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Abstract

Social tags provide an easy and intuitive way to annotate, organize and
retrieve resources from the Web. Promoted by several pioneering systems
such as Delicious, Flickr, and CiteULike, social tagging has emerged as one
of the most popular technologies of the modern Web.

The value of tags was specifically advocated for information systems
where the presence of tags made resources searchable and discoverable. While
tags helped to discover content with a standard keyword-search, the most
innovative feature of social tags was the ability to support browsing-based ac-
cess to information through so-called “tag clouds”. Effectively, tag clouds, are
a new “social” way to find and visualize information providing both: one-click
access to information and a snapshot of the “aboutness” of a tagged collec-
tion. Not unexpectedly, a large volume of research was devoted to algorithms
for better tag cloud visualization. Surprisingly, only little research has ques-
tioned the usefulness of tags for efficient information access. To the best of
our knowledge none of the previous works has studied the extent to which
tags and corresponding tag-constructs are useful for efficiently searching for
or navigating to the resources of an tag-based information system.

To that end, this dissertation aims at studying the utility of tags and
corresponding tag-constructs for efficient search and navigation in tagging
systems. We start in this field with a review of related work in this area
and present thereafter two studies that aim to assess the usefulness of tags
and tag clouds for the task of efficient search and navigation in tag-based
information systems. After that we explore the navigational differences of
tags compared to other tag-alike meta-data structures such as keywords and
query terms. Finally, we introduce a number of novel approaches that focus
on the improvement of the navigability of social tagging systems.

To the best of our knowledge this is the first work that extensively stud-
ies the utility of tags and corresponding constructs for efficient search and
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navigation and that presents a number of novel approaches that enhance the
navigability of social tagging systems.



Kurzfassung

Soziale Tags erlauben es, auf einfache und intuitive Art undWeise Ressourcen
im Web zu annotieren, zu organisieren und wieder zu finden, und wurden
durch mehrere Pioniersysteme wie zum Beispiel Delicious, Flickr und CiteU-
Like zu einer der populärsten Technologien im modernen Web der vergan-
genen Jahre.

Der Einsatz von Tags wurde im Speziellen für Informationssysteme be-
fürwortet, in denen die Vorhandensein von Tags das Auffindbarmachen von
Ressourcen erleichterte. Einerseits halfen Tags Inhalte mit einer Standard-
Schlüsselwortsuche zu finden, andererseits ermöglichten diese einen Browsing-
basierten Zugang zu Informationen über so genannte “Tag Clouds” zu schaf-
fen. Folglich werden Tag Clouds heutzutage als eine Art neuer “sozialer”
Zugang angesehen, um Informationen zu visualisieren. Es ist daher nicht
überraschend, dass in den vergangen Jahren viel Zeit und Energie in die
Erforschung besserer Tag Cloud Visualisierungsalgorithmen gesteckt wurde,
um den User dabei zu unterstüzen, Information einfacher wieder zu finden.
Trotz zahlreicher Veröffentlichungen in diesem Bereich existiert nur sehr
wenig Forschungsarbeit, welche belegt, dass Tags in der Form von Tag Clouds
auch einen effizienten Informationszugriff erlauben.

Das Ziel der vorliegenden Dissertation ist es deshalb, den Wert von Tags
und entsprechender Tag Konstrukte für den Task der effizienten Suche und
Navigation in Informationssystemen zu quantifizieren. Zu diesem Zweck
wird zum Einstieg in diese Dissertation eine ausführlichen kritischen Be-
gutachtung verwandter Arbeiten durchgeführt; darauf folgend werden zwei
Studien präsentiert, welche zum Ziel haben, den Nutzen von Tags und Tag
Clouds für den Task der effizienten Suche und Navigation in Tag-basierten
Informationssystemen zu evaluieren. Darauffolgend werden zwei weitere Stu-
dien vorgestellt mit dem Zweck, Unterschiede von Tags und verwandten
Metadaten-Strukturen, wie Schlüsselwörtern oder Suchtermen, in naviga-
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tionaler Hinsicht aufzuzeigen. Schließlich werden eine Reihe von neuartigen
Algorithmen zur Konstruktion von Tag Clouds und Hierarchien vorgestellt
und evaluiert, mit dem Hintergrund die Navigation in Sozialen Tagging Sys-
temen zu verbessern.

Diese Dissertation befasst sich erstmals mit der Frage, inwieweit sich
Tags und entsprechende Tag Konstrukte für eine effiziente Suche und Navi-
gation in Tagging Systemen eignen, und präsentiert bzw. evaluiert neue
Ansätze, welche es ermöglichen, die Navigation in Sozialen Tagging Systeme
zu verbessern.
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Part I

Overview and Scope of this
Dissertation





1
Introduction

1.1 Motivation

Recently, with the emergence of modern Web 2.0 applications such as Deli-
cious (http://delicious.com/) or Flickr (http://www.flickr.com/) social
tagging systems gained tremendously in popularity [96]. In these systems,
users are allowed to add simple keywords (=tags) without predefined vocabu-
lary to describe or categorize the resources. A subset of tagging systems com-
prising the tagging bookmarking services like Delicious, CiteULike (http://
www.citeulike.org/) or BibSonomy (http://www.bibsonomy.org/) have
received community focus due to ease of use and information discovery mech-
anisms. In these systems users assign tags to the addresses (URLs) of re-
sources, e.g. Web pages [50]. The weighted set of tags assigned to a resource
by all users within a system and visualized as a navigation support is called
the tag cloud. Effectively, tag clouds, are a “social” way to find and visualize
information providing both: one-click access to information and a snapshot
of the “aboutness” of a tagged collection. Not unexpectedly, a large vol-
ume of research was devoted to algorithms for better tag cloud visualization.
Surprisingly, only little research has questioned the usefulness of tags for effi-
cient information access. Hence, the question to what extent these browsing
constructs are useful in efficient information access remain largely elusive.
Even though studies have investigated the utility of tags to some extent
from an information-theoretic or search-interface perspective [32, 143, 122],
to the best of our knowledge there are no studies investigating the extent to
which tags and corresponding tag-constructs are useful for searching for or
efficiently navigating to the resources of tag-based information systems. To
that end, the purpose of this dissertation is to extensively study the utility
of tags (and related meta-data), tag clouds and tag hierarchies for the task
of search and efficient navigation in online tag-based information systems.

To start in this work, we provide in this first chapter an introduction to

http://delicious.com/
http://www.flickr.com/
http:// www.citeulike.org/
http:// www.citeulike.org/
http://www.bibsonomy.org/
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the concept of tagging, tagging systems, navigation in such systems and fi-
nally outline the problem statement, the research questions and the structure
of this work.

1.2 Social Tagging

Tagging describes the process to apply short strings, terms or words to dig-
ital resources, such as images, videos, books, etc. in a system [79]. These
short character sequences are typically referred to as tags [151, 96]. Tagging
is typically performed to describe or categorize content for later information
retrieval [47, 81, 105, 127]. Hence, tagging is very related to the process of
keyword application. While traditional classification systems rely on prede-
fined or controlled vocabulary, tagging allows the users to assign tags in a
free and unbound manner [79].

The process for tag application can be either collaborative or non collab-
orative, which is depended on the system that supports tagging. In a system
that supports collaborative tagging many users are enabled to apply tags
to any resource of the system [47], while in a non-collaborative environment
only a single user can annotate certain resources.

We speak about social tagging if more than one user is accountable for
the tag application process in the system [47]. A system that enables social
tagging, is usually referred to as a social tagging system.

1.3 Social Tagging Systems

In the past, social tagging systems were typically associated with online
bookmarking systems such as Delicious or CiteULike where people shared
their bookmarked resources with others over the Web. With the emergence
of social platforms such as Flickr or LastFM which integrated tagging func-
tionality primarily to enrich online media content with lightweight meta-data
for better information retrieval this paradigm changed. Nowadays, the term
social tagging systems is usually referred to any system that provides social
tagging functionality either as a main feature or as a supplementary func-
tion. In the following, we give a short overview of the most prominent tagging
systems currently existing and shortly outline their domains (cf. [79]):

Online Bookmarking: The most popular tagging system is the on-
line bookmarking site Delicious (http://www.delicious.com). Originally
founded in 2003 as a social bookmarking service, Delicious was acquired from
Yahoo! in early 2011 by AVOS, a company helmed by YouTube founders
Chad Hurley and Steve Chen. The site was rebuilt from the ground up and
re-launched in fall 2011 with a new focus on curation and discovery [35]. By
the end of 2008, the service claimed more than 5.3 million users and 180
million unique bookmarked URLs [150]. In Delicious a tag is referred to as

http://www.delicious.com
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the label that describes the bookmark that is shared over the platform. The
bookmark itself is stored in the users own library but is accessible through
tags for all user’s of the delicious platform.

Online Photo Sharing: Another very popular tagging system is the on-
line photo sharing system Flickr (http://www.flickr.com/) where users are
able to upload images and organize or share their photos with tags. Within
Flickr tags are used to describe the contents of pictures, express feelings or
opinions or to catalog photos into events [79]. Other popular online sys-
tems in this context are Google Picasa (http://picasaweb.google.com/)
or 500px (http://www.500.px.com/).

Online Bibliographic Management: Other popular tagging systems,
especially well-known in the scientific domain, are the online bibliographic
management systems CiteULike (http://www.citeulike.org/), Bibsonomy
(http://www.bibsonomy.org/) or Mendeley (http://www.mendeley.com/).
They support the users in writing scientific articles and manage their refer-
ences. Tags in this context are typically used for categorization and later
information retrieval.

Online Music: Well known advocates of tagging systems in the music
domain are the online platform Youtube (http://www.youtube.com/) and
LastFM (http://www.lastfm.com/). Similar to the image domain, tags in
this context are usually used to enrich the content with additional meta-data
information and for better information retrieval.

Online Libraries and Stores: Another popular tagging system is the
online platform LibraryThing (http://www.librarything.com/) support-
ing the user to organize her online book library through tags. In the domain
of online stores Amazon (http://www.amazon.com/) is the most popular
example of a tagging system providing its users with the functionality to an-
notate products with tags. Again, the main purpose of tags in this context
are to enhance the information retrieval properties of these systems.

Online Social Networks: Last but not least we describe popular exam-
ples of tagging systems in the online social network domain. Online social
networks typically provide tagging of their contents through the so-called
hash-tags. Hash-tags (e.g. #tugraz) are usually used inline a message or a
description to stress that the content belongs to a specific stream, topic or
event [79]. Popular examples of such systems are for instance Twitter (http:
//www.twitter.com/), Google+ (https://plus.google.com/) or Instagram
(http://instagr.am/).

1.4 Navigation in Tagging Systems

The main navigational structure in tagging systems are tags. Exceptions
in this context are platforms such as Amazon or LastFM which integrate
tagging functionality as a supplementary feature. In this platforms tags

http://www.flickr.com/
http://picasaweb.google.com/
http://www.500.px.com/
http://www.citeulike.org/
http://www.bibsonomy.org/
http://www.mendeley.com/
http://www.youtube.com/
http://www.lastfm.com/
http://www.librarything.com/
http://www.amazon.com/
http://www.twitter.com/
http://www.twitter.com/
https://plus.google.com/
http://instagr.am/
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usually serve as additional navigational element. No matter how prominent
tagging features are used, to navigate from resource A to resource B within
a tagging system, the user clicks on a tag tA applied to A retrieving a list
of results where the reference rB of B is shown. By clicking on rB the user
is then referred to B (see Figure 1.1). Depending on the contents of the
tagging system a resource can be either a bookmark, an image, a movie file,
a text document, etc.

For a better user interface experience tags are typically displayed as tag
clouds. A tag cloud is a browsing interface that typically shows the top
most N tags of a resource (= resource-specific tag cloud), a set of resources
(= related tags tag cloud) or the resources of the whole tagging system (=
global tag cloud). The tags in the tag clouds are usually sorted by alphabet
and boosted in their font size according to the number of times the tag
was applied to the resources. Today a large variety of tag cloud calculation
algorithms exist. Some of them display tags in different colors, some of them
cluster tags into categories or according to their semantic meaning, while
others manipulate the font size, the intensity of the tags or simply display the
tags as a simple list in alphabetic order (cf. [14, 114, 54, 68, 121, 153, 51, 76]).
The decision for an optimal layout is thereby driven by the expected user
goals [93]. No matter how tag clouds are calculated, the process of navigation
with these browsing constructs is the same as navigating with tags. By
clicking on a tag in the tag cloud the user is prompted with a result list
containing resources related to this tag.

In Figure 1.1 we present an example of tag-based navigation in Flickr
and Delicious. While Flickr displays the tags in resource-specific tag clouds,
Delicious presents tags in a list view.

1.5 Problem Statement and Research Questions

This work aims to investigate the utility of tags for the task of search and
navigation in social tag-based information systems formally introduced as
social tagging systems. While related work in this area has mainly focused
on the visual aspects of tags [14, 114, 54, 68, 121, 7, 153, 51, 76] or has
investigated tags to some extent from an information-theoretic [32, 143] or
search-interface perspective [122], to the best of our knowledge none of the
previous works has studied the extent to which tags are useful in efficiently
searching and navigating the resources of a tagging system.

Problem Statement
The problem we are facing in this dissertation is the lack of knowledge
about the usefulness and the efficiency of tags and corresponding state-
of-the-art tag-constructs such as tag clouds for the task of search and
navigation in tagging systems.
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(a) Tag-based navigation in Flickr

(b) Tag-based navigation in Delicious

Figure 1.1: Examples of tag-based navigation.

Thus, given this problem statement, the following research questions were
defined:

Research Question 1
To what extent are tags/tag clouds useful for efficient navigation in
tagging systems?

The first research question we ask in this dissertation is the issue to what ex-
tent tags are useful for efficient navigation in tagging systems. Since related
work has only partly answered this question from an information-theoretic
perspective on one single tag dataset [32], we are interested in examining
this question at a much deeper level. For that purpose we study the util-
ity of tags from a network-theoretical perspective and overall three different



26 Introduction

large-scale tag datasets, to show whether or not tags comprise efficient nav-
igational properties. While studying tags from a navigational perspective,
we also rise the question to what extent tag clouds are useful for navigation.

Research Question 2
To what extent are tags/tag clouds useful for search?

After studying the utility of tags and tag clouds for the task of navigation in
tagging systems, we are interested in answering the question to what extent
tags/tag clouds are useful for the task of search in tagging systems. Since
related work in this area is rare [122] and has mostly answered this question
from a information-theoretic perspective we perform a extensive user study
that explores the usefulness and performance of tags in search interfaces.

Research Question 3
To what extent are tags/tag clouds more useful/efficient for search/
navigation than other tag-alike meta-data such as keywords or search
query-terms?

Another question which we are interested in to answer in this dissertation is
the question to what extent tags are more useful for navigation than tag-alike
meta-data such as keywords or query terms. Since tags are very related to the
notation of keywords and since related research has shown that tags are in
their structure comparable to the so-called query tags harvested from search
query logs [15], we are interested in studying the navigational similarities or
differences of tags compared to these tag-alike meta-data structures.

Research Question 4
To what extent can we build better tag-based browsing constructs that
support efficient search/navigation in tagging systems?

Since our research on tag-based browsing showed that tag clouds are lim-
ited in their functionality to support efficient search and navigation of the
resources of a tagging system, we are interested in answering the question to
what extent better tag-based browsing constructs can be constructed that
support efficient search and navigation in tagging systems.

1.6 Organization of this Dissertation

This dissertation is based on a number of articles published/presented in
several international journals/conferences. In the following, papers which
are included in this dissertation are listed:

1. Helic, D., Trattner, C., Strohmaier, M. and Andrews, K. 2010. On
the Navigability of Social Tagging Systems. In Proceedings of the Sec-
ond IEEE International Conference on Social Computing (SocialCom
2010), Minneapolis, Minnesota, USA, pp. 161-168.
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2. Trattner, C., Lin, Y., Parra, D., Yue, Z., Real, W. and Brusilovsky, P.
2012. Evaluating Tag-Based Information Access in Image Collections.
In Proceedings of the 23rd ACM Conference on Hypertext and Social
Media (HT 2012), ACM, New York, NY, USA, pp. 113-122.

3. Trattner, C. 2011. Linking Related Content in Web Encyclopedias with
search query tag clouds. In the International Journal on WWW/Inter-
net, Volume 9, Issue 2 (IJWI), pp. 33-55.

4. Helic, D., Körner, C., Granitzer, M., Strohmaier, M. and Trattner,
C. 2012. Navigational Efficiency of Broad vs. Narrow Folksonomies.
In Proceedings of the 23rd ACM Conference on Hypertext and Social
Media (HT 2012), ACM, New York, NY, USA, pp. 63-72.

5. Trattner, C., Helic, D. and Strohmaier, M. 2011. On the Construction
of Efficiently Navigable Tag Clouds Using Knowledge From Structured
Web Content. In the Journal of Universal Computer Science (JUCS),
Volume 17, Issue 4, pp. 565-582.

6. Trattner, C. 2011. Improving the Navigability of Tagging Systems with
Hierarchically Constructed Resource Lists: A Comparative Study. In
Proceedings of the 33rd International Conference on Information Tech-
nology Interfaces (ITI 2011), IEEE, Cavtat / Dubrovnik, Croatia, pp.
173-178.

7. Trattner, C., Körner, C. and Helic, D. 2011. Enhancing the Naviga-
bility of Social Tagging Systems with Tag Taxonomies. In Proceedings
of the 11th International Conference on Knowledge Management and
Knowledge Technologies (I-Know 2011). ACM, New York, NY, USA,
pp. 18:1-18:8.

8. Trattner, C. 2011. Improving the Navigability of Tagging Systems with
Hierarchically Constructed Resource Lists and Tag Trails. In the Jour-
nal of Computing and Information Technology (CIT), Volume 19, Issue
3, pp. 155-167.

A complete list of co-authored papers is included in Appendix B.

1.6.1 Contribution to the Papers

In the following section the author describes in detail the contributions of
other researchers and his own contribution to the papers accumulated in this
dissertation.

• Helic, D., Trattner, C., Strohmaier, M. and Andrews, K. 2010. On
the Navigability of Social Tagging Systems. In Proceedings of the Sec-
ond IEEE International Conference on Social Computing (SocialCom
2010), Minneapolis, Minnesota, USA, pp. 161-168.
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The idea for writing the paper was initiated by Denis Helic, Markus Strohmaier
and the author. The experiments for writing the paper were conducted by
the Denis Helic and the author. The discussions about the results and the
interpretations were conducted by Denis Helic, Markus Strohmaier and the
author in equal parts. The paper was mainly written by Denis Helic, the
author and Markus Strohmaier and to some extent by Keith Andrews.

• Trattner, C., Lin, Y., Parra, D., Yue, Z. and Brusilovsky, P. 2012.
Evaluating Tag-Based Information Access in Image Collections. In
Proceedings of the 23rd ACM Conference on Hypertext and Social
Media (HT 2012), ACM, New York, NY, USA, pp. 113-122.

The idea for writing the paper was initiated by the author and was mainly
discussed with Yiling Lin. The user study was conducted to two thirds by the
first author and to one third by Yiling Lin and Zhen Yue. The three search
interfaces used for the user study were implemented by the author. The
paper was written mainly by the author. Peter Brusilovsky contributed in
writing the abstract, the introduction and the conclusions. Furthermore, he
supported the author and Yiling Lin with many fruitful discussions during
the whole research process. Yiling Lin contributed in writing the related
work section. Denis Parra conducted the statistical analysis and supported
the author with writing the result section of the paper.

• Trattner, C. 2011. Linking Related Content in Web Encyclopedias
with search query tag clouds. In the International Journal onWWW/In-
ternet, Volume 9, Issue 2, pp. 33-55.

The idea for the paper was initiated by the author. All experiments as well
as writing the paper were conducted by the author.

• Helic, D., Körner, C., Granitzer, M., Strohmaier, M. and Trattner,
C. 2012. Navigational Efficiency of Broad vs. Narrow Folksonomies.
In Proceedings of the 23rd ACM Conference on Hypertext and Social
Media (HT 2012), ACM, New York, NY, USA, pp. 63-72.

The idea for writing the paper was discussed among all authors in equal parts.
The author contributed by writing the paper as well as by the implementa-
tion of a prototype that supported the authors with a deeper understanding
in interpreting the problem statement. The experimental results presented
in the paper were conducted by the first and second author.

• Trattner, C., Helic, D. and Strohmaier, M. 2011. On the Construc-
tion of Efficiently Navigable Tag Clouds Using Knowledge From Struc-
tured Web Content. In the Journal of Universal Computer Science,
Volume 17, Issue 4, pp. 565-582.
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The paper was initiated and mainly written by the author. All the experi-
ments in the paper were conducted by the author. Denis Helic and Markus
Strohmaier contributed by writing the abstract, the introduction and the
conclusions part of the paper.

• Trattner, C. 2011. Improving the Navigability of Tagging Systems
with Hierarchically Constructed Resource Lists: A Comparative Study.
In Proceedings of the 33rd International Conference on Information
Technology Interfaces (ITI 2011), IEEE, Cavtat / Dubrovnik, Croatia,
pp. 173-178.

The idea for writing the paper was initiated by the author. Experiments as
well as the writing of the paper was done by the author. Denis Helic and
Keith Andrews supported the author with discussions about the user study
procedure.

• Trattner, C., Körner, C. and Helic, D. 2011. Enhancing the Naviga-
bility of Social Tagging Systems with Tag Taxonomies. In Proceedings
of the 11th International Conference on Knowledge Management and
Knowledge Technologies (I-Know 2011). ACM, New York, NY, USA,
pp. 18:1-18:8.

The idea for writing the paper was initiated by the author. Experiments as
well as most of the writing of the paper was done by the author. The second
and the third author contributed by writing the abstract, the conclusions
and the related work section.

• Trattner, C. 2011. Improving the Navigability of Tagging Systems
with Hierarchically Constructed Resource Lists and Tag Trails. In the
Journal of Computing and Information Technology, Volume 19, Issue
3, pp. 155-167.

The idea for writing the paper was initiated by the author. Experiments as
well as writing was done by the author. Denis Helic supported the author
with discussions about the experimental setup.

1.6.2 Detailed Structure of this Dissertation

This dissertation at hand is detailed into 5 parts and 10 chapters. Below a
brief overview of the contents of each chapter and a graphical illustration of
the structure of this dissertation which can be found in Figure 1.2.

Chapter 1
Introduction
We present the motivation for this dissertation, formalize the problem
statement and research questions.
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Chapter 2
Related Work
We provide a survey of related work.

Chapter 3
On the Navigability of Social Tagging Systems
We perform a study on tags and tag clouds and their utility for efficient
navigation in tagging systems.

Chapter 4
Evaluating Tag-Based Information Access in Image Collec-
tions
We evaluate the utility of tags and tag clouds for search in tag-based
information systems.

Chapter 5
Linking Related Content in Web Encyclopedias with Search
Query Tag Clouds
We introduce an approach that links related content in information
systems via query term clouds and evaluate the extent to which query
tags are more useful for navigation than tags collected by users.

Chapter 6
Navigational Efficiency of Broad vs. Narrow Folksonomies
We study the differences and similarities of broad and narrow folk-
sonomies for the task of navigation.

Chapter 7
On the Construction of Efficiently Navigable Tag Clouds Us-
ing Knowledge from Structured Web Content
We introduce a novel tag cloud calculation algorithm that aims to en-
hance the navigability of tagging systems.

Chapter 8
Enhancing the Navigability of Tagging systems with Tag Hi-
erarchies
We discuss the potentials and limitations of tag hierarchies for the task
of navigation in tagging systems. Furthermore, we introduce a novel
tag hierarchy construction algorithm that supports more efficient nav-
igation than traditionally constructed tag taxonomies.

Chapter 9
Improving the Navigability of Tagging Systems with Hierar-
chically Constructed Resource Lists and Tag Trails
We introduce and evaluate a generic tag cloud construction algorithm
that aims to support efficient navigation in tagging systems.



1.6 Organization of this Dissertation 31

Chapter 10
Conclusions and Future Directions
We summarize the main contributions of this dissertation and present
the answers to our research questions. Furthermore, future directions
of this work are discussed.

Summary & Outlook  
 
 

 Enhancing the 
Navigability of 
Social Tagging 

Systems with Tag 
Taxonomies 

Solution 
 Improving the 
Navigability of 

Tagging Systems 
with Hierarchically 

Constructed 
Resource Lists: A 

Comparative Study 

 On the 
Construction of 

Efficiently 
Navigable Tag 
Clouds Using 

Knowledge From 
Structured Web 

Content 

 Improving the 
Navigability of 

Tagging Systems 
with Hierarchically 

Constructed 
Resource Lists and 

Tag Trails 

Structure of this Dissertation 

RQ3 

RQ4 

Overview & Scope 

Evaluation I 

On the 
Navigability of 
Social Tagging 

Systems 

RQ1 
RQ2 

Assessing the Utility of Tags for 
Efficient Search and Navigation 

Evaluating Tag-
Based Information 

Access in Image 
Collections  

Answer to Research Question, Limitations and Future Work 

Evaluation II 
 Navigational 

Efficiency of Broad 
vs. Narrow 

Folksonomies 

Motivation, Problem Statement, Research Questions and  Related Work 

 Linking Related 
Content in Web 

encyclopedias with 
Search Query Tag 

Clouds 
Comparing Tags with Tag-Alike 
Meta-Data 

Build Efficiently Navigable  
Tag-Based Browsing  
Constructs 

Figure 1.2: Structure of this dissertation and mapping of our contributions to the
corresponding parts and research questions (cf. [79]).
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2
Related Work

This chapter aims to give a broad but incomplete overview of related work.
For more details, please see the corresponding related work sections of the
papers included in this dissertation.

2.1 Analysis of Social Tagging Systems

The first analysis of social tagging systems was conducted by Hammond et
al. In their work [50] they review nine different social tagging systems such
as Delicious, CiteULike, Flickr and others and mainly analyze the features,
the popularity and size of these systems.

The most cited work on the analysis of social tagging systems was con-
ducted by Golder and Huberman in 2005. In their paper [47] the authors
analyze the social bookmarking system Delicious where they discover “regu-
larities in user activity, tag frequencies, kinds of tags used, bursts of popu-
larity in bookmarking and a remarkable stability in the relative proportions
of tags within a given URL” [47]. Furthermore, they present “a dynamical
model of collaborative tagging that predicts these stable patterns in tagging
systems and relates them to imitation and shared knowledge” [47].

Subsequent work by Marlow et al. [96] analyzes the tagging system Flickr
and Delicious. In their work they introduce another model which gives in-
sight into a simple taxonomy of incentives and contribution models within
these systems [96].

Another impacting work in this area is the study of Halphin et al. [48].
Analyzing the complex dynamics of tagging systems they show that the dis-
tribution of the frequency of use of tags for popular sites with a long history
(many tags and many users) can be described by a power law distribution
[48].

The first work that analyzed tagging systems from a network-theoretic
perspective is a study conducted by Shen and Wu [120]. By evaluating a
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crawl of the Delicious tagging system they show that tagging systems form
networks that have scale-free and small world properties [120].

Another interesting work in this context is a study by Cattuto et al.
In their work [31] they analyze the main network characteristics of two of
these systems – Delicious and BibSonomy. To the best of our knowledge,
they are the first who consider the underlying data structures of tag datasets
as tripartite hypergraphs (as also considered in our dissertation) and adapt
classical network measures such as characteristic path length and clustering
coefficient to them [31]. Furthermore, they introduce a network of tag co-
occurrence and investigate some of its statistical properties. Last but not
least, they show that “simple statistical indicators unambiguously can spot
non-social behavior such as spam” [31].

The last work to be mentioned in the context of social tagging system
analysis is a study of Millen et al. In their paper [101] they provide results
of an eight week field trial study of the enterprise social bookmarking service
Dogear, including a description of user activities which were based on a
log file analysis. Furthermore, their paper includes results of a survey study
that focuses on the benefits and limitations of the service, including questions
that reveal the usefulness of tag clouds for navigating the system [101]. Their
preliminary results show a positive trend towards the usage of tags and their
usefulness [101].

2.2 Studies on the Utility of Tags for Navigation

Studies on the utility of tags for navigation are rare. To the best of our
knowledge there is only one study that investigates tags from this kind of
perspective. In [32] Chi and Mytkowicz analyze the navigability of tags from
a information-theoretic perspective and introduce the measure of entropy
and conditional entropy to determine the navigability of tagging systems. By
investigating the tags of the tagging system Delicious over several weeks, they
find that tagging system get harder to navigate over time [32]. The reason for
this is that the number of tags does not grow hand in hand with the number
of resources [32]. Contrary to the work of Chi and Mytkowicz, we study in
this dissertation not only one tagging system but many different tag datasets.
Furthermore, we do not only focus on the navigability of tags but also focus
on the evaluation of tag-based browsing constructs such as tag clouds or
tag hierarchies and propose new methods and algorithms to enhance the
navigability of social tagging systems. Last but not least, we study the
navigability of tagging systems from a network-theoretic perspective as well
as conducted user studies where possible to justify our findings.
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2.3 Comparative Studies on Tags with other Kinds
of Meta-Data

Another area of research related to our own work are studies that compare
tags with other kinds of meta-data. Since we are interested in investigat-
ing the navigational efficiency of keywords and query terms, we list shortly
related work in this area.

One of the earliest works in this context is a study conducted by Krause
et al. In their research article [83] they compare tagging data from Delicious
with query log data from MSN and AOL from a network-theoretic perspec-
tive. They show that “both graph structures have small world properties in
that they exhibit relatively short shortest paths and high clustering coeffi-
cients” [83]. Finally, their analysis of the strength in tag-tag co-occurrence
network reveals that folksonomies and logsonomies have very similar network
properties [83].

In a subsequent work Benz et al. [15] extends the work of Krause et
al. by additionally studying the similarities and dissimilarities of the seman-
tic structure of folksonomies and logsonmies. They find evidence that log-
sonomies show a similar semantic structures as tagging data (=folksonomies)
[15].

Another interesting study in this context is a work conducted by Hey-
mann et al. In their work [63] they investigate the differences between library
terms and tags. For that purpose the authors conduct a series of experiments
that suggest that tagging systems tend to be at least somewhat consistent,
high quality, and complete [63]. As datasets for their experiments they
utilize a tag dataset from tagging systems LibraryThing and library terms
obtained from the Library of Congress. Overall, Heymann et al. conclude in
their work as follows: “...tags seem to do a remarkably good job of organiz-
ing data when viewed either quantitatively in comparison to “gold standard”
library metadata or qualitatively as viewed by human evaluators” [63].

In this context, the probably most related work to our own one is a
study conducted by Antonellis et al. In their work [9] they introduce a
novel browser plug-in that generates a list of the most relevant tags and
a list of the most related documents to these tags utilizing the users tags,
tf ∗idf extracted keywords or query terms. To that end they propose a novel
greedy-based tag selection and link selection algorithm that maximizes the
navigational gain of a Web site [9]. In a number of experiments they show
that query tags are a better source for navigation than tags collected from
users or keywords extracted from page-text [9].
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2.4 Studies on the Utility of Tags to Enhance Web
Search

Another field of research related to our dissertation are studies on the utility
of tags to enhance Web Search.

In [13] Bao et al. studies social tagging in the domain of Web search. In
their work they investigate the extent to which social tags from the Delicious
platform can enhance Web Search [13]. They find that Web search can ben-
efit from social tags in two aspects (1) good summarization of corresponding
web pages and (2) indicator of the popularity of web pages [13].

Interesting work in this area has also been conducted by Heymann et al.
in 2008. In their work [1], the authors present statistical results of a crawl of
over 40 million bookmarks from Delicious and show how many bookmarks
exist, how fast they grow and how useful they are to improve Web search.
They find that “tags occur in over 50% of pages and in only 20% of the cases
they do not occur in the page text” [1]. The conclusions they draw from
these results are that tags can provide additional and meaningful data not
available in other sources, though the impact for Web search may be not so
high due to the lack coverage of tags over the whole Web graph [1].

In [40] Pavel et al. studies the extent to which social annotations can im-
prove the quality of intranet search. In their work they propose two ways to
obtain user annotations, using explicit and implicit feedback, and show how
they can be integrated into a search engine [40]. Preliminary experiments of
the authors show that social annotations improve the quality of the search
results [40].

One of the most cited studies in the context of Web search and tagging
is a study conducted by Bischoff et al. In their work [20] they investigate
the utility of tags of three different tagging systems such as Delicious, Flickr
and LastFM to search Web content. They find evidence that 50% of tags in
the music domain bring new information to the resources [20]. By classifying
the tags into several different categories and comparing them with data from
query logs, they furthermore observe that “most of the tags can be used for
search, and that in most cases tagging behavior exhibits approximately the
same characteristics as searching behavior” [20].

2.5 Studies on Tag Cloud Construction and Visu-
alization

Another question we would like to answer in this dissertation is the issue
to what extent better tag-based browsing constructs can be developed to
support more efficient navigation in tagging systems than current state-of-
the-art approaches. In this section we list the most relevant studies related
to our own work.
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One of the most cited and earliest papers in this regards is a paper by
Hassan-Montero and Herrero-Solana. In their article [52] they present a novel
approach for tag selection in tag clouds by proposing “a clustering algorithms
for visual layout, with the aim to improve the browsing experience” of the
user. As evaluation metrics they introduce the notation of tag coverage
and overlap. Their results show that “the presented approach reduces the
semantic density of tags and improves the visual consistency of tag cloud
layout” [52].

In subsequent work Kautz et al. investigate information visualization in
the form of tag clusters using similarity measures such as Dice, Jaccard and
Cosine similarity [77]. Based on a user study, they find that tag clusters
are perceived as more useful, more trustworthy, and are more enjoyable than
traditional tag cloud layouts [77].

Another study in this context is a paper by Rivadeneira et al. In their
work [113] they present two studies. In the first one they compare tag layout
along three dimensions: tag size, tag proximity and tag position [54]. They
find “significant effects on the tag size and the location of the tags (those in
the upper left are recalled better by the 13 study participants, as were those
displayed with larger tags)” [54]. The second study presented in the paper
includes 11 participants and a gisting task that compares four tag cloud
layout algorithms with each other. Rivadeneira et al. find that “participants
perform significantly better at gisting when using the simple vertical list with
no font size variation” [54].

One of the largest studies in this the context of tag cloud visualization is a
work by Halvey and Keane [49]. In their work they perform a user study with
62 users to investigate six tag cloud layout algorithms [49]. As evaluation
method they use a selection task where users have to find a randomly chosen
item within the tag clouds. The results of the study are the following [49]:

• “Alphabetization can aid users to find information more easily and
quickly

• Font size is very important for how quickly and easily users find infor-
mation

• The Position of tags is also very important by terms of information
re-finding

• It appears that users scan lists and clouds rather than read them”

In [68] Kaser and Lemire study state-of-the-art tag cloud display algo-
rithms and propose new models and algorithms to improve the display of
tags that consist of in-line HTML, as well as algorithms that use nested
tables considering tag relationships. Their results show that the proposed
algorithms perform better by terms of the number of tags displayed in a tag
cloud than others [68].
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Another interesting work in this context is a study by Seifert et al. In
their work [117] they propose a family of novel algorithms for tag cloud
layout. In an an extensive user study and a technical evaluation they show
the high performance of their idea. The algorithms introduced in the paper
“address issues found in many common approaches, such as large whitespaces,
overlapping tags and restriction to specific boundaries” [117]. “The layouts
computed by these algorithms are compact and clear, have small whitespaces
and may feature arbitrary convex polygons as boundaries” [117].

The last work to be mentioned in this area is a recent study conducted
by Venetis et al. In their work [143] they analyze a set of tag selection
algorithms that are used in current sites such as Delicious or Flickr. In order
to evaluate the results of these algorithms, they introduce a synthetic user
model that captures the “usefulness” of a tag cloud by terms information
retrieval properties [143]. In a small user study they show that the model is
a relatively good predictor for tag clouds humans prefer [143]. Contrary to
our own work, they evaluate tag clouds from a information-retrieval point
of view, i.e. they use tag clouds for search results summarization. In this
dissertation, we are instead interested in exploring the usefulness of tags and
tag clouds for the process of efficient search and navigation.

2.6 Studies on the Usefulness of Tags for Search

As outlined in the introductory part of this dissertation we are interested in
studying the utility of tags and corresponding constructs for search. To that
end we list the most related papers relevant to this topic in this section.

One of the earliest studies in this context is a study by Kuo et al. In
their work [85], they analyze the utility of tag clouds for the summarization
of search results from queries over a biomedical literature database. “The re-
sults of a user study comparing the tag-cloud summarization of query results
with the standard result list provided by the system indicates that the tag
cloud interface is advantageous in presenting descriptive information and in
reducing user frustration” [85]. However, it is “less effective at the task of
enabling users to discover relations between concepts” [85].

In subsequent work Koutrika et al. [82] introduce a framework that
generates word clouds from search results trough the process of named-entity
extraction. They also propose several algorithms for generating word clouds
to increase the capability of the word clouds to improve search [82]. In a
user study they show the high performance of their approach compared to
state-of-the-art search interfaces.

One of the most prominent studies in this kind of field is the paper of
Sinclair and Cardew-Hall. In their work they investigate the usefulness of
tag clouds in terms of information seeking by analyzing the usage of tag
clouds in a traditional search interface [122]. They find that subjects prefer



2.7 Studies on Extracting Hierarchical Structures from Tagging
Data 39

tag clouds when the search task is more general, but favor issuing search
queries, when more specific information is needed [122].

