
Intelligent Model-Based Diagnosis and
Repair for ROS-Based Autonomous Robots

Safdar Zaman

Doctoral (Ph.D) Dissertation

Supervisor : Univ.-Prof. Dipl.-Ing. Dr. techn. Wolfgang SLANY
Co-Supervisor : Dipl.-Ing. Dr. techn. Gerald STEINBAUER

External Examiner: Univ. Prof. Dipl.-Ing. Dr. techn. Gerhard FRIEDRICH

Autonomous Intelligent Systems (AIS) Lab.
Institute for Software Technology

Graz University of Technology
Graz, April, 2014.

2

Declaration

I declare that I have authored this dissertation independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources. Moreover, I happily make this dissertation
publicly open so that anyone can use its contents for study, research, and development for the
betterment of human future.

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommene Stellen als solche kenntlich gemacht habe. Weiters mache ich diese
Arbeit öffentlich, sodass jeder den Inhalt fr Lehre, Forschung und Weiterentwichlung zum
Besseren der menschlichen Zukunft nutzen kann.

Safdar Zaman
Graz, 24.4.2014

i

ii

Dedication

To all the poor people, widows, orphans, and the helpless people of this world.
For the past, present, and future.

iii

iv

Abstract

Autonomous robots comprise a significant number of hardware (e.g., actuators and sensors) and
software components (e.g., drivers and processing entities) that are quite heterogeneous in their
structure and functionality. Moreover, these components closely interact with dynamic real-
world environments. Hence, because of various problems like wear, damage, design, software
crashes, and implementation flaws or shortage of testing the involved modules are always sub-
ject to faults, unexpected behaviour, and non-deterministic interaction with the environment.
This dissertation presents a novel intelligent model-based diagnosis and repair system for au-
tonomous mobile robots running under the ROS (Robot Operating System) framework. The
system’s architecture has been developed to detect and repair both software and hardware faults
in robotic systems at run-time.

The proposed system offers four major contributions. First it offers a model-based diagnosis
architecture for a robotics system in order to detect the root cause of the fault both in software and
hardware components. Secondly, it provides a planner-based repair engine to repair the faults at
run-time without any external intervention. Thirdly, the architecture provides integration into the
popular ROS framework. Finally, the proposed work provides an online learning mechanism in
order to capture the correct behaviour of the robotics system automatically.

The proposed architecture utilizes five modules; an observer-based monitoring system, a
diagnosis model server, a model-based diagnosis engine, a planner-based repair engine, and a
hardware diagnosis and repair board. The monitoring system comprises a number of observers
in order to monitor the different properties of the robotics system’s components at run-time. The
diagnosis model server provides a logic-based model of the system description of the robotics
system for fault detection and localization. The diagnosis engine performs the task of deriving
the root cause of the fault that has occurred. Finally, the repair engine generates a plan of the
repair actions and executes them in order to repair the faults. All the modules are based on the
Robot Operating System (ROS).

The proposed framework is flexible and generic such that it can be applicable to any ROS-
based system. An evaluation of the architecture in real-world experiments showed that the ar-
chitecture is able to detect and repair a number of software and hardware faults automatically.
The shortcomings of the proposed framework and future research challenges also discussed at

v

the end of the dissertation.

vi

Abstrakt

Autonome Roboter bestehen aus eine Vielzahl an Hardware (z.B. Aktuatoren und Sensoren) und
Software Komponenten (z.B. Treiber und Berechnungssoftware) mit unterschiedlichster Struk-
tur und Funktionalität. Zudem interagieren diese Komponenten stark mit ihrer dynamischen
Umgebung. Verschiedenste Probleme wie Verschleiss, Schäden, Design, Softwareabstürze, Im-
plementierungsfehler oder mangelhafte Tests, könenn bei diesen komponenten zu Fehlen, uner-
wartetes Verhalten und nicht vorhersehbarer Interaktion mit der Umgebung führen. Diese Dis-
sertation präsentiert ein neues intelligentes und modellbasiertes Diagnose-und-Reparatur System
für autonome mobile Roboter, die mit dem Robot Operating System (ROS) laufen. Die System
Architektur wurde dazu entwickelt sowohl Software als auch Hardware-Probleme während des
Betriebs zu detektieren und reparieren.

Das entwickelte System bietet vier wesentliche Errungenschaften. Erstens bietet das Systeme
eine modellbasierte Diagnose-Architektur für Roboter Systeme, um die ursachen von Fehlern
in Software und Hardware-Komponenten zu identifizieren. Zweitens enthält das system eine
Planer-basierte Reparatureinheit, um Fehler ohne externe intervention zur Laufzeit zu reparieren.
Drittens, ist das System in das populäre Roboter Framework ROS integriert. Viertens bietet das
System Online Lern-Mechanismen, um das korrekte Verhalten eines Systems automatisch zu
erlernen.

Die vorgeschlagene Architektur besteht aus fünf Modulen: einem Beobachter-basiertem
Monitorringsystem, einem Server für das Diagnosemodell, einer Modell-basierter Diagnose ein-
heit, einer Planer-basierte Reparatureinheit und einer Hardware Diagnose Einheit. Das Moni-
torringsystem besteht aus verschiedenen Beobachtern, die zur Laufzeit unterschiedliche Eigen-
schaften der Komponenten des Robotersystems überwachen. Der Diagnosemodell Server stellt
ein logikbasiertes Modell des Roboters fr die Fehler lokalisierung zur Verfügung. Die Diagnose
einheit ermittelt die Hauptursache des detektierten Fehlers. Nach dem Ermitteln des Fehlers,
erstellt die Reparatureinheit einen Plan, um diesen zu reparieren. Alle Komponenten laufen mit
dem Robot Operating System (ROS).

Das vorgestellte Framework ist flexibel und generisch und kann auf jedem ROS basiertem
Roboter System eingesetzt werden. Eine Experimentelle Evaluierung auf realen Roboter sys-
temen hat gezeigt, dass die Architektur verschiedenste Software und Hardware Fehler detek-

vii

tieren und automatisch reparieren kann. Die Einschränkungen des gezeigten Frameworks und
zukünftige Verbesserungsmöglichkeiten werden am Ende dieser Arbeit Diskutiert.

viii

Acknowledgement

Praise be to Almighty Allah, the most Beneficent, the most Merciful, who helped me getting
this great achievement of my life.

Getting Ph.D without any supervision, support, help, co-operation, and encouragement is
although not impossible but is extremely difficult.

First of all I would like to acknowledge and thank the Government of my beloved country
Pakistan for supporting me financially during my Ph.D studies through HEC (Higher Education
Commission). I also thank ÖAD-Graz for its co-operation during the whole tenure of my studies.

My very special thanks go to my supervisor Professor Dr. Wolfgang Slany for his kind and
scientific supervision. He always encouraged and motivated me during my studies. Further-
more, he always open heartedly supported me by providing funds in order to attend research
conferences and events which not only helped me scientifically but also broadened my exposure
internationally.

I like to greatly thank my co-supervisor Dr. Gerald Steinbauer without whose technical and
scientific oriented guidance this milestone would have been extremely difficult for me in the field
of autonomous mobile robots. I am specially thankful to him for helping me in building scien-
tific mind and guiding me in every circle of my research work from creating ideas, developing
software, preparing experiments to writing research papers.

I also like to thank my external supervisor Professor Dr. Gerhard Friedrich from University
of Klagenfurt, for his kind feedback to my Ph.D dissertation.

Furthermore, I like to thank all the teachers, researchers, professors, the deans, the rectors,
the administrative staff, the people from the workshops and all other employees of the Graz
University of Technology which supported me during my studies.

My love and special thanks go to my parents, my brothers and sisters who always prayed for
my success and encouraged me during the endless and tough days of my stay out of my home.

Last but not the least I am grateful to Petra Pichler and Christina Duess for their administrative
support at Institute for Software Technology and at ÖAD office Graz respectively.

ix

x

Contents

1 Introduction 1
1.1 Overview and Motivation . 1

1.1.1 Autonomous Robots . 4
1.1.2 Robot Control Paradigm . 8
1.1.3 Robotic System Dependability . 9

1.2 Problem Statement . 11
1.3 Contribution . 12
1.4 Outline of the Thesis . 14

2 Related Research 17
2.1 Diagnosis . 17
2.2 Planning . 22
2.3 Repair . 23
2.4 Modeling . 25

3 Prerequisites 29
3.1 Overview . 29

3.1.1 Running Example . 30
3.2 Robot Operating System (ROS) . 31

3.2.1 ROS framework architecture . 31
3.2.1.1 ROS Master . 32
3.2.1.2 ROS basic building units . 32
3.2.1.3 Action Server . 35

3.2.2 ROS framework distributions . 35
3.3 Logic Preliminaries . 36

3.3.1 Propositional Logic . 36
3.3.2 Predicate Logic . 40

3.3.2.1 Basics of Predicate Logic . 41

xi

CONTENTS CONTENTS

3.3.2.2 Syntax for Predicate Logic 44
3.3.2.3 Interpretation . 44

3.4 Model-Based Diagnosis . 46
3.4.1 Computing Diagnosis (∆) . 49

3.5 Planning . 50
3.5.1 Plannning problem . 50
3.5.2 Classical representation . 51

3.5.2.1 States . 51
3.5.2.2 Planning operator . 51

3.5.3 PDDL . 52
3.5.3.1 PDDL-Domain definition: . 53
3.5.3.2 PDDL-Problem definition: 54

3.6 Significance Test . 55
3.6.1 Z-Test . 56

4 System Architecture 57
4.1 Introduction . 57
4.2 Robotics System . 58

4.2.1 Robot Architecture Model (RAM) . 59
4.3 Diagnosis and Repair . 61

4.3.1 Communication . 61
4.3.2 Observers . 62
4.3.3 Diagnosis Model Server . 63
4.3.4 Diagnosis Module . 64
4.3.5 Repair Module . 66
4.3.6 Diagnostic Hardware Board . 68

4.4 Limitations . 69

5 Monitoring 71
5.1 Overview . 71
5.2 Observers . 73

5.2.1 General Observer (GObs) . 74
5.2.2 Node Observer (NObs) . 76
5.2.3 Diagnostic Observer (DObs) . 77
5.2.4 Qualitative Observer (QObs) . 79
5.2.5 Binary Qualitative Observer (BiQObs) 82
5.2.6 Hardware board Observer (HObs) . 84
5.2.7 Property Observer (PObs) . 85

xii

CONTENTS CONTENTS

5.2.8 Interval Observer (IObs) . 87
5.2.9 Difference between IObs and BiQObs 88

6 Diagnosis 91
6.1 Introduction . 91
6.2 Diagnosis Model . 92

6.2.1 Robot Behavioral Model (RBM) . 93
6.2.2 Observers Model (OM) . 95

6.3 Diagnosis Model Server . 97
6.4 Diagnosis Computation . 99

6.4.1 Observation Collection . 99
6.4.2 Diagnosis Engine . 101

7 Repair 103
7.1 Repair Engine . 103

7.1.1 Observation Collection . 104
7.1.2 Repair Execution . 104

7.1.2.1 Generating the repair plan . 105
7.1.2.2 Invoking repair action servers 107
7.1.2.3 Integrating additional repair action servers 108

8 Hardware Integration 109
8.1 Overview . 109
8.2 Diagnostic Board . 110

8.2.1 Architecture . 110
8.2.2 Features . 111
8.2.3 Protocol . 112
8.2.4 Controllers . 114

8.2.4.1 Server Controller . 114
8.2.4.2 Client Controller . 116

8.3 Hardware Observation . 118
8.4 Hardware Diagnosis . 119
8.5 Hardware Repair . 120

9 Model Learning 121
9.1 Model Generation . 121

9.1.1 Recording the Running System . 122
9.1.2 Instantiating the Observers . 124

xiii

CONTENTS CONTENTS

9.1.3 Generating the Diagnosis Model . 125
9.2 Multi Training Sets . 128

10 Experimental Results 131
10.1 Diagnosis and Repair . 131

10.1.1 Experimental Setups . 131
10.1.1.1 System-Power-up scenario 133
10.1.1.2 Device-Shut-down scenario 134

10.2 Model Evaluation . 135
10.2.1 Experimental Setup . 135
10.2.2 Model Validation . 137
10.2.3 Significant Model . 139

11 Conclusion and Future Work 141

xiv

List of Figures

1.1 Increasing growth of Robots in last decade by 2011 [Pop12]. 2
1.2 Chart showing rapidly increasing population of robots than people [Dru12]. . . . 2
1.3 Robots performing different tasks in different fields. 4
1.4 Cognitive Humanoid Robots ARMAR II (left [BMS+05]) and iCube (right

[SMV07]) . 6
1.5 Robot’s sensors; TEDUSAR search and rescue robot (left) and Nao robot (right) . 7
1.6 Robot control paradigms [Mur00]: Deliberative (i), Reactive (ii), and Hybrid (iii). 8

2.1 Classification of diagnostic algorithms [VRYK03]. 18
2.2 Model-Based Diagnosis in terms of predictions and observations [DH88b]. . . . 20
2.3 Framework with reconfiguration engine for repair [BHSW07]. 24
2.4 Error Classification and Error Recovery steps of SFX-EH [CM03]. 25

3.1 Simple control architecture (b) for the search and rescue robot (a). Rectan-
gles represent hardware modules. Gray circles represent hardware nodes. Dark
gray circles represent hardware driver nodes with switchable hardware devices.
White circles represent normal software nodes. Solid arrows represent pub-
lisher/subscriber communication. Dot-dashed arrows represent service calls.
Dotted lines represent hardware connections. 30

3.2 Digital Full-Adder circuit [Pal01]. 46

4.1 Architectural overview of presented methodology 58

5.1 Template for ”General Observer (GObs)”. 74
5.2 Template for ”Node Observer (NObs)”. 76
5.3 Template for ”Diagnostic Observer (DObs)” . 78
5.4 Template for ”Qualitative Observer (QObs)”. 79
5.5 Odometry signal (Blue), its average (Green) and the qualitative trend (Red). . . . 80
5.6 Template for ”Binary Qualitative Observer (BiQObs)”. 82

xv

LIST OF FIGURES LIST OF FIGURES

5.7 Three signals odometry pose (green), mapping pose (red), and imu data pose
(blue). BiQObs alarms when significant change is observed between imu data
and odometry. 83

5.8 Template for ”Hardware Observer (HObs)”. 85
5.9 Template for ”Property Observer (PObs)”. 86
5.10 Template for ”Interval Observer (IObs)”. 88
5.11 Two signals having same qualitative trends but different intervals. 89

6.1 Consistency-based diagnosis: Blue components are the models. The Observers
model is a set of observers to monitor the robotics system 92

8.1 (b) Jaguar robot with the hardware diagnostic board mounted on it (red encircled)
(a) Diagnostic hardware board with input/output channels. 111

8.2 (a) Diagnostic board protocol commands (b) Diagnostic board protocol suite. . . 112
8.3 (a) Flow of server (green) and client (blue) commands(b) Sequence of commands. 114
8.4 Different hardware components connected with the diagnostic board. 118

9.1 (a) Different length m data streams from n training sets. All same color data is
in one training set. Every training set i has start time si and ending time ei. (b)
The m data streams from n training sets are combined into one large training set
with one start time s and ending time e. Arrows show the gap between the data. . 130

10.1 TEDUSAR search and rescue robot. 132
10.2 Simple control architecture for the search and rescue robot. Rectangles represent

hardware modules. Gray circles represent hardware nodes. Dark gray circles rep-
resent hardware driver nodes with switchable hardware devices. White circles
represent normal software nodes. Solid arrows represent publisher/subscriber
communication. Dot-dashed arrows represent service calls. Dotted lines repre-
sent hardware connections. 133

10.3 Behavior of the diagnosis and repair system for the System-Power-up scenario. . 134
10.4 Behavior of the diagnosis and repair system for the Device-Shut-down scenario. . 135
10.5 Pioneer 3DX robot equipped with Laser and IMU sensors. 136
10.6 The computation graph used in the validation experiments. 136

xvi

List of Tables

5.1 Possible observations for different observers . 89

8.1 Board protocol commands with their numbers 113

9.1 Interpolation for qualitative trend for time t(q) between the times t(q−) and t(q+)

where ∆t = t(q+)− t(q−)). 128

10.1 Experimented models for different learning parameters with different number
of observers: binary qualitative (BiQObs), general (GObs), node (NObs), CPU
property (PObscpu), and memory property (PObsmem) observers. 137

10.2 Diagnoses reported for injected faults using different diagnosis models. CR de-
notes correctly reported diagnoses. FN and FP denote false negatives respec-
tively false positives. 138

10.3 Values used by the binary qualitative observers. Intg. denotes the integration of
a value. The value names correspond to the ROS message structure. 139

xvii

LIST OF TABLES LIST OF TABLES

xviii

List of Algorithms

1 GObs(τ, δ, σ, ω, θ) . 75
2 NObs(η, θ) . 77
3 DObs(D, τ, θ) . 78
4 QObs(τ, f, βp, βn, ω) . 81
5 BiQObs(τ1, f1, β1p, β1n, ω1, τ2, f2, β2p, β2n, ω2, θ) 83
6 HObs(τ, δ) . 84
7 PObs(η, ρ, vmax,Q, θ) . 86
8 IObs(τ1, f1, τ2, f2,∆, θ) . 87
9 RBModel({S,H,HN ,SH,SN ,N}, T ,F , {δout, δin, δaff , δhw, δfld, δrel}) . . . 93
10 callback(θ) . 100
11 Repair(∆,Θ,DOM) . 104
12 Board Server Controller(ip, port) . 115
13 Board Client Controller(ip, port, f) . 117
14 check Acknowledgment(ack,P , server,Σ) . 117
15 instantiateObs(G,M,Π) . 123
16 instantiateQObs(M) . 125
17 correlated(Mti , l, ∆̄i,Mtj ,m, ∆̄j) . 126
18 generateModel(G,O) . 127
19 mergeTrainingSets(Π) . 129

xix

LIST OF ALGORITHMS LIST OF ALGORITHMS

xx

Chapter 1

Introduction

This opening chapter of the dissertation presents a brief introduction of what a robot is, why it
has become so important to human life, and what it is made up of. Moreover, the chapter also
discusses the problem statement and the contribution of the presented work.

1.1 Overview and Motivation

The word “Robot” in a common mind means something that imitates a human being, something
that is “smart”, “autonomous”, “powerful”, and/or “fascinating”. This word is originated from
the Czech word “robota” meaning “work” and “forced labor” [FGL87]. It was first used by a
Czeck novelist and journalist called Karel C̆apek 1. He introduced it in his story called “Opilek”
published in 1917, later based on this story he wrote a famous play named “Rossum’s Universal
Robots” in 1920. However, nowadays the “robot” is much more than just a word, it is now an
autonomous machine with specific design [Tak07, BGI+09] that acts like an intelligent human
being acts. There are many definitions, however here robot can be (probably) defined as:

Definition 1.1 (robot). A robot is a mechanical machine that may resemble a human being, and
can autonomously perform the task assigned to it.

Autonomously performing robot inaction might be dangerous to its environment. Isaac Asi-
mov introduced robot laws called “Three Laws of Robotics” [Asi42] as; Law1: A robot must
not injure a human being nor allow a human being to harm himself. Law2: A robot must follow
instructions given by human beings without violating the first law. Law3: A robot must protect
itself without conflicting with the first two laws. During the Middle ages, the robots were primar-
ily used for entertainment purposes. However, the development of the industrial robots got focus
in the 20th century. Robot manipulators took over industrial jobs and enhanced productivity by

1http://en.wikipedia.org/wiki/Karel C̆apek

1

1.1. OVERVIEW AND MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.1: Increasing growth of Robots in last decade by 2011 [Pop12].

several times resulting increase in robots demand to get industrial processes partially or fully
automatized, e.g., IBM keyboard factory in Texas. As a matter of fact the robots manufactur-
ing companies started establishing and booming the sales of the robots around the world. For
example, KUKA2 - a worldwide industrial robot manufacturer. This growing need of industrial
robots in past couple of decades exponentially increased robot population around the world. Ac-
cording to International Federation of Robotics (IRF), the world robot population is continuously
increasing over the last decade by 2011 which can be clearly seen in Figure 1.1 [Dru12]. If the
growth continues with the same pace, its most likely that within next 20 years robot population
will exceed (Figure 1.2) the human population on earth3.

Figure 1.2: Chart showing rapidly increasing population of robots than people [Dru12].

2http://www.kuka-robotics.com/
3http://earlywarn.blogspot.co.at/2012/04/global-robot-population.html

2

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND MOTIVATION

The extension of robotics application’s domain from industries to human environment is
rapidly growing due to the desire of automatizing daily life tasks. Next section briefly discusses
a number of domains where robots have started performing. Introduction of robots with human
related environment have posed a number of questions like how safe and dependable a robotics
system should be for a human environment. Safety and dependability (Sec. 1.1.3 discusses in
detail) have to be the foremost and the highest priority as human co-existing in an autonomous
robot operational environment can be full of risk for unavoidable danger or injury. Robots at
industries with current mechanical structure raise crucial physical issues, because unexpected
operation of a robot and/or unintended behavior of human can severely harm only the human
being. During interaction between a human and a robot manipulator, different kind of injuries can
potentially occur, e.g., cuts due to sharp edges, bone fracture or even death due to the manipulator
direct crush loads [UAW04, Ogo09]. However, in order to minimize the risk of danger and the
severity of injury a safeguarding system for the robots is of utmost necessity. The standards
like ANSI/RIA R15.06-1999 and ANSI/UL 1740 (American National Standard for Industrial
Robots and Robot Systems - Safety Requirements) are for safety in the factories where robots
are employed, address safeguarding requirements for personnel safety. However, these standards
are not very useful when a domain is too unstructured because these standards do not specify
when people can share workspace with robots [AASB+06].

Although one of the most revolutionary features of robots is going to be the physical human-
robot interaction (pHRI), complete safety and dependability issues remain unsolved problems.
The dependability of a robotics system is the ability to avoid service failures that are more fre-
quent and severe than those acceptable to the users. This ability encompasses features like re-
liability, availability, safety, confidentiality, integrity, and maintainability [AA04]. In order to
attain dependability features, necessary means of fault prevention, fault tolerance, fault removal,
and fault forecasting have to be developed [CGD12]. The means of the fault prevention and the
fault tolerance provide trust on the robot service delivery while fault removal and forecasting
give confidence in the ability to deliver service successfully.

The motivation for the work presented in this thesis origins from two fundamental obser-
vations. First, autonomous robots are artifacts that comprise a number of hardware and soft-
ware components that are quite heterogeneous in their structure and functionality. Moreover,
these components closely interact with highly uncertain and dynamic real-world environments.
Therefore, because of various problems like wear, damage, design and implementation flaws or
shortage of testing, the involved modules are always subject to faults and unexpected behavior.
Moreover, the potentially non- deterministic nature of the interaction of robot with its environ-
ment leads to additional faults and unexpected situations. Obviously, such problems negatively
affect the performance and the autonomy of the robot. Therefore, a truly autonomous and de-
pendable robotics system has to have the capability to actively cope with such phenomena in an

3

1.1. OVERVIEW AND MOTIVATION CHAPTER 1. INTRODUCTION

automated way.

1.1.1 Autonomous Robots

Robotics is one of the most interesting and modern fields of study and research. It talks about
how to make machines behave intelligently more or less the same way human beings do, and
calls such machines the intelligent robots [SNS04]. Recalling the definition from the previous
section, a robot does not necessarily have to be anthropomorphic or even animal-like as it is
merely a mechanical device to get its jobs autonomously done. Figure 1.34 shows autonomous
robots with different shapes in their operational fields covering almost every sphere of human
life from cleaning to life-saving services. As a source of entertainment, the robots are playing
their roles like dancers [Fuj11], lifelike friendly toys for instance iCat5 and AIBO [Fuj00], and
as elderly care robots [HKEW10]. In the medical sector, robots are being vastly used for reha-

(a) Aerial Robot (Drone) (b) Medical Surgery Robot

(g) Industry Robot

(e) Elderly Care Robot

(i) Space Robot (Mars Rover)(h) Under water Robot

(c) Service Robot

(d) Toy (Lego Robot) (f) Four Legged Field Robot

Figure 1.3: Robots performing different tasks in different fields.

bilitation, conventional, computer-integrated, and minimally invasive surgeries [DGA94, TS03].
Besides that, the robots are also autonomously performing heavily repetitive, monotonous, and
dangerous jobs tirelessly 7 days a week and 24 hours a day. Industries are now being equipped
with fully automatic robotic manipulators to get works done in hours instead of months. Extra

4(a) MQ-9 Reaper UAV, USAF Photographic Archives, (b) Da Vinci robot lawsuit, Flagstaff Medical Center, (c
) PR2 robot, Willo Garage (d) MrRobot LEGO Mindstorms, (e) UVA-Universiteit Van Amsterdam, (f) LS3, Boston
Dynamics, (g) Emerald Insight, (h) AQUA project, Mcqill university Canada, (i) NASA, public domain.

5http://www.hitech-projects.com/icat/

4

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND MOTIVATION

shifts have been added to factories because robots never get tired unlike human beings. Robots
make us learn about the places that are too dangerous for us to go, e.g., underwater in ocean. The
robot REMUS100-AUV helps study temperature and other water properties at the depth of 10-
120m beneath ice in the area of 10-20km between Pacific and Arctic Ocean [PKSF12]. Robots
in space are also helpful, e.g., satellite robot ETS-VII [Mit99] orbiting at altitude of 550km with
35 ◦ inclination for monitoring international space station and inspecting other orbiting satel-
lites. Exploring dusty lunar surface by rover Apollo-LRV robot [HABJ08], and around 173kg
Mars Exploration Rover (MER) to explore 600m distance on Mars in 90days in order to acquire
knowledge about life, ancient water and climate on this red planet. Moreover, sensing the sun
has also been one of the interesting objectives on Mars [ELP02, ISH+03]. Advanced robots, e.g.,
four legged LS3 robots shown in Figure 1.3, have been built with biology inspired features, e.g.,
mobility. Hence, moral of the story is that existence of robots has now become a necessity of
human existence.

An autonomous robot may or may not be intelligent. For example, an industrial robotic
manipulator for assembly line is an autonomous robot because it performs its task without any
external help. However, it is not an intelligent robot as it always makes the same moves after
a certain period of time even if no part appears on the line in front of it. In order to make it
an intelligent robot it has to be provided with some capability of sensing (sensors) its assembly
line, and enabling it to make the decision (programmed controller) whether or not to perform the
activity.

Definition 1.2 (intelligent robot). An autonomous intelligent robot is capable of sensing its
world, planning future steps using sensed data and its world’s model, and executing the plan.

An automatically navigating robot that can localize itself in its environment, avoid the ob-
stacles (objects and humans), and find alternative paths (if currently followed path is blocked)
to its destination, is an autonomous intelligent mobile robot. An intelligent robot perceives its
world using its sensors, makes the plan using its internal model, and then executes that plan for
the next step. It can have other sensing capabilities like object recognition, speech recognition,
face recognition, touch sensing, position and orientation sensing, etc. For instance, PR2 robot
platform from Willowgarage6 is an intelligent autonomous service robot.

Future intelligent humanoid robotic systems taking part in everyday life are the ones that
are supplied with an adequate artificial intelligence and cognition. Cognitive robotics deals with
such artificial intelligent functions that include perception, recognition, storing, memorizing,
thinking, problem solving, etc. It strives to supply the robots with the ability to learn previ-
ously unknown tasks, new motions, new concepts and new objects, and to remember, reason,

6https://www.willowgarage.com

5

1.1. OVERVIEW AND MOTIVATION CHAPTER 1. INTRODUCTION

and communicate with humans and with each other. Moreover, it uses machine learning Artifi-
cial Intelligence (AI) techniques inspired by animal biological systems, e.g., human biological
nervous system. These AI techniques are to implement cognitive science theories or models in
a robotics system to make them “really” intelligent. Cognition in robotics is mainly required
when robot’s world is completely uncontrolled and task complexity is large, e.g., nuclear plant
operations, space robotics, or unmanned autonomous vehicles. Cognitive capability of grasping

Figure 1.4: Cognitive Humanoid Robots ARMAR II (left [BMS+05]) and iCube (right [SMV07])

the structure of an environment is named as Perception. This involves hardware sensors (e.g.,
cameras, laser, GPS) to acquire raw data. Learning is another cognitive capability through which
a robotics system adapts itself to a new state of the environment by learning from changes. Plan-
ning is the process of computing the most appropriate next steps using its knowledge (model)
and perceived data. Infering some conclusions from available information in the knowledge,
is known as Reasoning. Figure 1.4 shows two cognitive humanoid robots ARMAR-II [DBS04]
and iCube [SMV07]. The robot iCube is an openly-available robotics system. It is as tall as a
three-year old child. It can crawl, sit, pick up things, move its head, and has fully articulated
eyes so that it can show emotions. Its cognitive architecture comprises three layers namely Phy-
logenetic Sensorimotor, Ontogenetic Action, and Prospective Action Primitives. It enables the
robot with the visual, vestibular, auditory, and haptic sensory capabilities. It has as many as 53

degree-of-freedom (DOF) in its whole body which makes it flexible and smoothly moveable. Its
cognitive architecture is based on the analysis of the phylogeny and ontogeny of human neonates
and hybrid cognitive architectures. An analogous cognitive robot ARMAR-II possesses a spine
type central body, an active sensor head, 5-fingered dexterous two hands, and 7 DOF each of two
arms. Its skills include multimodal man-machine interfaces, augmented reality for modeling,
and simulation of robots, environment and user, and cognitive abilities. Its cognitive architecture
includes functions for perception, attention control, communication elements, dialogue, manage-
ment, memorizing, learning, complex task planning and motor control [BMS+05].

6

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND MOTIVATION

Autonomous robots are artifacts that comprise hardware and software components that are
quite heterogeneous in their structure and functionality. They are composed of movable physi-
cal structures, a power system (electrical/hydraulic/pneumatic), a sensor system, and a software
control system. For example, a robot may have a robotic arm called end-effector in order to
grasp objects. The sensor system enables robots to receive information about what is happening
in their surroundings. Most importantly robots have a reprogrammable “brain” that guides them
on each step they take. Designing an autonomous robotics system is a complex and a challeng-
ing task [BGI+09] because of its heterogeneous components, complex communicational control
software system, and its interaction with highly dynamic, unstructured and uncertain environ-
ment. In order to achieve its mission intelligently and autonomously, the robot uses its hardware
components (e.g., sensors, actuators) to perceive the environment, and software (e.g., navigation,
planning modules) components to make plans for further actions. The hardware components

Figure 1.5: Robot’s sensors; TEDUSAR search and rescue robot (left) and Nao robot (right)

include motors, sensors, actuators, for example, some robot hardware components and sensors
are shown in Figure 1.5. The robot perceives its environment with the help of its hardware
components by interacting with the environment. Trackers, flippers, wheels, joints, motors, and
actuators give the robot a capability to mobilize itself in its world. The sensors like Sonar, Ultra-
sonic, Infrared (IR), and Laser sensors measure distance of objects in front of the robot, Thermal
cameras measure heat energy, Tactile sensors measure pressure force and so on. The software
components include operating system for robot, all hardware drivers (e.g., Kinect camera driver),
and software entities (e.g., navigation stack) that are altogether involved in completing a mission.
A robotics system contains a special mechanism called control paradigm that uses hardware and
software components in order to make it possible for the robot to achieve its task.

7

1.1. OVERVIEW AND MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.6: Robot control paradigms [Mur00]: Deliberative (i), Reactive (ii), and Hybrid (iii).

1.1.2 Robot Control Paradigm

No matter how robots look like and what they are built for, they all basically carry out three
common activities called the primitives [Mur00], namely Sense, Plan, and Act. Sense: Every
robotics system has to have some way of sensing the world around it. To acquire this ability,
a robot possesses number of sensors. The information from sensors lets robot know how far it
has moved, and if there are other moving objects in its world, how does an object look like, how
far an obstacle is in front of it, etc. Plan: This is an activity where intelligence jumps in. The
robot control system smartly prepares instruction(s) called plan by using sensed information in
combination with the belief (internal representation or model of its world) a robot already has. A
plan may contain instructions like stop, speak, turn 180 ◦ , move, etc. Act: This activity carries
out physical movement in actuators as per instructions from the plan generated by previous activ-
ity. Examples may include; rotating wheels with certain velocity, opening gripper for grasping,
getting robotic arm up, etc.

Every robotics system in action continuously performs cycle of these three basic primitives.
On the basis of these primitives there are three control paradigms namely Deliberative, Reactive,
and Hybrid as depicted in Figure 1.6.

• Deliberative: Under this paradigm, a robot first senses the world around it, then makes a
plan for the next action, and finally acts by executing the planned actions. This paradigm

8

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW AND MOTIVATION

is also called sense-plan-act paradigm. For example, a robot takes laser data telling that
a door is opened, then it plans to move (not to turn back) one meter straight as the door
is sensed opened, and finally action transfers to the actuators to move straight to reach the
goal.

• Reactive: This paradigm does not use planning. The robot senses the world and then acts
by calculating the best action through sense-act coupling. This paradigm uses multiple
sense-act behaviors. For example one sense-act behavior directs the robot to move straight
by sensing the goal, and another concurrent sense-act behavior senses a person appeared
in front of it, and steers the motors to make robot turn or stop.

• Hybrid: It combines the hierarchical and the reactive paradigms making pair (plan, sense-
act). The planner first decomposes a task into subtasks then executes them using Reactive
paradigm. When these subtasks are completed the planner generates a new set of sub-
tasks. For example, the planner decomposes the task of constructing map and instantiates
different sense-act behaviors for auto exploration, obstacle avoidance, and map building.

1.1.3 Robotic System Dependability

Autonomous robots have gained place almost in all domains of human life, some of the domains
are significantly critical, e.g., human surgeries, space exploration, or nuclear domain. Moreover,
it is an acknowledged fact that threats to a system can never be 100 percent removed, and that
they may occur at any time. As a matter of fact, a robotics systems failure in a critical field such
as above, will of course lead to catastrophes. Therefore, due to advanced decisional capabilities
of autonomous robots in highly uncertain and critical environments, these systems raise concerns
regarding their dependability. The authors of the contribution [AA04] define dependability both
from qualitative and quantitative perspectives as:

Definition 1.3. (dependability) Qualitatively the dependability is a justifiable trust in a
robotics system to perform its task correctly. Quantitatively it is the ability of robotics system to

avoid service failures that are more severe and frequent than are acceptable to the users.

A service is said to be successfully and correctly delivered by a robotics system, when during
the service delivery it functions almost the same way as it was intended to. The more dependable
a robotics system is, the more trustworthy it becomes. Dependability offers following attributes:

1. Availability : It defines the capability of readiness for delivering a service correctly.

2. Reliability : It is continuity of correct service deliveries in the presence of threats.

3. Safety : It ensures avoidance of catastrophic consequences to the environment.

9

1.1. OVERVIEW AND MOTIVATION CHAPTER 1. INTRODUCTION

4. Confidentiality : It ensures absence of disclosure of information to unauthorized users.

5. Integrity : It provides absence of improper system functionality alterations.

6. Maintainability : It enables the system for repair and modification process.

The threats to the dependability are the causes that can prevent a robotics system to deliver its
service correctly. These threats include failures, errors, and faults as briefly explained below:

• Failure is an event which occurs when a robotics system delivers a service that deviates
from correct service. The service failure can be the cause of poor implementation of service
function. A failure can also be regarded as permanent interruption in delivering correct
service.

• Error is a deviation between computed and true values. In the context of dependability,
it is deviation of delivered service from correct service. It is the error which leads to the
service failure.

• Fault is in fact a violation of a standard condition. The hypothesized cause of an error is a
fault.

There are two basic measures namely Fault avoidance and Fault acceptance that can help system
develop as a dependable system [LCI+04], [LLC+05].
Fault Avoidance : This concept completely prohibits a system to get faults by any means. In
order to nearly develop such dependable system, there are costs to pay, e.g., developing a strong
monitoring system. Fault avoidance is further divided into two sub groups:

• Fault Prevention : This is how to prevent the occurrence or introduction of the faults to a
system.

• Fault Removal: This defines how to remove the faults in order to reduce the number or
severity of faults on a system.

Fault Acceptance : It allows a system to face fault when it occurs. The system then estimates
and learns in order to reduce future fault occurrences and their consequences. Like fault avoid-
ance, it can also be divided into two sub categories:

• Fault Tolerance : This deals with how to keep delivering correct services in the presence
of faults in a system.

• Fault Forecasting : This is how to estimate the present number, the future incidence, and
the likely consequences of faults in a system.

10

CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMENT

These four general attempts namely Fault Prevention, Fault Removal, Fault Tolerance, and Fault
Forecasting are altogether considered as means in order to attain a system’s dependability.
Autonomous robots actively interact with real-dynamic and unstructured world where any un-
foreseen event is always likely to happen, e.g., a route is completely blocked because of people,
or the robot slipped because of some slippery material on the surface. During mission completion
robotic system may encounter such unforeseen events; therefore a dependable robotics system
should deal with them properly. A robotics system can be made more dependable by resolving
concerns raised by introducing appropriate fault tolerance mechanisms.

1.2 Problem Statement

As autonomous robots are gaining more attention in almost every domain, and robotic applica-
tions for non-trivial tasks in everyday life environments are significantly increasing. This comes
up with the need of a robust and dependable robotics system. Robustness is the delivery of
a correct service in adverse situations due to uncertainties [LLC+05] in real world scenarios.
Therefore, in order to make robotics systems more dependable and robust for various tasks in
different environments, a number of scientific questions are raised. This dissertation is focused
on fault detection and repair in autonomous robots in order to resolve the following issues:

Firstly, a robotics system comprises a significant number of hardware and software compo-
nents that are quite different with respect to their structure and functionality. Moreover, these
components closely interact with dynamic real-world environments. Hence, because of various
problems like wear, damage, design and implementation flaws or shortage of testing the involved
hardware and software modules are always subject to unexpected behavior and faults. This fact
leads to the need for online fault detection and localization in hardware as well as in software.

Secondly, during accomplishing a task it is quite likely that a component of a robotics system
shows an undesired behavior that can be caused by a wide range of faults such as defective
hardware or software deadlocks. This phenomenon is caused by the complex interactions within
the robotics system and the non-deterministic interaction with the dynamic environment. In order
to be able to automatically cope with such problems it is necessary to have a monitoring system
that is not only able to detect the faults but is also able to repair the faults at run-time in order to
bring the robotics system back to its normal form.

Thirdly, in order to cope with these issues, if a model-based diagnosis approach is used, one
needs a model of the correct system behavior. Such a diagnosis model can be acquired using
three basic approaches. The first approach is to reuse requirements or engineering models that
are already available if for instance a model-driven development process is used [BGVB10]. If
no reusable models are available diagnosis models can be created by hand. While this second
approach is quite widespread it is cumbersome and error-prune in particular for complex systems.

11

1.3. CONTRIBUTION CHAPTER 1. INTRODUCTION

This requires the need of learning a diagnosis model automatically during a controlled learning
phase.

Fourthly, the robot operating system (ROS) [QCG+09] already provides a simple fault di-
agnosis system7. However, it is mainly limited to only monitoring hardware modules and code
execution. Moreover, it is essential for an autonomous robot that once a problem has been iden-
tified the system is able to derive and execute appropriate repair actions automatically but ROS
does not have any such capabilities for autonomous repair. An increasing number of research
groups around the world use ROS as a standard framework for the development of robot sys-
tems, these facts also demand for a diagnosis and repair system based on ROS platform.

