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Abstract

In this thesis we study and apply the methods of represepsegdo-analytic functions
by differential operators in complex variables and bicogmplariables. We consider the
Bers-Vekua equation

wz = C(z,2)W. 0.2)

For the equation (0.1) I.N. Vekua developed a complete thadrere the solutions are
represented by means of certain integral operators. Havtleeexplicit determination of
the required resolvents may be difficult. Many mathematiiased the results proved by
I.N. Vekua to get the representations of solutions of thisa¢ign by differential operators.
These representations not only permit a detailed investigaf the function theoretic
properties of the solutions but also enable us to solve sauadary value problems ex-
plicitly.

Chapter 1 is aimed to investigate the representation otisakiof a class of equations of
type (0.1) with the coefficien® satisfying

m?(logC)z—CC =0, meN.

By changing variables we can reduce these equations to tberiiag form

. m
11—z

Wy W, me N. (0.2)
We will study the Bers-Vekua equation (0.2). Applying thethoal of P. Berglez [11] or
the method of K.W. Bauer on the determination of Vekua resuy [6] we can derive a
representation of solutions of this equation by differamtperators of Bauer-type.

Then we use the representation of solutions of the equali@htp solve a Dirichlet bound-
ary value problem and a class of generalized Riemann-Hibmrndary value problems
for the equation (0.2) in Chapter 2.

In Chapter 3 we consider some consequences and applicafitmsrepresentation of so-
lutions of the equation (0.2) by differential operators afuBr-type.

Chapter 4 is devoted to study a class of bicomplex pseudiytanfunctions which are
solutions of a system in bicomplex variables of the form

9,V (2) = 34V (z) =0, '
wherezis a bicomplex variable arzi, z*, z" are bicomplex conjugations af
We obtain a class of coefficienfsfor which all solutions of the system (0.3) can be rep-
resented by differential operators. Some applicationkisfrepresentation of solutions of
the system (0.3) such as solving the Dirac equation on a psgpitere and using the gener-
alization of the Weierstrass formulae to generate surfaigesolutions of linear equations
are given also.



Zusammenfassung

In dieser Arbeit werden Methoden zur Darstellung pseudgtiseher Funktionen im
komplexen und bikomplexen Fall untersucht und angewertietsich gewisser Diffe-
rentialoperatoren bedienen. Wir betrachten die Bers-&ékleichung

w; = C(z,2)W. (0.1)

Fur die Gleichung (0.1) entwickelte I.N. Vekua eine volist@ye Theorie zur Lésungs-
darstellung unter Verwendung gewisser Integraloperatowllerdings ist die explizite
Bestimmung der dazu notwendigen Resolventen oft sehr scigwiln vielen Arbeiten
wurden die Ergebnisse von I.N. Vekua dazu verwendet um Lgsiarstellung unter Ver-
wendung von Differentialoperatoren zu erlangen. Diesest@dungen erlauben nicht nur
eine detaillierte Untersuchung der funktionentheorbgscEigenschaften der Losungen
sondern auch die explizite Losung von Randwertproblemedi&se Gleichung.

Im 1. Kapitel werden Darstellungen fur Lésungen einer Kéagsn Gleichungen vom Typ
(0.1) untersucht, wobei die Koeffizient€der Bedingung

m?(logC)—CC =0, meN.

genugen. Mit Hilfe einer geeigneten Variablentransforarekann diese Gleichung in die
Form
m _

We =W, me N. (0.2)
Ubergefuhrt werden. Unter Verwendung der Methode von RyIBef11] oder der Me-
thode von K.W. Bauer zur Bestimmung der Vekua-Resolvengékdnnen wir fur die-
se Gleichung eine Ldsungsdarstellung unter Verwendundifbarentialoperatoren vom
Bauer-Typ herleiten.
In Kapitel 2 verwenden wir diese Darstellung der Lésungen (@2) um ein Dirich-
let'sches Randwertproblem und eine Klasse von Riemaninektischen Randwertproble-
men fur die Gleichung (0.2) zu l6sen.
Im 3. Kapitel betrachten wir einige Folgerungen und Anwerghn dieser Losungsdar-
stellungen fir die Gleichung (0.2) unter Verwendung voriddéntialoperatoren vom Bau-
er'schen Typ.
Das 4. Kapitel ist der Untersuchung einer Klasse von bikexgn pseudoanalytischen
Funktionen gewidmet, die Losungen eines Systems von Biftelgleichungen von der
Gestalt

0V (z2) =C(z,Z')V*(2),
02V (z) =04V (z) =0, (0.3)

sind, wobeiz eine bikomplexe Variable ist unzt, z*,z", die bikomplexen Konjugierten
von zbezeichnen.



Wir erhalten eine Klasse von Koeffizientérilr die alle Losungen des Systems (0.3) unter
Verwendung von Differentialoperatoren angegeben weréané&n. Abschliel3end werden
einige Anwendungen dieser Losungsdarstellungen fur datefy(0.3) angegeben. So
zum Beispiel Lésungen der Dirac Gleichung auf einer Pseuitire oder die Verallge-

meinerung der Weierstrass’'schen Formeln zur DarstellamgRlachen durch Losungen
linearer Gleichungen.
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Introduction

The pseudo-analytic function theory was independentlgliged by two prominent math-
ematicians, L. Bers (see [1], [18], [19]) and |.N. Vekua (p&8).

After L. Bers every complex functiow defined in a subdomain of a simply connected
domainD c R? admits the unique representatidh= @F + G, whereg andy are real-
valued functions and a pair of complex functidghendG is a so-calledjyenerating pair

The (F, G)-derivative of a functioW exists if and only ifg,F + ;G = 0. This condition
can be rewritten in the following form

W = a(EG)W + b(|:7G)W (04)
wherear ), b(r ) are the characteristic coefficients of the d&rG)
FG;—-RG _ FG;—-FRG
FG-FG' SO~ FG-FG "
Solutions of the equation (0.4) are calléid, G)-pseudo-analytic functions (or, simply,

pseudo-analytic functions
On the other hand after I.N. Vekuaganeralized analytic functiois a function

AFG) =~

W(2) = u(x,y) +iv(x.y)
satisfying a system

du ov Jdu ov

— - = bv=0 — 4+ = dv=0

Ix ay+au+ v=_0, ay+dx+cu+ Y
wherea, b, c,d are real valued functions of the real variabkesndy. This system can be
rewritten in the complex form which is called the Bers-Velagaation

W, = aW + W (0.5)
wherea = Z[a+b+i(c—b)], B =z[a—d+i(c+b)].
Thus, the class of pseudo-analytic functions in the senBeis corresponding to the pair
(F,G) coincides with the class of generalized analytic functionthe sense of Vekua. In
the special case = 3 = 0, the solutions of the equation (0.5) are cabealytic functions

or holomorphic functions
By transformatioWV = we*, with a = A, we obtain from (0.5) the equation

w, = C(z2w, (C=peMA). (0.6)



2 Introduction

For the equation (0.6) I.N. Vekua developed a complete thi@dl where the solutions are
represented by means of certain integral operators. Inapases these representations of
solutions may be converted to a form free of integrals bygragon by parts. K.W. Bauer
pointed out that if the coefficier@ in the equation (0.6) is analytic and satisfies certain
conditions then it is possible to derive general represiem#heorems for the solutions of
the equation (0.6) defined in a simply connected dom&iy differential operators [9].
Moreover, by using another method not depending on the Vegsalvents, P. Berglez
presented a necessary and sufficient condition on the deets€ for the existence of the
representation of solutions of the equation (0.6) by su@raiprs [11].

The thesis is organized as follows. Chapter 1 is aimed tostig@te the representation
of solutions of a class of type (0.6). Using the result of RigBez, we can construct a
Liouville system. After solving the Liouville system we @it coefficient< for which
all solutions of the equation (0.6) can be represented Wgrdiitial operators. A special
solution of this system leads to the fact that there existass©f coefficient€ satisfying
the Liouville equation

m?(logC)z—CC =0, meN (0.7)

such that for these coefficients all solutions of (0.6) canrd@esented by differential
operators.

This condition was investigated by K.W. Bauer [6]. He coesatl the equation (0.6) with
the coefficientsC satisfying the condition (0.7). From this condition we da&t general
representation of and then using a suitable transformation we can reduce tiatieq
(0.6) to the equation

W= "W meN. (08)

1-7z

Therefore instead of (0.6) we consider the differentialegun (0.8). Applying the method
of P. Berglez [11] or the method of K.W. Bauer on the deteritiiameof the Vekua resol-
vents [6] we can derive a representation of all solutionshef equation by differential
operators of Bauer-type.

Then we use this representation to solve a Dirichlet boyng&ue problem (BVP) and a
class of generalized Riemann-Hilbert BVPs for the equai@8) in a disk in Chapter 2.

In Chapter 3 using some properties of the representatiomeo$dlutions we also derive a
generalized representation theorem for solutions of tlhkaton (0.8) in a neighbourhood
of an isolated singularity. Some problems related to theatgn (0.8) are also investi-
gated: finding a generating pair in the sense of Bers; findiggegial class of the chiral
components in the Ising field theory; finding transformagibetween the solutions of the
equation (0.8) with different parameters; finding inhomuegmus equations corresponding
to the equation (0.8) such that all solutions of these equoaitan be represented by differ-
ential operators.



Chapter 4 is devoted to study a classbafomplex pseudo-analytic functiomgich are
solutions of a system in bicomplex variables of the form

0V (2) =C(z,Z)V*(2),
02,V (2) = 05,V (2) =0,

(0.9)

wherezis a bicomplex variable ant, z, € C are components &t

First we introduce some concepts in bicomplex algebra @&ee, [37], [38]). We define
the resolvents of Vekua type in bicomplex variables and éevecan derive the represen-
tation theorem for a class of bicomplex pseudo-analytictions using integral operators.
Then applying the representation theorems for solutiomssaficond order partial differen-
tial equations [11] we also obtain a class of coefficiéhtsr which all solutions of system
(0.9) can be represented by differential operators.

Using a so-calleddempotent representatian a space of bicomplex functions we obtain
an interesting result, that is, a Dirac equation on the pseypthere is equivalent to a sys-
tem of type (0.9). This implies that using the representatithe solutions of system (0.9)
by differential operators we can solve the Dirac equatioa pseudo-sphere. Another ap-
plication of this representation is using the generalwanf the Weierstrass formulae to
generate surfaces via solutions of linear equations.
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1 REPRESENTATION OF THE SOLUTIONS OF A CLASS OF
PSEUDO-ANALYTIC FUNCTIONS

In this chapter we deal with the Bers-Vekua equafim:= w, — C(z,2)w = 0 defined in

a domainD C C. For a certain class of coefficier@sand domain® we show how to get
the explicit representation of solutions of this problemnsirg a necessary and sufficient
condition on the coefficientS, see [11], we can obtain certain differential operators for
which every solution oDw = 0 defined inD can be generated from a so-callgeherat-
ing function gholomorphic inD. On the other hand after I.N.Vekua all solutions of the
above Bers-Vekua equation can be represented using ihtgemators [44]. Applying the
method of K.W. Bauer we can determine the Vekua resolvemta feertain class of the
Bers-Vekua equations and hence every solution of thesdiegsaan be represented as
the image of the generating functigrunder differential operators of Bauer-type [9].

1.1 Representation of solutions after P. Berglez

In this thesis we use the following notations. We denote agtexwariable by

Z=X+1y

wherex andy are real variables,is the imaginary unit. Complex conjugates are denoted
by
Z=X—1ly.

We use the formal differential operators
9 _1(9 9N 0 _1(0 0
dz 2\odx dy dz 2\odx dy

. . . ow ow .
and sometimes writer,, W, instead ofE, 37" respectively.
Denote the space of all holomorphic functiongirby H(D).
Consider the Bers-Vekua equation

w; = C(z,2)W zeD (1.1)

=
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whereD is a simply connected domain (@ andC(z,z) is an analytic function of the real
variablesx andy.

Let
" m 0k «n n 0| N
Ky = ak(2,2) = = Z2Z)—, mMmnec
1 k; k( ) )azk7 2 l;ﬁl( > )(92', h s
be given differential operators, wheeg, k=0,1,....m, andf, | =0,1,...,n, are con-

tinuously differentiable irD. If w=K{"g(z) + KJg(z) is a solution of the equation (1.1) in
D for all functionsg(z) € H(D), thenn=m— 1 (see [10]).

We callK{" and K;:”‘l thedifferential operators of Bauer-type

P. Berglez gave the necessary and sufficient condition oodb#icientsC such that the
solutions of the equation (1.1) can be represented by difteal operators [11] which is
quoted as follows.

Theorem 1.1(P.Berglez)

Denote L
==, Bmn:=-CC
Am C, m )
where C+# 0 is the coefficient in (1.1).
For the solutions of the Bers-Vekua equation (1.1) therstgx representation using dif-

ferential operators of Bauer-type if and only if with
Ac-1=ABx, Bik-1=Bk+ [Iog(AkBk)]ZZ k= mm-—1,...,1
the condition
Bp=0 in D

Is satisfied.
The solution w of (1.1) is then given by

w=KLg+CKL .9, geH(D),
with

0
Kh=Fh 1...F5, FRi= 55 T (100A)z k=01, m-1

Using this result we can construct a Liouville system.
Since

A = Acy1Bici 1, Bk = Biy1 + [109(Ax41Bks1)] 2
=Byi1+ (I0gA)z, fork=m-1,...,1.

Therefore logA)z =Bk — Bky1, fork=m-—1,... 1.
Denote
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e Step 1:

Bm= —CC =: —C,Cq, Ap1=-C=:-C;
=(logAm-1)z =Bm-1—Bnm
=[log(—C1)]z = A2C3 +C,C;.
This implies that
M2(10gC1)z = MPC1C1 + MPA.Co (1.2)
with m? 4+ mPA, = 1.

e Step 2:
Bm-2 = Bm-1+[l109(Am-1Bm-1)]z
= A3C5 = A2C5 + [log(—A2L1C5) | 2.

This implies that
m 3
MP(10gC2)z2 = — = C1C1 —MPALCS + 2-AsC (1.3)

with —g —mPAs + g)\g =1

e Step 3:
For3<k<m-1
Bmk = Bm—(k-1) + [109(Am—(k-1)Bm—-1))]z
Bm-k = Bm-(k-1) t [109An_k-1)lz+ [109By_(k-1)]z
Bm-k = 2Bm_(k-1) — Bm-(k—2) + [109Bm_(k_1)]z
= A1Ciia = 2ACE — M1CE 1 + l0g(AC) ]z

This implies that

2 2
MP(10gCk)z = —-Ak-1GE 1 — MPACE + 5 AkaClya

with g)‘k—l —mMPA+ g)\kﬂ =1, forall3<k<m-1.

(1.4)

e Step 4:

Bo = B1+[log(A1B1)]
Bo = 2B1 — By + [10g(AnC2)] 2-
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This implies that

2
M (109Cm)z = — Am-1Cfy 1 — MPACi+ Bo (1.5)

Assume that for some € N, the conditiorBg = 0 satisfies, then from (1.2-1.5) we get the
Liouville system

( rn2(|OgC1>zz = mzclél + mz)\zég,

o P

m2(|OgC2)zz = —?Clcl — mz)\z(:% + ?)\3(:%,

. P oo TP (L.6)
(l0gC)z = A-1C 1 —MACE+ ?)\k+lck+17 3<k<m-1,

?

| (logCm)zz = ?)\m,lcﬁ]fl—mz)\mc,?n,

with
( rr12—|—rr12)\2 =1,
—g —mPAr+ gAg =1,
m? 0z

— A1 — MPA+ ?)\kﬂ =1 3<k<m-1,

?

L ?Amfl—rnz)\m: 1

Some results on Liouville systems and the solutions can tnedfn, e.g., [22], [33], [34].
According to Theorem 1.1 we can say that if the system (1. $alslution(Cy,Cy, . ..,Cn),
then withC := C; all solutions of the equation (1.1) can be represented ligrdiitial op-
erators of Bauer-type.

From the above construction we have

A¢=A41Bri1 = = AmBmBm-1...Byy1.
Hence
m-1
(logAx)z = [l0g(AmBm)]z + (logBj).
j=k+1
- m—k
< (IogA); = (10gCr)z +2 3 (109C))z
j:
Therefore
1_9 9 | (logC S K
Fe = a_z+(OgA")Z: a—z+(ogC1)z+2jZZ( 0gCj);, k=0,1,...,m—1.

Summarising the above results we have the following theorem
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Theorem 1.2.
Denote

C = C, Aliz —l,

(k—1)2—n?
m2 bl

with By, k=m—1,...,0,as in Theorem 1.1. The conditiog B O is satisfied if and only

if C1,Cy,...,Cy, satisfy the Liouville system (1.6).

If this system has a solutid@1,Cy, .. .,Cy), then with C= C; all solutions of the equation

(1.1) can be represented by differential operators of Baype. The solution w of the
equation (1.1) is given by

Bm—(k—l) = )\kC%, Ak = k> 2.

w=K}g+CKL g, geH(D),

with

m—k

0 _
Ki=Fl ...F}, Rl= d_z+(logcl)2+2 _;(Iogcj)z, k=0,1,...,m—1.

Consider a Liouville system of the type

m

m
m?(logUy) z with 5 aj=1, k=1,....m (1.7)
j=1

It is easy to see that Ifl is a real-valued solution ofr?(logU ), = U? then the system
(1.7) has a special solution
U=Uy=---=Upn=U.

The Liouville system (1.6) maybe has many solutions. As lasig/e can find the solutions
of this system, we obtain the pseudo-analytic functionsctvizian be represented by dif-
ferential operators of Bauer-type. In this work we only ddaesits special solution which
is indicated in the following corollary.

Corollary 1.1.

If U is a solution of the Liouville equation
m?(logU), = U?

then the system (1.6) has a special solution

Ci=Uéd",C,=C3=---=Cp=U
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where v is a real-valued solution of the Laplace equation.
Therefore with C=U¢€" all solutions of the equation (1.1) can be represented g mifi-
tial operators of Bauer-type. The solution w of the equafibd) is given by

w=Kig+CKL ;g, geH(D) (1.8)
with KL=Fl ,...F}, Fl= 0%— iv,+(2m—2k—1)(logu);, k=0,1,....m—1.
In [6], K.W. Bauer considered the equation of type (1.1)

wy = C(z,2)W, zeD
whereC satisfies the differential equation
m?(logC)z—CC =0, m>0. (1.9)

The coefficienC # 0 can be represented in the fo@r=U¢€", withU andv are real-valued
functions. Substituting this into (1.9) we have

m?(logU)z+ivz = U2

This implies thatvz = 0 or v is a harmonic function and satisfies the Liouville equa-
tion
m?(logU), =U?.

