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Abstract

This thesis treats the numerical modelling of structural contact problems. Beside the normal
contact we will implement Coulomb’s friction law in tangential direction. A special focus is
given on the handling of non matching mesh interfaces. In comparison to the classical node-
on-segment approach we will apply a rather new segment-to-segment method, namely the
mortar method. It is well known that the node-on-segment methods suffer deficiencies of
locking or suboptimal convergence behavior. In contrast the mortar method shows optimal
convergence behavior. The advantages of this theory have been proven by various works on
this topic. The mortar method was implemented as mixed method with displacements and
Lagrange multipliers as degrees of freedom. For the mortar method the contact constraints
are fulfilled in weak manner. In this thesis will concentrate on the contact kinematics
and compare different formulations for the surface normal field, which is vital for any
contact formulation. Further a special kind of numerical integration scheme is applied. The
presented theory is then applied to various numerical examples to show the performance of
our algorithm.

Kurzfassung

Diese Arbeit behandelt die numerische Modellierung des Kontakts zweier verformbarer
Körper. Neben dem Kontakt in Richtung der Oberflächennormalen wurde auch der Kon-
takt in Tangentialrichtung als Coulombsche Reibung implementiert. Spezielles Augenmerk
wurde dabei auf die Behandlung nicht kompatibler Netzdiskretisierung gelegt. Im Ver-
gleich zu den klassischen “node-on-segment” Methoden, wurden die neuere “segment-to-
segment” Methode, die so genannte Mortar Methode, verwendet. Es ist bekannt, dass
“node-on-segment” Methoden diverse Schwierigkeit wie “Locking”- Effekte und subopti-
males Konvergenzverhalten zeigen. Im Gegensatz dazu zeigt die Mortar Methode optimales
Konvergenzverhalten. Die Vorteile dieser Methode wurden bereits durch mehrere Arbeiten
zu diesem Thema bewiesen. Die Mortar Methode wurde als gemischtes Verfahren, mit
Verschiebungen und den Lagrange Multiplikatoren als Unbekannte, realisiert. Die Kontak-
tbedingungen werden hier nur mehr in schwacher Form erfüllt. In dieser Arbeit werden wir
uns auf die Formulierung der Kontaktkinematik konzentrieren, um einen Vergleich zwischen
verschiedenen Oberflächennormalen zu ermöglichen. Darüber hinaus kommt ein spezielles
numerisches Integrationsschema zur Anwendung. Die dargestellte Theorie wird auf ver-
schiedene numerische Beispiele angewandt, um die Leistungsfähigkeit des Algorithmus zu
zeigen.
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1. Introduction

Contact mechanics is part of a wide range of engineering problems. The interaction between
different bodies, in particular, support of structures, is always connected with contact analy-
sis. There have been numerical contact algorithms for quite a while now. But for real world
calculations, still many challenges remain.

There are different aspects of contact mechanics which can be reviewed. The problem
of finding a suitable constitutive law for the tangential contact part is one of them. In
this work we will use the classical Coulomb friction law. Beside the various friction laws,
wearing and anisotropy is part of the topological analysis which is also not part of this
thesis. For structural computations, the thermomechanical contact problem is part of a
complete analysis. A suitable heat transfer equation over the contact surface has to be
formulated for this kind of problems. However, heat transfer problems are not considered
here.

In this work we concentrate on the numerical modelling of the mechanical contact problem
and not on the description of the physical incidents. Because of its simplicity and efficiency
the most frequently used method for numerical contact analysis on non matching mesh
interfaces is the node-on-segment approach (see Hallquist et al. [13] or Laursen and Simo
[23] for extended treatment). It is well known, that these methods suffer deficiencies of
locking or suboptimal convergence behavior. On the other hand it is known (Wohlmuth
[37]), that the mortar method shows optimal convergence behavior. Various engineering
approaches to the mortar method have been realized, for instance Puso and Laursen [29],
Puso and Laursen [30], Fischer and Wriggers [6], Hartmann and Ramm [15]. All have shown
the performance and advantages of this algorithm.

1.1. Current state-of-the-art of contact mechanics

Various methods for numerical structural contact mechanics are known. For a better clas-
sification of the mortar method we will sketch the other methods and show the differences
and the main properties.

1.1.1. The node-to-node contact method

The node-to-node contact method might be seen as the most simple method to treat struc-
tural contact numerically. The situation is illustrated in Figure 1.1. The mathematics is
quite simple as we only add nodal forces to the system. The implementation might be
tricky as activation and deactivation of linkages might be a difficult algorithmic problem.
It is also important that the mesh discretization of the two bodies in contact have to be
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compatible. It is difficult to connect a lot of nodes of one side to a few nodes on the other
one.

N1

N0

Figure 1.1.: The node-to-node contact method as a simple contact method. The nodes of
two bodies in contact are brought into direct connection. The link between
the two nodes does not have to be fixed. To simulate a Coulomb friction a
sliding element is embedded in the linkage. Normally the normal vector N of
this sliding element can be choosen freely. The model of the linkage can be
extended easily, e.g. by adding a damper in series.

1.1.2. The node-to-segment or segment-to-segment contact method

In this method no direct relation between nodes is formulated. We map points on one side
to segments of the other. For this method we need to define a slave and a master surface.
This is necessary due to the algorithm and has no physical background. In real world both
contact partners are equally prioritized. This is one drawback of those methods which is
also the case for the mortar method.

We formulate a virtual work of the surface traction (to simplify the situation we treat the
normal part only, a similar procedure is applied for tangential part, as we will see in this
thesis) as follows

δΠN =

∫
γC

tNδgNdγ (1.1)

which can be extracted from the weak formulation for our boundary value problem (see
Section 5.2). This virtual contact work will lead to a non-symmetric equation system.

We do not know the surface traction tN a priori. There are different possibilities to overcome
this problem.

Penalty regularization We define the normal traction to depend on the gap function

tN = εgN (1.2)
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with the parameter ε (the penalty parameter). The virtual contact work is then given by

δPΠN =

∫
γC

εgNδgNdγ (1.3)

and has to be zero for equilibrium. A graphical interpretation of this situation is given
in Figure 1.2. To carry out the given quadrature one has to make the decision on which
side the integration is done. This is the first reason why we have to define a master and
a slave side. The second issue is the calculation of corresponding master contact points
for a given slave point. Later on, the considered slave point will be the quadrature point
and the projection point on the master side, will have to be determined by a nearest point
projection algorithm.

ε

slave domain

master domain

Figure 1.2.: The penalty regularized segment-to-segment contact method. One can interpret
the definition of the contact traction as springs mounted between the integration
points on the slave side and its corresponding projection point on the master
side. The springs are “activated” if the master point penetrates into the slave
surface and “deactivated” else. As we need a penetration to activate the spring
and to produce a reaction force, it is impossible to get zero penetration, if the
normal traction tN 6= 0.

Lagrange parameters By introducing Lagrange parameters for the normal traction as
additional unknowns, it is also possible to incorporate the virtual contact work into our
equation system. The drawback is, that we have additional unknowns and zero entries on
the main diagonal of the stiffness matrix. This can be avoided by using an augmented
Lagrangian method. The virtual contact work is given by

δLΠN =

∫
γC

λNδgNdγ (1.4)

and has to be zero for equilibrium. This method already allows zero penetration for certain
situations. A visualization is given in Figure 1.3. The problem of detecting active segments
(or nodes) has to be solved by a suitable active set strategy. This decision is often taken
point-wise by checking the traction or the penetration in the nodes.
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gap zone

penetration zone

gN ≡ 0

Figure 1.3.: The segment-to-segment contact method using Lagrange multipliers.

1.1.3. The mortar contact method

The mortar method was developed as a framework for coupling non-matching discretiza-
tions. The first application of this framework on linear contact problems is well presented
in Belgacem et al. [3].

Remark: “mortar” is the translation of the original french word “joint” into
English (“Mauerfuge”, “Mörtel” in German). The expression should illustrate the
agglutinative character of this method although the meshes (the bricks of the wall)
do not coincide.

As pointed out in this work, the main property of the mortar method is the incorporation
of the contact inequalities (the Karush-Kuhn-Tucker conditions) in a weak form. This is
the extension to earlier contact methods like the node-on-node or the segment-to-segment
contact method. For the mortar method we incorporate not only the virtual work of the
contact tractions tN (that is the surface traction in normal direction on the contact surface)
but also the variational form of the contact condition and obtain

δΠN =

∫
γC

tNδgNdγ +

∫
γC

δtNgNdγ (1.5)

where it is already observable that this method might lead to a symmetric equation system.

The mortar method can be realized as a mixed method with displacements and Lagrange
multipliers as unknowns. But there exist various formulations, including regularized ones,
with penalty or augmented Lagrangian methods.

As the kinetic and the kinematic contact constraints are only fulfilled in weak form (in
an integral formulation of segments γhC) there might occur regions with gaps or regions of
penetration in the final solution. The situation is equal to the one presented in Figure 1.3.

The Lagrange multipliers have to be constructed (interpolated) on one contact partner. This
contact partner is called the non-mortar or slave domain. The integration of the virtual
contact work is realized on this side. The other side is called mortar or master domain.
This also means, the mortar method is variant with respect to the choice, which contact
partner is mortar and which is non-mortar. It is important to choose the finer discretization
as non-mortar domain (see Wolmuth [38]).

It also part of a mortar method to define a more sophisticated active set strategy which is
directly related to the incorporated weak non-penetration condition. The given inequalities

gN ≥ 0 (no penetration) (1.6)

tn ≤ 0 (no addhesion) (1.7)
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are transferred into a weak form too∫
γC

gN δtNdγ ≥ 0 (no penetration) (1.8)∫
γC

tN δgNdγ ≤ 0 (no addhesion) (1.9)

There is still the challenge of handling these non-linear inequalities. We present a solution
in this work which is suitable for a Newton-Raphson procedure. It is also possible (but not
done in this thesis) to include the active set conditions into the set of linear equations. This
leads to the so called semi-smooth Newton-Rapshon procedure (see Hüeber and Wohlmuth
[17] or Popp et al. [27]).

By using the so called dual mortar methods (see Wolmuth [38]) it is possible to eliminate
the Lagrange multiplier from the set of linear equations. This has been successfully applied
for non-linear engineering problems by Hartmann and Ramm [15] and Popp et al. [27] and
successive works. We will omit the condensation of Lagrange parameters in this work.

1.2. Aim and motivation

For this thesis we try to merge the various engineering approaches for finite deformation,
large sliding contact algorithms based on the mortar method. The variational formulation
may be based on the weak formulation of the boundary value problem, adding a weak
formulation of the contact constraint. It is also possible to define a contact potential (see
Fischer and Wriggers [6]). We will show the connection of the two approaches.

In many publications on finite deformation problems the contact conditions have been re-
gularized. We will circumvent the regularization procedure and solve the saddle point
problem as done by Tur et al. [35], Popp et al. [27] or Hartmann and Ramm [15].

To formulate the contact constraints one has to parametrize and describe the contact sur-
face. Based on this description the kinematic properties, like the gap function, can be
calculated. Schweizerhof and Konyukhov [32] showed a fully covariant description of the
contact kinematics which is given based on the non-discretized continuous surface. A more
classical formulation (used by most people) can be found in Laursen and Simo [23]. A chal-
lenge for numerical contact algorithms is, that the surface in general is only C0 continuous
after finite element discretization. This discontinuity leads to different problems which will
be discussed throughout this work. Common to most algorithms is, to average the normal
field. This was first proposed by Yang et al. [44]. We will analyze the influence of this
averaging procedure on the quality of the solution. Therefore we formulate the contact
kinematics in a rather synthetic way and try to conserve as much of the discrete surface
structure as possible. This leads to a pretty new way of formulating the contact kinematics.

A crucial part of the mortar method is the solution of the integral arising by weakly imposing
the contact constraints. There are two possible approaches for doing so. One can segment
the integration domain at each corner node of the boundary. This is very popular as
it represents the exact quadrature of the mortar integrals for two dimensional problems.
Fischer and Wriggers [6] have already shown in their work, that a concentrated integration
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method is suitable too. For this method we evaluate the integrand on the integration points
without detecting the C1 discontinuities on the boundary. We will show by numerical
experiments the convergence performance of this approximative but fast algorithm.

To formulate the tangential contact we need an objective velocity measure for the relative
slip. As Yang et al. [44] already showed, this is not self-evident. We will transfer their
procedure of creating an objective velocity on our integration scheme and interpret the
arising variables.

It is possible to develop a combined algorithm which solves the boundary value problem
and the active set at once, the so called semi-smooth Newton-Raphson procedure. This is
shown e.g. in Popp et al. [27]. We will apply a fixed point Newton-Raphson procedure,
where we search for the displacements first and actualize the active set afterwards.

1.3. Outline of the work

We start by giving a short introduction into continuum mechanics. We only add those
special quantities, which arise in our contact problem. In particular, this means an extension
of the boundary value problem on two (or multiple) distinct bodies.

Next the contact kinematics for the continuous non discretized contact surface is discussed.
Here we try to formulate synthetic kinematics, which is able to deal with different formu-
lations for the normal field. Therefore we have to anticipate and consider some problems
which arise later through discretization. However, primarily we treat the continuous surface
at this point.

Now we transfer the continuous contact kinematics onto the discretized surface. Here we
will distinguish between two normal fields, which we will discuss:

• A non-continuous mortar side normal field,

• and an averaged non-mortar side normal field.

At this point we have to deal with the first special cases and argue over the solvability of
the nearest point projection procedure.

With the help of contact kinematics it is now possible to formulate the contact kinetics and
define the contact constraints. This means we specify the Karush-Kuhn-Tucker conditions
for the structural contact problem. We also show the incorporation of these strong in-
equalities in the variational formulation. Here the character of the mortar method becomes
obvious. We end up with the formulation of the weak boundary value problem.

We will solve this problem via the finite element method which is then introduced. Since
our contact conditions, the strain measure and the constitutive law are non-linear, we
apply a linearization procedure to solve the non-linear system (Newton-Raphson procedure).
For the contact constraint enforcement we will present two methods. First, a penalty
regularization is described, which is not the classical mortar method, but allows a more
compact formulation. Second, we introduce the Lagrange multiplier method which extends
the weak problem to a mixed formulation. We also define a finite mortar element and discuss
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two integration schemes. To incorporate the contact conditions formulated as inequalities
we develop an active set strategy.

Until now we did not mention how to implement the presented mathematical model. A
brief introduction of the global solution algorithm and the extensions of a ordinary (non-
contact) Newton-Raphson procedure is given. The nearest point projection is an essential
part of every contact algorithm and for the discrete surface we have to deal with various
special cases. It is also required to find the possible contact partners as they are not known
a priori. We will sketch the algorithm here. We close the chapter with the implementation
of the active set strategy.

The performance of the presented algorithm is shown via numerical experiments. We have
chosen different examples with varying amount of unknowns and different challenges to
illustrate the robustness and characteristics of our implementation. The examples are based
on problems well known from literature.

We will end this work with a short conclusion and an outlook of future challenges.
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2. Continuum mechanics

In this chapter a brief introduction to continuum mechanics is given. There is well known
literature on elasticity theory, the book of Bonet and Wood [5] as excellent introduction,
Marsden and Hughes [25] describe the mathematical foundations of elasticity theory on
manifolds. The basics of continuum mechanics are described in the famous work of Truesdell
and Noll [34]. Only the essentials needed for structural contact mechanics are treated here.

We start with kinematics, used in elasticity theory, to describe the bodies, their deforma-
tion and motion. To formulate the equilibrium state a strain measure and the definition
of a stress measure is required. Those properties are used to define the boundary value
problem for deformable bodies. This strong formulation is then transferred with the help
of Galerkin’s method into a weak formulation suitable for the finite element method. Our
differential equation requires a constitutive law connecting the kinematic strain measure
with the kinetic stress tensor.

During this chapter no special attention on contact mechanics is given. All the presented
theory is applicable on classical structural problems. We just extend the theory to multi-
body problems and introduce a contact surface.

2.1. Finite kinematics

In elasticity theory the motion and deformation of bodies are described with the help of
two configurations (see Figure 2.1). The initial or material configuration (also Lagrangian
manifold) X ∈ Ω at the time t = 0 and the running or spatial configuration (also Eulerian
manifold) denoted as x ∈ ω at the time t. We will denote points and properties in the
material configuration with upper case letters (like P, X) and on the material configuration
with lower case letters (like p, x). Furthermore we define the mapping of X onto x by
ϕ(X, t)

x = ϕ (X, t) (2.1)

and the inverse mapping by ϕ−1(x, t)

X = ϕ−1 (x, t) (2.2)

2.1.1. Deformation gradient

A fundamental quantity for large deformation analysis is the deformation gradient. This is
defined as

F =
∂x

∂X
=
∂ϕ(X, t)

∂X
(2.3)
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ϕ(X, t)

P(X, 0)

X1, x1

X3, x3

time t

x = ϕ(X, t)

X

Ω
ω

X2, x2

p(x, 0)

time t = 0

Figure 2.1.: Kinematic configurations of continuum mechanics for a single body contain-
ing the material configuration Ω and the spatial configuration ω. A point P
is shown in the material configuration and its counterpart p on the current
configuration. Their position vectors are X and x, respectively. The kine-
matic mapping from tge material configuration to the spatial configuration is
described with ϕ. This is done in the coordinate system XI , xi which coincide
for both configurations.

which allows a tangential mapping

dx = F dX (2.4)

The components of the deformation gradient are

FiI =
∂xi
∂XI

(2.5)

The deformation gradient F defines the tangential mappings from the material to the spatial
frame. This push forward operation Φ∗[] is given in the following for the infinitesimal
material vector dX

dx = Φ∗ [dX] = FdX (2.6)

The same can be done for the inverse direction by doing a pull back operation Φ−1
∗ [] of the

spatial vector dx onto the material frame via

dX = Φ−1
∗ [dx] = F−1dx (2.7)
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2.1.2. Velocity

For contact mechanics the relative slip between the mortar and the non-mortar body is
vital. Therefore we analyze the rates of change of kinematic quantities - especially the
velocities. The definition of the velocity vector given at a material point is straight forward

V (X, t) =
∂

∂t
[ϕ (X, t)] (2.8)

For the contact definition we need the definition of the spatial velocity which can be given
as

v(x, t) = V
(
ϕ−1(x, t), t

)
(2.9)

2.1.3. Objectivity (frame indifference)

To formulate constitutive laws (like the tangential part of the frictional formulation) the
important concept of “objectivity” or “frame indifference” has to be considered.

The kinematic mapping is given with ϕ (X, t). Now we assume that we view the same
motion defined in the reference frame x from a different reference frame x∗. We define the
transformation between the two reference frames as

x∗ = c(t) + Q(t) · x (2.10)

with Q(t) being an orthogonal rotation matrix (QTQ = I) and c(t) being a translational
vector. In the second reference frame the motion appears as

x∗ = ϕ∗(X, t) = c(t) + Q(t)ϕ(X, t) (2.11)

An objective tensor b must be invariant with respect to the chosen reference frame, x∗ or
x which means for a tensor of second order

b∗ ≡ QT b Q (2.12)

This is important to take into account, if it comes to the definition of the relative velocity
of two contact surfaces (see Section 3.3.1.1).

2.1.3.1. Lie derivative

A generalization of the procedure, of generating objective rates, is given with the Lie deriva-
tive (see e.g. Bonet and Wood [5], Laursen [24]). Let us consider a given spatial tensor b,
the Lie derivative of b is defined by

LΦ {b} = Φ∗

[
d

dt

(
Φ−1
∗ [b]

)]
(2.13)

This means that the time derivation is done on the material configuration with a fixed
reference frame. The pull-back to the material configuration Φ−1

∗ [] and the push-forward
operation Φ∗[] is frame indifferent per definition. According to Marsden and Hughes [25]
(p.99 ff) all so-called objective rates my be obtained by application of the Lie derivative.
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2. Continuum mechanics

2.2. Strain

Our calculations are based on an updated Lagrangian formulation. Therefore wee need the
right Cauchy-Green deformation tensor C which is defined as

dx1 · dx2 = dX1 · FTF · dX2 = dX1 ·C · dX2

C = FTF (2.14)

The right Cauchy-Green tensor is a material tensor. Based on C we define a deformation
measure on the material frame by

1

2
(dx1 · dx2 − dX1 · dX2) = dX1 ·E · dX2 (2.15)

With this procedure we obtain the Green-Lagrange strain tensor E

E =
1

2
(C− I) (2.16)

with I being the second order unit tensor. Of course there are various other strain measures
imaginable. These can be found in, e.g. Bonet and Wood [5] or Truesdell and Noll [34].

2.3. Stress

In the first step the definition of a stress tensor is done on the spatial frame. The Cauchy-
stress is the “physical” stress tensor. Let us define a traction vector t(n) at a point point
p(x) in the cross section with the normal n by

t(n) = lim
∆a→0

∆P
∆a

(2.17)

Based on the idea of doing three linearly independent cross sections a stress tensor σ can
be defined. For one cross section the situation is sketched in Figure 2.2. There are well
suitable derivations in various books like Bonet and Wood [5]. Translational equilibrium
on the Cauchy tetraeder gives

t = σ · n (2.18)

The rotational equilibrium conditions, as we will see later on, render σ to be symmetric.

Further, let us consider the traction on the surface γ. If one knows the Cauchy stress on
the boundary at the surface point (p ∈ γ), the surface traction tγ is given by

tγ = σ
∣∣
γ
· n
∣∣
γ

(2.19)

We will see later on (see Figure 5.3) that the surface traction inside the contact surface γC
is very crucial for the contact formulation. Variational contact formulations due to Nitsche
(see, e.g. Wriggers and Zavarise [39]) rely on Cauchy’s equation from Eq. (2.18) to extend
the body stresses σ onto the boundary γC .
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2.3. Stress

X1, x1

X3, x3

time t

ω

X2, x2

P

−n

∆a

∆P −∆P
n

Figure 2.2.: The definition of the Cauchy stress tensor is based on a local force ∆P in the
spatial frame. This force is defined on the cross section ∆a through the point
p given through the normal vector n. By taking the limit ∆a→ 0 the traction
t(n) is created.