In order to tackle with the above stated issues a required autonomous fault detection and
repair system should posses the following features:

� Scalability : It is the well-behavior of the system performance under change in resources
[Dav94, Hil90]. The more scalable the system the better it is.

� Reusability : Reusability is one of the key features of a system to keep it alive. The desired
system should be easily reused over the time when required. This feature should not only
apply to the whole system but its components should also be individually reusable.

� Generalizability: The robots and their control systems are evolving rapidly because of
new technologies both in hardware and software directions. Therefore, the system should
be completely generic rather than being task specific. It should follow standards to make it
more general so that the systems following the same standards, can use it or its components.

� Reliability : The system should keep performing its correct services for a period of time
[CGD12, LCI+04], be reliable enough in order to cope with “every” situation in daily life.
It will make the robot interact with dynamic world reliably in order to meet its goal.

The purpose of this dissertation is to present a diagnosis and repair system architecture for
ROS-based robotics systems, that can offer as many features of above as possible to the scientific
community. The contribution behind the presented work is described in the following section:

1.3 Contribution

The presented work contributes to the solution of the challenges stated in Section 1.2. It offers a
diagnosis and repair system with the following features:

7For further information on the ROS diagnostics stack please refer to http://www.ros.org/wiki/diagnostics.

12

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION

◦ Software and Hardware diagnosis : The diagnosis system presents a number of observ-
ing entities in order to monitor the robotics system’s behavior at run-time. In addition to
this it also presents a diagnostic board and a hardware observer to cope with detecting and
localizing the faults related to the hardware components of a robotics system.

The basic architecture of our diagnosis and repair system for software and hardware is
presented in our contribution [LMS+12]. For the purpose of diagnosing and localizing
hardware faults a diagnostic board that follows a standard based on TCP/IP protocol has
been manufactured and successfully tested. The particulars of the diagnostic board with
evaluation are presented in our contributions [ZL13, ZL14].

◦ Repairing diagnosed Faults : The system is capable of not only diagnosing the faults in
software and hardware components but also can repair them. The system can deal with
only transient faults not the permanent ones; i.e., it is not possible to automatically repair
a permanent fault (e.g., a broken gear) at run-time. It is important to bring robotics system
into its normal state again.

The work presented in our contribution [ZSM+13] presents the architecture of the diagno-
sis and repair system for both software and hardware faults. The contribution provides a
number of monitoring units in order to observe the robotics system for detecting the faults
and repairing them.

◦ Support for ROS framework: ROS is becoming more popular and almost every robotics
system is now adapting this framework. Therefore, the diagnosis and repair system is
based on the ROS framework to be used by all ROS based robotic systems. Moreover, the
system is compatible with already existing ROS-based packages, i.e., it does not require
the already existing packages to be edited and recompiled for being compatible.

The utilization of the ROS framework has been presented in our contribution [ZSS11],
where a scenario for mapping and automatic robot navigation based on ROS framework is
presented.

◦ Integration of Existing Diagnostics : The diagnosis system accommodates already exist-
ing ROS diagnostics by providing a monitoring unit for the diagnostics messages. More-
over, the system is also capable of publishing the ROS diagnostics compatible messages.

◦ Automatic model generation : A model of correct behavior of a robotics system is very
vital to detect a fault precisely. For a complex robotics system, the generation of the model
by hand, can be a very tedious job and subject to errors. Therefore, the diagnosis system
is capable of generating a model of correct behavior of a robotics system automatically.

13

1.4. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

A preliminary and simple system for the model generation for the robotics system is pre-
sented in our contribution [ZS13a]. While a fully comprehensive automatic model gen-
eration for the ROS-based robotic systems is presented [ZS13b]. The model generation
process generates a logical behavioral model of the robotics system.

The work explains the overview of the architecture, its five important modules namely, (1)
Observers, (2) Diagnosis Model Server, (3) Diagnosis Engine, (4) Action Servers, and (5) Di-
agnosis Repair Engine. The work also explains integration of the architecture into ROS, and
integrates the already existing ROS diagnostic stack. In the work all components of the architec-
ture are discussed and an evaluation of the system is presented showing feasibility of the work.

The work presents a complete methodology from extracting training set data to generating
observers and a model for diagnosis and repair system. The system is publicly available online
and can be downloaded through git system8.

1.4 Outline of the Thesis

Chapters of this thesis are organized as follows:
Chapter 2 : Research work related to the presented methodology is given in this chapter. It
covers a brief survey on the contributions done in the direction of diagnosis, planning, repair
and modeling.
Chapter 3 : Robot Operating System (ROS) and Model-Based Diagnosis (MBD) System are
both basic building components for this dissertation. Important and basic terminologies related
to ROS and MBD system are covered in this chapter. Moreover, it also presents basic concepts
about the logic and the planning used in our diagnosis and repair system.
Chapter 4 : This chapter presents the overview sketch of the methodology of this work. The
basic architecture of presented work is described in this section of the thesis. The architecture
includes observers, a model server, a diagnosis engine, action servers, and a repair engine.
Chapter 5 : This chapter presents a number of observers that monitor different properties of the
system components. The observers provide observed behavior of robotics system at run-time.
Chapter 6 : This chapter is dedicated to diagnosis. How a system is monitored and which kind
of observers are used for this purpose is discussed here. Moreover, it also discusses ROS-Based
diagnosis engine which derives diagnosis on the basis of the observations.
Chapter 7 : This chapter discusses how repair engine uses diagnosis and observations to make a
plan for repair actions. The plan is then executed through action servers in order to repair faulty
component(s).
Chapter 8 : The hardware diagnostic board is discussed in this chapter. The diagnostic board is

8git@robotics.ist.tugraz.at:tug ist model based diagnosis.git

14

CHAPTER 1. INTRODUCTION 1.4. OUTLINE OF THE THESIS

built particularly for dealing with hardware related faults. Moreover, this chapter also presents
hardware insights, a protocol, and control software of the diagnosis board.
Chapter 9 : Model-based diagnosis depends upon the model of the correct behavior of the sys-
tem. The way how the model is learned, is presented in this chapter. The model is learnt from a
fault free run of a robotics system to collect correct behavior.
Chapter 10 : This chapter is dedicated to the results of the evaluation process and the exper-
iments. It covers the evaluation of diagnosis (detecting and locating faults), repair (recovering
faulty components), and also modeling (creating and influence of different models).

15

1.4. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

16

Chapter 2

Related Research

This chapter discusses some of already existing research contributions in the area of fault detec-
tion and repair. The related research in the direction of diagnosis, planning, repair, and modeling
is presented in the relevant sections.

2.1 Diagnosis

The diagnosis is a problem of finding what is wrong with a system, based on (1) knowledge
about the structure of the system, (2) possible malfunctions, and (3) observations (symptoms,
evidences) coming from the behavior of the system [Poo89]. Fault diagnosis is the field that fo-
cuses on detecting faults and localizing them by locating the root causes of these faults. Increas-
ing research in the direction of Fault Diagnosis reflects the significance and the need towards
this field [LK08, BCNB07, IB97, BBdK82, Sim99]. Furthermore, two well known distinct and
parallel communities namely FDI (working in control field) , and DX (working in Artificial
Intelligence) [CPVG05] are contributing in fault detection and isolation using model-based rea-
soning. The development in this field began many decades before in the last century. In 1971s,
the work on observer-based fault detection in linear systems was reported [Bea71], and in early
1976 local approaches to fault diagnosis used fault models to localize failure in faulty compo-
nents [dK76]. According to contributions [VRYK03, VRK03, VRKY03] diagnostic methods can
be categorized on the bases of the types of knowledge and diagnostic search strategy (Figure 2.1
from [VRYK03]). The analysis of diagnosis and diagnosability in the context of model-based
diagnosis notions by using Performance Evaluation Process Algebra (PEPA) is covered in the
contribution [CPR00].

A diagnosis system generally takes as an input a set of symptoms which are measurements or
observations acquired from candidate system, and encoded in machine readable format. In order
to identify root cause of these symptoms, the diagnosis system has to have necessary knowledge

17

2.1. DIAGNOSIS CHAPTER 2. RELATED RESEARCH

Figure 2.1: Classification of diagnostic algorithms [VRYK03].

of the domain. This necessary domain knowledge is engineered into the system in some form
(e.g., rules, semantic networks, frames, logic, etc.), or the system is made capable of acquiring the
domain knowledge on its own. The system following the former way of knowledge engineering
is called a knowledge-based system [BH98]. Typically, the knowledge is engineered in such
systems in the form of rules; this is the reason why such systems are also called rule-based
systems. The complete knowledge base of such systems contains rules of IF-THEN form. Expert
System is one of the knowledge-based systems where domain knowledge is maintained in the
form of such rules. An example of domain knowledge coded in IF-THEN rules:

RULE1 : IF Headlights do not work
THEN Battery and/or Bulbs are faulty

RULE2 : IF Battery and/or Bulbs are faulty
AND Engine does not start

THEN Battery is faulty

RULE3 : IF faulty Bulbs and/or Battery
AND Engine starts

THEN Bulbs are faulty

The rules described above represent a sub part of domain knowledge from an auto mobile di-
agnosis system described in the contribution [BH98]. Knowledge-based systems generally use
an inference engine to draw inferences by matching known facts with IF part of the rules in the
domain knowledge. Inference engine achieves this by searching through the domain knowledge.
One of the major issues with knowledge-based systems is to acquire domain knowledge form the
expert of domain. There are a number of issues with such systems [Web08]: Firstly, the domain

18

CHAPTER 2. RELATED RESEARCH 2.1. DIAGNOSIS

knowledge is hard to create by hand. Secondly, the quality of the diagnosis depends on expert’s
experience of the domain. Thirdly, these systems cannot correctly locate multiple faults because
they rely on single fault assumption.

Unlike knowledge-based systems, the model-based diagnosis systems [DH88a] use a generic
abstract model of a domain instead of hand-crafting knowledge bases. The model in the model-
based diagnosis can be either constraint-based or logic-based [PW03]. The model-based diagno-
sis uses a logical reasoning by using a model in order to derive the root causes if any deviation in
the behavior is observed. It offers two basic approaches namely abductive and consistency-based.
Both of these approaches differ in representing a diagnostic problem. The abductive approach
[Poo94, CTng] revolves around the concept of causes and effect. The possible causes (faults,
diseases) parameterized by the values on which they depend, are the possible hypotheses. The
axioms are developed on how symptoms follow from the causes. These axioms should be facts
if the symptom is always present given the cause, otherwise these should be possible hypothe-
ses. The approach utilizes knowledge about the faults and their symptoms in order to monitor
abnormalities. It requires different knowledge than a consistency-based approach in order to get
the same diagnoses [Poo88, Poo89, CDTnn]. The consistency-based approach [dKW87, Gen84]
uses correct behavior of a system without having knowledge of abnormalities or faults. On devi-
ation, it isolates abnormal system components form the normal ones using logical reasoning.

The presented work follows the concept of consistency-based diagnosis system first proposed
in 1987 by Reiter’s contribution in this field [Rei87]. It is a widely used approach to the model-
based diagnosis within the community of artificial intelligence. This is a process of an iterative
cycle consisting of steps, namely behavior prediction, conflict detection, candidate generation,
and candidate refinement [PG04]. Consistency-based reasoning provides a logical foundation
for diagnostic reasoning and clarifies fundamental assumptions, such as single fault and exoner-
ation. It can work with Horn clause logic or predicate logic like programming language (Prolog)
[GMC04]. It is a specialized model-based diagnosis approach that uses propositional logic to
express and analyze the model of systems. It generates diagnosis which is a set of faulty com-
ponents in the system. This set explains the observations using the notion of logical consistency
[Pal01]. Apparently diverse model-based diagnosis systems have been built for troubleshoot-
ing and diagnosis [IB97, Ise97, CP99, GMC04]. This diversity basically lies in the varying
kinds of knowledge in each stage of their process [DH88b]. Every model-based system (e.g.,
Consistency-based) follows the same fundamental paradigm as the interaction of observation
(from actual system) and prediction (from system’s model) as shown in Figure 2.2. This funda-
mental paradigm depicts two behaviors, namely observed and predicted. It states that for the
correct model of a system (the presumption behind every model-based system) all discrepancies
are due to the defects coming only from the observed behavior of the system.

Throughout the development of this dissertation, we utilized the experience in the diagnosis

19

2.1. DIAGNOSIS CHAPTER 2. RELATED RESEARCH

Figure 2.2: Model-Based Diagnosis in terms of predictions and observations [DH88b].

systems and the results from different previous similar works. The authors of the contribution
[SMW06] presented a model-based approach for diagnosing faults in a robot control software
which uses a model of the communication between components. The approach was based on
a CORBA-based communication framework; we developed an architecture under ROS platform
which is a latest and widely used robotic software framework nowadays. Moreover, the approach
is only meant for the software fault diagnosis. Instead we integrate hardware fault diagnosis as
well. The research contribution [KSW09] introduced the concept of utilizing qualitative property
(increasing, decreasing, and constant) of data for sensor validation. The approach uses qualitative
symbols [-,0,+] for the abstraction of sensor data based on qualitative reasoning techniques.
In order to reason about the root cause of any unexpected behavior, it uses expected qualitative
relations between sensor streams. In our work we exploit the same idea to develop one of the
observers for monitoring such qualitative trends in the data. Moreover, our system learns the
qualitative relations between sensors data online during the learning phase. In [PW03] the model-
based reasoning from first principles in the domain of circuit designs is presented. The approach
uses a logical model to represent correct behavior of circuits, and uses observations to reason
about deviation using first principles. We use a similar way to this approach for representing
logical behavioral model. Moreover, we use a diagnosis engine (open-source) which is a java-
based implementation of the approach.

The authors of [MAVL06, MAVL07] presented an FDI approach to detect faults of sensors
in a mobile robot. The approach uses a set of constraints about known and unknown values in a
system (e.g., one value is proportional to another one) to generate residuals which can be used
to detect sensor faults like offsets in accelerometers. Moreover, the system proposes to use filter
techniques (Kalman, particles) to cope with noisy observations. The work is very much related
to the proposed approach in the sense that faults in components are identified based on observed
signals. But while the constraints are manually given in that approach, our method identifies such
relations automatically in a learning phase. Moreover, the method presented in this paper uses
a qualitative approach to detect deviations rather than a quantitative approach. In [KKR13] an
approach for on-line diagnosis of components of autonomous system is presented. The approach
compares pairs of sensor signals in order to detect faulty components. The approach is similar to
the presented approach but needs to know the structural model in advance. Moreover, the signals

20

CHAPTER 2. RELATED RESEARCH 2.1. DIAGNOSIS

are only linearly correlated. In contrast our approach learns the structural model automatically
and correlates the signals qualitatively over a period of time. The contributions [REW06, RW05]
describe a model-based system that provides the ability to increase the robustness of complex
systems. It is based upon model-based programming tools that enable the specification of self-
deprecating and self-reconfiguring methods along with model-based executives that reasons from
the component service models to continuously monitor, diagnose, reconfigure a function in a
complex system. The author of the contribution [Kal12] presents a model-based approach to
coordination failures in a multi-agent system due. The agents with their states are represented
by a matrix-based notation which defines a coordination design of the multi-agent system. The
approach uses a logical multi-agent system description (MSAD), and a diagnoser for observing
the agents. It reports a coordination failure when an agent’s observed coordination mismatches
the expected coordination in the matrix.

In the context of hardware diagnosis and repair, the Livingstone architecture proposed by
[MNPW98a] was used by NASA’s first New Millennium mission named Deep Space One (DS1)
in order to diagnose the space probe’s Remote Agent for its failures in hardware and to recover
from them. The process of fault identification and reconfiguration uses compositional, declar-
ative, concurrent transitions system model together with probabilistic and deterministic tran-
sitions, while the planning and scheduling part is constraint-based, operating on a declarative
domain model in order to generate a plan from first principles. A model-based diagnosis ap-
proach in order to identify faults in the hardware design descriptions is presented in the research
work [FSW99]. The work uses a communication structure from hardware design source program
coded in a hardware description language for an hardware (e.g., D75) in order to debug the code
for a possible misbehavior of the hardware. We adapt this concept of extracting diagnosis model
from communication structure between the components, and comparing observerd and predicted
behavior of the components to detect discrepancies and localize the faults using the model-based
diagnosis and reasoning. The contribution [CM03] presented an evaluation of failures on as
many as 13 different mobile robots. The most common failures encountered were hardware
related failures, e.g., effector failures, namely, tracker, gear, motor, and wheel problems. The
analysis shows that hardware failures are important to deal with in order to have trustworthy and
dependable autonomous robotics system.

The work [BHSW07] presented a mechanism for fault diagnosis and reconfiguration of robot
wheel drives at run-time. It provides a control framework which is capable of reconfiguring the
control functions of the drive based on the detected faults. The approach reacts to the faults in
robot drives in three different ways: (1) “slightly faulty” behavior adaptation if the fault is not
serious, (2) system degradation (omni to differential drive) if fault is not adaptable, and (3) safe
state or informing human operator if fault cannot be reconfigured at all. Although the approach
is a good initiative in the direction of hardware diagnosis and repair, it is specific to particular

21

2.2. PLANNING CHAPTER 2. RELATED RESEARCH

hardware and reconfiguration. The approach cannot deal with the situation where robot drives
need to be switched ON/OFF depending on the behavior of its software driver, which is a more
common failure than a broken drive. Our diagnosis system uses a hardware diagnostic board
which can automatically control different hardware components attached to it. The authors of
[ZKH+01] presented a hybrid diagnosis approach for a printer system (Xerox DC265) where
mode estimation for continuous sensor measurements was combined with a decision tree using
discrete components modes. The diagnosis approach presented in this paper is related to this
work because it uses correlations of signals to generate input for a discrete model-based ap-
proach. A different approach using particle filters for estimation the mode of robot hardware was
presented in [VVGG+04].

2.2 Planning

In order to enable repair actions we use in our work the widely recognized Planning Domain Def-
inition Language (PDDL) [KBC+98] which is one of the extensions to research in the direction
of planning, originated with a basic planning language called STRIPS (STandford Research In-
stitute Problem Solver) [FN71b]. STRIPS is a member of planning problem solvers that searches
a space of ”world models” to reach a given goal. It represents a world model by a set of well-
formed formulas (wff) of the first-order predicate calculus. Due to some limitations in STRIPS,
its first advancement in the form of ADL (Action Description Language) was introduced [Ped89].
ADL supports many additional features not supported by STRIPS, e.g., negative literals, quan-
tifiers and disjunction in goal state, equality predicate (x = y), and support for types, etc. The
extension to ADL is PDDL which not only supports STRIPS and ADL but also offers a num-
ber of extra features that include specification of hierarchical actions, subactions, subgoals, etc.
Since its development, PDDL is gaining popularity and getting extended to integrate new features
[FL03]. In our system architecture we use a planner based repair engine. It converts observations
and diagnosis into a PDDL planning problem definition, and get a plan for the actions. In order to
get a valid plan from PDDL representations of a system, we use a java-based GraphPlan [BF97].

A propositional planning system called LAMA is presented by [RWH11]. It uses a heuristic
derived from landmarks in conjunction with the well-known FF heuristic. LAMA builds on the
Fast Downward Planning System using non-binary state variables and multi-heuristic search. It
uses A* search so that the planner continues to search for the plans of better quality until the
search is terminated.

One of the most exciting development in AI-Planning is GRAPHPLAN [BF97]. The GRAPH-
PLAN is widely used planner because of two reasons: Firstly, it is an elegant and simple algo-
rithm which is an extremely speedy in many cases, especially faster than previous systems like
PRODIGY [MCK+89], and SNLP [MR91]. A general purpose problem solver STRIPS is de-

22

CHAPTER 2. RELATED RESEARCH 2.3. REPAIR

veloped specifically for robot tasks planning problems [FN71a]. It represents a world model
in the form of a set of well-formed formulas (wffs) for instance, a world model where a robot
is at location a and boxes B and C are at locations b and c. STRIPS wffs would be: ATR(a),
AT(B, b), AT(C,c). Problem space for STRIPS is defined by (1) an initial world model, which
is a set of wffs describing present state, (2) a set of operators with description of their effects
and preconditions, and (3) a goal condition stated as a wff. STRIPS needs model of each ac-
tion in order to generate a plan. These model actions are operators which transform one model
into another. Each STRIPS operator is characterized by three entities: a delete list, an add list,
and a precondition wff. A general STRIPS planning problem comprises of an initial state S, a
goal state G, and a set of STRIPS actions. A STRIPS action definition specifies three sets of
facts: a set of preconditions facts (PRE), a set of add effect facts (ADD), and a set of delete
effect facts (DEL). For instance, a world model with two objects A, and B, a table, and a
robotic arm. Initial state S = {holding(A), clear(B), onTable(B)} specifying that the only
object B is on the table, and the object A is held in robotic hand. The action putDown(A,B)

can be specified in terms of ADD, DEL, and PRE lists as 〈PRE : {holding(A), clear(B)},
ADD : {on(A,B), handEmpty, clear(A)},DEL : {holding(A), clear(B)}〉 The fact for goal
state can be for example on(A,B). An operator is applicable if its precondition wff is satisfied.
Add and delete lists describe how an operator transforms from one state into another. Authors in
contribution [FHN72] explain STRIPS planning process in detail.

2.3 Repair

Faults in a robotics systems are always unavoidable. If a robotic system in a critical situation
faces a failure (e.g., NASA Mars rover gets fault in a motor [WHC+06]) then it needs to be
recovered efficiently and automatically. This raises the need of an automatic repair system for
the faults in both hardware and software components. Repairing faults in hardware component,
e.g., robot drives, is presented in contribution [BHSW07]. It offers a reconfiguration engine
(Figure 2.3) along with a diagnosis engine in order to detect, localize, and repair faults in omni-
directional drives of a specific robot. It deals with three scenarios: Firstly, if a fault which is
not too serious is detected, then after localizing the fault the reconfiguration engine adapts its
behavior to the new situation by reconfiguring the robot drive without changing the functionality
of the robot. Secondly, if a fault cannot be fully compensated by the reconfiguration engine
then it performs a controlled degradation of the functionality. For instance, an omni-directional
drive degrades to a differential drive. In this scenario the higher level control system of the
robot (planner) is also adapted according to the new functionality. Thirdly, it considers a serious
fault where either the robot is switched to a safe state or alarmed for external intervention to
recover from the fault. For evaluation it injected online faults simulating broken wheels, gear,

23

2.3. REPAIR CHAPTER 2. RELATED RESEARCH

Figure 2.3: Framework with reconfiguration engine for repair [BHSW07].

fault in motor, or in its control electronics. The detailed generalized framework for the same
reconfiguration repair system has been described in the work [HKSW07].

Robotic control software consists of different services that communicate with each other and
with hardware components. The control software is responsible of overall control of robot in
achieving its mission. A malfunctioning service can disturb the system to a complete robot
mission. The detection and the localization of the faults in a control software of a robot are
presented in [SMW06]. The contribution uses a framework with three modules: (1) a monitoring
module, (2) a diagnosing module, (3) and a repair module. The monitoring module observes the
behavior of software services, and reports ¬ok(s) if service s deviates from its correct behavior,
otherwise ok(s). The diagnosing module locates the faulty software component if a deviation is
reported. It uses abstract model of the correct behavior of the system. The repair module consists
of two actions namely stop and restart in order to stop functioning or again starting the faulty
service of robot control software [MNPW98a].

The authors of [GWHH10a] and [GWHH10b] presented statistical learning techniques for
models of the communication within robot systems. The presented techniques allows for es-
timating a probability distribution of the internal data exchange and communication in a robot
system. This approach is similar to the presented because it uses statistical information about the
occurrence of messages. We extend this approach by additionally integrating the content of the
messages.

A Sensor Fusion Architecture Exception Handling (SFX-EH) has been presented by [CM03].
The approach recovers autonomous mobile robots from errors. Figure 2.4 depicts the steps in-
volved in SFX-EH approach. It achieves exception handling strategy with two steps error clas-
sification and error recovery. The former step generates all possible hypotheses and tests them
in order to classify sensor failures. The underlying cause of the classified failure is passed to the
error recovery step for the repair. The recovery process uses a lookup table to search for alter-
natives sensor and recovers from the error. If no alternate is found the approach simply declares

24

CHAPTER 2. RELATED RESEARCH 2.4. MODELING

Figure 2.4: Error Classification and Error Recovery steps of SFX-EH [CM03].

mission failure and gives control to the planner.

2.4 Modeling

A lot of research on diagnosis and repair for robots has been conducted during the last decades.
The approaches basically differ in the application domain (software, hardware, behavior, or an in-
tegration of all), in the methodology used, and if diagnosis and repair are combined. In [SMW06]
the authors presented a model-based approach for diagnosing faults of robot control software
which uses a model of the communication between components. The approach was based on a
CORBA-based communication framework while our system learns model for ROS-based com-
munication framework presented in [QCG+09].

The concrete behavior of a robotics system at run-time is determined by the behavior of its
software and hardware components. In order to formalize the concrete behavior of the robotics
system we need to analyze the computation and interaction between its components. The idea be-
hind the abstract behavior model is similar to the models described by the contribution [FSW99]
which automatically generates a diagnosis model from one of the most widely used hardware
description languages VHDL (Very High Speed Integrated Circuit Hardware Description Lan-
guage). The approach adapts model-based system description to derive model from VHDL pro-
gram. Our model learning follows the model representation strategy specifically from the com-
munication between the software and hardware components. The LAAS contribution [IGI11]
presents an approach in order to learn the global behavior of a robotics system from its obser-
vation data. The work models the behavior of the robotics system at run-time using dynamic

25

2.4. MODELING CHAPTER 2. RELATED RESEARCH

Bayesian and decision networks. The learning methodology used in the work is similar to ours.
It records the raw data from robot sensors, defines state variables, constructs a Bayesian graph,
and then finds conditional probability distribution that fits the training raw data. We also have a
learning phase and record raw data from robotic systems and constructs a logical model instead
of using probabilistic model.

The research work [CS01] learns the diagnosis model for the dynamic system by generat-
ing system parameters bounds. Likewise the contribution [LC05, CS01] presents a model-based
system approach First Priority Diagnostic Engine (FPDE) for fault diagnosis. In order to gen-
erate diagnosis model for the diagnosis process the EPDE engine offers a module called bound
generator which calculates maximum and minimum bounds of the robot parameters by using
kinematics equations while computation. The set of the bound parameters is used as a model in
order to find discrepancy in the observed behavior.

Automated learning of the communication models for robot navigation software is presented
in [KSW08]. The approach identifies different types of communication patterns which are used
in the diagnosis model. We reuse this idea, however, by using an intelligent automated selection
we avoid the manual setting of many parameters which is necessary in that approach. In the
context of hardware diagnosis and repair the authors of [BHSW07] presented a mechanism for
fault diagnosis and repair of robot drives at runtime. It provides a control framework which is
capable of reconfiguring the control functions of the drive based on detected faults. In [ZSM+13]
an integrated diagnosis and repair approach for ROS-based robot system is presented. The ap-
proach uses a model-based approach and is able to deal with faults in software and hardware.
Within this paper we present an extension to this approach. The authors of [ZKH+01] presented
an hybrid diagnosis approach for a printer system where mode estimation for continuous sen-
sor measurements was combined with a decision tree using discrete components modes. The
diagnosis approach presented in this paper is related to this work because it uses correlations of
signals to generate input for a discrete model-based approach.

In [KKR13] an approach for on-line diagnosis of components of autonomous system is pre-
sented. The approach compares pairs of sensor signals in order to detect faulty components.
The approach is similar to the presented approach but it needs to know the structural model in
advance. Moreover, the signals are only linear correlated. In contrast our approach learns the
structural model automatically and correlates the signals qualitatively over a period of time. A
different approach using particle filters for estimation the mode of robot hardware was presented
in [VVGG+04]. In the domain of diagnosis in multi robot systems the work in [MTT06] uses
communicating automatons where the work in [PK06] uses causal models and a hypotheses
generation and testing strategy. The latter moreover provides pre-defined repair action and the
learning of new fault types.

The methodology for learning model presented in this dissertation follows the approach for

26

CHAPTER 2. RELATED RESEARCH 2.4. MODELING

abstract logical model defined in the consistency-based diagnosis [Rei87]. It uses abstraction of
real and correct behavior of the system, such abstract models have also been used in different ar-
eas [MSS95, MS96] . There are a number of approaches for modeling highly dynamical systems
for diagnosis including probabilistic automatons or finite state machines [Ste06].

27

2.4. MODELING CHAPTER 2. RELATED RESEARCH

28

Chapter 3

Prerequisites

The presented work uses the concepts of Robot Operating System (ROS)1, First Order Logic
(FOL), and Model-Based Diagnosis (MBD) system. This chapter gives a brief understanding
about the basic concepts and terminologies related to ROS, Logic, and MBD system.

3.1 Overview

Our work is based on ROS because this robotic framework is gaining popularity among the
robotics labs around the world. All modules of the presented work function as ROS units and
communicate with each other under this platform. The scope of the work is also the ROS-based
robotics systems, therefore, it is important to introduce what the ROS platform is, what are its
basic building units, and how these units work together in order to accomplish a task.

The second necessary important system which our diagnosis system is based on, is the logic.
The diagnosis engine module used in this work is specifically based upon the propositional and
predicate logic. It uses propositions and Horn-clauses in order to deduce diagnosis. Therefore, it
is also necessary to get the logic briefly introduced here. We give a brief introduction of what is
propositional logic and how does it provide a basis to the predicate logic.

As the presented work is a model-based diagnosis system, the basic concepts of the model-
based diagnosis are also briefly given at the end. The diagnosis concepts are explained through
definitions and examples. In the following section we give an example which will be used in this
and the following chapters as a running example. The definitions and concepts used in this work
will be clarified through this running example.

1http://www.ros.org/

29

3.1. OVERVIEW CHAPTER 3. PREREQUISITES

(a)

/map

/cmd_vel

/scan

/imu_data

rviz

jtn

hm

lac

la_servo1_moving

la_servo2_moving

jysjn

hn

lanla

imu

hu

ja

in

jyn
/joy

/pose

D
 i a

 g
 n

 o
 s t i c

 B
 o

 a
 r d

(b)

Figure 3.1: Simple control architecture (b) for the search and rescue robot (a). Rectangles rep-
resent hardware modules. Gray circles represent hardware nodes. Dark gray circles represent
hardware driver nodes with switchable hardware devices. White circles represent normal soft-
ware nodes. Solid arrows represent publisher/subscriber communication. Dot-dashed arrows
represent service calls. Dotted lines represent hardware connections.

3.1.1 Running Example

We consider a teleoperated mapping scenario using the TEDUSAR search and rescue robot as
shown in Figure 3.1 part (a), while a simple robotics system is depicted in part (b). The robotics
system comprises five hardware components and nine software components. The hardware com-
ponents include jaguar (ja) base of robot, IMU sensor, Hokuyo (hu) laser sensor, laser alignment
(la), and joystick (jys). Software components are to control hardware and perform required task
for building a map. Jaguar teleop node (jtn) provides command velocities on topic /cmd vel
to jaguar node(jn) which moves jaguar base (ja) and publishes odometry (robot’s position) in-
formation on the topic /pose, hokuyo node (hn) is driver for Hokuyo laser sensor and provides
laser data on the topic /scan, IMU measures orientations and its node imu node (in) publishes
the data on the topic /imu data, and laser alignment system contains two servo motors controlled
by laser alignment node (lan) in order to keep the Hokuyo sensor parallel to the surface in both
pitch and roll orientation by using data from IMU sensor through laser alignment control (lac).
Hector mapping (hm) builds map of the environment using robot position and laser data. The
software component rviz visualizes the map, and joy node (jyn) provides joystick commands on
topic /joy. Except Joystick and IMU sensors all other three hardware components are switchable
meaning they can be automatically switched ON/OFF through diagnostic board. The task of the
robot is to build a map of an unknown environment on uneven surface, while being teleoperated
through a joystick.

30

CHAPTER 3. PREREQUISITES 3.2. ROBOT OPERATING SYSTEM (ROS)

3.2 Robot Operating System (ROS)

Robot Operating System (ROS) is an open-source, meta-operating system that primarily runs
on Unix-based platforms. Basically ROS is not an operating system like its name suggests
[QCG+09], rather it is a framework that works under the umbrella of an operating system, e.g.,
Linux. It provides functionality for hardware abstraction, low-level device control, and mes-
sage passing between nodes. It provides commonly used operations for high-level applications,
a number of tools for the organization and execution of the development process, a number of
means of inter-software communication, basic data types, and a number of off-the-shelf third-
party modules. It is a common framework to the community of robotics research for sharing and
utilizing already built and existing libraries and working modules. Every robotic system built
under ROS contains a number of running processes performing specific tasks, communicate
with each other, and share processed information using strictly typed messages. ROS provides
a peer-to-peer topological mechanism in order to deal with such concurrently running processes
connected with each other at run-time. ROS support for an operating system is wide, e.g., Linux,
Windows, OSX, Debian, etc. It is not one programming-specific framework, rather it supports
programs written in C++, Java, Python, Lisp, etc. This amazing feature enables every software
programmer to use ROS. Its build system uses CMake for a modular build inside a code tree. A
ROS executable entity called node with a list of parameters which makes it possible to re-use
it outside of its original context. This enables its users to easily execute these nodes on a dif-
ferent platform. ROS also offers a comprehensive documentation for tutoring its new users in
a very easy way by providing easy-to-implement examples in different languages, e.g., English
(mostly), German, French, Italian, Japanese, Simplified Chinese, etc. Moreover, it offers visual-
ization tools (e.g., Rviz), and a number of simulators (e.g., Gazebo) for different robotics systems
where new users can evaluate their programs. ROS is continuously evolving framework over the
time in order to cope with new requirements of the community.

The robotics system in the running example (Sec. 3.1.1) functions under ROS platform. It
uses a number of software components based on ROS, namely jaguar node (jn) , hokuyo node
(hn), imu node (in), laser alignment node (lan), jaguar teleop node (jtn), hector mapping
(hm) node, laser alignment control (lac) node, joy node for Joystick (jys), and rviz node for
visualization.

3.2.1 ROS framework architecture

The main idea behind ROS framework implementation is a distributed system of running
processes that are individually designed and loosely coupled at run-time. Communication
between these processes is established either by a send/receive mechanism on an appropriate
channel. Another mechanism similar to remote method invocation (RMI) that ROS implements

31

3.2. ROBOT OPERATING SYSTEM (ROS) CHAPTER 3. PREREQUISITES

is request/reply interactions between processes. As stated earlier ROS provides a structured
communicational layer above the hosting operating system (e.g., Linux). At this commu-
nicational layer ROS employs XML-RPC (Extensible Markup Language Remote Procedure
Call) for connection negotiation and configuration, which is supported by all major computer
programming languages.

3.2.1.1 ROS Master

ROS provides a structured communication layer for robotics systems containing a number of
processes. The number of the processes grows larger if the robotics system is getting more
complex and performing many functions at a time or the system is a multi-robot system. In such
a case there is a need for a mechanism to monitor communicating entities, to allow them to find
each other, and to lookup message passing between these entities. This lookup mechanism and
necessary services are provided by a ROS central core and named service called master.

Definition 3.1 (ros master). The ROS Master is the core of the ROS, which provides a lookup
mechanism in order to keep the standards and the goals provided by ROS.

Some of the important services that master provides are:
* to offer APIs and libraries based on XML-RPC protocol.
* to enforce communicational standards.
* to provide registration services to new coming processes.
* to use naming services for executable entities to uniquely identify a process.
* to help the entities find each other for exchanging messages.
* to establish a peer-to-peer way of communication among multiple processes.

In order to facilitate running processes in a robotic system under ROS framework, it provides
a lookup mechanism that helps these processes to find, request and reply to each other at runtime.
This lookup mechanism is provided by ROS master. ROS architecture uses workspaces in the
form of stacks and packages to ensure reuse without any naming ambiguity. Executable processes
in ROS are nodes which communicate with each other using topics or services by exchanging
typed messages. ROS frame architecture also provides a parameter server which handles node
parameters and plays an important role in reconfiguring them at runtime.

3.2.1.2 ROS basic building units

The fundamental building units and concepts of the ROS implementation are messages, topics,
nodes, packages, stacks and services, etc.

32

CHAPTER 3. PREREQUISITES 3.2. ROBOT OPERATING SYSTEM (ROS)

A message is a simple named data structure that possesses information about some compo-
nent or component’s property. It contains fields of standard primitive types, e.g., float, integer,
etc.

Definition 3.2 (message). A messageM is a strictly typed data structure.

Example 3.1. (Continued) Command velocity message contains information about linear and
angular velocities.

A message can be nested meaning that a message within a message is allowed. A message is
always sent and received through topics.

Definition 3.3 (topic). A topic τ is a named channel which carries messages.

The communication over the topics is of streaming, many-to-many, and unidirectional nature.
Each topic is strongly typed by its message type. The transport of messages over the topics is
TCP/IP-based and UDP-based.

Example 3.2. (Continued) Running example uses different topics, e.g., /imu data transports
position of the robot in x-y-z-w quaternions, and the topic /scan carries laser sensor messages
about distances of the obstacles in front of the sensor.

A node uses topics to send and receive messages to/from other nodes.

Definition 3.4 (node). A node η is an executable software program that performs computations.
It can have a number of topics for sending (publisher) messages and/or a number of topics for
receiving (subscriber) messages. It can be represented as tuple 〈η, Pb, Sb〉 where:

◦ η is the name of the node.

◦ Pb = {τp1, τp2, ..., τpn}; set of n publishing topics which the node uses to send messages.

◦ Sb = {τs1, τs2, ..., τsm}; set of m subscribing topics which the node uses to receive mes-
sages.

Definition 3.5 (publisher, subscriber). A publisher to a topic τ is a node η which sends mes-
sages on τ . Likewise, a subscriber to a topic τ is a node N which receives messages from τ .

A ROS node is the basic executable entity or process which performs computation and com-
municate with other nodes using (1) topic, (2) services, and/or (3) parameters via Parameter

33

3.2. ROBOT OPERATING SYSTEM (ROS) CHAPTER 3. PREREQUISITES

Server. The node which sends message is called publisher and the recipient node is called sub-
scriber. A node can be either publisher or subscriber or both. Typically a robotic system com-
prises many such nodes, each (publisher/subscriber) for a specific task, e.g., rotating the robot
wheels. A node can be developed in any ROS supported computer language like C++, Java,
Python, etc. Each active node has a unique name through which it is identified in the system.

Example 3.3. (Continued) The node jaguar node (jn) is subscriber to the topic /cmde vel and
is used to drive the robot base (jaguar), the node hector mapping is publisher to topic /map to
send map to rviz node which is subscriber to /map topic.

All nodes of related functionality are combined in a package. A node cannot exist without a
ROS package which is simply a directory that contains all related executable nodes, their source
files, an XML file describing the package and stating its dependencies. In general a package
is a container for the nodes; i.e., P = {node1, node2, ..., noden} for n ≥ 1. The package is
a directory under a ROS path, and can depend upon other packages. Every package must con-
tain two necessary files namely manifest.xml and CMakeList.txt. The file manifest.xml provides
meta data about the package whereas the CMakeList.txt uses CMake to build specified nodes of
the package. In addition to node source files, a package may also include configuration files,
dataset, ROS-independent library, third-party software, or anything useful for developing a mod-
ule. However, it should not contain too much software material to avoid heavy weight, porting
and usage difficulty.

Example 3.4. (Continued) The node hector mapping (hm) is from a package named
hector mapping2. The name of the package is same as its node’s name.

