1996) and Kuwano & Jardine (2002) noted that load 

history and overconsolidation had no significant impact on the degree of inherent 

anisotropy in their studies on sands. Kuwano (1999) mentioned that elastic 

moduli derived by dynamic measurements are 5-10% higher than those obtained 

in static tests at the same strain energy level, and that also the resultant ratio 

E'h/E'v is affected by the type of measurement. Whether the static or the dynamic 

tests provide a more accurate description of soil stiffness and anisotropy is hard 

to judge und requires further investigation. From a practical point of view, 

assuming E'h/E'v ≈ 0.8…1.0 for sands and E'h/E'v ≈ 0.4…0.7 for gravel seems to 

be a reasonable estimate. 

 

Due to the difficulty of measuring Poisson’s ratios within the small strain region, 

the scatter of experimental values of 'vh and 'hh is in general much larger than 

for the elastic moduli E'v, E'h and Gvh. In the few studies investigating inherent 

Poisson’s ratios 'vh and 'hh, values were ranging from 0.0 to 0.4.  

 

Significantly less experimental data have been published on the inherent 

anisotropy of fine grained soils. A recent study on undisturbed samples of 

overconsolidated Gault clay and London clay (Yimsiri and Soga 2011) showed 

significant inherent anisotropy at isotropic stress states. Jovičivić & Coop (1998) 

found that most of the inherent anisotropy of overconsolidated clays is the result 

of anisotropic plastic straining during previous loading and thus related to load 

history. They introduced the term “strain induced anisotropy” in contrast to 

inherent anisotropy due to depositional soil fabric, which is reportedly more 

pronounced in sands (Arthur & Menzies 1972). 

The influence of structure and bonding is highlighted in the experiments 

conducted by Pirijakul (2007), who tested undisturbed and reconstituted samples 

of overconsolidated Boom clay at the same stress ratio of K' = 2.0. Both 
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undisturbed and reconstituted samples were tested at the same water content and 

had been subjected to the same load history (one-dimensional compression, 

followed by unloading) before testing. The cross-anisotropic axial and shear 

moduli of the undisturbed samples were about 1.5-2.4 times higher than those 

obtained from the reconstituted samples, with the differences reducing as the 

stress level increased. However, the anisotropy ratios E'v/E'h and Gvh/Ghh as well 

as the Poisson’s ratios 'hh and 'vh were fairly similar for undisturbed and 

reconstituted samples. The development of inter-particle bonding after deposition 

obviously increased the stiffness of the natural soil as a whole, but did not change 

the degree of anisotropy induced by straining during deposition und subsequent 

unloading. 

 

4.2.2 Stress dependency of coarse grained soils 

 

Some selected experimental results for small strain stiffness of coarse and fine 

grained soils at anisotropic stress states are summarized in Table 3. Equations 72 

to 75 have been adopted by various authors to describe the stress dependency of 

cross anisotropic stiffness parameters (Roesler 1979, Bellotti et al. 1996, Kuwano 

& Jardine 2002, Hoque & Tatsuoka 2004). The function f(e) = (2.17 - e)
2
 / (1+e) 

accounts for variations of void ratio e, as proposed by Hardin & Richart (1963). 

Sv, Sh, Svh and Shh are material constants describing the inherent anisotropy of the 

material, p'r is a reference pressure, and the material constants av, bv, avh, bvh, ahh 

and bhh govern the stress dependency of the cross anisotropic stiffness moduli. 
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The axial moduli E'v and E'h depend on the corresponding axial stresses 'v and 

'h, while the shear moduli Gvh and Ghh depend on a combination of the axial 

stresses. The power indices av, bh and the sums avh + bvh and ahh + bhh typically 

vary from 0.5 to 0.6 for sands. The ratio E'h/E'v therefore approximately follows 

the stress ratio ('v/'h)
~0.5

, such that even an inherently isotropic sand will 

become anisotropic at non-isotropic stress states (Figure 19). 

 
Tab. 3: Stiffness anisotropy at anisotropic stress states 

 

Soil name K' = 

'h/'v 

E'h/E'v Gvh/Ghh 'vh 'hh Reference 

Ham River 

sand 
0.45 

0.50-

0.54 

1.15-

1.28 

0.30-

0.40 

0.08-

0.15 

Kuwano & 

Jardine 2002 

Dunkerque 

sand 
0.35 

0.57-

0.53 

0.80-

0.90 

0.2-

0.25 

0.05-

0.2 

Kuwano 

1999 

Ticino Sand 0.5 
0.79-

0.83 

1.01-

1.06 

0.14-

0.15 

0.19-

0.20 

Bellotti et 

al. 1996 

Ticino Sand 2.0 
1.83-

1.90 

0.68-

0.70 

0.14-

0.17 

0.16-

0.19 

Bellotti et 

al. 1996 

London clay  1.7 1.95 0.53 0.10 -0.02 
Gasparre 

2007 

Gault clay 2.0 3.97 0.44 0.00 -0.04 
Lings et al. 

2000 

Boom clay, 

undisturbed 
2.0 

1.74-

2.30 

0.49-

0.67 
~0 

-0.03-

0.04 

Pirijakul 

2007 

Boom clay, 

reconstituted 
2.0 

2.01-

2.51 

0.59-

0.64 
~0 

0.04-

0.06 

Pirijakul 

2007 

 

As a consequence of Equation 75, the Poisson’s ratio 'hh is also a function of the 

stress state, as Ghh = E'h / 2·(1+'hh) must be fulfilled for any cross anisotropic 

material. However, as ahh is typically close to 0 and bhh ~ bh, Ghh follows the 

same stress dependency as E'h and 'hh can be considered as a constant. In his 

experiments on Ticino sand, Bellotti et al. (1996) found some variation of 'vh 

with changing K' = 'h / 'v, but no clear relationship could be established (Figure 

20). Hoque & Tatsuoka (2004) reported a clear trend of decreasing 'vh with 

increasing K' for both Toyoura and Silver Leighton Buzzard sand and proposed 

Equation 76 to fit the experimental data. However, in both cases the variation of 

'vh with stress ratio was rather small. 
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Fig. 19: Influence of stress ratio on anisotropy ratio for Toyoura sand (TYK) 
Ticino sand (TCK), Silver Leighton Buzzard sand (SLK) and Hime 
gravel (HGK), (Hoque & Tatsuoka 2004) 
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Fig. 20: Influence of stress ratio on Poisson’s ratio 'vh 
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It should be noted that all the experimental data discussed so far were obtained at 

triaxial stress states, in which the axis of symmetry of the material coincided with 

that of the stress state. Such a situation is rarely the case in real boundary value 

problems. Extending Equations 72 and 73 to general stress states with 'xx ≠ 'yy 

≠ 'zz results in an orthotropic material with E'x ≠ E'y ≠ E'z. To define such a 

material one additional shear modulus and one additional Poisson’s ratio are 

required, which cannot be derived from the experimental data obtained in triaxial 

tests.  

 

4.2.3 Stress dependency of fine grained soils 

 

Establishing relationships to describe the stress dependency of fine grained soils 

is complicated by the concurrent evolution of stress and strain induced 

anisotropy, which is less significant for coarse grained soils. Regarding the shear 

moduli Ghh and Gvh, stress dependency is often expressed in a similar manner as 

for coarse grained soils. Nash et al. (1999) proposed Equations 77 and 78, which 

differ from the corresponding relationships for coarse grained soils only by 

assuming the same power index n for both axial stresses.  
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Tab. 4: Power indices for stress induced anisotropy of clays (data from 

Pirijakul 2007) 

 

clay nvh nhh 

Recon. Gault 0.56 0.49 

Undist. Boom (primary loading) 0.51 0.37 

Undist. Boom (unloading – reloading) 0.51 0.37 

Recon. Boom (primary loading) 0.44 0.37 

Recon. Boom (unloading – reloading) 0.33 0.34 
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Typical values of nvh and nhh for some overconsolidated clays are listed in Table 

4. These data show that the magnitude of stress dependency is similar to that of 

coarse grained soils, with power indices nvh and nhh usually smaller than or close 

to 0.5. From a practical point of view, the influence of stress ratio on the shear 

moduli is rather limited. E.g. for n = 0.5, an anisotropic stress state with 

K' = 'h/'v = 0.5 results in a factor of ~1.03 compared with the corresponding 

isotropic case at the same mean effective stress, while K' = 2.0 delivers a factor 

of 0.92. 

 

Comparable studies concerning the variation of the axial moduli E'v and E'h with 

effective stress ratio K' are still rare, and in some cases provide contradictory 

results. While the anisotropy ratio E'v/E'h seems to be virtually independent of the 

current stress ratio for London clay (Yimsiri and Soga 2011: E'h/E'v = 2.18 at K' 

= 1.0; Gasparre 2007: E'h/E'v = 1.95 at K' = 1.7), anisotropy is reportedly 

magnified by anisotropic stresses for Gault clay (Yimsiri and Soga 2011: E'h/E'v 

= 2.32 at K' = 1.0; Lings et al. 2000: E'h/E'v = 3.97 at K' = 2.0).  

 

In a rather pragmatic manner, axial moduli for clays are often related to mean 

effective stress p' according to Equations 79 and 80. If av and bh are assumed to 

be equal, the inherent anisotropy ratio E'h/E'v of the soil remains constant with 

changes of the stress ratio. 
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Figure 21 represents experimental data of London clay and Gault clay, with 

Equations 79 and 80 superimposed on the experimental results (Yimsiri & Soga 

2011). Given the very limited database, the validity of the proposed stress 

dependency of axial small strain moduli is hard to assess. It may seem justified to 

relate shear moduli Ghh and Gvh and axial moduli E'v and E'h to mean effective 

stress p' with the same power index. 
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Fig. 21: Relationship between small-strain elastic moduli and mean effective 
stress (Yimsiri & Soga 2011) 

 

4.3 Micro-macro relations for anisotropic elastic 

stiffness 

 

As multilaminate soil models are based on formulating constitutive equations on 

integration plane level, local elastic stiffness parameters are required to obtain 

the stress-strain response for a macroscopic load step. However, in case of cross-

anisotropic elastic material these parameters are not known beforehand and need 

to be correlated to macroscopic parameters. The following chapter presents two 

approaches to obtain such micro-macro-relations for cross-anisotropic elasticity. 

 

4.3.1 Microstructure tensor 

 

Anisotropic shear strength in multilaminate or conceptually similar 

micromechanical models has been described previously by introducing a so-

called microstructure tensor (Pietruszczak & Mroz 2001, Cudny & Vermeer 

2004, Galavi 2007). With this approach anisotropy is taken into account by 

evaluating the microstructure tensor for each plane orientation, which results in 

local material parameters varying with plane orientation. The type of anisotropy 

is defined by the structure of the microstructure tensor, while the magnitude of 
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anisotropy is described by a scalar valued anisotropy parameter. For cross 

anisotropy with a vertical axis of symmetry the variation of the local parameter 

u can be derived as  
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with  u   directional dependent local parameter 

0    mean value of the local parameter 

Ar = hv /   ratio of local anisotropy 

uv  vertical component of the unit vector in which u is 

calculated. 

 

 
 

Fig. 22: Spatial distribution of the cross-anisotropic parameter resulting from 
Equation 81 for different values of parameter Ar (Galavi 2007) 

 

For macroscopic cross-anisotropic stiffness it is a reasonable starting point to 

expect that also the local stiffness parameters vary in a cross-anisotropic manner, 

and that the macroscopic and local axis of symmetry coincide. Following that 

approach in the context of the N-T-split of local stresses, the local normal and 

tangential compliance parameters can be written as 
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Cn is the normal compliance, Cts and Ctt are the tangential compliances in s- and 

t-direction, nv sv and tv are the vertical components of the normal and tangential 

vectors as defined in Equations 1 and 2. As nv sv and tv are related to the plane 

orientation angle , the local compliances also depend on plane orientation. The 

tangential stiffness in general differs in s- and t-direction on one plane, as the 

microstructure tensor is evaluated for different directions. It is implicitly 

assumed, that the local compliance maintains its diagonal shape, such that local 

stresses and strains are decoupled. 
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The global compliance matrix C is obtained in the same manner as for isotropic 

elasticity by analytical integration over the surface of the unit sphere (Equation 

86). The structure of C is symmetric and cross-anisotropic with an x-z bedding 

plane (y has been taken as the vertical axis), which validates the assumption 

concerning congruence of local and global anisotropy. 
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The elements of C can be related to the cross-anisotropic elastic constants of 

Equation 66, which gives global parameters in terms of local compliances and 

anisotropy ratios: 
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Equations 87 to 91 return isotropic macroscopic parameters, if the local 

anisotropy ratios Ar,Cn and Ar,ct are set to unity. It should be noted, that these 

micro-macro relations are non-unique. While it is possible to derive global 

parameters for a chosen set of local compliances and anisotropy ratios, this is not 

possible in reverse. Evidently, four local variables cannot be uniquely determined 

such that a chosen set of five global parameters is matched without introducing 

some artificial coupling between the global parameters. 

 

The relationship between local anisotropy ratio and global cross-anisotropic 

parameters is plotted in Figure 23 and Figure 24. For simplicity Ar,Cn = Ar,Ct and 

Cn0 = 3/8·Ct0 (equivalent to ' = 0.2 at isotropy) was assumed. For Ar,Cn < 1 a 

horizontal plane is stiffer in normal compression than a vertical one, which 

results in an increase in E'v and decrease of E'h compared to the isotropic case 

(Ar,Cn = 1). Gvh follows the same trend as E'v, albeit to a lesser degree. Poisson’s 

ratio 'vh is virtually independent of the local anisotropy ratio for a given ratio of 

Cn0/Ct0. The global anisotropy ratio is limited to E'h/E'v ~0.5 at Ar,Cn = 0 and 

E'h/E'v ~3 at high values of Ar,Cn.  

 

These boundaries do not change significantly when Cn0/Ct0 and Ar,Cn/Ar,Ct are 

varied, and cover the range of experimental ratios fairly well (Table 2). However, 

the microstructural approach also predicts a strong correlation between E'h/E'v 

and Gvh/Ghh. (Figure 24, right), as it is not possible to obtain E'h/E'v < 1 and 

Gvh/Ghh < 1 with the same set of local parameters. Experimental data on Ham 

River sand and Dunkerque sand (Table 2) suggest that such a correlation does not 

exist and soils can exhibit low ratios of E'h/E'v and Gvh/Ghh at the same time. 
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Fig. 23: Relationship between global elastic moduli and local ratio of 

anisotropy as predicted with the microstructural approach (Ar,Cn = Ar,Ct, 
Cn0/Ct0 = 3/8) 
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Fig. 24: Relationship between global Poisson’s ratios (left) / global anisotropy 

ratio (right) and local ratio of anisotropy (Ar,Cn = Ar,Ct, Cn0/Ct0 = 3/8) 

 

A similar approach has been employed by Yimsiri & Soga (2000) and Hicher & 

Chang (2006) to derive cross anisotropic small strain stiffness moduli based on 

micromechanical considerations. They described a directional variation of the 

density of particle contacts by a cross-anisotropic fabric tensor. Yimsiri & Soga 

varied tangential and normal stiffness in the same manner (i.e., Ar,Cn = Ar,ct in 

Equations 82 to 84), thereby reducing the number of local variables to three. 

Despite using a slightly different definition of the microstructure tensor, their 

range of global anisotropy ratios E'h/E'v and Gvh/Ghh resembles the ranges 

presented here. 
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The following conclusions can be drawn from the studies on the microstructure 

tensor: 

1. Defining cross-anisotropic spatial distribution of local compliance 

parameters by means of a microstructure tensor yields cross-anisotropic 

elasticity on global level. The axes of symmetry of local and global 

anisotropy coincide. 

2. The resulting micro-macro-relations are non-unique. It is not possible to 

derive local elastic parameters for any given, mechanically possible set of 

macroscopic cross-anisotropic parameters. 

3. The microstructural approach imposes restrictions on the combinations of 

global elastic parameters, which are not reinforced by the experimental 

data. 

 

While it may be appropriate to model cross-anisotropic elasticity of some 

specific soils by means of a microstructure tensor, this approach is not sufficient 

as a general approach for fine and coarse grained soils. 

 

4.3.2 Spectral decomposition 

 

The analytical integration procedure followed for isotropic material in the 

previous section started at the micro-level and then proceeded up to the 

macroscopic level. Basic assumptions were made on local level regarding the 

decoupling of shear and normal strains, and local parameters were later related to 

macroscopic elastic parameters. With such a decoupled local compliance, no 

local shear strains are obtained in isotropic compression (as 'n is equal and  = 0 

on all planes), even if the local compliance parameters are allowed to vary with 

plane orientation.  

 

However, isotropic compression of a cross anisotropic material results in 

different macroscopic strains in and perpendicular to the axis of symmetry, 

which indicates the presence of shear strains within the material. In order to 

capture that effect, coupling of normal stresses and shear strains on local level 

seems inevitable, which means that the structure of the local compliance is an 

unknown as well as the local stiffness parameters. In order to avoid arbitrary 

assumptions regarding the coupling, a different approach is followed further on. 

 

The new approach is based on the spectral decomposition of the global 

compliance matrix and the subsequent projection of its components into the local 

coordinate system, which has first been employed for microplane models by 

Cusatis et al. (2008). The spectral decomposition offers the possibility to obtain 

local compliance matrices directly. Cross-anisotropic material with a vertical axis 
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of symmetry is considered further on, although the method is also applicable to 

fully anisotropic material. Only the step-by-step procedure will be demonstrated 

here. For details on the theoretical background see Theocaris et al. (1991) and 

Cusatis et al. (2008) 

 

If written in Kelvin notation, the global cross-anisotropic compliance matrix C 

possesses m = 4 eigenvalues m, which are given in Appendix A. The Kelvin 

notation used in Equations 92-94 preserves the sum of the elements of the second 

order tensors  and . 
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Using the idempotent matrices Em (Appendix A), which are defined by the 

eigenvectors of C, the global stress vector can be split up into its spectral 

components or stress modes 'm. 
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Local stress modes 'i,m on plane i are obtained by projecting each global stress 

mode separately.  

 

m
T
im,i '' σTσ   (96) 
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Local strain modes i,m are calculated by multiplying each local stress mode 'i,m 

separately with the corresponding eigenvalue m. The sum of all local strain 

modes yields the local strain vector i, and the sum of all local stress modes 

equals the local stress vector 'i. 

 

m,imm,i 'σε    (97) 


m

m,ii '' σσ ;       
m

m,ii εε  (98) 

 

Combining Equations 96-98 yields local strains i expressed in terms of global 

stresses ' and global stiffness parameters m: 

 

  '' T
ii

m

mm
T
ii σTCσETε     (99) 

 

The only unknown in Equation 99 is the local compliance matrix Ci, as Em and 

m are material constants describing the global anisotropy and Ti only depends on 

plane orientation. The global stress vector ' can be omitted as it appears on both 

sides of the equation. As the matrices Em are of the order 6 x 6, Equation 99 only 

has a unique solution for Ci if both Ti and Ci are also 6 x 6 square matrices. In 

that case Equation 99 can be transformed such that the local compliance matrix 

Ci is obtained directly. 

 

    1
  T

i

m

mm
T
ii TETC   (100) 

 

  CE 
m

mm  (101) 

 

  1
 T

i
T
ii TCTC  (102) 

 

Consequently, the local stress vector needs to be split up into six components. As 

the volumetric-deviatoric split was necessary to derive consistent micro-macro-

relation for isotropic material, it is also utilized for cross-anisotropic material. 

Furthermore, local shear stresses are split into components resulting from global 

axial stresses and global shear stresses. 
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With  'nv  volumetric normal stress 

nd  deviatoric normal stress 

s1 and t1 tangential stresses in direction of si and ti due to 

global axial stresses 

s2 and t2 tangential stresses in direction of si and ti due to 

global shear stresses 

 

For this split, the transformation matrix of plane i is modified to 
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 (104) 

 

Ci varies with plane orientation and contains non-zero off-diagonal elements, 

which introduces the necessary coupling of normal stresses and shear 

deformation. Equation 100 is also obtained if the kinematic constraint is used for 

the spectral decomposition, which indicates that the double constraint is satisfied.  

 

It should be noted that the transformation matrix Ti needs to be inverted in order 

to apply Equation 100. This is not fulfilled for the planes perpendicular to the 

axes of the global coordinate system. Consequently, either an integration rule 

without integration points directly at the x, y and z-axis must be used (e.g. the 28-
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plane integration rule of Bažant & Oh 1986), or a slight rotation of all integration 

points needs to be carried out. 

 

In the case of isotropic elastic material, C possesses only two unique eigenvalues 

as given in Equation 105, yielding a diagonal local compliance matrix Ci 

(Equation 106). The eigenvalues 1 and 2 equal Cd and Cv, as derived 

analytically in the previous chapter for the V-D split.  

 

E
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4.3.3 Local strain distributions 

 

The differences in local strain distributions obtained by applying the 

microstructural approach and the spectral decomposition method are highlighted 

by the following simple stress point test. A cross-anisotropic elastic material with 

a vertical axis of symmetry is subjected to isotropic and triaxial stress 

increments. Local compliance parameters for the microstructural approach are 

assumed as Ar,Cn = 5, Ar,Ct = 2.5, Ct0 = 0.0001 and Cn0 = 3/8·Ct0. The resulting 

global cross-anisotropic parameters are obtained from Equations 87-91 and 

summarized in Table 5. 

 
Tab. 5: Cross-anisotropic elastic material parameters 

 

E'v [kPa] E'h [kPa] Gvh [kPa] 'vh 'hh 

11 531 19 840 5 911 0.185 0.108 

 

These parameters were then used as the input for the spectral decomposition 

method. Hence, both the microstructural and the spectral decomposition 

approach represent the same macroscopic stiffness. Distribution of local strains is 

studied for stress increments of 'h = 'v = -100 kPa (isotropic compression) 

and 'h = +100 kPa, 'v = -200 kPa (triaxial compression). For these simple 
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stress conditions the local normal and shear strain distributions can be obtained 

analytically for both methods. As reference the global strain increment has also 

been projected directly into the different orientations using Equation 107 

(kinematic constraint).  

 

    Ttsn
T

ii ddd,   dεTdε  (107) 

 

Plotting all three in the same polar diagram over orientation angle  (with  = 0 

denoting a horizontal plane) reveals significant differences for both isotropic and 

anisotropic loading (Figure 25, Figure 26). In isotropic loading, the 

microstructural approach predicts a more extreme normal strain distribution than 

the spectral decomposition, but no local shear strains at all. This is due to the 

decoupling of local normal stresses and local shear strains, with the latter 

originating only from local shear stresses (which are zero in isotropic loading). 

On the other hand, the spectral decomposition method predicts maximum shear 

strains at  = ±45° to the vertical axis, which coincides with the reference 

solution and demonstrates that the double constraint is fulfilled. In triaxial 

loading, the spectral decomposition predicts the more extreme distribution of 

local normal strains and less shear strain than the microstructural approach. 

 

As the macroscopic response is the primary objective of the model, getting the 

correct local strain distribution may seem of secondary importance. However, it 

should be noted that in small strain stiffness models the local stiffness parameters 

vary with strains. Incorrect local strain distributions would therefore result in 

different macroscopic stiffness degradation behaviour, and would also change the 

strain induced anisotropy, which is a key feature of the multilaminate framework. 

The spectral decomposition delivers not only the analytical solution for the 

distribution of local strain, but is also applicable to a wider range of cross-

anisotropic parameter sets. The cross-anisotropic constitutive model presented in 

the following chapter is therefore based on the spectral decomposition of the 

global compliance matrix. 
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Fig. 25: Distribution of local strains in isotropic compression 
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Fig. 26: Distribution of local strains in triaxial compression 
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4.4 Cross-anisotropic small strain stiffness model 

4.4.1 Stress dependency of stiffness 

 

Three different approaches for modelling the dependency of elastic small strain 

stiffness on the stress state are available in the model, as given in Equations 108 

to 110.  

 

In approach 1 the cross anisotropic axial and shear moduli depend on the mean 

effective stress p' (equal to the volumetric normal stress 'nv on the plane). As 

elastic moduli in approach 1 depend on the macroscopic stress p' for all planes, 

macroscopic and local ratios of anisotropy remain constant for all isotropic and 

non-isotropic stress states. This approach is applicable to overconsolidated fine 

grained soils, as these soils reportedly exhibit less dependency of anisotropy on 

the current axial stress ratio than coarse grained soils (see chapter 4.2.3 for 

experimental results). 

 

In approach 2 elastic moduli are related to the local normal stress 'n = 'nv + nd. 

If approach 2 is applied to non-isotropic stress states, macroscopic anisotropy 

varies with the ratio of 'h/'v, and slightly higher stiffness in the direction of the 

higher axial stress is obtained.  

 

In approach 3 the input elastic parameters are modified according to the initial 

stress state 0, with the axial moduli E'v0, E'h0 being adjusted for the 

corresponding axial stresses and Gvh0 for the product of the axial stresses. The 

input values E'h0,ref E'v0,ref and Gvh0,ref therefore relate to isotropic stress states. 

After the initial stress state, elastic stiffness parameters depend on mean effective 

stress p' as in approach 1. Approach 3 can be used to model the initial stiffness of 

coarse grained soils, which typically show notable dependency of elastic moduli 

on stress ratio, as described in chapter 4.2.2. 

 

In all three approaches the Poisson’s ratios are independent of stress level and 

stress ratio. The same power index m applies to the elastic moduli in the small 

and large strain range. 

 

Approach 1: 
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Approach 2: 
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Approach 3:  
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Figure 27 and Figure 28 show predictions by approach 1-3 and experimental data 

of Ham River sand reported by Kuwano & Jardine (2002) for a cross anisotropic 

stress state (K' = 0.45). The reference elastic moduli reported by Kuwano & 

Jardine for K' = 1.0 are listed in Table 6. As the model does not account for 

changes in void ratio, the influence of void ratio e has been incorporated into the 

reference values with f(e) = 1.37 for e = 0.66.  

 
Tab. 6: Reference cross-anisotropic material parameters of Ham River sand at 

isotropic stresses (Kuwano & Jardine 2002) 

 

 E'v0,ref [kPa] E'h0,ref [kPa] Gvh0,ref [kPa] m 

Ham River sand 204 000 174 000 72 000 0.52 

 

Gvh matches the experimental data reasonably well for approaches 1 and 2, but 

distinct differences can be observed for the axial moduli E'h and E'v. The strong 

influence of stress induced anisotropy observed in the experiments cannot be 

reproduced by neither the dependency on p' nor on 'n, and the difference 

between approach 1 (p') and approach 2 ('n) is remarkably small. The 

magnitude of anisotropy induced numerically by anisotropic stresses is rather 

small, as macroscopic anisotropy is the averaged sum of all local contributions. 

This observation is in agreement with the findings of Hicher & Chang (2006), 

who related contact stiffness to contact normal stress in their micromechanical 

model in a similar manner as in approach 2. While they were able to simulate 

cross-anisotropic elastic behaviour well at isotropic stresses, the degree of 

anisotropy was also underestimated at anisotropic stress states. 
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Fig. 27: Predicted and measured stress dependency of stiffness, approach 1  

and 2 

 

Approach 3 delivers an almost perfect match with the experimental data for both 

the axial and the shear moduli. However, it should be noted that approach 3 only 

accounts for stress induced anisotropy at the initial stress state, and further stress 

dependency is governed by mean stress p'. If large deviations from the initial 

ratio of 'h/'v occur, also the elastic moduli obtained by approach 3 may deviate 

from the experimental results. 
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Fig. 28: Predicted and measured stress dependency of stiffness, approach 3 
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4.4.2 Stiffness degradation 

 

The degradation of local small strain stiffness depends on the magnitude of the 

local deviatoric strain deg (Equation 111) and is described by a tri-linear function 

with regard to log(deg), Figure 29. Initially all planes start with the same cross 

anisotropic stiffness, which is projected separately into the plane coordinate 

system.  

 

With accumulation of local deviatoric strains, the initial anisotropy diminishes 

and the material approaches isotropic elasticity at the large strain range, which is 

backed by (albeit limited) experimental data (Gasparre et al. 2007, Lings et al. 

2000). The parameters deg,1 and deg,2 are input parameters and define the local 

deviatoric strain at the onset of degradation and the transition to large strain 

behaviour.  
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Fig. 29: Degradation of anisotropic small strain stiffness and transition to large 

strain behaviour 

 

Figure 30 shows the macroscopic stiffness degradation curve (Figure 30a) in 

triaxial compression in comparison to the degradation of local shear stiffness 

(Figure 30b). As the deviatoric strains vary from plane to plane, degradation of 

initial stiffness starts at different stages of macroscopic loading on different 

planes, which results in a relatively smooth transition from small strain to large 

strain behaviour on macroscopic level. 
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Fig. 30: Macroscopic (a) and local (b) degradation of small strain stiffness in 

triaxial compression 

 

4.4.3 Dependency on load history 

 

It has been demonstrated experimentally that soil stiffness does not only depend 

on the magnitude of accumulated deviatoric strain but also on the stress path and 

hence on load history (Richardson 1988). Different approaches have been 

followed in constitutive modelling in order to capture this effect. Whereas 

kinematic hardening models monitor load history in stress space (Al-Tabaa & 

Wood 1989, Puzrin & Burland 1998), defining load history in strain space has 

been preferred in small strain stiffness models (Simpson 1992, Benz et al. 2009). 

While each approach has its merits, monitoring load history in terms of strains is 

more consistent with stiffness degradation, which is also driven by strains rather 

than stresses. 

 

In this study strain history is memorized on each plane separately in spherical 

contours which represent levels of equal degradation strain deg. Each sphere is 

defined by its centre coordinates and its radius in the local deviatoric strain space 

{nd, s , t}. The degradation strain deg is defined as the distance of the current 

deviatoric strain state {nd, s, t} to the centre of the currently active strain sphere 

{nd,centre, s,centre, t,centre}: 

 

     222
centre,ttcentre,sscentre,ndnddeg    (111) 

 

The different cases considered in the model are shown schematically in Figure 

31. As a full three-dimensional illustration of strain development is hardly 



62 4 Anisotropic small strain stiffness 

 

feasible, the local strain spheres are depicted as circular, two-dimensional 

contours (nd = 0).  

 

Initially, only one strain sphere (SC1) exists, which is subsequently enlarged in 

monotonic loading (case 1). If the current load step reduces deg, this indicates 

that the strain path turns inside the active sphere (case 2). Consequently, a 

reversal of the load path is detected and a new sphere (SC2) is created, which is 

employed as the active sphere further on. The new sphere is fixed to the previous 

one at the reversal point, and the centre and the size of the new sphere is updated 

in further loading. Reduction of deg, now calculated from SC2, again results in 

the creation of a new strain sphere, SC3, and SC2 becomes inactive (case 3). If a 

later load step again enlarges one of the outer spheres SC1 or SC2, an 

intersection with a previous strain path is detected (case 4). In that case the inner 

spheres are erased from the strain history of the stress point, and the outer sphere 

gets reactivated. Consequently, the model resembles the Simpson brick model 

(Simpson 1992), with the number of bricks equating the number of integration 

planes. 

 

With that approach the two original and the two extended Masing rules as 

reported by Pyke (1979) can be fulfilled for the elastic part of the model: 

1. For primary loading the stress-strain curve follows the back-bone curve. 

2. After load reversal the size of the hysteretic loop is increased by a factor 

of 2. 

3. If the past maximum shear strain is exceeded the stress-strain curve 

follows the backbone curve. 

4. If the unloading-reloading curve intersects a previous unloading-reloading 

curve, it follows the previous curve. 

 

The third Masing rule is treated as a special case of the fourth rule, as the primary 

strain sphere differs from the others only by its fixed centre at the origin of axis. 

The second rule is fulfilled without modifying degradation parameters in 

unloading / reloading, as the shear strain controlling stiffness degradation refers 

to the centre of the strain contour rather than the reversal point. 

 

In principle, an infinite number of spheres could be taken into account. As the 

information on local strain history has to be stored as state variables, a limited 

number of four strain spheres is implemented in the model. It should be noted 

that still an infinite number of load cycles can be modelled, as only the number 

of load reversals going inside the outer strain contour is limited. 
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Fig. 31: Schematic representation of global stress-strain curves and 

development of local shear strain contours in triaxial loading - 
unloading – reloading 
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4.4.4 Modification of strain hardening 

 

The stiffness degradation curve shown in Figure 29 only applies to the elastic 

part of the model. As the strain increment in elastoplastic constitutive models 

comprises elastic and plastic portions, the resultant shear modulus is significantly 

lower than the elastic one if plastic strains are allowed in the small strain range, 

and the desired effect of high initial gets lost. To avoid this effect, the cap and 

cone yield surfaces are expanded according to the current position on the 

stiffness degradation curve, before the calculation of plastic strain is initiated. 

The yield surfaces are set to the full value of the elastic trial stress in the very 

small strain range (deg < deg,1) and hence no plastic strains are calculated. In the 

transition range deg,1 < deg < deg,2, the position of fcone and fcap is adjusted for the 

degradation parameter xstiff, such that yield surfaces are shifted to the full elastic 

trial stress at deg = deg,1, and no modification is carried out at deg = deg,2. 

 

   
   12

2

loglog
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deg,deg,
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
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 mtrial,mstiffmmod,m ''x''  tan-tantantan   (113) 

 

 nctrial,ncstiffncmod,nc ''x''  -  (114) 

 

'm,trial and 'nc,trial are the values of 'm and 'nc at the elastic trial stress, 'trial. 

The modified values 'm,mod and 'nc,mod define the position of the shifted yield 

surfaces, which are used in the subsequent calculation of plastic strains. 

 

 
 
Fig. 32: Modification of yield surfaces in small strain range 
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4.5 Simulation of element tests 

 

It has been shown previously by Wiltafsky (2003), Scharinger (2007) and Galavi 

(2007), that the basic version of the multilaminate model is capable of 

reproducing experimental results in oedometric and triaxial conditions for 

various coarse and fine grained soils with good accuracy. Simulation of element 

tests in this chapter is therefore focussed on cross-anisotropic stiffness 

characteristics and the predicted behaviour at load reversals. Some selected 

drained triaxial test simulations on Hostun sand using the basic isotropic model 

are presented to validate the parameters used in subsequent chapters for the 

simulation of boundary value problems. 

 

4.5.1 Triaxial compression of Hostun sand 

 

Hostun sand is a quartzitic, angular to sub-angular sand from south eastern 

France, which has been extensively studied in laboratory testing (Schanz & 

Vermeer 1996, Desrues et al. 2000). Drained triaxial test simulations are 

performed with the basic multilaminate model with isotropic small strain 

stiffness at -100 kPa, -300 kPa and -600 kPa of confining pressure and compared 

with the experimental data for dense Hostun sand reported by Benz (2007).  

 

Additional simulations using the Hardening Soil Small (HSS) model were carried 

out in order to compare shear strength mobilisation and small strain stiffness 

degradation in both models. Material parameters are listed in Table 7 for the 

multilaminate model and in Table 8 for the HSS model. Even though formulated 

within different frameworks, both models employ the stiffness parameters Eoed,ref 

and Eur,ref as well as the shear strength parameters ' and c', which facilitates 

comparison of these models. The main difference between both models is the 

shear hardening parameter Amat of the multilaminate model, which needs to be 

calibrated against the experimental stress-strain behaviour. 

 

Stress-strain curves predicted by both models match the experimental data 

reasonable well for lower stress levels (Figure 33, Figure 34). The experimental 

data at -300 kPa and -600 kPa show some offset at the beginning of deviatoric 

loading, which is possibly due to apparatus slip and not a result of material 

behaviour. At -600 kPa confining pressure both models predict too high shear 

strength and too stiff material behaviour. While the stiffness at higher stress 

levels could be reduced by lower values of m, reducing shear strength with 

increasing confining pressure would require a curved strength envelope, which is 

not compatible with the Mohr-Coulomb failure line of the basic model. The 

volumetric behaviour reflects the differences in the stress-strain curves. The 

contractant behaviour up to 1 = -2% and dilatancy at larger strains is in principal 
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reproduced by both models. But due to faster mobilisation of shear strength in 

the multilaminate model at higher confining stresses, dilatancy is overestimated 

at 'h = -300 kPa and 'h = -600 kPa. 

 

 
 
Fig. 33: Stress-strain behaviour of dense Hostun Sand in drained triaxial 

compression at confining pressures of -100, -300 and -600 kPa and 
simulation with the multilaminate model 

 

 
 
Fig. 34: Stress-strain behaviour of dense Hostun Sand in drained triaxial 

compression at confining pressures of -100, -300 and -600 kPa and 
simulation with the Hardening Soil Small model 
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Figure 35 shows the degradation of small strain stiffness moduli, back calculated 

from the stress-strain response in triaxial test simulations. Tangent moduli are 

derived from the incremental changes of shear strain, , and shear stress, . 

Secant moduli are calculated from the total shear strain  and shear stress . Shear 

moduli in Figure 35 have been normalized for the change in stress level.  

 

Degradation curves differ notably due to the different formulation of stiffness 

degradation. In the multilaminate model an initial range of constant stiffness is 

assumed on local level, which results in a distinct kink of the macroscopic 

degradation curve once degradation starts locally on the first integration plane. 

As degradation progresses at integration plane level, plastic strains are gradually 

allowed for, accelerating local and macroscopic stiffness degradation. This 

reflects in the concave curvature of tangent stiffness degradation. The HSS 

model employs a smooth, convex degradation curve without initial plateau. 

Remarkably, the HSS model starts about 10% below the input value of G0,ref at 

very small strains. 

 
Tab. 7: Large and small strain parameters of the multilaminate soil model for 

dense Hostun sand 

 

parameter  value unit 

Unit weight above groundwater table unsat 18.0 kN/m
3
 

Unit weight below groundwater table sat 20.0 kN/m
3
 

Oedometric stiffness Eoed,ref 30 000 kPa 

Isotropic large strain Young’s modulus Eur,ref 90 000 kPa 

Isotropic large strain Poisson’s ratio 'ur 0.2 -- 

Reference pressure pref 100 kPa 

Power index for stress dependency of stiffness m 0.55 -- 

Shear hardening parameter Amat 0.020 -- 

Effective friction angle 'max 41 ° 

Effective cohesion c' 0 kPa 

Dilatancy angle  14 ° 

Isotropic shear stiffness at very small strains G0,ref 112 500 kPa 

threshold strain level for stiffness degradation deg,1 2e-5 -- 

transition to large strains deg,2 6e-4 -- 
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Tab. 8: Large and small strain parameters of the Hardening Soil Small model 
for dense Hostun sand 

 

parameter  value unit 

Oedometric stiffness Eoed,ref 30 000 kPa 

Oedometric stiffness E50,ref 30 000 kPa 

Isotropic large strain Young’s modulus Eur,ref 90 000 kPa 

Isotropic large strain Poisson’s ratio 'ur 0.2 -- 

Reference pressure pref 100 kPa 

Power index for stress dependency of stiffness m 0.55 -- 

Failure ratio Rf 0.9 -- 

Effective friction angle 'max 41 ° 

Effective cohesion c' 0 kPa 

Dilatancy angle  14 ° 

Isotropic shear stiffness at very small strains G0,ref 112 500 kPa 

Reference shear strain 0.7 2e-4 -- 
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Fig. 35: Degradation of small strain stiffness in multilaminate model and 

Hardening Soil Small model 
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4.5.2 Calibration of small strain stiffness parameters 

 

The cross-anisotropic initial stiffness is defined by the axial stiffness moduli E'h0 

and E'v0, the independent shear modulus Gvh0, and the Poisson’s ratios 'hh0 and 

'vh0. The full set of parameters can be obtained experimentally by a combination 

of static and dynamic measurements from bender element aided triaxial tests (e.g. 