2.3.1. First Piola-Kirchhoff

We formulate the weak form of the equilibrium in the material frame. Therefore we want to
find the work conjugated stress measure which allows us to formulate the equilibrium with
material frame values only. l = ḞF−1 is the spatial velocity gradient and its symmetric part
d = 1

2

(
l + lT

)
is called rate-of-deformation tensor. δl and δd are the virtual quantities,

respectively.

We start with the virtual work rate δΠ̇int which is given by

δΠ̇int =

∫
ω

σ : δd dv (2.20)

We will see in Eq. (2.28) that the Cauchy stress is symmetric and therfore we can replace the
symmetric virtual rate-of-deformation tensor δd with the virtual spatial velocity gradient

13



2. Continuum mechanics

δl

δΠ̇int =

∫
ω

σ : δl dv

=

∫
Ω

J σ : δḞ F−1 dV

=

∫
Ω

J σF−T : δḞ dV

=

∫
Ω

P : δḞ dV (2.21)

P is called first Piola-Kirchhoff stress tensor and is given by

P = J σF−T (2.22)

2.3.2. Second Piola-Kirchhoff

Taking again

δΠ̇int =

∫
ω

σ : δd dv (2.23)

and considering, that δd is the push-forward of δĖ

δΠ̇int =

∫
Ω

J σ : F−T δ Ė F−1 dV

=

∫
Ω

JF−1 σF−T : δĖ dV

=

∫
Ω

S : δĖ dV (2.24)

S is called second Piola-Kirchhoff stress tensor

S = J F−1 σF−T = F−1P (2.25)

2.4. Balance law

The local translational equilibrium (for statics only) in the spatial frame is given as

div (σ) + fB = 0 (2.26)

with fB being the body force per spatial volume unit. A suitable derivation can be found in
Bonet and Wood [5]. This strong form of the spatial equilibrium is fulfilled for each point
in the domain ω.
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2.4. Balance law

If we formulate the global rotational equilibrium∫
γ

x× t da+

∫
ω

x× fB dv = 0 (2.27)

insert t = σ · n and apply Gauss theorem, we end up with σ12 − σ21

σ23 − σ32

σ31 − σ13

 = 0 (2.28)

which implies the symmetry of the Cauchy stress tensor. The second Piola Kirchhoff S
stress tensor is symmetric too, which is a result of the definition in Eq. (2.25).

2.4.1. Boundary value problem

Now we transfer the spatial translational equilibrium (from Eq. (2.26)) in a suitable formu-
lation to apply the variational principle. As we will deal with multiple bodies for solving
the contact problem we already consider the boundary value problem for multiple bodies.
At a given time t we can formulate our problem for the “mortar” (2) and “non-mortar” (1)
body in the material configuration Ω (visualization is given in Figure 2.3) as

Div(P(i)) + f
(i)
B,0 = 0 in Ω(i)

P(i) N(i) = t
(i)
σ,0 on Γ

(i)
σ ∪ Γ

(i)
C

u(i) = u
(i)
u on Γ

(i)
u

with

P(i) := F(i) S(i) being the first Piola-Kirchhoff stress tensor for body (i)

f
(i)
B,0 := back transformation of the prescribed body force fB in body (i)

N(i) := outward normal in material configuration for body (i)

and assume for the boundary sets

∂Ω(i) = Γ(i)
u ∪ Γ(i)

σ ∪ Γ
(i)
C

Γ(i)
u ∩ Γ(i)

σ = Γ(i)
u ∩ Γ

(i)
C = Γ(i)

σ ∩ Γ
(i)
C = ∅

where Γ
(i)
C denotes the contact boundary. This back transformation of the real contact

surface in the spatial frame on to the material configuration is of course artificial. So is the
contact traction in the material configuration. This contact surface and the correspond-
ing contact traction are therefore transformed forward onto the current configuration in
Section 5.2. This allows a more natural interpretation of the contact quantities. At this
point no contact conditions between the two bodies are taken into account. That means
the contact traction is treated the same way as any given load at the Neumann boundary

Γ
(i)
σ . The contact mechanics will be analyzed in Section 5.
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2. Continuum mechanics

ω(2)

t
(2)
σ

X1, x2

ϕ(X, t)

t
(1)
σ

γ
(2)
C

γ
(2)
σ

γ
(1)
C

γ
(2)
u

γ
(1)
u

γ
(1)
σ

ω(1)

t
(2)
σ

X2, x2

γ
(2)
σ

γ
(1)
σ

t
(1)
σ

γ
(2)
u

ω(2)

γ
(1)
u

γ
(1)
C

γ
(2)
C

ω(1)

time t

time t = 0

t
(2)
C,0

t
(1)
C,0

Figure 2.3.: Two bodies in the material configuration (time t = 0) and in the spatial config-
uration at time t are shown. Those bodies have Dirichlet boundary conditions

applied on Γ
(i)
u (γ

(i)
u in spatial frame) and Neumann conditions on Γ

(i)
σ (γ

(i)
σ in

spatial frame). At the initial frame there is no physical contact, nevertheless

one can do a back transformation of the contact traction t
(i)
C and contact sur-

face γ
(i)
C onto the material configuration. The corresponding tractions t

(i)
C,0 are

therefore artificial surface force densities.

2.4.2. Weak formulation

To use the finite element method we have to apply the variational principle to obtain the
weak formulation. This procedure is well described in various books, e.g. Zienkiewicz and
Taylor [46, 47], Bathe [2].

The stationary condition for the multi (two) body system reads as

δΠ (u, δu) =

2∑
i=1

δΠ(i)
(
u(i), δu(i)

)
= 0 (2.29)
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2.5. Constitutive law

We can write the weak formulation for each body as

δΠ(i)
(
u(i), δu(i)

)
=

∫
Ω(i)

(
S(i) : δE(i) − f

(i)
B,0 · δu(i)

)
dΩ−

∫
Γ
(i)
σ ∪Γ

(i)
C

t
(i)
,0 · δu(i)dΓ

=

∫
Ω(i)

F(i) · S(i) : δF(i)dΩ︸ ︷︷ ︸
δΠ

(i)
int

−
∫

Ω(i)

f
(i)
B,0 · δu(i)dΩ−

∫
Γ
(i)
σ

t
(i)
σ,0 · δu(i)dΓ︸ ︷︷ ︸

δΠ
(i)
ext

−
∫

Γ
(i)
C

t
(i)
C,0 · δu(i)dΓ︸ ︷︷ ︸
δΠ

(i)
C

(2.30)

where we still have not made any assumptions on the contact conditions. This formulation is
generally applicable for multi body systems. We have already split up the integral over the

Neumann boundary in the contact boundary Γ
(i)
C and the “classical” Neumann boundary

Γ
(i)
σ . In Section 5.2 we will introduce the conditions on the contact tractions t

(i)
C,0 as they

are not independent for two bodies in contact.

2.5. Constitutive law

Detailed description of material theory can be found, e.g. in Truesdell and Noll [34], Mars-
den and Hughes [25]. Throughout this work we will focus on contact mechanics. Therefore
we choose two rather simple elastic materials. One for finite deformations, the compressible
neo-Hookean material and one for small deformations, the St. Venant-Kirchhoff material.

To describe the material parameters of those materials we use the Lamé parameters inside
the energy strain function ψ (see e.g. Truesdell and Noll [34]). One can convert the lame
parameters λ, µ into the more common material parameters E (Young’s modulus) and ν
(Poisson’s ratio) with

E =
µ(3λ+ 2µ)

λ+ µ
(2.31)

ν =
λ

2(λ+ µ)
(2.32)

and µ = G being the shear modulus.

2.5.1. St. Venant-Kirchhoff material

The strain energy function is given as

ψ(F(X),X) =
1

2
λ (tr(E))2 + µE : E (2.33)

17



2. Continuum mechanics

where λ and µ are the Lamé material coefficients. The second Piola-Kirchhoff stress then
reads

S =
∂ψ

∂ 1
2C

S = λ (tr(E)) + 2µE (2.34)

We will solve the non-linear system by application of the Newton-Raphson procedure (see
Section 6.1). Therefore we need the stress increment for a given state S,E

∆S =
∂S

∂ 1
2C

: ∆E = C : ∆E (2.35)

with C being the elasticity tensor. It can be written in index notation as

Cijkl = λ δijδkl + µ 2
1

2
[δikδjl + δilδjk] (2.36)

which includes the fourth order unit tensor

Iijkl =
1

2
[δikδjl + δilδjk] (2.37)

where δij is the Kronecker delta (see Klingbeil [21]).

2.5.2. Compressible Neo-Hookean material

To define the general strain energy function we need the three invariants of the right Cauchy
Green deformation tensor C

IC = tr (C) = C : I (2.38)

IIC = tr (C) C = C : C (2.39)

IIIC = det (C) = J2 (2.40)

The strain energy function is then defined as

ψ(F(X),X) =
µ

2
(IC − 3)− µ ln (IIIC) +

λ

2
[ln (IIIC)]2 (2.41)

where λ and µ are once again the Lamé material coefficients. Based on this elastic potential
one can determine the stress tensor

S =
∂ψ

∂ 1
2C

S = µ
(
I−C−1

)
+ λ ln (IC) C−1 (2.42)

The fourth order elasticity tensor Cijkl can be calculated with

Cijkl = λ
(
C−1

)
ij

(
C−1

)
kl

+ 2 [µ− λ ln (IC)] Iijkl (2.43)

which includes the fourth order tensor Iijkl

IIJKL =
1

2

{(
C−1

)
ik

(
C−1

)
jl

+
(
C−1

)
il

(
C−1

)
jk

}
(2.44)
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3. Contact kinematics

Throughout this chapter we will cover the two dimensional contact kinematics for the two
body contact problem. If there are more than two bodies in contact the following is valid
for one chosen contact pairing.

We will start with a rather general description of the contact kinematics. That means, in a
first step, we do not focus on the influence of discretization. This is similar to the approach
of Willner [36] or the work of Konyukhov and Schweizerhof [22] on the covariant description
of contact kinematics.

We will consider discretization in Chapter 4. Here we will try to keep as much information
of the continuous contact surface as possible.

3.1. Nearest point projection

The procedure of finding a corresponding contact point x(2) on the mortar side for a given
point x(1) on the non mortar side is called nearest point projection (NPP). This means all
objects marked by � depend on a non-mortar point x(1) by application of the NPP.

x(1)S

N

non-mortar ω(1)

mortar ω(2)

ξ(1)

ξ(2)

x(2)

Figure 3.1.: We define the Frenet frame for an arbitrary point x(1). At first we do not differ

if S is seen as tangential to γ
(1)
C or γ

(2)
C as they coincide (only have different

directions). The positive normal vector N is defined to point from the non-
mortar ω(1) to the mortar domain ω(2).

We define and show the main objects of the contact kinematics, the Frenet frame (see Sokol-
nikoff [33] or Gray [12] for further explanations), in Figure 3.1. This is the parametrization
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3. Contact kinematics

of the non-mortar surface γ(1) with the parameter ξ(1) and γ(2) with the mortar surface
ξ(2).

The tangential vector S, which is defined on the non-mortar surface, can be calculated via

S =
∂x(1)

∂ξ(1)

∥∥∥∥∥∂x(1)

∂ξ(1)

∥∥∥∥∥
−1

or S = −∂x(2)

∂ξ(2)

∥∥∥∥∥∂x(2)

∂ξ(2)

∥∥∥∥∥
−1

(3.1)

or in an even more general way if discretization is considered (see Section 4.2). We try to
develop the contact kinematics fully independently (as synthetically as possible) from the
choice of S. This allows us later in the discretization to compare two different methods of
defining the Frenet frame.

The projection itself is done through minimization of the distance d of a fixed point x(1)

on the non-mortar side and an arbitrary point x(2) on the mortar side identified with the
convective coordinate ξ(2). The situation is visualized in Figure 3.2 and reflects the physical
“meaning” of contact.

x(1)S

N

non-mortar ω(1)

mortar ω(2)

ξ(1)

x(2)

d

Figure 3.2.: Two arbitrary points x(1) and x(2) on the surface of the contact body are shown.
The difference vector d has the length d.

With this setup we obtain the distance

d = ‖x(2)(ξ(2))− x(1)‖ → MIN

and define the nearest point projection.

Definition: The nearest point projection is defined as minimization of the dis-
tance d of two points x(1) and x(2) on the corresponding surfaces of the contact
bodies. We keep the parameter ξ(1) fixed and minimize the distance with respect
to the convective coordinate ξ(2).

As we will see later, this procedure is advantageous as the numerical algorithm is based on
a surface quadrature on the non-mortar side, where the parameter of the integration point
is fixed too. This is true for our concentrated integration scheme used and presented in
Section 6.5.
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3.1. Nearest point projection

In mathematical sense this means

∂

∂ξ
(2)
d(ξ

(2)
, t) = 0

x(2)(ξ
(2)

)− x(1)

‖x(2)(ξ
(2)

)− x(1)‖
· ∂x̄(2)

∂ξ̄(2)
= 0

−
(
x(2)(ξ

(2)
)− x(1)

)
· S = 0 (3.2)

what is illustrated in Figure 3.3.

x(1)S

N

non-mortar ω(1)

mortar ω(2)

ξ(1)

x(2)

ξ
(2)

Figure 3.3.: Two bodies in contact with continuous surfaces without discretization. As a
result of the NPP we see that the projection point x(2) lies on the section of
the normal vector N with the mortar surface. To show the properties we have
to separate the two bodies being in contact at point x(1). For physical contact
situation the points x(2) and x(1) would coincide.

3.1.1. Solvability of the nearest point projection

The solution of the nearest point projection might not be unique. This is the case if the
Frenet frame is defined on the mortar side and the mortar surface is non convex. Until know
we did not discuss how the Frenet frame [N ,S, e3] is constructed. It is of course possible

(and common) to use the mortar surface γ
(2)
C for this construction. If we do not apply any

averaging this choice is even advantageous. In Figure 3.4 the situation is shown.

This issue is a rather small problem for the discrete algorithm. On the other hand a few
other problems due to discretization might occur and might lead to oscillations of the active
contact set. Those issues are discussed in Section 4.3.
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3. Contact kinematics

x(1)

S1

non-mortar ω(1) ξ(1)

S2
mortar ω(2)

Figure 3.4.: For non convexity of the mortar surface a non unique solution of the nearest
point projection is possible. This situation might occur if one defines the tan-
gential vector S on the mortar side. Then the projection of a non-mortar point
x(1) onto the mortar side might not be unique. See Section 4.3 for further
discussions and solutions.

3.2. Normal contact

Between the non-mortar surface point and a possible contact point on the mortar side we
define the following relation

x(2)(ξ
(2)

) = x(1)(ξ(1)) + gNN (3.3)

gN =
(
x(2) − x(1)

)
· N (3.4)

with gN being the gap function (see Figure 3.5). Here we can already note a very important
property of an active contact situation. For a “real” (physical) contact situation the gap
function gN has to be zero. We will reflect those characteristics of physical contact in
Section 5.1.

x(1)S

N

non-mortar ω(1)

mortar ω(2)

ξ(1)

x(2)

ξ
(2)

gN

Figure 3.5.: We define the scalar gap function gN as pointed direction from the non-mortar
point x(1) to the projected mortar point x(2).

Due to the discretization of the contact surface different tangential vectors for the mortar
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3.3. Tangential contact

and the non-mortar side may occur. Depending on the used algorithm we will therefore use
different vectors S and normal vectors N . This will be covered in Section 4. But whatever
normal or tangential vector we choose the relation Eq. (3.3) remains valid.

3.2.1. Variation of gap function

As the solution algorithm is based on a variational calculus we need the variation of the
gap function. Therefore we vary Eq. (3.3) and obtain

δu(2) + a(2)δξ(2) = δu(1) + δgN N + gN δN (3.5)

with a(i) being defined throughout the thesis as non normalized tangent vector a(i) = ∂x(i)

∂ξ(i)
.

Remark: We distinguish between the tangential vector S from the defined Frenet
frame and the derivative of x(2) with respect to the convective coordinate ξ(2).
Although we know that for the continuous case S is parallel to −a(2).

At this point we should note that there is no inner variation of u(1) because δξ(1) = 0. This
is only true for our chosen integration scheme with fixed integration limits and integration
points. This fact is further discussed in Section 6.5.

Multiplying Eq. (3.5) with N gives the variation of the gap function

δgN =
(
δu(2) − δu(1)

)
· N +N · a(2)δξ(2) (3.6)

δξ(2) is part of the derivation regarding tangential contact and is shown in Section 3.3.

3.3. Tangential contact

Multiplying Eq. (3.5) with the tangential vector S yields

S · a(2)δξ(2) = −
(
δu(2) − δu(1)

)
· S + gN δN · S + δgN N · S︸ ︷︷ ︸

= 0

S · a(2)δξ(2) = −
(
δu(2) − δu(1)

)
· S + gN δN · S (3.7)

One should keep in mind that due toN ·S = 0, δN ·S = −N ·δS. We will show in Section 4.1
and Section 4.2 that this equation leads to the calculation of δξ(2). The calculation of δξ(2)

has a rather strong dependency on the chosen discretization of the normal and tangential
vector field.

The virtual contact work in tangential direction for the stick case depends on δgT (see
Eq. (5.22)). We use the nearest point projection condition from Eq. (3.2)(

x(2) − x(1)
)
· S = 0 (3.8)
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3. Contact kinematics

and apply the δ-process

0 =
(
δu(2) − δu(1)

)
· S + S · a(2)δξ(2) +

(
x(2) − x(1)

)
· δS (3.9)

0 =
(
δu(2) − δu(1)

)
· S + S · a(2)δξ(2) + gNN · δS (3.10)

−S · a(2)δξ(2) =
(
δu(2) − δu(1)

)
· S − gNδN · S (3.11)

The same result can of course be obtained if one considers Eq. (3.7)(
δu(2) − δu(1)

)
· S − gN δN · S = −S · a(2) δξ(2) (3.12)

We will need
(
δu(2) − δu(1)

)
· S for our variational formulation (see Eq. (5.22)) and we call

this term δgT . If we assume that gN = 0 we get

δgT =
(
δu(2) − δu(1)

)
· S (3.13)

δgT = −S · a(2) δξ(2) (3.14)

This relation can also be found in Laursen [24], Wriggers [40] or Willner [36]. The inner
product −S · a(2) is equal to ‖a(2)‖ for the continuous case. As already mentioned we try
to keep as much information as possible. Keeping this product and not substituting with
‖a(2)‖ will lead to a somehow “artificial” asymmetry mentioned in the work of Konyukhov
and Schweizerhof [22] and others. On the other hand keeping information should enhance
the quality of results.

x(1)S

N

non-mortar ω(1)

mortar ω(2)

ξ(1)

ξ(2)

x(2)

gNt(1)

t
(2)
T

t
(2)

t
(1)
T

Figure 3.6.: If there is a non zero gap gN between the non-mortar point x(1) and the pro-

jection point x(2) the traction t(1) and t
(2)

will not coincide. This pair of forces

t
(i)
T with normal distance gN would result in a moment which physically does

not exist.

For the continuous situation gN = 0 is true as it is our contact condition. This is not the
only argument for setting gN = 0. We neglect the gN term because our equilibrium in
tangential direction is only satisfied for gN = 0. Else we would have a resulting moment
which is in fact not the case. This has been also discussed in Yang et al. [44]. For a discrete
arbitrarily curved surface gN 6= 0, but the equilibrium has to be satisfied and therefore we
are not removing information here but incorporate an important physical fact. The whole
problem is presented in Figure 3.6.
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3.3. Tangential contact

3.3.1. Relative velocity vT

As stated in Wriggers [40] and Laursen [24] let us consider the distance vector between the
mortar and non-mortar surface point g = x(2) − x(1). Of course this has to be zero for
perfect contact and so has gT = g · S = 0.

We will construct an objective velocity measure by applying the Lie derivative LΦ onto gT
as shown in Section 2.1.3.1. Of course the Lie derivative LΦ {gT } has to be zero too.

0 = LΦ

{(
x(2) − x(1)

)
· S
}

= Φ∗

[
d

dt

{
Φ−1
∗

((
x(2) − x(1)

)
· S
]}]

= Φ∗

[
d

dt

{(
X

(2) −X(1)
)
· Φ−1
∗ (S)

}]
= Φ∗

[(
Ẋ

(2)
− Ẋ(1) + X

(2)

,ξ(2)
ξ̇(2)

)
· Φ−1
∗ [S] +

(
X

(2) −X(1)
)
· d

dt

{
Φ−1
∗ [S]

}]
=
(
ẋ

(2) − ẋ(1)
)
· S + a(2) ξ̇(2) · S +

(
x(2) − x(1)

)
︸ ︷︷ ︸
gNN = 0

·Φ∗
[

d

dt

{
Φ−1
∗ [S]

}]
(
ẋ

(2) − ẋ(1)
)
· S = −a(2) ξ̇(2) · S

This allows us to define the convective velocity

vT =
(
ẋ

(2) − ẋ(1)
)
· S (3.15)

vT = −a(2) ξ̇(2) · S (3.16)

This formulation is suitable for the continuous case, where the gap function gN = 0 for all
points being in contact.

