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Abstract

The Internet is a huge source of images and can thus play a vital role in reducing

the laborious manual efforts usually required in learning object categorization mod-

els. In this thesis we investigate limitations of existing methods for learning object

categorization models directly from the Internet: (a) the ambiguity in true-class

labels of the retrieved images, (b) the ambiguity in location of an object, (c) the

insufficient representation of image.

We concentrate on support vector machine (SVM), and its extension to semi-

supervised manifold learning called Laplacian SVM (LapSVM). Thus, we propose

several methods to overcome the problems in training a desired category-level image

classifier directly with images collected from the Internet.

Firstly, we present a supervised algorithm which is based on multiple kernel

learning. This method combines the textual information describing the objects

contained in the retrieved images with their visual features in learning a classification

model for image categorization. Experimental evaluations demonstrate that the

proposed method can be used to improve the image ranking quality of an image

search engine which utilizes only textual information for retrieval of images. Such

image ranking mechanism will allow us to collect visually consistent images for any

category of objects.

Secondly, we examine a framework of learning from ambiguous examples known

as multiple instance learning (MIL). Each example is a bag, consisting any number

of instances. We develop an algorithm, called Co-miSVM, which extends LapSVM

to MIL domain for learning from multiple-instance examples. This extension enables

us to exploit the underlying manifold semantics shared by different visual features

and simultaneously copes with the ambiguous examples in training an instance clas-

sifier. We apply this method for learning of an object classification model directly
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with Internet searched images. Our experimental evaluations demonstrate the com-

petitiveness of the proposed method with respect to state-of-the-art methods.

Thirdly, we propose another method called Huberized LapSVM. Instead of a

standard squared Hinge loss function, this method solves the optimization problem

of the LapSVM in the primal with a Huber Hinge loss function. The Huber Hinge

loss measure the misclassification during training of a classifier and penalizes mildly

the noisy labeled training data compared to a squared hinge loss. With this method

we can train category-level image classifiers directly with images retrieved by an

image search engine. Experimental evaluations on a number of datasets demonstrate

the increase in classification performance when training data is contaminated with

labeled noise.

Finally, we propose a multi-stage system for training complex part based object

detectors with the Internet searched images. The system is necessary to overcome

the problem of location ambiguity of an object contained in each of the retrieved

images. The system works in three stages and requires only the name of the object

class name as input, in the first stage we learn a category-level image classification

model for image categorization. Then in the second stage we localize the desired

objects contained in those images; finally, in the third stage we trained a supervised

part based detector. In the first two stages to deal with ambiguity in the true class

label and location of objects, we apply an extended MIL method for the actual

learning tasks. With experimental evaluations on test dataset show that we are

able to train a reasonable detector without using any manually annotated training

examples.



Kurzfassung

Das Internet kann als nahezu unerschöpfliche Quelle von Bildern angesehen

werden, durch die der manuelle Aufwand beim Lernen von Modellen zur

Objekt-Kategorisierung drastisch reduziert werden kann. In dieser Arbeit

wird versucht die Nachteile existierender Verfahren zu umgehen. Dazu

gehören unter anderem: (a) die nicht eindeutigen Labels der Bilder, (b)

ungenaue Objektpositionen und unzureichende Bildbeschreibungen. Obwohl es

unterschiedliche Ansätze gibt, beschränken wir uns in dieser Arbeit auf Support

Vector Machines (SVM) und deren semi-supervised Erweiterung Laplacian Support

Vector Machines (LapSVM), wo wir unterschiedliche Ansätze präsentieren und

bestehende Nachteile umgehen zu können.

Als erstes untersuchen wir eine Methode, die visuelle Information (aus Bildern)

mit dazugehöriger Textinformation kombiniert. Die Ergebnisse zeigen, dass auf

diese Art und Weise deutlich bessere Ergebnisse erzielt werden können als wenn

nur eine der beiden Beschreibungen verwendet wird. Als zweites adressieren wir

das Problem von ungenau gelabelten Daten via Multiple Instance Learning (MIL).

Dazu führen wir Co-miSVM als neuen Algorithmus ein, der die den Daten zugrunde

liegende Manifoldstrukur abbilden kann. Die Methode wird dann im Speziellen um

ein Klassifikationsmodell direkt aus Internetbildern zu lernen, wobei im Vergleich

zum Stand der Technik sehr gute Resultate erzielt werden können. Für die dritte

Methode, Huberized LabSVM, ersetzen wir die standardmäßig verwendete Hinge-

Loss Funktion durch eine robustere Formulierung ersetzt, die dann, in diesem Fall,

effektiv in der primalen Formulierung gelöst wird. Wiederum können auf diese Art

und Weise bessere Klassifikationsergebnisse erzielt werden; selbst wenn von Internet-

bildern gelernt wurde. Als vierten Beitrag stellen wir ein vor um multi-part Detek-
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toren aus Internetbildern zu lernen. Im ersten Schritt wird ein Bild kategorisiert, im

zweiten das Objekt lokalisiert und im dritten ein Detektor trainiert. Die Ergebnisse

zeigen, dass selbst ohne menschlichen Aufwand in der Praxis einsetzbare Detektoren

trainiert werden können.
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Chapter 1

Introduction

1.1 Motivation

Object categorization or object category recognition is a core problem in various

high level computer vision applications. It can be described as the knowledge that

a visual object (e.g., any car or any tea cup) present in an arbitrary (digital) image

belongs to a previously learned category of objects (e.g., cars or tea cups). It is

important to mention that an arbitrary image (depicting a scene) may contain a

number of objects belonging to the same or different categories. For classification

the objective is to decide the presence or absence of an object of a learned category in

an image while for detection the goal is to find the location of the object in addition

to its classification. A classifier or detector is learned with a set of training images

containing various objects to automatically perform these tasks in future images.

To ensure a good accuracy, a classifier or an object detector must be trained

with a large amount of example images; to capture the high variations in visual

characteristics of objects within the same category, e.g., shape, appearance, and scale

of objects. However in practice, collecting large amounts of representative images

and then manually assigning the corresponding labels is a laborious or expensive and

tedious work. For classification, an annotator has to provide training sets of images

containing instances of objects (e.g., any car and any face) that belong to a certain

object category; for detection, additionally the bounding box around an instance

has to be specified. The manual labeling and annotation efforts limit the scalability

1
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Figure 1.1: Images collected via Google’s image search using the keyword ”car fronts”. These
images can be directly used as positively labeled images for training the ”car-front” classifier while
negatively labeled images can be obtained from unrelated queries.

of visual learning methods to a few well-defined object categories. This rises the

need to explore various sources such as the Internet that enable us automating the

collection and labeling of images required for learning object categories.

There is a huge and exponentially growing amount of images available on the

Internet. For example, in August 2011 Flickr, one of the major image sharing

websites, has reached a milestone of 6 billion images. These images which may

depict a scene containing various visual objects, are accompanied with text which

describes their contents. Often search engines such as Google, Yahoo and Bing

as well photo sharing websites such as Flickr and Zoomr return images using the

text information, because of the efficient text-based retrieval techniques developed

for a web scale searching. For example, a Google’s image search engine returned

thousands of images in less than a second using only the keyword ”car”.

The continuously improving image search facility, provided by most of the search

engines, is capable of not only reducing the human labeling efforts but also automat-

ing the collection of representative training images. Typing an object category name

as a keyword such as ”car” or a key phrases such as ”car front”, ”car rear” or ”car

side” the Google search engine returns images which are mostly visually relevant

and the objects are nicely centered in the images. Figure 1.1 shows some of the top

ranked ”car front” images retrieved by Google image search engine. Similarly, more

images can be collected using other image search services via the Internet. This
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Figure 1.2: Some example of images returned by the four image search engines for an keyword
”airplanes”; Top: Google and Yahoo, Bottom: Flickr and Bing. Unrelated or noisy images (not
containing ”cars”) are marked with a red colored box.

way, for any known number of object category names or phrases we can collect a

large amount of representative training images. Such images can be used in learning

models for the task of object categorization.

In this thesis, the objective is to propose models that enable us to automate visual

learning of any object category models directly from the Internet image collection

avoiding or reducing the manual labeling efforts. These models can then be used

for object category recognition and detection. However, automatic learning from

the Internet searched images poses several challenges which we are going to address

collectively rather than individually.

First, the true-class-label for each of the returned images could be ambiguous;

every image may not contain object(s) which belongs to the desired category. A

keyword-based image search engine return images based on the relevance matching

between the given keyword and the surrounding text or tags on the web pages con-

taining them, i.e., without using any image contents or visual information. Hence,
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Figure 1.3: The top ranked images returned by Google image search for a keyword: ”crane”. The
retrieved images are ambiguous as they belong to different categories, ”crane a bird” and ”crane a
construction equipment”.

there is a possibility to collect images which may not be visually consistent for every

object category, i.e., the retrieved images may not contain the desired objects. The

weaker textual cues are helpful but can not guaranty the presence or absence of a

target object in every returned image, e.g., due to polysemous nature of text, i.e., a

word or phrase having multiple meanings. This results in ambiguous collections of

images which may contain unrelated and noisy or outliered images, even in the top

ranked images. In Figure 1.2, we can see noisy images marked by a red colored box

which are returned by four different search engines Google, Yahoo, Flickr, and Bing

for a keyword ”airplanes”. Figure 1.3 shows another example explaining polysemous

nature of text.

Second, there exist wide varieties in visual characteristics of objects within the

same category found in the returned images. Figure 1.4 shows examples for ”cars”

where we can see the variations in visual characteristics such as shape, appearance,

scale and pose. Representation is an important step for learning of an object model.

Different types of features such as global (e.g., PHOG [1], BOW, and PHOW [1])

as well local features (e.g., SIFT [2], MSER, and LBP) have been developed that

are specialized in capturing certain visual characteristics of an image. For exam-

ple, shape is modeled using PHOG [1] descriptors, the descriptor is a histogram of

oriented or unoriented gradients computed on the output of canny edge detector.

Appearance information is modeled using SIFT [2], color or gray level, descriptors
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Figure 1.4: Top ranked images returned by Google’s image search using the keyword ”car”. These
images can be directly used as positively labeled images for training the ”cars” classifier while
negatively labeled images can be obtained from unrelated queries. A huge variety in car’s visual
characteristics such as shape, appearance, scale and number of objects is notable.

which are either computed on a regular grid on the image or on the key-points

detected in an image. A good survey on feature extraction and visual object repre-

sentation can be found in [3]. However, it is difficult to find a single representation

that captures most of those visual variations present within class found in the Inter-

net images. Invariance is an important improvement for object category recognitions

and object category level image classification, but it is clear that none of the feature

descriptor will have the same discriminative power for all object categories. Using

different types of features the diverse visual properties found in Internet searched

images can be characterized more precisely for discriminating object categories. The

challenge is how to combine various types of features during the learning process,

since it is difficult to select a universal representation while concatenation may re-

sults in curse of dimensionality.

Third, there is an ambiguity in location of the objects in Internet images for

arbitrary object category. The direct link between the object the ”keyword” and

the corresponding location(s) of visual object(s) in an image of the collection is not

clear and hard to define automatically. For example, some of the images returned

by the Google search engine for the object category ”mountain bikes” are shown in

Figure 1.5. We can observe that a ”mountain bike” may appear at any position in

an image. Hence, it is challenging to learn a generic object detector model directly



6 Chapter 1. Introduction

Figure 1.5: Images returned by the Google search engine for the object category ”mountain bikes”.
It is difficult to train an object detector directly using these images where the location of an object
in unknown.

from such images which need training images with at least bounding boxes around

the objects of interest marking its location.

In this thesis we mainly focus on Support Vector Machines (SVM), a super-

vised learning approach originally developed by Vapnik and co-workers, for object

categorization and detection. It has the ability (soft-margin or hinge loss and regu-

larization) to cope with labeled noise in the training data up to certain extent and

additionally it allows us to take benefits of different types of features, which can be

combined at the kernel level (e.g., [4, 5]). A combined kernel is defined as a weighted

linear combination of individual kernels where the weights are learned with Multiple

kernel learning (MKL). MKL [6, 7] aims to optimize the kernel weights while train-

ing a classifier. However, for training classifiers with Internet images the supervision

is provided by an image search engine which is an imperfect or weaker supervision,

since for a given class name we can expect a variable amount of label noise in the

collected images.

We can cast the training of classifiers directly with Internet searched images to

a Multiple Instance Learning (MIL) problem which deals with the uncertainty in

image labels [8, 9]. In contrast to a single instance supervised learning, in MIL the

training images are provided to the learner as pairs of bags of instances (images)

with labels for the bags. Instance labels remain unknown and must be inferred

during learning. A positive labeled bag indicates that at least one instance of that
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bag belongs to a positive class and the remaining instances labels are unknown or

uncertain. All images in a negatively labeled bag are ensured to be negative and

there is no uncertainty for their labels. Now, collecting bags, e.g., bags of images,

and specifying the class label for a bag need less manual efforts and is more relaxed

then providing class label for each image. For training a category based image

classifier such labeled bags of images can be collected easily by using a category

name of an object as a keyword via multiple search engines.

1.2 Thesis Contribution

First, we investigate and propose a method to improve the image ranking quality

of an image search engine. We use a supervised MKL [10] which provides an ele-

gant way to combine textual and visual information at kernel levels for training a

class-level image classifier. Experiemental evaluation demonstrate that the combi-

nation of modalities can boost the image ranking of an image search engine that

uses only textual information for retrieving images. A useful out-come of this work

is a multi-modal dataset called the TVGraz, ”Text and Vision Graz”. Datasets

are essential elements in visual object category recognition research for the perfor-

mance evaluation of various classification algorithms [11]. Most of training datasets

are composed of images without textual modalities. However, TVGraz dataset is

a one of the limited number of its kind, containing both images with associated

textual description. This dataset is publicly available to research community for

benchmarking algorithms developed for categorizing or ranking images by combin-

ing textual and visual features. Image ranking by MKL-based classification is an

important mechanism to collect visually consistent images for any visual object cate-

gory. However, being a supervised methods it requires a noiseless or unambiguously

true-class-labeled images as training examples.

Next, we propose an approach to directly learn discriminative models for ob-

ject category recognition from images only. Our approach explicitly acknowledges

and simultaneously accounts for their ambiguities ( relatedness of the image to a

target object category) as well their large variations in visual characteristics. Our

main contribution is a novel multiple instance learning algorithm which we call
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Co-miSVM (Co-regularized multiple instance SVM). Our method is based on the

principle of manifold regularization [12, 13] and extends the supervised multiple in-

stance SVM [14] to semi-supervised MIL domain. This extension enables us to utilize

various visual features and to cope with the label noise in training a category-level

image classifier. For a given object category name as keyword, we collect groups of

images called bags via multiple image search engines. Instead of grouping all of the

images or instances returned by a search engine in one huge bag. We encapsulate

the top rank few images in a positive bag assuming that at least one of them may

contain an object of the desired category (in addition to some irrelevant examples)

and treat the rest as unlabeled images or unlabeled singleton bags, while the nega-

tive images (not containing the desired category) are obtained executing unrelated

queries. The obtained category models can be used for tasks such as re-ranking

image search results as well for other object category based image classification.

Since there is an ambiguity in location of the objects in Internet images for

arbitrary object category. These images cannot be used directly for training an

object detector without manual annotation efforts. To deal with this problem, we

propose a multi-stage system that ultimately enables us to train an object detector

with images directly obtained from the Internet. The system requires only the

name of the target category as input. In the classification stage, we learn an object

model that specifies the presence or absence a target object. Then in a localization

step, we crop image patches describing the object which are finally used to learn

a sophisticated object detector. In the first two stages, we use a multiple instance

SVM for training a classifier and a detector. We extend the supervised MIL with a

semi-supervised kernel that enable us to learn a better model.

Laplacian Support Vector Machine (LapSVM) [12, 13] has shown state-of-the-art

performance in single instance semi-supervised classification problems. To overcome

some issues of the original dual formulation, recently Mellacci et al. [15] have ex-

tended it and proposed an efficient method for training LapSVM in the primal space,

LapSVMp. This reduces the training time when dealing with large number of data

and allows for a fast computation with the same classification accuracy as the orig-

inal one. However, they have used a squared hinge loss for the labeled examples,

which may penalize noisy labeled examples too much; especially when dealing with
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problems such as learning models from Internet images for object categorization.

The accuracy of such an approach may decrease in such situations. We extend

LapSVMp to Huberized LapSVMp by using a continuously differentiable Huber

hinge loss function. The Huber hinge loss gives a milder penalty than the squared

hinge loss. This makes the proposed solution fit in situations when the available

labeled data is noisy or it is hard to obtain a clean label training examples.

1.3 Outline

Chapter 2, briefly describes the work related to learning models from Internet images

for object categorization and the we present the basic formulations of SVM for single

instance learning and multiple instance learning. This is necessary to understand

the contribution and the experimental analysis conducted in subsequent chapters.

Chapter 3 presents the formulation of the MKL method to combine textual and

visual data for category-level image classification or image categorization. These

classifiers can then be used to re-rank the images returned by a search engine to

improve their visually consistency. The availability of datasets plays an essential

role in evaluating a research work. However, there are few datasets available which

contains both images and textual information. We present the TVGraz dataset.

In Chapter 4, we propose a semi-supervised multiple instance SVMs algorithm,

i.e., Co-miSVM. The proposed algorithm allows to utilize different types of visual

features and at the same cope with the label noise present in the images collected via

multiple keyword-based image searches. We present a direct approach for learning

object category recognition models from Internet image searches. In Chapter 5, we

present an approach to train supervised part based object detectors from Internet

search images through a multi-stage framework which requires only object category

names as input.In Chapter 6, we present the detailed formulation for the training of

Huberized LapSVM in the primal and shows the benefits of the proposed extension

by a number of experiments. Finally, we conclude the thesis in Chapter 7.





Chapter 2

Related Work and Background

The objective of this chapter is twofold. First, we give a review of previous ap-

proaches which were adopted by a number of authors to learn object models with

images automatically collected from the Internet. Secondly, we discuss the basic

concepts and formulations of Support Vector Machines (SVMs) and present some

notations that will be used through out this thesis. This will form a basis for un-

derstanding our proposed extensions to support vector classifier training algorithms

in Chapters 4, 5 and 6 and the corresponding experimental analysis.

Section 2.1 presents an overview for the previous efforts in learning object mod-

els with Internet images. Section 2.2, presents the mathematical formulations for

training support vector classifiers under a single instance learning paradigm. Sec-

tion 2.3.1, introduces the training of support vector classifiers under Multiple In-

stance Learning (MIL) paradigm. In contrast to single instance learning, MIL is a

weaker or relaxed form of supervised learning where a learner gets a training set in

the form of bag-label pairs where a bag is a collection of instances and the label of a

bag is observed for each bag. Here, we give formulations for multiple instance SVM

(mi-SVM) proposed in [14] and sparse MIL(sMIL) proposed in [16].

2.1 Related Work

The prospect of learning object models from Internet image search results has started

to receive considerable research attention from mid of the last decade. In the fol-

11
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lowing we briefly review of the work done by others who have adopted a variety of

techniques for learning object models from noisy search results.

Fergus et al. [17] investigate the problem of learning object categories from

Google data. They develop a variant of a clustering method called probabilistic

Latent Semantic Analysis (pLSA) [18] to successfully learn object category models

from the noisy web data. The interesting component of this work is their method of

selecting training data. They pick the top ranked few images returned by a search

engine as a training, since the top result tends to be less noisy. To collect even more

potential images they submit their query in multiple languages. Later in [19] they

further improve their clustering method by including spatial information. Another

outcome of their research is the ”Fergus dataset” [17]. Such databases are essen-

tial elements of object category recognition research for testing the performance of

various classification and detection algorithms [11].

Fritz and Schiele [20] present another clustering method for discovery of visual

object categories in image collection. Their method is a variant of topic based model

called Latent Dirichlet Allocation (LDA), such methods are unsupervised however

they usually need selection of dominant proportion of learned topic or cluster in

every image. Their approach is best for learning level compact representation of vi-

sual categories without labeling of training instances. This representation can then

be used to learn object categories in an unsupervised manner. This method is not

directly applied for learning object categories from the noisy Internet images. How-

ever, their method performance has been evaluated on Fergus [17] dataset providing

us an opportunity for performance comparison.

Berg and Forsyth [21] look at the combination of text and image features for

learning animals categories. They do pre-clustering using LDA and their supervision

is to pick the correct cluster. The images in cluster with their associated text are

then used to build classifiers to determine whether an image depicts an animal.

They employ 3 types of image features shape based geometric blur features, color

features and texture features. They also produce a animals database called ”Berg

dataset” in this thesis.

Schroff et al. [22] use single instance supervised SVM algorithm to learn object

models for specified object category. Due to variable amount of noise in the collected
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images they use a multi-staged setup for leaning object category classifier. In the first

stage they train an RBF kernel based SVM binary classifier with hand labeled images

to discriminate between abstract images such as plots, maps, charts, drawing as

well sketches and non abstract images. The classifier is then applied to downloaded

images in order to filter such junk images. In the next stage no visual information

is used and the images are re-ranked using a Bayes posterior estimator trained on

text surrounding the images (the remaining images after removing the junk). The

top-ranked images are then finally used as noisy training data and an SVM classifier

is learn to improve the ranking further. In the final stage, an image is represented by

concatenation of normalized histogram of BOW and HOG with χ2 distance based

RBF kernel.

Guillaumin et al. [23] use text and visual image features for learning object

category models from images downloaded from Flickr. First, they train a supervised

single instance SVM classifier. MKL is used to combined textual and 15 different

image representations (L1 distance for the color histograms, L2 distance for GIST

and χ2 for PHOW). The classifiers are then used to score the unlabeled images.