Kuwano 1999, Lings et al. 2000, Gasparre 2005), or with the hollow cylinder 

apparatus (Nishimura 2005). In true triaxial tests, axial moduli and Poissons’s 

ratios can be assessed by independent variation of the axial stresses, but direct 

determination of shear moduli requires additional dynamic measurements 

(Callisto & Rampello 2002, AnhDan & Koseki 2005).  

 

Degradation of small strain stiffness is governed by the parameters deg,1 and 

deg,2, which define the onset of degradation and the transition to large strains on 

integration plane level. These parameters can be obtained by calibration against 

experimental degradation curves of the macroscopic shear modulus. Figure 36 

shows the influence of deg,1 and deg,2 on the macroscopic stiffness degradation 

curve in triaxial compression and compares the resultant degradation curves with 

test data for sands (Seed & Idriss 1970). Simulations have been performed with 

large strain parameters of dense Hostun sand (Table 7), and isotropic small strain 

stiffness was assumed. 

 

 
 
Fig. 36: Normalized experimental stiffness degradation curves for different 

sands according to Seed & Idriss (1970) (as reported by Benz 2007) 
and model predictions for different values of deg,1 and deg,2 

 

As expected, increasing deg,1 or deg,2 shifts the degradation curve to the large 

strain range. Predicted degradation curves cover the range of the test data 

reasonably well. Model predictions show, however, a concave curvature not seen 

in the experiments, which can be accounted for the allowance of plastic strains in 

the model once local strains exceed deg,1. While the different curvature is of 
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limited relevance in static geotechnical problems, the model may not predict 

realistic damping for sands in dynamic simulations. 

 

Slightly differently shaped degradation curves than for sands are reported for stiff 

clays. Out of an extensive experimental study on the stiffness characteristics of 

heavily overconsolidated London clay (Gasparre et al. 2007), an exemplary 

degradation curve for a sample from 6.5 m depth (test 12.5gUC, geological unit 

B2(c)) is shown in Figure 37. The undisturbed sample has been tested in 

undrained triaxial compression, starting from an anisotropic stress state of 'v = 

-202 kPa and 'h = -288 kPa. After passing a distinct yielding point at about 

0.0006% of shear strain, stiffness degradation is almost linear in log-scale. Like 

most natural stiff clays, London clay exhibits cross-anisotropic behaviour in the 

small strain range. In particular anisotropic Poissons’s ratios are difficult to 

determine, which reflects in a wide range of experimental results.  

 

Back-analysis of the test data has been conducted with three different sets of 

anisotropic small strain parameters, which are listed in Table 9. Set 1 was derived 

from the values given by Gasparre et al. (2007) as averaged parameters for sub-

unit B2(c), set 2 has been taken from the original data of test 12.5gUC (Gasparre 

2005), and set 3 equals set 2 except for a change in Poisson’s ratios. Elastic 

moduli are related to mean stress p' (approach 1). Large strain parameters are 

listed in Table 10. Eur,ref and Eoed,ref  were derived from isotropic compression 

data given by Gasparre (2005) for natural London clay. Apart from the power 

index m, these parameters have minor influence on the stiffness degradation 

curve at small strains. 

 

Experimental and simulated stiffness degradation is compared in terms of secant 

equivalent shear modulus Geq, which in undrained conditions is governed by four 

of the five cross-anisotropic elastic constants (Equation 115, as reported by Lings 

et al. 2000). 
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The shape of the predicted stiffness degradation curves matches well with the test 

data. Not surprisingly, the best match is obtained with set 2, i.e. with the 

parameters obtained directly from the sample. With the averaged values of set 1, 

about 20% less initial shear stiffness is predicted, which however still fits within 

the range of experimental results obtained from other samples of unit B2(c). Set 

3 plots close to set 1, even though the elastic moduli of set 2 have been 

employed, and only anisotropic Poisson’s ratios have been changed to 

'hh0 = 'vh0 = 0.2. Obviously, the initial stiffness in undrained conditions is 

relatively sensitive to the choice of anisotropic Poisson’s ratios. This is however 
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not a deficiency of the multilaminate model, but a result of cross-anisotropic 

elastic material behaviour. 
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Fig. 37: Experimental and simulated stiffness degradation curves for London 

clay 

 
Tab. 9: Small strain parameters for London clay (reference stiffness 

parameters at p' = -100 kPa) 

 

parameter  set 1 set 2 set 2 unit 

initial vertical stiffness E'v0,ref 46 900 55 800 55 800 kPa 

initial horizontal stiffness E'h0,ref 91 500 89 200 89 200 kPa 

initial cross-anisotropic shear 

modulus 
Gvh0,ref 65 000 60 000 60 000 kPa 

initial anisotropic Poisson’s 

ratio 
'vh0 0.10 0.03 0.20 kPa 

initial anisotropic Poisson’s 

ratio
'hh0 -0.02 0.01 0.20 -- 

threshold strain level for 

stiffness degradation 
deg,1 2 x 10

-6
 2 x 10

-6
 2 x 10

-6
 -- 

transition to large strains deg,2 1 x 10
-3

 1 x 10
-3

 1 x 10
-3

 -- 
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Tab. 10: Large strain parameters for London clay 

 

parameter  value unit 

isotropic large strain Young’s modulus Eur,ref 13 000 kPa 

oedometric stiffness Eoed,ref 1020 kPa 

reference pressure pref 100 kPa 

isotropic large strain Poisson’s ratio 'ur 0.20 -- 

power index for stress dependency m 1.0 -- 

shear hardening parameter Amat 0.02 -- 

effective friction angle (peak) 'max 32.0 ° 

effective cohesion c' 0 kPa 

dilatancy angle  8.0 ° 

 

4.5.3 Validation of stress dependency 

 

Bellotti et al. (1996) measured the elastic moduli and Poisson’s ratios of 

inherently cross anisotropic Ticino Sand by seismic wave measurements in 

laboratory tests. The tests were performed in triaxial stress conditions at varying 

anisotropic and isotropic stress levels.  

 

Input values E'h0,ref, E'v0,ref and Gvh0,ref as summarised in Table 11 were taken 

directly from the test data at isotropic stresses, p' = -100 kPa. A power index of m 

= 0.5 was employed for the stress dependency of small strain stiffness. This value 

was calibrated to fit the test data at K' = 1.0 for different levels of mean stress p'.  

 

While only modest anisotropy was found at isotropic stresses, significant 

anisotropy was induced by anisotropic stress states. Figure 38 shows the 

experimental results for the various stress states and the elastic moduli predicted 

by the model with approach 3 (Equation 110). The model slightly underestimates 

E'v at K' = 0.5, but delivers good agreement with the experimental data for the 

other elastic moduli and for stress states K' > 1.  
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Fig. 38: Cross anisotropic elastic moduli of Ticino Sand at different 

anisotropic stress states (experimental data from Bellotti et al. 1996) 

 
Tab. 11: Elastic stiffness parameters for Ticino Sand at p' = -100 kPa 

 

parameter  value unit 

initial vertical elastic stiffness E'v0,ref 204 800 kPa 

initial horizontal elastic stiffness E'h0,ref 248 800 kPa 

initial cross-anisotropic elastic shear modulus Gvh0,ref 88 900 kPa 

initial anisotropic Poisson’s ratio 'vh0 0.185 -- 

initial anisotropic Poisson’s ratio 'hh0 0.17 -- 
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4.5.4 Small amplitude load cycles 

 

Kuwano & Jardine (2002) performed triaxial tests on inherently cross anisotropic 

Ham River Sand involving small stress probes at different stress states. The 

sample was anisotropically consolidated to p' = -200 kPa (compression negative), 

following a near K0 stress path up to 'h = -142 kPa and 'v = -316 kPa (K0 = 

0.45). The specimen was then subjected to drained vertical unloading and 

reloading by 10 kPa, followed by vertical loading past the previous maximum 

stress by -10 kPa and unloading to the initial stress state of 'h = -142 kPa and 

'v = -316 kPa. The horizontal stress was held constant in this load cycle. 

Subsequently, an inverse pattern of horizontal unloading and loading was applied 

('h = +6.5 kPa/-6.0 kPa), while the vertical stress remained constant. It is 

reported that the sample was allowed to age at the K0 stress state before the small 

stress cycles were conducted.  
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Fig. 39: Stress path and small stress excursions in triaxial test on Ham River 

Sand (after Kuwano & Jardine 2002) 

 

The cross-anisotropic small strain parameters for the back-analysis of the tests 

are taken from the data published by Kuwano & Jardine (2002) and are 

summarized in Table 12. In the simulation, stress-dependency of stiffness moduli 

is related to the corresponding initial axial stresses (approach 3). As the small 

stress cycles take place almost entirely within the linear elastic range, shear 

strength and parameters governing plastic deformations are of minor relevance 

for the calculation results.  

 

The experimental and calculated response for the vertical loading / unloading is 

shown in Figure 40. The experimental stress-strain curve shows a much shorter 

linear elastic range and more significant hysteresis in vertical loading than in 

unloading, as vertical loading involves plastic straining. Such behaviour is in 

principle well captured, even though the model cannot account for the creep 
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effects which considerably enlarged the hysteresis loop in the experiments. The 

initial inclination of the stress-strain curves matches very well, indicating that the 

initial cross-anisotropic stiffness of the material is well captured.  

 

In the horizontal unloading / reloading test very little hysteresis was noticed in 

neither the horizontal unloading (deviatoric loading) nor the horizontal loading 

(deviatoric unloading) cycle (Figure 41). The model predicts some slight 

hysteresis, caused by plastic strains in horizontal unloading, but overall predicted 

and experimental stress-strain curves match very well. 

 

It should be noted, that the experimental results showed evidence of kinematic 

hardening in later stages of the experiment. Such effects cannot be reproduced by 

the current multilaminate model. 

 
Tab. 12: Elastic input parameters for Ham River Sand 

 

parameter  value unit 

initial vertical elastic stiffness E'v0,ref 279 500 kPa 

initial horizontal elastic stiffness E'h0,ref 238 400 kPa 

initial cross-anisotropic elastic shear modulus Gvh0,ref 98 640 kPa 

initial anisotropic Poisson’s ratio 'vh0 0.35 -- 

initial anisotropic Poisson’s ratio within 

horizontal plane
'hh0 0.07 -- 

threshold strain level for stiffness degradation deg,1 8e-6 -- 

transition to large strains deg,2 2e-4 -- 

reference pressure pref 100 kPa 

power index for stress dependency m 0.50 -- 
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Fig. 40: Stress-strain curves in small vertical loading cycle ('h = 0) on Ham 

River Sand (after Kuwano & Jardine 2002) and simulation with the 
multilaminate model  
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Fig. 41: Stress-strain curves in small horizontal loading cycle ('v = 0) on 

Ham River Sand (after Kuwano & Jardine 2002) and simulation with 
the multilaminate model 
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4.5.5 Large stress reversals 

 

Jiang et al. (1997) conducted triaxial tests on crushed sandstone gravel (Chiba 

Gravel) involving large stress path reversals. The elastic small strain properties 

of the material are reported as cross anisotropic with E'v/E'h ~ 2 at isotropic 

stresses with a power index of m = 0.5 for the stress dependency. Starting at 

different levels of isotropic stress, large triaxial loading / unloading / reloading 

loops were performed, with smaller sub-loops at intermediate load levels. Part of 

such a cycle (comprising primary loading, unloading and reloading) is shown in 

Figure 42. 

 

The experimental results validate the 4th Masing rule as all the sub-loops 

converge with the stress-strain curve previously followed as soon as the previous 

load level is reached. It is reported that the stiffness within these sub-loops 

decreased as the stress state approached failure. 

 

The model parameters used in the simulation are summarized in Table 13. Elastic 

small strain stiffness parameters have been taken from the data published by 

Jiang et al. (1997). Model specific parameters (Amat, deg,1, deg,2) have been 

calibrated against the first part of the experimental stress strain curve (O-A). 

Stress dependency of small strain stiffness is modelled with approach 3 

(dependency on initial axial stresses), which is however of limited relevance for 

the simulation of large stress reversals. 

 

Figure 42 shows the stress-strain curves predicted by the multilaminate model in 

comparison to the experimental results. Experiment and model prediction match 

very well in the primary loading path O-A, as this part of the curve has been used 

to calibrate the deviatoric hardening parameter, Amat, and the degradation 

parameters deg,1 and deg,2. Along the unloading path A-B the model initially 

predicts a slightly stiffer response, indicating the occurrence of plastic strains in 

the experiment also in the perceived elastic region below the yield surface. As 

extension failure is approached, model prediction and experiment again match 

very well.  

 

However, stress strain curves diverge significantly for the reloading path B-C, as 

the constitutive model does not account for plastic strains in reloading. Since the 

4th Masing rule is enforced for the elastic part of the model, the higher initial 

stiffness gets reactivated within the small sub-loops along the reloading path, and 

the corresponding stress-strain loops converge with the large strain reloading 

curve. Model predictions in reloading could be improved by taking account of 

kinematic hardening, yet this is beyond the scope of the present study. 
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Tab. 13: Input parameters for Chiba Gravel 

 

parameter  value unit 

initial vertical elastic stiffness E'v0,ref 383 000 kPa 

initial horizontal elastic stiffness E'h0,ref 191 000 kPa 

initial cross-anisotropic elastic shear modulus Gvh0,ref 100 000 kPa 

initial anisotropic Poisson’s ratio 'vh0 0.24 -- 

initial anisotropic Poisson’s ratio  'hh0 0.24 -- 

threshold strain level for stiffness degradation deg,1 5 x 10
-6

 -- 

transition to large strains deg,2 8 x 10
-4

 -- 

reference pressure pref 100 kPa 

power index for stress dependency m 0.50 -- 

isotropic large strain Young’s modulus Eur,ref 90 000 kPa 

isotropic large strain Poisson’s ratio 'ur 0.2 -- 

Oedometric stiffness Eoed,ref 30 000 kPa 

shear hardening parameter Amat 0.041 -- 

effective friction angle 'max 43 ° 

effective cohesion c' 0 kPa 

dilatancy angle  10 ° 
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Fig. 42: Stress-strain behaviour of Chiba Gravel (after Jiang et al. 1997) 
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4.5.6 Stiffness recovery at load reversals 

 

The dependency of stiffness on change of the macroscopic loading direction is an 

outcome of the model rather than an input. This can be considered as a major 

advantage compared to models where a function has to be defined relating the 

change of the strain or stress path to the magnitude of recovered small strain 

stiffness. At local level the full initial stiffness is recovered, as soon as the local 

strain path turns inside the active strain contour, but apart from full load reversal 

this does not occur at all planes simultaneously. Consequently, the macroscopic 

elastic stiffness takes intermediate values between small strain and large strain 

stiffness, as it is obtained by the sum of the weighted contributions from all 

planes. 

 

The model response is demonstrated in biaxial test simulations with varying 

strain path direction (Figure 43). The material is taken as isotropic elastic with G0 

= 100 Mpa, Gur = 20 MPa and 0 = 'ur = 0.2. Starting from an initial stress state 

of 'xx = 'yy = -100 kPa and 'zz = -40 kPa, xx and yy are increased 

simultaneously. The resulting deviatoric strain causes gradual degradation of 

initial small strain stiffness, until at about xx = yy = 0.15% the large strain range 

is reached. At varying intermediate strain levels the response of the material to 

changes in loading direction is tested by applying small strain increments of 

prescribed orientation  with regard to the monotonic loading path (Figure 43).  

 

As deviatoric strains evolve at different pace on different planes, the initially 

isotropic material becomes anisotropic during biaxial loading. In order to 

quantify the increase of shear stiffness with deviation from the monotonic strain 

path, the equivalent tangent shear modulus Gtan has been derived from the 

increments of the second deviatoric stress and strain invariants J and Ed. 

 

dtan E/JG   (116) 
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The ratio of Gtan/Gur over orientation is plotted for varying strain levels in Figure 

44. Continuing on the monotonic strain path does not result in any recovery of 

stiffness, consequently Gtan/Gur = 1 for large strain levels. Strain path deviation of 
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90° delivers an increase of stiffness to Gtan/Gur ~ 2.2, and for deviation beyond 

 = 135° virtually the full initial stiffness is recovered. 

 

Also shown in Figure 44 is the variation of interpolated stiffness M = Gtan/Gur of 

a hypoplastic constitutive model incorporating intergranular strain (Niemunis & 

Herle 1997, as reported by Benz et al. 2009). The shape of the envelope is 

defined by the parameters mt (M at  = 90°) and mr (M at  = 180°), which have 

been taken as mt = 2 and mr = 5. For angular change up to 90° the multilaminate 

and the hypoplastic model differ only marginally, as mt = 2 enforces Gtan/Gur = 2 

at  = 90°. Beyond  = 90° the hypoplastic model predicts a slower convergence 

towards the full initial stiffness, and only close to  = 180° the full initial 

stiffness is recovered with the hypoplastic model. 

 

 
 
Fig. 43: Macroscopic stiffness degradation as obtained by the multilaminate 

model and strain paths applied in the biaxial test simulation 

 

 
 
Fig. 44: Gtan/Gur over angular change of the macroscopic strain path: 

Multilaminate model (left) and hypoplastic model with intergranular 
strain (Niemunis & Herle 1997, as reported by Benz et al. 2009) 
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5 Influence of small strain stiffness 
anisotropy in geotechnical problems 

 

The impact of cross anisotropic elasticity in the small strain range on ground 

deformations is difficult to evaluate in practice. Measured deformations in 

general comprise elastic and plastic strains of varying mutual proportion, and 

distinction between the two is usually not possible. In the following chapter the 

impact of different isotropic and cross-anisotropic small strain stiffness 

parameters in numerical simulations is assessed for an excavation problem and 

the settlements of a shallow strip footing. The calculations have been performed 

with the finite element package PLAXIS 2D 2010 and the multilaminate soil 

model presented in previous chapters. 

 

5.1 Excavation problem 

5.1.1 Numerical model and input parameters 

 

The geometric layout of the example follows from Figure 45. Homogeneous, 

drained ground conditions are assumed and a hydraulic barrier is placed at the 

base of the wall. The excavation process is modelled by three steps with 2 m of 

excavation each. After the first excavation step the groundwater table within the 

excavation is lowered to -6.0 m with interpolation of water pressures over the 

hydraulic barrier. 
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Fig. 45: Geometry overview 



82 5 Influence of small strain stiffness anisotropy 

 

Interface elements are placed at both sides of the retaining wall to account for the 

reduced friction between wall and soil, which has been taken as 2/3 of the 

friction angle of the soil. The model has been discretized with 15-noded, 

triangular elements. Large strain soil parameters and isotropic small strain 

parameters have been calibrated to fit experimental data of dense Hostun sand 

(Table 7).  

 

 
 
Fig. 46: Finite element model (dimensions in m) 

 

For demonstration purposes a much wider range of cross-anisotropy in small 

strain stiffness has been assumed in this study (Table 14) than observed in 

experiments on Hostun sand (Sadek et al. 2007). The same value of E'v0 (equal to 

the isotropic small strains Young’s modulus E'0) is utilized for all the anisotropic 

calculations, but the ratio E'v0/E'h0 changes from 2.0 (case 1) to 0.5 (case 2). In an 

additional calculation the independent shear modulus was lowered to 2/3 of the 

isotropic value (case 3).  

 

Even though material behaviour is strongly cross anisotropic, in none of the cases 

the stiffness anisotropy would be detected in a conventional triaxial compression 

test ('h = 0). If the horizontal stress is constant, initial shear stiffness Geq,0 

exclusively depends on the axial elastic modulus in vertical direction E'v0 and the 

Poisson’s ratio 'vh0 (Equation 119, Figure 47 left). However, if the vertical stress 

'v is held constant and the horizontal stress 'h is increased, Geq,0 depends on the 

axial moduli E'v0, E'h0 and the Poisson’s ratio 'vh0 and 'hh0 (Equation 120). 

Hence, significantly different values of Geq,0 are obtained for the different 

parameter sets in horizontal loading (Figure 47 right). 
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Fig. 47: Equivalent shear stiffness Geq in triaxial vertical and horizontal 

loading 

 

It should be noted that the small strain stiffness parameters listed in Table 14 

represent initial soil stiffness at isotropic stresses, while the stiffness utilized in 

the anisotropic simulations is influenced by the initial axial stress ratio (approach 

3). The resultant values activated at the initial stress state with K0nc = 1 – sin' = 

0.34 are listed in Table 15. The anisotropy ratios at the start of the calculations 

are E'v0/E'h0 = 3.6 for cases 1 and 3 and E'v0/E'h0 = 0.9 for case 2, thus resulting in 

almost isotropic stiffness for case 2. The independent shear modulus Gvh0 is 

considerably less influenced by the cross anisotropic stress state than the axial 

elastic moduli. 

 
Tab. 14: Small strain parameters – input values at p'= -100 kPa 

 

parameter unit isotropic anisotropic 

1 

anisotropic 

2 

anisotropic 

3 

E'v0,ref kPa 270 000 303 800 303 800 303 800 

E'h0,ref kPa 270 000 151 900 607 600 151 900 

Gvh0,ref kPa 112 500 112 500 112 500 75 000 

'vh0 -- 0.20 0.35 0.35 0.35 

'hh0 -- 0.20 0.07 0.07 0.07 
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Tab. 15: Initial small strain stiffness moduli at K0 = 0.34 and p' = -100 kPa 

 

parameter unit isotropic anisotropic 

1 

anisotropic 

2 

anisotropic 

3 

E'v0 kPa 270 000 416 837 416 837 416 837 

E'h0 kPa 270 000 115 878 463 514 115 878 

Gvh0 kPa 112 500 115 097 115 097 76 731 

 

5.1.2 Calculation phases 

 

After the definition of the normally consolidated initial stress state with 'v =  · h 

and 'h = K0·'v (K0 = 1 - sin'), the following calculation phases are performed: 

 

 Phase 1: Apply surcharge load (permanent load of 10 kPa) 

 Phase 2: Activate wall (wished-in-place), set displacements to zero 

 Phase 3: Excavation to level -2.0 m 

 Phase 4: Activate strut at level -1.5 m  

 Phase 5: Lowering of GW-table to -6.0 m inside excavation 

 Phase 6: Excavation to level -4.0 m 

 Phase 7: Excavation to level -6.0 m  

 

5.1.3 Results 

 

Wall deflection at the end of excavation (phase 7) for the various parameter sets 

is shown in Figure 48. Taking account of isotropic small strain stiffness reduces 

wall deformation by ~30%, whereas with anisotropic parameter sets 1 and 3 wall 

deflection increased by ~19% with regard to the isotropic small strain stiffness 

case. A similar trend can be observed for the wall bending moments. 

 

This matches well with the lower initial shear stiffness Geq,0 obtained for the 

anisotropic sets 1 and 3 in horizontal triaxial loading (Figure 47), which is 

comparable to the horizontal unloading situation behind the sheet pile wall and 

the horizontal loading at the wall base. However, the difference in wall 

deformation is much smaller than what would be expected by the difference of 

~50% in elastic initial shear stiffness Geq,0. This indicates the presence of plastic 

strains, which dominate soil deformation at larger strains and diminish the 

influence of small strain stiffness on final wall deformation. Hence, the impact of 

cross anisotropy in small strain stiffness depends on the strain level, and 

increases as the strain level reduces. 
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A similar trend can be observed for the vertical deformations at ground surface 

(Figure 49). The settlement at the model boundary at x = 24 m for the case 

without small strain stiffness indicates, that the model needs to be much wider in 

this case, but not for the calculations with small strain stiffness. Taking isotropic 

small strain stiffness into account reduces surface settlements by ~45%, and the 

isotropic case and the anisotropic set 2 with high stiffness in horizontal direction 

again deliver very similar results. Settlements increase by ~20% with the 

anisotropic sets 1 and 3 compared to the isotropic small strain case. 

 

The heave at the bottom of the excavation at -6 m can be related to the axial 

stiffness in vertical direction employed in the various calculations (Figure 50). 

Taking account of isotropic small strain stiffness reduces ground deformations 

from 25 mm to 13 mm, with a further reduction to 9-10 mm for the anisotropic 

cases. This trend can be explained by the comparatively small value of E'v0 = 

270 MPa used in the isotropic small strain case, while all the anisotropic cases 

utilize the same value of E'v0 = 417 MPa and therefore deliver fairly similar 

displacements. The small differences among the anisotropic calculations can be 

explained by the different values of E'h0 and Gvh0, but are not significant from a 

practical point of view. Again, the difference in displacements is notably smaller 

than the difference in stiffness. 

 

In summary, ground deformations correlate to the stiffness activated in the 

corresponding loading direction. While there is no significant difference between 

the isotropic case and the anisotropic case 2 in terms of wall displacements and 

surface settlements, base heave in the excavation differs by ~20% due to the 

difference in vertical initial stiffness. On the other hand, all the anisotropic cases 

deliver similar displacements at the base of the excavation, but wall deflection 

and surface settlements differ by up to 19% as a result of the varying stiffness in 

horizontal loading. However, the range of numerical results is much smaller than 

the variation of small strain stiffness parameters, and the influence of anisotropy 

in the small strain range reduces with increasing strain level. 
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Fig. 48: Horizontal wall displacements and distribution of bending moments 
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Fig. 49: Vertical displacements of the surface next to the retaining wall 
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Fig. 50: Vertical displacements at excavation base 

 

5.2 Strip footing 

5.2.1 Numerical model and input parameters 

 

A 4 m wide shallow strip footing on dense Hostun sand is subjected to 

incremental increase of vertical loading up to 300 kPa, and development of 

vertical displacement is compared for different isotropic and cross-anisotropic 

sets of soil parameters. The concrete slab of 1 m thickness can be considered as 

rigid (E = 30 GPa,  = 0.2). The finite element model used for all calculations in 

this chapter is shown in Figure 51. A surface load of 10 kPa is applied at ground 

surface before increasing the load on the footing. Due to symmetry only half of 

the full system is modelled. 

 

Large strain soil parameters have been calibrated to fit experimental data of 

dense Hostun sand (chapter 4.5.1, Table 7). Additional to the cross-anisotropic 

parameter combinations employed in the previous excavation example, further 

combinations have been chosen such that either one of the axial moduli equals 

the isotropic small strain stiffness at the in situ stress state, or that the mean of 

E'h0 and E'v0 equals the isotropic value (Table 16). Stiffness degradation 

parameters deg,1 and deg,2 are equal to the isotropic case for all calculations, and 

anisotropy ratios E'h0/E'v0 of 0.5 and 2.0 are assumed.  

 

Stiffness recovery at load reversals has been deactivated in this example. In all 

cross-anisotropic calculations Poisson’s ratios have been taken as 'vh0 = 0.35 and 

'hh0 = 0.07. Set ‘anisotropic 10’ equals the isotropic case except for the cross-

anisotropic Poisson’s ratios. Calculations have also been performed with the 
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(isotropic) Hardening Soil and Hardening Soil Small model, employing the same 

set of material parameters as in the element test simulations (Table 8). 

 
Tab. 16: Cross-anisotropic small strain stiffness parameters at isotropic stresses 

and at K0 = 0.34 

 

parameter set K' = 'h/'v E'h0,ref  

[MPa] 

E'v0,ref  

[MPa] 

In situ  

E'h0/E'v0 

Gvh0,ref  

[MPa] 

anisotropic 1 
1.0 151.9 303.8  112.5 

0.34 115.9 416.8 0.28 115.1 

anisotropic 2 
1.0 607.6 303.8  112.5 

0.34 463.5 416.8 1.11 115.1 

anisotropic 3 
1.0 151.9 303.8  75 

0.34 115.9 416.8 0.28 76.7 

anisotropic 4 
1.0 353.9 98.4  112.5 

0.34 270 135 2.0 115.1 

anisotropic 5 
1.0 177 196.8  112.5 

0.34 135 270 0.5 115.1 

anisotropic 6 
1.0 353.9 393.6  112.5 

0.34 270 540 0.5 115.1 

anisotropic 7 
1.0 707.9 196.8  112.5 

0.34 540 270 2.0 115.1 

anisotropic 8 
1.0 265.45 295.2  112.5 

0.34 202.5 405 0.5 115.1 

anisotropic 9 
1.0 424.7 118.1  112.5 

0.34 324 162 2.0 115.1 

anisotropic 10 
1.0 353.9 196.8  112.5 

0.34 270 270 1.0 115.1 
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Fig. 51: Numerical model of strip footing (dimensions in m) 

 

5.2.2 Calculation phases 

 

After the definition of the normally consolidated initial stress state with 'v =  · h 

and 'h = K0 · 'v (K0 = 1 - sin'), the following calculation phases are performed: 

 

 Phase 1: Application of surcharge load of 10 kPa 

 Phase 2: Activation of foundation slab, reset displacements to zero 

 Phase 3: Increase of additional load at top of footing 

 

5.2.3 Results 

 

Calculated load-displacement curves delivered by the multilaminate model with 

and without isotropic small strain stiffness are compared with the Hardening Soil 

(HS) and Hardening Soil Small model (HSS) in Figure 52. HSSref denotes the 

calculation using the input parameters of Table 8 (G0,ref = 112.5 MPa). It should 

be noted that while G0 depends on p' in the multilaminate model, dependency of 

G0 on '3 is assumed in the HSS model. In order to start with the same small 
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strain stiffness at the initial stress state in both models, in calculation HSS* G0,ref 

has been increased by the factor ((1+2K'0nc)/(3K'0nc))
0.55

.  

 

Both models deliver similar load-displacement curves and final settlements at 

300 kPa footing load. The slightly softer response of the HSS* calculation can be 

related to the ~10% lower initial shear modulus in primary loading (Figure 35). 

Neglecting small strain stiffness results in an almost linear load-displacement 

curve, with a slightly stiffer behaviour at higher load levels due to stress 

dependent stiffness. Taking account of isotropic small strain stiffness reduces 

final settlements to ~53% of the value without small strain stiffness, which 

demonstrates the importance of small strain stiffness for settlement calculations 

in working load conditions.  

 

The curvature of the load-displacement curves shows clear evidence of stiffness 

degradation, as the initial inclination of the curve changes with increasing load 

level. However, not all the soil body contributing to raft settlements has reached 

the large strain range yet, as the load displacement curves ‘ML iso G0’ and 

‘HSS’ continue to diverge from the curve without small strain stiffness at the 

final load level. 
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Fig. 52: Comparison of load – displacement curves predicted by multilaminate 

and HS / HSS model for isotropic material 

 

Deformations below the footing reduce significantly faster with depth, if small 

strain stiffness is taken into account (Figure 53). Vertical displacements at 10 m 

depth (9 m below footing) are ~25% of the maximum footing settlements if 

calculated without small strain stiffness, but reduce to less than 10% if small 
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strain stiffness is accounted for. Considering anisotropic small strain stiffness 

does not change that ratio any further. 

 

The calculations with cross-anisotropic small strain stiffness deliver a rather wide 

range of load displacement curves (Figure 54) and final settlements (Figure 55). 

Variation of the Poisson’s ratios while keeping the isotropic axial moduli 

constant (anisotropic 10) does not influence predicted settlements significantly. 

Final settlements decrease by ~17% if one of the axial moduli are kept at the 

isotropic value and the elastic modulus in the other direction is doubled 

(anisotropic 6 and 7). The reverse pattern (reducing the axial modulus in one 

direction by 50%, anisotropic 4 and 5) delivers ~15% larger settlements than the 

isotropic case. Both calculations ‘anisotropic 8’ and ‘anisotropic 9’, which 

employ the same mean axial stiffness of Emean = (2E'h0 + E'v0)/3 = 270 MPa but 

opposing ratios of anisotropy, give final settlements close to the isotropic case.  

 

Consequently, the magnitude of final settlements seems to be governed by the 

average axial stiffness of the material rather than the ratio of anisotropy. This is 

demonstrated in Figure 56, which plots final settlements against mean axial 

stiffness Emean. Results of the various cross-anisotropic and isotropic calculations 

plot within a narrow band, with settlements decreasing as the mean stiffness of 

the material increases. At higher mean stiffness the cross-anisotropic calculations 

predict slightly softer behaviour, as the anisotropic shear modulus Gvh0 was held 

constant whereas G0 steadily increases in the isotropic calculations. 
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Fig. 53: Profile of vertical displacements below footing over depth 
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Fig. 54: Load – displacement curves with isotropic and cross-anisotropic small 

strain stiffness  
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Fig. 55: Footing settlements at a foundation load of 300 kPa 
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Fig. 56: Dependency of footing settlements obtained in isotropic and 

anisotropic calculations on mean axial stiffness 

 

As stiffness degradation occurs independently on the various multilaminate 

planes, a global degradation parameter SSSgl was defined to evaluate macroscopic 

stiffness degradation. SSSgl is obtained as the weighted sum of local stiffness 

degradation: 
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SSSgl equals 1 if no degradation has occurred and approaches 0 if the large strain 

range is reached on all integration planes. For the HSS model, global stiffness 

degradation has been worked out in an equivalent way by using the state variable 

Gs, which is the current shear modulus at reference pressure. Degradation of 

small strain stiffness within the finite element model is compared for selected 

parameter sets in Figure 57. Due to the higher initial stiffness, deviatoric strains 

were smallest for set ‘anisotropic 2’, and consequently a larger part of the soil 

body remained at the high initial stiffness. Compared with the isotropic 

calculation, set ‘anisotropic 1’ with its low horizontal stiffness delivered similar 

horizontal spread of stiffness degradation, while less stiffness degradation 

occurred in vertical direction. 
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Fig. 57: Degradation of small strain stiffness in the numerical model: 

Macroscopic small strain stiffness parameter SSSgl at 300 kPa footing 
load (dimensions in m) 
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6 Shear strength of stiff soils 
 

The behaviour of stiff clays and dense sands differs substantially from their soft 

respectively loose counterparts: They are characterized by lower initial void 

ratio, higher shear strength and often exhibit anisotropic stiffness and shear 

strength. Shear strength of natural soils may be further increased by inter-particle 

bonding and cementation (Burland et al. 1996), resulting in gradual transition to 

soft rock materials. For clarity both heavily overconsolidated, stiff clays and 

dense sands are termed stiff soils in this chapter, in contrast to normally 

consolidated soft clays and loose sands. 

 

In most practical cases the higher shear strength of such materials is accounted 

for by increasing the friction angle ' (dense sands) or by introducing a cohesion 

intercept c' (stiff clays) while using a classical Mohr-Coulomb failure criterion. 

Doing so, however, fails to capture important features of soil behaviour, namely 

the transition to normally consolidated behaviour at high stress levels, the 

localization of strains in shear bands and the subsequent reduction of shear 

strength in strain softening.  

 

While in general these phenomena may not be relevant under working load 

conditions, where shear strength is not fully mobilised, realistic prediction of 

bearing capacity and deformations close to and beyond failure requires 

consideration of the post-peak strain softening behaviour. This is in particular 

evident if the strain distribution along slips surfaces is highly non-uniform, which 

causes parts of the slip surface to soften before the peak shear strength has been 

mobilised along the whole slip surface.  

 

This chapter starts with an overview on the mechanical behaviour of heavily 

overconsolidated clays and dense sands. Subsequently, the mathematical 

formulations for a Hvorslev surface multilaminate model, accounting for the 

shear strength of heavily overconsolidated clay, are presented. Implementation of 

strain regularization is explained only briefly in the context of the current model, 

as to a large extent the approach proposed by Galavi (2007) is employed. Pre-

peak stress-strain behaviour and undrained shear strength predicted by the model 

is compared with experimental results of undrained triaxial tests. The efficiency 

of the employed regularization technique to obtain mesh independent results is 

demonstrated in biaxial test simulations. The influence of different assumptions 

in strain regularization is discussed in the context of shear band evolution in 

plane strain conditions. 
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6.1 Mechanical behaviour and experimental 

background 

 

Figure 58 schematically shows the differences in stress-strain and volumetric-

deviatoric behaviour between heavily overconsolidated and normally 

consolidated soils in drained triaxial compression. Overconsolidated soils reach 

the maximum shear strength at peak dilation (maximum inclination of vol-1 

curve), followed by subsequent reduction of stress ratio q/p'. The final stress ratio 

MCS is reached when additional shearing does not result in further volumetric 

strains. While normally consolidated soils show contractant behaviour in 

shearing, heavily overconsolidated samples expand in volume after some small 

initial range of compression. 
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Fig. 58: Stress-strain behaviour and dilatancy 

 

The different behaviour of normally and overconsolidated samples can be 

qualitatively explained by considering soils as an assembly of spherical particles. 

Arranging particles in the loosest way possible means that any distortion of the 

initial state by deviatoric loading results in a denser packing, while distortion of 

the dense packing is only possible if the soil sample is allowed to expand. 

 

Figure 59 shows the schematic drained and undrained stress paths in triaxial 

compression which follow from the behaviour explained above. Undrained stress 
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paths of normally consolidated samples continuously turn left in the p'-q diagram 

and reach failure at the critical state stress ratio MCS. Both the drained and 

undrained stress paths of the overconsolidated soil travel beyond the line inclined 

at MCS, with the undrained stress path turning to the right due to tensile excess 

pore pressures as a result of dilatant behaviour. The stress ratio MCS is 

approached only after substantial loosening of the material (drained conditions) 

or development of excess pore pressures (undrained conditions). 
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Fig. 59: Schematic stress paths and volumetric behaviour 

 

The experimentally observed behaviour of soils at different densities and stress 

levels was first merged by Schofield & Wroth (1968) in the framework of 

Critical State Soil Mechanics. Combining the two diagrams of Figure 59, they 

proposed a three-dimensional state boundary surface in e-p'-q space to separate 

admissible and non-admissible states (Figure 60).  

 

The overconsolidation ratio OCR = p'/p'c (with p'c the maximum previous value 

of p') defines the position within the state boundary surface at a certain void ratio 

e. If a soil sample is subjected to sufficient deviatoric loading, the stress path will 

finally end up at the critical state line (CSL), irrespective of OCR and whether 

loading is drained or undrained. On the right (or “wet”) side of the CSL the state 

boundary surface is defined by the Roscoe-Rendulic surface, while on the left (or 

“dry”) side of the CSL shear strength is limited by the Hvorslev surface.  
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Fig. 60: State boundary surface in critical state soil mechanics  

 

Hvorslev (1937) first proposed a linear relationship to describe peak shear 

strength of heavily overconsolidated clays at various initial volumes, if stresses 

are normalized to the pressure at the normal consolidation line at the current void 

ratio (Figure 61). As he conducted undrained shear box tests, both the horizontal 

shear stress  and the vertical effective stress 'v at failure were normalized by 

the equivalent vertical stress 've on the 1D-normal compression line: 
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


tan  (122) 

 

The parameters 'e and c've give the inclination and intercept of the failure line in 

the normalized /'ve vs. 'v/'ve diagram. If rewritten in the form of the classical 

Mohr-Coulomb failure line it becomes evident, that the cohesion intercept c' = 

c've·'ve is no true material constant but depends on the equivalent stress 've and 

hence on the position of the 1-D normal compression line at the current void 

ratio. 