3.3.1.1. Objectivity of vT

In the following we show that the velocity from Eq. (3.15) is not objective if we insert the
geometric interpolation for the discrete case. This is a problem for finite deformations and
large slidings if we use vT as criteria for detection of stick or slip respectively. We define
the transformation according to Section 2.1.3

x∗ = c(t) + Q(t) · x (3.17)

An objective velocity measure vT must fulfill

v∗T = Q(t) vT (3.18)

v∗T = vT (3.19)
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3. Contact kinematics

We insert the transformation from Eq. (2.10) into our definition of the velocity from
Eq. (3.15).

v∗T = − (QS)T
(
Qẋ

(2)
+ Q̇x(2) −Qẋ(1) − Q̇x(1)

)
(3.20)

v∗T = −S ·
(
ẋ

(2) − ẋ(1)
)

︸ ︷︷ ︸
vT

−S ·
[
QT Q̇

(
x(2) − x(1)

)
︸ ︷︷ ︸
gNN = 0

]
(3.21)

The second term on the right hand side is zero only if the gap function gN is zero. This is
true for the continuous case but not for discretized and arbitrarily curved surfaces.

To construct an objective velocity measure we follow the approach presented in the paper
of Yang et al. [44]. Let us reconsider the definition of the scalar velocity vT . Next we extend
the velocity with the zero vector ġ. For perfect contact the gap vector g has to be zero and
so has ġ = 0.

vT = −
(
ẋ

(2) − ẋ(1)
)
· S

vT = −
(

ẋ
(2) − ẋ(1) − ġ︸︷︷︸

= 0

)
· S (3.22)

Now we to introduce the shape functions N
(i)
α on the contact interface which interpolate

the surface node coordinates x̂
(i)
α

x(2) = N
(2)
α x̂(2)

α x(1) = N(1)
α x̂(1)

α (3.23)

ẋ
(2)

= N
(2)
α

˙̂x
(2)
α ẋ(1) = N(1)

α
˙̂x

(1)
α (3.24)

This allows us to calculate ġ = N
(2)
α

˙̂x
(2)
α + Ṅ

(2)

α x̂
(2)
α − N

(1)
α

˙̂x
(1)
α − Ṅ

(1)
α x̂

(1)
α which can be

substituted in Eq. (3.22) to obtain

vT = −S ·
[
N

(2)
α

˙̂x
(2)
α −N(1)

α
˙̂x

(1)
α −

(
N

(2)
α

˙̂x
(2)
α + Ṅ

(2)

α x̂(2)
α −N(1)

α
˙̂x

(1)
α − Ṅ(1)

α x̂(1)
α

)]
(3.25)

vT = S ·
(

Ṅ
(2)

α x̂(2)
α − Ṅ(1)

α x̂(1)
α

)
(3.26)

Eq. (3.26) represents an objective velocity measure even for the discrete case. For our

concentrated integration scheme Ṅ
(1)
α vanishes, as ξ̇(1) = 0. It is notable that we do not

need the time derivation of the nodal coordinates but the time derivation of the shape

functions Ṅα. We further apply an implicit backward Euler scheme

d(·)
dt
≈ (·)(tn+1)− (·)(tn)

∆t
=

∆t(·)
∆t

(3.27)

where tn is the time of the last converged state of equilibrium and we obtain

vT = S · ∆tN
(2)
α

∆t
x̂(2)
α = S · ∆tgT

∆t
(3.28)
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3.4. Jacobian of contact surface

non-mortar ω(1)

mortar ω(2)

ξ(1)
∣∣n

x(2)
∣∣n (ξ(2)∣∣n)

N
∣∣n

∆tgT

tn mortar ω(2)

non-mortar ω(1)

tn+1

x(1)
∣∣n x(1)

∣∣n+1

N
∣∣n+1

x(2)
∣∣n+1

(
ξ

(2)∣∣n+1
)

x(2)
∣∣n+1

(
ξ

(2)∣∣n)

ξ(1)
∣∣n+1

Figure 3.7.: The relative tangential slip can be seen as difference vector between the ac-

tual nearest point x(2)|n+1
(
ξ

(2)|n+1
)

= N
(2)
α

(
ξ

(2)|n+1
)

x̂
(2)
α |n+1 and the point

x(2)|n+1
(
ξ

(2)|n
)

= N
(2)
α

(
ξ

(2)|n
)

x̂
(2)
α |n+1. The latter point can be interpreted

as being marked on the surface of the previous converged time step (green dot)
and “transformed” into the actual time step.

∆tN
(2)
α can be calculated with N

(2)
α

(
ξ

(2)
(tn+1)

)
−N

(2)
α

(
ξ

(2)
(tn)

)
. That means we have to

store the convective coordinate ξ
(2)

(tn) of the last converged time step. For simplification
we will write in the following �(tn) = �|n. This result is equal to the method presented in
Tur et al. [35]. The presented derivation unifies the suggestion of Tur et al. [35] with the
procedure presented by Yang et al. [44].

3.3.2. Relative tangential slip increment ∆tgT

With the relative tangential velocity vT we can now calculate a relative tangential slip
increment ∆tgT = vT∆t

∆tgT = S ·∆tN
(2)
α x̂(2)

α |n+1

= S ·
{

N(2)
α

(
ξ

(2)|n+1
)
−N(2)

α

(
ξ

(2)|n
)}

x̂(2)
α |n+1 (3.29)

We present a graphical interpretation of this objective velocity in Figure 3.7.

Remark: It is import to distinguish the time increment ∆t� which is always based
on the last equilibrium state and the increment ∆� resulting from the linearization
process.

3.4. Jacobian of contact surface

We have to evaluate the integral on the non-mortar side and need therefore the Jacobian
determinant J (1).

J (1) = ‖x(1)

,ξ(1)
‖ =

(
x

(1)

,ξ(1)
· x(1)

,ξ(1)

) 1
2

=
(
a(1) · a(1)

) 1
2

(3.30)
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3. Contact kinematics

With variational methods we obtain

δJ (1) =
a(1)

J (1)
· δu(1)

,ξ(1)
(3.31)
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4. Discrete contact kinematics

In Chapter 3 we discussed the continuous and rather synthetic contact kinematics. For a
practical use we need to handle discrete contact surfaces with discontinuities.

In the following we will incorporate the difficulties arising through discretization. We will
also provide different types of implementations for the discrete situation with respect to the
main kinematic property - the normal field.

We will distinguish between the non-continuous normal field defined on the mortar side (see
Section 4.1) and the averaged normal field defined on the non-mortar side (see Section 4.2).
The idea of averaging was first presented in a work by Yang et al. [44] and got very popular
by other authors implementing the mortar method later on.

4.1. Non-continuous mortar side normal

This idea is based on the work of Fischer and Wriggers [6]. Here the normal vector is defined
on the mortar domain ω(2). This is advantageous because the variation of the gap function
gN simplifies as we will see later on. The situation is sketched in Figure 4.1.

mortar ω(2)

x(1)

ξ(1)

non-mortar ω(1)

x(2)

a(2)

n(2)

Figure 4.1.: The normal vector n(2) is defined on the mortar side. It is perpendicular to
the corresponding edge. For linear shape functions (but also for higher order
Lagrangian shape functions) there is a kink (C1 discontinuity) on the edge
nodes. Therefore the normal vector field has a singularity on these edge nodes.

We define a non unit tangent vector on the mortar side

a(2) = x
(2)
,ξ
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4. Discrete contact kinematics

Now we can construct the Frenet frame with

n(2) =
a(2)

‖a(2)‖
× e3 = s(2) × e3 (4.1)

With this definitions we can set N = −n(2) and S = −s(2). We are able to use the kinematic
relations from Chapter 3. The main relation for the gap function, Eq. (3.3), reads

x(2) = x(1) −MgNn(2) (4.2)

In the following we will denote all values related to the mortar side non-continuous normal
field with M�.

4.1.1. Nearest point projection

Before we proceed we define two often used quantities throughout the whole work.

α(2) =
∥∥∥a(2)

∥∥∥ =
√

a(2) · a(2) (4.3)

β
(2)

= x
(2)
,ξξ · n(2) (4.4)

Remark: It should be noted that x
(2)
,ξξ = 0 and thus β

(2)
= 0 for linear shape

functions.

Multiplying Eq. (4.2) with the tangent a(2) (it is not necessary to use the normalized tangent
s(2)) and keeping in mind that n(2) · a(2) ≡ 0 we get(

x(2) − x(1)
)
· a(2) = 0 (4.5)

See Section 7.2.2.1 for details on implementation.

4.1.2. Normal gap

Multiplying Eq. (4.2) with the normal n(2) (see also Eq. (3.4)) yields

MgN = −
(
x(2) − x(1)

)
· n(2) (4.6)

as gap function.

Let us reconsider Eq. (3.5). The last term on the right hand side vanishes for the mortar
side normal field, because of the orthogonality between n(2) and a(2). This is the big
advantage of this method and simplifies the variation and the linearization of all quantities
significantly.

MδgN = −
(
δu(2) − δu(1)

)
· n(2) (4.7)
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4.2. Averaged non-mortar side normal

4.1.3. Tangential slip

Now we specialize the Eq. (3.14) for the mortar side normal field and get

MδgT = α(2) Mδξ(2) (4.8)

which means we need Mδξ(2) if we consider tangential contact. We insert into Eq. (3.7) the
specialization for the non-continuous mortar side normal field (N = −n(2), S = −s(2)) and
obtain

a(2) · a(2)δξ(2) = −
(
δu(2) − δu(1)

)
· a(2) + gN · δa(2) (4.9)

α(2)2 Mδξ(2) = −
(
δu(2) − u(1)

)
· a(2) + gN n(2) ·

(
δu

(2)

,ξ(2)
+ x

(2)
,ξξ

Mδξ(2)
)

Mδξ(2) =
1

α(2)2 − gN β(2)

[
−
(
δu(2) − u(1)

)
· a(2) + gN n(2)δu

(2)

,ξ(2)

]
(4.10)

With Mδξ(2) we are now able to evaluate Eq. (4.8).

4.2. Averaged non-mortar side normal

This method is based on the idea presented by Yang et al. [44] and then adopted and
used by Puso [28] and Tur et al. [35]. There are different possibilities for carrying our the
averaging of the normal field. The already published methods are collected and explained
in Table 4.1.
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4. Discrete contact kinematics

In this first averaging attempt of Yang et al. [44]
the normal vector is weighted by the length of the
adjacent edge.

ˆ̃n
(1)
k+1 =

lk+1 n
(1)
k

∣∣∣
ξ(1)=+1

+ lk n
(1)
k+1

∣∣∣
ξ(1)=−1

‖lk+1 n
(1)
k

∣∣∣
ξ(1)=+1

+ lk n
(1)
k+1

∣∣∣
ξ(1)=−1

‖

n
(1)
k

∣∣
+1n

(1)
k+1

∣∣
−1

γ
(1)h
Ck+1

γ
(1)h
Ck

One might simplify the first attempt, as done
in the work of Popp et al. [27], by omitting the
weighting. The disadvantage might be that short
edges have a to big influence on the normal field.

ˆ̃n
(1)
k+1 =

n
(1)
k

∣∣∣
ξ(1)=+1

+ n
(1)
k+1

∣∣∣
ξ(1)=−1

‖ n
(1)
k

∣∣∣
ξ(1)=+1

+ n
(1)
k+1

∣∣∣
ξ(1)=−1

‖

n
(1)
k

∣∣
+1n

(1)
k+1

∣∣
−1

γ
(1)h
Ck+1

γ
(1)h
Ck

This averaging method is based on the tangent
vector itself and was first presented by Tur et al.
[35].

ˆ̃n
(1)
k+1 =

a
(1)
k

∣∣∣
ξ(1)=+1

+ a
(1)
k+1

∣∣∣
ξ(1)=−1

‖ a
(1)
k

∣∣∣
ξ(1)=+1

+ a
(1)
k+1

∣∣∣
ξ(1)=−1

‖
× e3

γ
(1)h
Ck+1

γ
(1)h
Ck

a
(1)
k

∣∣
+1

a
(1)
k+1

∣∣
−1

Table 4.1.: Possible averaging methods
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4.2. Averaged non-mortar side normal

We use the two tangent vectors at one corner node before normalization and calculate the
arithmetic mean. This way the influence of the edge length is kept and the variation and
linearization can be done with limited effort. For the following we assume ξ ∈ [−1, 1].

ˆ̃a
(1)
k =

1

2

(
x

(1)
,ξk

∣∣∣
ξ=+1

+ x
(1)
,ξk+1

∣∣∣
ξ=−1

)
=

1

2

(
a

(1)
k

∣∣∣
ξ=+1

+ a
(1)
k+1

∣∣∣
ξ=−1

)
(4.11)

This is somehow a mixture between the second and third variant of Table 4.1.

We can use the averaged tangent vectors in the corner nodes to interpolate the average
tangent on arbitrary points along the edge and calculate the normal

ã(1) = ˆ̃a
(1)
k N

(1)
k + ˆ̃a

(1)
k+1N

(1)
k+1 ; ñ(1) =

ã(1)

‖ã(1)‖ × e3 (4.12)

It does not matter if one interpolates first and build the normal afterwards or vice versa
like shown in following equations

ˆ̃n
(1)
k =

ˆ̃a
(1)
k

‖ˆ̃a(1)
k ‖
× e3 ; ñ(1) = ˆ̃n

(1)
k N

(1)
k + ˆ̃n

(1)
k+1N

(1)
k+1 (4.13)

With this definition of the normal field we can use the kinematic relations from Chapter 3

mortar ω(2)

x(1)

ξ(1)

non-mortar ω(1)

x(2)

ˆ̃n
(1)
k+1

ñ(1)

ã(1)

ˆ̃n
(1)
k+1

Figure 4.2.: One can see that the corner nodal normal vectors ˆ̃n
(1)
k and ˆ̃n

(1)
k+1 are not normal

to any of the adjacent edges. With the interpolation from Eq. (4.12) we obtain

the normal vector ñ(1) at the integration point x
(1)
IP .

and set N = ñ(1)

x(2) = x(1) + AgN ñ(1) (4.14)

4.2.1. Nearest point projection

Multiplying Eq. (4.14) with the average tangent ã(1) yields the projection condition(
x(2) − x(1)

)
· ã(1) = 0 (4.15)

See Section 7.2.2.2 for details on implementation.
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4. Discrete contact kinematics

4.2.2. Normal gap

Multiplying Eq. (4.14) with the averaged normal ñ(1) (see also Eq. (3.4)) yields the gap
function

AgN =
(
x(2) − x(1)

)
· ñ(1) (4.16)

Variation of Eq. (4.14) leads to

δu(2) + a(2)δξ(2) = δu(1) + AδgN ñ(1) + AgN δñ(1) (4.17)

We multiply Eq. (4.17) with ñ(1) and obtain (see Eq. (3.5))

AδgN = ñ(1) ·
(
δu(2) − δu(1) + a(2) Aδξ(2)

)
(4.18)

Remark: In comparison to Equation (4.7) we have to calculate the variation
Aδξ(2) - because ñ(1) is not orthogonal to a(2).

The variation Aδξ(2) is shown in the following subsection as it is strongly related to tangen-
tial contact conditions.

4.2.3. Tangential slip

To calculate Aδξ(2) we multiply Eq. (4.17) with ã(1) (see also Eq. (3.7)) and obtain

Aδξ(2) =
ã(1)

(ã(1) · a(2))
·
[
−
(
δu(2) − δu(1)

)
+ AgN δñ(1)

]
(4.19)

Remark: As ñ(1) is fixed in the integration point, it does not depend on Aξ(2).
Therefore the resulting variation Aδξ(2) does not directly depend on the curvature
of the mortar or non-mortar surface. Nevertheless the curvature influences the
averaging and is included in ã(1) and its variation.

We end up with the necessity to calculate the variation of the averaged normal δñ(1)

δñ(1) = δs̃(1) × e3

δñ(1) =

[
δã(1)

‖ã(1)‖ − ã(1) δã
(1) · ã(1)

‖ã(1)‖3

]
× e3 (4.20)

We specialize Eq. (3.14) for the averaged normal field to get

AδgT = −s̃(1) · a(2)Aδξ(2) (4.21)

4.3. Uniqueness and solvability of the nearest point projection

The singularity for the nearest point projection as discussed in Section 3.1.1 is a rather
small problem for the discrete case. If we have a non-convex mortar surface we are able
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4.3. Uniqueness and solvability of the nearest point projection

to find two possible solutions for the nearest point projection. We can simply select one of
them by choosing the solution with the smaller gap value gN .

However, for the discrete case there are more special cases one should be aware of. A very
good and complete study of the different cases can be found in Zavarise and de Lorenzis
[45] for the penalty method. It is possible to transfer their results onto the mortar method
by simply replacing the slave node with the non-mortar integration point.

The following situations might occur

• The “in-of-both” case (see Figure 4.3) can occur for the mortar side normal vector
field but not for the averaged normal field. Zavarise and de Lorenzis [45] suggest three
possible solutions for this case. We used in our case a very simple one. We choose the
non-mortar edge with the smaller gap value gN . This solution is not unproblematic
but really simple and therefore chosen. By choosing the shortest gN , oscillation effects
could be observed which require special treatment (see Section 7.3).

mortar ω(2)

x(1)

ã(1)

ξ(1)

non-mortar ω(1)

Figure 4.3.: The “in-of-both” case where the projection is defined for two possible mortar
edges.

• The “out-of-both” case can again only occur for the mortar side normal vector field.
We overcome this situation once again by choosing the segment with the smaller gap
value gN . In Figure 4.4 one can see that both projection points reside outside the
contact surface. They are constructed through extension of the corresponding edges.
This means also that these points do physically not exist and cannot be in contact.

mortar ω(2)

x(1)

ã(1)

ξ(1)

non-mortar ω(1)

Figure 4.4.: For the “out-of-both” case the nearest point projection is not defined at
all. Nevertheless we have to chose an appropriate mortar edge to calculate the
kinematic properties.
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4. Discrete contact kinematics

• The “out-of-first” case and “out-of-last” case are possible, independently from
the chosen normal field. As we are using a concentrated integration scheme, (Sec-
tion 6.5.2) we neglect the terms corresponding to the actual non-mortar integration

point x
(1)
IP .

x(1)

ã(1)

ξ(1)

non-mortar ω(1)

mortar ω(2)

ˆ̃n
(1)
k+1

ˆ̃n
(1)
kñ(1)

(a) For the “out-of-first” case the projection fails be-
cause the first mortar edge of a possible contact sur-
face is out of range.

x(1)

ã(1)

ξ(1)

mortar ω(2)

non-mortar ω(1)

ˆ̃n
(1)
k+1

ˆ̃n
(1)
kñ(1)

(b) For the “out-of-last” case the projection fails be-
cause the first mortar edge of a possible contact sur-
face is out of range.

Figure 4.5.: For the “out-of-first” case and the “out-of-last” case no contact partner
edge can be determined.
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5. Contact mechanics

In the previous chapters we have prepared the kinematic properties needed to analyze the
contact situation. In this chapter the kinetics and the contact constraints are discussed.

We start with the mathematical formulation of the contact constraints - the Karush-Kuhn-
Tucker conditions for contact. These conditions are the basis for the following incorporation
into the weak formulation of our boundary value problem. This virtual work of the contact
traction is needed for the discretization with the finite element method.

The mortar method is characterized through the weak enforcement, not only of the contact
traction, but also of the contact constraints. It is therefore a mixed method with the contact
traction being additional unknowns, the Lagrange parameters. These additional unknowns
require additional equations, the weak contact enforcement.

For comparison we have also implemented a penalty regularized method, where the contact
tractions depend on the gap function. Therefore we do not have additional unknowns and
we do not have to integrate weak constraint conditions into the equation system. A similar
mortar condition is used to decide the active set.

5.1. Karush-Kuhn-Tucker conditions

The contact constraints can be summarized with the so called Karush-Kuhn-Tucker condi-
tions for the normal and the tangential contact.

5.1.1. Normal contact conditions

The Karush-Kuhn-Tucker conditions are for the normal direction

gN (x, t) ≥ 0 (5.1)

tN ≤ 0 (5.2)

tN gN = 0 (5.3)

The first condition describes the kinematic constraint of non-penetration which means that
the gap function gN has to be zero. The second prevents adhesive traction tN (tN represents
the contact traction in normal direction on the contact surface ΓC , see Figure 5.3) The third
condition is called the complementary condition. This condition forces the gap to be zero
if the pressure is not zero and the pressure to be zero if the gap function is greater then
zero. In other words this condition selects only one of the two conditions to be “active”.
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5. Contact mechanics

These conditions can be seen as constitutional law for the normal contact as they connect
the kinematics with the kinetics. This law is singular at gN = 0. This can be physically
interpreted as the contact traction tN is a reaction force and can not be calculated by the
constitutional law but is a result of the equilibrium.

Different regularization methods can be applied (see for penalty regularization Fischer and
Wriggers [6] and for augmented Lagrangian Puso and Laursen [30]). The situation is visu-
alized in Figure 5.1.

tN

gN
ε

Figure 5.1.: Non-regularized (continuous line) and regularized (dashed line) version of the
normal contact condition. A penalty regularization can be achieved with tN =
εgN . This is used for the penalty method implementation in Section 6.2.2.

5.1.2. Tangential contact conditions

For the tangential part one can write (see Laursen [24], Wriggers [40] or Willner [36])

vT − γ̇
tT
‖tT ‖

= 0 (5.4)

Ψ := ‖tT ‖ − µ‖tN‖ ≤ 0 (5.5)

γ̇ ≥ 0 (5.6)

Ψ γ̇ = 0 (5.7)

as non-regularized Coulomb friction law. The presented friction law is not differentiable at
vT = 0 (see Figure 5.2), because during active stick the traction in tangential direction is
a reaction force. That means the traction is only limited by the constitutional law but can
not be calculated with it.

Different regularized versions of the Coulomb friction law can be found in literature to
overcome this issue. We are using the non-regularized Coulomb friction law to show the
possibility to use it with the mortar method and also to show the performance of this
method.
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5.2. Contact virtual work

‖tT ‖

‖vT ‖

µ‖tT ‖

Figure 5.2.: One can see the comparison between the non-regularized (continuous line) and
a regularized (dotdashed line) Coulomb friction law. For the non regularized
version the singularity (jump) at gT = 0 is shown. There are different methods
for doing regularizations. One can find a suitable compilation in Wriggers [40].

