
Birgit Hofer

From Fault Localization of Programs written
in 3rd Level Languages to Spreadsheets

Doctoral Thesis

Graz University of Technology

Institute for Softwaretechnology

Supervisor: Prof. Dr. Franz Wotawa

Graz, July 2013

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Software debugging is a process that is rarely automated. Most programmers
debug their programs manually or semi-automatically by using tools for
setting break points. Therefore, software debugging is a very time-consuming
and consequently expensive task. There exist automated debugging ap-
proaches, but they are rarely used in practice. The reasons for not using
such approaches are their low maturity and lack of debugging quality. There
is a strong need for improving existing debugging techniques so that they
are accepted by programmers.

In this thesis, we address the first step of the debugging process, i.e. fault
localization. We introduce two approaches to improve fault localization of
programs written in imperative or object-oriented languages (i.e. 3rd genera-
tion languages): Sendys and Conbas. Conbas is an approach that aims to
reduce the size of slices by means of constraint solving. Conbas can be used
as a filtering step in other debugging approaches. We empirically show that
Conbas reduces the number of potential faulty statements by 28 % for the
single fault and 50 % for the double fault case compared to dynamic slicing.
Due to its computational complexity, Conbas is intended for debugging
small programs only. In contrast, Sendys is able to handle large programs.
Sendys is an approach that combines spectrum-based fault localization (Sfl)
with slicing-hitting-set computation (Shsc), a lightweight model-based soft-
ware debugging (Mbsd) approach. This combination eliminates some of the
disadvantages that exist when using the previously mentioned approaches
separately. In an empirical evaluation, we show that Sendys reduces the
number of statements a programmer needs to check manually. In particular,
we gain reductions of about 50 % for Shsc and 25 % for Sfl.

This thesis not only focuses on the fault localization of programs written
in 3rd generation languages but also on debugging support for end-user
programs, in particular spreadsheets. For this purpose, debugging approaches
for 3rd generation languages, e.g. Mbsd, Sfl and Sendys, are adapted to
the spreadsheet domain. The empirical evaluation shows that Mbsd, Sfl

and Sendys are promising techniques for debugging spreadsheets. These
techniques produce short lists of possibly faulty cells which leads to shorter
debugging times.

v

Kurzfassung

Die Fehlerbehebung in Software ist ein Prozess, der kaum automatisiert
ist. Die Mehrheit der Programmierer beseitigt Fehler manuell oder halb-
automatisiert mit Hilfe von ‘Break points’-Werkzeugen. Deswegen ist Debug-
ging eine zeitintensive und folglich auch kostenintensive Aufgabe. Es gibt
viele automatisierte Debugging-Techniken. Diese Techniken werden in der
Praxis kaum verwendet, da sie meist unausgereift sind und die Debugging-
Qualität nicht ausreichend ist. Deswegen besteht Bedarf die existierenden
Debugging-Techniken zu verbessern.

Diese Doktorarbeit beschäftigt sich mit dem ersten Schritt im Debugging-
Prozess, der Fehlerlokalisierung. Wir stellen zwei Ansätze vor, um die Fehler-
lokalisierung von Programmen zu verbessern, die in imperativen oder objekt-
orientierten Sprachen (d.h. Sprachen der dritten Generation) geschrieben
wurden: Sendys und Conbas. Conbas reduziert Slices mit Hilfe von Con-
straint Solving und kann als Vorverarbeitungsschritt verwendet werden, um
den Suchraum zu minimieren. Eine empirische Studie zeigt, dass Conbas

die Anzahl der zu betrachtenden Programmzeilen im Vergleich zu dynamis-
chen Slices um 28 % für Einfachfehler und 50 % für Zweifachfehler reduziert.
Aufgrund seiner rechnerischen Komplexität kann Conbas nur auf kleine
Programme angewendet werden. Im Gegensatz dazu kann Sendys auch auf
größere Programme angewendet werden. Sendys verbindet die Spektrum-
basierte Fehlerlokalisierung (Sfl) mit der Slicing-Hitting-Set Methode (Shsc),
einer einfachen model-basierten Software Debugging Technik (Mbsd). Diese
Verbindung eliminiert einige der Nachteile von Sfl und Shsc. Eine empirische
Studie zeigt, dass Sendys die Anzahl der zu betrachtenden Quellcode-Zeilen
um 50 % verglichen mit Shsc und um 25 % verglichen mit Sfl reduziert.

Diese Doktorarbeit beschäftigt sich nicht nur mit der Fehlerlokalisierung in
Programmen in Sprachen der dritten Generation, sondern auch mit soge-
nannten End-Nutzer Programmen, im Besonderen mit Tabellenkalkulations-
programmen. Hierfür werden die Debugging-Ansätze Mbsd, Sfl and Sendys

an die Tabellenkalkulationsprogram-Domäne angepasst. Eine empirische
Studie zeigt, dass Mbsd, Sfl und Sendys vielversprechende Ansätze für das
Debugging von Tabellenkalkulationsprogrammen sind. Die Ansätze liefern
eine kurze Aufstellung von möglicherweise fehlerhaften Zellen. Dadurch
wird die Zeit, die für das Debugging benötigt wird, reduziert.

vii

Acknowledgements

I am particularly thankful for the advice and support from my supervisor
Prof. Franz Wotawa. He showed me how to conduct research and let me
develop and follow my own ideas. In addition, I want to thank all of my
co-authors, in particular Prof. Rui Abreu, Elisabeth Getzner, and Simon
Außerlechner.

During my research and teaching at Graz University of Technology, I had
wonderful teaching assistants who helped me to manage classes. Their efforts
allowed me to conduct my research alongside teaching. Therefore, I want to
thank Elisabeth Getzner, Patrick Koch, Philip Kohler, Phillip Taferner, Roxane
Roitz, Georg Hinteregger and Sandra Fruhmann. In addition, I thank all
colleagues at the Institute for Software Technology, especially Petra Pichler.

Last but not least, I want to thank my parents, Edmund and Martha Hofer,
and my sister Anita Teschl with family for their support. I am very thankful
for the support and understanding of my fiancé Matthias Straka while I was
writing my thesis. In addition, he helped me in proof-reading the thesis.

ix

Contents

I. Introduction 1

1. Introduction 3
1.1. Concepts and definitions . 5
1.2. Contributions . 6
1.3. Outline . 7

II. Debugging of programs written in 3rd generation languages 9

2. Software debugging techniques 11
2.1. Slicing . 12
2.2. Model-based software debugging 14
2.3. Spectrum-based fault localization 16
2.4. Delta Debugging . 17
2.5. Genetic approaches . 17
2.6. Hybrid techniques . 17

3. Preliminaries 19
3.1. Basic definitions . 19

3.1.1. The Language L . 19
3.1.2. The Debugging Problem 21
3.1.3. Program Slicing . 24

3.2. Model-based software debugging 28
3.2.1. Value-based models . 29
3.2.2. Dependency-based models 32
3.2.3. Fault Localization Based on Dynamic Slicing and Hitting-

Set Computation . 33
3.3. Spectrum-based fault localization 37

4. Spectrum-Enhanced Dynamic Slicing 41
4.1. Introduction . 41
4.2. Related Research . 42
4.3. The SENDYS Algorithm . 43

xi

Contents

4.4. Example of Application . 45
4.4.1. The bank account example 46
4.4.2. The modified Bank Account example 49

4.5. Empirical evaluation . 51
4.5.1. SENDYS vs. basic approaches 53
4.5.2. Comparison of different similarity coefficients 58
4.5.3. Comparison with other approaches 58

4.6. Conclusion . 60

5. Constraint-Based Slicing 65
5.1. Introduction . 65
5.2. Related Research . 68
5.3. The CONBAS algorithm . 69
5.4. Example of application . 72
5.5. Empirical evaluation . 75
5.6. Conclusion . 82

III. Debugging of spreadsheets 85

6. Spreadsheet Engineering Techniques 87
6.1. Debugging . 87
6.2. Testing . 88
6.3. Classification of error causes 89
6.4. Spreadsheet engineering . 89

7. Preliminaries 91
7.1. Basic Definitions . 91

8. Spreadsheet Corpora 97
8.1. Introduction . 97
8.2. The modified EUSES spreadsheet corpus 97
8.3. Integer spreadsheet corpus . 99

9. Adaptation of debugging techniques 101
9.1. Introduction . 101
9.2. Related Work . 101
9.3. Necessary Adaptations . 102

9.3.1. Spectrum-based Fault Localization 102
9.3.2. Spectrum-Enhanced Dynamic Slicing 103

9.4. Example of usage . 103
9.5. Empirical Evaluation . 105
9.6. Conclusion . 108

xii

Contents

10.Constraint-based Debugging 109
10.1. Introduction . 109
10.2. Related Work . 110
10.3. Spreadsheets as Constraint Satisfaction Problem 110
10.4. Empirical Evaluation . 113
10.5. Conclusions and Future Work 116

11.SMT versus Constraint Solving 117
11.1. Introduction . 117
11.2. Debugging with Satisfiability Modulo Theories 118
11.3. Example of application . 122
11.4. Empirical Evaluation . 125
11.5. Conclusion . 131

12.Mutation Supported Spreadsheet Fault Diagnosis 133
12.1. Introduction . 133
12.2. Related Work . 134
12.3. Mutation creation . 134
12.4. Computing distinguishing test cases 136
12.5. Empirical Evaluation . 139
12.6. Threats to validity and future work 143
12.7. Conclusions . 145

IV. Future Work and Conclusion 147

13.Future Work and Conclusion 149

Appendix 153

A. List of publications 153
A.1. Published . 153
A.2. Unpublished work . 154

Bibliography 157

xiii

List of Figures

1.1. Overview of the thesis contribution 6

3.1. The syntax of the language L 20
3.2. The semantics of the language L 22
3.3. Example of an execution trace graph 26

4.1. The Sendys approach . 43
4.2. Pairwise comparison of Sendys, Shsc and Sfl 56
4.3. Comparison of Sendys, Shsc, and Sfl 57
4.4. Comparison of Sendys with different similarity coefficients . 59
4.5. Comparison of Deputo, Barinel, and Sendys 62

5.1. Execution trace for the Taste example 66
5.2. The Conbas approach . 70
5.3. Ssa converted execution trace for the Taste example 73
5.4. Constraint representation for the Taste example 74
5.5. Comparison of Conbas with summary slice (single faults) . . 77
5.6. Total and valid diagnoses in Conbas 78
5.7. Correlation of diagnoses and computation time in Conbas . . 78
5.8. Comparison of Conbas with summary slice (double faults) . 80
5.9. Reduction quality w.r.t. the number of faulty output variables 81

6.1. Classification of spreadsheet errors 89

9.1. Spreadsheet example ‘Workers’ 104
9.2. Comparison of Union, Intersection, Sfl, and Sendys 106
9.3. Pairwise comparison of Union, Intersection, Sfl, and Sendys 107

10.1. Reduction histogram for ConBug 116

11.1. Spreadsheet example ‘Salary’ 123
11.2. Runtime comparison of Minion, Choco and Z3 - Part 1 127
11.3. Runtime comparison of Minion, Choco and Z3 - Part 2 128
11.4. Runtime comparison of Minion, Choco and Z3 - Part 3 129

12.1. Amount of correction suggestions generated by MuSSCO . . 141
12.2. Amount of distinguishing test cases generated by MuSSCO . 142

xv

List of Figures

12.3. Comparison of two implementation variants for MuSSCO . . 144

13.1. Classification of the model-based approaches 149

xvi

List of Tables

3.1. Potential relevant variables . 26

4.1. The Bank Account Example - Shsc ranking 48
4.2. The Bank Account Example - Sfl ranking 49
4.3. The Bank Account Example - Sendys ranking 50
4.4. The modified Bank Account Example - Sfl ranking 50
4.5. The modified Bank Account Example - Shsc ranking 51
4.6. The modified Bank Account Example - Sendys ranking 51
4.7. Description of the programs debugged with Sendys 53
4.8. Comparison of Sendys with Shsc and Sfl 54
4.9. Summary Scoreexec of Sendys with Shsc and Sfl 55
4.10. Comparison of Sendys using different similarity coefficients . 58
4.11. Comparison of Sendys with Barinel and Deputo 61

5.1. Conbas results (single faults) 76
5.2. Conbas results (double faults) 80
5.3. Conbas results for the Iscas 85 benchmark 81

9.1. The spreadsheet ‘Workers’ - Sfl ranking 104
9.2. Comparison of Union, Intersection, Sfl, and Sendys 105

10.1. ConBug results - Part 1 . 114
10.2. ConBug results - Part 1 . 115

11.1. Runtime performance of Z3 (Integer vs. Real) 130
11.2. Z3 results for the modified EUSES spreadsheet corpus 131

xvii

List of Algorithms

3.1. RelevantSlice(ET, Π, x, n) . 28
3.2. Ssa(ET) . 30
3.3. Constraints(ET,t, IndexSsa) . 31
3.4. DependencyModel(Π) . 33
3.5. MinHittingSets(CO, n) . 34
3.6. AllDiagnoses(Π, T) . 35
3.7. HS-Slice(Π, ∆S) . 36
3.8. ObservationMatrix(Π, T) . 38

4.1. Sendys(Π, T) . 44

5.1. Conbas(Π, t) . 71

10.1. ConvertSpreadsheet(Π, t) . 111
10.2. ConvertExpression(e) . 112
10.3. ConBug(Π, t) . 113

11.1. MinimalCorrectionSets(ϕ) 119
11.2. MCSes-UnsatisfiableCores(ϕ) 121
11.3. ConvertSpreadsheetIntoSmtClauses(Π, t) 122

12.1. Mussco(Π, t) . 137
12.2. GetDistinguishingTestCase(Π, m1, m2) 139

xix

Listings

3.1. A program written in the language L 20
3.2. The execution trace of example from Listing. 3.1 25
3.3. The Ssa converted execution trace from Listing 3.2 31

4.1. The Bank Account Example - Line 18 contains a fault. The
correct statement would be if(money>0){. 46

4.2. The Bank Account Example - An extended test suite. 47

5.1. The Taste example. There is a bug in Line 3. 66

11.1. Minion representation of the running example 124
11.2. Choco representation of the running example 124
11.3. SMT representation of the running example 125

xxi

List of Acronyms

CONBAS Constraint-Based Slicing
CONBUG Constraint-Based Debugging
CSP Constraint Satisfaction Problem
IDE Integrated Development Environment
LOC Lines Of Code
MBD Model-Based Debugging
MBSD Model-Based Software Debugging
MUSSCO Mutation Supported Spreadsheet Correction
NCSS Non Commenting Source Statements
SENDYS Spectrum-Enhanced Dynamic Slicing
SFL Spectrum-Based Fault Localization
SHSC Slicing-Hitting-Set-Computation
SMT Satisfiability Modulo Theories
SSA Static Single Assignment
SUT System Under Test

xxiii

List of Symbols

AB(C) Boolean variable representing the health state of component C
B Boundary value (e.g. for the maximal size of leading diagnoses)
CELLS Set of cells
CON Set of constraints
CV(t) Conflicting variables for test case t
DDG Data dependence graph
∆ Diagnosis
∆S Set of minimal diagnoses
ET Execution trace
ETG Execution trace graph
`(c) Formula of the cell c
LD Leading diagnoses
M Number of test cases (|T|)
N Number of statements in a program (|Π|)
ν(c) Value of the cell c
L Programming/spreadsheet language
ω A concrete program state or variable environment
Π Program/spreadsheet
S Relevant slice
Σ Set of all program states
SD System description
t Test case
T Test suite
J·K Interpretation function

xxv

Part I.

Introduction

1

1. Introduction

Every year, the requirements on software increase. The trends in software
engineering are towards increasing functionality, increasing flexibility and
decreasing the time-to-market. However, these trends come with a price:
Because of the high market competitiveness and the pressure to be the first
on market, the testing and debugging stay behind. Many faults remain
undetected in the pre-release phase because of superficial testing. Undetected
faults can result in many facets: from simple unintended behavior over drastic
financial loses (e.g. the explosion of the Ariane 5 [Dow97] causing 370 million
dollars damage) to life-risking consequences (e.g. overdoses in radiation1

killing eight people).

In practice, there exist many automated software testing tools that allow to
expose a huge amount of errors in software. Unfortunately, programmer are
often not able to correct all the bugs reported by the testers. This is a conse-
quence of the fact that the next steps after error detection, i.e., fault localization
and correction, are rarely automated. Therefore, not all of the discovered
errors can be corrected in an acceptable amount of time. Often, programmers
can only correct the most critical bugs. As a consequence, debugging has
been identified as a bottleneck for improving reliability [AZG06].

Debugging has a long history. The first bug was reported by Grace Hopper
in 1947 and was a moth that was taped into a logbook [Bil89]. This log-
book entry lead to the name debugging. Traditionally, debugging was done
manually by adding print statements to the source code. Print statements
allow the programmer to check if certain statements are reached during
the execution and to determine the value of a variable at a certain point in
the program. Nowadays, debugging tools improve the manual debugging
approach: Breakpoints and step-by-step execution allow the observation of
program states. However, this step-by-step execution is very time consuming
because a programmer has to manually narrow down the search space by
introducing break points and comparing intermediate variable values of the
program with the expectations. Moreover, setting the right break points or
obtaining the right information from a program in order to speed up the
debugging process, is a hard task. Even worse, in many cases a programmer

1http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=2

3

http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=2

1. Introduction

does not fully understand a program and can hardly find such optimal deci-
sions. Consequently, there is a strong need for tools guiding the programmer
through the fault localization process. Such tools should point to source code
locations where the fault is most likely to be found.

On the academic side, automated debugging techniques and prototypes are
available which help to narrow down possible fault locations. However, these
approaches are hardly used by programmers. The main reason for the refusal
to use these techniques is that they are not mature. In addition, debugging
tools do not smoothly integrate in the available IDEs. Furthermore, these
debugging tools fail to identify unique root causes and still leave a lot of
work for the programmer. Moreover, the techniques applied in debugging
tools can also be computationally demanding, which prevents them from
being used for large-scaled programs and in an interactive manner.

The goal of this thesis is to improve the state of the art in fault localization
by minimizing the number of user interactions when searching for the fault
location. We are confident that only a combination of debugging techniques
can be used for real world problems. Therefore, this thesis aims at combining
existing debugging techniques in order to concentrate their advantages and
eliminate their disadvantages. In doing so, we pursue the goal of fault
localization by two different strategies: (1) We rank statements according
to a value stating the likelihood of being faulty. When assuming that a
user will start investigating the highest ranked statements first, the ranking
indicates the required user interactions. (2) We provide the programmer a set
of possible explanations. Only statements contained in this set can explain an
observed misbehavior. Statements that are missing in this set can be excluded
from the manual fault localization.

In addition to improving fault localization, this thesis aims to enlarge the field
of application for fault localization. A possible domain for this enlargement
are spreadsheets. Spreadsheets are by far the most successful example of end-
user programming. End-user programmers vastly outnumber professional
ones. Panko and Port [PP12] state that spreadsheets are used in more than
95 % of the U.S. companies for a variety of purposes, e.g. for financial report-
ing, forecasting, planning, data management and chart creation. Furthermore,
companies often use dozens or even hundreds of spreadsheet applications
which often tend to be large and complex comprising hundreds or even
thousands of formulas.

Considering that important decisions are often based on spreadsheets, it is
desirable that spreadsheets are free from errors. Unfortunately, numerous
studies have shown that existing spreadsheets contain redundancy and errors
at an alarmingly high rate [CKR01]. Panko published the results of field

4

1.1. Concepts and definitions

audits for spreadsheets on a website2: On average, 88 % of the spreadsheets
investigated between 1995 and 2007 contained at least one error. However,
when basing business decisions on spreadsheets, such errors can lead to a
significant financial loss or to other business risks as reported on the web site
of the European Spreadsheet Risk Interest Group3.

Most spreadsheets are created for single-use only. Consequently, maintainabil-
ity and scalability issues are not considered in these spreadsheets. However,
many of these single-use spreadsheets are still used after several years and
spread to other employees. Furthermore, spreadsheets lack support for ab-
straction, testing, encapsulation, and structured programming.

Therefore, debugging spreadsheets can be a time-intensive and frustrating
task. Surprisingly, only few techniques have been borrowed from the soft-
ware engineering domain. However, many techniques and concepts from the
software engineering discipline can help to avoid faults, to increase maintain-
ability and to lower the debugging time in spreadsheets. One of the objectives
of this thesis is to adapt fault localization techniques from the software engi-
neering domain (further on referred as fault localization techniques for 3rd
generation languages) to the spreadsheet domain. Our goal is to provide the
spreadsheet developer with tools that support him or her in identifying the
formulas that are responsible for an observed misbehavior.

1.1. Concepts and definitions

This thesis makes use of the following nomenclature:

Fault A fault (or defect) is the root cause for an observed misbe-
havior. In this thesis, a fault is a particular location in the
program or spreadsheet, i.e a statement or a cell.

Failure A failure is the inability of the system to perform as re-
quired.

Error An error is the discrepancy between computed and spec-
ified (or assumed) values. Another term for error is ‘ob-
served misbehavior’.

Error detection Errors can be detected during testing or when using soft-
ware. The detection of errors is a prerequisite for trigger-
ing the debugging process.

2http://panko.shidler.hawaii.edu/ssr/
3http://www.eusprig.org/horror-stories.htm

5

http://panko.shidler.hawaii.edu/ssr/
http://www.eusprig.org/horror-stories.htm

1. Introduction

Debugging Debugging is the process of fault localization and/or fault
correction.

Fault localization Fault localization is the process of pinpointing the fault
that leads to failures and errors.

1.2. Contributions

Fault localization

3rd level
languages

Spreadsheets

Slicing
Model-based
approaches

Spectrum-based
fault localization

CONBAS SENDYS

Model-based
approaches

Spectrum-based
fault localization

SENDYS

Performance MUSSCO

Spreadsheet
Corpora

Figure 1.1.: Overview of the thesis contribution

This thesis improves the state of the art in fault localization in both, 3rd gen-
eration languages and the spreadsheet domain. Figure 1.1 illustrates how
the techniques and other contributions of this thesis fit into the current
field of fault localization. The main contributions for fault localization for
3rd generation languages are as follows:

• As a central contribution, we present Sendys (short for Spectrum-
Enhanced Dynamic Slicing). Sendys is a lightweight model-based de-
bugging approach enhanced with spectra information. This technique
is intended to be used for debugging large-scaled programs.
• Another important contribution is Conbas (short for Constraint-Based

Slicing). Conbas is a technique that reduces the size of slices by means
of constraint solving. In contrast to Sendys, Conbas is indented to be
used for small programs only.

In the field of fault localization for spreadsheets, this thesis makes the follow-
ing contributions:

6

1.3. Outline

• We show how traditional debugging techniques can be used for debug-
ging spreadsheets.
• In the case of model-based software debugging, we show that we can

improve runtime performance when using a state-of-the-art SMT solver
instead of a constraint solver.
• Furthermore, this thesis describes how to correct a faulty spread-

sheet with mutations and distinguishing test cases. The technique for
spreadsheet fault localization by generating repair suggestions is called
MuSSCO (short for Mutation-Supported Spreadsheet Correction).
• In addition, we created spreadsheet corpora containing both correct

and faulty versions of spreadsheets. These corpora can used for bench-
marking.

1.3. Outline

Part II and Part III deal with the fault localization in 3rd generation languages
and spreadsheets, respectively. Each of these parts discusses related work
(Sections 2 and 6) and preliminaries (Sections 3 and 7). Spectrum-Enhanced
Dynamic Slicing (Sendys) and Constraint-Based Slicing (Conbas) for the fault
localization for 3rd generation languages are discussed in the Sections 4 and 5.
Section 8 discusses the spreadsheet corpora that are used to evaluate the de-
veloped spreadsheet debugging techniques. Section 9 adapts approaches for
fault localization in 3rd generation languages to spreadsheets. Section 10 in-
troduces ConBug, a model-based debugging approach for spreadsheets. Sec-
tion 11 explains how this model-based debugging approach can be improved
w.r.t. runtime and variable domains. Section 12 introduces the MuSSCO ap-
proach which not only localizes faults but also computes repair suggestions.
In Part IV, deficiencies, open challenges and future work for both domains,
i.e. 3rd generation languages and spreadsheets, are discussed.

7

Part II.

Debugging of programs written
in 3rd generation languages

9

2. Software debugging techniques

Software debugging techniques can be divided into fault localization and
fault correction techniques. Fault localization techniques focus on narrowing
down possible fault locations. They comprise spectrum-based fault local-
ization, delta debugging, program slicing, and model-based software de-
bugging. Fault correction techniques focus on finding solutions to eliminate
an observed misbehavior. They comprise for instance genetic programming
techniques. In the following, we discuss these automatic software debugging
techniques in detail.

There exist alternative classification schemes for debugging techniques. For
example, Seviora [Sev87] classifies debugging approaches into static and
dynamic strategies. Static debugging strategies use the source code as knowl-
edge basis. The most prominent static debugging approach is static slicing.
Dynamic approaches use execution traces as knowledge basis. Examples for
dynamic debugging approaches are dynamic slicing and spectrum-based
fault localization. As there exist techniques that use both, the source code
and the execution trace, we refrain from using this classification method. For
example, there exist model-based software debugging techniques that work
on the source code or on the execution trace.

Ducassé [Duc93] distinguishes tutoring systems and diagnosis systems. Tu-
toring systems are used to debug programs written by novices. The programs
debugged with tutoring systems are usually small, the specification is given
and possible errors are often known in advance. In contrast, diagnosis sys-
tems help to locate bugs in programs written by experts. These programs
are generally large and a specification is seldom available. The debugging
techniques presented below fit into the category diagnosis systems.

Furthermore, Ducassé [Duc93] defines three categories for automated debug-
ging techniques: (1) verification with respect to specification, (2) checking
with respect to language knowledge, and (3) filtering with respect to symp-
toms. The verification strategy compares a program with its specification.
Verification techniques do not locate errors, but only indicate whether there
exist any errors. One of the most prominent verification techniques is symbol
execution. Checking techniques systematically parse programs and search
for language dependent errors and code patterns which might lead to errors
(“code smells”). For example, FindBugs [Aye+07] analyzes Java Code by

11

2. Software debugging techniques

means of about 300 fault patterns. The checking strategy detects only stereo-
typed errors. The filtering strategy identifies parts of the code that cannot be
responsible for an observed misbehavior. The aim of filtering techniques is
not to point at suspicious code, but to reduce the amount of code that must be
investigated. Well-known filtering techniques are program slicing and model-
based software debugging. Delta debugging can be seen as a special case of a
filtering techniques since it reduces the failure inducing input and therefore
implicitly the execution trace. The verification strategy and the checking
strategy rather focus on error detection than on fault localization. Therefore,
these strategies are not included in the following discussion of related work.
Instead, we focus on filtering techniques and ranking techniques. One of
the most prominent ranking technique is spectrum-based fault localization.
Unfortunately, ranking techniques are were not taken into consideration by
Ducassé.

2.1. Slicing

Program slicing narrows down the search space for fault locations by consid-
ering only the statements which directly or indirectly influence the values of
a given set of variables at a certain program point. The basic idea of slicing
is to reason backwards: Start from the failure and use the control and data
flow of the program in the backward direction in order to reach the faulty
statement. There exists several variants and enhancements of slicing.

In 1982, Weiser [Wei82] introduced the concept of static slicing. He defined a
slice as a subset of program statements that behaves like the original program
for a given set of variables at a given location in the program. Weiser’s slicing
method relies on static program analysis and does not take into account the
input that leads to the failure. A slice is minimal if no statement of the slice
can be reduced so that the reduced slice behaves like the original program
for the given set of variables. Computing minimal static slices is equivalent to
the halting problem [Wei84] and therefore undecidable. However, there exist
good approximations to compute slices, e.g. the use of system dependency
graphs [HRB88].

Static slices tend to be rather large. Subsequently, a programmer has to look
at numerous statements in order to reach the root cause of the detected
misbehavior. Therefore, Korel et al. [KL88] introduced the concept of dynamic
slicing which relies on a concrete program execution. Dynamic slices behave
like the original program only for a given test case. Since dynamic slices
are more restrictive, they yield smaller slices than their static counterpart.
Occasionally, dynamic slices do not include statements which are responsible

12

2.1. Slicing

for a fault if the fault causes the non-execution of some parts of a program.
This disadvantage is eliminated by the usage of relevant slicing [GBF99].

A mentionable alternative to relevant slicing is the method published by
Zhang et al. [Zha+07]. This method introduces the concept of implicit depen-
dencies. Implicit dependencies are obtained by predicate switching. They are
the analog to potential data dependencies in relevant slicing. The obtained
slices are smaller since the use of implicit dependencies avoids a large number
of potential dependencies.

Another technique by Zhang et al. [ZGG06] reduces the size of dynamic slices
via confidence values. These confidence values represent the likelihood that
the corresponding statement computes the correct value. Statements with a
high confidence value are excluded from the dynamic slice.

Other mentionable work by Zhang et al. includes [ZGZ04; ZGG07; ZTG06].
In [ZGZ04], they discuss how to reduce the time and space required for
storing dynamic slices. In [ZTG06], they deal with the problem of handling
dynamic slices of long running programs. In [ZGG07], they evaluate the
effectiveness of dynamic slicing for locating real bugs. They found out that
most of the faults could be captured by considering only data dependencies.

Sridharan et al. [SFB07] identified data structures as the main reason for
overly large slices. They argue that data structures provided by standard
libraries are well-tested and thus they are unlikely to be responsible for an
observed misbehavior. Their approach, called “Thin Slicing”, removes such
statements from slices.

Lyle and Weiser [LW87] introduced the concept of program dicing. A dice is
the set difference of the static slice of a variable with a faulty output and the
static slice of a variable with a correct output. The resulting dice contains the
faulty statement if the following three conditions are satisfied: (1) The test
set is reliable. (2) The program contains only one fault. (3) Faults cannot be
covered, i.e. if a variable x has an incorrect value and variable y uses the value
of x, then the value of y must also be incorrect. If one of these conditions is
violated, the slice of the variable with the correct output value might contain
the faulty statement. As a consequence, the dice might not contain the faulty
statement. Chen and Cheung [CC93] improve the work of Lyle and Weiser by
introducing dynamic program dicing. Their approach can be applied even
when there exists only one output variable because of the use of dynamic
slices. In addition, Chen and Cheung make their approach more robust by
using the intersection of several slices of correct variables.

DeMillo et al. [DPS96] introduced “Critical Slicing”. This slicing technique bor-
rows from mutation-based testing the idea of removing statements [MOK06].
The statements contained in the execution trace of a failing test case are

13

2. Software debugging techniques

systematically removed from the program. If the reduced program still pro-
duces the same values for the variables in the slicing criterion, the removed
statements can be ignored. Otherwise the removed statements are critical
and therefore must be part of the slice. For a given slicing criterion, we can
derive the following relationships: The critical slice is a subset of the static
slice. However, the critical slice might contain statements that are not part of
the dynamic slice and vice versa.

Many other slicing techniques have been published. For a deeper analysis on
slicing techniques the reader is referred to Tip [Tip95] and Kamkar [Kam95]
for slicing techniques in general and to Korel and Rilling [KR98] for dy-
namic slicing techniques. Slicing is often used in conjunction with other
debugging techniques. Some of these combining techniques are discussed in
Section 2.6.

2.2. Model-based software debugging

Model-based software debugging (Mbsd) derives from Model-based diagnosis
(Mbd), a successful hardware debugging method. Mbd techniques have been
applied to debug electronic circuits [Rei87], hardware designs specified in
VHDL [FSW99], functional programs [SW99], complex configuration knowl-
edge bases [Fel+04], ontologies [Shc+12], and workflow processes [FMS10].

Usually, model-based techniques rely on a model, i.e. a formal description
or specification of the program. However, such models are expensive to
build and often contain many errors. Musuvathi et al. [ME03] mentioned that
models for debugging can be as error-prone as the concrete implementation.
In Mbd, the buggy physical system itself acts as model. Mbsd borrows this
idea of “reasoning from first principles” and derives a model from the source
code or execution trace of the faulty program. The derived model is enhanced
with variables representing the “health” state for each component. In contrast
to the original program, this model allows for consistency checking.

Console et al. [CFD93] were among the first to show how the debugging
process of declarative programs written in Prolog can be improved using
Mbd techniques. Shapiro [Sha83] provided an algorithmic basis for debug-
ging Prolog programs. In his thesis, Shapiro presented a divide-and-query
algorithm for interactive fault localization. This algorithm aims to avoid
unnecessary interactions of the user with the system when debugging. In
contrast to Console et al., Shapiro did not establish his work on the theory of
Mbd. However, Bond and Pagurek [BP94] showed that Shapiro’s technique is
a special case of Mbd.

14

2.2. Model-based software debugging

Mbsd techniques basically differ in the computational complexity and accu-
racy owing to the used model. Mayer and Stumptner [MS07; MS08] give an
overview of different models used in Mbsd. They distinguish dependency-
based, value-based and abstraction-based models. In dependency-based mod-
els, the flow of correct and incorrect values through the program is modeled.
Wotawa [Wot02] discusses the relationship dependency-based models and
program slicing. Dependency-based models have a small computational com-
plexity. Therefore, they can be applied even to large programs. However, these
types of models often result in large result sets. In value-based models, the
concrete values are known and propagated through the model. These models
are more precise, but also computationally more expensive. Therefore, value-
based models can only be used to debug small programs. Abstraction-based
models are used when precise values cannot be determined.

Mateis et al. [Mat+00; MSW00] were among the first who applied Mbd to an
object-oriented language. In their work, Mateis et al. describe the conversion
of Java programs into simple dependency models. Wotawa et al. [WN08;
WNM12] present a model-based software debugging approach which relies
on a value-based model. They show how to formulate a debugging problem
as a constraint satisfaction problem. In addition, Wotawa et al. [Wot+09]
discuss the computational costs of Mbsd. They show how to transform a
debugging problem into a constraint satisfaction problem (Csp). A Csp can
be represented as a hypertree. The width of a hypertree is a good indicator
for the complexity of the Csp. In addition, they prove that there exists no
constant upper-bound for the hypertree width of arbitrary programs. The
upper-bound of the hypertree width for a particular program is given by the
number of statements in the program. In case of loops, there exists an upper
bound on the hypertree width for the particular program. Problems with
a hypertree width > 5 are said to be hard problems. The authors showed
that the hypertree width is often greater than 5 even for small programs.
Therefore, they conclude that debugging is a very hard problem.

Nica et al. [NWW09] suggested to use assertions and invariants in Mbsd. They
found out that even weak invariants can be useful when debugging. Their
empirical evaluation shows that the use of assertion information eliminates
additional 30 % of the fault candidates. Other mentionable work of Nica et al.
includes their work on distinguishing test cases [NNW12]. Their approach
computes mutations of the program as possible repair suggestions. As the
number of possible repairs can be huge, they make use of distinguishing test
cases in order to reduce the number of solutions presented to the user.

15

2. Software debugging techniques

2.3. Spectrum-based fault localization

Many debugging techniques focus on the usage of failing test cases only. In
contrast, Spectrum-based fault localization (Sfl) is a technique that uses the
execution specific information of both passing and failing test cases. This exe-
cution specific information is called program spectra. There are several types
of program spectra, e.g. hit spectra and count spectra. Harrold et al. [Har+98]
give an overview of different types of program spectra. The program spectra
are stored in so-called observation matrices. Besides the spectra information,
these observation matrices also contain the information which test cases were
passing and which were failing onces. The collection of the test result of
all test cases is called error vector. A high similarity of a statement to the
error vector indicates a high probability that the statement is responsible
for the error [Abr+09b]. There exist several similarity coefficients to numeri-
cally express the degree of similarity, e.g. Jaccard [Zoe+07], Tarantula [JH05],
CrossTab [Won+08], and MKBC [Xu+11].

The “Nearest Neighbor” approach [RR03] developed by Renieris and Reiss
selects a passing test case that resembles the failing test case most with
respect to the Hamming distance. The failing test case minus this passing
test case builds the set of suspicious statements. From this set, the program
dependency graph is traversed until the fault is found. This approach per-
forms better than simple union and intersection approaches. However, it
does not perform as good as Tarantula and Ochiai. The Liblit05 [Lib+05] and
the Sober [Liu+06] approaches use predicate switching for fault localization.
Similar to the “Nearest Neighbor” approach, these approaches make use of a
breadth-first search in the program dependency graph.

Wong et al. [WDC10] introduce three coverage-based heuristics for fault
localization. The most interesting Heuristic is Heuristic III where the test
cases are grouped. Tests in the same group contribute with the same weight
to the suspiciousness of a statement. The weights of the different groups are
chosen in a way that the total contribution of the passing test cases is smaller
than the total contribution of the failing test cases. The authors present the
tool χ-Debug which comes with a user-friendly GUI that highlights the
suspiciousness of statements in color. In an empirical evaluation, the authors
show that Heuristic III is well-suited for fault localization and outperforms
other debugging techniques like Tarantula.

Jones et al. [JHB07] address the problem of using Sfl in case of several faults.
They create fault focusing clusters and specialized test suites that allow
for localizing single faults with Sfl. Therefore, they propose two clustering
methods: (1) clustering based on profiles and fault localization results, and
(2) clustering based on fault localization results. They propose to use as

16

2.4. Delta Debugging

stopping criterion for the clustering a set-similarity coefficient that is based
on the suspicious values of the statements. DiGuiseppe and Jones [DJ12]
introduce “Concept-Based Failure Clustering”. This technique uses latent-
semantic analyses to cluster test cases.