 

veveev ''c''   tan  (123) 
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Fig. 61: Failure line of Wiener Tegel (after Hvorslev 1937) 

 

For the interpretation of triaxial test data it is more convenient to normalize with 

respect to the equivalent stress p'e on the isotropic compression line. In that case 

Equations 122 and 123 can be translated to p'-q stress space as 
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Fig. 62: Definition of Hvorslev surface parameters in p'-q notation 
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The validity of the linear relationship proposed by Hvorslev has been confirmed 

experimentally for numerous clays. Figure 63 shows peak shear strength data of 

drained and undrained triaxial tests on Weald clay, which when normalized 

according to Equation 124 plot on a single straight line. For most natural and 

reconstituted clays the difference between 'cs and 'e is about 3°-6° (Table 17).  
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Fig. 63: Peak shear strength of Weald clay in drained and undrained triaxial 

compression (data from Parry, 1960 and Henkel, 1956) 

 
Tab. 17: Hvorslev surface parameters of reconstituted clays 

 

Soil c'pe 'e [°] 'cs [°] Reference 

Vienna clay 0.141
3
 17.5 26.0 Hvorslev (1937)

1
 

Little Belt clay 0.187
3
 9.9 19.6 Hvorslev (1937)

1
 

Weald clay 0.047 18.0 21.6 Parry (1960) 

London clay 0.065 14.0 18.2 Parry (1960) 

Pietrafitta clay 0.117
3
 23.8 28.4 Burland et al. (1996) 

Todi clay 0.113
3
 19.4 25.8 Burland et al. (1996) 

Vallericca clay 0.058
2
 22.6 26.7 Burland et al. (1996) 

Corinth marl 0.100
3
 33.9 36.9 Burland et al. (1996) 

1
 as reported by Muir Wood (1990) 

2
 data normalized with isotropic compression parameters reported by Callisto & 

Rampello (2004) 
3
 calculated assuming 've/p'e = 3/(1+2K0nc) = 3/(3-2sin'cs) 
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After reaching peak strength, strains localize in narrow shear bands, followed by 

loosening and subsequent loss of shear strength within the shear band and 

unloading in the material adjacent to it. Burland et al. (1996) emphasized that 

undrained effective stress paths of overconsolidated clay samples approach the 

critical state line after sufficient shearing, and that the post-rupture friction angle 

equals the critical state friction angle 'cs (Figure 64). In his experiments the 

undrained stress paths of the overconsolidated samples started to turn right before 

reaching the maximum stress ratio, indicating that dilatancy occurred 

considerably before peak shear strength has been mobilised. 
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Fig. 64: Effective stress paths from undrained triaxial tests on reconstituted 

Vallericca clay (data from Burland et al. 1996) 

 

Due to the dependency of soil behaviour on the degree of overconsolidation, soil 

samples with the same pre-consolidation pressure will behave very differently at 

different stress levels. While at low confining pressure pronounced dilatancy and 

shear strength higher than critical may be observed, the same soil will contract 

and steadily approach critical state shear strength at high stress levels (Figure 

65).  

 

It should be noted that shear strength of overconsolidated clays can drop below 

the critical state friction angle at very large deformations. Platy clay particles 

tend to align parallel to the slip surface at very large deformations and therefore 

provide lower shearing resistance than at critical state, which is characterized by 

rather random particle orientation (Muir Wood 1990). 
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Fig. 65: Stress-strain behaviour of natural Vallericca clay at varying 

consolidation pressure (Callisto & Rampello 2004) 

 

The the behaviour of coarse grained soils is qualitatively similar to that of stiff, 

heavily overconsolidated clay. Dense sands also show distinct peak shear 

strength accompanied by dilatancy and shear banding, while loose sands behave 

similar to normally consolidated clays (Figure 66).  

 

However, the existence of a Hvorslev surface is hard to establish for sand. 

Normalisation of stresses with respect to the isotropic normal compression line at 

the current volume is difficult as sands of different initial density converge 

towards a unique line only at very high stress levels, which are difficult to 

achieve in laboratory testing and may involve particle crushing. The concept of a 

Hvorslev strength surface is therefore in general not applicable to coarse grained 

soils.  

 

Experimental data from undrained triaxial tests (conducted at the same initial 

volume) indicate that the strength envelope of dense sands is non-linear (Figure 

67), as opposed to the linear Hvorslev surface for clays. Bolton (1986) proposed 

an empirical relationship linking peak friction angle 'max to initial relative 

density, ID, and effective mean stress at failure, p'f. 
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Figure 67 shows undrained stress paths of dense Toyoura sand at the same initial 

volume and the corresponding peak strength envelope predicted by Equation 128 

(emax = 0.98, emin = 0.6, e = 0.735, 'cs = 31°). In particular at stress levels up to 

p' = -1000 kPa peak shear strength lies significantly above the critical state line 

and matches well with the prediction obtained from Equation 128. Compared to 

overconsolidated clays, the undrained stress paths travel much longer along the 

failure envelope before approaching the critical state line. 

 

 
 
Fig. 66: Mobilisation of stress ratio in dense (left) and loose (right) Hostun 

sand (Marcher 2003) 

 

p' [kPa]

-3000-2000-10000

q
 [
k
P

a
]

0

1000

2000

3000

4000

5000

6000

CSL

-500-2500

0

400

800

CSL

Bolto
n (1

986)

Bolto
n (1

986)

 
 
Fig. 67: Effective stress paths from undrained triaxial tests on dense Toyoura 

sand (data from Verduro & Ishihara 1996) 
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6.2 Hvorslev surface in multilaminate soil models 

6.2.1 Yield function and softening rule 

 

Additional to the volumetric and deviatoric yield surfaces of the basic model a 

Hvorslev failure envelope is introduced on integration plane level. The 

macroscopic Hvorslev surface definition (Equation 122) is adapted to the 

multilaminate definition of local stresses by using the equivalent normal stress 

'ne at the local normal compression line (Equation 129). Stresses  and 'n are 

local shear and normal stresses on integration plane level. 

 

The multilaminate model does not employ explicitly defined normal compression 

and critical state lines, which slightly complicates the calculation of the 

equivalent stress 'ne. However, at each stage the magnitude of the local pre-

consolidation normal stress, 'nc, is known, which defines the intersection of the 

primary loading and the unloading/reloading line (Figure 68). Knowing the 

current normal stress and the unloading-reloading stiffness Eur, the local normal 

strain related to elastic unloading from 'nc to 'n can be evaluated. Applying this 

strain increment to the hardening rule of the cap yield surface delivers the 

equivalent normal stress 'ne. The detailed derivation of the mathematical 

formulations for 'ne is given in Appendix C. 
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Fig. 68: Normalized Hvorslev yield surface on integration plane level 
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The normalized intercept with the -axis, c'HV is often treated as an independent 

material parameter (e.g. Burland et al. 1996). However, if the shape of the cap 

yield surface and the Hvorslev surface inclination 'e are known, also the 

intercept with the -axis is defined, as Hvorslev surface and cap yield surface 

intersect at the critical state line. The shape of the cap yield surface in the 

multilaminate model is determined by an iterative algorithm, which aims at 

reproducing realistic earth pressure coefficients K0nc in primary oedometric 

loading (chapter 3.4). The auxiliary constant Bcs used in Equation 131 gives the 

ratio of local shear stress at critical state over 'ne and hence accounts for the 

shape of the cap yield surface. 

 

As can easily be seen from Equation 130, 'ne decreases with reduction of the 

normal stress 'n, which means the Hvorslev yield surface fHV is a curved line in 

the non-normalized  – 'n plot of local yield surfaces (Figure 69). It is worth 

noting, that the Hvorslev yield surface serves as a strength boundary surface, 

which gets activated only once the local stress path reaches that surface. 

However, plastic strains are obtained also for stress states below the Hvorslev 

surface from the strain hardening deviatoric yield surface. This is a major 

difference to constitutive models like the Modified Cam Clay model (Roscoe and 

Burland 1968), and the Saniclay model (Dafalias et al. 2006), which assume 

purely elastic behaviour before peak shear strength is reached. 
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Fig. 69: Local yield surfaces 

 

The position of the Hvorslev surfaces changes with the size of the cap yield 

surface and vice versa. For updating the local pre-consolidation stress 'nc in step 

k+1, normal plastic strain contributions from the cap and the Hvorslev yield 

surface are taken into account (Equation 132). Positive plastic normal strains, 

caused by dilatancy at the Hvorslev yield surface, reduce 'nc, whereas negative 

(compressive) plastic normal strains at the cap yield surface enlarge 'nc. The 
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softening rule of the Hvorslev yield surface therefore equals the hardening rule of 

the cap yield surface: 
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Equations 129-132 are in principle sufficient to describe the softening behaviour 

mathematically. However, numerical simulations at stress point level showed that 

plastic strains localize excessively in one or very few integration planes once 

softening commences. Consequently, post-peak behaviour is heavily influenced 

by the chosen integration rule (i.e. the number and orientation of integration 

planes). Furthermore, numerical calculations of boundary value problems tend to 

become unstable, if softening switches between different planes, which results in 

oscillatory stress-strain curves.  

 

These effects have already been noted by Bažant (1984) and triggered the 

development of microplane models, which employ the kinematic constraint and 

hence introduce internal strain regularization at stress point level. Schuller (2000) 

utilized a scaling parameter in his multilaminate strain softening model, which 

relates the local softening modulus to the number of integration planes. In the 

present model a different approach is followed, which aims at distributing plastic 

strains from the Hvorslev surface over all integration planes currently in 

softening. Local plastic strain contributions of all integration planes are 

multiplied with their corresponding weight factors, wi, to obtain the increment of 

the macroscopic damage strain, d. 
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idsoftdi wh    (134) 

 

n,HV in Equation 132 is replaced by di, which is the local proportion of the 

averaged macroscopic damage strain increment d. The softening parameter hsoft 

controls the magnitude of softening for a given damage strain increment. The 

averaging of damage strains among the integration planes could be considered as 

a rough version of the kinematic constraint, where the global strain tensor is 

projected onto the various integration planes according to their respective 

orientation. However, here the strain averaging is limited to integration planes, 

whose stress paths have already reached the Hvorslev surface. 
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Figure 70 shows the macroscopic representation of the locally defined Hvorslev 

and cap yield surfaces, which has been obtained by the procedure described in 

section 3.5. Isotropic pre-consolidation of p'c = -100 kPa is assumed. Material 

parameters are assumed as 'cs = 30°, 'e = 24°, MCP = 0.346 and m = 1. Varying 

the ratio of Eur/Eoed strongly influences the maximum shear strength in the 

heavily overconsolidated range. The higher the unloading-reloading stiffness Eur, 

the more the Hvorslev yield surface resembles the straight Hvorslev line in the 

normalized plot (Figure 68), as volume changes in unloading diminish. The 

Hvorslev surface and the critical state line converge at low values of Eur. 

Consequently, the model predicts more shear strength in the heavily 

overconsolidated range for soils which exhibit a large difference between 

primary loading and unloading/reloading stiffness.  

 

The macroscopic cap and Hvorslev yield surface do not meet exactly at the 

critical state line (Figure 70). This might come as a surprise, as the local yield 

surfaces intersect the local critical state line at the same point (Figure 69). 

However, the point of intersection in the local -'n diagram cannot be reached 

by any local stress path without activating cap yield surfaces on other integration 

planes, which represents macroscopic yielding. The Hvorslev surface still serves 

as a macroscopic shear strength envelope, but plastic strains will be produced by 

other integration planes before the stress path reaches the Hvorslev surface. 
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Fig. 70: Macroscopic Hvorslev and cap yield surface for different ratios of 

Eur/Eoed, as predicted by the multilaminate model 
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6.2.2 Plastic potential functions 

 

As in the basic version of the multilaminate model, plasticity resulting from the 

cap yield surface is assumed to be fully associated. Cone and Hvorslev yield 

surface are non-associated. The cone plastic potential function equals the cone 

yield function with the friction angle 'm being replaced by the mobilised angle 

of dilatancy m (Equation 135). Mobilisation of dilatancy below the critical state 

line equals the formulation in the basic version of the multilaminate model 

(chapter 3.1, Equations 42-48) and is modelled by a cubical function in 

dependency on the mobilised friction angle 'm. Above the critical state line, the 

maximum angle of dilatancy max is calculated from the difference between the 

critical state line and the Hvorslev surface at the current local stress state (Figure 

72, Equation 136). 
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Fig. 71: Mobilisation of dilatancy 
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Fig. 72: Mobilised and maximum angle of dilatancy 
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The plastic potential of the Hvorslev surface equals the one of the cone yield 

surface at full mobilisation (Equation 137). With this approach a smooth 

transition from dilatant behaviour in the heavily overconsolidated to non-dilatant 

behaviour in the normally consolidated range is achieved. With increasing stress 

level and proceeding softening max reduces, eventually resulting in 'm = 'cs 

and max = HV = 0 at critical state. It is worth noting, that the degree of dilatancy 

in the heavily overconsolidated range is an outcome of the model, not an input 

value. 

 

csmaxmaxHV ''    (136) 

HVnHV 'g  tan  (137) 

 

6.3 Simulation of triaxial stress paths in clays 

 

The Hvorslev surface model presented in previous sections has been primarily 

developed for fine grained soils. Validation is therefore focussed on comparing 

model predictions and experimental results for two different clays at different 

degrees of overconsolidation. Triaxial test simulations are carried out on stress 

point level for uniform deformation and do not account for the effects of strain 

localization, which is considered later on in this chapter. Still, such simplified 

test simulations are useful to evaluate the model behaviour in the pre-peak range 

and predicted peak strength. 

 

Burland et al. (1996) reported the results of an extensive study on the strength 

properties of four overconsolidated clays, on both intact (natural) and 

reconstituted samples. The comparison here focusses on reconstituted samples of 

normally and overconsolidated Vallericca and Pietrafitta clay. 

 

6.3.1 Vallericca clay 

 

Vallericca clay was deposited in a marine environment and is heavily 

overconsolidated in its natural state with an estimated thickness of the previous 

overburden of about 220 m. The site from which the samples were excavated is 

located in the vicinity of Rome in the valley of the Tiber river. 

 

The reconstituted, overconsolidated samples were compressed to an isotropic 

pre-consolidation pressure of -2000 kPa and then swelled isotropically to initial 

stresses of p'0 = -100, -200 and -400 kPa. The intrinsic stiffness parameters  = 
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0.145,  = 0.028 and e1kPa = 1.68 (Callisto & Rampello 2004) can be converted to 

multilaminate stiffness parameters according to Equations 138 and 139. 

 


01 e

pE refref,oed


  (138) 

 

 


 01
213

e
p'E refurref,ur


  (139) 

 

e0 is taken as the void ratio in normal compression at p' = -100 kPa. While the 

choice of e0 for the stiffness conversion is somewhat arbitrary, the overall 

influence of e0 is small, if values within the range of applied stresses are chosen. 

The input parameters of the multilaminate model are summarized in Table 18. 

Normal consolidation and swelling lines are shown in Figure 73 for the intrinsic 

and the multilaminate parameters, as well as the starting points of the normally 

and overconsolidated experiments. 
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Fig. 73: Initial void ratio and stress states for the experiments on Vallericca 

clay 

 

The undrained stress paths predicted by the multilaminate model are compared 

with the experimental results in Figure 74. It should be noted that normally and 

overconsolidated tests have been simulated with the same set of parameters 

(Table 18). The dilatant behaviour observed in the heavily overconsolidated tests 

after the stress path crosses the critical state stress ratio is in principal well 

predicted by the model.  
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Tab. 18: Input parameters for Vallericca clay 

 

parameter  value unit 

oedometric stiffness Eoed,ref 1 390 kPa 

isotropic large strain Young’s modulus Eur,ref 12 930 kPa 

isotropic large strain Poisson’s ratio 'ur 0.20 -- 

shear hardening parameter Amat 0.010 -- 

critical state friction angle 'cs 26.7 ° 

Hvorslev surface inclination 'e 22.6 ° 

Initial pre-consolidation pressure 'nc -2000 kPa 

reference pressure pref 100 kPa 

power index for stress dependency m 1.0 -- 

softening scaling factor for plastic strains hsoft 60 -- 
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Fig. 74: Experimental and calculated effective stress paths of Vallericca clay 

 

Development of excess pore pressures in the normally and overconsolidated test 

simulations is shown in Figure 75. Unfortunately, no experimental stress strain 

data have been published for the tests on reconstituted Vallericca clay. Excess 

pore pressures obtained in the reconstituted test simulations increase 

proportionally with the initial stress state p'0. The overconsolidated test 

simulations show some compression at the start of the test due to elastic 
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deformations, and consequently negative excess pore pressures develop in the 

early stage of the test. After about 2% of vertical strain, plastic volumetric strains 

due to dilation at the Hvorslev surface start to reduce the initial compression and 

result in positive excess pore pressures at the end of the test simulations. 
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Fig. 75: Change of pore water pressure of reconstituted Vallericca clay in 

undrained triaxial compression 

 

Undrained stress paths have been normalized by their respective equivalent 

pressure on the normal consolidation line in Figure 76. The experimental stress 

paths of the heavily overconsolidated samples approach the Hvorslev failure line, 

but do not travel along the Hvorslev surface long enough to reach the critical 

state at the initial equivalent pressure. That can be explained by loss of 

uniformity in the sample and local drainage within the shear band, which results 

in partially drained conditions and allows for localized changes in specific 

volume.  

 

The numerical simulations, on the other hand, are carried out on a single stress 

point, which does not allow for such effects, and hence simulated stress paths 

reach the critical state line. However, due to the static constraint of the 

multilaminate framework, undrained conditions (vol = 0) are enforced on 

macroscopic level, but not individually for each integration plane. While the 

overall volume stays constant, local “volumes” (i.e. local normal strains n,i) at 

integration plane level are allowed to change. Local equivalent pressures on 

planes reaching the Hvorslev surface reduce with the evolution of local dilatancy 

on these planes. 
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Fig. 76: Normalized effective stress paths of Vallericca clay 

 

This is exemplified for test simulation 200 kPa OC in Figure 77, which shows the 

development of local equivalent normal pressures 'ne,i with increasing vertical 

strain. All integration planes start at the same initial value of p'e = 'ne,i = -

1281 kPa. Equivalent normal stresses on integration planes with inclination of 

 = 64.1° with regard to the horizontal (planes 22-25 and 30-33) drop 

significantly once local stress paths at these planes reach the Hvorslev surface 

and dilatancy commences. In order to fulfil the global constraint of vol = 0, all 

the other integration planes compress elastically, which means equivalent 

pressures increase on these planes. This mechanism of strain redistribution 

among the integration planes can be considered as an additional degree of 

freedom in undrained conditions, which is a specific feature of multilaminate 

models. 

 

The influence of hsoft on stress-strain behaviour and stress paths in undrained 

conditions is shown in Figure 78. High values of hsoft yield faster reduction of the 

pre-consolidation pressure 'nc with plastic volumetric strains, and thus less 

deviatoric stress can be mobilised. In boundary value problems, however, the 

influence of hsoft is coupled with the internal length parameter lcal, as shown in 

chapter 6.5.3. 
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Fig. 77: Change of local equivalent normal stresses 'ne,i during undrained test 

simulation 200 kPa OC 
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Fig. 78: Influence of hsoft on stress-strain curves and normalized undrained 

stress paths 
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6.3.2 Pietrafitta clay 

 

Pietrafitta clay is a stiff, heavily overconsolidated clay of lacustrine origin from 

central Italy. It was deposited in the early Pleistocene age in the area that is today 

the western branch auf the Tiber basin. Previous overburden is estimated at about 

150 m. 

 

Undrained triaxial tests were reported by Burland et al. (1996) for both normally 

and overconsolidated reconstituted samples. Only test results obtained from 

reconstituted samples are considered here. The overconsolidated samples were 

consolidated to an isotropic pre-consolidation pressure of -2000 kPa and swelled 

isotropically to initial stresses of p'0 = -98, -196 and -392 kPa, giving initial 

overconsolidation ratios OCR of about 20, 10 and 5, respectively. The tests on 

the normally consolidated samples started at initial pressures of p'0 = -294, -588 

and -1176 kPa. 

 

The input parameters for the test simulations are summarized in Table 19. 

Intrinsic material parameters are reported as 'cs = 28.6-33.0°, 'e = 23.8° 

(Burland et al. 1996),  = 0.227,  = 0.0512 and e1kPa = 2.362 (Callisto & 

Rampello 2004). Shear strength parameters 'cs and 'e are used directly in the 

multilaminate model. Experimental variation of 'cs indicates curvature of the 

intrinsic failure line, with 'cs decreasing with increasing stress level. As the 

model employs a constant Mohr-Coulomb failure line at critical state, an 

intermediate value of 30° has been chosen for the numerical simulations. The 

stiffness parameters were converted to Eoed,ref and Eur,ref according to Equations 

138 and 139, with void ratio e0 = 1.32 at p'0 = -100 kPa. The deviatoric hardening 

parameter, Amat, was obtained from calibration against triaxial stress-strain 

curves. Unfortunately, no small strain stiffness data have been available for the 

tests on reconstituted Pietrafitta clay. Isotropic small strain stiffness has therefore 

been estimated as G0 = 4.5Gur. The stiffness degradation curve has been 

calibrated against test data on natural samples of Pietrafitta clay (Figure 79 left), 

as reported by Callisto & Rampello (2002). 

 

Figure 79 compares experimental and calculated oedometric compression and 

swelling curves. For comparison a swelling curve assuming purely elastic, stress 

dependent material behaviour has been added. Experimental and numerical 

elastoplastic unloading curves differ slightly at low stress levels, as the numerical 

model predicts a larger elastic range in unloading and follows the elastic 

unloading line up to 'v ≈ -400 kPa. 
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Tab. 19: Input parameters for Pietrafitta clay 

 

parameter  value unit 

oedometric stiffness Eoed,ref 1020 kPa 

isotropic large strain Young’s modulus Eur,ref 8140 kPa 

isotropic large strain Poisson’s ratio 'ur 0.20 -- 

shear hardening parameter Amat 0.005 -- 

critical state friction angle 'cs 30.0 ° 

Hvorslev surface inclination 'e 23.8 ° 

initial pre-consolidation pressure 'nc -2000 kPa 

reference pressure pref 100 kPa 

power index for stress dependency m 1.0 -- 

Softening scaling factor for plastic strains hsoft 60 -- 

Isotropic shear stiffness at very small strains G0,ref 15 000 kPa 

threshold strain level for stiffness degradation deg,1 5e-6 -- 

transition to large strains deg,2 1e-2 -- 
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Fig. 79: Degradation of small strain stiffness of Pietrafitta clay (left) and 

deformation behaviour in oedeometric conditions (right) 

 

The undrained stress paths predicted by the multilaminate model are compared 

with the experimental results in Figure 80. As for Vallericca clay, undrained 

shear strength is well predicted for the normally consolidated samples. The trend 

of the undrained stress paths of the heavily overconsolidated samples is in 

general also well captured. However, the tendency of experimental stress paths to 
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curve to the right below the critical state line cannot be predicted by the model, 

which assumes dilatant behaviour only above the critical state stress ratio.  
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Fig. 80: Experimental and calculated undrained effective stress paths of 

Pietrafitta clay 

 

Undrained effective stress paths have been normalized with the equivalent 

pressure on the normal consolidation line at the start of the test, p'e, in Figure 81. 

The kink in the calculated stress paths of the heavily overconsolidated samples, 

indicating contact with the Hvorslev surface, plots slightly above the theoretical 

Hvorslev line. This is a result of the multilaminate integration rule, as the 

theoretical plane with the most critical stress ratio does in general not coincide 

with one of the predefined integration planes. The experimental stress paths do 

not reach the critical state line due to strain localization, as discussed before for 

Vallericca clay. 

 

The experimental stress-strain curves of the overconsolidated samples (Figure 

82) show a sharp drop of the deviatoric stress after reaching peak strength, which 

is related to the formation of shear bands and strain localization. Samples tested 

at higher initial stresses exhibited significant plastic yielding prior to failure, 

whereas the sample tested at p'0 = -98 kPa failed in a rather brittle manner 

immediately after reaching peak strength. Such behaviour cannot be reproduced 

by undrained simulations on stress point level, and consequently calculated 

stress-strain curves progress steadily towards the maximum deviatoric stress. The 

high initial stiffness observed in the experiments is well captured by the 

simulations. Experimental results showed less contractancy at the start of the test 

than predicted by the model (Figure 83), and lower excess pore pressure at final 
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state. The former can be attributed to the tendency of the experimental samples to 

dilate below the critical state line. The latter may be related to strain localization 

in the experiments, which leads to partially drained conditions and failure of the 

sample before critical state conditions are reached. Both effects are also notable 

in the normalized stress paths (Figure 81), as discussed before. 
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Fig. 81: Normalized undrained effective stress paths of Pietrafitta clay 
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Fig. 82: Stress-strain curves of heavily overconsolidated Pietrafitta clay in 

undrained triaxial compression 
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Fig. 83: Change of pore water pressure of heavily overconsolidated Pietrafitta 

clay in undrained triaxial compression 

 

Stress-strain curves of normally consolidated samples show flat peaks, which 

indicates that critical state conditions have been reached (Figure 84, Figure 85). 

Due to introduction of small strain stiffness in the numerical simulations, the 

very stiff behaviour at the start of the experiments is again well captured. 
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Fig. 84: Stress-strain curves of normally consolidated Pietrafitta clay in 

undrained triaxial compression 

 



120 6 Shear strength of stiff soils 

 

vertical strain 
1
 [%]

0 2 4 6 8 10


u

 [
k
P

a
]

-800

-600

-400

-200

0

NC experiment

NC calculated 

p'
0
 = -588 kPa 

p'
0
 = -1176 kPa 

p'
0
 = -294 kPa 

 
 
Fig. 85: Change of pore pressure of normally consolidated Pietrafitta clay in 

undrained triaxial compression 

 

6.4 Mesh dependency and strain regularization 

 

Numerical analyses of strain softening problems with rate-independent finite 

element techniques are severely dependent on discretisation. This is related to the 

localization of deformations in shear bands once peak soil strength is reached, 

and strain softening commences afterwards. While shear strength of the material 

within the shear band reduces, the continuum around the shear band unloads 

elastically as the overall load bearing capacity reduces.  

 

The size of the shear band in granular materials is governed by micromechanical 

properties of the material, e.g. the average grain size (Vardoulakis 1980, Marcher 

2003). In conventional finite element calculation, such micromechanical scale 

does not exist, but is however implicitly provided by the size of the finite 

elements. The magnitude of shear strain within the shear band can be roughly 

estimated by dividing the overall relative displacement by the thickness of the 

numerical shear band. If loss of shear strength is driven by plastic strains in the 

current stress point, strain softening will obviously take place faster in finer 

meshes, and will be delayed by increasing thickness of the numerical shear band. 

Consequently, both the thickness of the predicted shear band and the load-

displacement behaviour in the post-peak range are strongly dependent on the 

finite element discretisation. 
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On a more mathematical scale the onset of shear banding represents a bifurcation 

point, after which several alternative deformation states are possible for a given 

stress state. Ellipticity of the governing partial differential equations gets lost 

locally, the tangential stiffness matrix becomes zero and the conventional 

iterative procedure ceases to converge to a unique solution.  

 

Bifurcation analysis as proposed by Mandel (1966), Rice (1976) and Vardoulakis 

(1980) can be applied to study the conditions for the onset and the subsequent 

development of shear banding in frictional materials. These techniques are, 

however, rather challenging to implement in finite element codes. So called 

regularization techniques offer a more feasible alternative to overcome mesh 

dependency and have therefore gained widespread application in numerical strain 

softening analysis. 

 

6.4.1 Regularization techniques 

 

A condensed summary of the different regularization techniques is provided in 

the following. A more detailed description of these approaches has been given by 

Marcher (2003) and Galavi (2007).  

1. Micropolar continua approach: Additional, rotational degrees of freedom are 

introduced on finite element level, which can account for the rotation of 

particles in shear bands, Mühlhaus & Vardoulakis (1987), de Borst (1991). 

The approach employs a Cosserat continuum and requires additional material 

parameters and boundary conditions. 

2. Embedded discontinuity approach: The shape functions are enhanced to 

account for discontinuous displacement (strong discontinuity, Larsson et al. 

1993, Simo et al. 1993) or discontinuous strains (weak discontinuity, Rudnicki 

1977) within the finite element once bifurcation is detected. The method can 

be applied to relatively coarse meshes, but requires access to the calculation 

kernel of the FE-program. 

3. Visco-plastic models: Artificial visco-plastic behaviour is introduced also for 

static problems, which implicitly provides an internal length scale. A viscous 

calculation step is performed after the static (non-softening) equilibrium 

analysis (Loret & Prevost 1991, Oka et al. 1995). 

4. Length-scale approach: The softening rate is scaled by a factor which depends 

on the element size (Pietruszak & Mroz 1981). 

5. Non-local approach: Local quantities (stresses and strains) are averaged over a 

predefined soil volume to obtain so called non-local or regularized quantities, 

Eringen (1972), Bažant & Gambarova (1984). The size of the averaging 

volume is defined by an internal length, which is an additional input 

parameter. Constitutive equations are then formulated in these “non-local” 
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quantities. A fully non-local approach involves regularization of both stresses 

and strains. In most constitutive models only softening state variables are 

treated as non-local quantities, which is known as the partially non-local 

approach, Brinkgreve (1994), Jirasek (1998). 

6. Strain-gradient approach: The gradient of the strain tensor is taken into 

account in the constitutive equations. As a special case of the non-local 

approach, mesh independent results are obtained by introducing an internal 

length scale, but stresses and strains are kept as local quantities (Aifantis 1984, 

Vardoulakis & Aifantis 1989). 

 

In the current multilaminate model a partially non-local approach is employed, in 

which regularization is applied only to plastic strains in strain softening. A 

similar approach has been successfully utilized by Galavi (2007) to model 

friction and cohesion softening within the multilaminate framework. The main 

advantage of the method is its relatively simple implementation without changes 

to the FE-calculation kernel, as all modifications can be carried out within the 

stress point algorithm. 

 

6.4.2 Non-local approach 

 

The non-local approach is based on the assumption that material behaviour does 

not only depend on local variables at the current stress point, but also on 

quantities averaged over a specific volume in the neighbourhood of the point. 

The fully non-local formulation of stresses and strains proposed by Eringen 

(1981) is given by Equations 140 and 141.  
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(xn) and (xn) are local stresses and strains at point x, which is defined by the 

global Cartesian coordinates x1, x2, x3. The non-local stresses and strains at point 

x, *xn) and *
(xn), are found by integration over the local stresses and strains in 

the vicinity of x, for which the local coordinates x’1, x’2, x’3 are introduced. The 

weight function x’n) accounts for the diminishing influence of points with 

increasing distance to the current stress point. The weighted volume Vw is used to 

normalise the integrals in Equations 140 and 141 and thus accounts for the 

smaller soil volume around stress points in the vicinity of model boundaries. 
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   321 xdxdxdxV nw   (142) 

 

The weight function x’n) defines the soil volume over which averaging is 

carried out, and hence governs the predicted shear band thickness (Jostad & 

Grimstad 2011). Eringen (1981) proposed a Gaussian distribution function 

(Equation 143), which uses the internal length l to define the area of influence for 

the averaging. However, the Gaussian function still tends to deliver overly strain 

concentration in the centre of the shear band.  

 

Brinkgreve (1994) therefore expanded the classical non-local approach by a 

linear combination of local and non-local contributions (Equation 144), while 

keeping the Gaussian distribution function as the weight function. An additional 

input parameter, , is used to scale local and non-local quantities. Galavi (2007) 

kept the original formulation of strain integration (Equation 141), but introduced 

a weight function 'r) which is characterised by applying zero weight to the 

strain of the current stress point (Equation 145). Both weight functions are 

depicted in Figure 86 for an internal length of l = 1. 
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The weight function proposed by Galavi (2007) is used in the current model, as it 

offers two major advantages: 

 

1. The non-local strain is independent of the local strains at the current stress 

point. Plastic strains calculated within a calculation step therefore have no 

influence on the non-local strain, which is evaluated once at the start of the 

calculation step. This is particularly advantageous for multilaminate models, 

as the local strain distribution among the integration planes is only known at 

the end of the step. Employing a Gaussian distribution function would require 

an iterative scheme to update the non-local damage strain within the current 

calculation step, which requires additional computational effort. 
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2. Apart from the internal length l, no additional input parameters are required.  

 

distance r

0 1 2 3 4 5

w
e
ig

h
t 
fa

c
to

r 

 r

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gaussian

Galavi (2007)

 
 
Fig. 86: Weight functions for l = 1 

 

Jostad and Grimstad (2011) demonstrated that the modified weight function 

proposed by Galavi may result in non-smooth strain distributions over the shear 

band. However, mesh independence of results – which is seen as the major 

objective of strain regularization – was achieved even with the uneven strain 

distribution. 

 

As pointed out by Galavi (2007) and Marcher (2003), the non-local approach is 

only applicable to shear bands which can be described as weak or no 

discontinuities. A weak discontinuity is characterised by a continuous 

displacement field, but exhibits a jump in the strain field. No discontinuity means 

that both strains and displacements within the shear band can be described by 

continuous, differentiable functions. Such shear bands are commonly observed in 

dense sands and overconsolidated clays, where softening is related to dilatant 

behaviour. Shear bands have a finite (albeit small) size, which allows for 

distribution of displacements over the shear band.  

 

On the other hand, fractures in rock and concrete, or polished shear surfaces of 

clays at residual shear strength are so called strong discontinuities. Both strain 

and displacement fields are discontinuous, and formation of shear bands (or 

cracks) does not necessarily involve dilatancy. Consequently, infinitely small 

shear bands are observed which do not allow for distribution of displacements. 

The non-local approach, however, inevitably involves the assumption of shear 

bands of finite size, which does not reflect the softening behaviour of rocks and 

concrete. 
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6.4.3 Implementation 

 

A partially non-local approach is implemented in the multilaminate model, which 

largely follows the procedure developed by Galavi (2007). The partially non-

local formulation only treats softening state variables as non-local quantities, 

while stresses and strains in the hardening regime are kept as local values. 

Previous applications in geotechnical boundary value problems have 

demonstrated that sufficient regularization and mesh independence can be 

achieved with this approach (Brinkgreve 1994, Marcher 2003).  

 

Regularization is carried out on the macroscopic damage strain d, which is the 

weighted sum of plastic normal strains from local deviatoric and Hvorslev yield 

surfaces (Equation 146). The weight factors wi and the number of integration 

planes i depend on the chosen integration rule. 

 

  
i

i
p
n,cone

p
n,HVd w  (146) 

As the value of the weight function 'r) in the non-local approach rapidly 

diminishes with increasing distance to the current point, only stress points within 

a sphere of radius 2l are taken into account. The position of these points, their 

corresponding weights 'm and the size of the finite elements are written into 

external files at the start of the calculation. The non-local value of the global 

damage strain is then calculated separately for each stress point as 
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Vw is the weighted volume within a sphere of radius 2l around the current stress 

point, Vm is the volume of influence of each stress point, mSP is the number of 

stress points within a sphere of radius 2l, l is the internal length parameter and 

'm are the weight factors according to Equation 145. Global damage strains d,m 

must be known beforehand for all stress points. Non-local damage strains can 

therefore only be obtained at the start of a calculation step, as plastic strains and 

change of damage strain of neighbouring stress points are unknown within the 

current calculation step. The non-local damage strain *
di for each integration 

plane is calculated by multiplying the non-local global damage strain with the 

weight factor wi. 
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Non-local softening is only considered after the local Hvorslev yield surface is 

activated for the first time. The non-local damage strain at first contact with the 

Hvorslev yield surface, *
di,peak, is stored as a state variable for each integration 

plane, and only the difference between current and peak damage strain is used in 

the softening calculation. The local softening law (Equation 132) can therefore 

be rewritten as  
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'nc is the local hardening pre-consolidation stress, which defines the size of the 

cap yield surfaces in strain hardening. The cap yield surface increases with 

plastic normal strains from the cap yield surface according to Equation 35. The 

softening parameter hsoft controls the magnitude of softening for a given damage 

strain increment. The non-local pre-consolidation stress'
*
nc is only calculated 

after strain softening started, and hence *
di is always larger than *

di,peak. K, m 

and pref are parameters of the basic model as described in chapter 3.1. 
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Fig. 87: Relation between mobilised shear stress and non-local damage strain 

on integration plane level 

 

Even though contributions from the deviatoric yield surface are included in the 

macroscopic damage strain d, dilatancy in deviatoric hardening does not result in 

reduction of '
*
nc, as non-local strain regularization only gets activated after 

peak strength has been mobilised. Strain softening in a neighbouring stress point 

only affects the current stress point if softening has already been initiated, i.e. the 
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local Hvorslev yield surface has been reached. The impact of these assumptions 

on the evolution of shear bands will be discussed in section 6.5.4. 

 

6.5 Numerical simulation of biaxial tests 

 

The numerical biaxial test simulations reported in this chapter have been 

conducted to study the model behaviour in softening and to demonstrate the 

effectiveness of the non-local approach to obtain mesh independent results. 

These simulations are therefore not intended to reproduce specific experimental 

results. 

 

Two different versions of the non-local approach are compared. Firstly, 

numerical simulations are presented which employ the “regular” approach 

described in previous chapters. In this approach, non-local strain regularization is 

only taken into account, once a stress point has reached its maximum shear 

strength. In another, “modified” version, non-local strain regularization is active 

from the onset of the simulation. The impact of these assumptions on the 

evolution of shear bands is discussed and results are compared with analytical 

solutions. 

 

6.5.1 Numerical model and material properties 

 

The test specimen is 1 m high and 0.5 m wide, with linear elastic, very stiff 

endplates at the top and the bottom of the specimen. Model symmetry is assumed 

in the standard calculations, and consequently only half of the biaxial specimen 

has been modelled in these simulations (Figure 88). In order to investigate the 

influence of boundary conditions, additional calculations have been performed 

with a full biaxial model, both with horizontally free and fixed top plate (Figure 

89).  

 

Plane strain, drained conditions are assumed in all calculations phases. The 

calculations are performed with small deformations, i.e. changes in model 

geometry and area of finite elements are not taken into account. Prescribed 

vertical displacements are transmitted to the specimen via the stiff endplates. Due 

to the restraint provided by the rough end plates, stress and strain distribution 

within the soil is non-uniform, which triggers the formation of shear bands 

without artificially introducing weak elements in the model. In order to enforce 

the formation of single shear bands in the full biaxial model with free top plate, a 

slight geometric shift of the top plate of 1 mm to the right has been applied. 
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Horizontal and vertical stresses of 'h = 'v = -100 kPa are applied at the start of 

the calculation, and horizontal stresses are kept constant during the simulation. 

The FE-meshes compared in this study contain 40, 86, 162 and 354 elements for 

the half model and 84, 156, 334 and 646 elements for the full biaxial model. 15-

noded finite elements with forth-order shape functions and 12 Gauss points 

(stress points) per element are used.  