Interestingly, and compared to our own work none of the studies shows
the utility of tags for search in two types of search behavior, look-up search
and exploratory search. Furthermore, none of the studies reviles the extent to
which different tag display formats affects the usefulness of tags for efficient
search and information retrieval in tag-based information systems.

2.7 Studies on Extracting Hierarchical Structures
from Tagging Data

Another related area of research is the work on automatic hierarchy extrac-
tion from tagging data. Since we are also interested in this dissertation in
creating tag-based constructs that allow efficient navigation of the resources
of a tagging system, we present in this section the most relevant papers on
the extraction of hierarchical structures from tagging data, which typically
represent a good way to navigate a large collection of items in an efficient
manner.

One of the first studies in this context is the work of Heymann et al. [62].
In their work they show how to convert a large corpus of Delicious tags
into a tag hierarchy. The groundbreaking idea of their approach is to model
a tagging data as a graph and to use centrality measures to extract a tag
hierarchy from this graph [62]. In subsequent work Schmitz [116] introduces
an algorithm that automatically generates a taxonomy from Flickr. Contrary
to the work of Heymann et al. the authors introduce an algorithm that is
based on a subsumbtion-model [116]. In a number of illustrations, they show
that the approach produces tag taxonomies which are semantically more
sound than the hierarchies created with the algorithm of Heymann et al
[116].

In [90] Li et al. introduce a novel algorithm namely Effective Large
Scale Annotation Browser (ELSABer), to browse large-scale social annota-
tion data. The novelty of the approach is the idea to generate hierarchical
structures from tagging data through simple measures such as tag coverage
or intersection-ratio which can be computed easily to allow efficient top-down
browsing of large-scale tag datasets [90].

Plangprasopchok et al. [109] propose another hierarchy generation algo-
rithm based on the examination of user-defined relations within a tagging
system. In another work Solskinnsbakk et al. [124] constructed tag hierar-
chies using association rule mining of the corresponding tag set. Last but not
least, in Kiu and Tsui [70] the authors introduced TaxoFolk - an algorithm
which integrates tags and resources into a taxonomy by applying various
data-mining techniques such as formal concept analysis.

Interestingly, and contrary to our work, none of these previous approaches
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examine the implications the resulting structures have on the navigability of
the system.

2.8 Studies on Tagging Motivation and Behavior

Last but not least we briefly review recent studies on tagging behavior and
motivation.

Tagging motivation was been studied by Heckner et al. In their work [55]
they present results of a user study with 149 subjects to investigate the moti-
vation for tagging in popular tagging systems including Flickr, Youtube, De-
licious and Connotea. Their study reveals that tagging is performed mainly
for “personal information management” and “resource sharing” [55]. Another
prominent work in this area is a study conducted by Ames and Naaman ex-
amining the motivation for tagging on Flickr platform. In their work [6]
they interviewed users to gain deeper insights in the motivations of people
for tagging. One of the most remarkable result of their study is a taxonomy
of the user’s tagging motivation which has been cited more than 480 times
[6].

Tagging behavior was extensively studied by Strohmaier et al. [127]. By
analyzing a number of tagging datasets such as Flickr, Delicious, CiteUlike,
etc. they find evidence that users can be classified into categorizers and
describers [127]. In subsequent work [81] they investigate the tagging system
Delicious in more detail and define a number of measures to identify these
two types of user automatically.



Part II

Evaluation I: Assessing the
Utility of Tags for Efficient
Search and Navigation

To what extent are tags/tag clouds useful for
efficient navigation? To what extent are tags/tag

clouds useful for search?





3
On the Navigability of Social Tagging

Systems

This chapter is based on the paper “On the navigability of Social tagging
systems” which was presented at the Second IEEE International Conference
on Social Computing in 2010.

In detail, this chapter deals with the wide-held believe that tags and
tag clouds respectively facilitate efficient navigation in tagging systems. To
verify this assumption we model navigation in tagging systems as a bipartite
graph of tags and resources and then simulate the navigation process in such
a graph. Our results show that tags/tag clouds spawn networks which are
indeed efficiently navigable. However, taking user interface decisions such
as “pagination” combined with reverse-chronological listing of resources into
account reveals that tag clouds are significantly impaired in their potential
to serve as a useful tool for navigation. Based on our findings, we identify
a number of avenues for further research and the design of novel tag cloud
construction algorithms.

The original contribution was published in the proceedings of the confer-
ence and can be found in [12].

3.1 Abstract

It is a widely held belief among designers of social tagging systems that
tag clouds represent a useful tool for navigation. This is evident in, for
example, the increasing number of tagging systems offering tag clouds for
navigational purposes, which hints towards an implicit assumption that tag
clouds support efficient navigation. In this paper, we examine and test this
assumption from a network-theoretic perspective, and show that in many
cases it does not hold. We first model navigation in tagging systems as
a bipartite graph of tags and resources and then simulate the navigation
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process in such a graph. We use network-theoretic properties to analyze the
navigability of three tagging datasets with regard to different user interface
restrictions imposed by tag clouds. Our results confirm that tag-resource
networks have efficient navigation properties in theory, but they also show
that popular user interface decisions (such as “pagination” combined with
reverse-chronological listing of resources) significantly impair the potential of
tag clouds as a useful tool for navigation. Based on our findings, we identify
a number of avenues for further research and the design of novel tag cloud
construction algorithms. Our work is relevant for researchers interested in
navigability of emergent hypertext structures, and for engineers seeking to
improve the navigability of social tagging systems.

3.2 Introduction

In social tagging systems such as Flickr and Delicious, tag clouds have
emerged as an interesting alternative to traditional forms of navigation and
hypertext browsing. The basic idea is that tag clouds provide navigational
clues by aggregating tags and corresponding resources from multiple sources,
and by displaying them in a visually appealing fashion. Users are presented
with these tag clouds as a means for exploring and navigating the resource
space in social tagging systems.

While tag clouds can potentially serve different purposes, there seems to
be an implicit assumption among engineers of social tagging systems that
tag clouds are specifically useful to support navigation. This is evident in the
large-scale adoption of tag clouds for interlinking resources in numerous sys-
tems such as Flickr, Delicious, and BibSonomy. However, this Navigability
Assumption has hardly been critically reflected (with some notable excep-
tions, for example [11]), and has largely remained untested in the past. In
this paper, we will demonstrate that the prevalent approach to tag cloud-
based navigation in social tagging systems is highly problematic with regard
to network-theoretic measures of navigability. In a series of experiments,
we will show that the Navigability Assumption only holds in very specific
settings, and for the most common scenarios, we can assert that it is wrong.

While recent research has studied navigation in social tagging systems
from user interface [24, 31, 33] and network-theoretic [28] perspectives, the
unique focus of this paper is the intersection of these issues. With that focus,
we want to answer questions such as: How do user interface constraints of
tag clouds affect the navigability of tagging systems? And how efficient is
navigation via tag clouds from a network-theoretic perspective?

Particularly, we will first 1) investigate the intrinsic navigability of tag-
ging datasets without considering user interface effects, and then 2) take
pragmatic user interface constraints into account. Next, 3) we will demon-
strate that for many social tagging systems, the Navigability Assumption
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does not hold and we will finally 4) use our findings to illuminate a path
towards improving the navigability of tag clouds.

To the best of our knowledge, this paper is among the first to study what
we have called the Navigability Assumption of Tag Clouds, i. e. the widely
held belief that tag clouds are useful for navigating social tagging systems.
One of the main results of this paper is a more critical stance towards the
usefulness of tag clouds as a navigational aid in tagging systems. We argue
that in order to make use of the full potential of tag clouds, new ways of
thinking about tag cloud algorithms are needed.

The paper is structured as follows: In Section 3.3 we present our network-
theoretic approach to assessing navigability of tagging systems. Section 3.4
describes the analyzed datasets. Section 3.5 presents and discusses the re-
sults. Based on our findings, we call for and discuss new ideas for tag cloud
algorithms in Section 3.6. Section 3.7 provides an overview of related work.
Finally, Section 3.8 concludes the paper and presents directions for future
work.

3.3 Network-Theoretic Model of Navigation in Tag-
ging Systems

Typically are tagging dataset modeled as tripartite hypergraph with V =
R ∪ U ∪ T , where R is the resource set, U is the user set, and T is the tag
set [5, 32, 30]. An annotation of a particular resource with a particular tag
produced by a particular user is a hyperedge (r, t, u), connecting three nodes
from these three disjoint sets.

Such a tripartite hypergraph can be mapped onto three bipartite graphs
connecting users and resources, users and tags, and tags and resources. For
different purposes it is often more practical to analyse one or more of these
bipartite graphs. For example, in the context of ontology learning, the bi-
partite graph of users and tags has been shown to be an effective projection
[25].

In this paper, we focus on tag-resource bipartite graphs. These graphs
naturally reflect the way users are supposed to adopt tag clouds for navi-
gating social tagging systems. For example, in many tagging systems, tag
clouds are intended to be used in the following way:

1. The system presents a tag cloud to the user.

2. The user selects a tag from the tag cloud.

3. The system presents a list of resources tagged with the selected tag.

4. The user selects a resource from the list of resources.
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5. The system transfers the user to the selected resource, and the process
potentially starts anew.

We will study this general interaction schema and model it with a sim-
ulated user moving along the edges of the tag-resource bipartite graph and
alternately visiting tag and resource nodes.

To that end, we introduce a network-theoretic approach for assessing
the navigability and the efficiency of navigability in such a bipartite graph.
Ever since Milgram’s small world experiment [26], researchers aimed to un-
derstand “navigability” and in particular “efficient” navigation of networks.
Among others, two important results stem from this line of research: (1)
there exist short paths between people (nodes) in a social network and (2)
people are able to navigate “efficiently" through the network having only
local knowledge of the network, i.e. knowing only their personal contacts.

Kleinberg [17, 16, 18] and also independently Watts [36] formalized these
properties concluding that a navigable network has a short path between
all – or almost all – nodes in the network [18]. Formally, such a network
has a low diameter bounded polylogarithmically, i.e. by a polynomial in
logN , where N is the number of nodes in the network, and there exists a
giant component, i.e. a strongly connected component containing almost all
nodes [18]. Additionally, an “efficiently” navigable network possesses certain
structural properties so that it is possible to design efficient decentralised
search algorithms (algorithms that only have local knowledge of the network)
[17, 16, 18]. The delivery time (the expected number of steps to reach an
arbitrary target node) of such algorithms is polylogarithmic or at most sub-
linear in N .

User navigation in hypertext systems is naturally modeled as a decen-
tralised search, i.e. at each particular node in the network, users select a
new node having only local knowledge of the network and following the idea
that the selected node would bring them closest to their destination node.
We use this model to investigate the navigability of tag clouds next.

3.4 Experimental Setup

In the following, we conduct experiments aiming to shed light on the naviga-
bility of tag-clouds in social tagging systems. We are particularly interested
in studying how design decisions, such as what tags to include in a tag cloud
or how many tags to display, effect the navigability of tag clouds. While,
today, designers often base such decisions on intuition or heuristics, it is
our goal to study the consequences of these decisions experimentally, i.e. by
exploring their empirical effects on the network.

In our experiments, we used three datasets covering a range of different
settings.
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• Dataset Austria-Forum: This dataset consists of annotations from
an Austrian encyclopedia called Austria-Forum1. The dataset contains
32,245 annotations and 12,837 unique resources. The system is at an
early phase of adoption, i.e. not many users currently contribute new
tags.

• Dataset BibSonomy: This dataset2 contains nearly all 916,495 an-
notations and 235,339 unique resources from a dump of BibSonomy
[14] until 2009-01-01. Annotations from known spammers have been
excluded from the dataset. This dataset is obtained from a more ma-
ture tagging system.

• Dataset CiteULike: This dataset contains 6,328,021 annotations and
1,697,365 unique resources and is available online3. Again, this is a
dataset acquired from a more mature tagging system.

Dataset Austria-Forum represents a tagging system at an early stage of
adoption. Datasets BibSonomy and CiteULike are tagging systems which
have reached a certain level of maturity (i.e. attracted a larger set of active
users). While all three systems adopt tag clouds for navigational purposes,
their specific approaches vary. However, because the datasets contain com-
plete information about the tripartite graph, we can experimentally manip-
ulate the data in a way that simulates different approaches to tag cloud
construction consistently across all datasets. We will describe how we ma-
nipulate the data to simulate different user interface constraints next.

3.4.1 User Interface Issues

The first user interface restriction which we model is the size of a tag cloud,
i.e. the maximal number of tags displayed in a tag cloud. While different
tagging systems implement different design choices, we can simulate alter-
native choices across all datasets. For example, in some tagging systems the
maximum number of tags in a tag cloud might be 20, while in others it might
be much larger.

Another important issue of tag clouds is the algorithm used to select the
tags to display in a tag cloud. While, in theory, there are many ways to
compute and visualise tag clouds [8, 15, 31], in practice many tagging sys-
tems follow a simple resource-specific, TopN algorithm. In resource-specific
approaches to tag cloud construction, only tags assigned to the correspond-
ing resources are considered. In TopN approaches, the top n tags with the
highest resource-specific frequency are chosen for display in the correspond-
ing tag cloud. In cases where less than n tags per resource are available, the
remaining slots are left empty.

1http://www.austria-lexikon.at
2http://www.kde.cs.uni-kassel.de/ws/dc09/
3http://www.citeulike.org/faq/data.adp

http://www.austria-lexikon.at
http://www.kde.cs.uni-kassel.de/ws/dc09/
http://www.citeulike.org/faq/data.adp
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For the experiments aiming to study the Navigational Assumption, we
used the TopN algorithm (because it is the most common) to reconstruct
simulated networks of resource-specific tag clouds for our three datasets.

Popular tags in a mature tagging system can cover hundreds or even
thousands of resources, which exceeds the pragmatic limits of a system’s
user interface. In this situation, tagging systems usually resort to limiting
the set of resources being displayed for a given tag (for example, by sorting
and “paginating” the list of corresponding resources). To model such limits,
we introduce a pragmatic parameter, the length of the resource list being
presented, and denote it henceforth with k.

In the majority of tagging systems, the resource lists presented after
selecting a tag are usually sorted reverse-chronologically (the resources most
recently tagged are listed first). For simplicity, in our experiments, we select
the k resources for k-limited resource lists randomly.

3.5 Results

3.5.1 Intrinsic navigability of tagging systems

We start our study by analysing the navigability of tagging systems in a
synthetic network-theoretic case, i.e. without taking any user interface re-
strictions into account. The first row in each of Tables 3.1a, 3.1b, and 3.1c
present the obtained results. The results show the existence of a giant com-
ponent connecting almost all of the nodes (98%), as well as the existence of
a low effective diameter (less than 7, i.e. it is less than polynomial in logN ,
see Figure 3.1).

The only exception here is the Austria-Forum dataset. We speculate that
the reason for that is due to the system being in an early adoption stage.
While the effective diameter of the Austria-Forum dataset is larger than the
one in the two other datasets (see Figure 3.1), it is still limited polylogarith-
mically, whereas the giant component contains only 77% of nodes. This result
suggests that the Navigability Assumption depends on the adoption stage
of the tagging system under investigation, i. e. the assumption may only
hold for more mature tagging systems BibSonomy or CiteULike. We leave
the issue of identifying the point in time where immature tagging systems
transition to tagging systems exhibiting more useful navigational properties
to future research. At this point, we simply observe that the Navigation
Assumption is sensitive to the stage of adoption of a tagging system.

Result 1: The usefulness of tag clouds for navigation is sensitive to the
phase of adoption of the social tagging system.

Figures 3.2a, 3.2b, and 3.2c show tag (blue), resource (green), and degree
(red) distributions for the analysed datasets. The tag and resource distribu-
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Figure 3.1: Hop plots for three different tagging datasets. We can observe the
shrinking diameter phenomenon [22]: The two mature datasets (Bibsonomy and
CiteULike, the two lines on the left) exhibit a small diameter, while the Austria-
Forum (a tagging system in an early adoption phase, the line on the right) exhibits
a larger diameter, and a larger ratio of long distances between nodes.

tions were obtained by analysing a unidirectional bipartite graph, i.e. a graph
with only directed links from tags to resources. The out-degree distribution
and the in-degree distribution in this graph correspond to tag distribution
and to resource distribution respectively. For certain ranges of degrees, both
distributions are power law distributions. There are deviations in the tail of
the tag distribution – these stem from the system tags assigned to imported
resources (see Figures 3.2b and 3.2c). The vertical line in the tail of Figure
3.2c comes from the existence of synonym tags in the dataset. The resource
distributions exhibit an exponential cut-off in the tail (see Figure 3.2b), a
deviation in the tail stemming from a test resource (see Figure 3.2a), and a
power law distribution as in Figure 3.2c.

The degree distribution of the undirected bipartite graph (the red line
in Figures 3.2a, 3.2b 3.2c) combines both tag and resource distributions.
For lower degrees, the combined degree distribution takes the form of the
resource distribution, i.e. the number of resources with low frequencies dom-
inates the number of tags with low frequencies. For higher degrees, the
combined distribution takes the form of the tag distribution, i.e. there are
more tags with high frequencies than resources with high frequencies. The
tag distribution is two or more orders of magnitude larger than the resource
distribution, i.e. the tag distribution strongly dominates the resource distri-
bution for higher degrees. That means that the network hubs (high-degree
nodes) are the “head” tags, i.e. the top tags for TopN tag cloud construction
algorithms.
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Figure 3.2: Tag, resource, and degree distributions for the three datasets.
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UIR GC ED UIA NADT
none 0.77 10.73 none sub-lin.
n = 5 0.75 10.99 TopN sub-lin.
n = 10 0.76 11.3 TopN sub-lin.
n = 20 0.76 11.97 TopN sub-lin.
n = 30 0.76 11.05 TopN sub-lin.
k = 5 0.36 12.04 Chron. unnav.
k = 10 0.47 11.16 Chron. unnav.
k = 20 0.56 10.31 Chron. unnav.
k = 30 0.6 10.68 Chron. unnav.

(a) Austria-Forum

UIR GC ED UIA NADT
none 0.98 6.96 none sub-lin.
n = 5 0.94 6.8 TopN sub-lin.
n = 10 0.97 6.87 TopN sub-lin.
n = 20 0.98 6.84 TopN sub-lin.
n = 30 0.98 6.91 TopN sub-lin.
k = 5 0.31 6.82 Chron. unnav.
k = 10 0.4 6.62 Chron. unnav.
k = 20 0.5 6.61 Chron. unnav.
k = 30 0.54 6.65 Chron. unnav.

(b) BibSonomy

UIR GC ED UIA NADT
none 0.98 6.85 none sub-lin.
n = 5 0.93 6.97 TopN sub-lin.
n = 10 0.95 7.07 TopN sub-lin.
n = 20 0.97 7.17 TopN sub-lin.
n = 30 0.97 6.98 TopN sub-lin.
k = 5 0.27 6.89 Chron. unnav.
k = 10 0.36 6.95 Chron. unnav.
k = 20 0.44 6.91 Chron. unnav.
k = 30 0.48 7.05 Chron. unnav.

(c) CiteULike
UIR = UI Restriction, GC = Giant Component, ED = Effective Diameter,

UIA = UI Algorithm, NADT = Navigation Algorithm Delivery Time
Chron. = Chronological algorithm, sub-lin. = sub-linear, unnav. =

unnavigable network

Table 3.1: Navigational properties of the Austria-Forum, BibSonomy, and CiteU-
Like tagging systems.
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Due to the existence of a giant component and a low diameter, tagging
systems are intrinsically navigable. In [1], Adamic shows the existence of
efficient decentralised navigation and search algorithms for power law net-
works. In principle, a user could first navigate to a hub (which is typically
achieved in a few hops in a power law network) and since hubs have a large
out-degree, one can reach the destination node easily. The delivery time of
the algorithm is sub-linear, although the number of inspected nodes in the
worst-case is O(N), since sometimes the user needs to inspect all outgoing
links from a hub.
Result 2: Tagging networks are navigable power-law networks. For power
law networks, efficient sub-linear decentralised navigation algorithms exist.

3.5.2 Tag cloud size

Rows two to five of Tables 3.1a, 3.1b, and 3.1c show the results of applying
the TopN algorithm to limit the tag cloud size on the analysed datasets.
From a network-theoretic point of view, limiting the tag cloud size means
limiting the out-degree of the resource nodes in the bipartite graph. The
out-degree of the resource nodes is two orders of magnitude smaller then
the out-degree of the tag nodes, indicating there are no resource “hubs” in
the network. Therefore, limiting the tag cloud size does not influence the
network to a large extent. In other words, the structure of the network is still
maintained, i.e. the network remains a navigable network with navigation
efficiency inherent to power law networks.

Result 3: Limiting the tag cloud size to practically feasible sizes (e.g. 5,
10, or more) does not influence navigability.

3.5.3 Pagination

Rows six to nine of Tables 3.1a, 3.1b, and 3.1c contain the results of sim-
ulating pagination with resource lists sorted reverse-chronologically. Even
without experiments, it is evident that limiting the number of links going
out from a tag node has destructive effects on the resulting network. In
other words, limiting the out-degree of hub nodes in a power-law network
destroys the connectivity of the network as a whole. Our experiments show
exactly that: the giant component collapses, and the largest strongly con-
nected component now only contains around 50% or less nodes. As such,
pagination destroys network navigability, and the Navigability Assumption
only holds when we assume that users would be able and willing to inspect
long lists (>10.000) of resources per tag, which is not reasonable. For exam-
ple, we know from search query log research that users rarely click on links
beyond the first result page [38]. This yields our final result:
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Result 4: Limiting the out-degree of high frequency tags (e.g. through
pagination with resource lists sorted reverse-chronologically) leaves the net-
work vulnerable to fragmentation. This destroys navigability of prevalent
approaches to tag clouds.

3.6 Implications

The previous analysis illustrated the vulnerability of tagging networks to
the pagination effect, where a limit is placed on the number of links going
out from paginated tags, i.e. tags with frequency higher than the pagina-
tion parameter k. This vulnerability is mainly due to the simplicity of the
common pagination algorithm, i.e. the resource list is simply sorted reverse-
chronologically and only the k most recently tagged resources are presented
to the user. The algorithm does not take into account the current user con-
text, i.e. the resource where the user clicks on a paginated tag. Rather the
same reverse-chronologically resource list is presented for a given paginated
tag throughout the system.

Let us now investigate possibilities to recover the navigability of tagging
networks by means of alternative tag construction algorithms. To this end,
we introduce an adapted pagination algorithm. A simple generalisation of
the pagination algorithm is to select k different resources out of all resources
tagged with a given paginated tag, depending on the current user context,
i.e. depending on the resource where the user activates a paginated tag. Let
us denote the resources list of a given paginated tag t with Rt. In this case, a
particular selection of resources for t becomes a function of a given resource
and parameter k, i.e. RLt = f(r, k). In other words, each paginated tag
is replaced by as many resource-specific tags (tr) as there are resources in
its resource list. Each resource-specific tag is then connected to resources
computed by f(r, k). The pseudo-code of the generalised algorithm is given
in Figure 1.

We now discuss some potential functions f(r, k) for selecting resources
from the available resource pool and analyse their influence on network nav-
igability.

3.6.1 Random link selection

A first obvious choice for f(r, k) is to select k resources uniformly at random.
This approach generates a random graph as introduced by [9] for each given
paginated tag. As [4] and [3] showed, graphs generated uniformly at random
are typically connected and have – with a high probability – a diameter
bound by logN (already for out-degrees k ≥ 3). However, since there are
no structural clues in a randomly generated network, a decentralized search
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Algorithm 1 Generalized pagination algorithm
1: Input: G =< V,E >, r, t, k
2: for all r ∈ Rt do
3: add tr to V
4: add (r, tr) to E
5: RLt ← f(r, k)
6: for all rr ∈ RLt do
7: add (tr, rr) to E
8: end for
9: end for

10: remove t from V

algorithm will need to inspect, in the worst case, all nodes of the network in
order to reach a destination node from the given starting node.

Table 3.2 shows the results of a random pagination algorithm on the
three test datasets. All three networks become strongly connected with a
giant component even for low values of k. As expected, all three networks
also possess a low diameter.

3.6.2 Hierarchical network model

In [18], Kleinberg introduced the hierarchical network model and elegantly
proved that it is possible to design efficient decentralised search algorithms
for such networks with a delivery time polynomial in logN . Put simply,
Kleinberg showed that, if the nodes of a network can be organised into
a hierarchy, then such a hierarchy provides a probability distribution for
connecting the nodes in the network. The resulting network is efficiently
navigable. A special case of the hierarchical network model is given when
there is a constant number of links leaving a node, i.e. when the out-degree
of a node is limited by a parameter k as it is the case with pagination. In
this case, the tree leaves contain so-called clusters of nodes, i.e. a collection
of a certain constant number of nodes.

Thus, we developed a hierarchical network generator that 1) sorts the
resource list of a given paginated tag by frequency, 2) creates resource clusters
of size 10 by traversing the sorted resource list sequentially, 3) creates a
balanced b-ary (b = 5) tree where the number of leaves is equal to the
number of the resource clusters, 4) traverses the tree in postorder from left
to right and attaches resource clusters to the tree leaves, and 5) uses this
tree structure to obtain the link probability distribution for connecting a
resource-specific tag node with resources of a given paginated tag.

It is important to note that the tree creation process follows the statistical
properties of the tagging dataset only, it has no inherent semantic rationale.
As such, it serves primarily as a statistical tool to improve the efficiency
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UIR GC ED UIA NADT
k=5 0.86 11.7 Random linear
k=10 0.86 11.02 Random linear
k=20 0.85 10 Random linear
k=30 0.84 10.42 Random linear

(a) Austria-Forum

UIR GC ED UIA NADT
k=5 0.99 8.75 Random linear
k=10 0.99 6.97 Random linear
k=20 0.99 6.75 Random linear
k=30 0.99 6.46 Random linear

(b) BibSonomy

UIR GC ED UIA NADT
k=5 0.99 7.98 Random linear
k=10 0.99 7.88 Random linear
k=20 0.99 7.13 Random linear
k=30 0.99 6.86 Random linear

(c) CiteULike
UIR = UI Restriction, GC = Giant Component, ED = Effective Diameter,

UIA = UI Algorithm, NADT = Navigation Algorithm Delivery Time

Table 3.2: Navigational properties of the Austria-Forum, BibSonomy, and CiteU-
Like tagging systems with a random pagination algorithm.

of navigability from a network-theoretic perspective. Table 3.3 provides an
overview of the results of the structural network analysis performed with the
three real-life datasets.

Another important observation is that in our model each paginated tag
is a source of a network generated by a hierarchy. These networks are them-
selves connected through tag co-occurrence in the dataset, i.e. since tags
overlap and share resources such shared resources link different generated
networks. This makes it more difficult to estimate the delivery time of a
decentralised search algorithm possessing only the local knowledge. If the
algorithm is extended to have knowledge of all the hierarchies used in the
generation of the networks, then this additional information might be useful
in finding a destination node faster.

However, more theoretical work is needed to offer a proof of this intuitive
assumption. In addition, it would be interesting to test these ideas empir-
ically, for example, by implementing the algorithm and applying it to the
real-life datasets. Another interesting problem is the fitting of parameters
for the hierarchical network model, for example what is the optimal combi-
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UIR GC ED UIA NADT
k=5 0.85 12.03 Hier. polylog.
k=10 0.86 10.62 Hier. polylog.
k=20 0.85 9.29 Hier. polylog.
k=30 0.84 9.71 Hier. polylog.

(a) Austria-Forum

UIR GC ED UIA NADT
k=5 0.99 8.82 Hier. polylog.
k=10 0.99 7.62 Hier. polylog.
k=20 0.99 6.94 Hier. polylog.
k=30 0.99 6.75 Hier. polylog.

(b) BibSonomy

UIR GC ED UIA NADT
k=5 0.99 8.76 Hier. polylog.
k=10 0.99 7.6 Hier. polylog.
k=20 0.99 6.36 Hier. polylog.
k=30 0.99 5.89 Hier. polylog.

(c) CiteULike
UIR = UI Restriction, GC = Giant Comp., ED = Eff. Diameter, UIA =

UI Algorithm, NADT = Navigation Algorithm Delivery Time
Hier. = Hierarchical Algorithm, polylog. = polylogarithmic

Table 3.3: Navigational properties of the Austria-Forum, BibSonomy, and CiteU-
Like tagging systems with a hierarchical pagination algorithm.

nation of the cluster size and the maximum number of children, with respect
to the size of the resource list and the pagination parameter k.

3.7 Related Work

We start our review of related work with a brief overview of network-related
research. Research on network navigability has been inspired by Milgram’s
small world experiment [26]. In this experiment, selected persons from Ne-
braska received a letter they were then asked to send through their social
networks to a stockbroker in Boston. The striking result of the study was
that, for those letters reaching the destination, the average number of hops
was around 6, i.e. the population of the USA constituted a “small world”.
While the conclusions have been challenged [19], this experiment has at-
tracted a great deal of interest in the research community.

Numerous researchers analysed Milgram’s experiment trying to create
network models and generators able to produce such “small world” networks
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(see for example [20]). The lattice model by Watts [37] mimics a real-life
social network, where people are primarily connected to their neighbours
with a few “long-range” contacts. The networks generated by this model
have, like the random graph model [4, 3], a giant component and a diameter
bound by logN .

Kleinberg analysed the second result of the Milgram’s experiment, the
ability of people to find a short path when there is such a path between
two nodes [17, 16, 18]. He concluded that there are structural clues in such
networks, which allow people to find a short path efficiently and argued
that for an “efficiently” navigable network there exists a decentralised search
algorithm with delivery time polynomial in logN .

Kleinberg also designed a number of network models such as 2D-grid
models [16], hierarchical models [18], and group models [18], and showed
that for certain combinations of parameters, efficient decentralised search
algorithms exist. Kleinberg also showed that there is no such algorithm for
the lattice model.

Particularly, hierarchical network models [18] are based on the idea that,
in many settings, the nodes in a network might be classified according to a
taxonomy. The taxonomy can be represented as a b-ary tree and network
nodes can be attached to the leaves of the tree. For each node v, we can create
a link to all other nodes w with the probability that decreases with h(v, w)
where h is the height of the least common ancestor of v and w in the tree.
For a constant out-degree, the nodes are clustered and then the clusters are
attached to the tree. The link distribution defined by f(h) = (h + 1)−2b−h

generates a navigable network with a decentralised search algorithm with
delivery time of O(log4bN).

In related research of tagging systems, tag clouds have been characterised
as a way to translate the emergent vocabulary of a folksonomy into social nav-
igation tools [33, 7]. Social navigation itself represents a multi-dimensional
concept, covering a range of different issues and ideas. A distinction between
direct and indirect social navigation, for example, highlights whether navi-
gational clues are provided by direct communication among users (e.g. via
chat), or whether navigational clues are indirectly inferred from historical
traces left by others [27]. Based on this distinction, our work only focuses
on indirect social navigation in the sense that it studies the effectiveness of
traces (“tags”) left by users in tagging systems. Other types of social naviga-
tion emphasise the need to show the presence of others users, to build trust
among groups of users, or to encourage certain behaviour [27].

Researchers have discussed the advantages and drawbacks of tag clouds,
suggesting that tag clouds are a useful mechanism when users’ search tasks
are general and explorative (for example, learn about Web 2.0), while tag
clouds provide little value for specific information-seeking tasks (for exam-
ple, navigate to www.cnn.com) [33, 35]. While the paper at hand focuses on
network-theoretic aspects, cognitive aspects of navigation have been stud-
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ied previously using, for example, SNIF-ACT [10] and social information
foraging theory [29]. Other work has studied the motivations of users for
tagging [34, 21], and how they influence emergent semantic (as opposed to
navigational) structures. The navigational utility of single tags has been
investigated [6] with somewhat disappointing results. With time the tags
become harder and harder to use as they lose specificity and reference too
many resources. Such tags are exactly those paginated tags where new pag-
ination algorithms are needed.

Navigation models for tagging systems have been also discussed recently.
In [30] authors describe a navigation framework for tagging systems. The
authors apply the framework to analyze possible attacks on tagging systems.
In principle, the framework identifies a navigation channels as any combina-
tion of the basic elements of a tagging system (users, tags, and resources).
Thus, the specific combination which we investigated in this paper can be
summarized as the resource-tag or tag-resource navigation channel.

Recent literature also discusses algorithms for the construction of tag
clouds. The ELSABer algorithm [23] represents an example of such an effort
aimed towards identifying hierarchical relationships between annotations to
facilitate browsing. The work by [2] is another example, introducing entropy-
based algorithms for the construction of interesting tag clouds. However,
these algorithms have not found wide-spread adoption in current social tag-
ging systems. In addition, empirical studies of tagging systems have for ex-
ample focused on comparing navigational characteristics of tag distributions
to similar distributions produced by library terms [13].

Our work contributes to an increased theoretical understanding about
the navigability of current tag cloud algorithms in social tagging systems.
Our experiments identify empirical problems related to the navigability of
tag clouds in three real-world tagging systems.

3.8 Conclusion

The motivation for this research was to examine and test the widely held
belief that tag clouds support efficient navigation in social tagging systems.
We have shown that for certain specific, but popular, tag cloud scenarios,
the so-called Navigability Assumption does not hold. The results presented
in this paper make a theoretical and an empirical argument against exist-
ing approaches to tag cloud construction. Our work thereby both confirms
and refutes the assumption that current tag cloud incarnations are a use-
ful tool for navigating social tagging systems. While we confirm that tag-
resource networks have efficient navigational properties in theory, we show
that popular user interface decisions (such as “pagination” combined with
reverse-chronological listing of resources) significantly impair navigability.
Our experimental results demonstrate that popular approaches to using tag
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clouds for navigational purposes suffer from significant problems.
Building on recent research results from network theory, in particular

hierarchical network models, we have illustrated a path towards construct-
ing more efficiently navigable tag cloud networks, which are less vulnerable
to pagination influences. We conclude that in order to make full use of
the potential of tag clouds for navigating social tagging systems, new and
more sophisticated ways of thinking about designing tag cloud algorithms
are needed.
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4
Evaluating tag-based Information Access

in Image Collections

This chapter is based on the paper “Evaluating Tag-Based Information Access
in Image Collections” which was presented at the 23rd ACM Conference on
Hypertext and Social Media in 2012.

It continues the work on the usefulness of tags to support efficient search
and navigation in tagging systems. In particular, this chapter presents a
controlled user study that compares three tag-based search interfaces on two
recognized types of search tasks – lookup and exploratory search – with each
other. The interfaces explored in the study include a standard search inter-
face that plays the role of a baseline and two types of tag-based search in-
terfaces: a regular search interface using traditional tag clouds and a faceted
interface using classified tags. We demonstrate that tag-based search in-
terfaces significantly outperform traditional search-only interfaces in both
performance and user satisfaction.

The original contribution was published in the proceedings of the confer-
ence and can be found in [37].

4.1 Abstract

The availability of social tags has greatly enhanced both search-based and
browsing-based access to information. Tag clouds, emerged as a new “social”
way to find and visualize information providing both one-click access to
information and a snapshot of the “aboutness” of a tagged collection. A range
of research projects explored and compared different types of tag artifacts
for information access ranging from regular tag clouds to tag hierarchies. At
the same time, there is a lack of user studies that compare the efficiency of
different types of tag-based browsing interfaces from the users point of view.
This paper contributes to the research on tag-based information access by
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presenting a controlled user study that compared three types of tag-based
information access interfaces on two recognized types of search tasks – lookup
and exploratory search. Our results demonstrate that tag-based browsing
interfaces significantly outperforms traditional search-only interfaces in both
performance and user satisfaction. At the same time, the differences between
the two types of tag-based browsing interfaces explored in our study are not
as clear.

4.2 Introduction

Social tags provide an easy and intuitive way to annotate, organize and
retrieve resources from the Web. Promoted by several pioneering systems
such as Delicious, Flickr, and CiteULike, social tagging has emerged as one
of the most popular technologies of the modern Web. The value of tags was
specifically advocated for image collections such as Flickr where the presence
of tags made images searchable and discoverable. While tags help to discover
content even with a standard keyword-search, the most innovative feature of
social tags was the ability to support browsing-based access to information
through so-called “tag clouds”. Effectively, tag clouds, are a new “social”
way to find and visualize information providing both: one-click access to
information and a snapshot of the “aboutness” of a tagged collection. Not
surprisingly, a large volume of research was devoted to developing better
approaches to construct and visualize tag clouds [5, 31, 18] as well as more
advanced tag constructs such as clustered/classified tag clouds [23, 33, 2, 41,
16, 25] and tag hierarchies [10, 19, 35, 36].

The majority of research on tag clouds and hierarchies used an information-
or network-theoretical approach to evaluate the quality of different tag con-
structs by terms of search and navigation and ignores the user prospective.
User studies comparing performance of users applying different tag-based
browsing constructs in a set of realistic search tasks are rare. Moreover,
there is a lack of user studies that compare the effectiveness of various tag
constructs against simple search-based access to tagged collections. This
paper attempts to bridge this gap by comparing several types of tag-based
information access in a controlled user study. The study has been performed
in the context of image search where the presence of tags is known to be most
valuable. To make the study more useful, we compared the performance of
three types of tag-based information access interfaces in two commonly rec-
ognized types of search tasks – lookup search and exploratory search. The
tag-based interfaces explored in the study include a search-based interface
that plays the role of a baseline and two types of tag-based browsing inter-
faces: a regular browsing interface using traditional tag clouds and a faceted
browsing interface using classified tag clouds. We selected the faceted tag
cloud interface from among other advanced tag-based browsing approaches



4.3 DataSet 65

because our previous study [26] in the image search domain revealed that
faceted search interfaces helped users to better explore large collections of
images.