5.2. Contact virtual work

Based on the virtual work Eq. (2.30) from Section 2.4.2 we derive the virtual work of contact
forces according to Laursen and Simo [23], for the mortar method according to Yang et al.
[44], Puso [28].

We use the weak form of the boundary value problem in the initial configuration defined in
Eq. (2.30).

δΠ(i)
(
u(i), δu(i)

)
=

∫
Ω(i)

(
S(i) : δE(i) − f (i) · δu(i)

)
dΩ−

∫
Γ
(i)
σ

t
(i)
σ,0·δu(i)dΓ−

∫
Γ
(i)
C

t
(i)
C,0 · δu(i)dΓ︸ ︷︷ ︸
δΠ

(i)
C

where t
(i)
C,0 denotes the traction in the contact surface in the initial configuration. This is

done for each of the two bodies (i), the mortar and the non-mortar body.

Now we separate the contact virtual work and insert i = 1, 2 which yields

δΠC (u, δu) = −
∫

ΓC
(1)

t
(1)
C,0 · δu(1)dΓ(1) −

∫
ΓC

(2)
t

(2)
C,0 · δu(2)dΓ(2)

t
(i)
C,0 is an artificial quantity, as in the initial configuration normally no contact occurs. So

we carry out a transformation of the contact traction t
(i)
C,0 from the material to the spatial

configuration and get t
(i)
C (which is of course not known a priori)

δΠC (u, δu) = −
∫
γC (1)

t
(1)
C · δu(1)dγ(1) −

∫
γC (2)

t
(2)
C · δu(2)dγ(2) (5.8)

The virtual work of the contact traction Eq. (5.8) on γ
(i)
C is the contact part of the weak

formulation of our boundary value problem. The boundary value problem is presented in
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bc

bc

t
(2)
σ

t
(2)
σ

t
(1)
σ
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σ

ω(2)
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σ

γ
(2)
σ

γ
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C

γ
(2)
C

γ
(1)
C

γ
(1)
C

γ
(1)
u

γ
(1)
u

γ
(2)
u

γ
(2)
u

ω(1)

ω(1)

t
(2)
C

t
(1)
C

Figure 5.3.: We extend Figure 2.3 for the initial boundary value problem by separating the
two bodies in contact at the spatial configuration. The common surface is the

contact surface γ
(1)
C = γ

(2)
C . This contact surface γ

(i)
C is disjunctive with the

Neumann γ
(i)
σ and Dirichlet γ

(i)
u boundary. If we separate the two bodies we

have to introduce a contact traction t
(i)
C which reflects the kinetic effect of one

body onto the other.

Figure 5.3. Until now we did not assume or insert any constraint between the two bodies
getting into contact.

5.2.1. Equilibrium - momentum conservation

It is quite obvious that the equilibrium between the mortar and non-mortar traction holds.

tC
(1)(ξ(1))dγ(1) = −tC

(2)(ξ(2))dγ(2)

There is a connection through projection between ξ(1) and ξ(2) based on the nearest point
projection from Section 3.1. This projection leads to ξ̄(2)(ξ(1)).

tC
(1)(ξ(1))dγ(1) = −tC

(2)
(
ξ̄(2)(ξ(1))

)
dγ(2) (5.9)

tC
(2)
(
ξ̄(2)(ξ(1))

)
= −tC

(1)(ξ(1))
dγ(1)

dγ(2)
(5.10)
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5.2. Contact virtual work

Insertion of Eq. (5.10) into Eq. (5.8) yields

δΠC = −
∫
γC

tC
(1) · δu(1)dγ(1) +

∫
γC

tC
(1) · δu(2)dγ(1)

δΠC =

∫
γC

tC
(1) ·

{
δu(2) − δu(1)

}
dγ(1) (5.11)

The next step is to split the traction tC
(1) into a normal tN and a tangential tT part. We

omit the marker (1) because in the following all tractions are defined on the non-mortar
side.

Remark: The contact tractions are defined on the non-mortar surface.

tC
(1) = tN + tT = tN N + tT (5.12)

We also omit (1) for the differential contact surface dγ.

Remark: All the integration is done on the non-mortar side.

Using the virtual gap function Eq. (3.5) leads to

δΠC =

∫
γC

tN N ·
{
δ
[
u(2)(ξ̄(2))

]
− δu(1)

}
dγ +

∫
γC

tT ·
{
δu(2) − δu(1)

}
dγ

δΠC =

∫
γC

tN δgN dγ︸ ︷︷ ︸
δΠCN

+

∫
γC

tT δg dγ︸ ︷︷ ︸
δΠCT

(5.13)

As a result we get two expressions, one for the normal contact part δΠCN , and one for the
tangential part δΠCT . This kind of formulation is often referred to as “split formulation”.
If one wants to calculate a domain decomposition (a contact situation where only perfect
stick occurs) the splitting is not needed and a full formulation is straight forward. We
are working towards a formulation suitable for frictional contact so we need to distinguish
between the tangential and the normal part. This is because we have different constitutional
laws for the normal and the tangential contact.

5.2.2. Normal contact

At first we will have a look onto the normal contact part of the virtual work. As already
mentioned in the introduction of Chapter 5 it is characteristic for the mortar method to
incorporate the non penetration condition in weak form.

5.2.2.1. Weak non penetration condition

To obtain the weak from of the non penetration condition Eq. (5.1) we test the gap function
gN with the virtual contact traction δtN (KKT ≡ Karush-Kuhn-Tucker).

δΠKKTN =

∫
γC

δtN gN dγ = 0 (5.14)
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5. Contact mechanics

We add the virtual contact work Eq. (5.13) and the virtual non penetration condition
Eq. (5.14) to our virtual work as both must be zero independent from each other

δΠN = δΠCN + δΠKKTN =

∫
γC

tN δgN dγ +

∫
γC

δtN gN dγ = 0 (5.15)

We will see in the following (compare Eq. (5.17)) that it is advantageous to add the zero
term

∫
γc
tN gN δ(dγ). This integral is zero because of the complementary condition Eq. (5.3)

which is fulfilled for perfect contact but not for the discrete situation. By adding this term
full symmetry is recovered even in the discrete case.

5.2.3. Contact potential for normal contact

Definition of a contact potential is a very common method, as already presented by Laursen
and Simo [23] and applied by Fischer and Wriggers [6] or Tur et al. [35].

ΠN =

∫
γc

tN gN dγ (5.16)

Variation of this contact potential for the normal contact part leads to

δΠN =

∫
γc

δtNgN dγ︸ ︷︷ ︸
δΠKKTN

+

∫
γc

tN δgN dγ︸ ︷︷ ︸
δΠCN

+

∫
γc

tN gN︸ ︷︷ ︸
0

δ(dγ) = 0 (5.17)

The first term is nothing else then the weak form of the non penetration condition Eq. (5.1),
δΠKKTN . The second term is part of the weak formulation as derived in Eq. (5.13), δΠCN .
The third term has no contribution to the contact virtual work because of the complemen-
tary condition Eq. (5.3).

Remark: We are adding the variation of the contact surface (third term) to
the variation of the contact potential of the normal part to obtain a symmetric
linearization for the discrete case.

We can see that it does not matter if we derive the weak contact formulation from the
common weak formulation for the structural problem Eq. (2.30) or from a contact potential
Eq. (5.16).

δΠN = δΠCN + δΠKKTN = 0 (5.18)

5.2.4. Tangential contact

If we want to use the non regularized Coulomb friction law as given in Eqs. (5.4)-(5.7) we
have to differ between the stick and slip case as the transition has a singularity.

This is similar to the distinction between active and not active contact in the normal
direction. A big difference to the normal condition is, that in the case of not active normal
contact the contribution to the contact virtual work of the normal part (δΠN ) is zero. This
is neither true for slip nor stick case where we have contributions to the virtual work of the
tangential part (δΠT ) for both cases.
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5.2. Contact virtual work

The contribution of the tangential tractions to the virtual contact work is stated in Eq. (5.13)

δΠCT =

∫
γc

tT · δg dγ (5.19)

For the two dimensional case we can insert tT = tT S and get

δΠCT =

∫
γc

tT S · δg dγ (5.20)

=

∫
γc

tT S ·
(
δu(2) − δu(1)

)
dγ (5.21)

=

∫
γc

tT δgT dγ (5.22)

The difference between the stick and slip case is the way tT is calculated. That means we
have to switch between two different constitutional laws.

Remark:
• sticking ⇒ tT is a reaction force and depends on the load. The kinematic

condition, that the relative velocity vT has to be zero, must be fulfilled (see
Eq. (5.4) for γ̇ = 0)
• sliding ⇒ tT is an impressed surface force. For Coulombs friction law the

tangential traction depends on the normal traction and a friction coefficient
µ (see Eq. (5.5)).

5.2.4.1. Stick case

For the stick case the situation in tangential direction is very similar to the normal direction.
We have to fulfill the tangential stick condition Eq. (5.4) (for γ̇ being 0) which means the
relative velocity vT has to be zero. We use the defined incremental slip ∆tgT = vT ∆t from
Eq. (3.29).

We transfer the Karush-Kuhn-Tucker condition Eq. (5.4) into a pure geometric condition
without time dependency. This condition is now fulfilled in a weak sense.

δΠKKTST =

∫
γc

δtT ∆tgT dγ (5.23)

The contribution to the virtual work is given as

δΠTST = δΠKKTST +δΠCT +0 =

∫
γc

δtT ∆tgT dγ+

∫
γc

tT δgT dγ+

∫
γc

tT ∆tgT︸ ︷︷ ︸
0

δ(dγ) (5.24)

Remark: We are adding the variation of the contact surface here to obtain a
symmetric linearization later on. This procedure is similar to the one shown in
Eq. (5.17). The contribution is zero due to the stick condition and the relative
velocity being zero.
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5. Contact mechanics

5.2.4.2. Slip case

As already stated, tT is no longer a reaction for the slip case but an impressed surface force.
For the Coulomb friction law it depends on the normal traction and a friction coefficient
µ. We have defined the scalar tangential traction tT to point into the direction of S. The
same is true for a positive direction of vT . We know from Coulombs friction law that
the tangential traction has to point into the opposite direction of the relative velocity vT .
Therefore we get

tT = −µ tN
vT · S
‖vT · S‖

= −µ tN sign(vT ,S) (5.25)

and we can see that Eq. (5.5) is just the absolute value of this equation.

As we do not introduce any additional unknown we also do not need any additional equation
or inequation. The virtual contact work for the sliding case can be written therefore as

δΠTSL =

∫
γc

−µ tN
vT · S
‖vT · S‖

δgT dγ

=

∫
γc

−µ tN sign(∆tgT ) δgT dγ (5.26)

It is not possible to construct a symmetric operator for the slip case.
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6. The finite element formulation

The aim of this chapter is to introduce the finite element method as solution method for
the contact boundary value problem. We will omit the discussion of implementing and real-
izing the classical finite element procedure for the weak formulation of the boundary value
problem from Eq. (2.30). One can find excellent literature on this topic as in Zienkiewicz
and Taylor [46, 47], Bathe [2] or Bonet and Wood [5].

First the Newton-Raphson procedure is discussed. This method is used to solve the non-
linear system of equations.

Second we discuss the possible methods of contact enforcement, namely the Lagrange
method as classical mortar method and the penalty method as regularizing method.

Third the mortar element with all the needed shape functions and degrees of freedom is
introduced. We will see that this contact element is not a finite element in the “classic”
sense but somehow artificial to fit into classical finite element implementations.

Forth we present the active set strategy to decide on the active contact properties.

Last the integration scheme applied in this work is explained and a short overview of
available other methods is given.

6.1. Newton-Raphson procedure

We are calculating the equilibrium at the time step n + 1 which means the weak form of
the equilibrium has to be fulfilled (see Eq. (2.30).

δΠint

∣∣∣
n+1

+ δΠext

∣∣∣
n+1

= 0 (6.1)

The external loads at the time step n+1, tσ

∣∣∣
n+1

are known as they are part of the problem

definition. We can therefore calculate the potential of external loads δΠext

∣∣∣
n+1

at the

current time step. But we are not able to calculate δΠint

∣∣∣
n+1

. So we apply a Taylor series

expansion

δΠint

∣∣∣
n+1

= δΠint

∣∣∣
n

+ ∆ (δΠint)
∣∣∣
n︸ ︷︷ ︸

δΠ̃

+ . . . (6.2)

We stop the expansion after the linear term and insert δΠ̃ it into our equilibrium Eq. (6.1)
which yields

δΠint

∣∣∣
n

+ ∆ (δΠint)
∣∣∣
n

+ δΠext

∣∣∣
n+1
≡ 0 (6.3)
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6. The finite element formulation

We end up with a fixed point equation which can be solved iteratively. ∆ (δΠint)
∣∣∣
n

depends

on increments of the degrees of freedom. In each iteration step
∣∣∣k we solve

∆ (δΠint)
∣∣∣k
n

= −δΠint

∣∣∣k
n
− δΠext

∣∣∣
n+1

(6.4)

Here we can extract the well known linearized stiffness matrix ∆K
∣∣∣k
n

∆ (δΠint)
∣∣∣k
n

=

∫
Ω

(
∆F
∣∣∣k
n
· S
∣∣∣k
n

: δF + F
∣∣∣k
n
·∆S

∣∣∣k
n

: δF

)
dΩ

= δûT ·∆K
∣∣∣k
n
·∆û

∣∣∣k
n

and the residual vector R
∣∣∣k
n

is defined as

δûT ·R
∣∣∣k
n

= −δΠint

∣∣∣k
n
− δΠext

∣∣∣
n+1

= −
∫

Ω

(
F
∣∣∣k
n
· S
∣∣∣k
n

: δF

)
dΩ +

∫
ω

fB

∣∣∣
n+1
· δu dω +

∫
γσ

tσ

∣∣∣
n+1
· δu dγ

which leads to the finite element equation system

∆K
∣∣∣k
n
·∆û

∣∣∣k
n

= R
∣∣∣k
n

(6.5)

This system is set up and solved in a given time step n for all iterations k. The updated

displacement vector is calculated with û
∣∣∣k+1

n
= û

∣∣∣k
n

+ ∆û
∣∣∣k
n
. This iteration is done until the

abort criterion is fulfilled

R
∣∣∣k
n
·∆û

∣∣∣k
n
< ε (6.6)

Throughout the following
∣∣∣k
n

is omitted as all the values have to be calculated for a given

time step n in an iteration step k.

6.2. Contact enforcement

In Section 5.2 the necessity of an additional relation between kinetic and kinematic in the
weak formulation has been already discussed. We can either use the Lagrange method,
which is the classical mortar method, or a penalty regularization.

6.2.1. Lagrange method

For the Lagrange method we introduce additional unknowns λN for the normal contact and
λT for the stick case in tangential direction.
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6.2. Contact enforcement

6.2.1.1. Normal contact

We substitute the unknown normal traction tN with the negative Lagrange multiplier. This
means we add new unknowns to the equation system.

tN = −λN

To solve this additional unknowns we need the weak form of the Karush-Kuhn-Tucker
conditions δΠKKTN (see Eq. (5.14)) in addition to the virtual work from the equilibrium
δΠCN (see Eq. (5.13)).

δΠN = −
∫
γC

δλNgNdγ −
∫
γC

λNδgNdγ −
∫
γC

λNgNδ(dγ) (6.7)

As already mentioned for Eq. (5.17) we add a third term, which is zero, to get a symmetric
linearization as a consequence.

Linearization Each line of the increment is symmetric

∆ (δΠN ) =−
∫
γC

δλN∆gNdγ −
∫
γC

∆λNδgNdγ

−
∫
γC

λN∆ (δgN ) dγ

−
∫
γC

λNδgN∆(dγ)−
∫
γC

λN∆gNδ(dγ)

−
∫
γC

δλNgN∆(dγ)−
∫
γC

∆λNgNδ(dγ)

−
∫
γC

λNgN∆ [δ(dγ)] (6.8)

Here we can see that the third in the virtual contact work is needed for symmetry in the
third and fourth line of the virtual contact work increment.

6.2.1.2. Tangential contact for stick case

For the stick case the tangential traction is a reaction force and therefore unknown. Similar
to the normal direction (Section 6.2.1.1) we introduce the Lagrange parameter.

tT = λT

This yields

δΠCTST =

∫
γC

δλT∆tgTdγ +

∫
γC

λT δgTdγ +

∫
γC

λT∆tgT δ (dγ) (6.9)

once again with the additional zero term at the end.
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6. The finite element formulation

Linearization It is important to note that the increment ∆
(
∆tgT

)
is equivalent to ∆gT

which can be derived from the variation of the tangential slip δgT from Eq. (3.14) with
δ → ∆.

∆
(
∆tgT

)
= ∆ (vT ∆t)

= ∆
[(

ẋ
(2) − ẋ(1)

)
· S ∆t

]
= ∆

[(
x(2)|n+1 − x(2)|n

∆t
− x(1)|n+1 − x(1)|n

∆t

)
· S ∆t

]
=
(

∆u(2) −∆u(1)
)
· S

∆
(
∆tgT

)
= −S · a(2)∆ξ(2) = ∆gT (6.10)

Once again each line of the increment is symmetric

∆ (δΠTST ) = +

∫
γC

δλT∆gTdγ +

∫
γC

∆λT δgTdγ

+

∫
γC

λT∆ (δgT ) dγ

+

∫
γC

λT δgT∆(dγ) +

∫
γC

λT∆gT δ(dγ)

+

∫
γC

δλT∆tgT∆(dγ) +

∫
γC

∆λT∆tgT δ(dγ)

+

∫
γC

λT∆tgT∆ [δ(dγ)] (6.11)

6.2.1.3. Tangential contact for slip case

For the slip case the contact traction in tangential direction is given by the constitutive
law, namely Coulomb’s friction law from Eq. (5.4) - Eq. (5.7). We can directly substitute
the tangential traction tT with the relation given in Eq. (5.25).

δΠCTSL =

∫
γc

µλN sign(vT ,S) δgT dγ (6.12)

Remark: The virtual work of the tangential part for the slip case does not depend
on any new unknown Lagrange parameters in tangential direction but depends on
the Lagrange parameters in normal direction.

Linearization The linearization procedure is straight forward. As already mentioned, the
resulting operator is non symmetric and the symmetry can not be recovered for this formu-
lation. But the numerical experiments show, that the influence on the solvability (with an
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6.2. Contact enforcement

appropriate solver) is negligible.

∆ (δΠCTSL) = +

∫
γc

µ∆λN sign(vT ,S) δgT dγ

+

∫
γc

µλN sign(vT ,S) ∆ (δgT ) dγ

+

∫
γc

µλN sign(vT ,S) δgT ∆ (dγ) (6.13)

6.2.2. Penalty method

Although the Lagrange method represents the classical mortar method, we implemented as
a starting point the penalty method as a regularized method. This has been done for the
normal part only. If one is interested in doing penalty for tangential direction, see Fischer
and Wriggers [7] and for an augmented Lagrangian method Yang et al. [44] or Puso [28].

Nevertheless our penalty implementation is still a segment-to-segment method as the con-
tact condition is checked in the integration points. For a node-to-segment method the
penalty regularization of the non penetration would be done at the nodes.

6.2.2.1. Normal contact

We introduce a regularized constitutive law which connects the traction and the gap function
tN = ε gN inside the contact surface with the help of a parameter ε. This means that our
contact potential is given as

PΠN =
1

2

∫
γc

εg2
ndγ

which leads to the virtual contact work

δPΠN =

∫
γC

δgN ε gNdγ +
1

2

∫
γC

ε g2
Nδ(dγ) (6.14)

Linearization For the penalty method we obtain a symmetric increment for the normal
part as we do for the Lagrange method.

∆
(
δPΠN

)
= +

∫
γC

∆(δgN ) ε gNdγ +

∫
γC

δgN ε∆gNdγ

+

∫
γC

δgN ε gN∆(dγ) +

∫
γC

∆gN ε gNδ(dγ)

+
1

2

∫
γC

ε g2
N∆ [δ(dγ)]
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6. The finite element formulation

6.3. The mortar element

One can not find a defined patch (an element) in classical sense with nodes related to each
other by a boundary of edges or surfaces. It also depends on the kind of integration scheme
(see Section 6.5) used which mortar element definition seems to be more “natural”. We will
present a solution which is well applicable to the concentrated integration scheme and to
the application of rather abstract assembling algorithms.

mortar ω(2)

x
(1)
IP

ξ(1)

averaged non-mortar side normal

mortar side normal

non-mortar ω(1)

ñ(1)

x(2)
x̂

(2)
1

x̂
(2)
2

x̂
(1)
3

x̂
(1)
2

x̂
(1)
1

x̂
(1)
0

Figure 6.1.: The mortar element patch for mortar side normal (dark gray) and the mortar
element patch for averaged non-mortar side normal are shown. The elements

are defined for an integration point at x
(1)
IP . This integration point depends on

the degrees of freedoms (DOFs) of its corresponding non mortar edge but also
on the DOFs of the corresponding mortar edge. This edge is determined with
the nearest point projection x(2). For the averaged normal field we also need
the DOFs of the preceding and the following edge (see Section 6.3.3). One can
see that depending on the nearest projection edge two integration points on
the same non-mortar edge can have different mortar edges. (right integration
point)

In this work a mortar element is defined as a patch with a minimum amount of degrees
of freedom needed to calculate a contribution to the global stiffness. A principal sketch of
possible mortar elements is shown in Figure 6.1. We have to define such a mortar element
for each integration point, because two different integration points on the same non-mortar
edge might have different projection edges. For the averaged normal we also need the
preceding and the following edge to a non-mortar edge. In Figure 6.2 a visualization is
given.