2.4. Delta Debugging

Zeller and Hildebrandt [ZH02] introduced delta debugging. Delta debugging
is a technique that can be used to systematically minimize a failure-inducing
input. The basic idea of delta debugging is: the smaller the failure-inducing
input, the less program code is covered. Therefore, delta debugging can be
used as pre-processing step before starting the real fault localization process.
Zeller and Hildebrandt propose a modified version of the delta debugging
algorithm that allows for isolating the failure-inducing input. Furthermore,
there exist adapted versions of the delta debugging [Zel02; CZ05] enabling to
directly use it for fault localization.

2.5. Genetic approaches

Genetic debugging is a technique that locates faults by searching for possible
repairs. It is based on genetic programming and generates mutants for a given
faulty program. A mutation can be for example to insert additional code,
to change operators or to delete code. The generated mutants are evaluated
with the help of the available test cases. The best mutants are selected and
further mutated until all test cases pass. Genetic Programming often uses
fault localization techniques as a pre-processing step. Arcuri [Arc08], Weimer
et al. [Wei+09; Wei+10] and Debroy and Wong [DW10] have published the
most prominent approaches in this field of debugging.

2.6. Hybrid techniques

There exist several methods combining some of the previously mentioned
approaches. For example, Deputo and Barinel combine Mbsd with Sfl.
Deputo [Abr+09a] uses Sfl to obtain an initial fault ranking and Mbsd af-
terwards to filter out those statements of the ranking that cannot explain
the observed misbehavior. If no explanation is found after the Mbsd step,
a best-first search is applied: The program statements are traversed along
the data- and control dependencies starting with the statements with the

17

2. Software debugging techniques

highest fault probability. In contrast to Mbsd, Deputo implements an in-
cremental debugging strategy: the algorithm stops as soon as a fault has
been identified. As mentioned in [Abr+09a], Deputo is 2.5 times faster than
Mbsd. Barinel [AG10] uses the program spectra obtained by Sfl to model
the program behavior. Afterwards, Barinel employs a Bayesian approach to
deduce multiple-fault candidates.

Gupta et al. [Gup+05] present a technique that combines delta debugging with
forward and backward slices. Delta debugging is used to find the minimal
failure-inducing input. Forward slices are computed for the failure-inducing
input. Backward slices are computed for the erroneous output variables.
The intersection of the forward and backward slices results in the failure-
inducing chop. Burger and Zeller [BZ11] propose an approach named Jinsi

that combines event slicing, delta debugging and dynamic slicing.

Wen et al. [Wen+11; Wen12] introduce an approach that is based on program
slicing and statistical debugging, namely PSS-SFL (program slicing spectrum-
based software fault localization). This approach extracts the dependencies
of program components, eliminates unrelated statements, builds a program
slicing spectrum model and ranks the statements with a new suspiciousness
metric.

18

3. Preliminaries

The content of this chapter is based on the work published in [HW12a],
[HW12c] and [HWA12]. In Section 3.1, basic definitions are given and the
concept of dynamic slicing is explained. Model-based software debugging
(Mbsd) and its variations are discussed in Section 3.2. Spectrum-based Fault
localization (Sfl) is discussed in Section 3.3.

3.1. Basic definitions

In this thesis, the language L is used for explaining the basic functionality
of the approaches Sendys and Conbas (Chapters 4 and 5). The introduced
language L is approximated to Java, but restricted to non-object-oriented
functionality. The reason for the simplification is to focus on the underlying
ideas instead of solving technical details. However, this simplification does
not restrict generality. The empirical evaluations in the Chapters 4 and 5 are
performed on programs written in Java.

In this section, we briefly introduce this language L with respect to syntax
and semantic. In addition, we define (failing) test cases and the debugging
problem. The approaches described in Chapter 4 and 5 rely on dynamic
slices. Therefore, we define execution traces and dynamic slices formally in
Section 3.1.3.

3.1.1. The Language L

The syntax definition of L is given in Backus-Naur form (BNF) in Figure 3.1.
Terminals of the language L are underscored. The start symbol of the gram-
mar is P. A program P comprises a sequence of statements stmt. There are
three different types of statements: (1) the assignment statement, (2) the if-
then-else statement, and (3) the while-statement. In the following, if-then-else
statements and while-statements are referred to as conditional statements (or
conditionals). The right side of an assignment has to be a variable (id). The
name of the variable can be any word except a keyword. An expression is

19

3. Preliminaries

P ::= S
S ::= stmt S

| ε
stmt ::= id = E ;

| if E { stmt } else
| while E { stmt }

else ::= else {stmt }
| ε

E ::= id
| num
| true
| false
| E op E
| (E)

op ::= + | - | * | / | < | > | == | <> | & | |

Figure 3.1.: The syntax of the language L

either an Integer (num), a truth value (true, f alse), a variable, or two expres-
sions concatenated with an operator. An Integer number is a sequence of any
digit from 0 to 9. It can be preceded by ‘-’ for negative numbers. Data types
are not introduced in L, but it is assumed that the use of Boolean and Integer
values follow the usual expected type rules. Comments start with // and are
terminated when the line ends.

Example 3.1 Listing 3.1 shows an example program written in L. �

1 while (a>0) {
2 x = a ∗ c ;
3 y = b ∗ 3 ;
4 z = x + y ;
5 a = a − 1 ;
6 }
7 i f (b<0) {
8 z = z + 2 0 ;
9 }

Listing 3.1: A program written in the language L

After defining the syntax of L, its semantics have to be defined. The interpre-
tation function J.K maps programs and states to new states or the undefined
value ⊥:

Interpretation function J.K : L× Σ 7→ Σ ∪ {⊥}

20

3.1. Basic definitions

In this definition, Σ represents the set of all states. A concrete state ω ∈ Σ
specifies values for the variables used in the program. A state is called
variable environment. Hence, ω itself is a function ω : VARS → DOM
where VARS denote the set of variables and DOM its domain comprising
all possible values. ω ∈ Σ is represented as a set {. . . , xi|vi, . . .} where
xi ∈ VARS is a variable, and vi ∈ DOM is its value. DOM = ZM ∪B where
ZM = {x ∈ Z|min ≤ x ≤ max} is an Integer number between a pre-defined
minimum and maximum value, and B = {T, F} is the Boolean domain. We
assume that all variable values necessary to execute the program are known
and defined in ω ∈ Σ.

The definition of the semantics of L is given in Figure 3.2. For the seman-
tics of conditions and expressions, we assume that num (id) represents the
lexical value of the token num (id) used in the definition of the grammar.
An Integer num is evaluated to its corresponding value num∗ ∈ ZM and the
truth values are evaluated to their corresponding values in B. A variable id
is evaluated to its value specified by the current variable environment ω.
Expressions with operators are evaluated accordingly to the semantics of the
used operator.

The semantics of the statements in L is defined in a similar manner: A
sequence of statements, i.e., the program itself or a sub-block of a conditional
or while statement, S1 . . . Sn, is evaluated by executing the statements S1 to
Sn in the given order. Each statement might change the current state of the
program. An assignment statement changes the state for a given variable.
All other variables remain unchanged. An if-then-else statement allows for
selecting a certain path (via block B1 or B2) based on the execution of the
condition. A while-statement executes its block B until the condition evaluates
to false. Therefore, the formal definition of the semantics is very similar to
the semantics definition of an if-then-else statement without else-branch. If a
program does not terminate or in case of a division by zero, the semantics
function returns the undefined value ⊥.

Example 3.2 When executing the program Π from Listing 3.1 on the input state
ωI = {(a, 1), (b, 1), (c, 2), (z, 0)} the semantics function J.K returns the output
state ωO = {(a, 0), (b, 1), (c, 2), (x, 2), (y, 3), (z, 5)}. �

3.1.2. The Debugging Problem

For stating the debugging problem, we have to define test cases and test suites.
In the context this thesis, a test case comprises information about the values
of input variables and some information regarding the expected output. In
principle, it is possible to define expected values for variables at arbitrary

21

3. Preliminaries

Semantics of expressions:

JnumKω = num∗
JtrueKω = T
JfalseKω = F
JidKω = ω(id)
J(E)Kω = JEKω

JE1 op E2Kω =

JE1Kω + JE2Kω if op = ‘+”
JE1Kω − JE2Kω if op = ’-’
JE1Kω ∗ JE2Kω if op = ’*’
JE1Kω / JE2Kω if op = ’/’
JE1Kω < JE2Kω if op = ’<’
JE1Kω > JE2Kω if op = ’>’
JE1Kω = JE2Kω if op = ’==’
JE1Kω 6= JE2Kω if op = ’<>’
JE1Kω ∧ JE2Kω if op = ’&’
JE1Kω ∨ JE2Kω if op = ’|’

Semantics of statements:

J Kω = ω
JS1 . . . SnKω = J. . . SnK (JS1Kω)

Jid = E;Kω = ω′ with ω′(x) =
{

JEKω if x = id
ω(x) otherwise

Jif E {B1} Kω =

{
JB1Kω if JEKω = T
ω otherwise

Jif E {B1} else {B2}Kω =

{
JB1Kω if JEKω = T
JB2Kω otherwise

Jwhile E {B}Kω =

{
JBKJwhile E {B}Kω if JEKω = T
ω otherwise

Figure 3.2.: The semantics of the language L

22

3.1. Basic definitions

positions in the code. For reasons of simplicity, we do not make use of such
an extended definition and we do not discuss testing in general. Instead, we
refer the interested reader to the standard books on testing, e.g., [Bei90].

Definition 1 (Test case) A test case t is a tuple (I, O) where I ∈ Σ is the input
and O ∈ Σ is the expected output.

A given program Π ∈ L passes a test case t = (I, O) iff JΠKI ⊇ O. Otherwise,
the program fails test case t. Because of the use of the ⊇ operator, partial test
cases are allowed which do not specify values for all output variables.

Example 3.3 A test case t for the example from Listing 3.1 is for instance I =
{(a, 1), (b, 1), (c, 2), (z, 0)} and O = {(z, 6)}. This is obviously a failing test case
since the evaluation of the example on the input I is not a superset of the expected
output (JΠKI = {(a, 0), (b, 1), (c, 2), (x, 2), (y, 3), (z, 5)} + O). �

Definition 2 (Test suite) A test suite T for a program Π ∈ L is a set of test cases.

We divide a test suite into two disjoint sets comprising only passing (PASS)
respectively failing (FAIL) test cases, i.e., T = PASS ∪ FAIL and PASS ∩
FAIL = ∅. Formally, we define these two subsets as follows:

PASS = {(I, O)|(I, O) ∈ T, JΠKI ⊇ O} (3.1)

FAIL = T \ PASS (3.2)

For a negative test case t = (I, O) ∈ FAIL, there must be some variables
x1, . . . , xk where for all i ∈ {1, . . . , k} the expected value vi ∈ O and the
computed value wi ∈ JΠKI are different (vi 6= wi). We call such variables
x1, . . . , xk conflicting variables CV(t). If the test case t is a positive test case,
the set CV(t) is defined to be empty.

Definition 3 The set of conflicting variables CV for a test case t with (I, O) consists
of all variables x where the computed value wi ∈ JΠKI differs from the expected
value vi ∈ O.

Example 3.4 For our running example from Listing 3.1 and test case t, the set of
conflicting variables is CV(t) = {z}. �

Using these definitions, we define the debugging problem as follows:

23

3. Preliminaries

Definition 4 (Debugging problem) Given a program Π ∈ L and a test suite T
containing at least one failing test case. The problem of identifying the root cause for
a failing test case t ∈ T in Π is called the debugging problem.

This definitions describes the debugging problem as a fault localization
problem. Another possibility is to describe the debugging problem as a
fault correction problem. A solution for the debugging problem as a fault
localization problem is a set of statements in a program Π that are responsible
for the conflicting variables CV(t). The identified statements in a solution
have to be changed in order to turn all failing test cases into passing test
cases for the corrected program.

3.1.3. Program Slicing

When obtaining a result that contradicts with the expectations, we are inter-
ested in finding the fault, i.e., locating the statements that are responsible for
the fault. Mark Weiser [Wei82] introduced the idea to support this process
by using the dependence information represented in the program. Weiser’s
approach identifies those parts of the program that contribute to faulty com-
putations, i.e., the slice. In this thesis, we use extensions of Weiser’s static
slicing approach and consider the dynamic case where only statements are
considered that are executed in a particular test run. In order to define dy-
namic slices [KL88] and further on relevant slices [GBF99], we first introduce
execution traces.

Definition 5 (Execution trace) An execution trace of a program Π ∈ L and an
input state ω ∈ Σ is a sequence 〈s1, . . . , sk〉 where si ∈ Π is a statement that has
been executed when running Π on test input ω, i.e., calling JΠKω.

Example 3.5 For our example from Listing 3.1, the execution trace of the input ωI
is illustrated in Listing 3.2 and comprises the statements 1-7. Statement 8 is not
executed. �

For formally defining dependence relations, we introduce the functions Def

and Ref: Def returns a set of variables defined in a statement. Ref returns a
set of variables referenced (or used) in the statement. Def returns the empty
set for conditional statements and a set representing the variable on the
left side of an assignment statement. With these functions, we define data
dependencies as follows:

24

3.1. Basic definitions

1 (1 while (a>0)) // true
2 (2 x = a ∗ c ;) // x = 2
3 (3 y = b ∗ 3 ;) // y = 3
4 (4 z = x + y ;) // z = 5
5 (5 a = a − 1 ;) // a = 0
6 (1 while (a>0)) // f a l s e
7 (7 i f (b<0)) // f a l s e

Listing 3.2: The execution trace of example from Listing. 3.1

Definition 6 (Data dependency) Given an execution trace 〈s1, . . . , sk〉 for a pro-
gram Π and an input state ω ∈ Σ. An element of the execution trace sj is data
dependent on another element si where i < j, i.e., si →D sj, iff there exists a
variable x that is element of Def(si) and Ref(sj), and there exists no element sk,
i < k < j, in the execution trace where x ∈ Def(sk).

Beside data dependencies, we have to deal with control dependencies rep-
resenting the control flow of a given execution trace. In L, only if-then-else
and while statements influence the control flow. Therefore, we only have to
consider these two types of statements.

Definition 7 (Control dependency) Given an execution trace 〈s1, . . . , sk〉 for a
program Π and an input state ω ∈ Σ. An element of the execution trace sj is control
dependent on a conditional statement si with i < j, i.e., si →C sj, iff the execution of
si causes the execution of sj.

If the condition of the while statement executes to true, then all statements
of the outermost sub-block of the while-statement are control dependent
on this while statement. If the condition evaluates to false, no statement is
control dependent because the first statement after the while-statement is
always executed regardless of the evaluation of the condition. Please note
that infinite loops are out of the scope of this thesis and therefore they are
not considered.

If the condition of an if-then-else statement evaluates to true, the statements
of the then-block are control dependent on the conditional statement. If it
evaluates to false, the statements of the else-block are control dependent on
the conditional statement. In case of nested while-statements or if-then-else
statements, the control dependencies are not automatically assigned for the
blocks of the inner while-statements or if-then-else statements.

Example 3.6 Figure 3.3 shows the execution trace for our running example where
the data and control dependencies have been added. �

25

3. Preliminaries

Data dependency

Control dependency

Figure 3.3.: The execution trace of the example from Listing 3.2 enhanced with data and
control dependencies

In addition to data and control dependencies, relevant slicing uses potential
data dependencies [GBF99]. A potential data dependency occurs whenever
the evaluation of a conditional statement causes the non-execution of state-
ments which potentially change the value of a variable. Ignoring such poten-
tial data dependencies might lead to slices where the faulty statements are
missing.

Definition 8 (Potential relevant variables) Given a conditional (if-then-else or
while) statement n. The potential relevant variables are a function PR that maps the
conditional statement and a Boolean value to the set of all defined variables in the
block of n that is not executed because the corresponding condition of n evaluates to
true or false.

If there are other while-statements or if-then-else statements in a sub-block,
the defined variables of all their sub-blocks must be considered as well.
Table 3.1 summarizes the definition of potential relevant variables.

Table 3.1.: Potential relevant variables

Statement n Condition E Potential relevant variables PR
while E { true PR(n, true) = {}

B false PR(n, false) = {m|m defined in B }
}
if E {

B1 true PR(n, true) = {m|m defined in B2}
} else { false PR(n, false) = {m|m defined in B1}

B2
}

26

3.1. Basic definitions

Example 3.7 There are the following potential relevant variables for the execution
trace from Listing 3.2: PR(while(a > 0), true) = {}, PR(while(a > 0), f alse) =
{a, x, y, z}, PR(i f (b < 0), true) = {}, and PR(i f (b < 0), f alse) = {z}. �

Based on this definition of the potential relevant variables, we define potential
data dependencies straightforward.

Definition 9 (Potential data dependency) Given an execution trace 〈s1, . . . , sk〉
for a program Π and an input state ω ∈ Σ. An element of the execution trace sj is
potentially data dependent on a conditional statement si with i < j, which evaluates to
true (false) , i.e., si →P sj, iff there is a variable x ∈ PR(si, true) (x ∈ PR(si, f alse))
that is referenced in sj and not re-defined between i and j.

After defining the dependence relations of a program that is executed on a
given input state, we are able to formalize relevant slices.

Definition 10 (Relevant slice) A relevant slice S of a program Π ∈ L for a slicing
criterion (ω, x, n), where ω ∈ Σ is an input state, x is a variable and n is a line
number in the execution trace, comprises those parts of Π that contribute to the
computation of the value for x at the given line number n.

Definition 11 (Execution trace graph) An execution trace graph (ETG) is a di-
rected acyclic graph that represents an execution trace extended by data, control and
potential data dependencies.

A statement contributes to the computation of a variable value if there is
a dependence relation. Hence, computing slices can be done by following
the dependencies in the ETG. Algorithm 3.1 computes the relevant slice for
a given execution trace ET of a program Π and a given variable x at the
execution trace position n. First, the execution trace graph is computed from
ET and Π. The program Π is required for determining the potential data
dependencies. Afterwards, the statement where the variable x is defined for
the last time is marked (Step 2). All control statements c are marked where
the following two rules apply: (1) c succeeds the previously marked statement
in the ETG and (2) c has the variable x in its PR set (Step 3). From the marked
nodes, traverse the graph in reverse direction and mark all reached nodes
(Step 4). The relevant slice comprises all statements that are marked.

Example 3.8 Algorithm 3.1 is applied to our running example for the variable z
at Line 7 as follows: First, the ETG (see Figure 3.3) is computed. In Step 2, the
statement in Line 4 is marked. The conditional statements that occur after Line 4

27

3. Preliminaries

Algorithm 3.1 RelevantSlice(ET, Π, x, n)
Require: Execution trace ET = 〈s1, . . . , sm〉
Require: Program Π
Require: Variable of interest x
Require: Certain line number of the execution trace n
Ensure: Relevant slice S.

1: Compute the execution trace graph ETG using the dependence relations
→C,→D, and→P.

2: Mark the node sk in the ETG, where x ∈ Def(sk) and there is no other
statement si, k < i ≤ n, x ∈ Def(si) in the ETG.

3: Mark all test nodes between sk and sn, which evaluate to the Boolean
value B and where x ∈ PR(sk, B).

4: Traverse the ETG from the marked nodes in the reverse direction of the
arcs until no new nodes can be marked. Let S be the set of all marked
nodes.

5: return Set S

and that have the variable z in their PR set are marked in Step 3. These conditional
statements are the second while-statement and the if-statement. From these three
marked statements, we traverse the graph in reverse direction and mark all reachable
statements in Step 4. In this example, all statement are marked and are therefore part
of the slice for variable z. �

3.2. Model-based software debugging

Model-based software debugging (Mbsd) is a software debugging technique
that is adapted from a hardware debugging technique, namely model-based
debugging (Mbd). In Mbd, diagnoses are derived from observations and
a model that captures the correct behavior of components. In 1987, Reiter
[Rei87] introduced the theoretical foundations of Mbd. The basic idea of Mbd

is to formalize the behavior of each component C in the form ¬AB(C) →
BEHAV(C). The predicate AB stands for abnormal and is used to state the
incorrectness of a component. Hence, when C is correct, ¬AB(C) has to
be true and the behavior of C has to be valid. In software debugging, we
make use of the same underlying idea. Instead of components, we deal with
statements. The behavior of a statement is given by a formal representation
of the statement’s source code. We use constraints for this representation. The
total of all constraints represents the system description SD.

For representing bug candidates in the context of software debugging, Reiter’s
definition of a diagnosis [Rei87] is adapted: A diagnosis is formalized as a set

28

3.2. Model-based software debugging

of correctness assumptions that does not lead to a contradiction with respect
to the given observations (test case).

Definition 12 (Diagnosis) Given a formal representation SD (i.e. a system descrip-
tion) of a program Π ∈ L, where the behavior of each statement si is represented as
¬AB(si)→ BEHAV(si), and a failing test case (I, O). A diagnosis ∆ (or bug candi-
date) is a subset of the set of statements of Π such that SD∪ {I, O} ∪ {¬AB(s)|s ∈
Π \ ∆} ∪ {AB(s)|s ∈ ∆} is satisfiable.

A diagnosis is minimal if there does not exist a proper subset of this diagnosis
that is a diagnosis. For further information about the definition of diagnoses,
we refer the interested reader to [Rei87; KMR92; CDT91]. Please note that
the program Π can be represented through its source code or through the
execution trace of a concrete test case.

In the following subsections, we explain the concept of Mbsd with value-based
models (Section 3.2.1) and with dependency-based models (Section 3.2.2).
Subsequently, we explain the slicing-hitting-set approach, which is an Mbsd

technique that uses a dependency-based model.

3.2.1. Value-based models

The use of a constraint representation transforms the task of checking for
consistency into a constraint satisfaction problem (Csp).

Definition 13 (Constraint Satisfaction Problem (CSP)) A constraint satisfac-
tion problem is a tuple (V, D, CON) where V is a set of variables defined over a set
of domains D connected to each other by a set of arithmetic and Boolean relations,
called constraints CON. A solution for a CSP represents a valid instantiation of the
variables V with values from D such that none of the constraints in CON is violated.

We refer to Dechter [Dec03] for more information on constraints and the
constraint satisfaction problem.

For retrieving the constraint representation of a program Π, we rely on the
work of Nica et al. [NNW12] and Wotawa et al. [WNM12]. The transformation
of a program into constraints comprises two major steps: (1) the conversion
of the execution trace into its static single assignment (Ssa) form [BM94] and
(2) the conversion of the Ssa representation into constraints. In contrast to
Nica et al. and Wotawa et al., loop unrolling is not necessary in our approach
since we rely on a concrete execution trace.

29

3. Preliminaries

The Ssa form is an intermediate representation of a program with the property
that no two left-side variables share the same name. The Ssa form can be easily
obtained from an execution trace by adding an index to each variable: Every
time a variable is re-defined, the value of the index gets incremented. Every
time a variable is referenced, the most recent index is used. Algorithm 3.2
formalizes the conversion of an execution trace ET into its Ssa form. This
algorithm makes use of the function Index. This function returns the current
index of a variable. The expression ‘y Index(y)’ (see Step 5) is a String
concatenation of the variable y, ‘ ’ and the Integer returned by Index(y).

Algorithm 3.2 Ssa(ET)
Require: An execution trace ET = 〈s1, . . . , sm〉.
Ensure: The execution trace ET′ in Ssa form and a function Index that maps

each variable to its maximum index value used in the Ssa form.
1: Let Index be a function mapping variables to Integers. The initial Integer

value for each variable is 0.
2: Let ET′ be the empty sequence.
3: for j = 1 to m do
4: if sj is an assignment statement of the form x = E then
5: Let E′ be E where all variables y ∈ E are replaced with y Index(y).
6: Let Index(x) be index(x) + 1.
7: Add x Index(x) = E′ to the end of the sequence ET′.
8: else
9: Let s′ be the statement sj where all variables y ∈ E are replaced with

y Index(y).
10: Add s′ to the end of the sequence ET′.
11: end if
12: end for
13: Return (ET′, Index).

Example 3.9 The application of Algorithm 3.2 on the execution trace from List-
ing 3.2 results in the execution trace shown in Listing 3.3. �

In the second step, the Ssa form of the execution trace is converted into
constraints. In this thesis, we make use of mathematical equations instead of
using a specific constraint solver language. In order to distinguish equations
from statements, we use == to represent the equivalence relation. Algo-
rithm 3.3 formalizes the conversion into constraints. In this algorithm, we
make use of the function Index that maps each element of ET to a unique
identifier representing its corresponding statement. Such a unique identifier
might be the line number where the statement starts. We represent each state-
ment n of the execution trace using the logical formula ‘AB(n) ∨Constraint’,

30

3.2. Model-based software debugging

1 while (a 0 >0)
2 x 1 = a 0 ∗ c 0 ;
3 y 1 = b 0 ∗ 3 ;
4 z 1 = x 1 + y 1 ;
5 a 1 = a 0 − 1 ;
6 while (a 1 >0)
7 i f (b 0 <0)

Listing 3.3: The Ssa converted execution trace from Listing 3.2

which is logically equivalent to ‘¬AB(n)→ Constraint’ (Lines 2 to 9). In the
Lines 10 to 15, the given test case is converted into constraints.

Algorithm 3.3 Constraints(ET,t with (I, O), IndexSsa)
Require: An execution trace ET = 〈s1, . . . , sm〉 in Ssa form
Require: A test case t with (I, O)
Require: IndexSsa returning the final Ssa index value for each variable.
Ensure: The constraint representation of ET and the test case t.

1: Let CON be the empty set.
2: for j = 1 to m do
3: if sj is an assignment statement of the form x = E then
4: CON = CON∪ {AB(Index(sj)) ∨ (x == E)}
5: else
6: Let c be the condition of sj where & is replaced by ∧ and | by ∨.
7: CON = CON∪ {AB(Index(sj)) ∨ (c)}
8: end if
9: end for

10: for all (x, v) ∈ I do
11: CON = CON∪ {x 0 == v}
12: end for
13: for all (x, v) ∈ O) do
14: CON = CON∪ {IndexSsa(x) == v}
15: end for
16: return CO.

Example 3.10 Applying Algorithm 3.3 on the Ssa form of the execution trace from
Listing 3.3 extracts the following constraints:

31

3. Preliminaries

a 0 == 1,
b 0 == 1,
c 0 == 2,
z 0 == 0,
z 1 == 6,

AB(1)∨ (a0 > 0),
AB(2)∨ (x1 == a0 ∗ c0),
AB(3)∨ (y1 == b0 ∗ 3),

AB(4)∨ (z1 == x1 + y1),
AB(5)∨ (a1 == a0 − 1),

AB(1)∨ (a1 > 0),
AB(7)∨ (b0 < 0)

Please note that these constraints are written in mathematical notation instead of a
specific constraint language. �

Since arrays are not part of the language L, we do not explain their conver-
sion into constraints. Instead, we refer the interested reader to Wotawa et
al. [WNM12] for details about the handling of arrays.

3.2.2. Dependency-based models

In value based models, the value of certain variables can be derived from
other variables. However, in dependency-based models, the relation between
variables is abstract. Dependency-based models only capture the information
about which variables depend on which other variables. However, it is not
possible to derive concrete values.

Algorithm 3.4 illustrates the conversion of a program into constraints. In
Lines 1 and 2, the program is transformed into is program dependency
graph and further on into its strongly connected super-graph. In the Lines 4
to 13, the nodes of the strongly connected super-graph are converted into
constraints. Simple nodes, i.e. nodes with exactly one sub-node, are converted
as indicated in Line 7: The conjunction of the negated abnormal variable with
the ok-states of all input edges of that node implies the ok-state of the output
edge. For more complex nodes, an additional constraint is added that maps
the connection of the single sub-nodes (Line 9 to 11).

From Definition 12 and the dependency model obtained with Algorithm 3.4,
the diagnoses can be computed. However, Wotawa [Wot02] has proven that
slices can be used instead of a dependency model. The advantage of slices is
a reduced computation time. In order to slices instead of dependency models,
we use the concept of conflicts. Reiter [Rei87] defined conflicts as follows:

32

3.2. Model-based software debugging

Algorithm 3.4 DependencyModel(Π) [Wot02]
Require: Program Π
Ensure: System description SD

1: Compute the program dependency graph G for Π
2: Compute the strongly connected super-graph SG for G
3: SD = {}
4: for all vertices n ∈ SG do
5: Let y be the output of n
6: if n has exactly one sub-vertex then
7: SD = SD∪ {¬AB(n) ∧∧x∈input(n) ok(x)→ ok(y)}
8: else
9: Let m1, . . . , mk be the sub-vertices of n

10: SD = SD∪ {¬AB(m1) ∧ · · · ∧ ¬AB(mk)→ ab(n)}
11: SD = SD∪ {¬ab(n) ∧∧x∈input(n) ok(x)→ ok(y})
12: end if
13: end for
14: return SD.

Definition 14 (Conflict) A set C is a conflict for a system description SD and an
observation {I, O} iff SD ∪ {I, O} ∪ {6= AB(C)|C ∈ CO} is contradictory.

Reiter has shown that minimal diagnoses are identical to the hitting sets of a
set of conflict sets. A hitting set is defined for a set of sets CO as follows:

Definition 15 (Hitting set) A set h is a hitting set if and only if for all x ∈ CO
there exists a non-empty intersection between x and h, i.e., ∀x ∈ CO : x ∩ h 6= {}.
A hitting set h is said to be minimal if there exists no real subset of h that is itself a
hitting set.

There exists many different algorithms for computing minimal hitting sets.
The most prominent algorithm is the corrected Reiter algorithm [GSW89].
In Algorithm 3.5, we show a minimal hitting sets algorithm that computes
minimal hitting sets up to a certain cardinality. The function Sort sorts a
given set of sets CO with increasing cardinality of the sets. The left-most set
in CO is the set with the lowest cardinality.

3.2.3. Fault Localization Based on Dynamic Slicing and
Hitting-Set Computation

Mbsd approaches like the one described in Section 3.2.1 can be very time con-
suming when debugging large programs. For this reason, Wotawa [Wot02]

33

3. Preliminaries

Algorithm 3.5 MinHittingSets(CO, n) [Wot10]
Require: Set of conflict sets CO and a maximal size of hitting sets n
Ensure: Minimal hitting sets

1: Sort(CO)
2: MHS = {}
3: Generate node n with h(n) = {}
4: L = {} ∪ n
5: L′ = {}
6: i = 0
7: while i < n and L 6= {} do
8: for all n ∈ L do
9: Get left-most set C ∈ CO where C ∩ h(n) = {}.

10: if @C with C ∩ h(n) = {} then
11: MHS = MHS ∪ {n}
12: else
13: for all x ∈ C do
14: if @ node m ∈ L′ with h(m) = h(c) ∪ x then
15: Generate a new node n′ with h(n′) = h(c) ∪ x
16: if @ node m in MHS where h(m) ⊂ h(n′) then
17: L′ = L′ ∪ {h(n′)}
18: end if
19: end if
20: end for
21: end if
22: end for
23: i = i + 1
24: L = L′

25: end while
26: return MHS

34

3.2. Model-based software debugging

introduced a lightweight Mbsd technique, namely the Slicing-Hitting-Set
Computation (Shsc) approach. The basic idea used in this approach is to
combine program slices of faulty variables such that they result in minimal
diagnoses. Algorithm 3.6 shows the basic approach: For all conflicting vari-
ables x in a test case t, a slice is computed (see Line 5). In principle, every
type of slice can be computed, but because of its precision and size a relevant
slice [GBF99] is favored over static [Wei82] and dynamic slices [KL88]. Each
computed slice is a conflict set. All slices together constitute the set of conflict
sets CO. Please note that CO is a set of sets. In Line 9, the minimal hitting sets
are computed using the function MinHittingSets. This function is called
with the predefined number n which indicates the maximal size of hitting
sets. Considering the fact that most bugs are single or double fault, n = 2
should be a good value.

Algorithm 3.6 AllDiagnoses(Π, T)
Require: Program Π and test suite T
Ensure: Set of minimal diagnoses ∆S

1: Conflict set CO = {}
2: for all test cases t ∈ T do
3: if t is a failing test case for program Π then
4: for all conflicting variables x is CV(t) at position n do
5: CO = CO∪ {RelevantSlice(Π, x, n, t)}
6: end for
7: end if
8: end for
9: ∆S = MinHittingSets(CO,n)

10: return ∆S

The approach works for one or more failing test cases. In case of a sin-
gle failing test case with n statements in the slice, the approach delivers
n single-fault diagnoses. Single-fault diagnoses are a valuable support for
programmers. However, in case of several faults, single-fault diagnoses miss
to detect the real faults. In this case, multiple-fault diagnoses can be useful.
Nevertheless, multiple-fault diagnoses are confusing since a programmer
might check the same statement several times for correctness. An extension
of the approach [Wot10] solves this problem by mapping diagnoses back to a
summary slice. Algorithm 3.7 illustrates the computation of such a summary
slice: First, the initial fault probabilities pF(s) are computed for all statements
s ∈ Π (Step 1). It is assumed that each statement is equal likely to be faulty.
Afterwards, the set of leading diagnoses LD is computed from the set of
minimal diagnoses ∆S (Step 2). A leading diagnosis is a superset of at least
one minimal diagnosis. The number of leading diagnoses grows exponential
with the program size. A boundary value B ≥ 0 is used to reduce the number

35

3. Preliminaries

of generated supersets. The computed leading diagnoses LD comprise all
supersets of the minimal diagnoses ∆S which have at most B elements more
than the contained minimal diagnosis. The fault probabilities p(∆i) for all
diagnoses ∆i ∈ LD are computed (Step 3). These fault probabilities are used
to compute the fault probabilities ppred(s) of the statements (Step 4). Finally,
the statement probabilities are normalized (Step 5) and the statements are
sorted using their fault probabilities (Step 6).

Algorithm 3.7 HS-Slice(Π, ∆S)

Require: Program Π and minimal diagnoses ∆S

Ensure: HS-slice S
1: Compute initial fault probability of all statements:

∀s ∈ Π : pF(s) =
1
|Π|

2: Compute set of Leading Diagnoses LD for all minimal diagnoses ∆S:

LD(∆S) = {x|x ⊆ Π ∧ ∃∆ ∈ ∆S : (x ⊇ ∆ ∧ (|x| − |∆|) ≤ B)}

3: Compute the fault probability for all diagnoses:

∀∆i ∈ LD : p(∆i) = ∏
s∈∆i

pF(s)× ∏
s′∈Π\∆i

(1− pF(s′))

4: Derive the probability that a statement s is faulty:

∀s ∈ Π : ppred(s) = ∑
∆∈LD(∆S)∧s∈∆

p(∆)

5: Normalize the fault probabilities:

∀s ∈ Π : p′F(s) =
ppred(s)

∑s′∈Π ppred(s′)

6: return statements s in descending order of p′F(s)

The summary slice enhanced by the fault probabilities is called HS-slice. It
consists of a set of pairs of statements and normalized fault probabilities as
given in Equation 3.3.

S = {(s, p′F(s))|∃∆ ∈ ∆S : s ∈ ∆} (3.3)

Shsc is a dependency-based model [MS08]. Dependency-based models come
with the following disadvantage: A program execution with a long chain

36

3.3. Spectrum-based fault localization

of control- and data dependencies most likely results in a huge number of
possible explanations. However, more accurate models are limited to small
programs only because of their computational complexity. Shsc is faster than
debugging with value-based models, but it is less precise.

3.3. Spectrum-based fault localization

Spectrum-based fault localization (Sfl) is a statistical fault localization tech-
nique. Sfl is based on an observation matrix from which similarity coefficients
are computed for each block. A block can be a component, a method or a
compound statement. Blocks with the highest coefficients most likely contain
a fault.

The observation matrix consists of two parts: the program spectra and the
error vector. A program spectrum is an abstraction of an execution trace. It
maps only one specific view of the dynamic behavior of a program [AZG06].
This could be e.g. the number of times the block was executed (block count
spectrum) or simply if the block was visited at all (block hit spectrum). A
detailed overview of the different types of program spectra can be found
in [Har+98]. Block hit spectra are used in the approaches discussed in this
thesis. They only indicate which parts of a program have been executed
during a run [JAG09]. In the case of block hit spectra, the entries of the
observation matrix are Boolean values (covered / not covered). The error
vector indicates whether the respective test case passes or fails.

Equation 3.4 shows an observation matrix with M code blocks and N test
cases. For example, the entry x12 indicates whether Statement 2 was executed
in Test Case 1. The entry e1 indicates whether Test Case 1 passed (e1 = false)
or failed (e1 = true). The error vector can be interpreted as a hypothetical
code block that is responsible for all observed errors. Spectrum-based fault
localization aims to find the block whose column vector resembles the error
vector most.

ObservationMatrix =

x11 x12 . . . x1M
x21 x22 . . . x2M

...
...

. . .
...

xN1 xN2 . . . xNM

e1
e2
...

eN

 (3.4)

Algorithm 3.8 shows how to construct an observation matrix for a program Π
and a test suite T. The function GetBooleanMatrix (Line 1) creates a
Boolean matrix of the size |T| × |Π + 1|. Assume that the matrix entries can
be accessed by indicating a test case and a certain statement. Initially, all

37

3. Preliminaries

values of that matrix are set to false. The function Run (Line 3) executes the
given test case t on program Π and returns the execution trace ET and the test
result. Whenever a statement s is executed in a test case t, the corresponding
matrix entry is set to true (Line 6). The result of the test case is stored in the
observation matrix at position Π + 1 (Line 9).

