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Abstract

In this thesis we study and apply the methods of representingpseudo-analytic functions
by differential operators in complex variables and bicomplex variables. We consider the
Bers-Vekua equation

wz =C(z,z)w. (0.1)

For the equation (0.1) I.N. Vekua developed a complete theory where the solutions are
represented by means of certain integral operators. However the explicit determination of
the required resolvents may be difficult. Many mathematicians used the results proved by
I.N. Vekua to get the representations of solutions of this equation by differential operators.
These representations not only permit a detailed investigation of the function theoretic
properties of the solutions but also enable us to solve some boundary value problems ex-
plicitly.
Chapter 1 is aimed to investigate the representation of solutions of a class of equations of
type (0.1) with the coefficientsC satisfying

m2(logC)zz−CC= 0, m∈ N.

By changing variables we can reduce these equations to the following form

wz =
m

1−zz
w, m∈ N. (0.2)

We will study the Bers-Vekua equation (0.2). Applying the method of P. Berglez [11] or
the method of K.W. Bauer on the determination of Vekua resolvents [6] we can derive a
representation of solutions of this equation by differential operators of Bauer-type.
Then we use the representation of solutions of the equation (0.2) to solve a Dirichlet bound-
ary value problem and a class of generalized Riemann-Hilbert boundary value problems
for the equation (0.2) in Chapter 2.
In Chapter 3 we consider some consequences and applicationsof the representation of so-
lutions of the equation (0.2) by differential operators of Bauer-type.
Chapter 4 is devoted to study a class of bicomplex pseudo-analytic functions which are
solutions of a system in bicomplex variables of the form

{
∂z∗V(z) = C(z,z∗)V∗(z),

∂z⋆V(z) = ∂z†V(z) = 0,
(0.3)

wherez is a bicomplex variable andz∗,z⋆,z† are bicomplex conjugations ofz.
We obtain a class of coefficientsC for which all solutions of the system (0.3) can be rep-
resented by differential operators. Some applications of this representation of solutions of
the system (0.3) such as solving the Dirac equation on a pseudo-sphere and using the gener-
alization of the Weierstrass formulae to generate surfacesvia solutions of linear equations
are given also.



Zusammenfassung

In dieser Arbeit werden Methoden zur Darstellung pseudoanalytischer Funktionen im
komplexen und bikomplexen Fall untersucht und angewendet,die sich gewisser Diffe-
rentialoperatoren bedienen. Wir betrachten die Bers-Vekua Gleichung

wz =C(z,z)w. (0.1)

Für die Gleichung (0.1) entwickelte I.N. Vekua eine vollständige Theorie zur Lösungs-
darstellung unter Verwendung gewisser Integraloperatoren. Allerdings ist die explizite
Bestimmung der dazu notwendigen Resolventen oft sehr schwierig. In vielen Arbeiten
wurden die Ergebnisse von I.N. Vekua dazu verwendet um Lösungsdarstellung unter Ver-
wendung von Differentialoperatoren zu erlangen. Diese Darstellungen erlauben nicht nur
eine detaillierte Untersuchung der funktionentheoretischen Eigenschaften der Lösungen
sondern auch die explizite Lösung von Randwertproblemen für diese Gleichung.
Im 1. Kapitel werden Darstellungen für Lösungen einer Klasse von Gleichungen vom Typ
(0.1) untersucht, wobei die KoeffizientenC der Bedingung

m2(logC)zz−CC= 0, m∈ N.

genügen. Mit Hilfe einer geeigneten Variablentransformation kann diese Gleichung in die
Form

wz =
m

1−zz
w, m∈ N. (0.2)

übergeführt werden. Unter Verwendung der Methode von P. Berglez [11] oder der Me-
thode von K.W. Bauer zur Bestimmung der Vekua-Resolventen [6] können wir für die-
se Gleichung eine Lösungsdarstellung unter Verwendung vonDifferentialoperatoren vom
Bauer-Typ herleiten.
In Kapitel 2 verwenden wir diese Darstellung der Lösungen von (0.2) um ein Dirich-
let’sches Randwertproblem und eine Klasse von Riemann-Hilbert’schen Randwertproble-
men für die Gleichung (0.2) zu lösen.
Im 3. Kapitel betrachten wir einige Folgerungen und Anwendungen dieser Lösungsdar-
stellungen für die Gleichung (0.2) unter Verwendung von Differentialoperatoren vom Bau-
er’schen Typ.
Das 4. Kapitel ist der Untersuchung einer Klasse von bikomplexen pseudoanalytischen
Funktionen gewidmet, die Lösungen eines Systems von Differentialgleichungen von der
Gestalt

{
∂z∗V(z) = C(z,z∗)V∗(z),

∂z⋆V(z) = ∂z†V(z) = 0, (0.3)

sind, wobeiz eine bikomplexe Variable ist undz∗,z⋆,z†, die bikomplexen Konjugierten
von zbezeichnen.



Wir erhalten eine Klasse von KoeffizientenC für die alle Lösungen des Systems (0.3) unter
Verwendung von Differentialoperatoren angegeben werden können. Abschließend werden
einige Anwendungen dieser Lösungsdarstellungen für das System (0.3) angegeben. So
zum Beispiel Lösungen der Dirac Gleichung auf einer Pseudosphäre oder die Verallge-
meinerung der Weierstrass’schen Formeln zur Darstellung von Flächen durch Lösungen
linearer Gleichungen.
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Introduction

The pseudo-analytic function theory was independently developed by two prominent math-
ematicians, L. Bers (see [1], [18], [19]) and I.N. Vekua (see[43]).
After L. Bers every complex functionW defined in a subdomain of a simply connected
domainD ⊂ R

2 admits the unique representationW = φF +ψG, whereφ andψ are real-
valued functions and a pair of complex functionsF andG is a so-calledgenerating pair.
The(F,G)-derivative of a functionW exists if and only ifφzF +ψzG= 0. This condition
can be rewritten in the following form

Wz= a(F,G)W+b(F,G)W (0.4)

wherea(F,G),b(F,G) are the characteristic coefficients of the pair(F,G)

a(F,G) =−
FGz−FzG

FG−FG
, b(F,G) =

FGz−FzG

FG−FG
.

Solutions of the equation (0.4) are called(F,G)-pseudo-analytic functions (or, simply,
pseudo-analytic functions).
On the other hand after I.N. Vekua ageneralized analytic functionis a function

W(z) = u(x,y)+ iv(x,y)

satisfying a system

∂u
∂x

−
∂v
∂y

+au+bv= 0,
∂u
∂y

+
∂v
∂x

+cu+dv= 0

wherea,b,c,d are real valued functions of the real variablesx andy. This system can be
rewritten in the complex form which is called the Bers-Vekuaequation

Wz = αW+βW (0.5)

whereα = 1
4[a+b+ i(c−b)], β = 1

4[a−d+ i(c+b)].

Thus, the class of pseudo-analytic functions in the sense ofBers corresponding to the pair
(F,G) coincides with the class of generalized analytic functionsin the sense of Vekua. In
the special caseα = β = 0, the solutions of the equation (0.5) are calledanalytic functions
or holomorphic functions.
By transformationW = weA, with α = Az, we obtain from (0.5) the equation

wz = C(z,z)w, (C= βeA−A). (0.6)

1



2 Introduction

For the equation (0.6) I.N. Vekua developed a complete theory [44] where the solutions are
represented by means of certain integral operators. In special cases these representations of
solutions may be converted to a form free of integrals by integration by parts. K.W. Bauer
pointed out that if the coefficientC in the equation (0.6) is analytic and satisfies certain
conditions then it is possible to derive general representation theorems for the solutions of
the equation (0.6) defined in a simply connected domainsD by differential operators [9].
Moreover, by using another method not depending on the Vekuaresolvents, P. Berglez
presented a necessary and sufficient condition on the coefficientsC for the existence of the
representation of solutions of the equation (0.6) by such operators [11].

The thesis is organized as follows. Chapter 1 is aimed to investigate the representation
of solutions of a class of type (0.6). Using the result of P. Berglez, we can construct a
Liouville system. After solving the Liouville system we obtain coefficientsC for which
all solutions of the equation (0.6) can be represented by differential operators. A special
solution of this system leads to the fact that there exists a class of coefficientsC satisfying
the Liouville equation

m2(logC)zz−CC= 0, m∈ N (0.7)

such that for these coefficients all solutions of (0.6) can berepresented by differential
operators.
This condition was investigated by K.W. Bauer [6]. He considered the equation (0.6) with
the coefficientsC satisfying the condition (0.7). From this condition we get the general
representation ofC and then using a suitable transformation we can reduce the equation
(0.6) to the equation

wz =
m

1−zz
w, m∈ N. (0.8)

Therefore instead of (0.6) we consider the differential equation (0.8). Applying the method
of P. Berglez [11] or the method of K.W. Bauer on the determination of the Vekua resol-
vents [6] we can derive a representation of all solutions of this equation by differential
operators of Bauer-type.

Then we use this representation to solve a Dirichlet boundary value problem (BVP) and a
class of generalized Riemann-Hilbert BVPs for the equation(0.8) in a disk in Chapter 2.

In Chapter 3 using some properties of the representation of the solutions we also derive a
generalized representation theorem for solutions of the equation (0.8) in a neighbourhood
of an isolated singularity. Some problems related to the equation (0.8) are also investi-
gated: finding a generating pair in the sense of Bers; finding aspecial class of the chiral
components in the Ising field theory; finding transformations between the solutions of the
equation (0.8) with different parameters; finding inhomogeneous equations corresponding
to the equation (0.8) such that all solutions of these equations can be represented by differ-
ential operators.



3

Chapter 4 is devoted to study a class ofbicomplex pseudo-analytic functionswhich are
solutions of a system in bicomplex variables of the form

{
∂z∗V(z) = C(z,z∗)V∗(z),

∂z1V(z) = ∂z2V(z) = 0,
(0.9)

wherez is a bicomplex variable andz1,z2 ∈ C are components ofz.

First we introduce some concepts in bicomplex algebra (see,e.g., [37], [38]). We define
the resolvents of Vekua type in bicomplex variables and hence we can derive the represen-
tation theorem for a class of bicomplex pseudo-analytic functions using integral operators.
Then applying the representation theorems for solutions ofa second order partial differen-
tial equations [11] we also obtain a class of coefficientsC for which all solutions of system
(0.9) can be represented by differential operators.
Using a so-calledidempotent representationin a space of bicomplex functions we obtain
an interesting result, that is, a Dirac equation on the pseudo-sphere is equivalent to a sys-
tem of type (0.9). This implies that using the representation of the solutions of system (0.9)
by differential operators we can solve the Dirac equation ona pseudo-sphere. Another ap-
plication of this representation is using the generalization of the Weierstrass formulae to
generate surfaces via solutions of linear equations.



4 Introduction



1 REPRESENTATION OF THE SOLUTIONS OF A CLASS OF
PSEUDO-ANALYTIC FUNCTIONS

In this chapter we deal with the Bers-Vekua equationDw := wz−C(z,z)w= 0 defined in
a domainD ⊂ C. For a certain class of coefficientsC and domainsD we show how to get
the explicit representation of solutions of this problem. Using a necessary and sufficient
condition on the coefficientsC, see [11], we can obtain certain differential operators for
which every solution ofDw= 0 defined inD can be generated from a so-calledgenerat-
ing function gholomorphic inD. On the other hand after I.N.Vekua all solutions of the
above Bers-Vekua equation can be represented using integral operators [44]. Applying the
method of K.W. Bauer we can determine the Vekua resolvents for a certain class of the
Bers-Vekua equations and hence every solution of these equations can be represented as
the image of the generating functiong under differential operators of Bauer-type [9].

1.1 Representation of solutions after P. Berglez

In this thesis we use the following notations. We denote a complex variable by

z= x+ iy

wherex andy are real variables,i is the imaginary unit. Complex conjugates are denoted
by

z= x− iy.

We use the formal differential operators

∂
∂z

=
1
2

(
∂
∂x

− i
∂
∂y

)
and

∂
∂z

=
1
2

(
∂
∂x

+ i
∂
∂y

)

and sometimes writewz,wz instead of
∂w
∂z

,
∂w
∂z

, respectively.

Denote the space of all holomorphic functions inD by H(D).
Consider the Bers-Vekua equation

wz = C(z,z)w, z∈ D (1.1)

5



6 1 Representation of the solutions of a class of pseudo-analytic functions

whereD is a simply connected domain inC andC(z,z) is an analytic function of the real
variablesx andy.
Let

Km
1 =

m

∑
k=0

αk(z,z)
∂ k

∂zk , Kn
2 =

n

∑
l=0

βl(z,z)
∂ l

∂zl , m,n∈ N,

be given differential operators, whereαk, k = 0,1, . . . ,m, andβl , l = 0,1, . . . ,n, are con-
tinuously differentiable inD. If w= Km

1 g(z)+Kn
2g(z) is a solution of the equation (1.1) in

D for all functionsg(z) ∈ H(D), thenn= m−1 (see [10]).
We callKm

1 andKm−1
2 thedifferential operators of Bauer-type.

P. Berglez gave the necessary and sufficient condition on thecoefficientsC such that the
solutions of the equation (1.1) can be represented by differential operators [11] which is
quoted as follows.

Theorem 1.1(P.Berglez).
Denote

Am :=
1
C
, Bm :=−CC,

where C6= 0 is the coefficient in (1.1).
For the solutions of the Bers-Vekua equation (1.1) there exists a representation using dif-
ferential operators of Bauer-type if and only if with

Ak−1 = AkBk, Bk−1 = Bk+[log(AkBk)]zz, k= m,m−1, . . . ,1

the condition
B0 ≡ 0 in D

is satisfied.
The solution w of (1.1) is then given by

w= K1
mg+CK1

m−1g, g∈ H(D),

with

K1
m = F1

m−1 . . .F
1
0 , F1

k =
∂
∂z

+(logAk)z, k= 0,1, . . . ,m−1.

Using this result we can construct a Liouville system.
Since

Ak = Ak+1Bk+1, Bk = Bk+1+[log(Ak+1Bk+1)]zz

= Bk+1+(logAk)zz, for k= m−1, . . . ,1.

Therefore log(Ak)zz= Bk−Bk+1, for k= m−1, . . . ,1.
Denote

C1 :=C, λ1 :=−1,

Bm−(k−1) := λkC
2
k , λk :=

(k−1)2−m2

m2 , k≥ 2.
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• Step 1:

Bm =−CC=: −C1C1, Am−1 =−C=: −C1

⇒(logAm−1)zz= Bm−1−Bm

⇒[log(−C1)]zz= λ2C
2
2 +C1C1.

This implies that
m2(logC1)zz= m2C1C1+m2λ2C

2
2 (1.2)

with m2+m2λ2 = 1.

• Step 2:

Bm−2 = Bm−1+[log(Am−1Bm−1)]zz

⇒ λ3C
2
3 = λ2C

2
2 +[log(−λ2C1C

2
2)]zz.

This implies that

m2(logC2)zz=−
m2

2
C1C1−m2λ2C

2
2 +

m2

2
λ3C

2
3 (1.3)

with −
m2

2
−m2λ2+

m2

2
λ3 = 1.

• Step 3:
For 3≤ k≤ m−1

Bm−k = Bm−(k−1)+[log(Am−(k−1)Bm−(k−1))]zz

Bm−k = Bm−(k−1)+[logAm−(k−1)]zz+[logBm−(k−1)]zz

Bm−k = 2Bm−(k−1)−Bm−(k−2)+[logBm−(k−1)]zz

⇒ λk+1C
2
k+1 = 2λkC

2
k − λk−1C

2
k−1 + [log(λkC

2
k)]zz.

This implies that

m2(logCk)zz=
m2

2
λk−1C

2
k−1−m2λkC

2
k +

m2

2
λk+1C

2
k+1

with
m2

2
λk−1−m2λk+

m2

2
λk+1 = 1, for all 3≤ k≤ m−1.

(1.4)

• Step 4:

B0 = B1+[log(A1B1)]zz

B0 = 2B1−B2+[log(λmC2
m)]zz.
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This implies that

m2(logCm)zz =
m2

2
λm−1C

2
m−1−m2λnC

2
m+B0 (1.5)

with
m2

2
λm−1−m2λm = 1.

Assume that for somem∈N, the conditionB0 ≡ 0 satisfies, then from (1.2-1.5) we get the
Liouville system





m2(logC1)zz = m2C1C1+m2λ2C
2
2,

m2(logC2)zz = −
m2

2
C1C1−m2λ2C2

2 +
m2

2
λ3C2

3,

m2(logCk)zz =
m2

2
λk−1C2

k−1−m2λkC2
k +

m2

2
λk+1C2

k+1, 3≤ k≤ m−1,

m2(logCm)zz =
m2

2
λm−1C2

m−1−m2λmC2
m,

(1.6)

with 



m2+m2λ2 = 1,

−
m2

2
−m2λ2+

m2

2
λ3 = 1,

m2

2
λk−1−m2λk+

m2

2
λk+1 = 1, 3≤ k≤ m−1,

m2

2
λm−1−m2λm = 1.

Some results on Liouville systems and the solutions can be found in, e.g., [22], [33], [34].
According to Theorem 1.1 we can say that if the system (1.6) has a solution(C1,C2, . . . ,Cm),
then withC :=C1 all solutions of the equation (1.1) can be represented by differential op-
erators of Bauer-type.
From the above construction we have

Ak = Ak+1Bk+1 = · · ·= AmBmBm−1 . . .Bk+1.

Hence

(logAk)z= [log(AmBm)]z+
m−1

∑
j=k+1

(logB j)z

⇔ (logAk)z= (logC1)z+2
m−k

∑
j=2

(logCj)z.

Therefore

F1
k =

∂
∂z

+(logAk)z=
∂
∂z

+(logC1)z+2
m−k

∑
j=2

(logCj)z, k= 0,1, . . . ,m−1.

Summarising the above results we have the following theorem.
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Theorem 1.2.
Denote

C1 :=C, λ1 :=−1,

Bm−(k−1) := λkC
2
k , λk :=

(k−1)2−m2

m2 , k≥ 2.

with Bk, k= m−1, . . . ,0, as in Theorem 1.1. The condition B0 ≡ 0 is satisfied if and only
if C1,C2, . . . ,Cm satisfy the Liouville system (1.6).
If this system has a solution(C1,C2, . . . ,Cm), then with C=C1 all solutions of the equation
(1.1) can be represented by differential operators of Bauer-type. The solution w of the
equation (1.1) is given by

w= K1
mg+CK1

m−1g, g∈ H(D),

with

K1
m = F1

m−1 . . .F
1
0 , F1

k =
∂
∂z

+(logC1)z+2
m−k

∑
j=2

(logCj)z, k= 0,1, . . . ,m−1.

Consider a Liouville system of the type

m2(logUk)zz=
m

∑
j=1

ak jU
2
j , with

m

∑
j=1

ak j = 1, k= 1, . . . ,m. (1.7)

It is easy to see that ifU is a real-valued solution ofm2(logU)zz = U2 then the system
(1.7) has a special solution

U1 =U2 = · · ·=Um =U.

The Liouville system (1.6) maybe has many solutions. As longas we can find the solutions
of this system, we obtain the pseudo-analytic functions which can be represented by dif-
ferential operators of Bauer-type. In this work we only consider its special solution which
is indicated in the following corollary.

Corollary 1.1.
If U is a solution of the Liouville equation

m2(logU)zz=U2

then the system (1.6) has a special solution

C1 =Ueiv, C2 =C3 = · · ·=Cm =U
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where v is a real-valued solution of the Laplace equation.
Therefore with C=Ueiv all solutions of the equation (1.1) can be represented by differen-
tial operators of Bauer-type. The solution w of the equation(1.1) is given by

w= K1
mg+CK1

m−1g, g∈ H(D) (1.8)

with K1
m = F1

m−1 . . .F
1
0 , F1

k =
∂
∂z

− ivz+(2m−2k−1)(logU)z, k= 0,1, . . . ,m−1.

In [6], K.W. Bauer considered the equation of type (1.1)

wz = C(z,z)w, z∈ D

whereC satisfies the differential equation

m2(logC)zz−CC= 0, m> 0. (1.9)

The coefficientC 6= 0 can be represented in the formC=Ueiv, withU andv are real-valued
functions. Substituting this into (1.9) we have

m2(logU)zz+ ivzz =U2.

This implies thatvzz = 0 or v is a harmonic function andU satisfies the Liouville equa-
tion

m2(logU)zz=U2.

So the coefficientsC satisfying the equation (1.9) coincide with the coefficients C given
in Corollary 1.1. Therefore the solutions of the equation (1.1) with the condition (1.9) are
given by (1.8).
We get the following representation ofC, see [6],

C=
m| f ′|

1− f f

g
g
, f (z),g(z) holomorphic,(1− f f ) f ′g 6= 0.

For

W(ζ ,ζ ) =
w(z,z)

g(z)
√

f ′(z)
, and ζ = f (z),

we obtain
Wζ =

m

1−ζ ζ
W. (1.10)

Therefore the equation (1.1) with coefficientsC satisfying the condition (1.9) can be re-
duced to the equation (1.10).
From now on we consider the following equation which is called the Bers-Vekua equation
(M) or shortly the equation (M)

wz=
m

1−zz
w, z∈ KR, m∈ N (M)
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whereKR = {z∈ C
∣∣|z|< R< 1}.

Applying Corollary 1.1, withv= 0, to the equation (M), the solutionw of the equation (M)
is given by

w= K1
mg+

m
1−zz

K1
m−1g, g∈ H(KR) (1.11)

with

K1
m = F1

m−1 . . .F
1
0 , F1

j =
∂
∂z

+(2m−2 j −1)(log
m

1−zz
)z, j = 0,1, . . . ,m−1.

Denote the coefficients inF1
j by c j ∈ N∗ = N\{0}, j = 0,1, . . . ,m−1

F1
j = ∂z+(2m−2 j −1)

z
1−zz

=: ∂z+c j
z

1−zz
, j = 0,1, . . . ,m−1.

Next we are going to calculateK1
mg, K1

m−1g. To do this we need the following lemma.

Lemma 1.1.
Assume that

F1
j = ∂z+c j

z
1−zz

, c j ∈ N
∗, j = 0,1, . . . ,k−1.

Then K1
kg := F1

k−1 . . .F
1
1 F1

0 g, k≥ 1, has the form

K1
k g(z) = g(k)(z)+

k−1

∑
j=0

a j

(
z

1−zz

)k− j

g( j)(z), a j ∈ N
∗, j = 0,1, . . . ,k−1. (1.12)

Proof.
We shall prove by induction.
The statement of Lemma 1.1 is true fork= 1. We assume thatK1

kg, k> 1, has the form

K1
k g(z) = F1

k−1 . . .F
1
1 F1

0 g(z) = g(k)(z)+
k−1

∑
j=0

a j

(
z

1−zz

)k− j

g( j)(z), a j ∈ N
∗.