Finally, they train SVM classifiers with visual features using the high scored images

as training set. These classifiers are then used to classify unseen images.

Vijayanarasimhan and Graumen [9], present a more direct and automatic

method for learning object models. Instead of removing outliers or noisy or

unrelated images, they collected bags of images using multiple keyword based

image search engines. They directly trained classifiers using those bags of images

with a supervised multiple instance SVMs. They extends sMIL, with an iterative

refinement scheme that updates the weight of each instance in a bag of images.

Such an iterative scheme down weights the outliers or noisy images while training

an SVM classifier.

A number of authors have proposed graph-based learning algorithms such as [24],

[25], and [26] as well the recent one [27] which are especially developed to re-rank

Internet searched images. The basic idea is to exploit the data graph that reflects

the intrinsic manifold structure [28] hidden in the images that tends to capture

the underlying semantics. In these single instance learning based methods, the

higher ranked few images are assumed as weakly labeled images and then conduct
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the re-ranking on the whole set of images returned by an keyword-based image

search engine. The authors of [27], argued that the underlying manifold structure is

beneficial to improve the quality of a search engine only if the outliers are removed.

Consequently, they formulate a spectral filter to remove the outliers before using a

manifold ranker [28].

Notation

In this thesis we will use the following notation. Vectors are represented in bold no-

tations, e.g., x ∈ Rd and their scalar components in italic script, e.g., x1, x2, · · · , xd
where d is the dimension of the vector. Matrices are represented in bold fonts, e.g.,

Q ∈ Rm×n is a matrix of m rows and n columns and the i’th column of this matrix

is indicated by Qi ∈ Rm×1.

2.2 Single Instance Learning

2.2.1 Support Vector Machines

In this section, we briefly sketch the supervised SVM algorithms for solving binary

classification problems (c.f. [29–32]). We start our discussion for the simple case of

linear and will gradually move to non-linear SVMs.

The earliest recognition system were linear classifiers [33]. Thus, given a set

of training examples in the form L = {(xi, yi)}li=1 where each instance xi ∈ Rd,

d being the dimension of the input feature space X, belongs to a class labeled

by yi ∈ {+1,−1}. The objective of linear SVM is to search for a hyperplane that

separates the training examples such that all the points with the same labels remains

on the same side of the hyperplane. This is equivalent to finding w and b so that

yi(w · xi + b) > 0, (2.1)

for i = 1, · · · , l. If the given training data is linearly separable there will exist an

infinite number of hyperplanes satisfying (2.1). In such a case, it is always possible

to rescale w and b so that the closest point to the hyperplane has the distance of
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Figure 2.1: Two hyperplanes for linear separation of positive points (red) from negatives points
(blue). Left: A separating hyperplane with a small margin. Right: An optimal separating hyper-
plane with a maximum margin. The points on the margins are called support vectors.

1
‖w‖ . Then (2.1) becomes

yi(w · xi + b) ≥ 1. (2.2)

The optimal separating hyperplane is the one for which the distance to the closest

point is maximal. A linear SVM, in the primal form, finds an optimal hyperplane

by minimizing ‖w‖2 under the constraints (2.2) (c.f. [30] chap. 7). A straight for-

ward calculus defines the margin equivalent to the quantity 2
‖w‖ (c.f [30] chap. 7).

Figure 2.1 shows examples of two separating hyperplanes, one with a small margin

and the other with a widest margin. Among the possible number of separating hy-

perplanes, the optimal separating hyperplane is the one with maximal margin. The

margin can be seen as the measure of generalization ability to previously unseen

data, i.e., the larger the margin, the better generalization is expected to be [29, 32].

Minimizing ‖w‖2 under the linear constraints (2.2) is usually done with Lagrangian

technique (c.f. [30, 34]), since ‖w‖2 ≥ 0 is convex. This approach leads to solv-

ing a simpler quadratic dual problem in the positive Lagrangian multipliers β =
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[βi, · · · , βl]T which are found by maximizing

β∗ = max
β∈Rl

l∑
i=1

βi −
1

2

l∑
i,j

yiβiyjβjxi · xj (2.3)

subject to:
l∑

i=1

βiyi = 0,

βi ≥ 0 i = 1, · · · , l

The Lagrangian (Wolf) dual problem (2.3) is easier to solve because of its simpler

equality constraints. Various quadratic program (QP) solvers are available for find-

ing an efficient and scalable solution of (2.3), i.e., β∗ ∈ Rl (c.f. [31] chap. [1]). The

primal variables or the optimal separating hyperplane (w∗, b∗) is then computed

from β∗ as

w∗ =
l∑
i

β∗i yixi. (2.4)

Here, it is worth to remind that the support vectors are the training points for

which β∗i > 0 and satisfying (2.2) with equality. Considering (2.4), we can write the

decision function as

f(x) = sgn

(
l∑

i=1

β∗i yixi · x
)
. (2.5)

When the training data is not linearly separable then slack variables ξ ∈ Rl are

introduced with ξi ≥ 0 [35] such that

yi(w · xi + b) ≥ 1− ξi, (2.6)

to cope with examples violating (2.2). The objective of the slacks is to allow mis-

classified examples which have their corresponding ξi > 1. For this reason,
∑

i ξi is

an upper bound on the training errors. The resulting SVM constrained problem,

also called soft margin SVM, is then defined as

min
w,ξ

1

2
w ·w + C

l∑
i=1

ξi (2.7)
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subject to constraints (2.6) and ξi > 1. The first term is minimized to control

the learning capacity as in the separable case, discussed earlier, while the second

term or the penalty term controls the number of misclassified points [32]. The free

parameter C is chosen by hand and controls the trade-off between large margin and

small margin violations [36]. For a very large value of C all training examples are

correctly classified which causes an overfitting to the training data resulting in a

small training error but in a large test error. A smaller value of C produces better

results on noisy labeled training examples [30, 35], since this will avoid overfitting

to training data already contaminated by label noise. The dual formulation for the

problem (2.7) is defined as

β∗ = max
β∈Rl

l∑
i=1

βi −
1

2

l∑
i,j

yiβiyjβjxi · xj (2.8)

subject to:
l∑

i=1

βiyi = 0,

0 ≤ βi ≤ C i = 1, · · · , l

which is strikingly similar to (2.3). The only change is the upper bound C for the

duals co-efficients β [36].

In case of a non-linear SVM, the input data is mapped from the original space

X into a high dimensional feature space H through a nonlinear mapping Φ which is

chosen a priori [32]. The optimal separating hyperplane is then constructed in this

feature space, i.e., a Hilbert space. If we replace x by its mapping Φ(x) then (2.8)

becomes

β∗ = max
β∈Rl

l∑
i=1

βi −
1

2

l∑
i,j

yiβiyjβjΦ(xi) · Φ(xj) (2.9)

subject to:
l∑

i=1

βiyi = 0,

0 ≤ βi ≤ C i = 1. · · · , l
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Figure 2.2: The idea of mapping functions: SVM maps a training example into a higher dimensional
space via Φ and construct a separating hyperplane with maximum margin. This leads to the basic
idea of non-linear decision boundary in the input feature space (shown on the left). The use of
the kernel function, k : X ×X → R, makes it possible to compute the optimal hyperplane without
explicitly carrying out mapping into a very high dimensional space (shown on the right).

Now, if we define a kernel function as

k(xi,xj) = Φ(xi) · Φ(xj). (2.10)

We need only k in the training algorithm and the mapping Φ(x) is never explicitly

used, since a kernel matrix K is in hand. In this thesis, a ’kernel’ always means a

positive definite kernel. The definition of a positive definite kernel function k and a

positive definite kernel matrix K differs as in the former case, we are free to choose

the points on which the kernel is evaluated; positive definiteness implies positivity

on the diagonal and symmetry of a matrix. Kernels can represent complicated deci-

sion boundaries, i.e., nonlinear boundaries directly in the input feature space, that

may accommodate any training data whether linearly separable or non-separable.

Figure 2.2 shows an example of such a kernel function, this is made possible because

of the associated reproducing kernel Hilbert space.

A reproducing kernel Hilbert space H is a space of functions X → R, i.e., a

vector space of functions endowed with an inner product such that in the associated

norm ‖.‖, H forms a complete metric space. The reproducing kernel Hilbert spaces

(RKHS) [37] theory (e.g., Mercer theory) precisely states which kernel function cor-
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responds to a dot product or an inner product and which linear spaces are implicitly

induced by these non linear kernel functions. Once a kernel satisfying the Mercer’s

theorem [29], has been chosen the SVM training algorithm solves the dual problem

(2.9) by replacing the dot product with a kernel as

β∗ = max
β∈Rl

l∑
i=1

βi −
1

2

l∑
i,j

yiβiyjβjk(xi,xj) (2.11)

subject to:
l∑

i=1

βiyi = 0,

0 ≤ βi ≤ C i = 1, · · · , l

and the decision function becomes

f(x) = sgn

(
l∑

i=1

β∗i yik(xi,x)

)
. (2.12)

With the introduction of kernel functions a standard non linear SVM now requires

only the parameter C and a appropriate kernel for the input feature vectors. Several

types of kernel exist. For example, a well known Gaussian RBF kernel defined as

k(xi,xj) = exp
1

2τ2
‖xi−xj‖22 , (2.13)

where τ is the width of the kernel τ usually selected by hand. This kernel can

implement any continuous decision boundary. A generalized form of this kernel can

be defined as

k(xi,xj) = exp
1
τ
D(xi,xj), (2.14)

where D(xi,xj) is any distance function in the input feature space. e.g., L1 distance

defined as

DL1(x, z) =
d∑

k=1

|xk − zk|. (2.15)
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(a) Prob: Find a decision
function separating red dia-
monds (class +1) from blue
circles (class -1).

(b) Solution: SVM with L1

distance based RBF kernel

(c) Solution: SVM with L2

distance based RBF kernel
(d) Solution: SVM with L∞

distance based RBF kernel

Figure 2.3: (a) A simple two-dimensional (2D) two spirals supervised classification problem, the
spiral with red diamonds belongs to one class and the other spiral with blue circles belong to the
other. Solved by 3 supervised support vector algorithms with (b)L1 (c) L2 and (d) L∞ distances
based RBF kernels respectively. The L2 distance based RBF kernel seems to be more appropriate.

The χ2 distance is defined as

Dχ2(x, z) =
1

2

d∑
k=1

(xk − zk)2

xk + zk
, (2.16)

which is more appropriate for histogram comparisons. Figure 2.3 illustrates the use

of different distances based RBF kernels for solving a supervised classification prob-

lem with a non-linear SVM. Selection of an appropriate kernel for the given input

features is important, since an inappropriate kernel may lead to poor performance.

We are not going to discuss here the other benefits of kernels, i.e., a MKL

(Chapter 3 will present its detailed formulation), which turns the standard SVM to

support vector kernel learning machine inheriting its benefits such as noise tolerance

due to soft margin, and extending its applicabilities to learn by combining different
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features-based representations [4, 5].

Here, we are going to focus on finding the solution of a non-linear SVM optimiza-

tion problem by solving it directly in the primal, i.e., without reducing the primal

problem (2.7) to a Lagrangian dual form (2.11). The primal and dual are two ways

to solve the same optimization problem. In general, there are two main reasons to

solve the problem in the dual form. First, the duality provides a simple way to

deal with the constraints. Secondly, the dual problem can be written in terms of

dot products, thereby making it possible to use kernel functions. The motivation

behind the primal is that it directly minimizes the primal variables we are interested

in, its implementation does not require any commercial solver or particular complex

libraries, and in some cases it may be faster to converge [38]. However, it has been

shown that both lead to the same computational complexity [38]. The difference in

performance comes when computing an approximate solution, the primal optimiza-

tion is superior because it is more focused on minimizing what we are interested:

the primal objective function [38]. The training of supervised SVM in the primal

have been extensively studied and analyzed by a number of authors such as [39] or

[38]. In contrast, Mellacci et al. [15] are the only ones who recently explored training

LapSVM in the primal. The following discussion will help to understand the next

section and ultimately the contribution of Chapter 6.

Following the approach in [38], i.e., considering a non-linear SVM with a kernel

function k and the associated RKHS Hk, we can re-write the primal problem (2.7)

as

min
f∈Hk

γA‖f‖2
2 +

l∑
i=1

`(yi, f(xi)). (2.17)

Which is similar problem but with a little a change in the regularization parameter

γA = 1
2C

that controls the smoothness the decision surface f measured by the L2

kernel norm (ambient norm) ‖.‖2
2. We also replace the slack variables with a dif-

ferentiable squared Hinge loss function `, defined as `(y, t) = max(0, 1 − yt)2, for

imposing penalties on violations on the wrong side of the hyperplane. Now using

the reproducing property f(xi) = f ·k(xi, .), we can differentiate (2.17) with respect
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to f and at the optimal solution f ∗ the gradient vanishes, yielding

min
f∈Hk

2γAf
∗ +

l∑
i=1

∂

∂t
`(yi, f

∗(xi))k(xi, .) = 0, (2.18)

where ∂`
∂t

is the partial derivative of the loss function `(y, t) with respect to the

second argument. This implies that the optimal function f ∗ can be written as a

linear combination of kernel functions evaluated at the training samples. This result

is also known as the Representer theorem [40]. Thus we seek for a final solution, in

terms of l co-efficients α, of the form

f(x) =
l∑

i=1

αik(xi,x). (2.19)

Using the kernel reproducing property in ‖f‖2 as

‖f‖2 =
l∑

i,j=1

αiαj (k(xi, .) · k(xj, .))

=
l∑

i,j=1

αiαjk(xi,xj)

=
l∑

i,j=1

αiαjKij

= αTKα (2.20)

The primal problem (2.17) in terms of α and K becomes

min
α∈Rl

1

l

l∑
i=1

`(yi,K
T
i α) + γAα

TKα (2.21)

To obtain the solution α∗, we can now solve this problem (2.21) as an unconstrained

optimization using Newton optimization technique or gradient decent. With the

same differentiable loss function, the solutions found by maximizing the dual (2.11),

i.e., β∗ ∈ Rl, and the solution found minimizing the primal (2.17), i.e., α∗ ∈ Rl can
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(a) (b) (c)

Figure 2.4: (a) The 2D two spirals classification problem. One class of spiral is the one with red
diamonds and the other is with blue circles. A large set of unlabeled examples (indicated by cyan
colored circles). (b) The supervised SVM solution with L2 distance based RBF kernel. (c) The
semi-supervised LapSVM solution with L2 distance based RBF kernel and (adjacency matrix W
with k = 3). The one dimensional manifold is indicated by cyan colored line.

be seen as the same up to the sign difference:

αi = yiβi. (2.22)

In Chapter 4, we will show that training a single instance supervised SVM clas-

sifer gives inferior results when trained on images obtained via search engines. The

reason is the variable amount of label noise, since search engine provides imperfect

supervision and the weaker textual cues don’t guaranty about visual contents in the

image.

2.2.2 Laplacian Support Vector Machines

LapSVM, introduced by Belkin et al. [12], is a straight forward extension of the su-

pervised SVM to semi-supervised learning. Semi-supervised learning deals with

developing algorithms which can use both labeled samples and unlabeled sam-

ples [41, 42]. There are two common assumptions made by most of the semi-

supervised learning methods. First is the cluster assumption which states that if

two points are likely to have the same class label if they can be connected by curve

through a high density region. In other words, if the input feature space exhibits

cluster then it is more likely to be from the same class. For example, methods such

as Transductive SVM [43, 44] try to maximize the margin of unlabeled samples by

pushing away the decision boundary from dense regions of the feature space, i.e.,
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if the feature space exhibits clusters then it is more likely that each of these clus-

ter belong to the same class. Second is manifold assumption on which LapSVM is

based, which states that the input data lies on low dimensional manifolds in the

input feature space and each manifold represent a single class. The LapSVM ex-

ploits the geometry of the marginal distribution PX . If two points that are close

with respect to the geodesic distances on a manifoldM then their labels should be

the same, similar in the sense that the conditional probability distribution P (y|x)

between such two points should change smoothly along the manifold. Figure 2.4,

explain the basic idea of the LapSVM in comparison to SVM.

Thus, given a set of training examples in the form S = L + U where the first

l instances are labeled and rest u are unlabeled U = {xi}ui=1; each xi is assigned a

class label by yi ∈ {+1,−1, 0}, if yi ∈ {+1,−1} then it is labeled otherwise it is

unlabeled. LapSVM learns from the manifold structure of the feature space and the

objective function to be minimized is defined as

min
f∈Hk

1

l

l∑
i=1

`(yi, f(xi)) + γA‖f‖2
Hk + γI‖f‖2

I , (2.23)

where `(y, t) is the linear hinge loss function, γA and γI are regularization parame-

ters. The former controls the smoothness of the functional f in the associated RKHS

(ambient space) and the latter controls its penalization along the low dimensional

manifold. Comparing with a standard SVM problem (2.17), in this problem ‖f‖2
I is

the additional term that extends SVM to semi-supervised learning. Following the

manifold assumption, this term also called intrinsic norm,

‖f‖2
I =

1

(l + u)2

l+u∑
i,j=1

Wij(f(xi)− f(xj))
2

=
1

(l + u)2
[f(x1), · · · , f(xl+u)]

T L [f(x1), · · · , f(xl+u)] , (2.24)

is approximated on the basis of labeled and unlabeled data using graph Lapla-

cian [12] L ∈ R(l+u)×(l+u) associated with S. The graph Laplacian is a positive

semi-definite operator on functions defined over the vertexes of an adjacency graph

W ∈ R(l+u)×(l+u) and is given by L = D−
1
2 WD−

1
2 , where D is a diagonal matrix
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given by Dii =
∑l+u

j=1 Wij.

According to the extended version of the Representer Theorem (for proof,

c.f.[12]), the minimizer of the problem in (2.23) is unique and is equal to the linear

combination of kernel evaluation centered on the training data points S:

f(x) =
l+u∑
i=1

α∗i k(xi,x). (2.25)

If the training data S is ordered such that the first l points are labeled and next u

are unlabeled points, then the LapSVM problem (2.23) can be equivalently written

as

α∗ = min
α∈R(l+u)

1

l

l∑
i=1

`(yi,K
T
i α) + γAα

TKα+
γI

(l + u)2
αTKLKα (2.26)

in terms of a kernel matrix K ∈ R(l+u)×(l+u) and α ∈ R(l+u). The final decision

function becomes

f ∗(x) = sgn

(
l∑

i=1

α∗i k(xi,x)

)
. (2.27)

In the original original work of Belkin et al. [12], the proposed solution for

LapSVM is based on the dual form derived from (2.26), using standard Lagrange

Multiplier techniques in a similar way used for the supervised SVM [29]. The train-

ing of LapSVM in the dual involves two steps. First using a QP solver, we solve the

quadratic program in l dual variables β:

β∗ = max
β∈Rl

l∑
i=1

βi −
1

2
βTQβ (2.28)

subject to:
l∑

i=1

βiyi = 0,

0 ≤ βi ≤
1

l
i = 1, · · · , l ,
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where

Q = YJK(2γAI + 2
γI

(l + u)2
LK)−1JTY; (2.29)

J ∈ Rl×(l+u) is defined as J = [I 0], where I ∈ Rl×l is identity matrix (assuming

that the first l points are labeled) and a zero matrix 0 ∈ Rl×u and Y ∈ Rl×l is a

diagonal matrix with Yii = yi. In the second step, the (l+ u) expansion coefficients

α∗ that define the decision function f ∗ in (2.27) are obtained by solving the linear

system involving l dual variables β∗:

α∗ = (2γAI + 2
γI

(l + u)2
LK)−1JTYβ∗. (2.30)

The relation between the expansion co-efficients α and β is no longer simple as that

supervised SVM algorithm (2.21). When γI = 0, the LapSVM ignores the unlabeled

data, i.e., the equations (2.28) and (2.30) gives zero expansion co-efficients over the

unlabeled data and the final solution becomes similar to that of a supervised SVM.

Several other graph-based semi-supervised learning algorithms have been intro-

duced, e.g., Mincut [45, 46] and local and global consistency [47]. The intuition is

that the target classification function should be smooth on the graph or equivalently

regularized by the graph. These algorithms are mostly different in the choice of loss

functions and the regularizers that are constructed from the training data (for a

tutorial overview c.f. [48]) . However, most of them perform transductive inference,

i.e., they can only classify the unlabeled data given in training. In contrast, manifold

regularization based methods such as Laplacian SVMs are inductive semi-supervised

learning algorithms providing out-of-sample extension.

Recently, Melacci et al. [15] have proposed a fast training algorithm for solving

the LapSVM problem (2.26) in the primal, using squared hinge loss function. In this

thesis, we will will refer it LapSVMp. Specifically for solving the LapSVM (2.26), it

has been shown in [15] that the unconstrained primal optimization is more efficient

than the dual. Training LapSVM directly in primal allows us to solve the original

problem without the need of the computations related to variables switching, i.e.,

it directly manipulates the primal kernel expansion co-efficients α without passing

through the dual β ones. It avoids the computations overhead related to variable
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switchings, the matrix inversions in (2.29) and (2.30). The computational cost is

reduced from O((l+u)3) to O(k(l+u)2) where k is significantly smaller than (l+u)

[15]. However, if the available training data L is noisy (images returned by a search

engine) then the squared hinge loss may penalize the outliers too much resulting

in lower final classification accuracy. In Chapter 6, we will present our proposed

algorithm extending LapSVMp with a new a loss function that is more robust to

noise in the labels.