So the coefficient€ satisfying the equation (1.9) coincide with the coefficggdtgiven
in Corollary 1.1. Therefore the solutions of the equatiod ) With the condition (1.9) are
given by (1.8).

We get the following representation Gf see [6],

mf'l g T
1 frg f(2),9(z) holomorphic, (1— ff)f'g+# 0.
For B W(z2)
WD) = o= and (=1,
we obtain m
W, = _W. (1.10)
1-4¢

Therefore the equation (1.1) with coefficied@ssatisfying the condition (1.9) can be re-
duced to the equation (1.10).
From now on we consider the following equation which is ahtlee Bers-Vekua equation
(M) or shortly the equation\)

m
Wy = ———W
1

, 2zeKr, meN (M)
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whereKg = {z€ C||Zl < R< 1}.
Applying Corollary 1.1, withv = 0, to the equation\]), the solutiorw of the equationi{l)
is given by

m J—
W=Kig+——K5 10, 9€H(Kr) (1.11)

with

Ki=Fl ,...F}, Fl= i+(2m—2j —1)(log

m .
=0,1,...m-1
] (92 _22)27 J 9= )

Denote the coefficients iF]jl bycj e N*=N\{0}, j=0,1,....m—-1

. Z Z .
:(92+(2m—2]—1)§2:: 0z+le_Zz, j=0,1,....,m—1.

Next we are going to calculat€lg, Kr}klg. To do this we need the following lemma.

Lemma 1.1.
Assume that

z .
Fﬂ:ﬁerE, ¢jeN*, j=0,1,....k—1.
Then Klg:=F! ;...FIFlg, k> 1, has the form
k—

1 > k=i
Ki9(2) )+ aj( ) g (2), ajeN", j=0,1,....k—1. (1.12)
=

Proof.
We shall prove by induction.
The statement of Lemma 1.1 is true foe= 1. We assume thaﬁ&g, k> 1, has the form

k—j
- ZZ) 9(2), ajeN*.

Ked(2) =R ... FiF9(2) Z)+ Zoaj <

Then we have to prove thii}, ;g can be written as follows

k - k+1-j
Ke.19(2) = g* ™ (2) + a,—( _) g(2), & eN*, j=01,... .k (1.13)
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Indeed

5 k—1 > k—j
Kﬁﬂg(z):(dz—i—ckl_zzz) [g(k)(z)-q- aj<l_zzz> g(l)(z)]

k+1 + Zoa] [ _J Zz)k*]*l(ﬁz)zg(l)(ﬁ-i- (r

=g"Y (@) + (oc+ac1)
k-1
Z k—j)aj+aj_ 1—|—ajck](

1-z

Denote
8p:=aoCk +kag, &k :=ck+ax_1anddj:=(k—j)aj+aj_1+ajc, j=1,...,k—1,

then the expression (1.13) Kf-, ;g holds. Therefor&{g has the form (1.12). The asser-

tion follows. O
So if we denot@, = by,_1 = 1 and then apply Lemma 1.K}g, K 1g can be written as
follows
Klg=F. .. .Fl= 3 a~( z )mjg“) (1.14)
m m—1 0 ]ZO I\1_-z ’
KL .g—FLl (2 i (i)
m-19=Fn2...Fog = jZObJ (1_22) g (1.15)

wherea; € N*, j=0,...,m—1, bj e N*, | =0,...,m—2, are unknown coefficients.
Therefore inserting the expressions (1.14) and (1.15) (btbl) all the solutions of the
equation () can be written in the form

w= Y a; — gV (2 + —— b-( _) g (2). (1.16)
jZO N\1-=z 1—221.2O N\1-=z

From the expression (1.16) we have

mfl Zm—j 1 ZM

. (1.17)
zZm) .
Z m— j)bj +mb;_ 1]mg(l)(z)+mbm_11_zzg(m)(z),
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and

Zn-i-1 Zn-i
Zomzbj ) ng Z)maiwg(l)( 2).
(1.18)

Substituting the expressions (1.17) and (1.18) into theiop (M) we obtain the system

(m—j)aj =m?bj;, j=0,....m-1,
mPhg = may,
mbmfl = Man,

mm—j)bj+mb_1 =mg, j=1,....m-1

From this system we get

By hypothesidy,_1 =1,

(j+1D(j+2)...(m=1)2m—-j—1)2m—j—2)...(m+1)

i (m—7-1) o
(m—1)! (2m—j—1)!
]! m!
B (m—j—1)!
Then
. (2m—j—1)! .
b’:j!(m—j—l)!m’ j=0,....m—2. (1.19)
Therefore
nz (2m—j—1)m .

Substituting (1.19) and (1.20) into (1.16) we obtain a sohubf the equationNl)

m-1 Zm—j—l

m ya m—j -
W:jZOmB'}"(l_Zz) g(l)(z)+go(m—J)B mg(l)( 2) (1.21)

(er!n(m—J_l) andg € H(KR).

Summarising the above results we have the following theorem

WhereBEn =
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Theorem 1.3.
Consider the Bers-Vekua equation (M)

m
Wy, =—W, meN.
z 1_22 )

Then

e For every solution w of the equation (M) defined ip & {z] |zl < R< 1} there exists a
function ge H(KR) such that for w, the representation (1.21) holds.

¢ On the other hand for every functionaggH (Kgr) the expression in (1.21) represents a
solution of the equation (M) defined ikK

The functiong in Theorem 1.3 is called generating functiorf the solutionw.

In the sequel using the results of I.N. Vekua [44] and K.W. &89] we also derive an
explicit representation of the solutions of the equatibt) py differential operators of
Bauer-type. Moreover with an additional condition on theeyating functiorg, for each
solutionw the existence of the generating function is unique. Firstieréve the represen-
tation of the solutions by integral operators. Then aftengoting the Vekua resolvents we
convert this representation to a form free of integrals agrck we get the representation
of solutions by differential operators of Bauer-type.

1.2 Representation of the solutions by integral operators

Consider the Bers-Vekua equation (1.1)
w; = C(z,2)W, zeD,

whereD is a simply connected domain.

The details for the statements and their proofs in this stlsgecan be found in [44]. Now
we shall introduce some notations.

Let f(xq,...,X,) be an analytic function of the real variables. .., x, in some domain
Q of the space oh dimensions. Then there exists a unique functdm,...,z,) of the
complex variableg; = X1 +1y1,...,Zn, = Xy + iyn, @analytic in a domaiQ* of the space
of 2n dimensions, which coincides witf(xs,...,xn) wheny; = --- =y, = 0 (obviously
Q C QF). The functionF(z,...,z,) is called theanalytic continuatiorof the function
f(Xq,...,Xn) from the domain of real values of the argumexts . ., X, into the domain of
complex values.

Let F(z,...,z,) be an analytic function of the complex variablgs. .., z, in a domain
Q2 of 2n-dimensional space. Denote

Qon={(41,---,4n)|({1, -, n) € Qan},
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and define _ _ B
F*(Zl,~-~75n) = F(Zl?"'?(ﬂ)? (Zl?"'?(ﬂ) € an-

Obviously,F*({1,...,¢n) is an analytic function ofy, ..., ¢, in Qon. We callF*({4,...,4n)
theconjugate functioof F(z,...,z,). AndF(z,...,z,) is also the conjugate ®*({y, . .., {n).
We denote byD the mirror image ofD with respect to the real axis. B is symmetrical
with respect to this axis theR® andD are obviously the same.

By hypothesis the coefficier@(z 2) of the equation (1.1) is an analytic function of the
real variables andy. If we continue analytically this function into a complexidain, we
obtain an analytic functio@(z, ) of the two complex variablesc D, € D

Z=X+1y, { =Xx—1ly.

I.N. Vekua proved in [44] thagvery solution of the equation (1.1)Thalso can be contin-
ued analytically into the domai(D, D) , i.e., (1.1) is satisfied foz € D, € D by some

functionw(z, ), analytic inzand({. In this case(;l_zv is equal to the partial derivati\%\é—v
and (1.1) takes the form
ow(z,q)
24

wherew*({,z) is the conjugate function af(z {).

The equation (1.22) is called twemplex fornmof the equation (1.1).

If w(z, ) is an analytic function ot and, with z€ D, { € D, satisfying the differential
equation (1.22), thew(z,2) is an analytic function of the real variabbey in D, satisfying
the differential equation (1.1). Therefore first we derivéoemula which gives all the
solutions of (1.22), analytic inand, withze D, € D.

Assume thaw(z ¢) is such a solution of (1.22). We can now transform (1.22) bevic

0

ﬁ[w(z,z)—/Z:c:(z,r)wk(r,z)dr} — 0.

— C(2W'(,2), (2{)eDxD, (1.22)

This implies that
w(z,{) = (I)(Z)-i—/;C(Z,T)V\fk(T,Z)dT, (1.23)

with ¢ (2) is an analytic function of in D and{j is a fixed point inD.
We now pass from (1.23) to the adjoint equation

W22 = 'O+ [ ¢ owt e (1.24)

with zy = p. If we substitute the expression (1.24) into the right-haiae of (1.23), we
get

w(z,{) = ¢(z)+/ZC(z T)¢*(T)dr+/zdt ZC(z T)C*(1,t)w(t,T)dr.  (1.25)
7 G , P4 o , 7 ,
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Denote ;
®(27) = cp(z)+/Z C(z1)¢*(1)dT, (1.26)

then the equation (1.25) results in
z ¢

w(z,()-/ dt [ C(zT)CH (T, w(t, T)dT = D(2,2). (1.27)
2 G

As may be seen, every solutiariz, {) of the equation (1.22), analytic @ in the domain
(D, D), also satisfies the Volterra integral equation (1.27). Tightthand side of this
integral equation contains a functigriz) which is continuous, analytic i® and uniquely
determined byv(z {)

9(2) = W(z o). (1.28)

An integral equation of the type (1.27) is well known and haerp solved in [44]. Its
solution has the form

w(z, ) = CD(Z,Z)—l—/ZOZdt ;F(Z,Z,t,T)CD(t,T)dT, (1.29)

wherel (z, {,t, 1) is called themain Vekua resolvemf integral equation (1.27). The main
resolvent satisfies the integral equation

14 z
Mzgt,1) = C(z,T)C*(T,t)—i—/T om/t C(E, T)C (1,0 (2.0, E,n)dE.  (1.30)

Note thatl (z ¢,t, 1) is an analytic function of the four variables{,t, T in the domain
zteD,l,TeD.
Substituting (1.26) into (1.29) we obtain

z 4
W(z,l) = qb(z)+/zor1<z,z,t,zo)¢(t)o|t+/ZO F2(2,0,20,7)¢"(T)d1 (1.31)

where

4
n@mm:ﬁr@mmm,

M(z,{,t,1)

M2(z,Z,t,1) = C(z T)—l—/tZC(f,T)rl(Z,Z,f,T)df = oy

1, > are called thdirst andsecond Vekua resolvemespectively, and they have the fol-
lowing properties
or1(z ¢,t,1)

a7 —-C(z,Q)r5(¢,z,1,t) = 0, (1.32)
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dr2<z7 Z7t7 T)

5o ~CariE.zny = o (1.33)
M2lz=r = T2(z1,t,1) = C(z71), (1.34)
r2|Z:t - r2(t7Z7t7T) = C(t7T> (135)

I.N. Vekua proved thahe formula (1.31) gives all solutions of the equation (], 2Ralytic
in z, in the domainD, D).

If we replaced byzin (1.31) we obtain the representation of solutions of theagign (1.1)
by integral operators, analytic in the real variabtendy in D. Applying this method to
the equationl{) we also get the representation of solutions of the equéii)rby integral
operators. However our aim is to derive an explicit represt@n of the solutions of the
equation M) by differential operators of Bauer-type. Then we need temine the first
and second resolvenlg, I'> by using the method of K.W. Bauer ( [5], [6]). This will be
done in the next section.

1.3 Determination of the Vekua resolvents

Lemma 1.2.
"1, > are solutions of an equation

C, .
Wy, — GW, ~CCW = 0. (1.36)

Proof.
To prove this lemma we need the properties (1.32) and (1[38grentiating the two sides
of the equation (1.33) with respectzave get

62r2<z757t7.[) 0C<Z7Z) *
0205 - 07 rl(Z,Z,T,t>—C(Z,Z)

By definition

~ 0. (1.37)

or;(l.ztt)  ariyl,zT.i)
0z - 0z

and from the property (1.32) we have

= C(?,Z).I'ﬁ(z?,f,f) = C"({,2)T2(z, ¢, t,T).

dr1(Z,z, 7.9
9z

This implies that
ori(¢,z,t)

5 = C*(Z,2)M2(z q,t,1). (1.38)
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From the property (1.33) we have

1 ar2(2757t7.[)
czq) o7

Substituting (1.38) and (1.39) into (1.37) we obtain

ri,zt,t) = (1.39)

0°T2(2,Z,t,1) 1 dTa(z,q,t,1)
T A ¥ S R ¥

Thereforel ; andl™; (prove analogously) are solutions of the equation (1.36)laamma
1.2 is proved.

—C(2,)C*({,2)T2(z,{,t,T) = O.

O

From the properties (1.34) and (1.35) together with the eguél.36) we can determine
> and ther ;.
If we know one solutioW(z, {,t, 7) of (1.36) with the initial conditions

W|,_; = C(z,7), W] = C(t, 1), (1.40)
it follows that 1
M =W, r = W,
2 1 C(Z,Z) 4

In the case of themequatioMQ, the analytic continuation of the coefficieBtz,z) has the
formC(z () = 12 Then the equation (1.36) reads

1—
WWy; — JW, —mPW = 0 with w:= (1-2{). (1.41)
We are going to seek a solutigviwith the initial conditions (1.40) in the following form
m
= H(A
1-zr ()
with
A=Az{,t,1), Hlz_r =H[z=t =1
We have
m
W, = H'A
¢ 1-zt ¢
mt m
W, = ——SHA; + ——(H"2A; +H'A,).
£ 7 (1—zr)? ¢t (M AACHH A,

Substituting these expressions into the equation (1.41)tein

7‘*’“__25)/\Z H —mPH = 0. (1.42)

WAAGH" + | @Ay + =
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Choose\ = d(Z—lt_)(ZZZ— 0) , whered is a function not depending aand{, then
1-tl 1-
Ay = d(Z—T)ﬁ, Ay = d(z—t)((l_izzg;z,
1-—zr T 2(

Therefore the equation (1.42) results in

[d(1—tT)A +A2H "+ [d(1—t1) +A]H —nPH = 0.

-1 L . .
Choosd = 10 (1—tt # 0) then we have the hypergeometric differential equation

AL-A)H"+[y—(a+B+1)AH —aBH = 0, (1.43)
withH|,_o=1, a=m f=-m y=1.
Some properties of the hypergeometric differential equatiand their solutions can be

found in, e.qg., [2], [24] or [42].
A solutionH(A) of the hypergeometric equati@fh.43) is given by

2 (@)(BiAK
H()\)_kZo (Vk K

where(X)k, k € N, is the Pochhammer symbol defined by

1 if k=0,
(X>k:{ .
X(X+1)...(x+k—-1) ifk>0.

Fora=m, f =-m, y=1we have

il kmm+k—21)!

H(A) = 1+k;(—1) m)\ (1.44)
with
)
Aty
Therefore

(Mm+k—D! o (Z-H*Z -1)*
(k1)2(m—K)! (=) (1—z)K(A—tT)K

H(A(z {,t,1)) = 1+ g(—l)
K=1
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So we have

Mz 4,4,1) = WZ{,LT) = —H(A)

1-zt

m m-|—k 1) (z—t)K(Z — 1)k
T 1z zr[ Z ]

) (1—20)K(1—tT)
This implies that

oozt 1) g mz(m+k—1)!k( z—t )k (7 —1)k1
1-tr

07 2 (KEm oK) iz )
By definition of the conjugate function and the relation @),3ve get
Py 1 0dra(z,t,1)
rl(Z7 7T7t) - C(Z,Z) dz . (146)
Substituting (1.45) into (1.46), we obtain
S D mmyk-1)k 2\ (-T)k T
D mm+k-1)k -1\ (z-t) T
= NE D = 2 Tam—K) (i)
To sum up we have
m m+k Dk —1\ @z-t)«?
@GN0 = ) Tazm—k) <1—tr (1—20)F (1.47)

m M mm+k—1)! (z—t)%Z —1)k
r = — |1 .
2(24.L1) 1—zr[ 2 I02m=K)! 1=2)NI—tr)F
After having the resolvents; andl; we shall convert the representatioh31) of the

solutions to a form free of integrals. Hence we get the repmdion of the solutions of
equation ) by differential operators of Bauer-type.

(1.48)

1.4 Representation of the solutions by differential operairs of
Bauer-type

In (1.31) we can chooseg = {p = 0, then the following formula

z ¢
Wz ) = 6@+ [Nz L0pMdt+ [Tz 0n¢ (T (1.49)
0 0
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gives all the analytic solutions of the equation

ow(z{) m
57 = 1—ZZW(Z’Z)’ z2,{ €Kgr. (1.50)

Next we are going to calculate the two integrals in the foanil49).
The first integral in(1.49) is

4

Z'm _ K(5_ +\k—1
/Fl(z,Z,t,O)(p(t)dt — /kzl Ti:r;zr:_?)!!kz(f_z?)k o (t)dt
J &

0

4

— k
r?&r!r)l;ri—%!!k(lfzz>k/ (-0 "¢t (15

0

K=1
Now we introduce the spadtx,(k, 0), see [27], of all functiong(z) € H(KR) satisfying

6(0) =g/(0) = - =g* D (0) =0,

In order to calculate the integrals on the right-hand side€ldi1), we need the following
lemma.

Lemma 1.3.
For any functiong (t) € H(KR) there exists a unique functior{tg € Hk,(m,0) such that

(1) =g™(t).

Proof.
The statement of the Lemma3lcan be obtained easily by considering the function

4

09 = oo 0/ (z—t)™ 1 (t)dt.