4.3 DataSet

As dataset for our study we utilized a collection of images from an archive be-
longing to the Carnegie Museum of Art in Pittsburgh, Pennsylvania. Overall,
the collection contains more than 80,000 images taken by the famous local
photographer Charles Teenie Harris, who captured African-American life in
Pittsburgh over a 40-year period. In our study, we used 1,986 of these im-
ages, of which 986 have been featured in a current exhibition at the Carnegie
Museum of Art. The remaining 1000 images were included in this study as
they provide a good overview of the entire collection and represented well
in corresponding exhibition categories. For the 1,986 images, we collected
user tags using the Amazon Mechanical Turk1. Overall, the dataset pro-
vides 4,206 unique tags and 16,659 tag assignments applied by 97 users for
the 1,986 images.

4.4 Interfaces

For the purpose of our study, we implemented three tag-based interfaces to
search the collection of Teenie Harris images – one standard “search box” in-
terface and two interfaces that support both search and tag-based browsing.
In the following section, we introduce these interfaces and their functionali-
ties.

4.4.1 The Baseline (Search Only) Interface

As a baseline for our study (see Figure 4.1), we utilized a simple search box-
based interface that offers the look and feel of well-known search engines.
Similar to the Google, Yahoo! or Bing image search interfaces, we provide
our users with a search box to issue a query, a thumbnail preview of the
resulting images sorted by relevance and the functionality to click on the
image in order to get a more detailed view of the image resource. The
back-end of our search interface is built upon the OpenSource search engine
Apache Lucene2, which utilizes the tags of each image to create the search
index.

1https://www.mturk.com/
2http://lucene.apache.org/java/docs/index.html

https://www.mturk.com/
http://lucene.apache.org/java/docs/index.html
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Figure 4.1: Screenshot of the baseline interface.

4.4.2 The Tag Cloud Interface

The second interface explored in this paper is referred to as the tag cloud
interface. As indicated by its name, this type of search interface extends the
baseline search interface with the functionality of a traditional tag cloud. The
alphabetically ordered tag cloud provided the user with a topical overview
of the search results and allow the user to search or browse images using the
tags displayed in the cloud. This form of tag cloud is currently the most
popular type of tag-based browsing in social tagging systems. To generate
the tag cloud in this interface, we utilized a simple popularity based tag cloud
algorithm. For each query, we display the top N most frequent co-occuring
tags to the user. This approach was shown to be the one of the best choices
to create a tag cloud from the prospective of tag-based search and browsing
[39]. It is currently the most popular algorithm to generate tag clouds. Since
the number of tags displayed in the tag cloud is an important factor which
was shown to negatively affect tag cloud-based search and navigation [34, 20],
we also provide the functionality to increase or decrease the number of tags
in the tag cloud to suit the user’s needs. In Figure 4.2, a sample screenshot is
presented to show how the tag cloud interface appears on the user’s screen.
As can be seen in the figure, the interface offers not only the functionality to
click on a tag to issue a query, but also the possibility to expand the query
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Figure 4.2: Screenshot of the tag cloud interface.

by clicking the “+” sign in the tag cloud or shrink the query by utilizing the
“x” sign in the query string beneath the search box. Currently, many popular
tagging systems such as Delicious or BibSonomy offer similar approaches for
query expansion or reduction to support the user with a more flexible way
to search and navigate in a tag based information system.

4.4.3 The Faceted Tag Cloud Interface

The third interface developed for the study is referred to as a faceted tag
cloud interface (see Figure 4.3). It can be considered as one of the most
innovative tag-based search interfaces currently available. The interface was
first introduced in 2009 by Yahoo! [33] in order to search for images in the
social tagging system Flickr. Although there are very few implementations
of this type of interface, there is a great deal of current research in this area
[29, 40, 8, 7]. Similar to the tag cloud interface, this type of interface provides
the user with the functionality to view the tags of the retrieved images in a
visually appealing representation. However, contrary to the traditional tag
cloud interface, where all tags appear in a tag cloud in an unstructured way,
this type of interface classifies tags into several categories.

To decide which classification schema to utilize, we performed an ex-
tensive literature survey on currently available tag classification approaches
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[6, 29, 40, 8, 33, 11]. In the end, we selected a simplified form of the well
known “Editor’s 5 Ws” approach that recognizes “Who” (people, groups or in-
dividuals), “Where” (location or places), “When” (time, activities or events),
“What” (objects, food, animals or plants) and “Other” (unknown, not classi-
fied) classification schema. This schema was found to be effective in classify-
ing tags in the image domain [33] as well as in our earlier user studies [26]. To
classify our tags for this type of interface, we also used Amazon Mechanical
Turk. The classification procedure itself was independent of image context
as none of the currently available tag classification approaches take into ac-
count context information such as resource information, user information or
other tags for the same or similar resources.

To ensure that the workers on Amazon Mechanical Turk (referred to as
turkers) would classify our tags in a meaningful way, we provided them de-
tailed instructions of how to select those tags which fit into the one of the
five given categories. The guidance included a sample screenshot of three
different types of tags classified into one of the five categories and a detailed
explanation of how to use these categories. Overall, three turkers were as-
signed to classify each particular tag. After the first classification round, we
noted that 11% of tags were not classified as the turkers could not agree
on which of the five given categories to use. Therefore, we decided to ini-
tiate a second classification round with an additional six turkers (per tag)
to increase the precision of our classification procedure. All in all, 22% of
the tags were classified as “Who”, 16% as “Where”, 23% as “When”, 34%
as “What” and only 5% of the tags as “Other”, which clearly out-performs
current automatic tag classification approaches by terms of not classifiable
tags (represented as “Other” tags in our classification schema). We had 86
different turkers for the first classification round and 35 turkers for the sec-
ond. The mean inter-rater agreement per tag over all turkers was substantial
(75%).

In Figure 4.3 one can see a screenshot of how this type of interface ap-
pears on the user’s screen. As with the tag cloud interface, users have the
opportunity to issue a query by clicking on a tag, to expand a query by
clicking on the “+” sign or shrink the query by utilizing the “x” sign in the
query string beneath the search box. In addition, the faceted tag cloud can
be expanded or collapsed one study session.

4.5 User Study Design

To compare the three tag-based information access interfaces, we designed a
within-subject study. In this design, each of our subjects evaluated the three
different search interfaces during one study session. To determine when tag-
based support is most effective; each interface was examined in the context
of two kinds of search tasks, which are discussed in the following section.
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Figure 4.3: Screenshot of the faceted tag cloud interface.

4.5.1 Search Tasks

It has been shown that search task attributes affect the information seeking
behavior of users [13, 38, 9]. The complexity, familiarity, clarity and diffi-
culty of a search task influences how a person searches, browses and uses
information systems [13, 17]. To account for the impact of these factors,
our study separately evaluated the effectiveness of the three tag-based infor-
mation access interfaces in the two primary types of search tasks known as
lookup search and exploratory search.

As indicated by its name, lookup search is typically performed to find
a specific information item in a document collection [27]. Lookup search
tasks are considered to be relatively simple and most frequently involve using
a traditional search interface (cf. [13, 38, 9]). More complicated search
tasks “beyond lookup” are typically called exploratory search tasks [27, 9].
Exploratory search assumes that the user has some broader information need
that cannot be simply met by a “relevant” information item (as in simple
lookup search), but requires multiple searches interwoven with browsing and
analysis of the retrieved information [26].

To study lookup search behavior, we created nine different lookup search
tasks. All of these tasks were of similar nature: the subject was given and the
user was expected to find relevant images in the collection within a certain
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time limit. To account for the differences in difficulty [13, 38, 9] a variety
of pictures were selected ranging from “easy” to “hard” to find. To classify
images by difficulty, we calculated the mean search time of each image in the
image collection based on lookup searches performed on Amazon Mechanical
Turk. Then, we selected nine images ranging from “easy” to “hard” to find in
the Teenie Harries image collection. In Table 4.1, the nine different images
chosen for the user study are presented.

To study exploratory search behavior, we designed three explor- atory
search tasks as shown in Table 4.1. To ensure the balance between each type
of user interface and also to capture the attribute of difficulty, we designed
the exploratory search tasks carefully with a variety of additional search
criteria and attributes. For instance, to capture balance with the faceted
search interface, we tried to tune our search tasks to utilize as many facets
as possible. We did that by asking the subjects to search for several different
topics such as music, sports or shops as well as various search criteria such
as different locations. To capture the property of familiarity with the search
tasks, we asked our subjects in the post-questionnaire to rate their expertise
level on the given topic or search item.

To be sure that our search tasks were meaningful, we performed several
trial searches on Amazon Mechanical Turk and we conducted a pilot study.
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Search Tasks Search Task Descriptions
Lookup Find the following picture!*

Exploratory 1. Find at least 8 different types of stores/shops in Pittsburgh! Each type of store/shop should have
at least two images from different locations, i.e. in total you will have to find at least 16 images.
2. Pittsburgh is a city with many sport teams. Find at least 8 different sport activities! Each type of
sport should be represented by at least two pictures. In total, you will have to get at least 16 pictures.
3. Pittsburgh has a rich cultural heritage. There were many musicians who worked in Pittsburgh.
Find at least 5 different types of music instruments which the musicians played in Pittsburgh.
Each instrument needs 2 pictures and all pictures should be taken in different locations.
In total, you will have to collect at least 10 pictures.

Table 4.1: Search tasks and descriptions (*= in the user study only one image was presented to the user at one time).
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4.5.2 The Procedure

As discussed previously, our subjects had to undertake two different kinds
of search tasks using three different types of search interfaces within one
user study session. During the study, each subject was assigned to perform
nine different lookup and three different exploratory search tasks which were
the same for the duration of the whole experiment. To counter the impact
of fatigue and learning, the order in which the search tasks and system
interfaces were used were rotated using a Latin square design. In addition
to this, the lookup and the exploratory search tasks were randomized among
all three interfaces to make sure that each of them was evaluated under
different search interface conditions. The procedure of the user study was as
the follows:

1. Each participant was informed of the objective of the study and asked
to complete a consent form.

2. The participant was asked to complete a short questionnaire eliciting
background information.

3. For each type of interface and task, a demonstration was given. After
that, the participant had plenty of time to familiarize themselves with
the interfaces and tasks.

4. For each interface the user was given three lookup tasks and one ex-
ploratory search task.

(a) For each lookup task: an image was presented to the participant
and a limit of 3 minutes (+30secs. for task reading) was given
to complete the task. After that, a post-search questionnaire
was given to the subject to elicit disposition toward the system
interface.

(b) For each exploratory task: a description of the task was given
to the participant and they were allotted a limit of 10 minutes
(+1min. for task reading) to complete the task. Then, a post-
search questionnaire was handed out to the subject to elicit dis-
position toward the system interface.

5. A final questionnaire was given to the subject to assess the differences
among the three search interfaces.

6. A series of open-ended questions were asked according to the observa-
tions made during the study.

7. The participant was paid and thanked.
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4.5.3 Participants

Our study involved 24 participants (8 females, 16 males), who were recruited
via email and flyers distributed throughout the University of Pittsburgh cam-
pus. The participants were from a variety of disciplines ranging from law to
computer science. Four of them had earned a bachelor degree, 16 a master’s
degree and four a PhD degree. The average age of the participants was 30.6
years (min=22, max = 61, SD=7.59 years). Almost all (except 2 partici-
pants) reported to use computers more than 5 hours a day. All participants
(expect two) rated their search engine skills as high and indicated to use
Google, Yahoo! or Bing frequently. A significant number (19) reported that
they were familiar with tagging or use search tagging systems such as Bib-
Sonomy, Delicious or Flickr regularly. Four participants reported that they
were familiar with the history of Pittsburgh, the rest of our subjects stated
that they were not. On average, one user study session lasted 90 minutes.

4.6 Results

In this section we present the results of our user study. We start by com-
paring user performance in different search interfaces and follow with an ex-
tensive log analysis that describes how the interfaces were used. After that,
we report the findings from our post and final questionnaires and report the
participants subjective opinions about these interfaces.

4.6.1 Performance Analysis

The main goal of this study was to compare user search performance in
two types of search tasks (lookup and exploratory search) and with three
different interfaces (with and without tag-based browsing support). To assess
user performance, we examined search time and number of total interface
actions [24] which are traditionally used in the study of search and browsing
interfaces. Shorter search time and a lower number of actions should indicate
a more efficient interface for image search.

While these two performance measures are known to be reliable, they
do not allow us to clearly distinguish between several search conditions in
the presence of many failed search attempts (i.e., cases where the subjects
were not able to complete the task and were interrupted). Due to the pres-
ence of this cap, the time and actions spent on failed attempts flattens the
overall differences, making different conditions look closer than they are in
reality. To avoid this problem, we separately measured user performance
only on successful tasks. Given comparable success rates (as we observed in
the study), user performance on successful tasks enables us to more easily
distinguish between several conditions.
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Table 4.2 provides a summary of performance data for our three interfaces
and two kinds of search tasks. The table separately reports performance
data for all tasks (including failed tasks with capped time) and only for
successfully completed search tasks. As the data shows, the main difference
in user performance is observed between the task types: exploratory search,
as expected, required much more time and actions than lookup tasks. To
discover significant performance differences among interfaces, we applied 2
x 3 ANOVA (analysis of variance). The analysis was done separately for
search time and for the total number of interface actions as functions of
search task and interface. We also separately evaluated data for all cases
and for successful cases only. The analysis of successful cases data revealed
significant differences between tag cloud and baseline interfaces in terms of
search time, p < .001, and total actions, p < .001, under exploratory search.
Likewise, we found a significant difference on the number of total interface
interactions between faceted tag cloud and baseline(search only), p = .037.
No significant differences were discovered for “the data for all cases”. We
also have not discovered any significant differences between the two kinds of
tag-based browsing interfaces under all conditions.

Effect of familiarity and difficulty on performance. Prior research on ex-
ploratory search interfaces indicated that the value of advanced information
access interfaces might depend not only on the type of task (i.e., lookup vs.
exploratory search) but also on task difficulty [13] and user familiarity with
the search topic [17]. In the context of our study, we registered some rea-
sonable differences in user familiarity on a Liker scale(1-5) with the topics
of the three exploratory search tasks (M=3.125, SE=.15056, SD=1.27751).
In other words, it was possible to divide users into two groups for each task
- those familiar with the task topic and those not. Moreover, as the study
indicated, the level of difficulty in the three exploratory search tasks was
considerably different between the one relatively easy task and the two more
complicated tasks. These variations allowed us to perform a separate anal-
ysis that explored the combined effect of the interface, task difficulty, and
task familiarity in the context of exploratory search. We ran a 3 x 3 ANOVA
as a function of task difficulty and interface, and also controlling for the two
levels of familiarity previously mentioned. As shown in Table 4.3, the analy-
sis revealed a significant difference between tag cloud and baseline interfaces
in search time for those users not familiar with the topic and at a medium
level of task difficulty when considering all cases, p = .014, and when only
considering successful cases, p = .009. No other significant differences were
found. These results indicate that the tag cloud interface provides the most
significant impact in cases where tasks are more complicated and users are
less familiar with the topic of the task.

A similar analysis of the impact of difficulty and familiarity was per-
formed for the lookup search context, but we did not find significant differ-
ences between interfaces. However, the impact of difficulty and familiarity
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might be determined by the relatively low comparable level of user task fa-
miliarity in this context. On average of the ratings in the lookup search task
(M=1.3611, SE=.08463, SD=.71809), our subjects were not as familiar with
the images as they were in the exploratory task of the user study. Only two
of them reported that they were familiar with the images due to the fact
they found an image during the search session of a previous task.
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Baseline Tag Cloud Facet

Task Measure All cases Successful All cases Successful All cases Successful
Lookup Cases 72 59 72 57 72 59

Total Actions 9.01±.89 6.46±.67 8.58±.94 5.37±.56 8.68±.86 6.12±.63
Search Time 77.35±7.35 54.19±5.31 75.38±8.03 44.37±4.48 77.67±7.8 52.17±5.32

Exploratory Cases 24 23 24 20 24 22
Total Actions 43.67±4.36 42.17±4.27 41.04±4.52 33.50±3.37** 42.58±4.26 40.73±4.44
Search Time 421.58±38.03 413.48±38.81 363.96±35.05 312.4±30.74*** 378.33±33.46 356.91±32.8

Table 4.2: Descriptives of total actions and search time by search and interface. Each statistic is calculated considering all cases and
considering only successful search tasks (**=significant at p<0.01; ***=significant at p<0.001).

Baseline Tag Cloud Facet
Difficulty Measure All cases Successful All cases Successful All cases Successful
Hard cases 6 6 7 4 6 4

Total Actions 67.33±5.94 67.33±5.94 64.43±8.48 51.5±10.9 55.5±6.59 51.75±9.71
Search Time 603.5±23.05 603.5±23.05 557.43±40.42 507.5±61.4 562.67±38.47 537.0±55.14

Medium cases 3 3 4 4 3 3
Total Actions 38.33±5.24 38.33±5.24 35.25±3.09 35.25±3.09 57.33±6.89 57.33±6.89
Search Time 494.67±148.17* 494.67±148.17** 285.75±16.95 285.75±16.95 382.00±22.11 382.00±22.11

Easy cases 5 5 5 5 6 6
Total Actions 25.0±4.24 25.0±4.24 23.6±2.5 23.6±2.5 19.0±1.53 19.0±1.53
Search Time 308.8±49.31 308.8±49.31 227.8±23.77 227.8±23.77 212.23±25.45 212.33±25.45

Table 4.3: Descriptives of total actions and search time, mean±SE, by interface at different difficulty levels, when people are not familiar
with the topics and under exploratory search tasks (*=significant at p<0.05).
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4.6.2 Looking Deeper: Log Analysis

Although the previous analysis reveals performance differences between in-
terfaces and tasks, it does not show how different usage profiles were for
each of the interfaces and tasks. To look for these differences we performed
extensive user log analysis on answering specific questions.

The first question was How different were usage profiles for different
interfaces and tasks? To build the usage profile, we distinguished several
different interface actions: (1) Search (inserting a query in the search box);
(2) Click Tag (issuing a query by clicking on a tag); (3) Add Tag (expanding
the query with a tag by clicking the “+” sign); (4) Remove Term (removing a
term from the query by clicking the “x” sign); (5) Show More Tags (clicking
the show more tags button to increase the number of tags in the tag cloud):
(6) Show Fewer Tags (clicking the show fewer tags button to reduce the
number of tags in the tag cloud); (7) Show More Results (clicking the show
more results button to increase the number of images in the result list); (8)
Click Image (clicking on an specific image) and (9) Total Actions.

Table 4.5 presents usage profiles for different interfaces and search tasks.
The most visible (albeit trivial) result is that the action Search is used more
frequently in the baseline interface, p = .006. While the Search action is
also used more frequently in the tag cloud than in the faceted tag cloud
interface, this difference is not significant. Another interesting discovery is
that the use of Show More Results is significantly higher in the baseline
interface than in the tag cloud, p = .015. The corresponding difference
between the baseline and the faceted tag cloud is close to significant at the
acceptable level p = .055. Since the use of Show More Results is the evidence
that the top results returned by the last search or tag browsing action were
not satisfactory, we can argue that tag browsing was more successful at
providing relevant results. We can speculate that this result stems from the
tag browsing interface’s ability to provide a snapshot of the “aboutness” of
the collection, guiding the user to a more successful choice of a search term
or tag. In addition, we found an intriguing difference between the tag cloud
and the faceted tag cloud interfaces: the action Add Tag, which was used to
narrow the results by adding tags to the query, was used significantly more
frequently in the faceted interface than in the tag cloud interface, p = .006.
The difference among interfaces in terms of the usage frequency of other
actions (Click Tag, Remove Term, Show More Tags, Show Less Tags) was
not significant. Table 4.5 also reports differences in the usage profile between
lookup and exploratory search tasks. As we can see, the usage profile was
considerably different for the two types of tasks. This emphasizes that lookup
and exploratory search tasks are radically different from the user perspective.
However, as users had different amount of time available to complete lookup
and exploratory search tasks, we compared percentages instead of the mean
number of actions. However, to test for significant differences between these
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Who Where When What Other
Baseline 9.9% 29.6% 11.7% 42.7% 6.2%
Tag Cloud 13% 28.8% 9.4% 43.2% 5.6%
Facet 16.2% 24% 18.9% 34.6% 6.3%

Table 4.4: Percentage of search actions in each type of semantic category by search
interface.

percentages, we run one chi-squared test per each action. As shown in Table
4.5, we found significant differences for the Search action, p < .001, the Add
Tag action p < .001 , the Remove Term Action, p < .001 and the Show
More Results action p < .001. These indicate that people rely more on the
search box, the Add Tag and Remove Term functionality, and skimming
through the paginated result list in lookup tasks than in exploratory search
tasks. The significant difference on Click Image action, p < .001, shows that
people rely more on clicking images in exploratory search than in lookup
search.

The second question that we attempted to answer was Does tag group-
ing by semantic category affect the usage of these categories? As outlined
in Section 4.4.3, we classified tags in our tag corpus into the following five
dimensions: Who, Where, When, What and Other. The users in the faceted
interface case were able to see which tag belongs to which category. However,
the users of both the search and regular tag cloud interfaces used the same
terms in search and browsing, although without knowing to which category
the issued query term or the clicked tag belonged. One could hypothesize
that the tag usage profile (i.e., frequencies of using tags in different cate-
gories) may be affected by making the categories visible. Table 4.4 shows
the proportion of query terms in each classification category as used by the
study participants; each row presents percentages in each type of interface.
We analyzed the significant difference in these percentages by running two
chi-square goodness of fit tests. Considering overall tag usage,( i.e., aggre-
gating lookup and exploratory search tasks), as well as setting the expected
percentages of the tag categories to match those in the faceted tag cloud
interface, we found them significantly different than those in the baseline
interface (χ2(4,548) = 46.092, p < .001), and the percentages in the tag
cloud interface (χ2(4,683) = 58.612, p < .001). In particular, we see a vis-
ible increase in Who tags at the expense of What tags. This data provides
evidence that explicit tag categorization does impact user behavior.
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Interface Task
Baseline Tag Cloud Facet Lookup % Exploratory. %

Search 9.24±.96** 5.61±.82 4.81±.63 3.89±.28 44.45%*** 14.54±1.36 34.27%
Click Tag .00 2.88±.46 2.92±.46 .94±.13 10.67% 4.92±.74 11.58%
Add Tag .00 .61±.14 1.25±.2** .72±.11 8.19%*** .33±.12 0.78%
Remove Term .00 .95±.18 1.40±.25 .62±.1 7.08%*** 1.26±.3 2.97%
Show More Tags .00 .17±.07 .11±.05 .065±.02 0.74% .18±.09 0.42%
Show Less Tags .00 .02±.01 .00 .01±.0 0.05% .01±.01 0.03%
Show More Results 1.78±.3** .86±.18 1.01±.19 1.31±.17 14.90%*** .96±.2 2.25%
Click Image 6.66±1.1 5.59±.86 5.66±.87 1.22±.07 13.90% 20.22±.99 47.65%***

Total Actions 17.68±1.99 16.70±1.95 17.16±1.94 8.76±.52 100% 42.73±2.5 100%

Table 4.5: Summary of the means of actions based on each task session in the baseline, tag cloud, faceted tag cloud interfaces and
means/percentages of actions based on each task session and interface for lookup and exploratory search tasks (**=significant at p<0.01,
***=significant at p<0.001).
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4.6.3 Post-Task Questionnaires: Participants’ Perceptions of
the Interfaces

To better understand the participants’ perceptions of each interface, we fo-
cus on analyzing user feedback about the different interfaces and their fea-
tures. In the user study, the participants were asked to compete a post-task
questionnaire after each of their search tasks was finished. By analyzing
this questionnaire, we could assess the usefulness of each interface and see
whether any significant differences could be found among the three interfaces
and also between two search tasks (lookup vs. exploratory). Table 4.6 shows
the average user rating for each question in the survey.

In Question 1 and 2, a 2 x 3 ANOVA was conducted on users’ ratings
in order to examine the effect of interface and search task. There is no
significant interaction between interface and search task. For Question 1,
a simple main effect analysis showed that there is a significant difference
between the interfaces F (2,46) = 30.113, p < .001. Participants judged the
support provided by the tag cloud interface significantly better than that
provided by the baseline, p < .001. They also rated the interface support of
the faceted tag cloud interface significantly better than that of the baseline,
p < .001.

For Question 2, we also found a significant difference between the inter-
faces F (1.406,32.332) = 11.097, p = .001. Participants felt that the baseline
interface had less “unnecessary features” than tag cloud, p < .001, and the
faceted tag cloud, p < .001. However, the unnecessary features were a rela-
tively trivial concern to the users of all three interfaces.

Question 3 specially asked about the exploratory search task, “How con-
fident were the participants on the systems’ ability to find relevant informa-
tion”. A 1-way ANOVA was used to test for performance differences among
the three interfaces. We found a significant difference among the interfaces
F (2,46) = 5.412, p = .008. The participants were significantly more confi-
dent in the ability to find relevant information with the tag cloud interface,
p = .015, and the faceted tag cloud interface, p = .037, compared to the
baseline interface.

In Questions 4–7, we investigated the usefulness of various tag-related
features. The 2 x 2 ANOVA as a function of interface (tag cloud and faceted
tag cloud interfaces) and search task showed that the only significant differ-
ence within this group of questions “Was the x helpful to remove terms from
the query”, F (1,20) = 6.450, p = .02. The result indicated that users found
this interface feature significantly more useful in the tag cloud that in the
faceted tag cloud interface. No significant difference was found between the
lookup and the exploratory search tasks in respect to Question 8.
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Lookup Task Exploratory Task
Question Baseline Tag Cloud Facet Baseline Tag Cloud Facet
1. Did the interface provide enough support
for that task? 2.88±.24 3.92±.15* 4.04±.15** 2.88±.21 4.21±.13* 4.21±.13*

2. Were some of the interface features
unnecessary for that task? 1.33±.12 1.83±.18* 1.92±.2* 1.33±.12 1.54±.13* 2.17±.23*

3. Were you confident in the system’s ability
to find relevant information on this topic? - - - 3.25±.22 3.92±.2** 3.92±.18**

4. Did you find the tag cloud/faceted tag cloud
helpful in finding relevant information? - 3.79±.2 3.96±.18 - 4.13±.22 3.83±.21
5. Was it helpful to display the tags in different
font sizes? - 3.5±.23 3.54±.23 - 3.17±.27 3.38±.24
6. Was the + useful to add terms to the query? - 3.77±.25 3.82±.27 - 4.05±.2 3.73±.27
7. Was the x helpful to remove terms from the query? - 4.09±.23** 3.65±.26 - 4.04±.17 4.04±.18
8. Did you find it distracting that some terms
in the faceted tag cloud were not classified correctly? - - 2.33±.26 - - 2.43±.25

Table 4.6: Mean average of response to post questionnaire items (*=significant at p<0.05; **=significant at p<0.01, scale 1-5, higher
values indicate more agreement with the statement).



82 Evaluating tag-based Information Access in Image Collections

Interface
Question Baseline (f.) Tag Cloud (f.) Facet (f.)
1. Which of the interfaces
did you prefer most? 4.2% (1) 54.2% (13) 41.7% (10)
2. Which of the interfaces
would you prefer for lookup
search? 4.2% (1) 41.7% (10) 54.2% (13)
3. Which of the interfaces
would you prefer for explor-
atory search? - (-) 41.% (10) 58.3% (14)
4. Which of the interfaces
would you suggest the Car-
negie Museum of Art? - (-) 41.% (10) 58.3% (14)

Table 4.7: Percentages and frequencies (=f.) to final questionnaire items.

4.6.4 Post Questionnaires: Participants’ Interface Prefer-
ences and Comments

Another useful source of user feedback was a post questionnaire that was
administered after each participant completed the entire study. This ques-
tionnaire offered us an opportunity to ask users about their opinions about
three different interfaces. By this point in time, users had gain practical
experience with both types of tasks and all three types of interfaces. As
shown in Table 4.7, when asked a retrospective question “Which one of the
interfaces did you like/prefer most? ”, 54.2% (13) of subjects preferred the
tag cloud interface, 41.7% (10) the faceted tag cloud interface, and only 4.2%
(1) preferred the baseline search interface. This data correlates well with the
users’ actual performance on tasks. At the same time, user feedback differed
on “forward looking” questions designed to assess user preferences in future
situations (such as, “Which one of the interfaces would you prefer for lookup
search? ”). For both tasks, the faceted tag cloud interface emerged as most
preferred for future use. In addition, none of the users clearly preferred the
baseline interface for exploratory search tasks. It is interesting that our sub-
jects reported divergent results when they were asked about preference in
general and for each specific task.

Further, we found that 14 subjects favored the same interface for both
past and future use while the other 10 subjects indicated a preference for a
different interface when working on at least one type of tasks in the future.
In particular, among the 10 subjects who reported changing preferences, one
subject who favored the baseline (search only) interface in the prior tasks
switched to the tag cloud interface for exploratory search tasks.

We believe that the most likely explanation for the difference in interface
preferences between past and future tasks is the interface complexity. While
the baseline search interface is very familiar to our subjects, both the tag-
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Question Rating
1. Overall how would you rate the Search interface? 2.75±.22
2. Overall how would you rate the Tag Cloud interface? 4.17±.13*

3. Overall how would you rate the Faceted Tag Cloud interface? 4.04±.15*

Table 4.8: Mean±SE of response to final questionnaire items (*=significant at
p<0.05; higher values indicate more agreement with the statement).

based browsing interfaces were rather novel. Moreover, while the subjects
might have had at least some experience with using the traditional tag cloud
interface, the faceted tag cloud was new to all of them. It is reasonable that
a user’s opinion of a more complex interface might be less favorable during
their first attempts in using it. At the same time, armed with some experi-
ence, the users expressed stronger preferences for the use of more complex
and powerful interfaces in the future. This might explain the difference in
users’ answers to the question “which of the interfaces they would recommend
for Carnegie Museum of Art” (i.e., to professionals working with images):
58.3% (14) of our subjects recommended the faceted tag cloud interface while
only 41.7% (10) subjects recommended the tag cloud interface; no one rec-
ommended the baseline interface. This indicates that tag-based browsing
interfaces, particularly the faceted tag cloud interface, were evaluated to be
more powerful and more preferred for experienced users.

The data also showed that the main difference in users’ perceptions is
between the baseline and the two tag-based browsing interfaces. One or
another tag interface was preferred almost unanimously for both previous
and future situations. At the same time, the difference between the two
tag-based browsing interfaces is much less pronounced: the traditional tag
cloud interface appeared to be a bit simpler and more preferred during prior
tasks (which correlates well with the performance data), while the faceted
tag cloud was perceived as a bit more powerful and preferred for future tasks.

Further support for this assessment of users’ subjective preferences across
the three interfaces is provided by analyzing their explicit the rating for each
interface (see Table 4.8). On a Likert scale(1-5), the average rating for the
baseline (search only) interface was 2.75, 4.17 for the tag cloud interface
and 4.04 for faceted tag cloud interface. From these statistics, we can see
that the baseline interface was rated significantly lower than the tag cloud
interface, p = .002, and the faceted tag cloud interface, p < .001. However,
there is no significant difference between the tag cloud and the faceted tag
cloud interfaces.

4.6.5 Looking Deeper: Comment Analysis

To explain differences in users’ perceptions of the different interfaces and
their features, we examined free-form comments provided in the post ques-
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tionnaire. Below, these comments are grouped by the type of the interface
preferred by the user:

Preferred Baseline (Search Only) Interface

According to the 24 participants, only 1 subject preferred the baseline search
interface. The reason why the user chose this type of interface favorite was
the following:

“I liked the search box most, because every-
thing else distracted me. For me it is not nec-
essary to have tags, because I have everything
in my mind!” – P20

This subject identified that the simplest interface is the best as it did not
distract by adding elements to the interface.

Preferred Tag Cloud Interface

Thirteen subjects preferred the tag cloud interface. Based on the feedback
from the interview and open-ended question on why they preferred a par-
ticular interface, our subjects attributed their preference of the tag cloud
interface to more usefulness than the baseline interface. They also felt that
it was easier to use than the faceted tag cloud interface.

“The tag cloud provided more information
than search only and was less complex than
the facet search interface” – P4

“I think the tag cloud interface was very help-
ful for exploratory search task and the faceted
tags are a bit harder because I have to figure
out what facet to look at” – P3

“The tag cloud shows a good overview. I click
more on general terms” – P10

“I like tag cloud because it gives me new ideas
and it is easier to use” – P21

Sometimes, the poor categorization of tags in the faceted tag cloud in-
terface accounted for why our subjects preferred the non-faceted interface.
They either thought the category of facet was of low quality or irrelevant to
the task.

“The facet did not seem to identify tags well”
– P1

“I would recommend the faceted interface only
if tags are rich enough and categorized cor-
rectly, otherwise tag cloud is better” – P8
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“I think the categorization was not good, it
was not relevant to the task” – P19

Some of the subjects preferred the tag cloud interface because they
thought that the different font sizes in the tag clouds made more sense than
the categorizing tags. Furthermore, some of them even didn’t pay attention
to the category at all.

“I did not look at the facets at all as I just
looked at the terms” – P12

“I could see suggestions from the tag cloud but
I did not pay attention on the grouping of the
tags” – P17

“Font size attracted my attention more than
the facets” – P18

“The font size helped me to get most relevant
information quickly” – P24

Preferred Faceted Tag Cloud Interface

Overall, we had 10 subjects who preferred the faceted tag cloud interface.
The reason for this preference can be categorized into three aspects. First,
they thought that the faceted tag cloud interface provided them with more
functionality.

“I like faceted tag cloud because the interface
provided me with the most functionality” – P6

“For difficult search task the facet is useful and
for easy tasks you can just ignore the facet
feature” – P7

“The Faceted tag cloud interface seems to be
a smarter interface” – P13

“I like faceted tag cloud interface the most,
because the it provides me with more infor-
mation” – P23

Second, our subjects opined that the faceted tag cloud interface organized
tags in more meaningful ways than the tag cloud interface.

“I prefer faceted tag cloud interface because
it shows more tags in an organized way, so I
could find more information faster” – P2

“It is easy to find the tags that I needed in
faceted tag cloud” – P11
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“I like faceted tag cloud interface, because the
interface is clearer and I always know where
to find the tag” – P15

The third aspect is that some of our subjects thought that the faceted tag
cloud suggested more keywords to them. The interface also inspired them
to think of additional relevant key terms.

“I like the faceted tag cloud because it suggest
more query options than the tag cloud” – P5

“The faceted tag cloud made me think of more
useful keywords than the tag cloud” – P21

4.7 Related Work

Tagging systems such as Delicious, Flickr, and CiteULike have emerged as
one of the most popular technologies of the modern Web era. Tagging behav-
ior has been widely studied with regards to either the structure of tagging
systems [15, 32], or qualitative insights about tagging behaviors across small
collections [3, 12, 28]. The collective tagging behavior of users seems to of-
fer a strong platform for summarizing and indicating content popularity to
improve Web search [1].

In the computer-supported cooperative work (CSCW) domain, researchers
have noted that tags could be utilized to offer search signals to others in the
community. Several ranking algorithms have been investigated to improve
search performance within the tagging space, such as SocialSimilarityRank
[4], and FolkRank [21]. In the HCI community, Furnas et al. discovered the
similarities in the cognitive processes between generation of search keywords
and tags [14]. Kammerer et al. investigated how to apply relevance feedback
about tags to indicate users’ interests in various topics as well as to enable
rapid exploration of the topic space [22]. Although CSCW and HCI both
have provided different approaches to improve Web search, the focus of those
studies was only on optimizing search ranking algorithms.

To understand how people use tags in reality and to what extent tag-
based browsing constructs support users during their information seeking
processes, we are interested in exploring the usage and efficiency of tag-
based search interfaces. From an interface point of view, several interfaces
have been explored. While tags are used to discover content in a traditional
keyword-based search context, the innovative usage of social tags also sup-
ports browsing-based access to information. For instance, in [30], the authors
investigated a visualization technique, a tag cloud, to display tags to sup-
port search performance. They applied various dimensions to construct tag
clouds for use in information retrieval usage. They explored parameters of
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constructing tag cloud layouts including font size, quadrant and proximity-
to-largest-word during a presentation period or an interpretative period. The
study showed that the list ordered by frequency is better for categorizing.

Another tag-based browsing construct is clustered tag clouds [41], which
utilizes SOMs for visualization. The proposed approach not only facilitates
the discovery of relationships between tags and corresponding content, but
also improves tag-based navigation by clustering relevant tags. A similar
idea, classified tag clouds, studied by Yahoo! Labs [33] classified tags by uti-
lizing facets such as Wordnet. Their approach enabled Flickr photo browsing
through different facets. Their analysis showed that users could effectively
deploy query recommendations to explore large sets of images annotated
with tags. Other studies [19, 35] explored another advanced tag construct,
tag hierarchy, for tag-based navigation. By utilizing a decentralized search
framework [35], the authors found that there are significant differences among
different approaches to tag hierarchy construction in terms of success rate
and average path length.