Algorithm 3.8 ObservationMatrix(Π, T)
Require: Program Π and test suite T
Ensure: Observation matrix O

1: O = GetBooleanMatrix(|T|,|Π + 1|)
2: for all t ∈ T do
3: [ET,result] = Run(Π,t)
4: for all s ∈ Π do
5: if s ∈ ET then
6: O[t][s] = true
7: end if
8: end for
9: O[t][Π + 1] = result

10: end for
11: return O

The information of the observation matrix can be further compressed as
shown in Equations 3.5-3.7. a11(i) represents the number of failed runs in
which block i is involved, a10(i) is the number of passed runs in which block i
is involved, and a01(i) is the number of failed runs in which block i is not
involved.

a11(i) = |{j|xji = 1∧ ej = 1}| (3.5)
a10(i) = |{j|xji = 1∧ ej = 0}| (3.6)
a01(i) = |{j|xji = 0∧ ej = 1}| (3.7)

Spectrum-based fault localization is based on the assumption that a high
similarity of a block to the error vector indicates a high probability that
a block is responsible for the error [Abr+09b]. In principle, any type of
similarity coefficient can be used. We have chosen the Ochiai coefficient,
which originates in the molecular biology domain. Several experiments (e.g.
[AZG06; Abr+09b]) have shown that it outperforms other coefficients like
Tarantula and Jaccard. The Ochiai coefficient is computed as described in
Equation 3.8.

sOchiai(i) =
a11(i)√

(a11(i) + a01(i)) ∗ (a11(i) + a10(i))
(3.8)

38

3.3. Spectrum-based fault localization

It is assumed that a high similarity to the error vector indicates a high
probability that the corresponding component of the software causes the
detected error. Therefore, the program components are ranked with respect
to the calculated similarity coefficients. This information is valuable to guide
the developer to the root cause of observed failures.

Spectrum-based fault localization is a black-box diagnosis technique: It can
be applied without any additional modeling effort. Furthermore, it can be
easily used out-of-the-box when a test suite for the program is available.
Spectrum-based fault localization requires only little time for computing
diagnoses:

• O(N) for executing N test cases
• O(N) to compute the similarity coefficient per component and thus

O(M ·N) for computing the similarity coefficients for all M components
• O(M · log M) to rank the statements in the diagnostic report

Therefore, the overall time complexity is O(N + M ·N + M · log M). The space
complexity is low with a complexity of O(M · N) for storing the coverage
matrix. It can be reduced to O(3 ·M) when updating a11, a10, and a01 (see
Equations 3.5-3.7) during the execution of the test cases instead of storing the
information in an observation matrix.

The major drawback of Sfl is that it only relies on the execution information.
Statements with the same execution pattern cannot be distinguished. Thus,
the lowest possible granularity for spectrum-based fault localization is the
block level. In addition, Sfl cannot reason over multiple faults. Another
disadvantage of Sfl is that its fault localization capabilities highly depend on
the quality of the test suite. Furthermore, the number of test cases influences
the quality of the fault localization [Abr09]. Mayer et al. [May+08] suggest to
use six failing test cases and 20 passing test cases for debugging.

39

4. Spectrum-Enhanced Dynamic
Slicing

This chapter is based on the work published in [HW11], [HW12c], [HWA12]
and [HW12d].

4.1. Introduction

Spectrum-ENhanced DYnamic Slicing (Sendys) describes an approach that is
based on the idea that no single debugging technique is able to cope with all
debugging problems. For this reason, Sendys combines two state-of-the-art ap-
proaches: (1) spectrum-based fault localization (Sfl, see Section 3.3) [JAG09]
and (2) slicing-hitting-set-computation (Shsc, see Section 3.2.3) [Wot10]. We
feel confident that only a combination of different fault localization tech-
niques can finally lead to a completely automated debugger that can be used
in practice. This firm conviction is motivated by the observation that there are
dozens of debugging approaches reported in scientific literature but there is
only limited impact in practice. Often, the reason lies in the complexity of the
approaches, which finally leads to a bad scalability and thus prevents them
from being used in an interactive fashion. The idea of combining different
approaches is not new. For example, Mayer et al. [May+08] state that no single
technique is able to deal with all types of faults. They encourage to combine
different fault localization techniques to build more accurate and robust de-
bugging tools. They argue that the combination of semantic and trace-based
debugging approaches is particularly appealing, because these approaches
work with complementary information. The combination of Mbsd with Sfl

described in this chapter is along that line of thought.

In the Sendys approach, the Sfl coefficients are used as a-priori fault probabil-
ities of single statements in the Shsc approach. This ensures that statements
used by many passing test cases are lower ranked than statements, which are
only used in failing test cases. The advantage of combining Sfl and Shsc lies
in the use of the available information for ranking fault candidates. Sendys

makes use of the available dependence information like data and control de-
pendencies of programs. Sfl is not able to distinguish statements occurring in

41

4. Spectrum-Enhanced Dynamic Slicing

the same basic building block. However, Sendys allows for fault localization
at statement level. Moreover, Sendys analyzes the execution information from
both passing and failing test cases. This eliminates the weakness of Shsc:
Shsc often ranks initialization statements high because initial statements are
contained in most slices. Thus, Sendys helps to improve the accuracy of fault
localization compared to Shsc.

The remainder of this chapter is organized as follows: In Section 4.2, the
differences of Sendys and similar fault localization approaches are discussed.
Section 4.3 explains the underlying algorithm, discusses the advantages and
disadvantages of Sendys and analyzes the performance of Sendys in terms
of runtime. In Section 4.4, the usage of Sfl, Shsc, and Sendys are explained
by means of an example. The fault localization capabilities of Sendys are
compared to those of the two basic approaches and to other fault localization
approaches in Section 4.5. Section 4.6 concludes the approach.

4.2. Related Research

The idea of combining Sfl with other approaches is not new. For example,
Xu et al. [Xu+11] improve spectrum-based fault localization by adding a
noise reduction term to the suspiciousness coefficient computation and by
using chains of key basic blocks (Kbc - Key Block Chain) as program fea-
tures. Sendys differs from their approach by adding dynamic dependency
information through slices to the data available by Sfl.

Barinel and Deputo share the same basic idea with Sendys: they combine
Sfl with Mbsd. Therefore, we compare Sendys with Barinel and Deputo

in Section 4.5. Deputo [Abr+09a] uses Sfl to rank statements and Mbsd

to eliminate the top ranked candidates that cannot explain an observed
misbehavior. In contrast, Sendys directly uses the spectra information in
the reasoning step in the model. In addition, Sendys uses a dependency-
based model, which is a lightweight model. Therefore, Sendys has a lower
computational complexity than the more sophisticated model of Deputo.

Barinel [AG10] is a Bayesian framework that computes fault probabilities
per statement using maximum likelihood estimation. In contrast to Sendys,
Barinel relies only on the information which statements were covered and
does not make use of dependency information. Thus, it does not filter state-
ments which are executed in faulty runs but do not contribute to the value of
the faulty variable(s).

42

4.3. The SENDYS Algorithm

4.3. The SENDYS Algorithm

The basic approaches have already been explained in Sections 3.2.3 (Shsc) and
3.3 (Sfl). The combination of these approaches is illustrated in Figure 4.1.

 SFL

Traces of passing
test cases

Traces of failing
test cases

Statement
Likelihood

Observation
matrix

Diagnoses
Likelihood

Abstraction

Mapping

Slicing

Slices
(Conflict Sets)

Block Fault
Likelihood

Hitting Sets

Diagnoses

Simlarity Coefficients

Probability Computation

SHSC

Figure 4.1.: The Sendys approach

The detailed process is given in Algorithm 4.1: First, the observation matrix O
(Algorithm 3.8) and the similarity coefficients sco(s) for all statements s ∈ Π
are computed and normalized (scnorm(s)) (Step 1-3). In Step 4, the minimal
diagnoses ∆S are computed using the function AllDiagnoses (Algorithm 3.6).
In Step 5, the function HS-Slice (Algorithm 3.7) is used with the normalized
similarity coefficients scnorm(s) and the minimal diagnoses ∆S as input. The
resulting summary slice S′ is returned.

Similar to related approaches, Sendys highly depends on the quality of the
test suite and cannot detect missing statements. However, Sendys eliminates
the following disadvantages that are present in the original approaches: On

43

4. Spectrum-Enhanced Dynamic Slicing

Algorithm 4.1 Sendys(Π, T)
Require: Program Π and test suite T
Ensure: HS-Slice S′

1: Compute observation matrix O for program Π and test suite T:

O = observationMatrix(Π, T)

2: Compute similarity coefficients sco(s) for all statements s ∈ Π:

∀s ∈ Π : sco(s) = ochiai(s, O)

3: Compute the normalized values of the similarity coefficients scnorm(s) for
all statements s ∈ Π:

∀s ∈ Π : scnorm(s) =
sco(s)

∑|Π|j=1 sco(j)

4: Compute the minimal diagnoses ∆S:

∆S = AllDiagnoses(Π, T)

5: Compute the summary slice S′ with Algorithm 3.7 (HS-Slice). Start with
Step 2. Use scnorm(s) instead of pF(s).

6: return S′

44

4.4. Example of Application

the one hand it does not rank initialization statements high (compared to
Shsc) and on the other hand it is finer grained than Sfl.

You might think that the combined approach is only valuable in case of
single faults, which is not true. As mentioned in [Wot10], a probability-
based slice is a comprehensive but compact representation. It provides a
better overview than a list of diagnoses. There might be statements that are
part of several slices. Such statements are investigated by the programmer
several times when processing the diagnoses one after another. Therefore, the
summary slice HS-slice provides an overview of all statements and their fault
probabilities. The programmer can process the statements in descending order
of their fault probabilities. This guarantees that each statement is investigated
only once.

Our debugging method requires a marginal run-time overhead compared
to the single approaches. Both approaches, i.e., Sfl and Shsc, require a
program Π to be executed, which can be performed in O(Π). Given M test
cases and N statements, Sfl requires O(Π · M + M · N + N · log N) time
as discussed in Section 3.3. For Shsc, the relevant slices are required. The
computation of slices depends on the size of the execution trace. In the worst
case, the time complexity of computing all relevant slices is O(Π · M). In
addition to the computation of the slices, it is necessary to compute hitting-
sets, which is in the worst case exponential in the size of Π. However, when
considering only single and double faults, we retain polynomial complexity.
As a consequence the complexity of Algorithm 3.6 (AllDiagnoses) is O(Π ·
M + N2). Since there exist at maximum N2 diagnoses when considering
only single and double faults, the fault probabilities of the diagnoses and
statements in Algorithm 3.7 (HS-Slice) can be computed in O(N3) time.
Thus, Algorithm 3.7 has O(N3) time complexity for single and double fault
diagnoses. Therefore, the overall run-time of Shsc, including all parts of the
approach and under the given assumptions, has a time complexity of O(Π ·
M + N3). When combining these time complexities, the Sendys approach is
still bounded by a complexity of O(Π ·M + M · N + N3).

4.4. Example of Application

We illustrate the profitableness of Sendys by means of an example. This
example deals with transactions on a bank account and is a slight modified
version of [Wot10]. We demonstrate the fault localization capabilities for the
original fault (Section 4.4.1) and a version containing a fault in an initialization
statement (Section 4.4.2).

45

4. Spectrum-Enhanced Dynamic Slicing

4.4.1. The bank account example

1 public c l a s s BankAccount {
2 public long balance ;
3 public long l i m i t ;
4 public BankAccount (long bal , long l i m i t) {
5 t h i s . balance = bal ;
6 t h i s . l i m i t = l i m i t ;
7 }
8 public void withdraw (long amount) {
9 i f ((balance − amount) >= l i m i t) {

10 balance = balance − amount ;
11 }
12 }
13 public void deposi t (long amount) {
14 balance = balance + amount ;
15 }
16 public void t r a n s f e r T o (BankAccount acc) {
17 long money = t h i s . balance ;
18 i f (money ! = 0) { // FAULT
19 t h i s . withdraw (money) ;
20 acc . deposi t (money) ;
21 }
22 }
23 }

Listing 4.1: The Bank Account Example - Line 18 contains a fault. The correct statement would
be if(money>0){.

Listing 4.1 shows the source code of this example. The balance of the account
must never fall below the specified limit. The balance can only be transferred
to another account if it is larger than zero. In this example program, we
introduce a fault in Line 18. We extend the original example with a constructor
in order to be able to highlight the advantage of our approach. The original
bank account example contains only one test case (T1). Since our approach
requires both passing and failing test cases, we extend the test suite. Listing 4.2
shows the extended test suite. Test case T1 is a failing test case, the other test
cases are passing test cases. In the following subsections, we demonstrate
how to apply Shsc, Sfl, and Sendys on this example.

Slicing-Hitting-Set-Computation

When using Shsc for debugging, we only consider the failing test cases. The
failing test case T1 has two variables with wrong values: a1.balance and
a2.balance. Therefore, the slices for a1.balance (S1 = {5, 6, 9, 10, 17, 18, 19})

46

4.4. Example of Application

1 public void t e s t T r a n s f e r 1 { //T1
2 BankAccount a1 = new BankAccount (−100 ,−1000) ;
3 BankAccount a2 = new BankAccount (0 , 0) ;
4 a2 . deposi t (2 0 0) ;
5 a1 . t r a n s f e r T o (a2) ;
6 Assert . a s s e r t E q u a l s (−100 , a1 . balance) ;
7 Assert . a s s e r t E q u a l s (2 0 0 , a2 . balance) ;
8 }
9 public void testWithdraw () { //T2

10 BankAccount a1 = new BankAccount (0 ,−1000) ;
11 a1 . withdraw (1 0 0) ;
12 Assert . a s s e r t E q u a l s (−100 , a1 . balance) ;
13 }
14 public void t e s t D e p o s i t () { //T3
15 BankAccount a2 = new BankAccount (1 0 0 , 0) ;
16 a2 . deposi t (2 0 0) ;
17 Assert . a s s e r t E q u a l s (3 0 0 , a2 . balance) ;
18 }
19 public void t e s t T r a n s f e r 2 () { //T4
20 BankAccount a1 = new BankAccount (0 ,−1000) ;
21 a1 . withdraw (1 0 0) ;
22 BankAccount a2 = new BankAccount (0 , 0) ;
23 a2 . deposi t (2 0 0) ;
24 a2 . t r a n s f e r T o (a1) ;
25 Assert . a s s e r t E q u a l s (1 0 0 , a1 . balance) ;
26 Assert . a s s e r t E q u a l s (0 , a2 . balance) ;
27 }
28 public void t e s t T r a n s f e r 3 () { //T5
29 BankAccount a1 = new BankAccount (0 ,−1000) ;
30 BankAccount a2 = new BankAccount (0 , 0) ;
31 a2 . deposi t (2 0 0) ;
32 a1 . t r a n s f e r T o (a2) ;
33 Assert . a s s e r t E q u a l s (0 , a1 . balance) ;
34 Assert . a s s e r t E q u a l s (2 0 0 , a2 . balance) ;
35 }

Listing 4.2: The Bank Account Example - An extended test suite.

47

4. Spectrum-Enhanced Dynamic Slicing

and a2.balance (S2 = {5, 14, 17, 18, 20}) are computed. From these two
slices, 11 minimal diagnoses can be computed by means of an hitting set
algorithm: 3 single fault explanations ({5}, {17} and {18}) and 8 double
fault explanations ({6,14}, {6,20}, {9,14}, {10,14}, {14,19}, {9,20}, {10,20},
and {19,20}). We set the boundary value B = 0 so that the set of Leading
Diagnoses LD is identical to the computed minimal diagnoses ∆S. This
simplifies the computation and eases the traceability of this example. The
results can change somewhat if B is set to a higher value, but it is assumed
that the changes are not substantial. We set the initial fault probabilities
to pF(s) = 1/9 because there are nine different statements contained in
the slices. The fault probabilities for the single fault diagnoses are p(∆i) =
1
9 × (1− 1

9)
8 ≈ 0.043. Those of the double fault probabilities are p(∆j) =

(1
9)

2× (1− 1
9)

7 ≈ 0.005. From the fault probabilities of the diagnoses, we map
back to statements. Statement 5 is only contained in one diagnosis. Therefore,
the fault probability of Statement 5 ppred(5) = p({5}) ≈ 0.043. Statement 6
is contained in two diagnoses ({6,14} and {6,20}). The fault probability of
statement 6 ppred(6) = p({6, 14}) + p({6, 20}) ≈ 0.011. Table 4.1 indicates
the fault probabilities for all statements and the results. The last column of
the table shows that the faulty statement is ranked at position 1, but there
are 2 other statements with the same ranking. Thus, 3 of 9 statements (33 %)
must be investigated.

Table 4.1.: The Bank Account Example - Ranking of the statements based on Shsc. The faulty
statement is marked with •.

Line s ppred(s) p′F(s) Ranking
5 0.043 0.200 1
6 0.011 0.050 6
9 0.011 0.050 6

10 0.011 0.050 6
14 0.022 0.100 4
17 0.043 0.200 1
• 18 0.043 0.200 1

19 0.011 0.050 6
20 0.022 0.100 4

Shsc has two major limitations: First, it is not able to localize faults which
are caused by missing code. Second, it always ranks constructor statements
high since they are part of every slice.

48

4.4. Example of Application

Spectrum-based fault localization

Sfl considers both, passing and failing test cases. Table 4.2 shows the ob-
servation matrix obtained when executing the test cases from Listing 4.2
on the bank account example. The rightmost columns show the computed
coefficients and the resulting ranking when using the Ochiai coefficient. The
faulty statement is ranked at third position together with 3 other statements.
In this case, 6 of 9 statements (67 %) must be investigated.

Table 4.2.: The Bank Account Example - The observation matrix, the Ochiai coefficients and
the subsequent ranking of the statements. The faulty statement is marked with •.

Line T1 T2 T3 T4 T5 Coefficient Ranking
5 • • • • • 0.447 9
6 • • • • • 0.447 9
9 • • • 0.577 3

10 • • • 0.577 3
14 • • • • 0.500 7
17 • • • 0.577 3
• 18 • • • 0.577 3

19 • • 0.707 1
20 • • 0.707 1

Error •

The major drawback of Sfl is its granularity. The finest granularity can only
be a compound statement. This is due to the fact that Sfl cannot distin-
guish statements with identical execution patterns [JAG09]. This drawback is
eliminated in Sendys because of the usage of slices.

Spectrum-enhanced dynamic slicing

Sendys uses the normalized Ochiai coefficients as initial fault probabilities.
Table 4.3 shows the fault probabilities and the resultant ranking. In this case,
only 2 of 9 statements (22 %) must be investigated.

4.4.2. The modified Bank Account example

The combined approach performs better than Shsc when the fault is not
part of the initialization of the program. One might think that it performs
worse when the fault is located in the initialization, since it decreases the
probabilities of these parts. However, this is not the case. In order to illustrate

49

4. Spectrum-Enhanced Dynamic Slicing

Table 4.3.: The Bank Account Example - Ranking of the statements based on Sendys. The
faulty statement is marked with •.

Line s ppred(s) p′F(s) Ranking
5 0.032 0.163 3
6 0.008 0.043 9
9 0.011 0.054 7

10 0.011 0.054 7
14 0.018 0.092 5
17 0.040 0.205 1
• 18 0.040 0.205 1

19 0.012 0.063 6
20 0.024 0.122 4

a fault in the initialization, we modify our example program from Figure 4.1
in the following way:

5. this.balance = balance;

18. if(money>0){

Spectrum-based fault localization

Table 4.4 shows the observation matrix, the computed Ochiai coefficients and
the subsequent ranking for Sfl. The faulty statement is ranked at position 2
together with the other initialization statement. The union of all faulty execu-
tion traces comprises 5 statements. In the worst case, 3 of these 5 statements
(60 %) must be investigated.

Table 4.4.: The modified Bank Account Example - The observation matrix, the Ochiai coeffi-
cients and the statements ranking. The faulty statement is marked with •.

Line T1 T2 T3 T4 T5 Coefficient Ranking
• 5 • • • • • 0.632 2

6 • • • • • 0.632 2
14 • • • • 0.707 1
17 • • • 0.408 4
18 • • • 0.408 4

Error • •

50

4.5. Empirical evaluation

SHSC and SENDYS

For computing the ranking of the statements with the Shsc and Sendys,
the dynamic slices for the test cases T1 (Sa1.balance = {5, 17, 18}) and T3

(Sa2.balance = {5, 14}) are computed. These slices result in 3 minimal diagnoses
({5}, {14,17} and {14,18}). Tables 4.5 and 4.6 summarize the results of Shsc

and Sendys. The faulty statement is ranked at position 1 for both approaches.
This example demonstrates that the combined approach is able to detect
faults in initialization statements with the same accuracy as the original Shsc

approach.

Table 4.5.: The modified Bank Account Example - Ranking of the statements based on Shsc.
The faulty statement is marked with •.

Line s p′F(s) Ranking
• 5 0,429 1

6 0,000 5
14 0,286 2
17 0,143 3
18 0,143 3

Table 4.6.: The modified Bank Account Example - Ranking of the statements based on Sendys.
The faulty statement is marked with •.

Line s p′F(s) Ranking
• 5 0.476 1

6 0.000 5
14 0.262 2
17 0.131 3
18 0.131 3

4.5. Empirical evaluation

The empirical evaluation of Sendys consists of three major parts: (1) the
comparison of Sendys with Sfl and Shsc (Section 4.5.1), (2) the influence of
different similarity coefficients on the fault localization quality (Section 4.5.2),
and (3) the comparison of Sendys with other state-of-the-art debugging
approaches (Section 4.5.3). Before presenting the results, we explain the
prototype implementation of Sendys and introduce the tested programs by
quantitatively and qualitatively describing them.

51

4. Spectrum-Enhanced Dynamic Slicing

Our implementation of Sendys works with Java programs and JUnit test cases.
It utilizes the JavaSlicer1 for obtaining execution traces and dynamic slices.
The spectra information is obtained from the execution traces. Besides the
fact that the used slicer is only a dynamic slicer and not a relevant slicer, the
slicer has some weaknesses [Ham08], which influence the obtained results:
(1) Data dependencies can vanish when a method is called by reflection or
when native code is executed. (2) Due to the restriction to dynamic slices, it
is possible that the real fault is not part of a slice. This is why we have to
exclude faults leading to incomplete slices from the case study. However, we
are still able to proof our concept.

We investigated the 8 programs listed in Table 4.7. BankAccount, Mid, and
StaticExample are toy examples. The BankAccount is the demo example
from Section 4.4. Mid and StaticExample are demo programs which compute
the medial of three numbers or work with static members and methods.
The TrafficLight example is borrowed from the Jade (Java Diagnosis En-
gine) project2 and simulates the different phases of a traffic light. Since this
program does not have any JUnit test cases, we created our own. Atms is
an Assumption-based Truth Maintenance System. The source code of the
previously mentioned programs is publicly available3. ReflectionVisitor is
a Java-implementation of the Visitor-Pattern. JTopas is a text parser and is
taken from the Software Infrastructure Repository [DER05]. Tcas is a Java
Implementation of the traffic collision avoidance [Hut+94] system from the
Siemens Set.

It was not possible to compute the possible fault locations for all available
faulty program versions because of the following three reasons. (1) No slices
can be computed for test cases which produce endless loops. (2) The used
slicer is not able to compute correct slices for all faulty program versions due
to the previously discussed limitations. (3) JTopas includes predefined faults
which are not detected by the available test cases. We excluded program
versions from our case study for which any of these cases applies. Finally,
42 program versions remained for the empirical evaluation. Table 4.7 gives
an overview of the number of faulty program versions used in the evaluation
(see column ‘Faults’). The first number in the brackets indicates the number
of program variants which were excluded from the case study because there
were no failing test cases. The second number indicates the number of variants
which were excluded because of endless loops or limitations in the slicer. The
third number in the brackets indicates the number of program variants that
were used in the evaluation.

1http://www.st.cs.uni-saarland.de/javaslicer/
2http://www.dbai.tuwien.ac.at/proj/Jade/
3http://dl.dropbox.com/u/38372651/Debugging/EP.zip

52

http://www.st.cs.uni-saarland.de/javaslicer/
http://www.dbai.tuwien.ac.at/proj/Jade/
http://dl.dropbox.com/u/38372651/Debugging/EP.zip

4.5. Empirical evaluation

Table 4.7.: Description of the investigated programs including the the Non Commenting
Source Statements (NCSS), the number of test cases (TC) and the number of
investigated faults, which is tripartite: faults with no failing test cases, excluded
faults and investigated faults.

Program NCSS TC Faults
BankAccount 17 5 2(- / - / 2)
Mid 17 8 1(- / - / 1)
StaticExample 16 8 1(- / - / 1)
TrafficLight 33 7 2(- / - / 2)
Atms 1573 14 3(- / 1 / 2)
ReflectionVisitor 338 14 5(- / - / 5)
JTopas - Version 1 1368 127 8(4 / 3 / 1)
JTopas - Version 2 1485 115 12(11/ - / 1)
JTopas - Version 2 3931 183 14(7 / 4 / 3)
Tcas 77 1545 39(- /15/24)

In the following, we use two different metrics: Scoreexec and Scoreloc.
Equations 4.1 and 4.2 illustrate these metrics. Both metrics use the number of
statements that must be investigated until the first statement with a bug is
reached (invest). The Scoreexec metric is the ratio of invest and the number
of executed statements (exec). In contrast, the Scoreloc metric indicates the
ratio of invest and the total number of statements in the program (total).

Scoreexec =
invest
exec

· 100% (4.1)

Scoreloc =
invest
total

· 100% (4.2)

Please note that we always indicate the worst case scenario: If the faulty
statement is ranked at position 14 together with two other statements, the
number of statements that are investigated (invest) is 16. In case of a best
case scenario it would be 14.

4.5.1. SENDYS vs. basic approaches

When comparing the fault localization capabilities of Sendys with those of
the basic approaches, i.e. Shsc and Sfl, it turns out that Sendys leads to
huge savings in the number of statements that must be investigated. Table 4.8
opposes the fault localization capabilities of Sendys to those of Sfl and
Shsc. The FaultID is the unique identification number of the fault. In case of
JTopas, this number consists of the version number and the fault number. It

53

4. Spectrum-Enhanced Dynamic Slicing

Table 4.8.: Comparison of the number of statements that must be investigated when using
Shsc, Sfl (with Ochiai as coefficient) and Sendys. In addition, the table shows how
many statements were executed in total (column ‘Stmt’) in the failing test cases.
Program FaultID Stmt SHSC SFL SENDYS

Bank Account 1 9 3 6 2
2 5 1 3 1

Mid 1 6 5 1 1
StaticExample 1 5 2 2 1

TrafficLight 1 25 14 2 1
2 17 9 17 9

Atms
1 318 226 91 46
2 307 188 55 28

ReflectionVisitor

1 35 17 20 17
2 47 39 7 11
3 119 43 24 15
4 65 46 34 41
5 48 42 5 5

JTopas

1 2 16 3 9 3
2 3 41 7 3 1
3 6 630 258 3 2
3 7 665 253 36 9
3 9 686 389 77 31

Tcas

1 25 21 3 2
2 26 18 14 14
3 29 18 24 17
4 25 21 3 3
5 29 16 22 15
6 24 20 5 5
9 26 22 18 13

12 29 16 24 16
15 29 16 22 14
20 25 21 17 10
21 25 21 17 15
22 26 22 18 17
23 26 22 18 18
24 26 22 18 17
25 26 22 2 2
26 29 17 25 15
28 30 15 14 11
29 27 19 16 8
30 26 18 14 8
31 24 20 5 5
32 25 21 5 5
34 29 29 24 29
35 30 15 14 9
37 29 19 2 1

54

4.5. Empirical evaluation

is obvious that the combined approach performs at least as good as the best
of the two basic approaches. In 25 cases, the combined approach improves
the fault localization precision. In 14 cases, Sendys performs as good as
the better of the original approaches. Only in three cases it performs worse
than Sfl. Figure 4.2 pairwise compares the fault localization capabilities of
Sendys, Sfl and Shsc. Therefore, the data from Table 4.8 was normalized
to the number of executed statements (Scoreexec metric). From Figure 4.2a,
we cannot determine whether Sfl or Shsc performs better. However, the
Figures 4.2b and 4.2c clearly show that Sendys performs better than Sfl and
Shsc.

Table 4.9 summarizes the results from Table 4.8. It compares the overall
effectiveness of Sendys to those of the basic approaches with respect to the
median, the mean value and the standard deviation of number of statements
that must be investigated in order to find the bug. Since the investigated
programs considerably differ in size, we have normalized the raw values
before computing the median, mean value and standard deviation: For each
fault, instead of using the absolute number, we used the ratio of the statements
that must be investigated and the total number of statements that were
executed in the failing test cases in that program version (Scoreexec metric).
From this table, it is obvious that Sendys improves the fault localization
capabilities of Shsc by 50 % and those of Sfl by 25 %.

Table 4.9.: Median, mean value and standard deviation of the Scoreexec metrics for Shsc, Sfl

(using Ochiai as coefficient) and Sendys in %. Lower scores are preferable.

SHSC SFL SENDYS
median 67.37 49.49 22.81
mean 63.95 43.65 31.76
stdev 21.23 28.99 23.97

Figure 4.3 graphically compares the fault localization capabilities of Sendys,
Sfl and Shsc in terms of the amount of code that must be investigated
in order to find the faulty statement. The x-axis represents the percentage
of code that is investigated (Scoreexec metric). The y-axis represents the
percentage of faults that are localized within that amount of code. This figure
reads as follows: If you investigate the top 40 % ranked statements of the
42 investigated faulty program versions, Sendys contains the faulty statement
for 65 % of the program versions. Sfl only contains the faulty statement for
45 % of the program versions, and Shsc for 18 % of the program versions. It
can be seen that Sendys allows to detect faults earlier than with the basic
approaches.

The computational overhead of Sendys is marginal compared to the basic ap-
proaches. In this evaluation, the execution of the test cases absorbs the major

55

4. Spectrum-Enhanced Dynamic Slicing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

SHSC ScoreExec

S
F

L
S

co
re

E
xe

c

(a) Shsc versus Sfl

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

SHSC ScoreExec

S
E

N
D

Y
S

 S
co

re
E

xe
c

(b) Shsc versus Sendys

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

SFL ScoreExec

S
E

N
D

Y
S

 S
co

re
E

xe
c

(c) Sfl versus Sendys

Figure 4.2.: Pairwise comparison of the fault localization capabilities of Sendys, Shsc and Sfl

(with Ochiai as coefficient) in terms of the Scoreexec metric. Data points close to
the red line indicate that the approaches perform equal. Data points below that
line indicate that the approach labeled on the y-axis performs better.

56

4.5. Empirical evaluation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% of inspected statements (ScoreExec)

%
 o

f f
au

lts
 lo

ca
te

d

SHSC
SFL
SENDYS

Figure 4.3.: Comparison of Sendys with Shsc and Sfl (with Ochiai as coefficient) in terms of
the amount of code that must be investigated.

57

4. Spectrum-Enhanced Dynamic Slicing

part of the total computation time. For the larger programs (Atms, JTopas,
ReflectionVisitor and Tcas), the spectra creation and coefficients computation
requires approximately 10 % of the time required for the execution. The com-
putation time of the slices and hitting sets ranges from 10 % to 25 % of the
execution time. The computations of Sendys (Slice and spectra computation,
hitting sets, fault probabilities) account for 20 % to 35 % of the total execution
time.

4.5.2. Comparison of different similarity coefficients

So far, our experiments have been performed using the Ochiai coefficient.
We have chosen the Ochiai coefficient since studies [AZG06; Abr+09b] have
shown that Ochai delivers better results than other similarity coefficients.
However, Sendys is able to work with other coefficients as well. Table 4.10
shows the amount of statements that must be investigated in percentage of the
executed statements (Scoreexec) when using different similarity coefficients.
This table affirms that Ochiai performs better than Tarantula [JH05] and
Jaccard [Zoe+07]. In addition, it shows that using Sendys improves the fault
localization capabilities. Figure 4.4 illustrates the fault localization capabilities
of Sendys with different similarity coefficients. The figure compares Sendys

based on the different similarity coefficients with the basic coefficients in
terms of the amount of code that must be investigated in order to find the
faulty statement.

Table 4.10.: Average percentage of statements that must be investigated in order to find the
faulty one on basis of the total number of executed statements (Scoreexec) for
different similarity coefficients.

Ochiai Tarantula Jaccard
Standalone 43.5 52.3 46.0
Part of Sendys 31.7 33.7 34.8

4.5.3. Comparison with other approaches

Similar to our approach, Barinel and Deputo are approaches that combine
Sfl with Mbsd. Therefore, we compare the fault localization capabilities
of Sendys with those of Deputo and Barinel. The following evaluation is
performed on Tcas from the Siemens Set [DER05]. The prototypes of Deputo

and Barinel work with programs written in C. The prototype of Sendys is
implemented for Java programs. Therefore, the original C version of Tcas

is used for evaluating Deputo and Barinel and a Java implementation for
evaluating Sendys. The C version comprises 105 Non Commenting Source

58

4.5. Empirical evaluation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% of inspected statements (ScoreExec)

%
 o

f f
au

lts
 lo

ca
te

d

Ochiai
SENDYS−Ochiai
Tarantula
SENDYS−Tarantula
Jaccard
SENDYS−Jaccard

Figure 4.4.: Comparison of Sendys with different similarity coefficients in terms of the amount
of code that must be investigated.

59

4. Spectrum-Enhanced Dynamic Slicing

Statements (NCSS) and 1608 test cases. The Java version comprises 77 NCSS
and 1545 test cases. Both program variants have the same faulty program
versions. A fault consists of one to three faulty code lines. Because of the
different numbers of NCSS, we make use of the Scoreloc metric to compare
the three fault localization approaches.

Table 4.11 shows the Scoreloc for Sfl, Mbsd, Barinel, Deputo, Shsc, and
Sendys for some of the faulty program versions of Tcas. This table only
shows the results for those faulty Tcas variants where all approaches where
able to produce results. The table shows that on average, the combined
approaches perform better than their basic approaches. Deputo has the best
fault localization capabilities with an average Scoreloc of 5.55 %. The basic
approaches Sfl (Scoreloc: 17.27 %) and Shsc (Scoreloc: 25.58 %) perform
worst. Shsc is a low level variant of Mbsd. Mbsd is in general known to
be computational complex. However, Shsc comes with low computational
costs, but is less precise than other Mbsd techniques. When using Mbsd,
on average only 11.30 % of the source code must be investigated until the
fault location is found. However, Deputo and Mbsd are only suited for
small programs, because they do not scale to large software systems. Due
to their (comparable) small time/space complexity, Barinel and Sendys are
alternatives for debugging larger systems. Barinel has an average Scoreloc

of 17.10 %. Sendys has an average Scoreloc of 14.74 %.

Figure 4.5 gives a graphical overview of the fault localization capabilities of
the discussed approaches. It plots the percentage of located faults in terms of
the percentage of inspected code (i.e., effort to find the root cause). From this
figure, it can be observed that the combined approaches largely outperform
their basic approaches.

4.6. Conclusion

Sendys (short for Spectrum-ENhanced DYnamic Slicing) combines Sfl with
slicing-hitting-set-computation (Shsc). The approach solves some disadvan-
tages of Sfl and Shsc that occur when applying them individually. We
discussed the Sendys approach in detail and compared its outcome with the
individual approaches in an empirical study. This empirical study indicates
that the combined approach outperforms Sfl and Shsc. Sendys provides
an improved ranking of fault candidates. Thus, Sendys is a valuable aid
for programmers when debugging. In particular, Sendys improves the fault
localization capabilities of Shsc by 50 % and those of Sfl by 25 %. A handicap
of the basic approaches as well as of Sendys and many other debugging
techniques is the lack of the ability to advise the programmer that the fault

60

4.6. Conclusion

Table 4.11.: Scoreloc in [%] for Sfl, Mbsd, Barinel, Deputo, Shsc, and Sendys for the faulty
program versions of Tcas. Ochiai was used as similarity coefficient.

Fault SFL MBSD BARINEL DEPUTO SHSC SENDYS
1 0.95 19.05 0.95 0.95 27.27 2.60
2 4.76 4.76 4.76 3.81 23.38 18.18
3 4.76 12.38 4.76 3.81 23.38 22.08
4 39.05 19.05 39.05 10.48 27.27 3.90
5 39.05 9.52 39.05 6.67 20.78 19.48
6 13.33 18.10 13.33 13.33 25.97 6.49
9 39.05 10.48 39.05 10.48 28.57 16.88

12 12.38 8.57 13.33 4.76 20.78 20.78
15 18.10 9.52 18.10 5.71 20.78 18.18
20 36.19 19.05 33.33 6.67 27.27 12.99
21 12.38 19.05 9.52 9.52 27.27 19.48
22 14.29 8.57 14.29 8.57 28.57 22.08
23 39.05 10.48 39.05 10.48 28.57 23.38
24 12.38 18.10 13.33 12.38 28.57 22.08
25 2.86 9.52 2.86 2.86 28.57 2.60
26 2.86 10.48 2.86 2.86 22.08 19.48
28 39.05 1.90 39.05 1.90 19.48 14.29
29 12.38 2.86 9.52 2.86 24.68 10.39
31 0.95 17.14 0.95 0.95 25.97 6.49
32 0.95 15.24 0.95 0.95 27.27 6.49
34 0.95 9.52 0.95 0.95 37.66 37.66
35 15.24 1.90 15.24 1.90 19.48 11.69
37 36.19 4.76 39.05 4.76 24.68 1.30

Avg. 17.27 11.30 17.10 5.55 25.58 14.74

61

4. Spectrum-Enhanced Dynamic Slicing

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

% of inspected statements (ScoreLoc)

%
 o

f l
oc

at
ed

 b
ug

s

SFL
MBSD
SHCS
Barinel
Deputo
Sendys

Figure 4.5.: Comparison of Deputo, Barinel, and Sendys with their basic approaches in terms
of the amount of code that must be investigated.

62

4.6. Conclusion

might be caused by missing code. Similar to the original approaches, the
introduced approach highly depends on the quality of the test suite.

In addition, we compared different coefficients used for ranking statements.
The empirical results show that Ochiai is performing best compared to
Tarantula and Jaccard. Furthermore, we showed that using Sendys improves
the fault localization quality independently of the used similarity coefficient.
In the third part of the empirical evaluation, we compared Sendys with
Deputo and Barinel. Deputo outperforms Sendys, but is only applicable
to small programs. Therefore, Sendys is a good alternative to Deputo since
Sendys scales to large programs and performs slightly better than Barinel.
However, a general recommendation for preferring Sendys over Barinel is
not given, since the evaluation basis is too small.