Applying Lemma 1.3 for the functiog (t) € H(KR), there exists a unique functigfit) €
Hkg (M, 0) such thatp (t) = g(™(t).

Denote
y4

I = /(z—t)k1¢(t)dt, 1<k<m,
0
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then using the Lemma3 we get

= 0/ (z-* g t)dt = (k-1) 0/ (2O g™ D (t)dt

z

= (k=1)igm N (2).
0

= = (k=1)g™ Rt

Hence
Ik = (k=1)!1gM¥(z), 1<k<m (1.52)

Insertingly into the expression (1.51) we obtain

m k
/r1 (2,,t,0)¢ Z m+k_1)) k(l_zzz)k(k—l)!g(mk)(z).

Denotej := m—k then

z

m-1 m(2m— J —1)' Z m-] (i)
M(z¢,t,0)¢(t)dt = ~ gV (2). (1.53)
/ . jZo ( <1—ZZ)

m—)!i!
/ i

The second integral ifi..49) is

4
/rz(z,z,o, )" (1)dr, (1.54)

0

wherel2(z {,0, 1) is given by(1.48).
In order to calculate the integrél.54) we need the following lemma.

Lemma 1.4.
Denote
m
B B km(m+k—1)!
T =2 aem (1.59)
thenT+1=0.

From now on we denote the binomial coefficieGf8 as

kmeN, k<n.

_ m!
G = Kl(m—Kk)!’
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Proof.
We can rewritel in the form

1 (m+k—1)!
T = (—1)kcp
(m—1)! k; k!
Now we consider the expansion
m
(1-x™ = ¥ CR(-1",
=0
m
= (1—x)™m1 = Z(—l)kC&“xm*k_l. (1.56)

Differentiating the two sides dfL.56) of orderm— 1 with respect tax and then substituting
x = 1 we obtain the equality

m
pkem(M+k=1)1
m+k—1)!
= 1<—1>kc&“< ey
1 k~m(M+K—=1)!
o,V =
Thus Lemma 4 is proved. O

Remark 1.1.
There is another way to prove Lemrbd using the formulg1.44) for the solution of the
hypergeometric equation

I(m m+k 1)!

mk))\

1+Z

=1

We obviously see that
Hi,_1=H(1)=T+1.

Since the value of the hypergeometric series at 1 is equal to zero, we have F —1.
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Now we use the above result to compltgz, {,0, 1) as follows

m M m(m-+k— 1)1 X(Z — 1)K
r2(24,01) = 17— 1+k; (kh2(m—Kk)! (1—25)"}

oom I mm+k-D![ 20 —z1
C1l-zr k; (k1)2(m—K)! ( 1_25) _(—1)k}

m 2 mm+k-—1)![/1—zr k
- 1—ZTKZl (kh2(m—k)! _(1—25_1) _(_1)k]

om mm+k—I1 11—zt Xt /1—z1 P 1
S l-zr Z (kD2(m—k)! 1—2¢ Z (1 z{ 1) (="

m m+k N 1 p2P((-T)P

=& wrmkr &Y e

k=1 p=0
Therefore
¢ m m+k 1kt (—1)k-1-pzp ¢ 0
0, — *(1)d
0/ (26,019 kZl k)2(m—Kk)! pZO (1-z{)ptl O/(Z TR (ndr

(1.57)
Now we denote

{
3, = /<z—r)p¢*(r)dr, 0<p<k—1
0

Here ¢*(t) is the conjugate function of the functiai(t). So using Lemma 1.3 and the
definition of ¢ *(t) we can write

4 4
Jp = 0/ (¢ - T)PgRTIAT = O/ (- T)Pgn(T)aT,

whereg(t) € Hkg(m,0) is chosen as in Lemma 1.3.
By using the property of the complex conjugate and chandiegvariable in integral we
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have

HenceJ, = plg(m-P-1({), 0 < p < k— 1. Substituting this into (1.57) we have the fol-
lowing form of the integral (1.54)

4

/ 2(2,2,0,T)¢ ijAJ 1Zmzzl rln Q).
0
Therefore we obtain the form @f(z, {)
m-1 i m—j Zn—1-
_m) m(2m—j—1)! { j
w=g (z)+j;) mo i \1-z +ZO A-z)m™ JgJ(Z)

(1.58)
Inserting the expression (1.58) into the equation (1.50jexes the following representa-
tion

gy etmEm— -t ™
w(z{) = g )<Z)+,-Zo (m_j)!j! (1_25) g¥(2)
1! 1 ——=
Zol —J— (1- zZ)m'g(])<Z)’

(1.59)

whereg € Hk,(m,0).
The expression (1.59) gives all solutions of the equatioBQ)Lanalytic inz, { in the do-
mainKg. Replacing{ by zin (1.59) we obtain the following theorem.

Theorem 1.4.
Consider the differential equation (M)

W, = ——W, meN, ze Kg.

Denote the coefficients ofi¢z) andg(i) () in (1.59) by a(z,2) and b (z,2), respectively.
Then for every solution w of the equation (M) ip,Kanalytic in the variables x and y, there
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exists a unique generating functioregHk,(m,0) such that w has the representation

m

szoajzz +Z)b (z,2)9 =
=
m -] m-1 _ Zm—j—l
JZOmBm(l zz) - — ¢

(2m—j—1)!
where = ——

7= Tm-n | .
Conversely for each functiong Hk,(m,0) (1.60) represents a solution of the equation
(M) in Kg.

(1.60)




2 A CLASS OF BOUNDARY VALUE PROBLEMS

In this chapter we consider some boundary value problemgseado-analytic functions
which can be represented by differential operators of Bamss. We show that these prob-
lems are equivalent to certain ordinary differential etpret for the generating functions
defined on the boundary of the domain under considerationthiécBers-Vekua equation
(M) we shall solve these differential equations explicitlyngsFourier expansions for the
functions involved. Once the generating function is deteet on the boundary we can
express it in the whole domain. This method can be applietheédirichlet boundary
value problem and a class of the generalized Riemann-Hitlimemdary value problems
for the pseudo-analytic functions which are solutions ef ¢élguation§1). The boundary
value problems for such pseudo-analytic functions and-psBudoanalytic functions are
treated in [17]. Applying this method to the more generalrmary value problems for
other classes of the Bers-Vekua equations is an open gunestio

2.1 The Dirichlet boundary value problem

We consider the boundary value problem

wy = CWw in D, (2.1)
Rew) = W on 0D, (2.2)

whereC is an arbitrary analytic function defined Tmand¥ is Holder-continuous oaD.
[.N. Vekua [44] presented theorems concerning the existehsolutions of this problem.
He proved that this boundary value problem is equivalent $mgular integral equation
for a certain density function, the kernel of which depenalshe coefficienC.

: . . m .
In the following we will show that for the certain problem Wi€ = —— whose solutions

have the representation using the Bauer-type operatofgeifotm (12.260) this boundary
value problem can be solved explicitly in a direct way.

According to Theorem 1.4, the generating functgpa Hk,(m,0) is determined uniquely
by the solutiorw, then we can state that solving the boundary value probleb)-(2.2) is
equivalent to finding the suitable generating funcipn

Now the boundary condition (2.2) in connection with the esantation (1.60) fow leads

27
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to the differential equation
m m—1
Ref 3 &€+ 3 bUEOITE) | = (o) 3)
27 2"

whereé € dKg andaj(&) := aj(z,2)|pky, bj(¢) := bj(2,2)|9k, are used.

With respect to the conditiogp € Hk,(m,0) we use forg the expansion

[ee]

92 = Y u& weC.
k=m
In particular we have
gé) = WéEX on OKg. (2.4)
k=m

Now we are going to calculate the coefficiepts for k > m. With g(&) in the form (2.4)
the boundary condition (2.3) can be written as

_ —=k—j

il o k! .om1 0 Kl
Re{goaj(f)kzm<k_j)!w<fkJ+j;bj(f>kzmmykf Lowe. e

Since the coefficienta;j andbj in (2.3) are known explicitly, we can solve the differential
equation (2.3) for the functiogin the following way.
Inserting the coefficienta; andbj into the differential equation (2.5) we have

m BmMm
R S E—
e{ j;(l—ff)mj g

I L 1) ¥ St R
S RS G - e

Introducing the real parametee [0, 271 by & = Ré' € dKg we obtain

Re{ Y Ry dekFé‘mle‘“‘”‘“)t} =W, (2§
k=m k=m

with
m k! R2(m—})
c = S mB" , - >0,
2, = i Ry .
m-1 Kl Rz(m_j_l) ( : )

= 2 M B —rym 70
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Now we usey = ax +iBk, o, Bk € R, k>m, ande® = cost +isint, t € R, for which we
get

ReW)|pkg = CmOm+ Z(Cm+kam+k+dm+kflam+k—l)RkCOS<kt)
&
- 2.8)
— Z (Crsk Bk + dm+k—1Bm+k—1)RkSin(kt)-
&

Now the boundary functiok is assumed to possess a uniformly convergent Fourier series
of the form

W(t) = ¢o+ i(d)kcos(kt)—i—wksin(kt)). (2.9)
K=1

Comparing the two expressions (2.8) and (2.9) we are lecetéollowing linear system of
the coefficientsx, and B¢

CmO'm = @o,
(Cm+kam+k+dm+k—1am+k—1>Rk = ¢ k=12,...
—(CmkBrmk + Omk—1Bmik—1) R = U, k=12,..

Herefm € R can be chosen arbitrarily and then the remaining coeffisiesuh be calculated
recursively as follows

$o
(of = —
m Cm,
Pk — derk—laerk—lRk
a = k=12,...
mk Cm+kRk 9 ) & (210)
Y+ dmk—leJrk—le
= - k=12,...
Bm—i—k Cm+kRk ) ) &

To sum up we have the following theorem.

Theorem 2.1.
The boundary value problem

m
Wy = ——W in Kr={7|z <R 0<R< 1},

Regw) = W on dKr={7|z =R},

with W in the form (2.9) has the solution

S mer( 2\ LS n 2" o
w jZOm J (1_22) g (Z)"i‘j;(m J)B] (1_22)me9 (Z)’
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2m—j—1)!
where E§” = % and the generating function g has the following form

9(2) = i (a+1B)Z.

Here Bm € R can be chosen arbitrarily and the coefficienatg k > m, andfy, k> m+1,
are given recursively in (2.10).

2.2 A class of the generalized Riemann-Hilbert boundary vale
problems

Using the representation of solutions of the Bers-Vekuagqgun (M) we can solve explic-
itly a class of the generalized Riemann-Hilbert boundaiyeraroblem given as follows

W, = CW in Kg, (2.11)

ReA(z)w) = @& on OJKg, (2.12)

with C = %2, A(2)=72°, meN, pe N*,

After I.N. Vekua [43] this problem is called Probletn If ® = 0 we have the homogeneous
ProblemA. In order to solve this problem we need the introduction efgb-calledndex

of the problem which we shall define now.

LetAr f(t) denote the increment of the functid(t) as the point describes once the curve
I" in the direction leaving the domaifd on the left, wherd™ denotes the boundary of the
simply connected domai@.

Definition 2.1.
The number n defined by
1
n:= ZTAdKR argA (t)
is called the index of the function(t) with respect to the boundagKg of the domain I
or the index of the boundary value Problém

The existence of the solutions of the Probldms proved by I.N. Vekua in [43] and is
quoted in the following.

Theorem 2.2(1.N. Vekua)
In the case of a simply-connected domain if the indexdthen the inhomogeneous Prob-
lemA is always soluble and its general solution is given by thenida

2n+1
w(z) = wo(2) + Z Hjw;j(2), (2.13)
=1
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wherepj, j=1,...,2n+1, are constants andwy,...,Won,1} is the complete system
of solutions of the homogeneous Probldnand w is a particular solution of the non-
homogeneous Problef

Herethe complete system of solutioofsthe homogeneous Problefnis a basis of the
space of its solutions.

Now we consider the boundary condition (2.12) in connectiith the representation of
the solutions in the form (1.60)

Re{gpljiaj(ag(j)(f)+ij(f)g(j)(f)}} _ o(e), (2.14)

wherea;(¢),bj(&) are defined as in (2.3).
Since the generating functi@tz) belongs to the spaddk,(m,0), g(z) can be expanded
into the power series

92) = kﬁ W WeC.

We shall find the generating functigre Hg,(m,0) provided the functiong on the bound-
ary has the form

9(&) = 5 WE*, on K, (2.15)
k=m

with Y = o+ iﬁk, ak,ﬁk e R.
Next we are going to calculate the coefficieptsfor k > m. For the functiorg in the form
(2.15) and the coefficients andb; given in (2.3), the equation (2.14) becomes

m BM
R —
e{ j;)(l— &g)m- :
< P+k—]

—prm-j & Kp&EK CEmejl o k':L =
{mf kgm (k—1J)! + (M=) kZm (k=) }} -

We introduce the real parameteg [0, 271 by & = Ré' € dKr and assume that the function
® on the boundary has the following form

d(t) = do+ Z (¢xcogkt) + gisin(kt)) ondKg. (2.16)
K=1
Using the notationsy, dy as in (2.7) we obtain

Re{ % G R Pei(k-m-p)t 4 i dk7kRk_m+p+le_i(k_m+p+l)t} - o)
k=m k=m
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Sincee! = cost +isint, t € R, we get

Re(Z°W)oke = > R PG cogk — m— p)t — Besin(k—m— p)t]
k=m

+ 5 AR PH @ cogk — m+ p+ 1)t — Besin(k—m+ p+ 1t].
k=m

For convenience, we split the above sums as follows

Re(ZPW)| gk, = Crnvt pOimy pREP

p
+ Z [Cm+p—kR2p7kam+p—k+Cm+p+kR2p+kam+p+k] cogkt)
k=1

+ Y [cmt p—kRprkBerp—k - Cm+p+kR2p+kBm+ p+k] sin(kt)

Mo

k (2.17)

+
k

[Cmy pkRCPAm prk + O p-1.kOm- p11k] R¢cogkt)
1

k

[Cm+ p+kR2pEm+ prk+Om- p71+k[3/mf p71+k} R sin(kt).
1

M s oM s =

Substituting the two expressions (2.16) and (2.17) inté4R.we obtain the following
linear system for the coefficients and S

( ~
Cm+pam+pR2p — $0,
Cmp—kRZp_kaerp—k + Cm+p+kR2p+kam+p+k = ¢, k=1,2,...,p
Cm+p—k|:Q2|07kBm+p—k - Cm+p+kR2p+kBm+p+k =, k=12,....p

[Cm+p+kR2pam+p+k+dmfpfl+kamfpfl+k] R = §y, k=p+1p+2,...

L [Cm+p+kR2me+p+k+dm—p—1+k5m—p—1+k] R¢ = G, k=p+1p+2,...

Hereay e R (m<k<m+p-1) andﬁk € R (m< k <m+ p) can be chosen arbitrarily
and then the remaining coefficients can be calculated neelysn a unique way as follows
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~ _ o
Om+p = m,
. K~
— Cmp kP KU
Eﬁk mH-p—K 2Jrkerpk for 1<k<p,
Cm p+kRP
Omipik = "
Eﬁk—dm—p—ljtk am—p—1+k
for k>p+1, 2.18
Dk — v o kR2P B o
_Wk mH-p—K ; ferpk for 1<k<p,
_ Cm+p+kREPF
Bmipik = N
dm-p- 1 kRBm_p_
Pkt dmp 1+kZBmk LK for k> pod,
\ Cmp+kREPT

Therefore the boundary value problem (2.11)-(2.12) carobesd explicitly.

Theorem 2.3.
The boundary value problem

m _
Wy = W in Kr={7|z <R, 0<R< 1},
RgzPW) = ® on dKr={Z]|7 =

with @ in the form (2.16), has the solution

- () e B v
(2m—j—1)!
ji(m=j)!

where 3” and the generating function g has the following form

[ee]

92 = ¥ (@c+iB)Z

k=m

Hereaye R (m<k<m+p-1) andﬁh € R (m<k <m+ p) can be chosen arbitrarily
and the coefficientgy (k> m+ p) and B« (k> m+ p+ 1) are given by (2.18).

We have used the representations of the pseudo-analytitidus to solve the Dirich-
let boundary value problem and a class of Riemann-Hilbeundary value problems.
Thought only some special classes of the boundary valudgmsbare applied, the so-
lutions of these problems have been solved in an explictemgo From Theorem 2.3
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we can see that the number of the arbitrary coefficients infdhmula of the solution
of the Riemann-Hilbert boundary value problem is equal ®dimension of the space
of solutions of the corresponding homogeneous problementTtimeorem 2.2 of Vekua.
The Dirichlet boundary value problem considered in SecBdnis a special case of the
Riemann-Hilbert boundary value problem and its inder s 0. According to Theorem
2.2, this problem always has a solution. This agrees witHabethat the number of the
arbitrary coefficients in the formula of the solution of thgi€hlet bounday value problem
is 1.



3 CONSEQUENCES AND APPLICATIONS OF THE
REPRESENTATION OF SOLUTIONS BY DIFFERENTIAL
OPERATORS OF BAUER-TYPE

In Chapter 3 we study some problems related to the Bers-VeRuation i1). First we
construct a connection between the generating functiodsayiven solution of the equa-
tion (M). Using this connection we can derive a representatiorrémedor solutions of the
equation 1) in the neighbourhood of an isolated singularity. The reprgation formulae
for the solutions of other partial differential equatiomstihhe neighbourhood of isolated
singularities can be found in, e.qg., [3], [4], [7], [8], [12Using the representation of the
solutions of the equation) we can find a generating pair of the equatibt) {(n the sense

of L. Bers and a special class of the chiral components indimg ffield theory.

Then we consider further differential equations conneetél the equationN1) such as
the Bers-Vekua equation of typ#{ with different parameters and an inhomogeneous
equation corresponding to the equatidh)( We shall construct connections between the
solutions of the Bers-Vekua equatiokl) with different parameters. This problem for
other Bers-Vekua equations can be found in [9], [14].

For the inhomogeneous equation corresponding to the equdi) of type

W, — ——W=®>(z,2

2 1-=z (22)

the question arises that for which functiohz, z) there exists a representation of all solu-
tions by differential operators. We shall give some clasgdanctions®(z z) for which
the above inhomogeneous equation can be solved explicitly.