Like package, a stack is simply a directory which is a primary mechanism in ROS system for
distributing software for code sharing purposes. A stack is a collection of one or more packages
that collectively provides a functionality. It can depend upon other stacks which become its
dependencies. Each stack has a manifext (stack.xml) file which declares meta data of the stack
and dependencies on other stacks. A stack only contains packages; it cannot be nested within
another stack. A stack is a container for all packages that provide related functionalities. It can
be represented as a set of packages; i.e., S = {pkg1, pkg2, ..., pkgn} for n ≥ 1.

Example 3.5. (continued) A ROS stack named Navigation3 contains all packages necessary for
automatic navigation.

A service offers a communication of request/response mechanism. Unlike topic, the services
need two kinds of messages; one for the request and second for the reply. A node can send

2http://wiki.ros.org/hector mapping
3http://wiki.ros.org/navigation

34

CHAPTER 3. PREREQUISITES 3.2. ROBOT OPERATING SYSTEM (ROS)

a request and the service returns a response to the node after fulfilling the request. The topic-
based communication is a flexible model, but its many-to-many broadcasting nature of publishing
information is not appropriate. A service has a name and a pair of messages one for the request
and one for the response. Another difference between topic and service communication is that
more than one node can publish data on a single topic whereas this is not in the case of service.
Only one node can advertise a service of a specific name.

Definition 3.6 (service). A service is a named mechanism that offers remote procedure call
(RPC) request/reply type interactions. A service receives a request and sends a reply after com-
pleting the request.

Example 3.6. (Continued) The node hector mapping (hm) provides a service named
dynamic map which provides map data in response if it receives a request for the map data.

A node can also use, store and/or receive parameters at runtime. A parameter is of a certain
primitive type that can have a default value if not provided during instantiating the node. Using
this facility a node can reconfigure some behavior by changing value of its parameter at runtime.
A parameter server runs inside ROS Master. It uses the XML-RPC mechanism to send parameter
values to the nodes.

Example 3.7. (Continued) The node hector mapping (hm) uses a number of parameters, e.g.,
map resolution parameter is the length of grid cell. Its value 0.05 means that one cell in the
grid (map) represents a distance of 5cm.

3.2.1.3 Action Server

ROS services provide request/reply interaction, however, if a service takes longer then the request
cannot be cancelled once it is made. An Action server is an executing entity that executes long-
running goals. It also provides periodic feedback during execution, and it can be preempted when
necessary. After completing the execution it sends back the result. An action server and client
uses four kind of messages, namely goal, result, feedback, and cancel.

3.2.2 ROS framework distributions

ROS comes in the form of distributions. Early distribution of ROS are Box Turtle, C Turtle, and
Diamondback while currently circulating distributions are Electric, Fuerte, and Groovy. The
most recent and uptodate distribution is ROS Hydro Medusa which is now available for three
versions of Ubuntu 12.04 (Precise), 12.10 (Quantal), and 13.04 (Raring). A recent distribution

35

3.3. LOGIC PRELIMINARIES CHAPTER 3. PREREQUISITES

can be easily downloaded and installed4.

The main idea behind ROS is to have a distributed system of programs called nodes that are
individually designed and loosely coupled at run-time. Communication between nodes is estab-
lished either by a publisher/subscriber mechanism on appropriate topics or by calling services on
responsible nodes. Topics are strings that uniquely identify communication channels. Services
implement request/reply interactions between nodes and are similar to remote method invocation
(RMI). Messages are simple named data structures that are passed between nodes.

3.3 Logic Preliminaries

The history of Logic is thousands of the years long, but the propositional logic was presented
more than one and a half century ago by G. Boole [Boo54]. This contribution presents logical
concepts in a comprehensive simple way using “+” and “.” symbols for disjunction and con-
junction logical operation. The basic but modern logical concepts are thoroughly covered by
[MH04]. Logic is possibly related to how to evaluate reasoning and arguments in order to sep-
arate truth from falsehood. It can be considered as a science of correctness and incorrectness
of the reasoning about a situation which means constructing arguments about the situation. It
aims to develop formal languages to model such situations in order to formally reason about
them. The presented diagnosis system is based upon “first principles theory” which uses a lan-
guage representation based on first-order logic for logical formalization of system description,
and computing the diagnosis through logical reasoning.

3.3.1 Propositional Logic

Propositional logic is a branch of logic that studies about the propositions, and logical relation-
ship and properties between them. It is also called sentential logic or statement logic for the fact
that it is based on indivisible sentences or statements called declarative sentences or propositions.
A proposition can always be argued as being true or false and not both.

Definition 3.7 (proposition, declarative sentence). A proposition or declarative sentence is an
indivisible unit statement that can be argued as either true or false but not both.

Example 3.8. These are some propositions: (1) “Bulb is ON”, (2) “Camera is not faulty”, (3)
“Voltage is high in the wire”, (4) “It is raining”, etc. There are some sentences that cannot be
argued as being true or false so they are not propositions like: (1) “May you succeed”, (2) “one,
two, three, go!”, (3) “Could anybody please bring me a pen?”, etc.

4http://wiki.ros.org/ROS/Installation

36

CHAPTER 3. PREREQUISITES 3.3. LOGIC PRELIMINARIES

Propositional logic uses propositional terms (e.g., p,q,r,..) also called propositional atoms to
represent the propositions, and propositional connectives in order to construct more complicated
propositions.

Definition 3.8 (logical connectives). Propositional logical connectives are negation (¬), con-
junction (∧), disjunction (∨), and implication (→). The negation logical operator (¬) is unary
(e.g., ¬p) while ∧,∨, and → are binary operators (e.g., p → q). The ¬ operator toggles its
operand’s truth value, the ∧ operator produces true when its both the operands are true, the ∨
operator returns true if any of its operands is true, and the → operator produces always true
except when its first operand (assumption) is true but second operand (conclusion) is false.

The logical operators ¬,∧,∨, and → represent English words “not”, “and”, “or”, and
“if..then..” respectively.

Example 3.9. Considering three declarative sentences “Bulb is ON”, “Voltage is high in
the wire”, and “Camera is not faulty” with the propositional atoms “b” and “v”, and “c”
respectively. The following compound propositional logical sentences are as:

¬b ∧ v : Bulb is OFF and Voltage is high in the wire.
¬c ∨ ¬v : Camera is faulty or Voltage is low in the wire.
b→ v : If Bulb is ON then Voltage is high in the wire.

All possible strings made up of propositional terms and propositional logical connectives
make a language called propositional language L. A string may contain brackets ”()” to specify
the priority of a logical operator. The logical truth-value of a propositional string depends upon
the logical operator used and the truth-values of the propositional terms.

Definition 3.9 (propositional language). A propositional language L is a set of strings over al-
phabet comprising propositional terms and connectives; i.e.,

∑
= {p, q, r, ...,¬,∧,∨,→, (,)}.

Each string s ∈ L is called a propositional word in language L.

A possible string of L over alphabet
∑

defined above, is ”(¬ ∧ q) → p” but inspecting this
string closely it turns out into no logical meaning, because the negation logical connective (¬) is
without an operand term. Hence, it is not always the case that every string s ∈ L is meaningful
for propositional logic. A string needs to follow certain rules to qualify for being propositional
formula properly called well-formed formula (wff).

Definition 3.10 (well-formed formula). A string s ∈ L is well-formed formula (wff) if it satisfies
following rules:

1. Every propositional atom p is a well-formed formula.

37

3.3. LOGIC PRELIMINARIES CHAPTER 3. PREREQUISITES

2. If F is a well-formed formula then (¬F) is also a well-formed formula.

3. If F1 and F2 are well-formed formulas then (F1 ∧ F2), (F1 ∨ F2), and (F1 → F2) are also
well-formed formulas.

The above definition of the well-formed formula can be compactly defined in Backus Naur
form (BNF) as:

F ::= p | (¬ F) | (F∧ F) | (F ∨ F) | (F→ F)

F is a well-formed formula which can be either a propositional atom p or any already
recursively constructed well-formed formula.

Example 3.10. “(((¬q)∨ p)→ r)→ ((p∨ q)∨ r)” is a valid string s of L, i.e., s ∈ L, and it is
well-formed formula because it satisfies the above defined rules whereas the string “(¬∧q)→ p”
is not a wff.

A propositional formula can be proved from other propositional formulas using the rules
of deduction; i.e., inferring a conclusion from other formulas called primeses. It uses rules of
deduction e.g., ¬¬q can be replaced with q or vice versa. Such rules can be applied in succession
to reach to the conclusion from the primeses. The symbol used for this provability is ` which is
read as ”yields” or ”proves”.

Definition 3.11 (primes, sequent). If a formula β can be obtained from set of formulas Γ =

{α1, α2, α3, ..., αn} by applying proof rules in succession, then Γ ` β holds otherwise not. The
formula β is called conclusion, α1, α2, α3, ..., αn are called primeses, and the expression Γ ` β
is called sequent. The primeses are always assumed to be already concluded.

Definition 3.12 (deduction). A deduction is a logical process of reasoning in which conclusion
is drawn by previously known facts called premises. It provides absolute proof of the conclusions
given that the premises are assumed to be true.

Example 3.11. To judge if p ∧ q, r ` q ∧ r holds or not? we start with primeses p ∧ q and r
which are already assumed to be true. If p ∧ q is true then it can be replaced with either p or q,
let replace is with q. Now we are left with q and r which both are true giving q ∧ r as true. It
concludes that q ∧ r can be obtained from formulae p ∧ q and r resulting p ∧ q, r ` q ∧ r holds.

Proving a formula can lead to contradiction if there are contradictory primeses in a sequent.
Assume if a sequent contains primeses like αi = p and αk = ¬p, that means both p and ¬p
have already been concluded which is logically not possible; i.e., p∧¬p always yield false. This
introduces contradiction and sequent concludes always false; i.e., Γ `⊥ for Γ = {p,¬p}.

38

CHAPTER 3. PREREQUISITES 3.3. LOGIC PRELIMINARIES

Definition 3.13 (contradiction). Contradiction is an expression of the form α ∧ ¬α or ¬α ∧ α
where α is any logical formula. It always results false and can be represented by bottom symbol
⊥.

Definition 3.14 (tautology). Tautology (>) is a logical expression whose value is always true.
It is of the form α ∨ ¬α or ¬α ∨ α or α→ α where α is any logical formula.

If a conclusion β can be obtained from primeses α1, α2, α3, ..., αn then α1, α2, α3, ..., αn ` β
is said to be valid. It is not difficult to show that for all valuations in which all propositions
α1, α2, α3, ..., αn evaluate to true the β also evaluates to true.

Definition 3.15 (semantic entailment). If for all valuations in which all α1, α2, α3, ..., αn eval-
uate to true, β also evaluates to true as well, then

α1, α2, α3, ..., αn � β

holds. � is called semantic entailment relation.

Example 3.12. The semantic entailment p ∨ q � p does not hold because p ∨ q can be true if p
is false and q is true. However, ¬q, p ∨ q � p holds because when p is true then p ∨ q � p is also
true because q is always false due the fact that ¬q is true. Another example is p ∧ q � p holds
because p has to be true keeping p ∧ q true.

Definition 3.16 (literal). A literal L is a propositional atom or the negation of propositional
atom. L is positive literal while ¬L is a negative literal. A clause D is a finite disjunction of
literals; i.e., D = {L1, L2, ,, Ln} for n ≥ 0.

Definition 3.17 (conjunctive normal form). A logical formula C in conjunctive normal form
(CNF), is a conjunction of the clauses D of literals L as:

L ::= p | ¬ p
D ::= L | L ∨ D
C ::= D | D ∧ C

Example 3.13. q∧ (p∨¬r)∧ (p∨¬q∨ r) and (¬r∨¬p)∧ (¬p∨ q) are CNF formulae whereas
(¬(r ∨ q) ∧ p is not CNF formula because ¬(r ∨ q) is not a literal due to r ∨ q.

Definition 3.18 (horn clause). A Horn clause is a clause with zero or one positive literal. If
positive literal is exactly one then it is a definite Horn clause.

Example 3.14. (¬p1∨¬p2∨...¬pn−1∨pn) is definite Horn clause but (¬p1∨¬p2∨...¬pn) is not.
A definite Horn clause can be written in the form of implication like p1 ∧ p2 ∧ ∧ pn−1 → pn.

39

3.3. LOGIC PRELIMINARIES CHAPTER 3. PREREQUISITES

Definition 3.19 (horn formula). A Horn formula H is a conjunction of definite Horn clauses.
Following Backus Naur form (BNF) defines H:

P ::= > | ⊥ | p
A ::= P | P ∧ A
C ::= A→ P
H ::= C | C ∧ H

Example 3.15. The examples of Horn formulae are:

(q → r) ∧ (p ∧ r → q) ∧ (p ∧ s→ p)

(p ∧ r →⊥) ∧ (q → r) ∧ (q → r)

(q ∧ r ∧ s∧ → r) ∧ (q → s) ∧ (r → p)

and the following examples are not Horn formulae:

(r → q) ∧ (r ∧ s→ p) ∧ (s→ ¬p)
(¬q ∧ s→ r) ∧ (q → r) ∧ (q → r)

(s ∧ p∧ → p ∧ q) ∧ (q → s) ∧ (r ∧ p)

First logical expressions is not Horn formulae due to s → ¬p as it is not a Horn clause due
to ¬p. Second expression also contains a non-Horn clause because of ¬q ∧ s→ r, and the third
expression contains two non-Horn clauses (s ∧ p∧ → p ∧ q) and (r ∧ p).

3.3.2 Predicate Logic

Propositional logic uses propositional atoms, e.g., p, q, .., which are just symbols and not very
expressive to convey the meaning of the sentences. The predicate logic is an extension to the
propositional logic but is not a replacement. It extends the propositional logic with more con-
cepts, e.g., introducing quantifiers to range over the individual elements of a set. Moreover, to
make a logical sentence more expressive and understandable, it introduces predicate symbols
that act like functions that take zero or more arguments. It uses the concepts of sets and variables
for accessing individual element of those sets, can quantify the set’s element, therefore, predicate
logic is also called first-order logic.

Definition 3.20 (first-order logic). The first-order logic (predicate logic) is a logical system that
ranges (quantifies) over individual elements (atomic entities) of a set or class.

Unlike propositional logics it does not show limitation to express the logical aspects of natural
language; i.e., it is able to access the individual element of a set or class. For instance, consider

40

CHAPTER 3. PREREQUISITES 3.3. LOGIC PRELIMINARIES

the sentence in natural language:

“There exists a bulb which is not ON.” (3.1)

The propositional logic can only identify this sentence with a propositional atom p, but it cannot
provide the way to express an individual item (bulb) from a set (e.g., many bulbs). These limita-
tions lead to the need for a richer logic representation than propositional logic. These limitations
led to the design of Predicate Logic (first-order logic).

3.3.2.1 Basics of Predicate Logic

The basic elements of the predicate logic are originally entities (called objects) which correspond
to the things in the world and their properties (called predicates). In order to discuss these basic
concepts in detail consider the natural language sentence (3.1) given in the preceding section.
The sentence gives the information about something called “bulb” which can be either switched
ON or not. This is some kind of property of the bulb. Therefore, in order to express proper-
ties and their relationship the Predicate Logic offers the use of predicates. We could write a
Bulb(doorBulb) and On(doorBulb) to denote that ”doorBulb” (a bulb fixed on a door) is a bulb
and is switched ON. The symbols bulb and on are known as predicates, and ”doorBulb” is their
argument. A predicate can have logical value either True or False, e.g., On(doorBulb) is True if
the bulb ”doorBulb” is powered ON, otherwise is False. Similarly a predicate “equal” with its
two arguments, i.e, equal(2,3) is False but equal(5,5) is True.

Definition 3.21 (predicate). A predicate is a name with zero or more arguments, that describes
a property or relation on its arguments. A predicate with one argument is called an unary
predicate, and with two arguments it is called a binary predicate. Predicates with any finite
number of arguments are possible in the predicate logic.

The predicate logic denotes properties and relations by using predicates, e.g., red(a) where
the predicate red denotes the property of its argument a, and brother(x,y) where the predicate
brother relates its argument x and y with each other.

As in above the predicates Bulb and On are not yet enough to express the sentence 3.1. The
sentence states that there exists atleast one bulb which is switched OFF. That means the logical
value of the sentence will be False only when all the bulbs are ON, and True if at least one bulb
is OFF. Moreover, the predicate does not prefer to write the name of every bulb and its property
because the sentence does not provide how many bulbs are there and what are their identities.
Therefore, the predicate logic employs the concept of a variable which are written as lower case
alphabet, e.g., a1,b1,w,x,y, or z. The variable can be considered as place holder for concrete
values, e.g., doorBulb, mainBulb, etc. Using the variable ’x’ we can now specify that:

41

3.3. LOGIC PRELIMINARIES CHAPTER 3. PREREQUISITES

Bulb(x) : x is a bulb.
On(x) : x is powered on.

A variable is just a concrete value holder but is still not sufficient for capturing the essence
of the sentence . It is required to convey the meaning of ”There exists a” which leads to the
introduction of the quantifiers ∀ and ∃”.

Definition 3.22 (quantifier). A quantifier quantifies a variable representing an element from a
set. There are two quantifiers namely universal quantifier (∀) and existential quantifier (∃) which
are only attached with variables. The quantifier ∀ is as ”for all” and ∃ is as ”there exists”.

These quantifiers are always attached with the variables, i.e., ∀x means “for all x” and ∃x
means “there exists x”. Now it is possible to express the sentence in 3.1 as a predicate formula:

∃x(bulb(x) ∧ ¬on(x)) (3.2)

which states that “there exists an x, the x is a bulb and it is not switched ON”. The logical
formula 3.2 can also be alternatively written as:

¬(∀x(Bulb(x)→ On(x))) (3.3)

which states that “It is not the case that all things which are bulbs are powered ON”. Both the
logical formulas 3.2 and 3.3 are indeed equivalent semantically because these both evaluate to
the same logical value True/False for the sentence in 3.1.

In contrary to the propositional logic the predicate logic also provides function symbols.
Considering a predicate mother with two argument, i.e., Mother(x,y) could mean x is y’s mother.
As every individual has one and only one mother so the predicate logic allows us to represent
y’s mother in more direct way. Instead of writing Mother(x,y) we can simply write mother(y) to
mean y’s mother. In mother(y) the symbol mother is used as a function which takes one argument
and returns the mother of its argument. This is expressed by the following example:

∀x(Child(x)→ Y ounger(x,mother(x)))

for the assertion “Every child is younger than its mother” by using unary predicate Child and
binary predicate Younger with the unary function “mother”.

There can be different functions which different number of arguments. A constant in predi-
cate logic is a concrete value or a function with zero arguments. For example, in Brother(Hasi,
Carina) the arguments ”Hasi” and ”Carina” are the constants of the binary predicate Brother.
As concrete values can also be regarded as functions with no argument, therefore, constants can

42

CHAPTER 3. PREREQUISITES 3.3. LOGIC PRELIMINARIES

only be thought of as functions which don’t take arguments and we can drop the argument brack-
ets. An object in the predicate logic are individual values, e.g., Hasi, the variable that refer to
these individual values, e.g., a, or the function symbols that refer to some objects, e.g., mother(x)
function refers to the object mother of x. Expressions in the predicate logic which denote objects
are called terms.

Definition 3.23 (term). A term can be defined as:

◦ A variable is a term.

◦ A zero-argument function (hence constant) is a term.

◦ If t1, t2, .., tm;m > 0 are terms then a function f(t1, t2, ..., tm) is a term.

Example 3.16. Consider 0, 1, ... are nullary, float unary, and +,− are binary functions. Then
“+(1− (float(x), 3))” is a term, “1” is also a term but alone “+” or “−” is not a term.

A predicate formula or predicate sentence (can be simply referred as formula or sentence)
can be defined over the predicates and the functions of the predicate logic as follows:

Definition 3.24 (formula). A predicate formula follows the following rules:

◦ If P is a predicate symbol of arity n ≥ 1, and if t1, t2, ..., tn are terms, then p(t1, t2, .., tn)

is a formula.

◦ If φ is a formula, then ¬φ is also a formula.

◦ If φ and ψ are formulas, then φ ∧ ψ, φ ∨ ψ, and φ→ ψ are also formulas.

◦ If φ is a formula and x is a variable, then ∀x(φ) and ∃x(φ) are also formulas.

◦ Everything else is not formula.

In Backus Naur Form (BNF) for the predicate formula (φ) can be described as:

φ = P (t1, t2, .., tn)|(¬φ)|(φ ∧ ψ)|(φ ∨ ψ)|(φ→ ψ)|(∀x(φ))|(∃x(φ))

Example 3.17. Following are some examples of formulas in the predicate logic:

1. Grade(Andy,Math) to mean “Andy’s grade in Math”.

2. ∀x(Human(x)) to mean “All humans”.

3. ∃x(Bird(x) ∧ ¬Fly(x)) to mean “Not all birds can fly”.

4. ∀x(Brother(x,Mary) ∧ likes(Anna, x)) to mean “Anna likes Marry’s brothers”.

5. ∀x∃y(Student(x)→ Teacher(y, x)) to mean “Every student has a teacher”.

43

3.3. LOGIC PRELIMINARIES CHAPTER 3. PREREQUISITES

3.3.2.2 Syntax for Predicate Logic

Having briefly discussed the basics of the predicate logic we can now give syntax of the
predicate logic’s basic constructs in BNF form:

Constant ::= A |Bassi | Andy | . . .
V ariable ::= x | y | z | . . .
Connective ::= ¬ | ∨ | ∧ | → | ↔
Quantifier ::= ∃ | ∀
Predicate ::= Likes | Fly |Bird | . . .
Function ::= father of | plus | . . .
T erm ::= Function(Term, Term, . . .)

| Constant
| V ariable

Atomic sentence ::= Predicate(Term, Term, . . .)

| Term = Term

Sentnece ::= Atomic Sentence

| Sentence Connective Sentence
|Quantifier V ariable Sentence
| ¬Sentence
| (Sentence)

3.3.2.3 Interpretation

The interpretation in the predicate logic concepts is used for defining truth and falsehood of the
predicate formulae [VJ99]. It specifies a set of constants, and a set of predicates which are true.
An interpretation is a modelM for a predicate formula φ if it makes φ true inM, and is denoted
asM |= φ.

Definition 3.25 (model). Let F and P are set of function and predicate symbols with a fixed
number of arguments. A modelM over (F ,P) consists the following data:

◦ A 6= ∅ a set of constants;

◦ a constant value fM ∈ A for each zero-argument function symbol f ∈ F;

◦ a concrete function fM : An → A for each f ∈ F with arity n > 0, An being n-tuples
over A;

◦ PM ⊂ An for each P ∈ P with arity n > 0.

44

CHAPTER 3. PREREQUISITES 3.3. LOGIC PRELIMINARIES

Let we have:
man : a nullary function.
Parent(x) : x is parent.
Father(x,y) : x is father of y.

So we define a pair (F ,P) such that F
def
= {man} and P

def
= {Parent, Father}; where

man is a nullary function (constant), Parent is a unary predicate, and Father is a binary
predicate. Let consider a first-order logic formula φ according to the pair (F ,P):

∀x(Parent(man)→ ∃xFather(x, y)) (3.4)

with a nullary function “man”, a unary and a binary predicates “Parent” and “Father” respec-
tively.

Definition 3.26 (ground instance). A formula without variable is regarded as ground instance
of the formula with variables. A ground instance is said to be at ground level of its formula.

Example 3.18. Parent(Andy)→ Father(Andy,Bassi) is a ground instance of the formula φ
3.4. The ground instance is on the constants “Andy” and “Bassi”.

For the formula φ we have defined F
def
= {man} and P

def
= {Parent, Father}; where man

is a nullary function (constant), Parent is a unary predicate, and Father is a binary predicate.
A modelM will contain a set of concrete elements (constant) A, and the interpretations manM,
ParentM, and FatherM.

Example 3.19. Having pair (F ,P) for F
def
= {man} and P

def
= {Parent, Father} as defined

above, let A
def
= {a, b, c}, manM

def
= a, ParentM

def
= {a, b} for the two true ground instances

Parent(a) and Parent(b) of Parent(x), and FatherM
def
= {(a, b), (b, c)} for the two true

ground instances Father(a, b) and Father(b, c). Checking whetherM |= φ is valid we have to
check φ (Formula 3.4) against each element x ∈ A, therefore, replacing x with the constants in
the formula:
Parent(a)→ Father(a, y) is true because a ∈ ParentM and (a, y = b) ∈ FatherM

Parent(b)→ Father(b, y) is true because b ∈ ParentM and (b, y = c) ∈ FatherM

Parent(c)→ Father(c, y) is true because c 6∈ ParentM so→ becomes true anyway
That meansM |= φ is valid andM is model of formula φ. Now consider a model Ḿ identical

toM except that ParentM
def
= {a, b, c}, so it is not difficult to prove thatM 6|= φ.

45

3.4. MODEL-BASED DIAGNOSIS CHAPTER 3. PREREQUISITES

3.4 Model-Based Diagnosis

Model-based diagnosis (MBD) is one of the categories of the consistency-based diagnosis (CBD)
discussed in Chapter 1. The presented work is basically based on MBD, therefore, it is necessary
to revise important basic terminologies associated with MBD. The definitions in this section
are similar as in Reiter’s contribution which provides a formal framework for consistency-based
diagnosis [Rei87]. In order to clarify the basic MBD terminologies for diagnosis, a simple digital
circuit example is presented:

Example 3.20. Consider a digital Full-Adder circuit with two XOR-gates (x1,x2), two AND-
gates (a1, a2), and one OR-gate (o1). Each gate has two inputs and generates an output. The
circuit has overall three inputs and two outputs out of the box.

Figure 3.2: Digital Full-Adder circuit [Pal01].

In the theory of diagnosis, a system (e.g., circuit) has components, each with a description in
order to describe its behavior. Typically, a system comprises a number of parts called components
that collectively accomplish the task for the system.

Definition 3.27 (components). A finite set of constants; i.e., COMPS = {c1, c2, c3, ..., cn},
where each constant ci represents one part in a system.

The digital circuit depicted in Figure 3.2 contains five components: two XOR-gates, two
AND-gates, and one OR-gate. Therefore the set of components becomes (call it COMPcirc):

COMPScirc = {x1, x2, a1, a2, o1}

Where xi, ai, and oi respectively represent the ith XOR, AND, and OR gate of the circuit. The
term System Description (SD) is self explanatory for it describes the system in terms of its be-
havior. For the sake of generality in diagnosis theory, first-order logic as a language is needed for
representing system’s flow of information. The unary predicate AB(ci) represents abnormality
of a component ci.

46

CHAPTER 3. PREREQUISITES 3.4. MODEL-BASED DIAGNOSIS

Definition 3.28 (system description). A System Description describes how the parts of a system
normally behave by appealing to the distinguished predicate AB whose intended meaning is
”ABnormal”.

Hence, using first-order logic, the digital circuit in Figure 3.2 may be represented with the
following System Description (Call it SDcirc):

XORGate(c) ∧ ¬AB(c) ⊃ out(c) = xor(input1(c), input2(c))

ANDGate(c) ∧ ¬AB(c) ⊃ out(c) = and(input1(c), input2(c))

ORGate(c) ∧ ¬AB(c) ⊃ out(c) = or(input1(c), input2(c))

ANDGate(a1), ANDGate(a2), ORGate(o1)

input1(c) = 0 ∨ input1(c) = 1

input2(c) = 0 ∨ input2(c) = 1

XORGate(x1), XORGate(x2)

output(x1) = input1(x2)

output(x1) = input2(a2)

output(a2) = input1(o1)

output(a1) = input2(o1)

A system can be considered as a specific part of a task domain, e.g., medicine, digital and ana-
logue circuits, along with a set of its components and its description, taking some inputs and
generating some output for its domain. The definition of a system in diagnosis theory is adapted
as:

Definition 3.29 (system). A system is a pair 〈SD,COMPS〉 where SD (system description) is
a set of first-order sentences, and COMPS (system components) is a finite set of constants.

The digital circuit in Figure 3.2 can be represented as system 〈SDcirc, COMPScirc〉. A
system cannot be diagnosed for the faults if it is not observed continuously. The Observation
at time t means the status of the system at t time. Therefore, observation provides a way to
determine if the system is functioning properly or a fault has occurred. In theory of diagnosis
observation can be defined as:

Definition 3.30 (observation). An observation of a system is a finite set of first-order logic
literals (positive and negative).

Consider the set of observationsOBS = {θ1, θ2.., θn}where each θi is first order logic (FOL)
literals, e.g., ok(camera),¬ok(laser). A system with observations can also be represented as
〈SD,COMPS,OBS〉 which is called a diagnosable system.

47

3.4. MODEL-BASED DIAGNOSIS CHAPTER 3. PREREQUISITES

Example 3.21. Suppose that the digital circuit in Figure 3.2 is observed providing out1 = 1 and
out2 = 0 on inputs in1 = 1, in2 = 0, and in3 = 1. This makes set of observations in as follows
(call it OBScirc):

OBScirc = {input1(x1) = 1, input2(x1) = 0, input1(a2) = 1, output(x2) = 1, output(o1) = 0}

With above observations the predicted (correct) behavior of the circuit (Figure 3.2) pro-
duces output(x2) = 0 and output(o1) = 1 on above inputs but the observed outputs
are different, that means the circuit is faulty because the observed behavior of the cir-
cuit is different than its predicted (correct) behavior. Hence the next step is how to de-
termine which component is faulty, thereby generating a diagnosis. From the observation
OBScirc, it is clear that the system 〈SDcirc, {x1, x2, a1, a2, o1}〉 (defined above) is faulty.
From system description SDcirc, the assumption was that all system components are behav-
ing correctly; i.e., {¬AB(c1),¬AB(c2),¬AB(c3), ...,¬AB(cn)}. Therefore, the set SDcirc ∪
{¬AB(x1),¬AB(x2),¬AB(a1),¬AB(a2),¬AB(o1)} represents the system behavior on the
assumption that its all components COMPScirc = {x1, x2, a1, a2, o1} are working properly.
Hence, the observation OBScirc conflicts with what the system 〈SDcirc, COMPcirc〉 should do;
i.e.,

SDcirc ∪ {¬AB(x1),¬AB(x2),¬AB(a1),¬AB(a2),¬AB(o1)} ∪OBScirc
is inconsistent.

Definition 3.31 (inconsistency). The observation OBS conflicts with what the system
〈SD,COMP 〉 should do, when:

SD ∪OBS ∪ {¬AB(c1),¬AB(c2), ...,¬AB(cn)}
is inconsistent.

where all component ci are assumed to be functioning correctly.

Definition 3.32 (diagnosis). A diagnosis (∆) for 〈SD,COMPS,OBS〉 is a minimal set ∆ ⊆
COMPS such that:

SD ∪OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ COMPS −∆}
is consistent.

In other words, a diagnosis determined by a smallest set of components with the assumption that
each of these components is faulty (abnormal), together with the assumption that all remaining
components are working properly (normal), is consistent with the observation and the system
description.

Example 3.22. For the circuit system 〈SDcirc, COMPScirc〉 of Figure 3.2 with observations
OBScirc there exists three diagnoses; ∆1 = {x1}, ∆2 = {x2, o1}, and ∆3 = {x2, a2}.

48

CHAPTER 3. PREREQUISITES 3.4. MODEL-BASED DIAGNOSIS

3.4.1 Computing Diagnosis (∆)

Computing a diagnosis involves three steps: first generating all ∆s such that ∆i ⊆ COMPS,
after that ∆s with minimum cardinality are computed, and finally consistency is tested for:

SD ∪OBS ∪ {¬AB(c)|c ∈ COMPS −∆}

The process of computing ∆ is thoroughly discussed in Reiter’s contribution [Rei87]. This pro-
cess is based upon the concept of Conflict and Hitting Sets.

Definition 3.33 (conflict set). A Conflict set C = {c1, c2, c3, ..., ck} for 〈SD,COMPS,OBS〉
is a set C ⊆ COMPS such that;

SD ∪OBS ∪ {¬AB(c1),¬AB(c2),¬AB(c3),,¬AB(ck)}
is inconsistent.

A conflict set C is minimal iff no proper subset of it is a conflict set for 〈SD,COMPS,OBS〉.

Definition 3.34 (hitting set). A Hitting set HC for a collection of sets C, is a set H ⊆ ∪S∈CS
such that H ∩ S 6= {} for each S ∈ C.
A Hitting set HC for C is minimal iff no proper subset of it is a Hitting set for C.

The following theorem provides the basis for the diagnosis ∆:

Theorem 3.1. A ∆ ⊆ COMPS is a diagnosis for 〈SD,COMPS,OBS〉 iff ∆ is a minimal
Hitting set for the collection of Conflict sets for 〈SD,COMPS,OBS〉.

Example 3.23. For the circuit system 〈SDcirc, COMPScirc〉 of Figure 3.2, there are two minimal
Conflict sets {x1, x2} and {x1, a2, o1} respectively to the inconsistency of:

SD ∪OBS ∪ {¬AB(x1),¬AB(x2)}
and

SD ∪OBS ∪ {¬AB(x1),¬AB(a2),¬AB(o1)}

So given by the two minimal Hitting sets {x1, x2} and {x1, a2, o1}, there are three diagnoses:
∆1 = {x1}
∆2 = {x2, a2}
∆3 = {x2, o1}.

Computing Hitting sets provides an efficient and fast computation for the diagnosis compu-
tation.

49

3.5. PLANNING CHAPTER 3. PREREQUISITES

3.5 Planning

In the presented work we use a repair engine (discussed in Chapter 7) which exploits planning to
generate plan for its repair actions. In recent years, the planning has gained increasing attention
of the researchers. Its significance can been judged by the annual ICAPS International Planning
Competitions5. The concepts of the planning discussed here are similar as in [GNT04].

3.5.1 Plannning problem

The planning is on the reasoning side of acting, i.e., it uses actions of a system to change state of
the system. A model for planning needs a general model for a state-transition system.

Definition 3.35 (state-transition system). A state-transition system is a deterministic, static ,
finite , and fully observable system defined as a tuple

∑
= (S,A, γ) such that:

◦ a set S = {s1, s2, ..., sn} of states;

◦ a set A = {a1, a2, ..., am} of actions; and

◦ γ : S × A→ S a state-transition function.

∑
is ‘deterministic’ means it offers at most one state from a state on an action, it is ‘static’

meaning it does not change, it is ‘finite’ means it has finite number of states and actions, and it is
‘fully observable’ means that its all knowledge is already known. A planning problem for a

∑
can be define as:

Definition 3.36 (planning problem). A planning problem is a triple P = (
∑
, si, g) such that:

◦
∑

is state-transition system;

◦ si is an initial state, i.e., si ∈ S from
∑

; and

◦ g is a goal state, i.e., g ∈ S from
∑

.

We call such a planning problem (P) a classical planning problem. A solution to P is a se-
quence of actions (al, am, an, ..., ay) which when applied to the initial state si reaches to the goal
state g, i.e., 〈sl = γ(si, al), γ(sl, am), γ(sm, an),, g = γ(sy−1, ay)〉. A function represented
by γ(sx, aj) means that it returns a state sj when an action aj is applied on a state sx [Wel99].

There can be three different kind of representations for P , namely, set-theoretic, classical,
and state-variable representation. As we deal with the classical planning problem, therefore, we
briefly discuss about classical representation.

5http://ipc.icaps-conference.org/

50

CHAPTER 3. PREREQUISITES 3.5. PLANNING

3.5.2 Classical representation

In classical representation of planning problem P the states are represented by logical atoms
which are true or false, and actions are represented by planning operators which change the
truth values of these logical atoms.

3.5.2.1 States

A state s is a set of ground atoms of first-order language L where L contains predicate symbols,
constant symbols, and variable symbols, but does not contain function symbols. A set S =

{s1, s2, ...} is a finite set containing all possible states where each si comprises ground atom(s)
such that an atom q holds in sj if and only if q ∈ sj . If h is a set of literals, i.e., atoms and negated
atoms, then si |= h (si satisfies h) if there is a substitution σ such that every postitive literal of
σ(h) is in si and no negated literal of σ(h) is in si.

Example 3.24. Suppose we want to formulate a planning domain in which there are two
rooms (room1, room2), one robot (robot1), and two files (fileA, fileB). The language L =

{room1, room2, robot1, fileA, fileB, at, with} with two binary predicates at and with. One
of the states can be sk ∈ S = {at(robot1, room2), with(fileA, robot1), at(fileB, room1)}

3.5.2.2 Planning operator

A planning operator in a classical representation acts like a transition function which changes the
truth value of an atom in a state.

Definition 3.37 (planning operator). A planning operator can be defined as a triple o =

〈name(o), precond(o), effects(o)〉 such that:

◦ name(o): the name of the operator in the form n(x1, x2, .., xn) where n is called operator
symbol, and xi is a variable symbol that appears in o. The operator symbol n is unique in
the language L.

◦ precond(o): a set of literals (atoms or negated atoms) which have to be true for invoking
planning operator o;

◦ effects(o) : a set of literals (atoms or negated atoms) which the planning operator o makes
true when invoked.

Example 3.25. (Continued) For example the planning operator “mov” is used for describ-
ing movement of the robot “robot1” between the rooms “room1” and “room2”. For the
mov = 〈name(mov), precond(mov), effects(mov)〉

51

3.5. PLANNING CHAPTER 3. PREREQUISITES

name(mov): move(r,x,y)
precond(mov): {at(r,x),¬ at(r,y)}
effects(mov): {at(r,y),¬ at(r,x)}

The precondition describes that the planing operator mov changes the state of r from x

to y.

The set of all the n planning operators is represented by O = {o1, o2, ..., on}. Having defined
states (S) and planning operators (O) for the classical planning problem, now we can define its
domain and problem as:

Definition 3.38 (planning domain). A classical planning domain in L is
∑

= (S,A, γ) as:

◦ S is a set of ground atoms such that S ⊆ 2{all ground atoms in L};

◦ A is a set of all ground instances of planning operators o;

◦ γ(s, a) = (s \ effect−(a)) ∪ effect+(a) if a ∈ A is applicable to s ∈ S;

◦ S is closed under γ, i.e., if s ∈ S then for every action a that is applicable to s, γ(s, a) ∈ S.

Definition 3.39 (planning problem). A classical planning problem is a triple P = (
∑
, si, g)

where:

◦ si is an initial state such that si ∈ S;

◦ g is goal state, is any set ground literals;

◦ Sg = {s ∈ S|s |= g}.

3.5.3 PDDL

For the domain-problem planning specifications we use widely recognized Planning Domain
Definition Language (PDDL) [KBC+98] which is a descriptive language used for description of
planning problems in the planning. It is an action-centred language which is basically inspired
by STRIPS planning formulations. It is more advanced than STRIPS because of the following
features: type specifications for objects, negated preconditions, conditional ADD/DEL effects,
and numeric variables, etc. Besides these extensions, PDDL is an expressive language, capable
of expressing challenging behaviors in different domains. Every PDDL planning task comprises
following five components:

52

CHAPTER 3. PREREQUISITES 3.5. PLANNING

1. Objects: All things in a world for a planning problem are objects, e.g., a robot, a room, or
a file.

2. Predicates: Properties of objects, e.g., Is x a robot?, Is file x with robot y?. Is file x in
room y. A predicate can be either true or false but not both.

3. Initial state: The beginning state of the world of a planning problem, e.g., a file and a
robot are in the first room, and the file is not with the robot.

4. Goal specification: The state of the world we want to achieve, e.g., the file and the robot
should be in the second room, and the file should not be with the robot.