6.3.1. Lagrange degrees of freedom

At first we define the degrees of freedom for the Lagrange values. Each active node (see
Section 6.4) on the non-mortar edge has a Lagrangian degree of freedom. That is the
Lagrange factor in normal direction λN .
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6.3. The mortar element

ˆ̃n
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2
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Figure 6.2.: The mortar element patch for the averaged non-mortar side normal field is

shown in gray. The nodal normal vectors ˆ̃n
(1)
k and ˆ̃n

(1)
k+1 define the integration

basis for the averaged normal vector ñ(1) itself. To calculate this nodal normal
vectors we also need the nodes of the preceding and the following non-mortar
edge.

At least one node has to be active - if none of the non-mortar nodes is active we do not
have to calculate any contribution to the global stiffness.

6.3.2. Mortar side normal

We define a nodal value object for each integration point as mentioned in Figure 6.1. We
give the displacement matrix here but a nodal coordinate matrix M x̂IP can be defined
similarly.

M ûIP =

[
û

(1)
x1 û

(1)
x2 û

(2)
x1 û

(2)
x2

û
(1)
y1 û

(1)
y2 û

(2)
y1 û

(2)
y2

]
→ M ûIPij

6.3.3. Averaged non-mortar side normal

We define a nodal value tensor for each integration point in a similar way. But for averaging
we need the end points of the proceeding and the following edge on the non-mortar side
(see Figure 6.2). Once again we give the displacement matrix here but a nodal coordinate
matrix Ax̂IP can be defined similarly.

AûIP =

[
û

(1)
x0 û

(1)
x1 û

(1)
x2 û

(1)
x3 û

(2)
gx1 û

(2)
gx2

û
(1)
y0 û

(1)
y1 û

(1)
y2 û

(1)
y3 û

(2)
gy1 û

(2)
gy2

]
→ M ûIPij
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6. The finite element formulation

6.3.4. Shape functions

N
(i)
j (ξ(i)) denotes the classical Lagrange shape function for ξ(i) ∈ [−1,+1] on the surface

γ
(i)
C for the node j.

6.3.4.1. Dual shape functions

These are used to interpolate the Lagrange multipliers along the non-mortar edge.

Φme(ξ(1)) =
[

Φ1(ξ(1)) Φ2(ξ(1))
]
→ Φme

i (ξ(1))

The dual shape functions φi for the linear case are

Φ1(ξ(1)) =
1

2
(1− 3ξ(1)) ; Φ2(ξ(1)) =

1

2
(1 + 3ξ(1)) (6.15)

It is not necessary to use dual shape functions. We could also use standard Lagrange
shape functions but with the help of dual shape functions we can implement a condensation
algorithm to simplify the saddle point problem and remove the Lagrange multiplier from
the global set of unknowns. Those dual mortar methods have advantages for solving the
linear set of equations. See especially the work of Hüeber and Wohlmuth [17], Hüeber and
Wohlmuth [18] or Flemisch et al. [8] but also the application on non linear problems by
Popp et al. [27] or Gitterle et al. [10]. We did not implement the reduction for this work so
either the dual or the classical shape functions might be used.

6.3.4.2. Mortar side normal

Corresponding to the defined nodal values we need the shape functions for interpolating the
gap function along the non-mortar edge. As we assume that N directs from non-mortar to
mortar side (see Eq. (3.4)) we need to calculate g = (x(2) − x(1)). With the definition of
the following interpolation matrix

MNme =
[
−N (1)

1 (ξ(1)) −N (1)
2 (ξ(1)) N

(2)
1 (ξ(2)) N

(2)
2 (ξ(2))

]
→ MNme

i

we can write the components of the gap vector at a given integration point in a compressed
index notation

gi = MNme
j

M x̂ij

6.3.4.3. Averaged non-mortar side normal

In the case of averaged normal field we have more degrees of freedom per non-mortar edge.
Therefore we have to extend the shape functions too.

ANme =
[

0 −N (1)
1 (ξ(1)) −N (1)

2 (ξ(1)) 0 N
(2)
g1 (ξ(2)) N

(2)
g2 (ξ(2))

]
→ ANme

i

This allows us once again to calculate the components of the gap vector at a given integration
point

gi = ANme
j

Ax̂ij
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6.4. Active set strategy

6.4. Active set strategy

This is a very crucial part of the mortar method. We have transferred the strong (means
local pointwise) defined contact conditions (see Section 5.1) into weak global form. This
means the contact conditions are fulfilled in mean globally and not locally in each point.
But for the algorithm we need a discrete active set strategy. What we do in this section is
to derive a criterion for active or non active nodes. This does not mean that we do a node
to segment method in the classical sense. The criterion is not based on a pointwise but
edgewise fulfillment of the contact conditions. This procedure of defining the active set in
a global sense and also the comparison to a local decision is discussed in depth by Hild [16].

6.4.1. Lagrange method

The whole active set strategy is mainly developed for the enforcement of the contact condi-
tions with Lagrange multipliers. However, we will also show (based on the work of Fischer
and Wriggers [6]) how an active set strategy can be realized for the penalty method (see
Section 6.4.2).

6.4.1.1. Normal condition

We have to find two conditions. One for nodes which are not in contact. They might get
into contact (which means the non-penetration condition Eq. (5.1) gets violated) and get
activated therefore. The other condition must detect if active nodes are still in contact.
They have to be deactivated when the surface traction becoms positive Eq. (5.2).

Actually no contact

If we do not have active contact we have to check the non-penetration condition (Eq. (5.1))
in weak manner. The strong condition is now transformed into a weak non-penetration
condition for a discrete non-mortar edge. It can be formulated with δλN being the test
function for the kinematic contact constraint defined in Eq. (5.1).∫

γCh
δλN gN dγ ≥ 0 (6.16)∑

P

δλ̂NP

∫
γhC

ΦP (ξ(1)) gN dγ︸ ︷︷ ︸
g̃NP

≥ 0 (6.17)

For the quadrature of g̃NP we need the value of the actual gap function gN in each integration
point. With this definition it is possible to decide per node with index P whether node P
is still not active.

g̃NP ≥ 0 (6.18)

As this integral has to be evaluated over the whole contact surface γhC a global loop over
all non-mortar edges has to be done. The contributions of ΦP on one node P have to be
assembled and taken into account.
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6. The finite element formulation

Already in contact

For all the nodes already in contact we have to check if the kinetic contact condition
(Eq. (5.2)) is still fulfilled.

tN ≤ 0 (6.19)

Once again this strong condition is transformed into a weak one. Now we are using a virtual

gap function δgN = N
(1)
P (ξ(1)) δĝNP as test function. (Attention: λN = −tN )∫

γhC

δgNλNdγ ≥ 0

∑
P

δĝNP

∫
γhC

N
(1)
P (ξ(1))λNdγ︸ ︷︷ ︸
−t̃NP

≥ 0 (6.20)

Now we are able to decide the active contact on nodal basis. The node remains active as
long as

t̃NP ≤ 0 (6.21)

6.4.1.2. Tangential condition

It is obvious that the tangential condition has to be checked only if the node is active. Else
no tangential traction occurs. If we have active contact we have to differ between the stick
and the slip case. Nodes which are getting into new contact are assumed to stick. This is
just an assumption and has to be checked within the inner active set loop.

Stick Case

For the stick case the tangential traction λT is a reactive traction. The parameter γ̇ in
Eq. (5.4) is zero and so is the relative velocity vT . One has to check that the tangential
traction is less then the maximum traction defined by Coulombs law in Eq. (5.5). (see also
Figure 5.2)

Ψ ≤ 0

‖λT ‖ ≤ µ‖tN‖

This strong condition is transferred into a weak one by using δgT = N
(1)
P δĝTP∫

γc

δgT Ψ dγ ≤ 0∫
γc

δgT (‖λT ‖ − µ ‖λN‖) dγ ≤ 0

δĝTP

∫
γc

N
(1)
P (ξ(1)) ‖λT ‖ dγ︸ ︷︷ ︸

t̃TP

≤ δĝTP µ‖t̃NP ‖ (6.22)
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6.5. Integration scheme

We now have a nodal based weak condition whether node P is sticking

t̃TP ≤ µ‖t̃NP ‖ (6.23)

Slip Case

For the slip case the parameter γ̇ in Eq. (5.7) is non-zero and thus Ψ from Eq. (5.5) has to
be zero. With Eq. (5.4) and Eq. (5.5) we are able to define value and direction of λT . The
slip case is active as long as Eq. (5.6) holds. This means that γ̇ and λT must have opposite
directions. As soon as ∆tgT gets zero (which should be a rather rare case for numerical
reasons) or changes its sign we fall back to the stick condition. Thus we use the virtual
Lagrange parameter as test function for the tangential slip ∆tgT .∫

γc

δλT ∆tgT dγ =
∑
P

δλ̂TP

∫
γc

ΦP (ξ(1)) ∆tgT dγ︸ ︷︷ ︸
∆tg̃TP

(6.24)

6.4.2. Penalty method

For the penalty method we do not transfer the strong pointwise conditions into a weak
form. That is not needed as there are no additional unknowns. We decide the active set
per integration point here. (see Fischer and Wriggers [6] for further explanations)

No contact on integration point

For the calculation of contact stiffness we need the gap value gN at each integration point,
namely gIPN . This value is a result of the nearest point projection algorithm.

We do not add any contribution of the integration point at x
(1)
IP to the virtual contact work

if
gIPN ≥ 0 (6.25)

Active contact on integration point

We add the contribution of the integration point at x
(1)
IP to the virtual contact work as long

as

tIPN < 0

ε gIPN < 0 (6.26)

6.5. Integration scheme

It is part of the mortar contact algorithm to numerically evaluate integrals like

δΠC =

∫
γC

t� δg� dγ (6.27)
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6. The finite element formulation

This integral is split by applying the finite element discretization procedure (
∑
h

should

represent the assembling operator).

δΠh
C =

∑
h

∫
γhC

t� δg� dγ (6.28)

There are different possibilities to realize the quadrature over the discrete contact area
segment γhC . Two of them are presented in the following as they are the commonly used
ones.

6.5.1. Segmented integration scheme

This integration method is well described in the work by McDevitt and Laursen [26] for 2D
and was extended by Puso [28], Puso and Laursen [29, 30] for 3D contact. This method
is very popular (see Yang et al. [44], Yang and Laursen [42, 43], Popp et al. [27]). The
discrete non-mortar contact surface γhC is split up into segments. This is carried out by
projection of the in between mortar side nodes onto the non-mortar edge. This means
we split up the integral over γhC into multiple sub integrals over the segments γh,ρC with

γhC = γh,1C ∪ γ
h,2
C ∪ · · · ∪ γ

h,ρ
C . The situation is pictured in Figure 6.3.

δΠh
C =

∑
h

[∑
ρ

∫
γh,ρC

t� δg� dγ

]
(6.29)

γh,3C
γh,2C γh,1C

γhC

non-mortar ω(1)

mortar ω(2)

ˆ̃n
(1)
k+1

ˆ̃n
(1)
k

x̂
(2)
l

x̂
(2)
l+1

Figure 6.3.: The mortar nodes x̂
(2)
l and x̂

(2)
l+1 are projected onto the non-mortar edge γhC

with the corresponding normal vector. With this procedure three sub segments
γh,1C , γh,2C , γh,3C are created.

• In Figure 6.3 the averaged normal field is used. To do a unique projection of a mortar
node onto the non-mortar edge the projection has to be unique. Therefore we need
a unique normal vector defined in the mortar node. For the mortar side normal
field (see Section 4.1) this is not the case. This problem is an important reason for
doing the averaging. The argument does not hold for the concentrated integration of
Section 6.5.2.
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6.5. Integration scheme

• It is important to note, that the in interior limits of the segments γh,ρC are deformation
dependent (which is not the case for the concentrated integration of Section 6.5.2).
Therefore the linearization effort rises. See Yang et al. [44] for detailed explanation
of the linearization procedure for this integration scheme.

• On the other hand this integration method is exact. For the linear discretization
the sub segments are bounded with straight edge segments. Therefore the numerical
quadrature can be done exactly.

As we would like to use the mortar side normal field we have not chosen to use this scheme.
Nevertheless one could also implement a non-continuous normal field with the segmented
integration scheme. The normal field should be defined on the non-mortar side to do so.

6.5.2. Concentrated integration scheme

The numerical quadrature of δΠh
C might be realized with

δΠh
C =

∑
h

∫
γhC

t� δg� dγ =
∑
h

[∑
IP

t�

∣∣∣
IP
δg�

∣∣∣
IP
J (1)

∣∣∣
IP
ωIP

]
(6.30)

and ωIP being the weight of the integration point at x
(1)
IP . All the values inside the integral

(like t�

∣∣∣
IP
, δg�

∣∣∣
IP
, J (1)

∣∣∣
IP

for this example) are evaluated at the integration point. The

situation is visualized in Figure 6.4.

non-mortar ω(1)

mortar ω(2)

ˆ̃n
(1)
k+1

ˆ̃n
(1)
k

x̂
(2)
l

x̂
(2)
l+1

ñ(1)

x
(1)
IP

ξ(1)

Figure 6.4.: For the concentrated integration scheme all properties inside the integral are

evaluated at the integration point x
(1)
IP . This integration scheme is not able to

“detect” the kinks of the mortar boundary at x̂
(2)
l or x̂

(2)
l+1.

• For this method the boundaries of ΓhC (the initial configuration of γhC) are fixed. This
simplifies the linearization procedure significantly in comparison to the segmented
integration scheme of Section 6.5.1.

• The amount of integration points must be increased. The integration volume is no
longer bounded with linear edges (in comparison to the segmented integration of
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6. The finite element formulation

Section 6.5.1). On the mortar side there may occur kinks (C1 singularities) which
prevent an exact numerical quadrature. Numerical experiments (see also Fischer and
Wriggers [6] or Tur et al. [35]) have shown that this influence is negligible and high
convergence rate can be achieved.

For the implementation we have chosen to use this concentrated integration scheme. There-
fore all linearization and implementation details of Chapter A are given for the concentrated
integration scheme.
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7. Implementation details

Throughout this chapter essential details of implementing the mortar method are given.
We start by giving a brief summary of the global solution algorithm. Then we discuss the
realization of the nearest point projection for the two different kinematic implementations;
namely the non-continuous mortar and the averaged non-mortar side normal field. This is
followed by the presentation of contact search. It is vital to find the possible contact zones
to calculate the kinematic properties. Last some further insights into the implementation
of the active set strategy are given.

7.1. Solution algorithm

In Algorithm 1 the global solution algorithm of a fixed point Newton-Raphson mortar
analysis is given.

for time step in Model.getTimeBar() do
integrateBoundaryConditions( time step );
repeat

contact set changed = false;
active nodes changed = false;
repeat

unbalanced energy = solveFESystem( time stamp );
mortarCalcKinematics( time stamp );

until unbalanced energy <= convergence criteria;
if mortarContactSearch( ) then

contact set changed = true;
mortarCalcKinematics( time stamp );

end
if mortarUpdateActiveSet() then

active nodes changed = true;
end

until not contact set changed and not active nodes changed ;

end
Algorithm 1: Global solution algorithm for mortar based fixed point contact analysis.

The function integrateBoundaryConditions() is responsible for updating the Dirichlet
and Neumann Boundaries in the Model. This is not different to a classical finite element
code.

Inside this outer time step loop there is the inner loop for the active contact set. This
means we search for the equilibrium (solve the finite element equation system) as long as

59



7. Implementation details

the contact set changes or the active nodes change. The algorithm is quite different from
a semi-smooth Newton method like that presented in Hüeber and Wohlmuth [17] or Popp
et al. [27] for non linear problems.

Inside this contact loop we need the classical iteration procedure of the Newton-Raphson al-
gorithm. The calculation of the stiffness matrices and the assembling are all done inside the
solveFESystem() function. This innermost loop, corresponding to the Newton-Raphson
procedure, is the same compared with a classical non linear finite element method. There-
fore (exact numerical integration assumed) quadratic convergence for the unbalanced energy
should be reached. As our numerical experiments have shown, (see Chapter 8) the influ-
ence of the approximative concentrated integration method on the convergence rate can be
neglected.

Remark: For the averaged non-mortar side normal method one either calculates
the average nodal tangent ã(1) before the solveFESystem() function is called, or
each time the tangent is needed. The latter method is of course less efficient.

Some modifications inside this innermost loop in comparison to a calculation without con-
tact have to be done. The kinematic properties like the gap function gN , the projected con-

vective coordinate ξ
(2)

have to be recalculated for edge non-mortar integration point after
equilibrium is reached. These properties are mostly results of the nearest point projection
described in Section 7.2. The two implementations for the two normal fields are shown in
Section 7.2.2.1 and Section 7.2.2.2 respectively. The method mortarCalcKinematics() is
responsible for those calculations.

After the equilibrium is reached we have to search potential new contact partner nodes first.
The reason for not doing this before stiffness and equilibrium calculation is, that we start
with a given configuration (normally the Lagrangian state) where no contact is assumed.
This means a search of contact before the first displacement was calculated makes no sense.
The method we call is mortarContactSearch() which returns true if the possible set of
contact partner nodes has changed. The implementation of this problem is described in
Section 7.3. If we find new contact partners we have to recalculate the kinematic properties.

After we have detected the new set of contact partners we have to actualize the active set
itself. This means we have to decide whether an integration point (for the penalty method)
or a node (for the Lagrange method) is active for the contact. The algorithm is explained
in Section 7.4.

7.2. The nearest point projection

In this section we describe how the procedure of the nearest point projection and the
calculation of the corresponding kinematic data is implemented.

7.2.1. Selection of best projection edge

We do this for both edges regardless of any mortar projection point being outside of the edge.
Part of this algorithm is to determine the gap value gN,k and gN,k+1 too. In Figure 7.1
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7.2. The nearest point projection

the situation for the mortar side normal field is shown. The issue of selecting the best
projection edge only occurs for the non-continuous mortar side normal field.

ξ
(2)
k+1ξ

(2)
k

non-mortar ω(1)

x(1)

x̂
(2)
k−1 ag ah

mortar ω(2)

x̂
(2)
k

x̂
(2)
k+1

Figure 7.1.: Based on the set
{

x̂
(2)
k−1, x̂

(2)
k , x̂

(2)
k+1

}
found by the contact search (see Sec-

tion 7.3) we execute the nearest point projection. This is done for both edges

γ
(2)
C,k and γ

(2)
C,k+1. As we can see in this Figure only ξ

(2)
k+1 is in the edge boundary

[−1,+1]. This means we have to select the right edge. This is done in the last
step of the procedure.

1. Step: As a result of the contact search we have two possible projection edges (see
Section 7.3). We do the nearest point projection, described in Section 7.2.2.1 and
Section 7.2.2.2 respectively, for both edges.

2. Step: Select one of the two edges to be the main projection mortar edge for the given

integration point x
(1)
IP . If ξ

(2)
k ∈ [−1, 1] ∪ ξ(2)

k+1 /∈ [−1, 1] the corresponding edge is γ
(2)
C,k

or if ξ
(2)
k /∈ [−1, 1] ∪ ξ(2)

k+1 ∈ [−1, 1] the corresponding edge is γ
(2)
C,k+1.

As already discussed in Section 4.3 there are special cases to take care of. Those have
been treated in depth already - so we only add the solutions here.

• The “in-of-both” case: If ξ
(2)
k ∈ [−1, 1]∪ξ(2)

k+1 ∈ [−1, 1] the corresponding edge
is the one where the projected distance gN is smaller.

• The “out-of-both” case: If ξ
(2)
k /∈ [−1, 1] ∪ ξ(2)

k+1 /∈ [−1, 1] the corresponding
edge is the one where the projected distance gN is smaller. If both possible
projection mortar points are out of the mortar edge γhC the projected point is
somehow “artificial”.

To prevent this, one might define the corner node x̂
(2)
k itself as projection point.

This would introduce further special cases into the algorithm and therefore is
not carried out. We simply use the artificial point with the smaller gap value
gN . Numerical experiments have shown that the choice has small influence on
the algorithm and the solution quality.

• The “out-of-first” case and “out-of-last” case: Only one ξ(2) exists as only
the following (“out-of-first”) or the preceding (“out-of-last”) non-mortar edge are
part of the contact zone γC . As already stated in Zavarise and de Lorenzis [45]
there is no general solution to overcome these situations. For our code we decided
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7. Implementation details

that if this happens the stiffness term related to this non-mortar integration

point x
(1)
ip is neglected. This prevents unwanted lifting forces. Although the

implementation effort rises as one has to differ between “active” and “not-active”
mortar integration points.

7.2.2. Inner Newton-Raphson procedure

For arbitrary edge shapes (quadratic or higher order ones) the projection is a non-linear fix
point equation to solve. This nearest point projection is strongly dependent on the chosen
normal field and therefore the two methods are explained each on its own.

7.2.2.1. Non-continuous mortar side normal

Here the implementation of the procedure described in Section 3.1 is shown. The Eq. (3.2)
is the basis where we substitute S with −a(2)(

x(2) − x(1)
)
· a(2) = 0 (7.1)

At this point ξ
(2)

is unknown and therefore x(2) is unknown. We solve this fix point equation
with Newton’s method. Therefore we need the first derivative with respect to ξ(2)[(

x(2) − x(1)
)
· a(2)

]
,ξ(2)

= a(2) · a(2) +
(
x(2) − x(1)

)
︸ ︷︷ ︸
−gN n(2)

·a(2)

,ξ(2)
(7.2)

= α(2)2 − gNβ(2) (7.3)

The definition of α(2) and β(2) can be found in Section 4.1.1.

Remark: It should be noted that β(2) = 0 for linear shape functions.