63

5. Constraint-Based Slicing

This chapter is based on the work published in [HW12b] and [HW12a].

5.1. Introduction

Conbas (short for CONstraint BAsed Slicing) is a method that increases
the precision of automated fault localization by improving existing program
slicing techniques. Dynamic slicing and its variations significantly reduce
the size of slices. However, slices could still be too large to be of practical
use. Large slices are obviously not a good help when debugging. Therefore,
we focus on providing a methodology that allows for reducing the size of
dynamic slices. Reducing the size of dynamic slices improves the debugging
capabilities of dynamic slicing.

In the following, we make use of the running example illustrated in Figure 5.1,
the Taste example, in order to demonstrate our approach. The Taste example
is borrowed from the Unravel project1. The method getTastes takes four
Integer values representing colors as input and returns an Integer array con-
taining tastes. There is a fault in Line 3: Instead of red=red*2; the expression
red=red*5; would be correct. In order to reveal the bug, we have used the
test case defined by Gupta et al. [Gup+05]:

Input: getTastes(1,5,8,2)

Expected Output: result = {49,40,40,7}

Figure 5.1 shows the resultant execution trace when applying the test case on
the Taste example.

The inserted fault causes the computation of wrong values for the variables
bitter, sweet and sour. We trace back the data and control dependencies in
order to compute the possible root causes. The resultant slices are:

Sbitter = {T, 3, 5, 6, 7, 8, 9, 12, 13, 14}
Ssweet = {T, 3, 4, 14}
Ssour = {T, 3, 5, 6, 7, 8, 9, 14}

1http://hissa.nist.gov/unravel/

65

http://hissa.nist.gov/unravel/

5. Constraint-Based Slicing

1 public i n t [] g e t T a s t e s (i n t red , i n t blue ,
i n t green , i n t yellow) {

2 i n t sweet , sour , s a l t y , b i t t e r ;
3 red = red ∗ 2 ; //Error : red = red ∗ 5
4 sweet = red ∗ green ;
5 sour = 0 ;
6 i n t i = 0 ;
7 while (i < red) {
8 sour = sour + green ;
9 i = i + 1 ;

10 }
11 s a l t y = blue + yellow ;
12 yellow = sour + 1 ;
13 b i t t e r = yellow + green ;
14 return { b i t t e r , sweet , sour , s a l t y } ;
15 }

Listing 5.1: The Taste example. There is a bug in Line 3.

N Statements
T1 getTastes(1,5,8,2)

32 red = red * 2

43 sweet = red * green

54 sour = 0

65 i = 0

76 while (i < red)

87 sour = sour + green

98 i = i + 1

79 while (i < red)

810 sour = sour + green

911 i = i + 1

712 while (i < red)

1113 salty = blue + yellow

1214 yellow = sour + 1

1315 bitter = yellow + green

1416 return {bitter,sweet,sour,salty}

Figure 5.1.: An execution trace for the Taste example. The column N indicates which of the
executed statements are the test case statement (marked with T) and which are
part of the tested code (marked with the corresponding source code line number).
The exponent consecutively numbers the statements in order of their execution.

66

5.1. Introduction

The intersection of all slices only comprises the statements from Line 3,
Line 14, and the test case statement T. However, computing the intersection
may not be a good idea in case of multiple faults. Some of the faulty state-
ments might be absent in some slices. Since the intersection only contains
statements that are part of all slices, the faulty statements might be missing
in the intersection. In particular, this is the case if there are at least two faults
which influence the output of different variables.

The union of all slices comprises all statements of the execution trace except
the statement in Line 11. This reduction is too small to be a valuable help
for a programmer when debugging. In short, whereas the intersection of all
slices is too restrictive, the union of all slices allows too many statements.
Hence, improving the slicing result is highly needed.

How is it possible to reduce the size of a slice without loosing its fault
localization capabilities? The answer to this question is motivated by the
following three observations: (1) Using data and control dependencies reduces
the number of potential root causes. Statements that have no influence on
faulty variables can be ignored. (2) During debugging, programmers make
assumptions about the correctness or in-correctness of statements. From
these assumptions, they try to predict a certain behavior, which should
not be in contradiction with the expectations. (3) Backward reasoning, i.e.,
deriving values for intermediate variables from other variables, is essential to
further reduce the number of fault candidates. For this purpose, statements
are not interpreted as functions that change the state of the program but as
equations. This kind of interpretation allows us to derive the input value from
output values. Further reductions of fault candidates can be obtained when
considering alternative execution paths. However, considering alternative
execution paths is computationally more demanding than considering the
execution trace of a failing test case only. Because of this computational
complexity, alternative execution paths are not considered in Conbas.

Conbas contributes to the field of debugging by improving dynamic slicing
with respect to the computed number of bug candidates. Conbas is not de-
signed as standalone debugging method, but rather as part or pre-processing
step used in other debugging techniques. The remainder of this chapter is
organized as follows: We compare Conbas to related work in Section 5.2. We
formalize the approach in Chapter 5.3 and explain the usage of the algorithm
by means of a running example in Section 5.4. In the empirical evaluation
(Section 5.5), we show that Conbas is able to reduce the size of slices for
programs with single and double faults without losing the fault localization
capabilities. Conbas achieves a 28 % reduction of slice sizes compared to
dynamic slicing. In Section 5.6, we discuss the benefits and limitations of the
approach as well as future work and conclude.

67

5. Constraint-Based Slicing

5.2. Related Research

In principle, Conbas is based on [Wot11]. In constrast to [Wot11], Conbas

does not ignore control flow statements. This allows Conbas to reason about
diagnoses affecting the control flow of a program. In [Wot11], bugs that
change only the control flow but do not directly modify the values of any
variables are not in the set of the remaining diagnoses. This conceptional flaw
is eliminated in Conbas.

For retrieving the formal representation of a program Π, we basically rely on
the work of Nica et al. [NNW12; WNM12]. However, Conbas and [NNW12;
WNM12] differ in two major aspects: (1) Nica et al. represent all possible
execution paths up to a specified size as constraints. In contrast, Conbas only
uses the current execution path. It is not necessary to explicitly unroll loops.
As a consequence, the representation becomes smaller and the modeling
easier. On the contrary, we loose information of the program and we are not
able to eliminate candidates that impact the execution path. Even though,
Conbas cannot match with results from Nica et al., our approach executes
faster. (2) We compute diagnoses via the hitting set algorithm and only use a
constraint solver to check whether a solution can be found. In contrast, Nica
et al. use a constraint solver to obtain the diagnoses directly.

Gupta et al. [Gup+05] also developed an approach to reduce the size of slices.
Their approach combines delta debugging with forward and backward slices
for computing the failure-inducing chop. This technique requires a test oracle.
In contrast, Conbas does not require an oracle because no additional test
cases are created.

Zhang et al. [ZGG06] reduce the size of dynamic slices via confidence values.
Similar to Conbas, their approach requires only one failing execution trace.
However, their approach requires one output variable with a wrong value and
several output variables where the computed output is correct. In contrast,
Conbas requires at least one output variable with a wrong value, but no
correctly computed output variables.

Jeffrey et al. [JGG08] identify potential faulty statements via value replace-
ment. They systematically replace the values used in statements so that the
computed output becomes correct. The original value and the new value are
stored as an Interesting Value Mapping Pair (IVMP). They state that IVMPs
typically occur at faulty statements or statements that are directly linked
via data dependencies to faulty statements. They limit the search space for
the value replacement to values used in other test cases. We do not limit
the search space to values used in other test cases. Instead, our constraint
solver determines if there exist any values for the variables in an abnormal
statement so that the correct values for the test cases can be computed. On

68

5.3. The CONBAS algorithm

the one hand, our approach is computationally more expensive, but on the
other hand it does not depend on the quality of other test cases. As Jeffrey et
al. stated, the presence of multiple faults can diminish the effectiveness of the
value replacement approach. In contrast, the Conbas approach is designed
for handling multiple faults.

5.3. The CONBAS algorithm

The basic idea of Conbas is to reduce the size of summary slices. Therefore,
the minimal diagnoses are computed and further reduced with the aid of a
constraint solver. The execution trace of a failing test case is converted into
constraints. The constraint solver checks for satisfiability of the converted
execution trace assuming that the statements of a diagnosis are incorrect. If
the constraint system is not satisfiable, the diagnosis is rejected. Otherwise,
the diagnosis is presented to the programmer. Figure 5.2 gives an overview
of the Conbas approach.

Algorithm 5.1 explains the Conbas approach in detail. In Line 1, the test
case t is executed on a program Π using the function Run(Π, t). This function
returns the resulting execution trace ET and the set of conflicting variables CV.
In the Lines 2 to 6, the relevant slices are computed for all conflicting vari-
ables CV by means of the function RelevantSlice(ET, Π, x, n) (see Algo-
rithm 3.1), at which |ET| is established for n. The relevant slices are stored
in the conflict set CO, which is a set of sets. In Line 7, the minimal hitting
sets (see Definition 15 and Algorithm 3.5) of the set of slices are computed.
In the Lines 8 to 14, the relevant slices SCc are computed for all conditional
statements c in ET. The function PositionInExecutionTrace(c, ET) is used
to obtain the line number of c in the execution trace.

Some bugs cause a wrong evaluation of a condition and thus lead to the
non-execution of statements. In order to handle such bugs, the function
ExtendControlStatements(ET, Π) in Line 15 adds a small overhead to each
control statement c in the execution trace ET: For each variable v that could
be redefined in any branch of c, the statement v=v is added to the execution
trace ET. These additional statements are inserted after all statements that are
control-dependent on c. The inserted statements will be referenced by the line
number of c when calling the function Index in Algorithm 3.3. The returned
execution trace is assigned to ETC. With this extension, we are able to reason
over faults that cause the non-execution of statements. This extension can be
compared with potential data dependencies in relevant slicing.

In Line 16, the function Ssa(ETC) (see Algorithm 3.2) transforms the execution
trace ETC into its single static assignment form and also delivers the largest

69

5. Constraint-Based Slicing

Execution

trace ET

Test Case t Program π

Diagnoses S

Test Case
Runner

Constraint
solver

Extended ETc

Static Single

Assigment ETSSA

Constraints CS

Conflicting

Variables CV

Relevant

Slices Sx

Cond. Rel.

 Slices Sc

Minimal Diagnoses

(=Hitting Sets) HS

Values for the

predicate AB

Figure 5.2.: The Conbas approach

70

5.3. The CONBAS algorithm

Algorithm 5.1 Conbas(Π, t)
Require: Program Π and failing test case t
Ensure: Dynamic slice S

1: [ET, CV] = Run(Π, t)
2: Conflict set CO = {}
3: for all x ∈ CV do
4: Sx = RelevantSlice(ET, Π, x, |ET|)
5: CO = CO∪ {Sx}
6: end for
7: HS = MinHittingSets(CO, |Π|)
8: for all c ∈ ET do
9: n = PositionInExecutionTrace(c, ET)

10: for all variables x in c do
11: SCx = RelevantSlice(ET, Π, x, n)
12: end for
13: SCc = ∪ SCx
14: end for
15: ETC = ExtendControlStatements(ET, Π)
16: [ETSSA, IndexSsa] = SSA(ETC)
17: CS = Constraints(ETSSA, t, IndexSsa)
18: S = {}
19: for all d ∈ HS do
20: ∀i ∈ d : AB(i) = true
21: ∀i /∈ d : AB(i) = false
22: ∀c where SCc ∩ d 6= {} : AB(c) = true
23: if ConstraintSolver(CS∪AB) has solution then
24: S = S ∪ {d}
25: end if
26: end for
27: return S

71

5. Constraint-Based Slicing

index value for each variable used in the Ssa form. In Line 17, the function
Constraints(ETSSA,t,IndexSsa) (see Algorithm 3.3) converts each statement
into its equivalent constraint representation. The statements added in the
function extendControlStatements(ET, Π) (v=v, in Ssa form: vi+1 = vi)
are concatenated with the predicate AB(j): AB(j) ∨ vi+1 = vi where j is the
index of the conditional statement.

The result set S represents the set of possible faulty statements. Initially, the
result set is the empty set. For all minimal hitting sets d in the set of minimal
hitting sets HS, we check if the constraint solver is able to find a solution. For
this purpose, we set all AB(i) to false except those where the corresponding
statements are contained in d. For all conditional statements c where SCc
and d have at least one common element, we set AB(c) to true. The function
ConstraintSolver(CS∪AB) calls a constraint solver and returns true if the
constraint solver is able to find a solution. If a solution is found, we add all
elements of d to the result set S (Lines 19 to 26). Finally, we return the set S
containing all valid diagnoses (Line 27).

Algorithm Conbas terminates if the program Π terminates when executing
test case t. The computational complexity of Conbas is determined by the
computation of the relevant slices, the hitting sets, and solving of the Csp.
Computing relevant slices only adds a small overhead compared to the
execution of the program. Hitting set computation and constraint solving are
exponential in the worst case (finite case). In order to reduce the computation
time, the computation of hitting sets can be simplified: We only compute
hitting sets of the size 1 or 2, i.e., we only compute single and double
fault diagnoses. Faults with more involved faulty statements are unlikely in
practice. Only in cases where the single and double fault diagnoses cannot
explain an observed misbehavior, the size of the hitting sets is increased.
The complexity of the Csp is determined by its hypertree width [Wot+09].
However, Wotawa et al. [Wot+09] have shown that there exists no constant
upper-bound for the hypertree width of arbitrary programs.

5.4. Example of application

We demonstrate the functioning of Conbas by means of the running example
from Listing 5.1. The execution trace ET and the slices are shown in Section 5.1.
The set of minimal hitting sets HS are computed from the slices Ŝ:

HS = {{3}, {14}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 9}}

The slice for the conditional statement in Line 7 is:

SC(i<red) = {3, 6, 9}

72

5.4. Example of application

The execution trace is extended by the conditional statement conversion. In
addition, the method call getTastes(1,5,8,2) is split into four assignment
statements. Afterwards, the extended execution trace is converted into its
static single assignment form. Figure 5.3 shows the extended and converted
execution trace.

N SSA converted statements ETCCC
T red0 = 1
T blue0 = 5
T green0 = 8
T yellow0 = 2
3 red1 = red0 ∗ 2
4 sweet0 = red1 ∗ green0
5 sour0 = 0
6 i0 = 0
7 while(i0 < red1)
8 sour1 = sour0 + green0
9 i1 = i0 + 1
7 while(i1 < red1)
8 sour2 = sour1 + green0
9 i2 = i1 + 1
7 while(i2 < red1)
7 sour3 = sour2 •
7 i3 = i2 •

11 salty0 = blue0 + yellow0
12 yellow1 = sour3 + 1
13 bitter0 = yellow1 + green0
14 return{bitter0, sweet0, sour3, salty0}

Figure 5.3.: An extended, Ssa converted execution trace for the Taste example. The column N
indicates which of the executed statements are test case statements (marked with
T) and which are part of the tested code (marked with the corresponding source
code line number). The statements marked with a • are those statements that are
added through the function ExtendControlStatements(ET, Π).

The resultant Ssa execution trace is converted into constraints. All statements
are concatenated with their ABi variable through a logical or. In addition,
the expected test output is added. After the conversion, we obtain the set of
equations illustrated in Figure 5.4.

Finally, the abnormal variables ABi are systematically set to true. For each
minimal hitting set d, a constraint solver is called with the previously com-
puted constraints and the current AB variable configuration. The following

73

5. Constraint-Based Slicing

N Constraints
T red0 == 1
T blue0 == 5
T green0 == 8
T yellow0 == 2
3 AB3 ∨ red1 == red0 ∗ 3
4 AB4 ∨ sweet0 == red1 ∗ green0
5 AB5 ∨ sour0 == 0
6 AB6 ∨ i0 == 0
8 AB8 ∨ sour1 == sour0 + green0
9 AB9 ∨ i1 == i0 + 1
8 AB8 ∨ sour2 == sour1 + green0
9 AB9 ∨ i2 == i1 + 1
7 AB7 ∨ sour3 == sour2
7 AB7 ∨ i3 == i2

12 AB12 ∨ yellow1 == sour3 + 1
13 AB13 ∨ bitter0 == yellow1 + green0
T bitter0 == 49
T sweet0 == 40
T sour3 == 40

Figure 5.4.: The constraint representation of the execution trace for the Taste example. The
column N indicates which of the executed statements are test case statements
(marked with T) and which are part of the tested code (marked with the corre-
sponding source code line number).

74

5.5. Empirical evaluation

AB configurations are possible:

{{3 + 7}, {14}, {4, 5}, {4, 6 + 7}, {4, 7}, {4, 8}, {4, 9 + 7}}

All sets d where the constraint solver finds a solution are added to solution
set S. Finally, S contains the statements {3, 4, 5, 6, 7, 8, 9}. The statements in
Line 12 and 13 cannot explain the obtained misbehavior.

5.5. Empirical evaluation

The empirical evaluation of Conbas consists of two major parts: (1) We
show that Conbas is able to reduce the size of slices without losing the fault
localization capabilities of slicing. We show this for single faults as well as
for double faults. (2) We investigate the influence of the number of output
variables on the reduction result.

We conducted this empirical evaluation using a proof of concept imple-
mentation of Conbas. This implementation accepts programs written in the
language L (see Chapter 3). In order to test existing example programs,
we have extended the language L to accept simple Java programs, i.e. Java
programs with Integer and Boolean data types only and without method
calls and object-orientation. The implementation itself is written in Java and
comprises a relevant slicer and an interface to the Minion constraint solver
[GJM06]. The evaluation was performed on an Intel Core2 Duo processor
(2.67 GHz) with 4 GB RAM and Windows XP as the operating system. Be-
cause of the used constraint solver, only programs comprising Boolean and
Integer data types (including arrays of Integers) can be directly handled.
The restriction to Boolean and Integer domains is only a limitation of the
prototype implementation but not a limitation of Conbas.

For this empirical evaluation, we have computed all minimal hitting sets. We
did not restrict the size of the hitting sets. However, since we only deal with
single and double faults, hitting sets of the size 1 and 2 would be sufficient.
This reduction would improve our results concerning the number of final
diagnoses and the computation time.

For the first part of the empirical evaluation, we use the ten example programs
listed in Table 5.1. Most of the programs implement numerical functions using
conditional statements. The programs IfExample, SumPower, TrafficLight,
and WhileLoops are borrowed from the JADE project2. The program Taste is
borrowed from the Unravel project3. Table 5.1 depicts the obtained results
and contains the following data:

2http://www.dbai.tuwien.ac.at/proj/Jade/
3http://hissa.nist.gov/unravel/

75

http://www. dbai.tuwien.ac.at/proj/Jade/
http://hissa.nist.gov/unravel/

5. Constraint-Based Slicing

Table 5.1.: Conbas results for single faults

Program V LOC Exec. Con. Int. Total Valid Sum. Red. Time
trace var. diag. diag. Slice Slice in ms

AKSWT

1 12 14 29 8 6 5 6 5 656
2 12 17 39 11 3 3 6 3 203
3 12 14 29 8 6 5 6 5 500
4 12 4 3 2 2 1 2 1 141
5 12 20 45 12 3 3 6 3 219

ProdSum

1 14 14 29 10 6 6 6 6 469
2 14 14 31 11 7 6 8 7 469
3 14 11 22 9 7 5 8 6 453
4 14 14 31 11 3 3 8 3 203
5 14 11 22 9 3 2 8 2 188

PowerFunc.

1 15 15 25 9 9 8 9 9 625
2 15 9 9 5 6 5 6 6 359
3 15 12 16 7 9 7 9 8 578
4 15 15 23 9 4 4 9 5 250
5 15 15 23 9 4 4 9 5 266

Multiplicat.

1 16 13 26 12 10 6 10 7 672
2 16 14 25 9 8 8 8 8 500
3 16 10 17 9 4 1 8 2 422
4 16 11 19 7 6 3 8 3 375
5 16 16 33 13 4 4 10 4 344

Divide

1 15 24 55 17 10 10 10 10 735
2 15 26 62 22 12 12 12 12 906
3 15 13 26 8 8 8 8 8 500
4 15 10 18 6 4 3 8 3 250
5 15 7 10 4 6 5 6 5 359

IfExamples
1 7 4 4 2 3 3 3 3 172
2 8 3 3 2 2 1 2 1 110
3 14 4 2 1 2 1 3 2 125

SumPowers

1 22 43 89 25 12 7 13 8 1141
2 22 7 8 4 2 1 6 3 125
3 22 7 8 4 2 1 6 3 109
4 22 28 51 15 11 11 12 12 907
5 22 28 58 17 12 12 13 13 890

TrafficLight 1 17 61 80 12 11 1 11 4 1078
2 17 44 63 12 6 1 6 2 500

WhileLoops
1 14 52 99 14 7 7 7 7 719
2 14 12 19 6 6 3 6 3 406
3 14 52 99 14 7 7 7 7 719

Taste

1 15 10 21 11 4 4 7 5 266
2 15 10 21 11 4 4 7 5 250
3 15 28 69 23 6 6 9 7 469
4 15 25 61 21 6 6 9 7 453
5 15 19 45 17 6 6 9 7 438

Average 15.1 18.1 34.1 10.4 6.0 4.9 7.7 5.5 454

76

5.5. Empirical evaluation

• the name of the program (Program),
• the fault version (V),
• the number of lines of code (LOC),
• the size of the execution trace (Exec. trace),
• the number of constraints (Con.),
• the number of internal variables in the CSP (Int. var.),
• the number of minimal diagnoses that are computed by the hitting set

algorithm (Total diag.),
• the number of minimal diagnoses that are satisfiable by the constraint

solver (Valid diag.),
• the number of statements contained in the union of the relevant slices

of all faulty variables (Sum. Slice),
• the number of statements in the reduced slice (Red. Slice), and
• the computation time of Conbas in milliseconds (Time).

Our results show that on average, the size of the slice is reduced by more than
28 % compared to the size of the corresponding summary slice. Figure 5.5
illustrates the relation of size of the program, the summary slice, and the
reduced slice for the data presented in Table 5.1.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 1 2 3 1 2 3 4 5
0

5

10

15

20

AKSWT ProdSum PowerFunc. Multiplicat. Divide IfEx. SumPow. TL. WL. Taste

N
um

be
r

of
 s

ta
te

m
en

ts

LOC
Summary Slice
Reduced Slice

Figure 5.5.: Comparison of the number of statements in total (LOC), in the summary slice and
in the reduced slice. The used program variants deal with single faults.

Figure 5.6 illustrates the relation of the number of minimal diagnoses (To-
tal diag.) and the number of valid minimal diagnoses (Valid diag.) for the
data presented in Table 5.1. Conbas is able to eliminate about 20 % of the
diagnoses.

In order to estimate the computation time for larger programs, we have

77

5. Constraint-Based Slicing

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 1 2 3 1 2 3 4 5
0

2

4

6

8

10

12

AKSWT ProdSum PowerFunc. Multiplicat. Divide IfEx. SumPow. TL. WL. Taste

N
um

be
r

of
 d

ia
gn

os
es

Total diag.
Valid diag.

Figure 5.6.: Comparison of the number of minimal diagnoses and the number of valid minimal
diagnoses. The used program variants deal with single faults.

2 4 6 8 10 12
0

200

400

600

800

1000

1200

Total diagnoses

T
im

e

Data points
Least squares fit

Figure 5.7.: The correlation of the number of diagnoses to be tested (‘Total diag.’) and the
computation time (‘Time’, in milliseconds)

78

5.5. Empirical evaluation

investigated if there exists a correlation between the time required for Conbas

and (1) the LOC, (2) the size of the execution trace (Exec. trace), (3) the
number of constraints (Con.), or (4) the number of diagnoses to be tested
for satisfiability (Total diag.). We found out that the strongest correlation is
between the execution time and the number of diagnoses to be tested for
satisfiability. Figure 5.7 illustrates this correlation. The data points represent
the data from Table 5.1. The red line represents the least squares fit as an
approximation of the data.

One advantage of Conbas is that it is able to reduce slices of programs
which contain two or more faults. In order to demonstrate this, we have
performed a small evaluation on double faults. For this, we combined some
faults used in the single fault evaluation. The faults were not combined
according a particular schema (i.e. masking of faults or avoiding masking
of faults). We only made the following restriction: Faulty program versions
were not combined if the faults were in the same program line. The reason
for this is, that two faults in the same line can be seen as one single fault.
Table 5.2 shows the results obtained when executing Conbas on these new
program versions. The table contains the following data:

• the name of the program (Program),
• the fault version (V),
• the number of lines of code (LOC),
• the number of statements contained in the union of the relevant slices

of all faulty variables (Summary Slice),
• the number of statements in the reduced slice (Reduced Slice), and
• the number of faults contained in the reduced slice (Faults in Red. Slice).

Sometimes, it can be seen that only one of the two faults is contained in the
reduced slice. The reason for this is that one fault can be masked by the other
fault. Conbas guarantees that at least one of the faults is contained in the
reduced slice. This is not a limitation since a programmer can fix the first bug
and then apply Conbas again on the corrected program. Figure 5.8 shows
the relation of the size of the program, the summary slice, and the reduced
slice for the investigated double faults. On average, the summary slice can be
reduced by 50 %.

In the second part of the empirical evaluation, we investigate if more faulty
output variables allow for a higher reduction of the summary slice. For this
purpose, we use the circuits C17 and C432 of the Iscas 85 [BF85] benchmark.
The Iscas 85 circuits describe combinational networks. We have chosen
this benchmark, because the different circuits of Iscas 85 have many input
and output variables. The circuit C17 has 5 input variables and 2 output
variables. The circuit C432 has 36 input variables and 7 output variables.
For the evaluation, we have used test cases with different input and output

79

5. Constraint-Based Slicing

Table 5.2.: Conbas results for double faults

Program V LOC Summary Reduced Faults in
Slice Slice Red. Slice

Taste

6d 15 9 6 2
7d 15 9 6 2
8d 15 7 4 2
9d 15 9 5 2

10d 15 7 4 2
11d 15 7 4 2
12d 15 9 6 2
13d 15 9 6 2
14d 15 9 6 2
15d 15 9 2 2

SumPowers

6d 22 6 1 1
7d 22 12 7 1
8d 22 13 7 2
9d 22 6 1 1

10d 22 6 1 1
11d 22 12 7 1

WhileLoops
4d 14 6 3 1
5d 14 7 7 1
6d 14 6 3 1

ProdSum

6d 14 8 3 1
7d 14 8 3 1
8d 14 8 3 1
9d 14 8 2 1

10d 14 8 2 2
11d 14 8 2 1

Average 16.3 8.2 4.0

6d 7d 8d 9d 10d 11d 12d 13d 14d 15d 6d 7d 8d 9d 10d 11d 4d 5d 6d 6d 7d 8d 9d 10d 11d
0

5

10

15

20

Taste SumPow. WhileLoops ProdSum

N
um

be
r

of
 s

ta
te

m
en

ts

LOC
Summary Slice
Reduced Slice

Figure 5.8.: Comparison of the number of statements in total (LOC), in the summary slice and
in the reduced slice. The used program variants deal with double faults.

80

5.5. Empirical evaluation

combinations. We used a maximum of three faulty output variables. In
total, we created more than 150 program variants. Table 5.3 summarizes the
obtained results for the two circuits of the Iscas 85 benchmark. The column
headings are similar to those used in Table 5.1. Therefore an explanation of
the column headings can be found there. The results show that Conbas is
able to reduce the size of the summary slice by 66 %.

Table 5.3.: Summary of the Conbas results for the Iscas 85 benchmark

Circuit LOC Exec. Con. Int. Total Valid Sum. Red.
trace var. diag. diag. Slice Slice

C17 31 14 26 25 12.0 5.9 9.3 5.1
C432 832 398 646 662 874.5 373.7 328.6 108.3
Average 339.1 161.7 264.5 270 343.8 147.3 132.1 44.8

0

10

20

30

40

50

60

70

80

90

100

1 2 3
Number of faulty output variables

R
ed

uc
tio

n
in

 [%
]

Figure 5.9.: Comparison of the Reduction quality for a different number of faulty output
variables for the Iscas 85 benchmark. The used program variants deal with single
faults. For each box, the red line represents the median. The edges of the box are
the 25th and 75th percentiles. The diamonds indicate the arithmetic mean of the
reduction. The whiskers extend to the most extreme data points not considered
outliers. Outliers are plotted individually as crosses.

Further, we want to analyze whether increasing the number of output vari-
ables leads to a smaller summary slice. In order to answer this question, we
make use of the Reduction metric, which is defined as

Reduction = (1− ReducedSlice
SummarySlice

)× 100 %. (5.1)

81

5. Constraint-Based Slicing

We group the tested program variants by the number of faulty output vari-
ables and compute the Reduction metric for the program variants. Figure 5.9
shows the box plots for the different numbers of output variables. It can
be seen that two and three faulty output variables yield a better reduction
of the slice size than only one output variable. The reason for this is that
there are fewer possible configurations which meet all of the specified output
variables.

5.6. Conclusion

Dynamic program slices are a valuable aid for programmers because they
provide an overview of possibly faulty statements when debugging. They
are used in many automated debugging techniques as a preprocessing step.
However, they are often still too large to be a valuable help. Therefore,
we introduce an approach for reducing the size of slices, named Conbas

(CONstraint Based Slicing). Conbas can be applied even if there exist multiple
faults. In an empirical evaluation, we show that on average, the size of
dynamic slices can be reduced by 28 % for single faults and by 50 % for
double faults with the aid of constraint solving. In addition, we have applied
Conbas on circuits of the Iscas 85 benchmark. These circuits contain many
data dependencies but lack control dependencies. For these types of programs,
Conbas yields a reduction of 66 % on average compared to the union of all
slices.

The objective of Conbas is to improve relevant slicing for debugging. Even
though, other approaches outperform Conbas in certain cases, we point out
two application areas where Conbas should be the preferred method to use.
(1) In case of software maintenance where the root cause for one failing test
case has to be identified. In this case, mostly limited knowledge about the
program is available. Moreover, the programs themselves are usually large,
which makes debugging a hard task. In such a case, low-cost approaches
that require a set of test cases might not be applicable and the application
of heavy-weighted approaches might be infeasible because of computational
requirements. (2) In case of programs with few control statements which need
a more detailed analysis of data dependencies and relationships between
variables. In such a case, Conbas provides the right means for analysis
because of handling data dependencies and constraints between program
variables.

Although, Conbas substantially reduces the number of diagnosis candidates,
there is still room for improvements. The current implementation is not
optimized both in terms of handling different kinds of program language
constructs and time required for performing the analysis. Conbas uses a

82

5.6. Conclusion

dynamic slicer instead of a relevant slicer. Therefore, root causes of failures
might be ignored during the debugging process. Moreover, the integration of
the constraint solver must be improved. In the current implementation, the
calls to the external constraint solver slow down the computation.

Apart from these technical issues, there are some open research questions.
Instead of computing the hitting sets of the slices, the constraint solver can
be directly used to compute all solvable diagnoses of a particular size. Such
an approach would restrict the number of constraint solver calls and also the
time required for computing the hitting sets for the slices. Such an approach
would be very similar to the approaches of Nica and colleagues [NNW12;
WNM12], but it works on execution traces instead of the whole program
representation. Another research challenge is to improve Conbas by using
information about the evaluation of conditions. We have to analyze if taking
the alternative execution path of a condition (e.g. the else path if the condition
evaluates to true) could satisfy the test case. If the change leads to a consistent
program behavior, a root cause is identified. Otherwise, the condition can be
assumed to be correct and removed from the list of fault candidates.

The empirical evaluation of Conbas, especially in comparison with other
approaches, has to be improved. The used programs are rather small. Larger
programs that belong to different application domains have to be used for
evaluation. An empirical study that compares different approaches such as
Sfl with Conbas is necessary in order to structure the general research field
of automated debugging.

Even though, Conbas cannot solve all debugging problems, we are convinced
that Conbas is a valuable technique for improving the debugging process.
Moreover, a combination with other debugging techniques may even increase
its fault localization capabilities.

83

Part III.

Debugging of spreadsheets

85

6. Spreadsheet Engineering
Techniques

Panko and Port [PP12] call End-User Computing “The Dark Matter of Corpo-
rate IT”. They point out that immense risks come from the usage of spread-
sheets, e.g. errors, privacy violations, and trade compliance violations. They
encourage to see spreadsheets as the next level of programming languages.
In particular, Panko and Port encourage people to treat spreadsheet devel-
opment as an engineering discipline. Therefore, this chapter not only gives
an overview of debugging techniques but also addresses work in the field
of spreadsheet engineering, in particular debugging, testing, classification of
error causes and spreadsheet engineering in general.

6.1. Debugging

Abraham and Erwig developed GoalDebug [AE07a; AE05; AE08], a spread-
sheet debugger based on a constraint-based approach and on a mutation
approach. GoalDebug not only focuses on fault localization but also on the
generation of a ranked list of repair suggestions given a set of expected
output values for individual cells. Whenever the computed output of a cell
is incorrect, the user can supply an expected value for a cell. For the given
expected value, GoalDebug delivers a list of possible repairs for the faulty
spreadsheet. The set of possible changes is determined by pre-defined change
inference rules. The subsequent ranking of possible “repairs” is based on
the similarity of the changed formula to the original one. Other mentionable
work of Abraham and Erwig includes the definition of mutation operators
for spreadsheets [AE09]. For example, these mutation operators include ab-
solute value insertion, arithmetic operator replacement and range shrinking
mutation operators. The authors suggest to use these mutation operators
for testing spreadsheets, for evaluating error-detection tools and for seeding
faults into spreadsheets for empirical studies. Another approach developed
by Abraham and Erwig is the UCheck system [AE07b]. UCheck is able to
detect errors that are caused by unit faults. Therefore, they analyze the header
information of spreadsheets and reason about the formulas.

87

6. Spreadsheet Engineering Techniques

Coblenz [CKM05] also reasoned about errors using the header information.
Coblenz introduced the Slate system, short for “A Spreadsheet Language
for Accentuating Type Errors”. This spreadsheet language separates the unit
from the object of measurement. This technique helps to detect spreadsheet
formula errors.

Jannach and Engler [JE10] present a model-based approach that calculates
possible error causes in spreadsheets. Their approach uses an extended
hitting-set algorithm and user-specified or historical test cases and assertions.
Their approach computes the diagnoses by proving the satisfiability of the
diagnoses. A disadvantage of their approach is that several test cases are
necessary in order to obtain the conflict sets.

Ayalew and Mittermeir [AM03] address the spreadsheet debugging problem
by presenting a trace-based fault localization approach. Their approach is
data-flow driven and users the concept of slices in the spreadsheet domain.
The authors propose an approach that prioritizes cells based on the number
of incorrect successor cells and predecessor cells.

Ruthruff et al. [Rut+03] propose three techniques for visualizing possibly
faulty cells. The first approach can be compared to spectrum-based fault
localization with a very basic similarity coefficient. The second approach
is similar to program dicing and the third technique is a nearest consumer
technique.

6.2. Testing

Spreadsheet testing is closely related to debugging. The Wysiwyt (“What You
See Is What You Test”) approach [Rot+00] is the most prominent example
for supporting the user in spreadsheet testing. This approach is a manual
testing approach. Users can indicate incorrect output values by placing a
faulty token in a cell. Similarly, they can indicate that the value in a cell is
correct by placing a correct token. The “testedness” is determined by the test
adequacy criterion DU (definition-use).

There exist approaches dealing with the automated generation of test cases
for spreadsheets, e.g. [Fis+02] and AutoTest. AutoTest [AE06] is a tool that
supports the spreadsheet developer through the automated generation of test
cases in order to increase the coverage of the tests.

88

6.3. Classification of error causes

6.3. Classification of error causes

There have been several attempts to classify the causes of spreadsheet er-
rors [RCK08; Pan98; PJ96; Gal+93; HS06; PA10]. Figure 6.1 illustrates the
classification of Rajalingham et al. [RCK08] They distinguish between system-
generated errors that are beyond the control of the user and user-generated
errors. User-generated errors are divided into quantitative errors and qualita-
tive errors. Quantitative errors are incorrect values. They arise accidentally or
from faults in the reasoning process. Qualitative errors are errors concerning
the maintenability and the semantic of the data, e.g. ambiguity in the meaning
of data or formatting errors.

Spreadsheet
Errors

System
Generated

User
Generated

QualitativeQuantitative

ReasoningAccidential

End-UserDeveloper

Duplication

Alteration

Omission

Implementation
Domain

Knowledge

SemanticMaintainability

TemporalStructural

InterpreterData inputter

Duplication

Alteration

Omission

Duplication

Alteration

Omission
Logic

Syntax

Mathematical
Representation

Real-world
Knowledge

Figure 6.1.: Classification of spreadsheet errors according to Rajalingham et al. [RCK08]

6.4. Spreadsheet engineering

Since spreadsheet developers are typically end-users without significant back-
ground in computer science, there has been considerable effort to adapt
software engineering principles to form a spreadsheet engineering discipline.
Burnett et al. [Bur+03] suggest to use assertions in the spreadsheet domain.
Cunha et al. [Cun+12] specialized on model-driven spreadsheet engineering.
Mittermeir and Clermont [MC02] focus on identifying high-level structures

89

6. Spreadsheet Engineering Techniques

in spreadsheets. Bregar [Bre08] developed metrics for determining the com-
plexity of spreadsheet models.

Hermans et al. [HPD12b; HPD12a] address the issue of code smells in spread-
sheets. In particular, they transform code smells defined for object-oriented
programs (e.g. coupling and cohesion of classes) to the spreadsheet domain.
Spreadsheet code smells are an important tool for improving spreadsheet
quality with respect to usability, maintainability and error frequency. Other
work of Hermans et al. includes the visualization of the dataflow in spread-
sheets [HPD11], class diagram extraction [HPD10], data clone detection
[Her+13], and metrics measuring the understandability of spreadsheet for-
mulas [HPD12c].