5. Actions: An action defines the way how to change from state to state, e.g., the robot can
move, and pick and drop a file. Each action contains parameters (action arguments), a
precondition (the condition to be fulfilled by the parameters) and an effect (that takes place
after the action completes).

The PDDL planning definition contains two parts, namely the domain definition and the problem
definition:

3.5.3.1 PDDL-Domain definition:

The domain definition of PDDL contains predicates and actions. It may declare requirements
like strips (only STRIPS subset), equality (for using predicate =), typing (allows use of types),
and ADL which allows to use disjunctions and quantifiers. The domain description provides a
functionality in terms of actions. An action defines its preconditions and effects. It is invoked
when its preconditions become true, and then it makes its predicates true in the facts. The general
syntax of a domain definition is as follows:

(define (domain domain name)

<PDDL code for predicates>

<PDDL code for first action>

...

<PDDL code for last action>

)

where domain name is the user defined name of the domain definition.

Example 3.26. A domain description describing the behavior of a robot for file transfer between
the rooms as given below:

(define (domain robot_file_transfer)

(:requirements :strips :typing)

53

3.5. PLANNING CHAPTER 3. PREREQUISITES

(:types room file)

(:predicates (room ?x) (file ?x)

(at-robot ?x)(at-file ?x ?y)

(with_robot ?x))

(:action move

:parameters (?x ?y)

:precondition (and (room ?x)(room ?y)(at-robot ?x))

:effect (and (at-robot ?y)(not (at-robot ?x))))

(:action drop

:parameters (?x ?y)

:precondition (and (file ?x)(room ?y)(with_robot ?x)(at-robot ?y))

:effect (and (at-file ?x ?y)(not (with_robot ?x))))

(:action pick-up

:parameters (?x ?y)

:precondition (and (file ?x)(room ?y)(at-file ?x ?y)(at-robot ?y)

(not (with_robot ?x)))

:effect (and (not (at-file ?x ?y))(with_robot ?x)))

)

This description defines a domain named robot file transfer for transferring files between
rooms. It gives object types, predicates used, and three actions, namely move, drop, and pick-
up. The action further includes parameters that can describe preconditions which should be
initially fulfilled and the effects become true after the action is finished.

3.5.3.2 PDDL-Problem definition:

The problem definition of PDDL contains objects, initial, and goal state description.
(define (problem <problem name>)

(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>

<PDDL code for goal specification>

)

where problem name is a user defined name for the problem definition, and domain name is the
name of a domain for which the problem is defined.

Example 3.27. The problem description robot file transfer problem specifies objects, initial
state, and a goal state to be achieved.

(define (problem robot_file_transfer_problem)

54

CHAPTER 3. PREREQUISITES 3.6. SIGNIFICANCE TEST

(:domain robot_file_transfer)

(:objects

fileA fileB - file

room1 room2 - room)

(:init

(at-file fileA room1)

(at-file fileB romm1)

(at-robot room1)

(not (with_robot fileA))

(not (with_robot fileB))

)

(:goal (and (at-file fileA room2)

(not (with_robot fileA)))

)

)

The objective of the PDDL planner is to find a set of actions (a plan) that, if applied to the
initial states, reaches at goal state given in the problem description.

3.6 Significance Test

We also measure the significance of the diagnosis models learned during the learning phase
(Chapter 9). Measuring significance is a statistical term which tells how much difference or
relationship exists in data [EM, Die07]. Mostly, a relationship or difference already exists in the
groups of the data, but whether it is a strong, moderate, or weak relationship? is solved by the
significance test. The significant differences can be small or large which depends on the size of
the samples.

The significance test is about setting up hypotheses and testing them for the significance. The
candidate problem is simplified into two competing hypotheses: (1) a Null hypothesis, and (2)
an Alternative hypothesis. The null hypothesis is denoted by H0, and it represents a theory that
has been put forward, or is believed to be true, or is to be used as a basis for argument but has
not been yet proved. The alternative hypothesis is denoted byHa, and it is a statement of what a
statistical hypothesis test is set up to establish.

Example 3.28. Suppose a new product Pnew of some object has to be compared with its current
product Pcurr. The null and alternative hypotheses will be as:

H0 = The product Pnew is not different than the product Pcurr
Ha = The product Pnew is different than the product Pcurr

55

3.6. SIGNIFICANCE TEST CHAPTER 3. PREREQUISITES

A value is measured to make selection between H0 and Ha. The value is called test statistic
and is in fact a quantity calculated from the sample of data to decide whether or not the null
hypothesis should be rejected. The choice of the test statistic depends on the assumed probability
model and the hypotheses under question. There are different significance tests that can be
employed in order to measure the significance of data, for example, z-test, t-test, etc. We discuss
here z-test which we use for measuring the significance of learned diagnosis models..

3.6.1 Z-Test

Z-test is one of the tests of statistical significance which helps us decide whether or not to reject
the null hypotheses (H0). It measures z-score which is the measure of the standard deviation.
An associated value is p-value which provides the probability we have falsely rejected the H0.
A very high or low z-scores associated with very small p-value, come at the tails of the normal
distribution.

The significance level (α) for a given significance test is a value for which a p-value less than
or equal to is considered statistically significant. The most common value used for α is 0.05, i.e.,
the z-score values when using a confidence level 0.05 are −1.96 and +1.96 standard deviations
where zα is +1.96 and −zα is −1.96. The z-test computes z-score using the following equation:

z =
µ2 − µ1√
σ1

n1
+ σ2

n2

(3.5)

where µ is mean value of the data and σ is the standard deviation:

σ =

√√√√ n∑
(x− µ)

n
(3.6)

The null hypothesis (H0) is not rejected if the value |z| remains in z-scores interval (±zα), i.e.,
if −zα ≤ z ≤ +zα holds then H0 stays true. It should be noted that for α = 0.05 the values of
−z0.05 and +z0.05 are −1.96 and +1.96 respectively in the standard normal distribution [Die07].

Example 3.29. Suppose we have two data sets X1 and X2 with the number of samples n1 = 18

and n2 = 18 respectively. The mean values of the data sets are X̄1 = 1917 and X̄1 = 3983.
The standard deviations s1 and s2 are 317 and 2287 for the data sets respectively. Considering
−zα and +zα for the significance level α = 0.05. Using the equation 3.5 the z-test computes
z = 3.80. As−z0.05 ≤ 3.8 ≤ +z0.05 does not hold, i.e., 3.8 > 1.96, therefore, the null hypothesis
(H0) will be rejected and alternative hypothesis (Ha) will be taken.

56

Chapter 4

System Architecture

This chapter presents the architecture of the diagnosis and repair system. Moreover, it also
describes the formalization of a robot architecture model (RAM) from a robotics system, and
its conversion to an abstract behavioral model used for fault detection.

4.1 Introduction

The objective of our work is to detect, localize, and repair faults in a robotics system at run-
time without any external intervention. The faults can occur both in software (deviation in a
publishing data frequency) and hardware (joint broken or component switched off). In order to
meet these requirements under specified assumptions we developed an advanced diagnosis and
repair architecture which is based on ROS and is able to inter-operate with the existing ROS-
based diagnostics stack. Because of its generalized methods the proposed architecture is also
applicable to other ROS-based software than robot control software.

The development of the architecture of the proposed diagnosis and repair system was guided
by the following goals: (1) compatibility with ROS and its diagnostics stack, (2) minimizing
the need to alter or annotate existing system code, (3) integration of both hardware and software
observations and repair actions, (4) use of advanced diagnosis and repair approaches, (5) general
abstract interfaces for observations and actions and (6) easy modeling of the diagnosis and repair
domains. The system is publicly available on an open-source basis1.

The architecture offers diagnosis and repair for the ROS-based robotics systems. It monitors
the robotics system components, and on observing any inconsistencies between the observed and
predicted behavior of the robotics system a fault is detected. The architecture offers a diagnosis
module that localizes the detected fault in order to distinguish faulty component from the work-
ing ones. The diagnosis module uses logical model that represents the correct behavior of the

1http://www.ros.org/wiki/tug ist model based diagnosis

57

4.2. ROBOTICS SYSTEM CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.1: Architectural overview of presented methodology

robotics system. The repair module of the architecture is to repair the faulty component in order
to bring the robotics system to its normal correct behavior. Figure 4.1 depicts the architecture
and connection to the ROS nodes for software and hardware components of the robotics system.

4.2 Robotics System

A robotics system comprises a significant number of heterogeneous hardware and software com-
ponents in their structure and functionality. The hardware components include sensors, mo-
tors, actuators, etc., while software components are processing entities and hardware drivers.
A robotics system uses its components in order to achieve its mission successfully. Regardless
of the type and mission every robotics system has a control system which controls the robot’s
hardware, processes internal information, and allows all components to communicate with each
other to make it possible for the robot to achieve its task. In the context of the ROS-framework,
a control software of a robotics system consists of a number of entities called nodes, both for the
processing (e.g., navigation, image processing) and for driving the hardware components (e.g.,
hardware drivers). In order to achieve a task collaboratively, these nodes exchange their com-
puted information through exchanging messages with each other concurrently over the commu-
nicational channels called topics. Each node has a number of incoming and/or outgoing topics in
order to receive and/or publish the messages. There is a number of fields dedicated to a message
which along with the field’s values travel over a topic.

A robotics system’s communication graph can be formalized through the robot architecture

58

CHAPTER 4. SYSTEM ARCHITECTURE 4.2. ROBOTICS SYSTEM

model (RAM) which considers the software and hardware components of the robotics system,
the communication structure between the components, and the connection dependencies in the
communication. We define it in the following section:

4.2.1 Robot Architecture Model (RAM)

The robot architecture model (RAM) presents a robotic system in terms of the components
(hardware and software), connections between the components (communication channels), and
dependencies among components. The formalization of this architectural general view (RAM)
and the structural properties within the components of the robotics system is represented in the
form of sets and functions.

Definition 4.1 (field). A field is a named atomic data type which holds a value that travels on a
node’s topic.

Definition 4.2 (driver). A driver is a node that controls a hardware component, and acts as a
hardware driver.

Definition 4.3 (switchable hardware). A switchable hardware is a component connected to a
diagnostic board, and can be powered up or shut down.

Definition 4.4. The robot architecture model (RAM) is a tuple 〈COMPS, T ,F , δ〉 such that:

◦ COMPS : a set of soft and hardware components having the following disjunctive sets:

– S = {s1, s2, ...} : a set of all software components.

– H = {h1, h2, ...} : a set of non switchable hardware components.

– HN = {hn1, hn2, ...} : a set of drivers (nodes) for hardware components hi ∈ H.

– SH = {sh1, sh2, ...} : a set of switchable hardware components.

– SN = {sn1, sn2, ...} : a set of drivers (nodes) for hardware components shi ∈ SH.

– N = {n1, n2, ...} : a set of nodes other than inHN ∪ SN .

◦ T = {τ1, τ2, ..., τk} : a set of all topics.

◦ F = {f1, f2, ..., fn}; a set of all fields on all topics.

◦ δ : a set of the following functions.

– δout : S 7−→ 2T : returns all outgoing topics of a software component.

– δin : S 7−→ 2T : returns all incoming topics of a software component.

59

4.2. ROBOTICS SYSTEM CHAPTER 4. SYSTEM ARCHITECTURE

– δaff : S × T 7−→ 2T : returns those incoming topics of a software component that
affect outgoing topic, i.e, the outgoing topic depends on the incoming topics.

– δhw : SN 7−→ 2SH : returns the hardware related to a hardware driver node with
switchable hardware.

– δfld : T 7−→ 2F : returns all the fields of a message on a topic τ ∈ T .

– δrel : F × F 7−→ {True, False} : returns True if both fields are related, False
otherwise.

Proposition 4.1. For a topic τ ∈ T and a node n ∈ S, if τ ∈ δout(n) is true then it does not hold
that τ ∈ δaff (n, τ).

Example 4.1. (Continued) The robot architecture model (RAM) for the running example given
in Chapter 3 is as follows:

〈 {{in, jyn, jn, hn, lan, jtn, hm, lac, rviz}, {imu, jys}, {in, jyn}, {ja, hu, la},
{jn, hn, lan}, {jtn, hm, lac, rviz}},
{cmd vel, pose, scan, la servo1 moving, la servo2 moving, joy,map, imu data},
{header, pos.linear.x, ...,map, ..., header, ranges, ...header, x, y, z, w, ...},
{δout(jn) = {pose}, δout(hn) = {scan}, δout(in) = {imu data}, δout(jtn) = {cmd vel},
δout(lac) = {la servo1 moving, la servo2 moving}, δout(jyn) = {joy},
δout(hm) = {map}, δout(lan) = ∅, δout(rviz) = ∅,
δin(jn) = {cmd vel}, δin(jtn) = {joy}, δin(jyn) = ∅, δin(hn) = ∅, δin(in) = ∅,
δin(hm) = {pose, scan}, δin(rviz) = {map}, δin(lac) = {imu data},
δin(lan) = {la servo1 moving, la servo2 moving},
δaff (hm,map) = {pose, scan}, δaff (lac, la servo1 moving) = {imu data},
δaff (lac, la servo2 moving) = {imu data}, δaff (jtn, cmd vel) = {joy},
δhw(jn) = {ja}, δhw(hn) = {hu}, δhw(lan) = {la},
δfld(cmd vel) = {header, pos.linear.x, ...}, δfld(scan) = {header, ranges, ...},
δfld(la servo1 moving) = {pos angle, neg angle}, δfld(map) = {header, grid[1][1], ..}
δfld(la servo2 moving) = {pos angle, neg angle}, δfld(joy) = {header, button1, ..},
δfld(imu data) = {header, x, y, z, w}, δfld(pose) = {header, twistxyzw, posexyzw}
δrel(grid[1][1], imu.x) = False, δrel(pos.linear.x, imu.x) = True, ...} 〉

60

CHAPTER 4. SYSTEM ARCHITECTURE 4.3. DIAGNOSIS AND REPAIR

4.3 Diagnosis and Repair

Following the requirements described in the introduction section we developed a diagnosis and
repair system whose architecture is shown in Figure 4.1. The architecture resembles five mod-
ules: (1) a set of system observers (Chapter 5) each of which observes a particular property of the
robotics system, (2) a diagnosis model server (Chapter 6) which provides an abstract behavioral
model describing the correct behavior of the robotics system, (3) a model-based diagnosis en-
gine (Chapter 6) that detects the root cause if observers detect any violations, (4) a planner-based
repair engine (Chapter 7) in order to find the set of repair actions for executing repair server ac-
tions for the repair process, and (5) a hardware diagnosis and repair board (Chapter 8) in order to
diagnose and repair the hardware faults. Each module provides a particular functionality which
is described below in more detail. The modules communicate with each other in order to pass
information among them.

4.3.1 Communication

The modules in our diagnosis and repair architecture communicate with each other using some
means of communication. The means of communication a module uses, depend on the nature of
the module. For example the observers always output the status of components, therefore, they
need unidirectional communication with other modules. A repair engine needs bidirectional
communication; i.e., it sends a goal to a repair action and waits until it gets a result back. There
are three types of communication means adapted to the modules.

Standard Topics and Messages: All observers (briefly discussed in the next section) publish
their observations in the form of a set of first-order logic literals on the ROS topic /observations.
For instance, the string "ok(temp cpu1) and ok(temp cpu2)" represents the fact that
the temperature of CPU1 and CPU2 are within their proper range. The diagnosis results are pub-
lished on the topic /diagnosis using a diagnosis message containing sets of faulty, and working
components (∆bad,∆good). The diagnosis message may contain multiple diagnoses.

Repair Actions: All repair actions in the system are implemented using the ROS action
server/client architecture2. Actions use a generic action definition accepting a list of strings
as parameters and returning a single standard integer value for the feedback and the result. This
allows for an easy integration of new repair actions. For instance shutdown("laser") rep-
resents the ground repair action for shutting down the power supply for the laser sensor.

2For further information on the ROS action library please refer to http://ros.org/wiki/actionlib.

61

4.3. DIAGNOSIS AND REPAIR CHAPTER 4. SYSTEM ARCHITECTURE

Individual Communication: This category comprises special means of communication used
by special nodes or services outside ROS. For instance the diagnosis system communicates with
the hardware diagnosis and repair board via a proprietary protocol over TCP/IP. Moreover, some
OS-related repair actions like resetting the USB bus, use special OS calls, e.g., ioctl.

4.3.2 Observers

Observers are general software entities implemented as ROS nodes that monitor particular prop-
erties of the system. There are different kinds of observers supervising different properties.
The output Θ of the observers is published on the /observations topic as a first order logi-
cal (FOL) literals. The observation is a representation of the observed property and its status.
Observations are published as a set of strings. Currently only simple literals are supported,
e.g., ok(temp cpu1)("ok(temp cpu1)") or ¬ok(temp cpu1)("not ok(temp cpu1)").
However, more complex expressions, e.g., expression with quantifiers, can be easily integrated.
Observers are thoroughly covered in Chapter 6.

Please note that obviously the representation and expressiveness of observations have to
match with the capabilities of the used diagnosis approach. Currently used observer types are:

Diagnostic Observer (DObs) is a connection between the existing ROS diagnostics system and
the integrated diagnosis and repair system. DObs receives diagnostic messages and gen-
erate the output based on similar rules as the existing ROS diagnostic analyzers, e.g.,
temp cpu1 < 40.0 ⇔ ok(temp cpu1). These observers can easily reuse the existing
information coming from hardware devices.

General Observer (GObs) simply subscribes to a particular topic and uses the received mes-
sages as input. It observes the frequency f(τ) for a topic. If f(τ) is correct then it submits
ok(τ), ¬ok(τ) otherwise.

Node Observer (NObs) observes the running state of a software node. It submits running(n)

if node n actually runs, ¬running(n) otherwise.

Qualitative Observer (QObs) observes the abstract trend of a particular value in the message
of a topic. It reports if a value v increases (inc(v)), decreases (dec(v)) or stays constant
(cons(v)). The observer fits a linear regression for a given time window ω and compares
it with a given slope b. For details about the abstraction process please refer to [KSW09].

Binary Qualitative Observer (BiQObs) monitors match or mismatch between two values on
the basis of their qualitative trends. It outputs matched(v1, v2) if both v1 and v2 have same
qualitative trends, otherwise ¬matched(v1, v2).

62

CHAPTER 4. SYSTEM ARCHITECTURE 4.3. DIAGNOSIS AND REPAIR

Hardware Observer (HObs) subscribes to the measurements and status updates coming from
the hardware diagnosis board to supervise the status of the different power supply chan-
nels. It provides the observation on(m) if the module m is powered, otherwise ¬on(m).
Moreover, it provides all current measurements and power states in a special message on
the topic /board measurments. This allows further observers to reuse the information.

Property Observer (PObs) supervises properties not directly related to a topic that may affect
the robot’s performance like CPU or memory usage of a particular service. The observer
publishes individual observations ok(n, p) if a property p of a node n functions properly,
otherwise ¬ok(n, p).

Interval Observer (IObs) monitors the interval difference between two values and reports
equal(v1, v2) if |v1 − v2| does not exceed a certain threshold for the values v1 and v2,
otherwise ¬equal(v1, v2).

Example 4.2. (Continued) Considering running example from Chapter 3 suppose we take
the set of the observers O = {GObscmd vel, NObsimu node, PObshokuyo node cpu} where
GObscmd vel publishes either ok(cmd vel) or ¬ok(cmd vel), NObsimu node publishes ei-
ther running(imu node) or ¬running(imu node), and output of PObsActuatecpu is either
ok(hokuyo node, cpu) or ¬ok(hokuyo node, cpu). If the the exploration and the mapping on
the robotics system is running correctly then the output of the observers (oi ∈ O) provides a list of
observations; i.e., Θ = {ok(cmd vel), running(imu node), ok(hokuyo node, cpu)}. Suppose
that PObshokuyo node cpu monitors a deviation in cpu usage then the list of observations becomes
Θ = {ok(cmd vel), running(imu node),¬ok(hokuyo node, cpu)}.

4.3.3 Diagnosis Model Server

In addition to the observations the model-based diagnosis requires a model of the correct behavior
of a system in order to localize a fault. In the presented work the correct behavior of the robotics
system is provided by the model server in the form of logical rules. The diagnosis model server
(DMS) is an action server that provides the robot behavioral model at run-time when requested
for the diagnosis. It enables the system to make changes in the robot behavioral model ar run-
time, or add new logical rules without disturbing the rest of diagnosis system at run-time. The
robot behavioral model provides an expected behavior of the robotic system which is used by
the diagnosis process to capture the discrepancies if the observed behavior deviates from the
expected behavior. (RBM) is an abstract model containing a set of logical rules in order to
describe the robotics system’s correct behavior. Both the robot behavioral model and required
observers together make a diagnosis model (DM) for a robotics system (the automatic diagnosis
model learning and observers generation are discussed in Chapter 9).

63

4.3. DIAGNOSIS AND REPAIR CHAPTER 4. SYSTEM ARCHITECTURE

The robot behavioral model is a logical system description of the robotics system. It consists
of Horn clauses and the propositions in order to represent the correct behavior of the robotics
system. The Horn clauses are to obtain the efficient logical deduction and reasoning during
the diagnosis process. The Horn clauses representation is also compatible with the diagnosis
engine used in the presented work. It supports Horn-clauses and propositions using the concepts
presented in the contribution [Rei87]. The robot behavioral model uses the rules containing literal
¬AB(c) (”not ABnormal component c”), for example, ¬AB(c) → running(c) stating that a
component node n is working when it is running. Clearly the clause ¬AB(c) → running(c) is
a Horn clause as the literal ¬AB can be represented by a propositional atom NAB or not AB
where N and not are called negative prefixes.

Example 4.3. (Continued) Considering the running example from Chapter 3 the robot behav-
ioral model (RBM) contains the following rules:

¬AB(jaguar node)→ running(jaguar node)

¬AB(hokuyo node)→ running(hokuyo node)

¬AB(imu node)→ running(imu node)

¬AB(laser alignment node)→ running(laser alignment node)

¬AB(laser alignment control)→ running(laser alignment control)

¬AB(hector mapping)→ running(hector mapping)

¬AB(joy node)→ running(joy node)

¬AB(joy teleop node)→ running(joy teleop node)

¬AB(rviz)→ running(rviz)

The robot behavior model formalization will be thoroughly defined in Chapter 6.

4.3.4 Diagnosis Module

The diagnosis module is that part in the diagnosis system architecture which computes the root
cause of the failure called diagnosis (∆) (Chapter 6 for details). The kernel of the diagnosis
module mainly consists of two concurrently running subtasks; i.e., collecting observations,
detecting and localizing the faults. It also links a repair engine (briefly discussed in the next
section) by publishing the diagnosis. It takes as input the observations Θ coming from the
observers, and an abstract diagnosis model (DM) from the diagnosis model server. The obser-
vations are in the form of FOL literals while the diagnosis model (system description) comprises
logical rules expressed in the form of Horn clauses. Each single observation θt that occurs
at time t on the topic /observations is integrated into an observation set Θ; i.e., Θ = Θ⊕θt, where

S ⊕ θ =

{
(S\¬L) ∪ L for θ = L

(S\L) ∪ ¬L for θ = ¬L

64

CHAPTER 4. SYSTEM ARCHITECTURE 4.3. DIAGNOSIS AND REPAIR

where L is a logical literal.

Example 4.4. (Continued) Assuming the running example from Chapter 3 we start the
diagnosis module which initially has the list of observations empty Θ = ∅. Now
we start the observer GObscmd vel, and the observation ok(cmd vel) appears. The di-
agnosis engine searches the list Θ for the observation ok(cmd vel). As Θ is empty
the observation is simply added; i.e., Θ = {ok(cmd vel)}. The same thing hap-
pens when first observations from NObsimu node and PObshokuyo nodecpu appear making
Θ = {ok(cmd vel), running(imu node), ok(hokuyo node, cpu)}. Now the observations
ok(cmd vel), running(imu node), and ok(hokuyo node, cpu) appear one after another but
they are not added because Θ already contains them. At this point of time something happens
and node imu node stops. The observer NObsimu node monitors it and changes its observa-
tion from running(imu node) to ¬running(imu node) which comes to the diagnosis engine.
The diagnosis engine searches Θ for ¬running(imu node) but does not find it. Before adding
¬running(imu node) the counter observation running(imu node) is also searched, it found
and removed, and appended ¬running(imu node) in the list making:

Θ = {ok(cmd vel),¬running(imu node), ok(hokuyo node, cpu)}
and the process continues.

The process of computing a diagnosis is finding a set of components that are faulty and
a set of components that are still working properly. Predicate ¬AB(m) denotes that module
m is working properly whereas AB(m) denotes that the module m shows a faulty behavior.
The diagnosis engine follows the principles of model-based diagnosis presented in [Rei87]. The
approach uses an abstract model (diagnosis model (DM) in our case) that defines correct behavior
and current observations of the system. A fault is detected if the outcome of the model and
the observation lead to a contradiction. Using a hitting set algorithm, the approach calculates
hitting sets in order to compute diagnoses that resolve the contradiction; i.e., they explain the
component’s misbehavior. The engine locates that component or set of components that are
the root cause for the contradiction. The results of the diagnosis engine are published on the
/diagnosis topic. As described earlier the diagnosis message may comprise several diagnoses
build up by sets of working (good) and faulty (bad) components. The union of both sets is equal
to the set of all system components (∆good ∪ ∆bad = COMPS) for each individual diagnosis.
Apart from this, it also generates diagnostic messages compatible for the ROS diagnostics stack.
The diagnosis is a single fault diagnosis if its ∆bad set contains only one component, otherwise
it is multi fault diagnosis.

Example 4.5. (Continued) Suppose the diagnosis module acquires the observations list
Θ = {ok(cmd vel), running(imu node), ok(hokuyo node, cpu)} and the assumption A =

65

4.3. DIAGNOSIS AND REPAIR CHAPTER 4. SYSTEM ARCHITECTURE

{¬AB(jaguar node),¬AB(imu node),¬AB(hokuyo node)} that all components are work-
ing correctly. The robot behavioral model (RBM) breifly discussed in the previous section, is
a system description of the robotics system. The RBM ∪ Θ ∪ A is consistent because there is
no conflict set and the diagnosis engine provides only a minimal diagnosis the empty set {}. The
diagnosis module publishes the diagnosis as:

∆ = {∆bad = {}, ∆good = {jaguar node, imu node, hokuyo node}}

Now suppose the node imu node stops because of some unknown reasons which updates the
observations list Θ = {ok(cmd vel), ok(hokuyo node, cpu),¬running(imu node)} making
RBM ∪Θ ∪ A inconsistent. The minimal conflict set F = {imu node} is calculated because:

RBM ∪Θ ∪ {¬AB(imu node)} =⊥

so the Hitting set algorithm of the diagnosis engine provides a minimal diagnosis set {imu node}
and the diagnosis module’s output:

∆ = {∆bad = {imu node}, ∆good = {jaguar node, hokuyo node}}

Chapter 6 discusses the diagnosis process in detail.

4.3.5 Repair Module

The system architecture does not only localize faults but also offers mechanism to repair the
detected and the localized faults. The task of repairing a faulty component is performed by
this module of the system architecture. It uses Repair engine that performs two main activities:
first it finds out a plan of actions to be performed for necessary repair, secondly it uses repair
action servers to execute the computed actions in the plan. In order to describe and enable repair
actions we model the repair as a planning domain. The repair engine takes current observations
(Θ) and diagnoses (∆) as input. If the repair engine receives a diagnosis message it converts the
diagnosis into to a planning problem and solves it. Please note that in the case of multiple faults,
the diagnosis repair module always makes a repair plan for the first diagnosis obtained in the
diagnosis set.

We use the widely recognized Planning Domain Definition Language (PDDL) to represent
the domain and problem definitions for the planning [KBC+98]. The description of a planning
problem in PDDL comprises two parts: (1) a domain description and (2) a problem description.
The advantage of this approach is that a wide range of existing high-performance planners and
various extensions to classical planning like typing can be easily used directly. To parse the
PDDL domain description that contains all definitions of actions and domain objects we use
an open-source Java-based package pddl4j [Pel08] and a GraphPlan implementation to find

66

CHAPTER 4. SYSTEM ARCHITECTURE 4.3. DIAGNOSIS AND REPAIR

a plan P (a sequence of repair actions) [BF97]. All possible repair actions are defined in the
domain description. These actions include start node(n), stop node(n), power up(h) and
shutdown(h). The actions start node(n) and stop node(n) are for starting and stopping a
software node n while power up(h) and shutdown(h) are for powering up and shutting down a
hardware component h. The following is a possible start node(n) action description:

(:action start node

:parameters (?n)

:precondition (and(bad ?n)(not(running ?n)))

:effect (running ?n))

)

The first action description states that the planner can power up a hardware component h
only if h is off and faulty. The effect of the action is that component h is powered and works
correctly. The start node action description states that a software component n only if it is
declared faulty and observed not running. The action’s effect is that component n is running.
The repair planning problem description for a diagnosis ∆ and a set of observations Θ is simply
a PDDL description of the initial state I and the goal G.

Example 4.6. (Continued) Considering the diagnosis with faulty and working diagnosis ∆ =

{∆bad = {imu node}, ∆good = {jaguar node, hokuyo node}} the planner generates sequence
of repair actionsP = 〈start node(imu node)〉 by using domain action description and problem
description. In this case there is only one repair action start node for the component imu node.

Once the planner has found a valid repair plan P , it starts the execution of the sequence
of repair actions. The execution of the action is triggered by an invocation of the appropriate
repair action server. A repair action server is a ROS action server that gets a goal from its action
client (repair kernel), fulfils the goal and returns as status either SUCCESS if it finishes the task,
otherwise FAILED, back to the action client. Because of the standard signature for repair action
servers (a unique name and a list of parameter strings) an easy matching between the planner and
the ROS-based system is possible. Please note that the planner simply waits for the completion
message (SUCCESS/FAILED) from the called repair action server and currently does not check
the actions’ effect. A better strategy for the future would be to wait until the effects have been
established. For instance it might take longer for a node’s output topics to become correct than
simply to restart the node. The repair module is discussed in detail in Chapter 7.

Example 4.7. (Continued) start node repair action server will be invoked which will start the
node imu node.

67

4.3. DIAGNOSIS AND REPAIR CHAPTER 4. SYSTEM ARCHITECTURE

4.3.6 Diagnostic Hardware Board

Our experiences and previous research work have shown that in addition to software diagnosis
and repair, hardware-based diagnosis and repair is needed for systems comprising devices with
no direct support for diagnosis and reconfiguration. In order to get additional information for
the diagnosis system we developed a micro-controller based hardware diagnostic board and a
hardware diagnosis observer [ZL13, ZL14]. The diagnostic board and the hardware observer are
capable to gather the hardware related information like current measurements and power supply
detection of individual components of the system. The information that a particular component
draws a certain amount of current or that a device is indeed powered can assist the diagnosis
process. The diagnostic board contains the following features:

1. It can sense whether a hardware component is connected to its channel.

2. If a component starts consuming more current the board can immediately sense it.

3. It offers repair actions for the hardware components by powering them up/down.

4. It can also measure the voltage level flowing in the channels.

5. It also provides small memory to save some start up configuration for powering up certain
components.

The diagnostic board provides the possibility to turn ON and OFF the power supply for dif-
ferent system components. This allows two different kinds of repair actions related to hardware:
(1) power off/on cycles and (2) hardware reconfiguration. The board is organized in 10 individ-
ual channels that can be switched individually. The central part of the hardware diagnostic board
is a micro-controller embedding a TCP/IP stack. It is responsible for the current measurements,
the power monitoring and the power configuration of the individual channels. The board is con-
nected with the outside world over Ethernet, and embeds a server with a proprietary protocol.
The protocol allows the client to pull information like measurements and states of channels or to
initiate broadcasts on a regular basis. The diagnostic board is discussed in Chapter 8.

Example 4.8. (Continued) Following the running example from the previous chapter,
there are three hardware components which are switchable, namely jaguar, hokuyo, and
laser alignment. Therefore the HObs will sense the diagnostic boards and will give obser-
vations:

Θ = {on(jaguar), on(hokuyo), on(laser alignment)}

68

CHAPTER 4. SYSTEM ARCHITECTURE 4.4. LIMITATIONS

4.4 Limitations

Locating and repairing faults at run-time is related to a number of issues. The foremost prob-
lem is the complexity and overhead of the diagnosis system. In the current implementation the
load on the diagnosis system depends upon the size of robotics system and on how complex its
communication structure is. The overhead of the diagnosis and repair modules of the diagnosis
system in terms of memory is not high because the diagnosis and repair system does not keep
the data streams. However, the overhead with respect to CPU usage can increase with signifi-
cant increase in the number of components being monitored. Moreover, the CPU overhead also
depends upon the capability of the machine being used. Moreover, learning a diagnosis model
(Chapter 7) puts more overhead in terms of cpu and memory due to spawning multiple threats
for monitoring the data and communication behavior, and storing the processed data at run-time.
But this overhead does not change the operation of the control software if the machine is not
significantly slow.

Another problem that may cause damage to the environment or the robot can arise if there
is a significant delay between detection of the faults and repairing them. This delay must be as
short as possible in order to avoid physical damage. In the presented diagnosis methodology,
the diagnosis process receives observations with the frequency of 10 Hz and computes diagnosis
with the frequency of 1Hz. The diagnosed faults are repaired as soon as a diagnosis arrives at
the repair system. In case of the hardware faults, the delay depends upon the nature of repair
action (shut down or re start).

The repair engine we use does not repair every kind of faults. There are different kinds of
the faults, namely transient, intermittent, and permanent, etc. A transient fault is a fault which
can be repaired at run-time after some tries. The example of transient faults includes a software
entity crash, frequency deviation on a channel, increasing consumption of power by hardware
component, etc. An intermittent fault causes a component (software or hardware) to alternatingly
function correctly and incorrectly, e.g., cpu consumption starts fluctuating. The permanent faults
are those which cannot be repaired at run-time, for instance when a gear is broken, or a hardware
component switched off due to a cable disconnected or cut. Currently our repair system can only
repair transient faults.

Another issue can be that the model created and learned does not truly reflect the correct
system behavior. We overcome this issue by assuming that the phase which learns the system’s
model is completely fault free; i.e., there are no faults both at the software and hardware level
during the learning phase (Chapter 9).

The assumptions and requirements our work considers are as follows:

1. The scope of the diagnosis system are robotics systems that are based on the ROS platform.

2. The diagnosis system only considers transient faults, not permanent ones.

69

4.4. LIMITATIONS CHAPTER 4. SYSTEM ARCHITECTURE

3. Repairing a fault should immediately start as long as diagnosis appears.

4. The diagnosis system assumes fault free run during model learning.

5. The model is presumed to be correct, and any violation indicates a component’s fault.

6. The diagnosis system should not put any significant impact on the operation of the robotics
system.

70

Chapter 5

Monitoring

This chapter discusses how the diagnosis system monitors a system’s parts in order to find incon-
sistencies, violations and deviations in observed behavior as compared to the predicted behavior.
It gives insights of different monitoring units (observers) and their functionalities. Parts of the
work presented in this chapter have been published in [LMS+12].

5.1 Overview

Diagnostic reasoning requires a means of declaring a component faulty based on observed behav-
ioral discrepancies. In order to detect the behavioral discrepancies a diagnostic process demands
a continuous run-time monitoring system. The monitoring system should have the capability
to observe the properties or characteristics of a robotics system’s behavioral communicational
graph between its different components. A robotic system at run-time uses a number of soft-
ware modules in order to accomplish its task. These software modules exchange and share their
information with each other to reach the goal. However, due to interaction of robotics system
with a time-varying dynamic environment and the heterogeneous nature of its own components,
the possibility of robotic system’s malfunctioning cannot be completely neglected. The environ-
mental effects or internal complex communication of robotic system may change the properties
of running modules and their communication behavior. This possible change in the properties
inside a robotics system leads to a deviation from correct behavior. For example during the out-
door navigation the Compass or IMU sensor may start functioning abnormally while passing
through a building or a bridge made up of heavy iron and steel. During the fault free execution,
the properties of a robotic system’s modules and its communication behavior collectively reflect
the correct behavior of the robotic system. The task of a monitoring system is to closely observe
these properties and report violation if it finds some significant change in these properties. Of
course, there must be some level of tolerance for monitoring a property, e.g., if a normal running

71

5.1. OVERVIEW CHAPTER 5. MONITORING

module gets a rise in cpu usage only one time due to some operating system reasons and gets
back to normal again, it is not wise to halt the whole processing system and to start it again.
As the focus of the presented diagnosis and repair system is the ROS-based robotics systems,
we consider the running example (Chapter 3) in order to explain the concepts of fault detection,
localization, and repair both in software and hardware level in this and the next chapters.

An occurrence on a topic is a message which contains a set of fields with their values.
These values can be of primitive data types (e.g., integer, float) or a complex data structure,
e.g., odomerty.

Definition 5.1 (Occurrence). An occurrence ot appearing at timestamp t on a topic τ ∈ T is a
tuple 〈t, V 〉 such that:

◦ t is the timestamp at which the occurrence appears on the topic τ .

◦ V = {val1, val2,, valn}; a set of values corresponding to all n fields fi ∈ δfld(τ) of a
message on the topic τ ∈ T .

The set of all messages in a row on a topic makes the sequence of the occurrences for that
topic. The number of occurrences per unit time is the frequency of the topic τ ∈ T .

Definition 5.2 (Sequence). A sequence seq(τ, t) is the sequence at time t of all the occurrences
on a topic τ ∈ T since its monitoring started. The occurrences in seq(τ) are in an ascending
order with respect to the timestamps in the occurrences. A sequence of occurrences between
the interval of timpestamps ti and tj , is denoted by seq(τ, [ti, tj]) such that 0 ≤ ti ≤ tj . The
seq(τ, [ti, tj]) is of course a subsequence of seq(τ, t).

It is possible that at time t one topic receives an occurrence and others do not.

Definition 5.3 (Topic Data). A function data(τ, t) for τ ∈ T at time t is such that:

data(τ, t) =

ot if occurrence appears.

∅ otherwise.

where ot is the occurrence at time t on the topic τ ∈ T .

Definition 5.4 (window). A sliding window ω specifies a time duration during which the occur-
rences oi are collected. After this duration is passed, the computation takes place on the collected
occurrences.

Proposition 5.1. If a window ωj occupies the sequence seq(τ, [ti, tj]) of occurrences on a topic
τ from timestamps ti to tj , the change in ωj changes |seq(τ, [ti, tj])|.

72

CHAPTER 5. MONITORING 5.2. OBSERVERS

Proposition 5.2. Given two windows ωa and ωb such that ωa < ωb, then the observer is more
strict (less sensitive) to violations for the window ωa, and less strict (more sensitive) for ωb.

The sliding window is basically used to deal with unwanted small noises in the data and
absorb them without causing violation.

Example 5.1. (Continued) The node jtn publishes command velocities on the topic cmd vel
with the frequency 10Hz. Let us suppose the interval (∆) between successive occurrences is
100ms with a standard deviation (σ) of 0.0002ms in a normal run. If due to some processing
overload ∆j between occurrence oi and oj becomes 150ms, then an observer with the window
ω of size 400ms can more easily detect this violation than when having the window (ω) of size
1000ms (1sec).