The increment ∆ξ(2)
∣∣i+1

can be calculated with

∆ξ(2)
∣∣i+1

[
α(2)2 − gNβ(2)

]i
=
[
−
(
x(2) − x(1)

)
· a(2)

]i
(7.4)

∆ξ(2)
∣∣i+1

=

[
−
(
x(2) − x(1)

)
· a(2)

α(2)2 − gNβ(2)

]i
(7.5)

where all the values are calculated with the values from the last Newton step i and the
updated location ξ(2)

∣∣i+1
can be calculated with

ξ(2)
∣∣i+1

= ξ(2)
∣∣i + ∆ξ(2)

∣∣i+1
(7.6)

We are stopping the iteration after the following condition is fulfilled∥∥∥(x(2)
∣∣i − x(1)

)
· a(2)

∣∣i∥∥∥ ≤ ε (7.7)
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7.2. The nearest point projection

7.2.2.2. Averaged non-mortar side normal

Here the implementation of the procedure described in Section 3.1 is shown. Eq. (3.2) is
the basis where we substitute S with ã(1)(

x(2) − x(1)
)
· ã(1) = 0 (7.8)

Once again we need the first derivative with respect to ξ(2)[(
x(2) − x(1)

)
· ã(1)

]
,ξ(2)

= a(2) · ã(1) +
(
x(2) − x(1)

)
·
(
ã(1)

)
,ξ(2)︸ ︷︷ ︸

=0

(7.9)

The increment ∆ξ(2)
∣∣i+1

can be calculated with

∆ξ(2)
∣∣i+1

[
a(2) · ã(1)

]i
=
[
−
(
x(2) − x(1)

)
· ã(1)

]i
(7.10)

∆ξ(2)
∣∣i+1

=

[
−
(
x(2) − x(1)

)
· ã(1)

a(2) · ã(1)

]i
(7.11)

where all the values are calculated with the values from the last Newton step i.

Remark: One has to check that a(2) · ã(1) 6= 0. This might happen if the averaged
tangential vector ã(1) is orthogonal to the mortar edge. (see Figure 7.2) This
case is rather theoretical and occurs rather rarely. The physical contact of two
orthogonal surfaces is useless. If this happens the contact segment is neglected.

ñ(1)
ã(1)

a(2)
mortar ω(2)

non-mortar ω(1)

Figure 7.2.: If the averaged tangent vector ã(1) is orthogonal to the corresponding mortar
edge the projection is not defined.

The updated location ξ(2)
∣∣i+1

can be calculated with

ξ(2)
∣∣i+1

= ξ(2)
∣∣i + ∆ξ(2)

∣∣i+1
(7.12)

We are stopping the iteration after the following condition is fulfilled∥∥∥(x(2)
∣∣i − x(1)

)
· ã(1)

∣∣i∥∥∥ ≤ ε (7.13)
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7.2.3. Algorithm

for mortar element in model do
for IP in mortar element.getNonMortarEdge() do

IP.archiveLastResults();
if research best edge then

for mortar edge in IP.getMortarEdges() do
projection results[mortar edge] = nearestPointProjection(
mortar edge );

end

[gN ,ξ
(2)

,best mortar edge] = selectBestEdge( projection results );

if only one mortar edge and ‖ξ(2)‖ > 1. then
IP.deactivate();

else
IP.setBestEdge( best mortar edge );

end

else

[gN ,ξ
(2)

] = nearestPointProjection( IP.getBestMortarEdge() );
end
∆tgT = slip( IP );

IP.setGapData( gN , ∆tgT , ξ
(2)

);

end

end
Algorithm 2: Algorithm of the nearest point projection and the corresponding selection
of the best projection edge.

For each mortar element (see Section 6.3) we have to iterate over the integration points on
the corresponding non-mortar edge. Inside this loop we first archive the previous results of
the integration point as we need them for our tangential contact algorithm (see especially
Section 3.3.1.1). Inside the function archiveLastResults() we store the best projection

edge (the edge which fulfills the criteria explained in Section 7.2.1), ξ
(2)

and ∆tgT . It is not

necessary to store ξ
(2)

and ∆tgT but it saves some calculation time to store both. As the
normal contact is path independent we do not need gN .

Now we distinguish whether we have to search the best projection edge or only update the
projection point. The first has to be done at last once for each time step at the beginning.
We hold the best projection edge fixed afterwards, else it can happen that the best projection
edge oscillates between the two possible solutions. This situation is visualized in Figure 7.3.
A further argument against searching the best projection edge in each iteration is the loss
of quadratic convergence.

If we want to research the best projection edge we first have to do the nearest point pro-
jection for both possible edges: nearestPointProjection( mortar edge ). This is the
implementation of the inner Newton-Raphson iteration described in Section 7.2.2.1 and Sec-

tion 7.2.2.2 respectively. The result gN and ξ
(2)

is then stored in the projection results

map. The function selectBestEdge( projection results ) is the implementation of
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time step tn, iteration i, i+ 2

Newton iteration i+ 2← i+ 1

non-mortar ω(1)

mortar ω(2) mortar ω(2)

time step tn, iteration i+ 1

x
(1)
IP

Figure 7.3.: It might happen during the Newton-Raphson iteration process that the best
projection edge iterates between two states

Section 7.2.1.

If we only have one mortar side edge (this is the case for “out-of-first” case and “out-

of-last” case - see Section 7.2.1) we check if the convective coordinate ξ
(2)

is in the interval

ξ
(2) ∈ [−1,+1]. If not, we deactivate the integration point and it will not contribute to the

stiffness matrix in the following. If we have two possible edges the best edge is stored inside
the mortar integration point. Which also means it might happen (in rather rare cases),

that ξ
(2)

/∈ [−1,+1] which has already been discussed in Section 7.2.1.

If we do not search the best projection edge we only have to do the nearest point projection.

After we have found gN and ξ
(2)

we can calculate the tangential slip ∆tgT based on Eq. (3.29)
with the function slip(). Finally the results are stored for each integration point.

7.3. Contact search

To define a mortar element like in Figure 6.1 one has to know the corresponding mortar
edge for a given integration point. To detect this we apply an algorithm which can be split
up in multiple steps.

1. Step: Find for a given non-mortar integration point x
(1)
IP the nearest mortar node x̂

(2)
k .

This is a global search for each integration point. We can restrict the global search to
a local one after the first time step. One has to assume that the relative movement

of the non-mortar point x
(1)
IP within one time step, is smaller than the radius of the

choosen local neighbourhood. In our case we analyse for possible contact partner

nodes on the preceding γ
(2)
C,k and following edge γ

(2)
C,k+1 for the mortar node x̂

(2)
k of

the previous time step. This means the relative movement has to be smaller then the
edge length which is equivalent to the discretization size (for detailed discussions see
Benson and Hallquist [4]).

65



7. Implementation details
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Figure 7.4.: For a given non-mortar integration point x
(1)
IP we search for the mortar node x̂

(2)
k

with the shortest distance d. Now we are able to build a set
{

x̂
(2)
k−1, x̂

(2)
k , x̂

(2)
k+1

}
containing all nodes of the preceding γ

(2)
C,k and following mortar edge γ

(2)
C,k+1.

There are more advanced techniques of finding the appropriate contact partner. In
particular, methods based on bounding volumes can be found in literature, e.g. in
Yang and Laursen [42, 43].

2. Step: For the preceding γ
(2)
C,k and the following edge γ

(2)
C,k+1 of the mortar node x̂

(2)
k do

the nearest point projection algorithm to determine ξ
(2)
k and ξ

(2)
k+1. See Section 7.2.1

for the selection of one of the two edges to be the projection edge for the contact
algorithm.

7.3.1. Algorithm

In Algorithm 3 the implementation of the presented contact search is briefly sketched. If
IP.hasNearesetMortarNode() evaluates to true we do a local search. Else no nearest
mortar node has been stored in this integration point and we have to search globally. In
particular for meshes with a lot of nodes this makes a big difference in run-time, although
this procedure can be executed parallelly.

7.4. Active set strategy

As already mentioned in Section 6.4 there is a big difference in how we formulate the active
set for the penalty and the Lagrangian contact enforcement. Therefore we will describe the
corresponding algorithms separately.

7.4.1. Penalty contact enforcement

For the penalty contact enforcement we implement an active set criterion per integration
point. The implementation of Eq. (6.25), Eq. (6.26) is shown in Algorithm 4. We only
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distance = DBL MAX;
for IP in mortar element do

if IP.hasNearestMortarNode() then
neighborhood = model.getBoundaryNeighborhood(
IP.getNearestMortarNode() );
for node in neighborhood do

new distance = calcDistance( IP , node );
if new distance < distance then

distance = new distance;
nearest mortar node = node;

end

end

else
for mortar edge in model do

new distance = calcDistance( IP , mortar edge.firstNode() );
if new distance < distance then

distance = new distance;
nearest mortar node = mortar edge.firstNode();

end
new distance = calcDistance( IP , mortar edge.lastNode() );
if new distance < distance then

distance = new distance;
nearest mortar node = mortar edge.lastNode();

end

end

end
IP.setNearestMortarNode( nearest mortar node );
IP.setMortarEdges( model.getAdjacentEdges(nearest mortar node) );

end
Algorithm 3: Find the nearest mortar node for a non mortar integration point and set
the two adjacent mortar edges for this mortar node. Attention: Only edges which are
located on mortar boundaries should be added!

implemented the normal contact without constraints on the tangential contact (frictionless
case).

7.4.2. Lagrangian contact enforcement

For the Lagrangian contact enforcement we formulate nodal based active set criteria. Fur-
ther we have to distinguish in tangential direction between the stick and slip case.

First we have to initialize or reset the conditional properties before a new active set is
searched. We need 5 conditional values which can be found in Algorithm 5. One can
accumulate (ĝNP ), (t̂NP ) and (∆tĝTP ), (t̂TP ) into one property respectively as only one of
the corresponding pair is needed depending on the nodal state. To clarify the algorithm we
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for mortar element in model do
for IP in mortar element do

if IP.gN < 0. and ‖IP.ξ
(2)‖ < 1. then

IP.activate();
else

IP.deactivate();
end

end

end
Algorithm 4: Find the active integration points inside the non mortar edges.

for non mortar node in model do
non mortar node.(ĝNP ) = 0.;

non mortar node.(t̂NP ) = 0.;
non mortar node.(∆tĝTP ) = 0.;

non mortar node.(t̂TP ) = 0.;
non mortar node.sliding direction = 0.;

end
Algorithm 5: Reset the nodal condition to 0.. This is needed as we are implementing
the numerical integrations of Eq.(6.17), Eq. (6.20), Eq. (6.22), Eq. (6.24) in a recursive
way.

refrained from doing so here in the documentation.

Next we have to implement the numerical quadrature of the integrals given in Eq. (6.17),
Eq. (6.20), Eq. (6.22) and Eq. (6.24). This integration is done in the same way as we
integrate the mortar stiffness matrix of Eq. (A.23)-(A.25), Eq. (A.26) and Eq. (A.56)-
(A.58). The procedure is shown in Algorithm 6. The integration weight is written as ωIP .

As a result each non-mortar node x̂
(1)
P holds the condition value needed to decide the actual

state.

The algorithm to decide about this state is given in Algorithm 7. It is once again possible to
reduce the decision tree by merging (ĝNP ) with (t̂NP ) and (∆tĝTP ) with (t̂TP ). This would
compress the implementation but is less clear to read.
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7.4. Active set strategy

for mortar element in model do
for IP in mortar element do

if not IP.active() then
continue;

end
for non mortar node in mortar element do

if non mortar node.active() then

non mortar node.(t̂NP ) + = N
(1)
P (ξ

(1)
IP ) (−λNIP )ωIP ;

if non mortar node.sliding() then

non mortar node.(t̂TP ) + = N
(1)
P (ξ

(1)
IP )λTIP ωIP ;

end
if non mortar node.sticking() then

non mortar node.(∆tĝTP ) + = Φ
(1)
P (ξ

(1)
IP ) ∆tgTIP ωIP ;

end

else

non mortar node.(ĝNP ) + = Φ
(1)
P (ξ

(1)
IP ) gNIP ωIP ;

end

end

end

end
Algorithm 6: Calculate conditional values needed for the active set criterion. (ωIP being
the integration weight for the corresponding integration point)
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for non mortar node in model do
if non mortar node.active() then

if non mortar node.(t̂NP ) > 0. then
non mortar node.deactivate();

else
if non mortar node.sticking() then

if ‖ non mortar node.(t̂TP )‖ > ‖ non mortar node.(t̂NP ) · µ‖ then
non mortar node.isSliding();

non mortar node.sliding direction = sign( non mortar node.(t̂TP )
);

end

end
if non mortar node.sliding() then

if non mortar node.(ĝTP )· non mortar node.sliding direction < 0.
then

non mortar node.isSticking();
end

end

end

end
if non mortar node.not active() and non mortar node.(ĝNP ) < 0. then

non mortar node.activate();
non mortar node.isSticking();

end

end
Algorithm 7: Algorithm to detect the actual state for each node.
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8. Numerical examples

In this chapter a selection of numerical examples is presented. The aim is to show the
performance of the presented algorithm and to compare the two different normal fields
implemented (namely the non continuous mortar side and the averaged non-mortar side
normal field). The chosen problems are inspired by examples shown by many other people
publishing in the field of contact mechanics.

The finite element software was written in a self-made framework - the SOOFEA (Software
for Object Oriented Finite Element) framework (see Hammer [14]). The chosen program-
ming language is C++ and Python. The design is based on a paper from Archer et al.
[1]. To visualize the deformed meshes and the various results matplotlib (Hunter [19]) was
used. The meshes were created either by self written structural meshers or with GMSH
(Geuzaine and Remacle [9]).

8.1. Simple benchmark

This example is based on a three dimensional problem presented in Puso et al. [31]. The
dimensions of the problem are shown in Figure 8.1. The parameteres (especially the material
properties) are given in Table 8.1.

Young’s modulus of block Eblock 1000 MPa
Poisson’s ratio of block νblock 0.3
Young’s modulus of slab Eslab 1000 MPa
Poisson’s ratio of slab νslab 0.3
Thickness of block and slab h 1 mm
Vertical displacement ∆v 10 mm
Horizontal displacement ∆u 50 mm

Table 8.1.: Parameters for the simple benchmark example

8.1.1. Progress

In the beginning (see Figure 8.2(a) and Figure 8.3(a)) there is an initial gap of 1mm between
the block and the slab. This gap was chosen to show that the implementation is able to
capture a fully new contact surface.

At first the block is moved in vertical direction downwards. The end displacement ∆v =
10mm is reached after 1sec and 10 time steps. The state of deformation is shown in Fig-
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Figure 8.1.: A simple benchmark problem. A block is moved towards the slab in the di-
rection of ∆v. The boundary condition is applied on the top boundary of the
block. After a certain impact is reached the block is moved over the slab in the
direction of ±∆u.

ure 8.2(b) and Figure 8.3(b). One can see for the frictionless calculation an overhang of the
slab. For the friction case due to stick the left side of block and slab are still planar.

Now the block is moved in 30 time steps right until a horizontal displacement ∆u = 50mm
is reached at time t = 4sec. The algorithm converges for less time steps too, but we wanted
to show intermediate results to discuss the different phases of deformation. At time step 17
after t = 1.7sec the slab starts to slide and we change from stick to slip. In Figure 8.3(c)
one can see the shearing of slab and block due to the friction force. In Figure 8.2(c) no
shear occurs as we assume perfect sliding there. The impact of the friction force on the
deformation can be also seen in the comparison of Figure 8.2(d) and Figure 8.3(d).

After t = 40sec the moving direction of the block changes. Therefore the block starts to
stick again on the block. Until time step 57 this sticking force is lower then the limit and
the slab changes its shear direction. In Figure 8.2(e) one can see the rather straight and
shearless deformation of the block in comparison to Figure 8.3(e). The movement continues
until time t = 70sec is reached (Figure 8.2(f) and Figure 8.3(f)).

Now the block is lifted till the start position at time t = 8sec and ∆u = 0 and ∆v = 0
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8.1. Simple benchmark

is reached. During this lift the deformation of the frictionless sliding is congruent to the
deformation during the downwards movement. This can be already seen as the deforma-
tion in Figure 8.2(f) is identically to the one in Figure 8.2(b). This also means that the
deformation at time step 75 is the same as for time step 5.

This is of course not true for the frictional contact calculation. One can see that for time
step 75, Figure 8.3(f), the situation is different to that in Figure 8.2(b). This means for
frictional calculation we have a path dependency. This is related to the stick effect and
the dependency of the friction force direction on the moving direction. In mathematical
and algorithmic sense this can be seen in the fact that we have to store the last convective

coordinate ξ
(2)

as internal variable. (See Section 3.3.1.1 and Eq. (3.28))

The shearing state is consequently reduced during lifting. The intermediate step in Fig-
ure 8.3(g) visualizes this procedure.

Finally time step 80 is reached and the initial state is recovered. As we have no contact in
this last step the frictional case is identical to the frictionless case.

To show the (nearly) quadratic convergence of the Newton-Raphson procedure some exam-
ples of convergence rates of the unbalanced energy are given in Table 8.2 and Table 8.3. It
is also interesting to see that the concentrated integration scheme we used has no significant
influence on the convergence rate although it is an approximation of the exact integral only.

Time step 10 Time step 17 Time step 40 Time step 57

Frictional iteration 1 +2.4179e+03 +2.1598e+03 +2.1481e+03 +2.1591e+03
case iteration 2 +7.3381e-02 +8.4075e-01 +2.8016e-01 +2.7159e-01

iteration 3 +1.7256e-08 +3.4533e-07 +1.4972e-08 +2.7641e-08
iteration 4 +1.6147e-22 +7.5659e-20 +1.8974e-22 +1.8560e-22

iteration 1 +5.7085e+02 +3.2615e-24 +2.2148e+02
iteration 2 +9.9229e-01 +9.2576e-02
iteration 3 +3.6019e-06 +2.4516e-08
iteration 4 +2.6846e-18 +1.3568e-22

Frictionless iteration 1 +2.4245e+03 +1.9669e+03 +2.2115e+03 +1.9720e+03
case iteration 2 +9.5056e-03 +7.5421e-02 +4.5648e-01 +8.0077e-02

iteration 3 +8.2737e-12 +5.8048e-10 +1.7844e-07 +5.8707e-10
iteration 4 +6.0677e-23 +3.0205e-21 +2.1941e-19 +2.1347e-24

iteration 1 +3.0003e+01 +2.0580e+01
iteration 2 +2.1412e-04 +3.6496e-03
iteration 3 +5.4181e-14 +3.3724e-12
iteration 4 +3.5354e-24 +3.3132e-24

Table 8.2.: Evolution of the unbalanced energy over Newton iterations on the non-
continuous mortar side normal field.
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Time step 10 Time step 17 Time step 40 Time step 57

Frictionless iteration 1 +2.4179e+03 +2.1598e+03 +2.1481e+03 +2.1591e+03
case iteration 2 +7.3388e-02 +8.4075e-01 +2.8010e-01 +2.7153e-01

iteration 3 +1.7184e-08 +3.4441e-07 +1.6015e-08 +2.7746e-08
iteration 4 +1.6805e-22 +7.4172e-20 +1.3933e-22 +2.1243e-22

iteration 1 +5.7088e+02 +2.9497e-24 +2.2154e+02
iteration 2 +9.8701e-01 +9.1662e-02
iteration 3 +3.4191e-06 +2.3042e-08
iteration 4 +2.4365e-18 +1.2758e-22

Frictional iteration 1 +2.4245e+03 +1.9669e+03 +2.2111e+03 +1.9720e+03
case iteration 2 +9.4703e-03 +7.5540e-02 +4.5360e-01 +8.0220e-02

iteration 3 +8.2598e-12 +5.7925e-10 +1.6284e-07 +5.8451e-10
iteration 4 +4.7937e-23 +1.2982e-20 +1.3769e-19 +1.1331e-21

iteration 1 +2.9856e+01 +1.8326e+01
iteration 2 +1.9592e-04 +2.9215e-03
iteration 3 +4.0828e-14 +1.6454e-12
iteration 4 +4.5703e-24 +2.9256e-24

Table 8.3.: Evolution of the unbalanced energy over Newton iterations on the averaged
non-mortar side normal field.
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(a) time t = 0sec
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(b) time t = 1sec (time step 10)

0 20 40 60 80 100

(c) time t = 1.73̇sec (time step
17)
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(d) time t = 4sec (time step 40)
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(e) time t = 5.7sec (time step 57)
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(f) time t = 7sec (time step 70)

0 20 40 60 80 100

(g) time t = 7.5sec (time step 75)
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(h) time t = 8sec (time step 80)

Figure 8.2.: The progress of the simple benchmark example without friction.
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(b) time t = 1sec (time step 10)
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(c) time t = 1.7sec (time step 17)
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(d) time t = 4sec (time step 40)
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(e) time t = 5.7sec (time step 57)
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(f) time t = 7sec (time step 70)
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(h) time t = 8sec (time step 80)

Figure 8.3.: The progress of the simple benchmark example for a Coulomb friction coefficient
µ = 0.3.76



8.1. Simple benchmark

8.1.2. Reaction forces

In this section we provide plots of the reaction forces on top of the block. This reaction
force is a sum of all internal forces of the nodes on the top boundary of the block where the
Dirichlet boundary conditions are applied. To distinguish the different effects of friction
we split the reaction force into a horizontal and a vertical part. As we will later see the
differences in the result between the two normal vector fields are very small.