The co-regularized LapSVM algorithm (Co-LapSVM) proposed by Sindhwani

et al. [13] extends LapSVM by making it applicable to solve classification problems

when each instance xi can be observed in two of more types of features. For example,

in object classification problem where an object could be represented by different

or diverse features and every representation is specialized in capturing a certain

aspect (e.g., shape, appearance) of an object. Co-LapSVM assumes that graph

Laplacian in one representation induces complementary notion of similarity in other

representation. This exchange of information across V different representations is

made available through a combined graph Laplacian LC ; which is build by taking

the mean of individual graph Laplacian constructed with each type of input features,

i.e., LC =
∑V

v=1 L(v).

The final binary decision function of Co-LapSVM is of the following form,

fCo−LapSVM(x) = sgn

(
1

V
(f ∗(1)(x) + · · ·+ f ∗(V )(x))

)
,

= sgn

(
1

V

(
l+u∑
i=1

α
∗(1)
i k(1)(xi,x) + · · ·+

l+u∑
i=1

α
∗(V )
i k(V )(xi,x)

))
,

= sgn

(
1

V

V∑
v=1

K(v)(x)Tα∗(v)

)
, (2.31)

The co-efficients α∗(v) of the corresponding kernel k(v) expansion are obtained either

by minimizing the following co-regularized functional :

min
α(v)∈R(l+u)

1

l

l∑
i=1

`(yi,K
(v)T

i α(v)) + γ
(v)
A α

(v)TK(v)α(v) +
γ

(v)
I

(l + u)2
α(v)TK(v)LCK(v)α(v)

(2.32)

which is similar to training LapSVM with combined graph Laplacian LC or by
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training a supervised SVM with the following kernel function :

k̃(v)(xi,xj) = k(v)(xi,xj)−K
(v)T

i (I +
γ

(v)
I

γ
(v)
A

LCK(v))−1γ
(v)
I

γ
(v)
A

LCK
(v)T

j . (2.33)

See [13] for the derivation of this kernel function k̃. We will present two algorithms

that extends Co-LapSVM to solve multiple instance learning problem, i.e., in Chap-

ter 4 by using (2.32) and in Chapter 5 by using (2.33).

2.3 Multiple Instance Learning

In this section we first formally define MIL problem [8] which is a weaker or relaxed

form of a supervised learning and then we review two SVM based algorithms in-

troduced to MIL. The first one is multiple instance SVM (mi-SVM) introduced by

Andrew et al. [14] and the second one called sparse MIL (sMIL) [16] which further

extends miSVM.

In the MIL paradigm a learner gets training set LB = {(Bi, Yi)}lbi=1 in the form

of lb bag-label pairs where a bag Bi = {xij}nij=1 is a collection of ni instances and the

label Yi ∈ {−1,+1} is observed for each bag.

The bag label provides information about an instance xij label yij in an asym-

metric way which can be explained by the following statements:

Yi = +1⇒ ∃ xijo , jo ∈ {1, · · · , ni} : yijo = +1, (2.34)

Yi = −1⇒ ∀ xijo , jo ∈ {1, · · · , ni} : yijo = −1, (2.35)

A positively labeled bag ensures that it contains at least one instance that can be

assigned a positive label; there is no other information about the remaining instances

in a positive labeled bag which might be completely unrelated belonging to neither

positive nor negative class. A negative labeled bag ensures that all instances it

contains are assigned negative labels. The ultimate goal is to learn an instance

classifiers f∗ : X → {−1,+1}.
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2.3.1 Multiple Instance SVMs

Andrew et al. [14] solve the MIL problem with support vector machine, the resulting

algorithm is called mi-SVM. Since the total number and the true labels of instances

in positive bags are not known a-priori therefore the objective is to optimize over

unobserved discrete variables yij jointly with the SVM parameters. The objective

function of mi-SVM is defined as

min
f∈Hk,{yij}

γA‖f‖2
Hk +

lb∑
i=1

ni∑
j=1

`(yij, f(xij)) (2.36)

subject to:

yij ∈ {−1,+1}, ∀ i = 1, · · · , lb, j = 1, · · · , ni,
yij = −1, ∀ i : Yi = −1, j = 1, · · · , ni,

ni∑
j=1

yij ≥ 2− ni,∀ i : Yi = 1, (2.37)

where γA = 1
2C

is a regularization parameter. The constraint (2.37) enforces that at

least one instance from each positive bag should be positive.

Due to the presence of unobserved discrete variables the objective function of

mi-SVM (2.36) is an integer program that leads to an iterative optimization which

is applied in the following way. After starting with initializing the instance labels

by their bag labels, the following two steps are alternated until convergence, i.e.

until the labeling of instances in positive bags does not change any more. Using the

current assignment in iteration t, an SVM is trained and the resulting classifier f∗ is

used to assign labels to all instances thus determine their new values. If necessary,

the constraint (2.37) is enforced by switching the label of the least negative instance

in a positive bag for it is violated. This the optimization algorithm has proven to

converge to local minima [14].

Bunesco et al. [16] have pointed out that mi-SVM is solely based on initializing

instances labels with the bag labels. Consequently, mi-SVM may overestimate the

actual number of true positive instances in a bag and may fail when positively
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labeled bags are sparse in true positive instances. To remedy this, they represent

a positive labeled bag by the mean of its component instances’ representation and

consider negative bags as singleton bags (i.e., ∀ Yi = −1, ni = 1). The resulting

objective function to be minimized is defined as

min
f∈Hk

γA‖f‖2
Hk +

lb∑
i=1

´̀(Yi,

ni∑
j=1

ωijf(xij)) (2.38)

where the loss function is ´̀ = max(0, 2−ni
ni
− Yi

∑ni
j=1 ωijf(xij)) and ωij = 1

ni
. It is

important to note that the objective function is convex and can be solved directly

with standard SVM solver such as QP solver; however the dual variable are now

multiplied by −1 + 2
ni

instead of +1 when the positive bag size ni is greater than 1

[16].

Comparing to mi-SVM[14], in this approach the positive bags are squashed into

a single instance by taking their mean. This squashing or treating every instance

in a positive bag uniformly may be harmful in situations such as learning from the

Internet image searches where we can expect completely unrelated or junk images,

neither positive nor negative, in positive bags. The authors in [9] extends sMIL by

proposing an iterative refinement scheme. Whereas in each iteration they learn a

new classifier f∗(x) by solving (2.38) and update the weights associated with each

instance in a positive bag as

ω
(t)
ij =

ω
(t−1)
ij exp

(f∗(xij) − argmax
xij∈B

+
i

f∗(xij))

c(argmaxxij∈Bi f∗(xij) −argmin
xij∈B

+
i

f∗(xij))∑ni
k=1 ω

(t)
ik

, (2.39)

while the weights are initialized as ω
(0)
ij = 1

ni
and constant c is a hyper parameter

which is set using cross-validation approach following [17].



Chapter 3

Image Categorization by

Combining Textual and Visual

features

This chapter presents a simple approach for categorizing images by combining visual

and textual features. Such method can bring further improvement in the ranking

performance of an image search engine. The goal of image categorization task is to

decide whether an image containing objects belong to certain desired category or

not. This task is performed by a keyword based image search engine, however using

only textual information. Given an object class name as a keyword, an image search

engine retrieves and rank images. This is task is performed based on the relevance

matching between the given keyword and the surrounding text or tags on the web

pages containing those images, i.e., without using any visual information. However,

due to polysemous nature of text, e.g., a text word having multiple meaning such as

”butterfly” could refer to ”butterfly valve” or ”butterfly shaped fish”, it is difficult

to retrieve images containing objects which belongs to the desired or target category.

This result in ambiguous collections of images; containing unrelated or noisy images

even at the higher ranked positions. This chapter investigates this problem by

learning classifiers by combining both modalities, i.e., the visual features of images

and the text describing their visual contents. We use a supervised MKL [10] which

provides an elegant way to combine textual and visual information at kernel levels

31
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for training a class-level image classifier. This classifier is then used to categorized

and rank future images. With Experimental evaluation, we demonstrate that the

proposed method could be adapted by a text-based image search engine for its

further improvement in image ranking quality.

The availability of datasets plays an essential role in evaluating a research. How-

ever, there are few datasets available which contain both images and corresponding

textual information. We created the TVGraz dataset containing both object images

with associated textual description. The dataset is publicly available to research

community for benchmarking algorithms which are developed for categorizing im-

ages or ranking images by combining textual and visual features.

This chapter is organized as follow: Section 3.1 presents the formulation for MKL.

Section 3.2 provides the detailed procedure adapted for creating the TVGraz dataset

and discuss its special features. Section 3.3 describes the textual and visual features

extraction and their representation by kernels for training classifiers by Multiple

Kernel Learning method. Section 3.4, presents the experimental evaluation of the

propose method and finally section 3.5 concludes the chapter.

3.1 Multiple Kernel Learning

The supervised Multiple Kernel Learning (MKL) method was originally proposed

in [10] and later extended and applied by a number of people (e.g., [1, 4, 6, 7, 36])

to various tasks. MKL provides a natural way to combine and learn from differ-

ent modalities, i.e., an image represented by its textual and visual features. The

basic idea behind MKL is to create a weighted linear combination of kernels from

each information source and to adapt these weights in order to achieve improve-

ment in classification performance. Given a labeled training set L, the objective

is to optimize jointly over the coefficients α ∈ Rl of an SVM and a weighted lin-

ear combination of kernels k?(xi,xj) =
∑V

v=1wvk
(v)(xi,xj) in a single optimization

problem.

The scope of this chapter is the applicability of MKL method to the task of

image classification and using the resulting learned classifiers for image ranking,

rather than its optimization. In general and for comparison with the proposed
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formulation in Chapter 4, we can write the MKL primal objective function as

min
α∈Rl,w

1

2

V∑
v=1

wvα
TK(v)α+ C

l∑
i=1

`(yi,
V∑
v=1

wvK
(v)T
i α) (3.1)

subject to:
V∑
v=1

wv = 1, wv ≥ 0, v = 1..V, (3.2)

where `(yi, t) = max(0, 1 − yit) is the linear hinge loss function; K(v) ∈ Rl×l is

the kernel matrix and wv is the weight for the v’th feature type∗; C is the only

free constant regularization parameter on the loss function and norm-1 constraint

(3.2) on the weights for kernel combination which may result in sparse selection of

a kernel.

For solving this MKL problem, i.e., finding the kernel expansion coefficients α

and weights wv ∈ Rv, different algorithms have been proposed such as [50] and

SimpleMKL [6], which mainly differ in their runtime performance. Here, we use

the SimpleMKL [6] † method, which reduce this problem to Lagrangian dual and

solve for the dual variables. This method iteratively determines the combination

of kernels by a gradient descent wrapping a standard SVM solver (c.f. [6], for

SimpleMKL algorithm).

The final binary decision function of MKL is of the following form:

FMKL(x) = sgn

(
V∑
v=1

w∗vK
(v)(x)Tα∗

)
. (3.3)

For training a classifier with MKL method, we use the standard bag of word

models to represent an image using textual features and visual features (SIFT de-

scriptors); the details of features extraction and the corresponding kernels are given

in Section 3.3. The convex combination of the two kernels, one per modality, can

be seen as

K?
ij = k?(xi,xj) = w(txt)k

(txt)(xi,xj) + w(vis)k
(vis)(xi,xj), (3.4)

∗In our published work [49] the kernel weights are represented by dm.
†The code is available at http://asi.insa-rouen.fr/enseignants/~arakotom/code/

mklindex.html.

http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html .
http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html .
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Nr. Category No. positive images No. negative images
1 brain 209 107
2 butterfly 305 131
3 cactus 217 116
4 deer 324 140
5 dice 272 142
6 dolphin 272 127
7 elephant 223 111
8 frog 333 189
9 harp 230 250
10 pram 207 125

Table 3.1: Summarizes the TVGraz dataset objects images. A positive image con-
tains at least one object of the given category.

where the subscripts (vis) and (txt) indicates the visual and textual component,

respectively.

3.2 TVGraz Dataset

We created a dataset, named TVGraz‡ containing a total of 4030 labeled images

and the associated web pages. The dataset contains a total of 10 objects categories

which are listed in Table 3.1. The objective of the multi-modal dataset is to provide

a common means for evaluation of object categorization research based on text and

vision. The different categories are selected from Caltech-256 [51] dataset. Using

each object as a keyword, we tried to download the top 1000 web pages and the

images retrieved by the Google image search engine. In each collection, we captured

the image, the image file name, the web page containing the image and the image

URL. We filter those images which are not accessible directly from their respective

original URLs (because either the links do not exist or the website is protected).

We also remove empty images, images with missing text data, painting images, and

line sketched images. The images are provided in their actual form as downloaded

from the Internet in order to provide an unbiased and challenging dataset.

For eight categories named human brain, cactus plant, deer animal, elephant

‡TVGraz dataset is available at http://www.icg.tugraz.at/Members/kahn/tvgraz .
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animal, dice a small cube with each side having different number of spots, pram,

dolphin fish, and musical instrument harp, an image is labeled as positive if it con-

tains at least one instance of the corresponding category; otherwise it is labeled as

negative (not containing the corresponding objects of the corresponding category).

The frog animal and the butterfly insect are difficult categories due to the polyga-

mous nature of the word ”frog”. We explicitly select these categories as we think

that this could be easily solved by combining both text and visual features. The

images returned by the search engine for the keyword ”frog”, contained other visual

objects like frog shaped computer mouse, frog shaped puppets, frog an amphibian,

frog a cartoon character, and many more. We labeled an image as positive if it

contains at least a single object of the amphibian frog. Similarly, for butterfly insect

we label the image as positive, if it contains at least a single instance of the butterfly

insect; otherwise it is labeled as negative. Figure 3.1, shows examples images for

each category.

In addition to the original raw textual data and in order to provide an easy

start-up for researchers in the vision community, we also provide a pre-processed

form of the textual part of the database. In this respect, it has been shown that the

surrounding texts of an image on a web page usually has an important connection

to the semantic contents of the image. However, it is hard to clearly define the exact

relevant text close to the image on a web page because of the rich content of the

web page. A web page may contain various texts in surrounding of an image such

as navigation, advertisement and contact information, which are neither related to

the image nor to the topic of the web page. However, there exist some methods,

which try to provide an automated solution for this problem, such as window-based

approaches [52] or VIsion-based Page Segmentation (VIPS) [53].

A window-based approach uses a fixed length window to extract the text before

and behind an image by treating the HTML source as a text stream [52]. This

method is fast but might not be accurate because of the web page’s structure dis-

cussed above. It is also difficult to define a fixed length window for every web page.

The VIPS [53] method extracts the text close to the image on a web page by ana-

lyzing the tree structure of the web page based on its visual presentation [52, 53].

Each node in VIPS tree corresponds to a block and the segments obtained are more
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Figure 3.1: Example images per category in TVGraz dataset: left column shows positive im-
ages (containing objects of the corresponding class) and right column shows negative images (not
containing objects of the corresponding class).

semantically aggregated. Each node is assigned a value indicating the coherency of

the contents in the block based on its visual perception. Thus, it is easy to extract

the text close to the image by locating the block containing the image. An example

of a web page segmented by using VIPS is shown in Figure 3.2.

Therefore, we use VIPS for extraction of the text close to the image and ad-

ditionally provide these as the pre-processed textual part of the dataset. For each

image in the dataset, we use the image file name to locate the visual block containing

the image after applying VIPS to the corresponding web page.
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Figure 3.2: An example that shows VIPS based web page segmentation. The boxes show the visual
blocks after segmentation. The text of the corresponding visual block may be used to describe the
images contents

3.3 Features extraction and Representation

In order to learn classifiers by combining textual and visual modalities, we need

a proper representation of both features. The following subsections, provide the

details for features extraction and their representation by kernels.

3.3.1 Textual Features

The BOW model is a popular method for a document representation. It is a vector

based representation of a document. The size of the vector where each bin counts the

number of words occurring in it. In general, the text document is first parsed into

words. Then a stop-list is used to remove insignificant words like ’with’, ’wonder’,

’the’, and ’you’. Finally, words are represented by their stem or root by applying a
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stemming process, for example ’wait’, ’waits’,’waited’, and ’waiting’ are represented

by the root ’wait’. A unique identifier is then assigned to the remaining words and

each text document is then represented by vector with components showing the

counts of words it contains.

For each image, the textual features are extracted from the associated web page

title, keywords, description, and all text close to the image. For each category all

such text documents are parsed into words, then the number of words are reduced

by applying the stop-list and stemming process. A dictionary is build from these

words and we represent the text data by the histogram of the word counts. The

text kernel is represented as the linear kernel:

k(txt)(xi,xj) = xi · xj. (3.5)

For textual features we tried out different nonlinear kernels, but the performance

of the linear kernel was comparable to the nonlinear kernels due to sparseness.

Therefore, for reasons of efficiency we decided to use the simpler kernel.

3.3.2 Visual Features

For the visual feature extraction, we also use the standard visual bag-of-visual-

words model. Each image is converted to gray scale and resized to a 300 pixel

width, keeping the same aspect ratio. We then apply a regular dense grid with 10

pixels spacing and extract SIFT descriptor [2]. Each grid point is represented by

four SIFT descriptors with circular support patches of radii 4, 8, 12, and 16. These

multiple scale descriptors are used to provide a relative scale invariance. The dense

descriptors are quantized into visual words using k-means clustering. The size of the

codebook for each category is set to dvis = 600, which is obtained from 50 randomly

selected images positive images and 50 randomly selected negative images. Each

image is then represented as a 600-dimensional histogram. We use the χ2 pairwise

distance to build a visual RBF kernel define as

k(vis)(xi,xj) = exp(−
D

(vis)

χ2 (xi,xj)

τ
), (3.6)
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where D
(vis)
χ is the χ2 pairwise distance which can be calculated as

D
(vis)

χ2 (x, z) =
1

2

dvis∑
k=1

(xk − zk)2

xk + zk
. (3.7)

We set σ as the average of the pairwise distances, τ = l−2
∑l

i,j D
(vis)

χ2 (xi,xj), among

l training samples.

3.4 Results

In this section we performed a number of experiments on the TVGraz dataset. To

give a quantitative evaluations we measure the image ranking quality by precision-

recall curves and mean average precision (mAP) criteria. Precision is the fraction

of the retrieved images that are relevant, while recall is the fraction of the relevant

images that are retrieved. Precision and recall are single-value performance metric

on the whole number of retrieved images. By computing a precision and recall at

every position in the ranked images, one can plot a precision-recall curve, plotting

precision p(r) as function of recall r. Average precision computes the average value

of p(r) over the interval from r = 0 to r = 1.

For each of the 10 categories of objects, we learned three support vector classifiers

using textual representation, visual representation and their combination with MKL.

For training each classifier, we randomly selected 50 positives and 50 negatives out

the total images per category, shown in Table3.1. and the remaining images per

category were used as as test set. This process is repeated for 10 run and for

all categories. Table 3.2, compares the classification performance using the textual

representation, visual representation and their combination with MKL. We observed

that in 9 out of 10 categories the combination with MKL gives superior performance.

This could also be verified by the precision-recall curves shown in the Figure 3.3.

Table 3.2 shows the average classification accuracy for each category. It can be

observed that in 9 out of 10 categories a significant improvement is achieved by using

combined representation with MKL. Figure 3.3, shows the average precision-recall

curves and along with learned weights with MKL.

Figures 3.4, 3.5, and 3.6, compare the top ranked 100 images for the cactus class
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Figure 3.3: TVGraz dataset: Precision-recall curves for the 10 object categories, with textual
kernel (Text only), visual kernel (Vision only) and with combined kernel (Vision plus text). For
the combined kernel the weights learned with (MKL) are shown in the corresponding legend.
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Category Text Vision Text+Vision

brain 0.73 0.74 0.81
butterfly 0.72 0.71 0.81
cactus 0.78 0.76 0.84
deer 0.74 0.75 0.80
dice 0.67 0.61 0.71
dolphin 0.77 0.75 0.77
elephant 0.76 0.74 0.79
frog 0.64 0.73 0.76
harp 0.63 0.69 0.73
pram 0.73 0.77 0.80

Table 3.2: The mean AP scores on the TVGraz dataset with textual kernel (Text),
with visual kernel (Vision) and with the combined kernel (MKL). The best scores
are marked in bold.

with textual kernel, visual kernel, and with combined kernel respectively. It can

be seen, that ranking images with combined kernel (MKL) removes many of the

unrelated or outliered images and provides a better image search results than the

individual kernel. These result confirms that image ranking quality can be improved

using all available modalities would provide superior results.

Figure 3.4: 100 highest ranked images for ”cactus” categorization task with textual kernel, (the
noisy images (not containing ”cactus” are marked with red boxes).
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Figure 3.5: 100 highest ranked images for ”cactus” categorization task with visual kernel, (the
noisy images (not containing ”cactus” are marked with red boxes).

Figure 3.6: 100 highest ranked images for ”cactus” categorization task with combined ker-
nel(MKL), (the noisy images (not containing ”cactus” are marked with red boxes).
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3.5 Conclusion

This chapter presented a MKL method for categorizing images by combining visual

and textual features.A multiple kernel learning provides a natural solution for learn-

ing from heterogeneous data sources. We created the TVGraz dataset for bench-

marking the web-based visual object category learning algorithms, which utilize both

textual and visual information. The experimental results showed that the combined

strategy outperforms the methods using only one of the available data streams.

The idea of combining textual and visual features requires however the availabil-

ity of both data sources. Therefore, for classifying images where the text data is

missing or is very sparse, further steps and algorithms should be developed. For the

task of web image search this is not a major issue; even filtering out those images

without text information, there will be enough images left for the given task. The

Internet is a huge supply of images which are available at the typing of a single

phrase or word, e.g., ”car”, using image search engines. However, the ranking qual-

ity an image search engine could be further enhanced if visual features are used

along the textual data. This will decrease in the ambiguity in the true-class labels

of images returned by a search engine.