3.1 Connection between the generating functions and the sdions

Theorem 3.1(Connection between the generating functions and a givetico).
For every given solution w of the equation (M) in the form {3,2he derivative 6”‘)(2)
of the generating function g is uniquely determined by

1 om

g (2) = 1—z)m oz

{(1—22)”‘\/\/} (3.1)

35
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Proof.
Multiplying the two sides of the equality (1.21) §§ — )™, we have

- ima“z'“—i<l—zz>ig<”<z>+m§<m—j>B§”z”“—"—1<1—zz>ig<i><z> (3.2)
1= =
(2m—j—1)!

jt(m—j)!
We denote the first term and the second term on the right hded${3.2) by

WhereB'j~n =

m . .
A= ZOmBJ-“Zm_j(l—zz)Jg(”(z),

m—-1

B:= go(m—j)BE“zmj1(1—22)19(1)(2).

Then taking the derivative of the equalit$.2) of orderm with respect te we have

om m om om
First we consider the derivative #fof orderm

ZA= zo mep 2 2 (1 210 o)

— ZOmBmzm_ {%q (g (z))™
(2m—j— j

:Zoj i
Sl

= 3 3 T e g
j—I
Letj—i=qthenj=i+qg>aq.
Hence the above equality reads
om AL g(2m—j—21)Im
A= —1)i-a cM 2™ 91— )%™ (2). (3.4)
o7t = 22 U g O -2
Now we consider the derivative & of orderm
dm m—1 1 . 0
_ _ —j— \i1q(i
J_
m—1

_ ZO {%Cm Zm j— 1] (m—i) g(l)(z).
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Denote
Tii= ((1-z) O,

then we see thaf; #0, 0<i <m, if and only if

(1-2)10 #0 <] <]
{(zm”)““” #0 " {m—i <m-j-1 {i >+l

This is impossible!
ThereforeTi=0forall0<i<m.
This implies
am
0—sz 0 forall meN*. (3.5)

Substituting(3.4) and(3.5) into (3.3), we have

- (3.6)

It is easy to see that the coefficient@®™ (z) in (3.6) is equal tq1—22)™. In order to
prove the formuld3.1), that is,

C 2™ (1 zz>Q] g™ (z).

627(2) = 7 | (L —>mw},

we have to point out that all the coefficientsghf % (z) for q=0,1,...,m— 1 (except the
coefficient ofg(®™ (z)) are equal to zero.
That means we have to show

m |
> (= q(2m—i— .l>"mCJ”lq:O for 0<g<m-1
i=q (m_J)
m (2m— j —1)!
& . e =0 for 0<g<m-1.
2 V= gim-pim-jrq) ‘

Setq:=m—(s+1),0<s<m-1, then we need to prove
(—1)] (2m—j—1)!
(j—m+s+1)I(m—j)(2m—j—(s+1))!

j@m—j-1)(@2m—j-2)...2m—j—
(j—m+s+21)I(m—j)!

=0 for 0<s<m-1,

) =0 for 0<s<m-1,
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(m+s)(m+s—1)...(m+1) (m+s—1)(m+s—2)...m
< 0l(s+ 1)! - 11 L
i1 (M=1)(m=2)...(m—
ey )((r:+1))!0! m=s o

(3.7)

Indeed, we consider the expansion fat R

XM Hx— 1% = XM —CY e+ 4+ (—1)PHICE]], mse N,

IR 118

m-1 s+1 (s+! s (D! s st1 (SHD!
(3.8)
Taking the derivative of the two sides of the equali3y8) of orders with respect toc and
then substituting= 1, we obtain the equalit§3.7) immediately.
Hence the coefficients @™ 9 (z), with 0 < q < m— 1, are equal to zero.

To sum up we have
(Zm)(z) _ 1 o (1—22)™w
J ~ A-zmozm '

Therefore Theorem.3 is proved. 0J

If we consider the zero-solutiom= 0 of the equationNl) then from Theorem 3.1 we have
g@M(z) = 0. Thereforgy is a polynomial of degreer@— 1

0(2) = apt+azt+ a2+ +am 12"t a€C,j=0,1,...,2m—1.

In the following theorem we describe exactly the generatimgtion of the zero-solution
of the equationif).

Theorem 3.2(The generating function of the zero-solution)
A function ge H(KR) is the generating function of the zero-solution of the eiqua{M) if
and only if g has the form

2m-1 ]
g(2) = Z) ajz', aj € C, (3.9)
j=
with aj = —a@pm-1-j for j =0,1,....m—-1.
Proof.
e Necessary conditionWe show that if the solutiow is identically equal to zero them
has the form(3.9).

By hypothesis, the solution and its derivatives of any oeterequal to zero a= 0. This
implies

q
00—2\2/(0) —0,0<q<m-1
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From the representation formul&.60), we have

m—1

W= mB" 2" (1—-2z2) gV (2 + § (m—j)BIZ" (1 — z2)~Mgli)(2)
Z) J JZO j

(2m—j—1)!

J( -t

Z) mBy" Z™ ’020,[( -2z2)""gl)(2)]

where Bm

dw

+ ZO B (211 2) Mgl ),
(3.10)

Whenz = 0 the first sum on the right-hand side(8f10) has only one non-zero term which
corresponds to the cage=m

= g™ (Q). (3.11)

97 rgm
79"

Next we consider the derivatives in the second sum in the-hghd side 0f3.10)

QG (m—j—1)(j —mytZm et i
palf ey = 3 S 2
(3.12)

foreachj=0,1,....m—1.

Whenz = 0, there is only one term different from zero on the rightdhaide of(3.12),
which corresponds to the case- 0 andj = m—g— 1. Hence the second sum on the
right-hand side of3.10) has only one non-zero term

(m+q)!

(m+q)! a5 - A
z=0 I A

(m—q- 11—z~
From(3.11) and(3.13) we have

0%
0—zq(0> = g™9(0)+

gm-9-1(0). (3.13)

(m+q)!
(m—qg—1)!
_ (m+q)!
0 = (m+q)! am+q+m

0 = (m+0)![amiq+8m—q-1]-

(m—g—1)!amg-1

Hence

8miq = —am-g-1 for q=0,1,...,m—1
&aj = —am-1-j for j=0,1,...,m—1
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Thus the necessary condition follows.

e Sufficient condition.If g has the form(3.9) theng is a generating function of the zero-
solution.

Since the expression i1.60) is linear with respect tg andg has the form3.9) (by the
hypothesis), it is enough to prove the sufficient conditiotinthe following form ofg

g = agd—a,2™m 19, 0<g<m-1.
This means we have to prove the following equality

m ) ) . m-1 . .
_ijsj“ 2l (1-z)~mgl) 4+ _Z)(m— BrZit1-z) Mg =0  (3.14)
I= I=

with g = aq28 —a,22™ 179, 0<g<m-1.
Substitutingg into the equation (3.14), we have

g mB}n Zn-] (1-— ZZ)j*m[aqzq _qumel—q](j)_i_
j=0

m—-1

+ Zo(m—j)Bg”zm—i—l(l—zz)i—m[aqzq—anZm—l—qw) = 0.
=

The above equation can be rewritten as
Tiag+Tz23aq = O,

whereT, andT, read as follows

m—1 ) e
> (m-—)BfZ a2 @,
=

m
T, = SmB"Z" i (1-z))()W) -
1 ]ZO ]

m—-1 ) _ m ] ] )
T = Zo(m_ j)Brjnzm*J*l(l_zz)l(zq)(J) - ZOmBEnzrnJ<l_zz)J(szql)(J)‘
= =
We have to provd; = 0 andT, = 0.
First, we consider the equation
T, = 0.

This equation can be rewritten as follows

S (m— BN 11y
2 (M-8 G

— U M M- j ~\ ] (Zm_q_l)! m—q—1—j
= 2 e -2 e

(3.15)
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which we have to prove. On the left-hand side of (3.16ply runs from O taqg because
(W =0 for j>q.

Dividing the two sides of the equation (3.15) By 91 we obtain
S (m-— B %A A )

m— j)B"——— 21-z
2 (M= DB i

_ m (2m—q—1)! jom ] J
]ZOmBm(2rn 0 1—J)Zm " 1-2z)l.

With A =zz A € R4, this equality can be written in the form

M dyg—j (Zm_q_]-)l il (Zm J 1) my m—j
,ZO< e T A G i e e N ey e T A
(3.16)
Denote the left-hand side and the right-hand sidgdif6) by £ andR, respectively. Now
we are going to prove the equalit$.16).
In order to do that, we first consider the expansion

a™a+ (1—b)m waZmllu_b) a,beR. (3.17)

Taking the derivative of ordey with respect ta of the two sides of the expansi¢8.17)
we get

zocq a™ @ (a+ (1-b)m ZOCm a?m =141 —p)

(m-1)! m-1-q+j M m—j
@Zo (m—1—q+ )" J(m—J> a+(1-b)

_ < ~m (2m—j-—1)
N jZOCi (2m—j—1—q)!

a2™1-1-4(1 _p)J.

In the casea= b = A, we obtain

(m—1)!m Caelti e (2m—j-1)!
Cq )\mqlﬂ: Cm Aquljl)\
Zo (m—q-— 1+j) ]ZO (2m—j—1-q)! ( )"
(3.18)

Dividing the two sides of the equation (3.18) b§"~9~1 we have

¢ _(2m—j-1) d (m—1)!m .

j;)(Zm q—1—j)! CPAT =AY = jZo(m—j)!(m—q—lJrj)!Ci’\]’
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and then multiplying bw we have

(m—1)!
_ (2m—g-1)! (m—1)!m! q
R = (m—1)! j;)(m—j)!(m—q—l+j)!cl
4 2m-qg-1! ¢

j

= . CMA L (3.19)
,—Zo (M—g—1+j)! (@—j)!
Next we consider the following expansion
q . ,
a®™ 4 lay (1-b)9 = Zoc?aZm—l—l(l— b)!, abeR. (3.20)
]:

Taking the derivative of orden with respect ta of the two sides of the expansig8.20)
we obtain

Z)cm 2™ a1y (ja+ (1 b))% Z)Cq 2™ -1y M (1 _p)l,

— Zo Zm__J‘_ a™i-l1-b).  (3.21)

In the sum on the left-hand side of the equation (3.21Wns from 0 tog only because
(la+(1-b)HD) =0 if j>q.
By choosinga= b = A the equation (3.21) becomes

ZOCJ ((Zm JJ )) Am- j—1 1 A ZOCm 2m q-— 1) q! )\quflJrj
£ —j—

m—qgq—1+j)' (q—j)!

and then dividing the two sides By" 91, we get

£ 3 i)
S @Cm—g-1)! gy
- ,Zo(m =1+ D a—io (3.22)
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From the two formulae (3.19) and (3.22), the equality (3i1&¢)oved. Therefore
T, = 0.
To prove the statemeii = 0 we have to show that

(2m—j-1)! 4 a-
ijo—< ~—T CjA Ja=2)!
(emogq-1imt (2m- |- 1)
= el 2, m—q-j-1)

Cm]ﬂnllj(l A)

whereA = zz

We use the same method which we has been used in order toprev@ Instead of using
the expansions (3.17) and (3.20) we use the suitable exgenas follows.

We first consider the expansion

m—1 ) )
aMa+ (1—b)m™?t = Z)le”_lazm"‘l(l—b)’, a,beR,

and then take the derivative of the two sides of this expansi@rderg with respect ta.
The second expansion is

a®™ " a+ (1—b)) Z}c“* ™I Y1-b)), abeR,

and then we take the derivative of the two sides of orderl with respect t@a. Therefore
we can prove that

T, =0.

That means the equality (3.14) is proved and thus the sufticendition follows. 0

Corollary 3.1.
Suppose thadl is a generating function of a given solution w of the equa(id). Then
every generating function g of the solution w is given by

2m-1 )
92 = §(2) + ZO ajz,a; € C, (3.23)
=

with aj = —@pm-1-j, for j=0,1,....m-1
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3.2 Representation of the solutions in the neighbourhood @n
isolated singularity

In Chapter 1 we have proved that all solutions of the equdibn

m
W, = ——W, meN,
1-72z

in Kr can be represented by differential operators of Bauer-type

w=:Hmng+Hpy_10 (3.24)
> e (5 ) D@+y (m- B2 g
= ) mb - g (2)+ m—])5] ——7—59"(2),
JZO '\1-z j;J F1-zm
I |
whereB[" = M, andg € H(KR).

ji(m— !
We have also found the connection between the generatiragidas and the given solu-
tion and the form of the generating functions of the zerasoh.

Using the Theorems 3.1 and 3.2 we can get a general représeriteeorem for the solu-
tions of the equationM) in the neighbourhood of an isolated singuladgye Kg.

Let

U(z0) ={zeC|0O< |z— 20| < p} C KR,

be a punctured neighbourhood of the papntind letw be a solution of the equatio(
inU(z).

Then for the given solutiow, a derivativeg'®™ (z) of a generating functiog of w can be
expanded into Laurent serieslil{zp)

9" (2) = féj (z—20)). (3.25)

After integrating 2ntimes the equality (3.25) we obtain

9(2) = 91(2) + p(z) log(z— ), (3.26)
wherep(z) is a polynomial inz of degree th— 1,

2m-1 )
p(z) = bjz/, bjeC,
j;) j j

andgi (z) is a holomorphic, single-valued functionli]‘(zo).
The function logz— 7p) is a multi-valued function itJ (zp) and therefore the second term
in the right-hand side of (3.26) is also multi-valued, uslée factorp(z) satisfies certain
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conditions.

Now we build a solutiorw of the equation1) with the generating functiog according
to (3.26) and postulate thetis a single-valued function io (zy).

Inserting the expression (3.26) fginto the formula (3.24) we get

W = Hm[01(2) + p(2)log(z— 20)] +Hm_1[91(2) + p(2) log(z— 20)]

= W+ Hm[p(2)]l0g(z— 20) +Hpy-1[P(2)] log(z— 20),

whereW denotes a function which is single-valuedliizy).
With z=zy+re'? | 9 = 99+ 2nm, n€ Z, and thus logz— zp) = Inr + i3 we have

W=Y¥+ (Hm[p(2)] + Hr-1[P(2)]) INT + (Hm[P(2)] — Hiy-1[P(2)])i8 .
Sincew has to be single-valued Lﬁ(zo) we have to require

v = Hm[P(2)] — Hy 1 [P(2)] = 0.

Settingp(z) = iq(z) we have

v =i(Hm[a(2)] +Hp 1[a(2)]) =0.

We see that-iv is a solution of the equatioM) with the generating functiog(z). Since
U is the zero-solutiong(z) is a generating function of the zero-solution of the equmtio
(M). According to Theorem 3.2 we see tligitas the form

2m-1 )
d(2) = Z) a;zZ, with aj€C, aj=-3m1j, j=0,1,...,m-1
=

This means that the polynomip(z) = iq(z) is of the form

2m-1 ) _
p(z) = Zobjz', with bj =bpm-1-j, j=0,1,....m—1.
=

To sum up we get the general representation theorem foriaotubf the equationM) in
the neighbourhood of an isolated singularity.

Theorem 3.3.
Let w be a solution of the equation (M) in

U(zo) = {ze C|0< |z— 2| < p} C KR,

with an isolated singularitygz Then w can be representedLTh(zo) by

m B“ 7 m—|j i) m—1 ‘ Bm Zm_j_l =
W_j;)mj(l_zz) g (Z)+jZO(m—J) jmg 2),
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where
m_ (2m—j—1)!

b (m=)!
and the generating function g has the form

9(2) = 91(2) + p(2) log(z— 7),
with g1(2) is a holomorphic function itJ (zy) and [z) is a polynomial of the form

2m-1 ) _
p(z) = Z)bjzja bj € C, bj =bom-1-j, j=0,1,...,m—-1.
=

3.3 A generating pair of the equation M) in the sense of L.Bers

The concepts and notations of pseudo-analytic functiotnedaced in the following can
be found in the books of Lipman Bers [18] and Vladislav V. Kshenko [32].

The notion of a generating pair in the sense of Lipman Berglwisi a couple of complex
functions, is independent in the sense that at any pointahe\of any complex function
defined there can be represented as a real linear combiwatimagenerating functions. In
pseudo-analytic function theory they play the same roleasdl in the theory of analytic
functions.

Definition 3.1.
A pair of complex functions F and G @, possessing Hdlder continuous partial deriva-
tives with respect to the real variables x and y, is said to lge@erating pair if it satisfies
the inequality

Im(FG) >0 in Q.

The following expressions are known @saracteristic coefficientsf the pair(F, G)

. _ _FG-FG _ FG;—FRG
P&~ " FG-FG" O~ FG-FG"
A _ _FG-FG ~ FG,—FG
P&~ " FG-FG" PO~ "FG-FG"
The equation
Wy = a(|:7G)W—|— b(F,G)V_V (327)

is called aBers-Vekua equatiofsometimes, Carleman-Bers-Vekua equation). This equa-
tion represents a generalization of the Cauchy-Riemanesyand is the main object of
the study of pseudo-analytic function theory.
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In the special case whdf G are two independent solutions of the equation (1.1), that is
F, G satisfy the equation

w; = CW
andFG—-FG # 0, then
F(CG) - (CF)G
O FG FG
F(CG) — (CF)G
"Fe) = T EG_FG

In view of the equation (3.27), we can séy,G) is the generating pair of the equation
(1.1)

=Cw, (a(EG) = O;b(F,G) =C).
In order to determine the generating pair of the equatihit the sense of L. Bers, we

choosed~, G as two independent solutions of the equatikh).(
We have proved that all solutions of the equatibt) (n Kg, can be represented as

m-1 2m z \™ .
wez =g+ 3 (1_22) o2
1! ™1 —

(1)
ZoJ —J— 1-zmi° @,

(3.28)

whereg € H(KR).
Choosegg = 1 we have
(2m—1)! [Z"4 2™

"= A=z

and forg =1,
i(2m—21)! Z"— 2™
(m—1)! (1—zz)m

Then(F, G) is the generating pair of the equatidv)in the sense of L.Bers.