Frictionless case Firstly the frictionless case is analyzed. For the frictionless case the
tangential traction tT is zero. In the Lagrangian state the normal vector of the contact
surface is vertical. This is not true for a later time step and for finite deformation. Due to
the tilted position of the normal traction tN a horizontal reaction force arises. This can be
seen in Figure 8.4. The frictionless contact calculation is path independent. This means it
does not matter how we achieved the current deformation state. The deformation states in
time step 10 and time step 70 are identically (see Figure 8.2(b) and Figure 8.2(f)).
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Figure 8.4.: Reaction forces on top side of block in horizontal and vertical direction for
the frictionless case are shown. The reaction force in horizontal direction is
not zero. This is due to the non symmetric finite deformation of the slab.
This can be seen in Figure 8.2(b). Further one can observe the symmetry of
the horizontal reaction forces due to the path independency of the frictionless
calculation. The difference between the averaged non-mortar and the non-
continuous mortar normal field are too small to be distinguished in the plots.
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Frictional Case Secondly we add friction to the simulation. Here we expect a horizontal
reaction force due to the tangential traction tT as a result of friction. The tangential traction
tT is correlated to the magnitude of the normal traction tN by the Coulomb friction law (see
Eq. (5.5)). This connection can bee seen in Figure 8.5. It is also notable that the reaction
force is no longer path independent (this has already been discussed in Section 8.1.1). This
means it differs for the motion towards the right side in comparison to the leftwards sliding.
The maximum magnitude of the horizontal force for the motion towards right moving is
−1440.56N and for the left moving 1389.06N. The absolute values differ because the changes
from stick to slip are not exactly caught. One would have to do a refinement of the time
steps near this time area to capture the switch from stick to slip more exactly.
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Figure 8.5.: Reaction forces on top side of block in horizontal and vertical direction for
the frictional case (µ = 0.3) are shown. Once again the difference between
the averaged non-mortar and the non-continuous mortar normal field are to
small be distinguished in the plots. It can be seen that the horizontal reaction
force is different for the leftwards and the rightwards motion. The correlation
between the magnitude of the normal traction tN and the tangential traction
tT is also well observable. It is also important to note that due to stick the
deformation state and therefore also the horizontal reaction force is no longer
path independent.
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8.2. Deep ironing

This example is a very popular one in the field of contact mechanics. It can bee seen as
an evolution of the simple benchmark example from Section 8.1. One can find a lot of
results for comparison, e.g. in Yang and Laursen [43], Popp et al. [27], Gitterle et al. [10]
and others. The idea behind this example is to show the performance of the algorithm for
problems with finite deformations, large slidings and strong inconsistencies in discretization.

The dimensions of our problem are shown in Figure 8.6. The parameters (especially the
material properties) are given in Table 8.4.

Young’s modulus of block Eblock 1000 MPa
Poisson’s ratio of block νblock 0.3
Young’s modulus of slab Eslab 100 MPa
Poisson’s ratio of slab νslab 0.3
Thickness of block and slab h 1 mm
Vertical displacement ∆v 30 mm
Horizontal displacement 1 ∆u1 220 mm
Horizontal displacement 2 ∆u2 -110 mm

Table 8.4.: Parameters for the deep ironing example
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Figure 8.6.: The deep ironing problem. First the block is moved downwards in direction
of ∆v. The boundary condition is applied on the top boundary of the block.
The block is pressed downwards until the top support of the block has reached
the undeformed height of the slab (30mm for this example). Then the block is
“ironed” over the slab. For this example we first moved the block in direction
of ∆u by ∆u1 and then moved backwards by ∆v2.
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8.2.1. Progress

The progress is rather similar to the one of Section 8.1.1 and there are similar effects. We
will only discuss the differences to the simple benchmark example here.

Frictionless case The deformation results shown in Figure 8.7 were calculated with non-
continuous mortar side normals. As we will see in the following sections the differences
between mortar and averaged non-mortar normals are really small. They can not be shown
by overlaying, therefore we show these results only. We do a more elaborate comparison for
the frictional case.

(a) time t = 0sec (b) time t = 1sec

(c) time t = 7.1̇sec (d) time t = 1.4̇sec

(e) time t = 12.045sec (f) time t = 16.0sec

Figure 8.7.: The progress of the deep ironing example without friction. Non-continuous
mortar side normals were used for the calculation of this example.

Frictional case In Figure 8.8 we compare the deformation of the non-continuous mortar
side normal method with the averaged non-mortar side normal method. We do not lay
the two deformations on top of each other, because the differences are that small that one
could not distinguish them. We just wanted to clarify this fact by adding the comparison.
The deformations are quite large and we have big changes of the active set throughout the
calculation. In Yang and Laursen [43] the used block was not rounded. We have chosen to
use the rounded version because we expected a higher influence of the averaging for this
example. As we can see there is no influence on the quality of results (see also Section 8.2.2
for some further comparisons).
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(a) time t = 0sec (b) time t = 0sec

(c) time t = 1sec (d) time t = 1sec

(e) time t = 7.1̇sec (f) time t = 7.1̇sec

(g) time t = 1.4̇sec (h) time t = 1.4̇sec

(i) time t = 12.045sec (j) time t = 12.045sec

(k) time t = 16.0sec (l) time t = 16.0sec

Figure 8.8.: The progress of the simple benchmark example with friction (µ = 0.3) is shown.
Each line shows the non-continuous mortar side normal method on the left and
the averaged non-mortar side normal method on hte right.
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8.2.2. Reaction forces

Similar to the simple benchmark example in Section 8.1.2 we would like to analyze and
compare the reaction forces on the top support of the block. Once again we split the overall
reaction force for the top nodes into a horizontal and a vertical component. Of course those
components should not be mixed up with the tangential and normal traction in the contact
surface locally. This is a global view of the situation.

Frictionless case In Figure 8.9 we compare the averaged non-mortar side normal method
with the non-continuous mortar side normal method. The vertical reaction force for the
averaged normal is rather smooth (shown in green) and there is no big difference to the
mortar side normal (shown in the background with red color).

More interesting is the horizontal reaction force during the sliding of the block. One can see
oscillating reaction forces. They occur only because of the non-continuity of the discrete
surface. It is also important to note that the averaging of the normal field could not improve
the results. This happens, because the averaging of the normal does not flatten the surface
and the gap function gN itself. It also cannot influence the stiffness changes due to the
element jumps.

One has to note here, that those oscillations are getting rapidly smaller through refinement
of the meshes. We used this rather coarse mesh by intention to show the effects.
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Figure 8.9.: Reaction forces on top side of block in horizontal and vertical direction for the
frictionless case are shown.
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8.2. Deep ironing

Frictional case We expect for the frictional case a rather similar behavior compared to
frictionless case despite the fact that the horizontal reaction force is much higher. This can
be seen in Figure 8.10.

Once again the difference between the two “normal” methods are negligible. There are only
a few time steps where the red mortar side normal method is visible behind the averaged
normal method laying on top.

The oscillation behavior for the frictional case is similar to the one of the frictionless case.
This also means that the oscillations are not due to a slip/stick effect. They are only
because of the non continuity of the surface. The reason for having larger magnitudes then
for the frictionless case is the higher mean value of the horizontal force. Once again we can
influence the height of the oscillations by refinement of the mesh.
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Figure 8.10.: Reaction forces on top side of block in horizontal and vertical direction for the
frictional case (µ = 0.3) are shown.

The oscillations (no matter if frictionless or frictional) are purely artificial due to the used
numerical method and the needed finite element discretization. They can not be seen in
real world experiments. It has to be a goal of future attempts in contact mechanics to get
rid of those oscillating forces.

To show the effect of mesh refinement on the oscillations in tangential direction we solved
the same problem with a finer mesh (see Figure 8.11 for some snapshots of the deformed
mesh).

In Figure 8.12 we have once again plotted the reaction forces on the top support of the
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8. Numerical examples

(a) time t = 0sec (b) time t = 6sec

(c) time t = 11sec (d) time t = 16sec

Figure 8.11.: The progress of the deep ironing example with friction (µ = 0.3) is shown for
a refined mesh.

block. It can be seen that the oscillation significantly decreases with mesh refinement if one
compares the plot with Figure 8.10.
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Figure 8.12.: Reaction forces on top side of block in horizontal and vertical direction for the
frictional case (µ = 0.3) on the refined mesh are shown.
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8.3. Hertz problem

8.3. Hertz problem

This is a very classical example in contact mechanics. The Hertz problem can be solved in
an analytical manner for a general 3D contact of two paraboloids (see [11] for a detailed
derivation of the analytical solution). We reduced the problem to a contact of an cylin-
der (Part 1) with a plane body (Part 2). The dimensions of our problem are shown in
Figure 8.13.

As material we choose aluminum with the average parameters given in Table 8.5. For
this example we used the St. Venant-Kirchhoff material (see Section 2.5.1) and not the
compressible Neo-Hookean material. This was done because we expected this example
to have small deformations and wanted to be as close as possible to the linear analytical
solution.

Young’s modulus E1, E2 96 GPa
Poisson’s ratio ν1, ν2 0.35
Vertical displacement ∆v -0.015 mm
Penalty factor ε 8.e5

Table 8.5.: Parameters for the Hertz problem

Once again the loading is deformation controlled. For this example it would be possible to
do force loading, as there are no global stick/slip changes. Therefore no negative slope of
the force displacement curve can occur. Nevertheless the displacement based loading is a
very robust method and is therefore used. The displacement of the top support in vertical
direction can be easily connected with a corresponding loading by summing up the internal
forces of the nodes on the top boundary. For our displacement ∆v = −0.015 the resulting
reaction force is F = 206.44549N

We are especially interested in the pressure distribution on the contact surface. For the
special case of two cylinders with parallel axes coming into contact we can find in Goldsmith
[11]

p(x) =
2 F

πb2

√
b2 − x2 (8.1)

where x is the coordinate in tangential direction (the origin is in the symmetry line), F is
the load applied on the two cylinders. b is the half-width of the contact zone and can be
calculated with

b = 2

√
F (δ1 + δ2)R1R2

R1 +R2
(8.2)

where R1 and R2 are the two radii of the cylinders being in contact. For the special case
of a plain surface instead of cylinder 2 we can do lim

R2→∞
(b) which yields

b = 2
√
F (δ1 + δ2)R (8.3)

The stiffness values δi are given as

δi =
1− ν2

i

Eiπ
, i = 1, 2 (8.4)
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8. Numerical examples

25
25

20◦

5◦

R
=

50

Figure 8.13.: The Hertz problem. The geometry is symmetric for the center plane, but not
the mesh. In the area around the contact zone the mesh was refined. This
refined surface area is defined for an angle of [−5◦,+5◦]. For this example we
used an unstructured mesh as a comparison to the structured meshes of the
previous examples. The top boundary (marked with a dashed line) is moved
downwards during loading.

with Poisson’s ratio νi and Young’s modulus Ei.

The calculations were done frictionless. During vertical loading it is nearly impossible to
create a stick condition with physically realistic properties (see also Kikuchi and Oden [20]
for similar calculations). One would have to raise the friction coefficient to high values (e.g.
ν = 0.7 like in the example in Tur et al. [35]) and allow stresses in the body higher than a
realistic elastic limit.

For this example we also compare the Lagrange contact enforcement with the penalty
contact enforcement. We have done the calculations with the averaged non-mortar side
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8.3. Hertz problem

normal field and the non-continuous mortar side normal field. The differences for this small
deformation example are that small that one cannot distinguish the results in the plot given
in Figure 8.14. Therefore only a “Lagrange” solution (which is equivalent to the averaged
and the mortar side normal field) is compared with the penalty solution.
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Figure 8.14.: The pressure distribution tN . The origin is in the symmetry (vertical solid
gray line) of the problem. The analytical half-width of the contact zone is b =
0.5781716 and drawn with a dashed gray line. The solution of the Lagrange
contact enforcement is given point wise (in the nodes) with blue stars. The
solution of the penalty contact enforcement is given as a solid green line.
The penalty method provides us with a pressure in each integration point on
the edge tN ≈ εgN . The integration points are much denser distributed and
therefore a point wise plot would make no sense. The red solid line represents
the analytical solution. Despite some discretization influences the numerical
solutions fit the analytical one quite well.
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8. Numerical examples

8.4. Elastic ring

This example is based on that presented in Tur et al. [35]. For this problem big changes
in the active set and finite deformations can be expected. The parameters can be found in
Table 8.6.

Young’s modulus of beam Ebeam 10000 MPa
Poisson’s ratio of beam νbeam 0.3
Young’s modulus of slab Eslab 300 MPa
Poisson’s ratio of slab νslab 0.3
Thickness of beam and slab h 1 mm
Vertical displacement ∆v 70 mm

Table 8.6.: Parameters for the elastic ring example

The geometrical dimension are shown in Figure 8.15.

R86

250

50

beam

slab

∆v∆v

R100

Figure 8.15.: The elastic ring problem. The ring beam is moved downwards the slab in
direction ∆v. The top endings of the ring beam are perfectly supported in
horizontal direction. The slab is fixed on the lower boundary.

8.4.1. Progress and reaction forces

We calculated this example without friction and with a friction coefficient µ = 0.5. The
motion was calculated in 30 time steps and lasts 1sec. In this section we compare the two
calculations.
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8.4. Elastic ring

Frictionless case For the frictionless case there is an interesting time stamp 23 at time
0.76̇sec (see Figure 8.16(c)) where the stiffness of the beam rapidly decreases. This can
be seen in the plot (see Figure 8.17) of the reaction forces too. At this time the reaction
forces start to decrease rapidly, we observe sone kind of a snap through point. We could go
through this with force controlled loading only by application of a path-following algorithm
or arc-length method like Riks method (e.g. Wriggers [41]).

(a) time t = 0sec (b) time t = 0.5sec (time step 15)

(c) time t = 0.76̇sec (time step 23) (d) time t = 1.0sec (time step 30)

Figure 8.16.: The progress of the deformed meshes of the elastic ring example without
friction.

0.0 0.2 0.4 0.6 0.8 1.0
Time t [sec]

−4000

−2000

0

2000

4000

6000

R
ea

ct
io

n
F

or
ce

s
[N

]

Vertical av. normal

Horizontal av. normal

Mortar side normal

Figure 8.17.: Reaction forces on left support of the elastic ring in horizontal and vertical
direction for the frictionless case.
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8. Numerical examples

Frictional case The deformed bodies can be seen in the progress Figure 8.18. The greatest
difference to Figure 8.16 can be seen in the last plot Figure 8.18(d). The friction leads to
a strong horizontal deformation of the slab. This sticking of the elastic ring on the slab
leads to a stabilization of the snap through behavior of the frictionless case. This means in
Figure 8.19 we can see no decrease in stiffness anymore.

(a) time t = 0sec (b) time t = 0.5sec (time step 15)

(c) time t = 0.76̇sec (time step 23) (d) time t = 1.0sec (time step 30)

Figure 8.18.: The progress of the deformed meshes of the elastic ring example with friction
(µ = 0.5).
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Figure 8.19.: Reaction forces on top side of block in horizontal and vertical direction for the
frictional case (µ = 0.5).
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9. Conclusion

In this thesis we implemented the 2D mortar method and applied it to contact problems in
the field of structural mechanics, with finite deformations and large slidings. The contact
enforcement was realized first as penalty regularized condition. As this is not standard
for the mortar method we then implemented the Lagrangian contact enforcement. For the
Lagrangian contact enforcement the tangential contact was also treated. We implemented
Coulomb’s friction law which implied a distinction between the stick and the slip state.

The contact kinematics was described in a rather synthetic way. This enabled us to switch
between an averaged continuous non-mortar side normal field and a non-continuous mortar
side normal field. As we showed there is no remarkable difference in the results between
the two methods. This also means one may omit the averaging if one uses the concen-
trated integration scheme as we did. The benefit is faster calculation and a more concise
mathematical formulation.

We presented the algorithms and special cases in quite detail. We also tried to close the
gap between different approaches in the engineering community to the mortar method in
the field of contact mechanics. Further a great attention was given to closed derivations of
the needed equations. Therefore no secondary literature should be needed to comprehend
them.

9.1. Outlook and future work

The presented algorithm should be extended to three dimensional problems. As the con-
centrated integration scheme is easier to handle then the segmentation scheme, this should
be worth a try.

As the examples in this work have shown, the influence of the normal averaging on the qual-
ity of solution is negligible. The problem is, that the influence of the non-continuity in the
surface, has a much greater influence then the non-continuity of the normal field. Therefore
some kind of surface smoothing should enhance the quality of the solution, especially the
oscillation behavior. This has been done by various people with different methods and can
be integrated in our algorithm.

It would be advantageous to condensate the Lagrange multipliers out of the set of linear
equations. This has already been done for the segmented integration scheme and should be
transferred to the concentrated scheme.

The whole analysis was done as a quasi-static analysis. There have not been considered any
inertia effects. It would be a great enhancement to include the mass matrix and implement
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9. Conclusion

an appropriate time integrator. As various works on this topic have shown, it is challenging
to do this time integration in an energy preserving way.

For real technical applications the thermo-mechanical problem is of interest (e.g. any kind
of metal forming process). For this problem, the heat transfer problem inside the domain,
but also over the contact surface, has to be solved and a thermo-mechanical coupling is
necessary. The dissipated energy by friction would lead to a heating process of the bodies.

Finally it is still a challenge to select which body is the master (mortar) and which one is
the slave (non-mortar). This choice might seam easy if one decides the non-mortar surface
to be the one with the finer discretization, although this is hard to detect in general. The
bigger issue is that the solution of the problem is not invariant to the choice, so that
makes no sense for the physical problem. In reality bodies in contact do not distinguish
between a master and a slave. They are always equal contact partners. Therefore if we
want to represent the physical problem with our mathematical model it is indispensable to
eliminate the dependency on the master/slave choice.

92



A. Linearization

A.1. Linearization of contact surface Jacobian

As already presented in Section 3.4 we need the Jacobian of the contact surface in the
current configuration. The Eq. (3.31) can be written in index notation as follows

∆J (1) =

{
a

(1)
k

J (1)

(
−Nme,ξ(1)

l

)}
∆ûkl

= {J }kl ∆ûkl (A.1)

It is important to note the −1 in front of Nme,ξ(1)

l because we do not calculate the gap
function here but the first derivative but we also want to reuse the already defined Nme.
One can of course use {J }ij to calculate the variation δJ (1) and the increment ∆J (1). The
increment of the virtual Jacobian leads to

∆
(
δJ (1)

)
= δu

(1)

,ξ(1)
· 1

J (1)

(
1− 1

J (1)2 x
(1)

,ξ(1)
⊗ x

(1)

,ξ(1)

)
·∆u

(1)

,ξ(1)
(A.2)

which can be written in index notation as

∆
(
δJ (1)

)
= δûij

{(
−Nme,ξ(1)

j

) 1

J (1)

(
δik −

a
(1)
i a

(1)
k

J (1)2

)(
−Nme,ξ(1)

l

)}
∆ûkl

= δûij {∆ (δJ )}ijkl ∆ûkl (A.3)

The Jacobian variation, increment and variational increment is used for the mortar side
normal field as well as the averaged normal field.

A.2. Non continuous mortar side normal

We have to implement the linearized contact virtual work Eq. (6.8). As we are talking
about mortar side normal vectors throughout this Section A.2 we omit the M marker. All
the presented values have to be calculated per integration point. As we are using the
concentrated integration scheme we also omit any index or marker to reflect this, like �IPψ

in Section 6.5.2.
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A. Linearization

A.2.1. Normal gap function

The variation of the normal gap function and the normal gap function increment is given
in index notation based on Eq. (4.7) as

δgN = −n(2)
i Nme

j δûij ∆gN = −n(2)
k Nme

l ∆ûkl

δgN = {GN}ij δûij ∆gN = {GN}kl ∆ûkl (A.4)

A.2.1.1. Linearization of variation of normal gap function

At first we have to linearize the normal vector of Eq. (4.1) and obtain for the increment

∆n(2) =
∆a(2)

‖a(2)‖

[
1− a(2) ⊗ a(2)

α(2)2

]
× e3

=
∆a(2)

‖a(2)‖

[
a(2) ⊗ a(2)

α(2)2 + n(2) ⊗ n(2) − a(2) ⊗ a(2)

α(2)2

]
× e3

= − a(2)

α(2)2

(
∆a(2) · n(2)

)
(A.5)

which depends on the increment a(2)

∆a(2) = ∆
(
x

(2)
,ξ

)
= x

(2)
,ξξ ∆ξ(2) + ∆u

(2)
,ξ (A.6)

We can write this in index notation (with x
(2)
,ξξ = b

(2)
)

∆a
(2)
i = b

(2)
i ∆ξ(2) +Nme,ξ(2)

j ∆û
(2)
ij (A.7)

The incremental tangent vector can be inserted to get

∆n(2) = − a(2)

α(2)2

[(
x

(2)
,ξξ ∆ξ(2) + ∆u

(2)
,ξ

)
· n(2)

]
(A.8)

Second we have to calculate the increment ∆ξ(2). Based on Eq. (3.5) we replace δ with ∆
and get

∆u(2) + a(2)∆ξ(2) = ∆u(1) −∆gN n(2) − gN ∆n(2) (A.9)

which is multiplied with a(2), inserting Eq. (A.8) yields

α(2)2
∆ξ(2) = −

(
∆u(2) −∆u(1)

)
· a(2) + gN

(
x

(2)
,ξξ ∆ξ(2) + ∆u

(2)
,ξ

)
· n(2)(

α(2)2 − gN β
(2)
)

∆ξ(2) = −
(

∆u(2) −∆u(1)
)
· a(2) + gN ∆u

(2)
,ξ · n(2)

∆ξ(2) =
1

α(2)2 − gN β
(2)

[
−
(

∆u(2) −∆u(1)
)
· a(2) + gN ∆u

(2)
,ξ · n(2)

]
(A.10)
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A.2. Non continuous mortar side normal

This is the same result as we got in Eq. (4.10) with δ → ∆. Transferring the expression
into index notation yields

∆ξ(2) =

{
1

α(2)2 − gN β
(2)

[
−Nme

l a
(2)
k + gN N

me,ξ(2)

l n
(2)
k

]}
∆ûkl

∆ξ(2) = {X}kl ∆ûkl (A.11)

with Nme,ξ(2)

j representing the derivation of the shape tensor with respect to ξ(2)

Nme,ξ(2) =
[

0 0
∂N

(2)
1

∂ξ(2)
∂N

(2)
2

∂ξ(2)

]
→ Nme,ξ(2)

i

Nme,ξ(2)

j is zero for the non-mortar side shape functions j = 1, 2. One can replace ∆ → δ
and obtain

δξ(2) = {X}ij δûij (A.12)

With Eq. (A.8) and Eq. (A.10) we can now calculate the virtual gap function increment by
linearization of Eq. (4.7)

∆ (δgN ) = −∆n(2) ·
(
δu(2) − δu(1)

)
− n(2) · δu(2)

,ξ ∆ξ(2) (A.13)

We write Eq. (A.8) in index notation

∆n
(2)
i = − a

(2)
i

α(2)2

(
x

(2)
,ξξk

∆ξ(2) +Nme,ξ(2)

l ∆ûkl

)
n

(2)
k

= −
{
a

(2)
i

α(2)2
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β

(2)
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(2)
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me,ξ(2)

l n
(2)
k

)
+Nme,ξ(2)

l n
(2)
k

)}
∆ûkl

= {N}kli ∆ûkl

Finally for the variational normal gap function increment (based on Eq. (A.13)) in index
notation we make use of Eq. (A.8) and Eq. (A.10) and get

∆ (δgN ) =−∆n
(2)
i Nme

j δûij − n(2)
i Nme,ξ(2)

j δûij ∆ξ(2)

=− δûij

{
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j
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i
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(
−Nme
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k
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k

]}
∆ûkl −

− δûij

{
n
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α(2)2 − gN β
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[
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k

]}
∆ûkl

Factorize 1

α(2)2−gN β
(2) , reorder terms and collect to visualize symmetry

∆ (δgN ) = δûij

{(
− a(2)

i Nme
j

β
(2)

α(2)
Nme
l a

(2)
k

+ a
(2)
i Nme
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l n
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j Nme
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k
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i Nme,ξ(2)

j gN Nme,ξ(2)

l n
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}
∆ûkl
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A. Linearization

The term in the curly brackets is separately named as {∆ (δGN )}ijkl. This is an index
object of fourth order. It is not a classical fourth order tensor as the indices j and l denote
the nodal index. Only i and k are “tensor” indices as they denote the coordinate direction.