Then we have to prove thatK1
k+1g can be written as follows

K1
k+1g(z) = g(k+1)(z)+

k

∑
j=0

ã j

(
z

1−zz

)k+1− j

g( j)(z), ã j ∈ N
∗, j = 0,1, . . . ,k. (1.13)
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Indeed

K1
k+1g(z) =

(
∂z+ck

z
1−zz

)
[

g(k)(z)+
k−1

∑
j=0

a j

(
z

1−zz

)k− j

g( j)(z)

]

= g(k+1)(z)+
k−1

∑
j=0

a j

[
(k− j)

( z
1−zz

)k− j−1
(

z
1−zz

)2
g( j)(z)+

( z
1−zz

)k− j
g( j)(z)

]

= g(k+1)(z)+(ck+ak−1)
z

1−zz
g(k)(z)+

k−1

∑
j=1

[(k− j)a j +a j−1+a jck]
( z
1−zz

)k− j−1
g( j)(z)+ [a0ck+ka0]

( z
1−zz

)k+1
g(z).

Denote

ã0 := a0ck+ka0, ãk := ck+ak−1 andã j := (k− j)a j +a j−1+a jck, j = 1, . . . ,k−1,

then the expression (1.13) ofK1
k+1g holds. ThereforeK1

kg has the form (1.12). The asser-
tion follows.

So if we denoteam = bm−1 = 1 and then apply Lemma 1.1,K1
mg, K1

m−1g can be written as
follows

K1
mg= F1

m−1 . . .F
1
0 =

m

∑
j=0

a j

(
z

1−zz

)m− j

g( j), (1.14)

K1
m−1g= F1

m−2 . . .F
1
0 =

m−1

∑
j=0

b j

(
z

1−zz

)m−1− j

g( j) (1.15)

wherea j ∈ N
∗, j = 0, . . . ,m−1, b j ∈ N

∗, j = 0, . . . ,m−2, are unknown coefficients.
Therefore inserting the expressions (1.14) and (1.15) into(1.11) all the solutions of the
equation (M) can be written in the form

w=
m

∑
j=0

a j

(
z

1−zz

)m− j

g( j)(z)+
m

1−zz

m−1

∑
j=0

b j

(
z

1−zz

)m− j−1

g( j)(z). (1.16)

From the expression (1.16) we have

wz =
m−1

∑
j=0

(m− j)a j
zm− j−1

(1−zz)m− j+1g( j)(z)+m2b0
zm

(1−zz)m+1g(z)+

m−1

∑
j=1

[m(m− j)b j +mbj−1]
zm− j

(1−zz)m− j+1g( j)(z)+mbm−1
1

1−zz
g(m)(z),

(1.17)
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and

m
1−zz

w=
m−1

∑
j=0

m2b j
zm− j−1

(1−zz)m− j+1g( j)(z)+
m

∑
j=0

maj
zm− j

(1−zz)m− j+1g( j)(z).

(1.18)

Substituting the expressions (1.17) and (1.18) into the equation (M) we obtain the system





(m− j)a j = m2b j , j = 0, . . . ,m−1,

m2b0 = ma0,

mbm−1 = mam,

m(m− j)b j +mbj−1 = maj , j = 1, . . . ,m−1.

From this system we get

b j−1 =
j(2m− j)

m− j
b j , j = 1, . . . ,m−1.

By hypothesisbm−1 = 1,

b j =
( j +1)( j +2) . . .(m−1)(2m− j −1)(2m− j −2) . . .(m+1)

(m− j −1)!
bm−1

=

(m−1)!
j!

(2m− j −1)!
m!

(m− j −1)!
.

Then

b j =
(2m− j −1)!

j!(m− j −1)!m
, j = 0, . . . ,m−2. (1.19)

Therefore

a j =
m2

m− j
b j =

(2m− j −1)!m
j!(m− j)!

, j = 0, . . . ,m−1. (1.20)

Substituting (1.19) and (1.20) into (1.16) we obtain a solution of the equation (M)

w=
m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz)m− j g
( j)(z) (1.21)

whereBm
j =

(2m− j −1)!
j!(m− j)!

, andg∈ H(KR).

Summarising the above results we have the following theorem.
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Theorem 1.3.
Consider the Bers-Vekua equation (M)

wz =
m

1−zz
w, m∈ N.

Then
• For every solution w of the equation (M) defined in KR = {z

∣∣|z|< R< 1} there exists a
function g∈ H(KR) such that for w, the representation (1.21) holds.
• On the other hand for every function g∈ H(KR) the expression in (1.21) represents a
solution of the equation (M) defined in KR.

The functiong in Theorem 1.3 is called agenerating functionof the solutionw.

In the sequel using the results of I.N. Vekua [44] and K.W. Bauer [9] we also derive an
explicit representation of the solutions of the equation (M) by differential operators of
Bauer-type. Moreover with an additional condition on the generating functiong, for each
solutionw the existence of the generating function is unique. First wederive the represen-
tation of the solutions by integral operators. Then after computing the Vekua resolvents we
convert this representation to a form free of integrals and hence we get the representation
of solutions by differential operators of Bauer-type.

1.2 Representation of the solutions by integral operators

Consider the Bers-Vekua equation (1.1)

wz = C(z,z)w, z∈ D,

whereD is a simply connected domain.
The details for the statements and their proofs in this subsection can be found in [44]. Now
we shall introduce some notations.
Let f (x1, . . . ,xn) be an analytic function of the real variablesx1, . . . ,xn in some domain
Ω of the space ofn dimensions. Then there exists a unique functionF(z1, . . . ,zn) of the
complex variablesz1 = x1+ iy1, . . . ,zn = xn+ iyn, analytic in a domainΩ∗ of the space
of 2n dimensions, which coincides withf (x1, . . . ,xn) wheny1 = · · · = yn = 0 (obviously
Ω ⊂ Ω∗). The functionF(z1, . . . ,zn) is called theanalytic continuationof the function
f (x1, . . . ,xn) from the domain of real values of the argumentsx1, . . . ,xn into the domain of
complex values.
Let F(z1, . . . ,zn) be an analytic function of the complex variablesz1, . . . ,zn in a domain
Ω2n of 2n-dimensional space. Denote

Ω2n = {(ζ1, . . . ,ζn)|(ζ1, . . . ,ζn) ∈ Ω2n},
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and define
F∗(ζ1, . . . ,ζn) := F(ζ1, . . . ,ζn), (ζ1, . . . ,ζn) ∈ Ω2n.

Obviously,F∗(ζ1, . . . ,ζn) is an analytic function ofζ1, . . . ,ζn in Ω2n. We callF∗(ζ1, . . . ,ζn)
theconjugate functionof F(z1, . . . ,zn). AndF(z1, . . . ,zn) is also the conjugate toF∗(ζ1, . . . ,ζn).
We denote byD the mirror image ofD with respect to the real axis. IfD is symmetrical
with respect to this axis thenD andD are obviously the same.
By hypothesis the coefficientC(z,z) of the equation (1.1) is an analytic function of the
real variablesx andy. If we continue analytically this function into a complex domain, we
obtain an analytic functionC(z,ζ ) of the two complex variablesz∈ D,ζ ∈ D

z= x+ iy, ζ = x− iy.

I.N. Vekua proved in [44] thatevery solution of the equation (1.1) inD also can be contin-
ued analytically into the domain(D,D) , i.e., (1.1) is satisfied forz∈ D,ζ ∈ D by some

functionw(z,ζ ), analytic inz andζ . In this case
∂w
∂z

is equal to the partial derivative
∂w
∂ζ

and (1.1) takes the form

∂w(z,ζ )
∂ζ

= C(z,ζ )w∗(ζ ,z), (z,ζ ) ∈ D×D, (1.22)

wherew∗(ζ ,z) is the conjugate function ofw(z,ζ ).
The equation (1.22) is called thecomplex formof the equation (1.1).
If w(z,ζ ) is an analytic function ofz andζ , with z∈ D,ζ ∈ D, satisfying the differential
equation (1.22), thenw(z,z) is an analytic function of the real variablesx,y in D, satisfying
the differential equation (1.1). Therefore first we derive aformula which gives all the
solutions of (1.22), analytic inzandζ , with z∈ D,ζ ∈ D.
Assume thatw(z,ζ ) is such a solution of (1.22). We can now transform (1.22) as follows

∂
∂ζ

[
w(z,ζ )−

∫ ζ

ζ0

C(z,τ)w∗(τ,z)dτ
]
= 0.

This implies that

w(z,ζ ) = ϕ(z)+
∫ ζ

ζ0

C(z,τ)w∗(τ,z)dτ, (1.23)

with ϕ(z) is an analytic function ofz in D andζ0 is a fixed point inD.
We now pass from (1.23) to the adjoint equation

w∗(ζ ,z) = ϕ∗(ζ )+
∫ z

z0

C∗(ζ , t)w(t,ζ )dt, (1.24)

with z0 = ζ0. If we substitute the expression (1.24) into the right-handside of (1.23), we
get

w(z,ζ ) = ϕ(z)+
∫ ζ

ζ0

C(z,τ)ϕ∗(τ)dτ +
∫ z

z0

dt
∫ ζ

ζ0

C(z,τ)C∗(τ, t)w(t,τ)dτ. (1.25)
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Denote

Φ(z,ζ ) := ϕ(z)+
∫ ζ

ζ0

C(z,τ)ϕ∗(τ)dτ, (1.26)

then the equation (1.25) results in

w(z,ζ )−
∫ z

z0

dt
∫ ζ

ζ0

C(z,τ)C∗(τ, t)w(t,τ)dτ = Φ(z,ζ ). (1.27)

As may be seen, every solutionw(z,ζ ) of the equation (1.22), analytic inz,ζ in the domain
(D,D), also satisfies the Volterra integral equation (1.27). The right-hand side of this
integral equation contains a functionϕ(z) which is continuous, analytic inD and uniquely
determined byw(z,ζ )

ϕ(z) = w(z,ζ0). (1.28)

An integral equation of the type (1.27) is well known and had been solved in [44]. Its
solution has the form

w(z,ζ ) = Φ(z,ζ )+
∫ z

z0

dt
∫ ζ

ζ0

Γ(z,ζ , t,τ)Φ(t,τ)dτ, (1.29)

whereΓ(z,ζ , t,τ) is called themain Vekua resolventof integral equation (1.27). The main
resolvent satisfies the integral equation

Γ(z,ζ , t,τ) = C(z,τ)C∗(τ, t)+
∫ ζ

τ
dη

∫ z

t
C(ξ ,τ)C∗(τ, t)Γ(z,ζ ,ξ ,η)dξ . (1.30)

Note thatΓ(z,ζ , t,τ) is an analytic function of the four variablesz,ζ , t,τ in the domain
z, t ∈ D, ζ ,τ ∈ D.
Substituting (1.26) into (1.29) we obtain

w(z,ζ ) = ϕ(z)+
∫ z

z0

Γ1(z,ζ , t,ζ0)ϕ(t)dt+
∫ ζ

ζ0

Γ2(z,ζ ,z0,τ)ϕ∗(τ)dτ (1.31)

where

Γ1(z,ζ , t,τ) =
∫ ζ

τ
Γ(z,ζ , t,η)dη,

Γ2(z,ζ , t,τ) = C(z,τ)+
∫ z

t
C(ξ ,τ)Γ1(z,ζ ,ξ ,τ)dξ =

Γ(z,ζ , t,τ)
C∗(τ, t)

.

Γ1,Γ2 are called thefirst andsecond Vekua resolvent, respectively, and they have the fol-
lowing properties

∂Γ1(z,ζ , t,τ)
∂ζ

−C(z,ζ )Γ∗
2(ζ ,z,τ, t) = 0, (1.32)
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∂Γ2(z,ζ , t,τ)
∂ζ

−C(z,ζ )Γ∗
1(ζ ,z,τ, t) = 0, (1.33)

Γ2|ζ=τ = Γ2(z,τ, t,τ) = C(z,τ), (1.34)

Γ2|z=t = Γ2(t,ζ , t,τ) = C(t,τ). (1.35)

I.N. Vekua proved thatthe formula (1.31) gives all solutions of the equation (1.22), analytic
in z,ζ in the domain(D,D).
If we replaceζ by z in (1.31) we obtain the representation of solutions of the equation (1.1)
by integral operators, analytic in the real variablesx andy in D. Applying this method to
the equation (M) we also get the representation of solutions of the equation(M) by integral
operators. However our aim is to derive an explicit representation of the solutions of the
equation (M) by differential operators of Bauer-type. Then we need to determine the first
and second resolventsΓ1,Γ2 by using the method of K.W. Bauer ( [5], [6]). This will be
done in the next section.

1.3 Determination of the Vekua resolvents

Lemma 1.2.
Γ1,Γ2 are solutions of an equation

Wzζ −
Cz

C
Wζ −CC∗W = 0. (1.36)

Proof.
To prove this lemma we need the properties (1.32) and (1.33).Differentiating the two sides
of the equation (1.33) with respect toz we get

∂ 2Γ2(z,ζ , t,τ)
∂z∂ζ

−
∂C(z,ζ )

∂z
Γ∗

1(ζ ,z,τ, t)−C(z,ζ )
∂Γ∗

1(ζ ,z,τ, t)
∂z

= 0. (1.37)

By definition

∂Γ∗
1(ζ ,z,τ, t)

∂z
=

∂Γ1(ζ ,z,τ, t)
∂z

=

[
∂Γ1(ζ ,z,τ, t)

∂z

]
,

and from the property (1.32) we have
[

∂Γ1(ζ ,z,τ, t)
∂z

]
= C(ζ ,z).Γ∗

2(z,ζ , t,τ) = C∗(ζ ,z)Γ2(z,ζ , t,τ).

This implies that
∂Γ∗

1(ζ ,z,τ, t)
∂z

= C∗(ζ ,z)Γ2(z,ζ , t,τ). (1.38)
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From the property (1.33) we have

Γ∗
1(ζ ,z,τ, t) =

1
C(z,ζ )

∂Γ2(z,ζ , t,τ)
∂ζ

. (1.39)

Substituting (1.38) and (1.39) into (1.37) we obtain

∂ 2Γ2(z,ζ , t,τ)
∂z∂ζ

−Cz(z,ζ )
1

C(z,ζ )
∂Γ2(z,ζ , t,τ)

∂ζ
−C(z,ζ )C∗(ζ ,z)Γ2(z,ζ , t,τ) = 0.

ThereforeΓ2 andΓ1 (prove analogously) are solutions of the equation (1.36) and Lemma
1.2 is proved.

From the properties (1.34) and (1.35) together with the equation (1.36) we can determine
Γ2 and thenΓ1.
If we know one solutionW(z,ζ , t,τ) of (1.36) with the initial conditions

W|ζ=τ = C(z,τ), W|z=t = C(t,τ), (1.40)

it follows that

Γ2 = W, Γ∗
1 =

1
C(z,ζ )

Wζ .

In the case of the equation (M), the analytic continuation of the coefficientC(z,z) has the

form C(z,ζ ) =
m

1−zζ
. Then the equation (1.36) reads

ω2Wzζ −ζ ωWζ −m2W = 0 with ω := (1−zζ ). (1.41)

We are going to seek a solutionW with the initial conditions (1.40) in the following form

W =
m

1−zτ
H(λ )

with
λ = λ (z,ζ , t,τ), H|ζ=τ = H|z=t = 1.

We have

Wζ =
m

1−zτ
H ′λζ ,

Wzζ =
mτ

(1−zτ)2H ′λζ +
m

1−zτ
(H ′′λzλζ +H ′λzζ ).

Substituting these expressions into the equation (1.41) weobtain

ω2λzλζ H ′′+

[
ω2λzζ +

ω(τ −ζ )
1−zτ

λζ

]
H ′−m2H = 0. (1.42)
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Chooseλ =
d(z− t)(ζ − τ)

1−zζ
, whered is a function not depending onz andζ , then

λz = d(ζ − τ)
(1− tζ )
(1−zζ )2 , λζ = d(z− t)

(1−zτ)
(1−zζ )2,

λzζ = d
(1−zτ)
(1−zζ )2 −d(z− t)

τ
(1−zζ )2 +d(z− t)(1−zτ)

2ζ
(1−zζ )3.

Therefore the equation (1.42) results in

[d(1− tτ)λ +λ 2]H ′′+[d(1− tτ)+λ ]H ′−m2H = 0.

Choosed =
−1

1− tτ
, (1− tτ 6= 0) then we have the hypergeometric differential equation

λ (1−λ )H ′′+[γ − (α +β +1)λ ]H ′−αβH = 0, (1.43)

with H|λ=0 = 1, α = m, β =−m, γ = 1.
Some properties of the hypergeometric differential equations and their solutions can be
found in, e.g., [2], [24] or [42].
A solutionH(λ ) of the hypergeometric equation(1.43) is given by

H(λ ) =
∞

∑
k=0

(α)k(β )k

(γ)k

λ k

k!

where(x)k, k∈ N, is the Pochhammer symbol defined by

(x)k =

{
1 if k= 0,

x(x+1) . . .(x+k−1) if k> 0.

Forα = m, β =−m, γ = 1 we have

H(λ ) = 1+
m

∑
k=1

(−1)km(m+k−1)!
(k!)2(m−k)!

λ k (1.44)

with

λ =−
(z− t)(ζ − τ)

(1−zζ )(1− tτ)
.

Therefore

H(λ (z,ζ , t,τ)) = 1+
m

∑
k=1

(−1)km(m+k−1)!
(k!)2(m−k)!

(−1)k (z− t)k(ζ − τ)k

(1−zζ )k(1− tτ)k .
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So we have

Γ2(z,ζ , t,τ) = W(z,ζ , t,τ) =
m

1−zτ
H(λ )

=
m

1−zτ

[
1+

m

∑
k=1

m(m+k−1)!
(k!)2(m−k)!

(z− t)k(ζ − τ)k

(1−zζ )k(1− tτ)k

]
.

This implies that

∂Γ2(z,ζ , t,τ)
∂ζ

=
m

∑
k=1

m2(m+k−1)!k
(k!)2(m−k)!

(
z− t

1− tτ

)k (ζ − τ)k−1

(1−zζ )k+1 . (1.45)

By definition of the conjugate function and the relation (1.39), we get

Γ1(ζ ,z,τ, t) =
1

C(z,ζ )
∂Γ2(z,ζ , t,τ)

∂ζ
. (1.46)

Substituting (1.45) into (1.46), we obtain

Γ1(ζ ,z,τ, t) =
m

∑
k=1

m(m+k−1)!k
(k!)2(m−k)!

(
z− t

1− tτ

)k (ζ − τ)k−1

(1−zζ )k
,

⇒ Γ1(z,ζ , t,τ) =
m

∑
k=1

m(m+k−1)!k
(k!)2(m−k)!

(
ζ − τ
1− tτ

)k (z− t)k−1

(1−zζ )k .

To sum up we have

Γ1(z,ζ , t,τ) =
m

∑
k=1

m(m+k−1)!k
(k!)2(m−k)!

(
ζ − τ
1− tτ

)k (z− t)k−1

(1−zζ )k , (1.47)

Γ2(z,ζ , t,τ) =
m

1−zτ

[
1+

m

∑
k=1

m(m+k−1)!
(k!)2(m−k)!

(z− t)k(ζ − τ)k

(1−zζ )k(1− tτ)k

]
. (1.48)

After having the resolventsΓ1 andΓ2 we shall convert the representation(1.31) of the
solutions to a form free of integrals. Hence we get the representation of the solutions of
equation (M) by differential operators of Bauer-type.

1.4 Representation of the solutions by differential operators of
Bauer-type

In (1.31) we can choosez0 = ζ0 = 0, then the following formula

w(z,ζ ) = ϕ(z)+
z∫

0

Γ1(z,ζ , t,0)ϕ(t)dt+

ζ∫

0

Γ2(z,ζ ,0,τ)ϕ∗(τ)dτ (1.49)
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gives all the analytic solutions of the equation

∂w(z,ζ )
∂ζ

=
m

1−zζ
w∗(ζ ,z), z,ζ ∈ KR. (1.50)

Next we are going to calculate the two integrals in the formula (1.49).
The first integral in(1.49) is

z∫

0

Γ1(z,ζ , t,0)ϕ(t)dt =

z∫

0

m

∑
k=1

m(m+k−1)!k
(k!)2(m−k)!

ζ k(z− t)k−1

(1−zζ )k ϕ(t)dt

=
m

∑
k=1

m(m+k−1)!k
(k!)2(m−k)!

ζ k

(1−zζ )k

z∫

0

(z− t)k−1ϕ(t)dt. (1.51)

Now we introduce the spaceHKR(k,0), see [27], of all functionsg(z)∈H(KR) satisfying

g(0) = g′(0) = · · ·= g(k−1)(0) = 0.

In order to calculate the integrals on the right-hand side of(1.51), we need the following
lemma.

Lemma 1.3.
For any functionϕ(t) ∈ H(KR) there exists a unique function g(t) ∈ HKR(m,0) such that
ϕ(t) = g(m)(t).

Proof.
The statement of the Lemma 1.3 can be obtained easily by considering the function

g(z) =
1

(m−1)!

z∫

0

(z− t)m−1ϕ(t)dt.

Applying Lemma 1.3 for the functionϕ(t) ∈ H(KR), there exists a unique functiong(t) ∈
HKR(m,0) such thatϕ(t) = g(m)(t).
Denote

Ik =

z∫

0

(z− t)k−1ϕ(t)dt, 1≤ k≤ m,
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then using the Lemma 1.3 we get

Ik =

z∫

0

(z− t)k−1g(m)(t)dt = (k−1)

z∫

0

(z− t)k−2g(m−1)(t)dt

= · · ·= (k−1)!g(m−k)(t)

∣∣∣∣
z

0
= (k−1)!g(m−k)(z).

Hence
Ik = (k−1)!g(m−k)(z), 1≤ k≤ m. (1.52)

InsertingIk into the expression (1.51) we obtain

z∫

0

Γ1(z,ζ , t,0)ϕ(t)dt =
m

∑
k=1

m(m+k−1)!k
(k!)2(m−k)!

ζ k

(1−zζ )k(k−1)!g(m−k)(z).

Denotej := m−k then

z∫

0

Γ1(z,ζ , t,0)ϕ(t)dt =
m−1

∑
j=0

m(2m− j −1)!
(m− j)! j!

(
ζ

1−zζ

)m− j

g( j)(z). (1.53)

The second integral in(1.49) is

ζ∫

0

Γ2(z,ζ ,0,τ)ϕ∗(τ)dτ, (1.54)

whereΓ2(z,ζ ,0,τ) is given by(1.48).
In order to calculate the integral(1.54) we need the following lemma.

Lemma 1.4.
Denote

T =
m

∑
k=1

(−1)km(m+k−1)!
(k!)2(m−k)!

, (1.55)

then T+1= 0.

From now on we denote the binomial coefficientsCm
k as

Cm
k =:

m!
k!(m−k)!

, k,m∈ N, k≤ n.



