
Dissertation

On the Use of Constraints in Automated Program

Debugging - From Foundations to Empirical

Results.

Mihai Nica

Graz, 2010

Institute for Software Technology

Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

Second reviewer: O.Univ.-Prof. Dipl.-Ing. Dr. Gerhard Friedrich

”Do not despise the small things, a

candle will always can something

that the sun will never can: lighten

up the night”

-Octavian Paler

i

ii

Abstract (English)

Software verification is one of the most tedious and time consuming tasks in the software development
life-cycle. By verification it is often misunderstood only the process of software testing. It would
worth nothing to the software developer if, after testing for correctness, the software would fail without
any hint on what went wrong. That is, whenever a software fails a test case, a second phase of the
verification process starts: debugging, i.e., identifying the possible causes for the program’s failure,
and repair phase, i.e., correcting the bug.

The history of debugging began in 1947, when the operators of the Harvard Mark II computer
identify the first fault in a software. The term BUG was for the first time used to describe a deviation
from the expected behavior. Nowadays debugging remains a crucial activity in the software life cycle,
being one of the most expensive tasks in the development of software [49].

This work focuses on the topic of software debugging provided the existence of at least one failing
test case in a predefined test suite. The problem of software debugging, i.e., fault localization, in case
of a detected failure is a time consuming and intricate task. The automation or at least partial automa-
tion of debugging is therefore highly desired. The two major drawbacks with respect to automation
of debugging are computation time, and suggesting a repair solution. Another important challenge
is prediction of the debugging complexity for a given faulty program.

The model-based approach we present here relies on a constraint representation of a program that
is equivalent to the original program in terms of the input-output behavior under some reasonable
assumptions. By using constraints for representing programs and subsequently test cases we are able
to state the debugging problem as a constraint satisfaction problem that can be effectively solved using
a modern constraint solver. We further extend this work by integrating loop invariants and showing
how that can further improve our constraint based approach. Another extension of our work is the
usage of mutation and distinguishing test cases for the purpose of debugging but also for repair. Last,

iii

Abstract (English)

using the constraint based representation, we are able to predict the debugging complexity by using
the structural property of the hypergraph associated to the constraint representation of the debugged
program. The resulted debugger can be used for small embedded software systems (software for
robots), but also in debugging of complex high level imperative programming languages.

iv

Abstract (German)

Software-Verifikation ist eine der anspruchsvollsten und zeitaufwändigsten Aufgaben im Lebenszyk-
lus der Softwareentwicklung. Der Begriff der Verifikation wird oft falsch interpretiert und nur mit
dem Prozess des Software-Testens an sich in Verbindung gebracht. Wenn beim Testen einer Software
auf Korrektheit ein Fehler auftritt, wäre es für den Software-Entwickler nur von geringem Nutzen,
wenn es keinen weiteren Hinweis auf die Art des Fehlers gäbe. Aus diesem Grund wird, immer wenn
eine Software bei einem Testfall einen Fehler liefert, eine zweite Phase des Verifikations-Prozesses
gestartet: Debugging, d.h. identifizieren der Möglichen Ursachen für das Auftreten des Fehlers im
Programm, gefolgt von einer Reparatur-Phase, d.h. das Beheben des Fehlers.

Die Geschichte von Debugging begann 1947, als die Bediener der Harvard Mark II Rechner den
ersten Fehler in einer Software identifizierten. Der Begriff BUG wurde anfänglich dazu benutzt, um
die Abweichung von einem erwarteten Verhalten zu beschreiben. Debugging ist heutzutage immer
noch eine essentielle Tätigkeit im Lebenszyklus einer Software, und ist eine der kostenintensivsten
Aufgaben bei der Softwareentwicklung [49].