90

7. Preliminaries

This chapter is based on the work published in [Hof+13].

7.1. Basic Definitions

A spreadsheet is a matrix comprising cells. Each cell is unique and can be
addressed using its corresponding column and row number. For simplicity,
we assume a function ϕ that maps the cell names from a set CELLS to their
corresponding position (x, y) in the matrix where x represents the column
and y the row number. The functions ϕx and ϕy return the column and row
number of a cell, respectively.

Aside from a position, each cell c ∈ CELLS has a value ν(c) and an expres-
sion `(c). The value of a cell can be either undefined ε, an error ⊥, or any
number, Boolean or String value. The expression of a cell `(c) can either be
empty or an expression written in the language L. The value of a cell c is
determined by its expression. If no expression is explicitly declared for a cell,
the function ` returns the value ε.

Areas are another important basic element of spreadsheets. An area is a set
consisting of all cells that are within the area that is spanned by the cells
c1, c2 ∈ CELLS. Formally, we define an area as follows:

c1:c2 ≡de f

{
c ∈ CELLS

∣∣∣∣ ϕx(c1) ≤ ϕx(c) ≤ ϕx(c2) &
ϕy(c1) ≤ ϕy(c) ≤ ϕy(c2)

}
(7.1)

Obviously, every area is a subset of the set of cells (c1:c2 ⊆ CELLS). After
defining the basic elements of spreadsheets, we introduce the language L
for representing expressions that are used to compute values for cells. For
reasons of simplicity, we do not introduce all functions available in today’s
spreadsheet programs. Instead and without restricting generality, we make
use of simple operators on cells and areas. However, extending the used
operators with new ones is straightforward. The introduced language takes
the values of cells and constants together with operators and conditionals to
compute values for other cells. The language is a functional language, i.e.,
only one value is computed for a specific cell. Moreover, we do not allow
recursive functions. First, we define the syntax of L.

91

7. Preliminaries

Definition 16 (Syntax of L) We define the syntax of L recursively as follows:

• Constants k representing ε, number, Boolean, or String values are elements
of L (i.e., k ∈ L).
• All cell names are elements of L (i.e., CELLS ⊂ L).
• If e1, e2, e3 are elements of the language (e1, e2, e3 ∈ L), then the following

expressions are also elements of L:

– (e1) is an element of L.
– If o is an operator (o ∈ {+, -, *, /,<, =,>}), then e1 o e2 is an element

of L.
– if(e1; e2; e3) is an element of L.

• If c1:c2 is an area, then sum(c1:c2) is an element of L.

Second, we define the semantics of L by introducing an interpretation func-
tion J·K that maps an expression e ∈ L to a value. The value is undefined (ε)
if no value can be determined or error (⊥) if a type error occurs. Otherwise,
it is either a number, a Boolean, or a String.

Definition 17 (Semantics of L) Let e be an expression from L and ν a function
mapping cell names to values. We define the semantic of L recursively as follows:

• If e is a constant k, then the constant is returned as result, i.e., JeK = k.
• If e denotes a cell name c, then its value is returned, i.e., JeK = ν(c).
• If e is of the form (e1), then JeK = Je1K.
• If e is of the form e1 o e2, then its evaluation is defined as follows:

– If Je1K = ⊥ or Je2K = ⊥, then Je1 o e2K = ⊥.
– else if Je1K = ε or Je2K = ε, then Je1 o e2K = ε.
– else if o ∈ {+, -, *, /,<, =,>}, then

Je1 o e2K =
{

Je1K o Je2K if all sub-expressions evaluate to a number
⊥ otherwise

• If e is of the form if(e1; e2; e3), then

JeK =

Je2K if Je1K = true
Je3K if Je1K = false
ε if Je1K = ε
⊥ otherwise

• If e is of the form sum(c1:c2), then

JeK =

{
∑

c∈c1:c2

JcK if all cells in c1:c2 have a number or ε (treated as 0) as value

⊥ otherwise

92

7.1. Basic Definitions

Frequently, we require information about cells that are used as input in an
expression. We call such cells referenced cells.

Definition 18 (Referenced cell) A cell c is said to be referenced by an expression
e ∈ L, if and only if c is used in e.

Furthermore, we introduce a function ρ : L 7→ 2CELLS that returns the set of
referenced cells. Formally, we define ρ as follows:

Definition 19 (The function ρ) Let e ∈ L be an expression. We define the refer-
enced cells function ρ recursively as follows:

• If e is a constant, then ρ(e) = {}.
• If e is a cell c, then ρ(e) = {c}.
• If e = (e1), then ρ(e) = ρ(e1).
• If e = e1 o e2, then ρ(e) = ρ(e1) ∪ ρ(e2).
• If e = if(e1; e2; e3), then ρ(e) = ρ(e1) ∪ ρ(e2) ∪ ρ(e3).
• If e = sum(c1:c2), then ρ(e) = c1:c2.

A spreadsheet is a matrix of cells comprising values and expressions written
in a language L. The values of cells are determined by their expressions.
Hence, ∀c ∈ CELLS : ν(c) = J`(c)K must hold. Unfortunately, we face two
challenges: (1) In all of the previous definitions, the set of cells need not be
of finite size. (2) There might be a loop in the computation of values, e.g. a
cell c with `(c) = c+1. In this case, we are not able to determine a value for
cell c. In order to solve the first challenge, we formally restrict spreadsheets
to comprise only a finite number of cells.

Definition 20 (Spreadsheet) A countable set of cells Π ⊆ CELLS is a spreadsheet
if all cells in Π have a non empty corresponding expression or are referenced in an
expression, i.e., ∀c ∈ Π : (`(c) 6= ε) ∨ (∃c′ ∈ Π : c ∈ ρ(`(c′))).

In order to solve the second challenge, we have to limit spreadsheets to
loop-free spreadsheets. For this purpose, we first introduce the notation of
direct data dependence between cells, and furthermore the data dependence
graph, which represents all dependencies occurring in a spreadsheet.

Definition 21 (Direct data dependence) Let c1, c2 be cells of a spreadsheet Π.
The cell c2 depends directly on cell c1 if and only if c1 is used in c2’s corresponding
expression, i.e., dd(c1, c2)↔ (c1 ∈ ρ(`(c2))).

93

7. Preliminaries

From the direct data dependence definition, we can derive the definition of
data dependence graphs:

Definition 22 (Data dependence graph (DDG)) Let Π be a spreadsheet. The
data dependence graph (DDG) of Π is a tuple (V, A) with:

• V as a set of vertices comprising exactly one vertex nc for each cell c ∈ Π, and
• A as a set comprising arcs (nc1 , nc2) if and only if there is a direct dependence

between the corresponding cells c1 and c2, i.e. A =
⋃
(nc1 , nc2) where nc1 , nc2 ∈

V ∧ dd(c1, c2).

From this definition, we are able to define general dependence between cells.
Two cells of a spreadsheet are dependent if and only if there exists a path
between the corresponding vertices in the DDG. In addition, we are able to
further restrict spreadsheets to face the second challenge.

Definition 23 (Feasible spreadsheet) A spreadsheet Π is feasible if and only if
its DDG is acyclic.

From here on, we assume that all spreadsheets of interest are feasible. Hence,
we use the terms spreadsheet and feasible spreadsheet synonymously. Stan-
dard spreadsheet programs like Excel rely on loop-free computations.

As the focus of this thesis is fault localization, we now focus on important
definitions in the context of spreadsheet testing and debugging. In ordinary
sequential programs, a test case comprises input values and expected output
values. If we want to rely on similar definitions, we have to clarify the
terms input, output and test case. Defining the input and output of feasible
spreadsheets is straightforward by means of the DDG.

Definition 24 (Input, output) Given a spreadsheet Π and its DDG (V, A), then
the input cells of Π (or short: inputs) comprise all cells that have no incoming edges
in the corresponding vertex of Π’s DDG. The output cells of Π (or short: outputs)
comprise all cells where the corresponding vertex of the DDG has no outgoing vertex.

inputs(Π) = {c|@(nc′ , nc) ∈ A}
outputs(Π) = {c|@(nc, nc′) ∈ A} (7.2)

All cells of a spreadsheet that serve neither as input nor as output are called
intermediate cells. With this definition of input and output cells we are able
to define a test case for a spreadsheet and its evaluation.

94

7.1. Basic Definitions

Definition 25 (Test case) Given a spreadsheet Π, then a tuple (I, O) is a test case
for Π if and only if:

• I is a set of tuples (c, e) specifying input cells and their values. For each
c ∈ inputs(Π) there must be a tuple (c, e) in I where e ∈ L is a constant.

• O is a set of tuples (c, e) specifying expected values for cells. The expected
values must be constants of L.

Please note that the cells in O need not to be output cells. It is also possible
to indicate values for intermediate cells. It is not necessary to define values
for all output cells. The test case evaluation works as follows: First, the
functions `(c) of the input cells are set to the constant values specified in
the test case. Subsequently, the spreadsheet is evaluated. Afterwards, the
computed values are compared with the expected values stated in the test
case. If at least one computed value is not equivalent to the expected value,
the spreadsheet fails the test case. Otherwise, the spreadsheet passes the test
case.

In traditional programming languages, test cases are separated from the
source code. Usually, there are several test cases for one function under
test. Each of the test cases calls the function with different parameters and
checks the correctness of the returned values. However, test cases are only
implicitly encoded into spreadsheets. This means, that test cases are not
explicitly separated from the formulas under test. If the user wants to add an
additional test case, he or she has to duplicate the spreadsheet. A duplication
of a spreadsheet for testing purposes is unpractical since the duplicates have
to be updated when the spreadsheet is modified or extended. Therefore,
usually only one failing test case exists. Hence, we reduce the debugging
problem for spreadsheets to handle only one test case.

Definition 26 (Spreadsheet debugging problem) Given a spreadsheet Π and
a failing test case (I, O), then the debugging problem is to find a root cause for the
mismatch between the expected output values and the computed ones.

We define the spreadsheet debugging problem as a fault localization problem.
This definition implies that the following debugging approaches pinpoint
certain cells of a spreadsheet as possible root causes of faults. Alternatively,
the debugging problem can be defined as a fault correction problem.

95

8. Spreadsheet Corpora

The content of this chapter is based on the work published in [Hof+13] and
work submitted for publication [Auß+13].

8.1. Introduction

Existing corpora like the EUSES spreadsheet corpus [FR05] have two main
disadvantages: First, they do not come with faulty versions. Second, they
contain many spreadsheets that are not suited for debugging purposes:

• small spreadsheets containing less than 5 formulas,
• spreadsheets without input values, and
• spreadsheets in obsolete file formats (Excel 5.0).

Therefore, we created two new spreadsheet corpora. The first corpus is
a subset of the EUSES spreadsheet corpus. This new corpus does neither
contain spreadsheets with less then 5 formulas, Excel 5.0 spreadsheets nor
spreadsheets without input values. This modified EUSES spreadsheet corpus
is discussed in Section 8.2. The second corpus is a collection of spreadsheets
containing only Integer values and is discussed in Section 8.3. Both corpora
are enhanced with faulty versions of the original spreadsheet.

8.2. The modified EUSES spreadsheet corpus

As already mentioned, the EUSES spreadsheet corpus contains many spread-
sheets that are not suited for debugging. In a first filtering step, we skipped
around 240 Excel 5.0 spreadsheets that are not compatible with our imple-
mentations, since our implementations is build on Apache POI1, which does
not support Excel 5.0. In a second filtering step, we removed all spreadsheets
containing less than five formulas (about 2,300 files). We have performed this
filtering step because automatic fault localization only makes sense for larger
spreadsheets. A small spreadsheet is still manageable for humans and thus it
is easy to manually locate the fault. For small spreadsheets, a fault correction

1http://poi.apache.org/

97

http://poi.apache.org/

8. Spreadsheet Corpora

approach makes more sense than just a fault localization approach. In the
third filtering step, we removed all spreadsheets that do not contain input
values.

For each spreadsheet, we automatically created up to five first-order mutants.
A mutant of a spreadsheet is created by randomly choosing a formula cell of
the spreadsheet and applying a mutation operator on it. According to the clas-
sification of spreadsheet mutation operators of Abraham and Erwig [AE09],
we used the following mutation operators:

• Continuous Range Shrinking (CRS): We randomly choose whether to
increment the index of the first column/row or decrement the index of
the last column/row in area references.
• Reference Replacement (RFR): We randomly choose whether to increment

the row or the column index of references. We do not explicitly differen-
tiate between single references and references in non-contiguous ranges.
For this, a mutation can change a single reference in a non-contiguous
range, but never changes the amount of elements in the range.
• Arithmetic Operator Replacement (AOR): We replace ‘+’ with ‘-’ and vice

versa and ‘*’ with ‘/’.
• Relational Operator Replacement (ROR): We replace the operators ‘=’, ‘<’,

‘<=’, ‘>’, ‘>=’, and ‘<>’ with one another.
• Constants Replacement (CRP):

– For integer values, we add a random number between 0 and 1000.
– For real values, we add a random number between 0.0 and 1.0.
– For Boolean values, we replace ‘true’ with ‘false’ and vice versa.

• Constants for Reference Replacement (CRR): We replace a reference within
a formula through a constant.
• Formula Replacement with Constant (FRC): We replace a whole formula

with a constant.
• Formula Function Replacement (FFR): We replace ‘SUM’ with ‘AVERAGE’

and ‘COUNT’ and vice versa. We replace ‘MIN’ with ‘MAX’ and vice
versa.

For each mutant, we check whether the following two conditions are satisfied:
(1) The mutant must be valid, i.e., it does not contain any circular references.
(2) The inserted fault must be revealed, i.e., at least for one output cell, the
computed value of the mutant must differ from the value of the original
spreadsheet. If one of these conditions is violated, we discard the mutant
and generate new mutants until we obtain a mutant that satisfies both
conditions.

We automatically created 622 mutants. The number of formulas contained in
the spreadsheets ranges from 6 to more than 4,000. On average, the spread-

98

8.3. Integer spreadsheet corpus

sheets contain 225 formula cells. This indicates that the evaluated approaches
are able to handle large spreadsheets. We made this modified version of
the EUSES spreadsheet corpus publicly available2. This enables that other
researchers can compare their approaches with ours.

8.3. Integer spreadsheet corpus

Since the constraint solvers used in our prototypes have only a limited ability
to deal with Real numbers, we created a specific spreadsheet corpus that
contains spreadsheets with Integer values only. This corpus contains 33 dif-
ferent spreadsheets. Whereas some of the spreadsheets are artificially created,
21 spreadsheets are real-life programs, e.g. a spreadsheet that calculates the
lowest price combination on a shopping list or even the winner of Wimbleton
2012. The spreadsheets from the corpus contain both arithmetical and logi-
cal operators as well as the functions SUM and IF. The smallest spreadsheet
contains seven formulas and the largest contains 233 formulas. On average, a
spreadsheet contains 39 formula cells.

We created mutants for each spreadsheet by randomly selecting formulas and
applying mutation operators on these formulas. The mutation creation pro-
cess was the same as described in Section 8.2. In total, we created 220 mutants.
This Integer spreadsheet corpus is also publicly available3.

2https://dl.dropbox.com/u/38372651/Spreadsheets/EUSES_Spreadsheets.zip
3https://dl.dropbox.com/u/38372651/Spreadsheets/Integer_Spreadsheets.zip

99

https://dl.dropbox.com/u/38372651/Spreadsheets/EUSES_Spreadsheets.zip
https://dl.dropbox.com/u/38372651/Spreadsheets/Integer_Spreadsheets.zip

9. Adaptation of debugging
techniques

The content of this chapter is based on the work published in [Hof+13].

9.1. Introduction

In this chapter, we adapt two program-debugging approaches that have been
designed for debugging programs written in 3rd generation languages. In
particular, we describe how to modify these fault localization techniques
in order to render them applicable to the spreadsheet world. We consider
the following techniques in our study: Spectrum-based Fault Localization
(Sfl) [AZG07], and Spectrum-enhanced dynamic slicing (Sendys) [HW12c].
We evaluate the efficiency of the approaches using mutants of real spread-
sheets taken from the Euses Spreadsheet Corpus [FR05].

The remainder of this chapter is organized as follows: Section 9.2 discussed
related work Section 9.3 explains the changes that have to be made in order
to use the existing debugging techniques for the debugging of spreadsheets.
Two traditional debugging techniques are explained in detail. In Section 9.4,
we demonstrate these techniques by means of an example. Section 9.5 deals
with the setup and the results of the empirical evaluation. Finally, Section 9.6
concludes this chapter.

9.2. Related Work

Ayalew and Mittermeir [AM03] and Ruthruff et al. [Rut+03] published work
that is most related to the work presented in this chapter. Ayalew and Mitter-
meir [AM03] also make use of the concept of slices in their approach. They
propose an algorithm for fault localization where the user has to determine
for cells if they have fault symptoms. In contrast, the approaches presented
in this chapter only require the ‘health’ status of the output variables.

101

9. Adaptation of debugging techniques

Ruthruff et al. [Rut+03] propose three techniques for fault localization. Their
approaches can be compared to spectrum-based fault localization and pro-
gram dicing. However, they use very low-level similarity coefficients.

9.3. Necessary Adaptations

Traditional procedural and object-oriented program-debugging techniques
cannot be directly applied in the spreadsheet domain for the following
reasons: (1) In the spreadsheet paradigm, the concept of code coverage
does not exist since there are no explicit lines of code like in traditional
programming paradigms. (2) There is no concept of test execution. Therefore,
in order to use traditional program-debugging techniques on spreadsheets,
we have to perform some modifications: the lines of code in a traditional
programming paradigm are mapped to the cells of a spreadsheet. There are
cells designed to receive user input, cells to process data (using spreadsheet
formulas), and cells intended to display the results. As an alternative to the
code coverage of traditional programming paradigms, we compute so-called
cones (data dependencies of each cell).

Definition 27 (The function CONE) Given a spreadsheet Π and a cell c ∈ Π,
we define the function cone recursively as follows:

cone(c) = c ∪
⋃

c′∈ρ(c)

cone(c′) (9.1)

The correctness of the output cells is determined either by the user, or by
comparing the results of the current spreadsheet Π with another spreadsheet
considered correct.

With these modifications, we are able to apply two traditional fault localiza-
tion techniques on spreadsheets. In the following subsections, we explain
these debugging techniques.

9.3.1. Spectrum-based Fault Localization

In traditional programming paradigms, Spectrum-based fault localization
(Sfl) [AZG07] uses code coverage data and the pass/fail result of each test
execution of a given system under test (SUT) as input. This data is collected at
runtime and is used to build a so-called hit-spectra matrix. In the spreadsheet
paradigm, we cannot use the coverage data of test executions. Instead, we use
the cones of the output cells (see Definition 27). From the cones, the hit-spectra

102

9.4. Example of usage

matrix can be generated (each row of the matrix has the dependencies of one
output cell). The error vector represents the correctness of the output cells.
The hit-spectra matrix and the error vector allow the use of any similarity
coefficient to compute the probability of being faulty for each spreadsheet
cell. In the empirical evaluation, we use the Ochiai similarity coefficient, since
Ochiai is known to be one of the most efficient similarity coefficients for
Sfl [AZG06].

9.3.2. Spectrum-Enhanced Dynamic Slicing

In traditional programming paradigms, similar to Sfl, Sendys uses coverage
data and the result of each test execution (pass/fail) of a given program as
input. In addition, the slices of the negative test cases are required. In order
to apply Sendys to the spreadsheet paradigm, we propose to make the same
modifications as for the Sfl technique. In addition, we have to use cones
instead of slices for the Mbsd part. The major difference between cones and
slices are the types of dependencies. For slices, control and data dependencies
are used. In contrast, cones only make use of data dependencies.

9.4. Example of usage

Figure 9.1 shows an example spreadsheet borrowed from the EUSES spread-
sheet corpus [FR05]. For the sake of clarity, we have reduced the number
of columns and rows of this example spreadsheet. Figure 9.1a illustrates
the correct version of this spreadsheet and Figure 9.1b a faulty variant of
the same spreadsheet. This spreadsheet is used to calculate the wages of
the workers (cells F2:F3) and the total working hours (cell D4). Figure 9.1c
shows the formula view of the faulty spreadsheet from Figure 9.1b. In this
faulty spreadsheet, the computation of the total hours for the worker “Green”
(cell D2) is faulty because the programmer of the spreadsheet unintentionally
set a wrong area for the SUM formula. This happens for example when a
programmer adds a new week but forgets to adapt some calculations. Because
of this fault, the wage of the worker “Green” (cell F2) and the total hours
(cell D4) are erroneous.

There exist two erroneous output cells (F2 and D4) and three correct output
cells (B4, C4 and F3). For these cells, we compute the cones:

Cone(F2) = {B2, D2, E2, F2}

Cone(D4) = {B2, D2, B3, C3, D3, D4}

103

9. Adaptation of debugging techniques

(a) Correct spreadsheet (b) Faulty spreadsheet

(c) Formula view of the spreadsheet from Figure 9.1b

Figure 9.1.: ‘Workers’ example borrowed from the EUSES spreadsheet corpus [FR05]

Cone(B4) = {B2, B3, B4}

Cone(C4) = {C2, C3, C4}

Cone(F3) = {B3, C3, D3, E3, F3}

The observation matrix that is build with that cone information is illustrated
in Table 9.1. The faulty cell is ranked at position 1.

Table 9.1.: The spreadsheet ‘Workers’ - The observation matrix, the Ochiai coefficients and the
subsequent ranking of the cells. The faulty cell is marked with •.

Line F2 D4 B4 C4 F3 Coefficient Ranking
B2 • • • 0.81 2
B3 • • • 0.40 7
B4 • 0.00 -
C2 • 0.00 -
C3 • • • 0.40 7
C4 • 0.00 -
•D2 • • 1.00 1
D3 • • 0.50 6
D4 • 0.70 3
E2 • 0.70 3
E3 • 0.00 -
F2 • 0.70 3
F3 • 0.00 -

Error • •

For Sendys, the hitting sets of the faulty cones are computed: There are
two single fault diagnoses ({B2} and {D2}) and eight double fault di-
agnoses ({B3, E2}, {B3, F2}, {C3, E2}, {C3, F2}, {D3, E2}, {D3, F2}, {D4, E2},

104

9.5. Empirical Evaluation

and {D4, F2}). The fault probabilities for the single faults are p({B2}) = 0.231
and p({D2}) = 0.289. Therefore, Sendys also ranks the faulty cell at posi-
tion 1.

9.5. Empirical Evaluation

In this section, we compare the fault localization capabilities of Sfl and
Sendys by applying them to the 622 spreadsheets of the modified EUSES
spreadsheet corpus described in Section 8.3. In addition, we contrast these
techniques with two primitive techniques, namely the union and intersection
of the faulty cones. Table 9.2 summarizes the results of this comparison.
The evaluation was performed on a processor powered by Intel Core2 Duo
(2.67 GHz) and 4 GB RAM with Windows 7 Enterprise (64-bit) as the operating
system and Java 7 as the runtime environment. Sendys performs slightly
better than Sfl and the intersection of the cones. Since we only created first-
order mutants, the intersection of the slices always contains the faulty cell.
Please note that in case of higher-order mutants, the faulty cell could be
absent in the intersection of the cones. This happens when two independent
faults are contained in the same spreadsheet and both faults are revealed
by different output cells. Therefore, the intersection of the cones is not the
best choice. Concerning the computation time, Sfl has only a small overhead
compared to the union and intersection of the cones. Sendys requires nearly
five times more runtime for the computations.

Table 9.2.: Average ranking and computation time of Union, Intersection, Sfl, and Sendys.
The ‘Union’ and the ‘Intersection’ sets are created from the cones of faulty output
cells. The column ‘Avg. relative ranking’ shows the average ranking of the faulty
cell normalized to the number of formula cells per spreadsheet.

Technique
Avg. absolute Avg. relative Avg. comp.

ranking ranking time (in ms)
Union 41.1 27.3 % 15.6
Intersection 30.8 22.0 % 15.6
Sfl 26.3 20.3 % 16.9
Sendys 24.3 19.7 % 79.6

Figure 9.2 graphically compares the fault localization capabilities of the
approaches for the 622 investigated faulty program versions. The x-axis
represents the percentage of formula cells that are investigated. The y-axis
represents the percentage of faults that are localized within that amount of
cells. For Sfl and Sendys, the best and the worst case are indicated. The best
case assumes that the faulty cell is found when investigating the first cell
within a set of cells with the same ranking. The worst case assumes that the

105

9. Adaptation of debugging techniques

faulty cell is found when investigating the last cell within a set of cells with
the same ranking. Even in the worst case scenarios, Sfl and Sendys perform
slightly better than the intersection and significantly better than the union of
the cones. This means that faults can be detected earlier than when using the
intersection or the union.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% of cells examined

%
 o

f f
au

lty
 c

el
ls

 lo
ca

te
d

Union
Intersection
SFL best
SFL worst
SENDYS best
SENDYS worst

Figure 9.2.: Comparison of the Sfl, Sendys, the Union and Intersection of the cones in terms
of the amount of formula cells that must be investigated.

Figure 9.3 compares the approaches pairwise. For each spreadsheet and fault

106

9.5. Empirical Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reduction in [%] of the number of formula cells

Union

In
te

rs
ec

tio
n

(a) Union versus Intersection

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reduction in [%] of the number of formula cells

Union

S
F

L
(b) Union versus Sfl

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reduction in [%] of the number of formula cells

Union

S
E

N
D

Y
S

(c) Union versus Sendys

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reduction in [%] of the number of formula cells

Intersection

S
F

L

(d) Intersection versus Sfl

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reduction in [%] of the number of formula cells

Intersection

S
E

N
D

Y
S

(e) Intersection versus Sendys

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reduction in [%] of the number of formula cells

SFL

S
E

N
D

Y
S

(f) Sfl versus Sendys

Figure 9.3.: Pairwise comparison of the fault localization capabilities of Union, Intersection,
Sfl, and Sendys in terms of the Reduction metric. Data points close to the red line
indicate that the approaches perform equal. Data points above that line indicate
that the approach labeled on the y-axis performs better.

107

9. Adaptation of debugging techniques

localization technique, we computed the reduction metric as follows:

Reduction = (1− invest
f ormala

) · 100 % (9.2)

where invest indicates the number of cells that must be investigated until
the first faulty cell is reached and f ormula indicates the total number of
formulas contained in that spreadsheet. Please note that this analysis is a
worst-case analysis: If several cells have the same ranking as the faulty cell,
we assume that we have to examine all of them. Unsurprisingly, it can be seen
in the Figures 9.3a, 9.3b and 9.3c that the union of the cones performs worst.
Figure 9.3d shows that only in two cases the intersection performs better
than Sfl. In the other cases, Sfl either performs as good as the intersection
or better. Figures 9.3e and 9.3f show that Sendys performs at least as good as
the Intersection and Sfl. In many cases, it performs better.

9.6. Conclusion

While spreadsheets are used by a considerable number of people, there is
little support for automatic spreadsheet debugging. This chapter addresses
this gap. In order to debug spreadsheets, we adapted and applied two
popular debugging techniques designed for more traditional procedural or
object-oriented programming languages. In addition, we explained what
modifications to the traditional debugging techniques are necessary. The
main modification is to use cones instead of execution traces and slices.

We evaluated the fault localization capabilities of the proposed techniques,
Sfl, and Sendys, using a modified version of the well-known Euses spread-
sheet corpus. The evaluation shows that Sfl and Sendys are promising tech-
niques. However, the evaluation needs to be extended in several aspects: (1) It
is necessary to evaluate higher-order mutants. (2) The discussed techniques
are only a small selection of the available traditional debugging techniques.
Thus, other debugging techniques should be adapted to spreadsheets. Since
our faulty versions of the spreadsheets are publicly available, we encour-
age new spreadsheet debugging techniques be compared to the techniques
discussed in this chapter.

108

10. Constraint-based Debugging

Rui Abreu, André Riboira and Franz Wotawa developed an approach called
Conbug [ARW12]. They invited me to participate in improving their approach.
This chapter is based on unpublished work that was created with Rui Abreu,
Alexandre Perez, André Riboira and Franz Wotawa and that is founded
on [ARW12].

10.1. Introduction

In fault localization of programs written in 3rd generation languages, Mbsd

with value-based models (e.g. [Wot+09]) is very successful. Therefore, it makes
sense to apply this techniques for debugging spreadsheets. ConBug, short for
Constraint-Based Debugging, is an approach that borrows ideas from Mbsd.
It transforms a faulty spreadsheet and a given test case into a constraint
satisfaction problem (Csp). The constraint solver is used to determine all
diagnoses that could explain the observed misbehavior.

The basic idea of the conversion of the content of a spreadsheet into con-
straints is to use equations instead of assignments. For example, the cell F3
from our running example from Figure 9.1c (see page 104) contains the expres-
sion `(F3) = D3 ∗ E3. Instead of using an assignment form (F3 = D3 ∗ E3),
we use an equation: F3 == D3 ∗ E3. The advantage of using equations in-
stead of assignments is the direction of calculations: Assignments allow to
deduce from the input to the output, but not vice versa. In contrast, equa-
tions allow to derive conclusions in both directions. Diagnosis candidates for
the example spreadsheet from Figure 9.1 are cell D2 or the cells D4 and F2

together.

The remainder of this chapter is organized as follows: Section 10.2 deals with
the related work. Section 10.3 explains the conversion of the spreadsheet
debugging problem into a constraint satisfaction problem. In addition, we
introduce an algorithm for computing diagnosis candidates. The design
and the results of the empirical evaluation are discussed in Section 10.4.
This empirical evaluation comprises both single faults and double faults.
Section 10.5 concludes the approach and discusses future work.

109

10. Constraint-based Debugging

10.2. Related Work

ConBug is based on model-based diagnosis. It is derived from model-based
software debugging approaches like [Wot+09]. Jannach and Engler [JE10]
also present a model-based approach. In contrast to ConBug, their approach
uses an extended hitting-set algorithm and user-specified or historical test
cases and assertions.

10.3. Spreadsheets as Constraint Satisfaction Problem

In order to solve the debugging problem stated in Definition 26, we have
to convert spreadsheets into constraints. There exist some differences be-
tween the conversion of ordinary sequential programs and the conversion
of spreadsheets: As discussed in Section 3.2.1, the conversion of programs
requires three steps: (1) execution of the program or unrolling the loops, (2)
transformation into a static single assignment form and (3) final compilation
to constraints. In the domain of spreadsheets, there are no loops allowed and
every cell can only be defined once. Hence, there is no need for loop removal
and the static single assignment form.

Function ConvertSpreadsheet (Algorithm 10.1) converts a spreadsheet Π
and a test case t into a set of constraints CON. For each cell, its formula is
converted into constraints using the function ConvertExpression (Line 3). In
Line 4, a constraint is created that models the debugging behavior: either the
cell is abnormal or the cell must have the value computed in the expression.
In the Lines 7 to 14, the test case information is added to the constraint
system.

The recursive function ConvertExpression is shown in Algorithm 10.2.
A constant or referenced cell is represented by itself (Lines 1 to 3). An
expression e that consists of an expression e1 enclosed by parentheses is
represented by the constraints of e1 (Lines 4 to 7). For an expression of
the form e1 o e2, we convert e1 and e2 separately into constraints (Lines 9
and 10). In addition, we create a new constraint that corresponds to the
operator o (Line 12). The results of the constraint con is stored in the new
created intermediate variable result. Therefore, an expression e ∈ L might
be translated into several constraints. For the conversion of conditionals
(Lines 15 to 21) and sums (Lines 22 to 25), particular constraints are used that
are available in most of today’s constraint languages: Let Ψ(cond, e1, e2, result)
be a constraint that ensures the relationship of cond, e1, e2 and result as follows:
If cond is true, result must be equal to the value of e1. Otherwise result must
be equal to the value of e2. Let SUM(c1, ..., c2, result) be a constraint that

110

10.3. Spreadsheets as Constraint Satisfaction Problem

Algorithm 10.1 ConvertSpreadsheet(Π, t)
Require: Spreadsheet Π, a failing test case t with input I and output O
Ensure: Set of constraints CON

1: CONΠ = {}
2: for cell c ∈ Π do
3: [CON, aux] = ConvertExpression(`(c))
4: con = AB(c) ∨ (c == aux)
5: CONΠ = CONΠ ∪CON∪ {con}
6: end for
7: CONT = {}
8: for all tuples (c, v) ∈ I do
9: CONT = CONT ∪ {c == v}

10: end for
11: for all tuples (c, vexp) ∈ O do
12: CONT = CONT ∪ {c == vexp}
13: end for
14: return CONΠ ∪CONT

ensures that the sum of the values contained in the area c1:c2 is equal to the
value of result.

Since spreadsheets must be finite, the algorithm ConvertSpreadsheet ter-
minates. The computational complexity of the algorithm is O(|CELLS| · L)
where L is the maximum length of an expression. Obviously, the conversion
does not change the underlying behavior of a spreadsheet.

Algorithm ConBug (Algorithm 10.3) illustrates the debugging process. In
Line 2, the spreadsheet Π ∈ L and the failing test case t are converted
into their constraint representation. In the Lines 4 to 12, the diagnosis can-
didates are computed, i.e., cells of the spreadsheet that might cause the
revealed misbehavior. As we are interested in minimal diagnoses, we create a
constraint that restricts the solution size: In Line 5, the function GetSizeCon-
straint(CON, n) creates a constraint that ensures at most n of the abnormal
variables contained in CON can be set to true. In Line 6, the algorithm calls
a constraint solver. The constraint solver returns all possible combinations
of values of the abnormal variables AB(c) so that the constraints CON and
CONAB are not violated. The size of a solution corresponds to the size of the
bug, i.e., the number of cells that must be changed in order to correct the
fault. We assume that single cell bugs are more likely than bugs comprising
more cells. Hence, we ask the constraint solver for smaller solutions first. If
no solution of a particular size is found, the algorithm increases the size of
the solutions to be searched for. At the latest, the algorithm terminates when
the solution size is equal to the number of formula cells in Π.

111

10. Constraint-based Debugging

Algorithm 10.2 ConvertExpression(e)
Require: Expression e ∈ L
Ensure: [CON, var] with CON as a set of constraints, and var as the name

of an auxiliary variable, a cell name or a constant
1: if e is a cell name or constant then
2: return [{}, e]
3: end if
4: if e is of the form (e1) then
5: Let [CON,aux] = ConvertExpression(e1)
6: return [CON, aux]
7: end if
8: if e is of the form e1 o e2 then
9: Let [CON1,aux1] = ConvertExpression(e1)

10: Let [CON2,aux2] = ConvertExpression(e2)
11: Generate a new variable result
12: Create a new constraint con accordingly to the given operator o, which

defines the relationship between aux1, aux2, and result
13: return [CON1 ∪CON2 ∪ {con}, result]
14: end if
15: if e is of the form if(e1;e2;e3) then
16: Let [CON1,aux1] = ConvertExpression(e1)
17: Let [CON2,aux2] = ConvertExpression(e2)
18: Let [CON3,aux3] = ConvertExpression(e3)
19: Generate a new variable result
20: return [CON1 ∪CON2 ∪CON3 ∪ {Ψ(aux1, aux2, aux3, result)}, result]
21: end if
22: if e is of the form sum(c1:c2) then
23: Generate a new variable result
24: return [{SUM(c1, ..., c2, result)}, result]
25: end if

112

10.4. Empirical Evaluation

Algorithm 10.3 ConBug(Π, t)
Require: A spreadsheet Π and a failing test case t
Ensure: Minimal diagnoses

1: ∆S = {}
2: CON = ConvertSpreadsheet(Π, t)
3: solutionSize = 1
4: while solutionSize ≤ |Π| do
5: CONAB = {GetSizeConstraint(CON, solutionSize)}
6: ∆S = Solve(CON∪CONAB)
7: if ∆S 6= {} then
8: return ∆S

9: else
10: solutionSize = solutionSize + 1
11: end if
12: end while
13: return ∆S

10.4. Empirical Evaluation

For performing the empirical evaluation, we developed a prototype . This
prototype uses Minion [GJM06] as constraint solver. As Minion is only
able to handle Integers, we used the Integer Spreadsheet Corpus described
in Section 8.3. We set a timeout of 20 minutes for computing the solutions.
142 spreadsheets ended in a timeout. We are aware that the number of spread-
sheets resulting in a timeout is large. Therefore, we address this problem in
Chapter 11. For the remaining 78 spreadsheets, we measured the diagnosis
quality by means of the achieved reduction and the time required for com-
puting the diagnoses. The evaluation was performed on an Intel Core2 Duo
processor (2.67 GHz) with 4 GB RAM and Windows 7 as operating system.
We used the Minion version 0.15. The computation time is the average time
over 100 runs. We only computed the diagnoses with lowest cardinality, i.e.,
we only computed double fault diagnoses when Minion did not report any
single fault diagnoses.