1.4 Representation of the solutions by differential operators of Bauer-type 23

Proof.
We can rewriteT in the form

T =
1

(m−1)!

m

∑
k=1

(−1)kCm
k
(m+k−1)!

k!
.

Now we consider the expansion

(1−x)m =
m

∑
k=0

Cm
k (−1)kxk,

⇒ (1−x)mxm−1 =
m

∑
k=0

(−1)kCm
k xm+k−1. (1.56)

Differentiating the two sides of(1.56) of orderm−1 with respect tox and then substituting
x= 1 we obtain the equality

m

∑
k=0

(−1)kCm
k
(m+k−1)!

k!
= 0

⇔
m

∑
k=1

(−1)kCm
k
(m+k−1)!

k!
= −(m−1)!

⇔
1

(m−1)!

m

∑
k=1

(−1)kCm
k
(m+k−1)!

k!
= −1.

Thus Lemma 1.4 is proved.

Remark 1.1.
There is another way to prove Lemma1.4 using the formula(1.44) for the solution of the
hypergeometric equation

H(λ ) = 1+
m

∑
k=1

(−1)km(m+k−1)!
(k!)2(m−k)!

λ k.

We obviously see that

H|λ=1 = H(1) = T +1.

Since the value of the hypergeometric series atλ = 1 is equal to zero, we have T=−1.
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Now we use the above result to computeΓ2(z,ζ ,0,τ) as follows

Γ2(z,ζ ,0,τ) =
m

1−zτ

[
1+

m

∑
k=1

m(m+k−1)!
(k!)2(m−k)!

zk(ζ − τ)k

(1−zζ )k

]

=
m

1−zτ

m

∑
k=1

m(m+k−1)!
(k!)2(m−k)!

[(zζ −zτ
1−zζ

)k
− (−1)k

]

=
m

1−zτ

m

∑
k=1

m(m+k−1)!
(k!)2(m−k)!

[(
1−zτ
1−zζ

−1

)k

− (−1)k
]

=
m

1−zτ

m

∑
k=1

m(m+k−1)!
(k!)2(m−k)!

1−zτ
1−zζ

k−1

∑
p=0

(
1−zτ
1−zζ

−1

)p

(−1)k−1−p

=
m

∑
k=1

m2(m+k−1)!
(k!)2(m−k)!

k−1

∑
p=0

(−1)k−1−p zp(ζ − τ)p

(1−zζ )p+1 .

Therefore

ζ∫

0

Γ2(z,ζ ,0,τ)ϕ∗(τ)dτ =
m

∑
k=1

m2(m+k−1)!
(k!)2(m−k)!

k−1

∑
p=0

(−1)k−1−pzp

(1−zζ )p+1

ζ∫

0

(ζ − τ)pϕ∗(τ)dτ.

(1.57)
Now we denote

Jp =

ζ∫

0

(ζ − τ)pϕ∗(τ)dτ, 0≤ p≤ k−1.

Hereϕ∗(t) is the conjugate function of the functionϕ(t). So using Lemma 1.3 and the
definition ofϕ∗(t) we can write

Jp =

ζ∫

0

(ζ − τ)pgm(τ)dτ =

ζ∫

0

(ζ − τ)pgm(τ)dτ,

whereg(t) ∈ HKR(m,0) is chosen as in Lemma 1.3.
By using the property of the complex conjugate and changing the variable in integral we
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have

Jp =

ζ∫

0

(ζ − t)pg(m)(t)dt = (ζ − t)pg(m−1)(t)

∣∣∣∣
ζ

0
+ p

ζ∫

0

(ζ − t)p−1g(m−1)(t)dt

= p

ζ∫

0

(ζ − t)p−1g(m−1)(t)dt = · · ·= p!g(m−p−1)(ζ ).

HenceJp = p!g(m−p−1)(ζ ), 0 ≤ p ≤ k−1. Substituting this into (1.57) we have the fol-
lowing form of the integral (1.54)

ζ∫

0

Γ2(z,ζ ,0,τ)ϕ∗(τ)dτ =
m−1

∑
j=0

A j
zm−1− j

(1−zζ )m− j g
( j)(ζ ).

Therefore we obtain the form ofw(z,ζ )

w= g(m)(z)+
m−1

∑
j=0

m(2m− j −1)!
(m− j)! j!

(
ζ

1−zζ

)m− j

g( j)(z)+
m−1

∑
j=0

A j
zm−1− j

(1−zζ )m− j g
( j)(ζ ).

(1.58)
Inserting the expression (1.58) into the equation (1.50) wehave the following representa-
tion

w(z,ζ ) = g(m)(z)+
m−1

∑
j=0

m(2m− j −1)!
(m− j)! j!

(
ζ

1−zζ

)m− j

g( j)(z)

+
m−1

∑
j=0

(2m− j −1)!
j!(m− j −1)!

zm−1− j

(1−zζ )m− j g
( j)(ζ ),

(1.59)

whereg∈ HKR(m,0).
The expression (1.59) gives all solutions of the equation (1.50) analytic inz,ζ in the do-
mainKR. Replacingζ by z in (1.59) we obtain the following theorem.

Theorem 1.4.
Consider the differential equation (M)

wz =
m

1−zz
w, m∈ N, z∈ KR.

Denote the coefficients of g( j)(z) andg( j)(z) in (1.59) by aj(z,z) and bj(z,z), respectively.
Then for every solution w of the equation (M) in KR, analytic in the variables x and y, there
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exists a unique generating function g∈ HKR(m,0) such that w has the representation

w =
m

∑
j=0

a j(z,z)g
( j)(z)+

m−1

∑
j=0

b j(z,z)g( j)(z) :=

m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz)m− j g
( j)(z),

(1.60)

where Bm
j =

(2m− j −1)!
j!(m− j)!

.

Conversely for each function g∈ HKR(m,0) (1.60) represents a solution of the equation
(M) in KR.



2 A CLASS OF BOUNDARY VALUE PROBLEMS

In this chapter we consider some boundary value problems forpseudo-analytic functions
which can be represented by differential operators of Bauer-type. We show that these prob-
lems are equivalent to certain ordinary differential equations for the generating functions
defined on the boundary of the domain under consideration. For the Bers-Vekua equation
(M) we shall solve these differential equations explicitly using Fourier expansions for the
functions involved. Once the generating function is determined on the boundary we can
express it in the whole domain. This method can be applied to the Dirichlet boundary
value problem and a class of the generalized Riemann-Hilbert boundary value problems
for the pseudo-analytic functions which are solutions of the equation (M). The boundary
value problems for such pseudo-analytic functions and poly-pseudoanalytic functions are
treated in [17]. Applying this method to the more general boundary value problems for
other classes of the Bers-Vekua equations is an open question.

2.1 The Dirichlet boundary value problem

We consider the boundary value problem

wz = C w in D, (2.1)

Re(w) = Ψ on ∂D, (2.2)

whereC is an arbitrary analytic function defined inD andΨ is Hölder-continuous on∂D.
I.N. Vekua [44] presented theorems concerning the existence of solutions of this problem.
He proved that this boundary value problem is equivalent to asingular integral equation
for a certain density function, the kernel of which depends on the coefficientC.

In the following we will show that for the certain problem withC=
m

1−zz
whose solutions

have the representation using the Bauer-type operators in the form (1.60) this boundary
value problem can be solved explicitly in a direct way.
According to Theorem 1.4, the generating functiong∈ HKR(m,0) is determined uniquely
by the solutionw, then we can state that solving the boundary value problem (2.1)-(2.2) is
equivalent to finding the suitable generating functiong.
Now the boundary condition (2.2) in connection with the representation (1.60) forw leads

27
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to the differential equation

Re

{ m

∑
j=0

a j(ξ )g( j)(ξ )+
m−1

∑
j=0

b j(ξ )g( j)(ξ )
}

= Ψ(ξ ), (2.3)

whereξ ∈ ∂KR anda j(ξ ) := a j(z,z)|∂KR
, b j(ξ ) := b j(z,z)|∂KR

are used.

With respect to the conditiong∈ HKR(m,0) we use forg the expansion

g(z) =
∞

∑
k=m

γkz
k, γk ∈ C.

In particular we have

g(ξ ) =
∞

∑
k=m

γkξ k on ∂KR. (2.4)

Now we are going to calculate the coefficientsγk, for k ≥ m. With g(ξ ) in the form (2.4)
the boundary condition (2.3) can be written as

Re

{ m

∑
j=0

a j(ξ )
∞

∑
k=m

k!
(k− j)!

γkξ k− j +
m−1

∑
j=0

b j(ξ )
∞

∑
k=m

k!
(k− j)!

γkξ
k− j

}
= Ψ(ξ ). (2.5)

Since the coefficientsa j andb j in (2.3) are known explicitly, we can solve the differential
equation (2.3) for the functiong in the following way.
Inserting the coefficientsa j andb j into the differential equation (2.5) we have

Re

{ m

∑
j=0

Bm
j

(1−ξ ξ )m− j
×

[
mξ

m− j ∞

∑
k=m

k!γkξ k− j

(k− j)!
+(m− j)ξ m− j−1

∞

∑
k=m

k!γkξ
k− j

(k− j)!

]}
= Ψ(ξ ).

Introducing the real parametert ∈ [0,2π ] by ξ = Reit ∈ ∂KR we obtain

Re

{ ∞

∑
k=m

ckγkR
k−mei(k−m)t +

∞

∑
k=m

dkγkR
k−m+1e−i(k−m+1)t

}
= Ψ(t), (2.6)

with

ck =
m

∑
j=0

mBm
j

k!
(k− j)!

R2(m− j)

(1−R2)m− j > 0,

dk =
m−1

∑
j=0

(m− j)Bm
j

k!
(k− j)!

R2(m− j−1)

(1−R2)m− j > 0.

(2.7)
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Now we useγk = αk+ iβk, αk,βk ∈ R, k≥ m, andeit = cost+ i sint, t ∈ R, for which we
get

Re(w)|∂KR
= cmαm+

∞

∑
k=1

(cm+kαm+k+dm+k−1αm+k−1)R
kcos(kt)

−
∞

∑
k=1

(cm+kβm+k+dm+k−1βm+k−1)R
ksin(kt).

(2.8)

Now the boundary functionΨ is assumed to possess a uniformly convergent Fourier series
of the form

Ψ(t) = ϕ0+
∞

∑
k=1

(ϕkcos(kt)+ψksin(kt)). (2.9)

Comparing the two expressions (2.8) and (2.9) we are led to the following linear system of
the coefficientsαk andβk





cmαm = ϕ0,

(cm+kαm+k+dm+k−1αm+k−1)Rk = ϕk, k= 1,2, . . .

−(cm+kβm+k+dm+k−1βm+k−1)Rk = ψk, k= 1,2, . . .

Hereβm∈R can be chosen arbitrarily and then the remaining coefficients can be calculated
recursively as follows

αm =
ϕ0

cm
,

αm+k =
ϕk−dm+k−1αm+k−1Rk

cm+kRk , k= 1,2, . . .

βm+k = −
ψk+dm+k−1βm+k−1Rk

cm+kRk , k= 1,2, . . .

(2.10)

To sum up we have the following theorem.

Theorem 2.1.
The boundary value problem

wz =
m

1−zz
w in KR = {z

∣∣|z|< R, 0< R< 1},

Re(w) = Ψ on ∂KR = {z
∣∣|z|= R},

with Ψ in the form (2.9) has the solution

w =
m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz)m− j g
( j)(z),
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where Bm
j =

(2m− j −1)!
j!(m− j)!

and the generating function g has the following form

g(z) =
∞

∑
k=m

(αk+ iβk)z
k.

Hereβm ∈ R can be chosen arbitrarily and the coefficientsαk, k≥ m, andβk, k≥ m+1,
are given recursively in (2.10).

2.2 A class of the generalized Riemann-Hilbert boundary value
problems

Using the representation of solutions of the Bers-Vekua equation (M) we can solve explic-
itly a class of the generalized Riemann-Hilbert boundary value problem given as follows

wz = Cw in KR, (2.11)

Re(λ (z)w) = Φ on ∂KR, (2.12)

with C=
m

1−zz
, λ (z) = zp, m∈ N, p∈ N∗.

After I.N. Vekua [43] this problem is called ProblemA. If Φ≡ 0 we have the homogeneous
ProblemÅ. In order to solve this problem we need the introduction of the so-calledindex
of the problem which we shall define now.
Let ∆Γ f (t) denote the increment of the functionf (t) as the pointt describes once the curve
Γ in the direction leaving the domainG on the left, whereΓ denotes the boundary of the
simply connected domainG.

Definition 2.1.
The number n defined by

n :=
1

2π
∆∂KR

argλ (t)

is called the index of the functionλ (t) with respect to the boundary∂KR of the domain KR
or the index of the boundary value ProblemA.

The existence of the solutions of the ProblemA is proved by I.N. Vekua in [43] and is
quoted in the following.

Theorem 2.2(I.N. Vekua).
In the case of a simply-connected domain if the index n≥ 0 then the inhomogeneous Prob-
lemA is always soluble and its general solution is given by the formula

w(z) = w0(z)+
2n+1

∑
j=1

µ jw j(z), (2.13)
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whereµ j , j = 1, . . . ,2n+ 1, are constants and{w1, . . . ,w2n+1} is the complete system
of solutions of the homogeneous ProblemÅ and w0 is a particular solution of the non-
homogeneous ProblemA.

Here the complete system of solutionsof the homogeneous ProblemÅ is a basis of the
space of its solutions.
Now we consider the boundary condition (2.12) in connectionwith the representation of
the solutions in the form (1.60)

Re

{
ξ

p
[ m

∑
j=0

a j(ξ )g( j)(ξ )+
m−1

∑
j=0

b j(ξ )g( j)(ξ )
]}

= Φ(ξ ), (2.14)

wherea j(ξ ),b j(ξ ) are defined as in (2.3).
Since the generating functiong(z) belongs to the spaceHKR(m,0), g(z) can be expanded
into the power series

g(z) =
∞

∑
k=m

γ̃kz
k, γ̃k ∈ C.

We shall find the generating functiong∈HKR(m,0) provided the functionsg on the bound-
ary has the form

g(ξ ) =
∞

∑
k=m

γ̃kξ k, on ∂KR, (2.15)

with γ̃k = α̃k+ iβ̃k, α̃k, β̃k ∈ R.
Next we are going to calculate the coefficientsγ̃k, for k≥m. For the functiong in the form
(2.15) and the coefficientsa j andb j given in (2.3), the equation (2.14) becomes

Re

{ m

∑
j=0

Bm
j

(1−ξ ξ )m− j
×

[
mξ

p+m− j ∞

∑
k=m

k!γ̃kξ k− j

(k− j)!
+(m− j)ξ m− j−1

∞

∑
k=m

k!γ̃kξ
p+k− j

(k− j)!

]}
= Φ(ξ ).

We introduce the real parametert ∈ [0,2π ] by ξ =Reit ∈ ∂KR and assume that the function
Φ on the boundary has the following form

Φ(t) = ϕ̃0+
∞

∑
k=1

(ϕ̃kcos(kt)+ ψ̃ksin(kt)) on ∂KR. (2.16)

Using the notationsck,dk as in (2.7) we obtain

Re

{ ∞

∑
k=m

ckγ̃kR
k−m+pei(k−m−p)t +

∞

∑
k=m

dkγ̃kR
k−m+p+1e−i(k−m+p+1)t

}
= Φ(ξ ).
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Sinceeit = cost + i sint, t ∈ R, we get

Re(zpw)|∂KR
=

∞

∑
k=m

ckR
k−m+p[α̃kcos(k−m− p)t − β̃ksin(k−m− p)t

]

+
∞

∑
k=m

dkR
k−m+p+1[α̃kcos(k−m+ p+1)t − β̃ksin(k−m+ p+1)t

]
.

For convenience, we split the above sums as follows

Re(zpw)|∂KR
= cm+pα̃m+pR2p

+
p

∑
k=1

[
cm+p−kR

2p−kα̃m+p−k+cm+p+kR
2p+kα̃m+p+k

]
cos(kt)

+
p

∑
k=1

[
cm+p−kR

2p−kβ̃m+p−k−cm+p+kR
2p+kβ̃m+p+k

]
sin(kt)

+
∞

∑
k=p+1

[
cm+p+kR

2pα̃m+p+k+dm−p−1+kα̃m−p−1+k
]
Rk cos(kt)

−
∞

∑
k=p+1

[
cm+p+kR

2pβ̃m+p+k+dm−p−1+kβ̃m−p−1+k
]
Rk sin(kt).

(2.17)

Substituting the two expressions (2.16) and (2.17) into (2.14), we obtain the following
linear system for the coefficients̃αk andβ̃k





cm+pα̃m+pR2p = ϕ̃0,

cm+p−kR2p−kα̃m+p−k+cm+p+kR2p+kα̃m+p+k = ϕ̃k, k= 1,2, . . . , p

cm+p−kR2p−kβ̃m+p−k−cm+p+kR2p+kβ̃m+p+k = ψ̃k, k= 1,2, . . . , p

[
cm+p+kR2pα̃m+p+k+dm−p−1+kα̃m−p−1+k

]
Rk = ϕ̃k, k= p+1, p+2, . . .

[
cm+p+kR2pβ̃m+p+k+dm−p−1+kβ̃m−p−1+k

]
Rk = ψ̃k, k= p+1, p+2, . . .

Hereα̃k ∈ R (m≤ k≤ m+ p−1) andβ̃k ∈ R (m≤ k ≤ m+ p) can be chosen arbitrarily
and then the remaining coefficients can be calculated recursively in a unique way as follows
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α̃m+p =
ϕ̃0

cm+pR2p ,

α̃m+p+k =





ϕ̃k−cm+p−kR2p−kα̃m+p−k

cm+p+kR2p+k for 1≤ k≤ p,

ϕ̃k−dm−p−1+kRkα̃m−p−1+k

cm+p+kR2p+k for k≥ p+1,

β̃m+p+k =





−
ψ̃k−cm+p−kR2p−kβ̃m+p−k

cm+p+kR2p+k for 1≤ k≤ p,

−
ψ̃k+dm−p−1+kRkβ̃m−p−1+k

cm+p+kR2p+k for k≥ p+1.

(2.18)

Therefore the boundary value problem (2.11)-(2.12) can be solved explicitly.

Theorem 2.3.
The boundary value problem

wz =
m

1−zz
w in KR= {z

∣∣|z|< R, 0< R< 1},

Re(zpw) = Φ on ∂KR = {z
∣∣|z|= R},

with Φ in the form (2.16), has the solution

w =
m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz)m− j g
( j)(z)

where Bm
j =

(2m− j −1)!
j!(m− j)!

and the generating function g has the following form

g(z) =
∞

∑
k=m

(α̃k+ iβ̃k)z
k.

Hereα̃k ∈ R (m≤ k≤ m+ p−1) and β̃k ∈ R (m≤ k≤ m+ p) can be chosen arbitrarily

and the coefficients̃αk (k≥ m+ p) and β̃k (k≥ m+ p+1) are given by (2.18).

We have used the representations of the pseudo-analytic functions to solve the Dirich-
let boundary value problem and a class of Riemann-Hilbert boundary value problems.
Thought only some special classes of the boundary value problems are applied, the so-
lutions of these problems have been solved in an explicite forms. From Theorem 2.3
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we can see that the number of the arbitrary coefficients in theformula of the solution
of the Riemann-Hilbert boundary value problem is equal to the dimension of the space
of solutions of the corresponding homogeneous problem in the Theorem 2.2 of Vekua.
The Dirichlet boundary value problem considered in Section2.1 is a special case of the
Riemann-Hilbert boundary value problem and its index isn = 0. According to Theorem
2.2, this problem always has a solution. This agrees with thefact that the number of the
arbitrary coefficients in the formula of the solution of the Dirichlet bounday value problem
is 1.



3 CONSEQUENCES AND APPLICATIONS OF THE
REPRESENTATION OF SOLUTIONS BY DIFFERENTIAL
OPERATORS OF BAUER-TYPE

In Chapter 3 we study some problems related to the Bers-Vekuaequation (M). First we
construct a connection between the generating functions and a given solution of the equa-
tion (M). Using this connection we can derive a representation theorem for solutions of the
equation (M) in the neighbourhood of an isolated singularity. The representation formulae
for the solutions of other partial differential equations in the neighbourhood of isolated
singularities can be found in, e.g., [3], [4], [7], [8], [12]. Using the representation of the
solutions of the equation (M) we can find a generating pair of the equation (M) in the sense
of L. Bers and a special class of the chiral components in the Ising field theory.
Then we consider further differential equations connectedwith the equation (M) such as
the Bers-Vekua equation of type (M) with different parameters and an inhomogeneous
equation corresponding to the equation (M). We shall construct connections between the
solutions of the Bers-Vekua equation (M) with different parameters. This problem for
other Bers-Vekua equations can be found in [9], [14].
For the inhomogeneous equation corresponding to the equation (M) of type

wz−
m

1−zz
w= Φ(z,z)

the question arises that for which functionsΦ(z,z) there exists a representation of all solu-
tions by differential operators. We shall give some classesof functionsΦ(z,z) for which
the above inhomogeneous equation can be solved explicitly.

3.1 Connection between the generating functions and the solutions

Theorem 3.1(Connection between the generating functions and a given solution).
For every given solution w of the equation (M) in the form (1.21), the derivative g(2m)(z)
of the generating function g is uniquely determined by

g(2m)(z) =
1

(1−zz)m

∂ m

∂zm

[
(1−zz)mw

]
. (3.1)

35
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Proof.
Multiplying the two sides of the equality (1.21) by(1−zz)m, we have

(1−zz)mw=
m

∑
j=0

mBm
j zm− j(1−zz) jg( j)(z)+

m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) jg( j)(z) (3.2)

whereBm
j =

(2m− j −1)!
j!(m− j)!

.

We denote the first term and the second term on the right hand side of(3.2) by

A : =
m

∑
j=0

mBm
j zm− j(1−zz) jg( j)(z),

B : =
m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) jg( j)(z).

Then taking the derivative of the equality(3.2) of orderm with respect toz we have

∂ m

∂zm

[
(1−zz)mw

]
=

∂ m

∂zmA+
∂ m

∂zmB. (3.3)

First we consider the derivative ofA of orderm

∂ m

∂zmA =
m

∑
j=0

mBm
j zm− j ∂ m

∂zm

[
(1−zz) jg( j)(z)

]

=
m

∑
j=0

mBm
j zm− j

[ m

∑
i=0

Cm
i [(1−zz) j ](i)[g( j)(z)](m−i)

]

=
m

∑
j=0

(2m− j −1)!m
j!(m− j)!

zm− j
j

∑
i=0

Cm
i

j!
( j − i)!

(1−zz) j−i(−z)ig(m+ j−i)(z)

=
m

∑
j=0

j

∑
i=0

(−1)i (2m− j −1)!m
( j − i)!(m− j)!