Der Fokus dieser Arbeit liegt auf dem Debuggen von Software, unter der Annahme dass innerhalb
einer Testreihe mindestens ein fehlerhafter Testfall existiert. Das Problem von Software-Debugging,
d.h. der Fehlerlokalisierung, besteht darin, dass es eine sehr zeitaufwändige und komplizierte Tätigkeit
ist. Daher ist es wünschenswert eine Automatisierung oder zumindest eine Teil-Automatisierung von
Debugging zu erreichen. Die zwei Hauptnachteile von Debugging im Bezug auf Automatisierung
sind die Berechnungszeit und das Vorschlagen einer Problemlösung. Eine andere wichtige Her-
ausforderung stellt die Vorhersage der Debugging-Komplexität bei einem vorliegenden fehlerhaften
Programm dar.

Der modellbasierte Ansatz den wir hier vorstellen beruht auf der eingeschränkten Darstellung eines
Programms, welche unter realistischen Annahmen zu einem äquivalenten Eingangs-Ausgansverhalten

v

Abstract (German)

führt wie beim originalen Programm. Durch die Verwendung einer eingeschränkten Darstellung des
Programms und der nachfolgenden Testfälle, sind wir in der Lage, das Debugging-Problem als Be-
dingungserfüllungsproblem darzustellen. Dieses Problem kann mit modernen Constraint-Solvern ef-
fizient gelöst werden. Darüberhinaus erweitern wir diese Arbeit noch durch Integration von Schleifen-
invarianten und zeigen, dass dies unseren einschränkungsbasierenden Ansatz noch weiter verbessern
kann. Eine andere Erweiterung unserer Arbeit ist die Anwendung von Mutationen und das Unterschei-
den von Testfällen zum Debuggen und Reparieren von Programmen. Abschließend lässt sich sagen,
dass wir mit Hilfe der einschränkungsbasierenden Darstellung und der Verwendung der strukturellen
Eigenschaften des Hypographen, welcher der eingeschränkten Darstellung des zu debuggenden Pro-
gramms zugehört, in der Lage sind, die Debugging-Komplexität vorherzusagen.

Der in dieser Arbeit entstandene Debugger kann nicht nur für kleine eingebettete Softwaresysteme
(Software für Roboter) verwendet werden, sondern auch zum Debuggen komplexer Programme in
imperativen Hochsprachen.

vi

Acknowledgments

I thought thoroughly about how I should write my Acknowledgment section, it usually starts with I
would like to thank to.... Well, I intend to do so, but first I will tell a short story, which is very dear to
me.

There was once a man who tried to change the world. He spent the best years of his life to do so.
But after a time, he understood that he could not do it. He tried to change his country, and again
after some years he had to give up. The same happened with his city, neighborhood and neighbors.
Nothing. He was already old when his attention turned to his family. He tried to change them at least.
Again, he failed. In the end he finally understood: If he would have only changed himself first and
then try to change the others, perhaps, he would have succeeded... This is what I want to do in my
life: before asking others to change, first change myself.

The last three years meant for me a permanent evolution, i.e., change by learning. This would have
not been possible without the help of all the people that were around me and which are ”responsible”
for the person I am today. So...

First, I would like to thank God for blessing me with all the people in my life: the good and not so
good ones (without them I would have been depraved of life’s most valuable lessons, given to me so
far).

I would like to thank my ”Doktorvater” professor Franz Wotawa, for all his help, for his confidence
in me, for his patience and honesty, for all that he taught me: about science and life, and especially for
all those nice, fruitful and long conversion which we had. I would also like to thank the members of
my defense committee, Prof. Gerhard Friedrich and Prof. Frank Kappe, for taking the time to review
my thesis and to supervise my exam. I would also like to thank all my colleagues and students, for all
our work together.

vii

Acknowledgments

I would like to thank my best friend Valentin, because he knows me like ”the back of his pocket”,
for listening to me when I was down, for always finding the right thing to say, for provoking me to be
fair, when I was not... I would also like to thank Thomas, for all his help (and boy it was a lot), for
our ”Biertermine” :), and because since I came in Austria he always was a true friend to me. I would
also like to thank my friend and former colleague Willibald Krenn, i.e., Willi ;), for his help and for
our, always pleasant, philosophical conversions. I would like to thank my colleague Jörg Weber for
his critical eye when reading my papers, and for teaching me a thing or two about writing papers and
formalisms.