G=

3.4 Ising field theory on a pseudo-sphere

The Ising field theory on the pseudo-sphere which was coresida [23] can be written
in terms of a free massive Majorana fermigp, @) as

1 o = 2ir
= o), wIv DT Ty,
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We introduce the parametBrrelated to the Gaussian curvatir®y
1
—
and the notation related to the mass parameteand Gaussian curvatufe

R=

r=mR

Then the chiral componenig and@ obey the linear field equations
ir

G0 = W), O = (X, (329)

where(z 2z) are complex coordinates on the unit djgk< 1.
We consider the first equation of the system (3.29)

ir

T (3.30)

oo =

Let y = €%w, 6 € R then

; ir ; ir ;
d?,w= Fe"ev_v & ow=-——e 20y

/4 1-7z

Choosed = Zthenle_z'e 1 and ifr € N we obtain an equation which has the same type

as the equation\) '
oW = 1—22W' (3.31)

Hence we can solve the solutianof the equation (3.31) explicitly. This implies that the
solutiony of the equation (3.30) is given by

r-1 Zr—l—j

w2 =t 3 l(2) @@+ S - e e
= =

(2r—j—1)!
jHr—j)! _
Therefore we obtain the following lemma.

where BG =

Lemma 3.1. Assume that the parameter r in (3.29) is a nonnegative intégean we can
solve explicitly the chiral components which obey (3.29),

oy (2 ) Ay
w= L;r (_Zz) +zor—1 @],
r Zl’ll

1
—i7 r z "~ j
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3.5 Connection between solutions of the equatiorM) with different
parameters

In this section we shall find differential operators of firstler which map solutions of the
equation 1)

m
Wy = 1—W zeD, meN,
to solutions of the equation
m—+1
U, = +_U, ze D, meN, (3.32)
1-z
and 1
m_
Uz = -0, z€D, meN, (3.33)
1-z

respectively.
Assume thatvis a solution of the equatiof). We shall seek a solutiom of the equation
(3.32) of the form

U = oWz + BwW+ YW,

wherea, 8 and y are unknown coefficients. Inserting this expression inahuation
(3.32) and using the fact that is a solution of the equatiorM) we obtain thata, 3,y
obey the following system

(

Orz:O,
_m+1a
y_r:rle_Zz 9
a m+1_ 3.34
(1-22)7? 1—zz L
mz m+1—
| Tz Pz T AP

From the first equation of the system (3.34)js a holomorphic function in variable
We can choose specially = z. Then from the second equation of the system (3.34) it

follows
m+1_

1-zz~
Insertinga andy into the third equation of the system (3.34) we obtain

2m+1
mT ez
from which
B— 2m+_1 +¢(2), ¢(2) is an arbitrary holomorphic function
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follows.
Now the last equation of the system (3.34) is satisfied if waskd = —m

Therefore
U — 2wt 2m+1 m)w (m+1)zv_v
= 2% 1-z 1-z

is a solution of the equation (3.32)wfis a solution of the equatioM).
Analogously we can prove that

1-—27

(m-1)z_

m|w
+)+1_ZZ

U =2+ <
is a solution of the equation (3.33)wfis a solution of the equatioM).

Denote the set of the solutions of the equatibt),(defined inD by Gy(D) and the set
of the solutions of the equations (3.32), (3.33)&.1(D), Gm-1(D), respectively. Sum-
marising the above results we have the following theorem.

Theorem 3.4.
Let we Gn(D), then

a) zZW + (M )w—i— M D20 € Gmya(D),me N,

b) zw, + (11 22;"+m)w+(1 120 ¢ Gn_1(D), me N*,
me

c) i(zw, — 2w+ 3w) € G(D),

In the sequel we shall give another method to derive theréifiital operators of first order
which map solutions of the equatioll] to solutions of the equations (3.32) and (3.33),
respectively.
We consider the transformation Ui

= u—_i_i7
whereu is a new complex variable antl= —1, then the equatiorM) becomes

mu+i)
CEDE

iw
LetW = —— then we have
u-+i

mw
Wog=——, meN. (3.35)

If we seta = iu then the equation (3.35) is of the form

ma’

Wy =
u a-+a

—W, meN, (3.36)
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wherea is a holomorphic function satisfying the conditiom+@)a’ # 0, anda’ denotes
the derivative ofn.

For the equation (3.36) K.W.Bauer established the conmedietween solutions corre-
sponding to different parameters [9]. We need the two falhguwheorems.

Theorem 3.5(K.W.Bauer)
For every solution W of the differential equation (3.36) dedi inD, there exists a function
f(u) € H(D), such that

D (—ymk@2m—1-k)! ——
W= Qi f = Zﬂ' (a+awkﬁmﬁ-4m—mwﬂ, (3.37)
10

Conversely, for each function(d) € H(D), (3.37) represents a solution of (3.36)7n

Theorem 3.6(K.W.Bauer)
If we denote the set of the solutions of (3.36) define® iny R, (D) and if we use the
differential operators

1 1
R:—i, S: :i_
a’ du a’ ou’
and let W= Qp,f € Fn(D). Then,
m-+1 2m+1
a) (R Mg aj;> — Qs f € Fna(D), meN,
m-|-1 2m+1
RW wW— W = feF D), me N*,
+ +a a+a Q n‘H—l( )7
-1 2m—1

b) (R+ - S+ o Q- ,(R?f) € Fp1(D), me N*,

W
c) (R—9W = Qp(iRf) € F (D) me N.

Now using the two theorems of K.W.Bauer and the fact that utidear transformations

all solutions of the equatiom{) can be transformed to a set of all solutions of the equation
(3.36) and vice versa, we can find the desired differentiaraiprs of first order which
give relations between sets of solutions of the Bers-VekjueagonM) with different pa-
rameters.

If w= Py € Gm(D) then

u+i m+1_ 2m+1_, iw

Phi19= i—[(R+ S— OH—E)(u—i—i)] € Gmy1(D),
u-+i m—1_ 2m-1_, iw

Phad= —— [(R+ =S+ a+ﬁ)(u+i)] € Gm-1(D).

Changing the variable to zwe obtain the following theorem.
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Theorem 3.7.
Denote 1 p 1 p
5 T4+ 20 . S__~(1_2"Y
R= > (1-2) 97 S > (1-2) i (3.38)
Let w= Pyg € Gm(D). Then
1 m+1 1-z
a) {R+LS+( ( JI_)( )) > ]w P19 € Gm1(D),meN,
1 2m-1)(1-2),1-z . .
b) {R-i—TS—i— (1— — ) > w=PF _,0€ Gn1(D),me N*,

S
—_
Pl

2
|
|—\
N

_Z}we Gm(D),me N.

Proof.
To prove the statement a) we show that

m+1
Pri10= {R-i— TS+ (1+

2m+1)(1-2),1-z
-z )2 "
is a solution of the equation (3.32).
We have

(1-220 N m+1(1-2)2 d

Pm“g:{_ > a2t m 2 a2t (F

(2m+1)(1-2), 1z
-z )2 }W

(1-2%0w m+1(1-2?° 1-z (2m+1)(1-2)
T2 2z 2 1-z"t2 {H 1z }W
oPL19 (1-27° m+1[(1-2)(-2+z+22)_ (1-2)?
=g T 3 W2 { 1-2)2 1—z2(WZ)}
(2m+1)(1-2? 1-z (2m+1)(1-2)] m _
21—z 2 [1+ 1-2z }1—22W

Inserting these expressions into the left-hand side of qu@ton (3.32) and denote by
7] i P*
oz 1-z m1¥

T:=

thenT = 0. Indeed,

(1—2)? m+1[(1-2)(-24+z+2z)__  (1-2)?
T=rrg W { 1—zz " 1_22(wz)}

(2m+1)(1-2? 1-z (2m+1)(1-2] m _

21—z 2 [1+ 1-2z }1—zzw
m+1[(1-2)? m+1(1-2° 1-z,, (2m+1)(1-2),
1—22[ 7 (W)t 1-z' 2 =17 )W}
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A coefficient of(w;) in the expression of is

m+1(1-2? (m+1)(1-2)?2
T = — — :0
(W) 2 1-=z 2(1-z)
Sincew is a solution of the equatio), we have
Wy = me e W.
(-2 (1-22
Hence
_7)2 z o _
;__ (-2 AL nz ~ m+1(1-7)( 21L2+zz)_
2 (1-22)2 (1-22)2 2 (1-2z2)2

2m+1)(1-22 m1l- (2m+1)(1-2)]_

T 2i-zm2 T 21- {H 1-z ]W
m+1[m+1(1-2)>2 1-2 (2m+1)(1-2),
1—22[ — T, )W]'

2 (1-27 2
A coefficient ofw in the expression of is
(1-22 n? (2m+1)(1-2? (m+1)%(1-2)?

WETTS T Az 2i-m? T 20-m2 >
And a coefficient ofw is
_I_W:_(l—z)2 mz m+1(1-2)(— 2+z—|—zz)
2 (1-2 2 (1—
+gll_—zzzl 2m+1 )} m+11 z[l+(2mj;i)§21—z)‘

This coefficient is also equal to zero
HenceT = 0 and this implies tha®;,, ;g is a solution of the equation (3.32)
Uy = m-+ 1U
zZ— l —77 )
Therefore the statement a) of the theorem has been provedodously we can prove the
statements b) and c) of the theorem.

zeD, meN.

O

3.6 Representation for solutions of the inhomogeneous eqgti@n

In this section we shall find functior& for which the inhomogeneous differential equation

of the form
Wy — ——W=®(z,2) (3.39)
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can be solved explicitly. In [44] I.N. Vekua gave the repréa&on for solutions of the
inhomogeneous differential equation

= Aw-+ Bw4 ©

using the integral operators. But the determination of tiegrals containing the function
@ is difficult in general. In [9] K.W. Bauer proved that it is ilsle to get representations
(by differential operators) for the solutions of the inhageaoeous equation of type

(¢ +)?
o'y

where¢, ¢ are holomorphic or meromorphic functionsZinand satisfy(¢ + )¢’y # 0
in D, if the function®(z,z) satisfies certain conditions.
Using the method of K.W.Bauer, we are seeking functi®g z) such that all solutions
of the inhomogeneous equation (3.39) can be representeiffénedtial operators.
Case 1
Denote

Wz —n(n+1)w= ®(z2),

m .
Dm::vvz—l—w meN, z=x+1yeD.

The homogeneous equati@iy, = 0 has been solved in Chapter 1 and its solution®in
can be represented by

w= Y mB — 2)+ B ———gU)(2), (3.40)
§ e 25) " 000 S 7 T
whereB" = 2m-j-1! andg € H(D).
jrm—j)!
First we assume that .
o - Pz (3.41)

1-z
where®y(z,2),k € N\ {m}, is a solution of the following homogeneous equation

k —
Dk = ((-Dk)z— E‘Dk - O (342)

To get a general solution of the inhomogeneous equatio@)%8 need to find a particular
solution. We shall find the particular solutiwg of (3.39) in the following form

W =Ady(22), AeR.

Substituting this expression into the equation (3.39) wité right-hand side given by
1
(3.41), we obtaim = ——. Hence
K—m
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Now we assume further that fgre N

322

-3

k;zm
where®y(z,2),k=1,...,p, k# m, is the solution of the homogeneous differential equa-
tion Dy = 0 defined inD. Then

Wo = Z K mCDk(Z,Z) (3.43)

Combining this result with the representation formula disons of the equation\) we
have the following theorem.

Theorem 3.8.
Consider the inhomogeneous equation

sz_

W= i K22 (3.44)

whered®y(z,2),k=1,..., p, k# m,is the solution of the homogeneous differential equation
(3.42) defined irD. Then all solutionsv of the equation (3.44) can be represented in the

form
p

Z ¢kzz+w

k=1

k#£m
where w is a solution of the homogeneous equation (M) givé.89).

Case 2
We assume that

®, k>0,

= dd = (225

WhereDm(aJ) = 0. Then the equation (3.39) becomes

DW= w; — i_v_v = x¥o. (3.45)
1-z
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Denote
Diw = Dk, *(Dw),

then we have B
DKF2w = DXL (Dpw) = DK (XK = 0.
This impliesw is a solution of the iterated Bers-Vekua equation (cf. [1B§])
DKFw = 0.
P. Berglez proved that the soluti@nof this iterated equation has the following form
k+l
W= Z)x“bj
j=
whereDm(®;) =0,j=0,1,--- ,k+1.
Substituting this expression into the equation (3.45) waiob
® =0, j=01,..k
~ 20
® =—.
k+1 k+1
Hence a particular solution of the inhomogeneous equali@by is
B 2Xk+l&3
- k+1
In the case the right-hand side of the inhomogeneous equiid9) is of the form

q Z K~
o3 () ®, qeN,

then it has a particular solution

Summarizing the above result we have the following theorem.

Theorem 3.9.
Consider the inhomogeneous differential equation
m 4 7472k~
- W= ~ o 3.46
Wy — W k;( 5 ) P (3.46)
where O,(®Px) = 0. Then all solutionsv of the equation (3.46) can be represented in the
form
q Xk“a)
T
W=22 *F1

where w is a solution of the equation (M) given by (3.40).

k
+W,




4 REPRESENTATION OF BICOMPLEX PSEUDO-ANALYTIC
FUNCTIONS

In this chapter we study a class of bicomplex pseudo-amdlytictions which are solutions
of a system in bicomplex space

0V (2) =C(z,Z)V*(2),
0V (2) = 02,V (2) = 0,

wherezis a bicomplex variable angi, zo € C are the components af

Since the two components of the so-callddmpotent representatiast each bicomplex
number are complex numbers, many results in the theory aftifums of a complex vari-
able are still true in bicomplex algebra [37]. Using thistfmgether with the results of I.N.
Vekua [44] we can construct the bicomplex form of this syséem define the resolvents of
Vekua type in bicomplex variables. Then we derive the repregion of these bicomplex
pseudo-analytic functions by integral operators.

On the other hand, using the representation theorems foticad of second order partial
differential equations of P. Berglez [11] we obtain a coioditon coefficient® such that
these bicomplex pseudo-analytic functions can be repredery differential operators.
In [15] P. Berglez considered other classes of bicomplexgseanalytic functions which
obey specific bicomplex Bers-Vekua equation and derivddrdifit representations for so-
lutions of such a Bers-Vekua equation.

For a special class of bicomplex pseudo-analytic functiwagyive an explicit represen-
tation by differential operators. Some applications sucl@ving a Dirac equation on a
pseudo-sphere and using the generalization of the Weissstormulae to generate sur-
faces are given.

4.1 An introduction to bicomplex algebra

In this section we introduce some basic definitions and mmrtain the space of bicomplex
numbers (see, e.g., [37], [38], [40] or [41]).

57
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4.1.1 Bicomplex numbers

Let us denote the imaginary unit in the space of complex nusiBéy i1 and thus de-
note

C(i1) :=C = {x+i1y| x,y€R, i = —1}.

Let, then,i; denote the second imaginary unit with the properties

i2=—1,  igip =iy, ai» =ia, Va eR.
Denote the space of bicomplex numbersibylhen

T:={zz=z1+i22, 21,2, € C(i1) }
becomes a commutative algebra with the multiplication igive
(21 +i222) (23 +1224) = (2123 — 2o2a) + (2124 + 22Z3).
It is also convenient to write the set of bicomplex numbers as
T := {Xo+i1x1 +i2X2 + jX3|X0, X1, X2, X3 € R}

where the imaginary uniig,i» andj are governed by the rules

|§ = |§ =-1
iz =izt =], j*=1,
1] = jli=—lp, 2] =Jiz=—i1
The bicomplex numbers have several representations, Wensbstly represent them by
usual complex pairs.

Definition 4.1.

Define the functioff - || : T — R, as follows:

For every z=z3 + 122 € T with zg = X1 +i1X2, 2o = X3+ 11X,
2] = (€ +3+8+8)2 = (| + ) V2.

Theorem 4.1( [37]).

The function|| - || defined as above is a norm on the linear sp@cewith this norm,T
becomes a Banach space.

Definition 4.2.
Let {1 and (> be elements iff. If {1 # 0, {2 # 0, and{1{> = 0 then{; and > are called
divisors of zero.
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T is a commutative ring and has divisors of zero. A set of drgsad zero in the space of
bicomplex numbers is called tmeill-coneand is denoted by

Or={z+i% e']I‘] Z+7=0}
= {Zl(il—iz)’ VARS C(Il)}

Now we introduce the conjugations in the space of bicomplaxlmers. There are three
conjugations irilT. Normally the complex conjugation is given by its action iotree imag-
inary unit, thus one expects at least two conjugation¥ dmut one more candidate could
arise from composing them. Hence foe z; +i,2 € T there are three conjugations de-
fined as follows

Z' =27 —ix2,
=71+ i22o,
ZM = 71— i22p.

In the next subsections, we present some properties of lplexmmumbers and functions
of a bicomplex variable. The proofs of these properties @fobnd in [37], [39].

4.1.2 The idempotent representation

Definition 4.3.
LetZ be an element iff. If {? = ¢ then( is called an idempotent element.

Theorem 4.2( [37]).
We have four and only four idempotent elementg,iand they are

. 1+iqip . 1—iqio
€ = 5 €. 2

0, 1,

Corollary 4.1.
Let e, e be the two idempotent elements given as above, then

€=e, &=  ee=0

Theorem 4.3([37]).
Every element z z; +i22 in T has the following unique representation

Z=(a—-11z)e1+ (21 +i122)€2. (4.1)

Definition 4.4.
The expression (4.1) is called the idempotent represemtati the elementz z; +i22 in
T. The numbers,z- i1z, and z + i1z are the idempotent components of z.
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This representation is very useful because the additiottjphcation and division can be
done term-by-term.

Theorem 4.4( [37]).
Let z= 2z +i220 and u= u; +i2up be elements ifi. Assume the idempotent representations
of zand u are

z= {181+ (o8, U= nier+n2e.

Then
(@) ({181 + (2€2) + (Ne1+N2&2) = ({1 +N1)er+ ({2 +n2)e,
(b) ({161 + {2€2)(Me1+ N2€2) = ({1N1)€1+ ({2n2)ey,

(©) ((1€1+ (2€2)" = ({1)"e1 + ({2)"e2,
(d) If n1#0andn, # 0, then

(e1+4e O (>
e R
niei + n2e '71e1 '7262

Corollary 4.2.
An element z z; + 1,2, is non-invertible if and only ifz—i1zo =00r z; +i12 = 0.

4.1.3 Power series in the space of bicomplex numbers

First we give a definition of bicomplex power series for whitlseems to be easier to
introduce holomorphic functions of a bicomplex variabléeTolomorphic functions of a
bicomplex variable have many striking similarities to halarphic functions of a complex
variable, for example, holomorphic functions of both coexand bicomplex variables can
be defined either as functions which are represented ldoplhower series or as functions
which have a derivative.