The Tables 10.1 and 10.2 show the results. The column ‘Formula cells’ indi-
cates the number of formula cells. The column ‘Cells in diag.’ indicates the
number of cells that are contained in any diagnosis. The column ‘Reduction’
is computed as follows:

Reduction =
Cells in diagnoses

Formula cells
× 100 %. (10.1)

On average, an reduction of 57.5 % of the formula cells was possible when
using ConBug. The column ‘Constr.’ indicates the number of constraints of

113

10. Constraint-based Debugging

Table 10.1.: Results of the empirical evaluation - Part 1

Spreadsheet Formula Cells in Reduction Constr. Comput.
cells diag. (%) time (ms)

amortization 1 1 16 15 6.3 16 62
amortization 2 1 16 13 18.8 16 52
amortization 2 2 16 13 18.8 16 51
amortization 2 3 16 10 37.5 16 66
area 2 1 81 30 63.0 17 1047
area 2 2 81 28 65.4 22 947
area 2 3 81 59 27.2 22 1033
arithmetics00 1 1 8 7 12.5 22 105
arithmetics00 1 3 8 5 37.5 23 87
arithmetics00 2 2 8 8 0.0 23 174
arithmetics00 2 3 8 4 50.0 28 110
arithmetics00 3 1 8 8 0.0 28 169
arithmetics01 1 1 11 1 90.9 28 9
arithmetics01 1 2 11 4 63.6 34 10
arithmetics01 1 3 11 11 0.0 34 586
arithmetics02 2 2 16 5 68.8 34 343
arithmetics02 2 3 16 14 12.5 34 4001
arithmetics02 3 1 16 13 18.8 34 1936
austrian league 1 1 32 1 96.9 34 196
austrian league 1 2 32 1 96.9 34 280
austrian league 2 1 32 7 78.1 34 734
austrian league 2 2 32 1 96.9 34 215
austrian league 2 3 32 1 96.9 34 162
austrian league 3 1 32 24 25.0 36 1929
birthdays 1 1 39 9 76.9 42 194
birthdays 1 3 39 1 97.4 43 81
birthdays 3 1 39 4 89.7 52 163
cake 1 1 69 44 36.2 52 7350
cake 2 1 69 43 37.7 52 7315
cake 2 2 69 20 71.0 52 7011
cake 2 3 69 17 75.4 53 6913
cake 3 1 69 35 49.3 53 33123
computer shopping 1 1 36 1 97.2 53 138
computer shopping 1 2 36 1 97.2 68 138
computer shopping 2 1 36 2 94.4 68 261
computer shopping 2 2 36 1 97.2 68 140
computer shopping 2 3 36 34 5.6 69 628
computer shopping 3 1 36 1 97.2 69 142
conditionals01 1 1 11 2 81.8 69 24
conditionals01 1 2 11 7 36.4 69 32
conditionals01 2 1 11 4 63.6 87 29
conditionals01 2 2 11 5 54.5 87 33
conditionals01 2 3 11 7 36.4 87 34

114

10.4. Empirical Evaluation

Table 10.2.: Results of the empirical evaluation - Part 2

Spreadsheet Formula Cells in Reduction Constr. Comput.
cells diag. (%) time (ms)

conditionals02 1 1 7 3 57.1 101 50
conditionals02 1 3 7 3 57.1 101 79
conditionals02 2 1 7 3 57.1 101 76
conditionals02 2 2 7 3 57.1 101 77
conditionals02 2 3 7 4 42.9 102 71
conditionals02 3 1 7 3 57.1 102 68
dice rolling 1 1 21 6 71.4 159 205
dice rolling 2 1 21 7 66.7 159 231
dice rolling 2 2 21 6 71.4 159 232
dice rolling 2 3 21 6 71.4 159 205
dice rolling 3 1 21 7 66.7 160 231
matrix 1 1 13 6 53.8 160 37
matrix 1 2 13 7 46.2 160 35
matrix 2 1 13 1 92.3 161 31
matrix 2 2 13 1 92.3 188 31
matrix 2 3 13 6 53.8 190 31
matrix 3 1 13 1 92.3 195 32
prom calculator 1 1 14 13 7.1 195 23
prom calculator 2 1 14 13 7.1 195 88
prom calculator 2 2 14 13 7.1 195 18
prom calculator 2 3 14 13 7.1 195 16
prom calculator 3 1 14 10 28.6 196 21
shares 1 1 39 1 97.4 207 455
shares 1 2 39 1 97.4 207 388
shares 1 3 39 1 97.4 207 402
shares 1 4 39 1 97.4 207 328
shares 1 5 39 1 97.4 209 387
shares 2 2 39 2 94.9 210 1190
shares 2 3 39 18 53.8 210 2456
shopping bedroom1 1 2 32 15 53.1 211 154
shopping bedroom1 2 1 32 15 53.1 267 163
shopping bedroom1 2 2 32 15 53.1 268 99
shopping bedroom1 2 3 32 16 50.0 302 93
shopping bedroom1 3 1 32 31 3.1 302 803
shopping bedroom2 1 2 64 1 98.4 302 246
Average 27.5 9.9 57.5 107.6 1,116.7
Median 21.0 6.0 57.1 69.0 158.0
Stdev 19.9 11.4 31.9 82.6 4,016.3

115

10. Constraint-based Debugging

the corresponding Csp. The total computation time is given in the last column
and is 1.1 seconds on average. This low computation time make the approach
practicable. Figure 10.1 illustrates the reduction quality w.r.t. the spreadsheets
evaluated in the Tables 10.1 and 10.2. Only for 4 spreadsheets, the reduction
was between 0 % and 5 %. For 17 spreadsheets, ConBug yields a reduction of
more than 95 %.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

N
um

be
r

of
 s

pr
ea

ds
he

et
s

Reduction in %

Figure 10.1.: Reduction histogram for the spreadsheets from the Tables 10.1 and 10.2

10.5. Conclusions and Future Work

ConBug is a constraint-based approach for fault localization in spreadsheets.
The approach takes as input a spreadsheet and the set of user expectations
(specifying the input and output cells and their expected values), and pro-
duces as output a set of diagnosis candidates. Diagnosis candidates are
explanations for the misbehavior in user expectations. Our empirical investi-
gation shows that ConBug is light-weight and efficient. On average, ConBug

reduced the number of formula cells by 57.5 %. The average computation
time is about 1.1 seconds. The current implementation comes with two major
issues: (1) The use of Minion as constraint solver only allows variables of
the types Integer and Boolean. (2) For the major part of the spreadsheets,
ConBug results in a timeout. These issues are addressed in Section 11.

116

11. SMT versus Constraint Solving

This chapter is based on work published in [Auß+13].

11.1. Introduction

Currently, model-based debugging approaches for spreadsheets (e.g. ConBug

and [JE10; ARW12]) use constraint solvers for dealing with the constraint
satisfaction problem (Csp). While these approaches provide a profound back-
ground on the theoretic modeling of the spreadsheet debugging problem as
a CSP, they are limited in their evaluations. The main reason for the limited
evaluations seems to be the lack of constraint solvers being able to handle
Real numbers. Therefore, we propose a novel approach that models the
spreadsheet debugging problem as an SMT (satisfiability modulo theories)
problem. The advantage of treating the spreadsheet debugging problem as
a satisfiability problem is the availability of SMT solvers that are able to
deal with Real numbers, e.g. Z3 [MB08]. In addition, SMT solvers are easily
expandable with other theories and therefore the handling of additional data
types is possible. Besides the enlargement of spreadsheets types that can be
debugged, the usage of Z3 comes with a second advantage: a speedup in the
computation time of diagnoses.

In particular, we compare the time performance of Z3 with those of the
Choco1 and Minion [GJM06] constraint solvers. We have chosen Z3 because
it is one of the state-of-the-art SMT solvers, non-commercial and easy to
integrate in Java. The range of constraint solvers is huge and there exist
constraint solvers that are able to handle Real numbers, e.g. the Interval
Constraint solver of Eclipse Prolog, and Ibm’s Ilogs Cplex Cp Optimizer. We
have chosen Minion and Choco since these constraint solvers have been used
in comparable work, e.g. [JE10; ARW12]. However, Minion does not support
Real numbers. In contrast, Choco officially supports Real numbers. However,
we have learned that Choco does not support Real numbers to a complete
extent. This thesis does not aim to make general assumptions about favoring
SMT solvers over constraint solvers. Instead, it aims to show that SMT solvers

1http://www.emn.fr/z-info/choco-solver/

117

http://www.emn.fr/z-info/choco-solver/

11. SMT versus Constraint Solving

are a good alternative to constraint solvers for this particular application area,
i.e., debugging of spreadsheets.

The remainder of this chapter is organized as follows: Section 11.2 deals
with debugging using SMT solvers. In Section 11.3, the conversion into
Minion and Choco constraints and Z3 formula clauses is demonstrated by
means of an example. The empirical setup and the results of the empirical
evaluation are discussed in Section 11.4. Finally, we conclude the approach in
Section 11.5.

11.2. Debugging with Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is a technique that is based on Boolean
satisfiability (SAT) enhanced by different theories, e.g. theory of Integers or
Reals. An SMT problem is a decision problem: An SMT solver determines
whether the given formulas are satisfiable according to the underlying the-
ories. An SMT instance is a combination of first order logic formulas and
background theories, where some predicates and functions have additional
interpretations. For example, consider the clause p ∨ (x > y) ∨ (y ≤ 2z),
where p is a Boolean variable and x, y and z are Integer variables. Predicates
that are non-Booleans are evaluated according to the background theory. Such
a theory T is defined over a signature Σ. Σ is a set of predicate and function
symbols such as {0, 1, 2 · · · ≤,≥, · · ·+,−}. A formula ϕ is satisfiable w.r.t. T
if there is an assignment that evaluates ϕ to true.

SMT solvers allow manifold strategies for determining the diagnoses. In
this chapter, we use the MCSes [LS08] and the MCSes-U [LS09] algorithms
to determine the diagnoses for a faulty spreadsheet. These algorithms aim
to enumerate all minimal correction sets (MCSes) given an unsatisfiable
constraint system. A correction set is a set of constraints which needs to be
removed in order to make the constraint system satisfiable. A correction set cs
is a minimal correction set (MCS) if there does not exist any proper subset
of cs that is a correction set. In our case, finding all MCSes maps to finding
all minimal diagnoses given a formula representing a faulty spreadsheet and
a test case.

Algorithm 11.1 illustrates the MinimalCorrectionSets algorithm (MCSes)
developed by Liffiton and Sakallah [LS08]. This algorithm requires a formula
ϕ which is satisfiable if all variables contained in the set NAB are unassigned.
NAB (short for not-abnormal) refers to a set of Boolean variables representing
the decision whether the corresponding clause (or constraint) should be
contained in the formula. Please note that NAB is the negated form of
AB used in the Chapters 5 and 10. The algorithm computes all minimal

118

11.2. Debugging with Satisfiability Modulo Theories

Algorithm 11.1 MinimalCorrectionSets(ϕ) [LS08]
Require: Formula ϕ with unassigned not-abnormals (NAB)
Ensure: Minimal diagnoses MCSes

1: MCSes = {}
2: solutionSize = 1
3: while Solve(ϕ) == SAT do
4: ϕ′ = ϕ∧ AtMost({nab | nab ∈ NAB} , solutionSize)
5: while solve(ϕ′) == SAT do
6: MCS = GetNewMCS(ϕ′)
7: MCSes = MCSes∪ {MCS}
8: ϕ′ = ϕ′∧ BlockingClause(MCS)
9: ϕ = ϕ∧ BlockingClause(MCS)

10: end while
11: solutionSize = solutionSize + 1
12: end while
13: return MCSes

diagnoses with increasing cardinality (solutionSize). The initial cardinality
for the diagnoses is 1 (Line 2). In Line 3, an initial check is performed whether
the solver is able to find any diagnosis. If the solver returns UNSAT, i.e., there
does not exist any solution, the algorithm terminates immediately. Otherwise,
the solutionSize constraint is added to a temporary copy ϕ′ of the formula
(Line 4). We use the function AtMost defined Liffiton and Sakallah [LS08]
for the solution size:

AtMost({l1, l2, . . . , ln}, k) ≡
n

∑
i=1

value(li) ≤ k, (11.1)

where l1, l2, . . . , ln are Booleans, k is an Integer and value(li) is 1 if li is
assigned false, 0 otherwise. Please note that the function AtMost is analogous
to the function GetSizeConstraint used in Algorithm 10.3.

The inner loop (Line 5) is necessary since an SMT solver does not allow
to retrieve all models in contrast to constraint solvers. Therefore, an SMT
solver has to be called several times to obtain all MCSes with the maximum
cardinality solutionSize. In each iteration of the inner loop, the function
GetNewMCS (Line 6) is called with ϕ′. This function calls the solver to
retrieve a model and obtains an MCS as follows:

MCS = {nab ∈ NAB : model(nab) = true} . (11.2)

In the Lines 8 and 9, a blocking clause for the newly found MCS is added
to the formula ϕ′ and to the original formula ϕ. The blocking clauses are
necessary to avoid a repeated reporting of already found diagnoses or their

119

11. SMT versus Constraint Solving

supersets. A blocking clause for a diagnosis MCS is a disjunction of all
not-abnormals (NAB) which are contained in the diagnosis:

BlockingClause(MCS) =
∨

nab∈MCS

nab. (11.3)

After all diagnoses with the desired maximum cardinality are found (i.e., the
Solve(ϕ′) == UNSAT), the solutionSize is incremented. In the outer loop,
the solver checks whether the original formula ϕ extended by the blocking
clauses is still satisfiable (i.e., solutions are missing). If it is satisfiable, the
missing MCSes are computed. Otherwise, the algorithm returns the set
MCSes.

Liffiton and Sakallah published an improved version of the MCSes algorithm,
which increases the performance. This algorithm, namely the MCSes-U al-
gorithm [LS09], uses the unsatisfiable core. The unsatisfiable core is an SMT
solver’s byproduct of the proof of unsatisfiability and is a set of variables
which lead to the unsatisfiability of a given formula, i.e., a conflict set. Al-
though not necessarily minimal, the unsatisfiable core can be used to limit
the number of clauses which need to be considered during the calculation of
minimal correction sets. At this, true can be assigned to all nab which are not
included in the core set. This decreases the number of unassigned variables
and reduces the solving time.

Algorithm 11.2 illustrates the pseudo code of the algorithm provided by
Liffiton and Sakallah. In Line 3, all not-abnormals (NAB) are assumed to be
true, which leads to the unsatisfiability of ϕ since the formula represents a
faulty spreadsheet. The function GetCore retrieves the unsatisfiability core,
a not necessarily minimal set of variables which lead to the unsatisfiability
of ϕ. In Line 4, the solver is called without any assumption for the not-
abnormal variables (NAB). The solver returns SAT if there exists at least one
diagnosis which has not been reported yet. If the solver cannot satisfy the
formula, the algorithm terminates, otherwise a new temporary formula is
created by the function Instrument (Line 5). This function adds the AtMost

cardinality constraint to a copy of ϕ. Moreover, each not-abnormal which is
not included in the core, is set to true since it is not involved in the current
conflict. Variables which are included in the core remain unassigned. The
loop in Line 7 is responsible for reporting all MCSes, which can resolve the
conflict corresponding to the current unsatisfiable core. This is done in the
same manner as in the previously described MCSes algorithm. After finding
all diagnoses with the given cardinality, a new core set is retrieved by solving
ϕ′ under the assumption that not-abnormals which are not contained in the
core are true (Line 13). The resulting new core is added to core. Line 6 checks

120

11.2. Debugging with Satisfiability Modulo Theories

Algorithm 11.2 MCSes-UnsatisfiableCores(ϕ) [LS09]
Require: Formula ϕ with unassigned not-abnormals (NAB)
Ensure: Minimal diagnoses MCSes

1: MCSes = {}
2: solutionSize = 1
3: core = GetCore(ϕ, NAB)
4: while Solve(ϕ) == SAT do
5: ϕ′ = instrument(ϕ, core, solutionSize)
6: while Solve(ϕ′) == SAT do
7: while Solve(ϕ′) == SAT do
8: MCS = GetNewMCS(ϕ′)
9: MCSes = MCSes∪ {MCS}

10: ϕ′ = ϕ′∧ BlockingClause(MCS)
11: ϕ = ϕ∧ BlockingClause(MCS)
12: end while
13: core = core∪ GetCore(ϕ′, NAB\core)
14: ϕ′ = Instrument(ϕ, core, solutionSize)
15: end while
16: solutionSize = solutionSize + 1
17: end while
18: return MCSes

if the newly added not-abnormals in the core lead to further solutions with
the same maximum solutionSize. In this case, the inner loop in Line 7 is
executed at least one time, otherwise solutionSize is incremented.

In order to use SMT solvers instead of constraint solvers, we have to modify
the conversion of the spreadsheet. Algorithm 11.3 shows the function Con-
vertSpreadsheetIntoSmtClauses. This function differs from the function
ConvertSpreadsheet (Algorithm 10.1) in two aspects: (1) Instead of creat-
ing a set of constraints, the function ConvertSpreadsheetIntoSmtClauses

creates a formula comprising all constraints combined by conjunctions. (2) In
place of the abnormal statement AB(c), the negated version of AB(c), i.e.,
nab(c), is used.

Example 11.1 Let the formula ` of the cell B4 be “B1+B2”. The constraint rep-
resentation of this formula is AB(B4) ∨ B4 == (B1 + B2). The formula clause
representation of this cell is nab(B4) =⇒ B4 == (B1 + B2). �

The function ConvertExpressionSMT (Line 3) is similar to the function
ConvertExpression (Algorithm 10.2) but returns a formula instead of a set
of constraints. In order to compute the diagnoses for a faulty spreadsheet, we

121

11. SMT versus Constraint Solving

Algorithm 11.3 ConvertSpreadsheetIntoSmtClauses(Π, t)
Require: Spreadsheet Π, a failing test case t with input I and output O
Ensure: Formula clause ϕ

1: Let CONΠ be empty
2: for cell c ∈ Π do
3: [CON, aux] = ConvertExpressionSMT(`(c))
4: con = nab(c) =⇒ (c == aux)
5: CONΠ = CONΠ ∧CON∧ con
6: end for
7: Let CONT be empty
8: for all tuples (c, v) ∈ I do
9: CONT = CONT ∧ (c == v)

10: end for
11: for all tuples (c, vexp) ∈ O do
12: CONT = CONT ∧ (c == vexp)
13: end for
14: return CONΠ ∧CONT

apply the function MCSes-UnsatisfiableCores (Algorithm 11.2) on the for-
mula obtained from the function ConvertSpreadsheetIntoSmtClauses.

11.3. Example of application

In order to illustrate the basic concepts of our technique, we make use of the
running example shown in Figure 11.1. The spreadsheet is used to collect the
working hours for three days and to calculate the salary. The total working
hours are contained in cell B4. The user can enter the wage per hour in cell B6.
The overall salary (cell B7) is calculated by multiplying the total amount of
working hours with the wage per hour. If an employee’s total amount of
working hours exceeds 24 hours, she is only paid 24 hours. Figure 11.1b
illustrates the faulty version of this spreadsheet. In this faulty spreadsheet,
the computation of the total hours only contains the amount of hours for
the first two days. As a result, the salary (the value of cell B7) is erroneous.
Figure 11.1c shows the formula view of this faulty spreadsheet. Mbsd helps
to identify the possible root causes given the observation that cell B7 contains
a wrong value. Diagnoses for this faulty spreadsheet (i.e. explanations of the
observed misbehavior) are the cells B4 and B7. Changing one of these cells
allows to fix the fault. In the following subsections, we show the conversion
for the constraint solvers Choco and Minion and for the SMT solver Z3.

122

11.3. Example of application

(a) Correct spreadsheet (b) Faulty spreadsheet

(c) Formula view of the faulty spreadsheet

Figure 11.1.: Spreadsheet example ‘Salary’

MINION

Listing 11.1 shows the Minion representation of the example from Figure 11.1.
In the first part of the conversion, all required variables are defined (Lines
3 to 7). tmp6 represents an auxiliary variable that was introduced during
the conversion. The search strategy is determined in Line 9. Since we are
interested in which variables might behave abnormal, we focus on the values
of the abnormal array (ab). The Lines 10 to 17 represent the constraints of
the cells’ formulas. The Minion constraints sumleq and sumgeq are used
to represent the plus operator, and weightedsumleq and weightedsumgeq

together with the given list of signs are for representing the minus operator.
Finally, the Lines 19 to 20 encode the test case and the Lines 22 and 23
determine the size of the diagnoses. In this case, the Minion solver computes
single fault diagnoses. Minion restricts the domain of variables to Boolean
and Integer. Therefore, it is not possible to use Real numbers in Minion. As
a consequence, Minion can only be used for the debugging of spreadsheets
containing Booleans and Integers.

123

11. SMT versus Constraint Solving

1 MINION 3

2 ** VARIABLES **

3 DISCRETE B1 { -2000..5000}

4 BOOL ab[2]

5 BOOL tmp6

6 DISCRETE tmp7 { -2000..5000}

7 ...

8 ** SEARCH **

9 VARORDER [ab]

10 watched -or({ element(ab ,0,1),weightedsumgeq ([1,1],[B2 ,B1],B4)})

11 watched -or({ element(ab ,0,1),weightedsumleq ([1,1],[B2 ,B1],B4)})

12 watched -or({ element(ab ,1,1),reifyimply(eq(B7,tmp8),tmp6)})

13 watched -or({ element(ab ,1,1),product(tmp7 ,B6 ,tmp8)})

14 watched -or({ element(ab ,1,1),diseq(tmp6 ,tmp11)})

15 watched -or({ element(ab ,1,1),reifyimply(eq(B7,tmp9),tmp11)})

16 watched -or({ element(ab ,1,1),product(B4 ,B6,tmp9)})

17 watched -or({ element(ab ,1,1),reifyimply(ineq(tmp5 ,B4 ,-1),tmp6)})

18 #TEST CASE

19 eq(B1 ,10)

20 ...

21 #SIZE OF SOLUTION

22 watchsumgeq(ab ,1)

23 watchsumleq(ab ,1)

24 **EOF**

Listing 11.1: Minion representation of the running example

Choco

Listing 11.2 shows fragments of the conversion result for the Choco constraint
solver. The first part (Lines 1 to 7) defines the variables and their bounds.
Boolean variables are defined by an Integer with a range from 0 to 1. If the
value of a cell is known (e.g. for constants and test case values), the range
of the cell variable is set to this value. Lines 8 to 20 contain the transformed
spreadsheet. Lines 21 to 23 encode the size of the diagnoses. In this case, we
are looking for single fault diagnoses. In contrast to Minion, Choco allows
constraints with variables of the type Real in principle. However, a reification
of constraints containing Real numbers is not allowed in Choco. Therefore,
it is not possible to model a cell c as AB(c) ∨ con(c) if the cell references or
computes Real numbers.

1 varB1 [10 ,10]

2 varB3 [-2000 ,5000]

3 abB3 [0,1]

4 aux0 [-2000 ,5000]

5 ...

6 upperBoundActive [0, 1]

7 upperBound [0, 6]

8 eq({aux0 ,INTEGER_EXPRESSION{varB1 ,varB2 }})

9 implies ({eq({abB4 ,0}),eq({varB4 ,aux0})})

10 eq({varB1 ,10})

11 eq({varB7 ,300})

12 reifiedconstraint ({aux1 ,varB4 ,24})

13 eq({aux2 ,INTEGER_EXPRESSION {24,varB6 }})

124

11.4. Empirical Evaluation

14 eq({aux3 ,INTEGER_EXPRESSION{varB4 ,varB6 }})

15 or({and({neq({aux1 ,0}),eq({aux4 ,aux2})}),and({not({neq({aux1 ,0})}),eq

({aux4 ,aux3})})})

16 implies ({eq({abB7 ,0}),eq({varB7 ,aux4})})

17 eq({varB2 ,10})

18 implies ({eq({abB3 ,0}),eq({varB3 ,10}) })

19 eq({varB6 ,15})

20 eq({varB7 ,300})

21 implies ({eq({ upperBoundActive ,1}),eq({ INTEGER_EXPRESSION{abB4 ,abB7 ,

abB3},upperBound })})

22 eq({ upperBoundActive ,1})

23 eq({ upperBound ,1})

Listing 11.2: Choco representation of the running example

Z3

In contrast to Choco and Minion, Z3 allows to use Real numbers in formula
clauses without any restrictions. The running example encoded in Z3 is
illustrated in Listing 11.3. In contrast to Minion and Choco, the ‘health’ state
of the cells is represented by not-abnormals instead of abnormals.

1 (declare -fun varB1 () Int)

2 (declare -fun varB2 () Int)

3 (declare -fun varB3 () Int)

4 (declare -const nabB3 Bool)

5 ...

6 (assert (= varB1 10))

7 (assert (= varB2 10))

8 (assert(=> nabB3 (= varB3 10)))

9 ...

10 (assert(=> nabB7 (= varB7 (ite (> varB4 24) (* 24 varB6) (* varB4

varB6)))))

Listing 11.3: SMT representation of the running example

11.4. Empirical Evaluation

The empirical evaluation consists of three major parts: (1) the time comparison
of Z3, Minion and Choco, (2) the time comparison of Z3 for the Integer and
Real domains, and (3) the evaluation of the fault localization quality.

We implemented a prototype in Java that is able to transform a spreadsheet
into Minion and Choco constraints or a Z3 formula respectively. This pro-
totype supports the transformation of arithmetic and relational operations
as well as of the functions SUM and IF. The transformation of other functions
like AVG and MAX is technically feasible, but their transformation is not imple-
mented yet. In order to be fair, this prototype uses similar search strategies
for the solvers. All algorithms compute diagnoses of minimum cardinality. In

125

11. SMT versus Constraint Solving

particular, the algorithms are increasing the size of the diagnoses until they
get first results. They only search for diagnoses containing two cells if there
does not exist any diagnosis containing only a single cell. While Choco and
Minion compute all possible values for the abnormal variables at once, Z3
must be called for each abnormal combination separately. All solvers work
with the same domain for their variables. The domain is fixed to [-2000, 5000].
The prototype directly uses the API calls of Choco and Z3. Since Minion does
not provide an application programming interface, the Minion constraints
are written to a file and the Minion solver is started in a separate process.
For the following runtime comparison, we only measure the time Minion,
Choco and Z3 require for solving the given Csp. The time for writing to the
file is not included. If a solver has to be called several times, the solving times
are summed up.

In the first part of the evaluation, we compared the computation time of Z3,
Choco and Minion. For Z3, we used the MCSes and MCSes-U algorithms
for computing the diagnoses. Since the constraint solvers are only able to
handle Integers, we used the Integer Spreadsheet Corpus from Section 8.3
for this part of the evaluation. This evaluation was performed on a computer
with an Intel Core i5-2500T (2,3GHz quadcore) processor and 8GB of RAM.
The prototype was running on a 32-Bit Java VM 1.7.0 Update 11 within a
64-Bit version of Windows 7. For each faulty spreadsheet, we computed the
average solving time over 100 runs. In order to keep the time required for the
evaluation small, we set a time limit of 5 minutes for Z3 and 20 minutes for
the others. For Z3, less than 5 % of the spreadsheets did not finish. For the
other algorithms, the range of timeouts was between 11 % (Choco with cone)
and 36 % (Minion without cone).

The Figures 11.2, 11.3 and 11.4 graphically compare the performance of the
approaches. Figures 11.2a, 11.2b, 11.2c, and 11.3a compare the performance
of the single solvers and methods w.r.t. the amount of information, the
solver has available. Except for the MCSes-U algorithm (Figure 11.3a), the
figures clearly show that using cones yields a shorter solving time. For the
MCSes-U algorithm, the average runtimes (831.3 milliseconds without cone
and 675.4 milliseconds with cone information) indicate that using only the
cone information increases the performance. However, using only the cone
information in the MCSes-U algorithm more often results in timeouts than
using the whole information of the spreadsheet. Figure 11.2a shows that
Minion often cannot finish the computations. The Figures 11.3b, 11.3c, 11.4a,
and 11.4b compare the different solvers and methods. Z3 using MCSes-U
is on average the fastest approach. However, the difference between MCSes
and MCSes-U (Figure 11.3c) is marginal compared to the differences to the
constraint solvers (Minion: 4,340.3 milliseconds, Choco: 4,029.7 milliseconds
on average). This means that Z3 is on average six times faster than the

126

11.4. Empirical Evaluation

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

MinionCone

M
in

io
n

(a) Minion without versus Minion with cones

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

ChocoCone

C
ho

co

(b) Choco without versus Choco with cones

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

MCSesCone

M
C

S
es

(c) Z3 (MCSes) without versus Z3 (MCSes) with cones

Figure 11.2.: Runtime comparison on basis of the Integer spreadsheet corpus - Part 1. Data
points near to the red line indicate that the approaches perform equal (w.r.t.
runtime). Data points above the red line indicate that the approach labeled on
the x-axis performs better. The grey lines indicate the timeout limits.

127

11. SMT versus Constraint Solving

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

MCSesUCone

M
C

S
es

U

(a) Z3 (MCSes-U) without versus Z3 (MCSes-U) with cones

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

MinionCone

C
ho

co
C

on
e

(b) Minion versus Choco

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

MCSesCone

M
C

S
es

U
C

on
e

(c) Z3 (MCSes) versus Z3 (MCSes-U)

Figure 11.3.: Runtime comparison on basis of the Integer spreadsheet corpus - Part 2. Data
points near to the red line indicate that the approaches perform equal (w.r.t.
runtime). Data points above the red line indicate that the approach labeled on
the x-axis performs better. The grey lines indicate the timeout limits.

128

11.4. Empirical Evaluation

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

MinionCone

M
C

S
es

U
C

on
e

(a) Minion versus Z3 (MCSes-U)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

Runtime comparison [in milliseconds]

ChocoCone

M
C

S
es

U
C

on
e

(b) Choco versus Z3 (MCSes-U)

Figure 11.4.: Runtime comparison on basis of the Integer spreadsheet corpus - Part 3. Data
points near to the red line indicate that the approaches perform equal (w.r.t.
runtime). Data points above the red line indicate that the approach labeled on
the x-axis performs better. The grey lines indicate the timeout limits.

129

11. SMT versus Constraint Solving

constraint solvers. When considering only the constraint solvers (Figure 11.3b),
the performance difference of Minion and Choco is marginal. When using
the cone information (Figure 11.3b), Choco performs slightly better than
Minion, otherwise Minion performs better than Choco.

In this part of the empirical evaluation, we showed that Z3 outperforms
Minion and Choco concerning runtime and modeling abilities. Our prototype
contains optimizations for all three solvers. However, the following threats to
validity remain: Restricting the bounds of Integers is essential for the runtime
of constraint solvers. Currently, we used fixed bounds, which ensures both
the support for our evaluation examples and a reasonable runtime. However,
relaxing the bound might increase the computation times.

In the second part of the evaluation, we investigate the performance w.r.t. the
runtime of Z3 when dealing with Real numbers. Therefore, we replaced all
input values in the spreadsheets of the Integer spreadsheet corpus (Integer SC)
with Real numbers. We refer to this new corpus as Real numbers spreadsheet
corpus (or Real SC). We run Z3 with the MCSes-U algorithm using cones, on
both the Integer SC and the Real SC 25 times. Table 11.1 shows the results of
this comparison. Debugging of spreadsheets containing Real numbers lasts
on average 2.6 times longer than debugging of Integer spreadsheets. Please
note that the number of investigated spreadsheets in Table 11.1 differs from
the average given in the above discussion because we excluded spreadsheets
leading to timeouts from the evaluation.

Table 11.1.: Analysis of runtime performance of Z3 using cones with MCSes-U for the Integer
spreadsheet corpus and the Real numbers spreadsheet corpus

Integer SC [ms] Real SC [ms]
avg 332 872
median 12 46
stdev 1,530 2,710

Besides the time analysis, we show that model-based debugging is a valuable
help when debugging spreadsheets. Therefore, we take a look at the quality
of the debugging results. We express quality by means of the Reduction

metric defined in Equation 10.1.

For this part of the evaluation, we used spreadsheets from the modified
Euses spreadsheet corpus described in Section 8.2. Since this corpus contains
spreadsheets with Real numbers, this evaluation is only performed with
Z3. As already mentioned, our prototype does not support all functionality
provided by standard spreadsheet tools. Therefore, the evaluation is only
performed on 183 spreadsheets of the corpus. From these spreadsheets,
12 spreadsheets resulted in a timeout (5 minutes). The results for the other

130

11.5. Conclusion

171 spreadsheets are summarized in Table 11.2. The given runtime is the
average over 25 runs.

Table 11.2.: Analysis of execution for Z3 using cones with MCSes-U for the modified EUSES
spreadsheet corpus

Runtime [ms] Reduction [%]
average 488.6 79.7
median 5.0 97.0
stdev 2,763.6 68.2

From these empirical evaluations, we conclude that using Z3 for debugging
is on average faster than using Minion or Choco. In addition, Z3 is able to
handle Real numbers. Furthermore, we showed that such an model-based
approach is able to reduce the amount of cells that must be inspected.

11.5. Conclusion

In this chapter, we proposed to use SMT solvers for solving the spreadsheet
debugging problem. We showed the conversion of spreadsheet formulas into
constraints or formula clauses respectively for Choco, Minion and Z3. In
addition, we performed a case study showing the superiority of Z3 over
Choco and Minion w.r.t. the runtime. Z3 with the MCSes-U algorithm is six
times faster than Choco and Minion for finding all diagnoses with lowest
cardinality. This runtime improvement makes it possible to use Mbsd for
interactive debugging. Another important advantage of Z3 over Minion and
Choco is the handling of Real numbers. Z3 supports the usage of Real
numbers without any restrictions. However, when using Z3, the computation
of diagnoses for spreadsheets containing Real numbers requires 2.6 times
more runtime than the computation of diagnoses for similar spreadsheets
with Integer values only. In addition, we evaluated the performance of our
SMT prototype on the modified EUSES spreadsheet corpus w.r.t. runtime
and reduction quality. On average, the prototype requires 488.6 milliseconds
for computing the diagnoses for a EUSES spreadsheet. With the help of our
prototype the amount of cells that must be manually inspected is reduced by
79.7 % on average.

131

12. Mutation Supported Spreadsheet
Fault Diagnosis

This chapter is based on work that is submitted for publication [Auß+].

12.1. Introduction

Constraint-based fault localization techniques (e.g. [JE10; ARW12]) determine
which cells might be faulty. When the user changes all cells that are contained
in a diagnosis in the right way, the user could repair the spreadsheet. Unfor-
tunately, the amount of diagnoses can be huge. In addition, such diagnoses
cannot give the user hints how to change the cells. We are confident that the
information how the cells should be changed is an important support for
the user. Therefore, we propose a novel approach that automatically creates
versions, i.e., mutants, of the spreadsheet that satisfy the given test case.
This approach is called MuSSCO, short for Mutation Supported Spreadsheet
Correction. As the number of the generated mutants can be large, MuSSCO
automatically computes distinguishing test cases to eliminate mutants that
are invalid corrections. A test case is a distinguishing test case if there is at
least one output variable where the computed value of two versions of a
spreadsheet differ on the same input. We provide a prototype implementation
of MuSSCO1 which handles the basic functionality of spreadsheets.

The remainder of this chapter is organized as follows. In Section 12.2, we
discuss the related work. The mutants creation process is explained in Sec-
tion 12.3. The algorithms for creating diagnoses and distinguishing test cases
are explained in Section 12.4. We provide an empirical evaluation in Sec-
tion 12.5 and discuss threats to validity and future work in Section 12.6. In
Section 12.7, we conclude the approach.

1http://mussco.ist.tugraz.at/

133

http://mussco.ist.tugraz.at/

12. Mutation Supported Spreadsheet Fault Diagnosis

12.2. Related Work

MuSSCO is based on work of Nica et al. [NNW10; NNW12]. Nica et al.
compute distinguishing test cases for debugging imperative programs. Their
approach relies on µ-Java [MOK06] for generating the correction suggestions.
In contrast to their approach, MuSSCO encodes the mutation operators
directly into the constraint satisfaction problem.

GoalDebug [AE07a; AE05; AE08] employs a similar constraint-based ap-
proach and computes a list of changes to fix the spreadsheet. GoalDebug
relies upon a set of possible, pre-defined change (repair) inference rules. The
fault localization approach is done by mutating the spreadsheet using the set
of rules and ascertain that the user expectations are met. GoalDebug uses
heuristics to select the most suited mutants. In contrast, MuSSCO gener-
ates distinguishing test cases to filter out those mutants that are not valid
corrections.

Weimer et al. [Wei+09] introduced genetic programming for repairing C pro-
grams. Similar to them, we make assumptions how to restrict the search
space. For example, we perform mutations on the cone and Weimer et al.
make mutations on the weighted path. In addition, Weimer et al. assume
that the correct statement exists somewhere in the code. We assume that
when a spreadsheet programmer referenced the wrong cell, the correct cell
is in the surrounding of the referenced cell. However, we differ from their
genetic programming approach as we do not use crossover and randomness
for selecting mutations.

12.3. Mutation creation

A primitive way to compute mutants is to clone the spreadsheet and change
arbitrary operators and operands in all formulas of the cells contained in
one diagnosis. If the created mutant satisfies the given test case we present
the mutant to the user. Otherwise we discard the mutant and create another
mutant. The problem with this approach is that too many mutants have to
be computed until the first mutant passes the given test case. Therefore, we
propose a more sophisticated approach which includes the mutation creation
process in the Csp. Instead of only transforming cell formulas into a value-
based constraint model, we also include the information how the cells could
be mutated. We allow the following mutation operations:

• replace a constant with a reference or another constant
• replace a reference with a constant or another reference
• replace arithmetical operators with other arithmetical operators

134

12.3. Mutation creation

• replace relational operators with other relational operators
• replace function with other functions that take the same number of

arguments
• resize areas

We are aware that these mutation operators are not able to correct all faulty
spreadsheets. In particular, the creation of completely new formulas is up to
future work.

When creating mutants, we have to face two challenges: (1) We have to ensure
that the created mutant is a feasible spreadsheet, i.e., the DDG of the mutant
must not contain any cycles. (2) Theoretically, an infinite number of mutations
can be created. Therefore, we have to restrict the search space for the mutant
creation.

In order to handle the first challenge, we propose the following solution:
Each cell that is represented in the CSP gets an additional Integer variable
within the domain {1, |Π|}. The constraint solver has to assign values to these
variables in such a way that each cell gets a number that is higher than the
numbers assigned to the cells this cell references. This constraint ensures that
the created mutant is still a feasible spreadsheet.