I would like to thank my parents, Marioara and Iosif, for supporting me from the first moment of
my life by consistently offering me all the love and confidence in the world, and for teaching me
how to be strong and honorable but also kind and patient (I still have to work on that one though :)),
to my grandmother, Maria, who loved me above all and taught me my religion and showed me the
beautifulness and richness of the Romanian traditions, hence making me part of the spiritual heritage
of my people. I would like to thank my wife Iulia, whom I dearly love, for her tenderness, confidence,
support with MINION ;) and for making me smile :-) and feel good about myself. I would like to
thank my sister, Simona, for her love and strong support, for she was always there for me, brave and
ready to sacrifice a lot, just to help me. I would also like to thank Aniela for all her love, support,
kindness and generosity, and for being like a grandmother to me.

Finally but surely not the least, I would like to thank all of my colleagues from the Institute of
Software Technology, all of my collaborators and all of my friends who, due to space reasons :),
where not mentioned here. Without all of you guys, I would have not become who I am today...

Oh, I almost forgot about it.... another special thanks goes to the Austrian Science Fund (FWF),
grant P20199-N15, for founding my research.

Mihai Nica.
-Graz 2010.

viii

In memory of my beloved

grandmother,

Maria

ix

x

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

Graz,
Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die an-
gegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am
Ort, Datum Unterschrift

xi

xii

Contents

Abstract (English) iii

Abstract (German) v

Acknowledgments vii

List of Figures 5

List of Tables 7

1. Forward 9

1.1. Motivation . 9
1.2. Problem Statement . 11
1.3. Contribution . 12

2. Related Approaches 15

2.1. Terminology . 15
2.2. Introduction . 18
2.3. Model Based Debugging . 20
2.4. Program slicing . 22
2.5. Spectrum-based debugging . 25
2.6. Other approaches . 28
2.7. Conclusions . 29

1

Contents

3. Model Based Debugging: A constraint - based approach. 31

3.1. Definitions and language semantics . 32
3.1.1. Language Semantics and Grammar . 33
3.1.2. Definitions . 39

3.2. Static Conversion . 41
3.2.1. Loop elimination . 42
3.2.2. Building the Static Single Assignment (SSA) form 47

3.3. Fault Localization based on a Constraint Representation 54
3.3.1. Using the constraint model for debugging 60

3.4. Implementation . 64
3.4.1. MINION representation . 65

3.5. Analysis . 73
3.6. Results and conclusions . 76

3.6.1. Experimental results . 76
3.6.2. Conclusions . 77

4. Extensions 81

4.1. Integrating Specification Knowledge . 82
4.1.1. Specifying the Knowledge . 83
4.1.2. Integrating annotations . 85
4.1.3. Improving the Diagnostic Precision by Integrating Specification Knowledge . 89
4.1.4. Experimental Results . 93

4.2. Mutation Based Debugging . 94
4.2.1. Generating Distinguishing Test Cases . 96

Computing distinguishing test cases . 99
Experimental results . 101
Related research . 102

4.2.2. Mutation Based Debugging . 104
Discriminating between the Bug candidates 107

4.2.3. Empirical Results . 114
4.2.4. Related research . 117

4.3. Conclusion . 117

5. Complexity 121

2

Contents

5.1. Structural properties of a CSP . 122
5.2. Estimating complexity . 128
5.3. Experimental Results . 135
5.4. Conclusions . 138