Definition 4.5.
Let ax,z and 3 denote elements ifi. A power series in the bicomplex variable z is an
infinite series of the form

S —z)k 4.2
kzoak(z ) (4.2)

If we assumey = 0 anday = px+i20k, Z= z1+i22, Pk, 0k, 21,2 € C(i1) then the power
series (4.2) is

[ee]

> (Px+iz0k) (21 +i222) .
=

Now using the idempotent representation of bicomplex nusb& have the following
theorem.
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Theorem 4.5( [37]).
The idempotent component series of the bicomplex powesssgti2) are the complex
power series

00

k;(pk —i100)(z —i122)", (4.3)
i (P +i10k) (z +i122)%. (4.4)
&

Theorem 4.6.
The bicomplex power series (4.2) converges;at vz, if and only if the complex power
series (4.3) and (4.4) converge at-zi1z, and z +i12, respectively, and vice versa.

Since the idempotent components of a bicomplex power sareepower series in com-
plex variables, and since many known theorems give infaonatbout the convergence
and divergence of complex power series, it is possible terdene the convergence and
divergence of bicomplex power series. The region of coreserg of the bicomplex power
series is a special cartesian sefima so calledliscuswhich will be defined in the follow-
ing, rather than the ball.

Let a= a; +ipa2 be an element i’ which has the idempotent representatéoos (a; —
i1az)er + (ag +i1a2)ez, andry, o be positive real numbers.

Definition 4.6.

D(a;ry,r2) = {z=Q1e1+ (oo € T|[| {1 — (a1 —i12p)| < r1; |[{o— (an +i1a2)| <2}

is called the open discus with centesaa; + i»ap and radii r; and .

D(ary,r2) ={z={1e1+ o € T| {1 — (a1 —1d2)| < r1; [{2— (a1 +i180)| < 12}

is called the closed discus with centetaa; +i>ap and radii rp and .

With the following theorem it is possible to determine theweergence and divergence of
bicomplex power series.

Theorem 4.7( [37]).

Let r; and r, be the radii of the circles of convergence of the two serie3)(@nd (4.4),
respectively. Then the series in (4.2) converges absglateevery point in the discus
D(0;rq,r2), and it diverges at every point in the complemenb¢®;r1,r,). The radii of
convergencejrand r, may have the valugsandco.
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4.1.4 Integrals and holomorphic functions in bicomplex varables

Definition 4.7.

Let f be a bicomplex-valued function of a bicomplex variahle ioz>. The function f
defined on XC T is called aT- holomorphic function if for each & a; +i.ay € X there
exists a discus x;r1,r2) C X, with r,ro > 0, and a power series such that

fzi+i2z2) = 5 (Pkti20k)[(z1 +i222) — (a1 +i282)]
k=0
for all z; +i2z5 in D(a;r1,r2).
A set ofT-holomorphic functions on X is denoted by H
Theorem 4.8( [37]).
A function f isT-holomorphic in Oa;rq,r2) if and only if there exist two complex holo-
morphic functions ff: D(ag —i1ap,r1) — Cand £ : D(a; +i1ap,r2) — C such that

f(z1+i220) = f1(zs —1zp)e1 + fo(z1 +1122) €2

There is an equivalent definition of Bholomorphic function, that is, &-holomorphic
function is aT —differentiable functionThe definition of the derivative ap of a function
f:X—T, XCT, of a bicomplex variable is formally the same as for a functod
a complex variable, but many differences arise in the detagicause the null-cor@;
contains many points rather than a single point as in the t®ngase.

Definition 4.8.

A function f: X — T with X C T open, is calledl-differentiable at g € X with derivative

equal to f(zp) € T if the limit
L

-720¢0;

exists.

We also say that the function f &holomorphic in X if and only if f ifl-differentiable

at each point of X.

The differential operators are defined as follows
1

0 = 5(521 —1205),
1 .

02* - é(azl+|2622),
1 .

aZ* - é(azl - |2022>7

1 .
azT = é(azl + |2072>'
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Theorem 4.9( [39]).
f is T-holomorphic if and only if f is continuously differentiagdnd satisfies the system

oz f(z) =0,
o0 f(z) =0,
dZT f (Z) = 0,
or equivalent to
{ 0, f(z) =0,
07, T(2) = 05,T(2) = 0.

Theorem 4.10( [37]).
Let f: X — T be aT-holomorphic function then we have

021+i222 f (Zl + iZZZ) - aZ;|_7i;|_22 fl(Z]_ - ilzZ)el + 021+i122 f2<Z]_ + ilzZ)e2~

Note that the derivative of &-holomorphic function is also &-holomorphic function.
So we have the following definition of derivatives of higheders of aT-holomorphic
function.

Definition 4.9. Let f be aT-holomorphic function in open set X, then we define
tM(z) =gtk (z)], zeX keN"

Definition 4.10. A function f: U — T, with U C T", is calledT-holomorphic in n vari-
ables(z,2,...,z,) € U if f is T-differentiable with respect to one variable with all other
variables held constant.

Integrals of functions with values inT

The theory of integrals of functions with values This introduced in [37]. We quote
here some definitions and main theorems.

Definition 4.11.
Let X be a domain if, f: X — T be a continuous function, and let [c,d] — X be a
curvey with a continuous derivative : [c,d] — X. Let R denote a subdivision

cC=t<thi<--<ti1<ti<---<thy=d

of [c,d], and let { be a point such thatt; <t* <t;.

Form of the sum
n

S(f, P) = Z FlrO)][T(t) — (ti-a)].
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If r!mn S(f,Py) exists and has the same value for every choice of the pgiatskfor every

sequence £P», ... of subdivision ofc, d] whose norms have the limit zero, then f has an
integral ony, denoted by, f(7)dT, and

n—o

/f(r)drz lim S(f,Py).
y

Theorem 4.11( [37]).
If f: X — T is continuous and the curvg defined byr : [c,d] — X, t — 1(t), has a
continuous derivative, then f has an integral pand fcd f[T(t)]T/(t)dt exists and

d
/yf(r)drz/c FT(t)]7(t)dt.

Theorem 4.12( [37]).

Let X be a domain ifl which is star-shaped with respect to a paifitand let f: X — T be

a T- holomorphic function. Ifis a curver : [c,d] — X which has a continuous derivative,
then |, f(7)dt is independent of the path.

Inthe caseX = X1 x Xp:={z=271+i2p € T\zl— 1122 € X1, z1+1122 € X2}, whereX; and
Xo are simply connected domains in the complex plane, we havielédmpotent represen-
tation for the integral ofl-holomorphic functions.

Theorem 4.13( [37]).
Let f be aT-holomorphic function in X= X; x X,. Assume that the idempotent represen-
tation of f is

f(2) = f(zn+ixz) = f1(zn —i1z2)e1 + fo(z1 +i122) €0,

. , (4.5)
11— 11D € X]_, Z1+1120 € Xo.
Let y be the curve with trace in X which is defined as

Y:zn+izo = [z7(t) —i1zp(t)]er+ [z1(t) +11z2(t) ], c<t <d.

Theny; andy, defined as

vi: z—izmz=z()—i1z(t), c<t<d,
oo z+iim=z()+i1(t), c<t<d,

are two curves which have continuous derivatives and whesed are in X and X%,
respectively.
Then the integrals of;fand £ on the curveys andy, exist and

/f(z)dZZ/ f1(21—i122)d(21—i122)61+/ fo(zi+irz)d(z+i1z)e.  (4.6)
y Vi Vo
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4.2 Representation of bicomplex pseudo-analytic functianby
integral operators

Definition 4.12.
A bicomplex pseudo-analytic function w in a domair X is a solution of a system of the
type

oW = agw+biw* +cw* + d]_WT,

O»W = apW+ bow* + cow* + d2WT,

OW = agW+ bgw* + caw* + daw.

In this section we consider a special class of bicomplex gigeunalytic functions. They
are solutions of a system

0,V (2) =C(z,Z\V*(2), zeD(0;ry,r), (E)
0V =3,V =0

whereD(0;rq1,r2) = {z=z1+1i22 € ’JI‘\ |z1 —1125| <r1,|z1+1122] < rp} is an open discus
with the center at the origin and radiiandr,; andC(z, z") is aT-valued function analytic
in two complex variableg;, z.

We shall establish the representation formula of thesedwsanalytic functions using in-
tegral operators.

First we construct a functidfi-holomorphic in two bicomplex variables from a given func-
tion which is bicomplex-valued and analytic in two complexiables.

Analytic continuation

Let f(z) = f(z1,22), z= 71 +i222 € D(0O;r4,r2), be a bicomplex-valued function which
is analytic in two complex variables, z.
Denote

(1=21—i12, (2 =27 +i12, 1{1] <r1,]Qo| <12,

then the functiorf ({3, {) is also analytic in two complex variablésg, {,. Hencef ({1, {?)
can be expanded into the power series in variafjes,

fll)= Y adidd,  |al<rulél<r, (4.7)

i,]>0

wheredj; = ajje1 +bjje; € T, aj,bij € C(ip).
LetZy =z1+i201,Zo = 2o +i202 € T, whereoy, 02 € C(i1). Then witha;j in (4.7) we
define a functior (Z;,2Z) as follows

F(Zl,ZZ) = Z aij(Zl—ilzz)i(Zl+i122)j.
i,]>0
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DenoteX = {(Z3,2») € TZ‘Zl-HzZz € D(0;rq,r2), Zy —i2Zo € D(O;ro,r1) }.

We will prove thatF (Z3,Z,) is aT-holomorphic function in the variablég, Z, in X.
Indeed, assume that the idempotent representatiods,@p are Z; = &1e1 + €26, and
Zy = [h€1 + H2€2, then

F(Z12Z2)= ) aij[(E161+ E260) —i1(Hrer + Ho€2)] [(E161 + E262) + i1 (161 + Lo€2)]!

i,]>0
= F(Zl,ZZ) =
> aij (& —itm) (Er+imm) e+ S bij(&2—it) (& +i) e (4.8)
i,]>0 i,]>0
Since
Z1+i2Zp = (&1 —iyn)er + (&2+i1p2)e2 € D(0;rg,12)
and
Zy —ipZy = (&1 +ipr)er + (&2 —irpp)er € D(0;rp,r1),
it implies that
&1 —i1p1| <y, €2+ 11| <12,
&1+ <o, & —i1pp| < r1.

On the other hand, with the conditiof& — i1 k| < r1,|&k+i1Mk| < rz2, k=1,2, the two
series on the right-hand side of (4.8) converge. This imsghat the functiorr (Z3,2;) is
T-holomorphic in two variable&;, Z, in X.

If z=(z,2) € D(0;r1,r2) then(z1,22) € X and the functior(Z1,Z,) coincides with
f(z1,2) whenoy = 0> = 0. We call the functior-(Z;,2Z,) the analytic continuatiorof
the functionf(z1,2z) from D(0;ry,r2) into the domaint’ of two bicomplex variables.
Now we change the variables

1 1
Z) = §<Z+ u), Zy = 5 —(z—u), ze D(0;ry,r2), u€ D(0;rp,rq).
2
Then we obtain &-holomorphic functiorf (z,u) of the two bicomplex variableg u and
the power series d¥ (z,u) is given by

F(z,u):.zoaij(zel-i—uez) (ueﬁ-z& <
] i

ajj 51'71’) et < bij n‘zsz) e,
120 i,]>0

wheredls, {» andns, n» denote the idempotent componentzahdu, respectively

)

z:= (18 + (o8, U:= nie1+ nN2ey,

satisfying|{1| < r1,|{2| <rzand|ni| <rz,|nN2| <ri.
Whenu = z* we haveF (z,z) = f(2).
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Bicomplex conjugation

Let F(z,...,z,) be aT—holomorphic function of the bicomplex variablés, ..., z,) in
some domai2 C T". We denote byR* the following domain

Q" = {(ug,...,Un)|(ug,...,u5) € Q}

whereu; denotes the first bicomplex conjugationwpfi =1,...,n.
Define
F*(u,...,un) = [F(ui,...,up)]", (Ug,...,un) € Q.

We callF*(uy, ..., u,) theconjugate functiof F(zi,...,z,).
Bicomplex form of the system(E)

By hypothesis the coefficierit(z z*) of the systemK) is analytic in two complex vari-
ableszy,z in the discusD(0;rq,r2). If we continue analytically this function into the
bicomplex domaint we obtain al-holomorphic functiorC(z u) of the two bicomplex
variablesz,u andC(z u) can be expanded into a power series

Clzu)= > Bi(za +ue) (ue +ze)/, Bij =cije1 +dijez, cij,dij € C(in)
i,]>0
= ( > CijZ;iLr’;{)el"’( > dijnizfzj)ez, (4.9)
i,]>0 i,]>0

where|{1| <r1,|{o| <rzand|ni| <rz, [Nz <ri.

Assume thav/(z) = V(z,2) is a solution of the systenEj. ThenV is analytic in the
complex variableg;, z, and hence analytic in the complex variabfgs(z. V({1,{>) can
be expanded into a power series

V(G,l) = 5 aididd, &l <r1,|dl <2, (4.10)
i,]>0
whereaij = ajjer +bijex € T, aj,bij € C(iq).
Denote
G :=D(0;rq1,r2) x D(0;rp,r1).
Let V(z u) be the analytic continuation &f(z,2) into the domaing. So we have the
idempotent representation of the power serieg @ u)

V(zu) = (lzoaajdnl")eﬁ (lzobimizzz’i)ez, (4.11)
i,]> ,]>

where|{1| < r1,|{2| <rzand|ni| <rz,|n2| <ri.
The functionV (z,u) is T-holomorphic in(z,u) € G.
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Lemma 4.1.
If V (2) is a solution of the system (E) then the analytic continue¥i(z, u) of V(z) satisfies
the following bicomplex Bers-Vekua equation
oV (zu)
Jdu
where V¥(u, 2) is the conjugate of Yz u).

=C(zu)V*(u,2), (F)

Proof.

By hypothesid/(z) is a solution of E) and then (4.10) holds. Now we have to prove that
V(zu) given by (4.11) satisfies the equatidf)

By definition we have

1 ) 1 . . .
Oz = 5(021'1"2022) = E[(aﬁ—i—a&) +|2(_|1051+|1052>]

— %[%(1_ i1i2) 4+ 0z, (1 +i1i2)].

This implies
Oy = e]_azz + 92(951.
Therefore

07V (2) = (€107, + €207, )V ({1, (2)
=dy, aj {1¢ )e1+al(
Z(i,;o 16162 ¢ o

=< > jaijZisz_l> < Ibiij_lzzj)Q. (4.12)
i,]>0 i,1=0

bijZisz)ez

From (4.10) we have

V'@ = V@ = ( bijzizg)eH( aujzizz")ez
i,]>0 i,]>0

Hence

CzZ WV ( cuzizz")( buz{zz")e1+( duz{zz")( zlzz)
i,]>0 i,]>0 i,]>0 i 120

(4.13)
Using the hypothesis th&t(z) is a solution of the systenkj and the expressions (4.12)
and (4.13) we obtain

s et = (g eadd)( g mad).

i,]>0 ,1>0
(4.14)

> byt = ( > dijfifzj) ( > aijfifzj),
UEY i.f20 FE
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forall |{1| <r1,|{2| <r2.
Now we consider the equatiofR). From (4.11) we have

V=V = (3 ol et (3 amidl)e

i,]>0 i,]>0

Combining this representation \gf (u, z) with the idempotent representationiz, u) we
get the idempotent representation of the right-hand sidE )of

CZ UV (u2) = (i,éoc”d”lj) (mzzobuzin{)eﬁ (iyjzzodijnizzg) (mzoajn;zz")ez.
(4.15)

On the other hand, sind&(z u) is T—holomorphic in bicomplex variable, the left-hand
side of F) has the idempotent representation

oV(zu) 0 ( i j) 0 ( i j)
= ajj ¢ e+—-—— biinsd) e
u o i,Jzzo j¢1My ons i,JZZO ijN262
:( )3 JaijZin{‘l)eﬁ( S ibijnizlizj)ez. (4.16)
i,]>0 i,1>0

Using (4.14) we have

> jaijgind = ( > Cijﬂﬂ{)( bijf{'hj),
i i.fSo

i,]>0 i,]>0

> ibijns 1) = (Z dijni252j) <Z aijni2(2j)7

i,]>0 i,]>0 i,]>0

(4.17)

forall |{1] <r1,|{2| <rz2and|ni| <rz,|n2| <ri.
From (4.15), (4.16) and (4.17) we havéz, u) satisfies the equatioifr)

oV (zu)
Jdu

=C(z,u)V*(u,z).

Thus Lemma 4.1 is proved. O

Integral representation formula

If V(zu) is a T—holomorphic function ofz, u for (z u) € G, satisfying the differen-
tial equation F), thenV(z z") is an analytic function of the complex variablés, z,)
in D(0;r1,r2), satisfying the systent].

Our problem now is to derive a formula giving all the solusoof the equationK),
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T—holomorphic inzandu for (z,u) € G.
We can now transfornF) as follows

u
ilV(z,u)—/ C(z T)V*(T,Z)dT] =0 (4.18)
Ju Ug

with up is a fixed point inD(0;rz,r1).

Denote u

G(z,u) ::V(z,u)—/ C(z,T)V*(1,2)dT.

Uo
For eachT-holomorphic functiorG(z, u), denote the first and second idempotent compo-
nents of the power series &fby G1({1,n1) andGy ({2, n2), respectively. Then

06 _ 06, 06,
ou om T an

G
dG_ 0—,71 -
ETRRA I

one '

This implies thatG; andG, do not depend om; andn», respectively. So if the deriva-
tive of the functionG(z u) with respect tau is equal to zero the is aT—holomorphic
function of one bicomplex variabte Therefore from (4.18) we have
u
V(z,u)— [ C(z,1)V*(1,2dT = ¢(2), (4.19)

Uo
where (z) is aT-holomorphic function o in D(0;rq,r2).
Since the uniqueness of the idempotent representatioc@frilex-valued functions, each
equation in bicomplex variables is equivalent to two eduregiin complex variables which
have the same type as the original equation. So all statsnrenihe following can be
proved by using the results in complex analysis of I.N. Veft#], which we used in
Chapter | for the complex form (1.22) of the equation (1.1).
We now pass from (4.19) to the adjoint equation

V*(u,z) = ¢*(u) +/Z:C*(u,t)V(t,u)dt, (2o = up).