Since our primary goal intent in this paper is to explore whether the
tag-based browsing constructs could provide any additional value to tag-
based search, we apply the most popular interface layout, a tag cloud, as
our basic tag interface and compare it to a traditional search box interface.
Furthermore, according to our previous study [26] on image search, where
we discovered that facets help users in exploring a large collection of images,
we also investigate a faceted tag cloud interface in this study [33].

A similar study conducted by Sinclair and Cardew-Hall investigated the
usefulness of tag clouds in terms of information seeking by analyzing the
usage of tag clouds in a traditional search interface [34]. They found that
subjects prefer tag clouds when the search task is more general, but favor
issuing search queries, when more specific information is needed. Contrary
to their study, our work is based on the domain of images where typically
no descriptive content (such as page-text or abstract information) is given.
Furthermore, we study three separate tag-based interfaces to discover the
differences between a traditional search interface, a search interface enriched
with tag clouds, and search interface extended with faceted tag clouds. In
this setting, we can clearly identify how people use each interface and how
they perform. To the best of our knowledge, this is the first work that
compares multiple tag-based search interfaces.

4.8 Discussion and Conclusions

The main goal of the presented study was to perform a comparative user
evaluation of tag-based browsing interfaces against simple search-based ac-
cess to tagged collections. We compared user performance and feedback for
three types of tag-based information access interfaces in the context of two
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recognized types of search tasks – lookup search and exploratory search. As
expected, we obtained empirical evidence that the two tag-based browsing
interfaces were superior to the baseline (search only) interface. At the same
time, the analysis of objective data (performance and action profile) and of
subjective data (questionnaires) produced slightly different results.

From the users’ perspective, both tag-based browsing interfaces were
perceived to be superior to the baseline. The users indicated that these in-
terfaces provided significantly enhanced support for both types of user tasks
and reported significantly higher levels of confidence that relevant informa-
tion would be found. They also ranked both tag-based browsing interfaces
significantly higher “overall” than the baseline interface.

From the performance and log analysis, significant differences were found
for the traditional tag cloud interface when used in the exploratory search
context. The tag cloud interface was found to be significantly more efficient
in terms of both time and actions than the baseline interface. We also
found that the tag cloud provided the most significant impact upon more
difficult tasks and when the user was less familiar with the core topic of
the task. A deeper analysis of user actions revealed another argument in
favor of the tag cloud interface - with this interface, the “show more results”
action was used significantly less often than in the baseline interface. This
indicated that, with the tag cloud, the users were more likely to receive useful
results at the top of the ranked list. None of these differences appeared
to be significant for the faceted tag cloud; its objective performance was
inferior to the performance of the traditional tag cloud. In addition, neither
objective nor subjective data revealed any significant differences between the
traditional tag cloud and the more advanced faceted tag cloud.

Why was the more advanced tag-based browsing interface less effective
than the simpler tag-based browsing interface? Why was the faceted tag in-
terface not a significant improvement over the baseline (search only) interface
from a performance aspect? The post-session questionnaire provided some
answers to these questions. This questionnaire asked users to select their
“preferred” interface in light of two aspects : looking at performance in the
past and looking forward to potential future uses of these interfaces. While
the traditional tag cloud interface was preferred in previous tasks (which
correlated with the objective performance data), the faceted tag cloud inter-
face was the most popular for future use. It was also the top choice to be
recommended to museum professionals. This was a strong indication that
the faceted tag cloud interface was perceived as more powerful in the long
run, but too difficult to use at first. This speculation is further confirmed
by users’ comments. In these comments, subjects stressed several aspects in
which the faceted tag cloud interface was superior to the traditional cloud,
yet indicated that it was harder to use at first. This data revealed that the
faceted tag cloud interface should be assessed in a longer-term study, which
would allow users to gain experience and become more proficient in operat-
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ing with more sophisticated interfaces. We plan to explore this hypothesis
in our future studies.

We also should acknowledge that the most noticeable differences observed
in the study were not between the interfaces, but between the lookup and
exploratory search tasks. Our data further confirmed that these two kinds
of tasks are radically different. Exploratory search tasks are much harder;
they consume more time and require more actions than lookup search tasks.
Moreover, the very structure of user activities was very different between ex-
ploratory and lookup search. The occurrence of traditional search decreased
considerably perhaps because it was much harder to find right keywords for
the query. In contrast, almost 50% of user time in exploratory search context
was spent on examining specific documents that were important to under-
stand the domain and identify the most useful terms. These results correlate
well with the previous research on exploratory search.

Finally, we should acknowledge a few limitations of our study. First, we
focused on the query-to-image part of tag-based information access since it
was the most different aspect among the three interfaces. The explicit pres-
ence of tags can also also enhance image-to-image navigation and further
increase the value of tag-based browsing. Additional studies are required to
determine the value of tags in this context. In addition, by the nature of our
studies, we were unable to investigate one potential weakness of tag-based
browsing in respect to classic search. All tag-based browsing interfaces re-
quire some considerable screen space for a tag cloud or other tag browsing
artifact. This might reduce the space needed to show search results and de-
crease the effectiveness of tag-based browsing. In our studies, this effect was
minimal: the study was performed on a regular desktop screen and search
results were shown as thumbnails, which occupied relatively little space.
We believe that, in this context, tag-based browsing interfaces were able
to present a sufficient number of results despite the decreased presentation
space. As the results shows, the Show More Results action was called upon
significantly less frequently for the tag cloud. However, this might be of con-
cern for those cases of mobile search with limited screen space as well as for
different kinds of objects that require more space in the results presentation
area. This is one of the reasons that we hesitate to generalize the observed
results on tag-based information access to non-image resources. This is an-
other aspect that requires additional investigation. We hope to explore some
of these issues in our future work.
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Part III

Evaluation II: Comparing Tags
with Tag-Alike Meta-Data

To what extent are tags/tag clouds more
useful/efficient for search/navigation than other
tag-alike meta-data such as keywords or search

query-terms?





5
Linking Related Content in Web

Encyclopedias with Search Query Tag
Clouds

This chapter is based on the paper “Linking Related Content in Web Ency-
clopedias with search query tag clouds” published in the IADIS International
Journal on WWW/ in 2011.

Another interesting issue in the context of tag-based search and naviga-
tion is the question as to what extent tags are more useful for navigation
than tag-alike meta-data structures. Since tags are very related to the nota-
tion of keywords and since related research has shown that tags are in their
structure comparable to so-called query tags harvested from search query
logs [5], we are interested in studying the navigational efficiency of tags com-
pared to these tag-alike meta-data structures. To that end, we introduce in
this chapter a paper that presents a tool called QueryCloud which enables an
information system to link related content over tag clouds that are created
from historic search queries. By comparing the approach on a theoretical
and empirical level with a tagging system maintained by real users of an
information system called the Austria-Forum we show that tag clouds based
on query terms out-perform tag clouds created from tags collected from real
users in terms of linking and efficiently navigating related content.

The original contribution can be found in [25].

5.1 Abstract

In this paper we present a novel tool for exploring related resources in Web
encyclopedias called QueryCloud. Typically, users come to an encyclopedia
from a search engine such as Google, Yahoo! or Bing and upon reading
the first page on the site they leave it immediately thereafter. To tackle
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this problem in other systems such as Web shops, additional browsing tools
for easy finding of related content are provided. In order to overcome this
issue in the context of Web encyclopedia systems, we introduce a tool called
QueryCloud. The tool combines two promising approaches - tag clouds and
historic search queries - into a new single one, i.e. each document in the
system is enriched with a tag cloud containing collections of related concepts
populated from historic search queries. To test the feasibility of the approach,
we integrated a prototypical implementation of the tool into a large Web
encyclopedia called the Austria-Forum and conducted several experiments
on a theoretical and empirical level. As our experiments show, QueryCloud
provides a great alternative to traditional forms of tag cloud creation. With
several experiments on a theoretical and empirical level we show that tag
clouds generated by our system out-perform tag clouds that are based on
user-tags in terms of linking content and navigability.

5.2 Introduction

Nowadays, content in Web encyclopedias such as Wikipedia is mainly ac-
cessed through search engines (Wikimedia 2010). Typically, users with a
certain interest in mind go to a search engine such as Google, Yahoo! or
Bing, define a search query there and click on a link from the result list from
which they are referred to an article within Wikipedia. Upon reading the
document they decide to either go back to the search engine to refine their
search, or close their browser if they have already found the information they
needed. Such a user behavior on encyclopedia sites is traceable through a
typical high bounce rate (Alexa 2010, [7]. Essentially, users do not “really”
browse in online encyclopedia systems such as Wikipedia to find further rel-
evant documents [7] - they rather use search engines such as Google, Yahoo!
or Bing for that purpose. It is our opinion that Web encyclopedias simply
lack usable tools that support users in explorative browsing or searching.
For example, in Web based systems such as Web shops, different approaches
have been applied to tackle this situation. Amazon for instance offers the
user related information through collaborative filtering techniques for each
product. Google or Yahoo! apply a similar approach by offering related
content (e.g. sponsored links) to the user by taking the users’ search query
history into account [18]. On the other hand, social tagging has emerged as
an interesting alternative to find relevant content on the Web [11]. These
systems apply the concept of social navigation [19], i.e. users browse by
means of tag clouds, which are collections of keywords assigned to different
online resources by different users [11] driven by different motivations [21, 2].

In this paper we introduce a novel tool called QueryCloud to offer related
content to users of Web encyclopedias. Essentially, the tool is based on the
simple idea of integrating a tagging system into a Web encyclopedia and of-



5.3 Approach 99

fering related content to users via the so-called resource-specific tag clouds by
automatically linking related documents over the users search query terms.
In this way two promising approaches are successfully combined into a new
single one - tag clouds and historic search queries. To test the approach,
we implemented a prototype of the tool and integrated it in a large Web
encyclopedia called the Austria-Forum. To evaluate the system by means
of link quality, tag network quality and navigability, we conducted several
experiments on a theoretical level. Additionally to this, we conducted a user
study to investigate whether or not the tags generated by our system are
also meaningful for the user by describing the content of a particular Web
page. Hence, the overall contribution of this paper can be summarized as
follows:

• Introduction of a novel tool called QueryCloud that links related con-
tent in Web encyclopedia system via so-called resource specific search
query tag clouds.

• Evaluation of the tool by integrating it into a large Web encyclopedia
system called the Austria-Forum and comparing it on a theoretical
and empirical level with tags and tag clouds that are based on tags
generated by real users of this system.

Essentially, the paper is structured as follows: In Section 5.3 we present
the basic idea of this new approach. Section 5.4 shortly discusses the im-
plementation of the novel tool. In Section 5.5 we provide an analysis of the
potentials and limitations of our tool. Section 5.6 discusses related work.
The final Section 5.7 concludes the paper and provides insights in the cur-
rent progress of the project.

5.3 Approach

The basic idea of QueryCloud is to offer related content to users via the
so-called resource-specific tag cloud by automatically linking related docu-
ments via the search query terms of the users. On the one hand, tag clouds
represent an interesting alternative navigation tool in modern Web-based
systems. Moreover, they are very close to the idea of explorative brows-
ing [22], i.e. they capture nicely the intent of users coming to a system
from a search engine - users have searched in e.g. Google, Yahoo! or Bing
and now they click on a concept in a tag cloud that reflects their origi-
nal search intent. On the other hand, search query history, i.e. queries
that are “referrers” to found documents are an invaluable source of infor-
mation for refining user search in the system. It is our belief that an
integration of such a tool online encyclopedia systems would greatly con-
tribute to leading users to related documents. In order to make the idea



100
Linking Related Content in Web Encyclopedias with Search

Query Tag Clouds

Figure 5.1: Example of resource-specific query tag cloud and resource list of a tag
within Austria-Forum rendered by QueryCloud.

work the users search query history needs to be obtained in a resource spe-
cific way. This is achieved by collecting the HTTP-Referrer information
from a user coming from a search engine to a particular website (resource)
within a Web based encyclopedia system such as Austria-Forum. To re-
trieve the user’s HTTP-Referrer information, we use in QueryCloud the
simple approach of a JavaScript code snippet (see Tag Collection Module
in Section 3) that has to be included by the owner of the particular Web
site. Now, how does the script work? Let us give an example: Suppose a
user goes to Google and searches for “Elfride Jellinek Biographie” and se-
lects the link <http://www.austria-lexikon.at/af/Wissenssammlungen/
Biographien/Jelinek%2C_Elfriede> from the results list that refers to the
Elfriede Jelinek biography in the Austria-Forum. The QueryCloud Tag
Collection Module then simply parses the HTTP-Referrer <http://www.
google.at/search?hl=de&q=elfriede+jellinek+biographien> informat-
ion of this site and extracts from it the user’s search query terms “elfride”,
“jellinek”, “biographien”. The tags are then stored in the QueryCloud Tag
Store Module (see Section 5.4). This procedure is performed whenever a
user lands on a Web page from a search engine within the Austria-Forum.
The tags are then used to create a resource-specific tag cloud for each site.
This is done by the QueryCloud Tag Cloud Generation Module (see Section
5.4). The Tag Cloud Presentation Module (see Section 5.4) renders the tag
cloud then in a visually appealing fashion and presents it to the user. Hence,
two pages (or even more) are linked with each other by this approach if they
have the same query tag in common. Upon clicking on a particular query
tag in a resource-specific tag cloud the user is provided with a list of links
of the resources which have this query tag in common (see Figure 5.1). By
clicking on a particular link in the resource list the user is then forwarded to
the resource she was searching for (see Figure 5.2).

<http://www.austria-lexikon.at/af/ Wissenssammlungen/Biographien/ Jelinek%2C_Elfriede>
<http://www.austria-lexikon.at/af/ Wissenssammlungen/Biographien/ Jelinek%2C_Elfriede>
<http://www.google.at/search?hl=de&q=elfriede+jellinek+biographien>
<http://www.google.at/search?hl=de&q=elfriede+jellinek+biographien>
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Figure 5.2: Example of tag cloud driven navigation within Austria-Forum using
QueryCloud.

5.4 Implementation

The first prototypical implementation [27] consists of four independent mod-
ules (see Figure 5.3).

Tag Collection Module: The tag collection module is the first module
within the QueryCloud system. Basically, this module is a simple client part
module which retrieves HTTP-Referrer information, time information and
target page of a user coming from a search engine such as Google, Yahoo!
or Bing to a website.

Tag Storage Module: This module is the actual heart peace of the system.
It provides a couple of interface routines for storing and deleting data from
the database back-end module that is implemented with Apache Lucene. The
module also integrates a number of clean-up and stemming routines for elim-
inating stop-words, punctuation characters or plural words. The synonym
problem is not considered by this module. Due to reasons of performance
two index files are generated: One for expressing the tag resource-relations
(tn‖ri, ..., rj) and one for expressing the resource-tag relations (rn‖ti; ..., tj).
In this way, tags and resources can be searched independently from each
other, to either create a tag cloud for a specific resource or to create a re-
source list for a specific tag.

Tag (Cloud) Generation Module: To provide the access to related doc-
uments a resource-specific search query term/tag cloud is calculated by this
module. This tag cloud is of the form TCr = (t1, ..., tn, r1, ..., rm), where
r1, ..., rm are the resources which have any of the query tags t1, ..., tn in
common. For retrieving the query tags and the corresponding resources (cf.
Figure 1), this module provides a simple HTTP interface using the following
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Figure 5.3: QueryCloud - structural diagram.

two functions:

• GetTagCloud(URL,max. tag cloud size) generates a XML representa-
tion of a query tag cloud

• GetResources(URL, tag, max. resource list length) generates a XML
representation of the resource list for a particular query tag

Tag Cloud Presentation Module: This module is a client-side AJAX
module implemented in JavaScript. It retrieves the XML representation
of a query term/tag cloud or an XML representation of a resource list of a
particular query term/tag from the tag cloud generation module and renders
a tag cloud in a visually appealing fashion.

5.5 Evaluation

To investigate the feasibility of the tool before actually deploying it, we
first decided to only integrate the QueryCloud tag collection module into
the Austria-Forum life system to collect the search query terms from users
coming from search engines such as Google, Bing or Yahoo! to the Austria-
Forum for a period of 240 days. On the basis of this dataset, we conducted
several experiments on a theoretical and empirical level to evaluate the fea-
sibility of the approach. In the following subsections we will give a short
description of our test system, the tag data sets used in the experiments, a
detailed description of the experiments and their results.
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#res #tags #tas
AF Dataset 13,398 11,516 33,737

Table 5.1: AF dataset: Number of resources (#res), number of tags (#tags) and
number of tag assignments (#tas).

5.5.1 Test System

As described before, we used a Web encyclopedia called the Austria-Forum
[26] as our test system to investigate the feasibility of our approach. Basi-
cally, Austria-Forum is a wiki-based online encyclopedia containing articles
related to Austria. The system comprises a very large repository of arti-
cles, where new articles are easily published, edited, checked, assessed, and
certified, and where the correctness and quality of each of these articles
is assured by a person that is accepted as an expert in a particular field.
As of July 2010, the system contains more than 130,000 information items,
attracts more than 4,000 distinctive users (over 80% coming from search en-
gines such as Google, Bing or Yahoo!) each day and is known as the biggest
online encyclopedia system on the Web containing content about Austria
[26].

5.5.2 Baseline

As baseline for our experiments a tag dataset (further referred as the AF
dataset) of the Austria-Forum was used. Since the tags are generated by
real users of the system to describe or categorize [15] the contents, we used
this dataset as the baseline to compare our QueryCloud approach with. As
of February 2010, the AF tag dataset contains 11,516 tags (#tags), 13,398
resources (#res) and 33,737 tag assignments (#tas) (see Table 5.1).

5.5.3 Measuring Tag Quantity

Since the success of the whole concept depends on automatically applying
tags to the resources of a Web based encyclopedia system we conducted
in the first step an experiment that measured tag quantity. In particular,
we investigated the growth of the number of resources (#r), the growth
of the number of generated tags (#t) and the number of tag assignments
(#tas) in general for a period of 240 days (cf. [28]). Essentially, we could
observe that QueryCloud generated on average 226 new tags (#t) per day
and annotated on average 95 new resources every day (#r) (see Figure 5.4).
The average number of tagged resources was 1290 per day. Compared to
this, the Austria-Forum taggers annotated 135 resources on average per day,
generated on average 46 new tags (#t) and annotated on average 53 new
resources (#r) every day, for the time the tagging functionality was first
introduced in the Austria-Forum (see Figure 4). Hence, the QueryCloud
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Figure 5.4: Number of tagged resources (#res) and number of generated tags
(#tags) over time for the Austria-Forum: QC dataset (Figure a) on vs. AF dataset
(Figure b).

tagging approach clearly outperforms the Austria-Forum human taggers by
annotating 9 times more resources, and generating 5 times more new tags
and annotating 1.7 times more resources in the same period of time. As
of July 2010, the QC tag dataset (further referred as QC dataset) contains
54,379 tags (#tags), 22,798 resources (#res) and 309,683 tag assignments
(#tas) (see Table 5.2).

5.5.4 Measuring Link Quality

After measuring the quantity of the tags produced by QueryCloud system
we had a closer look at the actual “link quality” of the produced tags by
QueryCloud system. Since the success of the whole concepts depends on
linking related documents over tags that share more than one resource with
each other, we conducted an experiment measuring the number orphan tags
produced by QueryCloud system. Orphan tags are basically tags which are
applied to only one resource within a tagging system, i.e. they do not connect
any resources with each other. Again, we could observe that QueryCloud
system performs really well by actually producing 7% less orphan tags than
the human taggers (AF) do (see Table 5.3). Note, for the rest of our exper-
iments we only used the cleaned datasets AF and QC, cleaned from orphan
tags and their corresponding resources. In Table 5.4 the new statistics of
both datasets are presented.
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#res #tags #tas
QC Dataset 22,798 54,379 309,683

Table 5.2: QC dataset: Number of resources (#res), number of tags (#tags) and
number of tag assignments (#tas).

#tags #orphans
QC Dataset 54,379 34,962 (70%)
AF Dataset 11,516 8,865 (77%)

Table 5.3: Number of tags (#tags) and number of orphan tags (#orphans): QC
dataset vs. AF dataset.

5.5.5 Measuring Network Quality

Another metric we were interested in was the so-called “network quality” of
the QueryCloud system. In order to measure this property, we first modeled
the QueryCloud tag cloud network as a simple tag-resource bipartite graph
system of the form V = R∪T , where R is the resource set and T is the query
tag set [9]. Hence, for the following experiments, we assume that neither the
tag cloud size nor the resource list is limited, which, as shown in one of
our own previous works influences tag cloud navigability [10]. For more
details, see [24] for a generic solution of that problem, to create efficiently
navigable tag cloud networks with limited resource lists. Since the “link
quality” experiment only showed us how many actual useful tags the systems
generates (by means of connecting two or more resources with each other), we
investigated in this experiment how many resources are connected with each
other. To measure this metric, we calculated the connected components [17].
Essentially, we could observe that size of the largest connected component
in the QC dataset is 99%, i.e. 99% of all resources within Austria-Forum
are connected via tag clouds generated by the QueryCloud system (cf. [28]).
Contrary to this, the AF dataset generates a tag cloud network which is only
to 94 % connected (cf. [28]).

5.5.6 Measuring Navigability

In the fourth experiment, we examined the property of the tool to navigate to
related documents within a Web based encyclopedia system. In [10] we have
shown that navigable tag cloud networks have certain properties. According
to Kleinberg [13, 12, 14] a navigable network can be formally defined as net-
work with a low diameter [20] bounded poly-logarithmically, i.e. by a polyno-
mial in log(N), where N is the number of nodes in the network, and an exist-
ing giant component. Thus, as a first step, we examined again the size of the
largest connected component. As shown in the previous section, QueryCloud
generates a tag cloud network whose largest connected component contains
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#res #tags
QC Dataset 18,831 11,485
AF Dataset 12,103 2,207

Table 5.4: Orphan cleaned up dataset statistics of QC dataset and AF dataset.
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Figure 5.5: Distribution of shortest path pair lengths for QC tag cloud network
(blue line) and AF tag cloud network (red line).

almost all nodes (99%) of the network. Contrary to this, the AF dataset
generates a tag cloud network which is “only” connected to 94%. Thereafter,
we calculated the number of shortest path pairs within QueryCloud’s tag
cloud network and investigated the effective diameter of the network. As
Figure 5.5 shows, QueryCloud generates a tag cloud network whose effec-
tive diameter is around 6.3 hops while the AF dataset generates a tag cloud
network with an effective diameter of around 9.9 hops. Putting the results
of these two experiments together we can see that QueryCloud produces a
navigable tag cloud network, log2(18, 831) = 14.2 > 6.3 [9, 13, 12, 14]. The
same applies to the AF tag cloud network, since log2(12, 103) = 13.6 > 9.9.

5.5.7 Measuring Efficiency

Now, since we have shown that tag cloud network of QueryCloud system is
navigable, we also wanted to know how “efficiently” navigable the tag cloud
network is in general. As shown by Kleinberg, an “efficiently” navigable
network is a network possessing certain structural properties so that it is
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Algorithm 2 Hierarchical Decentralized Searcher [8]
INPUT: Tag-Resource Graph G, Start node START , Target node TARGET
/* returns a tag-taxonomy based on degree centrality and tag co-occurance [8]*/

T ← GetDegCoocTagTaxonomy(G)
currentNode← START
while currentNode! = TARGET do
neighbors← getalladjacentnodes ∈ GfromcurrentNode
/*finds closest node according to dist = min, where dist(A,B) = h(A)+h(B)-
2h(A,B)-1*/
currentNode← findClosestNode(neighbors, T )

end while

possible to design an decentralized search algorithm, i.e. an algorithm that
only has local knowledge of the network, and whose delivery time (the ex-
pected number of steps to reach an arbitrary target node) is poly-logarithmic
or at most sub-linear in N, where N is the number of nodes in the network
[13, 12, 14]. Essentially, we implemented a decentralized searcher (see Al-
gorithm 2) based on the ideas of [1] to evaluate the actual efficiency of the
system to navigate to related documents using tag clouds for navigation [8].
In order to support efficient search, we utilized a hierarchical background
knowledge base (in our case a tag-taxonomy) to find related content within
a tag cloud network (see Algorithm 2). As appropriate tag taxonomy, we us
a tag-taxonomy which is based on the so-far best known tag-taxonomy in-
duction algorithm (creating best semantic relations and search results) called
Deg/Cooc [23].

To find a certain resource A (e.g. tagged as “spätromantik”) from a
certain node (e.g. tagged as “schlos̈”) within the network (see Figure 5.6 and
Figure 5.7), the searcher first selects all adjacent nodes for the start node
and then selects the node from the network (“kirche”) which has the shortest
distance dist(A,B) = h(A)+h(B)−2h(A,B)−1 to target node B in the tag-
taxonomy, with h(A), h(B) being the heights of the two nodes A, B in the
hierarchy and with h(A,B) being the height of the least common ancestor
of the two nodes A, B in the hierarchy [1, 8]. This process is continued
until node B is reached. In order to get statistically significant results, we
simulated 100,000 user-search-requests randomly requesting for a resource
B within the system starting at randomly selected resource A. As shown
in Figure 5.8, we can observe that with the help of QueryCloud system a
user is able to find a resource within Austria-Forum in an efficient way, i.e.
within only 8 hops almost 98% of all resources in the Austria-Forum can
be reached, log2(18, 831) = 9.8 > 8. Contrary to this, the AF tag dataset
provides successful finding of related resources in the Austria-Forum only in
68% of the cases and this also in significantly more steps (14 hops) than with
the QC dataset.
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Figure 5.6: Example of a tag-taxonomy generated for AF dataset.
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Figure 5.7: Example of a resource-specific tag cloud network and a search through
it utilizing the tag-hierarchy from Figure 5.6 as background knowledge.

5.5.8 Measuring Tag Quality

Last but not least, we investigated in our final experiment the quality of the
tags, respectively the tag clouds generated by our QueryCloud system. Even
if related work has shown that query tags can be utilized to generate shorter
navigational paths between documents [4] or that they are very similar to
tags generated by the users [6], none the previous studies has shown whether
or not query tags also provide a meaningful source for the users to describe
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Web content. For that reason, we conducted a user study where we asked
our test subjects to find out of a set of query tags the tags which were not
relevant for a given Web page in the Austria-Forum system. As baseline
for the experiment we again used the user generated tags from the AF tag
dataset. The reason why we did not ask our users to explicitly find the
relevant terms out of the set of query tags was basically the fact that we
observed in a pilot study that users had more problems in highlighting items
which are relevant than finding items which are not relevant for them for
a given resource. Furthermore, was the number of not relevant items small
than the number of relevant items which made it easier for the user to just
point out the non-relevant items and to complete the online questionnaire in
a faster. All in all, the setup of the user study was the following:

1. In the first step, we selected uniform at random, 250 resources over-
lapping resources from both datasets (QC and AF). In order to get
meaningful results, only those resources were taken into account for
which at least two tags (query tags and user tags) were present per
resource. For the samples we took, the size of the tag cloud for the QC
dataset was 5.2 terms on average and 2.7 terms on average for the AF
dataset.

2. After that, we combined the tags of both datasets. We did that since
we wanted our users not to know whether they are high lightening a
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NRR p
QC Dataset 4.8% 0.376
AF Dataset 2.4%

Table 5.5: Mean non-relevance feedback rating (=NRR) for QC dataset and AF
dataset over all test users and p-value for the two sample t-test.

query tag as relevant for a given resource in Austria-Forum or a real
user tag. The overlap between the QC dataset and the AF dataset
was in general not very high. Contrary to the findings of [6] we can
find only 9% of the query tags in the AF dataset and 16% of the user
generated tags in the QC dataset.

3. In the third step, we implemented an online study with 50 tasks (=re-
sources) per questionnaire. Overall we created five different question-
naires which covered the sample of 250 resources we have chosen from
the Austria-Forum system.

4. Finally, we set up the user study on one of our servers in the TU-Graz
domain and invited colleagues and friends to participate in the study.
The whole study started at December 1st 2011 and was online for one
week.

Overall, we had 15 test subjects from three different departments of our
university who participated in the experiment. The test subjects were ran-
domly assigned to each questionnaire. The mean length of time to complete
a questionnaire was 35 minutes. For the final evaluation, we took only those
tags into account where at least all three test users had an agreement on. In
order to conduct the overall rating quality of our test subjects, we calculated
the inter-rater agreement (=k) of the users according to Fleiss’kappa. The
mean inter-rater agreement of the users for the query tags was k=0.22 and for
the user tags it was k=0.21. According to the inter-rater agreement levels of
Landis and Koch [16] this can be interpreted as fair agreement (k=0.21-0.40).

In Table 5.5 the mean non-relevance feedback ratings (=NRR) for the
two datasets QC and AF of the user test are presented. As shown, we can
observe overall a very small number of tags in both datasets which were rated
as non-relevant. For the QC dataset sample the mean non-relevance rating
was 4.8% and for the AF dataset sample it was 2.4%. To see whether or not
the two values were also statistically significantly different, we performed
two-sample t-test. As also shown in Table 5.5, on a confidence interval of
95%, the differences were not significant, p = 0.376. Even if the experiment
did not show that query tags generated by QueryCloud out-perform user
generated tags by means of term relevance, the study revealed that (even if
query tags are not identical to user tags) they are to a high degree relevant for
the user. Overall, we could show that query tags generated by QueryCloud
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are almost to the same degree relevant for the user of a given Web page as
user generated tags.

5.6 Related Work

The almost first notable work in the field of search queries and user tags was
a study conducted by Antonellis et al. [3]. In their work the authors per-
formed a set of experiments to study the information value of search engine
queries when treated as “tags” or “labels” for the Stanford domain. In partic-
ular, the authors tried to answer the question how much extra information
these query tags provide for web pages by comparing them to tags from the
Delicious bookmarking site and to the page text. As datasets for their ex-
periments the authors used a self-collected query log dataset retrieved over
the users HTTP-Referrer Information and a crawled Delicious tag dataset
for the stanford.edu domain. The authors conclude their work, that query
tags can provide substantially many (on average 250 tags per URL), new
tags (on average 125 tags per URL are not present in the page text) for a
large fraction of the stanford.edu domain.

In another study which was conducted in the same year, Carman et al.
[6] investigated tags and query logs to see whether or not the terms people
use to annotate websites are also similar to the websites search query terms.
Interestingly, the authors found out that the vocabulary used for tagging and
search is quite similar, however not identical. Additionally to these findings,
the authors tried to answer the question whether or not search queries are
more related to page content than tags generated by users. In a number of
experiments, they found out that query tags are more related to page content
than user tags. As datasets for their experiments the authors used the AOL
search query log and tags from Delicious.

Another relevant work is the paper “Query Logs as Folksonomies” con-
ducted by Benz et al. [5] in 2010. In their study the authors investigate
the extent to which folksonomies can be generated from query log files. The
focus is on three comparative studies of the system’s content, structure and
semantics. The results show that query logs incorporate typical folkson-
omy properties and that approaches to leverage the inherent semantics of
folksonomies can be applied to query logs as well.

In a very interesting follow-up work [4] of Antonellis et al., the authors
describe how they built a navigational tool on the basis of query tags. Ad-
ditionally to this, they proposed a framework for comparing different tag
selection methods. Similar to our own work they investigated user tags and
query tags by means of the so-called navigational utility. Put simply, they
calculated the navigational utility of a page as the number of resources that
could be reached through this page and the closeness to other resources based
on the pages tags. The most interesting finding in their work was that based
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on the measure of the navigational utility of a page, query tags increase the
navigational utility of a page more than tags extracted from tags or user tags,
or in other words, query tags are a better source for navigational tags than
tags extracted from text or tags assigned by users. Their findings actually go
along with the results as we also observed them in this paper. However, con-
trary to our own work, the authors focused in their work only on the tag/link
selection problem to increase the navigational utility of a page rather than
focusing on the general question to what extent query tag clouds outperform
user generated tag clouds by means of tag quantity, link/network quality,
navigational efficiency and quality, as we did in this paper.

The last work to be mentioned in this field is a study that was actually
conducted by us in 2010. In particular, in [28] we presented the idea of
combining search query tags and user tags to increase the navigability of
tagging systems. To that end, we introduced measures such as tag cloud
coverage and the size of the largest strongly connected component. Overall,
we could show that the navigability of tagging systems could be significantly
increased if we enrich an existing tagging system with query log terms.

5.7 Conclusions

In this paper we presented a novel tool called QueryCloud for exploring re-
lated resources in Web encyclopedias. The tool aims at to offering additional
navigational paths to related resources for users of such systems in general,
and for users who come to these systems from search engines such as Google,
Yahoo! or Bing in particular. Furthermore, we showed the potentials and
limitations of the tool by integrating it into a large Web encyclopedia sys-
tem called the Austria-Forum. By comparing QueryCloud on a theoretical
and empirical level with tag clouds that are based on tags generated by real
users of the Austria-Forum we showed that our system out-performs these
tag clouds in terms of linking and navigating related content. Additionally to
this, we could show in a user study that query tags generated by QueryCloud
are almost to the same degree relevant for the user of a given Web page as
user generated tags.
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6
Navigational Efficiency of Broad vs.

Narrow Folksonomies

This chapter is based on the paper “Navigational efficiency of broad vs. nar-
row folksonomies” presented at the 23rd ACM Conference on Hypertext and
Social Media in 2012.

It continues the work on the navigational efficiency of tags compared to
other tag-alike meta-data structures. In the previous chapter we have shown
that search query tag clouds perform extremely well in linking and navigat-
ing related content. In this chapter we explore the navigational differences
and the similarities of another tag-alike meta-data construct. In particular,
we present a study that explores the navigational differences between broad
folksonomies which are based on tags provided by users and narrow folk-
sonomies that are grounded on keywords provided by authors. We study
both kinds of folksonomies on a dataset provided by Mendeley - a collab-
orative platform where users can annotate and organize scientific articles
with tags and keywords. Our experiments show that tags are more useful
navigation than keywords.

The original contribution can be found in [12].

6.1 Abstract

Although many social tagging systems share a common tripartite graph
structure, the collaborative processes that are generating these structures
can differ significantly. For example, while resources on Delicious are usu-
ally tagged by all users who bookmark the web page cnn.com, photos on
Flickr are usually tagged just by a single user who uploads the photo. In
the literature, this distinction has been described as a distinction between
broad vs. narrow folksonomies. This paper sets out to explore navigational
differences between broad (based on tags provided by users) and narrow

cnn.com
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(based on keywords provided by authors) folksonomies in social hypertex-
tual systems. We study both kinds of folksonomies on a dataset provided
by Mendeley - a collaborative platform where users can annotate and orga-
nize scientific articles with tags and keywords. Our experiments suggest that
broad folksonomies are more useful navigation than narrow ones.

6.2 Introduction

In social tagging systems, users organize information using so-called tags – a
set of freely chosen words or concepts – to annotate various resources such as
web pages on Delicious, photos on Flickr, or scientific articles on BibSonomy.
In addition to using tagging systems for personal organization of information,
users can also socially share their annotations with each other. The infor-
mation structure that emerges through such processes has been typically
described as “folksonomies1” (folk-generated taxonomies). Usually, such
folksonomies are represented as tripartite graphs with hyper edges. These
structures contain three finite, disjoint sets which are 1) a set of users u ∈ U ,
2) a set of resources r ∈ R and 3) a set of tags t ∈ T annotating resources R.
A folksonomy as a whole is defined as the annotations F ⊆ U × T ×R (cf.
[28]). A bookmark or post refers to a single resource r and all corresponding
tags t of a user u.

Although this tripartite structure of folksonomies can be mapped onto a
broad range of different systems in heterogeneous domains (such as Delicious,
Flickr, Mendeley and others), the collaborative processes that are generating
these structures can differ significantly. For example: While resources on De-
licious are usually tagged by a larger group of users (e.g. by everybody who
has bookmarked the web page cnn.com), photos on Flickr are usually tagged
just by a single user (e.g. just by the user who has uploaded the photo). In
past discussions, this distinction has been described as a distinction between
broad vs. narrow folksonomies2.

Thus, while broad folksonomies are structures that have been generated
as a result of aggregating data from many people tagging the same resource,
narrow folksonomies are structures that have been generated as a result of
aggregating data from single users tagging their own resources. Although
both kinds of folksonomies can be mapped onto the tripartite structure of
folksonomies, it is reasonable to expect that they differ with regard to their
overall network characteristics and topology, form and function. In this
paper we will argue that without thorough investigations of the different
characteristics of different kinds of folksonomies (e.g. broad vs. narrow),
our understanding of the potentials and limitations of social tagging systems
will be limited. Therefore, understanding the usefulness and utility of differ-

1http://www.vanderwal.net/folksonomy.html
2http://personalinfocloud.com/2005/02/explaining_and_.html

cnn.com
http://www.vanderwal.net/folksonomy.html
http://personalinfocloud.com/2005/02/explaining_and_.html
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ent kinds of folksonomies for different tasks - such as navigation, emergent
semantics or information retrieval - represents a problem of both theoretical
and practical importance.