∆ (δgN ) = δûij {∆ (δGN )}ijkl ∆ûkl (A.14)

This is a very central property for defining the stiffness matrix.

A.2.2. Tangential slip

We need δgT and ∆gT respectively. It has been shown in Eq. (6.10) that these quantities
are equivalent and they can be written in index notation (based on Eq. (4.8)) as

δgT = α(2)δξ(2) = α(2) {X}ij δûij ∆gT = α(2) {X}kl ∆ûkl
δgT = {GT }ij δûij ∆gT = {GT }kl ∆ûkl (A.15)

A.2.2.1. Linearization of variation of tangential slip

We obtain the variational tangential slip increment based on Eq. (A.15)

∆ (δgT ) =
∆a(2) · a(2)

α(2)
δξ(2) + α(2)∆

(
δξ(2)

)
=

(
x

(2)
,ξξ ∆ξ(2) + ∆u

(2)
,ξ

)
· a(2)

α(2)
δξ(2) + α(2)∆

(
δξ(2)

)
= δξ(2)

∆u
(2)
,ξ · a(2)

α(2)
+ δξ(2)

x
(2)
,ξξ · a(2)

α(2)
∆ξ(2) + α(2)∆

(
δξ(2)

)
(A.16)

where the first term introduces an (already mentioned - see Section 3.3 and explanations
to Eq. (3.14)) “artificial” asymmetry. As numerical experiments have shown, the influence
of this first term is rather small and can be neglected. For completeness we added the
term. The whole frictional mortar procedure already requires a solver for the set of linear
equations which is able to deal with asymmetry (especially the slip case is non symmetric
any way).

To obtain ∆
(
δξ(2)

)
we use the variational contact kinematic from Eq. (3.5) and do the

linearization to get

Nme,ξ(2)δû ∆ξ(2) + Nme,ξ(2)∆û δξ(2) + a(2)∆
(
δξ(2)

)
+ b

(2)
∆ξ(2)δξ(2) =

−∆ (δgN ) n(2) − δgN∆n(2) −∆gNδn
(2) − gN∆

(
δn(2)

)
(A.17)

b
(2)

is the second derivative of x(2) with respect to ξ(2).

b
(2)

= x
(2)

,ξ(2)ξ(2)
=
∂x(2)2

∂2ξ(2)
(A.18)
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A.2. Non continuous mortar side normal

Remark: b
(2)

equals zero for linear shape functions!

We multiply this equation with a(2) and obtain after some reordering

∆
(
δξ(2)

)
=

a(2)

α(2)
·
[
−δgN∆n(2) −∆gNδn

(2) − gN∆
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)
−∆ξ(2)b

(2)
δξ(2) − δu(2)

,ξ ∆ξ(2) −∆u
(2)
,ξ δξ

(2)
]

(A.19)
which is fully symmetric. Once again we transform Eq. (A.19) into index notation

∆
(
δξ(2)

)
= δûij

{
a

(2)
m

α(2)

[
− {GN}ij {N}klm − {GN}kl {N}ijm − gN∆ {δ (N )}ijklm

− δimNme,ξ(2)

j {X}kl − δkmN
me,ξ(2)

l {X}ij
]}

∆ûkl (A.20)

∆
(
δξ(2)

)
= δûij {∆ (δX )}ijkl ∆ûkl (A.21)

With these results we finally are able to formulate the variational tangential slip increment

∆ (δgT ) = δûij

{
{X}ij N

me,ξ(2)

l a
(2)
k + {X}ij b

(2)
m a(2)

m {X}kl +
√
α(2) {∆ (δX )}ijkl

}
∆ûkl

= δûij {∆ (GT )}ijkl ∆ûkl (A.22)

A.2.3. Linearized virtual contact work and weak contact conditions

We have now all properties needed to define the linearized virtual contact work and the
linearized weak contact conditions. These terms are based on Eqs. (6.8), (6.11) and (6.13).

A.2.3.1. Normal direction

For the chosen concentrated integration scheme we have to evaluate all the values {∆GN}ij ,
{∆ (δGN )}ijkl, {δJ }ij and {∆ (δJ )}ijkl at the integration points. The integration itself

is realized with a classical numerical Gaussian quadrature over the natural interval ξ(1) =
[−1,+1].

∆
(
δMΠN

)
=

∫
�
−δλ̂Nj

{
φj

[
J (1) {GN}kl + gN {JN}kl

] }
∆ûkl

−δûij
{

φl

[
J (1) {GN}ij + gN {JN}ij

] }
∆λ̂Nl

−δûij
{

λN

[
{∆ (δGN )}ijkl J (1) + {∆ (δJ )}ijkl gN
+ {GN}ij {J }kl + {J }ij {GN}kl

] }
∆ûkl dγr

(A.23)
One can see the symmetry of all operators. It is part of the assembly operator to add the
three and four dimensional objects into the stiffness matrix.
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A. Linearization

A.2.3.2. Tangential direction

In tangential direction we have to differ between the stick case (with an additional unknown
λT ) and the slip case where the tangential traction tT is a result of tangential constitutive
equation given in Eq. (5.5).

Stick case

∆
(
δMΠCTST

)
=

∫
�
−δλ̂Tj

{
φj

[
J (1) {GT }kl + ∆tgT {J }kl

] }
∆ûkl

−δûij
{

φl

[
J (1) {GT }ij + ∆tgT {J }ij

] }
∆λ̂Tl

−δûij
{

λT

[
{∆ (δGT )}ijkl J (1) + {∆ (δJ )}ijkl ∆tgT

+ {GT }ij {J }kl + {J }ij {GT }kl
] }

∆ûkl dγr

(A.24)

Slip case

∆
(
δMΠCTSL

)
=

∫
�

δûij

{
µλN sign(∆tgT ) {GT }ij J φl

}
∆λ̂Nl

+δûij

{
µλN sign(∆tgT ) {∆ (δGT )}ijkl J+

µλN sign(∆tgT ) {GT }ij {J }kl
}

∆ûkl dγr

(A.25)

A.2.4. Linearized virtual contact work for the penalty method

For the penalty method the virtual contact work contains no additional unknowns. We can
reuse the linearizations and variations from Eq. (A.4), Eq. (A.14), Eq. (A.1) and Eq. (A.3)
and get the virtual contact work increment

∆
(
δPΠN

)
=

∫
�
δûij

{
+ {∆ (δGN )}ijkl ε gNJ (1)

+ {GN}ij ε {GN}kl J (1)

+ {GN}ij ε gN {J }kl + {J }ij ε gN {GN}kl

+
1

2
ε g2

N {∆ (δJ )}ijkl

}
∆ûkl dγr (A.26)

A.3. Averaged non-mortar side normal

As we are talking about averaged mortar side normal vectors throughout this section we
are omitting the A marker. We are using the concentrated integration scheme so we omit
any index or marker to reflect this, like �IPψ in Section 6.5.2.
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A.3. Averaged non-mortar side normal

A.3.1. Normal gap function

The variation of the normal gap function is based on gN from Eq. (4.16) and given in
Eq. (4.18). We write this in index notation

δgN = ñ
(1)
i

(
Nme
j δûij + a

(2)
i δξ(2)

)
(A.27)

This means we need the variation of ξ(2) based on Eq. (4.19) which reads in index notation
as

δξ(2) =
ã

(1)
i

ã
(1)
k a

(2)
k

(
−Nme

j δûij + gN δñ
(1)
i

)
(A.28)

This expression contains the variation of the averaged normal vector δñ
(1)
i . To calculate

this we define

α̃(1) =

√
ã

(1)
i ã

(1)
i length of averaged tangent (A.29)

in analogy to Eq. (4.3). Based on the avaraging rule from Eq. (4.11) we define an averaging
matrix Aj .

ã
(1)
i = Aj x̂ij (A.30)

Remark: The variation of the averaged tangent vector in the linear case depends
on 4 nodes including the nodes of the preceding and following edge. See Figure 6.2
for a visualization.

A =
[
N

(1)
1 N

(1)
2

]
·A (A.31)

This averaging matrix A consists of the interpolation part of the normal vector depending

on the shape functions N
(1)
i and and averaging rule which will be collected in the matrix A

A =
1

2

[
N

(1)
,ξ1

(+1) N
(1)
,ξ1

(−1) +N
(1)
,ξ2

(+1) N
(1)
,ξ2

(−1) 0 0 0

0 N
(1)
,ξ1

(+1) N
(1)
,ξ1

(−1) +N
(1)
,ξ2

(+1) N
(1)
,ξ2

(−1) 0 0

]
(A.32)

The averaging matrix A from Eq. (A.32) is valid for a non-mortar edge with a preceding
and a following edge. On the end of a boundary there are edges with missing preceding
or following edges. For this averaging tensor we have to distinguish the cases shown in
Figure A.1. Therefore we define one for the case of missing preceding edge

AP =
1

2

[
2N

(1)
,ξ1

(−1) 2N
(1)
,ξ2

(−1) 0 0 0

N
(1)
,ξ1

(+1) N
(1)
,ξ1

(−1) +N
(1)
,ξ2

(+1) N
(1)
,ξ2

(−1) 0 0

]
(A.33)

for the rare case of only one non-mortar edge

A0 =

[
N

(1)
,ξ1

(−1) N
(1)
,ξ2

(−1) 0 0

N
(1)
,ξ1

(+1) N
(1)
,ξ2

(+1) 0 0

]
(A.34)

and for the case of missing following edge

AF =
1

2

[
N

(1)
,ξ1

(+1) N
(1)
,ξ1

(−1) +N
(1)
,ξ2

(+1) N
(1)
,ξ2

(−1) 0 0

0 2N
(1)
,ξ1

(+1) 2N
(1)
,ξ2

(+1) 0 0

]
(A.35)
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A. Linearization

ˆ̃n
(1)
k+1

ˆ̃n
(1)
k

ξ(1)

(a) Missing preceding edge, leads
to definition of AP

ˆ̃n
(1)
k+1

ˆ̃n
(1)
k

ξ(1)

(b) single edge without preceding
nor following edge, leads to defini-
tion of A0

ˆ̃n
(1)
k+1

ˆ̃n
(1)
k

ξ(1)

(c) Missing following edge, leads
to definition of AF

Figure A.1.: The special cases for the averaging tensor Eq. (A.31) are shown. The boundary
without contact conditions is marked in green.

The variation of the averaged tangent vector as function of the nodal variational displace-
ments yields

δã
(1)
i = δAj︸︷︷︸

0

x̂ij +Aj δûij = Aj δûij (A.36)

As Aj is only dependent on non-mortar side shape functions it is constant with respect to
the variation (the integration point coordinates are fixed). Therefore δAj = 0.

Based on Eq. (4.20) we can now write the variation of the averaged normal vector δñ(1)

in index notation. It is important to note, that for the execution of the cross product we

need 3 dimensional vectors. Therefore the averaged tangent ã
(1)
i is extended to the third

dimension. After calculation we have to slice the indices i and m to 1, 2.

δñ(1)
m =

{
εmlk

[
δli
α̃(1)

− ã
(1)
l ã

(1)
i(

α̃(1)
)3
]
Aj e3k

}∣∣∣∣∣
i,m=1,2

δûij

= {N}ijm δûij (A.37)

and insert into Eq. (A.28)

δξ(2) =
ã

(1)
m

ã
(1)
k a

(2)
k

(
−Nme

j δim + gN {N}ijm
)
δûij

= {X}ij δûij (A.38)

to finally get the variation of the normal gap function

δgN =
{
ñ

(1)
k

(
Nme
j δki + a

(2)
k {X}ij

)}
δûij

δgN = {GN}ij δûij (A.39)

To derive ∆gn we have to replace δ with ∆

∆gN = {GN}kl ∆ûkl (A.40)
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A.3. Averaged non-mortar side normal

A.3.1.1. Linearization of variation of normal gap function

We need the increment ∆
(
δñ(1)

)
of the virtual normal vector which is calculated based on

Eq. (4.20)

∆
(
δñ(1)

)
=

[
− δã(1) ∆ã(1) · ã(1)(

α̃(1)
)3 −∆ã(1) δã

(1) · ã(1)(
α̃(1)

)3 −
− ã(1)

(
δã(1) ·∆ã(1)(

α̃(1)
)3 − δã(1) · ã(1) 3(

α̃(1)
)5 ∆ã(1) · ã(1)

)]
× e3 (A.41)

which can be written in index notation. We keep in mind that we have to slice the indices
i, k and o to 1, 2 like above.

∆
(
δñ(1)

)
o

= δûij

{
εonm

[
−Aj

δinã
(1)
k(

α̃(1)
)3Al −Aj ã(1)

i δkn(
α̃(1)

)3Al−
− ã(1)

n

(
Aj

δik(
α̃(1)

)3Al −Aj ã(1)
i

3(
α̃(1)

)5 ã(1)
k Al

)]
e3m

}∣∣∣∣∣
i,k,o=1,2

∆ûkl (A.42)

∆
(
δñ(1)

)
o

= δûij {∆ (δN )}ijklo ∆ûkl (A.43)

Now we linearize the variation of the contact kinematic Eq. (4.17) and obtain

Nme,ξ(2)δû ∆ξ(2) + Nme,ξ(2)∆û δξ(2) + a(2)∆
(
δξ(2)

)
+ ∆ξ(2)b

(2)
δξ(2) =

= ∆ (δgN ) ñ(1) + δgn∆ñ(1) + ∆gnδñ
(1) + gN∆

(
δñ(1)

)
(A.44)

From Eq. (A.44) we can separate ∆
(
δξ(2)

)
by multiplying with ·ã(1) because then the term

∆ (δgN ) ñ(1) · ã(1) vanishes due to ñ(1) · ã(1) being zero. Thus

∆
(
δξ(2)

)
=

ã(1)

a(2) · ã(1)
·
[

+ δgn∆ñ(1) + ∆gNδñ
(1)+

+ gn∆
(
δñ(1)

)
−∆ξ(2)b

(2)
δξ(2)−

−Nme,ξ(2)δû ∆ξ(2) −Nme,ξ(2)∆û δξ(2)

]
(A.45)

which can be written in index notation

∆
(
δξ(2)

)
= δûij

{
ã

(1)
o

a
(2)
m ã

(1)
m

[
+ {GN}ij {N}klo + {N}ijo {GN}kl +

+ gn {∆ (δN )}ijklo − {X}ij b
(2)
o {X}kl−

−Nme,ξ(2)

j δio {X}kl − {X}ij δkoN
me,ξ(2)

l

]}
∆ûkl (A.46)
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A. Linearization

∆
(
δξ(2)

)
= δûij {∆ (δX )}ijkl ∆ûkl (A.47)

Now we separate from Eq. (A.44) the virtual normal gap function increment ∆ (δgN ) by
multiplying with the averaged tangent ·ã(1). We should be aware that ∆ñ(1) · ñ(1) and
δñ(1) · ñ(1) equals to zero because of ñ(1) being a unit vector.

∆ (δgN ) = ñ(1) ·
[
− gN∆

(
δñ(1)

)
+ a(2)∆

(
δξ(2)

)
+ ∆ξ(2)b

(2)
δξ(2)

+ Nme,ξ(2)δû ∆ξ(2) + Nme,ξ(2)∆û δξ(2)

]
(A.48)

in index notation

∆ (δgN ) = δûij

{
ñ(1)
o

[
− gN {∆ (δN )}ijklo + a(2)

o {∆ (δX )}ijkl

+ {X}ij b
(2)
o {X}kl

+Nme,ξ(2)

j δio {X}kl + {X}ij δkoN
me,ξ(2)

l

]}
∆ûkl (A.49)

∆ (δgN ) = δûij {∆ (δGN )}ijkl ∆ûkl (A.50)

A.3.2. Tangential slip

Based on Eq. (4.21) we can calculate δgT . As shown in Eq. (6.10) δgT and ∆gT are
equivalent. The values can be calculated in index notation as

δgT = −s̃(1)
k a

(2)
k δξ(2) = −s̃(1)

k a
(2)
k {X}ij δûij ∆gT = −s̃(1)

k a
(2)
k {X}kl ∆ûkl

δgT = {GT }ij δûij ∆gT = {GT }kl ∆ûkl (A.51)

A.3.2.1. Linearization of variation of tangential slip

The increment can be calculated based on Eq. (A.51) and we obtain

∆ (δgT ) = −∆s̃(1) · a(2) δξ(2) − s̃(1) ·∆a(2) δξ(2) − s̃(1) · a(2) ∆
(
δξ(2)

)
(A.52)

where we need the following expressions

∆s̃(1) = ∆

(
ã(1)

α̃(1)

)
=

∆ã(1)

α̃(1)
− ã(1)(

α̃(1)
)3 ∆ã(1) · ã(1) (A.53)

∆a(2) = b
(2)

∆ξ(2) + ∆u
(2)
,ξ (A.54)
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A.3. Averaged non-mortar side normal

Once again we can write the variation of tangential slip increment in index notation as

∆ (δgT ) = δûij

[
− Al a

(2)
k

α̃(1)
{X}ij +

ã
(1)
m a

(2)
m(

α̃(1)
)3 Al ã(1)

k

− {X}ij b
(2)
m s̃(2)

m {X}kl − {X}ij s̃
(2)
k Nme,ξ(2)

l

− {∆ (δX )}ijkl

]
∆ûkl

= δûij
{

∆ (GT )
}
ijkl

∆ûkl (A.55){
∆ (GT )

}
ijkl

is not symmetric for this formulation. The asymmetry vanishes as soon as we

assume that the mortar side tangent a(2) is parallel to the non-mortar side tangent ã(1).
As already mentioned in Section 3.3 this is an artificial asymmetry. But this formulation
keeps as much information from the discretized surface as possible.

A.3.3. Linearized virtual contact work

All the geometric properties are contained in {∆ (δGN )}ijkl, {∆ (δJ )}ijkl and the variational
values. We obtain the same result for the incremental virtual contact work as for the mortar
side normal field. Here the advantage of the chosen formulation can be seen. It was a goal
of this work to abstract the contact kinematics to insert nearly arbitrary normal field and
surface formulations.

A.3.3.1. Normal direction

∆
(
δAΠN

)
=

∫
�
−δλ̂Nj

{
φj

[
J (1) {GN}kl + gN {J }kl

] }
∆ûkl

−δûij
{

φl

[
J (1) {GN}ij + gN {J }ij

] }
∆λ̂Nl

−δûij
{

λN

[
{∆ (δGN )}ijkl J (1) + {∆ (δJ )}ijkl gN
+ {GN}ij {J }kl + {J }ij {GN}kl

] }
∆ûkl dγr

(A.56)

A.3.3.2. Tangential direction

Stick case

∆
(
δAΠCTST

)
=

∫
�
−δλ̂Tj

{
φj

[
J (1) {GT }kl + ∆tgT {J }kl

] }
∆ûkl

−δûij
{

φl

[
J (1) {GT }ij + ∆tgT {J }ij

] }
∆λ̂Tl

−δûij
{

λN

[
{∆ (δGT )}ijkl J (1) + {∆ (δJ )}ijkl ∆tgT

+ {GT }ij {J }kl + {J }ij {GT }kl
] }

∆ûkl dγr

(A.57)
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Slip case

∆
(
δAΠCTSL

)
=

∫
�

δûij

{
µλN sign(∆tgT ) {GT }ij J φl

}
∆λ̂Nl

+δûij

{
µλN sign(∆tgT ) {∆ (δGT )}ijkl J+

µλN sign(∆tgT ) {GT }ij {J }kl
}

∆ûkl dγr

(A.58)
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