6. My Conclusions and Future Work 141

6.1. Trivia . 143

List of Theorems and Definitions 145

Bibliography 149

3

4

List of Figures

2.1. A program fragment computing the minimum and maximum from an array of integers,
and then the sum of both . 19

3.1. Loop unrolling . 44

3.2. A program fragment computing the minimum, maximum, and sum of both for an
array of integers . 45

3.3. The loop-free version of the program in Fig.2.1 for 2 iterations. 46

3.4. A program for computing the division of two natural numbers. 48

3.5. The program’s trace . 48

3.6. The SSA form corresponding to the program from Fig. 3.3. 53

3.7. A program fragment computing the minimum, maximum, and sum of both for an
array of integers . 63

3.8. The CSP Debugging Framework . 64

3.9. The MINION representation for the program from Fig. 3.6 72

4.1. A program for computing aexp, where a and exp are integers. The variable res denotes
the result. 86

4.2. The loop-free version of the program in Fig.4.1 for 2 iterations. 87

4.3. The loop-free SSA form of the program in Fig. 4.1 for 2 iterations. The variable res 4

represents the output of the program (i.e., the final result). 87

4.4. The CSP representation of the program in Fig. 4.3. 88

5

List of Figures

4.5. A faulty program for computing aexp. It is almost equal to the (correct) program in
Fig. 4.1, but statement S1 was changed from e = exp to e = 0. 89

4.6. The faulty program from Fig. 4.5 annotated with three assertions: the program’s pre-
and postcondition and a loop invariant. 90

4.7. General schema showing how a loop invariant can be represented by two assert(cond)-
statements. 91

4.8. The loop-free SSA form, from Fig. 3.6 enhanced with the assertions from Fig. 4.6. . 92
4.9. A program for dividing two natural numbers . 108

5.1. The program simple adapted from [48] . 123
5.2. The SSA form corresponding to the program from Figure 5.1 for two iteration un-

rolling. Additionally each statement has associated the scope of the derived constraint. 124
5.3. The constraint graph corresponding to the program from Fig.5.2 126
5.4. The hypertree corresponding to the constraint system resulted from the program given

in Fig. 5.2 . 128
5.5. The hypertree corresponding to the constraint system resulted from the program given

in Fig. 5.1 for one loop iteration. 131
5.6. The worst case-scenario of a partial hypertree-decomposition for an it-iterations loop

unrolling (without the external dependencies) . 133
5.7. The worst case-scenario of the hypertree-decomposition of the structure given in Fig.

5.6 . 134
5.8. Running time vs. the LOC for the SSA form . 136
5.9. Running time vs. HT width . 136
5.10. Average running time vs. HT width . 136

6

List of Tables

2.1. The test suite used to verify the program from Fig. 2.1 19

3.1. Constraint Based Debugging: TCAS benchmarks 78
3.2. Results for small programs using the MINION encoding 79

4.1. MINION constraints conversion . 86
4.2. Integrating annotations - results for single-fault diagnosis 95
4.3. Integrating annotations - results for double-fault diagnosis 96
4.4. Results: Computing distinguishing test cases for different Java programs 103
4.5. Results: Using the mutation and distinguishing test case technique 116

5.1. Correlation between the hypertree width and the debugging complexity 139

7

8

Chapter 1
Forward

”Coding without a debugger makes you feel like a blind man in a dark room looking for a black cat
that isn’t there” - [9].

1.1. Motivation

Through the history of software development, software bugs are held responsible for many financial
and sometimes even human losses. For example, in October 2005, due to a bug in the embedded code
inducing a problem to the warning light system and fuel indicator (the engine stalled while driving),
Toyota is forced to call back more than 160.000 Prius hybrid vehicles. A software patch manages
to solve this non-critical problem. Another well-known software bug is the Mars Rover robot which
in 2004 freezes during a probing mission. The cause originated in opening too many files in the
flash memory. Due to an error in an algorithm converting a 64-bit floating-point number into a 16-bit
signed integer, on 4th of June 1994 Ariane 5 explodes 40 seconds after launching. Due to an error in
the engine control computer, in 1994, a British Royal Air Force helicopter crashes killing 29 men. In
1991, due to a proximity error (software), a Patriot missile kills 29 people.

Ideally intelligent systems should provide self-reasoning and reflection capabilities in order to react
on internal faults as well as on unexpected interaction with their environment. Reflection capabilities
are highly recommended for systems with strong robustness constraints, like space exploration probes
or even mobile robots. A scenario, for example, is a robot where the software fails because of a bug.