Similar classifications of meta-data have been analyzed in other applica-
tion areas such as learning objects meta-data. In their analysis in [31] the
authors distinguish between “authoritative” meta-data that is provided by of-
ficial data descriptors, e.g. learning object authors and “non-authoritative”
meta-data which emerges through the usage of learning objects in differ-
ent contexts, e.g. it is created by a user community. In our terminology
“authoritative” meta-data corresponds to narrow folksonomies and “non-
authoritative” meta-data to broad folksonomies. The authors argued in their
study that there are significant differences in the utility of different types of
meta-data. For example, they demonstrated that the “non-authoritative”
meta-data is crucial for effective discovery and reuse of learning objects in
different contexts.

In this paper, we aim to systematically compare differences between
broad and narrow folksonomies on a large tagging system (Mendeley). Mende-
ley is a collaborative platform for scientists where users can annotate and or-
ganize scientific articles with tags. Because Mendeley not only captures data
about the set of tags assigned by users, but also about the set of keywords
assigned by the authors of articles (extracted from library and meta-data
information), we can generate both broad and narrow folksonomies for the
same set of resources (i.e. scientific articles) at the same time. This means
that we can generate broad folksonomies based on the tags users assigned to
scientific articles, and we can generate narrow folksonomies for the same set
of resources based on the keywords that authors assigned to their papers.

In this work, we will compare the usefulness of broad vs. narrow folk-
sonomies for a given task : navigation. We start by applying hierarchical
clustering algorithms (such as the algorithm by [2] and others) to create hi-
erarchies of tags and keywords as navigational structures between resources.
We then use an existing framework for simulating navigation in social tag-
ging systems [15] based on Kleinberg’s decentralized search [19] to simulate a
hypothetical user navigating the resource space using information provided
by keywords vs. tags. In particular, we are going to model a navigational
task where the user starts at an arbitrary keyword/tag and navigates to an-
other keyword/tag to reach the list of articles with that keyword/tag. In our
simulations, we adopt a greedy routing strategy based on Kleinberg’s decen-
tralized search. As a result, we use keyword/tag hierarchies as background
knowledge that guides the simulation towards a particular destination by
providing information on distances between keywords/tags in the resource
network. To reflect the limitations of a real-world user interface, we then
repeat the simulations by introducing constraints related to different user
interface elements inspired by previous work [13]. The overall outcome of
our investigations allows us to shed light on the differences between broad vs.
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narrow folksonomies in theoretical but also in practical navigation settings
(by considering UI constraints). For our simulations we use a dataset that
currently includes about 150 million scientific articles and has a community
of about 1,5 million of users who tag articles in an unconstrained manner.

Our results suggest that both broad (tag-based) and narrow (keyword-
based) folksonomies support efficient navigation in theory. However, taking
some practical limitations of typical user interfaces into account, we find
that broad folksonomies outperform narrow folksonomies significantly on our
dataset.

In summary, this paper reports on the following findings based on our
dataset:

• Narrow folksonomies create less effective navigational structures than broad
folksonomies when real-world user interface constraints are considered.
• Our analysis suggests that navigational effectiveness of tags comes from

the different viewpoints of readers provided through tagging resources.
• Broad folksonomies provide substantially higher quality of navigational

structures than narrow ones. We speculate that with growing numbers
of tags in broad folksonomies, their navigational advantage becomes even
greater. More research on this question is warranted though.

The remainder of this paper is organized as follows. In Section 6.3, we
discuss related work. In Section 6.4 we shortly present our simulation model
for user navigation. In Section 6.5, we outline our experimental setup and
in Section 6.6 we present our experimental results. In Section 6.7 we discuss
the results and provide a possible explanation for the observed difference in
navigational efficiency.

6.3 Related Work

Related work in this field of research can be split up into two different parts:
folksonomies, and navigation and hierarchies in networks.

Folksonomies: In the past, folksonomies have been studied from at
least two different perspectives – from an ontological and an information
retrieval perspective. From the ontological perspective, our community an-
alyzed emergent semantic structures. For example [2, 16, 26] propose algo-
rithms for constructing semantically sound tag hierarchies from social tag-
ging data. A detailed analysis of approaches to semantic relatedness of tags
in social tagging systems can be found in e.g. [6]. In our own previous work
[22, 23], we investigated the extent to which tag semantics are influenced by
user motivation and usage practices. In [33] we investigated the quality of
semantic relations in automatically constructed tag hierarchies. By measur-
ing Taxonomic Recall and Precision [9] against a huge number of existing
human created concept hierarchies we have shown that algorithms such as
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e.g. [2] outperform other popular tag hierarchy induction approaches such
as Affinity Propagation [11] or Hierarchical K-Means [10].

From the information retrieval perspective, Chi at al. [7] investigated the
ability of tags to efficiently encode resources for later retrieval and found out
that this ability decreases over time. In [17] and [1] the authors proposed
and evaluated search ranking algorithms such as FolkRank and SocialSim-
ilarity Rank. In our own previous work [15], we evaluated the suitability
of different tag hierarchies to support navigation in social tagging systems
on a theoretical level – not taking user interface constraints into account.
There we showed that tag hierarchies created with algorithms such as [2, 16]
are able to, at least in theory, provide an efficient support for navigation in
tagging systems. In subsequent work, we also modeled typical limitations of
a standard user interface such as e.g. directories, and were able to deduce
a new algorithm that produces tag hierarchies that are still able to support
efficient navigation even when restricted by a real-world user interface [13].
These hierarchies were evaluated by simulations with the same decentralized
approach as it is also used in this paper.

Navigation and hierarchies in networks: Research on navigation
in complex networks was initiated by the famous small-world experiment
conducted by Milgram [29]. In that experiment randomly selected persons
were required to pass a letter to a target person through their social net-
works. The striking result of the experiment was that the average chain
length length was only six. Apart from the findings that humans in that
social network are connected by short paths, another conclusion was that
humans can efficiently navigate social networks although they have only lo-
cal knowledge of that network – humans can efficiently perform decentralized
search. Kleinberg concluded that humans possess background knowledge of
the network structure and that this knowledge allows humans to efficiently
find short paths [18, 20, 21]. Kleinberg represented such background knowl-
edge as a hierarchy of nodes, where more similar nodes are situated closer
to each other in the hierarchy.

In [32] the authors extend the notion of background knowledge to the
notion of hidden metric spaces. In such hidden metric spaces nodes are
identified by their co-ordinates – distance between nodes is their geomet-
ric distance in a particular metric space. Navigation strategies in complex
networks are then based on the distances between nodes – an agent always
navigates to the node with the smallest distance to a particular destination
node. An interesting research question is the structure of such hidden met-
ric spaces that underlie observable networks. In [4], the authors introduce
a model with the circle as a hidden metric space and show its effects on
routing in the global airport network. In [24] the authors discuss hyperbolic
geometry as a hidden metric space (which can be approximated by a node
hierarchy) whereas in [5] the authors apply hyperbolic geometry as a model
of the hidden metric space of the Internet and design a novel greedy Internet
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routing algorithm. In [25] the authors describe a novel decentralized search
model for efficient navigation in social networks. The model is based on the
users interest. By simulating navigation on the co-author network of DBLP3

they evaluate the model and show the importance of one step lookahead in
decentralized search algorithms for social networks.

Hierarchies that are extracted from networks play an important role in
many of these network navigation models. Apart from the tag hierarchy
induction algorithms based on bipartite networks such as e.g. [16, 2, 13],
researchers also proposed hierarchy extraction algorithms for general net-
works. In [30] the authors discuss an algorithm for hierarchy construction in
Wikipedia networks based on metrics for estimating hierarchy level of single
nodes. Also, Clauset et al. [8] present a hierarchy induction algorithm based
on prediction of hierarchical links. Links prediction problem (in general
settings) has been also studied by Liben-Nowell and Kleinberg [27]: They
studied the extent to which interactions among members of a social network
are likely to occur in the near future.

West and Leskovec [34] performed a study of user navigation behavior.
The authors analyzed a collection of click paths of users playing a navigation
game in a network of links between the concepts of Wikipedia. In their work
they found out that user navigation behavior differs from shortest paths. For
example, users typically navigate through high-degree hubs in the early phase
and then apply content similarity as a criteria for reaching the destination
concept.

6.4 Methodology

Our methodology for comparing the usefulness of broad vs. narrow folk-
sonomies for navigation is simulation. We simulate a user who visits a digital
library in search for a set of scientific articles and applies thereby a set of
standard information seeking strategies. A recent study that investigated
user behavior in Web search [35] showed that not many users satisfy their
information need with their first search query. Instead, users visit one of the
first search results, follow links on that result page, backtrack, follow some
other links, then in many cases refine their search, and so on.

Thus, we model a user who starts the inquiry by issuing a search query
either at an external search engine or using the integrated search function
provided by the digital library. Upon selecting one of the search results the
user lands at a particular page in the digital library and explores the links
from that page in order to satisfy her information need. We model this first
step by randomly selecting words from broad (tags) vs. narrow (keywords)
folksonomies from the library. We represent the user information need as an-
other randomly selected destination keyword together with the list of articles

3http://dblp.uni-trier.de/

http://dblp.uni-trier.de/
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for which this destination keyword was assigned. We then simulate the navi-
gation from the starting keyword to the destination keyword. In our previous
work we simulated the navigation in tagging systems by simulating a user
traversing links between tags from tag clouds [14] or links in a hypothetical
directory-like user interface for tags [13]. The former was an assessment of
the navigability of tags in an unconstrained settings whereas the latter rep-
resents a more realistic settings of a user interface that has limitations in the
number of items that are presented to the user. Please note that an impor-
tant advantage of simulation as an evaluation strategy is the possibility to
experiment with various configurations and parameters and in this way cover
a wide range of different settings – something that would not be possible in
more traditional user studies. Thus, we apply the same methodology in this
paper and evaluate different settings in which keywords might be used to
support navigation, such as unconstrained navigation, or different variations
of navigation limited by constraints of a typical user interface.

In [13, 14] we introduced a simple user navigation model – in this paper
we just shortly explain its basic principles. Essentially, user navigation in
information networks (such as networks of tags, or networks of keywords and
scientific articles) is a kind of so-called decentralized search, or search with
local knowledge of the network [18, 19, 20, 21]. At each step of navigation
towards a specific destination node the user is aware only of links emanating
from the current node. The user does not possess the global knowledge of
the network and is therefore required to adopt a navigation strategy that
will guide her as fast as possible to the destination node. In his research
on the search in social networks inspired by the famous small-world experi-
ment by Milgram [29] Kleinberg introduced a simple greedy strategy [18, 19].
The prerequisite for this strategy is the existence of an external background
knowledge on the network that defines the notion of distance or similarity
between network nodes. An agent applying the greedy strategy selects from
currently available links the link that leads to the most similar, i.e. to the
node closest to the destination node. Kleinberg was able to show that such
a greedy strategy is a very efficient one and that an agent applying that
strategy always finds the destination node in a small number of steps that
is bounded poly-logarithmically in the number of nodes.

Thus, we simulate user navigation by applying such a greedy strategy in
search from the start to the destination node. In [13, 14] we represented the
background knowledge as various tag hierarchies. Clearly, the structure of
this hierarchy influences navigational capability. We assessed navigational
efficiency provided by those hierarchies by measuring how often the search
for the destination node is successful and if successful how fast is it. We were
able to show in those papers that tag hierarchies can indeed support efficient
navigation. We also designed a new algorithm that induces tag hierarchies
that are efficiently navigable even under the restrictions of a realistic user
interface. In this paper we apply those same algorithms on collections of
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keywords and scientific articles, measure the navigability of keywords and
compare those results with the results that we obtained for tags on the same
set of resources.

Moreover, in this paper we extend our navigation model to account for
a situation where the user looks for a specific scientific article. Thus, we are
not only interested in how quickly we can find keywords – we also want to
know how easy it is to find a particular article once when we reach one of
its keywords.

6.5 Experimental Setup

6.5.1 Simulation and Evaluation Metrics

We divide our evaluation into two parts: We compare the usefulness of broad
vs. narrow folksonomies by comparing their (i) encoding efficiency and (ii)
navigational efficiency.

Encoding efficiency. First, we evaluate how good different folksonomical
data is at encoding articles for later retrieval. This evaluation provides an
insight in the intermediate exploration steps of the navigation process –
the user has already reached a potentially interesting keyword or tag and
the system presents a list of articles associated with that keyword or tag.
We want to estimate how easy is it to find a specific article in this list.
This is typically measured in terms of conditional entropy [7]. Entropy is a
measure of uncertainty in a random variable. In information theory entropy
is expressed in the number of bits that are needed to encode a random
variable. Entropy reaches the maximal value when the random variable is
distributed uniformly (uncertainty in the value of that random variable is
maximal) and is minimal, i.e. it is equal to zero if the random variable always
takes on a single value. Entropy of a single random variable (e.g. tags or
keywords) is calculated by:

H(X) = −
∑
x∈X

p(x)log(p(x)) (6.1)

In turn, conditional entropy quantifies uncertainty in one random variable
(articles) once we know a specific value of another random variable (keywords
or tags). Thus, conditional entropy of articles measures how difficult is to
find a specific article within the presented list. Higher values of conditional
entropy mean that there is more uncertainty and it is therefore more difficult
to reach a particular article. On the contrary, lower values of conditional
entropy mean that the first random variable (keywords or tags) encodes
articles more efficiently, decrease uncertainty, and thus it is easier for users
to reach a specific article. Conditional entropy of two random variables is
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given by:
H(Y |X) = −

∑
x∈X

p(x)
∑
y∈Y

p(y|x)log(p(y|x)) (6.2)

The navigability evaluation consists of four steps:
Network construction. We start with the datasets that include triples
of keywords or tags, articles, and authors or users. From those datasets we
construct bipartite networks of keywords (tags) and articles and remove the
user information as that information is typically not relevant for navigation.
Subsequently, we project the bipartite networks onto keyword-to-keyword
and tag-to-tag networks as those networks are available for the user for nav-
igation. We assume that article lists are also presented to the user upon
selecting a keyword or a tag but only as a means of satisfying the initial
information need, whereas keywords or tags are used for exploration, i.e. as
a means of making progress towards the final destination.
Hierarchy construction. We induce broad (tag-based) and narrow (key-
word-based) folksonomy hierarchies which we will use as the background
knowledge to steer navigation. We use two algorithms for constructing hi-
erarchies. In [16], the authors introduce a generic algorithm for producing
hierarchies from bipartite networks such as tag-to-resource networks. The
algorithm can be applied to arbitrary bipartite structures. The algorithm
takes as input two parameters. The first is a ranked list of tags sorted by
their centrality in the projected tag-to-tag network. This centrality ranking
acts as a proxy to the generality ranking of tags. Benz et al. [3] showed
that the centrality provides a viable approximation to the tag generalities.
The second input parameter is the tag similarity matrix. The algorithm
starts then by a single node hierarchy with the most general tag as the root
node and then iterates through the centrality list. At each iteration step,
the algorithm adds the current tag to the hierarchy as a child to its most
similar tag. The centrality and similarity measure are exchangeable – in [16]
the authors use closeness centrality and cosine similarity, whereas in [2] the
authors select degree centrality and co-occurrence similarity measure. As
both combinations perform similarly in supporting navigation [14], we se-
lect the latter combination because of better computational properties. This
algorithm produces unbalanced hierarchies that are typically very broad in
the top hierarchy levels. As some of the top nodes in real datasets might
end up with hundreds or even thousands of children those hierarchies give
us the insight in the intrinsic, theoretical, and unconstrained navigational
support. We obtain a more realistic assessment of navigational efficiency by
applying a variant of this algorithm. In [13], we extended that algorithm and
introduced an algorithm that takes also the branching factor (the maximal
number of children) of the final hierarchy as an input parameter. Through
re-balancing of the hierarchy and introduction of nested misc categories we
were able to produce hierarchies that support efficient navigation even under
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realistic limitations imposed by a typical user interface.
Search pairs selection. We randomly select one million of so-called search
pairs consisting of a start node and a destination node. Both start and
destination nodes are low degree nodes as searching for high degree nodes is
a trivial task. For those pairs we calculate the global shortest path that we
will use as our metric to assess the navigation efficiency.
Navigation simulation. We run simulation with greedy navigation on
those search pairs and measure the success rate s and stretch τ which is
the ratio of the number of simulator steps and the global shortest path.
We calculate the global averages of both metrics (sg and τg), as well as
distribution of both values over the global shortest path. Also we calculate
average of the global shortest path (l), as well as average number of simulator
hops (h), i.e. average number of clicks of the simulated user.

6.5.2 Datasets

Mendeley4 claims to be the largest research database, with 150 million papers
and 1,5 million users. For our experiments, we used tagging data (dataset
T) from the system gathered in September 2011 as well as a snapshot from
the Mendeley system which includes papers as well as the corresponding
keywords provided by the authors (dataset K). For dataset T we lowercased
the tags and removed typos and personal bookmarks, i.e. tags that were
used only once by a single user. Lowercasing of the keywords was also per-
formed for dataset K. Furthermore we constructed an “overlapped” dataset
- a dataset which includes only articles for which both keywords and tags
are available. These datasets are called OT – overlapped tags and OK –
overlapped keywords respectively.

Projection of the Dataset: After this preprocessing step, we construct
the bipartite networks of keywords and articles and tags and articles. From
those bipartite networks we extract the largest connected component (which
typically contains around 99% of the network nodes). Finally, we project
the largest connected component onto keyword-to-keyword and tag-to-tag
networks and obtain the final networks on which we perform our analysis.
The dataset and network statistics are shown in Table 6.1.

The first important property here to note is that the quantitative ratio
of the number of links and the number of meta-data items (i.e. nodes) is
comparable between the data set. The second property – the effective di-
ameter (which is the longest shortest path that connects 90% of all network
nodes) – is also comparable in all datasets. Thus, this basic quantitative
network-theoretic properties indicate that all networks possess similar navi-
gational properties. Hence, any differences in navigational efficiency have to
be accounted for qualitative differences in the network topology.

4http://www.mendeley.com

http://www.mendeley.com
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K T OK OT
Bipartite

meta-data 1,124,260 399,703 469,952 201,651
Links 28,459,841 12,869,137 3,323,787 1,492,217

Articles 5,172,180 3,649,350 523,488 523,488
#Links

#meta−data 25.3 32.3 140.8 134.72
Eff.Diam 6.92 7.10 8.25 8.65

Projected Dataset
meta-data 1,092,655 371,044 455,001 166,957

Links 124,690,988 47,760,792 26,450,686 7,877,564
#Links

#meta−data 114.18 128.7 58.13 47.5
Eff.Diam 4.06 3.94 4.79 4.68

Table 6.1: Dataset and network statistics of broad (T, OT) vs. narrow (K, OK)
folksonomies. Datasets OT and OK only contain articles for which both tags and
keywords are available.

K T OK OT
Entropy 15.09 14.23 12.74 12.39

Cond. Entropy 6.40 5.92 4.18 3.81

Table 6.2: Entropy and Conditional Entropy for broad (T, OT) vs. narrow (K,
OK) folksonomies. Datasets OT and OK only contain articles for which both tags
and keywords are available.

6.6 Results

6.6.1 Tag and Keyword Entropy
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Figure 6.1: Out degree distribution of unconstrained hierarchies. The top hierar-
chy levels are populated by high-degree hubs – nodes that have hundreds or even
thousands of children nodes. The hierarchies are very broad and flat.

Table 6.2 shows the entropy of articles conditional on keywords and tags
in all four datasets. Although it is difficult to interpret absolute values
obtained for the conditional entropy, a comparison of entropy values obtained
for different datasets provides insight in the relative encoding efficiencies of
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Figure 6.2: Results of the simulation with unconstrained user interface. Top:
Average shortest path l, average hop count h, greedy navigator success rate s and
stretch τ – global average values (sg and τg) and distribution over shortest paths.
Theoretical evaluation of Mendeley tag hierarchies produces results comparable to
other tagging datasets. In theory, tag hierarchies support efficient navigation –
both success rate and stretch are close to 1. Similarly, keyword hierarchies aid
efficient navigation – success rate and stretch are excellent. Bottom: Navigator
path structure without user interface constraints. The density maps visualize visit
frequency to nodes of a given degree at a given distance to the destination node –
the color is logarithm of the visit frequency (black and violet indicating less visits;
orange and yellow indicating more visits). Over all datasets, the top nodes are the
most visited nodes – these are the nodes from the network core where the phase
transition in the navigation process occurs. A specific property of navigation paths
in tagging networks are so-called shortcuts between related mid-degree nodes oc-
curring at the smaller distances to the destination node (see e.g. white marked
region of a large orange-colored area in 6.2h). Those shortcuts are taken between
sibling tags of a high-degree parent in the cases where the destination node is situ-
ated in the sub-hierarchy of one of the siblings. The density maps reveal a slightly
different path structures between keyword and tag navigation. The green marked
regions of shortcut areas in the keyword navigation (6.2e and 6.2g) show that short-
cuts between related mid-degree and siblings are taken less frequently in the case
of keyword navigation – high-degree hubs are more frequently visited in keyword
than in tag networks. Since the global success rate and stretch in both networks
are comparable to each other this phenomenon indicates that there exist structural
differences between keyword and tag hierarchies – a possible explanation would be
that tag hierarchies are somewhat richer in structure, i.e. keyword hierarchies more
broad and flat.

broad vs. narrow folksonomies. From this analysis we can observe that
in our dataset, broad folksonomies (T, OT) encode articles more efficiently
than narrow folksonomies (K, OK). In other words, on average we know more
about articles annotated by a particular tag than about articles annotated
by a particular keyword. This is important when considering that users
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Figure 6.3: Results of the simulation with constrained user interface. The number
of siblings is limited to m = 20. Top: Average shortest path l, average hop count
h, greedy navigator success rate s and stretch τ – global average values (sg and τg)
and distribution over shortest paths. Although the success rates remain excellent
over all datasets, stretch increases slightly in keyword datasets. This results in path
lengths that are on average longer by 1 or 2 in keyword networks. Bottom: Path
structure with user interface constraints. The green marked regions of shortcut
areas in keyword networks (6.3e and 6.3g) demonstrate less frequent shortcuts than
in tag networks (white regions in 6.3f and 6.3h) explaining the increased stretch
values in keyword networks.

navigate for resources, not for tags. Our simulation currently does not take
into account that users would have to investigate all resources attached to
a particular keyword. Hence, the more uncertainty there is on the articles
captured by a node, the more time users have to invest for searching the list
of articles.

6.6.2 Unconstrained Navigation

We start our navigational analysis with an estimation of the theoretical nav-
igability of keyword and tag hierarchies. Thus, we construct hierarchies by
using Heymann’s algorithm [16] which does not consider any user interface
constraints. The algorithm produces broad and flat hierarchies in which the
nodes from the top hierarchies have hundreds or even thousands of children
nodes. Figure 6.1 shows the degree distributions of the hierarchies depicting
the existence of hub nodes.

The results of the simulation with Mendeley tags are comparable with our
previous experiments with tagging datasets from Flickr, Delicious, LastFM,
BibSonomy, and CiteULike [13, 14]. In such theoretical settings Mendeley
tags are efficiently navigable. Keyword networks show similar behavior – in
theory, keywords support efficient navigation. The complete results of the
experiments are shown in Figure 6.2.
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6.6.3 Constrained Navigation

In our next experiments we configure the simulator to reflect typical limi-
tations of a standard user interface, e.g. a directory-like interface, such as
Yahoo directory5. Thus, we model constraints such as limited number of
children nodes that are shown (e.g. 20 children), limited number or related
items (e.g. 20 siblings), or combination of both restrictions. As we have
shown in [13], such restrictions seriously impede the navigation properties
of tag hierarchies and we obtain similar results for both keyword and tag
hierarchies. The most interesting observation that we make with those ex-
periments is the difference in stretch values for the limitation of the number
of related items that are presented to the user. In our experiments, we ob-
serve increased stretch values for keyword navigation resulting in one or two
more clicks that are needed on average to reach the destination node. This
result is consistent over all datasets and it might reflect an intrinsic property
of keyword networks and keyword hierarchies. Our explanation for this phe-
nomenon is that within a group of co-occurring keywords there exist a single
keyword which “dominates” the group, i.e. other keywords co-occur more
frequently with that “dominating” keyword and less frequently with other
keywords from the group. The “dominator” becomes a parent node in the
hierarchy and all other nodes are attached as children to that node (see also
6.7). Thus, the limitation of the number of siblings that are presented to the
user causes that a longer path over the parent node is taken and increases
the path length by 1 or 2 (see Figure 6.3).

6.6.4 Realistic Constrained Navigation

Finally, we want to perform experiments using an alternative algorithm for
hierarchy induction to better reflect the realities of user interfaces. We apply
the algorithm presented in [13] that produces balanced hierarchies with a
maximal number of children (we set e.g. 20 children to reflect a typical user
interface limitation). The algorithm produces a nested sub-hierarchy of so-
called misc categories in which it inserts nodes with the smallest similarities
to their parent node. In a typical case, low-degree nodes from the long tail
are inserted into such nested misc categories. In our experiments, we obtain
similar results as in experiments limiting the number of siblings. Consistently
and over all datasets, keywords perform slightly worse exhibiting increased
stretch and an increase of the average number of clicks by 1 (see Figure 6.4).

Finally, we remove misc categories completely to reflect the situation
where users might not navigate within these categories. In those experi-
ments we obtain smaller success rates that are comparable to each other
over all datasets.

5http://dir.yahoo.com/

http://dir.yahoo.com/
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Figure 6.4: Results of the simulation with balanced hierarchies. The number of
children and siblings is set to 20. Top: Average shortest path l, average hop count
h, greedy navigator success rate s and stretch τ – global average values (sg and
τg) and distribution over shortest paths. As previously observed the success rates
remain stable and excellent over all datasets, whereas stretch increases slightly in
keyword datasets. This results in path lengths that are on average longer by 1 in
keyword networks. Bottom: Navigator path structure with balanced hierarchies.
Again, the green marked regions of shortcut areas in keyword navigation (6.4e and
6.4g) indicate smaller shortcut frequencies than in tag navigation (white ellipses in
6.4f and 6.4h).

As before, we observe an increased stretch in keyword networks resulting
in the average number of clicks to increase by 1 in those networks (see Fig-
ure 6.5).

6.7 Discussion

Our results show that in realistic navigational settings - when we take into
account user interface limitations - tag navigation is slightly more efficient
than keyword navigation. Moreover, tag encoding efficiency is also higher
than keyword encoding efficiency. The density maps reveal the reason for
this finding – there are more shortcuts taken between mid-degree and high-
degree siblings in tag hierarchies than between such keywords in keyword
hierarchies. A possible cause for that is a lower average overlap between
sibling keywords compared to sibling tags. We will explain this situation
with the following simple example. Suppose we have an article dealing with
navigation in tagging systems. The authors define the following keywords
for this article: “folksonomy”, “tagging”, “navigation” (see r1 in Figure
6.6). Suppose also that the authors calculate entropy in that article, but
do not include “entropy” as a keyword in their article. Thus, the authors
define their single viewpoint that defines a narrow navigation structure in
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Figure 6.5: Results of the simulation with balanced hierarchies without misc
categories. The number of children and siblings is set to 20. Top: Average shortest
path l, average hop count h, greedy navigator success rate s and stretch τ – global
average values (sg and τg) and distribution over shortest paths. The success rates
is smaller than before over all datasets. Again, stretch increases slightly in keyword
datasets. Bottom: Navigator path structure with balanced hierarchies. The green
marked regions of shortcut areas in the keyword navigation (6.5e and 6.5g) and
white marked regions in tag datasets (6.5f and 6.5h) show differences in the number
of shortcuts.

the proximity of that article and its keywords. Now, suppose that multiple
users annotate that article with tags. For example, the first user annotates
it with “folksonomy” and “tagging”. The second user annotates it with
“navigation”, and the third user with “entropy” (because that is the most
interesting part of the article for that user). Now, there are multiple view-
points on the same article and there are multiple navigational structures
that are broader and overlap with each other. Suppose now that a user is
interested in an article about entropy. Now a user may reach that article in
a number of alternative ways – one of these paths leads also over our sample
article as its “entropy” tag represents an entrance to a completely different
cluster in the network. Thus, the user might come from a cluster related
to e.g. social tagging and then upon arriving on the sample article take a
shortcut over “entropy” tag and enter the entropy cluster. Thus, tags pro-
vide different, alternative, and more heterogeneous access paths to articles.
In other words, tag folksonomies result in tag distributions whereas keyword
folksonomies result in simple almost independent groups of keywords.

Moreover, such multiple viewpoints from many users tagging the same
resource collection result in richer hierarchical structures – at least under
the algorithms that we applied in our paper. Figure 6.6 depicts an example
with a group of similar articles dealing with e.g. social tagging systems
– the constructed hierarchies differ in their structures. Richer structures
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Figure 6.6: Two simple examples showing the emergence of hierarchies in key-
word networks (left) and tag networks (right) with meta-data “folksonomy” (F),
“tagging” (Tg), “tags” (T), “navigation” (N), “browsing” (B), and “entropy”
(E). In keyword (narrow) folksonomies keywords are applied for grouping of ar-
ticles. On contrary, in tag (broad) folksonomies tags are assigned by many users
with multiple and possible alternative viewpoints. This results in tag distributions
that impose richer overlap between similar tags. As a consequence the hierarchies
that are based on tag generality and their mutual similarities are richer in struc-
ture than keyword hierarchies. Our experiments show that those structurally richer
hierarchies are more stable and robust to the negative effects of the user interface
constraints.

that emerge in tag hierarchies are more robust to the restrictions imposed
by a user interface – less tags are affected by e.g. limiting the number of
related tags as compared to more keywords that are removed when we limit
the number of related keywords presented to the user. We can provide a
remedy for this problem of keyword networks by e.g. enriching the keywords
with additional meta-data such as categorizations, or subject descriptors to
turn narrow keyword folksonomy into a broad folksonomy similar to the tag
folksonomy.
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6.8 Conclusions

This paper set out to study differences between broad vs. narrow folk-
sonomies and their usefulness for the task of navigation. Using data from
Mendeley, we created both broad (based on tags provided by users) and
narrow (based on keywords provided by authors) folksonomies. While our
experiments show that broad and narrow folksonomies exhibit comparable
quantitative properties, we find interesting qualitative differences with re-
gard to navigation. For example, broad folksonomies create more efficient
navigational structures that enable users to find target resources with fewer
hops. We find that the reason for better navigational utility of broad folk-
sonomies can be explained by the fact that greater overlap between tags
provides better options for users to switch between different parts of the
network. Narrow folksonomies are not able to provide this kind of support.
While our findings are limited to a single dataset (Mendeley), they warrant
future research in this direction. Our results are relevant for designers of
social tagging systems and for engineers aiming to improve the navigability
of their systems.
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Part IV

Solution: Build Efficiently
Navigable Tag-Based Browsing

Constructs

To what extent can we build better tag-based
browsing constructs that support efficient
search/navigation in tagging systems?
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On the Construction of Efficiently

Navigable Tag Clouds Using Knowledge
from Structured Web Content

This chapter is based on the article “On the Construction of Efficiently Nav-
igable Tag Clouds Using Knowledge From Structured Web Content.” pub-
lished in the Journal of Universal Computer Science in 2011 and the pa-
per “Improving the Navigability of Tagging Systems with Hierarchically Con-
structed Resource Lists: A Comparative Study” presented at the 33rd Inter-
national Conference on Information Technology Interfaces in 2011.

It is the first out of three chapters that deals with the question to what
extent better tag-based browsing constructs can be created that support effi-
cient navigation in tagging systems. To that end, we present in this chapter a
novel tag cloud construction algorithm that uses knowledge from structured
Web content to create tag cloud networks which are more efficiently navigable
than the one generated by the currently most popular tag cloud construction
approach. Contrary to previous work (see Chapter 3), the proposed algo-
rithm takes the semantic relations of the tagging system into account. In a
number of experiments based on simulations and a user study, we show the
high performance of our approach.

The original contributions can be found in [30] and [28].

7.1 Abstract

In this paper we present an approach to improving navigability of a hierar-
chically structured Web content. The approach is based on an integration of
a tagging module and adoption of tag clouds as a navigational aid for such
content. The main idea of this approach is to apply tagging for the purpose
of a better highlighting of cross–references between information items across
the hierarchy. Although in principle tag clouds have the potential to support
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efficient navigation in tagging systems, recent research identified a number
of limitations. In particular, applying tag clouds within pragmatic limits of
a typical user interface leads to poor navigational performance as tag clouds
are vulnerable to the so-called pagination effect. In this paper, solutions to
the pagination problem are discussed, implemented as a part of an Austrian
online encyclopedia called the Austria-Forum, and analyzed. In addition, a
simulation- and user based evaluation of the new algorithm have been con-
ducted. The first evaluation results are quite promising, and show that the
proposed algorithm creates tag-network structures which are more navigable
than current state-of-the-art approaches for tag cloud construction.

7.2 Introduction

An example of a semi-structured website is the Austria-Forum1. Basically,
the Austria-Forum is a collection of several hierarchically structured Aus-
trian encyclopedias that contain information about biographies, post stamps,
coins, or the Austrian Universal Encyclopedia AEIOU2. the Austria-Forum
is a Wiki based system, whose articles within a single encyclopedia are hi-
erarchically structured. Thus, the Austria-Forum is also called a structured
Wiki [31]. Currently, as of 1st of October 2010 the system provides over
130,000 information items to the user.

Due to the hierarchical structure and the rapid growth of the system
over the past few months, links between articles in different encyclopedias
are sparse even though they might be related to each other. For example,
there are several “Mozart” stamps in the Stamps encyclopedia. However,
none of these articles has links to the “Mozart” biography, or “Mozart” coins
because the articles are created and managed independently.

To tackle the problem of poor connectivity, a simple tagging mechanism
was introduced to the Austria-Forum [32]. In tagging systems people use
free-form vocabulary [8] to annotate resources with “tags” [34, 19]. This
is either done for semantic reasons (e.g. to enrich information items with
metadata), conversational (e.g. for social signaling) [2] or for organizational
reasons (e.g. to categorize information items) [16]. Regardless of “why people
tag” [27, 22, 17], tags can be visualized in so-called “tag clouds”. A tag cloud
is a selection of tags related to a particular resource. Upon clicking on a
tag, a list of resources tagged with that tag is presented to users leaving
them with a possibility to easily navigate to related resources. The main
idea of including a tag module into the Austria-Forum can best be described
via the previously mentioned “Mozart” example. Suppose that users tag
“Mozart” stamps, “Mozart” coins, “Mozart” biography, or any other document
dealing with “Mozart” with a common tag, e.g. “Amadeus”. Whenever users

1http://www.austria-lexikon.at/
2http://www.aeiou.at/

http://www.austria-lexikon.at/
http://www.aeiou.at/
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navigate to any of these articles a tag cloud containing all assigned tags is
presented by the system. Thus, users can now click on “Amadeus” tag and
this presents a list of all other articles tagged by that tag. Consequently, all
articles tagged with “Amadeus” are now linked to each other, in fact, they are
cross-linked across the hierarchical structure. Due to such indirect linking
capabilities, tag clouds are often applied to provide navigational support in
tagging systems (cf. systems such as Flickr, Delicious, or BibSonomy).

Recently, in a number of studies tag clouds have been investigated from
user interface [25, 26, 9] perspectives. These studies agree with regard to
some interesting findings, such as the observation that current tag cloud
calculation algorithms are not always so useful as one might think. Further-
more, we found that the ability of tag clouds to support “efficient” navigation
under the consideration of pragmatic user interface limits, such as tag cloud
size and pagination, is very poor [11]. In particular, the pagination effect
causes the fragmentation of the network destroying the connected component
and thus leaving a majority of resources unreachable.

In this paper, we present an approach to constructing tag clouds that
support more efficient navigation than currently available approaches This
new algorithm is based on the idea of hierarchical network models [14]. The
algorithm has been implemented into the Austria-Forum as a general tool
for improving connectivity and to support better navigation of the system
as a whole.

The paper is structured as follows: Section 7.3 presents a model for tag
cloud based navigation. Section 7.4 discusses the problems of tag cloud
based navigation and current tag cloud construction algorithms. Section 7.5
presents the idea of a new and optimized tag cloud calculation algorithm
based on the ideas of a hierarchical network model within an online encyclo-
pedia system called the Austria-Forum. Section 7.6 provides an analysis of
the potentials and limitation of this new approach. Section 7.7 gives some
insights to related work in this field. Finally, Section 7.8 concludes the paper
and provides an outlook for the future work in this area.

7.3 Model of Tag Cloud Navigation

In this paper, the tagging data is modeled as a pair of the form (r, t), where
r is a resource from the set of all resources R, and t is a tag of all tags
T . Here, we do not take into account users as we concentrate only on links
between resources imposed by tags assigned to those resources. The main
navigational aid in a tagging system is a tag cloud and we denote it with
TC. Formally, a tag cloud TC is a particular selection of tags from the tag
set.

Due to user interface restrictions the number of tags within a tag cloud is
usually limited to an upper bound. To model this situation we additionally
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introduce a factor n as a maximum number of tags in a tag cloud.

Usually, the most popular tags are assigned to a large number of resources
– hundreds or even thousands of resources. When a user clicks on such a tag,
tagging systems present a long paginated list of tagged resources. In most
cases, 10–100 resources are presented to the users at once (see e.g. Delicious
or Bibsonomy). To model these user interface limitation – that we refer to
as the pagination from here on – we introduce a factor k that k-limits the
resource list of tags within a tag cloud TC.