This implies that ]
Vi(T,2) :¢*(r)+/ CH(T,OV(t, T)dt. (4.20)
2

Substituting (4.20) into (4.19) we obtain an integral etprat

V(zu) — /z: dt u:C(z,T)C*(T,t)V(t,T)dT:qb(z,u), (4.21)
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where "
d(zu)=¢(2)+ [ C(zT)p"(T)dT. (4.22)

Uo
Assume that we have the following idempotent represemtstio

2=+ 08, n=0e+0e,  U=me+ne,
w=nde+nde, t=&e+&e,  T=et e,

V(zu) =Vi({1,n1)e1 +Va({2,n2)€2,  C(z,T) = C1({1, k1)e1 +Ca({2, o) €y,
D(z,u) = P1({1,N1)e1+ D2({2, N2) e, ¢ (2) = ¢1({1)er+ ¢2({2)e.

By definition of bicomplex conjugation we get

C*(1,t) = [C(T",t%)]" = Co(1, é1)€1 + C1(H2, &2) €.

Then the integral equation (4.21) is equivalent to the tWio¥ang equations

{1 1
V1({1,n1) _/ZO dfl/nz C1({1, M1)Ca(H1, 1)V (&1, pa)dpy = P1({1,m1),  (4.23)

where ®1({1,n1) = ¢1({1) + }1C1(51,U1)¢2(U1)d/-‘17
ng
and

¢ 2
Va(omo) - [, & |  CalGou o) bz, EVa(Ea. o) b = B2(aa), (4.24)

where ®©,({3,n2) = $2(2) + }:Cz(fz,llz)fl’l(llz)dﬂz

n
The equations (4.23), (4.24) of the Volterra type in the clexplomain have solutions of
the forms, see [44],

{1 M _4

Vi({1,m) = ¢1(51,'71)+/ZO dfl/no ({1, N1, €1, M1) P&, pa)d g,
¢ n_,

Vao(d2,12) = CDz(Zz,nz)-i-/Zo dfz/no [“({2,N2, &2, U2)P2(&2, Ho)d o,

wherel1(Zq, N1, &1, 1) andlr?(go, no, &2, o) are called thenain Vekua resolventsf the
integral equations (4.23) and (4.24), respectively.

DenOter(Z7 u,t, T) = r1<517 Na, El? ul)el + r2<527 N2, EZ? HZ)eZ
Then a solutiofV (z,u) of the equation (4.21) has the form

V4 u
V(z,u):¢(z,u)+/ dt | T'(zu,t, 7)P(t,7)dT. (4.25)
4| Uo
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We calll (z,u,t, T) themain bicomplex resolvewf the integral equation (4.21l).(z,u,t, )
is aT-holomorphic function in four variablegz, u,t, T and it satisfies the integral equa-
tion

u z
Mzut,) =C0e Ty + [ dn [ CE e (Tor(zug.nde,
T t
Substituting (4.22) into (4.25) we obtain

V(z,u):¢(z)+/Z:I'1(z,u,t,uo)¢(t)dt+ urz(z,u,zo,r)cp*(r)dr, (4.26)

Uo

where

u
Fl(z,u,t,r)zf M(z,{,t,n)dn,

T

M(zut, 7)=C(z T)—I—/tZC(f,T)rl(Z, u,§,7)dé = F(C%T,tt,)r)

We calll'1(z u,t, 7) andl2(z u,t, T) thefirst and second bicomplex resolvents
We have shown that W (z u) is a solution of the equatiorj then it can be represented
by the formula (4.26).
Furthermore we shall prove that for afiyholomorphic functionp (z) the formula (4.26)
satisfies the equatiofy. For this purpose, we shall show that every solution of tiegral
equation (4.21) also satisfies the differential equation (
Differentiating the two sides of (4.21) with respeciutave get

oV (zu)

T2 _czumwzu) =0 (4.27)

where

W(z,u) = /C*(u,t)V(t,u)dt+ ¢ (u).
2

Now, it has to be shown th&¥(z,u) = V*(u,z) orW*(u,z) =V(zu).
First of all,

W*(u,z) = /C(z, T)V*(1,2)dT + ¢(2).

It follows that
oW*(u,z)

Jdu
Subtracting the equation (4.28) from (4.27), we get

—C(z,u)V*(u,z) =0. (4.28)

oU(zu)
Jdu

+C(z,u)lU*(u,z) =0, (4.29)
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where

U(z,u)=V(z,u) —W*(u,z).
SinceV (z up) = W*(uo, z) = ¢(2) we haveJ (z,up) = 0. ThusU (z u) is aT-holomorphic
solution of the homogeneous differential equation (4.2@&)ich satisfies the condition
U (z up) = 0. Such the solution satisfies the homogeneous integratiequa

U(zu)— /dt/C(z, 7)C*(1,0)U (t, T)dT = 0.

This impliesU =0, i.e.,V(z,u) =W*(u, z).

Thus formula (4.26) gives all solutions of the differenggjuation E), T-holomorphic in
(z,u) € G. Whenu = Z" in (4.26) we obtain a solutio¥i(z) of the systemE).
Summarising the above results we have the following theorem

Theorem 4.14.
Consider the system (E)

0V (z2) =C(z,Z')V*(2), me N, ze D(0;rq,r2),
&Zlv = &ZZV = 07

whereC(z,z*) is aT-valued function analytic in two complex variablasz.
If V(2) is a solution of the system (E) in(Dir1,r2) then it can be represented by integral
operators as follows

V(z) :¢(z)+/Z:F1(z,z*,t,i5)¢(t)dt+/§ M2(z,Z,20,7)¢*(T)dT, (4.30)

where¢ (z) is an arbitrary T-holomorphic function in [0;r1,r2), 1 andl, are the first
and second bicomplex resolvents.
Conversely formula (4.30) gives all solutions of the syqtein the discus [0;ry,r>).

Remark 4.1.
For a certain class of coefficients of the system (E) = ,z€D(0;1,1), we can

use the formula (4.30) and the same method in Chapter | tordéte the first and second
bicomplex resolvents. Then we convert this formula to a foesn of integrals. Therefore
we also obtain a representation for solutions of the systenioy differential operators

m & z* m—j 71— j—1 ﬁ
v = 3 () de zo DB 0 @)

@m—j-1! m0).

j{(m—j)!
Here we denote by @;-!0.11 m,0) the space of alll-holomorphic functions in [D;1,1)
satisfying ’

where B = and gc¢ HT(

OLD(

g™ Y (0)=-=g(0)=g(0)=0.
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4.3 Representation of bicomplex pseudo-analytic functianby
differential operators

To represent bicomplex pseudo-analytic functions whiokydhe systemK) by differen-
tial operators we need the results of P. Berglez on secoref pattial differential equa-
tions [11] which are quoted in the following.

4.3.1 Representation theorems for solutions of second ordequations after P.
Berglez

Using suitable transformations we can reduce a formallyehyplic differential equation
of type

Uz z, +81(41, {2)Uq, +82({1,{2)Ug, +83({1,{2)U =0
to one of the two following equations

Lw: =Wz 7, + (IogAn)leZ2 +Bpw =0, (4.31)
Lw: = WZlZZ + (lOgAn/)ZZWZl —+ Bn/VT/ = O, (432)

with A, Ay, B, By are analytic functions i x D.

Remark 4.2. Using the transformatiotw = A,w the equation (4.31) becomes the equation

(4.32) withAy = Ain By = Bn— (109An)z,¢,-

Definition 4.13. B
Let Ky, Ky be two differential operators i x D given by

n 0] . n 0]
Kn = a'(Z:LaZZ)—': Ky = b'(Z:L:ZZ)—': n, n/ € N7
2@ K= 2 BilGL )G

where g,j=0,1,...,n,and b, j=0,1,...,n, are analytic functions irD x D satisfying
aj #0,bj #0in D x D.

If Kng, for g({1) € H(D), is a solution of the equation (4.31) then we call&i5;-operator
for the equation (4.31).

If Kyh, for h(Z2) € H(D), is a solution of the equation (4.31) then we d&}} a Bj -
operator for the equation (4.32).

Theorem 4.15(P. Berglez)
For the equation (4.31) there existd3g-operator Ky, n € N, if and only if with

Aj_1=A;Bj, Bj—1=Bj+(logAjBj)zz,, j=nn-1,...,1
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the condition B=0in D x D is satisfied.
The operator K is then given by

. 0 .
Kn=Fn_1Fn 2...Fo with F :a—zl-i—(logAj)Zl, ji=0,1,....n—1.

Theorem 4.16(P. Berglez) N
For the equation (4.32), there existsBzﬁ'-operatorKn,, n’ € N if and only if with

Aj_l = Ajéj, éj_l = éj + (|OgAj§j)lez, j=nn'—1,....1
the conditiori%o =0in D x D is satisfied.
The operatoKy is then given by

Kn/ = An’l’:‘n’fllfn’72- .. ﬁo with |f] = + (lOgAJ)ZZ, j = 0, 1, .. .,n' —1.

9
e,
Theorem 4.17(P. Berglez) N
If there exist aB3-operator K, and aBﬂ/-operatorKn/ for the equation (4.31) then for all
solutions w of (4.31) defined i x D there exist functions g H(D) and he H(D) such
that N

w = Kng+ Kyh.

4.3.2 Representation theorem for bicomplex pseudo-analgtfunctions

We consider the systenk)
0V =CV*,
&Zlv - &ZZV = 07

wherez e D(0;r1,r2) andC is a bicomplex-valued function analytic in two variabiesz,.
Denote the idempotent representations of the functigns*) andV (z) by

C=Ce+Ce,  V=Vier+\Voe.
Sinceds = dz,e1 + 0;, &, the first equation of the syster)(becomes

{azzvl = C1Vo, (4.33)

aQVz =Co\s.

Thus, finding solution¥ (z;1,2,) of the systemE) is equivalent to finding analytic solu-
tions(Vi,V2) of the system (4.33).

From the system (4.33Y; is a solution of the following second order differential aqu
tion

9,C1
A chl 9, V1 — C1CNy = 0. (4.34)
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The following theorem gives a condition on the coefficieitsuch that all bicomplex
pseudo-analytic functions satisfying the systétpgan be represented by differential op-
erators.

Theorem 4.18.
If the coefficient in the system (E) satisfies the condition

m?(logC)zz = (1+ 2ki1i2)CC*, withke Nand p:= vk2+m? e N, (4.35)

then the solutions of the system (E) can be representedfeyedifial operators of Bauer-

type.
An idempotent representation of a solutiofgyof the system (E) is then given by

N . 1 . -
V@) = [Lpikf + Cpwaf) et S [Lpuh) +hpacaf] e (436)
where f is al-holomorphic function in [O;rq,r2) and
Lpik = Tprk—1Tprk—2.--To, Cok1=C"Tpr2Tprs...To
with
Tj = 0+ [log(CP*I-L(CPHI)],  j=0,1,....p+k-1,
Tj = 0, + [log(CP* I~ Y(Ccr)P* D), j=0,1...,p—k-2
Proof.

Using the idempotent representationdoéind the fact thaitjio = e; — e», we can rewrite
the condition (4.35) as follows

{mzaogcl)lez = (14 2K)C1Co,

4.37
mz(|0g(32)5152 = (1—2k)C1Co. ( )

It is easy to see that the bicomplex pseudo-analytic funstgatisfying the systenk) can
be represented by differential operators if and only if tbkitsons of the equation (4.34)
can be represented by differential operators. So we shall #at with conditions (4.37),
all solutions of the equation (4.34) can be represented filgreintial operators of Bauer-
type.

Applying Theorem 4.15 and Theorem 4.16 we can point out tiitat(#.37) the conditions
Bo = 0 andBy = 0 are satisfied.

For the second order differential equation (4.34) we have

1
= C—l, Bn — _C1C27
.1 . 1
Av=p-=C. By =Bn—(100An)g, = ~C1C2— (1005 )esz,-
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From (4.37) we have

1+ 2K)C1C 1—2K)C4C
(logC1)z,z, = (—m2>12 (logC2)z,0, = (—mz>12

Assume that for KX j < nwe have

An-j = Mn,jCi_lcé, Bn-j = {_ 1+ = + = }Clcz-

We shall prove that

Ao (1) = Mn_(42)C1CE ™, Bn—(j+1):[—1+_ -+ 1m2 }clcz.

Indeed, we have .
An-(j+1) = AnjBnj = Mn_(j12)C1C5

j -1
Yi(l-2k) Y i(142k)

With  My_(jg) =Ma-j | =1+ 5 —+ 5 }

On the other hand we have

Bn—(j+1) =Bn_j+ [IOgAn—(Hl)} 4l Bn—j+ j(|09€1)(1(2 +(+ 1)(Iog(32)5152
j(142k)C1C2 4 (j+1)(1—2k)C1C2
me m
j+1 j
Y i(1—2K) Y i(1+ 2K)
= {—1+"1 = }clcz.

=Bnj+

Thus we have proved that

Aj=Mjcy el j=0,1,...,n—1. (4.38)
j -1
Si(1-2k) Yy i(l+2k)
anz{—l#—lmz L }clcz
.2_ ._
_ XKL foral o<j<n.

2
The conditionBg = 0 is satisfied when

s 2_ . _
{J—n @{n 2kn—m? =0 en_kip po VT

j2—2kj—m?=0 neN
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This implies that thés-operatoiK,, of the equation (4.34) exists and its ordenis k+ p.
Analogously we can prove that

Aj=micy ity (4.39)
.2 -
N +2(k+1)j+2k+1—n?
gy — 2k D 2 CiCo.
HenceBg = 0 if
j=neN, en=p-k-1 p=Vk+nm
j2+2(k+1)j+2k+1—mP=0. ’ ‘

Therefore theBﬂ/-operatorKn/ of the equation (4.34) exists and its ordenlis= p—k— 1.
According to Theorem 4.17 a solutid of the equation (4.34) is given by

V1({1,42) = Kpk9(Z1) + Kpk-1h({2),

whereg € H(D) andh € H(D) and

0

—— + (logA; j=0,1,... k—1
azl+(og ])Zp] 07 ’ P+ ’
5 ~ ~ L J ~ .

Kp_k_l :Cle_k_ZFp_k_3...F0 Wlth F] — a—zz +(IOgA]>Z2, J — O7 l,..., p—k—2

Using the expressions (4.38) and (4.39) we have

k—j—1 k—]
Fj = logey ™ e e

1?

FT

ke ppkej-1
Fj= logcy ™1™,

5"

Froa

Denotef (z) = g({1)e1+h({2)ex thenf is a bicomplex-valued function afitholomorphic
in D(0;ry,r2), and denote

Lotk = Tprk—1Tpsk—2--- To, Copk1=CTpk2Tp k3. To,
with

Tj = d,+ [log(CPH*-I=Y(C*)PT*1)],,  j=0,1,...,p+k—1,
Tj = 0, + [log(CP* -1 (Cc)P* )], j=01,....p—k-2

ThenVe, ;= Vi€ can be rewritten as follows

Ver = [Lpikf + (Lp-i1f)]er.
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It is easy to see that Ve, is given therVe can be determined Bye;. Indeed we have
o»(Ve) =C(V")er =C(Vey)*
= C*(Ve) = [0z (Ver)]”

1
= Ve = Eﬁz(Vel)*.

Therefore a solutioN (z) of the system€) is given by

~ 1 ~
V= [Lpkf+(Lp-k1f)]er+ I [(Lpskf)" + Lp—kaf] e

Thus Theorem 4.18 is proved. O

Corollary 4.3.
If the coefficient of the system (E) satisfies the condition (4.35) with &then we have
that p=m and a solution Vz) of the system (E) is given by

1 %
V(z):meJrE(me)z, (4.40)
where f is dl-holomorphic function in [O;r4,r2) and
Lm = Tm_]_Tm_Z .. .TO,

with . .
Tj = 0, + (logC™ =Y cH™ ), j=0,1,...,m—1.

4.4 Applications

4.4.1 Representation of solutions of the Dirac equation on pseudo-sphere

In [36] the Dirac operator on the Poincaré disk is given by

0 21—-&8)0 — (2k—1)E
Dy = B : (4.41)

2(1-8&)0g+ (k+1)¢ 0

whereé =x+i1ye C(i1) =C, keR, |&| < 1.
Consider the Dirac equation

(m—Dy)w=0, me N, (4.42)
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where the Dirac operatd@y is given in (4.41) andv = <x1) e C?.
2

The equation (4.42) is equivalent to the following system

2(1-8&)0swp — (2k— 1)Ew, = mwy,
(4.43)
21— f?)%wl +(2k+1)Ewg = mwp.

We consider the first equation of the system (4.43)

2(1— E&)dswo — (2k — 1)Ewp = M,

Wy (4.44)

W m
=Wp = =
2 1-&¢ 2(1-¢¢)

Let¢p(&) = —% 1_2? and then define

B(E) 1= (1-£8)"7

Oz P
This implies that the functio®(¢) has a property% =¢(&).
The equation (4.44) reads
Oz P
¢ W2 = le— )
® 2(1-¢¢)
dmwy
2(1-¢¢&)
(1-&)*'m
2(1-¢&¢)

We can rewrite the last equation as follows

05W2 +

O [(1 £8)"% 1WZ} - T8, (4.45)

Analogously, the second equation of the system (4.43) caevaetten in the form

o |- £8) (| =1 g0 (). (4.46)

In the two equations (4.45) and (4.46), denote

Z(M (4.47)
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The system (4.43) now becomes

0—V1 - — 2
¢ _ 142k <
(1-48) (4.48)
OsVo = = 2kV1.
1-&&)
. - m m . . :
Since the coefficients———— and are analytic in variables, vy, this

(1_55)1+2k (1_52)172k
system always has a solutidi,V>) analytic in variablesc, y. Continue this system
analytically into the complex domain of the variables

ZlZX—l-ily, ZZZX_ily7

we have a system of the form
m

ooV = —————=V.
V1 (1— 1) 2
(4.49)
m
0o NVp=—————V.
{1 (1—5152)1_2" 1
Denote
Z=ne1+2e with z={_0-i1{2, Z2={+i1{2,
V(2) =V({1,02) = V&1 + Vo6,
thenV becomes a bicomplex-valued function which is a solutiorhefgystem
m m
07V = V*
V= A& ey &2V (4.50)
02V = 02,V =0,
inD(0;1,1).
Therefore if we can solve the system (4.50) then we obtasodlitions of the Dirac equa-
tion (4.42).