9

Chapter 1. Forward

In this situation a robot should recover and ideally repair itself. Note that even exhaustive testing does
not prevent a program from containing bugs which might cause an unexpected behavior in certain
situations.

Making systems self-aware and giving them those self-healing capabilities increase their autonomy,
which is especially important for software critical systems, e.g., space exploration or peace-makers,
where the system cannot be directly controlled.

There exist thousands of examples where software bugs are the reason for important losses. Starting
from the harmless smart phones software, e.g., email clients, navigation software, and ending with
safety critical systems like airplane or life support medical devices, bugs are a present problem which
has to be addressed and overcome.

Another issue that contributes to the complexity of finding bugs is the software development model.
Nowadays it is very popular for a software company to divide its product into modules which are then
outsourced. Very often when these modules are integrated the software is error prone and the need of
debugging arises. In this situation an automated debugging tool would spare the developer the tedious
and complicated work of having to understand the whole source code.

Hence, whether we want it or not, debugging must be integrated in the software life-cycle. There
are two ways for performing debugging:

1. The hard way: Manual debugging which implies either

• the usage of the classical ”print-statements” throughout the whole program or

• the usage of a symbolic debugger. Symbolic debuggers are part of almost all major inte-
grated development environments, e.g., Eclipse, Microsoft Visual Studio, Delphi.

2. The smart way: The usage of an automated debugger, like [85, 73, 71]

This thesis contributes to the research of automated debugging by providing a constraint based
method for fault localization in programs. The methodology requires the availability of the source
code and test cases. It compiles the program into their equivalent constraint representation and uses
a failure-revealing test case to compute diagnosis candidates. We further improve our results with
respect to the cardinality of the fault candidates set, by integrating loop invariants. Additionally we
extend our work by making use of mutation and distinguishing test-cases techniques to discriminate
between possible explanations for an occurred fault.

10

1.2. Problem Statement

The work presented here was conducted within the MoDReMAS (Model-based Diagnosis and Re-
configuration in Mobile Autonomous Systems) project at Graz University of Technology, Institute for
Software Technology. My task was to develop a debugging engine that smoothen up or even allows
software systems to perform automated debugging and, under special circumstances, self-repair.

The most important feature of a debugging engine, i.e., debugger, is given by the ratio between
computation time and the quality of the debugging results. The result outputted by a debugger running
against a faulty program, is called the fault candidates set. The smaller this set is, the higher the
quality of the debugger. However, automated debugging requires small computation time, even if, the
resulting fault candidates set is sometimes larger.

To undergo this challenge, our work relies on the powerful mechanism of constraint solving. In
order to compute the fault candidates we follow the model-based diagnosis approach, [92] but do not
rely on logical models, instead we use constraints for representing programs. The obtained constraint
representation can be directly used for computing diagnosis, e.g., by using specialized diagnosis algo-
rithms like the one described in [38, 103, 104]. By implying constraint representation we manage to
compute the fault candidates set within excellent times, outperforming by far other debugging tech-
niques. Furthermore, the cardinality of the fault candidates set is similar to the one computed with
other debugging techniques.

Additionally we study the relation between the structural properties of the debugged program and
its debugging complexity.

The work presented here focuses exclusively on debugging at method level. The same technique(s)
can be used to debug small software systems (up to 1300 lines of code) which typically run on au-
tonomous systems. Extending this work for larger programs can be done by integration of pre- and
postconditions at method levels.

1.2. Problem Statement

Although, reflection and debugging capabilities are a desired functionality of a system they provoke
additional computational complexity which can hardly be handled by the system directly because
of the lack of computational power. Note that model-based diagnosis is NP complete. Hence, a
distributed architecture would be required which separates the running control program from the de-
bugging capabilities, i.e., from the debugger. In our proposed framework the debugging module, i.e.,

11

Chapter 1. Forward

the debugger, takes the source code of the original software system and at least one error revealing
test-case, and uses them to localize and repair the fault. The changed source code is compiled and
transferred back to the original software system.