 

Material parameters of reconstituted Pietrafitta clay (Table 19) are employed, 

with additional parameters for the non-local approach given in the corresponding 

sections of this chapter. Small strain stiffness effects have been neglected, as this 

study is focussed on post-peak behaviour. 

 

 
 
Fig. 88: Symmetric biaxial model and finite element meshes 
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Fig. 89: Full biaxial model and boundary conditions 

 

6.5.2 Results with regular approach 

 

Mesh independence of load-displacement behaviour 

Load-displacement curves of calculations without non-local strain regularization 

are shown in Figure 90 for the symmetric half model. A rather low softening rate 

of hsoft = 20 was used in these calculations to obtain numerically stable results 

with the finer FE-meshes. After peak strength is mobilised, results are strongly 

dependent on the coarseness of the FE-mesh. Finer meshes deliver faster strain 

softening and hence sharper decrease of vertical force than coarser meshes. 

Results obtained with the finest mesh show stepwise decrease of the vertical 

force, which indicates changes in the failure mechanism during softening. 

 

Load displacement curves of the non-local calculations are shown in Figure 91 

for the half model and in Figure 92 for the full biaxial model with free top plate. 

Simulations have been performed with an internal length of lcal = 0.05 m and a 

softening parameter of hsoft = 40. Reasonable mesh independence is achieved up 

to uy = 100 mm for both models, but curves diverge slightly at the residual load 

level in the half model. The difference between the coarsest and the finest mesh 

in the half model is about 10% at uy = 200 mm. Post-peak softening proceeds at a 

significantly faster rate in the full biaxial model, if the top plate is allowed to 

move horizontally. Slightly better regularization is obtained with the full biaxial 

model. The meshes with 40 elements for the half model and 84 elements for the 

full appear to be slightly too coarse to achieve sufficient mesh independence at 

residual load level. 
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Fig. 90: Force-displacement curves of biaxial test simulations without strain 

regularization (hsoft = 20), half model 
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Fig. 91: Force-displacement curves of biaxial test simulations with strain 

regularization (lcal = 0.05 m, hsoft = 40), half model 
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Fig. 92: Force-displacement curves of biaxial test simulations with strain 

regularization (lcal = 0.05 m, hsoft = 40), full model 

 

Evolution of shear bands 

The distribution of accumulated shear strains at peak load is nearly symmetric 

and broadly similar for the various FE-meshes, with shear strains concentrated at 

mid height of the specimen and at the fixed end plates (Figure 93). Shortly after 

reaching the peak vertical force, shear strains start to concentrate in two narrow 

shear bands, which for the finer meshes are not symmetric.  

 

The pattern of shear bands is very similar for the finer meshes (albeit in some 

cases mirrored to the horizontal), regardless whether non-local strain 

regularization is taken into account (Figure 95) or not (Figure 94). In both cases 

the inclination θ with respect to the horizontal is about 60-65° for the steep and 

about 35-40° for the shallow shear band. The steeper shear band develops first 

and is thicker than the shallow, secondary shear band.  

 

This shear band pattern appears to be a result of the boundary conditions imposed 

by enforcing symmetry and consequently preventing any lateral movement of the 

top end plate. The simulations with a full biaxial model (Figure 96b, c) show, 

that strains concentrate in a single shear band, if the top plate is allowed to move 

laterally. Similar shear band patterns as with the half model are obtained, if the 

top plate is fixed laterally in the full biaxial model (Figure 96a).  
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Fig. 93: Accumulated shear strains at peak vertical force, half model 
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Fig. 94: Accumulated shear strains at uy = 150 mm without strain 

regularization (hsoft = 20), half model 
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Fig. 95: Accumulated shear strains at uy = 150 mm with non-local strain 

regularization (lcal = 0.05 m, hsoft = 40), half model 
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Fig. 96: Accumulated shear strains at uy = 200 mm with non-local strain 

regularization in full biaxial model (lcal = 0.05 m, hsoft = 40): a) both 
end plates horizontally fixed, 158 elements, b) top end plate 
horizontally free, 158 elements, c) top end plate horizontally free, 334 
elements 

 

The dependency of shear band patterns in biaxial tests on kinematic boundary 

conditions has also been observed experimentally. Desrues (1998) reported for 

dense sands, that two shear bands develop, if coaxiality of the end plates is 
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enforced. The first shear band is the only mechanism for a long time, until the 

second shear band evolves shortly before the residual load level is reached.  

 

The inclination of these two shear bands, however, is typically much closer to 

each other than in the numerical simulations presented here. Alshibli et al. (2003) 

found a difference of 3°-4° in biaxial tests on dense Ottawa sand. Comparable 

biaxial test results with horizontally restrained end plates are unfortunately not 

available for heavily overconsolidated clay. Most biaxial tests are carried out 

with testing equipment, in which one of the end plates is either free to move 

horizontally, or lubricated end plates are used (Vardoulakis & Goldscheider 

1981, Drescher et al. 1990). In that case strains tend to localize into a single shear 

band (Mita 2002, Alshibli et al. 2007), as also observed in the numerical 

simulations here. 

 

Two analytical solutions for the shear band inclination θ have been proposed: 

The Coulomb solution predicts the orientation of the plane in the Mohr’s circle 

with the most critical stress ratio at failure and is therefore only related to ' 

(Equation 151). Roscoe (1970) argued that the shear band at critical state is a line 

of zero extension, and θ is therefore related to the angle of dilatancy (Equation 

152). 

 

2
45 max

C





  (151) 

 

2
45 max

R


   (152) 

 

Experimental shear band inclinations plot between these bounds for most 

geomaterials, which led to the intermediate relationship proposed by Arthur et al. 

(1977): 

 

4
45 maxmax 




A  (153) 

 

In all three relationships the maximum friction angle at failure, 'max, and the 

maximum angle of dilatancy, max, are used. Based on experimental data Arthur 

& Dunstan (1982) reported that the shear band inclination changes from θC to θR 

with increasing particle size, which was later confirmed theoretically by Vermeer 

(1990). Desrues & Hammad (1989) showed experimentally for Hostun sand, that 

θ decreases slightly with increasing confining stress. Roscoe’s solution, however, 

was out of the range of experimental results even at higher confining pressures.  
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Marcher (2003) compiled experimental data on coarse grained soils from various 

authors, which confirmed the trend observed by Desrues & Hammad. For fine 

grained, heavily overconsolidated Beaucaire marl, Marcher reported biaxial shear 

band inclinations of θ = 56-63°at low confining pressures of 'h = -100 kPa, 

which decreased to θ = 50-58° at 'h = -600 kPa. 

 

Back calculating 'max in the numerical simulations from the overall effective 

stress ratio at peak delivers 'max = 45.3°, which according to the constitutive 

model yields max = 15.3°. The inclination of the numerical shear band in the full 

biaxial models (θ = 60-65°) is closer to the Coulomb (θC = 67.6°) than the 

Roscoe (θR = 52.7°) solution, and agrees reasonably well with experimental 

results on heavily overconsolidated Beaucaire marl at low confining pressure 

(Marcher 2003). 

 

Stress level dependency of peak strength 

One of the specific features of the multilaminate Hvorslev surface model is the 

dependency of peak strength and softening behaviour on stress level and degree 

of overconsolidation. Figure 97 shows the mobilisation of stress ratio 'v/'h with 

increasing vertical displacement for different confining stresses 'h. Calculations 

have been performed with the full biaxial model with horizontally free top plate. 

The vertical stress 'v has been obtained by averaging the vertical force over the 

end plate length of 0.5 m.  

 

With increasing confining stress, the peak stress ratio 'v/'h reduces from 6.0 at 

'h = -100 kPa to about 3.7 at 'h = -400 kPa. The softening rate directly after 

peak notably reduces with increasing confining stress, which compares well with 

experimental data (Burland et al. 1996, Callisto & Rampello 2004). Load 

displacement curves for the different confining stresses diverge slightly at 

residual load level, but plot close to the calculation without Hvorslev surface.  

 

The analytical stress ratio at critical state is 'v/'h = 3.0 (for 'res = 30°), which is 

about 7% less than the numerical results. This difference is a consequence of the 

multilaminate framework, which employs a set of predefined planes, whose 

orientation does not necessarily coincide with the plane of maximum stress 

obliquity.  

 

The resultant overestimation of shear strength, which depends on the chosen 

integration rule, the friction angle and the stress state, has been investigated by 

Scharinger (2007), who found a maximum deviation of multilaminate prediction 

from the analytical result of ~9% for the integration rule with 2x33 planes. This 

is, however, not so critical in boundary value problems, as not all planes in all 

stress points deviate from the optimum orientation to the same degree. 
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Fig. 97: Mobilisation of shear strength in biaxial test simulations for different 

confining stresses (lcal = 0.05 m, hsoft = 80), full model 

 

6.5.3 Softening scaling 

 

The influence of the internal length parameter, lcal, and the softening parameter, 

hsoft, on the post-peak load displacement behaviour has been studied in a series of 

biaxial test simulations. A full biaxial model with horizontally free top plate is 

used, as shown in Figure 89. Calculations have been performed with internal 

lengths lcal = 0.05 m, 0.10 m and 0.20 m and with softening parameters hsoft = 20, 

40 and 80. In all simulations finite element meshes with 158 15-noded elements 

have been utilized. Figure 98 shows the corresponding load-displacement curves 

for a horizontal confining pressure of -100 kPa. Reducing the internal length 

yields faster softening as strain regularization is confined to stress points closer 

to the shear band. A similar effect is obtained by increasing the local softening 

parameter. 

 

It seems obvious, that an increase of the internal length can be compensated by a 

corresponding increase of the softening rate. Such a relation is particularly 

useful, as the non-local approach requires a sufficient number of stress points 

within the regularization area to work efficiently, which poses a lower limit for 

the internal length for a given finite element size. From the calculations of the 

previous section it is concluded that satisfactory regularization is obtained if the 

following condition is satisfied for 15-noded triangular elements: 

 

elcal L.l  50  (154) 
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Fig. 98: Force-displacement curves of biaxial test simulations with varying 

internal length (left) and varying softening parameter (right) 

 

Lel is the edge length of the triangular finite element. With that condition at least 

about 100 stress points are taken into account in strain regularization. If hsoft has 

been calibrated in back-calculations of small scale laboratory tests with a fine 

FE-mesh and a small internal length, hsoft can be scaled to coarser meshes and 

hence to a larger value of lcal with the following linear relationship: 

 

2

2

1

1

,cal

,soft

,cal

,soft

l

h

l

h
  (155) 

 

This scaling of the softening rate was suggested by Brinkgreve (1994), based on 

previous work by Pietruszczak & Mroz (1981), for a linear softening rate, i.e. for 

models in which the reduction of shear strength for a given plastic strain 

increment does not depend on the accumulated plastic strains. However, 

softening scaling also works reasonably well in the multilaminate Hvorslev 

surface model, which employs a non-linear softening rate. Figure 99 shows load-

displacement curves of four biaxial test simulations with different combinations 

of hsoft and lcal, but the same ratio of hsoft/lcal. Finer meshes have been used for the 

simulations with lcal = 0.05 m and 0.025 m in order to fulfil Equation 154. Very 

similar load-displacement curves are obtained for all cases, which demonstrates 

the applicability of linear softening scaling. It is therefore possible to carry out 

strain softening calculations with relatively coarse FE-meshes and fairly large 

internal lengths lcal, if the softening parameter hsoft is adjusted according to 

Equation 155.  

 

The experimental shear band thickness of a granular material – which can be 

regarded as the ‘real’ internal length – is related to the average grain diameter 

(~10…20·d50 for sand, Marcher 2003). A clear relationship between the internal 
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length lcal and the numerical shear band thickness obtained with the 

multilaminate model, however, could not be established. Calculations using the 

same FE-mesh but different internal lengths yield about the same numerical shear 

band thickness, while simulations with different meshes and the same value of 

lcal show that the numerical shear band thickness varies with mesh coarseness 

(Figure 96).  

 

A combination of non-local strain regularization and adaptive re-meshing in 

areas with high strain gradients could be used to ensure that a sufficient number 

of stress points are taken into account in the non-local approach while using a 

relatively coarse mesh outside the shear band area.  
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Fig. 99: Force-displacement curves of biaxial test simulations using softening 

scaling 

 

6.5.4 Impact of non-local strain regularization in the 

pre-peak range 

 

Non-local strain regularization is only activated in the regular model, once the 

stress point has mobilised its maximum shear strength, i.e. the stress path on at 

least one integration plane has reached the Hvorslev surface. Strain softening in 

neighbouring stress points therefore only affects stress points which have 

mobilised peak strength themselves. Consequently, the damage strain is 

distributed within the model, but does not necessarily induce strain softening in 

the vicinity of the existing shear band. Thereby the ability of the shear band to 

move within the numerical model is limited. The regular model differs in this 
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aspect from other implementations of the non-local approach (Brinkgreve 1994, 

Marcher 2003, Tejchman 2004), which treat the softening state variable as a non-

local quantity also before peak strength is reached. 

 

In order to investigate the impact of pre-peak strain regularization, additional 

calculations have been performed with a slightly modified model, which employs 

non-local strain regularization from the start of the calculation (Figure 100). 

Dilatant plastic normal strains from the deviatoric yield surface cause a reduction 

of 'nc before the initial Hvorslev surface is reached. All constitutive equations at 

stress point level as well as the non-local weighting function are taken from the 

regular model.  

 

Within boundary value problems, stress points outside the numerical shear band 

reduce in shear strength before any plastic strains might be generated by the 

stress point itself. Consequently, this modified implementation resembles the 

versions of the non-local approach mentioned above.  

 

 
 
Fig. 100: Modified non-local strain regularization 

 

Numerical biaxial simulations have been performed with the half model with 

enforced symmetry and with the full biaxial model with free top plate. In the full 

model, a slight geometric shift of the top plate of 1 mm to the right enforces 

strain localization into a single shear band. Calculations have been conducted 

with non-local softening parameters lcal = 0.05 m and hsoft = 40.  

 

Figure 101 shows load-displacement curves for the half model with four different 

FE-meshes and for one full biaxial test simulation with 158 finite elements. 

Load-displacement curves for the half model show good regularization and no 

significant mesh dependency. The peak vertical force of ~142 kN is slightly 

lower than obtained with the previous approach due to allowance for pre-peak 

reduction of the initial shear strength. To obtain comparability with the half 

model, the vertical force of the full biaxial model in Figure 101 has been halved. 
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As already seen with the previous approach, allowing the top plate to move 

horizontally in the full biaxial model yields slightly faster softening. 
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Fig. 101: Force-displacement curves of biaxial test simulations with modified 

non-local strain regularization (lcal = 0.05 m, hsoft = 40), half model 
with four different FE-meshes, full model with 158 elements 

 

While shear strain distributions at peak strength resemble those obtained with the 

regular model, shear bands at residual load show inclinations θ ≈ 45° or even 

slightly below (Figure 102). The full biaxial model delivers essentially identical 

shear band inclinations (Figure 103). These flat shear bands are therefore not a 

result of the kinematic boundary condition imposed by assuming an axis of 

symmetry, or by preventing horizontal movement of the end plates in the half 

model. 

 

Such low values of θ are rather unusual for frictional materials. They are, 

however, frequently observed in biaxial test simulations, when non-local strain 

regularization is employed. Shear band inclinations of less than 45° have been 

obtained by Grimstad and Jostad (2011) in biaxial simulations with the non-local 

NGI-ADPSOFT model for three different weighting functions. Tejchman (2004) 

reported inclinations of ~45° from drained biaxial test simulations using a 

hypoplastic model with Cosserat-continuum and a non-local hypoplastic model. 

Brinkgreve (1994) conducted drained biaxial test simulations with a non-local, 

strain softening Drucker-Prager model and found shear band inclinations of θ = 

45° in purely cohesive material (no dilatancy), and θ = 45° + /2 for frictional 

material. Changing the friction angle ' while holding dilatancy constant 
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delivered identical values of θ. He therefore concluded, that the shear band 

inclination in plane strain is a result of his model, which enforces the Roscoe 

solution, θ = 45° + /2.  
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Fig. 102: Accumulated shear strains at residual vertical force with modified 

non-local strain regularization in half model (lcal = 0.05 m, hsoft = 40) 
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Fig. 103: Shear band evolution in full biaxial model with modified non-local 

strain regularization (lcal = 0.05 m, hsoft = 40) 
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In view of published numerical studies employing various constitutive models, 

this appears to be a result of non-local strain regularization rather than the 

constitutive model. Tejchman’s results (whose hypoplastic model emulated 

 = 0 at residual shear strength) and also the shear bands presented here with the 

modified softening model can be explained by the assumption of zero dilatancy 

at critical state. The various models may predict values of θ > 45° at peak 

strength, but as the non-local regularization allows the shear band to move, and 

 = 0 is assumed at critical state, eventually θ = 45° is obtained. The same effect 

is observed with the modified non-local multilaminate model. Figure 104 shows 

residual shear bands, obtained with the modified model for different values of 

'cs. The inclination of the Hvorslev surface, 'e, has been varied with 'cs, such 

that 'cs - 'e remained constant. Irrespective of the friction angle at critical state, 

shear band inclinations of about 45° are obtained in all three cases. 
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Fig. 104: Accumulated shear strains with modified non-local regularization for 

different values of 'cs (lcal = 0.05 m, hsoft = 40, half model) 

 

However, no such rotation of shear bands is observed in laboratory tests. Shear 

bands typically develop at peak strength (or slightly before) with inclinations 

between the Roscoe and the Coulomb solution, but remain virtually constant in 

further loading (Arthur et al. 1977, Desrues & Viggiani 2004). The shear band 

inclination obtained with non-local strain regularization in the pre-peak range in 

strain hardening models therefore may not match the behaviour of typical 

geomaterials, if the constitutive model assumes  = 0 at critical state.  
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Only if the internal length parameter l comes close to the size of a realistic shear 

band thickness, inclinations θ > 45° are obtained. This is shown in Figure 105 for 

a very fine FE mesh of 2440 15-noded elements (lcal = 1.0 cm, hsoft = 3). Thus, it 

appears that very fine FE-meshes (which facilitate low values of lcal and thin 

numerical shear bands) are necessary to obtain realistic shear band orientations, 

if non-local strain regularization is applied in the pre-peak range. 

 
peak load u  = 60mmy u  = 100mmy u  = 150mmy

 
 
Fig. 105: Accumulated shear strains with modified non-local regularization for 

very small shear band thickness (lcal = 0.01 m, hsoft = 3, full model) 

 

The tendency of the non-local approach to predict Roscoe-type shear bands with 

coarse finite element meshes may be related to the kinematics of the numerical 

shear band. Unless very fine FE-meshes are used, the numerical shear band 

thickness is usually rather large compared to model dimensions (and much larger 

than observed in experiments). Implicitly, a very coarse grained material with a 

large shear band thickness is modelled, and consequently shear band inclination 

primarily depends on dilatancy, as shown analytically by Vermeer (1990). If 

shear bands are allowed to move within the numerical model, they therefore tend 

to evolve along lines of zero extension, as predicted by Roscoe’s solution. 

 

6.5.5 Conclusion for non-local approach 

 

Two different implementations of the non-local approach have been presented:  

1. The ‘regular’ version uses non-local strain regularization only once a 

stress point has reached its maximum shear strength. Softening is 

confined to the shear band itself, and the material around the shear band 

is not affected by plastic strains produced within the shear band. 

Consequently, the ability of the shear band to move within the numerical 
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model is limited, and the inclination of the shear band is primarily 

defined by conditions at peak strength. 

2. In the ‘modified’ version, plastic damage strains are regularized also in 

the pre-peak range. The shear strength of stress points in the vicinity of a 

developing shear band reduces, even if these points have not fully 

mobilised their respective initial strength. The shear band can change its 

position within the model relatively easily.  

 

Version 2 performs slightly better as far as mesh independent load-displacement 

curves are concerned. However, the tendency of shear bands to change their 

orientation in softening is problematic and does not agree with analytical 

solutions and experimental data. Apparently, shear bands level off at 45° to the 

horizontal, unless very small internal lengths and very fine FE-meshes are used.  

 

Version 1 delivers reasonable (albeit not perfect) mesh independence of load-

displacement behaviour. More importantly, the position of shear bands is defined 

at peak and agrees reasonably well with experimental results also for coarser 

meshes. Judging from the results of the biaxial test simulations, version 1 is 

therefore to be preferred over 2.  

 

However, the performance of these two versions in larger, more practical 

boundary value problems is hard to extrapolate from the biaxial simulations, as 

not all constraints of the biaxial test are practically relevant. In many cases, the 

position of shear bands is virtually fixed by geometrical constraints, which would 

prevent the unrealistic rotation of shear bands seen with 2.  

 

Furthermore, shear band thickness is typically rather small compared to model 

dimensions in such problems, which reduces the impact of boundary conditions 

on shear band orientation. The two versions of the non-local approach should 

thus be finally evaluated after they have been applied to a variety of different 

boundary value problems. 
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7 Conclusion and further research 

7.1 Conclusion 

 

A constitutive model for heavily overconsolidated clay and dense sand for 

application in finite element calculations has been presented. The model is 

formulated within the multilaminate framework, which means that material 

behaviour is modelled on so called integration planes of varying orientation. 

Yield and plastic potential functions for the calculation of plastic strains are 

defined independently on the integration planes. The model can therefore account 

for strain induced anisotropy without additional input parameters. The 

macroscopic deformation is obtained by numerical integration over the 

integration planes according to a predefined integration rule, which governs the 

accuracy of model predictions. In this study 66 (2x33) integration planes have 

been used for carrying out the numerical integration.  

 

The model presented in this thesis is based on previous work carried out at TU 

Graz. The non-linear stress dependency of stiffness parameters proposed by 

Scharinger (2007) has been combined with anisotropic shear strength and strain 

softening developed by Galavi (2007). Calculation speed was significantly 

improved by modifying the convergence criterion on stress point level without 

compromising on the accuracy of numerical results. Other improvements include 

the treatment of corner points in the yield surface and the automatic 

determination of the shape of the cap yield surface.  

 

Two new features have been added to improve the predictive capabilities of the 

model for heavily overconsolidated clay and dense sand: Cross-anisotropic 

stiffness in the small strain range can be taken into account, and the shear 

strength of stiff clays on the dry side of the critical state line is defined by a 

Hvorslev yield surface with subsequent strain softening. 

 

Modelling of stiffness anisotropy by a microstructure tensor has been compared 

with the spectral decomposition of the elastic compliance matrix. Better match 

with experimental data is obtained with the latter method, as the microstructure 

tensor approach cannot cover the whole range of cross-anisotropic stiffness 

characteristics. Degradation of small strain stiffness with accumulating strains is 

modelled by a logarithmic function. Stiffness recovery with changes in loading 

direction is governed by the evolution and removal of strain history contours, 

which are utilized to store the loading history of the integration plane. The model 

can account for the differences in stress dependency of small strain stiffness 

observed in experiments on fine and coarse grained soils. 
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The influence of cross-anisotropic stiffness in the small strain range has been 

studied in an excavation problem and a strip footing calculation. While 

deformations in the excavation problem were governed by the equivalent shear 

stiffness activated in the corresponding loading direction, footing settlements 

could be related to the mean axial stiffness of the soil at small strains. 

 

To improve shear strength predictions for heavily overconsolidated clay, a 

Hvorslev yield surface has been introduced on integration plane level. An 

important feature of the model is the consideration of plastic strains before peak 

strength is mobilised. Comparison with experimental data on Vallericca and 

Pietrafitta clay shows good agreement in predicted shear strength and stress-

strain behaviour. To avoid the numerical problems associated with strain 

softening in numerical analysis, non-local strain regularization is employed in the 

post-peak range. Biaxial test simulations demonstrated that mesh independent 

results are obtained. Scaling of the softening rate facilitates the application of the 

model in practical boundary value problems.  

 

7.2 Further research 

 

The multilaminate model presented in this thesis can account for various 

advanced facets of soil behaviour, like anisotropy in strength and stiffness, strain 

softening and non-linear small strain behaviour. It is recommended, that further 

research on the multilaminate model may focus on the following aspects: 

 

 Development of a new deviatoric hardening rule to improve model 

predictions for varying confining stresses. 

 

 Application of the Hvorslev surface model to geotechnical boundary value 

problems to assess numerical robustness and predictive capabilities. 

 

 Evaluation of the impact of different assumptions in non-local strain 

regularization on the evolution of shear bands in geotechnical problems. 

 

 Systematic investigation of the influence of anisotropy (both in strength and 

stiffness) and strain softening in geotechnical problems. 

 

 Implementation of kinematic hardening in order to obtain more realistic 

results in large stress reversals and in cyclic loading. 
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Appendix A 
 

The following appendix provides some further details on the spectral 

decomposition of the global compliance matrix, which is employed in the model 

to derive local compliance matrices on integration plane level. The equations are 

valid for a cross-anisotropic material with a vertical axis of symmetry, in which 

case the material behaviour is isotropic in the horizontal plane. The vertical axis 

coincides with the Cartesian y-direction. Material behaviour is defined by five 

elastic constants, E'v, E'h, G'vh, 'hv, 'hh,. The spectral decomposition is based on 

Kelvin notation of the macroscopic compliance matrix C, which is required to 

preserve the sum of the components of the stress and strain tensor. 

 

Eigenvalues of cross anisotropic compliance matrix C: 
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Eigenangle of cross-anisotropic compliance matrix: 
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Idempotent matrices of C: 
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The model has been implemented as a user-defined soil model (UDSM) for the 

finite element code PLAXIS 2D 2010 and is linked as a Dynamic Link Library 

(DLL) to the calculation kernel of the finite element code. In each calculation 

step, information about the previous stress state, previous state variables and the 

current strain increment is provided by PLAXIS, while the UDSM returns the 

current stress state and changes in state variables according to the constitutive 

model. The FORTRAN source code of the model is given in Appendix D. The 

model has been developed as a full three-dimensional model and can also be used 

in a three-dimensional version of PLAXIS. 

 

The UDSM performs four main functionalities: 

 Provide information about the type of calculation to be performed (e.g. 

undrained, time dependent) 

 Initialisation of state variables at the start of the calculation in elastoplastic 

constitutive models  

 Return of constitutive stresses and new state variables for the current strain 

increment 

 Return effective stiffness matrix 

 Return elastic stiffness matrix 

 

The following chapter provides an overview on the implementation of the 

Multilaminate Model for Stiff Soil with respect to these tasks. 

 

B.1 Parameters exchanged between PLAXIS and 

UDSM 

 

The parameters exchanged by the UDSM and the finite element code at each 

iteration are listed in Table B.1. The parameter IDTask identifies the task the 

UDSM is requested to perform. IDTask can take values from 1 to 6, with  

 

IDTask  =  1: Initialisation of state variables 

    2: Calculation of constitutive stresses 

    3: Formation of effective stiffness matrix 

    4: Return of number of state variables 

    5: Return of matrix attributes 

    6: Formation of elastic stiffness matrix 
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Tab. B.1: Property variables of UDSM 

 

parameter description 

IDTask IDTask identification number of the task 

iMod iMod soil model number 

IsUndr IsUndr drained (0) or undrained (1) conditions 

iStep iStep current calculation step number within current 

calculation phase 

iter Iter current iteration number 

Iel iEl current element number 

Int Int current local stress point number 

X,Y,Z X, Y, Z global coordinates of current stress point 

Time0 not used time at the start of the current step 

dTime not used time increment of current step 

Props Props array (1..50) of model input parameters 

Sig0 ´0 array (1..20) of previous effective stress state in 

current stress point, could include suction stresses 

Swp0 pw,0 previous excess pore pressure in current stress 

point 

StVar0 StVar0 array (1..nstat) of previous values of state 

variables of the current stress points 

dEps d total strain increment of the current step 

D D effective material stiffness matrix 

BulkW Ke bulk modulus of pore fluid 

Sig ´ resulting constitutive stress state 

Swp pw resulting excess pore pressure 

StVar StVar resulting values of state variables 

ipl ipl plasticity indicator (for output purposes) 

nStat nStat number of state variables 

NonSym NonSym symmetry indicator of material stiffness matrix 

iStrsDep iStrsDep stress-dependency of material stiffness matrix 

iTimeDep iTimeDep time-dependency of material stiffness matrix 

iTang iTang indicator for type of stiffness matrix 

iPrjDir iPrjDir project directory name 

iPrjLen iPrjLen length of project directory name 

iAbort Not used parameter forcing the calculation to stop 
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B.2 Files for non-local strain regularization 

 

The UDSM facility provided by PLAXIS only delivers information about the 

current stress point, but not about the neighbouring stress points in the finite 

element mesh. Non-local strain regularization as employed in the presented 

model requires information about the position and strains of neighbouring stress 

points, which needs to be stored in external files. Table B.2 gives a list of the 

files created during the calculation process. Info.sft and Geometry.sft are only 

used at the start of the calculation to obtain information about the position of the 

stress points within the finite element mesh and assign non-local weighting 

factors, which are then stored in Weights.sft. Point_index.sft contains the address 

of the neighbouring stress points within the softening files for all stress points of 

the model. Stresspoint.sft stores the maximum number of stress points considered 

for strain regularization at any single stress point. Step.nr, Element.nr and 

StartPhase.nr monitor the position of the current calculation step and iteration 

within the calculation process. 

 
Tab. B.2: I/O files for non-local strain regularization 

 

File name Contents description 

Info.sft 

& 

Geometry.sft 

iEl element number 

Int local stress point number 

X X coordinate of stress point 

Y Y coordinate of stress point 

Z Z coordinate of stress point 

StartPhase.nr StartPhase number of previous calculation phase 

Step.nr 

iStep calculation step number at current phase 

iS total calculation step number  

InSPoint total number of stress points in domain 

Phasexxxx 

& 

Iter.xxxx 

AE area of element 

d local damage strain on the level of stress point 

Null.sft iNull 0: if element is inactive and 1: if element exists 

Weights.sft weights 
non-local weighting factors of neighbouring 

stress points 

Point_index.sft point_index 
address of the neighbouring stress points in 

softening files  

Stresspoint.sft stresspoint 
maximum number of stress points within domain 

of any stress point  

Element.nr 
iEl element number 

Iter iteration number 
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B.3 Return the number of state variables (IDTask=4) 

 

The number of required state variables is requested by PLAXIS at the beginning 

of each calculation phase to allocate the necessary data storage. To optimize 

calculation speed, only the number of state variables essential for the current type 

of calculation is returned, as listed in Table B.3. NUMCP is the number of planes 

taken into account in the integration rule, which is an input parameter of the 

model. As the full functionality of the model is not required in all types of 

calculations, the amount of data stored and transferred by PLAXIS can be 

significantly reduced.  

 
Tab. B.3: Number of state variables required by the available models 

 

Model nStat description 

Basic 3*NUMCP+3   no softening, no small strain stiffness 

MMSS 7*NUMCP 
Hvorslev surface shear strength and 

softening, no small strain stiffness 

MMSC 8* NUMCP 
strain softening according to Galavi (2007), 

no small strain stiffness 

Basic_sss 

MMSS_sss 

MMSC_sss 

12* NUMCP 
any of the aforementioned models with small 

strain stiffness, no stiffness recovery 

Basic_sss_lh 

MMSS_sss_lh 

MMSC_sss_lh 

32* NUMCP 
any of the aforementioned models with small 

strain stiffness and stiffness recovery 

 

B.4 Return matrix attributes (IDTask=5) 

 

In order to store the global stiffness matrix properly, PLAXIS requests 

information about the attributes of stress point stiffness matrices at the beginning 

of each calculation phase. The multilaminate model employs a stiffness matrix 

which is stress-dependent (iStrDep=1), symmetric (NonSym=0), not tangent 

(iTang=0) and time-independent (iTimeDep=0). 

 

B.5 Initialisation of state variables (IDTask=1) 

 

The initial position of yield surfaces and thus the initial values of state variables 

are defined in IDTask = 1 according to the initial stress state and possible 

overconsolidation for each stress point. The shape of the volumetric yield surface 

is determined by an iterative subroutine which aims at reproducing the input 
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lateral earth pressure coefficient in primary loading, K0nc. The initial stresses are 

transferred from PLAXIS to the UDSM, as well as the input model parameters. 

Pre-overburden pressure (POP) and overconsolidation ratio (OCR) have to be 

defined as input model parameters in the UDSM and are taken into account in the 

calculation of stress history as detailed in Equations B.1 to B.4. 

 

POP,vpv  0  (B.1) 

 

OCR,vpv  0  (B.2) 

 

  nc,vph KPOP 00    (B.3) 

 

  nc,vph KOCR 00    (B.4) 

 

'v,0 is the initial vertical stress delivered by PLAXIS according to bulk unit 

weight and model geometry as specified in the input program. The modified 

vertical stress, 'pv is adjusted for the stress history defined by OCR and POP. 

The modified horizontal stress 'ph is obtained from 'pv and the lateral earth 

coefficient in primary loading, K0nc, which is assumed as K0nc = 1 – sin' if not 

specified otherwise. 

 

Both the macroscopic initial stress, '0, and the maximum previous stress state, 

'p, are transformed to the integration planes to obtain local stresses  and 'n. 

The initial position of the cap and cone yield surface is determined independently 

for each integration plane according to Equations B.5 and B.6. 
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In the case of the Hvorslev surface model, cohesion c' = 0 and thus the initially 

mobilised friction angle 'm is derived from the stress ratio  / 'n. Both '0 and 

'p are considered in the determination of initial yield surfaces to ensure that the 

initial stress state does not violate the yield condition fi = 0.  
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B.6 Model input parameters 

 

The input parameters of the multilaminate model presented in this thesis are 

listed in Tables B.4 to B.7. Maximum friction angle 'max, effective cohesion c' 

and dilation angle  are only used if the Hvorslev surface model is not activated 

('e = 0). The default value of K0nc is calculated from the critical state angle 'cs if 

the Hvorslev surface is activated. The isotropic shear modulus at small strains, 

G0,ref, is not used once input values for cross-anisotropic small strain stiffness are 

defined.  

 
Tab. B.4: Basic input parameters 

 

symbol Dim. description 

'max ° maximum effective friction angle 

Eoed
ref

 stress reference stiffness for primary oedometer loading 

Eur
ref

 stress elastic stiffness for un- and reloading at reference stress 

'ur - drained Poisson’s ratio for un- and reloading 

pref stress reference stress 

Amat - parameter to control deviatoric hardening 

't stress maximum tensile strength 

Rf - failure ratio 

m - power for stress-dependency of stiffness 

'mob
*
 ° mobilised friction angle at min. mobilised dilatancy 

mob,min ° minimum of mobilised dilatancy 

c' stress effective cohesion 

 ° dilation angle 

 

 
Tab. B.5: Input parameters for initialisation 

 

symbol Dim. default description 

'0 ° 1.0 minimum initial effective friction angle 

'nc,0 stress -1.0 minimum initial preconsolidation pressure 

K0nc - 1-sin'cs K0 value for normally consolidated conditions 

POP stress 0.0 pre-overburden pressure 

OCR - 1.0 over-consolidation ratio 
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Tab. B.6: Input parameters for small strain stiffness 

 

symbol Dim. description 

G0,ref stress isotropic shear stiffness at very small strains 

deg,1 - threshold strain level for stiffness degradation 

deg,2 - local strain at transition to large strains

E'v0,ref stress vertical stiffness at very small strains 

E'h0,ref stress horizontal stiffness at very small strains 

Gvh0,ref stress cross-anisotropic shear modulus at very small strains 

'vh0 - cross-anisotropic Poisson’s ratio 'vh at very small strains 

'hh0 - cross-anisotropic Poisson’s ratio 'hh at very small strains

 

 
Tab. B.7: Input parameters for Hvorslev surface and softening 

 

symbol Dim. description 

'e ° inclination of Hvorslev surface in -' diagram 

'cs ° critical state friction angle 

hsoft - Hvorslev surface softening parameter 

lcal - internal length for non-local approach 

 

B.6 Determination of stiffness matrix (IDTask = 3) 

 

The multilaminate model does not utilise a tangent stiffness matrix (iTang=0), 

which means that IDTask = 3 and IDTask = 6 both return the elastic stiffness 

matrix of the current stress point.  

 

B.6.1 Non-linear stiffness at very small strains 

 

The modified Newton-Raphson iteration scheme employed in the multilaminate 

model requires the elastic stiffness matrix at the start of the iteration. If elastic 

stiffness is allowed to change with strain level, the global elastic stiffness matrix 

depends on strain history and hence on the strain increment of the current 

iteration. However, the next strain increment is evaluated by the finite element 

code based on information provided by IDTask = 3, and consequently 

information on the next strain increment is not available at the start of this task. 

A lower stiffness than actually present (e.g. at load reversals) leads to no 

convergence of the iteration process at stress point level and must therefore be 

avoided. As the stiffness matrix given by IDTask = 3 is only used to determine 

the size of the next strain increment, the high initial stiffness at very small strains 

is used. For calculation of constitutive stresses in IDTask = 2, the stiffness matrix 
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is updated according to the strain history, which takes changes in loading 

direction into account. As mentioned by Scharinger (2007), this approach 

increases the number of iterations per calculation step proportional to the ratio of 

G0/Gur, which is however inevitable with the current version of the UDSM 

interface in PLAXIS. 

 

B.6.2 Equivalent bulk modulus of pore fluid 

 

Changes in pore water pressure, dpw, during undrained analysis are calculated 

from the equivalent bulk stiffness of the pore fluid, Ke, and the volumetric strain 

increment dvol according to Equation B.7.  

 

volew dKdp   (B.7) 
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Ke is obtained from the elastic shear stiffness G, the effective Poisson’s ratio 'ur 

and the undrained Poisson’s ratio u. In case of anisotropic small strain stiffness, 

G is the average of the anisotropic small strain shear moduli. Ke approaches 

infinity for an incompressible fluid with u = 0.5, which can be avoided by using 

a slightly smaller value of u = 0.495 (Potts & Zdravković, 1999).  
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B.7 Calculation of constitutive stresses (IDTask=2) 

 

This task delivers the new stress state at the end of the given strain increment and 

hence forms the main part of the USDM. The flowchart for this task is shown in 

Figure B.1 and Figure B.2. 

 

 
 

Fig. B.1: Flowchart of IDTask 2, part 1 
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Fig. B.2: Flowchart of IDTask 2, part 2 
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B.7.1 Determination of elastic stiffness matrix 

 

The elastic stiffness matrix D
e
 = C

-1
 calculated in IDTask=3=6 assumes a full 

return of the strain path on all integration planes and thus represents the stiffness 

of the material at very small strain, adjusted for the current stress level. For 

calculating the constitutive stresses in IDTask=2, the actual elastic stiffness 

according to current strain history is required. The current elastic material 

stiffness is governed by two aspects: The local degradation strain deg from 

previous calculation steps needs to be determined for all integration planes, 

resulting in corresponding increase of local compliances Ci, which are then 

summed up to obtain the elastic compliance matrix C. This compliance matrix, 

however, is only valid for a monotonic loading path.  