Cm
i zm−( j−i)(1−zz) j−ig(m+ j−i)(z).

Let j − i = q then j = i +q≥ q.
Hence the above equality reads

∂ m

∂zmA =
m

∑
q=0

m

∑
j=q

(−1) j−q(2m− j −1)!m
q!(m− j)!

Cm
j−q zm−q(1−zz)qg(m+q)(z). (3.4)

Now we consider the derivative ofB of orderm

∂ m

∂zmB =
m−1

∑
j=0

(m− j)Bm
j

∂ m

∂zm

[
zm− j−1(1−zz) j]g( j)(z)

=
m−1

∑
j=0

(m− j)Bm
j

[ m

∑
i=0

Cm
i [(1−zz) j ](i)[zm− j−1](m−i)

]
g( j)(z).
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Denote
Ti : = [(1−zz) j ](i)[zm− j−1](m−i),

then we see thatTi 6= 0, 0≤ i ≤ m, if and only if

{
[(1−zz) j ](i) 6= 0

(zm− j−1)(m−i) 6= 0
⇔

{
i ≤ j

m− i ≤ m− j −1
⇔

{
i ≤ j

i ≥ j +1

This is impossible!
ThereforeTi ≡ 0 for all 0≤ i ≤ m.
This implies

∂ m

∂zmB≡ 0 for all m∈ N
∗. (3.5)

Substituting(3.4) and(3.5) into (3.3), we have

∂ m

∂zm

[
(1−zz)mw

]
=

m

∑
q=0

[ m

∑
j=q

(−1) j−q(2m− j −1)!m
q!(m− j)!

Cm
j−qzm−q(1−zz)q

]
g(m+q)(z).

(3.6)
It is easy to see that the coefficient ofg(2m)(z) in (3.6) is equal to(1− zz)m. In order to
prove the formula(3.1), that is,

g(2m)(z) =
1

(1−zz)m

∂ m

∂zm

[
(1−zz)mw

]
,

we have to point out that all the coefficients ofg(m+q)(z) for q= 0,1, . . . ,m−1 (except the
coefficient ofg(2m)(z)) are equal to zero.
That means we have to show

m

∑
j=q

(−1) j−q(2m− j −1)!m
q!(m− j)!

Cm
j−q = 0 for 0≤ q≤ m−1

⇔
m

∑
j=q

(−1) j (2m− j −1)!
( j −q)!(m− j)!(m− j +q)!

= 0 for 0≤ q≤ m−1.

Setq := m− (s+1), 0≤ s≤ m−1, then we need to prove

m

∑
j=m−(s+1)

(−1) j (2m− j −1)!
( j −m+s+1)!(m− j)!(2m− j − (s+1))!

= 0 for 0≤ s≤ m−1,

⇔
m

∑
j=m−(s+1)

(−1) j (2m− j −1)(2m− j −2) . . .(2m− j −s)
( j −m+s+1)!(m− j)!

= 0 for 0≤ s≤ m−1,
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⇔
(m+s)(m+s−1) . . .(m+1)

0!(s+1)!
−
(m+s−1)(m+s−2) . . .m

1!s!
+ · · ·

· · ·+(−1)s+1(m−1)(m−2) . . .(m−s)
(s+1)!0!

= 0.
(3.7)

Indeed, we consider the expansion forx∈ R

xm−1(x−1)s+1 = xm−1[Cs+1
0 xs+1−Cs+1

1 xs+ · · ·+(−1)s+1Cs+1
s+1

]
, m,s∈ N

∗,

xm−1(x−1)s+1 =
(s+1)!

0!(s+1)!
xm+s−

(s+1)!
1!s!

xm+s−1+ · · ·+(−1)s+1 (s+1)!
(s+1)!0!

xm−1.

(3.8)
Taking the derivative of the two sides of the equality(3.8) of orders with respect tox and
then substitutingx= 1, we obtain the equality(3.7) immediately.
Hence the coefficients ofg(m+q)(z), with 0≤ q≤ m−1, are equal to zero.
To sum up we have

g(2m)(z) =
1

(1−zz)m

∂ m

∂zm

[
(1−zz)mw

]
.

Therefore Theorem 3.1 is proved.

If we consider the zero-solutionw= 0 of the equation (M) then from Theorem 3.1 we have
g(2m)(z) = 0. Thereforeg is a polynomial of degree 2m−1

g(z) = a0+a1z+a2z2+ · · ·+a2m−1z2m−1, a j ∈ C, j = 0,1, . . . ,2m−1.

In the following theorem we describe exactly the generatingfunction of the zero-solution
of the equation (M).

Theorem 3.2(The generating function of the zero-solution).
A function g∈ H(KR) is the generating function of the zero-solution of the equation (M) if
and only if g has the form

g(z) =
2m−1

∑
j=0

a jz
j , a j ∈ C, (3.9)

with aj =−a2m−1− j for j = 0,1, . . . ,m−1.

Proof.
• Necessary condition.We show that if the solutionw is identically equal to zero theng
has the form(3.9).
By hypothesis, the solution and its derivatives of any orderare equal to zero atz= 0. This
implies

∂ qw
∂zq (0) = 0, 0≤ q≤ m−1.
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From the representation formula(1.60), we have

w =
m

∑
j=0

mBm
j zm− j(1−zz) j−mg( j)(z)+

m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) j−mg( j)(z)

where Bm
j =

(2m− j −1)!
j!(m− j)!

,

⇒
∂ qw
∂zq =

m

∑
j=0

mBm
j zm− j ∂ q

∂zq

[
(1−zz) j−mg( j)(z)

]

+
m−1

∑
j=0

(m− j)Bm
j

∂ q

∂zq

[
zm− j−1(1−zz) j−m]g( j)(z).

(3.10)

Whenz= 0 the first sum on the right-hand side of(3.10) has only one non-zero term which
corresponds to the casej = m

∂ q

∂zq

[
g(m)(z)

]∣∣∣∣
z=0

= g(m+q)(0). (3.11)

Next we consider the derivatives in the second sum in the right-hand side of(3.10)

∂ q

∂zq

[
zm− j−1(1−zz) j−m]=

q

∑
i=0

Cq
i (m− j −1)!( j −m)!zm− j−q+i−1

(m− j −q+ i −1)!( j −m− i)!
(1−zz) j−m−i(−z)i

(3.12)
for eachj = 0,1, . . . ,m−1.
Whenz= 0, there is only one term different from zero on the right-hand side of(3.12),
which corresponds to the casei = 0 and j = m− q− 1. Hence the second sum on the
right-hand side of(3.10) has only one non-zero term

(m+q)!
(m−q−1)!(1−zz)q+1g(m−q−1)(z)

∣∣∣∣
z=0

=
(m+q)!

(m−q−1)!
gm−q−1(0). (3.13)

From(3.11) and(3.13) we have

∂ qw
∂zq (0) = g(m+q)(0)+

(m+q)!
(m−q−1)!

gm−q−1(0)

0 = (m+q)! am+q+
(m+q)!

(m−q−1)!
(m−q−1)! am−q−1

0 = (m+q)![am+q+am−q−1].

Hence

am+q = −am−q−1 for q= 0,1, . . . ,m−1,

⇔ a j = −a2m−1− j for j = 0,1, . . . ,m−1.
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Thus the necessary condition follows.
• Sufficient condition.If g has the form(3.9) theng is a generating function of the zero-
solution.
Since the expression in(1.60) is linear with respect tog andg has the form(3.9) (by the
hypothesis), it is enough to prove the sufficient condition with the following form ofg

g = aqzq−aqz2m−1−q, 0≤ q≤ m−1.

This means we have to prove the following equality

m

∑
j=0

mBm
j zm− j(1−zz) j−mg( j)+

m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) j−mg( j) ≡ 0 (3.14)

with g= aqzq−aqz2m−1−q, 0≤ q≤ m−1.
Substitutingg into the equation (3.14), we have

m

∑
j=0

mBm
j zm− j(1−zz) j−m[aqzq−aqz2m−1−q]( j)+

+
m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) j−m[aqzq−aqz2m−1−q]( j) = 0.

The above equation can be rewritten as

T1aq+T2 aq = 0,

whereT1 andT2 read as follows

T1 =
m

∑
j=0

mBm
j zm− j(1−zz) j(zq)( j)−

m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) j(z2m−q−1)( j),

T2 =
m−1

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) j(zq)( j)−

m

∑
j=0

mBm
j zm− j(1−zz) j(z2m−q−1)( j).

We have to proveT1 = 0 andT2 = 0.
First, we consider the equation

T2 = 0.

This equation can be rewritten as follows

q

∑
j=0

(m− j)Bm
j zm− j−1(1−zz) j q!

(q− j)!
zq− j

=
m

∑
j=0

mBm
j zm− j(1−zz) j (2m−q−1)!

(2m−q−1− j)!
z2m−q−1− j

(3.15)
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which we have to prove. On the left-hand side of (3.15)j only runs from 0 toq because

(zq)( j) = 0 for j > q.

Dividing the two sides of the equation (3.15) byzm−q−1 we obtain

q

∑
j=0

(m− j)Bm
j

q!
(q− j)!

zq− j zq− j(1−zz) j

=
m

∑
j=0

mBm
j

(2m−q−1)!
(2m−q−1− j)!

zm− jzm− j(1−zz) j .

With λ = zz, λ ∈ R+, this equality can be written in the form

q

∑
j=0

(2m− j −1)!
(m− j −1)!

Cq
j λ

q− j(1−λ ) j =
(2m−q−1)!

(m−1)!

m

∑
j=0

(2m− j −1)!
(2m−q− j −1)!

Cm
j λ m− j(1−λ ) j .

(3.16)
Denote the left-hand side and the right-hand side of(3.16) byL andR, respectively. Now
we are going to prove the equality(3.16).
In order to do that, we first consider the expansion

am−1[a+(1−b)]m =
m

∑
j=0

Cm
j a2m− j−1(1−b) j , a,b∈ R. (3.17)

Taking the derivative of orderq with respect toa of the two sides of the expansion(3.17)
we get

q

∑
j=0

Cq
j (a

m−1)(q− j)([a+(1−b)]m)( j) =
m

∑
j=0

Cm
j (a

2m− j−1)q(1−b) j

⇔
q

∑
j=0

Cq
j

(m−1)!
(m−1−q+ j)!

am−1−q+ j m!
(m− j)!

[a+(1−b)]m− j

=
m

∑
j=0

Cm
j

(2m− j −1)!
(2m− j −1−q)!

a2m− j−1−q(1−b) j .

In the casea= b= λ , we obtain

q

∑
j=0

Cq
j

(m−1)!m!
(m− j)!(m−q−1+ j)!

λ m−q−1+ j =
m

∑
j=0

Cm
j

(2m− j −1)!
(2m− j −1−q)!

λ 2m−q−1− j(1−λ ) j .

(3.18)
Dividing the two sides of the equation (3.18) byλ m−q−1 we have

m

∑
j=0

(2m− j −1)!
(2m−q−1− j)!

Cm
j λ m− j(1−λ ) j =

q

∑
j=0

(m−1)!m!
(m− j)!(m−q−1+ j)!

Cq
j λ

j ,
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and then multiplying by
(2m−q−1)!

(m−1)!
we have

R =
(2m−q−1)!

(m−1)!

q

∑
j=0

(m−1)!m!
(m− j)!(m−q−1+ j)!

Cq
j λ

j

=
q

∑
j=0

(2m−q−1)!
(m−q−1+ j)!

q!
(q− j)!

Cm
j λ j . (3.19)

Next we consider the following expansion

a2m−q−1[a+(1−b)]q =
q

∑
j=0

Cq
j a

2m− j−1(1−b) j , a,b∈ R. (3.20)

Taking the derivative of orderm with respect toa of the two sides of the expansion(3.20)
we obtain

m

∑
j=0

Cm
j (a

2m−q−1)(m− j)([a+(1−b)]q)( j) =
q

∑
j=0

Cq
j (a

2m− j−1)(m)(1−b) j ,

⇔
q

∑
j=0

Cm
j

(2m−q−1)!
(m−q−1+ j)!

am−q−1+ j q!
(q− j)!

[a+(1−b)]q− j

=
q

∑
j=0

Cq
j
(2m− j −1)!
(m− j −1)!

am− j−1(1−b) j . (3.21)

In the sum on the left-hand side of the equation (3.21),j runs from 0 toq only because

([a+(1−b)]q)( j) = 0 if j > q.

By choosinga= b= λ the equation (3.21) becomes

q

∑
j=0

Cq
j
(2m− j −1)!
(m− j −1)!

λ m− j−1(1−λ ) j =
q

∑
j=0

Cm
j

(2m−q−1)!
(m−q−1+ j)!

q!
(q− j)!

λ m−q−1+ j

and then dividing the two sides byλ m−q−1, we get

L =
q

∑
j=0

(2m− j −1)!
(m− j −1)!

Cq
j λ

q− j(1−λ ) j

=
q

∑
j=0

(2m−q−1)!
(m−q−1+ j)!

q!
(q− j)!

Cm
j λ j . (3.22)
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From the two formulae (3.19) and (3.22), the equality (3.16)is proved. Therefore

T2 = 0.

To prove the statementT1 = 0 we have to show that

m
q

∑
j=0

(2m− j −1)!
(m− j)!

Cq
j λ

q− j(1−λ ) j

=
(2m−q−1)!

(m−1)!

m−1

∑
j=0

(2m− j −1)!
(2m−q− j −1)!

Cm−1
j λ m−1− j(1−λ ) j ,

whereλ = zz.
We use the same method which we has been used in order to proveT2 = 0. Instead of using
the expansions (3.17) and (3.20) we use the suitable expansions as follows.
We first consider the expansion

am[a+(1−b)]m−1 =
m−1

∑
j=0

Cm−1
j a2m− j−1(1−b) j , a,b∈ R,

and then take the derivative of the two sides of this expansion of orderq with respect toa.
The second expansion is

a2m−q−1[a+(1−b)]q =
q

∑
j=0

Cq
j a

2m− j−1(1−b) j , a,b∈ R,

and then we take the derivative of the two sides of orderm−1 with respect toa. Therefore
we can prove that

T1 = 0.

That means the equality (3.14) is proved and thus the sufficient condition follows.

Corollary 3.1.
Suppose that̂g is a generating function of a given solution w of the equation (M). Then
every generating function g of the solution w is given by

g(z) = ĝ(z)+
2m−1

∑
j=0

a jz
j ,a j ∈ C, (3.23)

with aj =−a2m−1− j , for j = 0,1, . . . ,m−1.
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3.2 Representation of the solutions in the neighbourhood ofan
isolated singularity

In Chapter 1 we have proved that all solutions of the equation(M)

wz =
m

1−zz
w, m∈ N,

in KR can be represented by differential operators of Bauer-type

w=: Hmg+H∗
m−1g (3.24)

=
m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz)m− j g
( j)(z),

whereBm
j =

(2m− j −1)!
j!(m− j)!

, andg∈ H(KR).

We have also found the connection between the generating functions and the given solu-
tion and the form of the generating functions of the zero-solution.
Using the Theorems 3.1 and 3.2 we can get a general representation theorem for the solu-
tions of the equation (M) in the neighbourhood of an isolated singularityz0 ∈ KR.
Let

Ũ(z0) = {z∈ C|0< |z−z0|< ρ} ⊂ KR,

be a punctured neighbourhood of the pointz0 and letw be a solution of the equation (M)
in Ũ(z0).
Then for the given solutionw, a derivativeg(2m)(z) of a generating functiong of w can be
expanded into Laurent series iñU(z0)

g(2m)(z) =
+∞

∑
−∞

ã j(z−z0)
j . (3.25)

After integrating 2m times the equality (3.25) we obtain

g(z) = g1(z)+ p(z) log(z−z0), (3.26)

wherep(z) is a polynomial inzof degree 2m−1,

p(z) =
2m−1

∑
j=0

b jz
j , b j ∈ C,

andg1(z) is a holomorphic, single-valued function iñU(z0).
The function log(z−z0) is a multi-valued function iñU(z0) and therefore the second term
in the right-hand side of (3.26) is also multi-valued, unless the factorp(z) satisfies certain
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conditions.
Now we build a solutionw of the equation (M) with the generating functiong according
to (3.26) and postulate thatw is a single-valued function iñU(z0).
Inserting the expression (3.26) forg into the formula (3.24) we get

w= Hm[g1(z)+ p(z) log(z−z0)]+H∗
m−1[g1(z)+ p(z) log(z−z0)]

= Ψ+Hm[p(z)] log(z−z0)+H∗
m−1[p(z)] log(z−z0),

whereΨ denotes a function which is single-valued inŨ(z0).
With z= z0+ reiϑ , ϑ = ϑ0+2nπ , n∈ Z, and thus log(z−z0) = ln r + iϑ we have

w= Ψ+
(
Hm[p(z)]+H∗

m−1[p(z)]
)

ln r +
(
Hm[p(z)]−H∗

m−1[p(z)]
)
iϑ .

Sincew has to be single-valued iñU(z0) we have to require

υ := Hm[p(z)]−H∗
m−1[p(z)] = 0.

Settingp(z) = iq(z) we have

υ = i
(
Hm[q(z)]+H∗

m−1[q(z)]
)
= 0.

We see that−iυ is a solution of the equation (M) with the generating functionq(z). Since
υ is the zero-solution,q(z) is a generating function of the zero-solution of the equation
(M). According to Theorem 3.2 we see thatq has the form

q(z) =
2m−1

∑
j=0

a jz
j , with a j ∈ C, a j =−a2m−1− j , j = 0,1, . . . ,m−1.

This means that the polynomialp(z) = iq(z) is of the form

p(z) =
2m−1

∑
j=0

b jz
j , with b j = b2m−1− j , j = 0,1, . . . ,m−1.

To sum up we get the general representation theorem for solutions of the equation (M) in
the neighbourhood of an isolated singularity.

Theorem 3.3.
Let w be a solution of the equation (M) in

Ũ(z0) = {z∈ C|0< |z−z0|< ρ} ⊂ KR,

with an isolated singularity z0. Then w can be represented iñU(z0) by

w=
m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz)m− j g
( j)(z),
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where

Bm
j =

(2m− j −1)!
j!(m− j)!

and the generating function g has the form

g(z) = g1(z)+ p(z) log(z−z0),

with g1(z) is a holomorphic function iñU(z0) and p(z) is a polynomial of the form

p(z) =
2m−1

∑
j=0

b jz
j , b j ∈ C, b j = b2m−1− j , j = 0,1, . . . ,m−1.

3.3 A generating pair of the equation (M) in the sense of L.Bers

The concepts and notations of pseudo-analytic functions introduced in the following can
be found in the books of Lipman Bers [18] and Vladislav V. Kravchenko [32].
The notion of a generating pair in the sense of Lipman Bers which is a couple of complex
functions, is independent in the sense that at any point the value of any complex function
defined there can be represented as a real linear combinationof the generating functions. In
pseudo-analytic function theory they play the same role as 1andi in the theory of analytic
functions.

Definition 3.1.
A pair of complex functions F and G inΩ, possessing Hölder continuous partial deriva-
tives with respect to the real variables x and y, is said to be agenerating pair if it satisfies
the inequality

Im(FG)> 0 in Ω.

The following expressions are known ascharacteristic coefficientsof the pair(F,G)

a(F,G) =−
FGz−FzG

FG−FG
, b(F,G) =

FGz−FzG

FG−FG
,

A(F,G) =−
FGz−FzG

FG−FG
, B(F,G) =−

FGz−FzG

FG−FG
.

The equation
wz = a(F,G)w+b(F,G)w (3.27)

is called aBers-Vekua equation(sometimes, Carleman-Bers-Vekua equation). This equa-
tion represents a generalization of the Cauchy-Riemann system and is the main object of
the study of pseudo-analytic function theory.
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In the special case whenF,G are two independent solutions of the equation (1.1), that is,
F,G satisfy the equation

wz =Cw

andFG−FG 6= 0, then

a(F,G) =−
F(CG)− (CF)G

FG−FG
= 0,

b(F,G) =
F(CG)− (CF)G

FG−FG
=C.

In view of the equation (3.27), we can say(F,G) is the generating pair of the equation
(1.1)

wz =Cw, (a(F,G) = 0;b(F,G) =C).

In order to determine the generating pair of the equation (M) in the sense of L. Bers, we
chooseF,G as two independent solutions of the equation (M).
We have proved that all solutions of the equation (M) in KR, can be represented as

w(z,z) = g(m)(z)+
m−1

∑
j=0

(2m− j −1)!m
j!(m− j)!

(
z

1−zz

)m− j

g( j)(z)

+
m−1

∑
j=0

(2m− j −1)!
j!(m− j −1)!

zm−1− j

(1−zz)m− j g
( j)(z),

(3.28)

whereg∈ H(KR).
Chooseg= 1 we have

F =
(2m−1)!
(m−1)!

[zm+zm−1]

(1−zz)m ,

and forg= i,

G=
i(2m−1)!
(m−1)!

[zm−zm−1]

(1−zz)m .

Then(F,G) is the generating pair of the equation (M) in the sense of L.Bers.

3.4 Ising field theory on a pseudo-sphere

The Ising field theory on the pseudo-sphere which was considered in [23] can be written
in terms of a free massive Majorana fermion(ψ,ψ) as

A=
1

2π

∫

|z|<1
d2x

[
ψ∂ ψ +ψ∂ψ +

2ir
1−zz

ψψ
]
.
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We introduce the parameterR related to the Gaussian curvatureR̂ by

R̂=−
1
R2 ,

and the notationr related to the mass parametermand Gaussian curvaturêR

r = mR.

Then the chiral componentsψ andψ obey the linear field equations

∂zψ(x) =
ir

1−zz
ψ(x), ∂zψ(x) =

−ir
1−zz

ψ(x), (3.29)

where(z,z) are complex coordinates on the unit disk|z|< 1.
We consider the first equation of the system (3.29)

∂zψ =
ir

1−zz
ψ . (3.30)

Let ψ = eiθ w, θ ∈ R then

eiθ ∂zw=
ir

1−zz
e−iθ w ⇔ ∂zw=

ir
1−zz

e−2iθ w.

Chooseθ = π
4 thenie−2iθ = 1 and ifr ∈N we obtain an equation which has the same type

as the equation (M)

∂zw=
r

1−zz
w. (3.31)

Hence we can solve the solutionw of the equation (3.31) explicitly. This implies that the
solutionψ of the equation (3.30) is given by

ψ(z,z) = ei π
4

[ r

∑
j=0

rBr
j

(
z

1−zz

)r− j

g( j)(z)+
r−1

∑
j=0

(r − j)Br
j

zr−1− j

(1−zz)r− j g
( j)(z)

]
,

where Br
j =

(2r − j −1)!
j!(r − j)!

.

Therefore we obtain the following lemma.