Our problem statement is summarized as follows: Given a software system and at least one error
revealing test case, i.e., where the program’s output contradicts the predicted output, we must identify
those components, i.e., statements, that individually or together with other components, explain for
the failure of the program. The quality requirements are:

• The faulty statement(s) must be included in the fault candidates set.

• The cardinality of the fault candidates set must be the smallest possible.

• The computation time should allow self reasoning of the software system, in our case we re-
quire:

– For small systems (circa 100-200 LOC) ≤ 5s and

– For larger systems (circa 800-1000 LOC) ≤ 20s.

1.3. Contribution

The model based diagnosis approach presented in [92] can be easily adapted to be used for debugging
of programs. Further, by using the constraint representation and a state-of-the-art constraint solver
we manage to obtain considerable gains with respect to computation time. The integration of speci-
fication knowledge and the usage of distinguishing test cases are further used to reduce the number
of fault candidates. Additionally we make use of the constraint representation to study the debugging
complexity of the analyzed programs.

The following is a selection of journals, papers and workshops publications that contributed to the
creation of the present thesis.

• Converting Programs into Constraint Satisfaction Problems [121];

• From constraint representations of sequential code and program annotations to their use in
debugging [86];

• On the Compilation of Programs into their equivalent Constraint Representation [122];

12

1.3. Contribution

• How to debug sequential code by means of constraint representation [84];

• On the complexity of program debugging using constraints for modeling the programs syntax
and semantics [126];

• On the use of Specification Knowledge in Program Debugging [85];

• Representing Program Debugging as Constraint Satisfaction Problems [78];

• Generating Distinguishing Tests using the MINION Constraint Solver [123];

• Does testing help to reduce the number of potentially faulty statement in debugging? [68];

• Automated debugging based on a constraint model of the program and a test case [125] ;

The thesis is organized as follows. In Chapter 2 we present an overview of the available state-
of-the-art techniques for debugging programs. Additionally we introduce here the terminology used
throughout this thesis. Chapter 3 presents our constraint-based framework for solving the debugging
problem. The most important definitions used throughout this thesis are to be found here (see Section
3.1). In Chapter 4 we present the two extensions of our debugging engine: integration of specification
knowledge and the usage of mutation and distinguishing test cases, and study their impact on the
debugging results. In Chapter 5 we analyze the correspondence between the structure of the program’s
constraint representation given as a hypergraph and the complexity of finding a solution. Finally, in
Chapter 6 I conclude this work with a personal view over my work within this project and present
some open issues which should be addressed in a future research.

13

14

Chapter 2
Related Approaches

”Testing proves a programmer’s failure. Debugging is the programmer’s vindication.” – Boris Beizer.

In the past decades there was an increased interest for software debugging. As a result, a number of
debugging techniques appeared in the pursuit of providing a good solution to the debugging problem.
In this chapter we present some of the latest state of the art debugging methodologies, showing both
the weak and strong spots of each particular approach.

This chapter is divided as follows. In Section 2.1 we present and explain the unified terminology
used in testing and debugging. In Section 2.2 we present the preliminaries for analyzing the debugging
techniques. Section 2.3 deals with presenting the model based approach, whereas Section 2.4 presents
the slicing approaches to debugging, e.g., dynamic, static slicing. In Section 2.5 we present the
spectrum based techniques, whereas Section 2.6 refers to the other debugging approaches. We then
conclude in Section 2.7.

2.1. Terminology

Software validation refers to the process of verifying if the software specifications meet the actual
stakeholder requirements.

15

Chapter 2. Related Approaches

Software verification is the process of proving the correctness of software with respect to the pro-
vided set of specifications. Without some form of specification, it is not possible to perform verifica-
tion. In [22], for example, the authors present an approach which tests the constraint representation
of a program against its negated specification. They convert both the negate specifications and the
program to a constraint system. They use an SMT solver to test if a solution to this constraints system
exists. If yes, then they obtain an inconsistency. Generally, verification is based on model theoretic
approaches [37] or axiomatic theoretic approaches [87]. More recent approaches include [79] (from
Microsoft) or [97].