Finally, let us model the navigation process in a tagging system. Naviga-
tion in a tagging system might start from a home page where a system-global
tag cloud is presented. Typically, tags with the highest global frequency are
selected for inclusion in a tag cloud. Upon clicking on a particular tag a
k-limited list of resources is shown. Once the user has selected a specific
resource, the system transfers the user to the selected resource and presents
a resource-specific tag cloud TCr. The tags in such a resource-specific tag
are selected according to the highest local frequency. In the next step, by
selecting a tag from a given resource-specific tag cloud, the system again
presents a paginated list of resources and the user might continue the navi-
gation process in the same manner as before.

7.4 Problems of Tag Cloud Navigation

Resource-specific tag clouds are a simple way to connect resources within a
tagging system, i.e. in a typical tagging system one can find nearly 99% of
the resources interlinked with each other within a tag cloud network [11].
However, this simple approach to building tag clouds exhibits certain prob-
lems. In particular, resource-specific tag clouds are vulnerable to a so-called
pagination effect [11]. In other words, by k-limiting the resource list of a
given tag (with typical pagination values such as 5, 10, or 20), the connec-
tivity of the tag cloud network collapses drastically. Practically, this leads to
a situation where the tag cloud network consists of isolated network clusters
(components) that are not linked to each other anymore. In other words, the
users cannot reach one network fragment from another network fragment by
navigating resource-specific tag clouds. One simple solution to this problem
is to select resource for inclusion in a k-limited resource list uniformly at
random [11]. For example, whenever the user clicks on a given tag in the
tag cloud the system randomly selects k resources and presents them to the
user. This leads to situation, that not always the same links are selected
which leads to the situation that isolated network clusters are created [11].
As [4, 11] have shown this approach produces a random network that is, even
for small values of k, completely connected.
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7.4.1 Navigable vs. Efficiently Navigable Tag Cloud Net-
works

Another interesting issue in that context is the question if such randomly
generated networks are also navigable. From a network-theoretic point of
view Kleinberg [13, 14, 15] showed that a navigable network can be formally
defined as a network with a low diameter [21] bounded by log(N), where N
are the number of nodes in the network, and an existing giant component, i.e.
a strongly connected component containing almost all nodes. Additionally,
Kleinberg defined an “efficiently” navigable network as a network possessing
certain structural properties so that it is possible to design efficient decen-
tralized search algorithms (algorithms that only have local knowledge of the
network) [13, 14, 15]. The delivery time (the expected number of steps to
reach an arbitrary target node) of such algorithms is polylogarithmic or at
most sub-linear in N . Put short, in [15] Kleinberg also showed that naive
random networks algorithms form network structures which require linear
search time (O(N)), i.e. in the worst case one has to visit all N nodes
within a network to reach a certain destination node, i.e. such networks are
not efficient navigable. However, in [15] Kleinberg also showed that hierar-
chical network models generate networks which are navigable in polynomial
of O(logN). Thus, we applied a hierarchical network model to generate tag
clouds in the Austria-Forum with the goal to support efficient navigation
within the system.

7.5 Algorithm

7.5.1 Hierarchical Tag Cloud Construction Algorithm

Hierarchical network models [15] are based on the idea that, in many settings,
the nodes in a network can be organized in a hierarchy. The hierarchy can
be represented as a b-ary tree and network nodes can be attached to the
leaves of the tree. For each node v, we can create a link to all other nodes
w with the probability p that decreases with h(v, w) where h is the height
of the least common ancestor of v and w in the tree. Networks generated by
this model are “efficiently” navigable [15].

To some extent, we showed that a hierarchical network model can be
applied for the creation of efficiently navigable tagging systems [11]. For
that purpose we developed a hierarchical network generator that 1) sorts
the resource list of a given paginated tag by frequency, 2) creates resource
clusters of size 10 by traversing the sorted resource list sequentially, 3) creates
a balanced b-ary (b = 5) tree where the number of leaves is equal to the
number of the resource clusters, 4) traverses the tree in postorder from left
to right and attaches resource clusters to the tree leaves, and 5) uses this tree
structure to obtain the link probability distribution for connecting a resource-
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<category-page>

<category-page/category-page>
<category-page/category-page/sub-page>

<category-page/category-page/category-page>
< category-page/category-page/category-page/sub-page>g y p g g y p g g y p g p g

< category-page/category-page/category-page/category-page>
< category-page/category-page/category-page/category-page/sub-page>

Figure 7.1: Hierarchical structure and URL addressing schema within the Austria-
Forum.

Algorithm 3 Hierarchical Tag Cloud Construction Algorithm
1: getTagCloud: url, n
2: if (url is category-page) then
3: TCnr ← select top n tags sorted by tf where r.url.startsWith(url)
4: else
5: TCnr ← select top n tags sorted by tf
6: end if
7: return TCnr

specific tag node with resources of a given paginated tag. However, the main
issue of this simple idea is, that the the tree creation process follows the
statistical properties of the tagging dataset only, i.e. the generated hierarchy
does not follow any semantic relations.

A simple idea to retain the semantics of the system is to reuse the given
hierarchical data organization schema of the system. Since, the Austria-
Forum organizes pages within the system into categories, sub-categories,
sub-sub-categories, etc. and pages (see Figure 7.1), we designed in previous
work an algorithm that generates tag clouds in a recursive and hierarchi-
cal manner (see Algorithm 3) based on the given resource structure of the
Austria-Forum. Without evaluating the algorithm against the pagination ef-
fect, we argued for the efficiency of this approach due to it’s nature of linking
documents in a hierarchical manner.

7.5.2 Hierarchical Resource List Generation Algorithm

A possible better idea to address the pagination effect in tagging systems and
also to apply Kleinberg’s hierarchical network model is to reuse the given
hierarchical organization schema of the system as the basis for generating a
link probability distribution p to construct the resource lists of the tagging
system (see also [11]). Since the hierarchical network model as introduced
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Figure 7.2: Out-degree distribution and node distribution of the Austria-Forum
resource hierarchy.

by Kleinberg assumes a complete and balanced tree of the resources whereas
typical hierarchically structured Web content does not follow this premiss
(see Figure 7.2) an algorithm implementing Kleinberg’s approach has to work
with approximations.

The intuition which we followed with our algorithm is that the proba-
bility that an article is linked with other articles from the same category is
higher than the probability that an article is linked with articles from other
categories (cf. [33, 1, 15]). Put short, this can be modeled by defining a
link selection function that inter-links two nodes (articles) v, w according to
a link probability function that is equal to p = e−dist(v,w) (cf. [33]) and a
distance function that is calculated as dist(v, w) = hv + hw − 2h(v, w) − 1,
where hv, hw are the heights of two nodes v, w in the hierarchy and where
h(v, w) is the height of the least common ancestor of the nodes v, w in the
hierarchy (cf. [1]). In Algorithm 4 the actual algorithm is presented.

7.6 Evaluation

To evaluate the presented algorithms, we conducted two types of exper-
iments. The first experiment is based on a network-theoretic simulation
approach that integrates the following two modules:
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Algorithm 4 Hierarchical Resource List Generation Algorithm
For any given node r(t) ∈ R in the resource hierarchy R, where t is the
tag applied to this node, we find all other nodes rj(t) ∈ R and calculate
distance dist(r(t), rj(t)) = h(r(t))+h(rj(t))−2h(r(t), rj(t))−1. For all found
nodes rj(t) ∈ R we put rj(t) according to the distance dist(r(t), rj(t)) into
clusters clx = [ri, ..., rj ] and store these clusters into an array rdist(i)r(t) =
[cldist1 , ..., cldistn−1 ]. Now, to select k links from the resource list, we generate
k random numbers ik = 1 ... sizeof(rdist(i)r(t)) with a probability density
function p = e−x with x = 1 ... sizeof(rdist(i)r(t)) and select k clusters clik ∈
rdist(ik)r(t) returning for each cluster just one element which is selected
uniform at random.

• a network-theoretic module based on the Stanford Snap3 library
to calculate and evaluate network properties such as the size of the
Largest Strongly Connected Component (LSCC) or the Effective Di-
ameter (ED) [11] of the tag cloud network

• and a searcher module which implements a hierarchical decentralized
searcher to simulate tag cloud based navigation.

The second type of experiment is based on a controlled user study that
evaluates our approach of hierarchically constructed tag clouds against a
baseline.

7.6.1 Simulations

In the following sections we present the results of our simulations. Similar
to our previous work [11], we model the tag cloud network of a tagging
system as a bipartite hypergraph of the form V = R ∪ T [11], where R
is the set of resources and T the set of tags. Since the resource lists are
limited to a certain value k which forces the tag cloud network into a directed
unipartite tag-resource network (with resource specific tags), we performed
our evaluations onto the projected resource-resource network. In order to
measure navigability, we calculated the size of the largest strongly connected
component (LSCC) and the effective diameter (ED) on that network. As
defined in Section 7.4.1, we consider navigable networks to be networks that
have a low diameter bounded logarithmically and a giant component.

Datasets

To evaluate our algorithms overall 10 different types of tag cloud networks
were generated. They all vary in the way how the tag clouds and the resource
lists were calculated. Since one of our recent studies [11] showed that limiting

3http://snap.stanford.edu/

http://snap.stanford.edu/
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the tag cloud to practically feasible sizes (e.g. 5, 10, or more) does not
influence navigability, we set the tag cloud size in our experiments to a fixed
value of n = 30. For the purpose of evaluation, we varied the value k, i.e.
the maximum number of links in the resource list, to k = 15, 50, which is
expected to impair navigability [11].

• Network NN (=Naive Naive): This tag cloud network is generated
by the most commonly and naive tag cloud and resource list calculation
approach used these days in tagging systems [11]. In other words, the
tag cloud calculation algorithm in this setting follows a simple TopN
approach displaying the most frequent n tags in the tag cloud while
the resource list calculation algorithm sorts the resources descending
chronological order and selecting the k most top resources.

• Network NR (=Naive Random): This tag cloud network is gen-
erated by using a naive TopN algorithm (cf. Dataset G) for tag cloud
calculations displaying the most frequent n tags in the tag clouds. The
resource list is generated selecting k resources uniform at random.

• Network NP (=Naive Popularity): This tag cloud network is gen-
erated by using the TopN tag cloud calculation algorithm. The resource
list is calculated sorting the resources by popularity and selecting the
k most top resources.

• Network NS (=Naive Similarity): This tag cloud network is gener-
ated by using the TopN tag cloud calculation algorithm. The resource
list is calculated sorting the resources by (cosine) similarity and select-
ing the k most top resources.

• Network NH (=Naive Hierarchical): This tag cloud network is
generated by using the TopN tag cloud and the hierarchical resource
list generation algorithm introduced in Algorithm 4.

• Network HN (=Hierarchical Naive): This tag cloud network is
generated by using the hierarchical tag cloud calculation algorithm
introduced in Algorithm 3. The resource list is calculated sorting the
resources chronologically in descending order and selecting the k most
top resources.

• Network HR (=Hierarchical Random): This tag cloud network
is generated by using the hierarchical tag cloud algorithm introduced
in Algorithm 3. The resource list is calculated selecting k resources
uniform at random.

• Network HP (=Hierarchical Popularity): This tag cloud network
is generated using the hierarchical tag cloud algorithm introduced in
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Algorithm 5 Hierarchical Decentralized Searcher (cf. [1])
1: Searcher: resource-resource graph G, resource-hierarchy T , start node
v, target node w

2: while v != w do
3: vi ← get all adjacent nodes ∈ G from v
4: // finds closest node according to dist = distmin
5: // where dist(vi, w) = h(vi) + h(w)− 2h(vi, w)− 1
6: v ← findClosestNode (vi, T )
7: end while

Algorithm 3. The resource list is calculated sorting the resources by
popularity and selecting the k most top resources.

• Network HS (=Hierarchical Similarity): This tag cloud network
is generated using the hierarchical tag cloud algorithm introduced in
Algorithm 3. The resource list is calculated sorting the resources by
(cosine) similarity and selecting the k most top resources.

• Network HH (=Hierarchical Hierarchical): This tag cloud net-
work is generated using the hierarchical tag cloud algorithm introduced
in Algorithm 3 and the hierarchical resource list algorithm introduced
in Algorithm 4.

Results

As shown in Table 7.1, the tag cloud networks generated by a none ran-
dom resource list calculation approach, such as network NN,NP,NS,HN,
HP and HS, are not navigable (taking user interface limitations into ac-
count). They do not show a giant component containing (nearly almost)
all nodes of the network which makes these networks unnavigable from a
network-theoretical perspective. Contrary to this, networks based on a ran-
dom resource list generation approach, such as network NR,NH,HR and
HH are navigable. Note, that networks based on a hierarchical tag cloud cal-
culation algorithm are also not navigable, except they implement a random
resource list generation approach. However, compared to all other networks
these networks show an effective diameter which is significantly smaller.

Since the previous experiment only presented that networks NR, NH,
HR and HH are navigable, but not, if they are also useful for efficient nav-
igation, a searcher routine was developed to determine this network prop-
erty again from a network-theoretic perspective. As shown by Kleinberg,
an “efficiently” navigable network is a network possessing certain structural
properties so that it is possible to design an decentralized search algorithm,
i.e. an algorithms that only has local knowledge of the network, and whose
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Name TC-Algo. R-Algo. n k LSCC ED NAV
NN_15 TopN Chron. 30 15 0.567002 5.99404 unnav.
NN_50 TopN Chron. 30 50 0.761011 5.39847 unnav.
NR_15 TopN Rand. 30 15 0.949983 5.93975 nav.
NR_50 TopN Rand. 30 50 0.949983 5.03066 nav.
NP_15 TopN Pop. 30 15 0.508194 6.45806 unnav.
NP_50 TopN Pop. 30 50 0.724650 4.84473 unnav.
NS_15 TopN Sim. 30 15 0.597815 6.99932 unnav.
NS_50 TopN Sim. 30 50 0.814015 5.8751 unnav.
NH_15 TopN Hier. 30 15 0.949983 5.90015 nav.
NH_50 TopN Hier. 30 50 0.949983 5.1389 nav.
HN_15 TopN-H Chron. 30 15 0.566008 3.47673 unnav.
HN_50 TopN-H Chron. 30 50 0.755314 2.93258 unnav.
HR_15 TopN-H Rand. 30 15 0.968034 3.73302 nav.
HR_50 TopN-H Rand. 30 50 0.968034 3.17498 nav.
HP_15 TopN-H Pop. 30 15 0.462471 2.89974 unnav.
HP_50 TopN-H Pop. 30 50 0.670375 2.89933 unnav.
HS_15 TopN-H Sim. 30 15 0.640873 5.11472 unnav.
HS_50 TopN-H Sim. 30 50 0.850880 3.90542 unnav.
HH_15 TopN-H Hier. 30 15 0.968034 3.46743 nav.
HH_50 TopN-H Hier. 30 50 0.968034 2.92611 nav.

TC-Algo. = Tag Cloud Calculation Algorithm, R-Algo. = Resource List
Calculation Algorithm, Chron. = Chronologically Sorted, Rand. =
Randomly Sorted, Pop. = Sorted by Popularity, Sim. = Sorted by
Similarity, Hier. = Hierarchically Sorted, LSCC = Largest Strongly

Connected Component, ED = Effective Diameter, NAV = Navigability,
TopN-H = TopN Hierarchically Calculated, unnav. = unnavigable, nav. =

navigable

Table 7.1: Tag cloud network dataset statistics: Largest Strongly Connected
Component, Efficient Diameter and Navigability.

delivery time (the expected number of steps to reach an arbitrary target
node) is poly-logarithmic or at most sub-linear in N , where N are the num-
ber of nodes in the network [14, 13, 15]. To that end, we implemented a
hierarchical-decentralized searcher based on the ideas of [1] to evaluate the
actual efficiency of our networks [10]. As input for the searcher the given
resource hierarchy from the Austria-Forum was used. In Algorithm 5, the
searcher as it was developed is presented. In words, the algorithms works as
follows:

To find a certain target resource w from a certain start node v within
the network, the searcher first selects all adjacent nodes vi for the start node
and then selects the node v from the network that has the shortest distance
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Figure 7.3: Hierarchical Decentralized Searcher cumulative hop-distributions for
different values of k (size of the resource list).

dist(vi, w) = h(vi)+h(w)−2h(vi, w)−1 to w node in the resource taxonomy
T , with h(vi), h(w) being the heights of the two nodes vi, w in the hierarchy
and with h(vi, w) being the height of the least common ancestor of the two
nodes vi, w in the hierarchy [1]. In the next step, the adjacent nodes of v are
again selected and the distances dist(vi, w) are calculated, while the node v
with shortest distance is selected in the end. The process is continued until
the target node w is reached.

In order to get statistically significant results, we simulated 100,000
search-requests starting randomly selected at a certain resource vi and tar-
geting at certain randomly selected resource wi in the tag cloud network.
Note, only search pairs vi, wi were considered for the simulations for which a
path (vi, wi) was present in the network. The upper limit for a search was set
to a value of maximum 10 hops in the simulations, i.e. we canceled searches
which took more than 10 hops to find a target node wi. If the searcher was
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not able to find a path further in the tag cloud network, we canceled the
search task as well. If a search task was being canceled, we did not reset the
searcher to find a new path for the same search pair vi, wi.

Even our previous experiments showed that the networks NN , NP , NS,
HN , HP and HS are not navigable, we performed our simulations also
on these tag cloud networks. This was done to gain more insights on the
performance of such networks. To get comparable results, we extracted
the LSCC of all networks and performed our simulations on the resulting
networks.

As shown in Figure 7.3, tag cloud networks generated by a naive TopN
tag cloud calculation algorithm produce poor results for a hierarchical de-
centralized search routine in such networks. The success rate is in the best
case 4.5%-7% for k = 15 and 50. On the other hand, tagging systems imple-
menting a hierarchical tag cloud algorithm perform much better in finding
paths from a given start resource vi to a certain target resource wi (see right
figures in Figure 7.3). For k = 15 we can reach in the best case 30% of all
resources and for k = 50 over 50%. Interestingly, this is only the case, if we
use a hierarchical resource list generation approach.

Hence, putting the results of the two experiments together, we can be
seen that the best results can be obtained by combining hierarchical tag
cloud construction with hierarchically constructed resource lists.

7.6.2 User Study

To quantify the usefulness of our approach not only with simulations but
also empirically, we conducted additionally a small user study to confirm
our findings.

Preliminaries

To prepare for the experiment, the latest (October 16, 2010) tagging dataset
was downloaded from the Austria-Forum live system. Since user studies
are typically time intense, we decided to compare our hierarchical tag cloud
construction approach not against all other approaches as discussed before,
but against the most popular approach for constructing tag clouds in tag-
ging systems. To that end two different types of tag cloud networks were
generated:

• Network N: Uses the TopN tag cloud calculation algorithm and the
reverse chronologically sorted resource list calculation algorithm.

• Network H: Used the hierarchical tag cloud algorithm introduced in
Algorithm 3 and the hierarchical resource list algorithm introduced in
Algorithm 4.
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The max. tag cloud size used for the experiment was n = 30 tags. The
pagination factor used for generating the resource lists was k = 50.

After that, we 10 selected uniform at random resource pairs (start and
target resources) present in both tag cloud networks. The resource pairs were
selected such that the targets were reachable in a minimum number of one,
two, three, four and five steps (one step = two clicks, one for opening the
resource list and for moving on to the next resource) and in both networks.
The maximum of five steps was chosen since it was calculated that almost all
resources were reachable in a minimum of five steps in both networks. The
different step (path) lengths were selected to ensure that participants would
have to navigate via a certain number of intermediate resources to reach their
designated target resource. Finally, ten online tasks, one for each resource
pair, were designed and directly implemented into the Austria-Forum system.

Procedure

In order to measure the performance of the both algorithms, a between-
groups (independent measures) design was used for the experiment. All 24
participants were given the exact same 10 tasks (one for each pre-calculated
resource pair). Users were asked to surf with different tag networks generated
by different resource list generation algorithm. 12 users had to navigate in
the pre-calculated tag Network H and 12 users had to navigate in the pre-
calculated tag Network N. For each task (= one resource pair, start and
target resource), the users were asked to reach the given target resource
as fast as possible, using exclusively tags and the corresponding resource
lists for navigation. For each task, participants were given a maximum of
three minutes to reach the given target resource (this was found to be an
appropriate upper limit during the pilot test phase). If the user could not
find the target after the time has elapsed, the user was asked to cancel the
search and continue with the next task.

Participants

All in all, 24 participants were invited to join the experiment, 16 of them male
and 8 of them female. The median age of the users was 33 years, ranging from
22 to 56. All participants were experienced computer (on average 46 hours
per week) and Internet users (on average 19 hours per week). 12 of them
were experienced with the test system. Hence, in order to get valid results,
they were split up into two groups, i.e. six of them were assigned to evaluate
the chronologically sorting resource list generation approach and six of them
were assigned to evaluate the hierarchical resource list generation algorithm.
The study was performed at Graz University of Technology, Austria from
November 8 to 12, 2010.
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Figure 7.4: Mean success rates.

Results

To compare the two tag cloud construction algorithms with each other the
success rate was measured. The number of clicks or time to reach the tar-
get resources was not evaluated since it was observed the success rates for
navigating Network N were very low compared to Network H.

In Figure 7.4 (a), the average success rate for the both tag cloud net-
works H and C are presented. As shown, the mean user’s success rate over
all tasks with Network H is significantly higher (p < 0.05) than with tag
Network N. More precisely, the experiment showed that the mean success
rate for Network N is 23.3% while the mean success rate overall users for
Network H is 53.3%. In other words, a user was more than twice as likely
to be able to find a target in the tagging system that has implemented a
hierarchical resource list generation algorithm than in the tagging system
that has been implemented a chronologically sorting resource list generation
algorithm. These results confirm the erlier results from Section 7.6. For
exact the same tag cloud networks and resource pairs, simulations show an
overall success rate for Network N of 20% and for Network H of 50%.

Figure 7.4 (b) shows the mean success rate for each individual task. For
all tasks with path length > 1, tag Network H performed on average better
than tag Network N. Significant differences were found for Tasks 5, 9, and
10. It was observed that the low success rates for Tasks 3, 6, 7, and 8
were due the high branching factors in the resource taxonomy for the target
resources used for these tasks. In latest research [29], we have focused on
that issue and found a simple and promising way to automatically construct
resource taxonomies from tagging data with fixed branching factors. First
simulations show that the overall success rate to navigate the tag network
could be increased to 98%.
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7.7 Related Work

In related research on tagging systems, tag clouds have been characterized as
a way to translate the emergent vocabulary of a folksonomy into social nav-
igation tools [26, 6]. Social navigation itself represents a multi-dimensional
concept, covering a range of different issues and ideas. A distinction between
direct and indirect social navigation, for example, highlights whether navi-
gational clues are provided by direct communication among users (e.g. via
chat), or whether navigational clues are indirectly inferred from historical
traces left by others [20]. Based on this distinction, our work only focuses
on indirect social navigation in the sense that it studies the effectiveness of
traces (“tags”) left by users in tagging systems. Other types of social naviga-
tion emphasize the need to show the presence of others users, to build trust
among groups of users, or to encourage certain behavior [20].

Researchers have discussed the advantages and drawbacks of tag clouds,
suggesting that tag clouds are a useful mechanism when users’ search tasks
are general and explorative (for example, learn about Web 2.0), while tag
clouds provide little value for specific information-seeking tasks (for exam-
ple, navigate to www.cnn.com) [26]. While the paper at hand focuses on
network-theoretic aspects, cognitive aspects of navigation have been studied
previously using, for example, SNIF-ACT [7] and social information forag-
ing theory [23]. Other work has studied the motivations of users for tagging
[16], and how they influence emergent semantic (as opposed to navigational)
structures. The navigational utility of single tags has been investigated [5]
with somewhat disappointing results. With time the tags become harder
and harder to use as they lose specificity and reference too many resources.
Such tags are exactly those paginated tags where new pagination algorithms
are needed.

Navigation models for tagging systems have been also discussed recently.
In [24] authors describe a navigation framework for tagging systems. The
authors apply the framework to analyze possible attacks on tagging systems.
In principle, the framework identifies a navigation channels as any combina-
tion of the basic elements of a tagging system (users, tags, and resources).
Thus, the specific combination which we investigated in this paper can be
summarized as the resource-tag or tag-resource navigation channel.

Recent literature also discusses further algorithms for the construction of
tag clouds. The ELSABer algorithm [18] represents an example of such an
effort aimed towards identifying hierarchical relationships between annota-
tions to facilitate browsing. The work by [3] is another example, introduc-
ing entropy-based algorithms for the construction of interesting tag clouds.
However, these algorithms have not found wide-spread adoption in current
social tagging systems, and their usefulness to support navigation is largely
unknown. In future work, it would be interesting to compare additional
tag cloud construction algorithms with our approach. In addition, empirical
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studies of tagging systems have for example focused on comparing naviga-
tional characteristics of tag distributions to similar distributions produced
by library terms [12].

7.8 Conclusions and Future Work

The main contribution of this paper is the introduction of a novel approach
for interlinking resources in hierarchically-structured Web content. Based on
a review of tag cloud limitations and an existing hierarchical algorithm for the
construction of efficiently navigable networks, we discussed, implemented,
and evaluated by simulations and a small user study a new approach to tag
cloud construction. As shown the proposed algorithm creates tag-network
structures which are more navigable than current state-of-the-art approaches
for tag cloud and resource list construction.
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8
Enhancing the Navigability of Tagging

systems with Tag Hierarchies

This chapter is based on the paper “Enhancing the Navigability of Tagging
systems with Tag Hierarchies” which was presented at the 10th International
Conference on Knowledge Management and Knowledge Technologies in 2011.

It continues the work on enhancing the navigability of tagging systems
and reviews the potentials and limitations of tag hierarchies for efficient
search and navigation in tagging systems. To that end, this chapter presents
a novel algorithm for the creation of hierarchical structures that support
efficient navigation in social tagging systems. We evaluate the proposed
algorithm from a theoretical, semantic and empirical point of view. With
these evaluations we are able to show a high performance and usefulness of
the proposed approach.

The original contribution was published in the proceedings of the confer-
ence and can be found in [25].

8.1 Abstract

Tagging introduces an additional intuitive and easy method to organize re-
sources in information systems. Although tags exhibit useful properties for
e.g. personal organization of information, recent research has shown that
the navigability of social tagging systems leaves much to be desired. When
browsing social tagging systems users often have to navigate through huge
lists of potential results before arriving at the desired resource. Thus, from
a user point of view tagging systems are typically hard to navigate. To
overcome this issue, we present in this paper a novel approach to support
navigation in social tagging systems. We introduce tag-resource taxonomies
that aim at to supporting efficient navigation of tagging systems. To that
end, we introduce an algorithm for the generation of these hierarchical struc-
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tures. We evaluate the proposed algorithm and hierarchies from a theoretical,
semantic and empirical point of view. With these evaluations we are able to
show a high performance and usefulness of the proposed idea.

8.2 Introduction

Tagging provides an easy and intuitive way to annotate, organize and re-
trieve resources on the web. For this reason, the popularity of social tagging
systems has increased tremendously in recent years. To give some examples:
Delicious1 enables the annotation of personal bookmarks with tags, Flickr2

allows users to describe their photos by tagging and Youtube3 supports easier
finding of videos via tags by content creators.

While there has been a lot of work on the structure of social tagging
systems, little is known about the ways users use and navigate such systems.
Some previous work by Chi et al. [4] observed that the navigability leaves
much to be desired. There, the authors showed that the number of new tags
does not grow as quickly as the number of tagged resources in mature social
tagging systems such as BibSonomy, CiteULike or Delicious. Therefore a lot
of tags exist that refer to a large number of documents within such systems.
To illustrate this problem from a user perspective: when users click on a
popular Delicious tag such as “web” they retrieve 6.5 million resources in
reverse chronological order – thus, rendering the system unusable from a
navigational point of view.

To overcome this issue recent research has investigated methods and
strategies to make tagging systems more navigable. One prominent example
of such endeavors are so-called tag taxonomies [14] – a method which allows
the user to navigate to related concepts (tags) in a tagging system in a hier-
archical and efficient manner (see also [12] for evaluation of several similar
approaches). In this paper we introduce the notation of tag-resource tax-
onomies. Contrary to the idea of tag taxonomies, this approach enables the
users not only to quickly navigate to related concepts but also to resources
from a tagging system. With the approach of tag taxonomies, as it will
be shown in this paper, efficient navigation to the resources of the tagging
system is not possible. In a theoretical, semantic and empirical evaluation
we show a high performance and usefulness of tag-resource taxonomies. To
the best of our knowledge this is the first work that describes the notation
of tag-resource taxonomies. Moreover, this approach significantly improves
navigability of social tagging systems when compared with tag taxonomy
approaches.

The paper is structured as follows: In Section 8.3 we introduce a novel

1http://www.delicious.com/
2http://www.flickr.com/
3http://www.youtube.com/

http://www.delicious.com/
http://www.flickr.com/
http://www.youtube.com/
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Figure 8.1: Tag Taxonomy vs. Tag-Resource Taxonomy.

approach to construct tag/res hierarchies and illustrate the algorithms that
were created for this purpose. This is followed by Section 8.4 explaining
our evaluation. Section 8.5 gives an overview of related work. Finally in
Section 8.6 we conclude our findings and point to future work.

8.3 Approach

To tackle the issue of poor navigability in tagging systems, we introduce a
novel approach to generate tag-resource taxonomies. The goal of the ap-
proach is to offer the user a simple tool to navigate the tagging system in an
efficient way. According to Kleinberg [16], efficient navigation in a network
is possible if all resources are navigable in a polynomial of log(n), where n
is the number of resources in a network. With the approach of tag-resource
taxonomies, and as it is shown in Section 8.3.1, this prerequisite is fulfilled,
i.e. it is possible to navigate a tagging system in a polynomial of log(n).
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Basically, a tag-resource taxonomy is a hierarchy containing both re-
sources and tags. The basis of a tag-resource taxonomy is the so-called
resource taxonomy. A resource taxonomy is a hierarchy where the resources
of a tagging system are arranged in a unique and taxonomic way, i.e. each
resource of the tagging system occurs only once and parent nodes are more
general than their child nodes.

Given such a resource taxonomy we construct the final tag-resource tax-
onomy by using a labeling algorithm that applies tag information to each
resource in a descriptive and general manner. Hence, each resource in the
resource taxonomy has one tag label attached to describe the underlying
resource. The resulting tag-resource taxonomy presented to the user is then
a tag hierarchy where the tags refer to a constant number of resources.

Figure 8.1 gives an example of a tag taxonomy as compared to a tag-
resource taxonomy. In a tag taxonomy tags appear only once in the hierar-
chy. However, resources can be referred by different tags. In a tag-resource
taxonomy on the other hand resources occur only once while tags can appear
on multiple and on different levels.

8.3.1 Why Usefulness of Tag Taxonomies for Navigation is
Limited

A tag taxonomy allows the user to navigate to a designated tag (concept)
efficiently, but navigation to a particular resource is still a problem due the
so-called pagination effect. As shown by [10], in tagging systems the tag-
resource distribution follows a power-law function (see Figure 8.2), i.e. there
are many tags that refer to a large number of resources. In BibSonomy
or CiteULike for instance there are tags, which refer to hundreds or even
thousands of resources. To make such frequently used tags still usable for
the user, developers typically paginate the result list of such tags by a certain
factor k. Hence, in the worst case the user has to click through the whole
paginated result list to find the desired resource. In detail, in the worst case
the user would have to click

max{click(Ttag)} =
|max{t}|

k
+max{depth(Ttag)} (8.1)

times to reach a designated target resource with the approach of a tag tax-
onomy.

The term |max{t}| in Equation 8.1 describes the size of the most fre-
quently used tag in the tagging system. The term k stands for the pagina-
tion factor and max{depth(Ttag)} denotes the maximum depth of the tag
taxonomy. As shown in [26], the size of the most frequently used tag can
be estimated as |max{t}| = c1 · |r|, where c1 is a constant typically ranging
between [0.1, ..., 0.2] and |r| is the number of unique resources in the tagging
system. max{depth(Ttag)} can be estimated as, logb/2 |t|, supposing that
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Figure 8.2: Tag distributions.

Ttag is a complete and fixed branched tree with branching factor b. The
factor |t| describes the number of unique tags in the tagging system. |t| can
be estimated as |t| = c2 · |r|, where c2 is a constant. Therefore, Equation 8.1
can be formalized as

max{click(Ttag)} =
c1 · |r|
k

+ logb/2(c2 · |r|), b ≥ 2 (8.2)

or
max{click(Ttag)} ≈

c1 · |r|
k

(8.3)

supposing that logb/2(c2 · |r|)�
c1·|r|
k .

By generating a tag-resource taxonomy the worst case scenario is signif-
icantly better, especially for large numbers of |r|. Suppose the tag-resource
taxonomy Tres is complete and has a fixed branching factor b, with b = k.
A user would have to click

max{click(Tres)} = max{depth(Tres)} = logk/2 |r| , k ≥ 2 (8.4)

times in the worst case to reach a designated target resource. Then for large
values of |r| we have:

logk/2 |r| �
c1 · |r|
k

(8.5)

Hence, according to the definition of Kleinberg [16] (see Section 8.3), and
contrary to tag taxonomies, tag-resource taxonomies allow the user to nav-
igate to the resources of a tagging system in an efficient manner, i.e. in a
polynomial of log(n).

To give an example: Let us calculate the number of maximum clicks for
the tag datasets shown in Table 8.1 and compare the resulting tag taxon-
omy and tag-resource taxonomy for k = 10. As shown in Table 8.2, in a
tag taxonomy the user would have to click max{click(Ttag)} = 184 times
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Tag Dataset Austria-Forum BibSonomy CiteULike
|r| 19,430 233,712 949,851
|t| 13,314 26,285 163,642
|max{t}| 1,838 52,777 207,990
α 2.2 1.9 2.0

Table 8.1: Statistics of Austria-Forum, BibSonomy and CiteULike tag dataset.

Austria-Forum BibSonomy CiteULike
max{click(Ttag)} 184 5,278 20,799
max{click(Tres)} 6.1 7.7 8.5

Table 8.2: Tag Taxonomy vs. Tag-Resource Taxonomy: Maximum number of
clicks.

in the Austria-Forum tag dataset, respectively 5, 278 and 20, 799 clicks in
the BibSonomy and CiteUlike tag dataset, to reach a desired resource in
the worst case. In a tag-resource taxonomy the worst case would only be
max{click(Tres)} = 6.1 clicks for the Austria-Forum dataset or 7.7 clicks for
the BibSonomy and 8.5 clicks for the CiteULike tag dataset.

Now, in order to calculate the number of tags suffering from the pagina-
tion effect we can define the following equations: Since we know that the tag
distribution (see Figure 8.2) has power-law qualities we can approximate the
number of paginated tags |tp| as follows [5]

ri =
α− 1

tmin
·
(

ti
tmin

)−α
, tmin > 0 (8.6)

The parameter α can be approximated with the method of maximum likeli-
hood as

α ∼= 1 + |t|

 |t|∑
i=1

ln
ti
tmin

−1 (8.7)

With ri = k and tmin = 1, resolved by tp the Equation 6 can be re-written
as

tp =

(
α

k
− 1

k

)( 1
α)

(8.8)

The number of paginated tags |tp| can be then calculated as

|tp| = |t| ·
(
α

k
− 1

k

)( 1
α)

(8.9)

Example: Let us calculate the number of paginated tags for the tag
datasets as shown in Table 8.1 for k = 10. Then, as shown in Table 8.3,
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Austria-Forum BibSonomy CiteULike
|tp| (%) 5079 (38%) 7401 (28%) 51748 (32%)

Table 8.3: Number of paginated tags.

Name b n max{click(Tres)} mean{click(Tres)}
Res2 2 19,430 17 12.45
Res5 5 19,430 10 5.93
Res10 10 19,430 8 4.44

Table 8.4: max{click(Tres)} andmean{click(Tres)} for different branching factors
b.

within the Austria-Forum dataset 38% of all tags suffer from the pagination
effect, respectively 28% in the BibSonomy tag dataset and 32% in the CiteU-
Like tag dataset. Or in other words, for a commonly used resource list of the
length of k = 10, nearly 1/3 of all tags suffer from the so-called pagination
effect, i.e. the resources of such tags are not navigable in an efficient way!

8.3.2 Description of the Algorithm

Resource Taxonomy Generation Algorithm

As described in Section 8.3, the basis of the tag-resource taxonomy is the
so-called resource taxonomy – a taxonomy where the resources of the tag-
ging system are arranged in a taxonomic manner. In order to generate a
resource taxonomy from tagging data we developed Algorithm 6. In words,
the algorithm works as follows:

The algorithm takes a tag dataset and the desired taxonomy branching
factor as input parameters. Since the algorithm should generate a resource
taxonomy with the most general resource of the tagging system as root node
and related and less general resources as children, the algorithm calculates in
the first step degree centrality for all resource of the supplied tagging dataset
and stores the centrality-resource pairs into a map C. Degree centrality
was chosen since, on the one hand, it is computed fast, and on the other
hand, it was observed in our previous research [3] that degree centrality in
tagging systems is highly correlated to sophisticated centrality measures such
as closeness or betweenness centrality. In the next step, the algorithm sorts
the resources in C according to their centrality values in descending order.