5.2 Observers

The monitoring system consists of a number of monitoring units. The scope of the monitoring
system are ROS-based robotics systems whose control software consists of nodes, topics, and
messages. A node possesses certain properties, for example its state (e.g., running, aborted, or
stopped), its cpu power consumption, and the number of topics it is associated with, etc. Like a
node a topic also possesses some properties, for example, the number of associated nodes, the
frequency of data flowing on it, the behavior of transmission (e.g., random, regular, or periodic).
The properties of a field in a message travelling over a topic can be, for example, its value
increasing, decreasing, or remaining constant. Each of the monitoring units, called observer,
monitors one of such properties to report if any violation in the property is reported.

Definition 5.5 (Observer). An observer Obs is a tuple 〈P , ψ,Θ〉 for testing a property where

◦ P = {p1, p2, ...}, a set of parameters for testing the property;

◦ ψ(P), a condition to satisfy property on parameters P;

◦ Θ, a set of logical literals corresponding to the observations.

An observer is a general software entity implemented as a ROS node to monitor particu-
lar properties of the system or its parts. Based on different properties, there are different kind
of observers that receive a number of parameters, test a particular condition, generate output
specifying whether or not the property holds. The output of the observer is in the form of first
order logical (FOL) literal which is a representation of the observed property and its status, e.g.,
ok(sensor voltage), i.e., voltage on sensor is ok, or ¬ok(sensor voltage), i.e., voltage on sen-
sor is not ok.

73

5.2. OBSERVERS CHAPTER 5. MONITORING

In order to deal with different properties there are a number of observers namely Diagnos-
tic Observer (DObs), General Observer (GObs), Node Observer (NObs), Qualitative Observers
(QObs), Binary Qualitative Observers (BiQObs), Hardware Observer (HObs), Property Ob-
server (PObs), and Interval Observer (IObs) as follows:

5.2.1 General Observer (GObs)

General observer (GObs) simply subscribes to a particular topic and uses its occurrences oi. This
allows the observer to monitor the communication behavior of a topic’s node. For this general
case, it is done by checking the frequency property of the topic. Figure 5.1 describes the template
of a general observer.

Observer Name: General Observer (GObs)
Test property: Topic’s Frequency
Parameters (P): {τ, δ, σ, ω, θ}
Description : Monitors topic’s (τ) frequency; given occurrences interval

δ, deviation σ, mismatch threshold θ, and window ω

Condition (ψ):

ok(τ), if average occurrance interval on τ is in [δ ± σ]

¬ok(τ), otherwise.

Output (Θ): {ok(τ),¬ok(τ)}

Figure 5.1: Template for ”General Observer (GObs)”.

The observer computes time interval ∆t between successive occurrences ot−1 and ot. The
average of all intervals within a varying sized sliding windoww is calculated as µ. If the observer
observes the right frequency frq (Equations 5.1) for a topic τ ; i.e., (|µ−δ| < σ), it submits ok(τ),
¬ok(τ) otherwise. The frequency is measured as:

frq =
1

µ
(5.1)

where

µ =

n∑
t=2

(ot − ot−1)

|seq(τ, [t1, tn])| − 1
(5.2)

where ot is an occurrence at timestamps t and |seq(τ, [t1, tn]) is the sequence of n occurrences
collected in a window ω. Typically a window w is chosen such that the average number of

74

CHAPTER 5. MONITORING 5.2. OBSERVERS

occurrences for the topics with different frequencies should be same. This is achieved by the
following equation 5.3:

ω = c× 1

frq
(5.3)

where c is a constant representing desired number of average occurrences for a topic with fre-
quency frq.

Algorithm 1: GObs(τ, δ, σ, ω, θ)
input : τ ... publishing topic
input : δ ... expected interval between occurrences
input : σ ... interval deviation
input : ω ... window size
input : θ ... mismatch threshold
output: Θ ... Observation
W = ∅1

Omid = O12

mismatch = 03

foreach new occurrence Oi from τ do4

if (Omid − ω/2) <= Oi <= (Omid + ω/2) then5

W = W ∪Oi6

continue7

end8

µ = mean(∆W)9

if (|µ− δ| ≤ σ) then10

if mismatch > 0 then11

mismatch = mismatch− 112

end13

else14

mismatch = mismatch+ 115

end16

if mismatch > θ then17

Θ = ¬ok(τ)18

else19

Θ = ok(τ)20

end21

Omid = Omid+122

pop(W [1])23

end24

The functionality of the general observer (GObs) is described in Algorithm 1. The collection
of the occurrences in the window of size ω occurs in Lines 4-8. Line 9 computes average interval
time µ. The variable mismatch keeps the number of consecutive violations observed by the

75

5.2. OBSERVERS CHAPTER 5. MONITORING

observer. If the number of violations exceed the mismatch threshold θ then the observer reports
an error, otherwise consistency is reported (Lines 17-21). After computations the window slides
in the lines 22 and 23.

Example 5.2. Continuing with the running example from Chapter 3, following is the list
of general observers (one for each topic), Og = {GObscmd vel , GObsscan, GObsimu data,
GObsla servo1 moving, GObsla servo2 moving, GObsmap, GObsjoy} where subscript is the name of
topic. The output of the observers when every thing is properly working; Θ={ok(cmd vel) ,
ok(scan), ok(imu data), ok(la servo1 moving), ok(la servo2 moving), ok(map), ok(joy)}

5.2.2 Node Observer (NObs)

Node Observer (NObs) observes the status of a node η ∈ S where S is a set of software nodes
(SAM in previous Chapter). The status of a node (η) can be either running or not running.
NObs interacts with ROS communicational graph in order to extract the set of currently execut-
ing nodes. It searches the node η in the executing nodes list. If the node η is found in the list
meaning that the node is currently executing, the node observer reports running(η), otherwise
¬running(η) is reported. Here a tolerance level is defined by an argument denoted by θ. It can
be the case that a node exists in the ROS computation graph but due to complex communication
between the nodes and frequent updates of the computational graph by ROS the list may occa-
sionally drop a node. The higher the θ the less sensitive is the observer, and vice versa. Figure
5.2 describes the node observer (NObs).

Observer Name: Node Observer
Test Property: Node’s Status
Parameters (P): {η, θ}
Description : It monitors running status of a node (η).

Condition (ψ):

running(η), if η is currently executing

¬running(η), otherwise.

Output (Θ): {running(η),¬running(η)}

Figure 5.2: Template for ”Node Observer (NObs)”.

The node observer (NObs) functions in the way described in Algorithm 2. It con-
tinuously checks if the ROS system is working (Line 2). The functions capture and
extract running nodes respectively grasps the computation graph and extracts list of currently
executing nodes (Lines 3-4) by using ROS Master APIs through XML-RPC1. Lines 6-10 keep

1http://wiki.ros.org/ROS/Master API

76

CHAPTER 5. MONITORING 5.2. OBSERVERS

Algorithm 2: NObs(η, θ)
input : η ... node
input : θ ... mismatch threshold
output: Θ ... Observation
mismatch = 01

while isOk(System) do2

sys struct = capture(System)3

N = extract running nodes(sys struct)4

if η ∈ N then5

if mismatch > 0 then6

mismatch = mismatch− 17

end8

else9

mismatch = mismatch+ 110

end11

if mismatch > θ then12

Θ = ¬running(η)13

else14

Θ = running(η)15

end16

end17

the number of violations. The mismatch variable is decreased only if there is no violation and
the number of previously detected violations is more than zero. The observer reports its output
(lines 12-16) on the basis of mismatch threshold θ.

Example 5.3. (Continued) There are nine different nodes. One node
observer for each node therefore the set of node observers; On =

{NObslaser alignment control,NObsjoy node, NObsimu node, NObslaser alignment node,
NObsjaguar teleop node, NObshector mapping, NObsjagaur node , NObshokuyo node} where
subscript is the name of a node. When all nodes are working the output of the
observers will be; Θ = {running(laser alignment control),running(joy node),
running(imu node), running(laser alignment node), running(jaguar teleop node),
running(hector mapping), running(jaguar node) , running(hokuyo node)}

5.2.3 Diagnostic Observer (DObs)

Diagnostic Observer (DObs) is the connection between the existing ROS diagnostics system and
the presented diagnosis and repair system. DObs receives diagnostic messages and generates
an output based on similar rules as the existing ROS diagnostic analyzers, e.g., temp cpu1 <

40.0⇔ ok(temp cpu1). The description of the diagnostic observer is given in Figure 5.3.

77

5.2. OBSERVERS CHAPTER 5. MONITORING

Observer Name: Diagnostics Observer
Test Property: Device’s Status
Parameters (P): {D},
Description : Diagnostics Observer checks device (D) status on

/diagnostics topic.

Condition (ψ):

¬ok(D), if D is erroneous

ok(D), otherwise.

Output (Θ): {ok(D),¬ok(D)}

Figure 5.3: Template for ”Diagnostic Observer (DObs)”

Algorithm 3: DObs(D, τ, θ)
input : D ... Device name
input : τ ... topic /diagnostics
input : θ ... mismatch threshold
output: Θ ... Observation
mismatch = 01

foreach oi on τ do2

state = extract state(D, oi)3

if state ∈ {OK,WARNNING} then4

if mismatch > 0 then5

mismatch = mismatch− 16

end7

else8

mismatch = mismatch+ 19

end10

if mismatch > θ then11

Θ = ¬ok(D)12

else13

Θ = ok(D)14

end15

end16

78

CHAPTER 5. MONITORING 5.2. OBSERVERS

Observer Name: Qualitative Observer
Test Property: Value’s Qualitative Trends
Parameters (P): {τ, f, βp, βn, ω}
Description : It computes linear regression of values in windows

a compares with +iv (βp) and -ive (βn) slopes.

Condition (ψ):

inc(v), if v increases

dec(v), if v decreases

cons(v), otherwise.

Output (Θ): {inc(v), dec(v), cons(v)}

Figure 5.4: Template for ”Qualitative Observer (QObs)”.

A number of hardware sensor drivers sends diagnostics data about the hardware state on a
topic /diagnostics. The state of the hardware is published in the form of eitherOk,Warning, or
Error. Algorithm 3 explains how DObs works. It takes occurrence from the topic /diagnostics
(Line 2) and tracks the state of the specified device (lines 5 − 7). The number of consecutive
device’s erroneous state is counted in Line 9. The observer reports ok(device) if the state of
the device on /diagnostics topic appears to be ‘Ok’ or ‘Warning’. If due to some reasons the
state of the device changes to the state ’Error’ the DObs reports ¬ok(device) after tolerating a
number of consecutive violations (lines 12 to 16).

Example 5.4. (Continued) The driver of Hokuyo laser sensor named as hokuyo node

(hn) publishes diagnostics of hokuyo laser on the topic /diagnostics. The observer
DObshokuyo node will publish ¬ok(hokuyo) if the topic /diagnostics carries hokuyo’s
state ’Error’, and it publishes ok(hokuyo) if the state is ’Ok’ or ’Warning’.

5.2.4 Qualitative Observer (QObs)

Qualitative Observer (QObs) observes the abstract qualitative trend of a particular value in a
message of a topic. The observer computes qualitative trend by fitting a linear regression on the
values for a given time window ω.

Definition 5.6 (Qualitative trend). A qualitative trend of a value v defines one of the three
patterns the value v can have. A value can be either (1) increasing, (2) decreasing , or (3) not
changing at all. Hence a value has three different qualitative trends increasing, decreasing, and
constant.

Figure 5.4 describes qualitative observer with respect to its input, parameters, condition, and
output. Linear regression tries to model the relationship between two variables by fitting a linear

79

5.2. OBSERVERS CHAPTER 5. MONITORING

Figure 5.5: Odometry signal (Blue), its average (Green) and the qualitative trend (Red).

equation. One variable is a dependent variable while the other is independent variable. The
qualitative observer collects n data values vi and their corresponding n timestamps ti in a sliding
window ω. Considering data values v as dependent and timestamps t as independent variables
the qualitative observer fits a linear regression on v and t which gives slope β of the linear line
for the data values and timestamps in the window ω. If the slope β is greater than a specified
positive slope βp it means that the qualitative trend of the values is increasing, and if β is less than
a specified negative slope βn meaning qualitative trend of the values is decreasing, otherwise it
computes second and third derivatives of the values in order to decide about if the value remains
constant. The output of the observer is inc(v), dec(v) or const(v) depending upon v’s qualitative
trend. Figure 5.5 shows the signal information (green), average (blue), and qualitative trends
(red) for odometry data from the topic /pose where trend’s value 0 means constant, 1 means
increasing, and−1 decreasing. For details about the abstraction process please refer to [KSW09].
Algorithm 4 presents the functionality of the qualitative observer. Lines 5-8 fill the window ω

with the values v and timestamps t from the occurrences on the topic, then linear regressions are
calculated. The linear regression calculations (Lines 9-11) uses formula given in the Equation
5.4. Lines 13 and 15 decides if trend of values is increasing or decreasing respectively.

β =

n×
n∑
i=1

viti −
n∑
i=1

vi ×
n∑
i=1

ti

n×
n∑
i=1

v2
i − (

n∑
i=1

vi)2

(5.4)

Whether the trend is constant is checked in Line 18 which uses second and third derivatives. At
the end in Algorithm window is moved next. It is notable that the qualitative trend is calculated
for the middle value in the window ω.

80

CHAPTER 5. MONITORING 5.2. OBSERVERS

Algorithm 4: QObs(τ, f, βp, βn, ω)

input : τ ... topic
input : f ... field in topic message
input : βp ... positive slope limit
input : βn ... negative slope limit
input : ω ... window size
output: Θ ... Observation
W = ∅1

Omid = O12

Θp = ∅3

foreach new occurrence Oi from τ do4

if (Omid − ω/2) <= Oi <= (Omid + ω/2) then5

W = W ∪Oi6

continue7

end8

l1 = linear regression(W)9

l2 = linear regression(l1)10

l3 = linear regression(l2)11

if l1 > βp then12

Θ = inc(τ f)13

else if l1 < βn then14

Θ = dec(τ f)15

else16

if (βn < l2 < βp) ∧ (βn < l3 < βp) then17

Θ = con(τ f)18

else19

Θ = Θp20

end21

end22

Omid = Omid+123

pop(W [0])24

Θp = Θ25

end26

81

5.2. OBSERVERS CHAPTER 5. MONITORING

Example 5.5. (Continued) The qualitative observer namely QObsla servo1 moving angle
for the message’s field angle of the topic la servo1 moving. It reports
inc(la servo1 moving angle) if robot is climbing up the ramp, and
cons(la servo1 moving angle) if the robot is moving on the flat surface.

5.2.5 Binary Qualitative Observer (BiQObs)

Binary Qualitative Observer (BiQObs) observes matches between the abstract trends of two par-
ticular values v1 and v2 from the topics τ1 and τ2. The topics τ1 and τ2 can be same or different,

Observer Name: Binary Qualitative Observer
Test Property: Matches between Qualitative Trends
Parameters (P): {τ1, f1, β1p, β1n, ω1, τ2, f2, β2p, β2n, ω2, θ}
Description : It checks if two values have same qualitative trends.

Condition (ψ):

matched(f1, f2), if trends of f 1 and f 2 are similar

¬matched(f1, f2), otherwise

Output (Θ): {matched(f1, f2),¬matched(f1, f2)}

Figure 5.6: Template for ”Binary Qualitative Observer (BiQObs)”.

however, the values v1 and v2 are always different. The observer issues matched(v1, v2) if the
abstract qualitative trend of v1 is similar to the abstract qualitative trends of v2 otherwise it re-
ports ¬matched(v1, v2). Binary qualitative observer (BObs) is described in Figure 5.6. Binary
qualitative observer computes trends of two fields the same way as qualitative observer (QObs)
does for one field’s value. BiQObs receives two sets of the parameters for computing qualitative
trends for each of the two values v1 and v2. The reason why we consider different window size
for each of the topics is that both the topics may have different frequencies. If one window size
is selected then topics with different frequencies will have different number of occurrences in the
window. For example, considering the running example from Chapter 3 the topic /imu data has
publishing frequency 100Hz and topic /scan has 20Hz. A window of size 100msec can have 10

occurrences of /imu data and 2 occurrences of /scan. However, two windows of sizes 100ms

and 500ms for the topics /imu data and /scan respectively, will have same average number of
the occurrences; i.e., 10 occurrences. Figure 5.7 shows the output of a BiQObs alarming for
the mismatch of qualitative trends between signals from odometry (green) and imu (blue). Al-
gorithm 5 for BiQObs observer is self explanatory. Line 3 and 4 gets qualitative trends for each
of the two fields f1 and f2. Lines 6-11 deal with the consecutive violations and at the end of the
algorithm the output is reported (lines 12-16).

82

CHAPTER 5. MONITORING 5.2. OBSERVERS

Figure 5.7: Three signals odometry pose (green), mapping pose (red), and imu data pose (blue).
BiQObs alarms when significant change is observed between imu data and odometry.

Algorithm 5: BiQObs(τ1, f1, β1p, β1n, ω1, τ2, f2, β2p, β2n, ω2, θ)

input : τ1, τ2 ... topics
input : f1, f2 ... fields in topic’s messages
input : β1p, β2p ... positive slopes limit
input : β1n, β2n ... negative slopes limit
input : ω1, ω2 ... two windows
input : θ ... mismatch threshold
output: Θ ... Observation
mismatch = 01

while isOk(System) do2

QTrend1 = QObs(τ1, f1, β1p, β1n, ω1)3

QTrend2 = QObs(τ2, f2, β2p, β2n, ω2)4

if QTrend1 = QTrend2 then5

if mismatch > 0 then6

mismatch = mismatch− 17

end8

else9

mismatch = mismatch+ 110

end11

if mismatch > θ then12

Θ = ¬matched(τ1 f1, τ2 f2)13

else14

Θ = matched(τ1 f1, τ2 f2)15

end16

end17

83

5.2. OBSERVERS CHAPTER 5. MONITORING

Example 5.6. (Continued) The BiQObs for the filed pitch from the topic
imu data, and the field angle from the topic la servo1 moving gives
matched(imu data x,la servo1 moving angle) if robot moves up to the ramp.

5.2.6 Hardware board Observer (HObs)

Hardware board Observer (HObs) subscribes to the measurements and status updates coming
from the hardware diagnostic board to monitor the status of different power supply channels.
The board is discussed in Chapter 8 in detail. The board provides information about the hard-
ware components attached to the channels of the board. Moreover, the board provides voltage,
current measurements and power states of the channels on the topic /board measurments. The
hardware observer listens to the topic and provides observation on(h) if board shows that hard-
ware h is powered up, otherwise ¬on(h). This allows the diagnosis and repair system to further
use this information. Hardware observer (HObs) is described in Algorithm 6. Lines 3 and 4 ex-

Algorithm 6: HObs(τ, δ)
input : τ ... /boar measurements topic
input : δ ... publishing delay (msecs)
output: Θ ... Observation
Θ← ∅1

foreach oi on τ do2

channels = extract info(oi)3

foreach chi ∈ channels do4

device name = get device name(chi)5

status = get channel status(chi)6

if status == High then7

Θ̄ = on(device name)8

else9

Θ̄ = ¬on(device name)10

end11

Θ = Θ ∪ Θ̄12

end13

Θ = ∅14

sleep(δ)15

end16

tracts channels information to which hardware components are connected. From line 5 till 11 the
status (powered up/down) of each channel is converted into observations. Function extract info
gets measurements from the topic while get device name and get channel status extract rel-
evant information about device and its state. The hardware observer publishes the observation
with a specified delay δ (Line 6). Figure 5.8 gives an overview of the hardware observer.

84

CHAPTER 5. MONITORING 5.2. OBSERVERS

Observer Name: Hardware Observer
Test Property: Hardware Connections
Parameters (P): {δ}
Description : It outputs status of hardware component connected with

diagnosis board with delay δ

Condition (ψ):

on(h), if channel with h is powered up

¬on(h), otherwise.

Output (Θ): {on(h),¬on(h)}

Figure 5.8: Template for ”Hardware Observer (HObs)”.

Example 5.7. (Continued) The running example gives three hardware components namely
jabuar base, hokuyo sensor, and laser alignment system. These three hardware
components are connected with diagnosis board. If the board transmits the information of its
connected components as powered up the hardware observer HObs with delay 100ms, will pub-
lish observations on(jabuar base), on(hokuyo), on(laser alignment) with
the frequency of about 10Hz.

5.2.7 Property Observer (PObs)

Property Observer (PObs) supervises properties that may affect the robot’s performance. A node
uses CPU power and certain amount of memory during execution. A node may start using more
cpu or memory if something abnormal happens in the system. The property observer takes care
of such properties. Currently we offer property observer that can take care of CPU and memory
usage for a specified service. It takes maximum usage limit of the property as input. It computes
the property usage, and monitors it constantly by comparing with the specified limit. If the
calculated property violates the specified value the observer reports ¬ok(property), otherwise
reports ok(property). The property observer publishes individual observations and has to be
individually implemented according to the actual needs. Figure 5.9 describes property observer.

The functionality of the property observer (PObs) is step-wise given in Algorithm 7. Line 5

extracts current value v of the property (cpu or memory) for a node η. This value v is stored in
a circular queue (Q) that acts like a window in this case. The average of the values in the queue
Q is computed in line 7. Here an issue arises that in the beginning the property observer always
reports violations for n times. This issue we resolve by keeping the size of circular queue (Q)
equal to 10, and compute property value with the frequency of 10Hz, therefore, the observer fills
the circular queue and violation stops in about 1sec. Lines 9-14 count the violations occurred in
a row. The output is generated in lines 15-19.

85

5.2. OBSERVERS CHAPTER 5. MONITORING

Observer Name: Property Observer
Test Property: ρ (Memory or CPU usage)
Parameters (P): {η, ρ, vmax, ω, θ}
Description : It observers the cpu or memory usage of a service

Condition (ψ):

ok(η, ρ), if ρ for η is under limits

¬ok(η, ρ), otherwise.

Output (Θ): {ok(η, ρ),¬ok(η, ρ)}

Figure 5.9: Template for ”Property Observer (PObs)”.

Algorithm 7: PObs(η, ρ, vmax,Q, θ)
input : η ... node
input : ρ ... node’s property CPU/Mem
input : vmax ... maximum limit
input : Q ... Circular Queu of size n
input : θ ... mismatch threshold
output: Θ ... Observation
Q = zeros(n)1

mismatch = 02

while isRunning(η) do3

pop(Q[0])4

v = extract property value(System,< η, ρ >)5

append(Q, v)6

µ = mean(Q)7

if µ ≤ vmax then8

if mismatch > 0 then9

mismatch = mismatch− 110

end11

else12

mismatch = mismatch+ 113

end14

if mismatch > θ then15

Θ = ¬ok(η, ρ)16

else17

Θ = ok(η, ρ)18

end19

end20

86

CHAPTER 5. MONITORING 5.2. OBSERVERS

Example 5.8. (Continued) Property observer PObshector mapping for monitoring memory us-
age of the node hector mapping (hm). If the node hector mapping uses memory un-
der limits then PObshector mapping will generate observation ok(hector mapping,mem).
If the observer monitors violations up to a certain number (θ) of times it reports
¬ok(hector mapping,mem).

Algorithm 8: IObs(τ1, f1, τ2, f2,∆, θ)
input : τ1 ... first topic
input : τ2 ... second topic
input : f1 ... field of topic τ1
input : f2 ... field of topic τ2
input : θ ... mismatch threshold
output: Θ ... Observation
mismatch = 01

while isOk(System) do2

v1 = value(τ1, f1)3

v2 = value(τ2, f2)4

if |v1 − v2| ≤ ∆ then5

if mismatch > 0 then6

mismatch = mismatch− 17

end8

else9

mismatch = mismatch+ 110

end11

if mismatch > θ then12

Θ = ¬equal(τ1 f1, τ2 f2)13

else14

Θ = equal(τ1 f1, τ2 f2)15

end16

end17

5.2.8 Interval Observer (IObs)

Interval Observer (IObs) monitors the interval difference between two values v1 and v2. Like
BiQObs these two values can be from one topic or two different topics τ1 and τ2. In a robotics
system it can be the case that two or more values have the same interval. For example in a
working condition the interval between pitch measurement from imu node and servo angle

measurement from laser alignment control node is always same (running example). If some-
thing goes wrong either with IMU or servo sensor the interval is changed. The interval observer
(IObs) monitors such intervals between two values. It reports equal(v1, v2) if |v1 − v2| does

87

5.2. OBSERVERS CHAPTER 5. MONITORING

not exceed a certain threshold for the values v1 and v2, otherwise ¬equal(v1, v2). Figure 5.10

Observer Name: Interval Observer
Test Property: Interval between two values v1 and v2

Parameters (P): {τ1, f1, τ2, f2,∆, θ}
Description : It checks the interval between two values.

Condition (ψ):

equal(v1, v2), if(|v1 − v2| ≤ ∆)

¬equal(v1, v2), otherwise

Output (Θ): {equal(v1, v2),¬equal(v1, v2)}

Figure 5.10: Template for ”Interval Observer (IObs)”.

describes the template of the interval observer (IObs). The functionality of IObs is given in Algo-
rithm 8. Lines 3 and 4 takes field’s values from the topics. The interval is computed and checked
against a specified limit (∆). Lines 6-10 keep the number of consecutive violations. Finally lines
12-16 give output either equal(v1, v2) or ¬equal(v1, v2) depending upon number of violations
and mismatch threshold (θ).

Example 5.9. (Continued) The interval observer IOBs for monitoring inter-
val between the values of pitch from the topic imu data, and the servo
angle field from the topic la servo moving. The observer outputs
equal(imu data pitch, la servo moving angle) if the interval does not exceed certain
threshold, otherwise it reports ¬equal(imu data pitch, la servo moving angle).

5.2.9 Difference between IObs and BiQObs

The interval observer (IObs) seems to be quite similar to the binary qualitative observer (BiQObs)
in its behavior because as long as the qualitative trends remain same the interval between the
signals also remains same. However, there is a slight difference between both of them as depicted
in Figure 5.11. The figure shows two signals green and red, both have the same trends and interval
until time t. At t the trend of the green signal is ”decreasing” for a very short and negligible
duration of time, and then it becomes ”increasing” making qualitative trend same as other signal.
However, the interval gets changed after time t and continue with the same change. In such
scenario the qualitative observer (pink) can ignore such slight change in the qualitative trend
because of its sliding windows for noise, but the interval observer (blue) finds the inconsistency
in the interval between both the signals after a very short period of time, and reports a fault.

88

CHAPTER 5. MONITORING 5.2. OBSERVERS

Figure 5.11: Two signals having same qualitative trends but different intervals.

In the section above a number of observers, namely diagnostic observer (DObs), general
observer (GObs), node observer (NObs), qualitative observers (QObs), binary qualitative ob-
servers (BiQObs), hardware observer (HObs), and property observer (PObs) are discussed in
detail. Each of these observers is implemented as a ROS node which publishes the output on the
topic /observations. The observations are predicates of the form s(c) where s represents
the status and the argument c is the component. Table 5.1 lists all the observers and their possible
output observations. A collection of the observers nominated for a robotic system makes a mon-

Observers (Obs) Possible observations
GeneralObserver(GObs) ok(topic),¬ok(topic)

NodeObserver(NObs) running(node),¬running(node)
DiagnosticObserver(DObs) ok(device),¬ok(device)

HardwareObserver(HObs on(channel),¬on(channel)

QualitativeObserver(QObs) inc(val), dec(val), cons(val)

BinaryQualitativeObserver(BiQObs) matched(val1, val2),¬matched(val1, val2)

PropertyObserver(PObs) ok(node, prop),¬ok(node, prop)

IntervalObserver(IObs) equal(val1, val2),¬equal(val1, val2)

Table 5.1: Possible observations for different observers

itoring system for it. The observations from the observer reflect the behaviour (called observed
behavior) of the system being monitored. The presented work follows model-based reasoning
that uses correct behavior of a system and fault is detected if there is any contradiction between
the observed and the correct behaviour. The diagnosis engine (next Chapter) takes the observed
behavior in the form of observations coming from the observers on the topic /observations
and derives root cause of the discrepancy between the model (predicted behavior) and observa-
tion (observed behavior). The repair engine (Chapter 7) also needs observation in order to
generate a problem description for computing a plan for the repair actions. The main objective of
the monitoring system presented here is to provide observed behavior for the diagnosis process.

89

5.2. OBSERVERS CHAPTER 5. MONITORING

90

Chapter 6

Diagnosis

This chapter provides insights into diagnosis model and robot behavioral model (RBM). It also
talks about how diagnosis process exploits the diagnosis model in order to localize the faults. The
diagnosis presented in this chapter has been partially published in the contribution [ZSM+13].

6.1 Introduction

In this dissertation we follow one of the model-based diagnosis’s approaches called consistency-
based diagnosis. In order to diagnose a misbehavior in a system’s components the consistency-
based approach requires two things; (1) the expected correct behavior of the system and (2)
the observations from the system’s components at run-time. It defines a diagnosis as a set of
assumptions about a system component’s abnormal behavior such that the observations of one
component’s misbehavior are consistent with the assumptions that all the other components are
acting correctly [PW03, dKW87]. The correct behavior of a system is represented in the form of
component-oriented system model. The consistency-based diagnosis uses this system model as
well as the assumptions that all the components of the system are acting correctly to derive root
cause of a fault. If there is an observation which leads to a contradiction with the assumptions
that the component that resolves this contradiction is diagnosed as faulty. In this work by the
term “model-based diagnosis” we mean “consistency-based diagnosis” and vice versa.

A formalization of the concrete behavior of a robotics system for the successful model-based
diagnosis is to describe knowledge of the problem domain in such a way that it should be easily
computable from the machine. This can be achieved in different ways, e.g., logic-based model,
or constraints-based model. We consider the logical representation for modeling the correct be-
havior of the problem domain. One of the reasons for selecting the logic-based model for the
behavioral representation is that the diagnosis engine we use supports propositions and logical
Horn clauses. Figure 6.1 depicts the process involved in the model-based diagnosis which along

91

6.2. DIAGNOSIS MODEL CHAPTER 6. DIAGNOSIS

Figure 6.1: Consistency-based diagnosis: Blue components are the models. The Observers
model is a set of observers to monitor the robotics system

with the observations uses two important artifacts, namely behavioral model and diagnosis en-
gine. The conversion of robot architectural model (RAM) discussed in Chapter 4 to the robot
behavioral model (RBM) is presented in the following sections.

6.2 Diagnosis Model

In the context of our diagnosis system the diagnosis model is a combination of two structures:
(1) a logical model also called robot behavioral model (RBM) and (2) a set of the observers
called the observers model (OM).

Definition 6.1 (diagnosis model). A diagnosis model (DM) is a tuple 〈RBM,OM〉 such that:

◦ RBM : a model comprising a set of the Horn clauses to represent a robot’s behavior.

◦ OM : a model comprising a set of observers for monitoring a robot’s behavior.

The robot behavioral model (RBM) describes the correct behavior of the robotics system
in terms of its individual components behavior. It contains logical rules that collectively reflect
the correct behavior of a robotics system. The observers model (OM) contains a number of
observers in order to extract observed behavior of a system at run-time. Following sections
discuss both of these structures in detail.

92

CHAPTER 6. DIAGNOSIS 6.2. DIAGNOSIS MODEL

6.2.1 Robot Behavioral Model (RBM)

The robot behavioral model (RBM) as also briefly discussed in Chapter 4, is an abstract model
that contains a set of logical rules in order to describe the robotics system’s correct behavior.
It contains logical sentences (Horn clauses) to get efficient logical deduction and reasoning for
deriving a diagnosis. This way of representation also makes the model compatible with the diag-
nosis engine used in the presented diagnosis system. The diagnosis engine supports propositions
and Horn-clauses based on the concepts presented in the contribution [Rei87] where the term
”system description (SD)” is ”behavioral model” in our case. In the context of the presented
work, the behavioral model uses the set of Horn clauses to model individual system component’s
behavior using logical literal ¬AB(c) (”not ABnormal component c”). For instance, a logical
model for the correct behavior of a Bulb-system can be described by the following logical rule:

¬AB(Bulb) ∧ high(voltage) ∧ on(switch)→ light(Bulb)

which states that, if we assume the Bulb is not faulty, and if switch is turned ”On” and voltage
in wire stays ”High” the Bulb must always emit light. The above rule in the form of a

Algorithm 9: RBModel({S,H,HN ,SH,SN ,N}, T ,F , {δout, δin, δaff , δhw, δfld, δrel})
input : RAM ... robot architectural model
output:M ... set of Horn clauses
M = ∅1

foreach h ∈ SH do2

M =M∪ {¬AB(h)→ on(h)}3

end4

foreach s ∈ SN , τ ∈ δout(s) do5

M =M∪ {
∧
h∈δhw(s) ¬AB(h) ∧ ¬AB(s)→ ok(t)}6

end7

foreach h ∈ HN , τ ∈ δout(s) do8

M =M∪ {¬AB(h)→ ok(t)}9

end10

foreach n ∈ N , τ ∈ δout(n) do11

M =M∪ {¬AB(n) ∧
∧
i∈δin(n,t) ok(i)→ ok(t)}12

end13

foreach n ∈ S do14

M =M∪ {¬AB(n)→ running(n)}15

end16

foreach n1, n2 ∈ S, τ1 ∈ δout(n1), τ2 ∈ δout(n2), f1 ∈ δfld(τ1), f2 ∈ δfld(τ2), δrel(f1, f2), f1 6= f2 do17

M =M∪ {¬AB(n1) ∧ ¬AB(n2)→ matched(f1, f2)}18

end19

returnM20

93

6.2. DIAGNOSIS MODEL CHAPTER 6. DIAGNOSIS

logical clause is exactly an Horn clause as ¬AB can be represented by a propositional atom.
The concrete behavior of a robotics system can be determined by the behavior of its individual
components. A concrete behavior formalization needs a transformation of the whole system into
a set of logical rules describing individual component’s behavior and hence the whole system’s
behavior. We follow similar model formalization approach as in [SW05].

The robot behavioral model (RBM) presents similar logical rules in order to model the
behavior of individual components. Each of the rules uses predicates ’AB’ and ’ok’ for respec-
tively a abnormal behavior and a correct condition. Algorithm 9 describes the formalization
of the robot behavioral model (RBM) from the robot architectural model (RAM). Lines 2-4
model rules for switchable hardware components. We consider an hardware component as a
switchable hardware which is connected with the diagnosis hardware board (discussed in Chap-
ter 8). The software nodes of switchable hardware are modelled in Lines 5-7. Lines from 8-10

model the software nodes for the hardware other than switchable. The software nodes with the
outgoing topics are considered in Lines 11-13 for the modeling. From Line 14 till 16 all the
software nodes are modeled. At the end, the fields which are related to each other on the basis of
a qualitative trend of their values, are modeled with their publishing nodes.

Example 6.1. (Continued) The RBM from the RAM for the running example, given in
Chapter 4:
¬AB(jaguar)→ on(jaguar)

¬AB(hokuyo)→ on(hokuyo)

¬AB(laser alignment)→ on(laser alignment)

¬AB(jaguar) ∧ ¬AB(jaguar node)→ ok(pose)

¬AB(hokuyo) ∧ ¬AB(hokuyo node)→ ok(scan)

¬AB(imu node)→ ok(imu data)

¬AB(joy node)→ ok(joy)

¬AB(joy teleop node)→ ok(joy)

¬AB(hector mapping)→ ok(scan)

¬AB(laser alignment control)→ ok(la servo1 moving)

¬AB(laser alignment control)→ ok(la servo2 moving)

¬AB(jaguar node)→ running(jaguar node)

¬AB(hokuyo node)→ running(hokuyo node)

¬AB(imu node)→ running(imu node)

¬AB(laser alignment node)→ running(laser alignment node)

¬AB(laser alignment control)→ running(laser alignment control)

¬AB(joy teleop node)→ running(joy teleop node)

¬AB(joy node)→ running(joy node)

¬AB(hector mapping)→ running(hectla servo1 movingor mapping)

94

CHAPTER 6. DIAGNOSIS 6.2. DIAGNOSIS MODEL

¬AB(rviz)→ running(rviz)

¬AB(imu node) ∧ ¬AB(jaguar node)→ matched(imu data.yaw, pose.yaw)

¬AB(jaguar node)→ matched(pose.twist.angular.z, pose.yaw)

¬AB(imu node) ∧ ¬AB(laser alignment control)→ matched(i d.pitch, l s m.angle)

¬AB(imu node) ∧ ¬AB(laser alignment control)→ matched(i d.yaw, l s m.yaw)

where i d and l s m denote respectively imu data and la servo1 moving in last two
rules.

6.2.2 Observers Model (OM)

In addition to the robot behavioral model (RBM) the diagnosis process also requires the ob-
served behavior of the robotics system for localizing a fault. The observations about a system at
run-time are provided by a set of the observers. The observers according to the size and the com-
plexity of a robotics system are initiated in order to continuously monitor the robotics system’s
components, and provide the logical observations to the diagnosis engine for locating a faulty
component if any. We call this set of observers for observing the robotics system an observers
model (OM).

Definition 6.2 (observer model). The observer model is a set of the observers O =

{o1, o2,, on} for a robotics system, that collectively provides the observed behavior of the
robotics system at run-time.

The generation of the observers model (OM) is discussed in Chapter 9 in learning phase
because most of the observers require learned parameters that need to be learned, for example,
a general observer (GObs) is instantiated for a topic τ ∈ T if the topic is regular. A topic is
considered regular if the fraction of the mean (µ) and the standard deviation (σ) of its occurrences
interval time (∆t) is above a certain threshold (α). The parameters µ and σ are learned during
learning process. Similarly a binary qualitative observer (BiQObs) for two signals is instantiated
if the two signals are correlated with each other in terms of their qualitative trends which are also
learned during the learning phase. For each node one node observer (NObs) and two property
observers (PObs), i.e., one for cpu usage and other for memory usage, are instantiated. The cpu
and memory values are also learned during the learning phase.

The set of general observers is denoted by Og. Likewise On, Op Obiq, and Oi are the set
of node, property, binary qualitative, and interval observers respectively. The diagnostics and
hardware observers are instantiated without learning. The observer diagnostics (DObs) is in-
stantiated if there exists the ”/diagnostics” topic, and hardware observer (HObs) is instantiated
when at least one component is connected with the hardware diagnostics board which broadcasts
its information on the topic ”/board measurements”.

95

6.2. DIAGNOSIS MODEL CHAPTER 6. DIAGNOSIS

Example 6.2. (Continued) The running example given in Chapter 3 includes
eight different nodes, therefore, there will be 8 node observers (|On| = 8), i.e.,
On = {NOb(jn),NOb(hn),NOb(in),NOb(lan),NOb(lac),NOb(jtn),
NObs(jyn),NOb(hm),NObs(rviz)} and 16 property observers (|Op| = 16), i.e., Op
= {POb(jn,cpu),POb(jn,mem),POb(hn,cpu),POb(hn,mem),POb(in,cpu),
POb(in,mem),POb(lan,cpu),POb(lan,mem),POb(lac,cpu),POb(lac,mem),

POb(jtn,cpu),POb(jtn,mem), PObs(jyn,cpu),POb(jyn,mem),POb(hm,cpu),

POb(hm,mem)} and for five regular topics (|Og| = 5), i.e., Og={GObs(pose),
GObs(imu data), GObs(scan), GObs(la servo1 moving),

GObs(la servo2 moving)}. As hokuyo node is publisher to the topic ”/diagnos-
tics”, therefore, one diagnostics observer Od={DObs(hokuyo)}, there are three hardware
components attached to the diagnostic board so there will also be hardware observer
Oh={HObs(/board measurements)} and there can be one binary qualitative ob-
server Obiq={BiQObs(imu data.pitch,la servo1 moving.angle)} and one
interval observer Oi={IQObs(imu data.pitch,la servo1 moving.angle)}
making total number of observers |O = 32|. The terms jn, hn, in, lan,

lac, jtn, jyn, hm denote respectively jaguar node, hokuyo node,

imu node, laser alignment node. laser alignment control,

jaguar telelop node, joy node, and hector mapping.