A fault is the trigger of a software failure, i.e., the fault is the cause and the failure is the effect.
The existence of a fault is revealed, i.e., detected, only by the existence of a failing test case which
contradicts the program’s behavior. If there is no available error revealing test case, the existence of
a fault cannot be exposed. We can have faults in a program which do not trigger any failures. In this
situation the system is said to be tolerant to this type of errors.

Testing on the other hand is only then ”successful”, when it reveals errors in an existent program.
Specification knowledge is not always necessary, e.g., monkey testing, but desired. However the
existence of an oracle which indicates under certain circumstances the correct behavior of a program
is a necessary condition. The most common classification of testing procedure is:

• black box testing, the source code is not available to the tester. The testing process is guided
only by the software’s specifications.

• gray box testing, information about the structure of the program are known but no information
about the actual source code, e.g., pre- and postconditions for a method.

• white box testing, also called glass-box testing, has the property that the tester has access to the
complete source code of the program.

The reader must understand that on a theoretical level, testing, contrary to verification, cannot prove
that a program is correct. It can only try to identify the existence of faults (by attempting to trigger
failures), but not guarantee their absence. For more information about testing we refer the interested
reader to [88].

Debugging is the process of localizing one or more faults in case of a detected failure. This is a
time consuming and intricate task and sometimes manually hard to perform. For example, in software
maintenance, when the code owner is not the same with the one performing maintenance, debugging
is almost impossible to be done manually. The automation or at least partial automation of debugging

16

2.1. Terminology

is therefore highly desired. To perform debugging the existence of an error revealing test case is
mandatory.

Debugging of software is not software verification! This statement is, sadly, not for everybody
a commonly ”accepted truth”. Throughout our work it happened, even by ”heavy” conferences, e.g.,
IJCAI, that the reviewer often confused verification with debugging. The main difference is that
verification is the process of proving correctness of a software (which can or cannot be correct) with
respect to a given set of specifications, whereas debugging deals with identifying a failure in a ”proven
to be wrong” program.

At the moment, the debugging techniques can be classified into two main categories:

1. Based on the static analysis of the program, i.e., static debugging, which relies on the statically
representation of the program and on the test case;

2. Based on the dynamic analysis of the program, i.e., dynamic debugging, which relies on the test
case and the program’s trace (computed from running the test case).

Correction is the second phase of program debugging and deals with suggesting repairs for the
identified faults. In the last years there was a growing interest for automating this last step of de-
bugging. Techniques like genetic debugging [112], could be used to support the process of repair.
However, as we show in Chapter 4, this can be computational expensive and inaccurate. In Chapter 4
we also suggest an extension [68], relying on testing and mutation, that is both computational feasible
and accurate with respect to repair suggestions.

Program debugging, i.e., the detection, localization, and correction of programs, is generally con-
sidered a hard problem especially after program deployment, but of huge practical value. Support for
program debugging helps to keep direct and indirect costs of software development low. Faults that
are corrected early in the development process cause less costs than faults revealed after shipping the
software to the customers. Therefore, most of the research activities since the beginnings of software
engineering have focused on verification and validation in order to ensure program correctness. Only
a little research effort has been spent in developing tools for debugging. Debugging is sometimes
seen as a consequence of poor testing [13]. The reality is however that testing and debugging are
the two sides of one coin. In the testing phase, if a test fails, debugging starts, and vice versa if no
available failing test case exists, one cannot start debugging. Hence debugging is the natural extension
to testing, whereas testing is the necessary but not sufficient precondition for debugging.

In this chapter, we discuss some of the most recent approaches for debugging namely spectrum-

17

Chapter 2. Related Approaches

based, slicing-based, genetic and model-based debugging. Our work focuses on the latter and will be
detailed in Chapter 3. Moreover, we briefly compare the four approaches and suggest a combination
of them in order to improve the results and the overall necessary running time.