Lemma 3.1. Assume that the parameter r in (3.29) is a nonnegative integer then we can
solve explicitly the chiral components, which obey (3.29),

ψ = ei π
4

[ r

∑
j=0

rBr
j

(
z

1−zz

)r− j

g( j)(z)+
r−1

∑
j=0

(r − j)Br
j

zr−1− j

(1−zz)r− j g
( j)(z)

]
,

ψ = e−i π
4

[ r

∑
j=0

rBr
j

(
z

1−zz

)r− j

g( j)(z)+
r−1

∑
j=0

(r − j)Br
j

zr−1− j

(1−zz)r− j g
( j)(z),

where Br
j =

(2r − j −1)!
j!(r − j)!

.
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3.5 Connection between solutions of the equation (M) with different
parameters

In this section we shall find differential operators of first order which map solutions of the
equation (M)

wz =
m

1−zz
w, z∈ D, m∈ N,

to solutions of the equation

υz =
m+1
1−zz

υ , z∈ D, m∈ N, (3.32)

and

υz =
m−1
1−zz

υ , z∈ D, m∈ N, (3.33)

respectively.
Assume thatw is a solution of the equation (M). We shall seek a solutionυ of the equation
(3.32) of the form

υ := αwz+βw+ γw,

whereα,β and γ are unknown coefficients. Inserting this expression into the equation
(3.32) and using the fact thatw is a solution of the equation (M) we obtain thatα,β ,γ
obey the following system





αz= 0,

γ =
m+1
1−zz

α,

αm2

(1−zz)2 +βz=
m+1
1−zz

γ,

α
mz

(1−zz)2 +β
m

1−zz
+ γz =

m+1
1−zz

β .

(3.34)

From the first equation of the system (3.34),α is a holomorphic function in variablez.
We can choose speciallyα = z. Then from the second equation of the system (3.34) it
follows

γ =
m+1
1−zz

z.

Insertingα andγ into the third equation of the system (3.34) we obtain

βz=
2m+1
(1−zz)2z,

from which

β =
2m+1
1−zz

+ϕ(z), ϕ(z) is an arbitrary holomorphic function,
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follows.
Now the last equation of the system (3.34) is satisfied if we chooseϕ =−m.
Therefore

υ = zwz+

(
2m+1
1−zz

−m

)
w+

(m+1)z
1−zz

w

is a solution of the equation (3.32) ifw is a solution of the equation (M).
Analogously we can prove that

υ = zwz+

(
1−2m
1−zz

+m

)
w+

(m−1)z
1−zz

w

is a solution of the equation (3.33) ifw is a solution of the equation (M).

Denote the set of the solutions of the equation (M), defined inD by Gm(D) and the set
of the solutions of the equations (3.32), (3.33) byGm+1(D), Gm−1(D), respectively. Sum-
marising the above results we have the following theorem.

Theorem 3.4.
Let w∈ Gm(D), then

a) zwz+

(
2m+1
1−zz −m

)
w+ (m+1)z

1−zz w ∈ Gm+1(D),m∈ N,

b) zwz+

(
1−2m
1−zz +m

)
w+

(m−1)z
1−zz w ∈ Gm−1(D),m∈ N∗,

c) i
(
zwz−zwz+

1
2w

)
∈ Gm(D),m∈ N.

In the sequel we shall give another method to derive the differential operators of first order
which map solutions of the equation (M) to solutions of the equations (3.32) and (3.33),
respectively.
We consider the transformation

z=
u− i
u+ i

,

whereu is a new complex variable andi2 =−1, then the equation (M) becomes

wu =
m(u+ i)

(u− i)(u−u)
w.

Let W =
iw

u+ i
then we have

Wu =
−mW
u−u

, m∈ N. (3.35)

If we setα = iu then the equation (3.35) is of the form

Wu =
mα ′

α +α
W, m∈ N, (3.36)
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whereα is a holomorphic function satisfying the condition(α +α)α ′ 6= 0, andα ′ denotes
the derivative ofα.
For the equation (3.36) K.W.Bauer established the connection between solutions corre-
sponding to different parameters [9]. We need the two following theorems.

Theorem 3.5(K.W.Bauer).
For every solution W of the differential equation (3.36) defined inD, there exists a function
f (u) ∈ H(D), such that

W := Q⋆
m f =

m

∑
k=0

(−1)m−k(2m−1−k)!
k!(m−k)!(α +α)m−k [mRk f − (m−k)Rk f ], (3.37)

with R=
1
α ′

∂
∂u

.

Conversely, for each function f(u) ∈ H(D), (3.37) represents a solution of (3.36) inD.

Theorem 3.6(K.W.Bauer).
If we denote the set of the solutions of (3.36) defined inD by Fm(D) and if we use the
differential operators

R=
1
α ′

∂
∂u

, S=
1

α ′

∂
∂u

,

and let W= Q⋆
m f ∈ Fm(D). Then,

a) (R+
m+1

m
S−

2m+1
α +α

)W = Q⋆
m+1 f ∈ Fm+1(D), m∈ N,

RW+
m+1
α +α

W−
2m+1
α +α

W = Q⋆
m+1 f ∈ Fm+1(D), m∈ N∗,

b) (R+
m−1

m
S+

2m−1
α +α

)W = Q⋆
m−1(R

2 f ) ∈ Fm−1(D), m∈ N∗,

c) i(R−S)W = Q⋆
m(iR f) ∈ Fm(D), m∈ N.

Now using the two theorems of K.W.Bauer and the fact that under linear transformations
all solutions of the equation (M) can be transformed to a set of all solutions of the equation
(3.36) and vice versa, we can find the desired differential operators of first order which
give relations between sets of solutions of the Bers-Vekua equation(M) with different pa-
rameters.
If w= P⋆

mg∈ Gm(D) then




P⋆
m+1g=

u+ i
i

[
(R+

m+1
m

S−
2m+1
α +α

)(
iw

u+ i
)
]
∈ Gm+1(D),

P⋆
m−1g=

u+ i
i

[
(R+

m−1
m

S+
2m−1
α +α

)(
iw

u+ i
)
]
∈ Gm−1(D).

Changing the variableu to z we obtain the following theorem.
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Theorem 3.7.
Denote

R̃=
−1
2
(1−z)2 ∂

∂z
; S̃=

−1
2
(1−z)2 ∂

∂z
. (3.38)

Let w= P⋆
mg∈ Gm(D). Then

a)

[
R̃+

m+1
m

S̃+
(
1+

(2m+1)(1−z)
1−zz

)1−z
2

]
w= P⋆

m+1g∈ Gm+1(D),m∈ N,

b)

[
R̃+

m−1
m

S̃+
(
1−

(2m−1)(1−z)
1−zz

)1−z
2

]
w= P⋆

m−1g∈ Gm−1(D),m∈ N∗,

c) i

[
R̃− S̃−

1−z
2

]
w∈ Gm(D),m∈ N.

Proof.
To prove the statement a) we show that

P⋆
m+1g=

[
R̃+

m+1
m

S̃+
(
1+

(2m+1)(1−z)
1−zz

)1−z
2

]
w

is a solution of the equation (3.32).
We have

P⋆
m+1g=

[
−

(1−z)2

2
∂
∂z

+
m+1

m
(1−z)2

2
∂
∂z

+
(
1+

(2m+1)(1−z)
1−zz

)1−z
2

]
w

=−
(1−z)2

2
∂w
∂z

−
m+1

2
(1−z)2

1−zz
w+

1−z
2

[
1+

(2m+1)(1−z)
1−zz

]
w.

⇒
∂P∗

m+1g

∂z
=−

(1−z)2

2
wzz−

m+1
2

[
(1−z)(−2+z+zz)

(1−zz)2 w+
(1−z)2

1−zz
(wz)

]

−
(2m+1)(1−z)2

2(1−zz)2 w+
1−z

2

[
1+

(2m+1)(1−z)
1−zz

]
m

1−zz
w.

Inserting these expressions into the left-hand side of the equation (3.32) and denote by

T :=
∂P⋆

m+1g

∂z
−

m+1
1−zz

P⋆
m+1g,

thenT = 0. Indeed,

T =−
(1−z)2

2
wzz−

m+1
2

[
(1−z)(−2+z+zz)

(1−zz)2 w+
(1−z)2

1−zz
(wz)

]

−
(2m+1)(1−z)2

2(1−zz)2 w+
1−z

2

[
1+

(2m+1)(1−z)
1−zz

]
m

1−zz
w

+
m+1
1−zz

[
(1−z)2

2
(wz)+

m+1
2

(1−z)2

(1−zz)
w−

1−z
2

(
1+

(2m+1)(1−z)
1−zz

)
w

]
.
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A coefficient of(wz) in the expression ofT is

T(wz)
=−

m+1
2

(1−z)2

1−zz
+

(m+1)(1−z)2

2(1−zz)
= 0.

Sincew is a solution of the equation (M), we have

wzz=
mz

(1−zz)2w+
m2

(1−zz)2w.

Hence

T =−
(1−z)2

2

[
mz

(1−zz)2w+
m2

(1−zz)2w

]
−

m+1
2

(1−z)(−2+z+zz)
(1−zz)2 w

−
(2m+1)(1−z)2

2(1−zz)2 w+
m
2

1−z
1−zz

[
1+

(2m+1)(1−z)
1−zz

]
w

+
m+1
1−zz

[
m+1

2
(1−z)2

(1−zz)
w−

1−z
2

(
1+

(2m+1)(1−z)
1−zz

)
w

]
.

A coefficient ofw in the expression ofT is

Tw =−
(1−z)2

2
m2

(1−zz)2 −
(2m+1)(1−z)2

2(1−zz)2 +
(m+1)2(1−z)2

2(1−zz)2 = 0.

And a coefficient ofw is

Tw =−
(1−z)2

2
mz

(1−zz)2 −
m+1

2
(1−z)(−2+z+zz)

(1−zz)2

+
m
2

1−z
1−zz

[
1+

(2m+1)(1−z)
1−zz

]
−

m+1
1−zz

1−z
2

[
1+

(2m+1)(1−z)
1−zz

]
.

This coefficient is also equal to zero.
HenceT = 0 and this implies thatP⋆

m+1g is a solution of the equation (3.32)

υz =
m+1
1−zz

υ , z∈ D, m∈ N.

Therefore the statement a) of the theorem has been proved. Analogously we can prove the
statements b) and c) of the theorem.

3.6 Representation for solutions of the inhomogeneous equation

In this section we shall find functionsΦ for which the inhomogeneous differential equation
of the form

wz−
m

1−zz
w= Φ(z,z) (3.39)
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can be solved explicitly. In [44] I.N. Vekua gave the representation for solutions of the
inhomogeneous differential equation

wz = Aw+Bw+Φ

using the integral operators. But the determination of the integrals containing the function
Φ is difficult in general. In [9] K.W. Bauer proved that it is possible to get representations
(by differential operators) for the solutions of the inhomogeneous equation of type

(ϕ +ψ)2

ϕ ′ψ ′
wzz−n(n+1)w= Φ(z,z),

whereϕ,ψ are holomorphic or meromorphic functions inD and satisfy(ϕ +ψ)ϕ ′ψ ′ 6= 0
in D, if the functionΦ(z,z) satisfies certain conditions.
Using the method of K.W.Bauer, we are seeking functionsΦ(z,z) such that all solutions
of the inhomogeneous equation (3.39) can be represented by differential operators.
Case 1
Denote

Dm := wz−
m

1−zz
w, m∈ N, z= x+ iy ∈ D.

The homogeneous equationDm = 0 has been solved in Chapter 1 and its solutions inD
can be represented by

w=
m

∑
j=0

mBm
j

(
z

1−zz

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm−1− j

(1−zz)m− j g
( j)(z), (3.40)

whereBm
j =

(2m− j −1)!
j!(m− j)!

andg∈ H(D).

First we assume that

Φ =
Φk(z,z)
1−zz

(3.41)

whereΦk(z,z),k∈ N\{m}, is a solution of the following homogeneous equation

Dk := (Φk)z−
k

1−zz
Φk = 0. (3.42)

To get a general solution of the inhomogeneous equation (3.39) we need to find a particular
solution. We shall find the particular solutionwk

0 of (3.39) in the following form

wk
0 = λΦk(z,z), λ ∈ R.

Substituting this expression into the equation (3.39) withthe right-hand side given by

(3.41), we obtainλ =
1

k−m
. Hence

wk
0 =

1
k−m

Φk(z,z).
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Now we assume further that forp∈ N

Φ =
p

∑
k=1

k6=m

Φk(z,z)
1−zz

,

whereΦk(z,z),k= 1, . . . , p, k 6= m, is the solution of the homogeneous differential equa-
tion Dk = 0 defined inD. Then

w0 =
p

∑
k=1

k6=m

1
k−m

Φk(z,z) (3.43)

represents a particular solution inD of the inhomogeneous differential equation

wz−
m

1−zz
w=

p

∑
k=1

k6=m

Φk(z,z)
1−zz

.

Combining this result with the representation formula of solutions of the equation (M) we
have the following theorem.

Theorem 3.8.
Consider the inhomogeneous equation

wz−
m

1−zz
w=

p

∑
k=1

k6=m

Φk(z,z)
1−zz

, (3.44)

whereΦk(z,z),k= 1, . . . , p, k 6=m, is the solution of the homogeneous differential equation
(3.42) defined inD. Then all solutions̃w of the equation (3.44) can be represented in the
form

w̃=
p

∑
k=1

k6=m

1
k−m

Φk(z,z)+w,

where w is a solution of the homogeneous equation (M) given by(3.40).

Case 2
We assume that

Φ := xkΦ̃ =
(z+z

2

)kΦ̃, k≥ 0,

whereDm(Φ̃) = 0. Then the equation (3.39) becomes

Dmw := wz−
m

1−zz
w= xkΦ̃. (3.45)
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Denote
Dk

mw= Dk−1
m (Dw),

then we have
Dk+2

m w= Dk+1
m (Dmw) = Dk+1

m (xkΦ̃) = 0.

This impliesw is a solution of the iterated Bers-Vekua equation (cf. [13],[16])

Dk+2
m w= 0.

P. Berglez proved that the solutionw of this iterated equation has the following form

w=
k+1

∑
j=0

x jΦ̃ j

whereDm(Φ̃ j) = 0, j = 0,1, · · · ,k+1.
Substituting this expression into the equation (3.45) we obtain





Φ̃ j = 0, j = 0,1, . . . ,k,

Φ̃k+1 =
2Φ̃

k+1
.

Hence a particular solution of the inhomogeneous equation (3.45) is

w=
2xk+1Φ̃
k+1

.

In the case the right-hand side of the inhomogeneous equation (3.39) is of the form

Φ =
q

∑
k=1

(z+z
2

)kΦ̃k, q∈ N,

then it has a particular solution

w̃0 = 2
q

∑
k=1

xk+1Φ̃k

k+1
.

Summarizing the above result we have the following theorem.

Theorem 3.9.
Consider the inhomogeneous differential equation

wz−
m

1−zz
w=

q

∑
k=1

(z+z
2

)kΦ̃k, (3.46)

where Dm(Φk) = 0. Then all solutions̃w of the equation (3.46) can be represented in the
form

w̃= 2
q

∑
k=1

xk+1Φ̃k

k+1
+w,

where w is a solution of the equation (M) given by (3.40).



4 REPRESENTATION OF BICOMPLEX PSEUDO-ANALYTIC
FUNCTIONS

In this chapter we study a class of bicomplex pseudo-analytic functions which are solutions
of a system in bicomplex space

{
∂z∗V(z) = C(z,z∗)V∗(z),

∂z1V(z) = ∂z2V(z) = 0,

wherez is a bicomplex variable andz1,z2 ∈ C are the components ofz.
Since the two components of the so-calledidempotent representationof each bicomplex
number are complex numbers, many results in the theory of functions of a complex vari-
able are still true in bicomplex algebra [37]. Using this fact together with the results of I.N.
Vekua [44] we can construct the bicomplex form of this systemand define the resolvents of
Vekua type in bicomplex variables. Then we derive the representation of these bicomplex
pseudo-analytic functions by integral operators.
On the other hand, using the representation theorems for solutions of second order partial
differential equations of P. Berglez [11] we obtain a condition on coefficientsC such that
these bicomplex pseudo-analytic functions can be represented by differential operators.
In [15] P. Berglez considered other classes of bicomplex pseudo-analytic functions which
obey specific bicomplex Bers-Vekua equation and derived different representations for so-
lutions of such a Bers-Vekua equation.
For a special class of bicomplex pseudo-analytic functionswe give an explicit represen-
tation by differential operators. Some applications such as solving a Dirac equation on a
pseudo-sphere and using the generalization of the Weierstrass formulae to generate sur-
faces are given.

4.1 An introduction to bicomplex algebra

In this section we introduce some basic definitions and notations in the space of bicomplex
numbers (see, e.g., [37], [38], [40] or [41]).
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4.1.1 Bicomplex numbers

Let us denote the imaginary unit in the space of complex numbers C by i1 and thus de-
note

C(i1) := C= {x+ i1y | x,y∈ R, i21 =−1}.

Let, then,i2 denote the second imaginary unit with the properties

i22 =−1, i1i2 = i2i1, α i2 = i2α, ∀α ∈ R.

Denote the space of bicomplex numbers byT. Then

T := {z|z= z1+ i2z2, z1,z2 ∈ C(i1)}

becomes a commutative algebra with the multiplication given by

(z1+ i2z2)(z3+ i2z4) = (z1z3−z2z4)+ i2(z1z4+z2z3).

It is also convenient to write the set of bicomplex numbers as

T := {x0+ i1x1+ i2x2+ jx3
∣∣x0,x1,x2,x3 ∈ R}

where the imaginary unitsi1, i2 and j are governed by the rules

i21 = i22 =−1,

i1i2 = i2i1 = j, j2 = 1,

i1 j = ji1 =− i2, i2 j = ji2 =−i1.

The bicomplex numbers have several representations, we shall mostly represent them by
usual complex pairs.

Definition 4.1.
Define the function|| · || : T→ R+ as follows:
For every z= z1+ i2z2 ∈ T with z1 = x1+ i1x2, z2 = x3+ i1x4,

||z|| := (x2
1+x2

2+x2
3+x2

4)
1/2 =

(
|z1|

2+ |z2|
2)1/2

.

Theorem 4.1( [37]).
The function|| · || defined as above is a norm on the linear spaceT. With this norm,T
becomes a Banach space.

Definition 4.2.
Let ζ1 andζ2 be elements inT. If ζ1 6= 0, ζ2 6= 0, andζ1ζ2 = 0 thenζ1 andζ2 are called
divisors of zero.
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T is a commutative ring and has divisors of zero. A set of divisors of zero in the space of
bicomplex numbers is called thenull-coneand is denoted by

O2 = {z1+ i2z2 ∈ T
∣∣ z2

1+z2
2 = 0}

= {z1(i1− i2)
∣∣ z1 ∈ C(i1)}.

Now we introduce the conjugations in the space of bicomplex numbers. There are three
conjugations inT. Normally the complex conjugation is given by its action over the imag-
inary unit, thus one expects at least two conjugations onT but one more candidate could
arise from composing them. Hence forz= z1+ i2z2 ∈ T there are three conjugations de-
fined as follows

z∗ = z1− i2z2,

z⋆ = z1+ i2z2,

z† = z1− i2z2.

In the next subsections, we present some properties of bicomplex numbers and functions
of a bicomplex variable. The proofs of these properties can be found in [37], [39].

4.1.2 The idempotent representation

Definition 4.3.
Let ζ be an element inT. If ζ 2 = ζ thenζ is called an idempotent element.

Theorem 4.2( [37]).
We have four and only four idempotent elements inT, and they are

0, 1, e1 :=
1+ i1i2

2
, e2 :=

1− i1i2
2

.

Corollary 4.1.
Let e1,e2 be the two idempotent elements given as above, then

e2
1 = e1, e2

2 = e2, e1e2 = 0.

Theorem 4.3( [37]).
Every element z= z1+ i2z2 in T has the following unique representation

z= (z1− i1z2)e1+(z1+ i1z2)e2. (4.1)

Definition 4.4.
The expression (4.1) is called the idempotent representation of the element z= z1+ i2z2 in
T. The numbers z1− i1z2 and z1+ i1z2 are the idempotent components of z.
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This representation is very useful because the addition, multiplication and division can be
done term-by-term.

Theorem 4.4( [37]).
Let z= z1+ i2z2 and u= u1+ i2u2 be elements inT. Assume the idempotent representations
of z and u are

z= ζ1e1+ζ2e2, u= η1e1+η2e2.

Then
(a) (ζ1e1+ζ2e2)+(η1e1+η2e2) = (ζ1+η1)e1+(ζ2+η2)e2,
(b) (ζ1e1+ζ2e2)(η1e1+η2e2) = (ζ1η1)e1+(ζ2η2)e2,
(c) (ζ1e1+ζ2e2)

n = (ζ1)
ne1+(ζ2)

ne2,
(d) If η1 6= 0 andη2 6= 0, then

ζ1e1+ζ2e2

η1e1+η2e2
=

ζ1

η1
e1+

ζ2

η2
e2.

Corollary 4.2.
An element z= z1+ i2z2 is non-invertible if and only if z1− i1z2 = 0 or z1+ i1z2 = 0.

4.1.3 Power series in the space of bicomplex numbers

First we give a definition of bicomplex power series for whichit seems to be easier to
introduce holomorphic functions of a bicomplex variable. The holomorphic functions of a
bicomplex variable have many striking similarities to holomorphic functions of a complex
variable, for example, holomorphic functions of both complex and bicomplex variables can
be defined either as functions which are represented locallyby power series or as functions
which have a derivative.

Definition 4.5.
Let αk,z and z0 denote elements inT. A power series in the bicomplex variable z is an
infinite series of the form

∞

∑
k=0

αk(z−z0)
k. (4.2)

If we assumez0 = 0 andαk = pk+ i2qk, z= z1+ i2z2, pk,qk,z1,z2 ∈ C(i1) then the power
series (4.2) is

∞

∑
k=0

(pk+ i2qk)(z1+ i2z2)
k.

Now using the idempotent representation of bicomplex numbers we have the following
theorem.
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Theorem 4.5( [37]).
The idempotent component series of the bicomplex power series (4.2) are the complex
power series

∞

∑
k=0

(pk− i1qk)(z1− i1z2)
k, (4.3)

∞

∑
k=0

(pk+ i1qk)(z1+ i1z2)
k. (4.4)

Theorem 4.6.
The bicomplex power series (4.2) converges at z1+ i2z2 if and only if the complex power
series (4.3) and (4.4) converge at z1− i1z2 and z1+ i1z2, respectively, and vice versa.

Since the idempotent components of a bicomplex power seriesare power series in com-
plex variables, and since many known theorems give information about the convergence
and divergence of complex power series, it is possible to determine the convergence and
divergence of bicomplex power series. The region of convergence of the bicomplex power
series is a special cartesian set inT, a so calleddiscuswhich will be defined in the follow-
ing, rather than the ball.

Let a= a1+ i2a2 be an element inT which has the idempotent representationa= (a1−
i1a2)e1+(a1+ i1a2)e2, andr1, r2 be positive real numbers.