Once the observers are instantiated and invoked they start continuously providing obser-
vations about robotics system’s components on a ROS topic ”/observations”. In the
implementation we launch a file to invoke the whole bunch of the observers. Following is a
simple launch file describing a node, a property, and a general observer:

<node pkg="tug ist diagnosis observers" type="NObs.py" name="hmNObs">

<param name="node" value="hector mapping" />

</node>

<node pkg="tug ist diagnosis observers" type="PObs.py" name="hmCPObs">

<param name="node" value="hector mapping" />

<param name="property" value="cpu" />

<param name="max val" value="14.851168" />

<param name="mismatch th" value="5" />

</node>

<node pkg="tug ist diagnosis observers" type="GObs.py" name="idGObs">

<param name="topic" value="imu data" />

<param name="delta" value="0.0100006230955" />

<param name="dev" value="0.0323852059052" />

96

CHAPTER 6. DIAGNOSIS 6.3. DIAGNOSIS MODEL SERVER

<param name="ws" value="0.100006230955" />

<param name="mismatch th" value="5" />

</node>

Having obtained both the structures for the diagnosis model, i.e., the robot behavioral model
(RBM) and the observers model (OM), it fulfills the requirements of the mode-based diagnosis
process by providing respectively as system description (SD) and the observations (Θ) in order
to compute the diagnosis (∆).

6.3 Diagnosis Model Server

The diagnosis process requires the robot behavioral model (RBM) at run-time for computing
a diagnosis if any fault occurs. It is diagnosis model server (DMS) which acts like an action
server and provides the required robot behavioral model when requested by the diagnosis engine
at run-time. The diagnosis engine is used for computing the diagnosis in our work. It considers
a model represented with the logical Horn clauses and propositions as presented in [PW03]. The
propositions are for dealing with observations and Horn clauses to represent correct behavior of
a robotics system. Fulfilling these characteristics of the diagnosis model we need to convert the
rules inRBM model into Horn clauses. Consider the following logical rule:

¬AB(hokuyo node) ∧ ¬AB(hokuyo)→ ok(scan)

This logical rule states that when hokuyo laser sensor and its driver (hokuyo node) are assumed
to be working correctly then the topic /scan must also be publishing the laser scans properly.
The robot behavioral model contains such logical rules, therefore, in order to make these rules
compatible with the diagnosis engine, i.e., these rules need to be formed in such a way that
it should be a Horn clause. First issue is to deal with the negation (¬) symbol for describing
normality in the component’s behavior. This is done by introducing a proposition NAB meaning
”NotABnormal”, e.g., the normal and correct behavior of a component ’c’ can be represented
by the proposition ’NAB(c)’. Hence, the above logical rule becomes a following Horn clause
compatible for the diagnosis process:

NAB(hokuyo node) ∧ NAB(hokuyo)→ ok(scan)

To make it more flexible the structure of the behavioral model provided by the model server
contains sections for symbolizing normal (NAB) and abnormal (AB) behavior for components.
The second issue to deal with the negation (¬) symbol for the observation, e.g., ¬ok(scan), and
to make it compatible for the diagnosis process. This issue is resolved by introducing a section
for ”negative prefix” which can allow replacing ¬ok with something like nok. However, for the

97

6.3. DIAGNOSIS MODEL SERVER CHAPTER 6. DIAGNOSIS

sake of understandability we adapt the notation ’not ok’ instead of ’¬ok’ where prefix ’not ’ is
called a negative prefix.

The diagnosis model server is a ROS-based action server which follows a strictly typed mes-
sage structure for the behavioral model. In our work we store all the logical Horn clauses and
propositions from robot behavioral model (RBM) in a structure in the form of a YAML file
(similar to XML) that contains five sections: (1) a string that denotes the proposition to represent
the AB predicate, (2) the same for ¬ AB, (3) a string for a prefix denoting a negative literal,
(4) a set of all propositions, (5) a set of clauses that defines the correct behavior of the robotics
system. We have to describe the model this way as the currently used diagnosis engine only
supports propositions and Horn clauses. Following is a simple behavioral model in the form of
sectioned structure:

ab: "AB"

nab: "NAB"

neg_prefix: "not_"

props:

- running(imu_node)

- running(laser_alignment_control)

- ok(imu_node,cpu)

- ok(imu_node,mem)

- ok(laser_alignment_control,cpu)

- ok(laser_alignment_control,mem)

- ok(imu_data)

- ok(la_servo_moving)

- matched(imu_data,pitch,la_servo_moving,angle)

rules:

- NAB(laser_alignment_control) -> running(laser_alignment_control)

- NAB(imu_node) -> running(imu_node)

- NAB(laser_alignment_control) -> ok(la_sero_moving)

- NAB(imu_node) -> ok(imu_data)

- NAB(imu_node) -> ok(imu_node,cpu)

- NAB(imu_node) -> ok(imu_node,mem)

- NAB(laser_alignment_control) -> ok(laser_alignment_control,cpu)

- NAB(laser_alignment_control) -> ok(laser_alignment_control,mem)

- NAB(l_a_c),NAB(i_n),ok(i_d),ok(l_s_m) -> matched(i_d,p,l_s_m,a)

- AB(imu_node) -> not_ok(imu_data)

The last rule uses short names for the nodes and topics that are already used in the previous rules.
The diagnosis model server integrates the following features in the diagnosis and repair sys-

tem:

98

CHAPTER 6. DIAGNOSIS 6.4. DIAGNOSIS COMPUTATION

1. It acts as a standalone ROS action server, and hence modularizes the system architecture.

2. A request for the model can be sent to the model server and can be cancelled at run-time .

3. It permits changes in the the model at run-time.

6.4 Diagnosis Computation

The diagnosis computation process in our diagnosis and repair system is a task of deriving root
cause of a fault if any contradiction between an observed and a behavioral model rises. It follows
the principles of model based diagnosis presented in [Rei87]. It takes as inputs the observations Θ

coming from the observers, and the abstract robot behavioral model (RBM) from the diagnosis
model server. If there is any contradiction between observations and the behavioral model a
fault is detected. The diagnosis engine localizes the fault by deriving the root causes (faulty
components) for the fault and publishes the faulty components as a diagnosis on a ROS topic
named ”/diagnosis”. The ”/diagnosis” topic not only provides the diagnosis but it also
connects the diagnosis engine (DE) with the repair engine (RE) discussed in the next chapter. The
kernel of the diagnosis module concurrently executes two main functionalities: the observation
collection and the diagnosis. While the former continuously performs the task of making a
consistent set of the logical observations, i.e., OBS, the latter performs localization of the faults
using diagnosis engine at logical level.

6.4.1 Observation Collection

The observations are required for the diagnosis computation in order to find discrepancies be-
tween the observations and the robot behavioral model (RBM). Therefore, the observations
coming from the observers are collected into a consistent set of observations Θ. Each single
observation θt that occurs at time t on the topic ”/observations” is integrated into an obser-
vation set as described in following process:
CollectObservation:

1. set a global set ΘOBS = ∅

2. subscribe to the topic (τ) ”/observations”

3. subscriber get each new observation θ from τ in the function callback which merges θ
in the set ΘOBS of the observations.

The process of collecting observations initializes the set of the observations ΘOBS as empty
set. At step 2 it subscribes to the topic ”/observations” to obtain the observations from

99

6.4. DIAGNOSIS COMPUTATION CHAPTER 6. DIAGNOSIS

Algorithm 10: callback(θ)
input : θ ... new observation
if θ 6∈ ΘOBS then1

if θ == ¬L then2

if L ∈ ΘOBS then3

ΘOBS = ΘOBS\ L4

end5

else6

if ¬L ∈ ΘOBS then7

ΘOBS = ΘOBS\ ¬L8

end9

end10

ΘOBS = ΘOBS ∪ θ11

end12

the observers. The subscriber can receive each new individual observation θ from the topic
in the function callback (Algorithm 10). If the observation is already in the set ΘOBS the
callback does nothing (Line 1) otherwise it removes the θ’s counterpart negative observation
literal ¬L (Lines 2-6) or positive literal L (Lines 7-10) from the set ΘOBS , and appends newly
coming observation θ (Line 11).

Example 6.3. (Continued) Assuming the robotics system of the running example from Chapter
3 we start diagnosis module, the set of observations is initially empty ΘOBS = ∅. Now we start
observer GObsscan and the observation ok(scan) appears. The diagnosis engine searches the
ΘOBS for the observation ok(scan). As ΘOBS is empty therefore the observation is added, i.e.,
ΘOBS = {ok(pose)}. The same thing happens when first observations fromNObsjaguar node and
PObsjyncpu appear, so ΘOBS = {ok(scan), running(jaguar node), ok(jyn, cpu)}. Now the
observations ok(scan), running(jaguar node), and ok(jyn, cpu) appear one after another but
they are not added because ΘOBS already contains them. Suppose at this point of time something
happens and the node jaguar node stops. The observer NObsjaguar node senses it and changes
its observation from running(jaguar node) to ¬running(jaguar node) which comes to the
diagnosis engine. The diagnosis engine searches ΘOBS for ¬running(jaguar node) but does
not find it. Before adding ¬running(jaguar node), it also searches for its counter observation
running(jaguar node), it finds and removes it, and appends ¬running(jaguar node) in the
set making it as:

ΘOBS = {ok(scan), ok(jyn, cpu),¬running(jaguar node)}
the process continues.

100

CHAPTER 6. DIAGNOSIS 6.4. DIAGNOSIS COMPUTATION

6.4.2 Diagnosis Engine

In order to compute diagnosis we use an open-source Java-based implementation of the
approach [PW03]. The diagnosis engine computes a diagnosis (∆) which is set of components
that are faulty (∆bad) and components that are working properly (∆good). Given a set of logical
observations ΘOBS , a set of components COMPS and the robot behavioral model RBM
(system description) the diagnosis (∆) computed as a minimal set ∆ ⊆ COMPS such that:

RBM∪ΘOBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ COMPS −∆}

is consistent.
The predicate ¬AB(m) denotes that the module m is working properly whereas AB(m) de-

notes that the modulem shows a faulty behavior. The approach uses an abstract model (diagnosis
model (DM) in our case) that defines correct behavior and current observations of the system. A
fault is detected if an outcome of the model and the observation lead to a contradiction. Using a
Hitting set algorithm the approach calculates the Hitting sets in order to compute the diagnoses
that resolve the contradiction, i.e., explain the misbehavior. The engine locates that component or
set of components that are the root cause for the contradiction. The results of the diagnosis engine
are published on the /diagnosis topic. As described earlier the diagnosis message may comprise
several diagnoses build up by the set of working (∆good) and the faulty (∆bad) components. The
union of both sets is equal to the set of all the system components (∆good ∪∆bad = COMPS)
for each individual diagnosis. Apart from this it also generates diagnostic messages compatible
for the ROS diagnostics stack.

Example 6.4. (Continued) Suppose the diagnosis process gets the observations set ΘOBS =

{running(jn), .., running(rviz), ok(scan), ..ok(map), .., ok(jn, cpu), .., ok(rviz,mem)}.
The assumption A = {¬AB(jn),¬AB(hn), ..,¬AB(rviz)} that all components are working
correctly is considered then the robot behavioral model (RBM) defined in the previous section
is the system description. The RBM ∪ ΘOBS ∪ A is consistent because there is no conflict
set and the diagnosis engine provides only a minimal diagnosis being empty set {} for faulty
components. The diagnosis engine publishes diagnosis as:

∆ = {∆bad = {}, ∆good = {jn, hn, in, lan, jtn, hm, lac, jyn, rviz}}

Now suppose the node jaguar node (jn) stops because of some un-
known reasons, and this updates the observations set as ΘOBS =

{¬running(jn), .., running(rviz),,¬ok(jn, cpu),¬ok(jn,mem), .., ok(rviz,mem)}
makingRBM∪Θ∪A inconsistent . The minimal conflict set calculated is F = {jn} because:

RBM∪ΘOBS ∪ {¬AB(jn)} =⊥

101

6.4. DIAGNOSIS COMPUTATION CHAPTER 6. DIAGNOSIS

so the Hitting set algorithm of diagnosis engine provides minimal diagnosis set {jaguar node}
and the diagnosis module’s output:

∆ = {∆bad = {jn}, ∆good = {hn, in, lan, jtn, hm, lac, jyn, rviz}}

We have implemented the diagnosis computation process’s kernel in C++ that communicates
with the java-based diagnosis engine over a TCP connection, relying on a text-based communi-
cation protocol. It obtains the diagnosis behavioral model at run-time from the diagnosis model
server.

102

Chapter 7

Repair

This chapter talks about the repair engine and how it repairs a faulty component both hardware
and software at run-time. Moreover, it also discusses how the repair engine uses planner to
acquire a plan for the repair actions. Parts of the work presented in this chapter have been
published in [ZSM+13].

7.1 Repair Engine

After having diagnosed the faulty components via model-based diagnosis engine (previous Chap-
ter), the diagnosis and repair system uses a planner-based repair engine in order to repair the
faults. The repair engine takes the current observations (Θ) and the diagnoses (∆) as input. The
observation comes from the set of observers on a topic ”/observations” whereas the diag-
nosis are published by the diagnosis engine on a topic ”/diagnosis”. As long as the diagnoses
(∆) is empty meaning there is no faulty component the repair engine does not perform any repair
actions. When the repair engine receives a diagnosis message (∆ 6= ∅) it converts the diagnosis
as well as the observations into to a planning problem description while the domain description is
provided to the repair engine as an input. In order to describe and enable repair actions we model
the repair as a planning domain where the problem description is simply a Planning Domain Def-
inition Language (PDDL) description of an initial and a goal state. Within the repair engine we
use a Java-based GraphPlan implementation to find a plan (sequence of repair actions) [BF97].
Once the planner has found a valid repair plan, the repair engine starts execution of the sequence
of the repair actions. The execution of the actions is triggered by invocation of an appropriate re-
pair action server. Because of the standard signature for repair action servers (a unique name and
a list of parameter strings) the matching between the planner and the ROS-based system is easy
to achieve. Algorithm 11 describes how repair engine performs to accomplish the repair task.
In Line 1 and 2 the diagnosis (∆) and the observations (Θ) are obtained from the corresponding

103

7.1. REPAIR ENGINE CHAPTER 7. REPAIR

subscribed topics. The ∆ and the Θ are then converted into a planning problem description (Line
3). The set of the repair actions in the form of a plan P is obtained (Line 4) using a problem and
a domain description. At the end an action server is invoked against each of the repair actions in
the plan.

Algorithm 11: Repair(∆,Θ,DOM)
input : ∆ ... a set of good and bad diagnosis
input : Θ ... a set of literals observations
input : DOM ... a planning domain description
PROB ← makeP lanningProblem(∆,Θ)1

P ← callP lanner(PROB,DOM)2

foreach i = 1 to length(P) do3

Call ρi(δ) ;ρi is a repair action server on arguments δ4

Wait until ρi completes5

end6

Like diagnosis module kernel, the repair engine kernel also executes two main concurrently
running activities; collection of the observations and the execution of the repair process.

7.1.1 Observation Collection

The repair engine uses the observations along with the diagnosis for a planning purpose. It
obtains the observations by simply subscribing to the topic ”/observations”. Each single
observation θt that occurs at time t on the topic is integrated into a logical observation set Θ as
described in section 6.4.1 of Chapter 6.

As an observation provides information about a component with its status, for instance,
running(jaguar node) which means component jaguar node has the status running. The
repair engine exploits information from observations and constructs a planning problem descrip-
tion. The components are used in the objects section and their status is used in init section of
the problem description.

Example 7.1. An observation set Θt = {ok(map), ok(joy),¬ok(scan)} gives three ob-
jects {map, joy, scan} for the object section, and {(ok map)(ok joy)(not(ok

scan))} for the init section of the planning problem description.

7.1.2 Repair Execution

One of the two main activities of the repair engine is executing the repair actions. This activity
comprises two sequential processes; generating the repair plan, and invoking the repair action

104

CHAPTER 7. REPAIR 7.1. REPAIR ENGINE

servers one by one as discussed in the following sections.

7.1.2.1 Generating the repair plan

Given a way of describing the world (W), an initial state of the world (Si), a goal state G, and a
set of possible actions (A={δi}) to change the world the generation of the plan (P) is the process
of determining set of actions which when applied to the initial state (Si) reaches to a state that
satisfies the goal G, e.g., P = 〈δ1(Si, Si+1), δ2, δ3,, δn(Sn, G)〉

In order to describe and enable the repair actions, the repair process is modeled as a
planning problem. We use widely recognized Planning Domain Definition Language (PDDL)
to represent the domain and problem definitions for the planning [KBC+98]. The advantage
of this approach is that a wide range of existing high-performance planner and various ex-
tensions to the classical planning like ”typing” can be easily used directly. The description
of a planning problem in PDDL comprises two parts: (1) a domain description and (2) a
problem description. Using domain and problem description a planner finds a plan for a prob-
lem. The plan consists of a sequence of the actions which if executed solve the planning problem.

A. Domain description: The PDDL domain description contains all definitions of actions
and domain objects on which actions are applied. To parse the PDDL domain description, we
use an open-source Java-based package pddl4j [Pel08] and a GraphPlan implementation to find
a plan P(a sequence of the repair actions) [BF97]. All the possible repair actions are defined in
the domain description. We have two kinds of repair actions (1) for the software components,
i.e., a running software entity can be stopped or a stopped software entity can be started, and (2)
for the hardware components, i.e., a hardware component can be switched On or Off. Here we
define four repair actions start node and stop node, power up and shutdown.

Example 7.2. The repair action for stopping a software node n is:
(:action stop node

:parameters (?n)

:precondition (and (bad ?n)(running ?n))

:effect (and (bad ?n)(not (running ?n)))

)

The action describes that a software node n can be started only if it is declared faulty and also
observed as not running. The action’s effect is that the node n is running.

B. Problem description: The problem description is based on combination of the diagnosis
∆ = {∆bad,∆good} and the set of observations Θ. The set ∆bad contains the components that are
faulty, and ∆good is set of the working components. The repair planning problem description is
simply a PDDL description of the initial state I and the goal G:

105

7.1. REPAIR ENGINE CHAPTER 7. REPAIR

◦ an initial state
I = Θ ∪

⋃
c∈∆bad

AB(c) ∪
⋃
c∈∆good

¬AB(c)

◦ a goal state G =
⋃
c∈COMPS ¬AB(c)

The initial state I is union of the actual observations and the state of all components. The goal
G of a repair plan is that all components work correctly again.
Considering the robot architectural model (RAM) discussed in Chapter 4, with the following
obtained sets:

COMPS = {ja, jn, hu, hn, imu, in, la, lan, jtn, hm, lac, jyn, rviz}
Θ = {running(jn), running(hn), running(in), running(lan), running(jtn),

running(hm), running(lac), running(jyn), running(rviz), ok(cmd vel),

running(hm), running(lac), running(jyn), running(rviz), ok(cmd vel),

ok(scan), ok(imu data), ok(scan), ok(imu data), ok(joy), not ok(map),

ok(la servo1 moving), ok(la servo2 moving), on(ja), on(hu), on(la)}
∆ = {∆bad = {hm},∆good = {ja, jn, hu, hn, imu, in, la, lan, jtn, lac, jyn, rviz}}

A simple planning problem description will look like as follows:

(define

(problem repair problem description)

(:init (running jn)(running hn)(running in)

(running lan)(running jtn)(running hm)

(running lac)(running jyn)(running rviz)

(ok cmd vel)(ok scan)(ok imu data)(ok joy)

(ok la servo1 moving)(ok la servo2 moving)

(not ok map)(on ja)(on hu)(on la)(good jn)

(good hn)(good in)(good lan)(good jtn)

(bad hm)(good lac)(good jyn)(good rviz))

(:goal (and (good jn)(good hn)(good in)

(good lan)(good jtn)(good hm)

(good lac)(good jyn)(good rviz)))

)

Example 7.3. (Continued) Given the planning domain description and planning problem de-
scription as above, a plan generated will be as:

P = {〈stop node, hm〉, 〈start node, hm〉}

106

CHAPTER 7. REPAIR 7.1. REPAIR ENGINE

7.1.2.2 Invoking repair action servers

Once a plan containing the repair actions is generated by the planner the repair engine executes
the repair actions. Our diagnosis and repair system offers a number of repair action servers. A
repair action server is a ROS action server that receives request for goal from its action client (re-
pair system), fulfils the goal and returns the status SUCCESS if it finishes the task successfully or
FAILED, back to the action client. The name of the repair action server is kept same as the action
name obtained in the plan. For instance against the repair action 〈start node, hm〉, the repair en-
gine will invoke a repair action server called start node for the parameter hm. The repair ac-
tion server start node is an executable process (a ROS node) that uses a Linux based operat-
ing system commands to launch the node given as a parameter, e.g., start node(hector mapping)
will cause repair action server start node to launch hector mapping node. We have built
four ROS-based repair action servers:

1. start node: It uses ”system()” command to execute a ROS command ”roslaunch
node” where the node is a parameter provided by the repair engine.

2. stop node: It also uses the command ”system()” to execute a ROS-based shell com-
mand ”rosnode kill node” where the node is a parameter provided by the repair
engine.

3. power up: It uses the TCP/IP protocol to send text-based command
”[SWT,component,1]” to ask the diagnostic board (discussed in next chapter)
to switch ON the component. Where ”SWT” is a board protocol command.

4. shutdown: Same as above, it also uses the TCP/IP protocol to send text-based command
”[SWT,component,0]” to ask the diagnostic board to switch OFF the component
where ”SWT” is a board protocol command.

The repair engine calls a repair action server, waits for the completion message, and invokes
the next repair action server by taking next repair action in the plan. Because of the standard
signature for repair action servers (a unique name and a list of parameter strings) the matching
between the planner and the ROS-based system is easy to achieve. Please note that the planner
simply waits for the completion message of the called action server and currently does not check
the action’s effect defined in planning domain description. A better strategy for the future would
be to wait until the effects have been established. For instance, it might take longer for a node’s
output topics to become correct than simply the time to restart the node.

107

7.1. REPAIR ENGINE CHAPTER 7. REPAIR

7.1.2.3 Integrating additional repair action servers

The repair action package allows integration of new repair action servers needed to meet user’s
need. In order to integrating additional repair actions the repair engine requires:

◦ the required domain actions need to be defined in the domain description.

◦ the ROS-based repair action servers need to be implemented according to the need, keeping
the same signature as in domain description actions.

108

Chapter 8

Hardware Integration

This chapter deals with the faults in the hardware components. It presents a diagnostic board used
for detecting faults in the hardware sensors of the robotics systems. Moreover, it also describes
how the diagnostic board works with the diagnosis and repair system for detecting and repairing
hardware faults. The work presented in this chapter has been published in [ZL13, ZL14].

8.1 Overview

The proposed diagnosis and repair architecture for this dissertation aims to be an initiative for
recovering ROS-based robotics systems from both software and hardware faults. Diagnosing and
repairing a software fault is although effort requiring, but the hardware faults detection is also
complex, technical, and carries critical issues about hardware. For the software fault localiza-
tion and recovery, one has to deal with the software issues on both sides diagnosing system as
well as diagnosed system. The software faults include software crash, malfunctioning, change in
frequency of publishing data, etc., need a monitoring, a diagnosing, and a repair system which
are themselves software programs. In contrary to this, typical hardware faults includes device
broken, device shutdown, heated up, flat tire, wire cut, etc. In order to detect and repair such
hardware problems not only requires software system but also an additional intelligent hardware
unit that functions together with its counterpart software diagnosis system. Such an intelligent
hardware unit closely monitors hardware components, and cooperates in diagnosing and repair-
ing the faults by providing the hardware behavior, and has capability to control the hardware
components. For example, a robotics system in a critical domain (e.g., space) may acquire par-
allel pairs of sensors where one sensor can be activated if other leaves working. Similar systems
called power management systems [SRA+11] had already been used for robotics systems. Such
systems allow users to manually switch ON or OFF the individual on-board system components
and perform current and voltage monitoring. In addition to this, our system is also capable to

109

8.2. DIAGNOSTIC BOARD CHAPTER 8. HARDWARE INTEGRATION

perform these steps autonomously without manually switching the hardware components.

8.2 Diagnostic Board

An intelligent hardware board called diagnostic board is developed for the hardware faults de-
tection and repair. It is a micro-controller based intelligent board comprising input and output
channels. Its main objectives include: (1) smartly distribution of power supply to the hardware
components, (2) monitoring voltage level on its channels, (3) current measurements on the chan-
nels, (4) automatically set or reset the channels. Following sections explain the hardware, the
protocol, and the controller software of the diagnostic board:

Definition 8.1 (channel). A channel is an input or output connection on the diagnostic board.

8.2.1 Architecture

The diagnosis board (Figure 8.1) comprises 10 input and 10 output channels as an interface be-
tween the hardware sensors and the diagnostic board. The inputs are usually connected to the
power supply distribution center with DC-to-DC power converters. The robot sensors are con-
nected with the output channels. The diagnostic board is controlled by a micro-controller that
has the option to set/reset each individual channel and also main communication line over the
Ethernet. A TCP/IP based protocol system is established for the diagnostic board to supervise
system power consumption and performance of the actions. The diagnostic board can be sup-
plied separate power supply source, for instance, additional small battery that can power up the
diagnostic board independently from the robot. Out of the 10 channels, 3 are high power sup-
ply channels with specification of a maximum 60V voltages and a maximum of 15A current per
channel, other 7 channels are limited to a maximum load of 20V voltages and 5A current. On
each input channel there is DC-to-DC converter which is a compliment with power consump-
tion on the output channels of the board. Each channel has three main components: (1) a solid
state relay switch for powering up/down a channel, (2) an Optocoupler sensor for voltage detec-
tion between range 3.3-60V, (3) a current sensor for current measurement with analog output to
micro-controller within range 0-30A.

The main processing unit is micro-controller which controls the diagnostic board’s function-
ality. The communication with outer world is achieved over a standard 10/100 Ethernet interface.
The board software is developed to open a server and wait for a client to connect on a specified
port and IP, after the board is successfully connected the server broadcasts channels specifica-
tions to its clients. The diagnostic board can restart the whole system and act as a master which
can be determined in different repairing scenarios. At start up two channels for pc and router are
switched on, later all other channels can be powered up by the MBD system automatically.

110

CHAPTER 8. HARDWARE INTEGRATION 8.2. DIAGNOSTIC BOARD

(a) (b)

Figure 8.1: (b) Jaguar robot with the hardware diagnostic board mounted on it (red encircled) (a)
Diagnostic hardware board with input/output channels.

8.2.2 Features

The diagnostic board provides two important functionalities to the diagnosis and repair system.
Firstly it provides observations about the hardware components attached to it, and secondly it
enables the repair system to execute hardware related repair actions. These both functionalities
are briefly discussed below:

1. Observations : The board continuously monitors hardware connections to hardware com-
ponents. The following observations and activities we obtain from the board:

◦ Voltage Level : As many as 10 different hardware components can be connected
to the board. How much voltage level is consumed on a connection for a particular
device, is monitored and provided as observation to the diagnosis system. A device
may start consuming more voltage if its gears/motors are blocked.

◦ Current Consumption : Every hardware device consumes current power. This is
also measured on each channel and observations come out of the board.

◦ Connection Status : ON/OFF status of the connected components is also provided
by the board as the observations.

2. Actions : A hardware component attached to the board, if diagnosed as faulty should be
either powered off or restarted. In order to achieve these capabilities the board provides
two readily actions on its channels:

◦ Set Action : The board uses this action to switch ON a channel, i.e., components
are connected with the channels and switches ON a channel actually switches ON the

111

8.2. DIAGNOSTIC BOARD CHAPTER 8. HARDWARE INTEGRATION

attached hardware component. This action is executed if a device is connected but
not powered up.

◦ Reset Action : This action is performed to switch OFF a channel. This action can be
required if a device need to be shutdown.

3. Initial Setting : The board also has memory to store default setting, i.e., it contains small
memory where initial setting can be specified, e.g., in our case the board always initially
power up two channels, one to which PC is connected and the other for Router.

STX BRD

Header

1

1 Byte

Data

HZ

STX 9*n+1 n

Header

1Byte

MSR ON1 CURR1 VOL1

4Bytes 4Bytes1Byte

ON2 CURR2 VOL2

9 Bytes

VOLnCURRnONn

9 Bytes

Channel# 1 Channel# 2 Channel# n

STX RQS

Header

0

STX

Header

2 CHN#

1 Byte 1 Byte

SWT

Data

STATE

STX ACK

Header

ACK_CODE1

1 Byte

Data

STX INT 8*n+1 n Mx_Vn

Header Channel# 1 Channel# 2 Channel# n

Mx_C1 Mx_V1 Mx_C2 Mx_V2 Mx_Cn

4Bytes1Byte 4Bytes 8 Bytes 8 Bytes

(a)

DEL LENCMD

1 Byte

1 Byte

2 Bytes

4 Bytes LEN# of Bytes

HEADER DATA

(b)

Figure 8.2: (a) Diagnostic board protocol commands (b) Diagnostic board protocol suite.

8.2.3 Protocol

The diagnostic board protocol uses a command suit that consists of basically two parts, namely
HEADER and DATA as shown in Figure 8.2(b). HEADER is further partitioned into three parts:
(1) DEL-a delimiter, (2) CMD-a command number, and (3) LEN-the length of data in bytes .
Despite the fact that TCP/IP protocol is significantly secure in terms of delivery of a packet, we
additionally introduce a delimiter DEL that identifies start of a command. It is one byte long, and
contains start of the command represented by a field STX. The value of STX is 6 in order to avoid
ambiguity with command numbers. The command CMD is also 1 byte long, and it occupies
command number in order to enable recipient recognize which command it has received. The
command LEN is 2 bytes long field. It contains the size of DATA field in terms of number of
bytes. The DATA field is a varying size part of the command. Its size is different for different
commands. The protocol comprises six different commands, namely INT, BRD, MSR, RQS,
SWT and ACK. Each of these commands is identified by a unique number, and is used for a

112

CHAPTER 8. HARDWARE INTEGRATION 8.2. DIAGNOSTIC BOARD

particular purpose as described in Table 8.1. The INT command is initialization command which
carries voltage and current specifications for the available channels. Each channel’s specification
in the DATA part of the command occupies 8 bytes with first 4 bytes for maximum current and
next 4 bytes for maximum voltage supported by the channel. The LEN field in the header of the
INT command is assigned numeric value 8n+1 where n is number of available channels and 1 is
due to first byte in DATA specifying total number of available channels. The purpose of the BRD
command is to set the server’s broadcasting frequency for measurements. Its DATA part is only
1 byte long which contains the value for frequency where 0 value means stop broadcasting. The
MSR command carries voltage and current measurements present on the channels at run-time. Its
DATA part contains 9n+1 bytes. First byte is for the number of channels, and then sequence of 9

bytes for each of the n channels. First out of 9 bytes is for the state of the channel either 0 (OFF)
or 1 (ON). Next pair of 4 bytes is reserved for the current and the voltage measured on the chan-
nels. The RQS command is used for requesting for the current and the voltage measurements.
As this command is simply used for a request so it does not contain DATA field. The objective of
the SWT command is to switch ON or OFF a particular channel on the board. It carries a channel
number (1 byte long) and required status (1 byte) for the channel. Last command is the ACK
command. It is used by server to send an acknowledgement of receipt of a command. It contains
one byte DATA field which carries ack code with value either 0, 1, or 2. The value 0 means OK ,
1 means incorrect parameter, and 2 means incomplete command.

Example 8.1. The acknowledgement command (ACK) after successfully receiving correct re-
quest command (RQS) [6, 3, 0], will look like [6, 5, 1, 0].

Name Code No Purpose
Initialization INT 0 initialization after connection
Broadcasting BRD 1 setting broadcasting frequency
Measurements MSR 2 provides channels measurements
Request RQS 3 request for measurements
Switch SWT 4 switching ON/OFF a particular channel
Acknowledgement ACK 5 receipt acknowledgement

Table 8.1: Board protocol commands with their numbers

Three commands, namely INT, MSR, and ACK are server side commands, i.e., these com-
mands are issued from the server to the client. Other three commands, namely BRD, RQS, and
SWT are client side commands, i.e., the client sends these commands to the server. The server
runs inside the diagnostic board whereas the client communicates the server from remote com-
puter. Figure 8.3 shows the flow and sequence of the commands between the board server and

113

8.2. DIAGNOSTIC BOARD CHAPTER 8. HARDWARE INTEGRATION

the client. In the beginning, after establishing a connection, the server sends the INT command
with specification for the channels and receives the BRD command from the client for setting
broadcasting frequency. The server then sends the ACK command to the client and afterwards
starts sending the MSR commands giving measurements with specified broadcasting frequency.
At this point the client may send RQS, BRD or SWT command.

ACK

RQS

SWT

BRD

MSR

commnd?

INT

BRD

specifications sent

frequency set

acknowledged

device switched

request sent measurements sent

(a)

RQS

ACK

MSR

SWT

ACK

MSR

MSR

ACK

BRD

INT

Server Client

(b)

Figure 8.3: (a) Flow of server (green) and client (blue) commands(b) Sequence of commands.

8.2.4 Controllers

The diagnostic board is a hardware that needs to be operated through some kind of software
program we call it controller. The diagnostic board is controlled and utilized for the diagnosis
process through two simple controllers, namely server controller and client controller. The
server controller acts as a driver and controls overall activities of the board. The client controller
interacts with the server controller in order to get observations for the diagnosis, and makes
requests for the repair actions for the hardware repair. Both kind of the controllers are discussed
in the following sections:

8.2.4.1 Server Controller

The board server controller is a driver which runs inside the board’s micro controller and controls
the activities on the board. It provides all necessary information about the hardware components
attached to it. This information is used as the observations for the hardware diagnosis process.
Moreover, the board server controller also provides the facility to perform the repair actions by
switching the hardware components connected to the board’s channels. It opens a port on a
specific IP to permit the clients to connect with the board on TCP/IP protocol allowing them

114

CHAPTER 8. HARDWARE INTEGRATION 8.2. DIAGNOSTIC BOARD

Algorithm 12: Board Server Controller(ip, port)
input : ip ... ip address
input : port ... port number
client← wait for conn request(ip, port)1

channels← get channels()2

spf ← get specifications(channels)3

P ← prepare INT (spf)4

send to(client,P)5

while (rcv P ← receive from(client)) do6

ack code← check command(rcv P)7

P ← prepare ACK(ack code)8

send to(client,P)9

if ack code 6= 0 then10

continue11

end12

H ← rcv P.HEADER13

D ← rcv P.DATA14

ifH.CMD == BRD then15

frq ← D.HZ16

else ifH.CMD == RQS then17

set frequency(frq)18

while (no data from(client)) do19

msr ← get measurements(channels)20

P ← prepare MSR(msr)21

send to(client,P)22

end23

else24

ch id← D.CHN#25

state← D.STATE26

switch(ch id, state)27

end28

end29

115

8.2. DIAGNOSTIC BOARD CHAPTER 8. HARDWARE INTEGRATION

to talk with the board under its own protocol described above, and transmit necessary and re-
quired information from the board to the client. It provides the information like number of the
total channels for the hardware components, maximum voltage and current specification on each
channel, on/off status of individual channel, and present voltage and current measurements on
each individual channel. Algorithm 12 describes functionality overview of the server controller.
Lines 1-5 take the client request, collect and send channels specifications to the client using the
INT command. Lines 7-9 send acknowledgement back to the client. Line 16 sets broadcast-
ing frequency after receiving the BRD command from the client. Against the client’s command
RQS, it sends channels measurements to the client with the required frequency (Lines 18-23).
The command SWT is dealt by switching a specified channel (Lines 22-24).

The board server controller when starts it firstly reads a default setting from the board’s
memory and performs the actions listed in the memory. For instance, in our case two components
the PC and the Router are specified to be always powered up in the beginning. The PC is for
running the robotics system and the router for enabling remote system to connect with PC and
the board. After having performed default actions the board opens an IP address and waits for
the clients requests for connection.

8.2.4.2 Client Controller

This is a main ROS node that communicates with the board server controller on TCP/IP using
the board protocol discussed in the section 8.2.3. Firstly it takes measurements from the board
and publishes them in such a form that it can be used by the monitoring system for the diagnosis
and the repair process. Secondly it has the ability to request the board server controller for
performing the hardware repair actions required for the repair process. Algorithm 13 describes
functionality of the board client controller. The board client controller connects with the server,
sets up broadcasting frequency and receives an acknowledgement from the server (Lines 1-6).
Line 7 calls Algorithm 14 that checks the received acknowledgement, corrects the command
if not, and sends back. Lines 13 and 14 collect the measurements and publish on the ROS
topic /board measurements which makes it possible to get the observations for the diagnosis
process. The client controller interacts with the repair planner in order to receive a planned
repair actions (Line 15). If there is any repair action to be carried out by the diagnostic board
the client controller prepares switch (SWT) commands and sends to the server controller (Lines
15-18). Finally the client controller resumes receiving the measurements by sending the request
command RQS to the server controller (Lines 17-24).

116

CHAPTER 8. HARDWARE INTEGRATION 8.2. DIAGNOSTIC BOARD

Algorithm 13: Board Client Controller(ip, port, f)
input : ip ... ip address of server
input : port ... port number on server
input : f ... initial frequency
server ← make conn request(ip, port)1

spf ← receive from(server, INT)2

HZ ← f3

P ← prepare command({BRD,HZ})4

send to(server,P)5

ack ← receive from(server)6

check Acknowledgment(ack,P, server, {BRD,HZ})7

P ← prepare command({RQS})8

send to(server,P)9

ack ← receive from(server)10

check Acknowledgment(ack,P, server, {RQS})11

while rcv = receive from(server,MSR) do12

msg ← build ROS msg(rcv.DATA)13

ROS publish(/board measurments,msg)14

action← look up planner()15

if action == switch then16

P ← prepare command({SWT, action})17

send to(server,P)18

ack ← receive from(server)19

check Acknowledgment(ack,P, server, {SWT, action})20

P ← prepare command({RQS})21

send to(server,P)22

ack ← receive from(server)23

check Acknowledgment(ack,P, server, {RQS})24

end25

end26

Algorithm 14: check Acknowledgment(ack,P , server,Σ)
input : ack ... acknowledgement
input : P ... message
input : server ... server instance
input : Σ ... set of command parameters
while ack.DATA.ACK CODE 6= 0 do1

P ← prepare command(Σ)2

send to(server,P)3

ack ← receive from(server)4

end5

117

8.3. HARDWARE OBSERVATIONCHAPTER 8. HARDWARE INTEGRATION

I
1

U
1

I
2

U
2

I
3

U
3

I
4

U
4

I
5

U
5

I
6

U
6

I
7

U
7

Processing
Unit

7

TCP/IP

PC

Sensor Pan-Tilt

Laser Alignment

Laser Rang Finder

Thermal-Camera

Kinect

Robot Base22V

22V

15V

12V

12V

12V

12V

Figure 8.4: Different hardware components connected with the diagnostic board.

8.3 Hardware Observation

The model-based diagnosis process requires the observations besides a model. The presented
diagnosis system uses the observations in the form of logical literals. In order to convert mea-
surements coming from the diagnostic board into compatible observations we use an observer
called hardware observer HObs discussed in Section 5.2.6 of Chapter 5. The hardware observer
subscribes to the client controller’s topic /board measurements and converts the information into
first order literals like ’on(component)’ and ’¬on(component)’. HObs publishes all observations
on the ROS topic /observations.