Chapter 4

Co-regularized Multiple Instance

Learning

This chapter presents a new method for learning object categories using the images

returned by Internet image searches as training examples. The approach explicitly

acknowledges and simultaneously accounts for their ambiguities in the true class-

label of the images as well as for the large variations in visual characteristics of ob-

jects contained in them. The main contribution is a novel multiple instance learning

algorithm which we call Co-miSVM (Co-regularized multiple instance SVM). The

learning method is based on the principle of manifold regularization [12, 13], which

extends the supervised multiple instance SVM [14] to semi-supervised multiple in-

stance domain. This extension enables us to utilize different visual features and

at the same time cope with the label noise in training an instance classifier. We

collect groups of images called bags via multiple image search engines. Instead of

grouping all images or instances returned by a search engine in one huge bag, we

encapsulate the first few images in a positive bag, assuming that at least one of

them may contain an object belonging the target category, and treat the rest as

unlabeled images or unlabeled singleton bags; the negative images or singleton bags

can be obtained by using keywords unrelated to the desired object category. The

learned object models can be used for image ranking as well as for object category

level image classification.

This chapter is organized as follows: Section 4.1 introduces the problems dealt

45
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in this chapter. Section 4.2 reviews the previous work related to learning models

from Internet images for object categorization. Section 4.3, presents the detailed

formulation of the proposed learning algorithm, called co-regularized multiple in-

stance SVM. In Section 4.4, we discuss our approach for obtained training bags of

images directly from the Internet searches and the different types of features for

image representations. Section 4.5, describes experiments performed to evaluate the

proposed method and demonstrates its usefulness on a number of benchmark test

datasets. Finally, Section 4.6 concludes the chapter.

4.1 Introduction

The performance of an object classifier is limited by the amount of labeled images

available for training. Typically, its performance improves with increase in amount of

labeled images during training. However, hand labeling or annotating large number

of images is a laborious and an expensive task. The cost rises with increase in number

of object’s categories to learn. Nevertheless, keyword based Internet image searches

such as Google, Yahoo, and, Bing are vital sources for collecting large amount of

training images which can ultimately help in automatic or direct learning of object

category classifiers on the fly [9, 17, 19, 20, 22, 27, 54, 55] using category specific

queries.

There are two main problems in training category classifiers directly with Internet

images which have been rarely addressed jointly so far. Firstly, the true class label of

the returned images could be ambiguous; every image may not contains the objects of

the desired category. A keyword-based image search engine returns images based on

the relevance matching between the given keyword and the surrounding text or tags

on the web pages containing them, without using any visual contents. Whereas the

text does not guaranty about their visual contents because of difficulties in automatic

association with an image contents, e.g., due to polysemic nature of text, i.e., a

word or phrase could have multiple meanings. Secondly, there are wide varieties in

the visual characteristics of objects within the same category found in the retrieved

images, e.g., shape, appearance, scale, pose, and, number of objects. Different visual

features, such as global (e.g., PHOG [1], BOW, PHOW [1], and GIST) as well as
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local features (e.g., SIFT, MSER, and LBP) have been developed and specialized

in capturing certain visual properties of an image. By using different features for

image representation, the diverse visual properties of the Internet searched images

can be characterized more precisely. If the available individual features are sufficient

on their own for learning a category classifier, they may still provide complementary

information to each other. However, for the Internet searched images, the challenge

is how to combine different features effectively despite the variable amount of noise

or ambiguities in their relevance to the desired category and without using any

manually labeled images.

Most of the previous approaches such as [22],[55],[49] or [9], used Support Vector

Machnines (SVM) based classifiers because of their ability to cope with the label

noise in the training data. Moreover, this allows us to take the benefits of multiple

features representation in learning category-level image classifiers (e.g., [4, 5]). A

combined kernel is defined as the weighted sum of individual kernels. Multiple kernel

learning (MKL) methods such as [6] or [7] aim to optimize the kernel weights while

training an SVM classifier. However, a strong MKL classifier may not be directly

trained on Internet images without additionally using hand labeled images [49, 55]

or filtering out the unrelated and noisy images [22].

Another alternative, which has not been yet applied for object category recogni-

tion from the Internet searches, is to exploit different feature-based representations

by using co-regularization such as [56], ( discussed in Chapter 2), where support vec-

tor classifiers are learned in each representation through different types of features

based representations. However being a single-instance semi-supervised approach,

it still needs clearly labeled images.

To address these problems jointly, we extend the Multiple Instance Learning

(MIL) based approach proposed by [9] for learning of object’s categories from the

Internet searches. In supervised learning such as SVM there is a clear knowledge

about class-labels of the training images, there is a one to one mapping between the

label and training image. In contrast, MIL is a relaxed form of supervised learning

where training images are provided in the form of collections, called bags, where

each bag is a collection of images and the class-label is assigned to bag instead of

an image. All images in a negatively labeled bag are ensured to be negative while
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the correspondence between label information and images in a positively labeled

bag is ambiguous or uncertain, i.e., at least one of them is positive. The final task

is to deliver image classifiers which can then be used to categorize any presented

images other than the one obtained from the Internet as well for improving the

performance of the keyword based image search engine by re-ranking the returned

images based on their relevance to the desired categories. MIL explicitly solves

learning problems with ambiguity in training samples and hence is most suitable

for learning categories directly from Internet searches by collecting labeled bags of

images via multiple keyword-based image search engines.

However, supervised MIL techniques such as [14] or [9] may fail to learn reason-

able models if the noise level in positive bags is too high. The main contribution

of this chapter is a novel co-regularized semi-supervised MIL algorithm allowing for

learning from both labeled and unlabeled bags. It is important to note that encap-

sulating images in unlabeled bags carry no useful information, therefore we consider

each image as unlabeled singleton bag. To exploit the power of multiple feature based

image representations we apply ideas from single instance co-regularization [56]. In

general, the proposed method is not limited to learning visual category models from

Internet searches but could also be applied to other tasks such as action recogni-

tion [57], content based image retrieval [58], semantic segmentation [59], or text

classification [14].

4.2 Related Work

Exploiting the Internet for learning category models has become quite popular. For

instance, probabilistic clustering methods such as [17], [19], and [20] cluster images

obtained via Internet search using a visual vocabulary. While [17, 19] extend the

probabilistic Latent Semantic Analysis (pLSA) [18] by including spatial information,

[20] uses a Latent Dirichlet Allocation (LDA) model to learn mixture of visual themes

(topics). Then these methods re-rank the images based on dominant proportion of

one of the learned topics in every image and such dominant topic is either selected

manually or using a validation set of images. Such methods are mostly suitable

for unsupervised object discoveries in a collection of images and the resulting high
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level representation of an image as mixture of visual topics can be used in our

discriminative approach in addition to other available representations.

Single instance supervised (SIS) approaches, e.g., [21–23, 49], have mostly se-

lected to use SVM classifiers, since they allow to learn despite the noise in the

training images up to certain extent. However, due to the variable amount of label

noise in the keyword-based search images, a multi-stage learning framework is usu-

ally adapted where the strategy is to filter out some of the junk images which are

totally unrelated to the desired category and then use the remaining as noisy train-

ing images for learning SVM [22, 23, 49] or voting based classifiers [21] with varying

degree of supervision. The authors of [21] have used LDA to cluster the noisy images

based on the textual features using the words occurring on the web-pages containing

them. These clusters are then manually labeled into positives and negatives. The

images and the associated text from these clusters are used to train a classifier using

hybrid visual features (shape,color, and texture) and textual features. Finally, the

classifier is used to re-rank the downloaded images. To reduce the manual label-

ing efforts, Schroff et al. [22] extend this approach for automatic collection of noise

free images from the Internet image searches. They initially trained a radial basis

function SVM based filter on hand labeled images to discriminate between abstract

images such as plots, maps, charts, drawing and sketches and non abstract images.

They filtered out the junk images using supervised trained filter and then used Bayes

estimation using the text associated with the remaining images on the web pages to

re-rank them and finally the top ranked images are used as noisily-labeled data to

train a final SVM based visual classifier for the desired category, an image is rep-

resent by concatenation of normalized histogram of BOW and HOG with χ2 radial

function based kernel. The final visual classifier is then used to re-rank the originally

downloaded images excluding the junk images for improving an image search engine

performance. Guillaumin et al. [23] showed that other source of information such

as surrounding text or tags can help to learn object categories but at the expense

of manual labeling efforts. The images and accompanied tags are downloaded from

Flickr photo sharing website. First, they train MKL classifiers using both text and

15 different image representations (L1 distance for the color histograms, L2 for GIST

and χ2 for PHOW) and use it to score the unlabeled images. Finally, they learn
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classifiers, either SVM or least square regression using only visual features, from the

MKL output on both labeled and unlabeled images. However, in comparison to all

of these methods our approach is more simple and direct without using any hand

labeled images for training an object classifier for the desired category.

A number of authors have proposed graph-based learning algorithms such as [24],

[25], or [26] as well the recent one [27], which are especially developed for re-ranking

the noisy Internet images. The basic idea is to exploits the data graph that reflect

the intrinsic manifold structure [28] hidden in the images that tends to capture

the underlying semantics. In these single instance learning based methods, the

higher ranked few images are assumed as weakly labeled images and then conduct

the re-ranking on the whole set of images returned by an keyword-based image

search engine. The authors of [27] argued that the underlying manifold structure is

beneficial to improve the quality of a search engine only if the outliers are removed.

Consequently, they formulate a spectral filter to remove the outliers before using

a manifold ranker [28]. Instead of removing outliers from images associated with

keywords, the proposed method for visual category learning explicitly acknowledges

and accounts for their ambiguity. Our approach is more closely related to [9] which

is based on multiple instance SVM (discussed in Chapter 2). However, we extend

single co-regularized Laplacian SVM (to be presented in the next section) to solve

MIL problem. We will show that our method outperforms most of the related work

by conducting experiments on benchmark datasets.

4.3 Co-regularized Multiple Instance SVM

The co-regularized SVM extends a SIS-SVM to semi-supervised learning inheriting

their benefits to deal with different type of features based instances’ representation

and strengthen the classifier by utilizing labeled and unlabeled instances. Whereas

MIL provides a learning framework from ambiguously labeled data, i.e., images

obtained from the Internet where the supervision is porovided by the keyword-based

image search engines. We can define problem of learning of object categories from

Internet images as semi-supervised MIL. In this section, we formulate the proposed

learning algorithm which we call co-regularized multiple instance SVM (co-miSVM).
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We consider a binary classification problem. Given training examples containing

lb labeled bags LB = {(Bi, Yi)}lbi where each Bi consists ni instances and u unlabeled

singleton bags U = {(xi)}ui=1 (a singleton bag contains only one instance). The

training set consists a total of M =
∑lb

i=1 ni + u instances where each instance

xi = (x
(1)
i , · · · ,x(V )

i ) is represented by V different features x
(v)
i ∈ X(v). We want

obtain a final instance classifier of the form:

f∗(x) = sgn
(
w∗Th(x) + b

)
= sgn

(
w∗T

[
h∗(1)(x), · · · , h∗(V )(x)

]
+ b
)

= sgn

(
w∗T

[
lb+u∑
i=1

ni∑
j=1

α
∗(1)
ij k(1)(xij,x), · · · ,

lb+u∑
i=1

ni∑
j=1

α
∗(V )
ij k(V )(xij,x)

])
,

= sgn

(
w∗T

[
M∑
i=1

α
∗(1)
i k(1)(xi,x), · · · ,

M∑
i=1

α
∗(V )
i k(V )(xi,x)

])
,

(4.1)

where the w ∈ RV is the weight vector combining the results of the V classifiers

h∗(v) and b is the bias. Comparing with MKL based decision function (introduced in

Chapter 3 Section 3.1), our final classifier can be seen as a multiple kernel classifier

where the weights are defined by w. The decision function (5.10) for MKL share

the same set of co-efficients α for all participating kernels. In contrast to MKL, we

use separate sets of co-efficients {α∗(v)}Vv=1 for each kernel where these co-efficients

are expanded over unlabeled instances. To learn the weights w, and {α(v)}Vv=1, we

minimize the following objective functional

min
{yij},w,b

min
{hv}Vv=1

1

2
‖w‖2

2 + C

lb∑
i=1

ni∑
j=1

`(yij,w
Th(xij) + b) (4.2)

subject to:

yij ∈ {−1,+1}, ∀ i = 1, · · · , lb, j = 1, · · · , ni
yij = −1, ∀ iYi = −1, j = 1, · · · , ni

ni∑
j=1

yij ≥ 2− ni, ∀ i : Yi = 1, (4.3)
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Note that the labels yij of instances in positive bags are unknown integer variables

and are treated as optimization variables here. The first set of constraints ensures

that all instances in negative bags are negative while the second set of constraints

ensures that there exists at least one positive instance in every positively labeled

bag. Due to unknown true labels of instances in positive bags this optimization

problem is non-convex and difficult to solve. Therefore, our learning strategy is to

decompose the problem (4.2) into smaller optimization tasks and iteratively refine

the results.

4.3.1 Co-regularized Feature-specific Classifiers

We build an instance level graph where each vertex corresponds to an instance and

the edge weight is defined by a similarity Svi,j between a pair of instances as follows:

W
(v)
ij =


exp(−‖x

(v)
i −x

(v)
j ‖

2

2τ2
) if instance j is in among the k-nearst

neighbors of xi

0 otherwise

(4.4)

We define Dv
ii =

∑n
j=1 Wv

ij as diagonal matrix and the individual graph Laplacian

Lv = Dv −Wv.

4.3.2 Iterative Optimization

Once we obtain a set of solutions, we can solve the optimization problem in Eq. (??),

which is similar to miSVM [14]. However, the features representing each instance are

the responses obtained from co-regularized feature-specific classifiers. The proposed

algorithm called Co-miSVM, is outlined in Algorithm ??. In detail, we initialize

instances labels by the corresponding bags labels and then starts with the iterative

optimization. In each iteration first we learn {α(v)}Vv=1. Then we represent each in-

stance in a bag by the response of feature specific classifiers. Based on this combined

representation of instances we train our final SVM instance classifier with labeled

instances contained in labeled bags. Then we predict class labels and compute con-

fidence for all instances x ∈ LB. If the predicted labels for all instances do not

change and the MIL constraint is satisfied then we terminate the iterations.
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Algorithm 1 Co-miSVM

Input: training labeled bags LB = {(Bi, Yi)}lbi=1 and
unlabeled bags U = {Bi}ui=l s.t. | Bi |= 1

where an instance xi = (x
(1)
i , · · · ,x(V )

i )
Input: hyper parameters: C, γvA, . . . , γ

V
A and γvI , . . . , γ

V
I

Output: w,b and {α(v)}Vv=1

L← 1
V

∑V
v=1 L

v

2: yij ← Yi, ∀ i : i = 1, · · · , (lb + u) and j = 1, · · · , ni (initialize instance labels)
repeat

4: for v = 1 to V do
hv∗ ← LapSVM solution using instance labels {yij}

6: end for
h(xij)← [h1∗(xij), . . . , h

V
∗ (xij)]

T ∀ i : i = 1, · · · , lb and j = 1, · · · , ni
8: f∗ ← compute SVM solution w, b with current h and instance labels{yij}

yij ← sign(wTh(xij) + b) ∀i : i = 1, · · · , l and j = 1, · · · , ni
10: for (every positive bag) do

if
∑ni

j=1 yij < 2− ni then
12: j∗ ← arg max

(
wTh(xij) + b

)
j∈ni

∀ iYi = 1

yij∗ ← 1
14: end if

end for
16: until estimated instance labels {yij} are unchanged

Return w,b and {α(v)}Vv=1

4.4 Collecting Bags of Images and Image Repre-

sentations

In this Section, first we present our approach for collecting training data directly

from the Internet without using any an manual labeling efforts and then we give the

implementation details for image representation.

4.4.1 Collecting Bags of Images via the Internet Searches

We explicitly model this ambiguity by collecting bags of images via a number of

different image search engines and assuming that the desired category in present in

at least one of those images in a bag instead of all, an example for ”motorbikes” is

shown in Figure 4.1. The quantity of labeled bags of images can be increased by

translating a given category name into a number of languages using an automatic

translation tool ∗ before querying a search engine. Rather than including all of

the images returned by a search engine in one huge bag, we assume that a fixed

∗http://www.google.com/language_tools?hl=en

http://www.google.com/language_tools?hl=en
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Figure 4.1: Learning object categories from weakly labeled images: The name of the object category
is entered in a search machine and corresponding images are returned. To cope with weakly labeled
data the proposed semi-supervised MIL approach is applied for learning.

small number of top ranked images may contain at least one positive image and the

rest are considered as unlabeled bags. Similarly, the negative bags of images can be

collected either from Internet searches of other categories or any back-ground images,

if available. Encapsulating images in unlabeled bags carry no useful information

therefore we consider each image as unlabeled singleton bag, such images can be

helpful in discriminating the desired category from un-related images. Collecting

bags of images in this way requires no manual labeling efforts; instead requires only

the name of categories. These bags are used in training of binary object category

classifier using the proposed algorithm co-miSVM. The resulting classifier can then

be used for re-ranking the images returned by a search engine or classifying any

other unseen image.

4.4.2 Image Representations

In experiments presented in Sections 4.5.1 and 4.5.2, we use two types of features

to represent an image. To capture shape and appearance together with the image
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spatial layout we use pyramid of histogram of oriented gradients (PHOG) and pyra-

mid of histogram of visual words (PHOW) [1]. We select these features as similar

representation have been used in [9, 20] for the tasks in hand. In following, we give

implementation details for these features.

Shape

We extract edge contours using the Canny edge detector and then compute the

orientation gradients using a 3 × 3 Sobel mask. We use shape descriptors with all

the orientations in a range [0; 360]. The number of histogram bins is set to 40 where

each bin represents the number of edges that have orientations within the range.

Finally, we obtain PHOG, an entire image descriptor to capture shape together

with spatial layout while forming a pyramid we fix the number of levels equal to 2.

Appearance

The gray scaled SIFT descriptors are computed densely on a regular grid with each

cell of five pixels. At each grid point they are computed over circular patches with

four different radial scales of 4,8, 12 and 16 pixels. Thus each point is represented

by 4 SIFT descriptors to allow for scale variations between images. We build a

visual vocabulary of size 1000 using k-means clustering to vector quantize the dense

features into visual words. It is important to note that we build separate visual

vocabularies for each experiment, using the training images downloaded from the

Internet. We carry out the k-means clustering by random sampling of SIFT descrip-

tors over 10 training images per category. Finally, we obtain PHOW descriptors to

capture appearance together with spatial layout of image while a pyramid is formed

by setting the number of levels equal to 3.

4.5 Experiments

In this section, we conduct experimental analysis in three ways to show the bene-

fits of the proposed approach. First, we compare various SVM-based classification

methods for automatic learning of various categories from Internet searched images.

Then we provide comparisons with state-of-the art methods on a task of re-ranking
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the Google searched images and evaluate on web image test datasets. Finally we

evaluate it on a datasets used in most studies of MIL methods. In all experiments, we

use the evaluation metrics and procedures as used by others in similar experiments.

4.5.1 Automatic Training of Category Classifiers

To validate the proposed approach for learning object categories when the training

images are automatically obtained from the Internet searches, we compare the fol-

lowing seven SVM based methods. The first two, SVM-1 and SVM-2, are standard

single instance supervised SVMs. The next two, LapSVM [12] and Co-LapSVM [56],

are single instance semi-supervised SVM which can use of both labeled and unla-

beled images. The next two are supervised multiple instance SVMs, mi-SVM-1 [14]

and mi-SVM-2 which can make use of labeled bags of images. The last one is the

proposed Co-miSVM that makes use of both labeled and unlabeled bags of images

during the training stage. For all the methods we use an equal number of training

images which are downloaded from Internet image searches. For each method how-

ever, they are assumed to be either labeled and unlabeled images or labeled and

unlabeled bags of images.

For given names of 7 categories of objects, i.e., airplanes, motorbikes, trains, cars,

buses, cows and horse; the training set of images from the Internet. We retrieve these

images using keywords: airplane, motorbike, train, car, bus, cow and horse via 3

image search engines where each keyword is translated from English language into

other 12 different languages before querying a text based image search engine. In this

way, we have 36 different collections of images for each category. In each collection we

downloaded 60 images that result in 2160 images per category. To represent training

and later test images, we use features presented in Section 4.4.2. We use χ2 distance

RBF based kernels in all of classification methods, k(1)(xi,xj) = exp(−D
(1)

χ2
(xi,xj)

τ
),

where the bandwidth τ is set to the median of the pairwise instances distances. We

train them as binary image classifiers for every object’s category with the searched

images by assuming that the images are labeled in following way:

SVM-1 and SVM-2: We assumed all of 2160 images obtained for a certain

object category as positively labeled, ignoring their ambiguity. The negative images

are taken from the searches for other categories. To see the effect on accuracy, we
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Methods ↓ Images Num of Bags / images per bag
pos neg unlabeled pos neg unlabeled

SVM-1 2160 12960
SVM-2 2160 12960
LapSVM 1080 6480 7560
Co-LapSVM 1080 6480 7560
miSVM-1 36 / 60 216 / 60
miSVM-2 36 / 60 216 / 60
Co-miSVM 36 / 30 216 / 30 7560 / 1

Table 4.1: The images downloaded from the Internet Searches for the 7 categories
and used in training for the 7 classification methods, for detail see Experiement 4.5.1

represent an image by concatenation of both features in case of SVM-1 while for

SVM-2 we simply take the mean of the two χ2 based kernels values obtained from

the individual representation.