 

In case of changes in loading direction, material stiffness also depends on the 

current strain increment das deviation from the previous loading path may 

result in partial or full recovery of the initial stiffness. Such change in loading 

direction on integration plane level cannot be detected a priori, as the double 

constraint (enabling projection of both stresses and strains) is only valid before 

any stiffness degradation occurred on any of the integration planes. As generally 

the distribution of strains among the various integration planes is only known at 

the end of the stress point algorithm, an iterative scheme is employed to work out 

the current elastic stiffness. The first run of the stress point algorithm assumes a 

monotonic loading path, i.e. no change in local deviatoric strain direction and 

thus no recovery of small strain stiffness. If the current strain increment yields 

the creation or the erasure of a strain sphere on at least one of the integration 

planes, the stress point algorithm is repeated with an updated global elastic 

stiffness assuming stiffness recovery on that plane. This procedure is repeated 

until no further change of the global elastic stiffness matrix is detected.  

 

Recovery of small strain stiffness is confined to the area below the critical state 

line, 'm < 'cs, to avoid spurious changes in stiffness if the stress point is close to 

or at failure. 

 

B.7.2 Sub-stepping algorithm 

 

A larger distance between 'trial and the yield surface may not be severely 

problematic in macroscopic constitutive models with fully implicit return 

algorithms, which employ second order derivatives of yield and plastic potential 

functions. In multilaminate models, however, too large strain increments yield 

incorrect local plastic strain distributions, as already pointed out by Schuller 

(2000). Scharinger (2007) proposed a sub-stepping procedure to ensure that the 

elastic trial stress 'trial is never excessively outside of the current yield surface, 
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which is also employed in the current multilaminate model. The input parameter 

StepSize determines the maximum distance between 'trial and the yield surface 

closest to 'trial. If the elastic trial stress, calculated from D
e
 and d is larger than 

permitted by StepSize, the strain increment d is split into nsub sub-increments, 

which are then calculated one after another. All sub-increments are calculated 

with the same elastic stiffness matrix D
e
. Typically, values of StepSize = 

5…10 kPa ensure sufficiently accurate results  

 

 

 
 

Fig. B.3: Sub-stepping procedure (Scharinger 2007) 

 

B.7.3 Stress point return algorithm 

 

Various solution strategies are available to solve the constitutive equations of a 

non-linear constitutive model at stress point level for a given strain increment. 

Wiltafsky (2003) implemented a modified Newton-Raphson scheme in 

combination with an implicit return stress point algorithm in the basic version of 

the multilaminate model. This approach is also employed in the model presented 

in this thesis. In implicit return algorithms, plastic strains are calculated for the 

stress state at the end of the increment, which is obviously not known at the start 

of the stress point iteration. The elastic trial stress 'trial is used as a predictor for 

the stress state ' at the end of the increment (Equation B.9). In subsequent stress 

point iterations, plastic strain increments d
p
 and hardening of yield surfaces 

reduce the distance between 'trial and the updated yield surfaces, until the 

convergence criterion is satisfied. In previous multilaminate models the condition 

fi ≤ 1·10
-15

 has been enforced individually for all integration planes (Scharinger 

2007, Galavi 2007). In the current multilaminate model the convergence criterion 

relates to the change of macroscopic plastic strains in consecutive iterations in 

order to increase calculation speed, as described in chapter 3.2. 
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'previous is the stress state at the end of the previous increment, d is the strain 

increment given by PLAXIS, and di is the increment of the local plastic 

multiplier of the integration planes. di is calculated from Equation B.11 

separately for each of the yield surfaces (tension cut off, cap yield surface, cone 

yield surface, Hvorslev surface). Local cap and cone yield surfaces do not 

interact in hardening (independent multi-surface plasticity), but Hvorslev surface 

and cap yield surface shrink and expand together, as they are defined to intersect 

at the critical state line.  
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fi
trial

 is the value of the yield function at the local trial stress 'i,trial on the 

integration plane. As 'i,trial is outside of the yield surface as long as the 

consistency condition (B.13) is not fulfilled, fi
trial

 takes values larger than 0. 
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The local elastic compliance matrix Ci is given in Equation B.14. Yield surfaces 

are formulated in local tangential stress  and local normal stress 'n. Ci is 

therefore the elastic compliance found for the normal-tangential split of local 

stresses, as described in chapter 2.4. 
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Softening of the Hvorslev surface is driven by non-local strains (chapter 6.4.3), 

which are calculated once at the start of IDTask=2 from the damage strains of the 

neighbouring stress points and cannot be updated within the stress point iteration. 

Local strains of the current stress point hence have no direct influence on the 

position of the Hvorslev surface, and the model is consequently explicit in 

softening. This is a slight disadvantage of the current implementation, as small 

load steps are required in the post-peak range to obtain accurate results. 

 

The partial derivatives of the local yield and plastic potential functions are given 

in the following equations. For clarity of the equations local trial stresses 'n,trial 

and trial have been replaced by 'n and . 

 

 Tension yield surface: 
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 Cone yield surface: 
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 Cap yield surface: 
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 Hvorslev yield surface: 
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'ne in Equation B.28 is the equivalent stress on the local normal consolidation 

line at the trial stress 'n,trial. Bcs is a scalar material parameter defining the ratio 

/'n at the intersection of cap yield surface and critical state line, which is 

determined automatically by the model at the initialisation of the stress point. 
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Appendix C 
 

The following section gives the transformation of the Hvorslev yield function fHV 

from the normalized -´ne space to the local stress space -'n, which simplifies 

the calculation of plastic strains.  

 

The Hvorslev yield function is defined in the normalized stress space according 

to Figure C.1 and as given in Equation C.1. Due to normalization with 'ne 

(equivalent stress on the normal consolidation line at the current normal strain), 

Figure C.1 (left) represents a cross section through the state boundary surface.  
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Fig. C.1: Normalized Hvorslev yield surface 

 

For calculation of plastic strains, however, a cut along the “elastic wall” (i.e. 

along the unloading/reloading line) is more appropriate. For this end, 'ne needs 

to be replaced by 'nc, which can be achieved by considering the shape of the 

unloading/reloading and normal consolidation line and the current normal stress 

'n. Elastic unloading from 'nc to 'n yields elastic normal strains n: 
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Applying n to the hardening rule of the cap yield surface, change of 'nc along 

the normal compression line delivers 'ne as a function of ´nc and the current 

normal stress 'n: 



Appendix C 179 

 

 

    mnm
ref

ref,oedm
ncne m

p

E
'' 


 1

1
 1

1
3

  

 

     mm
nc

m
nur

ref,ur

ref,oedm
nc ''

E

E
' 

 1

1
 111

'21
3

  (C.3) 

 

The normalized cohesion intercept c'HV of the normalized yield function is 

defined by the shape of the cap yield surface and the difference between 'e and 

'cs.  

 













CS

e
csHV

'

'
B'c





tan

tan
1  (C.4) 

 

The material parameter Bcs gives the ratio of shear stress cs and equivalent 

normal stress 'n,cs at critical state and thus defines the position of the critical 

state line. 
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While it is possible to derive analytical relationships for Bcs independent of 'nc, 

it is more appropriate to assume a random value of 'nc and calculate the values 

of 'n,cs and 'ne,cs according to Equations C.6 and C.7.  
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The following chapter provides the source code of the Multilaminate Model for 

Stiff Soil. The model is written in FORTRAN programming language to serve as 

a user-defined soil model (UDSM) for the finite element code PLAXIS 2010. 

The subroutines for storing information about the finite element mesh have been 

omitted for clarity. A detailed description of the structure of the source code, 

including the derivatives of the yield and plastic potential functions is given in 

Appendix B. 

 
! -------------------------------------------------------------------------------------- 

! 'Multilaminate Model for OC Clay': user-defined soil model, Bert Schädlich (2012) 

! -------------------------------------------------------------------------------------- 

 

 Subroutine MMS_G0_spec(IDTask, iMod, IsUndr, iStep, iTer, iEl, Int, & 

           X, Y, Z, Time0, dTime, Props, Sig0, Swp0, StVar0, & 

           dEps, D, BulkW, Sig, Swp, StVar, ipl, & 

         nStat, NonSym, iStrsDep, iTimeDep, iTang, & 

           iPrjDir, iPrjLen,iAbort ) 

! -------------------------------------------------------------------------------------- 

! User-defined soil model: multilaminate model 

! 

!  Depending on IDTask, 1: Initialize state variables 

!                       2: calculate stresses 

!                       3: calculate material stiffness matrix 

!                       4: return number of state variables 

!                       5: inquire matrix properties 

!                       6: calculate elastic material stiffness matrix 

! 

!  Argument I/O Type 

!  -------- --- ---- 

!  IDTask   I   I    : see above 

!  iMod     I   I    : model number (1..10) 

!  IsUndr   I   I    : =1 for undrained, 0 otherwise 

!  iStep    I   I    : Global step number in current phase (reset to 1 in each phase) 

!  iter     I   I    : Global iteration number (reset to 1 in each step) 

!  iel      I   I    : Global element number 

!  Int      I   I    : Global integration point number 

!  X        I   R    : X-Position of integration point 

!  Y        I   R    : Y-Position of integration point 

!  Z        I   R    : Z-Position of integration point 

!  Time0    I   R    : Time at start of step 

!  dTime    I   R    : Time increment 

!  Props    I   R()  : List with model parameters 

!  Sig0     I   R()  : Stresses at start of step 

!  Swp0     I   R    : Excess pore pressure start of step 

!  StVar0   I   R()  : State variable at start of step 

!  dEps     I   R()  : Strain increment 

!  D       I/O  R(,) : Material stiffness matrix 

!  BulkW   I/O  R    : Bulkmodulus for water (undrained only) 

!  Sig      O   R()  : Resulting stresses 

!  Swp      O   R    : Resulting excess pore pressure 

!  StVar    O   R()  : Resulting values state variables 

!  ipl      O   I    : Plasticity indicator 

!  nStat    O   I    : Number of state variables 

!  NonSym   O   I    : Non-Symmetric D-matrix ? 

!  iStrsDep O   I    : =1 for stress dependent D-matrix 

!  iTimeDep O   I    : =1 for time dependent D-matrix 

!  iPrjDir  I   I    : Project directory (ASCII numbers) 

!  iPrjLen  I   I    : Length of project directory name   

!  iAbort   O   I    : =1 to force stopping of calculation 

! -------------------------------------------------------------------------------------- 

  USE DFLIB    

  Implicit None 

  Integer   iPrjLen, nstat, iPrjLen_short 

  Integer   iPrjDir(iPrjLen) 

  Integer   iStep     
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  Integer    iTer     

  Double Precision StVar(nStat) 

  Double Precision Sig(6) 

  Double Precision Sig0(6) 

  Double Precision StVar0(nStat) 

  Double Precision dEps(6) 

  Double Precision D(6,6) 

  Double Precision Props(50) 

 

! -------------------------------------------------------------------------------------- 

! Expected contents of Props(1..50) 

!  

!  1 : Eoed_ref  reference stiffness for primary oedometer loading 

!  2 : Eur_ref   elastic refference stiffness for un- and reloading 

!  3 : p_ref   reference stress 

!  4 : m_power   power for stress dependency of stiffness 

!  5 : NYUR    Poisson's ratio 

!  6 : AMAT    material parameter for deviatoric hardening 

!  7 : switch_HV  0-no Hvorslev, 1-Hvorslev with non-local, 2-Hvorslev w/o non-local 

!  8 : COH    cohesion  

!  9 : PHI    ultimate friction angle 

! 10 : PSI    dilatancy angle  

! 11 : TENS    value of sig_n for tension cut-off 

! 12 : POP    pre-overburden pressure 

! 13 : OCR    overconsolidation ratio 

! 14 : Rf    failure ratio 

! 15 : K0nc    lateral earth pressure coefficient for normal consolidation 

! 16 : NUMCP   number of contact planes 

! 17 : phi1    mobilised friction angle at psimin (new dev. flow rule) 

! 18 : psimin   minimum of mobilised dilatancy (new dev. flow rule) 

! 19 : F_Amat   factor on Amat above CSL (research use only) 

! 20 : F_psi   factor on psi above CSL (research use only) 

! 21 : G0ref   isotropic shear modulus at very small strains  

!       at reference pressure 

! 22 : sw_pdash_SN0 switch for stress dependency of stiffness: 0-on p', 1-on sig_n,  

!       2-on sig_h0 and sig_v0 

! 23 : eps_deg_1  parameter for stiffness degradation (small-strain stiffness) 

! 24 : eps_deg_2  parameter for stiffness degradation (small-strain stiffness) 

! 25 : phi_e   inclination of Hvorslev surface in tau-sign-space 

! 26 : SIG_I(1)  optional initial stress state (first component) 

! 27 : SIG_I(2)  optional initial stress state (second component) 

! 28 : SIG_I(3)  optional initial stress state (third component) 

! 29 : SIG_I(4)  optional initial stress state (forth component) 

! 30 : SIG_I(5)  optional initial stress state (fifth component) 

! 31 : SIG_I(6)  optional initial stress state (sixth component) 

! 32 : STEPSIZE  for subincrementing (determines max. size of dEps) 

! 33 : PHI_NULL  minimum value for mobilised friction angle (for initialization) 

! 34 : SIGN_NULL  minimum value for preconsolidation stress (for initialization) 

! 35 : Ev0    Small strain stiffness - Vertical axial E-modulus 

! 36 : Eh0    Small strain stiffness - Horizontal axial E-modulus 

! 37 : Gvh0    Small strain stiffness - Independent anisotropic shear modulus 

! 38 : nuhh0   Small strain stiffness - Poison's ratio within plane of symmetry 

! 39 : nuvh0   Small strain stiffness - Poison's ratio out of plane of symmetry 

! 40 : Ar    Ratio of anisotropy with regard to shear strength 

! 41 : Theta   Angle of rotation between the primary axis of anisotropy  

!       (shear strength) and vertical axis, rotation in xy-plane only,  

!       clockwise rotation = positiv Theta  

! 42 : phi_res   critical state phi in Hvorslev model 

!       /residual phi in Galavis softening model 

! 43 : coh_res   residual cohesion in Galavis softening model 

! 44 : h_phi   softening rate for friction angle (Galavis softening model) 

! 45 : h_coh   softening rate for cohesion (Galavis softening model) 

! 46 : Length   Internal length in non-local approach 

! 47 : A     gives proportion of dev. / normal plastic strains  

!       in Galavis softening approach 

! 48 : MaxPoint  limits number of stresspoints considered in non-local approach,  

!       should be checked with value in stresspoint.sft 

! 49 : sss_recovery switch for sss recovery, 0 - no recovery,  

!       1 - sss recovery activated 

! 50 : h_soft   softening rate in Hvorslev softening model 

! -------------------------------------------------------------------------------------- 

 

Double Precision  ::  Eoed_ref 

Double Precision  ::  Eur_ref 

Double Precision  ::  p_ref  

Double Precision ::  m_power 

Double Precision ::  NYUR    

Double Precision ::  AMAT, Amat_ref, F_amat, F_psi  
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Double Precision ::  ACAP 

Double Precision ::  COH, COH_i   

Double Precision ::  PHI, PHI_i, tan_phi, tan_phi_i  

Double Precision ::  PSI, psi_HV     

Double Precision ::  POWER 

Double Precision ::  TENS  

Double Precision ::  POP    

Double Precision ::  OCR  

Double Precision ::  Rf    

Double Precision ::  K0nc   

Integer    ::  NUMCP, numpoint 

Double precision ::  phi1  

Double precision ::  psimin  

Double Precision ::  SIG_I(6)    

Double Precision ::  STEPSIZE 

Double Precision ::  PHI_NULL, tan_phi_Null 

Double Precision ::  SIGN_NULL  

Double Precision ::  G0ref 

Integer    ::  sw_pdash_SN0 

Double Precision ::  gamma_1, gamma_2 

Double Precision ::  phi_e, tan_phi_e    

Double Precision ::  CONVERGE  ! for convergence control 

Double Precision ::  crit   ! for convergence control 

Double Precision ::  SIGNC, TPHIM 

Double precision ::  xNu_U   ! undrained Poisson's ratio 

Double precision ::  BulkW   ! Bulk modulus of water in undrained calculation 

Double precision ::  phicv   ! critical state frictio angle 

Double Precision ::  tan_PHI_MOD ! corresponding to Rf 

Double Precision ::  MCP    ! cap shape parameter 

Double Precision ::  L(3)   ! for stress transformation  

Double Precision ::  P(3), t(3), tt(3), s(3) ! for stress transformation 

Double Precision ::  SN    ! normal stress on contact plane  

Double Precision ::  TAU   ! shear stress on contact plane 

Double Precision ::  iTAU   ! check value for negative TAU 

Double Precision ::  SN0   ! normal stress from sig0 on contact plane  

Double Precision ::  TAU0   ! shear stress from sig0 on contact plane  

Double Precision ::  SIGMA0(3,3), sigma_nc0 ! symmetric stress matrix sigma0   

Double Precision ::  SIGMA0_mod(3,3)! symmetric stress matrix sigma0_mod   

Double Precision ::  SIGMA(3,3) ! symmetric stress matrix 

Integer,Dimension(3):: V1,V2,V3  ! for assembling stress matrix 

Double Precision ::  dsig(6)  ! stress increment 

Double Precision ::  Sig0_mod(6) ! modified initial stress state due to POP/OCR 

Double Precision ::  Sig_trial(6)! trial stress state 

Double Precision ::  dSig_trial(6) ! trial stress increment 

Double Precision ::  dEps_trial(6) ! target global strain increment  

Double Precision ::  dEps_plastic(6)! global plastic strain increment  

 

! difference of global plastic strain increments of subsequent iterations 

Double Precision ::  dEps_vol_pl, SumdEps_vol_pl, dGamma_pl, SumdGamma_pl  

 

! subincrementing variables 

Double Precision ::  SIGNC_s, ITAU_0 

Integer    ::  n_sub, n_sub_cone, n_sub_cap, n_sub_tens, n_sub_HV  

Double Precision ::   dSig_check(6) ! stress increment for calculating n_sub 

Double Precision ::   Sig_check(6) ! stress state for calculating n_sub 

Double Precision ::   SIGMA_check(3,3), SN_CHECK, TAU_check  

Double Precision ::  dEps_sub(6)  ! global strain increment for subincrementing 

Double Precision ::  dEps_norm  ! norm of dEps for subincementing 

Double Precision ::  Sig0_sub(6)  ! global stress state at start of subincr. 

Double Precision ::  SIGMA_0(3,3), SN_0, TAU_0 ! stresses at start of step 

Double Precision ::  DSN, DTAU   ! local stress change due to deps 

Logical    ::  converged_cp ! convergence for iteration over cp's 

Logical    ::  failure_mode ! correct mode of failure 

Integer    ::  ipl_cp(5)  ! state of plasticity during one sub-iteration 

Integer    ::  ipl_gl(5)  ! state of plasticity within integration point 

Double Precision ::  corr_val   ! min. value of local normal stress 

Character   ::  fname*255  ! file name for debugging 

Logical    ::  IsOpen   ! file status 

Logical(4)   ::  dirpath   ! path of current directory 

Double Precision ::  Cnn_ref, Cnn, Ctt, CNNCTT ! Local normal and shear stiffness 

Double Precision ::  facCnn   ! stress dependency of local stiffness 

Double Precision ::  TiT_spec(6,6), Tj_spec(6,6), TiT_spec_inv(6,6), TiT(3,6), 

Tj(6,3) ! Transformation matrices 

Double Precision ::  Sig0_cp(3), Sig_cp(3), Sig_cp_spec(6), Sig0_cp_spec(6), 

Sig0_sub_cp(6)  !Local stress vectors 

Double Precision ::  C_cp(6,6), LE(6,6), LExTiT_inv(6,6), TjxC_cp(6,6), C_gl_cp(6,6), 

C_gl(6,6) ! local compliance matrices 
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Double Precision ::  D_loc(2,2)  !Local elastic stiffness matrix for plastic strain 

calculation (N-T-split) 

 

 ! For local plastic strain calculation 

Double Precision ::  f_cap, f_cone, f_tens, f_HV  ! values of yield functions 

Double Precision ::  Lambda_cone, Lambda_cap, Lambda_HV ! Local plastic multipliers 

Double Precision ::  epsNcone, epsGcone, epsG1cone, epsG2cone, eps_cone(3)  

Double Precision ::  epsNcap, epsGcap, epsG1cap, epsG2cap, eps_cap(3)   

Double Precision ::  epsNHV, epsGHV, eps_HV(3)         

Double Precision ::  epsNtens, epsGtens, eps_tens(3) 

Double Precision ::  Dloc_x_dgconedsig(2), Dloc_x_dgcapdsig(2), Dloc_x_dgHVdsig(2) 

 

! Derivatives of yield functions 

Double Precision ::  dFcap_dsig(2), dGcap_dsig(2), dFcap_depspl(2)    

Double Precision ::  dFcone_dsig(2), dGcone_dsig(2), dFcone_depspl(2)   

Double Precision ::  dFHV_dsig(2), dGHV_dsig(2), dFHV_depspl(2)     

Double Precision ::  dGTdSN, dGTdTau, dFTdSN, dFTdTau    

 

 ! Variables for plastic strain calculation with Koiter rules 

Logical    ::  cap_active, cone_active, HV_active, failure, Hvorslev  

Double Precision ::  L11, L22, L33, L12, L21, L13, L31, L23, L32  

Double Precision ::  Lambda_cone_1, Lambda_cone_12, Lambda_cap_1, Lambda_cap_12  

Double Precision ::  Lambda_HV_1, Lambda_HV_13, Lambda_HV_23, Lambda_cap_23, 

Lambda_cone_13  

 

! Small strain stiffness parameters 

Double Precision ::  deg_par  ! stiffness degradation parameters 

Logical    ::  stiff_low, smallstrain, anisotropic_el 

Double Precision ::  sss_indicator_cp, sss_indicator_gl, FLOH_GAMMA 

 

! Modification of strain hardening due to small strain stiffness 

Double Precision ::  x_stiff 

Double Precision ::  TPHIM_SSS, SIGNC_SSS, SIGNC_Sig_trial, TPHI_Sig_trial 

Double Precision ::  SIGNC_sub0, TPHIM_sub0 

 

! Anisotropic small strain stiffness 

Double Precision ::  Ev0, Eh0, Gvh0, nu_hh_0, nu_vh_0, nu_hv_0 ! initial stiffness 

Double Precision ::  Ev, Eh, Gvh, nu_hh, nu_vh, nu_hv ! current tangential stiffness  

Double Precision ::  lambda_1, lambda_2, lambda_3, lambda_4, omega   

Double Precision ::  sig_h0, sig_v0  ! initial horizontal and vertical stresses 

 

! calculation of stress/strain direction and stiffness recovery      

Double Precision ::  dSig_el_cp_spec(6) 

Logical    ::  stiffness, recovery, existing    

Integer    ::  iterStiff, sss_recovery 

Double Precision ::  n_bubble_old 

Double Precision, ALLOCATABLE ::  eps_cp_gamma(:,:), deps_cp_gamma(:,:), gamma_cp(:) 

Double Precision, ALLOCATABLE ::  dEps_cp_pl(:,:), dEps_cp_el(:,:), dEps_cp(:,:) 

Double Precision, ALLOCATABLE ::  dEps_cp_el_spec(:,:), eps_gamma_return_1 (:) 

Double Precision, ALLOCATABLE ::  eps_gamma_return_2 (:), eps_gamma_return_3 (:), 

Double Precision, ALLOCATABLE ::  eps_cp_gamma_centre_1(:,:), n_bubble (:) 

Double Precision, ALLOCATABLE ::  eps_cp_gamma_centre_2(:,:), gamma_bubble(:,:) 

Double Precision, ALLOCATABLE ::  eps_cp_gamma_centre_3(:,:) 

 

! Hvorslev surface variables 

Double Precision ::  sig_ve, sigS, tauS, B_cs, tau_max, sig_ve0, sig_ve_check 

Double Precision ::  tan_phi_HV, switch_HV, h_soft 

 

! Parameters of Scharingers dilatancy formulation 

Double Precision ::  a1, b1, c1, a2, b2, c2, d2, k1_nSDT, k2_nSDT 

 

! For correction of plastic strain calculation at tension cut off and Hvorslev surface 

Double Precision, ALLOCATABLE ::  epsn_t_step(:), epsn_HV_step(:), gamma_HV_step(:) 

 

! Anisotropic shear strength 

Double Precision ::  Ar, Theta, Nv, Norm_t, rot(3)   

 

! Parameters for strain softening calculation 

Double Precision ::  Damage_strain, X, Y, Z, Length, Volume 

Double Precision ::  XX,YY,ZZ, LL, GLD_strain 

Integer    ::  iPhase, inSPoint, MaxPoint 

Double Precision ::  Phi_res, tan_phi_res, C_res, eps_damage, eps_damage_old 

Double Precision ::  hPhi, hCoh, Eps_non_local, Eps_non_local_old  

Logical    ::  Softening, Hard_Soft, Eps_non_local_cal  

Double Precision::dSt, WdSt, Vol 

Double Precision, ALLOCATABLE  :: weights(:) 

Integer, ALLOCATABLE     :: point_index(:) 
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Double Precision ::  pdash, Pi, Rad, DUM1, DUM2, DUM, EXPRESSION1, EXPRESSION2, 

EXPRESSION 

Double Precision ::  Eur, facE, Hardcap, phim, psim, SWP0, Time0, DTIME, A 

Double Precision ::  dEpsV, SWp, dSwp, Gur, f1, f2, eps_cp_plastic(3), eps_cp_gl(6) 

Integer    ::  IDTask, i, ii, k, j, m, iel, iter_cp, INT, ipl, Isundr, Nonsym 

Integer    ::  ISTRSDEP, ITANG, ITIMEDEP, IMod, Iabort, NUMSTV, iSt, IREC  

Double Precision, ALLOCATABLE ::  n1(:,:), s1(:,:), t1(:,:), WEIGHT(:) 

 

Data Pi/3.141592653589793238462643383279502884197169399d0/ 

Rad  = 180d0 / Pi 

 

Eoed_ref  = Props(1)   

Eur_ref  = Props(2)   

p_ref   = Props(3) 

m_power  = Props(4) 

NYUR   = Props(5) 

AMAT   = Props(6) / 1000  

switch_HV = Props(7)    

COH   = Props(8) 

PHI   = Props(9) / Rad 

PSI   = Props(10) / Rad  

TENS   = Props(11)    

POP   = Props(12) 

OCR   = Props(13) 

Rf    = Props(14) 

K0nc   = Props(15)  

NUMCP   = Props(16) 

phi1   = Props(17) / Rad 

psimin  = Props(18) / Rad 

F_Amat  = Props(19)  

F_psi   = Props(20)  

G0ref   = Props(21) 

sw_pdash_SN0= Props(22) 

gamma_1  = Props(23) 

gamma_2  = Props(24) 

phi_e   = Props(25) / Rad 

SIG_I(1)  = Props(26)    

SIG_I(2)  = Props(27)    

SIG_I(3)  = Props(28)    

SIG_I(4)  = Props(29)    

SIG_I(5)  = Props(30)    

SIG_I(6)  = Props(31) 

STEPSIZE  = Props(32)  

PHI_NULL  = Props(33) / Rad  

SIGN_NULL = Props(34)  

Ev0   = Props(35)   

Eh0   = Props(36)   

Gvh0   = Props(37)    

nu_hh_0  = Props(38)  

nu_vh_0  = Props(39)  

Ar    = Props(40)  

Theta   = Props(41) / Rad 

Phi_res  = Props(42) / Rad    

C_res   = Props(43)      

hPhi   = Props(44)      

hCoh   = Props(45)      

Length  = Props(46)      

A    = Props(47)       

MaxPoint  = Props(48)         

sss_recovery= Props(49)      

h_soft  = Props(50) 

 

CONVERGE = 1.0d-7 

corr_val = -1.0d0 

 

! open storage for parameters with variable field length 

Allocate (eps_cp_gamma(3,numcp), deps_cp_gamma(3,numcp), gamma_cp(numcp), 

dEps_cp_pl(3,numcp))  

Allocate (dEps_cp_el(3,numcp), dEps_cp(3,numcp), epsn_t_step(numcp), 

epsn_HV_step(numcp), gamma_HV_step(numcp)) 

Allocate (dEps_cp_el_spec(6,numcp), n1(numcp,3), s1(numcp,3),t1(numcp,3), WEIGHT(numcp)) 

Allocate (eps_gamma_return_1(numcp), eps_gamma_return_2(numcp), 

eps_gamma_return_3(numcp),n_bubble (numcp))  

Allocate (eps_cp_gamma_centre_1(numcp,4), eps_cp_gamma_centre_2(numcp,4), 

eps_cp_gamma_centre_3(numcp,4), gamma_bubble(numcp,4)) 

 

smallstrain =.true. 

anisotropic_el =.true. 
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! In case of isotropy in small strain range calculate local compliance from G0ref input 

If (Eh0.le.Eur_ref.and.Ev0.le.Eur_ref) then 

 If (G0ref.gt.(Eur_ref/(2.0d0+2.0d0*NYUR))) then ! isotropic small strain stiffness 

   Gvh0 = G0ref 

   Ev0 = G0ref*2*(1+NYUR) 

   Eh0 = Ev0 

   nu_vh_0 = NYUR 

   nu_hh_0 = NYUR 

   anisotropic_el =.false. 

 Else      ! small strain stiffness == large strain elastic stiffness 

   Gvh0 = Eur_ref/(2.0d0+2.0d0*NYUR) 

   Ev0 = Eur_ref 

   Eh0 = Eur_ref 

   nu_vh_0 = NYUR 

   nu_hh_0 = NYUR 

   smallstrain =.false. 

   anisotropic_el =.false. 

   If (sw_pdash_SN0 == 2) sw_pdash_SN0 = 0 

  End if 

End if 

 

nu_hv_0  =  nu_vh_0*Eh0/Ev0 

 

! set default values if no user input 

if (Rf==0)     Rf=0.9     

if (K0nc==0)    K0nc=1-dsin(PHI)   

if (p_ref==0)    p_ref=100.0d0   

if (m_power.ge.1.0d0) m_power = 0.9999d0 

if (Ar==0)     Ar = 1.0d0 

if (gamma_1 == 0)   gamma_1 = 0.00000001 

if (gamma_2 == 0)   gamma_2 = 0.000002 

if (gamma_2.le.gamma_1) gamma_2 = gamma_1 + 0.000001d0 

if (MaxPoint == 0)  MaxPoint = 200 

if (NUMCP == 0)   NUMCP = 33 

if (F_amat ==0)   F_amat = 1 

if (F_psi ==0)    F_psi = 1 

 

! check whether stiffness recovery is required 

if (sss_recovery == 1) then 

recovery = .true. 

Else  

 recovery = .false. 

End if 

 

! check whether Hvorslev softening calculation is required 

if (switch_HV == 1.or.switch_HV == 2) then  

 Hvorslev = .true. 

 psi = 0.0d0 

 coh = 0.0d0 

 phi = phi_res 

else  

 Hvorslev = .false. 

End if 

 

Hard_Soft=.True.  ! check whether Galavi softening calculation is required 

if ((Phi_res>=0.999999d0*PHI).and.(C_res>=0.999999d0*Coh)) Hard_Soft=.False.   

 

! get direction cosines and weight factors 

call DIRCOS3D (NUMCP, n1, s1, t1, WEIGHT, anisotropic_el, sw_pdash_SN0) 

rot(1) = dsin(Theta) 

rot(2) = dcos(Theta) 

rot(3) = 0.0d0 

tan_phi = dtan(phi) 

tan_phi_e = dtan(phi_e) 

k1_nSDT = 0.0d0 

k2_nSDT = 0.0d0 

 

! -------------------------------------------------------------------------------------- 

! Initialize state variables 

! --------------------------------------------------------------------------------------

If (IDTask .Eq. 1) Then  

! do IDTask1 only once 

If (StVar0(3*ABS(NUMCP)+2)==123.) then 

  if (Hard_Soft) close (34) ! close file startphase.sft if softening calculation 

  Return 

 end if 
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! get length of project directory, specific for Plaxis 2D 2010! 

 iPrjLen_short = iPrjLen - 9 

 StVar0(3*ABS(NUMCP)+13) = iPrjLen_short 

 

 ! get cap shape parameter 

 Call GetAcap (iel,int,ACAP,NUMCP,NYUR,p_ref,Eur_ref,Eoed_ref,AMAT,phi_res,coh,& 

m_power,tens,Rf,K0nc,phi1,psimin,k1_nSDT,k2_nSDT,sw_pdash_SN0,& 

PHI_NULL,SIGN_NULL,anisotropic_el,iPrjDir, iPrjLen_short) 

 

StVar0(3*ABS(NUMCP)+3) = ACAP 

 tan_phi_Null = dtan(phi_null) 

 tan_phi_res = dtan(phi_res) 

 

 ! open files to put information of stress point 

 if (hard_Soft.or.switch_HV == 1) then 

  ! create subdirectory "softening_files" in current directory 

  Do i=1,iPrjLen_short 

   fname(i:i) = Char( iPrjDir(i) ) 

  End Do 

  fname= fname(:iPrjLen_short)//'softening_files' 

  dirpath = MAKEDIRQQ(fname) 

  ! write point ccordinates to file 31 ==> Info.sft 

  Inquire(Unit= 31, Opened= IsOpen)   

  If (.not.IsOpen) Then 

   fname=' ' 

   Do i=1,iPrjLen_short 

    fname(i:i) = Char( iPrjDir(i) ) 

   End Do 

   fname= fname(:iPrjLen_short) //'softening_files'//'/'//'Info.sft' 

   Open(Unit= 31, File= fname, Position='Append')  

  End If 

  write (31,*) Iel, Int, X, Y, Z 

  close (31) 

  iPhase=0 

  fname=' ' 

  Do i=1,iPrjLen_short 

   fname(i:i) = Char( iPrjDir(i) ) 

  End Do 

  fname= fname(:iPrjLen_short)//'softening_files'//'/'//'StartPhase.nr'    

   

Inquire (file = fname, Exist= existing) 

  if (.not.existing) then  

   Open(Unit= 34, File= fname, Position='rewind')  

   write (34,*) iPhase  ! write phase number to file "StartPhase.nr" 

   inSPoint=0 

   Inquire(Unit= 30, Opened= IsOpen) 

   If (.not.IsOpen) Then 

    fname=' ' 

    Do i=1,iPrjLen_short 

     fname(i:i) = Char( iPrjDir(i) ) 

    End Do 

    fname = fname(:iPrjLen_short)//'softening_files'//'/'//'Step.nr' 

    Open (Unit= 30, File= fname, RECL=15, Form='FORMATTED', access='Direct'& 

,action='readwrite')  

    iSt=1 

    write (30,'(I5, I7)',rec=1) iSt, inSPoint 

   End If 

  End if 

 end if ! hard_Soft.or.Hvorslev 

 

! adjust Sig0 due to input values 

if (sum(SIG_I)==0.) SIG_I=Sig0 ! no modification due to Props(21..26) 

   Sig0_mod = Sig0 

 

    ! adjust Sig0(1:3) due to OCR 

if (OCR.gt.1.) then 

   Sig0_mod(1)=(SIG_I(1)*OCR)  

   Sig0_mod(2)=SIG_I(2)*OCR  

   Sig0_mod(3)=(SIG_I(3)*OCR)  

     Sig0_mod(4)=0d0 

   Sig0_mod(5)=0d0 

   Sig0_mod(6)=0d0 

    end if 

 

    ! adjust Sig0(1:3) due to POP 

    if (POP.ne.0.) then 

   Sig0_mod(1)=(SIG_I(2)-dabs(POP))*K0nc  

   Sig0_mod(2)=SIG_I(2)-dabs(POP)  
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  Sig0_mod(3)=(SIG_I(2)-dabs(POP))*K0nc  

    Sig0_mod(4)=0d0 

  Sig0_mod(5)=0d0 

  Sig0_mod(6)=0d0 

 end if 

 

   ! prepare data 

   V1= (/1,4,6/); V2= (/4,2,5/); V3= (/6,5,3/) 

   SIGMA0_mod(:,1)= Sig0_mod(V1)   ! assembling symm.stress matrix SIGMA0_mod 

   SIGMA0_mod(:,2)= Sig0_mod(V2)       ! from stress vector Sig0_mod dim(6) 

   SIGMA0_mod(:,3)= Sig0_mod(V3) 

 

   SIGMA0(:,1)= Sig_I(V1)     ! assembling symm.stress matrix SIGMA0 dim(3,3) 

   SIGMA0(:,2)= Sig_I(V2)     ! from stress vector Sig_I dim(6) 

   SIGMA0(:,3)= Sig_I(V3) 

      

 StVar0(0*ABS(NUMCP)+1:ABS(NUMCP)*1)=SIGN_NULL  ! sigma_n_preconsolidation  

 StVar0(1*ABS(NUMCP)+1:ABS(NUMCP)*2)=tan_phi_null ! tan_phi_mob in hardening 

 StVar0(2*ABS(NUMCP)+1:ABS(NUMCP)*3)=SIGN_NULL  ! sigma_n_preconsolidation 

 

 If (smallstrain.or.Hard_soft.or.Hvorslev) then  

  StVar0(3*ABS(NUMCP)+4)=0.d0  ! record number of current stress point   

  StVar0(3*ABS(NUMCP)+5)=1.d0  ! sss_indicator 

  StVar0(3*ABS(NUMCP)+8)=0.d0  ! non_local damage factor  

  StVar0(3*ABS(NUMCP)+9)=0.d0  ! Value of macroscopic local damage strain  

  StVar0(3*ABS(NUMCP)+10)=0.d0  ! Number of stress points within 2*Length 

  StVar0(4*ABS(NUMCP)+1:ABS(NUMCP)*5)=0.d0  ! Local damage strain 

  StVar0(5*ABS(NUMCP)+1:ABS(NUMCP)*6)=0.d0  ! eps_gamma_cone_Peak 

  StVar0(6*ABS(NUMCP)+1:ABS(NUMCP)*7)=tan_phi ! Tan_Phi_mobilised in softening 

  If (Hvorslev) StVar0(6*ABS(NUMCP)+1:ABS(NUMCP)*7)=0.d0 ! previous non_local  

!damage strain Hvorslev softening 

  If (Hard_soft) StVar0(7*ABS(NUMCP)+1:ABS(NUMCP)*8)=coh ! cohesion    

 End if ! smallstrain.or.hardsoft.or.Hvorslev 

 

 if (smallstrain) then  

    StVar0(8*ABS(NUMCP)+1:(ABS(NUMCP)*9))=0.d0  ! shear strain component 1 

     StVar0(9*ABS(NUMCP)+1:(ABS(NUMCP)*10))=0.d0  ! shear strain component 2 

  StVar0(10*ABS(NUMCP)+1:(ABS(NUMCP)*11))=0.d0  ! shear strain component 3 

     StVar0(11*ABS(NUMCP)+1:(ABS(NUMCP)*12))=0.d0  ! gamma_cp 

  If (recovery == .true.) then 

   StVar0(12*ABS(NUMCP)+1:ABS(NUMCP)*15)=0.d0 ! Coordinates of return point  

   StVar0(15*ABS(NUMCP)+1:ABS(NUMCP)*16)=1.d0 ! number of active bubbles   

   StVar0(16*ABS(NUMCP)+1:ABS(NUMCP)*32)=0.d0 ! Bubble coordinates and radii 

  End if ! smallstrain & recovery 

 End if ! smallstrain 

 

    ! transformation of Sig0_mod -> sigma_n, tau 

DO i=1,ABS(NUMCP) !loop over all cps 

    L(1:3)= n1(i,1:3)        ! unit normal vector of plane, dim(3) 

    P= MATMUL (SIGMA0_mod,L)     ! traction P, dim(3) 

    SN=  DOT_PRODUCT (L,P)      ! sigma_n on c.p. 