Example 8.2. As depicted in Figure 8.4 the different hardware components, namely
RobotBase, PC, SensorPanTilt, LaserAlignment, ThermalCamera,
LaserSensor, and Kinect are connected with 7 different channels of the diagnostic
board. Four of these components are powered up whereas three components are dis-
connected from the power supply. The server controller sends the measurements with
the status 1 for powered up components and 0 for others, using MSR command. The
client controller will receive the measurements and publish status of all seven com-
ponents on the topic /board measurements. The hardware observer HObs will publish
{on(robot base),on(pc),on(sensor pan tilt),¬on(laser alignment),
¬on(thermal camera),on(laser range finder),¬on(kinect)} on the topic
/observations.

118

CHAPTER 8. HARDWARE INTEGRATION 8.4. HARDWARE DIAGNOSIS

8.4 Hardware Diagnosis

The diagnosis process is explained in detail in Chapter 6. The process requires the observations
and a model in order to localize a fault. The hardware observations we obtain through HObs, and
the model is obtained by converting robot architectural model (RAM) into robot behavior model
(RBM) as discussed in Chapter 4. There are a number of scenarios where we utilized diagnostic
board for the hardware diagnosis, for example, a servo motor switches off if there is enough
pressure preventing it to rotate, this may happen when laser alignment system gets blocked while
robot moves up or downwards.

We consider another scenario which is more likely to occur than the one discussed above.
The robot base jaguar connects with its node jagaur node over a wireless, and the jagaur node
publishes odometry information on a topic /pose. The topic /pose may get disturbed because
of two reasons: jagaur node may stop making the /pose topic disappear, or the jaguar may
disconnect from the jagaur node causing the /pose to stop publishing data. Therefore, the cause
of the fault in the topic /pose can be either the jagaur or the jagaur node, and the optimum
solution is to consider both of these possible root causes of the fault as stated in following rule
from robot behavior model (RBM):

¬AB(jaguar)→ on(jaguar)

¬AB(jaguar node)→ running(jaguar node)

¬AB(jaguar) ∧ ¬AB(jaguar node)→ ok(pose)

which states that if we assume both the jagaur and the jagaur node are working properly
the topic /pose must work correctly as well. If the robot is switched ON, and connected with
the jagaur node, and the topic /pose is publishing odometry with the right frequency then the
observers HObs, NObjaguar node, and GObspose collectively provide the observations:

Θ = {on(jaguar), running(jaguar node), ok(pose)}

The only diagnosis will be:
∆ = {∆bad = ∅, ∆good = {jaguar, jaguar node}}

Now suppose the robot base “jaguar” disconnects from the jagaur node so /pose will stop
publishing and the observations we get:

Θ = {on(jaguar), running(jaguar node),¬ok(pose)}

the diagnosis will be:
∆ = {∆1,∆2}

119

8.5. HARDWARE REPAIR CHAPTER 8. HARDWARE INTEGRATION

where: ∆1 = {∆bad = {jaguar}, ∆good = {jaguar node}}
∆2 = {∆bad = {jaguar node}, ∆good = {jaguar}}

8.5 Hardware Repair

The repair process is discussed in detail in Chapter 7. We use a planner-based repair engine
which takes the observations and the diagnosis as input and generates plan of the repair actions.
The repair actions in the plan are then executed one by one by invoking the repair action
servers. In case of the hardware repair we have two repair action servers, namely power up, and
shutdown. Both of these repair action servers use board client controller to request the board
server controller in order to switch ON or OFF a particular component. Continuing with the
same scenario discussed above the repair planner first gets both the observations (Θ) and the
diagnosis (∆1):

Θ = {on(jaguar), running(jaguar node),¬ok(pose)}
∆1 = {∆bad = {jaguar}, ∆good = {jaguar node}}

and produces plan of the repair actions as:

P = {shutdown(jaguar), power up(jaguar)}

the repair engine sends the actions shutdown(jaguar) and power up(jaguar) one by
one to the board client controller causing it to send SWT command to the board server
controller in order to switch OFF and then ON jaguar. This brings jaguar again on wire-
less network. In order to connect the jaguar node with the jaguar it is necessary to restart
the jaguar node. For this purpose the planner takes the following observations and the diagnosis:

Θ = {on(jaguar), running(jaguar node),¬ok(pose)}
∆2 = {∆bad = {jaguar node}, ∆good = {jaguar}}

and repair planner generates new plan:

P = {stop node(jaguar node), start node(jaguar node)}

and the repair engine invokes stop node and start node the repair action servers in a se-
quence for the node jaguar node. This restarts the jaguar node and its connection with the
jaguar is again established making the topic /pose publishing the odometry data again.

120

Chapter 9

Model Learning

In this chapter we discuss an approach for how to generate a diagnosis model. Moreover, it
also discusses how two fields are correlated on the basis of their qualitative trends. The research
works related to the model learning have been published in [ZS13a, ZS13b].

9.1 Model Generation

During accomplishing a task it is quite likely that a robotics system’s component shows an unde-
sired behavior that can be caused by a wide range of faults such as defective hardware or software
deadlocks. This phenomenon is caused by the complex interactions within the robot system and
the non-deterministic interaction with the dynamic environment. In order to be able to automati-
cally cope with such problems it is necessary to have a monitoring system that is not only able to
detect such faults but is also able to repair them at runtime. If a model-based diagnosis approach
is used one needs a model of the correct system behavior. This behavior model is then compared
to the behavior observed at runtime in order to detect and localize the faults.

Such a diagnosis model can be acquired using three basic approaches. The first approach is
to reuse requirements or engineering models that are already available if for instance a model-
driven development process is used [BGVB10]. If no reusable models are available the diagnosis
models can be created by hand. While this second approach is quite widespread it is cumbersome
and error-prune in particular for complex systems. In this work we follow a third approach that
learns the diagnosis model on-line during a controlled learning phase.

In order to acquire a model on-line one has to have some mechanisms to analyze the compu-
tation and interaction of the system’s components. The analyzed data describes the behavior of
the robot system at run-time and can be used to generate the diagnosis model. A basic assump-
tion needed for this approach to work is that the system produces no faults during the learning
phase. Moreover, it has to be assumed that the robot shows all possible behaviors during the

121

9.1. MODEL GENERATION CHAPTER 9. MODEL LEARNING

learning phase in order to generate a complete diagnosis model.

9.1.1 Recording the Running System

This section proposes to use information recorded from a system actually performing a complete
task to extract the diagnosis model automatically. ROS supports this approach because it allows
easy access to information about the computation graph, the involved nodes, the communication
between nodes and the content (data) of exchanged messages. The recorded information belong
to three groups: First comprising running nodes and their properties, second group consists
of communication patterns and final group is the exchanged data. The first group is directly
available from ROS and can be directly transferred to rules in the model (e.g., which nodes have
to run). For the second group ROS only provides information about exchanged messages. Here
a statistical analysis has to be done in order to detect communication patterns (e.g., which nodes
communicate regularly). Finally, the values contained in the messages can be correlated to detect
functional dependencies (e.g., if one value increases another one has to increase as well). Here
we follow a qualitative reasoning approach [BS04]. The input to the generation and instantiation
step is recorded during a fault-free execution of tasks by the robot system and comprises three
parts: (1) the computation graph, (2) the communication via all topics and (3) further property
observation.

Definition 9.1 (topic-node relation). A topic-node relation is a tuple ri = 〈ti, Nti〉 where ti is a
topic and Nti is a set of nodes publishing on or subscribing to topic ti.

The computation graph can be directly obtained using ROS system functions.

Definition 9.2 (computation graph). A computation graph is a tuple G = 〈N, T, P, S〉
where N = {n1, ..., nkN} is the set of running nodes, T = {t1, ..., tkT } is the set of topics,
P = {p1, .., pkP } is the set of publishing topic-node relation and S = {s1, .., skS} is the set of
subscribing topic-node relation.

For better readability we assume access functions for tuples in the form e(t) for accessing the
entry e of tuple t. A communication via a topic ti is a time-ordered list of exchanged messages
that can be simply obtained by subscribing to topic ti.

Definition 9.3. The communication (CO) for a topic ti is a time-ordered list Mti =

〈m1
ti
, ...,m

kMti
ti 〉 where mj

ti is a tuple 〈ν, t〉 with ν = {v1, ..., vkνti
} a set of atomic values in

the exchanged message and t is the time of the occurrence of the message. Atomic values are
data types that cannot be decomposed any further such as integer or floats. The set of all com-
munications is denoted as M . We assume that message layouts do not change during runtime.
Therefore, we treat the number of values kνti in a message for topic ti as a constant and define a

122

CHAPTER 9. MODEL LEARNING 9.1. MODEL GENERATION

function Vc that extract from a communication Mti the list of the jthvalue, j ∈ {1, ..., kνti}, and
their occurrence time: Vc : CO × N+ → {〈R,R 〉} . Finally, we define two functions Γ and ∆

that extract from a communication Mti the list of the occurrences respectively the time difference
to the previous occurrence: Γ,∆ : CO → {R}. The time difference for the first occurrence is
defined as 0.

Property observations for a node are time-ordered list of real numbers. Currently two kinds of
observations types are supported: (1) cpu usage and (2) memory usage. As nodes are processes
these observations can be easily acquired using OS functionality (e.g., proc file system).

Definition 9.4. A property observation (PO) for a node ni is a time-ordered list Πni =

〈π1
ni
, ..., π

kΠni
ni 〉 where πjni is a tuple 〈π, τ, t〉 with π ∈ R the quantity of the observed property of

type τ ∈ {howtoputτCPU , τMEM} at time t. The set of all property observations is denoted as
Π. Moreover, we define a function Vp that returns for a property observation a set of all values
of a particular type: Vp : PO × τ → {R}.

Algorithm 15: instantiateObs(G,M,Π)
input : G ... the computation graph
input : M ... the communication set
input : Π ... the property observation set
output: a set of node observers On
output: a set of general observers Og
output: a set of property observers Op
output: a set of qualitative observers Oq
On = ∅,= Og∅,Oq = ∅1

foreach ni ∈ N do2

On = On ∪NObs(ni)3

end4

foreach Mti ∈M do5

∆̄ = mean(∆(Mti)), σ = stddev(∆(Mti))6

if ∆̄/σ > α then7

Og = Og ∪GObs(ti, ∆̄, σ)8

end9

end10

foreach Πni ∈ Π, t ∈ τ do11

Π̄ = mean(Vp(Πni
, t)), σΠ = stddev(Vp(Πni

, t))12

Op = Op ∪ PObs(ni, t, Π̄, σΠ)13

end14

Oq = ∪instantiateQObs(M)15

123

9.1. MODEL GENERATION CHAPTER 9. MODEL LEARNING

9.1.2 Instantiating the Observers

The recording of the running system provides a computation graph G, a set of communications
M and set of property observations Π. This information are fed into Algorithm 15 to derive the
sets of observers that have to be instantiated to observe the running system during the diagno-
sis process. First the algorithm instantiates for each node a node observer and stores them in
the set On (Lines 2-4). Then the algorithm calculates for each communication via a topic the
mean and standard deviation of the time difference of successive messages. Using the heuristic
that the fraction of the mean and the standard deviation is above a certain threshold α for topics
communicating on a regular basis general observer are instantiated for such topics and stored in
Og (Lines 5-10). For each node where a property observation is available a property observer is
instantiated with mean and standard deviation of the related property observation (Lines 11-14).
Qualitative observer are instantiated using Algorithm 16 (Line 15). The algorithm first calcu-
lates the average communication differences for all pairs of topics (Lines 2). Then it is checked
if both original or one original and one integrated communication is correlated (Lines 4-14). If
two communications are qualitatively correlated a qualitative observer is instantiated where the
last two parameter determines if a communication will be integrated during observation. I(M)

denotes the communication where the values in M are replaced by the sum of itself and all suc-
cessive values. If two values in communications are qualitatively correlated is determined using
Algorithm 17. The algorithm determines the qualitative correlation of two value by comparing
their qualitative trend. Here we follow the ideas presented in [KSW09]. In technical systems
and in particular in robot system related values can hardly be matched on an absolute scale. For
instance the orientation measured by a compass and the odometry may start at different absolute
angles. But the qualitative trend (e.g., increase, decrease, or constant) of both have to be the
same for related values. Moreover, values of a physical system are noisy. Therefore, we use a
sliding window and linear regression for calculating the slopes of a list of values. The sliding
windows wsi and wsj (Line 1) ensures that in average C occurrences are used for the linear
regression for the lth value of topic ti (Lines 3-6) respectively for the mth value of topic tj (Lines
7-10). According to [KSW09] a threshold b is necessary to classify a slope (trend) as increas-
ing, decreasing or constant denoted by the symbols +,− and 0. In order to be able to extract
this parameter automatically we introduce two distinct parameter b+ and b− for increasing and
decreasing trends (Lines 11-12). Assuming that the recorded data sufficiently represents the true
probability distribution of trends we set the threshold for b+ and b− to the median of all positive
slopes respectively all negative slopes. These parameters are finally used to classify the trends
including checking higher-order derivatives as proposed in [KSW09] (Lines 13-14). Finally, the
matches of the qualitative trends of both values are calculated with c representing the number of
checked trends and m representing the number of matches (Lines 15-31). Because in general the
number of occurrences of trends and their time is not equal for two topics we use an interpolation

124

CHAPTER 9. MODEL LEARNING 9.1. MODEL GENERATION

Algorithm 16: instantiateQObs(M)
input : M ... the communication set
output: a set of qualitative observers Oq
Oq = ∅1

foreach {〈ti, tj〉|Mti ∈M ∧Mtj ∈M} do2

∆̄i = median(∆(Mti)),∆̄j = median(∆(Mtj))3

foreach4

l ∈ {1,, kνti},m ∈ {1,, kνtj },i 6= j ∨ l 6= m do
if correlated(Mti , l, ∆̄i,Mtj ,m, ∆̄j) then5

Oq = Oq ∪QObs(ti, tj , l,m, ∆̄i, ∆̄j , 0, 0)6

end7

if correlated(I(Mti), l, ∆̄i,Mtj ,m, ∆̄j , 0, 1) then8

Oq = Oq ∪QObs(ti, tj , l,m, ∆̄i, ∆̄j)9

end10

if correlated(Mti , l, ∆̄i, I(Mtj),m, ∆̄j) then11

Oq = Oq ∪QObs(ti, tj , l,m, ∆̄i, ∆̄j , 1, 0)12

end13

end14

end15

for the qualitative trend. If the occurrence of a qualitative trend q of topic ti has to be matched we
derive the closest occurrence of a trend in topic tj before and after q. We interpolate the symbol
q has to be matched again using Table 9.1. It is reasonable to assume that for instance if the
corner symbols are +(increasing) and −(decreasing) there is a middle area in the interpolation
with symbol 0 (constant). Finally, a match is reported if the ratio between the number of matches
and the number of total checks is greater than a parameter Q (Line 32).

9.1.3 Generating the Diagnosis Model

As already mentioned above we follow the diagnosis principles form [Rei87]. Moreover, we use
a more efficient model representation based on Horn clauses [PW03]. We extract the diagnosis
model from the information collected through the recording phase and the instantiated observer
using Algorithm 18. The algorithm gets the computation graph (G) and the sets of observers
(On,Og,Op,Oq) and returns a set of Horn clauses M forming the diagnosis model.

The extraction of the clauses can be done straight forward using the information and relations
contained in graph and the observers. The algorithm starts with an empty set of clauses (Line
1). For each node with a node observer we add a clause that states that, if a node is working
correctly there should be a process for it (Lines 2-4). We use the common nomenclature that the
literal ¬AB(c) denoted that component c is working correctly.

Moreover, we add for each node n with a topic t′ the node is publishing on and a general

125

9.1. MODEL GENERATION CHAPTER 9. MODEL LEARNING

Algorithm 17: correlated(Mti , l, ∆̄i,Mtj ,m, ∆̄j)

input : Mti ... the communication of topic ti
input : l... use lth value of topic ti
input : ∆̄i ... median message time difference of topic ti
input : Mtj ... the communication set of topic tj
input : m ... use mth value of topic tj
input : ∆̄j ... median message time differences of topic tj
output: true if ti and tj are qualitatively correlated, false

otherwise
wsi = C∆̄i, wsj = C∆̄j1

sli = ∅, skj = ∅2

foreach v ∈ Vc(Mti , l) do3

s = linreg({v′ ∈ Vc(Mti , l)|time(v′) ∈4

[time(v)− wsi/2, time(v) + wsi/2]})
sli = sli ∪ 〈time(v), s〉5

end6

foreach v ∈ Vc(Mtj ,m) do7

s = linreg({v′ ∈ Vc(Mtj ,m)|time(v′) ∈8

[time(v)− wsi/2, time(v) + wsi/2]})
smi = smi ∪ 〈time(v), s〉9

end10

b+i = median({val(s)|s ∈ sli ∧ val(s) > 0}),11

b+j = median({val(s)|s ∈ smj ∧ val(s) > 0}),
b−i = median({val(s)|s ∈ sli ∧ val(s) < 0}),12

b−j = median({val(s)|s ∈ smj ∧ val(s) < 0})
qi = trend(si, b

+
i , b
−
i , wsi)13

qj = trend(sj , b
+
j , b
−
j , wsj)14

c = 0, m = 015

foreach q ∈ qi do16

q−j = minq′∈qj (time(q)− time(q′))17

q+
j = minq′∈qj (time(q′)− time(q))18

if match(q, q−j , q
+
j) then19

m = m + 120

end21

c = m + 122

end23

foreach q ∈ qj do24

q−i = minq′∈qi(time(q)− time(q′))25

q+
i = minq′∈qi(time(q

′)− time(q))26

if match(q, q−i , q
+
i) then27

m = m + 128

end29

c = m + 130

end31

return (m/c) > Q32

126

CHAPTER 9. MODEL LEARNING 9.1. MODEL GENERATION

Algorithm 18: generateModel(G,O)
input : G ... the computation graph
input : set of instantiated node observers On
input : set of instantiated general observers Og
input : set of instantiated property observers Op
input : set of instantiated qualitative observers Oq
output: a set of clauses M
M = ∅1

foreach o ∈ On do2

M = M ∪ {¬AB(node(o))→ running(node(o)) }3

end4

foreach n ∈ N do5

P ′ = {t′ ∈ T |(∃p ∈ P.node(p) = n ∧ t′ ∈ topic(p))∧6

∃o ∈ Og ∧ topic(o) = t′}7

foreach t′′ ∈ P ′ do8

S′ = {t′′′ ∈ T |(∃s ∈ S.node(s) = n∧9

t′′′ ∈ topic(s)) ∧ ∃o ∈ Og ∧ topic(o) = t′′}10

M = M ∪ {¬AB(n) ∧
∧
t′∈S′ ok topic(t′′)→11

ok topic(t′)}
end12

end13

foreach o ∈ Op do14

M = M ∪ {¬AB(node(o))→15

ok prop(node(o), type(o))}
end16

foreach o ∈ Oq do17

Nq = {n ∈ N |∃p ∈ P.node(p) = n∧18

t1(o) ∈ topic(p) ∨ t2(o) ∈ topic(p)}19

T ′ = ∅20

if ∃o ∈ Og.t1 = topic(o) then21

T ′ = T ′ ∪ t122

end23

if ∃o ∈ Og.t2 = topic(o) then24

T ′ = T ′ ∪ t225

end26

M =27

M ∪ {
∧
n∈Nq ¬AB(n) ∧

∧
t∈T ′ ok topic(t)→

ok match(t1(o), v1(o), t2(o), v2(o))}
end28

127

9.2. MULTI TRAINING SETS CHAPTER 9. MODEL LEARNING

s(q−) s(q+) s̄(q)

t(q) ∈ t(q) ∈ t(q) ∈ t(q) ∈
[t(q−), t(q−) + ∆t/3) [t(q−) + ∆t/3, t(q−) + ∆t/2) [t(q−) + ∆t/2, t(q−) + 2∆t/3) [t(q−) + 2∆t/3, t(q+)]

− − − − − −
− 0 − − 0 0

− + − 0 0 +

0 − 0 0 − −
0 0 0 0 0 0

0 + 0 0 + +

+ − + 0 0 −
+ 0 + + 0 0

+ + + + + +

Table 9.1: Interpolation for qualitative trend for time t(q) between the times t(q−) and t(q+)

where ∆t = t(q+)− t(q−)).

observer (check for regular communication) for t′ a clause that specifies that this observer have
to report ok topic(t′) if the node n works and all its subscribed topics t′′ that have an observer
report ok topic(t′′) as well (Line 5-13). These clauses cover the input/output relations of nodes.
For each property observer we add a clause that, if a node n works all its observed properties of
particular types have to be within the specified boundaries (Line 14-15). The literal ok prop(n, t)
denoted that the property of type t is ok for node n.

Finally, we specify that, if two topics t1 and t2 are qualitative correlated and there is a
related observer the two topics have to qualitatively match (Line 27-23). Where the literal
ok match(t1, l, t2,m) that the lth value of topic t1 is qualitatively matching with the mth value
of topic t2. For instance in a fault-free system the yaw angle reported by the odometry should
have the same trend to a yaw reported by an IMU.

9.2 Multi Training Sets

We also consider more than one training sets for generating model, i.e., during model learning
phase one can take more than one training sets for the same problem and robotics system. The
idea came out due to the reason that it might happen during learning phase some data streams
from sensors cannot fully capture the correct behavior or due to uncertainty training set captures
some irregularities in data stream. Combining similar data streams from different training sets
can bubble out these irregularities and produce better system behavior than only one training set.
The process of combining multi data streams into one large training set is depicted in Figure
9.1. Algorithm 19 describes the process of integrating multiple training sets into one. It takes
n training sets each with m data streams. Firstly all the starting and ending times from each
of data in a training set is extracted. The minimum of all m start times (si) gives a start time

128

CHAPTER 9. MODEL LEARNING 9.2. MULTI TRAINING SETS

Algorithm 19: mergeTrainingSets(Π)
input : Π ... set of n training sets
output: Γ ... one training set
foreach Trainn ∈ Π do1

foreach datam ∈ Trainn do2

tminm = min({ti|datam = 〈vi, ti〉})3

tmaxm
= max({ti|datam = 〈vi, ti〉})4

end5

tstartn = min(tminm
)6

tendn = max(tmaxm)7

end8

dif = ∀0<i<n(tstarti+1
− tendi)9

δt = 010

Γ = Train111

foreach dk ∈ dif do12

δt = δt + dk13

foreach datam ∈ Traink+1 do14

datam = {ti − δt|datam = 〈vi, ti〉}15

end16

Γ = Γ ∪ Traink+117

end18

return Γ19

129

9.2. MULTI TRAINING SETS CHAPTER 9. MODEL LEARNING

sne3s3e2s2e1s1

Train1 Train2 Train3 Trainn

D
A
T
A

1

2

m

1

2

m

en-1
d1 d2 dn-1

Trainn-1

One Training Set

(a)

(b)

en

s e

Figure 9.1: (a) Different length m data streams from n training sets. All same color data is in
one training set. Every training set i has start time si and ending time ei. (b) The m data streams
from n training sets are combined into one large training set with one start time s and ending
time e. Arrows show the gap between the data.

for a training set, and maximum of all m ending times (ei) gives an ending time of the training
set (Lines 1-8). Difference between start time of ith and ending time of i-1th training set gives
time interval δ between two training sets. Therefore, each of the data streams from subsequent
training set has to be shifted towards preceding training set by subtracting the interval δ. All
corresponding data streams of training sets are combined into one data stream. This gives m
combined data streams making one large training data sets. This training set can be used for
correlation calculation between data streams.

130

Chapter 10

Experimental Results

In this chapter we provide experiments performed for validating our diagnosis and repair system.
It also provides empirical evaluation of the generated diagnosis models through the learning
process.

10.1 Diagnosis and Repair

In order to evaluate the diagnosis and repair process for both software and hardware faults we
conducted experiments. Following is the evaluation set up and experimental results to evaluate
diagnosis and repair process.

10.1.1 Experimental Setups

For evaluation of proposed work we used TEDUSAR robot based on Dr.Robot Jaguar mobile
robot platform as shown in Figure 10.1. It contains two tracks and two articulated, tracked, in-
dependently controlled arms. The platform can move over various terrains and climb up slopes
and stairs. The robot is equipped with a Hokuyo laser range finder (LRF) mounted on a leveling
mechanism with 2 degrees of freedom to assure scanning in the horizontal plane for building
maps. A sensor head with two degrees of freedom consisting of a thermal camera, and a Mi-
crosoft Kinect sensor is used to detect victims around the robot on the basis of body temperature
and computer vision. An XSens MTi inertial measurement unit (IMU) determines the alignment
of the robot. In addition, a wireless router is mounted on the robot to establish a connection
to the remote operator control station, and a hardware diagnosis board [ZL13] was designed
and mounted on the robot to observe power consumption behaviors of the hardware components
(Chapter 8). The robot is controlled by an embedded PC running the Ubuntu Linux and control
software based on the ROS framework. The operator station consists of a joystick connected to

131

10.1. DIAGNOSIS AND REPAIRCHAPTER 10. EXPERIMENTAL RESULTS

a laptop PC running an Ubuntu Linux, the joystick driver node and the visualization tool for the
operator.

Figure 10.1: TEDUSAR search and rescue robot.

The scenario for the diagnosis example is a teleoperated exploration and mapping of an
unknown environment. Figure 10.2 shows the components of the system and the communi-
cation between them. In the figure, abbreviations ja, hu, la, jn, hn, in, lan, jtn, hm, lac,
jyn and jys represent jaguar, hokuyo, laser alignment, jaguar node, hokuyo node, imu node,
laser alignment node, jaguar teleop node, hector mapping, laser alignment control, joy node
and joystick respectively. The movement of the robot is remotely controlled by an operator us-
ing a joystick. The signals from the joystick are converted to velocity commands for the robot
platform. The communication between the operator station and the robot is carried out via wire-
less network. Laser scans are used to generate a map of the explored space by using a flexible
and scalable mapping approach [KMvSK11] with some mapping relevant issues presented in
[ZSS11] . For building a map the laser range finder has to be aligned to the horizontal plane.
Therefore, the posture of the robot is determined with the IMU, and the angles of the servos in
the laser alignment system are set accordingly. The visualization tool Rviz is used to display the
map to the operator.

We tested the diagnosis and repair system for both hardware devices as well as software
nodes. The components comprise the devices and nodes introduced in Section 3.1.1. The di-
agnosis model and the repair domain description was created as described in Sections 6.2 and
7.1.2.1 respectively. Moreover, we set up one hardware observer (monitoring the power status of
the hardware), one node observer for each software node and one general observer for each of
the topics /odom, /map, /scan, /imu data and /cmd vel.

Experiments were conducted for two different scenarios:

132

CHAPTER 10. EXPERIMENTAL RESULTS10.1. DIAGNOSIS AND REPAIR

/map

/cmd_vel

/scan

/imu_data

rviz

jtn

hm

lac

la_servo1_moving

la_servo2_moving

jysjn

hn

lanla

imu

hu

ja

in

jyn
/joy

/pose

D
 i a g

 n
 o

 s t i c B
 o

 a r d

Figure 10.2: Simple control architecture for the search and rescue robot. Rectangles represent
hardware modules. Gray circles represent hardware nodes. Dark gray circles represent hardware
driver nodes with switchable hardware devices. White circles represent normal software nodes.
Solid arrows represent publisher/subscriber communication. Dot-dashed arrows represent ser-
vice calls. Dotted lines represent hardware connections.

10.1.1.1 System-Power-up scenario

In order to evaluate the correctness of the diagnosis model and the planning domain we
conducted a power-up experiment. In the system-power-up scenario the whole robot system
is initially switched off, and the diagnosis and repair system has to transfer it to a state ready
for the mapping. In the beginning all hardware components are switched off and all software
nodes are not running. The only powered hardware is the hardware diagnosis board and the PC.
The only running software is the diagnosis and repair system. The diagnosis engine obtains the
following diagnosis using the diagnosis model and observations from the observers:

∆good = {}, ∆bad = {j, h, la, lan, lac, hm, jn, hn, in, jtn, jyn}

The diagnosis and observations are then used by the planner to plan and invoke proper action.
Figure 10.3 shows for the system-power-up scenario the diagnosis and planner results for all the
hardware and software components. At the top of the figure the sequence of the repair actions is
depicted. Initially all hardware and software components are abnormal. The planner first powers
up the laser alignment hardware by invoking a power up action. After laser alignment powers
up and becomes normal the planner continues to power up hokuyo. After all, the hardware is
powered up the planner continues with the software nodes and starts them one by one by calling
start node actions. The planner starts laser alignment node then hokuyo node, hector mapping,
jaguar teleop node, jaguar node, laser alignment control and imu node. All the components

133

10.1. DIAGNOSIS AND REPAIRCHAPTER 10. EXPERIMENTAL RESULTS

Figure 10.3: Behavior of the diagnosis and repair system for the System-Power-up scenario.

become normal at the end of the repair plan. As shown in Figure 10.3 the planner starts at time
8.1 seconds and finishes at 38.3 taking total of 30.2 seconds to bring all components into normal
state. The results clearly show that our system is able to obtain the correct diagnosis and to
execute a repair plan to set the system’s hardware and software into a correct state.

10.1.1.2 Device-Shut-down scenario

In the second experiment we evaluated how the system reacts to a dynamic fault occurring at
run-time. In the device-shut-down scenario the system is operating correctly at the beginning.
Then suddenly one hardware device goes down. In this scenario jaguar hardware is switched off.
As a result the jaguar node gets disconnected from jaguar and stops publishing odometry data.
So the required sequence of actions should be power up the jaguar, stop node and start node
for jaguar node. When jaguar is switched off the diagnosis engine adds it to the faulty com-
ponents in the diagnosis. The planner takes this diagnosis and invokes power up action for the
jaguar. When jaguar was powered up the planner kills (the still running) jaguar node by invok-
ing stop node action. After jaguar node was stopped successfully the planner invokes start node
action to start it again. Figure 10.4 shows this scenario with related diagnoses and sequence of
the repair actions. Please note that in this scenario the planner is invoked twice. First, it is in-
voked for the power up action for the jaguar. Second, it is invoked for the two actions stop node
and start node for jaguar node. Then jaguar node becomes normal. After this the whole system

134

CHAPTER 10. EXPERIMENTAL RESULTS 10.2. MODEL EVALUATION

is normally running again.

Figure 10.4: Behavior of the diagnosis and repair system for the Device-Shut-down scenario.

10.2 Model Evaluation

In order to evaluate the proposed diagnosis model learning we conducted a series of experi-
ments. We used a mobile robot in a teleoperated mapping scenario. Using the proposed learning
approach and a fault-free task execution we obtained different diagnosis models. Different mod-
els had been generated to evaluate the influence of the parameter in the generation algorithm.
These automated generated diagnosis models were used for diagnosis in a run where different
faults were injected. We evaluated if the system reports any false positives or negatives. These
results are a metric for the quality of the generated diagnosis models.

10.2.1 Experimental Setup

For the evaluation we used a Pioneer DX3 robot (Figure 10.5) equipped with a Sick LMS 200
laser scanner and a XSense MTi IMU. The robot was controlled by a standard ROS installa-
tion. For mapping the open-source SLAM implementation gmapping1 was used. The robot was
teleoperated while mapping the corridors in a building of a size of 20m × 14m. The control

1see http://www.openslam.org/gmapping

135

10.2. MODEL EVALUATION CHAPTER 10. EXPERIMENTAL RESULTS

Figure 10.5: Pioneer 3DX robot equipped with Laser and IMU sensors.

software of the robotics system used a number of ROS nodes communicating with each other
on their topics. The communicational graph with nodes and the topics is shown in Figure 10.6.
For the fault-free task execution we ran the robot without injecting any faults. In the test runs

Figure 10.6: The computation graph used in the validation experiments.

we injected different faults we expected the system to identify using the generated models. The
faults we injected are:

◦ Odometry Slip : It is achieved by driving robot over slippery floor. In our case we had
four slippery spots on the floor, the robot was expected to slip during navigation while
passing over them.

136

CHAPTER 10. EXPERIMENTAL RESULTS 10.2. MODEL EVALUATION

Model Parameters Observers
Q α BiQObs GObs NObs PObscpu PObsmem Total

M1 0.9 10 0 2 7 7 7 23
M2 0.9 2.5 0 15 7 7 7 36
M3 0.9 0.5 0 20 7 7 7 41
M4 0.8 10 1 2 7 7 7 24
M5 0.8 2.5 1 15 7 7 7 37
M6 0.8 0.5 1 20 7 7 7 42
M7 0.5 10 6 2 7 7 7 29
M8 0.5 2.5 6 15 7 7 7 42
M9 0.5 0.5 6 20 7 7 7 47

Table 10.1: Experimented models for different learning parameters with different number of
observers: binary qualitative (BiQObs), general (GObs), node (NObs), CPU property (PObscpu),
and memory property (PObsmem) observers.

◦ Increasing CPU usage : A node’s cpu usage is increased using additional dummy thread.
For example, the CPU usage of the node p2os was modelled as 4.11554554815% and we
increased it upto 30%.

◦ Increasing Memory usage : Using additional thread for allocating additional mem-
ory. For example, the memory usage of the node gmapping was modelled as
1040626.0418Bytes and we increased it to its double.

◦ Changing Frequency : Increased message frequency with additional dummy messages.
For example, the frequency of the topic /pose was modelled 10.0212312737Hz and it was
increased by 5 times.

◦ Crashing Node : We crashed node (simply killing the node). For example, we killed
teleop joy node because it was controlling the teleoperation of the robot.

10.2.2 Model Validation

For validation of the model generated we conducted a fault-free execution of the mapping task
and recorded data. Using the proposed approach this data were transferred into diagnosis models.
Using different values for the parameters Q and α we generated nine different models denoted
M1 to M9. We used the different models to evaluate the influence of the manually set parameters
on their quality. The hypothesis is the higher we select Q the less binary qualitative observer
are in the model. We assume there is an optimal value for Q between high values that may miss
faults because observer are missing and low values reporting too many faults because of irrelevant
observers. The same assumption is made for α and the number of general observers. Table 10.1
shows the different models and the number of observers generated. In order to validate the

137

10.2. MODEL EVALUATION CHAPTER 10. EXPERIMENTAL RESULTS

Models
fault target 1 2 3 4 5 6 7 8 9

CR

slip 4 0 0 0 3 0 1 2 4 3
cpu 2 2 2 1 2 1 1 1 1 2

mem 2 2 2 2 2 2 2 2 2 2
frq 2 0 2 1 0 2 1 1 2 1

crash 2 2 2 2 2 2 2 2 2 2
sum 12 6 8 6 9 7 7 8 11 10

FN

slip 0 4 4 4 1 4 3 2 0 1
cpu 0 0 0 1 0 1 1 1 1 0

mem 0 0 0 0 0 0 0 0 0 0
frq 0 2 0 1 2 0 1 2 0 1

crash 0 0 0 0 0 0 0 0 0 0
sum 0 6 4 6 3 5 5 5 1 2

FP

slip 0 0 0 0 1 0 2 1 0 0
cpu 0 0 0 0 0 1 0 0 0 0

mem 0 0 0 0 0 0 0 0 0 0
frq 0 0 0 1 0 2 3 0 0 3

crash 0 0 0 0 0 0 0 0 0 0
sum 0 0 0 1 1 3 5 1 0 3

Table 10.2: Diagnoses reported for injected faults using different diagnosis models. CR denotes
correctly reported diagnoses. FN and FP denote false negatives respectively false positives.

different models we conducted the same mapping task as used for the generation of the models.
We conducted 2 runs for each model where the diagnosis system was active using that model. In
each run we injected artificial faults. In each run we drove the robot twice over slippery floor,
increased once the memory and cpu usage of a node, increased the frequency of messages on
a topic, and killed once a node. All faults were injected and retracted in an sequential order to
avoid interferences between the faults which can negatively affect the evaluation. For each run
we noted if faults were reported correctly, faults were not reported (false negatives) or wrong
faults were reported (false positives). The results are depicted in Table 10.2.

According to the results diagnosis model M8 best models the true behavior of the system. It
reported nearly all injected faults correctly. Moreover, it reported no false positives and one false
negative. This is a satisfactory result but contradicts a little bit the hypothesis stated above. We
see that models M7 to M9 showed a higher number of correct reported faults (in particular for
the slippage/sensor). This shows that a low Q value which introduced more binary qualitative
observer is important. Table 10.3 shows the generated observers and the values correlated. It
shows that the relevant BiQOb5 and BiQOb6 which relate the two individual sensors odometry
and IMU were introduced only for low Q values. Moreover, the table shows that for instance
observer 6 makes perfect sense as it relates the yaw measurements of both sensors. Please note
that this relation was automatically extracted from the training data. Apparently, the values of
these observers have a weaker correlation than values origin from the single sensor odometry
(e.g., BiQOb1). Please note that the number of node and property observers was not affected by

138

CHAPTER 10. EXPERIMENTAL RESULTS 10.2. MODEL EVALUATION

BiQObs Q Value 1 Value 2
BiQOb1 0.8 Intg(pose.twist.twist.angular.z) Yaw(pose)
BiQOb2 0.5 pose.pose.position.y Intg(pose.pose.position.x)
BiQOb3 0.5 pose.pose.position.y Intg(Yaw(pose))
BiQOb4 0.5 pose.twist.twist.angular.z Yaw(pose)
BiQOb5 0.5 Intg(pose.twist.twist.angular.z) Yaw(imu)
BiQOb6 0.5 Yaw(imu) Yaw(odom)

Table 10.3: Values used by the binary qualitative observers. Intg. denotes the integration of a
value. The value names correspond to the ROS message structure.

Q or α which led to an almost constant recognition rate of property or node faults for all models.
Moreover, the reaction to injected faults to the message frequency showed that M1, M4, and

M7 were not able to detect them. Because of the low α value only 2 general observers were
generated for 2 very much regular topics. Summarizing, models like M8 and M9 with a low Q

value and a moderate α value perform best. These models are able to reliably report the true
faults which shows that the model learning works if Q and α are selected properly.

10.2.3 Significant Model

Using the z-test of significance (discussed in Sec. 3.6 Chapter 3) we try to find out significance
difference between the models. Total 12 models were learned, and each model was tested against
same 12 injected faults. Following table shows the number of the correctly identified faults (true
positive). From the data given in the table we find that model M8 is the best of all and model M3

is the worst one. We consider these two models M3 and M8 for the significance test.

Model/Error 1 2 3 4 5 6 7 8 9 10 11 12 µ σ

M1 0 0 0 0 1 1 1 1 0 0 1 1 0.500 0.500
M2 0 0 0 0 1 1 1 1 1 1 1 1 0.666 0.471
M3 0 0 0 0 1 0 1 1 1 0 1 1 0.500 0.500
M4 1 1 1 0 1 1 1 1 0 0 1 1 0.750 0.433
M5 0 0 0 0 1 0 1 1 1 1 1 1 0.583 0.493
M6 1 0 0 0 1 0 1 1 1 0 1 1 0.583 0.493
M7 1 1 0 0 1 0 1 1 1 0 1 1 0.666 0.471
M8 1 1 1 1 1 0 1 1 1 1 1 1 0.916 0.276
M9 1 0 1 1 1 1 1 1 1 0 1 1 0.833 0.372

We formulate the null and alternative hypotheses as:
H0: M3 = M8

139

10.2. MODEL EVALUATION CHAPTER 10. EXPERIMENTAL RESULTS

Ha: M3 6= M8

using z-test equation:

z3,8 =
µ8 − µ3√
σ3

n3
+ σ8

n8

(10.1)

⇒ 0.916− 0.500√
0.500

12
+ 0.276

12

(10.2)

⇒ 0.416√
0.064666

(10.3)

which gives z3,8 equal to 1.63586 that means −1.96 ≤ z3,8 ≤ 1.96 resulting not to reject null
hypotheses (H0), therefore, the difference between model M3 and M8 is not found significant.
Although from the table data it is clear that the model M8 provides much better results than the
modelM3 but the significant test concludes with no difference between them. The main reason is
that the number of samples are very less. Typically for z-test the condition |ni+nj| ≥ 30 should
hold but in our case ni+nj is 24 for every two models i and j. Therefore, the z-test demands for
increase in the number of samples in our case.