Definition 4.6.

D(a; r1, r2) = {z= ζ1e1+ζ2e2 ∈ T
∣∣|ζ1− (a1− i1a2)|< r1; |ζ2− (a1+ i1a2)|< r2}

is called the open discus with center a= a1+ i2a2 and radii r1 and r2.

D(a; r1, r2) = {z= ζ1e1+ζ2e2 ∈ T
∣∣|ζ1− (a1− i1a2)| ≤ r1; |ζ2− (a1+ i1a2)| ≤ r2}

is called the closed discus with center a= a1+ i2a2 and radii r1 and r2.

With the following theorem it is possible to determine the convergence and divergence of
bicomplex power series.

Theorem 4.7( [37]).
Let r1 and r2 be the radii of the circles of convergence of the two series (4.3) and (4.4),
respectively. Then the series in (4.2) converges absolutely at every point in the discus
D(0;r1, r2), and it diverges at every point in the complement ofD(0;r1, r2). The radii of
convergence r1 and r2 may have the values0 and∞.
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4.1.4 Integrals and holomorphic functions in bicomplex variables

Definition 4.7.
Let f be a bicomplex-valued function of a bicomplex variablez1+ i2z2. The function f
defined on X⊂ T is called aT- holomorphic function if for each a= a1+ i2a2 ∈ X there
exists a discus D(a; r1, r2)⊂ X, with r1, r2 > 0, and a power series such that

f (z1+ i2z2) =
∞

∑
k=0

(pk+ i2qk)[(z1+ i2z2)− (a1+ i2a2)]
k

for all z1+ i2z2 in D(a; r1, r2).
A set ofT-holomorphic functions on X is denoted by HT

X .

Theorem 4.8( [37]).
A function f isT-holomorphic in D(a; r1, r2) if and only if there exist two complex holo-
morphic functions f1 : D(a1− i1a2, r1)→ C and f2 : D(a1+ i1a2, r2)→ C such that

f (z1+ i2z2) = f1(z1− i1z2)e1+ f2(z1+ i1z2)e2.

There is an equivalent definition of aT-holomorphic function, that is, aT-holomorphic
function is aT−differentiable function. The definition of the derivative atz0 of a function
f : X → T, X ⊂ T, of a bicomplex variable is formally the same as for a function of
a complex variable, but many differences arise in the details because the null-coneO2

contains many points rather than a single point as in the complex case.

Definition 4.8.
A function f: X → T with X⊆ T open, is calledT-differentiable at z0 ∈ X with derivative
equal to f′(z0) ∈ T if the limit

lim
z→z0

z−z0/∈O2

f (z)− f (z0)

z−z0
=: f ′(z0)

exists.
We also say that the function f isT-holomorphic in X if and only if f isT-differentiable
at each point of X.

The differential operators are defined as follows

∂z=
1
2
(∂z1 − i2∂z2),

∂z∗ =
1
2
(∂z1 + i2∂z2),

∂z⋆ =
1
2
(∂z1 − i2∂z2),

∂z† =
1
2
(∂z1 + i2∂z2).
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Theorem 4.9( [39]).
f isT-holomorphic if and only if f is continuously differentiable and satisfies the system





∂z∗ f (z) = 0,

∂z⋆ f (z) = 0,

∂z† f (z) = 0,

or equivalent to {
∂z∗ f (z) = 0,

∂z1 f (z) = ∂z2 f (z) = 0.

Theorem 4.10( [37]).
Let f : X → T be aT-holomorphic function then we have

∂z1+i2z2 f (z1+ i2z2) = ∂z1−i1z2 f1(z1− i1z2)e1+∂z1+i1z2 f2(z1+ i1z2)e2.

Note that the derivative of aT-holomorphic function is also aT-holomorphic function.
So we have the following definition of derivatives of higher orders of aT-holomorphic
function.

Definition 4.9. Let f be aT-holomorphic function in open set X, then we define

f (k)(z) = ∂z[ f
(k−1)(z)], z∈ X, k∈ N

∗.

Definition 4.10. A function f : U → T, with U ⊂ T
n, is calledT-holomorphic in n vari-

ables(z1,z2, . . . ,zn) ∈U if f is T-differentiable with respect to one variable with all other
variables held constant.

Integrals of functions with values inT

The theory of integrals of functions with values inT is introduced in [37]. We quote
here some definitions and main theorems.

Definition 4.11.
Let X be a domain inT, f : X → T be a continuous function, and letτ : [c,d]→ X be a
curveγ with a continuous derivativeτ ′ : [c,d]→ X. Let Pn denote a subdivision

c= t0 < t1 < · · ·< ti−1 < ti < · · ·< tn = d

of [c,d], and let t∗i be a point such that ti−1 ≤ t∗i ≤ ti.
Form of the sum

S( f ,Pn) =
n

∑
i=1

f [τ(t∗i )][τ(ti)− τ(ti−1)].
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If lim
n→∞

S( f ,Pn) exists and has the same value for every choice of the points t∗
i and for every

sequence P1,P2, . . . of subdivision of[c,d] whose norms have the limit zero, then f has an
integral onγ, denoted by

∫
γ f (τ)dτ, and

∫

γ
f (τ)dτ = lim

n→∞
S( f ,Pn).

Theorem 4.11( [37]).
If f : X → T is continuous and the curveγ, defined byτ : [c,d] → X, t 7→ τ(t), has a
continuous derivative, then f has an integral onγ and

∫ d
c f [τ(t)]τ ′(t)dt exists and

∫

γ
f (τ)dτ =

∫ d

c
f [τ(t)]τ ′(t)dt.

Theorem 4.12( [37]).
Let X be a domain inT which is star-shaped with respect to a pointτ∗, and let f: X →T be
aT- holomorphic function. Ifγ is a curveτ : [c,d]→ X which has a continuous derivative,
then

∫
γ f (τ)dτ is independent of the path.

In the caseX = X1×X2 := {z= z1+ i2z2 ∈T
∣∣z1− i1z2 ∈ X1, z1+ i1z2 ∈ X2}, whereX1 and

X2 are simply connected domains in the complex plane, we have the idempotent represen-
tation for the integral ofT-holomorphic functions.

Theorem 4.13( [37]).
Let f be aT-holomorphic function in X= X1×X2. Assume that the idempotent represen-
tation of f is

f (z) = f (z1+ i2z2) = f1(z1− i1z2)e1+ f2(z1+ i1z2)e2,

z1− i1z2 ∈ X1, z1+ i1z2 ∈ X2.
(4.5)

Let γ be the curve with trace in X which is defined as

γ : z1+ i2z2 = [z1(t)− i1z2(t)]e1+[z1(t)+ i1z2(t)]e2, c≤ t ≤ d.

Thenγ1 andγ2 defined as
{

γ1 : z1− i1z2 = z1(t)− i1z2(t), c≤ t ≤ d,

γ2 : z1+ i1z2 = z1(t)+ i1z2(t), c≤ t ≤ d,

are two curves which have continuous derivatives and whose traces are in X1 and X2,
respectively.
Then the integrals of f1 and f2 on the curvesγ1 andγ2 exist and

∫

γ
f (z)dz=

∫

γ1

f1(z1− i1z2)d(z1− i1z2)e1+

∫

γ2

f2(z1+ i1z2)d(z1+ i1z2)e2. (4.6)
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4.2 Representation of bicomplex pseudo-analytic functions by
integral operators

Definition 4.12.
A bicomplex pseudo-analytic function w in a domain X⊂ T is a solution of a system of the
type 




∂z∗w = a1w+b1w∗+c1w⋆+d1w†,

∂z⋆w = a2w+b2w∗+c2w⋆+d2w†,

∂z†w = a3w+b3w∗+c3w⋆+d3w†.

In this section we consider a special class of bicomplex pseudo-analytic functions. They
are solutions of a system

{
∂z∗V(z) = C(z,z∗)V∗(z), z∈ D(0;r1, r2), (E)

∂z1V = ∂z2V = 0

whereD(0;r1, r2) = {z= z1+ i2z2 ∈ T
∣∣|z1− i1z2| < r1, |z1+ i1z2|< r2} is an open discus

with the center at the origin and radiir1 andr2; andC(z,z∗) is aT-valued function analytic
in two complex variablesz1, z2.
We shall establish the representation formula of these pseudo-analytic functions using in-
tegral operators.
First we construct a functionT-holomorphic in two bicomplex variables from a given func-
tion which is bicomplex-valued and analytic in two complex variables.

Analytic continuation

Let f (z) = f (z1,z2), z= z1+ i2z2 ∈ D(0;r1, r2), be a bicomplex-valued function which
is analytic in two complex variablesz1,z2.
Denote

ζ1 = z1− i1z2, ζ2 = z1+ i1z2, |ζ1|< r1, |ζ2|< r2,

then the functionf (ζ1,ζ2) is also analytic in two complex variablesζ1,ζ2. Hencef (ζ1,ζ2)
can be expanded into the power series in variablesζ1,ζ2,

f (ζ1,ζ2) = ∑
i, j≥0

αi j ζ i
1ζ j

2 , |ζ1|< r1, |ζ2|< r2, (4.7)

whereαi j = ai j e1+bi j e2 ∈ T, ai j ,bi j ∈ C(i1).
Let Z1 = z1+ i2σ1,Z2 = z2+ i2σ2 ∈ T, whereσ1,σ2 ∈ C(i1). Then withαi j in (4.7) we
define a functionF(Z1,Z2) as follows

F(Z1,Z2) := ∑
i, j≥0

αi j (Z1− i1Z2)
i(Z1+ i1Z2)

j .
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DenoteX = {(Z1,Z2) ∈ T2
∣∣Z1+ i2Z2 ∈ D(0;r1, r2), Z1− i2Z2 ∈ D(0;r2, r1)}.

We will prove thatF(Z1,Z2) is aT-holomorphic function in the variablesZ1,Z2 in X .
Indeed, assume that the idempotent representations ofZ1,Z2 are Z1 = ξ1e1 + ξ2e2 and
Z2 = µ1e1+µ2e2, then

F(Z1,Z2) = ∑
i, j≥0

αi j [(ξ1e1+ξ2e2)− i1(µ1e1+µ2e2)]
i[(ξ1e1+ξ2e2)+ i1(µ1e1+µ2e2)]

j

⇒ F(Z1,Z2) =

∑
i, j≥0

ai j (ξ1− i1µ1)
i(ξ1+ i1µ1)

je1+ ∑
i, j≥0

bi j (ξ2− i1µ2)
i(ξ2+ i1µ2)

je2. (4.8)

Since
Z1+ i2Z2 = (ξ1− i1µ1)e1+(ξ2+ i1µ2)e2 ∈ D(0;r1, r2)

and
Z1− i2Z2 = (ξ1+ i1µ1)e1+(ξ2− i1µ2)e2 ∈ D(0;r2, r1),

it implies that

|ξ1− i1µ1|< r1, |ξ2+ i1µ2|< r2,

|ξ1+ i1µ1|< r2, |ξ2− i1µ2|< r1.

On the other hand, with the conditions|ξk− i1µk| < r1, |ξk+ i1µk| < r2, k = 1,2, the two
series on the right-hand side of (4.8) converge. This implies that the functionF(Z1,Z2) is
T-holomorphic in two variablesZ1,Z2 in X .
If z= (z1,z2) ∈ D(0;r1, r2) then (z1,z2) ∈ X and the functionF(Z1,Z2) coincides with
f (z1,z2) whenσ1 = σ2 = 0. We call the functionF(Z1,Z2) theanalytic continuationof
the functionf (z1,z2) from D(0;r1, r2) into the domainX of two bicomplex variables.
Now we change the variables

Z1 =
1
2
(z+u), Z2 =

1
2i2

(z−u), z∈ D(0;r1, r2), u∈ D(0;r2, r1).

Then we obtain aT-holomorphic functionF(z,u) of the two bicomplex variablesz,u and
the power series ofF(z,u) is given by

F(z,u) = ∑
i, j≥0

αi j (ze1+ue2)
i(ue1+ze2)

j =

(
∑

i, j≥0
ai j ζ i

1η j
1

)
e1+

(
∑

i, j≥0
bi j η i

2ζ j
2

)
e2,

whereζ1,ζ2 andη1,η2 denote the idempotent components ofzandu, respectively

z := ζ1e1+ζ2e2, u := η1e1+η2e2,

satisfying|ζ1|< r1, |ζ2|< r2 and|η1|< r2, |η2|< r1.
Whenu= z∗ we haveF(z,z∗)≡ f (z).



4.2 Representation of bicomplex pseudo-analytic functions by integral operators 67

Bicomplex conjugation

Let F(z1, . . . ,zn) be aT−holomorphic function of the bicomplex variables(z1, . . . ,zn) in
some domainΩ ⊂ Tn. We denote byΩ∗ the following domain

Ω∗ = {(u1, . . . ,un)
∣∣(u∗1, . . . ,u∗n) ∈ Ω}

whereu∗i denotes the first bicomplex conjugation ofui, i = 1, . . . ,n.
Define

F∗(u1, . . . ,un) = [F(u∗1, . . . ,u
∗
n)]

∗, (u1, . . . ,un) ∈ Ω∗.

We callF∗(u1, . . . ,un) theconjugate functionof F(z1, . . . ,zn).

Bicomplex form of the system(E)

By hypothesis the coefficientC(z,z∗) of the system (E) is analytic in two complex vari-
ablesz1,z2 in the discusD(0;r1, r2). If we continue analytically this function into the
bicomplex domainX we obtain aT-holomorphic functionC(z,u) of the two bicomplex
variablesz,u andC(z,u) can be expanded into a power series

C(z,u) = ∑
i, j≥0

βi j (ze1+ue2)
i(ue1+ze2)

j , βi j = ci j e1+di j e2, ci j ,di j ∈ C(i1)

=

(
∑

i, j≥0
ci j ζ i

1η j
1

)
e1+

(
∑

i, j≥0
di j η i

2ζ j
2

)
e2, (4.9)

where|ζ1|< r1, |ζ2|< r2 and|η1|< r2, |η2|< r1.
Assume thatV(z) = V(z1,z2) is a solution of the system (E). ThenV is analytic in the
complex variablesz1,z2 and hence analytic in the complex variablesζ1,ζ2. V(ζ1,ζ2) can
be expanded into a power series

V(ζ1,ζ2) = ∑
i, j≥0

αi j ζ i
1ζ j

2 , |ζ1|< r1, |ζ2|< r2, (4.10)

whereαi j = ai j e1+bi j e2 ∈ T, ai j ,bi j ∈ C(i1).
Denote

G := D(0;r1, r2)×D(0;r2, r1).

Let V(z,u) be the analytic continuation ofV(z1,z2) into the domainG. So we have the
idempotent representation of the power series ofV(z,u)

V(z,u) =

(
∑

i, j≥0
ai j ζ i

1η j
1

)
e1+

(
∑

i, j≥0
bi j η i

2ζ j
2

)
e2, (4.11)

where|ζ1|< r1, |ζ2|< r2 and|η1|< r2, |η2|< r1.
The functionV(z,u) is T-holomorphic in(z,u) ∈ G.
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Lemma 4.1.
If V (z) is a solution of the system (E) then the analytic continuationV(z,u) of V(z) satisfies
the following bicomplex Bers-Vekua equation

∂V(z,u)
∂u

= C(z,u)V∗(u,z), (F)

where V∗(u,z) is the conjugate of V(z,u).

Proof.
By hypothesisV(z) is a solution of (E) and then (4.10) holds. Now we have to prove that
V(z,u) given by (4.11) satisfies the equation (F).
By definition we have

∂z∗ =
1
2
(∂z1 + i2∂z2) =

1
2
[(∂ζ1

+∂ζ2
)+ i2(−i1∂ζ1

+ i1∂ζ2
)]

=
1
2
[∂ζ1

(1− i1i2)+∂ζ2
(1+ i1i2)].

This implies
∂z∗ = e1∂ζ2

+e2∂ζ1
.

Therefore

∂z∗V(z) = (e1∂ζ2
+e2∂ζ1

)V(ζ1,ζ2)

= ∂ζ2

(
∑

i, j≥0
ai j ζ i

1ζ j
2

)
e1+∂ζ1

(
∑

i, j≥0
bi j ζ i

1ζ j
2

)
e2

=

(
∑

i, j≥0
jai j ζ i

1ζ j−1
2

)
e1+

(
∑

i, j≥0
ibi j ζ i−1

1 ζ j
2

)
e2. (4.12)

From (4.10) we have

V∗(z) = [V(z)]∗ =

(
∑

i, j≥0
bi j ζ i

1ζ j
2

)
e1+

(
∑

i, j≥0
ai j ζ i

1ζ j
2

)
e2.

Hence

C(z,z∗)V∗(z) =

(
∑

i, j≥0
ci j ζ i

1ζ j
2

)(
∑

i, j≥0
bi j ζ i

1ζ j
2

)
e1+

(
∑

i, j≥0
di j ζ i

1ζ j
2

)(
∑

i, j≥0
ai j ζ i

1ζ j
2

)
e2.

(4.13)
Using the hypothesis thatV(z) is a solution of the system (E) and the expressions (4.12)
and (4.13) we obtain





∑
i, j≥0

jai j ζ i
1ζ j−1

2 =

(
∑

i, j≥0
ci j ζ i

1ζ j
2

)(
∑

i, j≥0
bi j ζ i

1ζ j
2

)
,

∑
i, j≥0

ibi j ζ i−1
1 ζ j

2 =

(
∑

i, j≥0
di j ζ i

1ζ j
2

)(
∑

i, j≥0
ai j ζ i

1ζ j
2

)
,

(4.14)
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for all |ζ1|< r1, |ζ2|< r2.
Now we consider the equation (F). From (4.11) we have

V∗(u,z) = [V(u∗,z∗)]∗ =

(
∑

i, j≥0
bi j ζ i

1η j
1

)
e1+

(
∑

i, j≥0
ai j η i

2ζ j
2

)
e2.

Combining this representation ofV∗(u,z) with the idempotent representation ofC(z,u) we
get the idempotent representation of the right-hand side of(F)

C(z,u)V∗(u,z) =

(
∑

i, j≥0
ci j ζ i

1η j
1

)(
∑

i, j≥0
bi j ζ i

1η j
1

)
e1+

(
∑

i, j≥0
di j η i

2ζ j
2

)(
∑

i, j≥0
ai j η i

2ζ j
2

)
e2.

(4.15)
On the other hand, sinceV(z,u) is T−holomorphic in bicomplex variableu, the left-hand
side of (F) has the idempotent representation

∂V(z,u)
∂u

=
∂

∂η1

(
∑

i, j≥0
ai j ζ i

1η j
1

)
e1+

∂
∂η2

(
∑

i, j≥0
bi j η i

2ζ j
2

)
e2

=

(
∑

i, j≥0
jai j ζ i

1η j−1
1

)
e1+

(
∑

i, j≥0
ibi j η i−1

2 ζ j
2

)
e2. (4.16)

Using (4.14) we have

∑
i, j≥0

jai j ζ i
1η j−1

1 =

(
∑

i, j≥0
ci j ζ i

1η j
1

)(
∑

i, j≥0
bi j ζ i

1η j
1

)
,

∑
i, j≥0

ibi j η i−1
2 ζ j

2 =

(
∑

i, j≥0
di j η i

2ζ j
2

)(
∑

i, j≥0
ai j η i

2ζ j
2

)
,

(4.17)

for all |ζ1|< r1, |ζ2|< r2 and|η1|< r2, |η2|< r1.
From (4.15), (4.16) and (4.17) we haveV(z,u) satisfies the equation (F)

∂V(z,u)
∂u

= C(z,u)V∗(u,z).

Thus Lemma 4.1 is proved.

Integral representation formula

If V(z,u) is a T−holomorphic function ofz, u for (z,u) ∈ G, satisfying the differen-
tial equation (F), thenV(z,z∗) is an analytic function of the complex variables(z1,z2)
in D(0;r1, r2), satisfying the system (E).
Our problem now is to derive a formula giving all the solutions of the equation (F),
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T−holomorphic inzandu for (z,u) ∈ G.
We can now transform (F) as follows

∂
∂u

[
V(z,u)−

∫ u

u0

C(z,τ)V∗(τ,z)dτ
]
= 0 (4.18)

with u0 is a fixed point inD(0;r2, r1).
Denote

G(z,u) :=V(z,u)−
∫ u

u0

C(z,τ)V∗(τ,z)dτ.

For eachT-holomorphic functionG(z,u), denote the first and second idempotent compo-
nents of the power series ofG by G1(ζ1,η1) andG2(ζ2,η2), respectively. Then

∂G
∂u

=
∂G1

∂η1
e1+

∂G2

∂η2
e2.

∂G
∂u

= 0⇔





∂G1

∂η1
= 0,

∂G2

∂η2
= 0.

This implies thatG1 andG2 do not depend onη1 andη2, respectively. So if the deriva-
tive of the functionG(z,u) with respect tou is equal to zero thenG is aT−holomorphic
function of one bicomplex variablez. Therefore from (4.18) we have

V(z,u)−
∫ u

u0

C(z,τ)V∗(τ,z)dτ = ϕ(z), (4.19)

whereϕ(z) is aT-holomorphic function ofz in D(0;r1, r2).
Since the uniqueness of the idempotent representation of bicomplex-valued functions, each
equation in bicomplex variables is equivalent to two equations in complex variables which
have the same type as the original equation. So all statements in the following can be
proved by using the results in complex analysis of I.N. Vekua[44], which we used in
Chapter I for the complex form (1.22) of the equation (1.1).
We now pass from (4.19) to the adjoint equation

V∗(u,z) = ϕ∗(u)+
∫ z

z0

C∗(u, t)V(t,u)dt, (z0 = u∗0).

This implies that

V∗(τ,z) = ϕ∗(τ)+
∫ z

z0

C∗(τ, t)V(t,τ)dt. (4.20)

Substituting (4.20) into (4.19) we obtain an integral equation

V(z,u)−
∫ z

z0

dt
∫ u

u0

C(z,τ)C∗(τ, t)V(t,τ)dτ = Φ(z,u), (4.21)
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where
Φ(z,u) = ϕ(z)+

∫ u

u0

C(z,τ)ϕ∗(τ)dτ. (4.22)

Assume that we have the following idempotent representations

z= ζ1e1+ζ2e2, z0 = ζ 0
1 e1+ζ 0

2 e2, u= η1e2+η2e2,

u0 = η0
1e2+η0

2e2, t = ξ1e1+ξ2e2, τ = µ1e1+µ2e2,

V(z,u) =V1(ζ1,η1)e1+V2(ζ2,η2)e2, C(z,τ) = C1(ζ1,µ1)e1+C2(ζ2,µ2)e2,

Φ(z,u) = Φ1(ζ1,η1)e1+Φ2(ζ2,η2)e2, ϕ(z) = ϕ1(ζ1)e1+ϕ2(ζ2)e2.