Subsequently, the algorithm takes the first element of C (i.e. the most
general resource) and sets that resource as the root node of the resource
taxonomy. Thereafter, the algorithm starts iterating trough the elements
(resources) already present in resource taxonomy. For each resource in the
resource taxonomy the algorithm then calculates the most similar resources
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(see getMoreLikeThis in Algorithm 6). In our prototypical implementation
of the algorithm we implemented this function as a method that calculates
cosine similarity between all co-occurring resources taking also the tf ·idf val-
ues of the tag concepts into account. Additionally, the function ensures that
only resources are returned which are not already part of the constructed
resource taxonomy. The results of this function are stored into a map SIM ,
with resources as key values and with the provided similarity values as corre-
sponding map values. To account for resource generality we multiply resource
similarity values with their corresponding centrality values. The final scores
are normalized to fall into the range of [0...1]. After that, the resources in
SIM are sorted by the scores in descending order. This procedure ensures
that the resources in SIM are not only similar to the currently processed
resource but also sorted by their generality values. Thereafter the algorithm
appends a maximum of b resources to the currently processed resource. The
algorithm stops, if no similar resources could be found anymore.

Note, due the fixed branching factor b the algorithm does not guaran-
tee that all resources of the tagging dataset are contained in the resulting
resource taxonomy. However, as it will be shown in Section 8.4, the prob-
ability that one or even more resources are missing is relatively small due
to the high number of existing links between the resources of the resource-
to-resource network of a given tag dataset. On the other hand, in a tag
taxonomy the probability that one concept is missing is significantly higher.
The reason for this behavior is the fact that the tag-to-tag network of a
tagging system is typically substantially less connected.

Tag-Resource Taxonomy Generation Algorithm

To produce the final tag-resource taxonomy on the basis of a generated
resource taxonomy we developed Algorithm 7. In general it is a labeling
algorithm taking a given resource taxonomy and a tagging dataset as input
parameters. Tag information is used as label data. The algorithm tries
to apply labels to the given resource taxonomy in such a way, that they are
uniquely distinguishable and the most descriptive ones for the given resource.
The candidate tags are thereby ranked by the method of tag co-occurrence.
However, since it can happen that resources in the resource taxonomy have
the same tags in their parent tag trail, due to the lack of available tags in the
tagging system, additional meta-data is taken into account. We used title
information of the resources as an additional way for differentiation.

In words the algorithm works as follows: In the first step the algorithm
calculates, for each resource in the resource taxonomy, a list of co-occurring
tags of all resource tags and stores this list sorted in descending order into
a map. After that, the algorithm enters a loop and traverses the resource
taxonomy in left-order. In this loop the actual labeling procedure is per-
formed. Basically, the labeling process looks as follows: For each resource in
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Algorithm 6 Resource Taxonomy Generation Algorithm
1: INPUT: Tag Dataset D, Branching Factor b
2: OUTPUT: Resource Taxonomy T
3: C ← new HashMap[]
4: T ← new Tree[]
5: for each ri ∈ F do
6: C[ri] ← calculate degree centrality
7: end for
8: sortByV alues(C)
9: /*sort C by values in descending order*/

10: T [0] ← C[0]
11: SIM ← new HashMap
12: for i = 0; i < sizeof(T); i++ do
13: /*get all similar resources of T [i] and store the resources as key values and

the similarity values into SIM*/
14: SIM ← getMoreLikeThis(T [i])
15: for each ri ∈ SIM do
16: T [ri] ← T [ri] · C[ri]
17: end for
18: /*sort the resources in SIM by values in descending order*/
19: sortByV alues(SIM)
20: for j = 0; j < sizeof(SIM) and j < b; j++ do
21: T [i].append(SIM [i])
22: end for
23: end for
24: return T

the resource taxonomy the corresponding co-occurrence vector is consulted
and the first label, i.e. the most frequent tag, is tried to be applied to the
currently processed resource. If the currently used candidate tag is already
a part of the tag trail of the currently processed resource (see variable trails
in Algorithm 7) the next element, i.e. the next frequent tag label is chosen
as candidate tag. If no uniquely distinguishable tag trail can be constructed,
i.e. the candidate tag label from the co-occurrence vector is already present
in the tag trail of the resource additional meta data is taken into account. In
our case, title information of the currently processed resource is used. Note,
since tag and title information could be identical the proposed method is not
completely free of collisions. However, to fix this issue one could consider ad-
ditional meta data information or other methods to generate a unique label
such as appending an iterative number for each label that occurs more than
once. The algorithm stops if all resources of the given resource taxonomy
are labeled.

Figure 8.3 shows the branching factor distribution for a tag-resource tax-
onomy with branching b = 5 generated from the Austria-Forum tag dataset.
For branching factor b = 5 the algorithm does not generate a complete
b− tree (from levels 1 to 4 the resulting tree is complete, for levels > 4 the
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Algorithm 7 Tag-Resource Taxonomy Generation Algorithm
1: INPUT: Resource Taxonomy T , Tag Dataset D
2: OUTPUT: Tag-resource Taxonomy
3: COTAGS ← new HashMap[newArray[]]
4: for i = 0; i < sizeof(T); i++ do
5: Ts← getTags(T [i], D)
6: for j = 0; j < sizeof(Ts); j++ do
7: cotags← getCoocTags(Ts[j], D)
8: sort(cotags)
9: remove all tags from cotags that are not contained in T [i]

10: COTAGS[T [i]].add(cotags)
11: end for
12: end for
13: trails← new HashSet[]
14: for each ri ∈ T do
15: /*T is traversed in left-order*/
16: pl← getParentLabels(ri)
17: for each lj ∈ COTAGS[ri] do
18: if !pl.contains(lj) then
19: if !(trails.contains(pl.toString() + lj)) then
20: T [ri].applyLabel(pl)
21: trails.add(pl.toString() + lj)
22: end if
23: end if
24: if T [ri] has no label then
25: T [ri].applyLabel(getT itle(ri))
26: end if
27: end for
28: end for
29: return T

tree is not complete). The reason for this behavior is the fact that in tag
networks there are resources which are just connected to a few resources, i.e
if the branching factor b is beneath this threshold the resulting taxonomy
becomes incomplete.

8.4 Evaluation

Now, since we have shown in theory that the approach of the so-called tag-
taxonomies allows the user to navigate to the resource of a tagging system
in an efficient way, we will provide in the following section results of four
different experiments to show the usefulness of the proposed approach also
in a practical setting.
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Figure 8.3: Example of a branching factor distribution for a tag-resource taxon-
omy with maximum branching b = 5.

8.4.1 Dataset

We used the tag dataset from a system called the Austria-Forum4 [24] for
the experiments. The Austria-Forum is a large online encyclopedia similar to
Wikipedia providing the user with around 180, 000 resources on topics related
to Austria. In contrast to Wikipedia, Austria-Forum offers an integrated
tagging system, which allows users to assign tags to resources and to navigate
to related resources via tag clouds. As of October 16th, 2010, the Austria-
Forum tag dataset contains 13, 314 tags, 19, 430 resources and 97, 908 tag
assignments (see also Table 8.1).

8.4.2 Measuring the Average andMaximumNumber of Clicks
and the Drop Rate

In the first experiment we investigated

• the average and maximum tag-resource taxonomy depths for different
branching factors b in order to measure the number of clicks a user
would need to reach a designated target resource in the taxonomy and

• the number of missing resources (=drop rate) after the generation of
a tag-resource taxonomy from tagging data with different branching
factors b.

4http://www.austria-lexikon.at

http://www.austria-lexikon.at
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Since the resulting tag-resource taxonomies are not complete, neither
the average nor the maximum depth of the taxonomy can be estimated by
formulas. If the tag-resource taxonomy was complete, we could calculate
the maximum number of clicks as max{click(Tres)} = logb/2(n), where n is
the number of nodes in the taxonomy. Hence, these values were conducted
empirically through an experiment.

For the experiment three different tag-resource taxonomies named Res2,
Res5 and Res10 with three different branching factors b = 2, 5 and 10 were
generated. In order to compare the resulting taxonomies against a golden
standard taxonomy the DMOZ Open Directory Project (ODP) taxonomy5

was consulted. This experiment was conducted to determine whether the
generated tag-resource taxonomy would be usable or not.

As shown in Table 8.4 the tag-resource taxonomy with the smallest
branching factor b = 2 is the deepest, needing a user max{click(Tres)} = 17
clicks to reach a target resource in the worst case. On the other, and as
expected the tag-resource taxonomy with highest branching factor b = 10
is less deepest taxonomy, i.e. in the worst case a user would have to click
max{click(Tres)} = 8 times to reach a desired resource. For b = 5 the
max{click(Tres)} = 10. On average for branching factor b = 2 the mean
number of clicks is mean{click(Tres)} = 12.45. For b = 5 the mean number
of clicks is mean{click(Tres)} = 5.93 and for b = 10 mean{click(Tres)} =
4.44. The ODP Taxonomy has a mean depth of 6.86 [1]. The maximum
depth is 13. Hence, compared with the ODP taxonomy the tag-resource
taxonomy with branching factor b ≥ 5 will be most usable.

In order to measure the number of missing resources (=drop rate) after
the generation process of the taxonomies, we simply calculated the number
of resources contained in tag-resource taxonomies Res2, Res5 and Res10
and compared it to the number of unique resources contained in the original
Austria-Forum tag dataset. As shown in Table 8.4 and represented as pa-
rameter n, none of the resources dropped during the tag-resource taxonomy
generation process. The reason for this behavior is the high number of ex-
isting links between the resources of the resource-to-resource network of the
Austria-Forum tag dataset.

8.4.3 Measuring the Collision Rate

In the second experiment we measured the number of collisions when generat-
ing a tag-resource taxonomy with different branching factors b. As explained
the tag-resource generation algorithm is not 100% collision free, i.e. it could
happen that in a tag trail of a given resource the same tags occurs twice or
even more often.

Hence, the goal of this experiment was to reveal how many collisions occur

5http://www.dmoz.org

http://www.dmoz.org
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Name b n CR (%)
Res2 2 19,430 0.1%
Res5 5 19,430 0.2%
Res10 10 19,430 0.2%

Table 8.5: Collision Rates (CR) for different resource taxonomies with different
branching factor b.

in general if a tag-resource taxonomy with a given branching b is created. For
this experiment the three resource taxonomies from the former experiment
were used. Table 8.5 shows the collision rates for the three generated tag-
resource taxonomies. All in all, we observe that the collision rate is relatively
small. However to make the approach totally free of collisions one might use
additional meta-data as described in Section 8.3.2.

8.4.4 Measuring the Semantic Structure of the Tag-Resource
Taxonomy

In the third experiment we measured the quality of the semantic structure
of three tag-resource taxonomies that were generated for the two former
experiments.

For that purpose, we consulted two different semantic measures – the
Taxonomic F-Measure(in short TF ) [6] and the Taxonomic Overlap(TO)
[18]. Both measures identify the quality of a given taxonomy against a
golden standard via common concepts. We used Germanet6 as the golden
standard for the experiment since the Austria-Forum tag dataset contains
only German tags.

To determine the overall semantic quality of our three generated tag-
taxonomies four tag taxonomies on the basis of the following popular tag
taxonomy induction algorithms were generated – Hierarchical K-Means [7],
Affinity Propagation [8, 21], Heymann [14] and Deg/Cooc [12, 2]. In the
experiment, TF and TO values for all seven taxonomies were calculated and
compared against each another. The goal of the experiment was to study
how semantic structures generated by the tag-resource induction algorithm
(Algorithm 2) compare to semantic structures produced by other popular
tag taxonomy induction algorithms such as Hierarchical K-Means, Affinity
Propagation, Heymann or Deg/Cooc [12]. Figure 8.4 shows the results of
the semantic evaluation of the experiment. We observe that the higher the
branching factor the better the semantic structure of the generated tag-
resource taxonomies. The results indicate that tag-resource taxonomies with
branching factors between b = [5...10] perform on average as good as tag
taxonomies based on a Affinity Propagation approach.

6http://www.sfs.uni-tuebingen.de/GermaNet/

http://www.sfs.uni-tuebingen.de/GermaNet/
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Figure 8.4: Results of the semantic evaluation of the three generated tag-resource
taxonomies Res2, Res5 and Res10.

8.4.5 Empirical Analysis

In order to conduct whether or not the approach of a tag-resource taxonomy
is also usable for humans, a user study based on the ideas of [23] was con-
ducted. We used a tag-resource taxonomy with branching factor b = 10 for
the following experiment.

First, we took the tag-resource taxonomy with branching factor b = 10
and extracted 100 tag trails uniformly at random from the tag-resource tax-
onomy. After that, a Deg/Cooc tag taxonomy with a maximum branching
factor of b = 10 was generated in order to compare our approach of a tag-
taxonomy to an existing method. Again, 100 tag trails were extracted uni-
formly at random from the generated tag taxonomy. Since shorter concept
trails are typically better evaluated, we chose tag trails from both taxonomies
that had a minimum tag trail length of 3 concepts (excluding the root node).
After that, we presented the trails of both taxonomies in random order and
generated an online test containing 200 tag trails, 837 relations and 1, 037
concepts. Each of our users were given exactly same tag trails. To insure
that users knew how to evaluate the given tag trails a sample taxonomy with
extracted tag trails was handed to them in addition to a detailed description
of how to evaluate the trails. During the test the users were asked to rate the
trails according to the classification schema presented in Table 8.6. All in
all, 9 test subjects from three different departments at our university partic-
ipated in the experiment. All participants were experienced computer users
and familiar with user studies and the evaluation of concept hierarchies. The
study was conducted online between April 25th and 28th of 2011.
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Classification Description
Correct Correct hierarchy relation
Related Correct relation, but not hierarchical

or reverse hierarchical
Equivalent Synonym
Not Related The relations do not have anything

to do with each other
Unknown The evaluator does not recognize

the meaning of the tag(s)

Table 8.6: Classification Labels for the User Evaluation.

Name Corr. (%) Rel. (%) Equ. (%) Not Rel. (%) Unknown(%)
Deg/Cooc10 33.2 27.3 13 21.9 5.1
Res10 27.3 36.2 12.3 19.8 4.2

Table 8.7: Results of the empirical analysis of the tag-resource taxonomy with
branching factor b = 10 compared to a Deg/Cooc tag taxonomy with branching
factor b = 10 (Corr. = Correct, Rel. = Related, Equ. = Equivalent, Not Rel. =
Not Related) .

Table 8.7 shows the results of the classification that was done by the study
participants. These results indicate that the approach of a tag-taxonomy is
not only useful in theory (as shown in Section 8.4.4) but also in practice.
Compared to a tag taxonomy comprising only tags we can see that con-
cept relations of a tag-resource taxonomy with branching factor b = 10 are
only to 5% less hierarchically arranged than the tag concepts of the theoreti-
cally semantically most sound tag taxonomy induction approach the so-called
Deg/Cooc tag taxonomy induction algorithm. Regarding the relatedness of
the tag concepts we can observe that the tag-resource taxonomy was rated to
9% better than the Deg/Cooc tag taxonomy. Overall, the rating for the not
related tags for both taxonomies was relatively small, taking into account
that the maximum branching factor in both taxonomies was set to relatively
small value of b = 10.

8.5 Related Work

For the presented work the following research topics on tagging are relevant:

8.5.1 Analysis of Social Tagging Systems

One of the first analysis of social tagging systems was conducted by Golder
and Huberman [9]. In this work the authors show stable usage patterns
within collaborative tagging systems and introduce an initial model of col-
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laborative tagging. Subsequent work by Marlow et al. [19] introduces another
model which gives insight into a simple taxonomy of incentives and contri-
bution models within these systems. Hammond et al. [11] give a high level
overview of different social tagging tools and examine various aspects such
as audience and types of tagged media.

8.5.2 Navigation in Social Tagging Systems

As previously mentioned, Chi and Mytkowicz [4] studied Delicious using in-
formation theory (entropy) and found that the system becomes harder to
navigate over time. The main reason for this is the small increase of tag
vocabulary as opposed to the vast growth of tagging information in these
systems. In previous work [13] we analyzed tag clouds as means of browsing
tagging systems and showed that tag-resource networks have sufficient navi-
gation properties in theory but also illustrated that user interface restrictions
(such as pagination) spoil efficient navigation for all practical purposes.

8.5.3 Tag Semantics

In our own previous work [3] we compared different methods (such as network
centrality, subsumption etc.) to measure the generality of tags in social
systems. In [17] we showed that semantics within a social tagging system
are heavily influenced by the users’ tag usage. Users who are more verbose
in the process of social tagging are better candidates for the construction of
semantic structures out of folksonomies.

8.5.4 Creating Hierarchies from Social Tagging Data

Heymann et al. [14] converted a large corpus of tags annotating objects into
a navigable hierarchical taxonomy of tags by evaluating the centrality of the
tags in a similarity graph. In another work Solskinnsbakk et al. [23] con-
structed tag hierarchies using association rule mining of the corresponding
tag set. Kiu and Tsui [15] introduced TaxoFolk - an algorithm which inte-
grates tags and resources into a taxonomy by applying various data-mining
techniques such as formal concept analysis. In another work Plangprasop-
chok et al. [20] propose a hierarchy generation algorithm based on an exami-
nation of user-defined relations within the system. Schmitz [22] gives insight
into an algorithm that induces an ontology from tags in the Flickr system
using a subsumption-based model. However, contrary to our work, none of
these previous approaches examine the implications the resulting structures
have on the navigability of the system.
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8.6 Conclusions and Future Work

In this paper we introduced a novel approach to enhance the navigability of
social tagging system through tag-resource taxonomies. We showed that tag
taxonomies are in general well suited for finding related tag concepts, but
perform worse in finding resources in an efficient number of clicks. By intro-
ducing the notation of the so-called tag-resource taxonomies we presented
a method that tackles this issue. We illustrated in theory that with the
approach of a tag-resource taxonomy it is possible to navigate to resources
efficiently. Additionally to these findings, we evaluated the approach empir-
ically and found that tag-resource taxonomies perform on a semantic level
nearly as well or even better than other popular tag taxonomy approaches.

Thus, with the notation of tag-resource taxonomies we have introduced
a novel hierarchical method that allows the user to navigate the resources
in the tagging system in an efficient and semantically appropriate manner.
To the best of our knowledge, this is the first work that describes such an
efficient hierarchical navigation tool on the basis of tag-resource hierarchies.
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9
Improving the Navigability of Tagging

Systems with Hierarchically Constructed
Resource Lists and Tag Trails

This chapter is based on the contribution ‘Improving the Navigability of Tag-
ging Systems with Hierarchically Constructed Resource Lists and Tag Trails”
published in the Journal of Computing and Information Technology in 2011.

This chapter concludes the last part of this dissertation by introducing a
generic approach for the construction of resource lists in tagging systems that
support efficient navigation of the resources. In detail, the chapter unifies
the ideas of the previous chapters to extract hierarchical structures from
tagging data automatically and to use these hierarchies for the construction
of results lists. Contrary to previous work, the method featured in this
chapter is completely generic, i.e. the introduced resource list generation
approach could be used to improve the navigability of any tagging system.
In a number of experiments based on simulations, we show that the approach
generates tag cloud networks which are efficiently navigable.

The original contribution can be found in [22].

9.1 Abstract

Recent research has shown that the navigability of tagging systems leaves
much to be desired. In general, it was observed that tagging systems are not
navigable if the resource lists of the tagging system are limited to a certain
factor k. Hence, in this paper a novel resource list generation approach
is introduced that addresses this issue. The proposed approach is based
on a hierarchical network model. The paper shows through a number of
experiments based on a tagging dataset from a large online encyclopedia
system called Austria-Forum, that the new algorithm is able to create tag
network structures that are navigable in a efficient manner. Contrary to
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previous work, the method featured in this paper is completely generic, i.e.
the introduced resource list generation approach could be used to improve
the navigability of any tagging system. This work is relevant for researchers
interested in navigability of emergent hypertext structures and for engineers
seeking to improve the navigability of tagging systems.

9.2 Introduction

With the emergence of modern Web 2.0 hypertext systems such as Flickr,
Delicious, CiteULike or LastFM, tagging systems have emerged as an inter-
esting alternative to traditional forms of hypertext navigation and browsing.
Tagging systems allow the user to use a free-form vocabulary to annotate
resources with the so-called tags [7, 15]. This is done either for semantic rea-
sons (for example, to enrich information items with additional meta data),
conversational reasons (for example, for social signaling) [2] or for organiza-
tional reasons (for example, to categorize information) [14]. Regardless of
why people tag [17, 19, 18], tags are typically visualized as the so-called tag
clouds [2]. Basically, a tag cloud is a selection of tags related to a particular
resource. Upon clicking on a tag in the tag cloud, a list of resources related
to the tag is presented to the user. Thus, in addition to traditional browsing
(through a hierarchal taxonomy) and searching (by entering search terms),
tags, respectively tag clouds, provide users with a third orthogonal form of
navigation within a collection of resources.

In previous work [9, 10, 6], it was observed that the navigability of tag-
ging systems leaves much to be desired. In particular, in [9, 10] we found
that the most common resource list generation approach used these days
in tagging systems generates network structures which are per se unnaviga-
ble [9, 10]. The issue is this: Limiting the resource list to a certain factor
k, due to interface space restrictions, fragments the bipartite tag network
of a tagging system into large isolated network clusters. This renders the
network unnavigable from a network-theoretical point of view. However, in
[9, 10] we suggested an approach to overcome this issue by applying a sim-
ple greedy resource generation strategy. The “trick” is to select, for every
click on a particular tag in the tag cloud, the k related resources at random.
In common tag cloud algorithms, for every tag click the same result list is
generated. Since different resources are selected, this leads to the effect that
the tag network becomes connected (even for small values of k) and in the-
ory navigable again. However, as we have shown in [9], this simple strategy
does not lead to tag networks which are “good” or even “efficiently” naviga-
ble. Therefore, we have investigated in our recent work more sophisticated
strategies to generate a k-limited resource list for a particular tag in the
tagging system. In [23] we have shown that it is possible, at least in theory,
if we apply a hierarchical network model [13] to select the k resources for
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Figure 9.1: Sample resource taxonomy and corresponding hierarchically con-
structed resource list for tag “car”. The green nodes are the resources in the tax-
onomy that have the tag “car” applied. In the middle of the Figure the resulting
probability function is presented and on the right side the generated resource list
is shown.

the resource list. The idea is to place the resources in the collection within
a hierarchical taxonomy and to use this taxonomy to generate a probability
function to select the k resources in the resource list [23]. However as also
shown in [23], the approach performs poor, if the resource taxonomy of the
system has high branching factors or is poor balanced.

To that end, in this paper we present an enhanced version of the algo-
rithm. Contrary to the approach in [23], the method introduced in this work
is able to generate a fixed branched resource taxonomy and corresponding
“resource trails” autonomously, i.e. it is independent of any given resource
taxonomy. Based on our simulation framework used in [23] we show the high
performance of our idea and show that the tag cloud networks generated by
this approach, are indeed efficiently navigable.

The paper is structured as follows: In Section 9.3 the hierarchical resource
list generation algorithm is presented. In Section 9.4 the dataset used for
the experiments is discussed and in Section 9.5 the approach is evaluated.
Finally in Section 9.8 the paper is concluded.

9.3 Hierarchical Resource List Construction

The hierarchical resource list generation algorithm is a novel approach for
resource list generation in a tagging system [23]. To put it simply, the the
approach places the resources into a hierarchical taxonomy and reuses the
hierarchy to generate a probability function to select the resources in the
tagging system. If the taxonomy provides a constant branching factor b, the
emerging tag network is efficiently navigable. The idea for this algorithm
was originally derived based upon work by J. Kleinberg [13] who has inves-
tigated structural clues of small world networks. Kleinberg showed [13] that
if the nodes of a network can be organized into a hierarchy with a constant
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Algorithm 8 Hierarchical Resource List Generation Algorithm
1: INPUT: tag t, resource r, max. resource list size k, resource taxonomy T
2: OUTPUT: resource list RS
3: R(t)← get all resources r(t)\r
4: D ← new HashMap[new Array[]]
5: for each r(t)i ∈ R(t) do
6: dist← h(r) + h(r(t)i)− 2h(r, r(t)i)− 1
7: /* h(r), h(r(t)i) are the heights of the resource nodes r, r(t)i in T , h(r, r(t)i)

is the height of the least common ancestor of r, r(t)i in T */
8: D[dist].add(r(t)i)
9: end for

10: j ← 0
11: RS ← new Array[]
12: while sizeof(RS) < k && sizeof(RS) < sizeof(D) do
13: RS[j]← D[pexp, puni]
14: /* pexp is a random number with exponential distribution in the interval

0 ≤ x < sizeof(D), puni is a random number with uniform distribution in
the interval 0 ≤ x < sizeof(D[pexp]) */

15: end while
16: sort RS by dist in descending order
17: return RS

branching factor b, then such a hierarchy provides a probability distribution
for connecting the nodes in the network to generate a network that is then
efficiently navigable.

In detail, the algorithm works as follows: For each click on a tag t(r),
where r is a resource in the tagging system, the algorithm returns a k-
limited resource where the resources r(t(r))i in the list are selected randomly
according to a probability function p that is calculated from a given resource
taxonomy T . p is calculated as

e−dist(r(t(r)),r(t(r))i) (9.1)

The distance dist(r(t), r(t)i) is calculated as

h(r(t)) + h(r(t)i)− 2h(r(t), r(t)i) (9.2)

where h(r(t)), h(r(t)i) are the heights of r(t) and r(t)i in a given resource
taxonomy T and where h(r(t), r(t)i) is the height of the least common an-
cestor of r(t) and r(t)i in the resource taxonomy T [23] (see Algorithm 8).

In Algorithm 9.1 an illustrative example of a resource taxonomy and
the corresponding hierarchically constructed resource list for the tag “car” is
given. Note that the orange node in Algorithm 9.1 represents the resource
that is currently viewed by the user. The green nodes are the resources in the
taxonomy that have the tag “car” applied. The resulting probability function
is presented in the middle of Algorithm 9.1 and the generated resource list
is shown on the right side.
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9.3.1 Resource Taxonomy Generation Algorithm

To overcome the issue of a given resource taxonomy Algorithm 8 has been
extended to a generate a fixed branched resource taxonomy autonomously.
In related work, [11] Heymann et al. (see also [4]) describe an algorithm to
generate a tag taxonomy from tagging data. The input for the algorithm is
the so-called tag similarity graph, i.e. an unweighted graph where each tag is
a node in the graph, and two nodes are linked to each other if their similarity
is above a predefined similarity threshold. In the simplest case, the threshold
is defined by tag overlap, i.e. tags need to share at least one resource to be
linked with each other. The second prerequisite for the algorithm is the
ranking of nodes in a descending order according to how central the tags are
in the tag similarity graph. In particular, this ranking produces a generality
order where the most general tags from a dataset are highly ranked. The
algorithm starts with the most general tag as the root node of the tree. The
algorithm then proceeds by iterating through the generality list. For each
tag in the the tree it adds the current processed tag as a child to its most
similar tag. [8]

In this work, a similar algorithmic approach is developed. Contrary to
the algorithm of Heymann et al. the algorithm is able to generate a fixed
branched taxonomy without defining a predefined similarity threshold. In
Algorithm 9 the actual algorithm is presented. In words, the algorithm works
as follows (see also [25]):

The algorithm takes a tag dataset and the desired taxonomy branching
factor as input parameters. Since the algorithm should generate a resource
taxonomy with the most general resource of the tagging system as root node
and related and less general resources as children, the algorithm calculates
in the first step degree centrality for all resource of the supplied tagging
dataset and stores the centrality-resource pairs into a map C. Degree cen-
trality was chosen since, on the one hand, it is computed fast, and on the
other hand, it was observed in previous research [5] that degree centrality
in tagging systems is highly correlated to sophisticated centrality measures
such as closeness or betweenness centrality. In the next step, the algorithm
sorts the resources in C according to their centrality values in descending
order.

Subsequently, the algorithm takes the first element of C (i.e. the most
general resource) and sets that resource as the root node of the resource
taxonomy. Thereafter, the algorithm starts iterating trough the elements
(resources) already present in resource taxonomy. For each resource in the
resource taxonomy the algorithm calculates then the most similar resources
(see getMoreLikeThis). Our algorithm calculates cosine similarity between
all co-occurring resources taking also the tf · idf values of the tag concepts
into account. Additionally, the function returns only resources that are not
already part of the constructed resource taxonomy. The results of this func-
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Algorithm 9 Resource Taxonomy Generation Algorithm
1: INPUT: Tag Dataset D, Branching Factor b
2: OUTPUT: Resource Taxonomy T
3: C ← new HashMap[]
4: T ← new Tree[]
5: for each ri ∈ F do
6: C[ri] ← calculate degree centrality
7: end for
8: sortByV alues(C)
9: /*sort C by values in descending order*/

10: T [0] ← C[0]
11: SIM ← new HashMap
12: for i = 0; i < sizeof(T ); i++ do
13: /*get all similar resources of T [i] and store the resources as key values and

the similarity values into SIM*/
14: SIM ← getMoreLikeThis(T [i])
15: for each ri ∈ SIM do
16: T [ri] ← T [ri] · C[ri]
17: end for
18: /*sort the resources in SIM by values in descending order*/
19: sortByV alues(SIM)
20: for j = 0; j < sizeof(SIM) and j < b; j++ do
21: T [i].append(SIM [i])
22: end for
23: end for
24: return T

tion are stored into a map SIM , with resources as key values and with
the provided similarity values as corresponding map values. To account for
resource generality we multiply resource similarity values with their corre-
sponding centrality values. The final scores are normalized to fall into the
range of [0...1]. After that, the resources in SIM are sorted by the scores in
descending order. This procedure ensures that the resources in SIM are not
only similar to the currently processed resource but also sorted by their gen-
erality values. Thereafter the algorithm appends a maximum of b resources
to the currently processed resource. The algorithm stops, if no more similar
resources can be found.

Note, due the fixed branching factor b the algorithm does not guarantee
that all resources of the tagging dataset are contained in the resulting re-
source taxonomy. However, as in [23] the probability that one or even more
resources are missing is relatively small due to the high number of existing
links between the resources of the resource-to-resource network of a given
tag dataset. On the other hand, in a tag taxonomy the probability that one
concept is missing is significantly higher. The reason for this behavior is the
fact that the tag-to-tag network of a tagging system is typically substantially
less connected.
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Algorithm 10 Resource Taxonomy Labeling Algorithm
1: INPUT: Resource Taxonomy T , Tag Dataset D
2: OUTPUT: Tag-resource Taxonomy
3: COTAGS ← new HashMap[newArray[]]
4: for i = 0; i < sizeof(T); i++ do
5: Ts← getTags(T [i], D)
6: for j = 0; j < sizeof(Ts); j++ do
7: cotags← getCoocTags(Ts[j], D)
8: sort(cotags)
9: remove all tags from cotags that are not contained in T [i]

10: COTAGS[T [i]].add(cotags)
11: end for
12: end for
13: trails← new HashSet[]
14: for each ri ∈ T do
15: /*T is traversed in left-order*/
16: pl← getParentLabels(ri)
17: for each lj ∈ COTAGS[ri] do
18: if !pl.contains(lj) then
19: if !(trails.contains(pl.toString() + lj)) then
20: T [ri].applyLabel(pl)
21: trails.add(pl.toString() + lj)
22: end if
23: end if
24: if T [ri] has no label then
25: T [ri].applyLabel(getT itle(ri))
26: end if
27: end for
28: end for
29: return T

9.3.2 Resource Taxonomy Labeling Algorithm

In order to give the user information about how the resources are structured
in the tagging system, tag/title trails are attached as additional information
for each resource of the tagging system (see Figure 9.2). In an experiment
[21] conducted recently, resource trails were attached to the resources in the
result lists of the tagging system. In other words, in [21] we observed that
all 24 participants of the experiment were using resource trail information
for orientation rather than tag information to navigate the tagging system.

However, since resource trails extracted from a resource taxonomy would
be impossible for humans to read, a labeling algorithm is introduced to make
the resource taxonomy readable by humans. The basic idea of the algorithm
(see Algorithm 8) is it to use tag and title information to label a particular
resource in the resource taxonomy and to use the resulting taxonomy to
generate tag/title trails which are attached to the resources in the resource
list (see Figure 9.2), i.e. we attempt to contextualize the resources.
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Figure 9.2: Sample of a hierarchically constructed resource list with attached
tag/title trails (on the left) and corresponding resource taxonomy with applied
tag/title labels (on the right). Note, compared to a pure tag taxonomy (see [8] for
instance), in a labeled resource taxonomy terms can occur more than once. The
orange node in the resource taxonomy (again) denotes the currently viewed resource
by the user.

In general it is a labeling algorithm taking a given resource taxonomy and
a tagging dataset as input parameters. Tag information is used as label data.
The algorithm tries to apply labels to the given resource taxonomy in such
a way, that they are uniquely distinguishable and the most descriptive for
the given resource. The candidate tags are thereby ranked by the method
of tag co-occurrence. However, since it can happen that resources in the
resource taxonomy have the same tags in their parent tag trail, due to the
lack of available tags in the tagging system, additional meta-data is taken
into account. We use title information of the resources as an additional way
for differentiation. In words the algorithm works as follows (see also [25]):

In the first step the algorithm calculates, for each resource in the resource
taxonomy a list of co-occurring tags of all resource tags and stores this list
sorted in descending order into a map. After that, the algorithm traverses
the resource taxonomy in left-order. In this loop the actual labeling proce-
dure is performed. In detail, the labeling process looks as follows: For each
resource in the resource taxonomy the corresponding co-occurrence vector
is consulted and the first label, i.e. the most frequent tag, is tried to be
applied to the currently processed resource. If the currently used candidate
tag is already part of the tag trail of the currently processed resource (see
variable trails in Algorithm 9) the next element, i.e. the next frequent tag
label is chosen as candidate tag. If no uniquely distinguishable tag trail can
be constructed, i.e. the candidate tag label from the co-occurrence vector is
already present in the tag trail of the resource additional meta data is con-
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sidered. We use title information of the currently processed resource for this
purpose. Note, since tag and title information can be identical the proposed
method is not completely free of collisions. However, to fix this issue one
can include additional meta data information or other methods to generate
a unique label such as appending an iterative number for each label that
occurs more than once. The algorithm stops if all resources of the given
resource taxonomy are labeled.

9.4 Dataset

The described experiments in this paper are based on the tag dataset from
a system called the Austria-Forum [3, 24]. Basically, the Austria-Forum is a
large online encyclopedia similar to Wikipedia providing the user with ap-
proximately 180,000 resources related to Austria. In contrast to Wikipedia,
Austria-Forum structures articles into a taxonomy and provides an inte-
grated tagging system [24, 20], which allows users to assign tags to resources
and to navigate to related resources via tag clouds. As of October 16, 2010
the Austria-Forum tag dataset contains 97,908 tag assignments, 13,314 tags,
and 19,430 resources.

9.5 Experiments

In order to evaluate the proposed hierarchical resource list generation ap-
proach overall two different experiments were conducted. Since evaluation
on the usefulness of the hierarchy creation algorithm was already published
in [25], we only present results on the navigability of this approach in this
paper.

9.6 Measuring Navigability

In order to evaluate the navigability of the tag networks resulting from the
proposed hierarchical resource list generation approach, two different types
of tag networks were generated. They all varied in how the the resource lists
were calculated. In the following list, we describe the tag networks as they
were generated and used for our further experiments:

• Network RAND: This type of tag network relies on the resource list
generation algorithm that returns for a particular tag t a different and
randomly sorted k-limited resource list. Contrary to the chronological
approach, the resource lists are not statically calculated, i.e. for each
click on a tag t(r), a different resource list is generated.

• Network HIERx: This type of tag network relies on the hierarchical
resource list generation approach. For our experiments in this paper
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Name k Nodes Links ED LSCC NAV
RAND10 10 19,430 678,623 4.00 0.99 nav.
HIER210 10 19,430 619,641 4.29 0.99 nav.
HIER510 10 19,430 622,554 3.99 0.99 nav.
HIER1010 10 19,430 625,512 4.30 0.99 nav.
HIER510 10 19,430 622,554 3.99 0.99 nav.
RAND50 50 19,430 2,191,483 3.87 0.99 nav.
HIER250 50 19,430 2,086,978 4.05 0.99 nav.
HIER550 50 19,430 2,093,926 3.90 0.99 nav.
HIER1050 50 19,430 2,097,897 3.86 0.99 nav.

LSCC = Largest Strongly Connected Component, ED = Effective
Diameter, NAV = Navigability

Table 9.1: Tag network statistics. According to Kleinberg [12, 13] networks
RAND and HIERx are navigable networks.

three separate tag networks of this type were generated. They all
vary in the way in which resource taxonomies were used to generate
the resulting tag networks. As input resource taxonomies the three
resource taxonomies Res2, Res5 and Res10 were chosen. The resulting
networks are called Network HIER2, HIER5 and HIER10.

Chronological, similarity or popularity ranking of the resources was not
considered in this evaluation since our previous work in this area [23] showed
that they generate network structures which are not navigable.