LapSVM and Co-LapSVM: Here for a certain object category, we assumed

the top ranked 30 images per image search to be positive, and the remaining 30

images per image search as unlabeled images. The negative images and additional

unlabeled images are taken from the searched returns for other categories. In case

of LapSVM, we represent an image by concatenation of PHOG and PHOW while

for Co-LapSVM an image is represented by the individual measure.

mi-SVM-1 and mi-SVM-2: The top 60 images are taken as member of a

positive bag and the lower ranked images as unlabeled singleton bags. This results

in a collection of 36 positive bags for a target category. The negative bags are

created from searches for other categories. For mi-SVM-1 we represent an image by

concatenation of both features while for mi-SVM-2 we use two supervised SVMs as

feature specific classifiers.

Co-miSVM The top 30 images are taken as member of a positive bag and the

lower ranked images as unlabeled singleton bags. This results in a collection of 36

positive bags and 1080 unlabeled bags for a target category. The negative bags and

additional unlabeled bags are taken from the search for other 6 categories. For all

seven methods the training data is summarized in Table 4.1.

The graph Laplacian matrices used in Co-miSVM, LapSVM and Co-LapSVM

are constructed with the number of nearest neighbors k = 10, τ = 0.5, γA is set to
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aeroplane mbike train car bus cow horse

SVM-1 80.80 78.88 73.58 77.68 84.11 75.88 59.57

SVM-2(avg kernel) 80.12 79.17 74.04 77.34 83.27 74.90 59.28

LapSVM 80.07 77.69 78.57 74.10 84.94 78.82 66.61

Co-LapSVM 81.12 78.81 78.43 77.50 84.01 79.02 66.10

miSVM-1 80.80 78.88 73.58 77.68 84.11 75.88 59.57

miSVM-2 82.01 81.17 76.04 79.34 85.37 76.09 61.27

Co-miSVM 86.87 88.65 82.54 84.77 86.16 84.04 68.09

Table 4.2: Performance scores in percent mAP on the entire test images, taken from
ImageNet [60] dataset, for the 5 binary classification methods when trained directly
on Internet searched images. Best scores are indicated by boldface numbers.

1, and γI = lb/M
2. For all the seven methods we set the hyper-parameter C=10.

These values are fixed with the intension to fairly compare the methods for the task

of object categories learning in an automatic or unsupervised setting. No model

selection method is applied which would otherwise increase performance equally of

each method.

We evaluate these methods on ImagNet[60] test dataset after they are trained

with images collected using keyword-based image searches. ImageNet [60] is a bench-

mark dataset containing images of various common object categories and is provided

with ground truth labels. We choose a test set from it, containing 7926 images from

the seven object’s categories where each category has more than 1000 images. Test-

ing on all these images allows us to compare the binary classification accuracies of all

methods which are trained directly on ambiguous Internet searched images. A test

image is considered as a singleton bag when presented to a MIL based classifier. The

binary classification performance of the methods as measured by the mean Average

Precision (mAP) (The PASCAL metric) on the entire test set images is tabulated

in Table 4.2.

It can observed from the results presented in Table 4.2 that in spite of the

same number of training images the individual performance scores gradually improve

starting from single instance supervised methods then single semi-supervised and
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finally multiple instance methods. Multiple instance learning based method nicely

model the ambiguity in the true labels of images obtained from the Internet. Finally,

the overall results suggest that Co-miSVM effectively made use of the unlabeled

images using the two representations during training.

4.5.2 Re-ranking Google Searched Images

4.5.2.1 Berg Dataset

First we compare the performance of our method with sMIL [9] and an SIL based

method proposed by Schroff et al. [22]. We consider the re-ranking of the entire

Berg [21] dataset images after training on images automatically collected from the

Internet searches. The Berg dataset [21] contains 10000 images for a total of 10

different categories of animals. The images are noisy as they were downloaded from

the Google image searches and include abstract images such as comics, graphs,

plots and sketches. These are provided with ground truth labels by the authors [21]

indicating their relevance to a certain animal’s category.

For the 10 categories, we collect bags of images from Internet searches. Each

object’s category name is translated into five different languages (English, German,

Spanish, Italian and French) before querying each of three search engines (Yahoo,

Google and Bing). This results in 15 positive bags of images for each category. For

training sMIL [9] method, we download top ranked 50 images per search query and

group them to form a positive bag. Similarly, for training Co-miSVM method, we

used the top ranked 20 images to build a positive bag and remaining 30 images

as unlabeled singleton bags. The negative bags of images and additional unlabeled

bags are taken from the search return for other categories. Note, all these images

obtained automatically by executing a script without any manual supervision and

the same number of total images are used for training of both models.

To represent an image we use the same features, as presented in Section 4.4.2.

For Co-miSVM, the graph Laplacian matrices are constructed with the number of

nearest neighbors k = 10, τ = 0.5, γA is set to 1, γI = lb/M
2 and C=10. For all the

seven methods we set the hyper-parameter C=10. While hyper-parameters C for

sMIL training is selected via cross-validation using one-held out bag, as done in [9].



60 Chapter 4. Co-regularized Multiple Instance Learning

0

10

20

30

40

50

60

70

80

90

antgiraffe leopard bear beaver frogmonkeypenguin

A
ve

ra
ge

 P
re

ci
si

on
 a

t 1
00

-im
ag

e 
re

ca
ll

001

dolphin

Co-miSVM

sMIL

Schroff et al.

(a) Berg [21] test dataset

Figure 4.2: Performance comparison of Co-miSVM and sMIL [9] with Schroff et al. [22], on the
Berg [21] test dataset. The plot shows the precision in percent at 100-image recall level.(Higher
is the better).

We use two χ2 based kernels for Co-miSVM where the width of each kernel is set

to the mean of χ2 pairwise distances between images. While for sMIL we take the

mean two χ2 based kernels values obtained from both representations.

Figure 4.2 compares the results reported in [22] with the proposed method and

sMIL [9]. It can be seen, that our approach achieves higher precision for most of

animals categories with only bear, beaver and frog being out performed by Schroff et

al.[22] method. However in those cases where we performed equally with sMIL may

be explained by high level noise images. Compared with sMIL, the results show

that our assumptions regarding the noise level of images retrieved automatically

from web is correct and unreliable images as unlabeled singleton bags results in the

best performance.

4.5.2.2 Fergus Dataset

Second, we evaluate our proposed method by training with Fergus dataset con-

taining a total of 4091 images for the seven categories (airplanes, cars rears, faces,

guitars, leopards, motorbikes and wristwatches). These images were downloaded

from Google image search using each category name as a keyword. The images are

provided with ground truth labels by the authors indicating their relevance to the

queried category. The image set contains junk images which are totally unrelated

to the keyword categories. As judged in [17], e.g., the images collected for airplanes
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aero cars rear face guitar leopard mbike wrist watch Mean

Google 50 41 19 31 41 46 70 43
SVM [22] 35 - − 29 50 63 93 54
TSI-pLSA [17] 57 77 82 50 59 72 88 69
LDA [20] 100 83 100 91 65 97 100 91
MRank [28] 39 53 66 32 50 79 75 56
SpecFilter + MRank [27] 86 100 75 58 63 79 100 80
sMIL [9] 100 95 75 72 72 80 93 84
Co-miSVM 99 100 83 96 92 100 95 95

Table 4.3: Performance Comparison on Fergus dataset [17]. Ranking precision, in
percent, at 15% recall.

contain 73% junk images. The task is first to train a certain category model using

the raw Google data and then re-rank the entire dataset by estimating the relevance

of images to the target category.

Following the experimental protocol used in [9], we also group the images into

multiple bags of images by random selections of bags of size 25 images. We trained

binary image classifiers with one third of these bags per category as positively labeled

and the rest are taken as unlabeled images while the negative bags are taken from

other categories.

The width of the kernel is set to the mean of χ2 distances between the pairwise

instances. The graph Laplacian matrix is constructed with k = 10, τ = 0.5. While

hyper-parameters C, γA and γI are via cross-validation using one-held out bag, as

done in [9].

The final results are presented in Table 4.3 for comparison with two probabilistic

topic based models (TSI-pLSA [17] and LDA [20]), an SVM-based method proposed

by Schroff et al. [22] using both text and image features, two graph based models

(MRank [28], SpecFilter + MRank [27]) and an MIL based method (sMIL [9]).

The results show that our Co-miSVM achieves best mean precision and the

performance is more consistent then other methods.

4.5.3 MIL Benchmark Datasets

This section present experiments on five datasets, i.e., three image classification

datasets (Tiger, Elephant and Fox) and two drug activity prediction datasets (Musk1

and Musk2). These datasets are used as benchmark by different, supervised and
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semi-supervised, state-of-the-art MIL algorithms designed for various tasks. Includ-

ing mi-SVM [14], MI-SVM [14], AW-SVM [61], miGraph [62], CRF [63], PPMM [64],

MILBoost [65] and IL-SML [58]. Our purpose of evaluation is twofold: firstly, to

show the generality of the proposed algorithm by giving comparison to various meth-

ods. Secondly, we want to show the impact of unlabeled bags on the classification

performance. The classification performance is measured using the mean area under

the receiver operating curve (AUC).

In the image classification datasets, an image is considered as a bag of segmented

regions. There are about 100 positive and 100 negative bags, each containing 2

to 13 instances where an instance is represented by one 230 dimensional vector.

The Musk1 dataset has 47 positive bags and 45 negative bags with an average of

about 5.2 instances per bag. The Musk2 has 39 positive bags and 63 negative bags,

however the number of instances per bag is much larger, i.e., an average of about

64.5 instances per bag. For the drug activity datasets, an instance is represented by

a 166 dimensional feature vector.

We performed experiments on each dataset via repeating 10-fold cross validation

for 20 times. In order to analyze the impact of using unlabeled training bags on per-

formance, in each 10-fold cross validation we pick a fixed percent out of the 9-training

folds and split it into labeled and unlabeled bags, keep the labels of the labeled bags

and remove the label information in the unlabeled bags. For example, we select 40

percent out of the 9-training folds as labeled training bags and the remaining 60 per-

cent as unlabeled singleton bags for training Co-miSVM. As others have used only

one kernel because of the given type of instance representation. Therefore, we use

an euclidean distance based RBF kernel k(1)(xi,xj) = exp(−D(1)(xi,xj)

τ
), where the

bandwidth τ is set to the median of the pairwise instances distances. The value of C

is set to 10. The sparse kNN adjacency graph W is constructed with k is set to 10

and the euclidean distance measure with σ = 0.05. The values for parameters, γ
(1)
A

and γ
(1)
I are tuned once using a coarse grid search from 10−3 to 104 for each dataset.

These 20 runs of individual 10-fold cross validation are then further repeated for

various percentages of labeled and unlabeled training bags. The per-fold average

test classification performance at various percent of labeled and unlabeled training

bags is shown in Figure 4.3. It can be seen that for each dataset the performance
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(b) Tiger
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(c) Fox
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(d) Musk1
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(e) Musk2

Figure 4.3: The classification performance, in percent, on five MIL benchmark datasets. For each
percent of label bags out of the 9-training folds, the plots show average performance over 20 runs
of the individual 10-fold cross validation.

increases up to a certain peak point, marked as red, where the ratio of label and

unlabeled bags, out of the 9-training folds, is appropriate. Notice, that the number

of unlabeled training bags decreases with increase in percent of labeled bags. The

final best results are shown in Table 4.4 in comparison with other methods. The

results show that our method achieves either the best competitive results compared

to other state-of-the art methods. In majority of the dataset we give either the best

or the second best performance.
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Elephant Tiger Fox Musk1 Musk2

MISVM
RBF [14] 73.1 66.6 58.8 77.9 84.3
linear [14] 81.4 84.0 57.8 - -
poly [14] 79.0 81.6 59.4 - -

miSVM
RBF [14] 80.0 78.9 57.9 87.4 83.6
linear [14] 82.2 78.4 58.2 - -
poly [14] 78.1 78.1 55.2 - -

AW-SVM(RBF) [61] 82.0 83.0 64.0 86.0 84.0

IL-SMIL [58] 82.1± 2.7 80.3± 3.3 57.1± 4.6 84.1± 4.8 83.8± 4.2
PPMM[64] 82.4 82.4 60.3 95.6 81.2

MILBoost[65] 93.43 91.70 71.80 81.98 81.87
CRF[63] 85.0 83.0 67.5 88.0 86.3

miGraph[62] 86.8± 0.7 86.0± 1.6 61.6± 2.8 90.0± 3.8 90.3± 2.6
Co-miSVM 93.9± 0.8 88.7± 1.0 71.6± 1.9 91.5± 1.8 91.6± 1.8

Table 4.4: Classification performance comparisons, in percent, on five MIL bench-
mark datasets. We report the average performance over 20 runs of individual 10-fold
cross validation. For each dataset two best results are shown in bold.

4.6 Conclusion

In this chapter, we proposed a new method for learning object categories directly

from Internet images by just entering the objects’ name. Since in this way noisy

labeled data is obtained we introduced a semi-supervised MIL method, Co-miSVM,

that is additionally able to use multiple feature representations. We evaluated our

method on standard MIL benchmark and realistic image datasets to show the ef-

fect of the different layers involved and achieved good performance against other

approaches.



Chapter 5

Training Supervised Object

Detectors

This chapter presents a multi-stage framework for training supervised part-based

object detectors. The system requires a list of target object categories names as

input. Using only this information, training bags of images are collected via Internet

searches following the method presented in Chapter 4. In particular, we first train

an image classifier that specifies the presence or absence of a target object. Then

in a localization step we crop image patches describing the object, which are finally

used to train an object detector.

This chapter is organized as follow: Section 5.1 gives a review of the problem.

Section 5.2, presents the details about the types of features, kernels and the formu-

lations of the proposed extension to multiple instance SVM. Section 5.3, discusses

the multi-stage framework. Section 5.4, conducts experiments to demonstrate the

proposed system on benchmark datasets. Finally, Section 5.5 concludes the chapter.

5.1 Introduction

In Chapter 1 it has been discussed that the key word-based image search engines

allow for gathering large amounts of unlabeled images without any manual effort.

The images are filtered and ranked by the search engine according to the textual

information in their close surroundings. Even if most of the retrieved images are

65
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related to the visual concept, they also contain completely unrelated images or

noisy labeled images. While category classification models can be learned (e.g., it

is demonstrated in Chapter 4) using such images it is more difficult to train object

detector, since it often requires the exact location of the object of interest. For this

reason, previous work (see Chapter 2.1) has mainly focused on learning models for

object classification.

In this chapter, we build on these ideas and propose a system to learn an object

detector from images automatically obtained from the Internet, requiring only the

name of the target class for training a sophisticated part based detector, i.e., LSVM-

part-based detector proposed in [66]. In particular, we first learn an object model

that specifies the presence or absence of a target object, for this stage the training

images are collected using multiple images search engines. This object classification

model is then used to rank the collected images, which are provided as input training

images to the next stage. Then in the localization step, a classifier is trained and

then applied to localize the target objects in the given images. The system then

crops those image patches that contains and describes the target objects. Finally in

the last stage, those cropped images are used to train the LSVM-part-based detector

proposed in [66].

In the classification and localization stage, multiple instance SVM [9] is used

for training a classifier and a detector. This method is extended to semi-supervised

MIL in order to learn a better model by exploiting different types visual features.

To demonstrate the benefits of the overall system, we show results for two different

publicly available datasets.

5.2 Representation and Multiple Instance Learn-

ing Method

To learn from Internet images, we need a robust method which is able to cope with

un-surely labeled data. Thus, we use multiple instance learning. First, we define

formally the problem we want to solve:
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Definition of the problem

Given a training set LB = {(Bi, Yi)}lbi=1 in the form of lb bag-label pairs and UB =

{Bi}ubi=lb+1; where a labeled bag Bi is a collection of ni instances Bi = {xij}nij=1; an

unlabeled Bi ∈ UB = {xij}1
j=1 is a singleton bag with one instance, xij ∈ X ; and

Yi ∈ {−1,+1, 0} is its class label. The bag label Yi provides information about an

instance xij label yij which can be explained by the following statements:

Yi = +1⇒ ∃ xijo , jo ∈ {1, · · · , ni} : yijo = +1, (5.1)

Yi = −1⇒ ∀xij, jo ∈ {1, · · · , ni} : yijo = −1, (5.2)

Yi = 0⇒ ∀ xijo , j0 = 1 : yij = 0. (5.3)

A positively labeled bag ensures that it contains at least one instance that can

be assigned a positive label; there is no other information about the remaining

instances in a positive labeled bag which might be completely unrelated belonging

to neither positive nor negative class, While a negative labeled bag ensures that

all instances it contains are assigned negative labels. Additionally, we are given

a set of V features Φ(v) : X → Rdv , x 7→ x := Φ(v)(x) where dv represents the

dimensionality of the v’th features. For each feature type we can define kernel

function that measure the similarity between instances that belong to labeled bags

k̃(v) : X × X → R, (x,x) 7→ k̃(xij,xij), which are elements of the RKHS space of

functions defined as

HK̃(v) =

{
f (v)(.) =

lb∑
i=1

ni∑
j=1

α
(v)
ij k̃

(v)(xij, .), lb andni ∈ R, α(v)
ij ∈ R

}
(5.4)

Now, the problem of learning an instance classification function y : X → {+1,−1}
from the kernels and the training bags of instances, is called semi-supervised multiple

instance multiple kernels combination problem.

In the Stage 1: a bag is collection of images so an instance is an image, these

bags of images are collected via key-word based search engines. In Stage 2: a

bag representing an image is a collection of its sub-regions. We use two types of

a features, for Φ(v) PHOG and PHOW to represent an instance in a bag. In the

following, first we discuss the details of for these representation and then we give
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our proposed solution for solving this problem as multiple instance multiple kernel

problem.

5.2.1 Representation

We use two types of features to capture the shape and appearance of an object, i.e.,

pyramid of histogram of oriented gradients (PHOG) and pyramid of histogram of

visual words (PHOW) [1]. For PHOG the number of histogram bins is set to 40 and

pyramid level is 2∗. Similarly for each image, the color SIFT descriptors on a dense

regular grid of 16× 16 pixel patches are computed with a spacing of five pixels and

at four different scales. Such a dense grid is also necessary to capture any uniform

regions such as sky and a road surface while the multi-scale allow for scale variations

between images. We perform a k-means clustering of a random subset of patches

collected from the training images to build a visual vocabulary of 1000 visual words.

Each instance in a bag, is then represented by a PHOW with 2 × 2 sub-divisions.

We use a χ2 distance RBF kernel since χ2 this has been extensively used for such

feature comparisons. This kernel K(1) ∈ RM×M is defined as

K
(1)
ij = k(1)(xi,xj) = exp(−

D
(1)

χ2 (xi,xj)

τ
), (5.5)

where D
(1)

χ2 is the χ2 pairwise distance defined as

D
(1)

χ2 (x, z) =
1

2

d1∑
k=1

(xk − zk)2

xk + zk
. (5.6)

and the width of the kernel σ is taken as the average pair wise distance, τ =

M−2
∑M

i,j D
(1)

χ2 (xi,xj), where M is the number of training instances in all the labeled

and unlabeled training bags, M =
∑lb+ub

b=1 nb.

Similarly, a χ2 distance based RBF kernel is used for PHOW type of features.

∗We use these fixed numbers based on the best results reported in [1].
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5.2.2 MKL method with Multiple Instance Learning

Since, we unlabeled singleton bags with no labeled information. Therefore, we used

a co-regularized a kernel function, discussed in Chapter 2, that can can exploit

manifold structures of the feature spaces. For a kernel function k̃(v) to measure

similarity between two real valued vectors, we define it as

K̃
(v)
ij = k̃(v)(xi,xj) = k(v)(xi,xj)−K

(v)T

i (I +
γ

(v)
I

γ
(v)
A

LCK(v))−1γ
(v)
I

γ
(v)
A

LCK
(v)T

j . (5.7)

where K̃ ∈ R(M−ub)×(M−ub) is the kernel matrix defined over instances from labeled

bags lb, and LC ∈ RM×M is the combined graph Laplacian, see Chapter 2.2.2.

min
{yij}li=1

min
w,b

γA‖w‖2 +

lb∑
i=1

ni∑
j=1

`(yij, (w
Th(xij) + b)) (5.8)

subject to yij = −1, ∀i : Yi = −1, j = 1, · · · , ni,

Yi ≥
2− ni
ni

, ∀i : Yi = 1, (5.9)

where γA = 1
C
> 0 is a free regularization parameter controlling the trade-off be-

tween error minimization and margin maximization, and `(yij, t) is a hinge loss

or soft-margin loss function. In our case, we slightly extend the formulation in

Eq.(4.2) by replacing h(xij) with the responses of V kernels evaluations as h(xij) =

[f ∗(1)(xij), · · · , f ∗(V )(xij)]
T based on multiple feature representations of each in-

stance. We then solve the problem in Eq.(4.2) using the same iterative optimization

as proposed by Andrew et al. [14], detailed are presented in 2.3.1.

The final binary decision function of miSVM is of the following form

F ∗miSVM(x) = sgn
(
w∗T

[
K̃(1)(x)Tα∗(1), · · · , K̃(V )(x)Tα∗(V )

])
. (5.10)

In the multi-stage system, we use this classifier for ranking images when trained as

image category classifier, and the next stage for scoring of subregions in an image

when trained as sub-region classifier.
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Figure 5.1: Three-stage framework- for training an object detector with example images collected
from the Internet searches: (1) object classification, (2) object localization, and (3) Training a
supervised part-based object detector.