    TAU= DOT_PRODUCT (P,P)- SN**2 

    iTAU= -0.01*dabs(SN) 

  IF (iTAU.le.0.01) iTAU=0.01d0 

  IF (TAU < 0.and.TAU>-iTAU) TAU= 0.0  ! adjust small differences    

    IF (TAU > 0.and.TAU<iTAU) TAU= 0.0  ! adjust small differences 

    IF (TAU <= -iTAU) STOP 'ERROR - MYMOD_ML: tau negative on cp'  

    TAU= dsqrt(TAU)        ! tau on c.p. 

    ! transformation of Sig0 -> sigma_n0, tau0 

    P= MATMUL (SIGMA0,L)       ! traction P, dim(3) 

    SN0=  DOT_PRODUCT (L,P)      ! sigma_n0 on c.p. 

    TAU0= DOT_PRODUCT (P,P)- SN0**2 

  iTAU= -0.01*dabs(SN) 

  IF (iTAU.le.0.01) iTAU=0.01d0 

  IF (TAU0 < 0.and.TAU0>-iTAU) TAU0= 0.0 ! adjust small differences    

  IF (TAU0 > 0.and.TAU0<iTAU) TAU0= 0.0   

  IF (TAU0 <= -iTAU) then 

   STOP 'ERROR - MYMOD_ML: tau negative on cp'  

  end if 

    TAU0= dsqrt(TAU0)        ! tau0 on c.p. 

 

  s(1)=SN0*L(1) 

  s(2)=SN0*L(2) 

  s(3)=SN0*L(3) 

 

  t(1)=P(1)-S(1) 

  t(2)=P(2)-S(2) 

  t(3)=P(3)-S(3) 
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  tt(1)=dcos(Theta)*t(1)-dsin(Theta)*t(2) 

  tt(2)=dSin(Theta)*t(1)+dcos(Theta)*t(2) 

 

  Norm_t=dSqrt(tt(1)**2+tt(2)**2+t(3)**2) 

       

  if (Norm_t/=0) then 

   Nv=dabs(tt(2))/Norm_t 

   tan_Phi_i= tan_phi*(1-(Ar-1)/(Ar+2)*(1-3*(Nv**2)))  

   COH_i=COH*(1-(Ar-1)/(Ar+2)*(1-3*(Nv**2))) 

  else  

   tan_Phi_i = tan_phi         

   COH_i = COH 

  endif 

 

  ! initial stress state: cone - tanphi_mob_i 

      DUM1= (TAU*tan_phi_i) / (COH_i-SN*tan_phi_i)   

  IF ((COH_i-SN*tan_phi_i).eq.0) DUM1=0.0d0 

      DUM2= (TAU0*tan_phi_i) / (COH_i-SN0*tan_phi_i)   

  IF ((COH_i-SN0*tan_phi_i).eq.0) DUM2=0.0d0 

  DUM= MAXVAL((/DUM1,DUM2,tan_phi_null/)) 

 

  if (.not.Hvorslev) then 

   IF (DUM.gt.tan_phi_i) DUM=tan_phi_i   

  End if 

 

      StVar0(1*ABS(NUMCP)+i) = DUM   ! tan_phi_mob_initial  

 

  ! initial cap position: signc_mob_i 

  IF (tan_PHI_i==0.0) STOP 'ERROR - PHI=0 not possible' ! to avoid division by 0 

     MCP= ACAP*tan_phi_res 

     EXPRESSION1= -dsqrt((SN*SN)+(TAU*TAU)/(MCP*MCP)) 

     EXPRESSION2= -dsqrt((SN0*SN0)+(TAU0*TAU0)/(MCP*MCP)) 

  EXPRESSION= MINVAL((/EXPRESSION1,EXPRESSION2/)) 

  sigma_nc0= MINVAL((/SIGN_NULL,-tan_phi_null*coh/(MCP*tan_phi_i)/))  

  IF (SIGN_NULL > EXPRESSION) then  

   StVar0(2*ABS(NUMCP)+i)= EXPRESSION       

  else  

   StVar0(2*ABS(NUMCP)+i)= sigma_nc0      

  end if 

  StVar0(0*ABS(NUMCP)+i)= StVar0(2*ABS(NUMCP)+i) ! set value of signc_0 

 END DO ! loop over all cps 

 

 ! get Hvorslev surface parameter B_cs 

 signc = -1000      ! test signc, only used for getting B_cs 

 sigS = MCP*signc/dsqrt(MCP**2 + tan_phi_res**2) ! intersection of cap and CSL    

tauS = -tan_phi_res*sigS  ! intersection of cap and CSL 

! equivalent normal stress at the normal consolidation line 

sig_ve = -((-signc)**(1-m_power)+Eoed_ref/Eur_ref*3*(1-2*NYUR)*((-sigS)**& 

    (1-m_power)-(-signc)**(1-m_power)))**(1/(1-m_power))  

B_cs = tauS / -sig_ve   ! ratio of shear stress vs. equivalent pressure 

 StVar0(3*ABS(NUMCP)+12) = B_cs 

 

! Initial anisotropic stiffness due to initial stress ratio 

if (smallstrain.and.sw_pdash_SN0 == 2) then 

  sig_v0 = Sig0(2) 

  sig_h0 = 0.5d0*(Sig0(1)+Sig0(3)) 

  pdash = (Sig0(1) + Sig0(2) + Sig0(3))/3 

  Eh0 = Eh0*(-sig_h0/-pdash)**m_power 

  Ev0 = Ev0*(-sig_v0/-pdash)**m_power 

  Gvh0 = Gvh0*(dsqrt(sig_v0*sig_h0)/-pdash)**m_power 

  nu_hv_0  =  nu_vh_0*Eh0/Ev0 

  StVar0(3*ABS(NUMCP)+14) =  Eh0 

  StVar0(3*ABS(NUMCP)+15) = Ev0 

  StVar0(3*ABS(NUMCP)+16) = Gvh0 

  StVar0(3*ABS(NUMCP)+17) = nu_hv_0 

End if 

 

StVar0(3*ABS(NUMCP)+2)=123. ! initialization is done 

End If  !IDTask = 1 

 

! -------------------------------------------------------------------------------------- 

! calculate stresses 

! --------------------------------------------------------------------------------------

If (IDTask .Eq. 2) Then  

 

 C_gl = 0.0d0 

 

 ! calculate ratio Cnn/Ctt from NYur 
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 CnnCtt = (1d0-2d0*NYur)/(1d0+3d0*NYur) 

 Cnn_ref=(1.0d0-2.0d0*NYur)/Eur_ref 

 Amat_ref = Amat 

 

 ACAP = StVar0(3*ABS(NUMCP)+3)   ! cap shape parameter 

 B_cs = StVar0(3*ABS(NUMCP)+12)  ! Hvorslev surface parameter 

 tan_phi_Null = dtan(phi_null) 

 tan_phi_res = dtan(phi_res) 

 MCP  = ACAP*tan_phi_res   ! M_cap_shape (M=alpha*tan_phi) 

 

 iterStiff=0 

 stiffness=.false. 

 

 iPrjLen_short = IDint(StVar0(3*ABS(NUMCP)+13)) ! get length of project directory path 

 

 ! get anisotropic small strain stiffness if dependency on axial stresses 

 if (smallstrain.and.sw_pdash_SN0 == 2) then 

  Eh0 = StVar0(3*ABS(NUMCP)+14) 

  Ev0 = StVar0(3*ABS(NUMCP)+15) 

  Gvh0 = StVar0(3*ABS(NUMCP)+16) 

  nu_hv_0 = StVar0(3*ABS(NUMCP)+17) 

 End if 

 

 ! initialize StVar 

 StVar = StVar0 

 

! Creating files with strain softening information 

!*********************************************************************************** 

 If (switch_HV == 2) GLD_strain = StVar(3*ABS(NUMCP)+9) 

 

 If (Hard_Soft.or.switch_HV == 1) then  

  Call Open_DamageFile (iStep, iter, iel, iPrjDir, iPrjLen_short, iPhase, & 

          StVar, nStat, NumCP) 

  iRec=IDint(StVar0(3*ABS(NUMCP)+4)) 

  If (iRec==0) then 

   Call FileOrganize(iPrjDir, iPrjLen_short, Iel, Int, Length, StVar, NumCP, & 

          X, Y, Z,nStat,iPhase, MaxPoint)      

   iRec=IDint(StVar(3*ABS(NUMCP)+4)) 

  end if 

 

!  call Weight_Strain(StVar, nStat, Weight, NUMCP, GLD_strain) 

  GLD_strain = StVar(3*ABS(NUMCP)+9) 

  Vol= StVar(3*ABS(NUMCP)+7) 

  NumPoint = IDint(StVar(3*ABS(NUMCP)+10)) 

 

  Allocate (point_index (NumPoint), weights(NumPoint)) 

 

  ! open file which contains point indices in vicinity of current stress point 

  Inquire(Unit= 40, Opened= IsOpen)  

  If (.not.IsOpen) Then 

   fname=' ' 

   Do i=1,iPrjLen_short 

    fname(i:i) = Char( iPrjDir(i) ) 

   End Do 

   fname= fname(:iPrjLen_short)//'softening_files'//'/'//'point_index.sft' 

   Open(Unit= 40, File= fname, RECORDTYPE='Fixed', RECL=4*MaxPoint, & 

      Form='Binary', access='Direct', action='readwrite')  

  End If 

 

  ! open file which contains point weights in vicinity of current stress point 

  Inquire(Unit= 41, Opened= IsOpen) 

  If (.not.IsOpen) Then 

   fname=' ' 

   Do i=1,iPrjLen_short 

    fname(i:i) = Char( iPrjDir(i) ) 

   End Do 

   fname= fname(:iPrjLen_short)//'softening_files'//'/'//'weights.sft' 

   Open(Unit= 41, File= fname, RECORDTYPE='Fixed', RECL=8*MaxPoint, & 

      Form='Binary', access='Direct', action='readwrite')  

  End If 

 

  ! get point indices and weights from files "point_index.sft" and "weights.sft" 

  Read (40, Rec=IDint(StVar(3*ABS(NUMCP)+4))) point_index 

  Read (41, Rec=IDint(StVar(3*ABS(NUMCP)+4))) weights 

 

 end if ! (Hard_Soft.or.switch_HV == 1) 

!*********************************************************************************** 
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 Eps_non_local_cal=.False. 

 

 Do while (.not.stiffness) !loop until elastic matrix D does not change any more 

 

  iterStiff=iterStiff+1 

  stiffness=.true. !gets false if D-matrix changes  

 

  ! get deviatoric degradation strain 

  If (smallstrain.and.iterStiff.eq.1) then 

  Do i=1,abs(NUMCP) 

   gamma_cp(i) = StVar0(11*ABS(NUMCP)+i) 

  Enddo 

  End if !small strain 

 

  pdash = (sig0(1)+sig0(2)+sig0(3))/3d0 

  if (pdash.gt.corr_val) pdash = corr_val   ! to avoid zero stiffness 

 

  facCnn = (p_ref/dabs(pdash))**m_power 

  facE = (dabs(pdash)/p_ref)**m_power 

 

  Eur = Eur_ref*facE 

 

  ! get stiffness matrix according to gamma_cp - anisotropic case 

  !*********************************************************************************** 

  if ((smallstrain ==.true..and.anisotropic_el ==.true.).or.sw_pdash_SN0 == 2) then 

  C_gl = 0.0d0 

  D = 0.0d0 

  Do i=1,ABS(NUMCP) 

 

   LE = 0.0D0 

   Tj_spec = 0.0D0 

 

   !form transformation matrix Tj_spec(6,6) 

   Tj_spec(1,1) = 1.0d0/3.0d0 

   Tj_spec(2,1) = 1.0d0/3.0d0 

   Tj_spec(3,1) = 1.0d0/3.0d0 

   Tj_spec(1,2) = n1(i,1)**2 - 1.0d0/3.0d0 

   Tj_spec(2,2) = n1(i,2)**2 - 1.0d0/3.0d0 

   Tj_spec(3,2) = n1(i,3)**2 - 1.0d0/3.0d0 

   Tj_spec(4,2) = 2.0d0*n1(i,1)*n1(i,2) 

   Tj_spec(5,2) = 2.0d0*n1(i,2)*n1(i,3) 

   Tj_spec(6,2) = 2.0d0*n1(i,3)*n1(i,1) 

   Tj_spec(1,3) = n1(i,1)*s1(i,1) 

   Tj_spec(2,3) = n1(i,2)*s1(i,2) 

   Tj_spec(3,3) = n1(i,3)*s1(i,3) 

   Tj_spec(4,4) = n1(i,1)*s1(i,2)+n1(i,2)*s1(i,1) 

   Tj_spec(5,4) = n1(i,3)*s1(i,2)+n1(i,2)*s1(i,3) 

   Tj_spec(6,4) = n1(i,3)*s1(i,1)+n1(i,1)*s1(i,3) 

   Tj_spec(1,5) = n1(i,1)*t1(i,1) 

   Tj_spec(2,5) = n1(i,2)*t1(i,2) 

   Tj_spec(3,5) = n1(i,3)*t1(i,3) 

   Tj_spec(4,6) = n1(i,2)*t1(i,1)+n1(i,1)*t1(i,2) 

   Tj_spec(5,6) = n1(i,2)*t1(i,3)+n1(i,3)*t1(i,2) 

   Tj_spec(6,6) = n1(i,1)*t1(i,3)+n1(i,3)*t1(i,1) 

 

   !get transposed transformation matrix TiT_spec(6,6) 

   TiT_spec= Transpose(Tj_spec) 

 

   !get inverse of transposed transformation matrix TiT_spec_inv(6,6) 

   Call MatInvPiv(TiT_spec,TiT_spec_inv,6) 

 

   Sig0_cp_spec= MATMUL (TiT_spec,Sig0) 

   SN0=Sig0_cp_spec(1)+Sig0_cp_spec(2) 

   If (SN0.gt.corr_val) SN0 = corr_val 

 

   if(gamma_cp(i).le.gamma_1) then  

    deg_par = 0.0d0 

   elseif (gamma_cp(i).ge.gamma_2) then 

    deg_par = 1.0d0 

   else  

    deg_par = (dlog(gamma_cp(i))-dlog(gamma_1))/(dlog(gamma_2)-dlog(gamma_1))  

   end if  

  

   Eh = Eh0 - (Eh0 - Eur_ref)*deg_par 

   Ev = Ev0 - (Ev0 - Eur_ref)*deg_par 

   Gvh = Gvh0 - (Gvh0 - Eur_ref/(2.0d0+2.0d0*nyur))*deg_par 

   nu_hv = nu_hv_0 - (nu_hv_0 - nyur)*deg_par 

   nu_hh = nu_hh_0 - (nu_hh_0 - nyur)*deg_par 
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   ! Calculate eigenvalues and eigenangle of global anisotropic compliance matrix 

   lambda_1 = (1.0d0+nu_hh)/Eh 

   lambda_2 = (1.0d0-nu_hh)/(2.0d0*Eh) + 1.0d0/(2.0d0*Ev) - dsqrt(((& 

      1.0d0-nu_hh)/(2.0d0*Eh)-1.0d0/(2.0d0*Ev))**2+((2.0d0*nu_hv**2)/Eh**2)) 

   lambda_3 = (1.0d0-nu_hh)/(2.0d0*Eh) + 1.0d0/(2.0d0*Ev)+ dsqrt(((& 

      1.0d0-nu_hh)/(2.0d0*Eh)-1.0d0/(2.0d0*Ev))**2+((2.0d0*nu_hv**2)/Eh**2)) 

   lambda_4 = 1.0d0/(2.0d0*Gvh) 

 

   If (((1.0d0-nu_hh)/Eh - 1.0d0/Ev)==0.0d0.AND.nu_hv.gt.0.0d0) then 

    omega = Pi/4.d0 

   Else If (((1.0d0-nu_hh)/Eh - 1.0d0/Ev)==0.0d0.AND.nu_hv.le.0.0d0) then 

    omega = -Pi/4.d0 

   Else 

    If (((1.0d0-nu_hh)/Eh - 1.0d0/Ev).gt.0) then 

     omega = Pi/2.0d0 + 1.0d0/2.0d0*datan((-2.0d0*dsqrt(2.0d0)*((nu_hv)/Eh))& 

         /((1.0d0-nu_hh)/Eh - 1.0d0/Ev)) 

    Else 

     omega = 1.0d0/2.0d0*datan((-2.0d0*dsqrt(2.0d0)*((nu_hv)/Eh))/& 

         ((1.0d0-nu_hh)/Eh - 1.0d0/Ev))  

    End If 

   End if 

 

   ! Get components of matrix Sum(lambda_i*E_i) 

   LE(1,1) = 1.0d0/2.0d0*lambda_1 + lambda_2*(dcos(omega))**2/2.0d0 + & 

       lambda_3*(dsin(omega))**2/2.0d0 

   LE(2,1) = lambda_2*(dcos(omega)*dsin(omega))/dsqrt(2.0d0) + & 

       lambda_3*(-dcos(omega)*dsin(omega))/dsqrt(2.0d0) 

   LE(3,1) = -1.0d0/2.0d0*lambda_1 + lambda_2*(dcos(omega))**2/2.0d0 + & 

       lambda_3*(dsin(omega))**2/2.0d0 

   LE(1,2) = LE(2,1) 

   LE(2,2) = lambda_2*(dsin(omega))**2 + lambda_3*(dcos(omega))**2 

   LE(3,2) = LE(1,2) 

   LE(1,3) = LE(3,1) 

   LE(2,3) = LE(3,2) 

   LE(3,3) = LE(1,1) 

   LE(4,4) = lambda_4 

   LE(5,5) = lambda_4 

   LE(6,6) = lambda_1 

   

   ! get C_cp at reference pressure        

   LExTiT_inv = MATMUL (LE,TiT_spec_inv) 

   C_cp= MATMUL (TiT_spec,LExTiT_inv) 

     

   if(sw_pdash_SN0==0.or.sw_pdash_SN0==2) then 

    C_cp = C_cp * facCnn     

   Else if(sw_pdash_SN0==1) then 

    C_cp = C_cp * (p_ref/dabs(SN0))**m_power 

   End if 

 

   TjxC_cp = Matmul(Tj_spec,C_cp) 

   C_gl_cp = Matmul(TjxC_cp,TiT_spec) 

   C_gl = C_gl + 3.0d0*C_gl_cp*Weight(i) 

 

  End Do !loop over all cp's 

  

  Call MatInvPiv(C_gl,D,6) 

 

 End If ! (smallstrain ==.true..and.anisotropic_el ==.true.).or.sw_pdash_SN0 == 2 

!*********************************************************************************** 

 

! get stiffness matrix according to gamma_cp - isotropic case 

!*********************************************************************************** 

 if (smallstrain ==.true..and.anisotropic_el ==.false..and.sw_pdash_SN0.ne.2) then 

    C_gl = 0.0d0 

    D = 0.0d0 

    Do i=1,ABS(NUMCP) 

   !Call GetVec(i,NUMCP,s1,t1,anisotropic_el) 

 

   C_cp = 0.0d0 

   Tj_spec = 0.0d0 

 

   !form transformation matrix Tj_spec(6,6) 

   Tj_spec(1,1) = 1/3.0d0 

   Tj_spec(2,1) = 1/3.0d0 

   Tj_spec(3,1) = 1/3.0d0 

   Tj_spec(1,2) = n1(i,1)**2 - 1/3.0d0 

   Tj_spec(2,2) = n1(i,2)**2 - 1/3.0d0 
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   Tj_spec(3,2) = n1(i,3)**2 - 1/3.0d0 

   Tj_spec(4,2) = 2.0d0*n1(i,1)*n1(i,2) 

   Tj_spec(5,2) = 2.0d0*n1(i,2)*n1(i,3) 

   Tj_spec(6,2) = 2.0d0*n1(i,3)*n1(i,1) 

   Tj_spec(1,3) = n1(i,1)*s1(i,1) 

   Tj_spec(2,3) = n1(i,2)*s1(i,2) 

   Tj_spec(3,3) = n1(i,3)*s1(i,3) 

   Tj_spec(4,4) = n1(i,1)*s1(i,2)+n1(i,2)*s1(i,1) 

   Tj_spec(5,4) = n1(i,3)*s1(i,2)+n1(i,2)*s1(i,3) 

   Tj_spec(6,4) = n1(i,3)*s1(i,1)+n1(i,1)*s1(i,3) 

   Tj_spec(1,5) = n1(i,1)*t1(i,1) 

   Tj_spec(2,5) = n1(i,2)*t1(i,2) 

   Tj_spec(3,5) = n1(i,3)*t1(i,3) 

   Tj_spec(4,6) = n1(i,2)*t1(i,1)+n1(i,1)*t1(i,2) 

   Tj_spec(5,6) = n1(i,2)*t1(i,3)+n1(i,3)*t1(i,2) 

   Tj_spec(6,6) = n1(i,1)*t1(i,3)+n1(i,3)*t1(i,1) 

 

   !get transposed transformation matrix TiT_spec(6,6) 

    TiT_spec= Transpose(Tj_spec) 

 

   Sig0_cp_spec= MATMUL (TiT_spec,Sig0) 

   SN0=Sig0_cp_spec(1)+Sig0_cp_spec(2) 

   If (SN0.gt.corr_val) SN0 = corr_val 

 

   if(gamma_cp(i).le.gamma_1) then  

    deg_par = 0.0d0 

   elseif (gamma_cp(i).ge.gamma_2) then 

    deg_par = 1.0d0 

   else  

    deg_par = (dlog(gamma_cp(i))-dlog(gamma_1))/(dlog(gamma_2)-dlog(gamma_1))  

   end if  

  

   Eh = Eh0 - (Eh0 - Eur_ref)*deg_par 

   Gvh =  Eh/(2.0d0+2.0d0*NYUR) 

 

   ! Calculate eigenvalues and eigenangle of global anisotropic compliance matrix 

   lambda_1 = (1.0d0+NYUR)/Eh 

   lambda_2 = (1.0d0-2d0*NYUR)/Eh 

   

   ! get C_cp at reference pressure       ! schä 301109 

   C_cp(1,1)= lambda_2 

   Do m=2,6 

    C_cp(m,m) = lambda_1 

   End Do 

     

   if(sw_pdash_SN0==0) then 

    C_cp = C_cp * facCnn     

   else if(sw_pdash_SN0==1) then 

    C_cp = C_cp * (p_ref/dabs(SN0))**m_power 

   End if 

 

   TjxC_cp = Matmul(Tj_spec,C_cp) 

   C_gl_cp = Matmul(TjxC_cp,TiT_spec) 

 

   C_gl = C_gl + 3.0d0*C_gl_cp*Weight(i) 

 

    End Do !loop over all cp's 

 

    Call MatInvPiv(C_gl,D,6) 

      

   End if !(smallstrain ==.true..and.anisotropic_el ==.false..and.sw_pdash_SN0.ne.2) 

!*********************************************************************************** 

 

   ! cap hardening parameter 

   HARDCAP = 3.0d0/(p_ref*(1.0d0/Eoed_ref-(3.0d0*(1.0d0-2.0d0*NYUR))/Eur_ref)) 

 

   ! reset matrix with local strains    

   dEps_cp = 0. 

 

   ! reset plasticity indicators 

   ipl_gl = 0 

   failure_mode=.true.  ! one or no plane is in failure mode 

   ipl = 0 

 

! subincrementing  

!*********************************************************************************** 

   n_sub=1 ! at least one subincrement 
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  IF (StepSize.lt.0.) then 

  dEps_norm=dsqrt(dEps(1)**2+dEps(2)**2+dEps(3)**2+dEps(4)**2+dEps(5)**2+dEps(6)**2) 

  n_sub=ceiling(dEps_norm/dabs(stepsize)) ! get number of subincrements 

  End If 

    

  IF (StepSize.gt.0.) Then  ! get number of subincrements 

  dSig_check = Matmul(D,dEps) 

  !Call MatVec(D,6,dEps,6,dSig_check) 

  Sig_check=Sig0+dSig_check 

      ! prepare data 

      V1= (/1,4,6/); V2= (/4,2,5/); V3= (/6,5,3/) 

  SIGMA_check(:,1)= Sig_check(V1)   !  assembling symm.stress matrix SIGMA_check 

  SIGMA_check(:,2)= Sig_check(V2)   !  from stress vector Sig_check dim(6) 

  SIGMA_check(:,3)= Sig_check(V3) 

 

  SIGMA_0(:,1)= Sig0(V1)   !  assembling symm.stress matrix SIGMA_0 dim(3,3) 

  SIGMA_0(:,2)= Sig0(V2)   !  from stress vector Sig0 dim(6) 

  SIGMA_0(:,3)= Sig0(V3) 

  

  Do m=1,ABS(NUMCP) !loop over all cp's 

   ! transformation of stresses -> sigma_n, tau 

   L(1:3)= n1(m,1:3)      ! unit normal vector of plane, dim(3) 

   P= MATMUL (SIGMA_check,L)   ! traction P, dim(3) 

   SN_check=  DOT_PRODUCT (L,P)  ! sigma_n on cp 

   TAU_check= DOT_PRODUCT (P,P)- SN_check**2 

   iTAU= -0.01d0*dabs(SN_check) 

   IF (iTAU.le.0.01) iTAU=0.01d0 

   IF (TAU_check < 0.and.TAU_check>-iTAU) TAU_check= 0.0d0  

   IF (TAU_check > 0.and.TAU_check<iTAU) TAU_check= 0.0d0   

   IF (TAU_check <= -iTAU) then 

    STOP 'ERROR - MYMOD_ML: tau negative on cp'  

   end if  

   TAU_check= dsqrt(TAU_check)  ! new tau on cp 

 

   If (Ar/=1.0d0) then 

    s(1)=SN_check*L(1) 

    s(2)=SN_check*L(2) 

    s(3)=SN_check*L(3) 

    t(1)=P(1)-S(1) 

    t(2)=P(2)-S(2) 

    t(3)=P(3)-S(3) 

    TAU=Sqrt(t(1)**2+t(2)**2+t(3)**2) 

    tt(1)=dcos(Theta)*t(1)-dsin(Theta)*t(2) 

    tt(2)=dSin(Theta)*t(1)+dcos(Theta)*t(2) 

    Norm_t=dSqrt(tt(1)**2+tt(2)**2+t(3)**2) 

    if (Norm_t/=0.0d0) then 

     Nv=dabs(tt(2))/Norm_t 

    else 

     Nv=1.0d0 

    endif 

    tan_Phi_i= tan_phi*(1.0d0-(Ar-1.0d0)/(Ar+2.0d0)*(1.0d0-3.0d0*(Nv**2))) 

    COH_i=COH*(1.0d0-(Ar-1.0d0)/(Ar+2.0d0)*(1.0d0-3.0d0*(Nv**2))) 

   Else 

    tan_Phi_i= tan_phi 

    COH_i=COH 

   End if 

 

   tan_PHI_MOD=tan_phi_i/Rf 

 

   ! transformation of stresses -> sigma_0, tau_0 -> initial stress state 

   P= MATMUL (SIGMA_0,L)     ! traction P, dim(3) 

   SN_0=  DOT_PRODUCT (L,P)      ! sigma_n on cp 

   TAU_0= DOT_PRODUCT (P,P)- SN_0**2 

   iTAU_0= -0.01d0*dabs(SN_0) 

   IF (iTAU_0.le.0.01) iTAU_0=0.01d0 

   IF (TAU_0 < 0.and.TAU_0>-iTAU) TAU_0= 0.0d0  ! adjust small differences   

   IF (TAU_0 > 0.and.TAU_0<iTAU) TAU_0= 0.0d0  ! adjust small differences 

   IF (TAU_0 <= -iTAU) then 

    STOP 'ERROR - MYMOD_ML: tau negative on cp'  

   end if  

   TAU_0= dsqrt(TAU_0)        ! new tau on cp 

   DSN = SN_check-SN_0 

   DTAU = TAU_check-TAU_0 

 

   ! get state variables at start of step for actual contact plane m 

   SIGNC = StVar0(2*ABS(NUMCP)+m) ! sigma_n_preconsolidation for cap 

   TPHIM = StVar0(1*ABS(NUMCP)+m) 

   if (TPHIM.gt.tan_phi_i.and..not.Hvorslev) TPHIM=tan_phi_i 
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   If (Hvorslev) then   ! get non-local value of preconsolidation pressure 

    SIGNC =  StVar0(0*ABS(NUMCP)+m) 

   Else if (Hard_soft) then ! potential friction softening analysis 

    EpsDamPeak=StVar(5*ABS(NUMCP)+m) ! check whether peak shear strength reached 

    if(EpsDamPeak.gt.0.000000000001) then      

     TPHIM=StVar0(6*ABS(NUMCP)+m)   !Gal 190106 

     Coh_i=StVar0(7*ABS(NUMCP)+m)    !Gal 190106 

    end if 

   End if 

 

   SIGNC_s = SIGNC-STEPSIZE ! maximal new admissible yield surface on cap side 

 

   ! calculate number of substeps  

   n_sub_cone = 1  

   n_sub_tens = 1  

   n_sub_cap = 1         

   n_sub_HV = 1 

 

   f_cone = TAU_check + SN_check*TPHIM - COH_i*TPHIM/tan_phi_i 

       f_cap = (SN_check**2)/(SIGNC**2) + (TAU_check**2)/((MCP*SIGNC)**2) - 1.0d0 

   f_tens = SN_check-TENS 

 

   If(f_cone.gt.0.and.f_tens.lt.0) n_sub_cone = CEILING((DTAU*tan_phi_i + & 

     TPHIM*DSN*tan_phi_i)/(COH_i*TPHIM + stepsize*tan_phi_i &  

     - TAU_0*tan_phi_i - SN_0*TPHIM*tan_phi_i)) 

   If (tphim.gt.tan_phi_res.and.Hvorslev) n_sub_cone = 1 

 

   If(f_cap.gt.0.and.f_tens.lt.0) n_sub_cap = CEILING(-(MCP*dsqrt(MCP**2*& 

    SIGNC_s**2*DSN**2 + SIGNC_s**2*DTAU**2 - (SN_0*DTAU - TAU_0*DSN)**2) + & 

    TAU_0*DTAU + MCP**2*SN_0*DSN)/(MCP**2*SN_0**2 - MCP**2*SIGNC_s**2 + & 

    TAU_0**2)) 

   If(f_tens.gt.0)  n_sub_tens = CEILING(DSN / (TENS + stepsize - SN_0)) 

 

   If (Hvorslev) then 

    sig_ve_check = -((-signc)**(1-m_power)+Eoed_ref/Eur_ref*3*(1-2*NYUR)*& 

      ((-SN_check)**(1-m_power)-(-signc)**(1-m_power)))**(1/(1-m_power)) 

    f_HV = TAU_check + SN_check*tan_phi_e - sig_ve_check*B_cs*& 

      (tan_phi_e/tan_phi_res - 1.0d0) 

    If (SN_check.ge.0.0d0) f_HV = 0 

    Do while (f_HV.gt.stepsize) 

     n_sub_HV = n_sub_HV + 1 

     SN_check = SN_0 + DSN/n_sub_HV 

     TAU_check = TAU_0 + DTAU/n_sub_HV 

     sig_ve_check =   -((-signc)**(1-m_power)+Eoed_ref/Eur_ref*3*(1- & 

       2*NYUR)*((-SN_check)**(1-m_power)-(-signc)**(1-m_power)))**& 

       (1/(1-m_power)) 

     f_HV = TAU_check + SN_check*tan_phi_e - sig_ve_check*B_cs*& 

       (tan_phi_e/tan_phi_res - 1.0d0) 

    End do 

   End if 

 

   IF (MAXVAL((/n_sub_cone,n_sub_cap,n_sub_tens,n_sub_HV/)).gt.n_sub) 

    n_sub=MAXVAL((/n_sub_cone,n_sub_cap,n_sub_tens,n_sub_HV/)) 

   End Do !loop over all cp's 

   End If ! StepSize.gt.0 

!*********************************************************************************** 

 

   dEps_sub=dEps/n_sub ! subincrement 

   Sig0_sub=Sig0   ! stress state at start of subincrementing 

 

   Do ii=1,n_sub  

    dEps_trial=dEps_sub ! first trial for each substep (elastic) 

   

    ! reset variables 

    dEps_plastic=0. 

    dEps_cp_pl = 0. 

    converged_cp=.false. ! do at least one loop over all cp's 

    SumdEps_vol_pl = 0. 

    SumdGamma_pl = 0. 

    epsn_t_step = 0. 

    epsn_HV_step = 0. 

    gamma_HV_step = 0. 

    iter_cp=0 

 

    ! loop until convergence is reached 

       Do While (.not.converged_cp) 
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  converged_cp=.true. ! gets false again during iteration when plasticity occurs 

   

  ! increase iteration counter 

        iter_cp=iter_cp+1 

 

     ! reset plasticity indicators 

     ipl_cp = 0 

 

  ! reset small-strain stiffness indicator for output 

  if (ii==n_sub) sss_indicator_gl = 0.0d0 

  

  dEps_cp_el = 0. 

 

  ! new trial strain increment 

  dEps_trial=dEps_trial-dEps_plastic 

 

  ! calculate new trial stress increment dSig_trial=dEps_trial*D 

  dSig_trial = MatMul(D,dEps_trial) 

 

  dEps_plastic = 0.0d0 

 

  ! get new trial stress state 

  Sig_trial=Sig0_sub+dSig_trial 

 

        ! prepare data for stiffness-calculation 

  if (Sig0(1)==0.and.Sig0(2)==0.and.Sig0(3)==0.and.Sig0(4)==0.and.Sig0(5)==0  & 

    .and.Sig0(6)==0) then 

   Sig0(1)= corr_val 

   Sig0(2)= corr_val 

   Sig0(3)= corr_val 

  endif 

 

  Cnn = Cnn_ref * facCnn 

  Ctt = Cnn / CnnCtt   

 

  !loop over all cps 

  DO i=1,ABS(NUMCP)  

 

    ! reset plastic strain vectors of cp's     

      epsNcone = 0. 

      epsGcone = 0. 

      epsNcap = 0. 

      epsGcap = 0. 

      epsNtens = 0. 

      epsGtens = 0. 

    epsNHV = 0. 

      epsGHV = 0. 

 

    eps_cone = 0.0d0 

    eps_cap = 0.0d0 

    eps_tens = 0.0d0 

    eps_HV = 0.0d0 

    eps_cp_plastic = 0.0d0 

 

    Lambda_cone = 0.0d0 

    Lambda_cap = 0.0d0 

    Lambda_HV = 0.0d0 

    Lambda_cap_1 = 0.0d0 

    Lambda_cap_12 = 0.0d0 

    Lambda_cap_23 = 0.0d0 

    Lambda_cone_1 = 0.0d0 

    Lambda_cone_12 = 0.0d0 

    Lambda_cone_13 = 0.0d0 

    Lambda_HV_1 = 0.0d0 

    Lambda_HV_13 = 0.0d0 

    Lambda_HV_23 = 0.0d0 

 

    ! get transformation matrices 

    Tj = 0.0d0 

 

    !form transformation matrix Tj(6,3) (old split) 

    Tj(1,1) = n1(i,1)**2 

      Tj(1,2) = n1(i,1)*s1(i,1) 

      Tj(1,3) = n1(i,1)*t1(i,1) 

      Tj(2,1) = n1(i,2)**2 

     Tj(2,2) = n1(i,2)*s1(i,2) 

    Tj(2,3) = n1(i,2)*t1(i,2) 

    Tj(3,1) = n1(i,3)**2 
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    Tj(3,2) = n1(i,3)*s1(i,3) 

    Tj(3,3) = n1(i,3)*t1(i,3) 

    Tj(4,1) = 2.0d0*n1(i,1)*n1(i,2) 

    Tj(4,2) = n1(i,1)*s1(i,2)+n1(i,2)*s1(i,1) 

    Tj(4,3) = n1(i,2)*t1(i,1)+n1(i,1)*t1(i,2) 

    Tj(5,1) = 2.0d0*n1(i,2)*n1(i,3) 

    Tj(5,2) = n1(i,3)*s1(i,2)+n1(i,2)*s1(i,3) 

    Tj(5,3) = n1(i,2)*t1(i,3)+n1(i,3)*t1(i,2) 

    Tj(6,1) = 2.0d0*n1(i,3)*n1(i,1) 

    Tj(6,2) = n1(i,3)*s1(i,1)+n1(i,1)*s1(i,3) 

    Tj(6,3) = n1(i,3)*t1(i,1)+n1(i,1)*t1(i,3) 

 

    ! old stress state 

    TiT= Transpose(Tj) 

    Sig0_cp= MATMUL (TiT,Sig0) 

    SN0=Sig0_cp(1) 

    Tau0 = dsqrt(Sig0_cp(2)**2 + Sig0_cp(3)**2) 

    If (SN0.gt.corr_val) SN0 = corr_val 

 

    ! get non-local state variables for Hvorslev surface 

    !****************************************************************************** 

    signc = StVar(2*ABS(NUMCP)+i)  ! sigma_n_preconsolidation from hardening 

 

    If (Hvorslev) then   ! get non-local value of preconsolidation pressure 

     

    EpsDamPeak = StVar0(5*ABS(NUMCP)+i) 

    If (EpsDamPeak.ge.0.000000000001d0) then 

     ! update non-local correction factor once at the beginning of each step 

     if (.not.Eps_non_local_cal.and.switch_HV == 1) then       

      call Non_Local (StVar, nStat, NumCP, GLD_strain, iStep, numpoint, & 

            point_index, weights, Hvorslev) 

      Eps_non_local_cal=.True. 

     end if 

     Eps_non_local=StVar(3*ABS(NUMCP)+8)  ! non-local macro damage strain 

     Eps_Damage = Eps_Non_Local*weight(i) - EpsDamPeak 

     If (switch_HV == 2) Eps_Damage = StVar0(3*ABS(NUMCP)+9)*weight(i)-  & 

                EpsDamPeak 

    Else 

     Eps_Damage = 0.0d0 

    End if 

 

    ! non_local damage strain in previous calculation step 

    Eps_Damage_old = StVar0(6*ABS(NUMCP)+i) 

  

    ! check that damage strain is not decreasing 

    If (Eps_Damage.lt.Eps_Damage_old) Eps_Damage = Eps_Damage_old  

    StVar(6*ABS(NUMCP)+i) = Eps_Damage 

 

    ! non-local signc 

    SIGNC = -((-signc)**(1.0d0-m_power)+HARDCAP*(m_power-1.0d0) &     

       *p_ref**(1.0d0-m_power)*(h_soft*Eps_Damage))**(1.0d0/(1.0d0-m_power))  

    StVar(0*ABS(NUMCP)+i) = SIGNC  ! store non-local preconsolidation pressure 

 

    sig_ve0 = -((-signc)**(1-m_power)+Eoed_ref/Eur_ref*3*(1-2*NYUR)*((-SN0)**  & 

         (1-m_power)-(-signc)**(1-m_power)))**(1/(1-m_power)) 

    tau_max = -tan_phi_e*SN0 + sig_ve0*B_cs*(tan_phi_e/tan_phi_res - 1.0d0) 

    tan_phi_HV = -tau_max / SN0  ! max. phi at Hvorslev surface  

    If (tan_phi_HV.gt.1.73d0) tan_phi_HV = 1.73d0 

 

    ! use phi_HV for cone if old stress state is left of cap cone intersection 

    If (SN0.gt.sigS) then 

     tan_phi = tan_phi_HV 

    Else 

     tan_phi = tan_phi_res  

    End if 

     End if !  (Hvorslev) 

!*********************************************************************************** 

 

   if (smallstrain ==.false.) then 

    Sig_cp = MATMUL (TiT,Sig_trial) 

    SN=  Sig_cp(1)    ! sigma_n on c.p. 