In order to reduce the search space for mutations, our approach makes the
following assumptions:

• Mutations are only indicated for cells that are contained in the cone of
any erroneous output cell.
• When replacing references with constants, we do not immediately

compute the concrete constant. Instead, we just use the information that
there exists a constant that could eliminate the observed misbehavior.
Only if we present a mutant to the user, we compute a concrete value
for that constant. The reason for this delayed computation is the fact
that there often exist many constants that satisfy the primary test case.
During the distinguishing test case creation process, we gain additional
information. Therefore, we can reduce the number of constants.
• In cases where we have to change a reference or resize an area, we

make use of the following assumption: If the user made a mistake when
indicating the reference or area, the intended reference(s) might be in
the surrounding of the originally indicated reference(s). In case of a
single reference, we define the surrounding of a cell c as follows:

135

12. Mutation Supported Spreadsheet Fault Diagnosis

Surrounding(c)≡de f{
c1 ∈ CELLS

∣∣∣∣ ϕx(c)− 2 ≤ ϕx(c1) ≤ ϕx(c) + 2 &
ϕy(c)− 2 ≤ ϕy(c1) ≤ ϕy(c) + 2

}
(12.1)

We model into our Csp that the reference to the cell is either correct or
that it should be replaced by one of the cells in the surrounding. In case
of an area, we define the surrounding of the area as follows:

Surrounding(c1 : c2)≡de f

{
c3 ∈ CELLS

∣∣∣∣ ϕx(c1)− 2 ≤ ϕx(c3) ≤ ϕx(c2) + 2 &
ϕy(c1)− 2 ≤ ϕy(c3) ≤ ϕy(c2) + 2

}
(12.2)

For areas, we allow to select/deselect any cell in the surrounding.
This allows shrinking and enlargement of areas on the one hand, and
non-continuous areas on the other hand.

These assumptions on the search space do not allow to find suited mutants
for all given faulty spreadsheets. Furthermore, only one mutation per cell is
allowed. However, these restrictions enable to use the approach in practice.

12.4. Computing distinguishing test cases

In the previous section, we have discussed how to generate mutants for a
given faulty spreadsheet Π that satisfy a given test case t. Usually, there
exists more than one possible correction. In practice, a large number of repair
suggestions overwhelms the user. Consequently, there is a strong need for
distinguishing such variants. One way to distinguish explanations is to use
distinguishing test cases. Nica et al. [NNW12] define a distinguishing test case
for two variants of a program as input values that lead to the computation of
different output values for the two variants. When translating this definition
to the spreadsheet domain, we have to search for constants that are assigned
to inputs, which lead to different output values for the different explanations.
The user (or another oracle) has to clarify which output values are correct.

Algorithm 12.1 describes our approach. The algorithm takes a faulty spread-
sheet and a failing test case as input and determines possible solutions with
increasing cardinality, starting with a solutionSize of 1 (Line 1). Since input
cells are considered correct, the upper bound of the solutionSize is equal to
the amount of non-input cells. In Line 2, the set T initialized with the given
failing test case. In the Lines 5 and 6, we create the sets eqMut and undesMut

136

12.4. Computing distinguishing test cases

Algorithm 12.1 Mussco(Π, t)
Require: A spreadsheet Π, a test case t
Ensure: A set of possible corrections

1: solutionSize = 1
2: T = {t}
3: while solutionSize ≤ (|Π| − |getInputCells(Π)|) do
4: M = {}
5: eqMut ={}
6: undesMut ={}
7: CON =ConvertSpreadsheet(Π, T)
8: CON = CON∪GetSizeConstr(CON, solutionSize)
9: while HasSolution(CON) do

10: m = GetMutant(CON)
11: M = M ∪ {m}
12: CON = CON ∪{¬m}
13: while |M| ≥ 2 ∧ ∃((m1, m2) ∈ M : (m1, m2) /∈ eqMut ∧ (m1, m2) /∈

undesMut) do
14: Select two mutants m1, m2 from M where (m1, m2) /∈ eqMut ∧

(m1, m2) /∈ undesMut
15: t′ = GetDistinguishingTestcase(Π, m1, m2)
16: if t′ = UNSAT then
17: eqMut = eqMut∪ {(m1, m2)}
18: else
19: if t′ = UNKNOWN then
20: undesMut = undesMut∪ {(m1, m2)}
21: else
22: t′ = t′ ∪GetExpectedOutput(Π, t)
23: T = T∪ {t′}
24: CON = CON∪ConvertSpreadsheet(t′)
25: M′ = Filter(Π, t′, M)
26: M = M \M′

27: end if
28: end if
29: end while
30: end while
31: if User accepts any solution in M then
32: return M
33: end if
34: solutionSize = solutionSize + 1
35: end while
36: return no solution

137

12. Mutation Supported Spreadsheet Fault Diagnosis

to store the pairs of equivalent and undecidable mutants. The faulty spread-
sheet and the given test cases are converted into constraints in Line 7. At
this, the function ConvertSpreadsheet is similar to the function described
in Algorithm 10.1. However, instead of only converting an expression into
its constraint representation, also possible mutations are encapsulated in the
constraint representation. The function GetSizeConstraint(CON, n) creates
a constraint that ensures at most n of the abnormal variables contained in
CON can be set to true (Line 8).

In Line 9, the function HasSolution checks if the solver can compute any
mutants that satisfy the given constraint system. In Line 10, the function
GetMutant returns a mutant that satisfies the given constraint system. This
mutant is added to the list of mutants M (Line 11) and is blocked in the
constraint system (Line 12). If M contains at least two mutants that are not
equivalent or undecidable, such a pair of mutants is selected (Line 14). In
Line 15, we call the function GetDistinguishingTestcase. If this function
returns UNSAT, the pair m1, m2 is added to the set eqMut (Line 17). If the
function returns UNKNOWN, the pair m1, m2 is added to the set undesMut
(Line 20). Otherwise, the function returns a new test case. The function
GetExpectedOutput is used to determine the expected output for the given
test case (Line 22). This function either asks the user or another oracle, e.g.
a correct implementation of the spreadsheet. The test case is added to the
set of test cases (Line 23). Furthermore, it is converted into constraints and
added to the constraint system (Line 24). The function Filter checks for each
remaining mutant in M, if it passes the new test case (Line 25). This function
returns the set of mutants that fail this test case. Those mutants are removed
from the set of mutants (Line 26). After retrieving all mutants for the given
solutionSize, the user is presented with the remaining solutions M. If the user
accepts at least one found mutant, the algorithm terminates. Otherwise, the
solutionSize is incremented (Line 34) in order to determine possible mutants
with an increased size.

Algorithm 12.2 describes the creation of distinguishing test cases. This al-
gorithm takes as input a spreadsheet and two mutated versions of that
spreadsheet. In the Lines 1 and 2, the functions GetInputCells and GetOut-
putCells are called. These functions return the set of input and output
cells for the given spreadsheet. In Line 3, mutant m1 is converted into its
constraint representation. When creating a distinguishing test case, we have
to exclude the input cells from the spreadsheet. Therefore, we only hand over
the spreadsheet without the input cells to the function ConvertSpreadsheet.
This function slightly differs from the ConvertSpreadsheet function used in
Algorithm 12.1, because it takes two additional parameters: (1) the particular
mutant in use and (2) a constant that acts as postfix for variables. This postfix
is necessary to distinguish the constraint representation of m1 from that of

138

12.5. Empirical Evaluation

m2: Each variable in the constraint system for mutant m1 gets the postfix “ 1”.
Mutant m2 is converted in Line 4 into its constraint representation using the
postfix “ 2”. In Line 5, a constraint is created that ensures that the input of the
m1 is equal to the input of m2. In Line 6, a constraint is created that ensures
that at least one output cell of m1 has a different value than the same output
cell in m2. The function GetSolution calls the solver with these constraints
(Line 8). This function either returns a distinguishing test case, UNSAT (in
case of equivalent mutants) or UNKOWN (in case of undecidability).

Algorithm 12.2 GetDistinguishingTestCase(Π, m1, m2)
Require: A spreadsheet Π, mutants m1, m2
Ensure: A distinguishing test case or UNSAT/UNKOWN

1: inputCells = GetInputCells(Π)
2: outputCells = GetOutputCells(Π)
3: CON1 =ConvertSpreadsheet(Π \ inputCells, m1, ” 1”)
4: CON2 =ConvertSpreadsheet(Π \ inputCells, m2, ” 2”)
5: inputCon =

∧
c∈inputCells c 1 = c 2

6: outputCon =
∨

c∈outputCells c 1 6= c 2
7: CON = CON1∪CON2∪ inputCon∪ outputCon
8: return GetSolution(CON)

The overall worst-case time complexity of Algorithm 12.1 is exponential
in the number of cells (O

(
2|CELLS|

)
). In practice, only solutions up to a

certain size, i.e., single or double fault solutions, are relevant. Obviously,
Algorithm 12.1 terminates. The outer while-loop (Line 3) is bound to the
size of the spreadsheet. The while-loop in Line 9 is limited since there only
exists a limited number of mutants that can be created and we do not allow
to report mutants twice (Line 12). The inner-most loop (Line 13) is limited
since the number of mutants in M has to be greater or equal to two and the
selected pair must not have been proven to be equivalent or undecidable. In
each iteration of this loop, either a new pair is added to the equivalent or
undecidable set (Lines 17 and 20) or the set M shrinks (Line 26). M must
shrink because the return set of the function Filter (Line 25) contains at least
one element, since the mutants m1 and m2 must compute different output
values for the given test case.

12.5. Empirical Evaluation

We implemented a prototype in Java that uses Apache POI2 to access spread-
sheets and Z3 [MB08] as solver. This prototype supports the conversion of

2http://poi.apache.org/index.html

139

http://poi.apache.org/index.html

12. Mutation Supported Spreadsheet Fault Diagnosis

spreadsheets with basic functionality into Z3 formula clauses. Arithmetic and
relational operators as well as the functions ‘IF’, ‘SUM’, ‘AVERAGE’, ‘MIN’,
and ‘MAX’ are supported.

For the empirical evaluation, we used an extended version of the Integer
Spreadsheet corpus described in Section 8.3. The evaluated spreadsheets can
be found on the MuSSCO website3. We have to exclude some spreadsheets of
the corpus: For 102 mutated spreadsheets, the algorithm did not terminate
within 20 minutes. For 54 mutated spreadsheets, MuSSCO could not compute
the required corrections. In most of these cases, MuSSCO was able to generate
mutants that satisfy the given initial test case. However, MuSSCO was not
able to generate a mutant that equals to the original non-faulty spreadsheet
because of the following reasons: (1) The correction requires more than
one mutation within a single cell, which is currently not supported by our
approach. (2) The required mutation operator is not implemented in MuSSCO
or the mutation operator does not cover all particular constellations. For 73
mutated spreadsheets, MuSSCO was able to compute the required mutation
in order to correct the fault. In the following empirical evaluation, we only
consider these 73 mutated spreadsheets.

The smallest spreadsheet used in this evaluation contains 8 formulas and
the largest contains 69 formulas cells. On average, a spreadsheet contains
31.2 formula cells. The faulty spreadsheet variants have on average 1.14 erro-
neous output cells. 52 mutated spreadsheets contain single faults. 20 mutated
spreadsheets contain double faults, i.e., two cells with wrong formulas. One
mutated spreadsheets contains three faults. The evaluation was performed
using a PC with an Intel Core i7-3770K CPU and 16GB RAM. The evaluation
machine runs a 64-bit Windows 7, at which MuSSCO is executed in the Oracle
Java Virtual Machine version 1.7.0 17. The evaluation results are averaged
over 100 runs.

Our approach is designed to interact with the user. In order to investigate a
larger amount of spreadsheets, we decided to simulate the user interactions.
Therefore, we use the original correct spreadsheets as oracles to determine
the output values for the the generated distinguishing test cases. Figure 12.1
shows the amount of correction suggestions that are returned to the user.
For 49 spreadsheets, only the correct mutation is returned to the user. On
average, 3.2 mutants are reported to the user. For one faulty spreadsheet
containing two faulty cells, MuSSCO determines 27 correction suggestions.
Moreover, applying the algorithm to a spreadsheet with three faults results
in 94 correction suggestions. The evaluation shows that in case of double or
triple faults, MuSSCO finds a higher amount of equivalent solutions.

3http://mussco.ist.tugraz.at/

140

http://mussco.ist.tugraz.at/

12.5. Empirical Evaluation

1 2 3 4 6 7 27 94
0

5

10

15

20

25

30

35

40

45

50

Number of remaining mutants

N
um

be
r

of
 o

cc
ur

en
ce

s

Figure 12.1.: Amount of correction suggestions returned to the user

141

12. Mutation Supported Spreadsheet Fault Diagnosis

1 2 3 4 5 6 7 8 9 10 12 15 29
0

5

10

15

20

25

30

Number of required test cases

N
um

be
r

of
 o

cc
ur

en
ce

s

Figure 12.2.: Amount of generated distinguishing test cases

142

12.6. Threats to validity and future work

Figure 12.2 illustrates the number of generated distinguishing test cases.
For 27 spreadsheets, only a single distinguishing test case is required. For
26 spreadsheets, two distinguishing test cases are necessary. For one spread-
sheet, 29 distinguishing test cases have to be generated. This spreadsheet
contains a double fault. Therefore, MuSSCO creates many mutants which
have to be removed by the distinguishing test cases. On average, 3.1 distin-
guishing test cases are required.

The average runtime is 49.1 seconds, at which the runtime is less than
10 seconds for 23 of the spreadsheets. The average runtime for single faults
is 25.1 seconds. The average runtime for double and triple faults is 108.6
seconds. Most of the runtime, i.e. 95.5 % is consumed by the mutation creation
process. The creation of the distinguishing test cases requires on average 1.4 %
of the total run time. The remaining 3.1 % share out between the time required
for filtering the mutants and setting up MuSSCO (read spreadsheet data in,
convert spreadsheet).

We create a distinguishing test case as soon as we have two mutants available.
Another possibility is to immediately compute all possible mutants of a
particular size and afterwards generate the test cases. Does the implemented
method perform better with respect to runtime? We suppose that more
adding more test cases to the constraint system decreases the number of
mutants that are created and therefore decreases the total computation time.
For clarifying our assumptions, we compare the two methods with respect
to the number of generated mutants and the total computation time in
Figure 12.3. Variant 1 denotes the version where we first compute all possible
mutants. Variant 2 denotes the version described in Algorithm 12.1. For six
spreadsheets, Variant 1 results in a timeout. From Figure 12.3a, we can see
that Variant 1 obviously creates more mutants. On average, Variant 1 creates
17.2 mutants while Variant 2 creates 5.2 mutants (when comparing only
those spreadsheets without timeouts). When comparing the computation
time (Figure 12.3b), the two variants only slightly differ (expect for the six
spreadsheets yielding a timeout when using Variant 1). It turns out, that
decreasing number of computed mutants through more test cases, increases
the computation time per mutant. Nevertheless, we favor Variant 2 over
Variant 1 since the user gets a first response earlier.

12.6. Threats to validity and future work

The largest threat to validity is the user oracle. In this empirical evaluation, we
had the original spreadsheet as oracle at our disposal and therefore complete
and correct knowledge. This is not the case in real life where the user acts as
oracle. Unfortunately, to err is human. Similar as the user made a mistake

143

12. Mutation Supported Spreadsheet Fault Diagnosis

10
0

10
1

10
2

10
0

10
1

10
2

Number of created mutants

Variant 1

V
ar

ia
nt

 2

(a) Comparison of two computation variants with respect to the number of created mutants

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

Computation time in milliseconds

Variant 1

V
ar

ia
nt

 2

(b) Comparison of two computation variants with respect to the total computation time

Figure 12.3.: Comparison of two computation variants with respect to the number of created
mutants and the total computation time. Data points close to the red line indicate
that the variants behave equal. Data points below the red line indicate that
Variant 1 creates more mutants (Subfigure 12.3a). The grey lines indicate the
timeout.

144

12.7. Conclusions

in a formula, he might indicate wrong values as expected output values.
Currently, our approach is not robust enough to handle wrong user input.
In future work, we will expand our approach by an heuristic model. This
heuristic model takes into consideration that user answers might be wrong.

Another important topic is the solving time. As mentioned in the empirical
evaluation, we had to exclude several spreadsheets from the evaluation
because the solving process results in a timeout. In future work, we are
going to improve our mutation strategy. We are confident that an improved
mutation strategy paves off for a reduced solving time. In addition, we want
to predict the solving time. For the prediction of the solving time, we are
going to rely on previous work on estimating the complexity of constraint
satisfaction problems [Wot+09]. With a predicted solving time, we are able to
advice the user for/against using this approach for a concrete spreadsheet.
In case of a large solving time, we could ask the user for more information
and some intermediate values in order to restrict the search space.

In addition, we plan to extend the empirical evaluation by conducting a
user study to ascertain the effectiveness of our approach. The user study is
important to study usability aspects in order to efficiently communicate the
diagnostic results to the end-users.

12.7. Conclusions

In this chapter, we present an approach for fault localization and correction
in spreadsheets. Our approach, coined MuSSCO, converts the spreadsheet
under analysis into a set of constraints. Moreover, mutations are added to
the constraint system. This allows to generate mutants as possible repair
suggestions that satisfy the given test case. As the number of mutants that
fulfill a primary test case can be huge, distinguishing test cases are computed.
This allows to narrow the set of possible repair suggestions.

Beside the theoretical foundations and the algorithms we also discuss the
results obtained from an empirical evaluation where we are able to show
that distinguishing test cases improve diagnosis of spreadsheets substantially.
In particular, results show that on average 3.1 distinguishing test cases are
generated and 3.2 mutants are reported as possible fixes. On average, the
generation of the mutants and distinguishing test cases requires 47.9 seconds
in total, rendering the approach applicable as a real-time application.

145

Part IV.

Future Work and Conclusion

147

13. Future Work and Conclusion

In this thesis, we have proposed several approaches that improve the state-
of-the-art of fault localization in both, 3rd generation languages and the
spreadsheet domain. Most of these approaches are model-based software
debugging approaches. Sfl for spreadsheets from Chapter 9 is the only tech-
nique that does not rely on a model. The other approaches are illustrated in
Figure 13.1. For 3rd generation languages, we have proposed two approaches,
namely Sendys and Conbas. Conbas relies on a value-based model. It is
computationally demanding and therefore only suited for debugging small
programs. In contrast, Sendys relies on a dependency-based model. This
makes Sendys to a lightweight approach that can also be used for debug-
ging large programs. While Conbas returns a set of diagnosis candidates,
Sendys returns a ranked list of suspicious statements. For the spreadsheet
domain, we have proposed three model-based approaches, namely Sendys

for spreadsheets, ConBug, and MuSSCO. While Sendys for spreadsheets
relies on a dependency-based model, ConBug, and MuSSCO make use of a
value-based model. Therefore, ConBug and MuSSCO are computationally
more demanding than Sendys for spreadsheets. Sendys for spreadsheets
returns a ranked list of suspicious cells. ConBug returns a set of diagnosis
candidates. MuSSCO not only returns a set of diagnosis candidates but also
correction suggestions.

3rd Generation
Programs

Spreadsheets

Dependency-Based

Value-Based

Model

Domain

SENDYS

CONBAS
ConBug
MuSSCO

Sendys for
Spreadsheet

Figure 13.1.: Classification of the model-based approaches presented in this thesis

We have shown in the empirical evaluations that the previously presented
techniques are a valuable support when debugging programs or spreadsheets.
However, there exists many open challenges.

149

13. Future Work and Conclusion

For both domains, the integration of the introduced approaches into tools
is vital. For the 3rd languages, debugging tools have to be integrated into
IDEs like Eclipse. For the spreadsheet domain, the debugging tools have to
be directly integrated into the spreadsheet tools, e.g. Mircosoft’s Excel. The
technical integration is easy. The greatest challenge lies in human-computer
interaction. Most of the effort has to be spent for designing the interfaces. In
addition, user studies are necessary to show if such debugging tools are a
valuable help for users.

Another challenge is the detection of missing code / formulas. The proposed
methods do not explicitly point out that the error might be caused by missing
code or missing formulas. However, most researches (e.g. Abreu and van
Gemund [AG10] and Wong et al. [WDC10]) argue that ranking based methods
can still be a valuable help when debugging: When examining suspicious
statement, the programmer (spreadsheet developer) may realize that some
code in the neighborhood of the suspicious statement is missing. In future
work, we are going to investigate by means of a user-study if users realizes
that the error is caused by missing code or missing formulas when presenting
diagnoses to the user.

For all approaches that rely on value-based models, the computational com-
plexity is a hot topic. Unfortunately, all of these approaches suffer from a
scalability problem. They can only be used for small programs and spread-
sheets. In contrast, dependency-based model can be used for large programs,
but they cannot compute as good results as value-based models. In this
thesis, we have made first steps towards improving the fault localization of
lightweight debugging approaches without dramatically increasing their com-
putational complexity. However, there is still a long way to go for providing
good automated debugging techniques. But the combination of spectrum-
based techniques with model-based techniques seems to be a good path in
the right direction.

From this thesis, we have learned that it makes sense to use debugging
techniques developed for 3rd generation languages in the spreadsheet domain.
In the domain of 3rd generation languages, there exist many techniques
whose complexity prevents programmers to use these techniques on real-life
programs. As the spreadsheet domain is more restricted (e.g. there exist
no loops), it is possible to apply these approaches to spreadsheets. In the
spreadsheet domain, we investigated the impact of using different solvers
(constraint solvers versus SMT solvers) for solving the debugging problem.
We have learned that Z3, a state-of-the-art SMT solver, performs best w.r.t.
runtime. In future work, we are going to investigate if Z3 is also successful
when debugging programs written in a 3rd generation language.

150

Appendix

151

Appendix A.

List of publications

A.1. Published

1. Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and Elisabeth
Getzner. “On the Empirical Evaluation of Fault Localization Techniques
for Spreadsheets.” In: Fundamental Approaches to Software Engineering -
16th International Conference, FASE 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, pp. 68–82.
I had the idea for this paper. Franz Wotawa wrote the part about the
basic definitions. André Riboira and Rui Abreu wrote about Spectrum-
based fault localization. Elisabeth Getzner helped me to implement the
prototype and to perform the empirical evaluation. The Chapters 7, 8,
and 9 are based on this paper.

2. Birgit Hofer and Franz Wotawa. “Reducing the Size of Dynamic Slic-
ing with Constraint Solving.” In: Proceedings of the 12th International
Conference on Quality Software, pp. 41-–48.
Franz Wotawa had the basic idea for this paper. I refined the algorithm
and implemented a prototype based on the proof-of-concept implemen-
tation of a student. In addition, I performed the empirical evaluation.
Chapter 5 is based on this paper.

3. Birgit Hofer and Franz Wotawa. “Combining Slicing and Constraint
Solving for Better Debugging: The CONBAS Approach.” In: Advances
in Software Engineering, vol. 2012, Article ID 628571, 18 pages, 2012.
This is an extension of the previously mentioned paper. Franz Wotawa
focused on the basic definitions, while I wrote about the algorithm and
extended the empirical evaluation. The Chapters 3 and 5 are based on
this paper.

4. Birgit Hofer and Franz Wotawa. “Spectrum Enhanced Dynamic Slic-
ing for better Fault Localization.” In: Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012). Vol. 242. Frontiers in
Artificial Intelligence and Applications. IOS Press, pp. 420–425. isbn:
978-1-61499-097-0.

153

Appendix A. List of publications

I had the idea for this paper and implemented the prototype. Franz
Wotawa helped in writing and proof-reading the paper. The Chapters 3
and 4 are based on this paper.

5. Birgit Hofer, Franz Wotawa, and Rui Abreu. “AI for the win: improving
spectrum-based fault localization.” In: ACM SIGSOFT Software Engineer-
ing Notes 37.6, pp. 1–8.
Rui Abreu contributed the results of Barinel and Deputo and the
text about them and Sfl. I contributed the results and the description
of Sendys and performed the comparison of the approaches. Franz
Wotawa motivated the paper. All authors equally contributed to the
discussion section. The results of the evaluation are used in Chapter 4.

6. Birgit Hofer and Franz Wotawa. “How to combine slicing-hitting-set-
computation with spectrum-based fault localization.” In: 22nd Interna-
tional Workshop on Principles of Diagnosis, pp. 114–121.
I had the idea for this paper and implemented the prototype. Franz
Wotawa helped in writing and proof-reading the paper. The Chapters 3
and 4 are based on this paper.

7. Simon Außerlechner, Sandra Fruhmann, Wolfgang Wieser, Birgit Hofer,
Raphael Spörk, Clemens Mühlbacher, and Franz Wotawa. “The right
choice matters! SMT solving substantially improves model-based de-
bugging of spreadsheets.” In: 13th International Conference on Quality
Software, in press.
Simon Außerlechner had the idea for this paper. I wrote the introduc-
tion, the basic definitions (expect of the description of the MCSes and
MCSes-U algorithms) and the part about the empirical evaluation. Si-
mon Außerlechner, Sandra Fruhmann, Wolfgang Wieser, Raphael Spörk
and Clemens Mühlbacher performed the empirical evaluation. Franz
Wotawa helped in writing and proof-reading the paper. Chapter 11 is
based on this paper.

A.2. Unpublished work

1. Simon Außerlechner, Birgit Hofer, Franz Wotawa, and Rui Abreu. “Mu-
tation Supported Spreadsheet Fault Diagnosis.” Submitted for publica-
tion.
Franz Wotawa and Rui Abreu had the basic idea for this paper. Simon
Außerlechner and I worked on the technical realization of the idea and
on solving the problems of the infinite search space. Rui Abreu wrote
the introduction, the related work and the conclusion. I wrote about
the Csp and the mutation creation process. Simon Außerlechner and I
wrote the Sections about the distinguishing test cases and the empirical
evaluation. Franz Wotawa helped in writing and proof-reading the

154

A.2. Unpublished work

paper. Chapter 12 is based on this paper.
2. Rui Abreu, Birgit Hofer, Alexandre Perez, André Riboira, and Franz

Wotawa. “Using Constraints to Debug Spreadsheets.” Unpublished.
The basic idea for this paper came from Rui Abreu, André Riboira, and
Franz Wotawa and have already been published [ARW12]. I helped them
to improve their approach by making a profound empirical evaluation
and by extending the basic definitions of their work. Chapter 10 is based
on this unpublished work.

155

Bibliography

[Abr+09a] Rui Abreu, Wolfgang Mayer, Markus Stumptner, and Arjan
J. C. van Gemund. “Refining Spectrum-based Fault Localization
Rankings.” In: Proceedings of the 24th Annual ACM Symposium
on Applied Computing (SAC’09). Honolulu, Hawaii, USA: ACM
Press, Aug. 2009, pp. 409–414 (cit. on pp. 17, 18, 42).

[Abr+09b] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van
Gemund. “A practical evaluation of spectrum-based fault lo-
calization.” In: Journal of Systems & Software (JSS) 82.11 (2009),
pp. 1780–1792. issn: 0164-1212. doi: 10.1016/j.jss.2009.06.
035 (cit. on pp. 16, 38, 58).

[Abr09] Rui Abreu. “Spectrum-based Fault Localization in Embedded
Software.” PhD thesis. Delft University of Technology, Nov. 2009.
isbn: 978-90-79982-04-2 (cit. on p. 39).

[AE05] Robin Abraham and Martin Erwig. “Goal-Directed Debugging
of Spreadsheets.” In: Proceedings of the 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing. VLHCC ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 37–44.
isbn: 0-7695-2443-5 (cit. on pp. 87, 134).

[AE06] Robin Abraham and Martin Erwig. “AutoTest: A Tool for Auto-
matic Test Case Generation in Spreadsheets.” In: Proceedings of
the 2006 IEEE Symposium on Visual Languages and Human-Centric
Computing. VLHCC ’06. Brighton, UK, 2006, pp. 43–50 (cit. on
p. 88).

[AE07a] Robin Abraham and Martin Erwig. “GoalDebug: A Spreadsheet
Debugger for End Users.” In: Proceedings of the 29th International
Conference on Software Engineering. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 251–260. isbn: 0-7695-
2828-7. doi: 10.1109/ICSE.2007.39 (cit. on pp. 87, 134).

[AE07b] Robin Abraham and Martin Erwig. “UCheck: A spreadsheet
type checker for end users.” In: Journal of Visual Languages and
Computing 18 (1 Feb. 2007), pp. 71–95. issn: 1045-926X. doi:
10.1016/j.jvlc.2006.06.001 (cit. on p. 87).

157

http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1109/ICSE.2007.39
http://dx.doi.org/10.1016/j.jvlc.2006.06.001

Bibliography

[AE08] Robin Abraham and Martin Erwig. “Test-driven goal-directed
debugging in spreadsheets.” In: Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC 2008,
Herrsching am Ammersee, Germany, 15-19 September 2008. IEEE,
2008, pp. 131–138. doi: 10.1109/VLHCC.2008.4639073 (cit. on
pp. 87, 134).

[AE09] Robin Abraham and Martin Erwig. “Mutation operators for
spreadsheets.” In: IEEE Transactions on Software Engineering (TSE)
35 (2009), pp. 94–108 (cit. on pp. 87, 98).

[AG10] Rui Abreu and Arjan J. C. van Gemund. “Diagnosing multiple
intermittent failures using maximum likelihood estimation.” In:
Artificial Intelligence 174 (18 Dec. 2010), pp. 1481–1497. issn: 0004-
3702. doi: 10.1016/j.artint.2010.09.003 (cit. on pp. 18, 42,
150).

[AM03] Yirsaw Ayalew and Roland Mittermeir. “Spreadsheet Debug-
ging.” In: Bilding Better Business Spreadsheets - from the ad-hoc to
the quality-engineered. Proceedings of EuSpRIG 2003, Dublin, Ireland,
July 24th-25th 2003 (2003), pp. 67–79 (cit. on pp. 88, 101).

[Arc08] Andrea Arcuri. “On the automation of fixing software bugs.” In:
ICSE Companion ’08: Companion of the 30th international conference
on Software engineering. Leipzig, Germany: ACM, 2008, pp. 1003–
1006. isbn: 978-1-60558-079-1. doi: 10.1145/1370175.1370223
(cit. on p. 17).

[ARW12] Rui Abreu, André Riboira, and Franz Wotawa. “Constraint-based
Debugging of Spreadsheets.” In: Proceedings of the XV Iberoamer-
ican Conference on Software Engineering, Buenos Aires, Argentina,
April 24-27, 2012. Ed. by Renata S. S. Guizzardi, Claudia Pons,
and Alejandro Oliveros. 2012, pp. 1–14. url: http://cibse.inf.
puc-rio.br/CIBSEPapers/artigos/artigos_CIBSE12/paper_

46.pdf (cit. on pp. 109, 117, 133, 155).

[Auß+] Simon Außerlechner, Birgit Hofer, Franz Wotawa, and Rui Abreu.
Mutation Supported Spreadsheet Fault Diagnosis. Submitted for
publication (cit. on p. 133).

[Auß+13] Simon Außerlechner, Sandra Fruhmann, Wolfgang Wieser, Birgit
Hofer, Raphael Spörk, Clemens Mühlbacher, and Franz Wotawa.
“The right choice matters! SMT solving substantially improves
model-based debugging of spreadsheets.” In: 13th International
Conference on Quality Software. In press. 2013 (cit. on pp. 97, 117).

158

http://dx.doi.org/10.1109/VLHCC.2008.4639073
http://dx.doi.org/10.1016/j.artint.2010.09.003
http://dx.doi.org/10.1145/1370175.1370223
http://cibse.inf.puc-rio.br/CIBSEPapers/artigos/artigos_CIBSE12/paper_46.pdf
http://cibse.inf.puc-rio.br/CIBSEPapers/artigos/artigos_CIBSE12/paper_46.pdf
http://cibse.inf.puc-rio.br/CIBSEPapers/artigos/artigos_CIBSE12/paper_46.pdf

Bibliography

[Aye+07] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John
Penix, and YuQian Zhou. “Evaluating static analysis defect warn-
ings on production software.” In: Proceedings of the 2007 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering. PASTE ’07. San Diego, California, USA,
2007, pp. 1–8 (cit. on p. 11).

[AZG06] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “An
Evaluation of Similarity Coefficients for Software Fault Localiza-
tion.” In: Proceedings of the 12th Pacific Rim International Sympo-
sium on Dependable Computing. PRDC ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 39–46. isbn: 0-7695-2724-8. doi:
10.1109/PRDC.2006.18 (cit. on pp. 3, 37, 38, 58, 103).

[AZG07] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “On
the Accuracy of Spectrum-based Fault Localization.” In: Proceed-
ings of the Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION. TAICPART-MUTATION ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 89–98.
isbn: 0-7695-2984-4. url: http://dl.acm.org/citation.cfm?
id=1308173.1308264 (cit. on pp. 101, 102).

[Bei90] Boris Beizer. Software testing techniques (2nd ed.) New York, NY,
USA: Van Nostrand Reinhold Co., 1990. isbn: 0-442-20672-0 (cit.
on p. 23).

[BF85] F. Brglez and H. Fujiwara. “A neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran.” In: Proceed-
ings of the IEEE International Symposium on Circuits and Systems.
June 1985, pp. 663–698 (cit. on p. 79).

[Bil89] C.W. Billings. Grace Hopper: Navy admiral and computer pioneer.
Contemporary Women Series. Enslow Publishers, 1989. isbn:
9780894901942. url: http://books.google.at/books?id=
6mEYbEeB0gsC (cit. on p. 3).

[BM94] Marc M. Brandis and Hanspeter Mössenböck. “Single-pass gen-
eration of static assignment form for structured languages.”
In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 16(6) (Nov. 1994), pp. 1684–1698 (cit. on p. 29).

[BP94] Gregory W. Bond and Bernie Pagurek. “Declarative Error Diagno-
sis as Consistency-Based Diagnosis.” In: Symposium on Principles
of Programming Languages. 1994, p. 673 (cit. on p. 14).

[Bre08] Andrej Bregar. “Complexity Metrics for Spreadsheet Models.” In:
The Computing Research Repository (CoRR) abs/0802.3895 (2008).
url: http://arxiv.org/abs/0802.3895 (cit. on p. 90).

159

http://dx.doi.org/10.1109/PRDC.2006.18
http://dl.acm.org/citation.cfm?id=1308173.1308264
http://dl.acm.org/citation.cfm?id=1308173.1308264
http://books.google.at/books?id=6mEYbEeB0gsC
http://books.google.at/books?id=6mEYbEeB0gsC
http://arxiv.org/abs/0802.3895

Bibliography

[Bur+03] Margaret M. Burnett, Curtis R. Cook, Omkar Pendse, Gregg
Rothermel, Jay Summet, and Chris S. Wallace. “End-User Soft-
ware Engineering with Assertions in the Spreadsheet Paradigm.”
In: Proceedings of the 25th International Conference on Software En-
gineering, May 3-10, 2003, Portland, Oregon, USA. Ed. by Lori
A. Clarke, Laurie Dillon, and Walter F. Tichy. ICSE ’03. IEEE
Computer Society, 2003, pp. 93–105. url: http://dl.acm.org/
citation.cfm?id=776816 (cit. on p. 89).

[BZ11] Martin Burger and Andreas Zeller. “Minimizing Reproduction of
Software Failures.” In: Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis. ISSTA ’11. Toronto, Ontario,
Canada: ACM, July 2011, pp. 221–231. isbn: 9781450305624. doi:
10.1145/2001420.2001447 (cit. on p. 18).

[CC93] T. Y. Chen and Y. Y. Cheung. “Dynamic Program Dicing.” In:
Proceedings of the Conference on Software Maintenance, ICSM 1993,
Montréal, Quebec, Canada, September 1993. Ed. by David N. Card.
IEEE Computer Society, 1993, pp. 378–385. isbn: 0-8186-4600-4
(cit. on p. 13).

[CDT91] Luca Console, Daniele Theseider Dupré, and Pietro Torasso. “On
the Relationship Between Abduction and Deduction.” In: Journal
of Logic and Computation 1.5 (1991), pp. 661–690 (cit. on p. 29).

[CFD93] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré.
“Model-Based Diagnosis Meets Error Diagnosis in Logic Pro-
grams.” In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). Chambery, Aug. 1993, pp. 1494–1499
(cit. on p. 14).

[CKM05] Michael J. Coblenz, Andrew Jensen Ko, and Brad A. Myers.
“Using Objects of Measurement to Detect Spreadsheet Errors.”
In: 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2005), 21-24 September 2005, Dallas, TX, USA.
IEEE Computer Society, 2005, pp. 314–316. isbn: 0-7695-2443-5.
doi: 10.1109/VLHCC.2005.67 (cit. on p. 88).

[CKR01] David Chadwick, Brian Knight, and Kamalasen Rajalingham.
“Quality Control in Spreadsheets: A Visual Approach using Color
Codings to Reduce Errors in Formulae.” In: Software Quality
Journal 9.2 (2001), pp. 133–143 (cit. on p. 4).

[Cun+12] Jácome Cunha, João Paulo Fernandes, Jorge Mendes, and João
Saraiva. “MDSheet: A framework for model-driven spreadsheet
engineering.” In: 34th International Conference on Software Engineer-
ing, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. Ed. by Martin
Glinz, Gail C. Murphy, and Mauro Pezzè. IEEE, 2012, pp. 1395–

160

http://dl.acm.org/citation.cfm?id=776816
http://dl.acm.org/citation.cfm?id=776816
http://dx.doi.org/10.1145/2001420.2001447
http://dx.doi.org/10.1109/VLHCC.2005.67

Bibliography

1398. isbn: 978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227239
(cit. on p. 89).

[CZ05] Holger Cleve and Andreas Zeller. “Locating Causes of Program
Failures.” In: Proceedings of the 27th International Conference on
Software Engineering. ICSE ’05. St. Louis, MO, USA: ACM Press,
May 2005, pp. 342–351. isbn: 1595939632 (cit. on p. 17).