5.3 Object Classification and Localization

To learn an object detector from weakly-labeled Internet images. We created a three-

stage framework, which is illustrated in Figure 5.1, Object classification, Object

localization and Training a supervised part-based object detector.

5.3.1 Stage 1: Object Classification

In this stage, first bags of images are collected for a given object’s class name from

the Internet and then a binary image classifier is trained with these bags of images.

The final classifier in then used to rank the images.

There is an ambiguity that the queried image may not contain the object-of-

interest. Therefore, we explicitly model this ambiguity by collecting bags of images

via a number of different image search engines (i.e., Yahoo, Google and Bing). Such

bags of images can be obtained by translating the given object’s name from English

into 12 different languages, e.g., English, Spanish, German, Arabic, and French,

using an automatic translation tool†. The details for collection of bags of images,

are presented in Chapter 4.

Using these bags of images, we trained a binary object category based image

classifiers. The classifiers are used to rank the collected images based on the confi-

dence scores. We threshold the confidence scores for the next stage of our framework

and consider highly confident images as labeled and less confident ones as unlabeled

†http://www.google.com/language_tools?hl=en

http://www.google.com/language_tools?hl=en
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images. This helps us, to some extent, to prevent the propagation of noise from one

stage to the other.

5.3.2 Stage 2: Object Localization

In order to train a classifier as an object detector, we need to know the location of

the target object in the training images, which may contains more than one objects

of different or same classes. Such an ambiguity can also be cast as a MIL problem,

where each image can be considered as a bag containing its sub-regions. Therefore,

a positive bag ensures that at least one sub-region covers the target object. We need

some reasonable guess about the object’s location so that we can group these sub-

regions to form a bag. There are a number of approaches available to produce a set

of possible locations of an object in an image: the objectness measure proposed by

Alexe et al. [67], the saliency detection proposed by Bruce et al. [68], the hierarchical

segmentation proposed by Arbeláez et al. [69], and the method proposed by Endres

et al. [70]. Here, in particular, we use the objectness measure [67] and the hierarchical

segmentation [69] to represent an image by a group of sub-regions.

5.3.3 Stage 3: Training a Supervised Object Detector

It has been shown that part-based models such as [66] yield state-of-the-art results

in various object detection tasks. However, these models need bounding boxes for

the objects in training images. In our case we take the output of Stage 2 and train

a detector using the Latent SVM part-based model [66]. This detector is then used

to detect objects in any test image‡.

5.4 Experiments

To demonstrate the proposed system, we give a detailed experimental analysis of

the framework based on two publicly available datasets, i.e., on the ETHZ [72] and

the PASCAL VOC [73] benchmark datasets. We show that our framework allows

‡Please note that we are aware that recently approaches such as Nguyen et al. [71] have been
proposed, which could directly been trained on the output of Stage 2
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us to train an object detector without having any visually labeled image data. We

first substantiate the benefits of using multiple features on the ETHZ dataset and

then give a detailed analysis of the full system on the PASCAL dataset.

5.4.1 ETHZ Test Dataset

The ETHZ test dataset was mainly built for object localization based on shape

features. It contains five object classes (apple-logos, bottles, giraffes, mugs, and

swans), totally a number of 255 images. The total number of object instances is 289,

as in some images objects appear multiple times. The data set is highly challenging

with a high intra class variability and the objects appear in various scales. Most of

the images are photographs but there are also some drawings and paintings, where

in majority of the images the target object occupies only a small fraction of the

image.

In the following, we mainly want to demonstrate that using multiple features in

parallel can significantly increase the object detection rate compared to the baseline

approach [9]. For this experiment, we train MIL-based binary object detectors

using the images collected by Stage 1 of our framework. We use the hierarchical

segmentation [69] to decompose an image into a bag of 100 sub-regions. Each sub-

region is represented by separate PHOG and PHOW descriptors for our model; for

the baseline method the feature vectors are concatenated. The final detection results

are shown in Figure 5.2.

We show the results obtained by the original sMIL approach and by our slightly

adapted approach. The performance is measured by the detection rate against

the number of false positives per image (FPPI) averaged over all 255 test images.

A detection is correct if the intersection-over-union ratio with the ground truth

bounding box is greater than 50%. The plots show that the proposed method

performs well on all classes compared to the baseline at the moderate false-positive

rate of 0.5 FPPI as a reference point. This shows that using multiple features in

parallel can improve the detection results.
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Figure 5.2: Object detection results on ETHZ dataset based on the detection-rate under 50%
intersection-over-union criterion. The results compares the detection rates, which are trained
using the sMIL and the proposed multi-features extension to MIL methods, (see 5.2.2 for details).

5.4.2 PASCAL VOC Test Dataset

For this experiment, we use a subset of the object classes from the PASCAL VOC

2007 dataset. In particular, we select mainly compact objects where fully supervised

methods perform reasonably well [73]. The selected objects are horse, airplane,

bicycle, motorbike, bus, train, boat, and car. We selected PASCAL VOC 2007

because this dataset has been used for other state-of-the object detection evaluations

and the dataset is still widely used for evaluation [74].

In order to decompose an image into a bag of objects in Stage 2, we sample 100

windows from the 10000 windows per image generated using the publicly available

code for OM [67]. Based on this input (labeled and unlabeled bags of objects) we

train a MIL-based binary object localization model and use it to detect the target

objects. Illustrative examples are shown in Figure 5.3. Finally in Stage 3, this

output is used to train a fully supervised part-based detector (LSVM-part-based)

[66].

The localization model learned in Stage 2 can also be used to detect objects

without training the LSVM-part-based detector. Therefore, to show the possible
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Method bike mbike bus aero horse car train boat mAP

Stage 2 30.1 27.5 29.7 9.5 6.0 29.4 8.3 2.4 17.9
LSVM + OM 31.0 28.6 30.8 7.1 4.2 32.3 8.4 2.4 18.1

LSVM + Stage 3 39.6 34.5 36.7 11.8 7.0 34.2 11.9 3.4 22.4
LSVM-part-based [66] 59.5 48.7 49.6 28.9 56.8 57.9 45.1 15.2 45.2

Best VOC2007 [73] 40.9 37.5 39.3 26.2 33.5 43.2 45.3 9.4 34.4
MKL Detector [5] 47.8 45.5 50.7 37.6 51.2 50.6 45.3 15.3 43.0

Table 5.1: Object detection results, AP in percent, for different methods in the
seven of the PASCAL VOC 2007 [73] challenge categories.

performance gain, we also directly apply this model for object detection, providing

a meaningful baseline. Additionally, it can be observed from Figure 5.3 that in

the images fed to Stage 2 the target object is either the central focus or sometimes

largely fills the frame. Hence, the objectness measure (OM) may produce a good

bounding box around the object. Therefore, as a second baseline, we use the highest

confident window per image generated by the OM as bounding box annotation to

train the LSVM-part-based detector. The thus obtained results in comparison to

other state-of-the-art methods are given in Table 5.1.

We give a comparison to the LSVM-part-based [66], the challenge winners (Ox-

ford, INRIA PlusClass and UoCTTI) [73], and an MKL-based approach [5]. In

contrast to our approach, these methods follow the comp3 protocol and thus are

fully supervised using both, the image label and the location of the object during

training. The detection performance for each object class is measured by the aver-

age precision (AP) on the entire PASCAL VOC 2007 test set (4952 images). Notice

that the results for the LSVM-part-based model are taken from the currently im-

proved results§, where an object class is represented by a three component mixture

of deformable part models.

It can be seen that the proposed method (Stage 3) outperforms the baselines

for all object classes. But the performance in case of horse, train and boat is not

satisfactory. The main reason is the diversity in appearance, shape, and scale of

these objects, which our model does not capture very well using the standard repre-

sentation. As expected, our model cannot outperform the state-of-the-art detectors,

which use high quality annotations for training. However the results are still encour-

§http://people.cs.uchicago.edu/ pff/latent/
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Figure 5.3: Object locations of Internet images obtained automatically by Stage 2: bicycle, motor-
bike, bus, aeroplane, horse, car, train and boat. Correct detections are shown on the left side and
bad detections (the bounding boxes cover either only parts of the object or is much larger than
the object size) on the right side.

aging, as we learn discriminative visual object models provided only with a weak

textual prior.

5.5 Conclusions

In this chapter we proposed a system which is able to learn from weakly labeled

or nosily labeled images downloaded from the Internet. In fact, the goal was to

learn an complex part based object detector just by using a textual prior, i.e., not

using any manually class-labeled images. Our system works in three stages. In the

first stage, we determine the presence of a target object; in the second stage, we

localize the object; finally, in the third stage, we learn a detector using a supervised

method. Since in the two stages uncertainly labeled data has to be handled we apply

an extend MIL method for the actual learning tasks. To demonstrate the benefits

of the approach, we evaluated it on two benchmark datasets. We showed that we
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are able to train a reasonable detector without using any manually labeled data,

i.e., the training images are provided by a weak supervisor the Internet via images

searches.



Chapter 6

Huberized LapSVM

The Laplacian Support Vector Machine [12] (LapSVM), introduced in Chapter 2,

has shown state-of-the-art performance in semi-supervised classification. To over-

come some issues of the original dual formulation, recently Mellacci et al. [15] have

proposed an efficient method, the LapSVMp, for training the LapSVM in the primal

with preconditioned conjugate gradient. This reduces the training time and allows

for a fast computation with approximately the same classification accuracy as the

original one. However, LapSMp uses a squared hinge loss function for the labeled

examples, which is not twice differentiable and penalizes noisy labeled examples too

much. The accuracy of such an approach may decrease in situations when the train-

ing data contains outliers or the labeled data is heavily contaminated by noise. One

of such scenario, as explained in Chapter 1, is learning models from Internet images

for object categorization, since the true class label of the images collected could be

ambiguous and the desired object may not be present in the queried images.

This chapter, presents the detailed formulations for training the LapSVM prob-

lem in the primal with a continuously differentiable Huber hinge loss function. The

resulting method is called the Huberized LapSVMp. The Huber hinge loss gives

a milder penalty than the squared hinge loss, making the proposed solution fit in

situations when the available labeled training data is noisy.

Section 6.1 reviews the formulations for solving the LapSVM problem in dual and

also highlight the benefits of solving this problem directly in the primal. Section 6.1,

presents in detail the Huberized hinge loss function in comparison with the linear

77
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and squared hinge loss functions. Section 6.3 provides the detailed formulations for

training the Huberized LapSVMp in the primal, solving the learning problem with

Newtons’ and preconditioned conjugate gradient method. Section 6.4 presents the

experimental analysis of the proposed method on a number of datasets, specially

the PASCAL VOC 2007 where the Huberized LapSVMp outperform the winning

scores. This section also presents experimental analysis for automatic learning of

object category classifiers. Finally, Section 6.5 concludes this chapter.

6.1 Laplacian Support Vector Machines

The LapSVM, discussed in Chapter 2, is a straight forward extension of the su-

pervised SVM learning to semi-supervised learning. It is based on a manifold as-

sumption, which states that the data lies on low dimensional manifolds in a high

dimensional input feature space where each manifold may represent a single class.

It implies that if two points that are close with respect to the geodesic distances on

a manifold M then their labels should be the same, similar in the sense that the

conditional probability distribution P (y|x) between such two points should change

smoothly along the manifolds. Since the trueM is unknown [12], the intrinsic norm

is estimated from the point cloud of labeled and unlabeled points using the graph

Laplacian.

The Graph Laplacian is a discrete approximation to a weighted Laplace-Beltrami

operator on a manifold, which has numerous geometric properties and induces a

smoothness functional. The LapSVM uses a local neighborhood adjacency graph

to build the graph Laplacian [75] to model the high-dimensional data lying on a

low dimensional manifold. Given a training dataset S, the adjacency matrix W ∈
R(l+u)×(l+u) of the widely used kNN graph is defined as

Wij =

{
exp(−D(xi,xj)

σ
) i ∈ Nj or j ∈ Ni

0 otherwise
, (6.1)

where D() is a pairwise distance measure in the input feature space Rd such as

euclidean distance or χ2 distance; Ni ⊂ [1, · · · , l + u] consists of k indexes of k

nearest neighbors of instance xi in S; the scaling factor σ is set to the mean of the
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k nearest neighbors pairwise distances. An edge between two vertexes, Wij > 0,

represents the similarity of two instances . A larger edge weight means that the

labels or class of the two connecting instances are the same. The graph Laplacian,

which is a positive semi-definite operator, is defined in terms of this adjacency matrix

as L =
(
D−

1
2 WD−

1
2

)p
, where D is a diagonal matrix whose diagonal element are

given by Dii =
∑l+u

j=1 Wij and p ≥ 1 is the degree of the graph Laplacian.

The LapSVM algorithm learns from the manifold structure of the input feature

space and uses it as an additional regularization term in the supervised SVM learning

process. Assuming that the training examples, S = L + U , are available in an

ordered form in such away with the first l instances are labeled and the next u

are unlabeled. Each instance xi is associated with a label yi ∈ {+1,−1, 0}, if

yi ∈ {+1,−1} otherwise it is unlabeled. In terms of a kernel K ∈ R(l+u)×(l+u), the

primal object functional to be minimized is defined as

min
α∈R(l+u)

1

l

l∑
i=1

`h(yi,K
T
i α) + γAα

TKα+
γI

(l + u)2

l+u∑
i,j=1

Wij(K
T
i α−KT

j α)2 (6.2)

or equivalently as

min
α∈R(l+u)

1

l

l∑
i=1

`h(yi,K
T
i α) + γAα

TKα+
γI

(l + u)2
αTKLKα (6.3)

where `h(y, t) is the linear Hinge loss function: max(0, 1 − yt). The key property

is that this loss function is linear for outliers and noisy labeled examples which

encourages the classification model to balance the number of outliers per class by

treating all outliers equally; γA and γI are regularization parameters. The former

controls the smoothness of the decision functional f in the associated RKHS and

the latter controls its penalization along the low dimensional manifold structure

modeled via the graph Laplacian. The normalization constant 1
(l+u)2

is the scaling

factor for the empirical estimate of L [12].

With the extended version of the Representer Theorem (for proof, c.f.[12]), the

minimizer of the problem in (6.3) is unique and is the linear combination of kernel
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functions centered on the training data:

f ∗(x) =
l+u∑
i=1

α∗i k(xi,x). (6.4)

This real valued function is then used for binary classification.

In the original work of Belkin et al. [12] the proposed solution for LapSVM

is based on the dual form derived from (6.3) using standard Lagrange Multiplier

techniques in a similar way used for a supervised SVM. Since, the difficulty with

the linear Hinge loss is that direct optimization is difficult due the discontinuity in

the derivative of the loss function at yif(xi) = 1. The training of LapSVM in the

dual involves two steps. First using a QP solver, we solve the quadratic program in

l dual variables β:

β∗ = max
β∈Rl

l∑
i=1

βi −
1

2
βTQβ (6.5)

subject to:
l∑

i=1

βiyi = 0,

0 ≤ βi ≤
1

l
i = 1, · · · , l ,

where

Q = YJK(2γAI + 2
γI

(l + u)2
LK)−1JTY; (6.6)

Y ∈ R(l)×(l) is a diagonal matrix with Yii = yi, a matrix J ∈ Rl×(l+u) is defined as

J = [I 0], where I ∈ Rl×l is an identity matrix, and 0 ∈ Rl×u is a zero matrix.

In the second step, the optimal expansion coefficients α∗ that define the decision

function f ∗ in (6.4) are obtained by solving the linear system involving the l dual

variables:

α∗ = (2γAI + 2
γI

(l + u)2
LK)−1JTYβ∗. (6.7)

When γI = 0, LapSVM ignores the unlabeled data and becomes similar to that of
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a supervised SVM problem defined in (2.21). The final binary decision function for

the LapSVM is of the following form:

FLapSVM(x) = sgn(K(x)Tα∗). (6.8)

However, the inversion of matrices in (6.7) and (6.6) leads to complexity O((l+u)3)

and the inversion can be expensive when (l+u) is large. A variety of techniques have

been developed which address issues related to scalability such as [76] and efficiency

such as [15]. We are more interested in an efficient and good approximate solution

for the LapSVM which is obtained by training it in the primal [15] and the approach

is closely related to this work.

6.1.1 The LapSVMp: Training LapSVM in the Primal

The primal and dual are two ways to solve the same optimization problem. In

general, there are two main reasons to solve the problem in the dual. First, the du-

ality provides a simple way to deal with the constraints (by introducing Lagrangian

variables or dual for each constraint). Secondly, the dual problem can be written

in terms of dot products, thereby making it possible to use kernel functions. The

motivation behind the primal is that it directly minimizes the primal variables we

are interested in, its implementation does not require any commercial solver or par-

ticular complex libraries, and in some cases it may be faster to converge [38]. The

training of supervised SVM in the primal have been extensively studied and ana-

lyzed by a number of authors such as [39] or [38]. In contrast, Mellacci et al. [15]

are the only ones who recently explored training LapSVM in the primal.

Specifically for solving the LapSVM, it has been shown in [15] that the uncon-

strained primal optimization is more efficient than the dual. Firstly, it allows us to

solve the original problem without the need of the computations related to variables

switching, i.e., it directly manipulates the primal kernel expansion co-efficients α of

f without passing through the dual β ones. Secondly, the computational cost for

solving the problem is reduced from O((l+u)3) to O(k(l+u)2) where k is significantly

smaller than (l + u) [15].

To minimize the objective function (6.3) by gradient descent, it is necessary
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Figure 6.1: Loss Functions: Linear hinge loss `h(yi, f(xi)) = max(0, 1 − yif(xi)), Squared hinge
loss `sqh(yi, f(xi)) = max(0, 1−yif(xi))

2, and Huberized Hinge loss (6.10) for h = 0.5 and h = 0.9.
When h→ 0 the Huberized hinge loss looks more the Linear hinge loss.

for the loss function to be continuously differentiable with respect to the second

argument. Note that this is an unconstrained optimization problem. For the la-

beled examples, Mellacci et al. [15] have used the squared hinge loss function,

`sqh(yi, f(xi))
2 = max(0, 1 − yif(xi))

2, since it makes the LapSVM problem dif-

ferentiable in f so in α. After substituting ` = `sqh in (6.3), the LapSVMp problem

is defined as

min
α∈R(l+u)

1

2l

l∑
i=1

`sqh(yi,K
T
i α)2 + γAα

TKα+
γI

(l + u)2
αTKLKα. (6.9)

It is solved by preconditioned conjugate gradient (PCG) method [77] the training

with PCG is presented in Section 6.3. To get a fast solution, PCG is coupled with

an early stopping criterion based on the stability of the classifier decision. In this

chapters refers the final classifier by the LapSVMp.

6.2 Huberized Hinge Loss Function

The unconstrained objective function (6.3) can be solved with PCG for various loss

functions for the labeled examples, Figure 6.1 shows some example loss functions.

However, one would like to use a loss function that is more robust to possible outliers

or noise in the training data, in order to improve the classification accuracy and at
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the same time keep the solution efficient. The standard linear hinge loss function is

not differentiable due to the kink in `h(yi, f(xi)) = max(0, 1−yif(xi)) at yif(xi) = 1,

although it is convex and robust to noise or outliers. While the squared hinge loss

which is differentiable (although not twice differentiable) may not be well suited

in situations with possible contamination of the labeled training data. It penalizes

noisy examples too much, since it rises quadratically on the left tail as shown in

Figure 6.1.

Inspired by the robust Huber loss [78], Chapelle [38] has proposed a loss func-

tion called the Huberized hinge loss for the standard supervised SVM. It is the

differentiable approximation of the hinge loss function and is defined as

`hubh(yi, f(xi)) =


0 if yif(xi) > 1 + h
(1+h−yif(xi))

2

4h
if |1− yif(xi)| ≤ h

(1− yif(xi)) if yif(xi) < 1− h
, (6.10)

where h ≥ 0 is a parameter whose values can bet set between 0.01 and 0.9. This loss

function has both a quadratic and a linear parts as shown in Figure 6.1. if h → 0

then the loss function approaches to linear Hinge loss . The important property of

this loss function is that it gives a milder penalty than the squared Hinge loss does.

This makes the LapSVM robust to label noise or to outliers present in the labeled

part of training examples. We solve the LapSVM problem in the primal with the

Huber hinge loss function.

6.3 Training Huberized LapSVM in the Primal

This section presents the primal training algorithm of the Huberized LapSVM clas-

sifier along the lines of Melacci et al. [15] using both PCG and Newton’s method.

Instead of using the squared squared hinge loss, we use the Huberized hinge loss

function (6.10) to measure the misclassification. Note that we are not minimizing

the hinge loss, since from the machine learning point of view there is no reason to

prefer hinge or square hinge loss anyway. However, in our eyes the classification

accuracy of LapSVM classifier can be improved after introducing Huber hinge loss,

since it is more resistance to labeled noise or outliers or possible contamination in the
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labels during training. By substituting ` = `hubh, the unconstrained optimization

problem (6.3) can be written as

Ω(α) = γAα
TKα+

γI
(l + u)2

αTKLKα+
1

l

l∑
i=1

`hubh(yi,K
T
i α). (6.11)

It can be minimized by a variety of optimization techniques such as Newton’s op-

timization method as well by PCG method. Newton’s method should be the first

choice for the unconstrained problem, since the objective function is strictly convex,

twice continuously differentiable and piece wise quadratic. However, it requires an

inversion of a large matrix in every iteration leading to a complexity of O(n3). We,

minimized the objective functional (6.11) to obtain the solution α∗, with PCG which

is more efficient method in finding a good approximate solution and considerably

reduce the training time.