    TAU= dsqrt(Sig_cp(2)**2 + Sig_cp(3)**2) 

    iTAU= -0.01*dabs(SN) 

    IF (iTAU.le.0.01) iTAU=0.01d0 

    IF (TAU < 0.and.TAU>-iTAU) TAU= 0.0  ! adjust small differences  

    IF (TAU > 0.and.TAU<iTAU) TAU= 0.0  ! adjust small differences 

    IF (TAU <= -iTAU) then 

     STOP 'ERROR - MYMOD_ML: tau negative on cp'  
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    end if   

 

    ! get anisotropic shear strength according to stress path direction    

    If (Ar/=1.0d0) then 

     tt = Sig_cp(2)*s1(i,1:3) + Sig_cp(3)*t1(i,1:3) 

     

     if (TAU/=0) then 

      Nv=dabs(DOT_PRODUCT(tt,rot)/TAU) 

      tan_Phi_i= tan_phi*(1.0d0-(Ar-1.0d0)/(Ar+2.0d0)*(1.0d0-3.0d0*(Nv**2))) 

      COH_i=COH*(1.0d0-(Ar-1.0d0)/(Ar+2)*(1.0d0-3.0d0*(Nv**2))) 

     else 

      tan_Phi_i= tan_phi 

      COH_i=COH 

     endif 

    Else 

     tan_Phi_i= tan_phi 

     COH_i=COH 

    End if 

 

    tan_PHI_MOD=tan_phi_i/Rf 

    MCP = ACAP*tan_phi_res 

 

    !calculate local spectral stiffness parameters (with Sig0_cp) 

    if(sw_pdash_SN0==1) then 

     Cnn = Cnn_ref * (p_ref/dabs(SN0))**m_power 

     Ctt = Cnn / CnnCtt  

    End if 

   end if ! smallstrain ==.false. 

 

!**********************************************************************************  

 

   if (smallstrain ==.true.) then 

 

    Tj_spec = 0.0d0 

    !form transformation matrix Tj(6,6) 

    Tj_spec(1,1) = 1/3.0d0 

    Tj_spec(2,1) = 1/3.0d0 

    Tj_spec(3,1) = 1/3.0d0 

    Tj_spec(1,2) = n1(i,1)**2 - 1/3.0d0 

    Tj_spec(2,2) = n1(i,2)**2 - 1/3.0d0 

    Tj_spec(3,2) = n1(i,3)**2 - 1/3.0d0 

    Tj_spec(4,2) = 2.0d0*n1(i,1)*n1(i,2) 

    Tj_spec(5,2) = 2.0d0*n1(i,2)*n1(i,3) 

    Tj_spec(6,2) = 2.0d0*n1(i,3)*n1(i,1) 

    Tj_spec(1,3) = n1(i,1)*s1(i,1) 

    Tj_spec(2,3) = n1(i,2)*s1(i,2) 

    Tj_spec(3,3) = n1(i,3)*s1(i,3) 

    Tj_spec(4,4) = n1(i,1)*s1(i,2)+n1(i,2)*s1(i,1) 

    Tj_spec(5,4) = n1(i,3)*s1(i,2)+n1(i,2)*s1(i,3) 

    Tj_spec(6,4) = n1(i,3)*s1(i,1)+n1(i,1)*s1(i,3) 

    Tj_spec(1,5) = n1(i,1)*t1(i,1) 

    Tj_spec(2,5) = n1(i,2)*t1(i,2) 

    Tj_spec(3,5) = n1(i,3)*t1(i,3) 

    Tj_spec(4,6) = n1(i,2)*t1(i,1)+n1(i,1)*t1(i,2) 

    Tj_spec(5,6) = n1(i,2)*t1(i,3)+n1(i,3)*t1(i,2) 

    Tj_spec(6,6) = n1(i,1)*t1(i,3)+n1(i,3)*t1(i,1) 

 

    !get transposed transformation matrix TiT_spec(6,6)    

    TiT_spec= Transpose(Tj_spec) 

   

    ! stress transformation with 6 local stress components 

    Sig_cp_spec = MATMUL (TiT_spec,Sig_trial) 

    Sig0_sub_cp= MATMUL (TiT_spec,Sig0_sub) 

   

    Sig_cp(1) = Sig_cp_spec(1) + Sig_cp_spec(2) 

    Sig_cp(2) = Sig_cp_spec(3) + Sig_cp_spec(4) 

    Sig_cp(3) = Sig_cp_spec(5) + Sig_cp_spec(6) 

 

    SN=  Sig_cp(1)       ! sigma_n on c.p. 

    TAU= dsqrt(Sig_cp(2)**2 + Sig_cp(3)**2) 

    iTAU= -0.01*dabs(SN) 

    IF (iTAU.le.0.01) iTAU=0.01d0 

    IF (TAU < 0.and.TAU>-iTAU) TAU= 0.0  ! adjust small differences    

    IF (TAU > 0.and.TAU<iTAU) TAU= 0.0  ! adjust small differences 

    IF (TAU <= -iTAU) then 

     STOP 'ERROR - MYMOD_ML: tau negative on cp'  

    end if   
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    ! get anisotropic shear strength according to local stress path direction  

    If (Ar/=1.0d0) then 

     tt = Sig_cp(2)*s1(i,1:3) + Sig_cp(3)*t1(i,1:3)     

     if (TAU/=0) then 

      Nv=dabs(DOT_PRODUCT(tt,rot)/TAU) 

      tan_Phi_i= tan_phi*(1.0d0-(Ar-1.0d0)/(Ar+2.0d0)*(1.0d0-3.0d0*(Nv**2))) 

      COH_i=COH*(1.0d0-(Ar-1.0d0)/(Ar+2)*(1.0d0-3.0d0*(Nv**2))) 

     else 

      tan_Phi_i= tan_phi 

      COH_i=COH 

     endif 

    Else 

     tan_Phi_i= tan_phi 

     COH_i=COH 

    End if 

 

    tan_PHI_MOD=tan_phi_i/Rf 

    MCP  = ACAP*tan_phi_res 

 

    !calculate local spectral stiffness matrix 

    stiff_low=.false. 

 

    LE = 0.0d0 

    C_cp = 0.0d0 

 

    if(gamma_cp(i).le.gamma_1) then  

     deg_par = 0.0d0 

    elseif (gamma_cp(i).ge.gamma_2) then 

     deg_par = 1.0d0 

    else  

     deg_par = (dlog(gamma_cp(i))-dlog(gamma_1))/(dlog(gamma_2)-dlog(gamma_1)) 

    end if  

  

    ! anisotropic spectral stiffness 

    if (anisotropic_el ==.true..or.sw_pdash_SN0 == 2) then     

     Eh = Eh0 - (Eh0 - Eur_ref)*deg_par 

     Ev = Ev0 - (Ev0 - Eur_ref)*deg_par 

     Gvh = Gvh0 - (Gvh0 - Eur_ref/(2.0d0+2.0d0*NYUR))*deg_par 

     nu_hv = nu_hv_0 - (nu_hv_0 - NYUR)*deg_par 

     nu_hh = nu_hh_0 - (nu_hh_0 - NYUR)*deg_par 

     if (deg_par==1.0d0) stiff_low=.true.   

  

     ! Calculate eigenvalues and eigenangle  

     lambda_1 = (1.0d0+nu_hh)/Eh 

     lambda_2 = (1.0d0-nu_hh)/(2.0d0*Eh) + 1.0d0/(2.0d0*Ev) - dsqrt(((1.0d0- & 

        nu_hh)/(2.0d0*Eh)-1.0d0/(2.0d0*Ev))**2+((2.0d0*nu_hv**2)/Eh**2)) 

     lambda_3 = (1.0d0-nu_hh)/(2.0d0*Eh) + 1.0d0/(2.0d0*Ev)+ dsqrt(((1.0d0- & 

        nu_hh)/(2.0d0*Eh)-1.0d0/(2.0d0*Ev))**2+((2.0d0*nu_hv**2)/Eh**2)) 

     lambda_4 = 1.0d0/(2.0d0*Gvh) 

 

     If (((1.0d0-nu_hh)/Eh - 1.0d0/Ev)==0.0d0.AND.nu_hv.gt.0.0d0) then 

      omega = Pi/4.d0 

     Else If (((1.0d0-nu_hh)/Eh - 1.0d0/Ev)==0.0d0.AND.nu_hv.le.0.0d0) then 

      omega = -Pi/4.d0 

     Else 

      If (((1.0d0-nu_hh)/Eh - 1.0d0/Ev).gt.0) then 

       omega = Pi/2.0d0 + 1.0d0/2.0d0*datan((-2.0d0*dsqrt(2.0d0)*  & 

           ((nu_hv)/Eh))/((1.0d0-nu_hh)/Eh - 1.0d0/Ev)) 

      Else 

       omega = 1.0d0/2.0d0*datan((-2.0d0*dsqrt(2.0d0)*  & 

           ((nu_hv)/Eh))/((1.0d0-nu_hh)/Eh - 1.0d0/Ev))  

      End If 

     End if 

 

     ! Get components of matrix Sum(lambda_i*E_i) 

     LE(1,1) = 1.0d0/2.0d0*lambda_1 + lambda_2*(dcos(omega))**2/2.0d0 +   & 

         lambda_3*(dsin(omega))**2/2.0d0 

     LE(2,1) = lambda_2*(dcos(omega)*dsin(omega))/dsqrt(2.0d0) + lambda_3*(- & 

         dcos(omega)*dsin(omega))/dsqrt(2.0d0) 

     LE(3,1) = -1.0d0/2.0d0*lambda_1 + lambda_2*(dcos(omega))**2/2.0d0 +   & 

         Lambda_3*(dsin(omega))**2/2.0d0 

     LE(1,2) = LE(2,1) 

     LE(2,2) = lambda_2*(dsin(omega))**2 + lambda_3*(dcos(omega))**2 

     LE(3,2) = LE(1,2) 

     LE(1,3) = LE(3,1) 

     LE(2,3) = LE(3,2) 

     LE(3,3) = LE(1,1) 

     LE(4,4) = lambda_4 
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     LE(5,5) = lambda_4 

     LE(6,6) = lambda_1 

 

     !get inverse of transposed transformation matrix TiT_spec_inv(6,6) 

     Call MatInvPiv(TiT_spec,TiT_spec_inv,6) 

      

     ! get local C_cp at reference pressure       ! schä 301109 

     LExTiT_inv = MATMUL (LE,TiT_spec_inv) 

     C_cp= MATMUL (TiT_spec,LExTiT_inv) 

 

    ! isotropic small strain stiffness 

    Else if (anisotropic_el ==.false..and.sw_pdash_SN0.ne.2) then  

     Eh = Eh0 - (Eh0 - Eur_ref)*deg_par 

 

     if (deg_par==1.0d0) stiff_low=.true. 

 

     ! Calculate eigenvalues of local compliance matrix 

     lambda_1 = (1.0d0+NYUR)/Eh 

     lambda_2 = (1.0d0-2d0*NYUR)/Eh  

      

     ! get C_cp at reference pressure       ! schä 301109 

     C_cp(1,1)= lambda_2 

     Do m=2,6 

      C_cp(m,m) = lambda_1 

     End Do 

    End if  ! isotropic small strain stiffness 

     

    if(sw_pdash_SN0==0) then   ! approach 1 

     C_cp = C_cp * facCnn 

     Cnn = Cnn_ref * facCnn 

     Ctt = Cnn / CnnCtt       

    Else if(sw_pdash_SN0==1) then  !approach 2 

     C_cp = C_cp * (p_ref/dabs(SN0))**m_power 

     Cnn = Cnn_ref * (p_ref/dabs(SN0))**m_power 

     Ctt = Cnn / CnnCtt  

    Else if(sw_pdash_SN0==2) then  ! approach 3 

     C_cp = C_cp * facCnn 

     Cnn = Cnn_ref * (p_ref/dabs(SN0))**m_power 

     Ctt = Cnn / CnnCtt  

    End if 

 

    ! set small-strain stiffness indicator for output 

    if (ii==n_sub) sss_indicator_cp = 1.0d0 - deg_par 

 

    ! accumulate global value of small-strain stiffness indicator 

    if (ii==n_sub) sss_indicator_gl = sss_indicator_gl + sss_indicator_cp * & 

                Weight(i) 

 

    ! SSS-influenced hardening - shift of yield surfaces 

    if (iter_cp==1.and.stiff_low==.false.) then 

     x_stiff = 1.0d0 - deg_par ! acc. to degradation of stiffness 

  

     ! CONE: change (increase) of TPHIM 

     TPHIM_sub0 = StVar(1*ABS(NUMCP)+i) 

     TPHI_Sig_trial = TAU*tan_phi_i/(COH_i-SN*tan_phi_i)  

     TPHIM_SSS = TPHIM_sub0+x_stiff*(TPHI_Sig_trial-TPHIM_sub0)  

 

     If (TPHIM_SSS.gt.tan_phi_i) TPHIM_SSS = tan_phi_i 

 

        f_cone = TAU + SN*TPHIM_sub0 - COH_i*TPHIM_sub0/tan_phi_i 

     if (TPHIM_sub0.lt.TPHIM_SSS.and.f_cone.Gt.CONVERGE.and.SN.lt.TENS) then 

      ! update StVar 

      StVar(1*ABS(NUMCP)+i) = TPHIM_SSS 

     endif 

 

     ! CAP: change (increase) of SIGNC 

     SIGNC_sub0 = signc 

     SIGNC_Sig_trial = -dsqrt((SN*SN)+(TAU*TAU)/(MCP*MCP)) 

     SIGNC_SSS = SIGNC_sub0+x_stiff*(SIGNC_Sig_trial-SIGNC_sub0) 

     f_cap = (SN**2)/(SIGNC_sub0**2) + (TAU**2)/((MCP*SIGNC_sub0)**2) - 1 

     if (dabs(SIGNC_sub0).lt.dabs(SIGNC_SSS).and.f_cap.Gt.CONVERGE) then 

      ! update StVar 

      StVar(2*ABS(NUMCP)+i) = SIGNC_SSS 

      SIGNC = SIGNC_SSS 

      If (Hvorslev) then  

       ! reduction of signc 

       SIGNC = -((-signc)**(1.0d0-m_power)+HARDCAP*(m_power-1.0d0) &  

          *p_ref**(1.0d0-m_power)*(h_soft*Eps_Damage))**  & 
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          (1.0d0/(1.0d0-m_power))  

      End if 

     endif 

    endif ! SSS-influenced hardening - shift of yield surfaces 

 

    ! calculate deviatoric elastic strains on cp 

    dSig_el_cp_spec = Sig_cp_spec - Sig0_sub_cp 

    dEps_cp_el_spec(:,i) = Matmul(C_cp,dSig_el_cp_spec) 

    dEps_cp_el(1,i) = dEps_cp_el_spec(2,i) 

    dEps_cp_el(2,i) = dEps_cp_el_spec(3,i) + dEps_cp_el_spec(4,i) 

    dEps_cp_el(3,i) = dEps_cp_el_spec(5,i) + dEps_cp_el_spec(6,i) 

 

   endif ! smallstrain==.true. 

!************************************************************************************** 

 

   ! local compliance matrix for plastic strain calculation 

   D_loc(1,1) = 1.0d0 / Cnn 

   D_loc(1,2) = 0.0d0 

   D_loc(2,1) = 0.0d0 

   D_loc(2,2) = 1.0d0 / Ctt 

   

   ! get equivalent pressure on NCL at trial normal stress 

   sig_ve =   -((-signc)**(1-m_power)+Eoed_ref/Eur_ref*3*(1-2*NYUR)*((-SN)**(1- & 

        m_power)-(-signc)**(1-m_power)))**(1/(1-m_power)) 

 

   !Variation of phi with damage strain - Galavi softening model 

   !*************************************************************************** 

   ! calculate tan(phi_mob) 

   If (.not.Hard_Soft) then      ! no strain softening calculation 

    TPHIM = StVar(1*ABS(NUMCP)+i) 

    if (TPHIM.gt.tan_PHI_i.and..not.Hvorslev) TPHIM=tan_phi_i 

    Softening =.false. 

   else !  strain softening calculation          

    EpsDamPeak=StVar(5*ABS(NUMCP)+i)   ! non-local damage strain 

    if(EpsDamPeak<=0.000000000001) then  ! peak strength not reached yet 

     Softening =.false. 

     TPHIM = StVar(1*ABS(NUMCP)+i) 

     if (TPHIM.ge.tan_PHI_i) then 

      if (.not.Eps_non_local_cal) then 

       call Non_Local (StVar, nStat, NumCP, GLD_strain, iStep, numpoint, & 

             point_index, weights, Hvorslev) 

       Eps_non_local_cal=.True. 

      end if 

      ! Correction factor for non-local damage strain     

      Eps_non_local = StVar(3*ABS(NUMCP)+8)        

      Eps_Damage = StVar(4*ABS(NUMCP)+i) !Local damage strain  

 

      ! non-local damage strain at peak friction angle 

      StVar(5*ABS(NUMCP)+i) = Eps_Non_Local * Eps_Damage  

      TPHIM=tan_PHI_i 

      StVar(6*ABS(NUMCP)+i) = TPHIM 

      StVar(7*ABS(NUMCP)+i) = Coh_i 

     end if          

    else ! strain softening calculation beyond peak shear strength 

     Softening =.true. 

     if (.not.Eps_non_local_cal) then 

      call Non_Local (StVar, nStat, NumCP, GLD_strain, iStep, numpoint, & 

           point_index, weights, Hvorslev) 

      Eps_non_local_cal=.True. 

     end if 

 

     if (StVar(6*ABS(NUMCP)+i)>1.0000001*tan_phi_res) then 

      Eps_non_local=StVar(3*ABS(NUMCP)+8)  

      Eps_Damage=StVar(4*ABS(NUMCP)+i) 

      TPHIM=(-hPhi)*(Eps_Non_Local * Eps_Damage -EpsDamPeak)+tan_phi_i 

      if (TPHIM>StVar(6*ABS(NUMCP)+i)) TPHIM=StVar(6*ABS(NUMCP)+i) 

      if (TPHIM<=tan_phi_res) Then 

       TPHIM=tan_phi_res 

      end if 

     else 

      TPHIM=tan_phi_res 

     end if 

 

     StVar(6*ABS(NUMCP)+i)=TPHIM 

 

     if (StVar(7*ABS(NUMCP)+i) >1.0000001*C_res) then 

      Eps_non_local=StVar(3*ABS(NUMCP)+8) 

      Eps_Damage=StVar(4*ABS(NUMCP)+i) 
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      Coh_i  = (-hCoh)*(Eps_Non_Local*Eps_Damage-EpsDamPeak)+Coh_i 

      if (Coh_i>StVar(7*ABS(NUMCP)+i)) Coh_i=StVar(7*ABS(NUMCP)+i) 

      if (Coh_i<C_res)  Coh_i=C_res 

     else 

      Coh_i=C_res 

     end if 

     StVar(7*ABS(NUMCP)+i)=Coh_i 

    end if 

   end if ! .not.Hard_soft 

   !**************************************************************************** 

 

     ! check yield criteria 

     f_cone = TAU + SN*TPHIM - COH_i*TPHIM/tan_phi_i 

     If (softening) f_cone = TAU + SN*TPHIM - COH_i 

           f_cap  = (SN**2)/(SIGNC**2) + (TAU**2)/((MCP*SIGNC)**2) - 1.0d0 

     f_tens = SN-TENS 

     f_HV = TAU + SN*tan_phi_e - sig_ve*B_cs*(tan_phi_e/tan_phi_res - 1.0d0) 

     If (tphim.le.tan_phi_res.or..not.Hvorslev) f_HV = 0.0d0 

    

   ! increase Amat above CSL 

     If (tphim.gt.tan_phi_res.and.Hvorslev) then  

    Amat = Amat_ref + Amat_ref*((tphim-tan_phi_res)/tan_phi_res)*F_amat 

     else 

    Amat = Amat_ref 

     End if 

 

         ! plastic strains on tensile side 

   If (F_tens .gt. 0.0d0) then ! associated flow for SN>TENS     

    ! gt = sn - tens 

    ! sn is negative for compression 

 

    dGTdSN = 1.0d0 

    dGTdTAU = 0.0d0 

 

    dFTdSN = dGTdSN 

    dFTdTAU = dGTdTAU 

 

    ! set plasticity indicator 

    ipl_cp(2) = ipl_cp(2)+1 ! increase counter for tension cut off 

    

    ! calculate plastic strain contribution of contact plain 

    epsNtens = f_tens*Cnn*dGTdSN ! normal strains of cp from tension hardening 

    epsGtens = f_tens*Cnn*dGTdTAU ! shear strains of cp from tension hardening 

 

    epsn_t_step(i) = epsn_t_step(i) + epsNtens 

 

    eps_tens(1) = epsNtens 

    eps_tens(2) = 0.0d0 

    eps_tens(3) = 0.0d0         

     End If  !(F_tens .gt. 0.0d0) 

 

     ! correction of plastic tensile strains for negative values of yield function 

   If (F_tens.lt.0d0.and.epsn_t_step(i).gt.0d0) then     

    epsNtens = f_tens*Cnn 

    epsGtens = 0.0d0 

 

    If (abs(epsNtens).gt.epsn_t_step(i)) then 

     epsNtens = -epsn_t_step(i) 

    End if 

 

    epsn_t_step(i) = epsn_t_step(i) + epsNtens 

 

    eps_tens(1) = epsNtens 

    eps_tens(2) = 0.0d0 

    eps_tens(3) = 0.0d0         

     End If  !(F_tens.lt.0d0.and.epsn_t_step(i).gt.0d0) 

    

   If (F_cone.gt.0.0d0.and.SN.le.TENS) then  

    ! Cone hardening - derivatives, mobilized phi etc. 

    ! g = tau + sn*tan(psim) - coh*tan(phim)/tan(phi) 

    ! sn is negative for compression 

 

    PHIM = datan(TPHIM)   ! get phi_mob 

    Phi_i = datan(tan_phi_i) 

    

    ! new stress dilatancy theory´acc. Scharinger 

    If (.not.Hvorslev) then    

     ! get critical state friction angle  
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     PHIcv = Asin((dsin(PHI_i)-dsin(PSI))/(1.0d0-dsin(PHI_i)*dsin(PSI)))   

     ! get inclination for PHIm.gt.PHIcv  

     if (PSI.ne.0) k2_nSDT = PSI/(PHI_i-PHIcv)   

    Else 

     Phicv = phi_res 

     If (psimin.ne.0) k2_nSDT = 1 

    End if 

       

    a1 = -((-(k1_nSDT*phi1)+2*psimin)/phi1**3) 

    b1 = -((2*k1_nSDT*phi1-3*psimin)/phi1**2) 

    c1 = k1_nSDT 

    

    a2 = -((-(k2_nSDT*phi1) + k2_nSDT*phicv + 2*psimin)/(phi1 - phicv)**3) 

    b2 = -((2*k2_nSDT*phi1**2 - k2_nSDT*phi1*phicv - k2_nSDT*phicv**2 - & 

        3*phi1*psimin- 3*phicv*psimin)/(phi1 - phicv)**3) 

    c2 = (phi1*(k2_nSDT*phi1**2 + k2_nSDT*phi1*phicv - 2*k2_nSDT*phicv**2 - & 

      6*phicv*psimin))/(phi1 - phicv)**3 

    d2 = -((k2_nSDT*phi1**3*phicv - k2_nSDT*phi1**2*phicv**2 -   & 

      3*phi1*phicv**2*psimin + phicv**3*psimin)/(phi1 - phicv)**3) 

 

    if (phim.le.phi1) then 

     psim = a1*phim**3+b1*phim**2+c1*phim 

    elseif (phim.gt.phi1.and.phim.le.phicv) then 

     psim = a2*phim**3+b2*phim**2+c2*phim+d2 

    else 

     psim = (datan(tphim)-phicv)*F_psi 

    endif 

    

    !calculate derivatives for cone hardening 

    dFcone_dsig(1) = TPHIM 

    dFcone_dsig(2) = 1.0d0 

    dGcone_dsig(1) = dtan(PSIM) 

    dGcone_dsig(2) = 1.0d0 

    If (.not.softening) then 

     dFcone_depspl(1) = 0.0d0 

     dFcone_depspl(2) = (SN-COH_i/tan_phi_i)*3*(tan_phi_mod-  & 

             TPHIM)**2/(AMAT*(tan_phi_mod-tan_phi_null)) 

     If (tphim.eq.tan_phi_i) dFcone_depspl(2) = 0.0d0 

    Else ! Galavi softening model in post peak range 

     dFcone_depspl(1) = (SN-COH_i/tan_phi_i)* (-hPhi)* (Eps_non_local*(1-A))& 

            + (-TPHIM/tan_phi_i)*(-hCoh)* (Eps_non_local*(1-A)) 

     dFcone_depspl(2) = (SN-COH_i/tan_phi_i)* (-hPhi)* (Eps_non_local*A) + & 

           (-TPHIM/tan_phi_i)*(-hCoh)* (Eps_non_local*A) 

    End if     

 

    Dloc_x_dgconedsig(1) = D_loc(1,1)*dGcone_dsig(1) 

    Dloc_x_dgconedsig(2) = D_loc(2,2)*dGcone_dsig(2) 

 

    L11 = DOT_PRODUCT(dFcone_dsig,Dloc_x_dgconedsig)-  & 

      DOT_PRODUCT(dFcone_depspl,dGcone_dsig) 

 

    Lambda_cone_1 = f_cone / L11 

    Lambda_cone = Lambda_cone_1 

  

    ! set plasticity indicator for cone hardening 

    If (Hard_soft) then 

     if (softening) then 

      ipl_cp(1) = ipl_cp(1)+1 ! peak friction angle reached => failure 

     else 

      ipl_cp(5) = ipl_cp(5)+1 ! friction hardening 

     end if 

    Else 

     if (TPHIM.gt.0.99*tan_PHI_i) then 

      ipl_cp(1) = ipl_cp(1)+1 ! max. friction angle reached => failure 

     else 

      ipl_cp(5) = ipl_cp(5)+1 ! friction hardening 

     end if 

    End if 

   End if ! cone hardening 

 

   If (F_cap.gt.0.0d0.and.SN.le.TENS) then 

      ! Cap hardening - derivatives etc. 

      ! g_cap = f_cap = sn**2/signc**2 + tau**2/(mcp*signc)**2 - 1 

      ! sn is negative for compression 

 

    ! derivatives 

    dFcap_dsig(1) = 2.0d0*SN/(SIGNC**2) 

    dFcap_dsig(2) = 2.0d0*TAU/((MCP*SIGNC)**2) 
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    dGcap_dsig(1) = dFcap_dsig(1) 

    dGcap_dsig(2) = dFcap_dsig(2) 

    dFcap_depspl(1) = (-2.0d0*(SN**2+(TAU**2.0d0/MCP**2))/SIGNC**3) & 

         *(p_ref**(1.0d0-m_power)*HARDCAP*(dabs(SIGNC))**m_power) 

    dFcap_depspl(2) = 0.0d0 

 

    Dloc_x_dgcapdsig(1)  = D_loc(1,1)*dGcap_dsig(1) 

    Dloc_x_dgcapdsig(2)  = D_loc(2,2)*dGcap_dsig(2) 

 

    ! Local plastic multiplier 

    L22 = DOT_PRODUCT (dFcap_dsig,Dloc_x_dgcapdsig)   & 

       - DOT_PRODUCT (dFcap_depspl,dGcap_dsig) 

    Lambda_cap_1 = f_cap / L22 

    Lambda_cap = Lambda_cap_1 

          

    ! set plasticity indicator for cap hardening 

    ipl_cp(3) = ipl_cp(3)+1  

   End if ! cap hardening 

 

   ! Hvorslev yield surface 

   If (F_HV.gt.0.0d0.and.SN.le.TENS) then 

    If (tan_phi_i.gt.tphim) then 

     psi_HV = (datan(tphim)-phi_res)*F_psi 

    Else 

     psi_HV = (datan(tan_phi_i)-phi_res)*F_psi 

    End if 

          

    !calculate derivatives for Hvorslev surface 

    dFHV_dsig(1) = tan_phi_e + B_cs*Eoed_ref/Eur_ref*(tan_phi_e/tan_phi_res & 

           - 1.0d0)*3d0*(2d0*NYUR - 1.0d0)*(sig_ve/SN)**m_power 

    dFHV_dsig(2) = 1.0d0 

    dGHV_dsig(1) = dtan(PSI_HV) 

    dGHV_dsig(2) = 1.0d0 

    dFHV_depspl(1) = 0.0d0 ! explicit in softening 

    dFHV_depspl(2) = 0.0d0 

 

    Dloc_x_dgHVdsig(1) = D_loc(1,1)*dGHV_dsig(1) 

    Dloc_x_dgHVdsig(2) = D_loc(2,2)*dGHV_dsig(2) 

 

    L33 = DOT_PRODUCT (dFHV_dsig,Dloc_x_dgHVdsig) -   & 

        DOT_PRODUCT (dFHV_depspl,dGHV_dsig) 

 

    Lambda_HV_1 = f_HV / L33 

    Lambda_HV = Lambda_HV_1 

 

    ipl_cp(1) = ipl_cp(1)+1 ! Hvorslev surface equals failure in MC terms 

  

   End if ! Hvorslev surface 

 

   ! Plastic strain correction for f_HV < 0 

   If (F_HV.lt.0.0d0.and.gamma_HV_step(i).gt.0d0) then 

 

    If (tan_phi_i.gt.tphim) then 

     psi_HV = (datan(tphim)-phi_res)*F_psi 

    Else 

     psi_HV = (datan(tan_phi_i)-phi_res)*F_psi 

    End if 

          

    !calculate derivatives for Hvorslev surface 

    dFHV_dsig(1) = tan_phi_e + B_cs*Eoed_ref/Eur_ref*(tan_phi_e/tan_phi_res & 

          - 1.0d0)*3d0*(2d0*NYUR - 1.0d0)*(sig_ve/SN)**m_power 

    dFHV_dsig(2) = 1.0d0 

    dGHV_dsig(1) = dtan(PSI_HV) 

    dGHV_dsig(2) = 1.0d0 

    dFHV_depspl(1) = 0.0d0 

    dFHV_depspl(2) = 0.0d0 

    Dloc_x_dgHVdsig(1) = D_loc(1,1)*dGHV_dsig(1) 

    Dloc_x_dgHVdsig(2) = D_loc(2,2)*dGHV_dsig(2) 

 

    ! Local plastic multiplier 

    L33 = DOT_PRODUCT (dFHV_dsig,Dloc_x_dgHVdsig) -   & 

        DOT_PRODUCT (dFHV_depspl,dGHV_dsig) 

    Lambda_HV = f_HV / L33 

 

    ipl_cp(1) = ipl_cp(1)+1    ! Hvorslev surface equals MC failure 

 

    epsNHV = Lambda_Hv * dGHV_dsig(1) ! normal strains from Hvorslev surface 

    epsGHV = Lambda_HV * dGHV_dsig(2) ! shear strains from Hvorslev surface 
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    If (abs(epsGHV).gt.gamma_HV_step(i)) then 

     epsNHV = -epsn_HV_step(i) 

     epsGHV = -gamma_HV_step(i) 

    End if 

 

    epsn_HV_step(i) = epsn_HV_step(i) + epsNHV  

    gamma_HV_step(i) = gamma_HV_step(i) + epsGHV 

 

    eps_HV(1) = epsNHV 

 

    if (TAU==0) then 

     eps_HV(2) = 0.0d0 

     eps_HV(3) = 0.0d0 

    else  

     eps_HV(2) = epsGHV*Sig_cp(2)/TAU 

     eps_HV(3) = epsGHV*Sig_cp(3)/TAU 

    endif 

   End if ! Hvorslev surface 

 

   ! check if cap and cone are active 

   If (f_cone.Gt.0.0d0.and.SN.le.TENS.and.f_cap.Gt.0.0d0.and.f_HV.le.0.0d0) then 

 

      L12 = DOT_PRODUCT (dFcone_dsig,Dloc_x_dgcapdsig) 

      L21 = DOT_PRODUCT (dFcap_dsig,Dloc_x_dgconedsig) 

 

      Lambda_cone_12 = (L22*f_cone - L12*f_cap)/ (L11*L22 - L12*L21) 

 

      Lambda_cap_12 = (L11*f_cap - L21*f_cone)/ (L11*L22 - L12*L21) 

 

      If (Lambda_cone_12.gt.0.0d0) then 

     cone_active = .true. 

    else  

     cone_active = .false. 

    endif 

 

    If (Lambda_cap_12.gt.0.0d0) then 

     cap_active = .true. 

    else  

     cap_active = .false. 

    endif 

 

    If (cap_active ==.false.) then 

     Lambda_cone = Lambda_cone_1 

     Lambda_cap = 0.0d0 

    else if (cone_active ==.true..and.cap_active ==.true.) then 

     Lambda_cone = Lambda_cone_12 

     Lambda_cap = Lambda_cap_12 

    else if (cone_active ==.false.) then 

     Lambda_cone = 0.0d0 

     Lambda_cap = Lambda_cap_1       

    endif  

   End if !(f_cone.Gt.0.0d0.and.f_cap.Gt.0.0d0) 

 

   ! check if cone and Hvorslev surface are active 

   If (f_cone.Gt.0.0d0.and.SN.le.TENS.and.f_HV.gt.0.0d0) then 

 

    If (PSIM.gt.psi_HV) then  

     L13 = DOT_PRODUCT (dFcone_dsig,Dloc_x_dgHVdsig) 

     L31 = DOT_PRODUCT (dFHV_dsig,Dloc_x_dgconedsig) 

 

     Lambda_cone_13 = (L33*f_cone - L13*f_HV)/ (L11*L33 - L13*L31) 

 

     Lambda_HV_13  = (L11*f_HV - L31*f_cone)/ (L11*L33 - L13*L31) 

 

     If (Lambda_cone_13.gt.0.0d0) then 

      cone_active = .true. 

     else  

      cone_active = .false. 

     endif 

 

     If (Lambda_HV_13.gt.0.0d0) then 

      HV_active = .true. 

     else  

      HV_active = .false. 

     endif 

 

     If (HV_active ==.false.) then 
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      Lambda_cone = Lambda_cone_1 

      Lambda_HV = 0.0d0 

     else if (cone_active ==.true..and.HV_active ==.true.) then 

      Lambda_cone = Lambda_cone_13 

      Lambda_HV = Lambda_HV_13 

     else if (cone_active ==.false.) then 

      Lambda_cone = 0.0d0 

      Lambda_HV = Lambda_HV_1 

     endif  

    Else 

     If (Lambda_cone_1.ge.Lambda_HV_1) then 

      Lambda_cone = Lambda_cone_1 

      Lambda_HV = 0.0d0 

     else 

      Lambda_cone = 0.0d0 

      Lambda_HV = Lambda_HV_1 

     endif  

    End if 

   End if !(f_cone.Gt.0.0d0.and.f_HV.Gt.0.0d0) 

 

   ! check if cap and Hvorslev surface are active 

   If (SN.le.TENS.and.f_cap.gt.0.0d0.and.f_HV.gt.0.0d0) then 

    L23 = DOT_PRODUCT (dFcap_dsig,Dloc_x_dgHVdsig) 

    L32 = DOT_PRODUCT (dFHV_dsig,Dloc_x_dgcapdsig) 

    Lambda_cap_23 = (L33*f_cap - L23*f_HV)/ (L22*L33 - L23*L32) 

    Lambda_HV_23 = (L22*f_HV - L32*f_cap)/ (L22*L33 - L23*L32) 

 

    If (Lambda_cap_23.gt.0.0d0) then 

     cap_active = .true. 

    else  

     cap_active = .false. 

    end if 

 

    If (Lambda_HV_23.gt.0.0d0) then 

     HV_active = .true. 

    else  

     HV_active = .false. 

    End if 

 

    If (HV_active ==.false.) then 

     Lambda_cap = Lambda_cap_1 

     Lambda_HV = 0.0d0 

    else if (cap_active.and.HV_active) then 

     Lambda_cap = Lambda_cap_23 

     Lambda_HV = Lambda_HV_23 

    else if (cap_active ==.false.) then 

     Lambda_cap = 0.0d0 

     Lambda_HV = Lambda_HV_1       

    End if  

   End if !(f_cap.Gt.0.0d0.and.f_HV.Gt.0.0d0) 

 

   ! check whether cone, cap and Hvorslev surface are active if trial stress  

   !is outside of all 3 yield surfaces 

   If (f_cone.gt.0.0d0.and.SN.le.TENS.and.f_cap.gt.0.0d0.and.f_HV.gt.0.0d0) then 

 

    ! cone more mobilized than what corresponds to Hvorslev surface 

    If (PSIM.gt.(psi_HV+0.001)) then     

     ! check if cap and HV are active 

     If (Lambda_cap_23.gt.0.0d0) then 

      cap_active = .true. 

      If (Lambda_HV_23.gt.0.0d0) then 

       HV_active = .true. 

      else  

       HV_active = .false. 

      endif ! Lambda_HV_23.gt.0.0d0 

     else ! Lambda_cap_23 < 0 

      cap_active = .false. 

      ! check if cone and HV are active 

      If (Lambda_HV_13.gt.0.0d0) then 

       HV_active = .true. 

      else  

       HV_active = .false. 

      endif 

 

      If (Lambda_cone_13.gt.0.0d0) then 

       cone_active = .true. 

      else  

       cone_active = .false. 
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      endif 

     endif !Lambda_cap_23.gt.0.0d0 

 

    Else ! PSIM=psi_HV==>special return necessary due to non-convex yield surf. 

     ! check if cap and HV are active 

     If (Lambda_cap_23.gt.0.0d0) then ! cap active 

      cap_active = .true. 

      cone_active = .false. ! cone cannot be active if Hvor. Surf. exists  

              ! and cap is active 

      If (Lambda_HV_23.gt.0.0d0) then ! Hvorslev surface active 

       HV_active = .true. 

      else  

       HV_active = .false. 

      endif     

     else ! cap not active 

      cap_active = .false. 

 

      ! cone return delivers longer return path ==> cone active 

      If (Lambda_cone_1.ge.Lambda_HV_1) then   

       cone_active = .true. 

       HV_active = .false. 

      else ! cone not active 

       cone_active = .false. 