By definition of bicomplex conjugation we get

C∗(τ, t) = [C(τ∗, t∗)]∗ = C2(µ1,ξ1)e1+C1(µ2,ξ2)e2.

Then the integral equation (4.21) is equivalent to the two following equations

V1(ζ1,η1)−

∫ ζ1

ζ 0
1

dξ1

∫ η1

η0
1

C1(ζ1,µ1)C2(µ1,ξ1)V1(ξ1,µ1)dµ1 = Φ1(ζ1,η1), (4.23)

where Φ1(ζ1,η1) = ϕ1(ζ1)+
η1∫

η0
1

C1(ζ1,µ1)ϕ2(µ1)dµ1,

and

V2(ζ2,η2)−

∫ ζ2

ζ 0
2

dξ2

∫ η2

η0
2

C2(ζ2,µ2)C1(µ2,ξ2)V2(ξ2,µ2)dµ2 = Φ2(ζ2,η2), (4.24)

where Φ2(ζ2,η2) = ϕ2(ζ2)+
η2∫

η0
2

C2(ζ2,µ2)ϕ1(µ2)dµ2.

The equations (4.23), (4.24) of the Volterra type in the complex domain have solutions of
the forms, see [44],

V1(ζ1,η1) = Φ1(ζ1,η1)+
∫ ζ1

ζ 0
1

dξ1

∫ η1

η0
1

Γ1(ζ1,η1,ξ1,µ1)Φ1(ξ1,µ1)dµ1,

V2(ζ2,η2) = Φ2(ζ2,η2)+

∫ ζ2

ζ 0
2

dξ2

∫ η2

η0
2

Γ2(ζ2,η2,ξ2,µ2)Φ2(ξ2,µ2)dµ2,

whereΓ1(ζ1,η1,ξ1,µ1) andΓ2(ζ2,η2,ξ2,µ2) are called themain Vekua resolventsof the
integral equations (4.23) and (4.24), respectively.
DenoteΓ(z,u, t,τ) = Γ1(ζ1,η1,ξ1,µ1)e1+Γ2(ζ2,η2,ξ2,µ2)e2.
Then a solutionV(z,u) of the equation (4.21) has the form

V(z,u) = Φ(z,u)+
∫ z

z0

dt
∫ u

u0

Γ(z,u, t,τ)Φ(t,τ)dτ. (4.25)
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We callΓ(z,u, t,τ) themain bicomplex resolventof the integral equation (4.21).Γ(z,u, t,τ)
is aT-holomorphic function in four variablesz,u, t,τ and it satisfies the integral equa-
tion

Γ(z,u, t,τ) = C(z,τ)C∗(τ, t)+
∫ u

τ
dη

∫ z

t
C(ξ ,τ)C∗(τ, t)Γ(z,u,ξ ,η)dξ .

Substituting (4.22) into (4.25) we obtain

V(z,u) = ϕ(z)+
∫ z

z0

Γ1(z,u, t,u0)ϕ(t)dt+
∫ u

u0

Γ2(z,u,z0,τ)ϕ∗(τ)dτ, (4.26)

where

Γ1(z,u, t,τ) =
∫ u

τ
Γ(z,ζ , t,η)dη,

Γ2(z,u, t,τ) = C(z,τ)+
∫ z

t
C(ξ ,τ)Γ1(z,u,ξ ,τ)dξ =

Γ(z,u, t,τ)
C∗(τ, t)

.

We callΓ1(z,u, t,τ) andΓ2(z,u, t,τ) thefirst and second bicomplex resolvents.
We have shown that ifV(z,u) is a solution of the equation (F) then it can be represented
by the formula (4.26).
Furthermore we shall prove that for anyT-holomorphic functionϕ(z) the formula (4.26)
satisfies the equation (F). For this purpose, we shall show that every solution of the integral
equation (4.21) also satisfies the differential equation (F).
Differentiating the two sides of (4.21) with respect tou we get

∂V(z,u)
∂u

−C(z,u)W(z,u) = 0, (4.27)

where

W(z,u) =

z∫

z0

C∗(u, t)V(t,u)dt+ϕ∗(u).

Now, it has to be shown thatW(z,u) =V∗(u,z) or W∗(u,z) =V(z,u).
First of all,

W∗(u,z) =

u∫

u0

C(z,τ)V∗(τ,z)dτ +ϕ(z).

It follows that
∂W∗(u,z)

∂u
−C(z,u)V∗(u,z) = 0. (4.28)

Subtracting the equation (4.28) from (4.27), we get

∂U(z,u)
∂u

+C(z,u)U∗(u,z) = 0, (4.29)
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where
U(z,u) =V(z,u)−W∗(u,z).

SinceV(z,u0) =W∗(u0,z) = ϕ(z) we haveU(z,u0) = 0. ThusU(z,u) is aT-holomorphic
solution of the homogeneous differential equation (4.29),which satisfies the condition
U(z,u0) = 0. Such the solution satisfies the homogeneous integral equation

U(z,u)−

z∫

z0

dt

u∫

u0

C(z,τ)C∗(τ, t)U(t,τ)dτ = 0.

This impliesU ≡ 0, i.e.,V(z,u) =W∗(u,z).
Thus formula (4.26) gives all solutions of the differentialequation (F), T-holomorphic in
(z,u) ∈ G. Whenu= z∗ in (4.26) we obtain a solutionV(z) of the system (E).
Summarising the above results we have the following theorem.

Theorem 4.14.
Consider the system (E)

{
∂z∗V(z) = C(z,z∗)V∗(z), m∈ N, z∈ D(0;r1, r2),

∂z1V = ∂z2V = 0,

whereC(z,z∗) is aT-valued function analytic in two complex variables z1,z2.
If V (z) is a solution of the system (E) in D(0;r1, r2) then it can be represented by integral
operators as follows

V(z) = ϕ(z)+
∫ z

z0

Γ1(z,z
∗, t,z∗0)ϕ(t)dt+

∫ z∗

z∗0

Γ2(z,z
∗,z0,τ)ϕ∗(τ)dτ, (4.30)

whereϕ(z) is an arbitraryT-holomorphic function in D(0;r1, r2), Γ1 andΓ2 are the first
and second bicomplex resolvents.
Conversely formula (4.30) gives all solutions of the system(E) in the discus D(0;r1, r2).

Remark 4.1.
For a certain class of coefficients of the system (E),C(z) =

m
1−zz∗

, z∈ D(0;1,1), we can

use the formula (4.30) and the same method in Chapter I to determine the first and second
bicomplex resolvents. Then we convert this formula to a formfree of integrals. Therefore
we also obtain a representation for solutions of the system (E) by differential operators

V(z) =
m

∑
j=0

mBm
j

(
z∗

1−zz∗

)m− j

g( j)(z)+
m−1

∑
j=0

(m− j)Bm
j

zm− j−1

(1−zz∗)m− j g
( j)(z),

where Bm
j =

(2m− j −1)!
j!(m− j)!

and g∈ HT

D(0;1,1)(m,0).

Here we denote by HTD(0;1,1)(m,0) the space of allT-holomorphic functions in D(0;1,1)
satisfying

g(m−1)(0) = · · ·= g′(0) = g(0) = 0.
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4.3 Representation of bicomplex pseudo-analytic functions by
differential operators

To represent bicomplex pseudo-analytic functions which obey the system (E) by differen-
tial operators we need the results of P. Berglez on second order partial differential equa-
tions [11] which are quoted in the following.

4.3.1 Representation theorems for solutions of second order equations after P.
Berglez

Using suitable transformations we can reduce a formally hyperbolic differential equation
of type

Uζ1ζ2
+ ã1(ζ1,ζ2)Uζ1

+ ã2(ζ1,ζ2)Uζ2
+ ã3(ζ1,ζ2)U = 0

to one of the two following equations

Lw : = wζ1ζ2
+(logAn)ζ1

wζ2
+Bnw= 0, (4.31)

L̃w̃ : = w̃ζ1ζ2
+(logÃn′)ζ2

w̃ζ1
+ B̃n′w̃= 0, (4.32)

with An, Ãn′ , Bn, B̃n′ are analytic functions inD×D.

Remark 4.2. Using the transformatioñw= Anw the equation (4.31) becomes the equation

(4.32) withÃn′ =
1
An

, B̃n′ = Bn− (logAn)ζ1ζ2
.

Definition 4.13.
Let Kn, K̃n′ be two differential operators inD×D given by

Kn :=
n

∑
j=0

a j(ζ1,ζ2)
∂ j

∂ζ j
1

, K̃n′ :=
n′

∑
j=0

b j(ζ1,ζ2)
∂ j

∂ζ j
2

, n,n′ ∈ N,

where aj , j = 0,1, . . . ,n, and bj , j = 0,1, . . . ,n′, are analytic functions inD×D satisfying
a j 6= 0,b j 6= 0 in D×D.
If Kng, for g(ζ1)∈H(D), is a solution of the equation (4.31) then we call Kn aBn

I -operator
for the equation (4.31).
If K̃n′h, for h(ζ2) ∈ H(D), is a solution of the equation (4.31) then we callK̃n′ a Bn′

II -
operator for the equation (4.32).

Theorem 4.15(P. Berglez).
For the equation (4.31) there exists aBn

I -operator Kn,n∈ N, if and only if with

A j−1 = A jB j , B j−1 = B j +(logA jB j)ζ1ζ2
, j = n,n−1, . . . ,1
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the condition B0 ≡ 0 in D×D is satisfied.
The operator Kn is then given by

Kn = Fn−1Fn−2 . . .F0 with Fj =
∂

∂ζ1
+(logA j)ζ1

, j = 0,1, . . . ,n−1.

Theorem 4.16(P. Berglez).
For the equation (4.32), there exists aBn′

II -operatorK̃n′,n
′ ∈ N if and only if with

Ã j−1 = Ã j B̃ j , B̃ j−1 = B̃ j +(logÃ j B̃ j)ζ1ζ2
, j = n′,n′−1, . . . ,1

the conditionB̃0 ≡ 0 in D×D is satisfied.
The operatorK̃n′ is then given by

K̃n′ = Ãn′F̃n′−1F̃n′−2 . . . F̃0 with F̃j =
∂

∂ζ2
+(logÃ j)ζ2

, j = 0,1, . . . ,n′−1.

Theorem 4.17(P. Berglez).
If there exist aBn

I -operator Kn and aBn′
II -operatorK̃n′ for the equation (4.31) then for all

solutions w of (4.31) defined inD×D there exist functions g∈ H(D) and h∈ H(D) such
that

w= Kng+ K̃n′h.

4.3.2 Representation theorem for bicomplex pseudo-analytic functions

We consider the system (E) {
∂z∗V = CV∗,

∂z1V = ∂z2V = 0,

wherez∈ D(0;r1, r2) andC is a bicomplex-valued function analytic in two variablesz1,z2.
Denote the idempotent representations of the functionsC(z,z∗) andV(z) by

C = C1e1+C2e2, V =V1e1+V2e2.

Since∂z∗ = ∂ζ2
e1+∂ζ1

e2, the first equation of the system (E) becomes
{

∂ζ2
V1 = C1V2,

∂ζ1
V2 = C2V1.

(4.33)

Thus, finding solutionsV(z1,z2) of the system (E) is equivalent to finding analytic solu-
tions(V1,V2) of the system (4.33).
From the system (4.33),V1 is a solution of the following second order differential equa-
tion

∂ζ1ζ2
V1−

∂ζ1
C1

C1
∂ζ2

V1−C1C2V1 = 0. (4.34)
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The following theorem gives a condition on the coefficientsC such that all bicomplex
pseudo-analytic functions satisfying the system (E) can be represented by differential op-
erators.

Theorem 4.18.
If the coefficientC in the system (E) satisfies the condition

m2(logC)zz∗ = (1+2ki1i2)CC
∗, with k∈ N and p:=

√
k2+m2 ∈ N, (4.35)

then the solutions of the system (E) can be represented by differential operators of Bauer-
type.
An idempotent representation of a solution V(z) of the system (E) is then given by

V(z) =
[
Lp+k f +(L̃p−k−1 f )∗

]
e1+

1
C∗

[
(Lp+k f )∗+ L̃p−k−1 f

]
ze2, (4.36)

where f is aT-holomorphic function in D(0;r1, r2) and

Lp+k = Tp+k−1Tp+k−2 . . .T0, L̃p−k−1 = C∗T̃p−k−2T̃p−k−3 . . . T̃0

with

Tj = ∂z+[log(Cp+k− j−1(C∗)p+k− j)]z, j = 0,1, . . . , p+k−1,

T̃j = ∂z+[log(Cp−k− j−1(C∗)p−k− j)]z, j = 0,1, . . . , p−k−2.

Proof.
Using the idempotent representation ofC and the fact thati1i2 = e1−e2, we can rewrite
the condition (4.35) as follows

{
m2(logC1)ζ1ζ2

= (1+2k)C1C2,

m2(logC2)ζ1ζ2
= (1−2k)C1C2.

(4.37)

It is easy to see that the bicomplex pseudo-analytic functions satisfying the system (E) can
be represented by differential operators if and only if the solutions of the equation (4.34)
can be represented by differential operators. So we shall show that with conditions (4.37),
all solutions of the equation (4.34) can be represented by differential operators of Bauer-
type.
Applying Theorem 4.15 and Theorem 4.16 we can point out that with (4.37) the conditions
B0 ≡ 0 andB̃0 ≡ 0 are satisfied.
For the second order differential equation (4.34) we have

An =
1
C1

, Bn =−C1C2,

Ãn′ =
1
An

= C1, B̃n′ = Bn− (logAn)ζ1ζ2
=−C1C2− (log

1
C1

)ζ1ζ2
.
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From (4.37) we have

(logC1)ζ1ζ2
=

(1+2k)C1C2

m2 , (logC2)ζ1ζ2
=

(1−2k)C1C2

m2 .

Assume that for 1≤ j < n we have

An− j = Mn− jC
j−1
1 C

j
2, Bn− j =

[
−1+

j
∑

i=1
i(1−2k)

m2 +

j−1
∑

i=1
i(1+2k)

m2

]
C1C2.

We shall prove that

An−( j+1) = Mn−( j+1)C
j
1C

j+1
2 , Bn−( j+1) =

[
−1+

j+1
∑

i=1
i(1−2k)

m2 +

j
∑

i=1
i(1+2k)

m2

]
C1C2.

Indeed, we have
An−( j+1) = An− jBn− j = Mn−( j+1)C

j
1C

j+1
2 ,

with Mn−( j+1) = Mn− j

[
−1+

j
∑

i=1
i(1−2k)

m2 +

j−1
∑

i=1
i(1+2k)

m2

]
.

On the other hand we have

Bn−( j+1) = Bn− j +
[
logAn−( j+1)

]
ζ1ζ2

= Bn− j + j(logC1)ζ1ζ2
+( j +1)(logC2)ζ1ζ2

= Bn− j +
j(1+2k)C1C2

m2 +
( j +1)(1−2k)C1C2

m2

=

[
−1+

j+1
∑

i=1
i(1−2k)

m2 +

j
∑

i=1
i(1+2k)

m2

]
C1C2.

Thus we have proved that

A j = M jC
n− j−1
1 C

n− j
2 , j = 0,1, . . . ,n−1. (4.38)

Bn− j =

[
−1+

j
∑

i=1
i(1−2k)

m2 +

j−1
∑

i=1
i(1+2k)

m2

]
C1C2

=
j2−2k j−m2

m2 C1C2, for all 0≤ j ≤ n.

The conditionB0 ≡ 0 is satisfied when
{

j = n

j2−2k j−m2 = 0
⇔

{
n2−2kn−m2 = 0

n∈ N
⇔ n= k+ p, p=

√
k2+m2.
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This implies that theBn
I -operatorKn of the equation (4.34) exists and its order isn= k+ p.

Analogously we can prove that

Ã j = M′
jC

n′− j+1
1 Cn′− j

2 , (4.39)

B̃n′− j =
j2+2(k+1) j +2k+1−m2

m2 C1C2.

HenceB̃0 ≡ 0 if
{

j = n′ ∈ N,

j2+2(k+1) j +2k+1−m2 = 0.
⇔ n′ = p−k−1, p=

√
k2+m2.

Therefore theBn′
II -operatorK̃n′ of the equation (4.34) exists and its order isn′ = p−k−1.

According to Theorem 4.17 a solutionV1 of the equation (4.34) is given by

V1(ζ1,ζ2) = Kp+kg(ζ1)+ K̃p−k−1h(ζ2),

whereg∈ H(D) andh∈ H(D) and

Kp+k = Fp+k−1Fp+k−2 . . .F0 with Fj =
∂

∂ζ1
+(logA j)ζ1

, j = 0,1, . . . , p+k−1,

K̃p−k−1 = C1F̃p−k−2F̃p−k−3 . . . F̃0 with F̃j =
∂

∂ζ2
+(logÃ j)ζ2

, j = 0,1, . . . , p−k−2.

Using the expressions (4.38) and (4.39) we have

Fj =
∂

∂ζ1
+(logCp+k− j−1

1 C
p+k− j
2 )ζ1

,

F̃j =
∂

∂ζ2
+(logCp−k− j

1 C
p−k− j−1
2 )ζ2

.

Denotef (z)=g(ζ1)e1+h(ζ2)e2 then f is a bicomplex-valued function andT-holomorphic
in D(0;r1, r2), and denote

Lp+k = Tp+k−1Tp+k−2 . . .T0, L̃p−k−1 = C∗T̃p−k−2T̃p−k−3 . . . T̃0,

with

Tj = ∂z+[log(Cp+k− j−1(C∗)p+k− j)]z, j = 0,1, . . . , p+k−1,

T̃j = ∂z+[log(Cp−k− j−1(C∗)p−k− j)]z, j = 0,1, . . . , p−k−2.

ThenVe1 :=V1e1 can be rewritten as follows

Ve1 =
[
Lp+k f +(L̃p−k−1 f )∗

]
e1.
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It is easy to see that ifVe1 is given thenVe2 can be determined byVe1. Indeed we have

∂z∗(Ve1) = C(V∗)e1 = C(Ve2)
∗

⇒ C∗(Ve2) =
[
∂z∗(Ve1)

]∗

⇒ Ve2 =
1
C∗

∂z(Ve1)
∗.

Therefore a solutionV(z) of the system (E) is given by

V =
[
Lp+k f +(L̃p−k−1 f )∗

]
e1+

1
C∗

[
(Lp+k f )∗+ L̃p−k−1 f

]
ze2.

Thus Theorem 4.18 is proved.

Corollary 4.3.
If the coefficientC of the system (E) satisfies the condition (4.35) with k= 0 then we have
that p= m and a solution V(z) of the system (E) is given by

V(z) = Lm f +
1
C∗

(
Lm f

)∗
z, (4.40)

where f is aT-holomorphic function in D(0;r1, r2) and

Lm = Tm−1Tm−2 . . .T0,

with
Tj = ∂z+(logCm− j−1(C∗)m− j)z, j = 0,1, . . . ,m−1.

4.4 Applications

4.4.1 Representation of solutions of the Dirac equation on apseudo-sphere

In [36] the Dirac operator on the Poincaré disk is given by

Dk =




0 2(1−ξ ξ )∂ξ − (2k−1)ξ

2(1−ξ ξ )∂ξ +(2k+1)ξ 0


 , (4.41)

whereξ = x+ i1y∈ C(i1) = C, k∈ R, |ξ |< 1.
Consider the Dirac equation

(m−Dk)w= 0, m∈ N, (4.42)
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where the Dirac operatorDk is given in (4.41) andw=

(
w1
w2

)
∈ C2.

The equation (4.42) is equivalent to the following system




2(1−ξ ξ)∂ξ w2− (2k−1)ξw2 = mw1,

2(1−ξ ξ)∂ξ w1+(2k+1)ξw1 = mw2.

(4.43)

We consider the first equation of the system (4.43)

2(1−ξ ξ )∂ξ w2− (2k−1)ξw2 = mw1,

⇒ ∂ξ w2−
2k−1

2
ξ

1−ξ ξ
w2 =

m

2(1−ξ ξ )
w1. (4.44)

Let ϕ(ξ ) :=−
2k−1

2
ξ

1−ξ ξ
and then define

Φ(ξ ) := (1−ξ ξ )
2k−1

2 .

This implies that the functionΦ(ξ ) has a property
∂ξ Φ

Φ
= ϕ(ξ ).

The equation (4.44) reads

∂ξ w2+
∂ξ Φ
Φ

w2 =
mw1

2(1−ξ ξ )
,

⇒Φ∂ξ w2+∂ξ Φw2 =
Φmw1

2(1−ξ ξ )
,

⇒∂ξ (Φw2) =
(1−ξ ξ )

2k−1
2 mw1

2(1−ξ ξ)
.

We can rewrite the last equation as follows

∂ξ

[
(1−ξ ξ )

2k−1
2 w2

]
=

mw1

2
(1−ξ ξ )

2k−3
2 . (4.45)

Analogously, the second equation of the system (4.43) can berewritten in the form

∂ξ

[
(1−ξ ξ )−

(
2k+1

2

)
w1

]
=

mw2

2
(1−ξ ξ )−

(
2k+3

2

)
. (4.46)

In the two equations (4.45) and (4.46), denote
{

V2 = (1−ξ ξ )
2k−1

2 w2,

V1 = (1−ξ ξ )−
(

2k+1
2

)
w1.

(4.47)
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The system (4.43) now becomes




∂ξV1 =
m

(1−ξ ξ )1+2k
V2,

∂ξV2 =
m

(1−ξ ξ )1−2k
V1.

(4.48)

Since the coefficients
m

(1−ξ ξ )1+2k
and

m

(1−ξ ξ )1−2k
are analytic in variablesx, y, this

system always has a solution(V1,V2) analytic in variablesx, y. Continue this system
analytically into the complex domain of the variables

ζ1 = x+ i1y, ζ2 = x− i1y,

we have a system of the form




∂ζ2
V1 =

m

(1−ζ1ζ2)1+2kV2,

∂ζ1
V2 =

m
(1−ζ1ζ2)1−2kV1.

(4.49)

Denote

z= z1e1+z2e2 with z1 = ζ1− i1ζ2, z2 = ζ1+ i1ζ2,

V(z) =V(ζ1,ζ2) =V1e1+V2e2,

thenV becomes a bicomplex-valued function which is a solution of the system




∂z∗V =

[
m

(1−zz∗)1+2ke1+
m

(1−zz∗)1−2ke2

]
V∗,

∂z1V = ∂z2V = 0,
(4.50)

in D(0;1,1).
Therefore if we can solve the system (4.50) then we obtain allsolutions of the Dirac equa-
tion (4.42).
We now consider the coefficientC in the case of the system (4.50)

C = C1e1+C2e2 =
m

(1−zz∗)1+2ke1+
m

(1−zz∗)1−2ke2.