6.3.1 Newton’s Optimization

Starting from some initial value for α, each Newton step consists of the following

update:

αt = αt−1 − sH−1∇, (6.12)

where t is the iteration number, s is the step size, and ∇ and H are the gradient

and the Hessian of the objective function (6.11).

It is important to introduce the concept of error vectors [38], before presenting

the detail formulations of Newton’s method. A labeled point xi is an error vector if

a loss function on this point generates a non zero value. For a given L, the Huber

hinge loss defined in Equation (6.10) generates two sets of error vectors, since it

penalizes the given point either quadratically and linearly. It is worth to remind

that we have assumed that the training examples S are available in a pre-ordered

form such that the first l are labeled and the next u are unlabeled points. The loss

function does not penalize all the remaining labeled points for which its value is

greater than zero, since for a given value of h the classifier f(xi) generates such that

yif(xi) > 1 + h ∗. Let Eqd be a set of error vectors which fall in the quadratic part

∗In the case of supervised SVMs the errors vectors are equivalent to the support vectors, however
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and Elin be the set of error vectors which fall in the linear part of the Huber hinge

loss function.

The gradient of (6.11) with respect to α is given by

∇ = (∇α) = 2γAKα+
2γI

(l + u)2
KLKα+

1

l

n∑
i=1

Ki
∂`

∂t
(yi,K

T
i α), (6.13)

where ∂`
∂t

is the first order partial derivative of the Huberized hinge loss function

(6.10) with respect to the second argument and is equal to

∂`

∂t
(yi,K

T
i α) =

2

4h
yi(yiK

T
i α− (1 + h))− yi. (6.14)

By substituting (6.14) into (6.13) we obtain

∇ = 2γAKα+ 2γI
(l+u)2

KLKα+ 2
4hl

KI0
e(Kα− (1 + h)y)− 1

l
KI1

ey

= 2γAKα+ 2γI
(l+u)2

KLKα+ 2
4hl

KI0
eKα−K

(
2(1+h)

4hl
I0
e + 1

l
I1
e

)
y. (6.15)

Here y ∈ {−1, 0, 1} is a vector whose components represent the labels of the training

data, whereas I0
e and I1

e are two diagonal matrices each of size n × n . In I0
e the

corresponding entries for points which are in Eqd are set to one and zeros for all

others points. Whereas in I1
e the corresponding entries for points which are in Elin

are set to one and zero for all others.

The Hessian H is given by

H = (∇α2) =

(
2γAK +

2γI
(l + u)2

KLK +
2

4hl
KI0

eK

)
. (6.16)

Substituting (6.16) and (6.15) in (6.12), the update for each Newton’s step becomes

αt = (1− s)αt−1 + s

(
2γAK +

2γI
(l + u)2

KLK +
2

4hl
KI0

eK

)−1

K

(
2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y

= (1− s)αt−1 + sK−1

(
2γAI +

2γI
(l + u)2

LK +
2

4hl
I0
eK

)−1

K

(
2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y

= (1− s)αt−1 + s

(
2γAI +

2γI
(l + u)2

LK +
2

4hl
I0
eK

)−1(2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y. (6.17)

in case of the LapSVM all the points S contribute to the expansion of f .
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The step s must be found with exact line search or backtracking [79], using one

dimensional minimization of (6.11) restricted to the ray from αt−l to αt. By setting

s = 1 in our experiments did not result in any convergence problem. Convergence,

which take not more than a few iterations, is declared when the number of linear and

quadratic error vectors do not change any more. The complexity with the Newton’s

method is O(n3) due matrix inversion in the update rule. Note, we have assumed

that K (and thus the Hessian) is invertible and non-singular, otherwise the optimal

solution f will not not be unique and will produce one of the possible solution of

expansion of (6.11).

6.3.2 Preconditioned Conjugate Gradient Method

In the following, we present the formulation of training of the Huberized LapSVM

with PCG [77]. To avoid costly Newton’s update we can directly minimize (6.11)

by PCG method, a fast iterative method for solving a large system of equations.

Following [15], we solve the primal LapSVM with huberized hinge loss by PCG, since

PCG allows us to quickly compute approximate solutions, considerably reducing the

training time.

Looking to (6.15) and (6.16), we can also write the gradient as

∇ = Hα−K

(
2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y. (6.18)

Setting the gradient ∇ = 0 in (6.18), we must compute the solution vector α by

solving a system of equations Hα = c,

∇ = Hα−K

(
2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y = 0

=⇒ Hα = K

(
2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y

=⇒ Hα = c, (6.19)

where c = K
(

2(1+h)
4hl

I0
e + 1

l
I1
e

)
y. To find the solution, the first choice is to use

an iterative conjugate gradient CG method. However, the convergence rate of CG

depends on the condition number κ of the Hessian matrix H defined in (6.16). A
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condition number defines the ratio of the maximum to the minimum eigenvalues of

a matrix and and is always greater or equal to one, κ ≥ 1. A larger value of κ leads

to a slower convergence rate of CG and vice versa (c.f. [77]). The presence of the

terms KLK and KI0
eK in H leads to a not so well conditioned system of equations,

resulting in large or bad condition number of H. So, optimizing on α with CG will

results in a slower convergence rate. The PCG provides an easy easy fix to this

problem: preconditioning by a matrix P.

The PCG is an iterative method that indirectly solves an initial systems of

equations (6.19) by solving

Ĥα = ĉ (6.20)

where Ĥ = P−1H and ĉ = P−1c. This implies that preconditioned gradient ∇̂ =

Ĥα − ĉ. In general, PCG requires that P must be selected so that the condition

number of (6.20) is improved with respect to (6.19). Moreover, P−1∇ must be

computed efficiently [77].

Due to the quadratic form of the intrinsic regularizer we can follow a similar

approach used in [38] for supervised nonlinear SVM. Looking to (6.19) we can take

K as a factor of both H and c:

K

(
2γAI +

2γI
(l + u)2

LK +
2

4hl
I0
eK

)
α = K

(
2(1 + h)

4hl
I0
e +

1

l
I1
e

)
y

=⇒ KĤα = Kĉ. (6.21)

This also implies that Ĥ =
(

2γAI + 2γI
(l+u)2

LK + 2
4hl

I0
eK
)

. We select P = K as

preconditioned matrix. Note that we are assuming zero bias and K as non singular

matrix otherwise a small ridge can be added to fix. The preconditioned gradient

∇̂ = P−1∇ = Ĥα−ĉ, can be efficiently calculated without explicitly performing any

matrix inversion. This can be done by first computing the preconditioned gradient

as ∇̂ = Ĥα − ĉ and then gradient vector as ∇ = PĤα − Pĉ. The condition

number of the preconditioned system is decreased with respect to the one in (6.19),

since KLK and KI0
eK are reduced to LK and I0

eK. It is worth to note that the

preconditioned Ĥ is not a symmetric matrix, and it would not be possible to simply

remove the K from both sides of (6.21) and solve it by CG method.

The pseudo-code for finding solution of the Huberized LapSVM problem by
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means of PCG is given in Algorithm 2. We would like to point out that in this

algorithm we have used the classical rules called Polak-Rieber (PR) [77] formula for

the update of conjugate direction. This has been discussed in [77], that after several

iterations the conjugacy of the descent direction may lost due to floating point

error therefore a restart of the preconditioned algorithm is necessary. The restart is

automatically performed when the update term becomes negative. The co-efficient

ρ in the Algorithm 2 becomes zero and the following iteration corresponds to a

steepest descent, as when PCG starts. For solving the LapSVM problem, generally

the PR update is the best choice both for both convergence speed and numerical

stability [15]. In our case we found that PR update is necessary due to the piece

wise nature defined by the sets of error vectors.

Algorithm 2 PCG method for finding solution of the primal Huberized LapSVM
problem

1: h = 0.5,α = 0 and dold = ∇̂old = −y
2: repeat
3: Find s∗ by the minimizing (6.11) on the line α+ sdold.
4: α← α+ s∗d.
5: Let Eqd = {xi ∈ L : |1−Kiα

T | ≤ h}. Update I0
e

6: Let Elin = {xi ∈ L : Kiα
T < 1− h}. Update I1

e

7: Ĥ←
(

2γAI + 2γI
(l+u)2

LK + 2
4hl

I0
eK
)

8: ĉ←
(

2(1+h)
4hl

I0
e + 1

l
I1
e

)
y

9: ∇̂new ← Ĥα− ĉ.
10: ∇ ← K∇̂new

11: ρ← max(0,
(
∇T (∇̂new−∇̂old)

∇̂ToldK∇̂old

)
)

12: dnew ← −∇̂new + ρdold
13: ∇̂old = ∇̂new

14: dold = dnew
15: until Goal Conditions met

6.3.2.1 Line search

At each PCG iteration, we can use a one dimensional backtracking or an exact line

search procedure to select the optimal step size s∗ such that the objective function

(6.11) along the line α+ sd is minimized. Since the outside PCG iteration is based
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on the approximation of the objective function, the inside line search procedure must

be satisfactory enough that the selection of the step size s∗ significantly reduces the

final objection function. Inside each of the PCG iterations we have to solve

s∗ = argmin
s≥0

ψ(s) = min
s≥0

Ω(α+ sd), (6.22)

to find an optimal step size s∗. Let us define a function fd(xi) that indicates the

function f(x) but whose coefficients are in d = [dα], that is, fd(xi) = KT
i dα and

fd = [fd(xi),xi ∈ S]. Now given the search direction, we can rewrite the objective

function (6.11) along the line α+ sd as

ψ(s) = γA(2sdTαKα+ s2dTαKdα) +
γI

(l + u)2
(2sfTd Lf + s2fTd Lfd)+

1

4hl

∑
i∈Eeqd

(1 + h− yi(f(xi) + sfd(xi)))
2 +

1

l

∑
i∈Elin

(1− yi(f(xi) + sfd(xi)))

= γA(2sdTαKα+ s2dTαKdα) +
γI
n2

(2sdTαKLKα+ s2dTαKLKdα))+

1

4hl

∑
i∈Eeqd

(1 + h− yi(f(xi) + sfd(xi)))
2 +

1

l

∑
i∈Elin

(1− yi(f(xi) + sfd(xi)))

(6.23)

Once the products Kα,Kdα,LKα and LKdα have been precomputed, this function

ψ(s) takes only O(n) operations to evaluate. Such an iterative way for finding an

optimal set size is necessary, since we have to deal with two sets of error vectors for

different values of s. Due to its quadratic form we directly minimize this function

by a one dimensional Newton’s line search method, since the cost of each of the line

search iterations per PCG step is negligible with respect to the O(n2) of a PCG

iteration. However, other more efficient search methods such as proposed in [39] can

also be used.

6.3.2.2 Goal condition to met

A number of choices for a common goal conditions for PCG are available and se-

lecting a proper goal condition may enable us to discard unnecessary iterations in

Algorithm 2 that may not lead to a significant improvement in the quality of the
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classifier. In general, the convergence to an optimal or closest to an optimal solution

is declared when the norm of the gradient ‖∇‖ [79] or preconditioned gradient ‖∇̂‖
falls below a given threshold [38]. The relative decrease in the value of the objective

function between connective iterations can also be checked or a maximum number

of PCG iterations can be specified in advance. The adjustment parameters such as

gradient threshold or maximum number of iterations, is extremely important both

for reducing the training time and for the quality of the final classifier. However,

such adjustment is strictly problem dependent and practically hard to find a trade-

off between a good approximation and low number of iterations. Particularly in

case of LapSVMs, either with squared Hinge loss or Huber hinge loss function, the

surface of the objective function varies among different choices of parameters. In-

creasing or decreasing the values of γA and γI can lead to a less flat or more flat

region around the optimal point. This has been thoroughly investigated (c.f. [15]),

which is also true in our case, that fixing in advance the values of gradient thresh-

old and maximum of iterations may either stop the PCG iterations far from the

optimal solution or it may result an increase in the number of iterations without

significant improvement in the quality of the final classifier. A good enough remedy

to this problem is to use the stability check or the stability of the decision function

y(x) = sign(f(x)),x ∈ U on available unlabeled training data as an early stopping

condition for the PCG iterations.

As we have discussed that the intrinsic norm or the manifold regularization term

fTLf enforces a soft constraint f(xi) = f(xj) for near by points xi and xj along

the underlying manifold. This results in a kind of graph transduction and hence

allows the algorithm to diffuse the labels from points in L to the unlabeled data

in U [15]. When this diffusion becomes complete and the classification hyperplane

obtains a quite stable shape around the training data, the intrinsic norm will keep

contributing to the gradient until a balance with respect to the ambient norm and

to a loss function on error vectors is found. Compared to other described common

goals, the early stop of the PCG iterations by stability check has been found in

[15] to achieve accuracy similar to the optimal solution. Hence, we use the stability

check for early stopping of the PCG Algorithm 2, whose pseudo-code is shown in

Algorithm 3.
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Algorithm 3 The stability check for PCG iterations [15]

1: dold = 0 ∈ Rn, η ← 1.5%, θ ←
√
n

2

2: Every θ iterations do the following:
3: dnew = [f(xj),xj ∈ U , j = 1, · · · , u]T

4: τ ← (100.‖dnew − dod‖1/u)%
5: if τ < η then
6: Stop PCG
7: else
8: dold = dnew
9: end if

However, if the loss function is not robust to noise then the intrinsic norm may

diffuse the noise in labeled points to the unlabeled points which will result in a bad

quality of the final solution. To clear this intuition, we perform experiments on a

2D ”two moons” dataset. This dataset depict two classes, data points on the upper

moon belong class +1 and that on the lower moon belong to class −1. This is

shown in Figure 6.2a, where the marked points are used for training LapSVMp and

Huberized LapSVMp as labeled and unlabeled points. Similarly, the training dataset

with noisy labels (shown in maginta color for which we switch their labels during

training) is shown in Figure 6.2d. We train the Huberized LapSVM classifiers and

the squared hinged LapSVMp [15] classifiers using these datasets. The regularization

parameters γA and γI and the RBF kernel width τ = 0.35 for both classifiers are

set with the same values, these values were fixed after tunning the squared hinged

LapSVM [15] on noiseless dataset. Similarly, the number of nearest neighbors is

set to 6 for the construction of graph Laplacian L. The Figures 6.2b and 6.2c

show the corresponding contour surfaces or decision boundaries of our Huberized

LapSVMp and the squared hinged LapSVMp [15] classifiers, after training them

with noiseless dataset. We can see that both classifiers correctly classify the two

moons. In contrast, Figures 6.2e and 6.2f shows their corresponding final decision

boundaries after training both the classifiers with the noisy two-moons 2D dataset,

shown in Figures 6.2d. We can see that only the squared hinge LapSVM classifier

wrongly diffuses the noise in labels to the unlabeled points, since the squared hinge

loss penalizes the noisy labeled examples too much compared to Huberized loss.

Another option that could be applied as PCG early stopping conditions, is to
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(a) The
noise less ”two moons” 2D data
set, two classes upper moon
(class +1) and lower moon (-1).

(b) A squared
hinged LapSVM classifier
trained with noise less data set
using PCG algorithm, the final
solution obtained with an early
stopping stability check after
4 iterations (0% test error).

(c) A Huberized hinged
LapSVM (for h = 0.5) classifier
trained with noise less data set
using PCG algorithm, the final
solution obtained with an early
stopping stability check after
4 iterations (0% test error).

(d) The ”two moons” 2D data
set with some noisy labeled
points, two classes upper moon
(class +1) and lower moon(-1).

(e) A squared hinged
LapSVM classifier trained with
noisy labeled data set using
PCG algorithm,the final solu-
tion obtained with an early
stopping stability check after
4 iterations (4.5% test error).

(f) A Huberized hinged
LapSVM (for h = 0.5) trained
with noisy labeled data set us-
ing PCG algorithm,the final so-
lution obtained with an early
stopping stability check after
4 iterations (0% test error).

Figure 6.2: (a) The ”two moons” data set (500 points, 2 classes, 30 labeled points indicated with
red and blue diamonds, 470 are unlabeled points indicated by black squares)-(d) the same data
set but introduced noise in the labels,(8 points indicated by magenta colored circles are the noisy
labeled points in the corresponding upper and lower moon classes)- (b and c) are the LapSVMs
classifiers, trained with PCG using squared hinge loss and huber hinge loss functions respectively,
the classifiers are trained with data set (a). (e and f) The LapSVMs classifiers trained with data
set (d). The dark continuous line shows the decision boundary (f(x) = 0) and the confidence of
the classifiers ranges from red (f(x) ≥ 1) to blue (f(x) ≤ −1).
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use some labeled validation data set V , whose pseudo-code is shown in Algorithm 4,

for early stopping of the PCG iterations. In detail, when the error rate on errV
on V is non decreasing in consecutive or after every θ iterations then the PCG

iterations should be stopped. However, as usually the labeled validation data is

small with respect to whole training data, S, it may not be enough to represent the

structure of the dataset(, and it may also be contaminated with noise). Therefore,

we preferred to use only the stability check as an early stopping condition, since the

Kα product must be calculate in every PCG iteration and its cost is only O(u). The

overall complexity of the Huberized LapSVM is the same as that the squared hinge

LapSVMp, see for detail [15], the only difference is that we have to maintain two

error vectors sets instead of one and in return the classification quality is increased.

Algorithm 4 The validation check for PCG iterations [15]

Input: Validation data set V
1: errVold ← 100%
2: η ← 100.|errV|−1%, θ ←

√
n

2

3: if err(V) > (errVold − η) then
4: Stop PCG
5: else
6: errVold =errVold
7: end if

6.4 Experiments

We performed experiments on a toy dataset, USPS, ISOLET, PASCAL VOC

2007 [73] and ImageNet [60] datasets. USPS and ISOLET represent two real

world classification problems arising in visual and speech recognition. We select

them since they were previously used (e.g., in [12, 15]) for evaluation of several

semi-supervised classification algorithms. We make comparisons of the quality of

the Huberized LapSVMp with two baselines, the linear hinge loss LapSVM [12]

and the squared hinge loss LapSVMp [15]. LapSVM [12] is trained as a classifier

with the original dual formulations where as both the Huberized LapSVMp

and LapSVMp [15] are trained in the primal with PCG algorithms. For the
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qualitative comparisons between the Huberized LapSVMp and the LapSVMp for

the tasks of object classification, a number of experimental results are presented

for PASCAL VOC 2007 [73] dataset and the ImageNet [60] test dataset. We repeat

experiments performed in section 4.5.1 for the Huberized LapSVMp and use the

same experimental setup as used for the LapSVMp.

In all the experiments, we have used the stability check as an early stopping

criteria for the PCG, since it does not required a cleanly labeled validation dataset.

Our code will be made available online for a replication of the results. We thank Be-

likin et al. [12] and Mellacci et al. [15] who have made their code and benchmarking

scripts available which we use in the following experiments. In conducting these ex-

periments our purpose is to evaluate the performance of the proposed algorithm with

the two baselines in situations when a learner is provided with training examples

(labeled and unlabeled) where the observed labels may be possibly contaminated

with labeled noise.

6.4.1 2D Two Moons Datasets

To compare the different loss functions and their sensitivity to the amount of label

noise, we conduct an experiment using a synthetic 2D Two moons dataset an ex-

ample of which is shown in Figure 6.2a. We generated a training dataset containing

1000 points (500 points per class, upper and lower moon) and a test dataset con-

taining 200 points (100 points per class) using the code† that is provided by Belkin

et al. [12].

We created 9 different types of subsets from the training dataset by uniform

sampling of 30 points per class as labeled and the remaining as unlabeled points.

Where in each subset, we introduced noise in the labels with varying fractions p =

0, 0.05, · · · , 0.4: for each fraction p parts out of the labeled points were randomly

chosen and their true class labels were flipped. We trained three classifiers using each

of the subsets as training points, the LapSVM is trained in dual where the LapSVMp

and the Huberized LapSVMp with h = 0.5 were trained with PCG algorithm. For

all the classifiers, we set γA = 0.03125, γI = 1 and the width τ = 0.35 for an

RBF kernel of the form k(xi,xj) = exp(−D(xi,xj)

2τ2
), where the euclidean distance D

†http://manifold.cs.uchicago.edu/manifold_regularization/software.html

http://manifold.cs.uchicago.edu/manifold_regularization/software.html
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Figure 6.3: 2D-Two Moons Experiment: Test classification errors measured in percent and average
over 50 runs for each fraction of noise in the training data.

between two examples is taken as D(xi,xj) = ‖xi − xj‖2. Additionally, we use a

kNN graph for the construction the graph Laplacians L of degree p = 2 where k = 6.

The performance is evaluated using the classification test error rates, averaged over

50 independent runs for each fraction of noise.

The final results are shown in Figure 6.3. We can see that the Huberized

LapSVMp performs better than LapSVMp and mostly equal to the LapSVM as

the level of noise rises in the training data. It confirms our intuitions that the

squared hinge loss penalizes mislabeled points harder than either the Huber hinge

loss or the linear hinge loss function.