       HV_active = .true. 

      endif  

     endif !Lambda_cap_23.gt.0.0d0 

    End if ! PSIM.gt.psi_HV 

 

    If (.not.HV_active) then 

     Lambda_HV = 0.0d0 

     If (cone_active) then 

      Lambda_cone = Lambda_cone_1 

      Lambda_cap = 0.0d0 

     else if (cap_active) then 

      Lambda_cone = 0.0d0 

      Lambda_cap = Lambda_cap_1 

     End if 

    Else if (HV_active) then 

     If (cone_active) then 

      Lambda_cone = Lambda_cone_13 

      Lambda_HV = Lambda_HV_13 

      Lambda_cap = 0.0d0 

     else if (cap_active) then 

      Lambda_cone = 0.0d0 

      Lambda_HV = Lambda_HV_23 

      Lambda_cap = Lambda_cap_23 

     else  

      Lambda_cone = 0.0d0 

      Lambda_HV = Lambda_HV_1 

      Lambda_cap = 0.0d0      

     End if 

    End if 

    End if !(f_cone.gt.0.0d0.and.SN.lt.TENS.and.f_cap.gt.0.0d0.and.f_HV.gt.0.0d0) 

 

     If (F_cone.gt.0.0d0.and.SN.le.TENS) then 

    ! calculate plastic strain contribution  - cone hardening 

    epsNcone = Lambda_cone * dGcone_dsig(1)  ! normal strains from cone 

    epsGcone = Lambda_cone * dGcone_dsig(2)  ! shear strains from cone 

    if (TAU==0) then 

     epsG1cone = 0.0d0 

     epsG2cone = 0.0d0 

    else  

     epsG1cone = epsGcone*Sig_cp(2)/TAU 

     epsG2cone = epsGcone*Sig_cp(3)/TAU 

    endif 

 

    eps_cone(1) = epsNcone 

    eps_cone(2) = epsG1cone 

    eps_cone(3) = epsG2cone 

 

    ! update state variables: mobilized friction angle for cone hardening 

    StVar(1*ABS(NUMCP)+i)= tphim + epsGcone*(tan_phi_mod-tphim) /   & 

     (Amat/3.0d0*(tan_phi_mod-tan_phi_null)/(tan_phi_mod-tphim) + epsGcone) 

     End if !f_cone.Gt.0.0d0 

 

     If (F_cap.gt.0.0d0.and.SN.le.TENS) then 

 

    ! calculate plastic strain contribution - cap hardening 
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    epsNcap = Lambda_cap * dGcap_dsig(1) ! normal strains from cap hardening 

    epsGcap = Lambda_cap * dGcap_dsig(2) ! shear strains from cap hardening 

 

    if (TAU==0) then 

     epsG1cap = 0.0d0 

     epsG2cap = 0.0d0 

    else  

     epsG1cap = epsGcap*Sig_cp(2)/TAU 

     epsG2cap = epsGcap*Sig_cp(3)/TAU 

    endif 

 

    eps_cap(1) = epsNcap 

    eps_cap(2) = epsG1cap 

    eps_cap(3) = epsG2cap 

 

   End if !f_cap.Gt.0.0d0 

 

 

     If (F_HV.gt.0.0d0.and.SN.le.TENS) then 

 

    ! calculate plastic strain contribution - Hvorslev surface 

    epsNHV = Lambda_Hv * dGHV_dsig(1) ! normal strains from Hvorslev surface 

    epsGHV = Lambda_HV * dGHV_dsig(2) ! shear strains from Hvorslev surface 

    eps_HV(1) = epsNHV 

 

    if (TAU==0) then 

     eps_HV(2) = 0.0d0 

     eps_HV(3) = 0.0d0 

    else  

     eps_HV(2) = epsGHV*Sig_cp(2)/TAU 

     eps_HV(3) = epsGHV*Sig_cp(3)/TAU 

    endif 

 

    epsn_HV_step(i) = epsn_HV_step(i) + epsNHV  

     gamma_HV_step(i) = gamma_HV_step(i) + epsGHV 

 

     End if !f_HV.Gt.0.0d0 

 

     if (smallstrain==.true.) then 

    ! form matrix with local plastic strains 

    If(SN.ne.0d0) then 

     dEps_cp_pl(1,i) = dEps_cp_pl(1,i) + (eps_tens(1)+eps_cone(1)+eps_cap(1) & 

           +eps_HV(1))*(Sig_cp_spec(2) / SN) 

    Else 

     dEps_cp_pl(1,i) = dEps_cp_pl(1,i) 

    End if 

 

    dEps_cp_pl(2,i) = dEps_cp_pl(2,i)+(eps_tens(2)+eps_cone(2)+ & 

          eps_cap(2)+eps_HV(2)) 

    dEps_cp_pl(3,i) = dEps_cp_pl(3,i)+(eps_tens(3)+ eps_cone(3)+ & 

          eps_cap(3)++eps_HV(3)) 

    End if 

 

!    Updating of sig_nc in hardening 

    StVar(2*ABS(NUMCP)+i) = -((dabs(StVar(2*ABS(NUMCP)+i)))**(1.0d0-m_power)+ & 

          HARDCAP*(m_power-1.0d0)*p_ref**(1.0d0-m_power)*epsNcap) & 

          **(1.0d0/(1.0d0-m_power))  

 

!    Updating of damage strain for softening calculation 

!************************************************************************************ 

    if (hard_Soft) then 

      dSt = (1.0d0-A)*dabs(epsNtens + epsNcap + epsNcone)+A*dabs(epsGtens +   & 

      epsGcap + epsGcone) 

    StVar(4*ABS(NUMCP)+i)= StVar(4*ABS(NUMCP)+i) +  dSt 

    GLD_strain=GLD_strain+Weight(i)*dSt !Damage Strain Storage 

    else if (Hvorslev) then 

      If (epsNcone.gt.0.0d0) then  

     dSt= epsNHV + epsNcone ! cone&Hvorslev plast. strain in Hvorslev soft. 

    Else 

     dSt= epsNHV ! only Hvorslev plastic strains in Hvorslev softening 

    End if   

 

    ! local plastic normal strain 

    StVar(4*ABS(NUMCP)+i)= StVar(4*ABS(NUMCP)+i) +  dSt 

    GLD_strain=GLD_strain+Weight(i)*dSt !Damage Strain Storage 

 

    ! first contact with Hvorslev surface 

    If (epsNHV.gt.0.0d0.and.StVar(5*ABS(NUMCP)+i)==0.0d0) then       
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     if(.not.Eps_non_local_cal.and.switch_HV == 1) then   

      call Non_Local (StVar, nStat, NumCP, GLD_strain, iStep, numpoint, & 

            point_index, weights, Hvorslev) 

      Eps_non_local_cal=.True. 

     end if 

 

     ! non local macro. damage strain 

     Eps_non_local=StVar(3*ABS(NUMCP)+8)   

 

     ! store non-local EpsDamPeak as state variable 

     StVar(5*ABS(NUMCP)+i) = Eps_non_local*weight(i)  

 

     ! store local EpsDamPeak as state variable 

     If (switch_HV == 2) StVar(5*ABS(NUMCP)+i) = StVar0(3*ABS(NUMCP)+9)* & 

                      weight(i)  

    End if 

    End if 

!************************************************************************************** 

 

    eps_cp_plastic = eps_tens + eps_cone + eps_cap + eps_HV 

    eps_cp_gl = MATMUL (Tj,eps_cp_plastic) 

    dEps_plastic = dEps_plastic + 3.0d0*eps_cp_gl*Weight(i) 

 

  END DO !loop over all integration planes    

 

  ! calculate plastic strains on global level 

  !plastic volumetric strain of current iteration 

  dEps_vol_pl = dEps_plastic(1) + dEps_plastic(2) + dEps_plastic(3)  

 

  ! Sum of plastic volumetric strain of current step along strain path 

  SumdEps_vol_pl = SumdEps_vol_pl + dabs(dEps_vol_pl)   

 

  !plastic octrahedral shear strain of current iteration     

  dGamma_pl = 2.0d0/3.0d0*dsqrt((dEps_plastic(1)-dEps_plastic(2))**2 +   & 

      (dEps_plastic(2)-dEps_plastic(3))**2 + (dEps_plastic(3)-  & 

      dEps_plastic(1))**2 + 1.5d0*dEps_plastic(4)**2 +     & 

      1.5d0*dEps_plastic(5)**2 + 1.5d0*dEps_plastic(6)**2)  

 

  ! Sum of plastic octahedral shear strain of current step along strain path   

  SumdGamma_pl = SumdGamma_pl + dGamma_pl       

 

  ! check convergence criterion 

  crit = 0.001d0 

  If (dabs(SumdEps_vol_pl).gt.1d-15.or.SumdGamma_pl.gt.1d-15) then 

   If (dabs(dEps_vol_pl/SumdEps_vol_pl)>crit.or.dabs(dGamma_pl/SumdGamma_pl)>crit)  

    converged_cp=.false. 

  End if  

 

    ! set plasticity indicator 

  if (ipl_cp(1)>1) failure_mode=.false. ! more than one plane is in failure mode 

  ipl_gl= ipl_gl + ipl_cp 

 

   End Do ! While not converged 

   

   ! form matrix with local strain components (accumulation for each substep)  

   dEps_cp = dEps_cp + (dEps_cp_el + dEps_cp_pl) 

 

   ! Update global stress state 

   dEps_trial=dEps_trial-dEps_plastic 

 

   dSig_trial = MatMul(D,dEps_trial) 

 

   Sig_trial=Sig0_sub+dSig_trial    

 

    ! calculate new global stress state 

   Sig0_sub = Sig_trial 

 

   End Do ! Subincrementing 

 

   ! set plasticity indicator 

     if (ipl_gl(5).ne.0.and.ipl_gl(5).ge.ipl_gl(3)) ipl=5 

   if (ipl_gl(3).ne.0.and.ipl_gl(5).lt.ipl_gl(3)) ipl=3      

     if (ipl_gl(2).ne.0) ipl=2 

   if (ipl_gl(1).ne.0) ipl=1 

  

 

   ! calculate new D-Matrix acc. to direction of local shear strains    

   if (smallstrain.and.iterStiff.lt.11) then 
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  failure = .false.   

    Do i=1,ABS(NUMCP)  ! Check for planes which are in failure ==>  

         ! then no stiffness recovery at load reversal 

     If (StVar(1*ABS(NUMCP)+i).ge.(0.99d0*tan_phi_res)) failure = .true. 

    End do   

 

    Do i=1,ABS(NUMCP) ! Small strain stiffness recovery with Bubble Model 

   ! check strain path direction 

   ! round strain increments to avoid numerical problems if dEps_cp close to 0 

   if (abs(dEps_cp(1,i)).lt.1d0-12) dEps_cp(1,i)=0d0 

   if (abs(dEps_cp(2,i)).lt.1d0-12) dEps_cp(2,i)=0d0 

   if (abs(dEps_cp(3,i)).lt.1d0-12) dEps_cp(3,i)=0d0 

 

   deps_cp_gamma(1,i) = dEps_cp(1,i) 

   deps_cp_gamma(2,i) = dEps_cp(2,i) 

   deps_cp_gamma(3,i) = dEps_cp(3,i) 

 

   ! get accumulated deviatoric strain path direction 

   eps_cp_gamma(1,i) = StVar0(8*ABS(NUMCP)+i) + deps_cp_gamma(1,i) 

   eps_cp_gamma(2,i) = StVar0(9*ABS(NUMCP)+i) + deps_cp_gamma(2,i) 

   eps_cp_gamma(3,i) = StVar0(10*ABS(NUMCP)+i) + deps_cp_gamma(3,i) 

 

   If (recovery == .false.) then ! no stiffness recovery 

    gamma_cp(i) = dsqrt(eps_cp_gamma(1,i)**2 + eps_cp_gamma(2,i)**2 + & 

           eps_cp_gamma(3,i)**2)  

   Else 

    eps_gamma_return_1(i) = StVar0(12*ABS(NUMCP)+i) 

    eps_gamma_return_2(i) = StVar0(13*ABS(NUMCP)+i) 

    eps_gamma_return_3(i) = StVar0(14*ABS(NUMCP)+i) 

 

    ! get number of bubbles of previous round of stiffness iteration  

    If (iterStiff.gt.1) n_bubble_old = n_bubble(i)  

    If (iterStiff.eq.1) n_bubble_old = StVar0(15*ABS(NUMCP)+i)  

 

    n_bubble(i) = StVar0(15*ABS(NUMCP)+i)    ! 

 

    Do k=1,n_bubble(i) ! Get properties of active bubbles 

     !Get centre coordinates of active bubbles  

     eps_cp_gamma_centre_1(i,k) = StVar0((16+4*(k-1))*ABS(NUMCP)+i)  

     eps_cp_gamma_centre_2(i,k) = StVar0((17+4*(k-1))*ABS(NUMCP)+i)  

     eps_cp_gamma_centre_3(i,k) = StVar0((18+4*(k-1))*ABS(NUMCP)+i)  

     ! Get size of active bubbles   

     gamma_bubble(i,k) = StVar0((19+4*(k-1))*ABS(NUMCP)+i)    

    End Do 

 

    Do k=1,n_bubble(i) ! Check all existing bubbles for active bubbles 

     gamma_cp(i) = dsqrt((eps_cp_gamma(1,i)-eps_cp_gamma_centre_1(i,k))**2 & 

          + (eps_cp_gamma(2,i)-eps_cp_gamma_centre_2(i,k))**2 + & 

          (eps_cp_gamma(3,i)-eps_cp_gamma_centre_3(i,k))**2)  

     !innermost bubble is active bubble, updating of centre and bubble size  

     If (gamma_cp(i).ge.gamma_bubble(i,k).and. & 

      k==n_bubble(i).and.gamma_cp(i).gt.1*1d-15) then  

      If (k.gt.1) then 

       eps_cp_gamma_centre_1(i,k) = (eps_cp_gamma(1,i) +   & 

                  eps_gamma_return_1(i)) / 2d0 

       eps_cp_gamma_centre_2(i,k) = (eps_cp_gamma(2,i) +   & 

                 eps_gamma_return_2(i)) / 2d0 

       eps_cp_gamma_centre_3(i,k) = (eps_cp_gamma(3,i) +   & 

                 eps_gamma_return_3(i)) / 2d0 

      Else  

       eps_cp_gamma_centre_1(i,k) = eps_cp_gamma_centre_1(i,k) 

       eps_cp_gamma_centre_2(i,k) = eps_cp_gamma_centre_2(i,k)  

       eps_cp_gamma_centre_3(i,k) = eps_cp_gamma_centre_3(i,k)  

      End If 

      gamma_cp(i) = dsqrt((eps_cp_gamma(1,i)-eps_cp_gamma_centre_1(i,k))**2& 

            + (eps_cp_gamma(2,i)-eps_cp_gamma_centre_2(i,k))**2 + & 

           (eps_cp_gamma(3,i)-eps_cp_gamma_centre_3(i,k))**2)  

      gamma_bubble(i,k) = gamma_cp(i) 

     End If   

 

     ! Strain path reaches one of the outer bubble boundaries  

     If (gamma_cp(i).ge.gamma_bubble(i,k).and.k.lt.n_bubble(i). & 

       and.gamma_cp(i).gt.1*1d-15) then  

      Do m=k+1,n_bubble(i) ! Erase strain history of inner bubbles 

       eps_cp_gamma_centre_1(i,m) = 0.0d0 

       eps_cp_gamma_centre_2(i,m) = 0.0d0 

       eps_cp_gamma_centre_3(i,m) = 0.0d0 
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       gamma_bubble(i,m) = 0.0d0     

      End Do    

      eps_gamma_return_1(i) = eps_cp_gamma(1,i) +   & 

           2d0*(eps_cp_gamma_centre_1(i,k) - eps_cp_gamma(1,i)) 

      eps_gamma_return_2(i) = eps_cp_gamma(2,i) +   & 

           2d0*(eps_cp_gamma_centre_2(i,k) - eps_cp_gamma(2,i)) 

      eps_gamma_return_3(i) = eps_cp_gamma(3,i) +   & 

           2d0*(eps_cp_gamma_centre_3(i,k) - eps_cp_gamma(3,i)) 

 

      If (k==1) then 

       eps_gamma_return_1(i) = 0.0d0 

       eps_gamma_return_2(i) = 0.0d0 

       eps_gamma_return_3(i) = 0.0d0 

      End If 

 

      ! Enter small strain stiffness loop if change in bubbles  

      ! is detected in first loop 

      If (iterStiff == 1) stiffness=.false.       

      n_bubble(i) = k 

      gamma_bubble(i,k) = gamma_cp(i) 

      Exit 

     End If     

    End do !loop over all existing bubbles 

 

    ! If strain path turns inside active bubble ==> create new strain contour  

    If (failure==.false..and.istep.le.1.and.gamma_cp(i).lt. & 

       gamma_bubble(i,n_bubble(i)).and.n_bubble(i).le.3.and.  & 

       gamma_bubble(i,n_bubble(i)).gt.1*1d-15) then 

     n_bubble(i) = n_bubble(i) + 1 

     eps_gamma_return_1(i) = eps_cp_gamma(1,i) - deps_cp_gamma(1,i) 

     eps_gamma_return_2(i) = eps_cp_gamma(2,i) - deps_cp_gamma(2,i) 

     eps_gamma_return_3(i) = eps_cp_gamma(3,i) - deps_cp_gamma(3,i) 

     eps_cp_gamma_centre_1(i,n_bubble(i)) = eps_gamma_return_1(i) +   & 

                   deps_cp_gamma(1,i)/2d0 

     eps_cp_gamma_centre_2(i,n_bubble(i)) = eps_gamma_return_2(i) +   6 

                     deps_cp_gamma(2,i)/2d0  

     eps_cp_gamma_centre_3(i,n_bubble(i)) = eps_gamma_return_3(i) +   6 

                   deps_cp_gamma(3,i)/2d0 

     gamma_cp(i) = dsqrt((eps_cp_gamma(1,i)-eps_cp_gamma_centre_1  & 

         (i,n_bubble(i)))**2 + (eps_cp_gamma(2,i)-  & 

         eps_cp_gamma_centre_2(i,n_bubble(i)))**2 + & 

         (eps_cp_gamma(3,i)-eps_cp_gamma_centre_3(i,n_bubble(i)))**2) 

     gamma_bubble(i,n_bubble(i)) = gamma_cp(i) 

     ! Enter small strain stiffness loop if change in bubbles  

     !is detected in first loop  

     If (iterStiff == 1) stiffness=.false.  

    End If ! Strain path turns inward 

 

    If (iterStiff.gt.1.and.n_bubble(i).ne.n_bubble_old) then 

     Stiffness=.false. 

    End If 

 

    ! no stiffness recovery if failure line is reached on any plane  

    If (failure) stiffness=.true.   

   End if ! (recovery == .false.)  

    End do !loop over all cp's 

   End if ! small strain == .true. 

 Enddo ! loop until stiffness = .true. 

 

 ! Update of small strain stiffness state variables 

 !************************************************************************ 

 If (smallstrain) then 

  ! update state variables: gamma_cp 

  floh_gamma=0. 

  Do i=1,abs(NUMCP) 

   StVar(8*ABS(NUMCP)+i) = eps_cp_gamma(1,i) 

   Star(9*ABS(NUMCP)+i) = eps_cp_gamma(2,i) 

   StVar(10*ABS(NUMCP)+i) = eps_cp_gamma(3,i) 

   StVar(11*ABS(NUMCP)+i) = gamma_cp(i) 

 

   If (recovery == .true.) then  

    StVar(12*ABS(NUMCP)+i) = eps_gamma_return_1(i) 

    StVar(13*ABS(NUMCP)+i) = eps_gamma_return_2(i) 

    StVar(14*ABS(NUMCP)+i) = eps_gamma_return_3(i) 

    StVar(15*ABS(NUMCP)+i) = n_bubble(i) 

    Do k=1,n_bubble(i) 

     StVar((16+4*(k-1))*ABS(NUMCP)+i) = eps_cp_gamma_centre_1(i,k) 

     StVar((17+4*(k-1))*ABS(NUMCP)+i) = eps_cp_gamma_centre_2(i,k) 
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     StVar((18+4*(k-1))*ABS(NUMCP)+i) = eps_cp_gamma_centre_3(i,k) 

     StVar((19+4*(k-1))*ABS(NUMCP)+i) = gamma_bubble(i,k) 

    End Do 

   End if ! (recovery == .true.) 

 

     floh_gamma = floh_gamma + gamma_cp(i) 

  Enddo 

 

  StVar(3*ABS(NUMCP)+6) = floh_gamma 

  ! update state variables: indicator for small-strain stiffness 

  StVar(3*ABS(NUMCP)+5) = sss_indicator_gl   

 End if !small strain 

 

 !************************************************************************ 

 ! Update strain softening data 

 !************************************************************************ 

 If (switch_HV == 2)  StVar(3*ABS(NUMCP)+9)=GLD_strain 

 

 if (Hard_Soft.or.switch_HV == 1) then  

  ! store global damage strain of current stresspoint in file ITERXXXX  

  write (37, rec=iRec) Vol, GLD_strain  

  StVar(3*ABS(NUMCP)+9)=GLD_strain  

     

  ! open and read file to get information on element and iteration number  

  Inquire(Unit= 39, Opened= IsOpen)   

  If (IsOpen) then 

   rewind (39) 

  else 

   fname=' ' 

   Do i=1,iPrjLen_short 

    fname(i:i) = Char( iPrjDir(i) ) 

   End Do 

   fname= fname(:iPrjLen_short)//'softening_files'//'/'//'Element.nr' 

   Open(Unit= 39, File= fname, Position='rewind') 

  End If 

  write (39,*) iel, iter 

  rewind (39)  

 end if 

 !************************************************************************ 

    

 ! Update and return new global stress state 

 sig(1:6) = Sig_trial 

 

 ! calculate change of volumetric strains 

 dEpsV = dEps(1) + dEps(2) + dEps(3) 

 

 ! calculate pore water pressure 

 If (IsUndr.Eq.1) Then 

  dSwp  = BulkW * dEpsV 

      Swp   = Swp0 + dSwp 

 Else 

  Swp = Swp0 

 End If 

 

 If (Hard_Soft.or.switch_HV == 1) then  

  Deallocate (point_index, weights)  

 End if 

 

End If  ! IDTask = 2 

 

! -------------------------------------------------------------------------------------- 

! calculate material stiffness matrix (D-matrix) 

! --------------------------------------------------------------------------------------

If ( IDTask .Eq. 3 .Or. IDTask .Eq. 6 ) Then  

 

 pdash = (sig0(1)+sig0(2)+sig0(3))/3d0 

 if (pdash.gt.corr_val) pdash = corr_val 

 facCnn = (p_ref/dabs(pdash))**m_power 

 

 C_gl = 0.0d0 

 

! stiffness depends on p', isotropic material 

 if(sw_pdash_SN0==0.and.anisotropic_el ==.false.) then  

  F1  = 2.0d0*Gvh0*(1.0d0-NYUR)/(1.0d0-2.0d0*NYUR) 

  F2  = 2.0d0*Gvh0*( NYUR )/(1.0d0-2.0d0*NYUR) 

  D = 0.0d0 

  Do i=1,3 

   Do j=1,3 
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    D(i,j) = F2 

   End Do 

   D(i,i) = F1 

   D(i+3,i+3) = Gvh0 

   C_gl(i+3,i+3) = 1.0d0 / Gvh0 

  End Do  

  D = D / facCnn 

  C_gl = C_gl * facCnn 

 End if  !sw_pdash_SN0==0.and.anisotropic_el ==.false. 

 

! stiffness depends on p', cross anisotropic material 

 if((sw_pdash_SN0==0.and.anisotropic_el ==.true.).or.sw_pdash_SN0 == 2) then  

  if (sw_pdash_SN0 == 2) then 

   Eh0 = StVar0(3*ABS(NUMCP)+14) 

   Ev0 = StVar0(3*ABS(NUMCP)+15) 

   Gvh0 = StVar0(3*ABS(NUMCP)+16) 

  End if 

  C_gl(1,1) = 1.0d0/Eh0 

  C_gl(2,2) = 1.0d0/Ev0  

  C_gl(3,3) = 1.0d0/Eh0 

  C_gl(1,2) = -nu_vh_0/Ev0 

  C_gl(1,3) = -nu_hh_0/Eh0 

  C_gl(2,1) = C_gl(1,2) 

  C_gl(3,1) = C_gl(1,3) 

  C_gl(2,3) = -nu_vh_0/Ev0 

  C_gl(3,2) = C_gl(2,3) 

  C_gl(4,4) = 1.0d0/Gvh0 

  C_gl(5,5) = 1.0d0/Gvh0  

  C_gl(6,6) = 2*(1.0d0+nu_hh_0)/Eh0  

  C_gl = C_gl*facCnn  

  Call MatInvPiv(C_gl,D,6)      

 End if !  (sw_pdash_SN0==0.and.anisotropic_el ==.true.).or.sw_pdash_SN0 == 2 

 

! stiffness depends on plane normal stress 

 if(sw_pdash_SN0==1) then  

 

  ! Calculate eigenvalues and eigenangle of global anisotropic compliance  

  ! matrix without stiffness degradation 

  lambda_1 = (1.0d0+nu_hh_0)/Eh0 

  lambda_2 = (1.0d0-nu_hh_0)/(2.0d0*Eh0) + 1.0d0/(2.0d0*Ev0) - dsqrt(((1.0d0 & 

   -nu_hh_0)/(2.0d0*Eh0)-1.0d0/(2.0d0*Ev0))**2+((2.0d0*nu_hv_0**2)/Eh0**2)) 

  lambda_3 = (1.0d0-nu_hh_0)/(2.0d0*Eh0) + 1.0d0/(2.0d0*Ev0)+ dsqrt(((1.0d0 & 

   -nu_hh_0)/(2.0d0*Eh0)-1.0d0/(2.0d0*Ev0))**2+((2.0d0*nu_hv_0**2)/Eh0**2)) 

  lambda_4 = 1.0d0/(2.0d0*Gvh0) 

 

  ! Get components of matrix Sum(lambda_i*E_i) 

  LE = 0.0d0   

  If (anisotropic_el ==.true.) then 

   If (((1.0d0-nu_hh_0)/Eh0 - 1.0d0/Ev0)==0.0d0.AND.nu_hv_0.gt.0.0d0) then 

    omega = Pi/4.d0 

   Else If (((1.0d0-nu_hh_0)/Eh0 - 1.0d0/Ev0)==0.0d0.AND.nu_hv_0.le.0.0d0) then 

    omega = -Pi/4.d0 

   Else 

    If (((1.0d0-nu_hh_0)/Eh0 - 1.0d0/Ev0).gt.0) then 

     omega = Pi/2.0d0 + 1.0d0/2.0d0*datan((-2.0d0*dsqrt(2.0d0)* & 

        ((nu_hv_0)/Eh0))/((1.0d0-nu_hh_0)/Eh0 - 1.0d0/Ev0)) 

    Else 

     omega = 1.0d0/2.0d0*datan((-2.0d0*dsqrt(2.0d0)*((nu_hv_0)/Eh0)) & 

         /((1.0d0-nu_hh_0)/Eh0 - 1.0d0/Ev0))  

    End If 

   End if 

 

   LE(1,1) = 1.0d0/2.0d0*lambda_1 + lambda_2*(dcos(omega))**2/2.0d0 +  & 

       lambda_3*(dsin(omega))**2/2.0d0 

   LE(2,1) = lambda_2*(dcos(omega)*dsin(omega))/dsqrt(2.0d0) + lambda_3*(- & 

       dcos(omega)*dsin(omega))/dsqrt(2.0d0) 

   LE(3,1) = -1.0d0/2.0d0*lambda_1 + lambda_2*(dcos(omega))**2/2.0d0 +  & 

       lambda_3*(dsin(omega))**2/2.0d0 

   LE(1,2) = LE(2,1) 

   LE(2,2) = lambda_2*(dsin(omega))**2 + lambda_3*(dcos(omega))**2 

   LE(3,2) = LE(1,2) 

   LE(1,3) = LE(3,1) 

   LE(2,3) = LE(3,2) 

   LE(3,3) = LE(1,1) 

   LE(4,4) = lambda_4 

   LE(5,5) = lambda_4 

   LE(6,6) = lambda_1 

  End if 
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  ! do loop over all cp's  

  Do i=1,ABS(NUMCP) 

 

   ! get transformation matrices (TiT_spec) 

   Tj_spec = 0.0d0 

   C_cp = 0.0d0 

 

   !form transformation matrix Tj_spec(6,6) 

   Tj_spec(1,1) = 1/3.0d0 

   Tj_spec(2,1) = 1/3.0d0 

   Tj_spec(3,1) = 1/3.0d0 

 

   Tj_spec(1,2) = n1(i,1)**2 - 1/3.0d0 

   Tj_spec(2,2) = n1(i,2)**2 - 1/3.0d0 

   Tj_spec(3,2) = n1(i,3)**2 - 1/3.0d0 

   Tj_spec(4,2) = 2.0d0*n1(i,1)*n1(i,2) 

   Tj_spec(5,2) = 2.0d0*n1(i,2)*n1(i,3) 

   Tj_spec(6,2) = 2.0d0*n1(i,3)*n1(i,1) 

 

   Tj_spec(1,3) = n1(i,1)*s1(i,1) 

   Tj_spec(2,3) = n1(i,2)*s1(i,2) 

   Tj_spec(3,3) = n1(i,3)*s1(i,3) 

 

   Tj_spec(4,4) = n1(i,1)*s1(i,2)+n1(i,2)*s1(i,1) 

   Tj_spec(5,4) = n1(i,3)*s1(i,2)+n1(i,2)*s1(i,3) 

   Tj_spec(6,4) = n1(i,3)*s1(i,1)+n1(i,1)*s1(i,3) 

 

   Tj_spec(1,5) = n1(i,1)*t1(i,1) 

   Tj_spec(2,5) = n1(i,2)*t1(i,2) 

   Tj_spec(3,5) = n1(i,3)*t1(i,3) 

 

   Tj_spec(4,6) = n1(i,2)*t1(i,1)+n1(i,1)*t1(i,2) 

   Tj_spec(5,6) = n1(i,2)*t1(i,3)+n1(i,3)*t1(i,2) 

   Tj_spec(6,6) = n1(i,1)*t1(i,3)+n1(i,3)*t1(i,1) 

 

   !get transposed transformation matrix TiT_spec(6,6) 

   TiT_spec= Transpose(Tj_spec) 

   

   !------------------------------------------------------------------------------ 

   ! stress transformation acc. to spectral stiffness method 

   !------------------------------------------------------------------------------ 

   Sig0_cp_spec= MATMUL (TiT_spec,Sig0) 

 

   !------------------------------------------------------------------------------ 

   !calculate local stiffness matrix (with Sig0_cp) 

   !------------------------------------------------------------------------------ 

   ! get local normal stress at start of step (SN0) 

   SN0 = Sig0_cp_spec(1) + Sig0_cp_spec(2) 

   If (SN0.gt.corr_val) SN0 = corr_val 

 

   If (anisotropic_el ==.true.) then 

    !get inverse of transposed transformation matrix TiT_spec_inv(6,6) 

    Call MatInvPiv(TiT_spec,TiT_spec_inv,6) 

    LExTiT_inv = MATMUL (LE,TiT_spec_inv) 

    C_cp= MATMUL (TiT_spec,LExTiT_inv)  

   Else if (anisotropic_el ==.false.) then 

    C_cp(1,1)= lambda_2 

    Do m=2,6 

     C_cp(m,m) = lambda_1 

    End Do 

   End if 

    

   C_cp = C_cp * (p_ref/dabs(SN0))**m_power 

   

   ! back transformation of compliance matrix 

   TjxC_cp = Matmul(Tj_spec,C_cp) 

   C_gl_cp = Matmul(TjxC_cp,TiT_spec) 

 

   C_gl = C_gl + 3.0d0*C_gl_cp*Weight(i) 

 

  End Do !loop over all cp's 

 

  Call MatInvPiv(C_gl,D,6) 

 

 End if  !sw_pdash_SN0==1 
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 ! calculate bulk modulus of water 

      If (IsUndr.Eq.1) Then 

     Gur = (1.0d0/C_gl(4,4)+1d0/C_gl(5,5)+1d0/C_gl(6,6))/3.0d0 

  If (BulkW==0) Then 

   xNu_U=0.495d0 

         BulkW = 2.0d0*Gur/3.0d0*((1.0d0+xNu_U)/(1.0d0-2.0d0*xNu_U) - & 

      (1.0d0+NYUR)/(1.0d0-2.0d0*NYUR)) 

        End If 

   End If 

     

 End If  ! IDTask = 3, 6 

 

 

! -------------------------------------------------------------------------------------- 

! get number of state parameters 

! -------------------------------------------------------------------------------------- 

 If (IDTask .Eq. 4) Then 

 

  nStat = 3*ABS(NUMCP)+3 ! Basic model 

 

  if (Hvorslev) then ! Hvorslev surface model 

   nStat = 7*ABS(NUMCP)    

  else if (Hard_Soft) then ! Galavi softening model 

   nStat = 8*ABS(NUMCP)       

  End if 

 

  If (smallstrain) then ! Small strain model 

   If (recovery == .false.) nStat = 12*ABS(NUMCP) 

   If (recovery == .true.) nStat = 32*ABS(NUMCP) 

  End if 

 

! state variables on integration planes in array StVar0/StVar 

 

! StVar(0*ABS(NUMCP)+1:ABS(NUMCP)*1)  sigma_nc with Hvorslev softening 

! StVar(1*ABS(NUMCP)+1:ABS(NUMCP)*2)  tan_phi mobilized in hardening 

! StVar(2*ABS(NUMCP)+1:ABS(NUMCP)*3)  sigma_nc for hardening only 

! StVar(3*ABS(NUMCP)+2)       initialization indicator 

! StVar(3*ABS(NUMCP)+3)       ACAP (cap shape parameter) 

! StVar(3*ABS(NUMCP)+4)       record number of current stress point 

! StVar(3*ABS(NUMCP)+5)       sss_indicator 

! StVar(3*ABS(NUMCP)+6)       floh_gamma 

! StVar(3*ABS(NUMCP)+7)       Volume (area in 2D) of Finite Element 

! StVar(3*ABS(NUMCP)+8)       Correction factor for non-local damage strain  

! StVar(3*ABS(NUMCP)+9)       Global damage strain 

! StVar(3*ABS(NUMCP)+10)      Number of stress points within radius 2*Length 

! StVar(3*ABS(NUMCP)+12)      Hvorslev surface parameter B_cs 

! StVar(3*ABS(NUMCP)+13)      length of project directory path 

! StVar(3*ABS(NUMCP)+14)      Eh0_ref at initial stress ratio 

! StVar(3*ABS(NUMCP)+15)      Ev0_ref at initial stress ratio 

! StVar(3*ABS(NUMCP)+16)      Gvh0_ref at initial stress ratio 

! StVar(3*ABS(NUMCP)+17)      nu_hv0 at initial stress ratio     

! StVar(4*ABS(NUMCP)+1:ABS(NUMCP)*5)  Local damage strain   

! StVar(5*ABS(NUMCP)+1:ABS(NUMCP)*6)  non-local damage strain at peak 

! StVar(6*ABS(NUMCP)+1:ABS(NUMCP)*7)  Tan_Phi_mobilised (in friction softening) / 

!        non_local damage strain of previous step in Hvorslev model 

! StVar(7*ABS(NUMCP)+1:ABS(NUMCP)*8)  mobilised cohesion ci 

! StVar(8*ABS(NUMCP)+1:(ABS(NUMCP)*9))  local shear strain history component 1 

! StVar(9*ABS(NUMCP)+1:(ABS(NUMCP)*10)) local shear strain history component 2 

! StVar(10*ABS(NUMCP)+1:(ABS(NUMCP)*11)) local shear strain history component 3 

! StVar(11*ABS(NUMCP)+1:(ABS(NUMCP)*12)) length of Gamma-path abs(Gamma) 

! StVar(12*ABS(NUMCP)+1:ABS(NUMCP)*13)  Return point, first shear strain component  

! StVar(13*ABS(NUMCP)+1:ABS(NUMCP)*14)  Return point, second shear strain component 

! StVar(14*ABS(NUMCP)+1:ABS(NUMCP)*15)  Return point, second shear strain component 

! StVar(15*ABS(NUMCP)+1:ABS(NUMCP)*16)  number of active bubbles per plane 

! StVar(16*ABS(NUMCP)+1:ABS(NUMCP)*17)  Bubble centre 1, shear strain component 1  

! StVar(17*ABS(NUMCP)+1:ABS(NUMCP)*18)  Bubble centre 1, shear strain component 2 

! StVar(18*ABS(NUMCP)+1:ABS(NUMCP)*19)  Bubble centre 1, shear strain component 3 

! StVar(19*ABS(NUMCP)+1:ABS(NUMCP)*20)  Bubble 1, maximum shear strain (radius) 

! StVar(20*ABS(NUMCP)+1:ABS(NUMCP)*21)  Bubble centre 2, shear strain component 1  

! StVar(21*ABS(NUMCP)+1:ABS(NUMCP)*22)  Bubble centre 2, shear strain component 2 

! StVar(22*ABS(NUMCP)+1:ABS(NUMCP)*23)  Bubble centre 2, shear strain component 3 

! StVar(23*ABS(NUMCP)+1:ABS(NUMCP)*24)  Bubble 2, maximum shear strain (radius) 

! StVar(24*ABS(NUMCP)+1:ABS(NUMCP)*25)  Bubble centre 3, shear strain component 1  

! StVar(25*ABS(NUMCP)+1:ABS(NUMCP)*26)  Bubble centre 3, shear strain component 2 

! StVar(26*ABS(NUMCP)+1:ABS(NUMCP)*27)  Bubble centre 3, shear strain component 3 

! StVar(27*ABS(NUMCP)+1:ABS(NUMCP)*28)  Bubble 3, maximum shear strain (radius) 
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! StVar(28*ABS(NUMCP)+1:ABS(NUMCP)*29)  Bubble centre 4, shear strain component 1  

! StVar(29*ABS(NUMCP)+1:ABS(NUMCP)*30)  Bubble centre 4, shear strain component 2 

! StVar(30*ABS(NUMCP)+1:ABS(NUMCP)*31)  Bubble centre 4, shear strain component 3 

! StVar(31*ABS(NUMCP)+1:ABS(NUMCP)*32)  Bubble 4, maximum shear strain (radius) 

  

End If  ! IDTask = 4 

 

! -------------------------------------------------------------------------------------- 

! get matrix attributes 

! --------------------------------------------------------------------------------------

If (IDTask .Eq. 5) Then  

 NonSym   = 0  ! 1 for non-symmetric D-matrix   

 iStrsDep = 1  ! 1 for stress dependent D-matrix  

   iTang    = 0  ! 1 for tangent D-matrix 

   iTimeDep = 0  ! 1 for time dependent D-matrix 

End If  ! IDTask = 5 

 

Deallocate (eps_cp_gamma, deps_cp_gamma, gamma_cp, dEps_cp_pl, dEps_cp_el, dEps_cp, & 

    epsn_t_step, epsn_HV_step, gamma_HV_step) 

Deallocate (dEps_cp_el_spec, n1, s1, t1, WEIGHT) 

Deallocate (eps_gamma_return_1, eps_gamma_return_2, eps_gamma_return_3, n_bubble, & 

    eps_cp_gamma_centre_1, eps_cp_gamma_centre_2)  

Deallocate (eps_cp_gamma_centre_3, gamma_bubble) 

   

Return 

 

End Subroutine 
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