It is easy to check that this coefficient satisfies the condition (4.35). According to Theorem
4.18, all bicomplex pseudo-analytic functions which are solutions of the system (4.50) can
be represented by differential operators of Bauer-type

V(z) =
[
Lp+k f +(L̃p−k−1 f )∗

]
e1+

1
C∗

[
(Lp+k f )∗+ L̃p−k−1 f

]
ze2.
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In this problem we can calculate the two operatorsLp+k and L̃p−k−1, and then get an
explicitly representation for the solutionV(z) of the system (4.50).
Ve1 is a solution of an equation

∂zz∗(Ve1)−
Cz

C
∂z∗(Ve1)−CC∗(Ve1) = 0

whereVe1 =V1 is the first idempotent component ofV.

Sincee1e2 = 0, we only care about the first idempotent components of
Cz

C
andCC∗ in the

above equation. Therefore we conclude thatVe1 is a solution of the following equation

∂zz∗(Ve1)− (1+2k)
z∗

1−zz∗
∂z∗(Ve1)−

m2Ve1

(1−zz∗)2 = 0. (4.51)

On the other hand, from the formula (4.36) we have

Ve1 =
[
Lp+k f +(L̃p−k−1 f )∗

]
e1. (4.52)

Now we determine the two operatorsLp+k andL̃p−k−1. We have

Tj = ∂z+[log(Cp+k− j−1C∗p+k− j)]z=: ∂z+c j
z∗

1−zz∗
, c j ∈ T, j = 0,1, . . . , p+k−1,

T̃j = ∂z+[log(Cp−k− j−1C∗p−k− j)]z=: ∂z+d j
z∗

1−zz∗
, d j ∈ T, j = 0,1, . . . , p−k−2

wherec j ,d j are coefficients of
z∗

1−zz∗
in Tj , T̃j , respectively whose idempotent compo-

nents are integer numbers.
Applying Lemma 1.1 for the operatorsLp+k andL̃p−k−1 we obtain the result thatLp+k f
andL̃p−k−1 f have the following forms

Lp+k f = Tp+k−1Tp+k−2 . . .T0 =
p+k

∑
j=0

c̃ j

(
z∗

1−zz∗

)p+k− j

f ( j),

L̃p−k−1 f = C∗T̃p−k−2T̃p−k−3 . . . T̃0 = C∗
p−k−1

∑
j=0

d̃ j

(
z∗

1−zz∗

)p−k−1− j

f ( j),

wherec̃p+k = 1, d̃p−k−1 = 1 andc̃ j , j = 0,1, . . . , p+k−1, d̃ j , j = 0,1, . . . , p−k−2, are
unknown bicomplex coefficients with idempotent componentsare integer numbers.
Substituting these expressions into (4.52) we have

Ve1 =
p+k

∑
j=0

c̃ j

(
z∗

1−zz∗

)p+k− j

f ( j)(z)e1+C
p−k−1

∑
j=0

d̃∗
j

(
z

1−zz∗

)p−k−1− j

[ f ( j)(z)]∗e1.

(4.53)
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In the formula (4.53), we only care about the first idempotentcomponents of ˜c j , d̃∗
j andC.

So without loss of generality we can assume that ˜c j , d̃∗
j are integer numbers andVe1 can

be rewritten as

Ve1 =
p+k

∑
j=0

Pj

(
z∗

1−zz∗

)p+k− j

f ( j)(z)e1+
p−k−1

∑
j=0

Q j
zp−k−1− j

(1−zz∗)p+k− j [ f
( j)(z)]∗e1

where f is aT−holomorphic function inD(0;r1, r2), Pp+k = 1,Qp−k−1 = m andPj , j =
0,1, . . . , p+k−1,Q j , j = 0,1, . . . , p−k−2, are unknown integer coefficients.
For the convenience we denoter := p+k ands := p−k. Then

Ve1 = Ŵ+W̃, (4.54)

where

Ŵ =
r

∑
j=0

Pj

(
z∗

1−zz∗

)r− j

f ( j)(z)e1, W̃ =
s−1

∑
j=0

Q j
zs−1− j

(1−zz∗)r− j [ f
( j)(z)]∗e1.

SinceVe1 is a solution of the equation (4.51),̂W andW̃ are solutions of the following
equation

∂zz∗W− (r −s+1)
z∗

1−zz∗
∂z∗W−

rs
(1−zz∗)2W = 0. (4.55)

Ŵ = P0
z∗r

(1−zz∗)r f (z)e1+
r−1

∑
j=1

Pj

(
z∗

1−zz∗

)r− j

f ( j)(z)e1+Pr f (r)(z)e1,

∂z∗Ŵ = P0r
z∗(r−1)

(1−zz∗)r+1 f (z)e1+
r−1

∑
j=1

Pj(r − j)
z∗(r− j−1)

(1−zz∗)r− j+1 f ( j)(z)e1,

∂zz∗Ŵ = P0r(r +1)
z∗r

(1−zz∗)r+2 f (z)e1

+
r−1

∑
j=1

(r − j +1)[(r − j)Pj +Pj−1]
z∗(r− j)

(1−zz∗)r− j+2 f ( j)(z)e1

+Pr−1
1

(1−zz∗)2 f (r)(z)e1.

Substituting the above expressions into the equation (4.55) we have an equality which
holds for allz∈ D(0;1,1) and f ( j)(z)e1, j = 0,1, . . . , r

[
P0r(r +1)− (r −s+1)P0r − rsP0

] z∗r

(1−zz∗)r+2 f (z)e1

+
r−1

∑
j=1

{
(r − j +1)[(r − j)Pj +Pj−1]− (r −s+1)Pj(r − j)− rsPj

}
z∗(r− j)

(1−zz∗)r− j+2 f ( j)(z)e1

+[Pr−1− rsPr ]
1

(1−zz∗)2 f (r)(z)e1 = 0.
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Hence we get a system




P0r(r +1)− (r −s+1)P0r − rsP0 = 0,

(r − j +1)[(r − j)Pj +Pj−1]− (r −s+1)Pj(r − j)− rsPj = 0, 1≤ j ≤ r −1,

Pr−1− rsPr = 0.
(4.56)

Solving the system (4.56) we obtain

Pj−1 =
j(r +s− j)
r − j +1

Pj , 1≤ j ≤ r,

⇒ Pj =
r!

(s−1)!
(r +s− j −1)!

j!(r − j)!
Pr , 0≤ j ≤ r −1.

SincePr = 1, r = p+k, s= p−k, we get

Pj =
(p+k)!

(p−k−1)!
(2p− j −1)!
j!(p+k− j)!

, j = 0,1, . . . , p+k. (4.57)

Analogously we havẽW∗ is a solution of the equation

∂zz∗W̃
∗− (r −s+1)

z
1−zz∗

∂zW̃
∗−

rs
(1−zz∗)2W̃∗ = 0. (4.58)

W̃∗ = Q0
z∗(s−1)

(1−zz∗)r f (z)e1+
s−1

∑
j=1

Q j
z∗(s− j−1)

(1−zz∗)r− j f ( j)(z)e1,

∂zW̃
∗ = Q0r

z∗s

(1−zz∗)r+1 f (z)e1+
s−1

∑
j=1

[Q j(r − j)+Q j−1]
z∗(s− j)

(1−zz∗)r− j+1 f ( j)(z)e1

+Qs−1
1

(1−zz∗)r−s+1 f (s)(z)e1,

∂zz∗W̃
∗ = Q0

[
rsz∗(s−1)(1−zz∗)

(1−zz∗)r+2 +
r(r +1)zz∗s

(1−zz∗)r+2

]
f (z)e1

+
s−1

∑
j=1

[Q j(r − j)+Q j−1]

[
(s− j)z∗(s− j−1)(1−zz∗)

(1−zz∗)r− j+2 +
(r − j +1)zz∗(s− j)

(1−zz∗)r− j+2

]
f ( j)(z)e1

+Qs−1
(r −s+1)z

(1−zz∗)r−s+2 f (s)(z)e1.

Substituting these expressions into the equation (4.58) weobtain

Q j−1 =
j(r +s− j)

s− j
Q j , 1≤ j ≤ s−1,

⇒ Q j =
(s−1)!

r!
(r +s− j −1)!
j!(s− j −1)!

Qs−1, 0≤ j ≤ s−2.
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SinceQs−1 = m, r = p+k, s= p−k, we get

Q j =
(p−k−1)!m

(p+k)!
(2p− j −1)!

j!(p−k−1− j)!
, j = 0,1, . . . , p−k−1. (4.59)

From (4.54), (4.59) and (4.57) we have

Ve1 =
p+k

∑
j=0

Pj

(
z∗

1−zz∗

)p+k− j

f ( j)(z)e1+
p−k−1

∑
j=0

Q j
zp−k−1− j

(1−zz∗)p+k− j [ f
( j)(z)]∗e1 (4.60)

with Pj , j = 0,1, . . . , p+ k, andQ j , j = 0,1, . . . , p− k−1, are given in (4.57) and (4.59),
respectively.
Therefore

Ve2 =
1
C∗

∂z(Ve1)
∗

with

∂z(Ve1)
∗ =

p+k−1

∑
j=0

Pj(p+k− j)
zp+k− j−1

(1−zz∗)p+k− j+1 [ f
( j)(z)]∗e2 (4.61)

+
p−k−1

∑
j=0

Q jz
∗(p−k−1− j)

[
(p+k− j)z∗

(1−zz∗)p+k− j+1 f ( j)(z)+
1

(1−zz∗)p+k− j f ( j+1)(z)

]
e2.

Denote the second term on the right-hand side of (4.61) by

T :=
p−k−1

∑
j=0

Q jz
∗(p−k−1− j)

[
(p+k− j)z∗

(1−zz∗)p+k− j+1 f ( j)(z)+
1

(1−zz∗)p+k− j f ( j+1)(z)

]
e2.

Then we can rewriteT as follows

T =Q0(p+k)
z∗(p−k)

(1−zz∗)p+k+1 f (z)e2+
p−k−1

∑
j=1

[Q j(p+k− j)+Q j−1]
z∗(p−k− j)

(1−zz∗)p+k− j+1 f ( j)e2

+Qp−k−1
1

(1−zz∗)2k+1 f (p−k)(z)e2.

From the formula (4.59) we have

Q j(p+k− j)+Q j−1 =
(p−k)!m
(p+k−1)!

(2p− j −1)!
j!(p−k− j)!

, for 1≤ j ≤ p−k−1.

Hence

T =
p−k

∑
j=0

(p−k)!m
(p+k−1)!

(2p− j −1)!
j!(p−k− j)!

z∗(p−k− j)

(1−zz∗)p+k− j+1 f ( j)e2.
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Therefore

Ve2 =
p+k−1

∑
j=0

Rj
zp+k−1− j

(1−zz∗)p−k− j [ f
( j)(z)]∗e2+

p−k

∑
j=0

Sj

(
z∗

1−zz∗

)p−k− j

f ( j)(z)e2 (4.62)

with

Rj =
(p+k)!

(p−k−1)!m
(2p− j −1)!

j!(p+k− j −1)!
, j = 0,1, . . . , p+k−1,

Sj =
(p−k)!

(p−k−1)!
(2p− j −1)!
j!(p−k− j)!

, j = 0,1, . . . , p−k.
(4.63)

Theorem 4.19.
If V is a solution of the system (4.50) in D(0;r1, r2) then V can be represented as follows

V(z) =

{ p+k

∑
j=0

Pj

(
z∗

1−zz∗

)p+k− j

f ( j)(z)+
p−k−1

∑
j=0

Q j
zp−k−1− j

(1−zz∗)p+k− j [ f
( j)(z)]∗

}
e1

+

{ p+k−1

∑
j=0

Rj
zp+k−1− j

(1−zz∗)p−k− j [ f
( j)(z)]∗+

p−k

∑
j=0

Sj

(
z∗

1−zz∗

)p−k− j

f ( j)(z)

}
e2

(4.64)

with z∈ D(0;r1, r2), f is aT−holomorphic function in D(0;r1, r2), Pj ,Q j and Rj ,Sj are
given as follows

Pj =
(p+k)!

(p−k−1)!
(2p− j −1)!
j!(p+k− j)!

, j = 0,1, . . . , p+k,

Q j =
(p−k−1)!m

(p+k)!
(2p− j −1)!

j!(p−k−1− j)!
, j = 0,1, . . . , p−k−1,

Rj =
(p+k)!

(p−k−1)!m
(2p− j −1)!

j!(p+k− j −1)!
, j = 0,1, . . . , p+k−1,

Sj =
(p−k)!

(p−k−1)!
(2p− j −1)!
j!(p−k− j)!

, j = 0,1, . . . , p−k.

(4.65)

Conversely for eachT−holomorphic function f in D(0;r1, r2), formula (4.19) gives all
solutions of the system (4.50) in D(0;r1, r2).

If we denote the idempotent representation of the functionf by f (z) = f1(ζ1)e1+ f2(ζ2)e2

then we obtain the following corollary.

Corollary 4.4.
Solutions w of the Dirac equation (4.42) are given by

w=

(
w1

w2

)
,
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with

w1 = (1−ξ ξ )
2k+1

2

[ p+k

∑
j=0

Pj
( ξ
1−ξ ξ

)p+k− j
f ( j)
1 (ξ )+

p−k−1

∑
j=0

Q j
ξ p−k−1− j

(1−ξ ξ )p+k− j
f ( j)
2 (ξ )

]

and

w2 =
1

(1−ξ ξ )
2k−1

2

[ p+k−1

∑
j=0

Rj
ξ

p+k−1− j

(1−ξ ξ )p−k− j
f ( j)
1 (ξ )+

p−k

∑
j=0

Sj
( ξ
1−ξ ξ

)p−k− j
f ( j)
2 (ξ )

]
,

where Pj ,Q j and Rj ,Sj are given in (4.65).

4.4.2 Generalized Weierstrass representation for surfaces

The generalization of the Weierstrass formulae to generic surfaces inR3 has been pro-
posed by B.G. Konopelchenko (see, e.g., [28], [30]). It starts with the linear system (two-
dimensional Dirac equation)

∂ξ ψ1 = Pψ2, ∂ξ ψ2 =−Pψ1, (4.66)

whereP(ξ ,ξ ) is a real-valued function,ψ1,ψ2 are, in general, complex functions of the
complex variableξ = x+ i1y, and the bar denotes the complex conjugation.
Then one defines the three real-valued functionsX1(ξ ,ξ ), X2(ξ ,ξ ) andX3(ξ ,ξ ) by the
formulae

X1+ i1X2 = 2i1

∫ ξ

ξ0

(ψ2
1dξ ′−ψ2

2dξ
′
),

X1− i1X2 = 2i1

∫ ξ

ξ0

(ψ2
2dξ ′−ψ2

1dξ
′
), (4.67)

X3 =−2i1

∫ ξ

ξ0

(ψ2ψ1dξ ′+ψ1ψ2dξ
′
).

By virtue of (4.66), the integrals (4.67) do not depend on thechoice of the curve of in-
tegration in a simply connected domain. Then one treatsξ ,ξ as local coordinates on a
surface and(X1,X2,X3) as coordinates of its immersion inR3. Formulae (4.67) induce a
surface inR3 via the solutions of the system (4.66) with the Gaussian(K) and mean(H)
curvatures

K =−

[
log(|ψ1|

2+ |ψ2|
2)
]

ξξ

(|ψ1|2+ |ψ2|2)2 , H =
P(ξ ,ξ )

|ψ1|2+ |ψ2|2
.

The type of this system has recently appeared in many papers and surveys on the theory
of representation for surfaces (see, e.g., [20], [25], [31], [35]). The study of surfaces and
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their dynamics is an important part of many interesting phenomena in mathematics and es-
pecially in physics such as surface waves, deformation of membranes, dynamics of vortex
sheets, etc. Quantum field theory and statistical physics are also important applications of
surfaces.
In the sequel we shall give a method to solve the system (4.66)with a special class of co-
efficientsP. We assume thatP is analytic in the real variablesx andy. If the real variables
x andy are continued into a complex domain we obtain a functionP(η1,η2) of the two
complex variables

η1 = x− i1y and η2 = x+ i1y.

Then the system (4.66) becomes
{

∂η2V1 = PV2,

∂η1V2 =−PV1.
(4.68)

DenoteV = V1e1+V2e2. SinceV1,V2 are holomorphic functions in variablesη1,η2 then
V is a solution of a system {

∂z∗V = i1i2PV∗,

∂z1V = ∂z2V = 0.
(4.69)

Assume further thatP(ξ ,ξ ) given in (4.66) satisfies the condition

m2(logP)ξξ =−P2, m∈ N
∗. (4.70)

Then the coefficientP(η1,η2) in (4.69) also satisfies

m2(logP)zz∗ =−P2, m∈ N
∗. (4.71)

In this caseC = i1i2P satisfies the condition (4.35) withk= 0

m2(logC)zz∗ = CC∗.

According to Corollary 4.3, all the solutions of the system (4.69) can be represented by
differential operators of Bauer-type as follows

V = Lm f +
1
C∗

(Lm f )∗z = Lm f −
1

i1i2P
(Lm f )∗z,

where f is aT-holomorphic function and

Lm = Tm−1Tm−2 . . .T0,

with
Tj = ∂z+[log(Cm− j−1(C∗)m− j)]z, j = 0,1, . . . ,m−1.

OnceV can be represented explicitly,V1 andV2 can be represented explicitly also.
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Example 4.1.

Now we consider a special case ofP which satisfies the condition (4.71) withm= 1

P(η1,η2) =

√
g′1(η1)g′2(η2)

1+g1(η1)g2(η2)
,

whereη1,η2 ∈ C are the two idempotent components of the bicomplex variablez and
g1(η1),g2(η2) are holomorphic functions satisfying

[1+g1(η1)g2(η2)]g
′
1(η1)g

′
2(η2) 6= 0.

A solutionV of the system (4.69) corresponding to this coefficientP is then given by

V = L1 f −
1

i1i2P
(L1 f )∗z = f ′(z)+(logP)z f + i1i2P f ∗.

We assume that the idempotent representation of theT-holomorphic functionf is

f = f1(η1)e1+ f2(η2)e2,

where f1(η1) and f2(η2) are the two holomorphic functions. Then a solution(V1,V2) of
the system (4.68) is given by

V1 = f ′1(η1)+
[
logP(η1,η2)

]
η1

f1(η1)+P(η1,η2) f2(η2)

= f ′1(η1)+

[
1
2

g′′1(η1)

g′1(η1)
−

g′1(η1)g2(η2)

1+g1(η1)g2(η2)

]
f1(η1)+

√
g′1(η1)g′2(η2)

1+g1(η1)g2(η2)
f2(η2),

V2 = f ′2(η2)+
[
logP(η1,η2)

]
η2

f2(η2)−P(η1,η2) f1(η1)

= f ′2(η2)+

[
1
2

g′′2(η2)

g′2(η2)
−

g1(η1)g′2(η2)

1+g1(η1)g2(η2)

]
f2(η2)−

√
g′1(η1)g′2(η2)

1+g1(η1)g2(η2)
f1(η1).

If we choose especially

f1(η1) =
1√

g′1(η1)
, f2(η2) =

2g2(η2)√
g′2(η2)

then we obtain

V1 =

√
g′1(η1)g2(η2)

1+g1(η1)g2(η2)
, V2 =

√
g′2(η2)

1+g1(η1)g2(η2)
.

Moreover, if we choose

η2 = ξ ∈ C, η1 = ξ , and

g2 = ω, g1 = ω∗, whereω∗(ξ ) = ω(ξ ),
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then we have solutionsV1,V2 of the system (see, e.g., [21], [26])
{

∂ξV1 = PV2

∂ξV2 =−PV1
whereP =

|∂ξ ω|

1+ |ω|2
(4.72)

in the form

V1 = εω
(∂ξ ω)1/2

1+ |ω|2
, V2 = ε

(∂ξ ω)1/2

1+ |ω|2
, ε =±1. (4.73)

In this case the solutions of the system (4.72) have the property P(ξ ,ξ ) = |V1|
2+ |V2|

2,
and the mean curvature of the corresponding surface isH = 1.

Example 4.2.

We consider an example given in [29] whenP =
1

2coshx
.

It is easy to check thatP satisfies the condition (4.70). Then a solution(V1,V2) of the
system (4.68) is given by

V1 = f ′1(η1)+
[
logP(η1,η2)

]
η1

f1(η1)+P(η1,η2) f2(η2)

= f ′1(η1)−
sinh(

η1+η2

2
)

2cosh(
η1+η2

2
)

f1(η1)+
1

2cosh(
η1+η2

2
)

f2(η2),

V2 = f ′2(η2)+
[
logP(η1,η2)

]
η2

f2(η2)−P(η1,η2) f1(η1)

= f ′2(η2)−
sinh(

η1+η2

2
)

2cosh(
η1+η2

2
)

f2(η2)−
1

2cosh(
η1+η2

2
)

f1(η1).

If we choosef1(η1) = exp(−
η1

2
) and f2(η2) = 2exp(

η2

2
) and take into consideration that

η1 = x− i1y, η2 = x+ i1y, then we obtain

V1 =
1

2coshx
exp

(
i1y+x

2

)
, V2 =

1
2coshx

exp

(
i1y−x

2

)
.

This implies that the corresponding surface is given by

X1 =−
siny

coshx
, X2 =−

cosy
coshx

, X3 =− tanhx

which is the unit sphereX2
1 +X2

2 +X2
3 = 1.



5 CONCLUSIONS

In this thesis, some classes of the pseudo-analytic functions in complex and bicomplex
variables which can be represented by differential operators have been studied. There
are different ways to get the representation for the pseudo-analytic functions in complex
variables which are solutions of a certain Bers-Vekua equation of typewz−Cw= 0, see,
e.g., [9], [11], [44]. After P. Berglez, we have the necessary and sufficient condition on
the coefficientC of the Bers-Vekua equation for which all solutions of this equation can
be represented by differential operators of Bauer-type. Using this result we have obtained
a Liouville system from which we can find the coefficientsC such that all solutions of
the corresponding Bers-Vekua equations can be representedby differential operators of
Bauer-type. In the case of bicomplex variables, applying the theorems of P. Berglez con-
cerning the existence of the operators of Bauer-type for thesecond order partial differential
equations we also obtain a class of bicomplex pseudo-analytic functions which can be rep-
resented by differential operators.

In this work, we have derived the representations of some special classes of the pseudo-
analytic functions in complex and bicomplex variables. Oneof the most interesting ap-
plications of such a representation in a complex variable isto solve boundary value prob-
lems [17]. The advantage of using the representation of solutions by differential operators
is an explicitness of the solutions of the boundary value problems. In the case of a bicom-
plex variable, we have obtained the representation of a class of bicomplex pseudo-analytic
functions which has some applications connecting to the physical problems.

Further work can be done on the studies of an efficient method to find a larger class of
pseudo-analytic functions which can be represented by differential operators. In addition,
it is interesting to answer the open question from this thesis, e.g., solving the more general
boundary value problems for the pseudo-analytic functionswhich can be represented by
differential operators of Bauer-type.
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