6.4.2 USPS: Datasets for Handwritten Digit Recognition

In this set of experiments we applied the Huberized LapSVMp and the baselines

to 45 binary classification problems that arise in pairwise classification of 10 classes

of handwritten digits. The images of each digit in USPS training set has been

preprocessed using PCA to 100 dimensions. The first 400 images of each digit in

the training set were taken to form the training dataset for the three classifiers, the

LapSVM, the LapSVMp and the Huberized LapSVMp. The remaining images form

the test set, a total of over 3000 images. 50 images for each class were randomly

taken as labeled (l = 50) and the rest were left unlabeled (u = 350) during training

of the classifiers. We conducted three types of experiments. First, we train all

the classifiers with cleanly labeled data: the purpose is to evaluate the quality
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(b) The three classifiers were trained with the labeled data for each classification problem is
contaminated by 20% noise

Figure 6.4: USPS Experiment: Test error rates, measured in percent, at precision-recall break even
points for 45 classification problems

of the Huberized LapSVMp from the point of view of the approximate vs optimal

solution. Next, we train all of the three classifiers on the training set after its labeled

part is contaminated with 20% noise. Finally, we investigate the influence of h on

the classification performance of the Huberized LapSVMp when trained with noisy

labeled dataset.

Following the experimental protocol in [12], we used a polynomial kernel

k(xi,xj) = (xTi xj + 0)3 with degree 3 for training of the three classifiers. We set

γA = 0.005, γI = 1 and used binary kNN graphs with k = 6 for building the graph

Laplacians. Its worthy to note that the observations reported here hold consistent

by a wide choice of hyper parameters.

In Figure 6.4, we compare the error rates of the Huberized LapSVMp and the

two baselines, at the precision-recall breakpoints in the ROC curves for the 45

classification problems. These results are averaged over 10 random choices of labeled

examples. Figure 6.4a shows the comparison of the three classifiers when they are

trained with noiseless labeled examples. Figures 6.4b, compares the tests error-rates

of the Huberized LapSVMp with the baselines after introducing 20% of noise in the
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Figure 6.5: USPS Experiment: Influence of the parameter h of the Huberized LapSVMp classifier,
on the mean test error at precision-recall break even points

labeled part of the training examples: in each classification problem 20% out of

the labeled points are randomly chosen and their labels are flipped. Here, we can

see that for all classification problems the Huberized LapSVMp performs equally

well compared to the baselines when the available training data is noise free. Note

that LapSVM solves first a quadratic problem and then solves a linear system of

equations which involves the inversion of large matrix while both the Huberized

LapSVMp and the LapSVMp are training directly in the primal with PCG which

do not involve any matrix inversions. This results in faster training times for the

primal solutions in this experiment at equal accuracy. In Figures 6.4b, we can see

that the performance of the basline LapSVMp drops in comparison to Huberized

LapSVMp after introducing noise in the training data. As shown on scatter plots in

Figures 6.4 on standard deviation of error rates, the performance of the Huberized

LapSVMp is quite stable with respect to the baselines in both noise free and noisy

cases. To further investigate the influence of the parameter h on the mean test error

rate, we trained the Huberized LapSVMp for various values of h with 20% noisy

labeled data. The final results are shown in Figure 6.5, which shows an improvement

in performance with increase in the value of h beyond 0.2.

6.4.3 ISOLET: Datasets for Spoken Letter Recognition

This experiment is performed on the ISOLET dataset of letters of the English al-

phabet spoken in isolation. It contains vocal sounds of 60 people who spoke twice
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the name of each letter. The people are grouped into 2 sets, and each set contains 30

people. Following the experimental procedure proposed in [12], we chose to train on

the first group of 30 speakers forming a training set of 1560 examples and a test set

containing 1560 examples are taken from the second group. The task is to classify

the first 13 alphabets sounds from the from the last 13. We considered the 30 binary

classifying problems, each corresponds to the 30 splits of the training set where the

52 sounds of one speaker were taken as labeled set and the rest 1508 sounds were

taken as unlabeled set. The test dataset were completely new speakers that are seen

in the training set.

We trained the three classifiers, LapSVM, LapSVMp and our Huberized

LapSVMp for each of the 30 classification problems. We first trained them with

the clean training set and then on the 5% noisy labeled training set. Following the

experimental protocol in [12], we chose an RBF kernel of k(xi,xj) = exp(−D(xi,xj)

2τ2
);

where the euclidean pairwise distance D between two examples is taken as

D(xi,xj) = ‖xi − xj‖2 and the kernel width τ = 10 for training of the three

classifiers. We set γA = 0.005, γI = 0.005 and used a binary kNN graphs with

k = 6 for building normalized graph Laplacians.

In Figure 6.6, we compare the error rates on the unlabeled set measured at

precision-recall break even points for the three classifier. In Figure 6.6, we found

that accuracy of the Huberized LapSVMp is consistently better than the baselines.

6.4.4 PASCAL VOC Dataset for Object Classification

To give a quantitative evaluation of the classifiers the Huberized LapSVMp and

the LapSVMp we perform experiments using the PASCAL VOC 2007 [73] dataset.

The dataset contains around 10000 images which were downloaded by querying

for images of 20 object categories. These images are then manually annotated or

labeled for each of the 20 categories and are provided with training and test splits

of approximately 5000 images. Each test image contains an object instance of more

than one class. The task is to predict for each of the twenty object classes the

presence or absence of at least one of that the object classes in a test image. We

consider a semi-supervised learning scenario and train these classifiers for 20 binary

classification tasks. We evaluate these methods by measuring their classification
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(b) The classifiers were trained on noisy labeled data. The labeled
data for each classification problem is contaminated by 5% noise

Figure 6.6: ISOLET Experiment: Error rates (Unlabeled set), measured in percent, at precision-
recall break even points for 30 classification problems.

performances, on the test split of the dataset, using average precision (AP) criterion

for each class and also using the mean AP over all classes.

We use local SIFT features for image representation‡. For each image these

features are computed from 16×16 pixels densely sampled with a step size of 8 pixels

and multiple scales. Each local feature is quantized using k-means clustering on

samples from the training splits. All the images are then represented by a histogram

of bag-of-visual words of size 1000.

For each of the 20 classification tasks, we select a same number of positive (pos)

and negative (neg) images from the training split of the dataset while the rest of

the images are taken as unlabeled images for training the classifiers. We use the χ2

distance RBF kernel and the width of the kernel τ is set to their average pairwise

distance. To construct to the graph Laplacian, we build the sparse adjacency matrix

W with k = 20 and the scaling factor σ is set to the mean of the k nearest neighbors

‡The ”DenseSift” features for PASCAL VOC 2007 images were extracted and computed by
the authors of [23] and are available at http://lear.inrialpes.fr/people/guillaumin/data/

cvpr10/pascal07.20100609.tar.bz2.

http://lear.inrialpes.fr/people/guillaumin/data/cvpr10/pascal07.20100609.tar.bz2 .
http://lear.inrialpes.fr/people/guillaumin/data/cvpr10/pascal07.20100609.tar.bz2 .
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(b) The classifiers were trained on noisy labeled data. The labeled
data for each classification problem is contaminated by 5% noise.

Figure 6.7: ISOLET Experiment: Error rates (Test set), measured in percent, at precision-recall
break even points for 30 classification problems.

pairwise χ2 distances. Figure 6.8, shows the sparse adjacency graph constructed

using all the training split images where we can see how the images are noisy across

the object classes. The regularization parameters, γA = 1 and γI = 10, are fixed in

advance in training the classifiers for 20 binary classification tasks. These are chosen

for the best ”person” classification performance on the test split of the dataset using

LapSVMp. The value of h for the Huberized loss function is set to 0.9.

Figure 6.9, shows the comparisons of the classification performances for the in-

dividual tasks versus the number unlabeled training images using the Huberized

LapSVMp and the LapSVMp classifiers with a fixed number of labeled images. We

can see that in most of the object classes, e.g., ”bottle”, ”bus” and ”cow”, the perfor-

mance of the Huberized LapSVMp increases and remains stable when increasing the

number unlabeled images. These results are summarized and shown in Figure 6.10.

The precision/recall curves for the best max AP for each task and the two classifi-

cation methods results are shown in Figure 6.10. To visually observe the quality of

both classification methods, examples images with their ranking number by each of

the classifiers in ”aeroplane”, ”bird”, ”car”, ”motorbike”, ”person”, ”pottedplant”,
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Figure 6.8: PASCAL VOC 2007 [73] Experiment: The sparse kNN adjacency graph W for all
training split images S used in the Huberized LapSVMp and the LapSVMp classifiers. For building
this graph, the number of nearest neighbors k is set to 20 and the χ2 pairwise distance measure is
used in (6.1).

and ”sheep” classification tasks are shown in Figures 6.12, 6.13, 6.14, 6.15, 6.16,

6.17, and 6.18 respectively.

The final results for which both the classifiers achieve their maximum AP in

each of the 20 binary classification tasks are presented in Table 6.1. It can be ob-

served that in 10 classes the Huberized LapSVM classifier is stronger and have more

consistent performance than the LapSVMp classifier. Interestingly, both classifiers

achieve higher performance score than the winner.
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Figure 6.9: PASCAL VOC 2007 [73] Experiment: The AP scores for 20 object classification of
the test images versus the number of unlabeled images used in training the classifiers shown in
the corresponding legends. For each task 200 to 300 number of positive images (containing the
corresponding object class) and 300 negative images (not containing the corresponding object class)
are used for training these classifiers.
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Figure 6.10: PASCAL VOC 2007 [73] Experiment: The mean AP scores over all the classes versus
the number of unlabeled images
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(b) Huberized LapSVMp

Figure 6.11: PASCAL VOC 2007 [73] Experiment: Precision/recall curves are shown for the
twenty object classes. (a) shows all results obtained with the Huberized LapSVMp classifiers; (b)
(a) shows all results obtained with the LapSVMp classifiers.
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Method ↓ aeroplane bicycle bird boat bottle bus car cat chair cow diningtable

Best VOC2007 [73] 77.50 63.60 56.10 71.90 33.10 60.60 78.00 58.80 53.50 42.60 54.90

LapSVMp 73.85 39.44 74.28 56.13 73.90 21.06 84.49 83.00 83.39 11.55 65.05

Huberized LapSVMp 91.28 74.05 82.86 73.68 73.90 73.69 76.74 74.50 75.08 64.57 82.52

dog horse motorbike person pottedplant sheep sofa train tvmonitor Mean

Best VOC2007 [73] 45.80 77.50 64.00 85.90 36.30 44.70 50.60 79.20 53.20 59.94

LapSVMp 83.36 91.41 56.59 94.66 47.94 2.44 82.66 91.38 74.00 64.53

Huberized LapSVMp 75.04 82.83 73.95 77.82 73.97 55.44 82.66 82.77 74.00 76.07

Table 6.1: PASCAL VOC 2007 [73] Experiment: The AP scores, measured in per-
cent, for the object classification results. The bold entries in each column indicate
the maximum AP for the corresponding object class. The last column shows the
mean AP score over all the classes

.

(a) aeroplane: highest ranked positive images

1: by Huberized LapSVMp∗

1 2 3 4 5

2: LapSVMp

1 2 3 4 5

(b) aeroplane: highest ranked negative images

1: by Huberized LapSVMp∗

187 188 189 190 191

2: LapSVMp

154 155 156 157 158

Figure 6.12: Ranked images for ”aeroplane” classification task.(a) Five highest ranked positive im-
ages (containing aeroplanes); (b) five highest ranked negative images (not containing aeroplanes),
each by the two classifiers. The number in each image indicates the corresponding image rank
number. The classifier with best max AP score is marked with *.



6.4. Experiments 105

(a) bird: highest ranked positive images

1: by Huberized LapSVMp∗

1 2 3 4 5

2: LapSVMp

1 2 3 4 5

(b) bird: highest ranked negative images

1: by Huberized LapSVMp∗

230 231 232 233 234

2: LapSVMp

222 223 224 225 226

Figure 6.13: Ranked images for ”bird” classification task.(a) Five highest ranked positive images
(containing birds); (b) five highest ranked negative images (not containing birds), each by the
two classifiers. The number in each image indicates the corresponding image rank number. The
classifier with best max AP score is marked with *.

(a) car: highest ranked positive images

1: by Huberized LapSVMp

1 2 3 4 5

2: LapSVMp∗

1 2 3 4 5

(b) car: highest ranked negative images

1: by Huberized LapSVMp

528 529 530 531 532

2: LapSVMp∗

645 646 647 648 649

Figure 6.14: Ranked images for ”car” classification task.(a) Five highest ranked positive images
(containing cars); (b) five highest ranked negative images (not containing cars), each by the two
classifiers. The number in each image indicates the corresponding image rank number. The
classifier with best max AP score is marked with *.
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(a) motorbike: highest ranked positive images

1: by Huberized LapSVMp∗

1 2 3 4 5

2: LapSVMp

1 2 3 4 5

(b) motorbike: highest ranked negative images

1: by Huberized LapSVMp∗

163 164 165 166 167

2: LapSVMp

128 129 130 131 132

Figure 6.15: Ranked images for ”motorbike” classification task.(a) Five highest ranked positive
images (containing motorbikes); (b) five highest ranked negative images (not containing motor-
bikes), each by the two classifiers. The number in each image indicates the corresponding image
rank number. The classifier with best max AP score is marked with *.

(a) person: highest ranked positive images

1: by Huberized LapSVMp

1 2 3 4 5

2: LapSVMp∗

1 2 3 4 5

(b) person: highest ranked negative images

1: by Huberized LapSVMp

169 170 171 172 173

2: LapSVMp∗

247 248 249 250 251

Figure 6.16: Ranked images for ”person” classification task.(a) Five highest ranked positive images
(containing persons); (b) five highest ranked negative images (not containing persons), each by
the two classifiers. The number in each image indicates the corresponding image rank number.
The classifier with best max AP score is marked with *.
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(a) pottedplant: highest ranked positive images

1: by Huberized LapSVMp∗

1 2 3 4 5

2: LapSVMp

1 2 3 4 5

(b) pottedplant: highest ranked negative images

1: by Huberized LapSVMp∗

158 159 160 161 162

2: LapSVMp

106 107 108 109 110

Figure 6.17: Ranked images for ”pottedplant” classification task.(a) Five highest ranked positive
images (containing pottedplants); (b) five highest ranked negative images (not containing potted-
plants), each by the two classifiers. The number in each image indicates the corresponding image
rank number. The classifier with best max AP score is marked with *.

(a) sheep: highest ranked positive images

1: by Huberized LapSVMp∗

1 2 3 4 5

2: LapSVMp

32 86 87 189 231

(b) sheep: highest ranked negative images

1: by Huberized LapSVMp∗

58 59 60 61 62

2: LapSVMp

1 2 3 4 5

Figure 6.18: Ranked images for ”sheep” classification task.(a) Five highest ranked positive images
(containing sheeps); (b) five highest ranked negative images (not containing sheeps), each by the
two classifiers. The number in each image indicates the corresponding image rank number. The
classifier with best max AP score is marked with *.
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aeroplane motorbike train car bus cow horse

LapSVMp 80.07 77.69 78.57 74.10 84.94 78.82 66.61

Huberized LapSVMp 85.40 89.01 80.28 86.70 88.16 83.88 67.05

Table 6.2: ImageNet [60] dataset: The AP classification scores, in percent, on the
entire test set images taken from ImageNet [60]. Both Classifiers are trained on the
Internet images. The best scores are marked in bold.

6.4.5 Automatic training of object category classification

models

This set of experiments are performed to evaluate the Huberized LapSVMp for

the tasks of automatic training of object category classification. We repeat the

experiments presented in Section 4.5.1 for the Huberized LapSVMp adopting the

experimental training setup for the LapSVMp. To remind, given the names of object

category all the training images are automatically collected using multiple search

engines. For each object class, the top 30 images ranked by an Internet search

engines images are considered as noisy labeled. Since, the supervision is provided

by the Internet therefore there is a possibility to get images that may not contain

the object of the target class. Similarly, the lower ranked 30 images are taken as

unlabeled. The negative labeled images and additional unlabeled images are taken

from the searched returns for other categories. Given these collected images, the

task is to train object classifiers and then to predict the presence or absence of at

least one of that object class in a test images. The test images,more than , for 7

categories of objects are taken from the ImageNet [60] dataset.

Each image is represented by concatenation of PHOW and PHOG descriptors,

although an MKL could be applied but objective here is to compare with LapSVMp

under the same training conditions (see Chap 4 for details). The parameter h for the

Huberized LapSVMp is set to 0.9 and the values of all the rest hyper parameters,

the type kernel function, the adjacency graph and graph distance measures are used

similar to the LapSVMp.

The final experimental results, presented in Table 6.2, compares classification

performances (measured in AP) of the Huberized LapSVMp with the LapSVMp clas-

sifiers. Here, we observe that for all categories of objects the Huberized LapSVMp
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out the performs the LapSVMp. The edge in performance is due to the robust loss

function.

6.5 Conclusions

In this chapter, we presented the Huberized LapSVM a strategy for solving the

optimization problem of LapSVM in the primal. Following LapSVMp [15], a fast

solution is achieved using the preconditioned conjugate gradient coupled with an

early stopping criteria based on the classifier decision. Instead of using the standard

squared hinge loss function, we introduced the huber Hinge loss function to measure

misclassification during the training process of a classifier. The Huber hinge loss

gives a milder penalty than the squared hinge loss making the proposed solution

fit in situations when the available training data is noisy. Detailed experimental

results on 3 datasets, i.e., USPS, ISOLET and ImageNet, using several performance

measures, validate our propose strategy is fit to solve classification problems when

available training data is contaminated with label-noise. Additionally, experimental

evaluations on ImageNet testdata, validate that the use of Huberized LapSVMp

for learning models with images obtained directly from the Internet searches for

object categorization. The results also demonstrated the consistent classification

performance using the proposed strategy that outperforms the winner of PASCAL

VOC 2007.

The overall results can be further improved by exploring the effects of sparse

kernel expansion of the classification function. It could be also useful to study the

effect on the performance by applying an incremental classifier building technique

or user feed back in some kind of interactive setup.





Chapter 7

Conclusions

In this thesis we investigated the limitations in learning models directly with im-

ages collected from Internet searches for object categorization and detection. We

addressed three main problems in training category-level image classifier and/or

object detector using example images collected via image search engines. Firstly,

ambiguous true-class label of images. Secondly, ambiguous location of an object

contained in an image that belongs to the desired category. Finally, difficulty in

selecting a sufficient visual representation specialized in capturing most of visual

characteristics of objects within the same category. We focused on support vector

machine (SVM) and Laplacian SVM (LapSVM) and proposed several methods to

overcome the problems in training a desired category-level image classifier directly

with images collected from the Internet.

Firstly, we showed that the image ranking quality of an image search engine

could be enhanced when a simple visual features are combined with textual feature

based representation using a supervised MKL method. A useful out-come of this

work is a multi-modal dataset called the TVGraz. Experiemental evaluation on this

dataset demonstrated that the combination of both modalities can boost the image

ranking performance of an image search engine that uses only textual information in

retrieval of images. For the task of web image search this is not a major issue, such

enhancement is necessary in reducing class-label ambiguity in the retrieved images.

Secondly, we proposed a semi-supervised MIL algorithms called Co-miSVM

for training category-level image classifiers directly on the searched images. This

111
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method can exploit the underlying manifold semantics shared by different visual

features by using a combined graph Laplacian. Experimental evaluations on a

number of datasets demonstrated the usefulness of the proposed extensions in

comparison with single instance learning methods and supervised multiple-instance

SVM based methods.

Thirdly, we proposed a multi-stage system for training complex part based ob-

ject detectors with the Internet searched images in order to overcome the problem

of location ambiguity of an object contained in Internet images. The system works

in three stages and requires only the name of the object class name as input. In the

first two stages to deal with ambiguity in the true class label and location of objects,

we applied our proposed MIL method for the actual learning tasks. This method

extends the miSVM method with a semi-supervised kernel. We showed that it is

possible to train a reasonable detector without using any manually annotated train-

ing examples. Experimental evaluations on challenging datasets demonstrated its

effectiveness for training complex object detectors with ambiguously labeled images

retrieved by image search engines.

Lastly, we proposed the Huberized LapSVM method for solving the optimization

problem of the LapSVM in the primal space. A fast solution is achieved using the

preconditioned conjugate gradient coupled with an early stopping criteria based on

the classifier decision. Instead of using the standard squared hinge loss function, we

used the Huber Hinge loss function to measure misclassification during the train-

ing process of a classifier giving a milder penalty to noisy labeled data. With this

method through experimental evaluations on 5 datasets, we validated that our pro-

pose strategy is fit to solve classification problems when available training data is

contaminated with label-noise. We also demonstrated the learning of object cate-

gorization models with images obtained directly from the Internet. The results also

demonstrated the consistent classification performance using the proposed strategy

that outperforms the winner of PASCAL VOC 2007. The overall results can be

further improved by exploring the effects of sparse kernel expansion of the classifi-

cation function. It could be also useful to study the effect on the performance by

applying an incremental classifier building technique or user feed back in some kind

of interactive setup while learning object models from Internet images.



Appendix A

List of Publications

The following is the list of research publications I, together with my colleagues, have

made.

1. Khan, I., Saffari, A., and Bischof, H. (2009a). TVGraz: Multi-modal learn-

ing of object categories by combining textual and visual features. In Proc.

Workshop of the Austrian Association for Pattern Recognition.

2. P. M. Roth, T. Mauthner, I. Khan, and H. Bischof, (2009b). Efficient human

action recognition by cascaded linear classification. In Proc. IEEE Workshop

on Video-Oriented Object and Event Classification.

3. E. Lex, I. Khan, H. Bischof, and M. Granitzer, (2010). Assessing the quality

of web content. In Proc. Joint Conf. European ML & Knowledge Discovery

in Databases.

4. I. Khan, P. M. Roth, and H. Bischof, (2011a). Learning object detectors

from weakly-labeled internet images. In Proc. Workshop of the Austrian

Association for Pattern Recognition

5. I. Khan, P. M. Roth, and H. Bischof, (2011b). Learning object categories from

internet images. ”to be submitted to PR”.
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