140

Chapter 11

Conclusion and Future Work

The work presented in this paper provides four contributions. First, the proposed system com-
bines automated diagnosis for robot systems with automated repair. Second, the system incorpo-
rates software and hardware into the diagnosis and repair process. Thirdly, the proposed system
is based on popular robotic framework Robot Operating System (ROS) and extends its exist-
ing diagnostics. Finally, the system also provides an initiative towards automatic learning of
diagnosis model of a robotics system for model-based diagnosis.

The proposed system comprises of different modules: (1) set of observers, (2) a diagno-
sis model server, (3) a model-based diagnosis engine, (4) a planner-based repair engine, (5) a
hardware diagnostic board. The observers monitor the state of hardware, software nodes and
their topics. They include diagnostic observer (DObs), general observer (GObs), node ob-
server (NObs), qualitative observer (QObs), binary qualitative observer (BiQObs), hardware
observer (HObs), property observer (PObs), and interval observer (IObs). Every observer per-
forms a specified monitoring task and publishes its monitored information on the ROS topic
/observations. The output of the observers is a list (Θ) of the first-order logic (FOL) literals
, e.g., ¬ok(topic), running(node),matched(val1, val2), on(component). All the observations
from the observers provide an observed behavior of the robotics system.

The diagnosis model server provides a model of the correct behavior of the robotics system at
run-time. The model contains logical rules (Horn clauses) which describe the predicted behavior
of each component of the robotics system. Each rule in the model uses a special predicate AB
”ABnormal”, i.e., AB(m) states a faulty component m, ¬AB(n) states a working component
n. The diagnosis model server enables the diagnosis system to make changes in the model at-
run time without halting the rest of diagnosis and repair process. The model from the diagnosis
model server provides predicted behavior of the robotics system.

The model-based diagnosis engine follows the model-based diagnosis approach ([Rei87]). It
takes observed behavior in the form of observations from the observers, and the predicted behav-

141

CHAPTER 11. CONCLUSION AND FUTURE WORK

ior in the form of set of the Horn clauses from the diagnosis model server and finds whether there
is any discrepancies between the observed and the predicted behavior of the robotics system. If
any discrepancy is encountered means a fault is detected. The diagnosis engine then derives root
causes of the detected fault in order to localize the fault. The output of the diagnosis engine is
diagnosis (∆) which is a set of faulty components (∆bad) and working components (∆good), i.e.,
∆ = {∆bad,∆good}.

The planner-based repair engine takes the diagnosis ∆ from the diagnosis engine and Θ

from the observers and converts them into a planning problem. The repair engine uses Planning
Domain Definition Language (PDDL) for generating problem description for the planner. It uses
Graphplan in order to generate the plan (P) of repair actions (ρ). For every repair action ρ with
some parameter δ the repair engine invokes repair action server. The process of invoking repair
action servers is sequential, i.e., repair engine invokes a repair action server for the first ρ in P
and waits until it completes and then it takes the next repair action (ρ).

For hardware diagnosis and repair we use a diagnostic board which contains 10 channels.
It the diagnosis and repair system for hardware monitoring and reconfiguration. The hardware
components, e.g., laser sensor, camera, router, etc., are connected to the board. The board has
the capability of measuring current, voltage, and status of each component. Moreover, the board
can automatically power up and down certain component. We developed a simple text-based
protocol through which board can be accessed using TCP/IP.

Like every model-based diagnosis system the presented system requires a diagnosis model
which reflects the correct behavior of the robotics system. To acquire and learn the diagnosis
model online we consider a model generation and learning process. A fault free run of the
robotic system enables us to record the model which is used during diagnosis process. The model
generation approach extracts the information with minimum of user interaction. Moreover, using
statistical learning correlations between data in the computation are extracted which can be used
in the diagnosis model. An experimental evaluation with different training and test runs show
that the approach is able to generate a valid diagnosis model to make system able to correctly
detect and localize faults.

In future work we will further investigate the various interactions within the diagnosis and
repair system that have a huge impact on the stability and quality of the diagnosis and repair
process. Moreover, we intend to increase the capabilities of the system for monitoring and mod-
eling. We have not yet compared our architecture with other existing architectures, therefore, as
future work we consider to compare the system with other integrated systems like the Livingston
and LAAS architectures [MNPW98b, ACF+98].

Although, the approach needs only a minimum set of user-specified parameters for model
learning there is still need for future work in order to automate the estimation of crucial param-
eters such as Q and α for correlation and regularity in the data respectively. Moreover, it is also

142

CHAPTER 11. CONCLUSION AND FUTURE WORK

needed to investigate how the approach scales with the size of the robot system. In particular,
a more efficient implementation and more intelligent treatment of the value correlations have to
be done. Finally, the automated modeling currently limits to the diagnosis model. It will also
be very interesting to learn the repair model as well. Possibly, a combination of fault diagnosis
and analyzing the user’s reaction to faults can lead to such models. Finally, we demand that the
learning runs are fault-free. This is a strong requirement of our system, therefore, we will also
investigate how much influence the faults pose on the learning phase and its impact on the quality
of the learned model.

The planner-based repair engine generates the plan and executes it without waiting for the
effects of the repair action to appear. A better strategy for the future work would be to wait until
the effects have been established. For instance it might take longer for a node’s output topics to
become correct than simply the time to restart the node.

The communicational system of a robotics system might also contain conditional and trig-
gering nature of communication between the components. We also intend to include Multiple
observer (MObs) in order to observer conditional communication between the components of a
robotics system.

We do not claim that the presented architecture is complete but we believe that this can be a
good initiative towards a complete automated diagnosis and repair systems.

143

CHAPTER 11. CONCLUSION AND FUTURE WORK

144

Bibliography

[AA04] Brian Randell A. Avižienis, Jean-Claude Laprie. Dependability and its threats: A
taxonomy. IFIP International Federation for Information Processing Volume 156,
pp 91-120, 2004.

[AASB+06] R. Alami, A. Albu-Schaeffer, A. Bicchi, R. Bischoff, R. Chatila, A. De Luca,
A. De Santis, G. Giralt, J. Guiochet, G. Hirzinger, F. Ingrand, V. Lippiello, R. Mat-
tone, D. Powell, S. Sen, B. Siciliano, G. Tonietti, and L. Villani. Safe and depend-
able physical human-robot interaction in anthropic domains: State of the art and
challenges. Procceedings IROS Workshop on pHRI - Physical Human-Robot In-
teraction in Anthropic Domains, October, 2006.

[ACF+98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for
autonomy. International Journal of Robotics Research, 17:315–337, 1998.

[Asi42] I. Asimov. Runaround story. In Astounding Science Fiction-science fiction maga-
zine, March, 1942.

[BBdK82] J. S. Brown, R. R. Burton, and J. de Kleer. Pedagogical, natural language and
knowledge engineering techniques in sophie i, ii and i. In Intelligent Tutoring
System, Academic Press New York, 227-282, 1982.

[BCNB07] E. Balaban, H. N. Cannon, S. Narasimhan, and L. S. Brownston. Model-based
fault detection and diagnosis system for nasa mars subsurface drill prototype. In
Aerospace Conference, 2007 IEEE, Big Sky, MT, March 3-10, 2007.

[Bea71] R. V. Beard. Failure accomodation in linear systems through self-reorganisation.
In Tech.Rep. MVT-71-1, Man Vehicle Lab., Cambridge, Mass, 1971.

[BF97] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Arti-
ficial Intelligence, 90:281–300, 1997.

145

BIBLIOGRAPHY BIBLIOGRAPHY

[BGI+09] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and N. Thanh-Hung. Designing
autonomous robots. In Robotics and Automation Magazine, IEEE (Volume:16,
Issue: 1), March, 2009.

[BGVB10] J. F. Broenink, M. A. Groothuis, P. M. Visser, and M. M. Bezemer. Model-driven
robot-software design using template-based target descriptions. In ICRA 2010
Workshop on Innovative Robot Control Architectures for Demanding (Research)
Applications: How to modify and enhance commercial controllers, Anchorage,
Allaska, USA, pages 73–77, May 2010.

[BH98] K. Balakrishnan and V. Honavar. Intelligent diagnosis systems. In Journal of
Intelligent Systems, Vol. 8, Nos. 3-4, 1998.

[BHSW07] Mathias Brandstötter, Michael Hofbaur, Gerald Steinbauer, and Franz Wotawa.
Model-based fault diagnosis and reconfiguration of robot drives. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
San Diego, CA, USA, 2007.

[BMS+05] C. Burghart, R. Mikut, R. Stiefelhagen, T. Asfour, H. Holzapfel, P. Steinhaus,
and R. Dillmann. A cognitive architecture for a humanoid robot:a first approach.
In 5th IEEE-RAS International Conference on Humanoid Robots, pp: 357-362,
Tsukuba, Dec, 2005.

[Boo54] G. Boole. An investigation of the laws of thought. In Dover, New York, 1854.

[BS04] Bert Bredeweg and Peter Struss. Current Topics in Qualitative Reasoning. AI
Magazine, 24(4):13–16, 2004.

[CDTnn] L. Console, D. T. Dupré, and P. Torasso. A theory of diagnosis for incomplete
causal models. In Proc. IJCAI, pages 13111317, Detroit, August 1989. Morgan
Kaufmann.

[CGD12] D. Crestani and K. Godary-Dejean. Fault tolerance in control architectures for
mobile robots: Fantasy or reality? In 7th National Conference on Control Archi-
tectures of Robots, (CAR2012) Nancy, France, 2012.

[CM03] J. Carlson and R. R. Murphy. Reliability analysis of mobile robot. In In Pro-
ceedings of the 2003 IEEE International Conference on Robotics and Automation,
(ICRA-2003), Taipei, Taiwan, September 14-19, 2003.

[CP99] J. Chen and R. J. Patton. Robust model-based fault diagnosis for dynamic systems.
In Kluwer Academic Publisher, 1999.

146

BIBLIOGRAPHY BIBLIOGRAPHY

[CPR00] L. Console, C. Picardi, and M. Ribaudo. Diagnosis and diagnosability analysis
using pepa. In 14th European Conference on Artificial Intelligence (ECAI-2000),
pages13135, Berlin,Allemagne, 2000.

[CPVG05] R. Ceballos, S. Pozo, C. D. Valle, and R. M. Gasca. An integration of FDI and DX
techniques for determining the minimal diagnosis in an automatic way. In MICAI
2005, LNAI 3789, pp. 10821092, 2005.

[CS01] G.M. Coghill and Q. Shen. Towards the specification of models for diagnosis of
dynamic systems. In Artificial Intelligence in Communications, 14, (2), 2001.

[CTng] L. Console and P. Torasso. Integrating models of correct behavior into abduc-
tive diagnosis. In European Conference on Artificial Intelligence, pages 160166,
Detroit, August, 1990. Pitman Publishing.

[Dav94] Neil James Davies. The perfomance and scalability of parallel systems. In Ph.D
thesis, Faculty of Engineering, University of Bristol, December, 1994.

[DBS04] R. Dillmann, R. Becher, and P. Steinhaus. ARMAR II - a learning and cooper-
ative multimodal humanoid robot system. In International Journal of Humanoid
Robotics, vol. 1(1), pp. 143155, Springer-Verlag Berlin, Heidelberg, 2004.

[DGA94] P. Dario, E. Guglielmelli, and B. Allotta. Robotics in medicine. In Intelligent
Robots and Systems ’94. ’Advanced Robotic Systems and the Real World’, (IROS-
94)., September 12-16, 1994.

[DH88a] R. Davis and W. Hamscher. Model-based reasoning: Troubleshooting. In H.E.
Shrobe (Ed.), Exploring Artificial Intelligence, Chapter 8, pp. 297346, Morgan
Kaufmann, San Mateo, CA, 1988.

[DH88b] R. Davis and W. C. Hamscher. Model-based reasoing: Troubleshooting. In AI
Memos (1959 - 2004), July, 1988.

[Die07] A. Diekmann. Empirische Sozialforschung - Grundlagen, Methoden, Anwendun-
gen. Rowohlt, 2007.

[dK76] J. de Kleer. Local methods for localizing faults in electronic circuits. In Mas-
sachusetts Institute of Technology Artificial Intelligence Laboratory, AIM-394,
November, 1976.

[dKW87] J. de Kleer and B. C. Williams. Diagnosing multiple faults. In Artificial Intelli-
gence, 32(1):97130, 1987.

147

BIBLIOGRAPHY BIBLIOGRAPHY

[Dru12] K. Drum. Chart of the day: Our robot overlords will take over soon. In Mother-
Jones Blog, April 17, 2012.

[ELP02] A. R. Eisenman, C. C. Liebe, and R. Perez. Sun sensing on the mars exploration
rovers. In IEEE Aerospace Conference Proceedings, (Vol: 5), 2002.

[EM] V. J. Easton and J. H. McColl. Statistics Glossary version 1.1.
http://www.stats.gla.ac.uk/steps/glossary/.

[FGL87] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics-control, sensing, vision and
intelligence. In McGraw-Hill Book Company, 1987.

[FHN72] R. E. Fikes, P. E. Hart, and N. J. Niisson. Learning and executing generalized
robot plans. In Artificial Intelligence, 3:251-288, 1972.

[FL03] Maria Fox and Derek Long. Pddl2.1: an extension to pddl for expressing temporal
planning domains. In Planning Domains. University of Durham, UK, 2003.

[FN71a] R. E. Fikes and N. J. NHsson. Strips: A new approach to the application of
theorem proving to problem solving. In Artificial Intelligence ,2:189-208, 1971.

[FN71b] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of the-
orem proving to problem solving. In Artificial Intelligence, 2, (1971) 189208,
1971.

[FSW99] G. Friedrich, M. Stumptner, and F. Wotawa. Model-based diagnosis of hardware
designs. In Artificial Intelligence 111 (1999) 339, 1999.

[Fuj00] M. Fujita. Digital creatures for future entertainment robotics. In IEEE Interna-
tional Conference on Robotics and Automation, (ICRA ’00), April 24-28, 2000.

[Fuj11] M. Fujita. Autonomous robot dancing synchronized to musical rhythmic stimuli.
In 6th Iberian Conference on Information Systems and Technologies (CISTI), June
15-18, 2011.

[Gen84] M. R. Genesereth. The use of design descriptions in automated diagnosis. In
Artificial Intelligence Volume 24, Issues 13, Pages 411436, December, 1984.

[GMC04] S. Gentil, J. Montmain, and C. Combastel. Combining FDI and AI approaches
within causal-model-based diagnosis. In IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, (Volume:34 , Issue: 5), Oct, 2004.

148

BIBLIOGRAPHY BIBLIOGRAPHY

[GNT04] M. Ghallab, D. Nau, and P. Traverso. Automated Planning Theory and Practice.
In Morgen Kauffman Publishers, Elsevier, 2004.

[GWHH10a] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann. Learning a probabilis-
tic self-awareness model for robotic systems. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010.

[GWHH10b] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann. A method for learning
a fault detection model from component communication data in robotic systems.
In Seventh IARP Workshop on Technical Challenges for Dependable Robots in
Human Environments, Toulouse, France, 2010.

[HABJ08] D. A. Harrison, R. Ambrose, B. Bluethmann, and L. Junkin. Next generation rover
for lunar exploration. In IEEE Aerospace Conference, Big Sky, MT, March 1-8,
2008.

[Hil90] Mark D. Hill. What is scalability? In ACM SIGARCH Computer Architecture
News, Volume 18 Issue 4, pages 18–21, December, 1990.

[HKEW10] M. Heerink, B. Kröse, V. Evers, and B. Wielinga. Assessing Acceptance of As-
sistive Social Agent Technology by Older Adults: the Almere Model. In Interna-
tional Journal of Social Robotics http://dx.doi.org/10.1007/s12369-010-0068-5,
2010.

[HKSW07] M. Hofbaur, J. Köb, G. Steinbauer, and F. Wotawa. Improving robustness of mo-
bile robots using model-based reasoning. In Journal of Intelligent and Robotic
Systems, 48(1):3754, 2007.

[IB97] R. Isermann and P. Ballé. Trends in the application of model-based fault detection
and diagnosis of technical processes. In Control Engineering Practice Volume 5,
Issue 5, page Pages 709719, May 1997.

[IGI11] G. Infantes, M. Ghallab, and F. Ingrand. Learning the behavior model of a robot. In
Journal Autonomous Robots archive Volume 30 Issue 2, Pages 157-177, February,
2011.

[Ise97] R. Isermann. Supervision, fault-detection and fault-diagnosis methods an intro-
duction. In Control Engineering Practice Volume 5, Issue 5, page Pages 639652,
May 1997.

149

BIBLIOGRAPHY BIBLIOGRAPHY

[ISH+03] J. F. Bell III, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson,
D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes,
M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Mor-
ris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein,
R. J. Sullivan, W. T. Sullivan, and M. Wadsworth. Mars exploration rover athena
panoramic camera (pancam) investigation. In JOURNAL OF GEOPHYSICAL RE-
SEARCH, VOL. 108, NO. E12, 8063, doi:10.1029/2003JE002070, 2003.

[Kal12] M. Kalech. Diagnosis of coordination failures: a matrix-based approach. In Au-
tonomous Agents and Multi-Agent Systems, Volume 24, Issue 1, pp 69-103, Jan-
uary, 2012.

[KBC+98] Craig Knoblock, Anthony Barrett, Dave Christianson, Marc Friedman, Chung
Kwok, Keith Golden, Scott Penberthy, David E Smith, Ying Sun, and Daniel
Weld. PDDL- the planning domain definition language. AIPS-98 Competition
Committee, 78(4):1–27, 1998.

[KKR13] Eliahu Khalastchi, Meir Kalech, and Lior Rokach. Sensor fault detection and
diagnosis for autonomous systems. In The 12th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS2013), 2013.

[KMvSK11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexible and scalable
slam system with full 3d motion estimation. In Proc. IEEE International Sympo-
sium on Safety, Security and Rescue Robotics (SSRR), 2011.

[KSW08] Alexander Kleiner, Gerald Steinbauer, and Franz Wotawa. Towards Automated
Online Diagnosis of Robot Navigation Software. In First International Confer-
ence on Simulation, Modeling, and Programming for Autonomous Robots (SIM-
PAR 2008), volume 5325 of Lecture Notes in Computer Science, pages 159–170.
Springer, 2008.

[KSW09] Alexander Kleiner, Gerald Steinbauer, and Franz Wotawa. Using qualitative and
model-based reasoning for sensor validation of autonomous robots. In Twentieth
International Workshop on Principles of Diagnosis (DX 2009), Stockholm, Swe-
den, 2009.

[LC05] H. Liu and G. M. Coghill. A model-based approach to robot fault diagnosis. In
Knowledge-Based Systems journal, Vol, 18, pp: 225233, 2005.

[LCI+04] B. Lussier, R. Chatila, F. Ingrand, M. O. Killijian, and D. Powell. On fault tol-
erance and robustness in autonomous systems. In In Proceedings of the third

150

BIBLIOGRAPHY BIBLIOGRAPHY

IARP/IEEE-RAS/EURON Joint Workshop on Technical Challenge for Dependable
Robots in Human Environments, Manchester, GB, September 7-9, 2004.

[LK08] A. LIGEZA and J. M. KOŚCIELNY. A new approach to multiple fault diagnosis:
A combination of diagnostic matrices, graphs, algebraic and rule based models.
the case of two-layer models. In international Journal of Mathematics and Com-
puter Science, Vol. 18, No. 4, 465476, 2008.

[LLC+05] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F. Ingrand, M. O. Killijian, and
D. Powell. Fault tolerance in autonomous systems: How and how much? In
IN PROCEEDINGS OF THE 4TH IARP/IEEE-RAS/EURON JOINT WORKSHOP
ON TECHNICAL CHALLENGE FOR DEPENDABLE ROBOTS IN HUMAN EN-
VIRONMENTS, pages 16–18, 2005.

[LMS+12] P. Lepej, J. Maurer, G. Steinbauer, S. Uran, and S. Zaman. An integrated diagnosis
and repair architecture for ROS-Based Robot Systems. In Twenty Third Interna-
tional Workshop on Principles of Diagnosis (DX 2012), Great Malvern, UK, 2012.

[MAVL06] A. Monteriú, P. Asthan, K. Valavanis, and S. Longhi. Experimental validation of
a real-time model-based sensor fault detection and isolation system for unmanned
ground vehicles. In Proc. of 14th Mediterranean Conference on Control Automa-
tion, Ancona, Italy, June, 2006.

[MAVL07] A. Monteriú, P. Asthan, K. Valavanis, and S. Longhi. Model-based sensor fault
detection and isolation system for unmanned ground vehicles: Experimental val-
idation (part ii). In IEEE International Conference on Robotics and Automation,
Roma, Italy, April 10-14, 2007.

[MCK+89] S. Minton, J. G. Carbonell, C. A. Knoblock, D. R. Kuokka, O. Etzioni, and Y. Gil.
Explanation-based learning: A problem-solving perspective. In Journal of Artifi-
cial Intelligence 40(13): 63118, 1989.

[MH04] M. RYAN M. HUTH. Logic in computer science. Modelling and reasoning about
systems. In Cambridge University Press The Edinburgh Building, Cambridge CB2
8RU, UK, 2004.

[Mit99] O. Mitsushige. Autonomous underwater vehicle operations beneath coastal sea
ice. In IEEE International Conference on Robotics & Automation, Detroit, Michi-
gan, May, 1999.

151

BIBLIOGRAPHY BIBLIOGRAPHY

[MNPW98a] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote agent: To boldly
go where no ai system has gone before. In Artificial Intelligence, 103(1-2):548,
1998.

[MNPW98b] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. Re-
mote Agent: to boldly go where no AI system has gone before. Artificial Intelli-
gence, 103(1-2):5 – 47, 1998.

[MR91] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In In Proceed-
ings of the Ninth National Conference on Artificial Intelligence, 634639. Menlo
Park, Calif.: American Association for Artificial Intelligence, 1991.

[MS96] A. Malik and P. Struss. Diagnosis of dynamic systems does not necessarily require
simulation. In Proceedings of the Seventh International Workshop on Principles
of Diagnosis, 1996.

[MSS95] A. Malik, P. Struss, and M. Sachenbacher. Qualitative modeling is the key a
successful feasibility study in automated generation of diagnosis guidelines and
failuer mode and effects analysis for mechatronic car subsystems. In Proceedings
of the Sixth International Workshop on Principles of Diagnosis, 1995.

[MTT06] Roberto Micalizio, Pietro Torasso, and Gianluca Torta. On-line monitoring and
diagnosis of a team of service robots: A model-based approach. AI Communica-
tions, 19(4):313–340, December 2006.

[Mur00] R. R. Murphy. Introduction to AI robotics. In The MIT Press Cambridge, Mas-
sachusetts London, England, 2000.

[Ogo09] O. Ogorodnikova. How safe the human-robot coexistence is? theoretical presen-
tation. Acta Polytechnica Hungarica, Vol 6, No 4, 2009.

[Pal01] G. K. Palshikar. Consistency-based diagnosis. In Dr. Dobbs Journal, vol. 26, no.
3, pp. 50-56, March 2001.

[Ped89] E. P. D. Pednault. ADL: exploring the middle ground between strips and the sit-
uation calculus. In Proceedings of the first international conference on Principles
of knowledge representation and reasoning, Pages 324-332, Ancona, Italy, 1989.

[Pel08] Damien Pellier. Pddl4j, 2008. http://sourceforge.net/projects/pddl4j.

[PG04] B. Pulido and C. A. Gonzalez. Possible conflicts: a compilation technique for
consistency-based diagnosis. In Systems, Man, and Cybernetics, Part B: Cyber-
netics, IEEE Transactions on (Volume:34 , Issue: 5), Oct, 2004.

152

BIBLIOGRAPHY BIBLIOGRAPHY

[PK06] L. E. Parker and B. Kannan. Adaptive causal models for fault diagnosis and re-
covery in multi-robot teams. In Proceedings of IEEE International Conference on
Intelligent Robots and Systems (IROS-06), 2006.

[PKSF12] A. J. Plueddemann, A. L. Kukulya, R. Stokey, and Lee Freitag. Autonomous un-
derwater vehicle operations beneath coastal sea ice. In IEEE/ASME Transactions
on Mechatronics, , Volume 17 (1), Jan 9, 2012.

[Poo88] D. Poole. Representing knowledge for logic-based diagnosis. In Proc. Interna-
tional Conference on Fifth Generation Computing Systems, 1282-1290, Tokyo,
1988.

[Poo89] D. Poole. Normality and faults in logic-based diagnosis. In Proc. IJCAI, pages
13041310, Detroit, August, 1989.

[Poo94] D. Poole. Representing diagnosis knowledge. Annals Math. and Artificial Intelli-
gence vol. 11, nos. 14, pp. 3350, 1994.

[Pop12] World Robot Population. Early Warning: Rational Analysis of Global Civilization
Risk. http://earlywarn.blogspot.co.at/2012/04/global-robot-population.html, April
17, 2012.

[PW03] Bernhard Peischl and Franz Wotawa. Model-based Diagnosis Or Reasoning From
First Principles. IEEE Intelligent Systems, 18(3):32–37, 2003.

[QCG+09] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source robot operating system. In ICRA Workshop on
Open Source Software, (ICRA-2009), 2009.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57 – 95, 1987.

[REW06] P. Robertson, R. Effinger, and B. Williams. Autonomous robust execution of com-
plex robotic missions. In Proceedings of the 9th International Conference on
Intelligent Autonomous Systems, University of Tokyo, Tokyo, Japan, March 7-9,
2006.

[RW05] P. Robertson and B. Williams. A model-based system supporting automatic self-
regeneration of critical software. In IFIP/IEEE International Workshop on Self-
Managed Systems and Services, 2005.

153

BIBLIOGRAPHY BIBLIOGRAPHY

[RWH11] S. Richter, M. Westphal, and M. Helmert. Lama 2008 and 2011. In In Seventh
International Planning Competition (IPC 2011), Deterministic Part, pp. 50-54,
2011.

[Sim99] S. Simani. Model-based fault diagnosis in dynamic systems using identification
techniques. In Ph.D Thesis, University of Modena and Reggio Emilia, 1999.

[SMV07] G. Sandini, G. Metta, and D. Vernon. The iCub Cognitive Humanoid Robot:
An open-system research platform for enactive cognition. In Book: 50 years of
artificial intelligence, Pages 358-369, ISBN:3-540-77295-2 978-3-540-77295-8,
Springer-Verlag Berlin, Heidelberg, 2007.

[SMW06] Gerald Steinbauer, Martin Mörth, and Franz Wotawa. Real-time diagnosis and
repair of faults of robot control software. In International RoboCup Symposium,
volume 4020 of Lecture Notes in Computer Science, Osaka, Japan, 2006. Springer.

[SNS04] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to autonomous
mobile robots. In The MIT Press Cambridge, Massachusetts London, England,
2004.

[SRA+11] Amir H. Soltanzadeh, Amir H. Rajabi, Arash Alizadeh, Golnaz Eftekhari, and
Mehdi Soltanzadeh. RoboCupRescue 2011 - Robot League Team AriAnA (Iran).
In RoboCup 2011 - RoboCup Rescue Robot - Team Description Papers, 2011.

[Ste06] G. Steinbauer. Intelligent and robust control of autonomous mobile robots. In
Ph.D Thesis, Institute for Software Technology, TU Graz, Oct, 2006.

[SW05] G. Steinbauer and F. Wotawa. Detecting and locating faults in the control software
of autonomous mobile robots. In 16th International Workshop on Principles of
Diagnosis, pages 13-18, Monterey, USA, 2005.

[Tak07] T. Takahashi. Robot designer or robot creator. In 16th IEEE International Con-
ference on Robot & Human Interactive Communication, August 26-29, 2007.

[TS03] R. H. Taylor and D. Stoianovici. Medical robotics in computer-integrated surgery.
In EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO. 5,
OCTOBER 14, 2003.

[UAW04] UAW. Uaw health and safety department: Review of robot injuries - one of the best
kept secrets. Proceed. National robot conference, Ypsilanti, Michigan, October.
2004.

154

BIBLIOGRAPHY BIBLIOGRAPHY

[VJ99] C. Vijay and H. John. Optimization methods for logical inference. In John Wiley
and Sons Inc ISBN 9780471570356, 1999.

[VRK03] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri. A review of process
fault detection and diagnosis part ii: Qualitative models and search strategies. In
Computers and Chemical Engineering, Vol 27, issue 3, 313-326, March 15, 2003.

[VRKY03] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin. A review of
process fault detection and diagnosis part iii: Process history based methods. In
Computers and Chemical Engineering, Vol 27, issue 3, 327-346, March 15, 2003.

[VRYK03] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri. A review of
process fault detection and diagnosis part i: Quantitative model-based methods. In
Computers and Chemical Engineering, Vol 27, issue 3, 293-311, March 15, 2003.

[VVGG+04] V. Verma, I. Verma, Geoff G. Gordon, R. Simmons, and S. Thrun. Particle Filters
for Rover Fault Diagnosis. In IEEE Robotics & Automation Magazine special
issue on Human Centered Robotics and Dependability, 2004.

[Web08] Jörg Weber. Model-based runtime diagnosis of the control software of mobile
autonomous robots. In Ph.D thesis at IST Institute for Software Technology Graz
University of Technology, Graz, Austria, Jan, 2008.

[Wel99] D. S. Weld. Recent Advances in AI Planning. In AI Magazine, Volume 20, Number
2,, 1999.

[WHC+06] J. Wright, F. Hartman, B. Cooper, S. Maxwell, J. Yen, and J. Morrison. Driving
on Mars with RSVP. In IEEE Robotics and Automation Magazine, (Volume:13 ,
Issue: 2), June, 2006.

[ZKH+01] F. Zhao, X. Koutsoukos, H.Haussecker, J. Reich, and P. Cheung. Distributed mon-
itoring of hybrid systems: A model-directed approach. International Joint Conf
on Artificial Intelligence (IJCAI01), page Seattle, August 2001.

[ZL13] S. Zaman and P. Lepej. MBD counterpart Diagnostic Board: Its Hardware, Pro-
tocol, Software, Simulator, and Application. In 22nd International Workshop
on Robotics in Alpe-Adria-Danube Region (RAAD 2013), Portoroz, Slovenia,
September 11-13, 2013.

[ZL14] S. Zaman and P. Lepej. ROS-Based Diagnostic Board for Detecting and Repairing
Hardware Faults in Autonomous Mobile Robots. In Proceedings of 1st Interna-

155

BIBLIOGRAPHY BIBLIOGRAPHY

tional conference on Robotics (iCREATE 2014), IEEE, Islamabad, Pakistan, April,
2014.

[ZS13a] S. Zaman and G. Steinbauer. Automatic Modeling and Observers Generation for
Model-Based Diagnosis System for ROS-Based Robotic Systems. In Austrian
Robotics Workshop (ARW 2013), Wien, Austria, May 23-24, 2013.

[ZS13b] S. Zaman and G. Steinbauer. Automated Generation of Diagnosis Models for
ROS-based Robot Systems. In 24-th International Workshop on Principles of
Diagnosis (DX-2013), Jerusalem, Israel, October 1-to-4, 2013.

[ZSM+13] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran. An Integrated Model-
Based Diagnosis and Repair Architecture for ROS-Based Robot Systems. In IEEE
International Conference on Robotics and Automation (ICRA-2013), Karlsruhe,
Germany, 2013.

[ZSS11] S. Zaman, W. Slany, and G. Steinbauer. ROS-based Mapping, Localization
and Automatic Navigation using Pioneer 3-DX Robot and their relevant Issues.
In Saudi International Electronics, Communications and Photonics Conference),
IEEE, Riyadh, Saudi-Arabia, 2011.

156

Index

AB predicate, 47, 97
abstract, v
abstract deutsch, vii
acknowledgement, ix
ADL, 22
alternative hypothesis, 55
architectural overview, 57
autonomous robots, 4

binary qualitative observer, 82
BiQObs, 82
BNF, 43
board architecture, 110
board channel, 110
board command suit, 112
board commands, 112

ACK, 112
BRD, 112
INT, 112
MSR, 112
RQS, 112
SWT, 112

board features, 111
board hardware, 110
board protocol, 112

CNF, 39
components, 46
computation graph, 122
conclusion, 141
conflict set, 49
conjunctive normal form, 39

connectives, 37
consistency-based diagnosis, 19
constant, 42
CORBA, 20, 25

declaration, i
declarative sentence, 36
dedication, iii
deduction, 38
dependability, 3, 9
dependability attributes, 9
dependability features, 3
diagnosis, 17, 48, 64, 91
diagnosis and repair system, 61
diagnosis board, 84, 109
diagnosis computation, 49, 99
diagnosis engine, 65, 101
diagnosis model, 64, 92
diagnosis model server, 63, 97
diagnosis module, 64
diagnostic board, 68, 110
diagnostic observer, 77
diagnostics, 77
DMS, 63
DObs, 77
domain, 44
domain description, 105

evaluations, 131
device-shut down scenario, 134
model evaluation, 135
model significance, 139

157

INDEX INDEX

model validation, 137
system-power up scenario, 133

experiments, 131

fault acceptance, 10
fault avoidance, 10
fault forecasting, 3, 10
fault prevention, 3, 10
fault removal, 3, 10
fault tolerance, 3, 10
FDI, 20
first-order logic, 40
FOL literals, 64
future work, 142

general observer, 74
GObs, 74
Graphplan, 22
ground instance, 45
ground level, 45
ground level predicates, 44

hardware board, 68, 84, 109
hardware diagnosis, 77
hardware observer, 84
hardware-based diagnosis, 68
hitting set, 49
HObs, 84
horn clause, 39
horn formula, 40
humanoid robots, 6

inconsistency, 48
integrating repair actions, 108
interpretation, 44
interval observer, 87
introduction, 1
IObs, 87

knowledge-based system, 18

LAMA, 22
learning, 121
linear regression, 79
logical connectives, 37
logical deduction, 38

message, 33
model, 44, 45
model generation, 121
model learning, 26, 121
Model-Based Diagnosis, 46
modeling, 25
monitoring, 71
multi training sets, 128

NAB predicate, 97
NObs, 76
node, 33
node observer, 76
null hypothesis, 55

object, 43
observation, 47
observation collection, 99
observations, 64
observer, 73
observers, 73

BiQObs, 73
DObs, 73
GObs, 73
HObs, 73
IObs, 73
NObs, 73
PObs, 73
QObs, 73

observers instantiation, 124
observers model, 95
occurrence sequence, 72

158

INDEX INDEX

PDDL, 22, 66, 105
pddl, 53
planner-based repair, 66
planning, 22, 50
planning domain, 52
planning operator, 51
planning problem, 50, 52
PObs, 85
predicate, 41
predicate formula, 43
predicate logic, 40
predicate logic formula, 43
predicate sentence, 43
prerequisites, 29
primes, 38
problem description, 105
problem statement, 11
property observer, 85
proposition, 36
propositional language, 37
publisher, 33

QObs, 79
qualitative observer, 79
qualitative trend, 79
quantifier, 42

RAM, 59
RBM, 63, 93
recording system, 122
related research, 17
repair, 23, 103
repair action server, 107
repair actions, 67, 107
repair engine, 66, 103
repair execution, 104
repair module, 66
repair plan, 66, 105

results, 131
robot, 1
robot architectural model, 59
robot behavioral model, 63, 93
robot control paradigm, 8
robot control system, 8
robot operating system, 31
robot sensors, 7
robot system, 58
robotics, 1
robotics system, 58
robotics system architecture, 58
ROS, 13, 31
ros message, 33
ros node, 33
ros publisher, 33
ros subscriber, 33
ros topic, 33

search and rescue robot, 7, 30
semantic entailment, 39
sequent, 38
service, 9, 35
significance, 55
significance level, 56
significance test, 55, 139
significance z-test, 56
significant test, 55
sliding window, 72
state-transition system, 50
STRIPS, 22
subscriber, 33
syntax for predicate logic, 44
system, 47
system architecture, 57
system assumptions, 69
system description, 47
system requirements, 69

159

INDEX INDEX

tautology, 39
TEDUSAR, 7, 30
term, 43
threats to dependability, 10
topic, 33
topic data, 72
topic occurrence, 72
topic publisher, 33
topic subscriber, 33
topic-node relation, 122

well-formed formula, 38
window, 72

z-test, 56, 139

160

	Introduction
	Overview and Motivation
	Autonomous Robots
	Robot Control Paradigm
	Robotic System Dependability

	Problem Statement
	Contribution
	Outline of the Thesis

	Related Research
	Diagnosis
	Planning
	Repair
	Modeling

	Prerequisites
	Overview
	Running Example

	Robot Operating System (ROS)
	ROS framework architecture
	ROS Master
	ROS basic building units
	Action Server

	ROS framework distributions

	Logic Preliminaries
	Propositional Logic
	Predicate Logic
	Basics of Predicate Logic
	Syntax for Predicate Logic
	Interpretation

	Model-Based Diagnosis
	Computing Diagnosis ()

	Planning
	Plannning problem
	Classical representation
	States
	Planning operator

	PDDL
	PDDL-Domain definition:
	PDDL-Problem definition:

	Significance Test
	Z-Test

	System Architecture
	Introduction
	Robotics System
	Robot Architecture Model (RAM)

	Diagnosis and Repair
	Communication
	Observers
	Diagnosis Model Server
	Diagnosis Module
	Repair Module
	Diagnostic Hardware Board

	Limitations

	Monitoring
	Overview
	Observers
	General Observer (GObs)
	Node Observer (NObs)
	Diagnostic Observer (DObs)
	Qualitative Observer (QObs)
	Binary Qualitative Observer (BiQObs)
	Hardware_board Observer (HObs)
	Property Observer (PObs)
	Interval Observer (IObs)
	Difference between IObs and BiQObs

	Diagnosis
	Introduction
	Diagnosis Model
	Robot Behavioral Model (RBM)
	Observers Model (OM)

	Diagnosis Model Server
	Diagnosis Computation
	Observation Collection
	Diagnosis Engine

	Repair
	Repair Engine
	Observation Collection
	Repair Execution
	Generating the repair plan
	Invoking repair action servers
	Integrating additional repair action servers

	Hardware Integration
	Overview
	Diagnostic Board
	Architecture
	Features
	Protocol
	Controllers
	Server Controller
	Client Controller

	Hardware Observation
	Hardware Diagnosis
	Hardware Repair

	Model Learning
	Model Generation
	Recording the Running System
	Instantiating the Observers
	Generating the Diagnosis Model

	Multi Training Sets

	Experimental Results
	Diagnosis and Repair
	Experimental Setups
	System-Power-up scenario
	Device-Shut-down scenario

	Model Evaluation
	Experimental Setup
	Model Validation
	Significant Model

	Conclusion and Future Work