[Dec03] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann,
2003, pp. I–XX, 1–481. isbn: 978-1-55860-890-0. url: http://www.
elsevier.com/wps/find/bookdescription.agents/678024/

description (cit. on p. 29).

[DER05] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. “Sup-
porting Controlled Experimentation with Testing Techniques: An
Infrastructure and its Potential Impact.” In: Empirical Software
Engineering: An International Journal 10.4 (2005), pp. 405–435 (cit.
on pp. 52, 58).

[DJ12] Nicholas DiGiuseppe and James A. Jones. “Concept-based failure
clustering.” In: 20th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA
- November 11 - 16, 2012. Ed. by Will Tracz, Martin P. Robillard,
and Tevfik Bultan. ACM, 2012, p. 29. isbn: 978-1-4503-1614-9,
978-1-4503-0443-6. doi: 10.1145/2393596.2393629 (cit. on p. 17).

[Dow97] Mark Dowson. “The Ariane 5 software failure.” In: SIGSOFT
Software Engineering Notes 22.2 (Mar. 1997), p. 84. issn: 0163-5948.
doi: 10.1145/251880.251992 (cit. on p. 3).

[DPS96] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. “Critical
slicing for software fault localization.” In: Proceedings of the 1996
ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA ’96. San Diego, California, USA: ACM, 1996,
pp. 121–134. isbn: 0-89791-787-1. doi: 10.1145/229000.226310
(cit. on p. 13).

[Duc93] Mireille Ducassé. “A Pragmatic Survey of Automated Debug-
ging.” In: Proceedings of Automated and Algorithmic Debugging,
1th International Workshop, AADEBUG’93, Linköping, Sweden, May
3-5, 1993. Ed. by Peter Fritszon. Vol. 749. Lecture Notes in Com-
puter Science. Springer, 1993, pp. 1–15. isbn: 3-540-57417-4. doi:
10.1007/BFb0019397 (cit. on p. 11).

[DW10] Vidroha Debroy and W. Eric Wong. “Using mutation to automat-
ically suggest fixes for faulty programs.” In: Third International
Conference on Software Testing, Verification and Validation (ICST
2010). Paris, France: IEEE, 2010 (cit. on p. 17).

161

http://dx.doi.org/10.1109/ICSE.2012.6227239
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://dx.doi.org/10.1145/2393596.2393629
http://dx.doi.org/10.1145/251880.251992
http://dx.doi.org/10.1145/229000.226310
http://dx.doi.org/10.1007/BFb0019397

Bibliography

[Fel+04] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and
Markus Stumptner. “Consistency-based diagnosis of configu-
ration knowledge bases.” In: Artificial Intelligence 152.2 (2004),
pp. 213–234. issn: 0004-3702. doi: 10.1016/S0004-3702(03)
00117-6 (cit. on p. 14).

[Fis+02] Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis R. Cook,
and Margaret M. Burnett. “Automated Test Case Generation for
Spreadsheets.” In: Proceedings of the 24th International Conference
on Software Engineering. ICSE ’02. ACM Press, 2002, pp. 141–151
(cit. on p. 88).

[FMS10] Gerhard Friedrich, Wolfgang Mayer, and Markus Stumptner. “Di-
agnosing Process Trajectories Under Partially Known Behavior.”
In: Proceedings of the 19th European Conference on Artificial Intel-
ligence (ECAI 2010), Lisbon, Portugal, August 16-20, 2010, ed. by
Helder Coelho, Rudi Studer, and Michael Wooldridge. Vol. 215.
Frontiers in Artificial Intelligence and Applications. IOS Press,
2010, pp. 111–116. isbn: 978-1-60750-605-8. url: http://www.
booksonline.iospress.nl/Content/View.aspx?piid=17724

(cit. on p. 14).

[FR05] Marc II Fisher and Gregg Rothermel. “The EUSES Spreadsheet
Corpus: A Shared Resource for Supporting Experimentation
with Spreadsheet Dependability Mechanisms.” In: 1st Workshop
on End-User Software Engineering. 2005, pp. 47–51 (cit. on pp. 97,
101, 103, 104).

[FSW99] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. “Model-
based diagnosis of hardware designs.” In: Artificial Intelligence
111.1-2 (1999), pp. 3–39. issn: 0004-3702 (cit. on p. 14).

[Gal+93] Dennis F. Galletta, Dolphy Abraham, Mohamed El Louadi, William
Lekse, Yannis A. Pollalis, and Jeffrey L. Sampler. “An empirical
study of spreadsheet error-finding performance.” In: Accounting,
Management and Information Technologies 3.2 (1993), pp. 79–95
(cit. on p. 89).

[GBF99] Tibor Gyimóthy, Árpád Beszédes, and István Forgács. “An Effi-
cient Relevant Slicing Method for Debugging.” In: Proceedings of
the 7th European Software Engineering Conference (ESEC/FSE’99).
Ed. by Oscar Nierstrasz and Michel Lemoine. Vol. 1687. Lecture
Notes in Computer Science. Springer, 1999, pp. 303–321. isbn:
3-540-66538-2. doi: 10.1007/3-540-48166-4_19 (cit. on pp. 13,
24, 26, 35).

162

http://dx.doi.org/10.1016/S0004-3702(03)00117-6
http://dx.doi.org/10.1016/S0004-3702(03)00117-6
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17724
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17724
http://dx.doi.org/10.1007/3-540-48166-4_19

Bibliography

[GJM06] Ian P. Gent, Chris Jefferson, and Ian Miguel. “MINION: A Fast,
Scalable, Constraint Solver.” In: Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI 2006) August 29 – Septem-
ber 1, 2006, Riva del Garda, Italy (2006), pp. 98–102. url: http:
//dl.acm.org/citation.cfm?id=1567016.1567043 (cit. on
pp. 75, 113, 117).

[GMP12] Martin Glinz, Gail C. Murphy, and Mauro Pezzè, eds. 34th Inter-
national Conference on Software Engineering, ICSE 2012, June 2-9,
2012, Zurich, Switzerland. IEEE, 2012. isbn: 978-1-4673-1067-3.

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. “A
Correction to the Algorithm in Reiter’s Theory of Diagnosis.” In:
Artif. Intell. 41.1 (1989), pp. 79–88. doi: 10.1016/0004-3702(89)
90079-9 (cit. on p. 33).

[Gup+05] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta.
“Locating Faulty Code Using Failure-Inducing Chops.” In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering. Ed. by David F. Redmiles, Thomas
Ellman, and Andrea Zisman. ASE ’05. New York, NY, USA:
ACM, Nov. 2005, pp. 263–272. doi: 10.1145/1101908.1101948
(cit. on pp. 18, 65, 68).

[Ham08] Clemens Hammacher. Design and Implementation of an Efficient
Dynamic Slicer for Java. Bachelor’s Thesis. Nov. 2008 (cit. on p. 52).

[Har+98] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. “An
empirical investigation of program spectra.” In: Proceedings of
the 1998 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering. PASTE ’98. Montreal, Quebec,
Canada: ACM, 1998, pp. 83–90. isbn: 1-58113-055-4. doi: 10.
1145/277631.277647 (cit. on pp. 16, 37).

[Her+13] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van
Deursen. “Data clone detection and visualization in spread-
sheets.” In: 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. Ed. by David
Notkin, Betty H. C. Cheng, and Klaus Pohl. IEEE / ACM, 2013,
pp. 292–301. isbn: 978-1-4673-3076-3. url: http://dl.acm.org/
citation.cfm?id=2486827 (cit. on p. 90).

[Hof+13] Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and
Elisabeth Getzner. “On the Empirical Evaluation of Fault Lo-
calization Techniques for Spreadsheets.” In: Proceedings of 16th
International Conference on Fundamental Approaches to Software Engi-
neering, FASE 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-

163

http://dl.acm.org/citation.cfm?id=1567016.1567043
http://dl.acm.org/citation.cfm?id=1567016.1567043
http://dx.doi.org/10.1016/0004-3702(89)90079-9
http://dx.doi.org/10.1016/0004-3702(89)90079-9
http://dx.doi.org/10.1145/1101908.1101948
http://dx.doi.org/10.1145/277631.277647
http://dx.doi.org/10.1145/277631.277647
http://dl.acm.org/citation.cfm?id=2486827
http://dl.acm.org/citation.cfm?id=2486827

Bibliography

24, 2013. Ed. by Vittorio Cortellessa and Dániel Varró. Vol. 7793.
Lecture Notes in Computer Science. Springer, 2013, pp. 68–82.
isbn: 978-3-642-37056-4. doi: 10.1007/978-3-642-37057-1_6
(cit. on pp. 91, 97, 101).

[HPD10] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “Au-
tomatically Extracting Class Diagrams from Spreadsheets.” In:
Proceedings of the 24th European Conference on Object-Oriented Pro-
gramming (ECOOP 2010), Maribor, Slovenia, June 21-25, 2010. Ed.
by Theo D’Hondt. Vol. 6183. Lecture Notes in Computer Sci-
ence. Springer, 2010, pp. 52–75. isbn: 978-3-642-14106-5. doi:
10.1007/978-3-642-14107-2_4 (cit. on p. 90).

[HPD11] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “Bre-
viz: Visualizing Spreadsheets using Dataflow Diagrams.” In: The
Computing Research Repository (CoRR) abs/1111.6895 (2011). doi:
http://arxiv.org/abs/1111.6895 (cit. on p. 90).

[HPD12a] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “De-
tecting and visualizing inter-worksheet smells in spreadsheets.”
In: 34th International Conference on Software Engineering, ICSE
2012, June 2-9, 2012, Zurich, Switzerland. Ed. by Martin Glinz,
Gail C. Murphy, and Mauro Pezzè. IEEE, 2012, pp. 441–451. isbn:
978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227171 (cit. on
p. 90).

[HPD12b] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “De-
tecting code smells in spreadsheet formulas.” In: 28th IEEE In-
ternational Conference on Software Maintenance, ICSM 2012, Trento,
Italy, September 23-28, 2012. IEEE Computer Society, 2012, pp. 409–
418. isbn: 978-1-4673-2313-0 (cit. on p. 90).

[HPD12c] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “Mea-
suring Spreadsheet Formula Understandability.” In: The Com-
puting Research Repository (CoRR) abs/1209.3517 (2012) (cit. on
p. 90).

[HRB88] Susan Horwitz, Thomas W. Reps, and David Binkley. “Interpro-
cedural slicing using dependence graphs.” In: Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation (PLDI ’88) (1988), pp. 35–46. doi:
10.1145/53990.53994 (cit. on p. 12).

[HS06] Harry Howe and Mark G. Simkin. “Factors Affecting the Ability
to Detect Spreadsheet Errors.” In: Decision Sciences Journal of
Innovative Education 4.1 (2006), pp. 101–122 (cit. on p. 89).

164

http://dx.doi.org/10.1007/978-3-642-37057-1_6
http://dx.doi.org/10.1007/978-3-642-14107-2_4
http://dx.doi.org/http://arxiv.org/abs/1111.6895
http://dx.doi.org/10.1109/ICSE.2012.6227171
http://dx.doi.org/10.1145/53990.53994

Bibliography

[Hut+94] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. “Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria.” In: Proceedings of the
16th international conference on Software engineering. ICSE ’94. Sor-
rento, Italy: IEEE Computer Society Press, 1994, pp. 191–200.
isbn: 0-8186-5855-X. url: http://dl.acm.org/citation.cfm?
id=257734.257766 (cit. on p. 52).

[HW11] Birgit Hofer and Franz Wotawa. “How to combine slicing-hitting-
set-computation with spectrum-based fault localization.” In: Pro-
ceedings of the 22nd International Workshop on Principles of Diagnosis.
2011, pp. 114–121 (cit. on p. 41).

[HW12a] Birgit Hofer and Franz Wotawa. “Combining Slicing and Con-
straint Solving for Better Debugging: The CONBAS Approach.”
In: Advances in Software Engineering, vol. 2012, Article ID 628571,18
pages (2012), pp. 1–8. doi: 10.1155/2012/628571 (cit. on pp. 19,
65).

[HW12b] Birgit Hofer and Franz Wotawa. “Reducing the Size of Dynamic
Slicing with Constraint Solving.” In: 12th International Conference
on Quality Software, Xi’an, Shaanxi, China, August 27-29, 2012. Ed.
by Antony Tang and Henry Muccini. IEEE, 2012, pp. 41–48. isbn:
978-1-4673-2857-9. doi: 10.1109/QSIC.2012.44 (cit. on p. 65).

[HW12c] Birgit Hofer and Franz Wotawa. “Spectrum Enhanced Dynamic
Slicing for better Fault Localization.” In: Proceedings of 20th Eu-
ropean Conference on Artificial Intelligence (ECAI 2012). Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System
Demonstrations Track, Montpellier, France, August 27-31 , 2012. Ed.
by Luc De Raedt, Christian Bessière, Didier Dubois, Patrick
Doherty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lu-
cas. Vol. 242. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2012, pp. 420–425. isbn: 978-1-61499-097-0. doi:
10.3233/978-1-61499-098-7-420 (cit. on pp. 19, 41, 101).

[HW12d] Birgit Hofer and Franz Wotawa. Spectrum Enhanced Dynamic
Slicing for Fault Localization. Tech. rep. IST-DR-2012-01. Institute
for Software Technology, Graz University of Technology, 2012
(cit. on p. 41).

[HWA12] Birgit Hofer, Franz Wotawa, and Rui Abreu. “AI for the win:
improving spectrum-based fault localization.” In: ACM SIGSOFT
Software Engineering Notes 37.6 (2012), pp. 1–8. doi: 10.1145/
2382756.2382784 (cit. on pp. 19, 41).

165

http://dl.acm.org/citation.cfm?id=257734.257766
http://dl.acm.org/citation.cfm?id=257734.257766
http://dx.doi.org/10.1155/2012/628571
http://dx.doi.org/10.1109/QSIC.2012.44
http://dx.doi.org/10.3233/978-1-61499-098-7-420
http://dx.doi.org/10.1145/2382756.2382784
http://dx.doi.org/10.1145/2382756.2382784

Bibliography

[JAG09] Tom Janssen, Rui Abreu, and Arjan J.C. van Gemund. “Zoltar:
a spectrum-based fault localization tool.” In: Proceedings of the
2009 ESEC/FSE Workshop on Software Integration and Evolution
and Runtime (SINTER ’09). Amsterdam, The Netherlands: ACM,
2009, pp. 23–30. isbn: 978-1-60558-681-6. doi: 10.1145/1596495.
1596502 (cit. on pp. 37, 41, 49).

[JE10] Dietmar Jannach and Ulrich Engler. “Toward model-based de-
bugging of spreadsheet programs.” In: 9th Joint Conference on
Knowledge-Based Software Engineering (JCKBSE’10) August 25-27,
2010, Kaunas, Lithuania. Kaunas, Lithuania, 2010, pp. 252–264
(cit. on pp. 88, 110, 117, 133).

[JGG08] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. “Fault localiza-
tion using value replacement.” In: Proceedings of the 2008 Inter-
national Symposium on Software Testing and Analysis. ISSTA ’08.
Seattle, WA, USA: ACM, 2008, pp. 167–178. isbn: 978-1-60558-
050-0. doi: 10.1145/1390630.1390652 (cit. on p. 68).

[JH05] James A. Jones and Mary Jean Harrold. “Empirical evaluation
of the tarantula automatic fault-localization technique.” In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE ’05. Long Beach, CA, USA: ACM,
2005, pp. 273–282. isbn: 1-59593-993-4. doi: 10.1145/1101908.
1101949 (cit. on pp. 16, 58).

[JHB07] James A. Jones, Mary Jean Harrold, and James F. Bowring. “De-
bugging in Parallel.” In: Proceedings of the ACM/SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2007,
London, UK, July 9-12, 2007. Ed. by David S. Rosenblum and
Sebastian G. Elbaum. ACM, 2007, pp. 16–26. isbn: 978-1-59593-
734-6. doi: 10.1145/1273463.1273468 (cit. on p. 16).

[Kam95] Mariam Kamkar. “An overview and comparative classification
of program slicing techniques.” In: Journal of Systems and Software
31.3 (1995), pp. 197–214. doi: 10.1016/0164-1212(94)00099-9
(cit. on p. 14).

[KL88] Bogdan Korel and Janusz Laski. “Dynamic program slicing.” In:
Information Processing Letters 29 (3 Oct. 1988), pp. 155–163. issn:
0020-0190. doi: 10.1016/0020-0190(88)90054-3 (cit. on pp. 12,
24, 35).

[KMR92] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. “Char-
acterizing Diagnoses and Systems.” In: Artificial Intelligence 56.2-3
(1992), pp. 197–222. doi: 10.1016/0004-3702(92)90027-U (cit.
on p. 29).

166

http://dx.doi.org/10.1145/1596495.1596502
http://dx.doi.org/10.1145/1596495.1596502
http://dx.doi.org/10.1145/1390630.1390652
http://dx.doi.org/10.1145/1101908.1101949
http://dx.doi.org/10.1145/1101908.1101949
http://dx.doi.org/10.1145/1273463.1273468
http://dx.doi.org/10.1016/0164-1212(94)00099-9
http://dx.doi.org/10.1016/0020-0190(88)90054-3
http://dx.doi.org/10.1016/0004-3702(92)90027-U

Bibliography

[KR98] Bogdan Korel and Juergen Rilling. “Dynamic program slicing
methods.” In: Information & Software Technology 40.11-12 (1998),
pp. 647–659. doi: 10.1016/S0950-5849(98)00089-5 (cit. on
p. 14).

[Lib+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and
Michael I. Jordan. “Scalable statistical bug isolation.” In: Pro-
ceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005. Ed. by Vivek Sarkar and Mary W. Hall. ACM, 2005, pp. 15–
26. isbn: 1-59593-056-6. doi: 10.1145/1065010.1065014 (cit. on
p. 16).

[Liu+06] C. Liu, L. Fei, X. Yan, J. Han, and S.P. Midkiff. “Statistical Debug-
ging: A Hypothesis Testing-Based Approach.” In: IEEE Transac-
tions on Software Engineering (TSE) 32.10 (2006), pp. 831–848. issn:
0098-5589. doi: 10.1109/TSE.2006.105 (cit. on p. 16).

[LS08] Mark H. Liffiton and Karem A. Sakallah. “Algorithms for Com-
puting Minimal Unsatisfiable Subsets of Constraints.” In: Journal
of Automated Reasoning (JAR) 40.1 (Jan. 2008), pp. 1–33. issn:
0168-7433. doi: 10.1007/s10817-007-9084-z (cit. on pp. 118,
119).

[LS09] Mark H. Liffiton and Karem A. Sakallah. “Generalizing Core-
Guided Max-SAT.” In: Proceedings of the 12th International Con-
ference on Theory and Applications of Satisfiability Testing. SAT ’09.
Swansea, UK: Springer-Verlag, 2009, pp. 481–494. isbn: 978-3-642-
02776-5. doi: 10.1007/978-3-642-02777-2_44 (cit. on pp. 118,
120, 121).

[LW87] J.R. Lyle and M.D. Weiser. “Automatic Program Bug Location by
Program Slicing.” In: Proceedings of 2nd International Conference on
Computers and Applications, Peking, China. June 1987, pp. 877–882
(cit. on p. 13).

[Mat+00] Cristinel Mateis, Markus Stumptner, Dominik Wieland, and
Franz Wotawa. “Model-Based Debugging of Java Programs.”
In: Proceedings of the 4th International Workshop on Automated De-
bugging, AADEBUG 2000, Munich, Germany, August 28-30th, 2000.
2000 (cit. on p. 15).

[May+08] Wolfgang Mayer, Rui Abreu, Markus Stumptner, and Arjan J. C.
van Gemund. “Prioritising Model-Based Debugging Diagnostic
Reports.” In: Proceedings of the 19th International Workshop on
Principles of Diagnosis. Blue Mountains, Sydney, Australia, Sept.
2008 (cit. on pp. 39, 41).

167

http://dx.doi.org/10.1016/S0950-5849(98)00089-5
http://dx.doi.org/10.1145/1065010.1065014
http://dx.doi.org/10.1109/TSE.2006.105
http://dx.doi.org/10.1007/s10817-007-9084-z
http://dx.doi.org/10.1007/978-3-642-02777-2_44

Bibliography

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver.” In: Proceedings of the 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Vol. 4963. Lecture Notes in Computer
Science. Springer, 2008, pp. 337–340. isbn: 978-3-540-78799-0. doi:
10.1007/978-3-540-78800-3_24 (cit. on pp. 117, 139).

[MC02] Roland Mittermeir and Markus Clermont. “Finding High-Level
Structures in Spreadsheet Programs.” In: 9th Working Conference
on Reverse Engineering (WCRE 2002), 28 October - 1 November 2002,
Richmond, VA, USA. Ed. by Arie van Deursen and Elizabeth Burd.
IEEE Computer Society, 2002, pp. 221–232. isbn: 0-7695-1799-4.
doi: 1799/17990221abs.htm (cit. on p. 89).

[ME03] Madanlal Musuvathi and Dawson R. Engler. “Some Lessons
from Using Static Analysis and Software Model Checking for
Bug Finding.” In: Electronic Notes in Theoretical Computer Science
89.3 (2003), pp. 378–404. doi: 10.1016/S1571-0661(05)80002-7
(cit. on p. 14).

[MOK06] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. “MuJava: a muta-
tion system for java.” In: 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006. Ed. by
Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa. ACM,
2006, pp. 827–830. isbn: 1-59593-375-1. doi: 10.1145/1134425
(cit. on pp. 13, 134).

[MS07] Wolfgang Mayer and Markus Stumptner. “Model-Based Debug-
ging – State of the Art And Future Challenges.” In: Electronic
Notes in Theoretical Computer Science 174.4 (May 2007), pp. 61–82.
issn: 1571-0661. doi: 10.1016/j.entcs.2006.12.030 (cit. on
p. 15).

[MS08] Wolfgang Mayer and Markus Stumptner. “Evaluating Models for
Model-Based Debugging.” In: Proceedings of the 23rd IEEE/ACM
Int. Conference on Automated Software Engineering. ASE ’08. Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 128–137.
isbn: 978-1-4244-2187-9. doi: 10.1109/ASE.2008.23 (cit. on
pp. 15, 36).

[MSW00] Cristinel Mateis, Markus Stumptner, and Franz Wotawa. “Locat-
ing Bugs in Java Programs - First Results of the Java Diagnosis
Experiment Project.” In: Proceedings of the 13th International Con-
ference on Industrial and Engineering Applications of Artificial Intelli-
gence and Expert Systems, IEA/AIE 2000, New Orleans, Louisiana,

168

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/1799/17990221abs.htm
http://dx.doi.org/10.1016/S1571-0661(05)80002-7
http://dx.doi.org/10.1145/1134425
http://dx.doi.org/10.1016/j.entcs.2006.12.030
http://dx.doi.org/10.1109/ASE.2008.23

Bibliography

USA, June 19-22. Ed. by Rasiah Loganantharaj and Günther Palm.
Vol. 1821. Lecture Notes in Computer Science. Springer, 2000,
pp. 174–183. isbn: 3-540-67689-9. doi: 10.1007/3-540-45049-
1_21 (cit. on p. 15).

[NNW10] Mihai Nica, Simona Nica, and Franz Wotawa. “Using Distin-
guishing Tests to Reduce the Number of Fault Candidates.” In:
Proceedings of the 21st International Workshop on the Principles of
Diagnosis (2010) (cit. on p. 134).

[NNW12] Mihai Nica, Simona A. Nica, and Franz Wotawa. “On the use of
mutations and testing for debugging.” In: Software : practice &
experience (2012). doi: 10.1002/spe.1142 (cit. on pp. 15, 29, 68,
83, 134, 136).

[NWW09] Mihai Nica, Jörg Weber, and Franz Wotawa. “On the use of
Specification Knowledge in Program Debugging.” In: Proceedings
of 20th International Workshop on Principles of Diagnosis, Schweden.
2009, pp. 35–42 (cit. on p. 15).

[PA10] Raymond R. Panko and Salvatore Aurigemma. “Revising the
Panko-Halverson taxonomy of spreadsheet errors.” In: Decision
Support Systems 49.2 (2010), pp. 235–244. issn: 0167-9236 (cit. on
p. 89).

[Pan98] Raymond R. Panko. “What we know about spreadsheet errors.”
In: Journal of End User Computing 10.2 (1998), pp. 15–21. url:
http://panko.shidler.hawaii.edu/My%20Publications/

Whatknow.htm (cit. on p. 89).

[PJ96] Raymond R. Panko and Richard P. Halverson Jr. “Spreadsheets
on Trial: A Survey of Research on Spreadsheet Risks.” In: Proceed-
ings of the 29th Annual Hawaii International Conference on System
Sciences (HICSS-29), January 3-6, 1996, Maui, Hawaii. 1996, pp. 326–
335 (cit. on p. 89).

[PP12] Raymond R. Panko and Daniel N. Port. “End User Comput-
ing: The Dark Matter (and Dark Energy) of Corporate IT.” In:
Proceedings of the 45th Hawaii International Conference on Systems
Science (HICSS-45 2012), 4-7 January 2012, Grand Wailea, Maui,
HI, USA. IEEE Computer Society, 2012, pp. 4603–4612. isbn: 978-
0-7695-4525-7. doi: 10.1109/HICSS.2012.244 (cit. on pp. 4,
87).

[RCK08] Kamalasen Rajalingham, David R. Chadwick, and Brian Knight.
“Classification of Spreadsheet Errors.” In: The Computing Research
Repository (CoRR) abs/0805.4224 (2008). url: http://arxiv.org/
abs/0805.4224 (cit. on p. 89).

169

http://dx.doi.org/10.1007/3-540-45049-1_21
http://dx.doi.org/10.1007/3-540-45049-1_21
http://dx.doi.org/10.1002/spe.1142
http://panko.shidler.hawaii.edu/My%20Publications/Whatknow.htm
http://panko.shidler.hawaii.edu/My%20Publications/Whatknow.htm
http://dx.doi.org/10.1109/HICSS.2012.244
http://arxiv.org/abs/0805.4224
http://arxiv.org/abs/0805.4224

Bibliography

[Rei87] Raymond Reiter. “A Theory of Diagnosis from First Principles.”
In: Artificial Intelligence 32.1 (Apr. 1987), pp. 57–95. doi: 10.1016/
0004-3702(87)90062-2 (cit. on pp. 14, 28, 29, 32).

[Rot+00] Karen J. Rothermel, Curtis R. Cook, Margaret M. Burnett, Justin
Schonfeld, T. R. G. Green, and Gregg Rothermel. “WYSIWYT
testing in the spreadsheet paradigm: an empirical evaluation.”
In: Proceedings of the 22nd international conference on Software en-
gineering. ICSE ’00. Limerick, Ireland: ACM, 2000, pp. 230–239.
isbn: 1-58113-206-9. doi: 10.1145/337180.337206 (cit. on p. 88).

[RR03] Manos Renieris and Steven P. Reiss. “Fault Localization With
Nearest Neighbor Queries.” In: Proceedings of the 18th IEEE In-
ternational Conference on Automated Software Engineering (ASE’03).
Ed. by John Grundy and John Penix. Montreal, Canada: IEEE
Computer Society, June 2003, pp. 30–39 (cit. on p. 16).

[Rut+03] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao,
M. Fisher II, and M. Main. “End-user software visualizations for
fault localization.” In: Proceedings of the 2003 ACM symposium on
Software visualization. SoftVis ’03. San Diego, California: ACM,
2003, pp. 123–132. isbn: 1-58113-642-0. doi: 10.1145/774833.
774851 (cit. on pp. 88, 101, 102).

[Sev87] Rudolph E. Seviora. “Knowledge-Based Program Debugging
Systems.” In: IEEE Software 4.3 (May 1987), pp. 20–32. issn: 0740-
7459 (print), 0740-7459 (electronic) (cit. on p. 11).

[SFB07] Manu Sridharan, Stephen J. Fink, and Rastislav Bodı́k. “Thin
slicing.” In: Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. ACM, 2007, pp. 112–122. isbn:
978-1-59593-633-2. doi: 10.1145/1250734.1250748 (cit. on p. 13).

[Sha83] Ehud Shapiro. Algorithmic Program Debugging. Cambridge, Mas-
sachusetts: MIT Press, 1983 (cit. on p. 14).

[Shc+12] Kostyantyn Shchekotykhin, Gerhard Friedrich, Philipp Fleiss,
and Patrick Rodler. “Interactive ontology debugging: Two query
strategies for efficient fault localization.” In: Journal of Web Se-
mantics 12–13 (2012), pp. 88–103 (cit. on p. 14).

[SW99] Markus Stumptner and Franz Wotawa. “Debugging Functional
Programs.” In: Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI’99). Stockholm, Sweden, 1999,
pp. 1074–1079 (cit. on p. 14).

[Tip95] Frank Tip. “A Survey of Program Slicing Techniques.” In: Journal
of Programming Languages 3.3 (Sept. 1995), pp. 121–189 (cit. on
p. 14).

170

http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1145/337180.337206
http://dx.doi.org/10.1145/774833.774851
http://dx.doi.org/10.1145/774833.774851
http://dx.doi.org/10.1145/1250734.1250748

Bibliography

[WDC10] W. Eric Wong, Vidroha Debroy, and Byoungju Choi. “A family
of code coverage-based heuristics for effective fault localization.”
In: Journal of Systems and Software 83.2 (2010), pp. 188–208. doi:
10.1016/j.jss.2009.09.037 (cit. on pp. 16, 150).

[Wei+09] Westley Weimer, Thanh Vu Nguyen, Claire Le Goues, and Steph-
anie Forrest. “Automatically Finding Patches Using Genetic Pro-
gramming.” In: ACM/IEEE International Conference on Software
Engineering. ICSE ’09. 2009, pp. 512–521 (cit. on pp. 17, 134).

[Wei+10] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu
Nguyen. “Automatic program repair with evolutionary compu-
tation.” In: Communications of the ACM 53.5 (2010), pp. 109–116.
issn: 0001-0782. doi: 10.1145/1735223.1735249 (cit. on p. 17).

[Wei82] Mark Weiser. “Programmers use slices when debugging.” In:
Communications of the ACM 25.7 (1982), pp. 446–452. issn: 0001-
0782. doi: 10.1145/358557.358577 (cit. on pp. 12, 24, 35).

[Wei84] Mark Weiser. “Program Slicing.” In: IEEE Transactions on Software
Engineering 10.4 (1984), pp. 352–357. doi: 10.1109/TSE.1984.
5010248 (cit. on p. 12).

[Wen+11] Wanzhi Wen, Bixin Li, Xiaobing Sun, and Jiakai Li. “Program
slicing spectrum-based software fault localization.” In: Proceed-
ings of the 23rd International Conference on Software Engineering &
Knowledge Engineering (SEKE’2011), Eden Roc Renaissance, Miami
Beach, USA, July 7-9, 2011. Knowledge Systems Institute Graduate
School, 2011, pp. 213–218. isbn: 1-891706-29-2 (cit. on p. 18).

[Wen12] Wanzhi Wen. “Software fault localization based on program
slicing spectrum.” In: 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. Ed. by
Martin Glinz, Gail C. Murphy, and Mauro Pezzè. IEEE, 2012,
pp. 1511–1514. isbn: 978-1-4673-1067-3. doi: 10.1109/ICSE.2012.
6227049 (cit. on p. 18).

[WN08] Franz Wotawa and Mihai Nica. “On the Compilation of Programs
into their equivalent Constraint Representation.” In: Informatica
(Slovenia) 32.4 (2008), pp. 359–371 (cit. on p. 15).

[WNM12] Franz Wotawa, Mihai Nica, and Iulia Moraru. “Automated de-
bugging based on a constraint model of the program and a
test case.” In: The Journal of Logic and Algebraic Programming 81.4
(2012), pp. 390–407 (cit. on pp. 15, 29, 32, 68, 83).

171

http://dx.doi.org/10.1016/j.jss.2009.09.037
http://dx.doi.org/10.1145/1735223.1735249
http://dx.doi.org/10.1145/358557.358577
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/ICSE.2012.6227049
http://dx.doi.org/10.1109/ICSE.2012.6227049

Bibliography

[Won+08] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. “A Crosstab-
based Statistical Method for Effective Fault Localization.” In:
Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation. ICST ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 42–51. isbn: 978-0-7695-3127-4. doi:
10.1109/ICST.2008.65 (cit. on p. 16).

[Wot+09] Franz Wotawa, Jörg Weber, Mihai Nica, and Rafael Ceballos. “On
the Complexity of Program Debugging Using Constraints for
Modeling the Program’s Syntax and Semantics.” In: Proceedings
of the 13th Conference of the Spanish Association for Artificial Intel-
ligence, CAEPIA 2009, Seville, Spain, November 9-13, 2009. 2009,
pp. 22–31 (cit. on pp. 15, 72, 109, 110, 145).

[Wot02] Franz Wotawa. “On the Relationship between Model-Based De-
bugging and Program Slicing.” In: Artificial Intelligence 135 (1-2
Feb. 2002), pp. 125–143. issn: 0004-3702. doi: 10.1016/S0004-
3702(01)00161-8 (cit. on pp. 15, 32, 33).

[Wot10] Franz Wotawa. “Fault Localization Based on Dynamic Slicing and
Hitting-Set Computation.” In: Proceedings of the 10th International
Conference on Quality Software. QSIC ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 161–170. isbn: 978-0-7695-4131-
0. doi: 10.1109/QSIC.2010.51 (cit. on pp. 34, 35, 41, 45).

[Wot11] Franz Wotawa. “On the Use of Constraints in Dynamic Slicing
for Program Debugging.” In: 4th International IEEE Conference
on Software Testing, Verification and Validation, ICST 2012, Berlin,
Germany, 21-25 March, 2011, Workshop Proceedings. IEEE Computer
Society, 2011, pp. 624–633. doi: 10.1109/ICSTW.2011.61. url:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?

punumber=5954009 (cit. on p. 68).

[Xu+11] Jian Xu, W. K. Chan, Zhenyu Zhang, T. H. Tse, and Shanping Li.
“A Dynamic Fault Localization Technique with Noise Reduction
for Java Programs.” In: Proceedings of the 11th International Con-
ference on Quality Software. QSIC 2011. 2011, pp. 11–20 (cit. on
pp. 16, 42).

[Zel02] Andreas Zeller. “Isolating cause-effect chains from computer
programs.” In: Proceedings of the 10th ACM SIGSOFT Symposium
on Foundations of Software Engineering 2002, Charleston, South Car-
olina, USA, November 18 - 22, 2002. 2002, pp. 1–10. doi: 10.1145/
587051.587053 (cit. on p. 17).

[ZGG06] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. “Pruning
dynamic slices with confidence.” In: Proceedings of the ACM SIG-
PLAN 2006 Conference on Programming Language Design and Im-

172

http://dx.doi.org/10.1109/ICST.2008.65
http://dx.doi.org/10.1016/S0004-3702(01)00161-8
http://dx.doi.org/10.1016/S0004-3702(01)00161-8
http://dx.doi.org/10.1109/QSIC.2010.51
http://dx.doi.org/10.1109/ICSTW.2011.61
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954009
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5954009
http://dx.doi.org/10.1145/587051.587053
http://dx.doi.org/10.1145/587051.587053

Bibliography

plementation, Ottawa, Ontario, Canada, June 11-14, 2006. Ed. by
Michael I. Schwartzbach and Thomas Ball. ACM, 2006, pp. 169–
180. isbn: 1-59593-320-4 (cit. on pp. 13, 68).

[ZGG07] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. “A study
of effectiveness of dynamic slicing in locating real faults.” In:
Empirical Software Engineering 12.2 (Apr. 2007), pp. 143–160. issn:
1382-3256. doi: 10.1007/s10664-006-9007-3 (cit. on p. 13).

[ZGZ04] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. “Efficient For-
ward Computation of Dynamic Slices Using Reduced Ordered
Binary Decision Diagrams.” In: Proceedings of the 26th Interna-
tional Conference on Software Engineering. ICSE ’04. Los Alami-
tos, CA, USA: IEEE Computer Society, 2004, pp. 502–511. doi:
10.1109/ICSE.2004.1317472 (cit. on p. 13).

[ZH02] Andreas Zeller and Ralf Hildebrandt. “Simplifying and Isolating
Failure-Inducing Input.” In: IEEE Transactions on Software Engi-
neering 28.2 (2002), pp. 183–200. doi: 10.1109/32.988498 (cit. on
p. 17).

[Zha+07] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv
Gupta. “Towards locating execution omission errors.” In: Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation 42.6 (2007), pp. 415–424. issn:
0362-1340. doi: 10.1145/1273442.1250782 (cit. on p. 13).

[Zoe+07] Peter Zoeteweij, Rui Abreu, Rob Golsteijn, and Arjan J.C. van
Gemund. “Diagnosis of Embedded Software Using Program
Spectra.” In: IEEE International Conference on the Engineering of
Computer-Based Systems (2007), pp. 213–220. doi: 10.1109/ECBS.
2007.31 (cit. on pp. 16, 58).

[ZTG06] Xiangyu Zhang, Sriraman Tallam, and Rajiv Gupta. “Dynamic
slicing long running programs through execution fast forward-
ing.” In: Proceedings of the 14th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. SIGSOFT ’06/FSE-14.
Portland, Oregon, USA: ACM, 2006, pp. 81–91. isbn: 1-59593-
468-5. doi: 10.1145/1181775.1181786 (cit. on p. 13).

173

http://dx.doi.org/10.1007/s10664-006-9007-3
http://dx.doi.org/10.1109/ICSE.2004.1317472
http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1145/1273442.1250782
http://dx.doi.org/10.1109/ECBS.2007.31
http://dx.doi.org/10.1109/ECBS.2007.31
http://dx.doi.org/10.1145/1181775.1181786