In order to determine whether the generated tag networks are navigable,
network properties such as the size of the largest strongly-connected com-
ponent (LSCC) and the effective diameter (ED) were calculated. From a
network-theoretic perspective, Kleinberg [13] showed that a navigable net-
work can be formally defined as a network with a low diameter [16] bounded
by log(n), where n is the number of nodes in the network, and an existing
giant component, i.e. a strongly connected component containing almost all
of the nodes. For that experiment the maximum resource list size k was also
varied to k = 10 and k = 50. This was done to observe whether or not differ-
ent values of k influence the navigability of the different tag networks. The
overall goal of this experiment was to determine whether or not the tagging
system relaying on a hierarchical resource list generation algorithm produces
tag networks which are more navigable than tag networks generated by a
random resource list generation approach.

In Table 9.1, the network statistics of all four tag networks are shown.
According to Kleinberg [12, 13] bot networks RAND and HIER are navi-
gable networks.
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Figure 9.3: Success rates of the hierarchical decentralized for tag networks RAND
and HIERx and different values of k. As shown, the hierarchically constructed
tag networks outperform the random networks most. As also shown, tag network
HIER2 is most navigable. Regardless of which branching factor, the searcher is
able to find nearly 100% of all nodes in this network. According to Kleinberg’s
definition [12, 13] tag networks HIER2 and HIER5 are also efficiently navigable
network.

9.7 Measuring Efficiency

Since, the previous experiment did not show any difference between the
two types of networks an additional simulation was performed. For that
purpose we measured the efficiency of the tag network with a hierarchical
decentralized searcher [1] as introduced in [8]. As defined by Kleinberg, an
efficiently navigable network is a network for which a decentralized searcher
exists that is able to navigate to all nodes of the network in log(n) or at least
in sub-linear to n time, where n are the number of nodes in the network. In
[8] we have introduced a searcher that is able to search a tagging system in
log(n). However, contrary to the searcher in [8], the searcher in this work
uses as background knowledge the resource taxonomy which was utilized
to generate the tag network (see Algorithm 11). Additionally, the searcher
in this work is able to walk along a directed tag network. In [8], it was
limited to a bipartite tag network. In Algorithm 11, the pseudo code of the
implemented searcher is presented. Note that the searcher is using as input
parameters a directed resource-resource tag network, a resource taxonomy,
a start and target node and a maximum number of hops parameter that
defines how many resources the searcher should at maximum visit before
giving up. For an input taxonomy the searcher is taking the corresponding
resource taxonomy, i.e. for Network HIER2 resource taxonomy RES2 is
taken, for Network HIER5 resource taxonomy RES5 is taken, for Network
HIER10 resource taxonomy RES10 is taken and for network RAND a
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Algorithm 11 Hierarchical Decentralized Searcher [8]
1: INPUT: resource resource graph R, resource taxonomy T , start node v, target

node w, max hops hopsmax

2: hops← 0
3: while v! = w do
4: if ++hops >= hopsmax then
5: break
6: end if
7: R(v)← get all resources from v ∈ R
8: distmin ←∞
9: for each ri ∈ R(v) do

10: dist← h(ri, T ) + h(v, T )− 2h(ri, v, T )− 1
11: if dist < distmin then
12: distmin ← dist
13: v ← ri
14: end if
15: end for
16: end while

random resource taxonomy was generated.
In order to acquire statistically significant results, 100,000 random searches

(with a maximum of 10 hops) for each of the networks were performed. The
start and target nodes were selected uniform at random. For the experi-
ment only resource pairs were considered for which a path was present in
the network. If the target node could not be found in at least 10 hops or the
searcher was caught in a cycle (we did not recover the searcher in that case)
this was counted as an error. It is important to note that both searcher were
given the exact same start and target nodes for all four networks.

In Figure 9.3 we present the success rate plots of the hierarchical decen-
tralized searcher for tag networks RAND and HIERx and different values
of k. As shown, the hierarchically constructed tag networks outperform
the random networks significantly. As also shown in Figure 9.3, tag net-
work HIER2 is most navigable. Regardless of which branching factor, the
searcher is able to find nearly 100% of all nodes in this network. According
to Kleinberg’s definition [12, 13] tag networks HIER2 and HIER5 are also
efficiently navigable network.

9.8 Conclusions

In this paper, a novel approach for resource list generation for tagging sys-
tems was presented. It continues our work on the navigability of social
tagging systems and presented a resource list generation approach that is
based on a hierarchical network model. A number of experiments showed
that the approach is able to generate tag network structures which are ef-
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ficiently navigable. Contrary to previous work, the proposed approach is
completely generic, i.e. the introduced hierarchical resource list generation
approach could be used to improve the navigability of any tagging system.
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10
Conclusions and Future Directions

This chapter summarizes and concludes the dissertation. We first list the
main contributions of this thesis and provide then the answers to the research
questions as proposed in the introductory part of this thesis. Last but not
least, we discuss the limitations of our work and propose future directions of
research in the field of tag-based search and navigation in tagging systems.

10.1 Summary of Contributions

The novelty of this work lies in the idea of reviewing social tags and cor-
responding browsing constructs from a navigational perspective. While re-
lated work has studied the utility of tags mostly from the visual point of
view or a information-theoretic perspective, to the best of our knowledge
this is the first work that extensively studied the extent to which tags and
corresponding constructs are useful for efficiently searching and navigating
to the resources of a tagging system.

The following list summarizes the contributions of this dissertation:

1. The review of the utility of tags for the task of search and efficient
navigation in tagging systems (see Part II).

2. The navigational review of tags compared to other tag-alike meta-data
structures such as keywords and search query terms (see Part III).

3. The introduction of a number of new approaches that support efficient
tag-based navigation in tagging systems (see Part IV).
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10.2 Answers to Research Questions

At the beginning of this dissertation we set out a number of research ques-
tions that we were interested in answering. The following section summarizes
the answers to these questions.

Research Question 1
To what extent are tags/tag clouds useful for navigation?

The first research question we focused on in this dissertation was the issue
to what extent tags are useful for navigation. Since related work has only
partly answered this question from an information retrieval perspective and
one single tag dataset, we examined this question from a network-theoretic
perspective and by using a number of tag datasets. In general, we showed
that tags are theoretically useful for navigation. By modeling tagging sys-
tems as tag-resource networks, we showed that tagging systems have power-
law qualities, a giant component that includes over 99% of the resources and
an effective diameter that is bound by log(n), where n are the number of
resources in a tagging system. By utilizing the network-theoretic notations
introduced by J. Kleinberg, we could show that tags are an efficient source
for navigating the resources of an information system.

While studying the utility of tags from a navigational perspective, we
also rose the question as to what extent tag clouds are useful for navigation.
Since tags are typically displayed as tag clouds and limited in their size due
to interface limitations, we analyzed the utility of tag clouds for the task of
navigation in tagging systems. In that context we limited the number of tags
displayed in the tag cloud to a factor N as well as the number of resources
presented in the result list to a factor k. With navigability measures from
the domain of network-theory we could show that for N > 20 the efficiency
of tag clouds for navigation is not impaired. Contrary to this, if we limited
the pagination factor k to sizes of 5, 10, 20 or 30 we could show that the
resulting tag-resource network was not navigable due to the fact of a missing
giant component that connected almost all resources in the tagging system
with each other.

Research Question 2
To what extent are tags/tag clouds useful for search?

After studying the utility of tags for navigation, we were interested on the
usefulness of tags for task of search in tag-based information systems. While
related work showed that tags can enhance the information retrieval prop-
erties of an tag-based information systems, or has shown that tag-clouds
might be useful for summarizing search results, we were interested studying
the extent to which tags/tag clouds are useful for search to enhance the per-
formance and users’ satisfaction. To that end, we explored the differences
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between three search interfaces under a controlled user study. The interfaces
explored in the study included a search-only interface that plays the role of
a baseline and two other search interfaces: a tag cloud based search inter-
face and a faceted tag cloud interface. In order to evaluate the interfaces we
utilized two well-known information seeking strategies typically performed
by users to search in an information system: look-up search and exploratory
search. In a number of experiments with 24 users and a within-subject de-
sign, we could show that the two tag-based search interfaces performed better
than the baseline in both user satisfaction and performance. However, as our
results also demonstrated, the differences between the two tag-cloud based
search interfaces are not so clear. While users performed in the tag cloud
search interface best and also preferred it most over all other interfaces, they
would recommend the faceted tag cloud interface.

Research Question 3
To what extent are tags/tag clouds more useful/efficient for search/
navigation than other tag-alike meta-data such as keywords or search
query-terms?

Another question which we were interested in was the question to what
extent tags are more useful for navigation than tag-alike meta-data such
as keywords or query-tags. Since tags are very related to the notation of
keywords and since related research has shown that tags are in their structure
comparable to so-called query tags harvested from search query logs, we
were interested to study the navigational differences and similarities of tags
compared to these tag-alike meta-data structures. To that end we conducted
two studies comparing tags from a navigational perspective with query terms
and tags with keywords.

The first study introduced QueryCloud, a tool that harvests query terms
in an online encyclopedia system called Austria-Forum to generate query tag
clouds for the purpose to link related content within the system automati-
cally. On a theoretical and empirical level we could show that QueryCloud
out-performs the integrated tagging system of the Austria-Forum by gener-
ating tag clouds that are more efficiently navigable than the tag clouds which
are based on tags generated by real-users of the system. Additionally to this,
we could show in a user study that query tags generated by QueryCloud are
almost to the same degree relevant for the user of a given Web page as tags
generated by real users.

In the second study, we explored the navigational differences between
broad (tag-based) and narrow (keyword-based) folksonomies in social hyper-
text systems. We studied both kinds of folksonomies on a dataset provided
by Mendeley - a collaborative platform where users can annotate and orga-
nize scientific articles with tags and keywords. In a variety of experiments
based on information- and network-theory we could show that broad folk-
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sonomies (=tag-based folksonomies) are more efficient for navigation than
narrow folksonomies (=keyword-based folksonomies).

Research Question 4
To what extent can we build better tag-based browsing constructs that
support better search/navigation in tagging systems?

Since our research on tag-based browsing showed that tag clouds are lim-
ited in their functionality to support efficient navigation of the resources
of a tagging system mainly because of the so-called pagination effect, we
were interested in developing better tag-based browsing constructs that sup-
port more efficient navigation in tagging systems than currently available
approaches. To that end, we presented three studies that introduced overall
three novel approaches for the construction of tag clouds and tag hierarchies
that support better navigation in tagging systems.

The first study introduced the notation of hierarchically constructed tag
clouds and resource lists. In this study we showed on a network-theoretic
and empirical level that we can construct tag clouds that are more navigable
than current available approaches by utilizing a given hierarchical resource
structure of the system.

In the second study we introduced the approach of the so-called tag-
resource taxonomies which on the one hand address the problem to create
fixed branched and semantically sound resources taxonomies automatically
from tagging data and which on the other hand performs better for navigat-
ing the resources of a tagging system than regular tag taxonomies. This was
shown again on a theoretic and empirical level.

The third and last study combined the two previous approaches and
introduced the idea of hierarchically constructed resource lists with tag trails.
In a number of experiments based on simulations we could show that the
approach generates network structures which are indeed efficiently navigable.

10.3 Limitations and Future Directions

Although this dissertation presents a large number of results on the useful-
ness of tags or tag clouds for the task search and navigation in tagging sys-
tems and includes approaches such as hierarchically constructed tag clouds
or tag-resource hierarchies that enhance the navigability of tagging systems,
the work in this area is still at an early stage. In this section we aim to focus
on the limitations of our research as well as on future directions of our work.

10.3.1 Limitations

Despite the high number of experiments performed in this dissertation to
shed light onto the usefulness of tags for the task of search and navigation in
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tag-based information systems we have to acknowledge some limitations of
our work. The following two sections discuss two possible points of concern
in our dissertation.

To what extent are hierarchically created tag clouds more useful
than other tag cloud construction approaches?

One of the potential criticism regarding the approaches introduced in Part
IV could be that we only focused on comparing our method with the most
popular method for constructing tag clouds in tagging systems – formally in-
troduced as the TopN tag cloud construction algorithm with reverse chrono-
logically sorted result lists. As presented in Chapter 2 and in the related
work sections in Part IV, there are a large volume of tag cloud construction
algorithms that display the tags in the tag cloud in a clustering or other
similarity based manner. Since most of these algorithms are based on popu-
larity or generality measures, we believe that the effect on the navigability of
tagging systems is the same as with the popular TopN tag cloud calculation
algorithm. However, to justify this assumption, further research in this area
is needed.

To what extent is it justified to model tag-based navigation with
hierarchical decentralized search?

Another critical point of our dissertation might be that we utilized for our
performance analysis a tag-based navigational model which is grounded on
Adamic’s hierarchical decentralized search approach and did not perform
large-scale user studies to confirm our theoretical assumptions. Even if we
presented a user study in Chapter 7 confirming our theoretical findings from
the same chapter, we recently conducted a large-scale study comparing real
user click data with our hierarchical decentralized search model. The paper
discussing the results of this study is included in Appendix A and reflects
the differences and similarities of hierarchical decentralizes search and hu-
man navigation in information networks. As shown, the paper reviews the
navigational behavior of users on Wikipedia. Nevertheless, and even if we do
not explicitly discussing navigational behavior of users in tagging systems,
we believe that the paper presents well the extent to which it is justified to
utilize a hierarchical decentralized search routine to simulate human naviga-
tional behavior in information networks.

10.3.2 Future Work

However, although this dissertation at hand has presented a large volume
of studies in the field of tag-based search and navigation, research in this
area is still inconclusive. In the following section a list of potential research
questions is presented we would like to study in one of our future works:
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• To what extent are tag hierarchies more useful for navigation than tag
clouds?

• Are clustered tag cloud approaches more useful for navigation than
traditional tag clouds?

• To what extent are tags more efficient for navigation than other kinds
of meta-data such as for instance named-entities?

• To what extent are tags more useful in search interfaces than query
suggestion mechanisms?

• To what extent is the navigability of tagging systems influenced by the
tagging motivations of their users?

• To what extent can we model tag-based navigation with probabilistic
models such as Markov-Chains? Are these models a better proxy for
simulating tag-based navigation in tagging systems than using hierar-
chical decentralized search?
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A
Exploring Differences and Similarities of
Hierarchical Decentralized Search and

Human Navigation

This chapter is based on the paper “Exploring Differences and Similarities
between Hierarchical Decentralized Search and Human Navigation in Infor-
mation Networks” which was presented at the 12th International Conference
on Knowledge Management and Knowledge Technologies in 2012.

This paper presents a large scale study exploring the differences and sim-
ilarities of hierarchical decentralizes search and human navigation in infor-
mation networks based on the entire English Wikipedia graph. The intention
of including this paper in this dissertation is to shed light on the question to
which extent it is justified to simulate human navigational behavior in infor-
mation networks (such as tagging systems) with a hierarchical decentralized
search procedure.

The original contribution was published in the proceedings of the confer-
ence and can be found in [26].

A.1 Abstract

Decentralized search in networks is an activity that is often performed in
online tasks. It refers to situations where a user has no global knowledge of
a network’s topology, but only local knowledge. In Wikipedia for instance,
humans typically have local knowledge of the links emanating from a given
Wikipedia article, but no global knowledge of the entire Wikipedia graph.
This makes the task of navigation to a target Wikipedia article from a given
starting article an interesting problem for both humans and algorithms. As
we know from previous studies, people can have very efficient decentralized
search procedures that find shortest paths in many cases, using intuition
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about a given network. This intuition can be modeled as hierarchical back-
ground knowledge that people access to approximate a networks’ topology.
In this paper, we explore the differences and similarities between decen-
tralized search that utilizes hierarchical background knowledge and actual
human navigation in information networks. For that purpose we perform a
large scale study on the Wikipedia information network with over 500,000
users and 1,500,000 click trails. As our results reveal, a decentralized search
procedure based on hierarchies created directly from the link structure of
the information network simulates human navigational behavior better than
simulations based on hierarchies that are created from external knowledge.

A.2 Introduction

In 1967, Milgram conducted his now famous small-world experiment [18], in
which randomly selected people from Nebraska had to pass on a letter to a
specific target person in Boston. The specific experimental setup required
the participants to pass the letter in a decentralized manner, i.e. they were
only allowed to pass the letter through their local social networks. Despite
this restriction, the average chain length of those letters that reached the
target person was only six - thus, giving rise to the hypothesis that the USA
constituted a small-world.

One of the most interesting research questions raised by this experiment
was to understand and characterize the algorithm that people use to effi-
ciently find other distant people in social networks. To that end, among
others, Kleinberg introduced the theory of decentralized search and provided
a theoretical explanation of this human ability [14, 15, 16]. In a number of
studies Kleinberg showed that social networks possess certain latent struc-
tural properties that humans are aware of and are able to utilize in their
search for other people. This allows them to find short paths between two
arbitrary network nodes efficiently even with only local knowledge of the net-
work. Consequently, Kleinberg also examined the structure of such latent
structural properties that he called background knowledge, and discovered
that social networks can be efficiently searched, i.e. in log(N), where N are
the number of nodes in the network, if the nodes of the network can be orga-
nized into a hierarchy. This theoretical model is also known as Kleinberg’s
hierarchical network model [16].

Based on these ideas, Lada Admic [1] implemented a decentralized search
algorithm that utilizes hierarchical background knowledge of a network and
applied that algorithm in a number of experiments. Adamic showed that
the algorithm performs well in simulating human-like search behavior in
social networks. Furthermore, she demonstrated that the performance of
the simulator depends on the quality of the background knowledge of the
network.
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Figure A.1: An example of decentralized search in an information network (a)
using hierarchical background knowledge of this network (b). The information net-
work links information for instance document pages (i.e., Wikipedia pages) with
each other. The search begins at the blue node 13. The destination node is the red
node 33. At each step, the search algorithm selects one of the current node’s adja-
cent nodes, which is the closest to the target node in the hierarchy. The numbers
in boxes in (b) provide the distance between the current node and the destination
node 33. At step one, node 13 has a single adjacent node 1, so search continues to 1.
At step two, 1’s adjacent nodes include 21, 22, 23 and 32. The algorithm consults
the hierarchy finding out that node 21 is the closest to the destination node. At
step three, the algorithm has an option to move to nodes 2 or 3. The simulation
selects node 3, since again, it has the smallest distance to the destination node.
Finally, at step 4, the target node is successfully reached.

In our previous work [11, 9, 10], we applied a variant of Adamic’s al-
gorithm for simulation of navigation in information networks. Navigation
in information networks is a kind of decentralized search, as users at each
particular step of their navigation are only aware of links emanating from
the current document. Thus, this situation is intuitively very similar to de-
centralized search in social networks. For example, in [11] we developed a
hierarchical decentralized search algorithm based on the ideas of Adamic that
allows decentralized search in social tagging systems. By constructing tag
hierarchies from the bipartite tag-resource network structures of a number of
tagging systems and by using this background knowledge as input for our hi-
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Algorithm 12 Hierarchical decentralized searcher
1: INPUT: network N , hierarchy H, start-node s, target-node t
2: c← s
3: while c 6= t do
4: o← −1
5: distmin ←∞
6: /* Γ(c) is a set of all neighbors of c */
7: for each n ∈ Γ(c) do
8: dist← h(n,H) + h(w,H)− 2h(n,w,H)− 1
9: if dist < distmin then

10: distmin ← dist
11: o← n
12: end if
13: end for
14: c← o
15: end while

erarchical decentralized search algorithm, we could show that tag hierarchies
perform extremely well in searching social tagging systems. In subsequent
work [22], we also demonstrated that the most semantically sound tag hier-
archies are also those that perform well on navigational tasks. However, our
previous experiments were based on intuition how humans navigate and we
have not yet compared our simulations (based on decentralized search) with
real human navigation paths.

Hence, the purpose of this paper is to compare simulations based on
hierarchical decentralized search with a large-scale corpus of human naviga-
tional paths and to reveal whether or not it is justified to simulate human
navigational behavior in information networks with the hierarchical decen-
tralized search procedure as introduced and used by us in previous work
[12, 22, 23, 24]. To that end, we compared more than 150,000 click trails of
users navigating the complete English Wikipedia with simulations. As our
results reveal, decentralized search procedures based on hierarchies created
directly from the link structure of the information network simulate human
navigational behavior better than simulations based on hierarchies that are
created from external knowledge.

The remainder of the paper is structured as follows: In Section A.3, we
discuss related work. In Section A.4 we shortly present our simulation model
for user navigation in information networks. In Section A.5, we outline our
experimental setup and in Section A.6 we present the results. Finally, Section
A.7 concludes the paper.
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A.3 Related Work

Related work in this area can be broadly divided into the following three
areas: Web click-trail analysis, navigation in complex networks and hierarchy
creation from networks.

A.3.1 Click-Trail Analysis

Click-trail analysis has been mainly performed to improve the Web search
results of users. For instance, in [5, 21] the authors assessed the possibility
to rank search results more efficiently by taking the users click-trails into
account. In [2] a large scale study was conducted to investigate how often
users revisit the same Web page. To the best of our knowledge, there is only
one study that tries to understand how people navigate in information net-
works by analyzing a large click-trail log from the online game Wikispeedia1.
In [28] West and Leskovec performed a study of users navigating Wikipedia
articles2. In their work they found out that user navigation behavior is close
to the short paths of the network. In subsequent work [27], the authors an-
alyzed a number of decentralized search algorithms and benchmarked them
against their human click corpus. The most interesting result was that even
simple search strategies such as utilizing node degrees, outperform human
information seeking. Contrary to the work of West and Leskovec, our study
is not focused on finding the fastest decentralized search strategy based on
machine learning algorithms, instead we are interested to investigate to what
extent it is justified to simulate human navigation in information networks
with hierarchical decentralizes search.

A.3.2 Navigation in Networks

Research on navigation in complex networks was initiated by the famous
small-world experiment conducted by Milgram [18]. Apart from the work
on the algorithmic perspective of search in social networks that we men-
tion in Section A.2, a number of studies recently dealt with navigability of
other types of complex networks. In [20], the authors extend the notion of
Kleinberg’s background knowledge to the notion of hidden metric spaces. In
such hidden metric spaces nodes are identified by their co-ordinates – dis-
tance between nodes is their geometric distance in a particular metric space.
Navigation strategies in complex networks are then based on the distances
between nodes – an agent always navigates to the node with the smallest
distance to a particular destination node. An interesting research question
is the structure of such hidden metric spaces that underlie observable net-
works. In [6], the authors introduce a model with the circle as a hidden

1http://www.cs.mcgill.ca/~rwest/wikispeedia/
2http://schools-wikipedia.org/

http://www.cs.mcgill.ca/~rwest/wikispeedia/
http://schools-wikipedia.org/
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metric space and show its effects on routing in the global airport network.
In [17] the authors discuss hyperbolic geometry as a hidden metric space
(which can be approximated by a node hierarchy), whereas in [7] the au-
thors apply hyperbolic geometry as a model of the hidden metric space of
the Internet and design a novel greedy Internet routing algorithm. In this
work we will focus on Kleinberg’s hierarchical network model.

A.3.3 Extracting Hierarchies from Networks

Hierarchies that are extracted from networks play an important role in many
of these network navigation models. Apart from the tag hierarchy induction
algorithms based on bipartite networks such as e.g., [13, 3, 10], researchers
also proposed hierarchy extraction algorithms for general networks. In [19]
the authors discuss an algorithm for hierarchy construction in Wikipedia net-
works based on metrics for estimating hierarchy level of single nodes. Also,
Clauset et al. [8] present a hierarchy induction algorithm based on predic-
tion of hierarchical links. To extract hierarchical background knowledge as
hidden metric space for our decentralized search algorithm, we rely on the
hierarchy induction algorithms of [13, 19] in this paper.

A.4 The Algorithm

To simulate human information seeking behavior in information networks,
we implemented in the past a hierarchical search algorithm (see Algorithm
12) based on the ideas of Lada Adamic. The algorithm takes as input a
given network, start and target nodes and a hierarchical representation of
the given network. To navigate from one node in the network to another,
all adjacent nodes of the current node are examined and the distance to the
target node is calculated over the input hierarchy. The simulator then selects
as the next step the node with the minimal distance to the target which is
calculated over the given input hierarchy (see Figure A.1). Please note that
the pseudo code of our algorithm does not include the cancellation strategy.
This is done if the simulator re-visits a node. However, as shown by [28] only
a small fraction of users choose the same link again for navigating from one
resource to another in an information network. For that purpose, we ignore
back tracking. We also cancel search in the case we cannot find a particular
node of the network in hierarchy. When the distance function returns the
same minimum distance for more than one adjacent node, we try to avoid
the nodes that we already visited. To simplify the pseudo code in Algorithm
12, we omit this avoiding strategy from the code.
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A.5 Experimental Setup

The following section discusses in detail the experimental design used to
evaluate our approach of hierarchical decentralized search to simulate human
navigational behavior in information networks.

A.5.1 Datasets

Wikipedia Click Dataset

In order to compare the behavior of the search algorithm with human nav-
igation, we analyze a click dataset from the complete English Wikipedia.
The dataset comes from the online platform the Wikigame3. There are two
reasons for our decision to use this kind of dataset. First, there are no freely
available datasets that include complete click paths from a specific start node
to a specific target node. Typically, one has to apply heuristics to extract
users, their sessions, and their click trails. In Wikigame, we have a complete
sequence of clicks of different users participating in a game that requires
from the users to navigate from e.g., “Wolfgang Amadeus Mozart” to e.g.,
“Arnold Schwarzenegger”. In turn, other datasets do not include explicit
(start, target) information. The second reason is basically the large scale
of the dataset, with records of more than 500,000 users and 1,500,000 click
trails. However, for the purposes of this study we analyze only a subset of
this large scale dataset.

Wikipedia Network Dataset

Additionally to the dataset record of Wikigame click paths, our work is based
on an information network dataset (= directed link-network dataset) of the
English-Wikipedia from February 2012. We use this kind of dataset as the
basis for our simulations. All in all, the dataset includes around 10,000,000
articles and around 250,000,000 links.

Wikipedia Category Label Datasets

Since our decentralized search simulations are based on hierarchical back-
ground knowledge of the information network, the question arises how can
we extract this kind of knowledge from our Wikipedia dataset. A simple
idea is to use Wikipedia category labels for constructing a hierarchy repre-
sentation of the network. Another idea is to use external meta-data infor-
mation, such as social tags which were shown useful to classify information
such as Web pages [29, 30]. In our case, we used a dataset of Wikipedia
category labels as well as a dataset of social tags from Delicious which only

3http://thewikigame.com/

http://thewikigame.com/
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consists of annotated Wikipedia articles. Overall, the Wikipedia category la-
bel dataset includes around 2,300,000 category labels, 4,500,000 articles and
30,000,000 category label assignments. The Delicious tag dataset includes
around 440,000 tags, 580,000 articles and 3,400,000 tag assignments.

A.5.2 Preliminaries

Click-Trail Selection

For the purpose of our study, we only considered games (=click trails) that
were successfully accomplished. We also selected only those click trails where
the start and target node were present in all of the hierarchies that we
produced. At the end, we analyzed over 150,000 click trails.

Creating Hierarchies

In previous work [22] we showed that our algorithm depends on the quality of
the hierarchical knowledge extracted from the information network. As also
shown, the best results are archived by creating hierarchies that are created
by graph based clustering algorithms that are based on the tag network’s tag
co-occurrence graph. In this work, we use two different types of hierarchy
induction algorithms. One based on the ideas expressed earlier and one new
algorithm that only considers in- and out-degree of the nodes of the infor-
mation network.

Creating Hierarchies from External Knowledge: The first approach
we use is based on the ideas of [13]. In their work the authors introduce
a generic algorithm for producing hierarchies from bipartite networks such
as tag-to-resource networks. The algorithm can be applied to arbitrary bi-
partite structures. The algorithm takes two parameters as input. The first
is a ranked list of tags sorted by their centrality in the projected tag-to-tag
network. This centrality ranking acts as a proxy to the generality ranking
of tags. Benz et al. [4] showed that the centrality provides a viable approx-
imation for term abstractness in tags. The second input parameter is the
tag similarity matrix. The algorithm starts then by a single node hierarchy
with the most general tag as the root node and then iterates through the
centrality list. At each iteration step, the algorithm adds the current tag to
the hierarchy as a child to its most similar tag. The centrality and similar-
ity measure are exchangeable – in [13] the authors use closeness centrality
and cosine similarity, whereas in [3] the authors select degree centrality and
co-occurrence similarity measure. As both combinations perform similarly
in supporting navigation [12], we select in this work the latter combination
because of better computational properties. Furthermore, we adopted the
algorithm of Benz et al. to produce a resource taxonomy instead of a tag
taxonomy. We achieve this by simply switching our computations from the
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projected tag-to-tag network to the projected resource-to-resource network.
This algorithm is then applied to generate a Wikipedia resource hierarchy on
the basis of the Delicious tag dataset as well on the basis of the Wikipedia
category label dataset.

Creating Hierarchies from the Network: The second type of hierarchy
we produce for our simulation is based on the ideas of [19]. The algorithm is
based on the idea that each network possesses an inherent hierarchical struc-
ture that leads to the emergence of observable structural properties such as
power-law degree distributions and high node clustering (cf. [8]). The algo-
rithm then aims to recognize and extract that hierarchical structure. Thus,
the algorithm iterates through all links in the network and decides – using a
simple criteria – if that link is of a hierarchical type, in which case it remains
in the network, or if that link is of some other kind (e.g., a synonym link), in
which case the link is removed from the network. To that end, the algorithm
assigns to each node a so-called hierarchical score, which is a measure stating
the generality of a node. For each link the ratio between hierarchical scores
of two incident to that link is calculated. The simple idea is that if that
ratio is close to one then those two nodes are very close in their generality
and they are situated in the same hierarchy level – thus, the link between
those two nodes is not a hierarchical one and is therefore removed from the
network. Similarly, if the hierarchical ratio for a link is close to zero then
those two nodes are very far away from each other in the hierarchy and the
link is removed (e.g., an article in a very small town in the USA, say Paris,
Texas, links to the article in the United States). Technically, the authors de-
fine two thresholds – high and low thresholds – to decide on the removal of
the links. Thus, a link is removed if the hierarchical ratio is greater than the
high threshold or smaller than the low threshold. Another technical issues
is the decision on how to calculate the hierarchical score. In their paper, the
authors compare five different hierarchical scores ranging from global scores
such as betweenness centrality to local scores such as ratio of in-degree and
out-degree of a node. In our experiments we use a local score, defined as:

hs(n) =
din(n)

dout(n)

√
din(n). (A.1)

The term
√
din(n) ensures that a node having e.g., 200 in-degree and

100 out-degree is rendered more general than a node having e.g., 2 in-degree
and 1 out-degree. As thresholds we choose 0.6 and 0.2 for high and low
thresholds respectively (cf. [19]).
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A.5.3 Measures

To compare our simulations with human navigation, we define a number of
measures. In the following list, we give a short overview of these measures
and how they are calculated:

• Success Rate: As discussed before, we use in our analysis only suc-
cessful games (=click trails), i.e., the success rate of human navigators
is 100%. Since we perform our simulations on the same search trails,
we can identify with this measure to which extent the simulation differs
from reaching the destination node in each step or on average. In our
analysis we calculate the mean local s and global (=overall) success
rate sg.

• Number of Hops: Another interesting measure is the number of hops
needed to reach the target node. We capture this on a global basis h.

• Stretch: Stretch captures the ratio of the number of steps and the
global shortest path. As shown in [28] humans are typically very effi-
cient at finding shortest paths. On average, they find information in
Wikipedia in not more than two more steps than the shortest possible
path. Thus, with this measure we identify how good our simulation
is in finding shortest paths in each step τ and on average overall τg
compared to human navigators.

• Path Similarity: We calculate path similarity to determine the ex-
tent to which successful paths of our simulations differ from real user
navigational trails. Since the user’s click paths in general show a high
diversity by terms of similarity (see Figure A.3(a)), we calculate path
similarity as

ctr(h)(a,b) ∩ ctr(s)(a,b)
ctr(s)(a,b)

(A.2)

where ctr(h)(a,b) is the set of human click trails for the search pair (a, b)
and where ctr(s)(a,b) is the set of simulation trails for the same pair.

• Degree: Finally, we also investigate the median in- and out-degree
values of the nodes visited by the simulator and the human naviga-
tor (we use the median in this case since the values are not normally
distributed).

A.6 Results

We simulated over 150,000 searches on the Wikipedia link-network utiliz-
ing three different hierarchies as background knowledge for our hierarchical
decentralized search procedure. To make results comparable, we run our
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Figure A.2: Results of Human navigators vs. simulator (=greedy navigator):
Average shortest path l, average hop count h, success rate s and stretch τ – global
average values (sg and τg) and distribution over shortest paths. As shown, the
simulator with the hierarchy based on the Wikipedia link structure simulates hu-
mans best (highest success rate sg = 0.93 and stretch that is close to the human
navigators. The simulator with the Wikipedia category label hierarchy performs
worst, success rate is only sg = 0.31.

simulations on the Wikipedia link-network using only the start target node
pairs as present in the human click-trail dataset.

A.6.1 Success Rate, Number of Hops and Stretch

In Figure A.2 we illustrate the first results of our comparative evaluation.
As shown, the simulator utilizing the hierarchy based on the Wikipedia link
structure generates the best results. We can observe the highest success
rate sg = 0.93 of all other simulators. The worst performance sg = 0.31
is achieved by the simulator with hierarchical background knowledge gener-
ated from the Wikipedia category labels. Interestingly, the success rate of
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(b) Path similarity between humans and the
simulator

Figure A.3: Path Similarity between human navigators (a) and path similarity
between humans and the simulator (b). As shown, in Figure (a) path similarity
drops significantly the more people play the same game. For games that are played
more than 13 times, the path similarity drops down to 18% (but also seems to stay
steady) indicating that humans agree little on taking the same paths to reach the
target node. In Figure (b), path similarity between humans and the simulator with
different background knowledge is shown. We can observe that the searcher uti-
lizing the Wikipedia network hierarchy as background knowledge simulates human
navigational behavior best.

the simulations based on the Delicious tag hierarchy is quite high, taking
into account that the Delicious tag dataset covers five times less articles in
Wikipedia. This leads to the situation that the Delicious hierarchy contains
also five times fewer nodes than the hierarchy extracted from the Wikipedia
category labels, which means that the simulation is more likely to fail the
search, since a possible selected node of the simulation is not present in the
hierarchy. However, as also shown in Figure A.2 the average hop length is
high h = 21.34. This demonstrates that it is possible to navigate success-
fully through an information network even if the hierarchy is not complete.
On the other hand, we can see that hierarchies directly extracted from the
information network are better suited as hierarchical background knowledge
than hierarchies based on external knowledge.

A.6.2 Path Similarity

In addition to the previous results, we illustrate in Figure A.3(a) path simi-
larity between the human navigators. As shown, the more games are played
the more diverse the paths of the users are, i.e., humans have only little
agreement on how they route through an information network. This could
be explained by their familiarity regarding the search item or their experi-
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Figure A.4: Median in and out-degree distributions for human navigators and
simulations. As shown again, the hierarchical decentralized searcher utilizing the
Wikipedia network hierarchy as background knowledge simulates human search
behavior best. However, as shown in Figure (b), the simulator in general favors
higher out-degree nodes than human navigators.

ence with the system [25]. In Figure A.3(b), we compare the similarity of the
successful paths conducted by human navigators and the ones resulting from
our simulator on different hierarchies. As the results reveal, again simula-
tions based on the Wikipedia network hierarchy are most similar to human
navigational paths.

A.6.3 Degree

Finally, Figure A.4 shows the median in- and out-degree distributions for
human navigators and simulations. As observed in related work by West and
Leskovec [28], humans follow certain patterns in their information seeking
behavior. In particular, high degree nodes are typically used in the first
steps of the search, while similar nodes are used by the end of the search.
Since degree is highly correlated to similarity [28], we only focus on degree
in our analysis. As shown in Figure A.4, humans as well as simulators
choose high degree nodes in the first step of their search, while they tend to
utilize low-degree nodes at the end of the search procedure. Again we can see
that the hierarchical decentralized simulator utilizing the Wikipedia network
hierarchy as background knowledge is most similar to human search behavior.
Simulations based on the Wikipedia category label hierarchy perform worst
in this case. This behavior might be an explanation for the bad performance
of this searcher in terms of success rate and stretch as shown in Figure A.2.
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A.7 Conclusions and Outlook

In this work we explored the differences and similarities between hierarchi-
cal decentralized search and human navigational behavior in information
networks and to reveal whether or not it is justified to simulate human navi-
gational behavior in information networks with the hierarchical decentralized
search procedure introduced and used by us in previous work [12, 22, 23, 24].
Based on a large-scale click dataset of over 150,000 click trails from the online
platform the Wikigame, we performed a number of experiments to gain in-
sights into how humans search in information networks and how well simula-
tions based on hierarchical decentralized search correlate with humans click
trails. Generating background knowledge from various sources, we could
show that a decentralized search procedure based on hierarchies created di-
rectly from the link structure of the information network simulates human
navigational behavior better than simulations based on hierarchies that are
created from external knowledge.

Limitations and Future Work: Even if the paper presents a large-
scale study on how to simulate human navigational behavior in information
networks with decentralized search, we have to acknowledge that research in
this context is still at an early stage and therefore also has some limitations.
One of these limitations which we would like to study in the near future work
is the fact that the present study does not include a comparison of hierar-
chical decentralized search with other well-known probabilistic approaches
such as markov-chains. However, even if our presented method showed good
results in simulating human navigational behavior it would be interesting
to see whether or not other approaches perform better in simulating human
information seeking behavior of humans in information networks than our
current algorithm.
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