We now consider the coefficiedtin the case of the system (4.50)

C = Crey+Cotp = —— 0 TR

=18 28 = (1_sz>1+2kel (1_sz)1—2ke2‘
Itis easy to check that this coefficient satisfies the coowlif#.35). According to Theorem
4.18, all bicomplex pseudo-analytic functions which adeons of the system (4.50) can
be represented by differential operators of Bauer-type

- 1
V(2) = [Lerk‘c + (Lp—k—lf)*] €1+ 5

1T [(Lp+kf)* + I:p—k—lf}ze.Z-
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In this problem we can calculate the two operatbgsy and I:p_k_l, and then get an
explicitly representation for the solutidf(z) of the system (4.50).
Ve is a solution of an equation

C
02z (Ver) — Ezdz* (Ver) —CC*(Ver) =0
whereVe, =V is the first idempotent component\éf

Sinceeje; = 0, we only care about the first idempotent componen CzoindCC* in the
above equation. Therefore we conclude ¥atis a solution of the following equation

z* mAVe

On the other hand, from the formula (4.36) we have
Ver = [Lpwkf + (Epk-af)Jer. (4.52)

Now we determine the two operatdrg, i andI:pfkfl. We have
ke j—Lsprk—jy] . z :
leﬁz—i—[log(C C )]Z: 0Z+C]m,cle']l‘, ]:0,1,,p+k—1,
~ ke jodrpkejy z :
T]:az_i_[log(cp ] Cp J)]Z:02+d]m,d16']l‘, j:O,l,,p—k—Z

. z . ~ . ,
wherecj,d; are coefficients ofm in Tj, T, respectively whose idempotent compo-

nents are integer numbers. N
Applying Lemma 1.1 for the operatots,x andLp_k—1 we obtain the result thatp. f
andL,_k_1f have the following forms

p+k 7 p+k—]j 0
L f=Toik1Toikeo...To= Ci fU
prk prk-1Tprk—2---To ]Zo J<1_sz) ,

~ 5 5 . p—k-1 _ 7+ p—k-1-j
Lpk-1f=C"Tpk2Tpk3...To=C" j;) d; (1_ sz) £,

wherecy k= 1,d, k1 =1andc},j=0,1,...,p+k-1,dj, j=0,1,...,p—k—2, are
unknown bicomplex coefficients with idempotent componanésinteger numbers.
Substituting these expressions into (4.52) we have

p+k 7* p+k—]j 0 p—k-1 _ 7 p—k—1—j 0
N j x D (2)1*
Ve ]ZOCJ<1_ZZk) fU(z)e1+C JZ) d; (1—zzk> [fY(2)]"er.
B - (4.53)
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In the formula (4.53), we only care about the first idempotemhponents ocf:jj(f}k andC.
So without loss of generality we can assume tt]aﬂ}”are integer numbers ande; can
be rewritten as

p+k 7* p+k—j () p—k—1 7P k—1—] 0
Ve = P( ) f(z)e1 + Qi +——————1fV 2]
,Zo N\1-zz ZO '(1-zz)ptk]

wheref is a T—holomorphic function inD(0;ry,r2), Poik = 1,Qp_k—1 = mandPj, j =
0,1,...,p+k—=1,Qj,j=0,1,...,p—k—2, are unknown integer coefficients.
For the convenience we denate= p+k ands:= p—k. Then

Ve, =W +W, (4.54)

where
;

W3 P )rjf“)() W=y Q110
=S P 2)e, wW=7Y Q — 2)]"er.
]ZO N1-zz ].ZO 1—zz)]

SinceVe, is a solution of the equation (4.5 andW are solutions of the following
equation

rs
1-22% (1—z7)2 (4.55)

OzzW — (r —s+1)

r

. z \"
V=R gy el+Z () VemeRton

(r-1) r-1 z(r—j-1)

—~ z* . i
0eW =P oy (@t 3 BT gy M (@
J:

r

022*\7\\/ = POr(r + 1)mf(z)el

2t L b p #(r=]) i
+jgl<r_1+ )[(r_J) J‘|‘ J—l]m (z)e1
1
e 1 ()]
+Pr*l(1—zzk)2f (2)ey.

Substituting the above expressions into the equation J4ugbhave an equality which
holds for allze D(0;1,1) and f()(2)ey, j =0,1,....r

r

[Por(r+1) — (r —s+1)Por —rsRy] ﬁf(z)el

r—1

+ _Zl{(r —j+D[(r= )P +Pj_a] = (r—s+1)P(r—j)— rsP}
=

7<(r=j)

(1—zz) 2 0 (2)er

+[R_1—rsR] ) (z)ey = 0.

(1—2z2)2
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Hence we get a system

Por(r+1) — (r —s+1)Por —rsk =0,
(r=j+1[(r=)P+Pj_1]—(r—s+1)Pj(r—j)—rsh=0,1<j<r-1,

P_1—rskh=0.
(4.56)
Solving the system (4.56) we obtain
j(r+s—1j) .
P1=—P;, 1< <

rr (r+s—j—1)
(s—=1! jir—j)!
SinceR =1, r = p+k, s= p—k, we get

|

 (p+k! 2p-j-1t .
P (p—k=D!j(p+k—j) J=01...ptk (4.57)

Analogously we hav@V* is a solution of the equation

o z s .
0ZZ’KW —(r—S-l—l)mﬁZW —7(1_sz>zw :O (458)
~ #+(s-1) sl p(s-i-1)
* . _f(0)
W Qo(l—zzk)r f(Z)elJerlQJ(l_sz)rJf (2)ey,
~ z's s_1 . z+(s-1) i)
oW ZQormf(z)elJrjzl[Qj(f—J)+Qj—1]mf D(2)e
1
+Qs—1mf(s)(z>el,
~ rsz(V(1—z7)  r(r+1)zzs
022\ = Q0| = )2 (1—22*)“4 @
e . (s— )z I V1—22) (r—j+1)zz D]
+jZl[Qj(r—J)+le][ (1_zz) 7 Ty 72 1) (z)e,

— 1 S
Ay 2

Substituting these expressions into the equation (4.58)ein

Q1= j(r:_sj_ j)
(s=D!(r+s—j-1)
rt ji(s—j—1)!

+ stl

Qj7 lSJSS_la

|
-st:[? OS J SS_Z

= Qj=
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SinceQs_1=m, r =p+k, s=p—k, we get

(p—k—D'm (2p—j—1)!
(p+K)! i (p—k—=1-])
From (4.54), (4.59) and (4.57) we have

Qj = - j=01...,p—k-1 (4.59)

pHk 7+ O\ Prk=l 0 p—k-1 ZP—k—1-] (0
Ve = P-( ) fU)(z)e. + Q————I[fV2]"er (4.60)

with Pj,j =0,1,...,p+k, andQj,j =0,1,...,p—k—1, are given in (4.57) and (4.59),
respectively.

Therefore )
Ve = Zd,(Ver)’
with
p+k—1 pikojo1 |
Ve) = 5 PPk el (4.61)
+ péolez*(p—k_l—j) [(1(13;‘;;1'()_11 () (z) + Q_Tl)mk—jf(jﬂ)(z)] &,

Denote the second term on the right-hand side of (4.61) by

p—k-1 .
. x(p—k—1-}) (p—i— k— ])Z* () ; (42)
T J';J oz {(1—21)"*"‘”1 (Z)+(1—zf)p+k—jf (2) | &

Then we can rewrit@ as follows

75 (P—K) p—k-1 _ 7(p—k=]) i
T=Q0(D+k)mf(z)ez+ j; [Qj(p'i‘k—J)+Qj—1](l_zzk)p+k,j+1f €2
1 _
+Qp—k—1mf(p k)(Z)ez.

From the formula (4.59) we have

(p—K)'!m (2p—j—1)!

Qj(p+k—j)+Qj_1= (o+k—1)! ji(p—k= )’ <J<

Hence .
" (p—kim (2p—j—1)!  z(PD

T j;‘) (p+k=1!jH(p—k—j)! (1_zzk>p+k—j+1f
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Therefore
ptk-1 ZP+k—1—] (0 p—k 7\ PK= 0
Ve = Ri————[fY(2)["er + S (7) fV(2e (4.62)
with

(p+k!  (2p—j-1)!
(p—k=Dmijl(p+k—j—1)"
__(p=k! (2p—j-1)

P (p—k=1) {(p—k—])V
Theorem 4.19.
If V is a solution of the system (4.50) if@r1,r2) then V can be represented as follows
1

Rj = j=0,1,....p+k—1,

(4.63)

j=01,....p—k

ZP—k=1-]

V(Z):{gpj(lizk)mk K +p,£o (1—zz)Ptk= J[f(j)@]*}el
) o i N
+{p?ile%[f(”(z)]*+gosj(l_z*zzky) qu)(z)}ez

(4.64)

with ze D(0;rq,r2), f is aT—holomorphic function in [0;ry,r2), Pj,Qj and R, S;j are
given as follows

(p+k! (2p—j—1)!

j:(p—k—l)!j(p+k—j)!’ j=0,1,...,p+k,
(p—k—l)!m (Zp_j_]_)! ‘
— YR :O,l,..., —k_l,
(k! (o1 |

R — . , J=01....,p+k-1,

T (k- Dmji(ptk—j-1" p+

_i— 1)
5— (PR @Dt oy

(p—k=D!j(p—k—])!"

Conversely for eacil—holomorphic function f in [O;rq,r2), formula (4.19) gives all
solutions of the system (4.50) i@rq,r2).

If we denote the idempotent representation of the functibg f(z) = f1({1)e1+ f2({2) e
then we obtain the following corollary.

Corollary 4.4.
Solutions w of the Dirac equation (4.42) are given by

W
W:( 1)7
W2
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with
1 f? 2k+1[ P P+k Jf(i)(f)_i_p_k_lQ.&f(T(E)}
ZO | 1 pa l(l_E?)p+kfj 2
and
1 pr-1 - FPHklo] pkl(
_ 1 R Si( ! }
Wy = . Efzkl[zj Jlff)pkjl +ZO] 2 (§)

where B, Qj and R, Sj are given in (4.65).

4.4.2 Generalized Weierstrass representation for surfase

The generalization of the Weierstrass formulae to genenifases inR3 has been pro-
posed by B.G. Konopelchenko (see, e.g., [28], [30]). lttstaith the linear system (two-
dimensional Dirac equation)

OrYr="Puo,  Ogio= Py, (4.66)

whereP (&, ?) is a real-valued functiorny, Y, are, in general, complex functions of the
complex variablé = x+i1y, and the bar denotes the complex conjugation.

Then one defines the three real-valued functign&, &), X2(&,&) andX3(€, E) by the
formulae

¢ —
X1+i1X2=2i1/ (@2dE’ — T2dE)),
xl—ilxzzzil/ (2dE’ — y2dE), (4.67)

¢ —
Xg = —2i1 /5 (W, dE + Yn,dE).

By virtue of (4.66), the integrals (4.67) do not depend ondheice of the curve of in-
tegration in a simply connected domain. Then one tréaésas local coordinates on a
surface and Xz, Xp, X3) as coordinates of its immersion RP. Formulae (4.67) induce a
surface inR3 via the solutions of the system (4.66) with the Gausgkpand mear(H)
curvatures

[log(|y1+[¢2l’)] 7 L PED)
(Il +yef?)z 7 | ]+ [ 4]

The type of this system has recently appeared in many papdrsuaveys on the theory
of representation for surfaces (see, e.qg., [20], [25],,[B33]). The study of surfaces and
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their dynamics is an important part of many interesting ime@na in mathematics and es-
pecially in physics such as surface waves, deformation ofilbnanes, dynamics of vortex
sheets, etc. Quantum field theory and statistical physealap important applications of
surfaces.
In the sequel we shall give a method to solve the system (4&vfiB)a special class of co-
efficientsP. We assume th&® is analytic in the real variablesandy. If the real variables
x andy are continued into a complex domain we obtain a funcfiin,, nz2) of the two
complex variables

Ni=x—i1y and nz=Xx+iyy.

Then the system (4.66) becomes

{ Op, V1 = PVa,

(4.68)
0,,1V2 = _PV]_

DenoteV = Vie1 +Voeyp. SinceVy, Vs, are holomorphic functions in variableg, n, then
V is a solution of a system

{ory (49
Assume further thaP(E,f) given in (4.66) satisfies the condition
m’(logP)z = —P%, me N*. (4.70)
Then the coefficienP(n1,n2) in (4.69) also satisfies
m?(logP)zz = —P?, me N*. (4.71)

In this case&” = i1i,P satisfies the condition (4.35) with= 0
m?(logC)z = CC*.

According to Corollary 4.3, all the solutions of the systeft6Q) can be represented by
differential operators of Bauer-type as follows

1
i1ioP

1

wheref is aT-holomorphic function and
Lm - Tm_le_Z . -I-O7

with _ _
TJ :az+[log(cmijil(c*)mij)]b J :0717"'7m_1'

OnceV can be represented explicithy, andV, can be represented explicitly also.
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Example 4.1.

Now we consider a special case@fwhich satisfies the condition (4.71) with= 1

01(n1)95(N2)
1+01(N1)g2(n2)’

whereny, N2 € C are the two idempotent components of the bicomplex variablel
g1(nN1),92(n2) are holomorphic functions satisfying

P(N1,N2) =

[1+091(11)82(n2)191(M1)ga(n2) # O.
A solutionV of the system (4.69) corresponding to this coefficiens then given by
1
i1ioP
We assume that the idempotent representation df'thelomorphic functionf is

V=Lyf————(Lyf); = (2) + (logP),f +isinPF*.

f = fi(n1)er+ fa(n2)ey,
wheref1(n1) and fa(n2) are the two holomorphic functions. Then a solut{dh,Vs) of
the system (4.68) is given by
+ [logP(n1,12) } f1(N1) +P(N1,n2) f2(n2)
{ o1(n1)  91(N1)92(n2) }f (1) 01(N1)95(N2) f2(n2)
20)(n1)  14+01(n1)g2(n2) 14+91(n1)92(n2) ’
Vo = f3(12) + [IogP N1,N2)],,2(N2) = P (11, 2) f1(n1)

9 (N2) 01(11)95(12) ~ V91(N1)55(n2)
}f (n2) 1491(N1)92(n2) fum):

= f1(n) +

_|_

292 n2)  1+01(n1)g2(n2)

If we choose especially

1 202(N2)
f - f =
t(im) ()’ 21 95(n2)
then we obtain
_ V%(Mm)g2(n2) Vo — ga(n2)
1+091(n1)g2(n2)’ >7 1+ ou(n)ga(n2)

Moreover, if we choose

n=¢écC,n=¢, and

s«

=w, 01=w", wherew"(

™|
SN—
I
—~
SN—
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then we have solutiong, V, of the system (see, e.g., [21], [26])

OsV1 =PV, |0 w|
h = 4.72
{ 0:\Vo = =PV wherep 1+ |w|? (4.72)
in the form
V (9g" vy 2 1 4.73
1 8w1+|0)|2, 2 €1+|w|27 3 ( )

In this case the solutions of the system (4.72) have the prof&, &) = [V1|2+ V2|2,
and the mean curvature of the corresponding surfakle=sl.

Example 4.2.

. : . 1
We consider an example given in [29] whEn= > Cosix’

hx
It is easy to check thaP satisfies the condition (4.70). Then a soluti®i,Vs) of the
system (4.68) is given by

Vi = f1(n1) + [logP (N1, n2)] . f1(n1) +P (N1, n2) f2(n2)

, sinh( "IlﬂZL'h) 1
= fi(m) — 2cosh ,71;,72> f1(n1) + ZCosmw) f2(n2),
V2 = f5(112) + [logP (111, n2) ], f2(N2) — P (N1, N2) f(ma)
, sinh( "IlﬂZL'h) 1
= fa(n2) — 2cosh ,71;,72) fa(n2) — 2cosh ,71; ,72) f1(n1).

If we choosefi(n1) = exp(—%) andfa(n2) = 2exr(%) and take into consideration that
N1 = X—i1y, N2 =X+i1y, then we obtain

1 i1y + X 1 i1y — X
Vy = Vo = .
! Zcosh<exlo< 2 )’ 2 2cosh<eXp< 2 )

This implies that the corresponding surface is given by

siny X, — cosy
costk’ "2~ " coshx’

1= X3 = —tanhx

which is the unit spher¥? + X3 + X2 = 1.



5 CONCLUSIONS

In this thesis, some classes of the pseudo-analytic fumtio complex and bicomplex
variables which can be represented by differential opesatave been studied. There
are different ways to get the representation for the pseunddytic functions in complex
variables which are solutions of a certain Bers-Vekua egnaif typew, —Cw = 0, see,
e.g., [9], [11], [44]. After P. Berglez, we have the necegsand sufficient condition on
the coefficienC of the Bers-Vekua equation for which all solutions of thisiaion can
be represented by differential operators of Bauer-typendJhis result we have obtained
a Liouville system from which we can find the coefficie@ssuch that all solutions of
the corresponding Bers-Vekua equations can be represbytddferential operators of
Bauer-type. In the case of bicomplex variables, applyirggtiieorems of P. Berglez con-
cerning the existence of the operators of Bauer-type fosé¢leend order partial differential
equations we also obtain a class of bicomplex pseudo-anélyictions which can be rep-
resented by differential operators.

In this work, we have derived the representations of someiapeasses of the pseudo-
analytic functions in complex and bicomplex variables. @héhe most interesting ap-
plications of such a representation in a complex variabte glve boundary value prob-
lems [17]. The advantage of using the representation ofisakiby differential operators
is an explicitness of the solutions of the boundary valubl@ms. In the case of a bicom-
plex variable, we have obtained the representation of a dfisicomplex pseudo-analytic
functions which has some applications connecting to theigh/problems.

Further work can be done on the studies of an efficient metbdohdl a larger class of

pseudo-analytic functions which can be represented bgréifitial operators. In addition,
it is interesting to answer the open question from this #)esg., solving the more general
boundary value problems for the pseudo-analytic functishgh can be represented by
differential operators of Bauer-type.
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5 Conclusions
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