2.2. Introduction

In the context of this thesis, program debugging is defined as the activity carried out by humans or a
program itself to localize a root cause in the source code of a program, responsible for an observed
behavior deviating from the expected one. Obviously after finding the root cause we are also interested
in making the corrective changes, but this part of debugging as a whole is not in the focus of this
thesis. The given definition of debugging is a very general one. Until now we have not introduced
any restriction regarding how to observe a deviation. For example, such a deviation might come from
user demands that are not implemented in the deployed program. Such a root-cause requires adding
functionality to the program and has to do with re-design. Another reason for inconsistencies is that
the program does not pass all test cases. As a consequence, verification reveals a faulty behavior and
the cause usually has to be tracked down to parts of the source code responsible for the misbehavior.
Note that a program might fail passing a test case because the program computes a wrong value for a
variable or raises an exception, e.g., division-by-zero exception.

The approaches presented here rely on some restrictions. It is assumed that the source code of the
program as well as the test suite comprising at least one failing test case is given. A further restriction
of debugging is: the situations where the original program computes a wrong value for at least one
program variable (error identified by wrong output). We assume that the program to be debugged is
syntactically correct, does not comprise any type of errors and infinite loops, and that the corrected
program is a close variant of the original one.

In order to point out the technical differences between various debugging approaches we use the
small program fragment depicted in Figure 2.1. This fragment computes the minimum and maximum
of a collection of integers stored in an array, as well as the sum of the minimum and maximum
under the precondition that the array comprises at least one element. Otherwise, an Out of Bounds
exception would be raised when accessing the first element of the array in Line 2. Note, that changing
this program in order to avoid the exception is simple, but increases the program size, which is less
appropriate for explanation purposes. Moreover, due to the same reason and our assumptions, we
exclude all definitions and type information from the source code.

18

2.2. Introduction

1. i = 1;

2. min = input[0];

3. max = input[0];

4. while (i < length) {

5. if (input[i] < min) {

6. min = input[i];

7. }

8. if (input[i] > max) {

9. max = input[i];

10. }

11. i = i + 1;

12. }

13. result = min * max; // BUG should be result = min + max;

Figure 2.1.: A program fragment computing the minimum and maximum from an array of integers,
and then the sum of both

The program fragment comprises a bug in Line 13. In order to detect the faulty behavior, we
introduce a test suite comprising 5 different test cases (see Table 2.1). Each of them specifies values
for the input variables and the expected output. When running our example program on each test case,
the fragment returns unexpected values. So how to obtain the root cause for this detected misbehavior?

Test case Input / input Expected output

A [1] result = 2, min = 1, max = 1

B [1, 2] result = 3, min = 1, max = 2

C [2, 1, 3, 0] result = 3, min = 0, max = 3

D [0, 1, 2, 3] result = 3, min = 0, max = 3

E [2, 1] result = 3, min = 1, max = 2

Table 2.1.: The test suite used to verify the program from Fig. 2.1

19

Chapter 2. Related Approaches

2.3. Model Based Debugging

The concept of model based debugging (MBDe) is borrowed from model based diagnosis. Model
based diagnosis (MBD) was first introduced by [28] and afterwards improved and refined by [92] and
[29]. MBD refers to identification of failures within hardware systems. Such a system comprises
simple hardware components, e.g., inverters, gates, wired together, such that when applying an input,
a specific output can be observed. The information flow is done via actuators (responses) and sensors
(triggers). In the case of an error, in MBD, the behavior extracted from the model of the system, is
always presumed to be correct, whereas the observed behavior is not. Opposite to this reasoning, in
MBDe the system’s model is presumed to be error-prone whereas the test case, i.e., observation in
MBD terminology, is describing the correct behavior of the program.

In MBD every component C is formally modeled by the relation ¬AB(C)→C. Predicate ¬AB(C)=

true states the correctness of component C. If f alse, i.e., AB(C) is true, component C exhibits an
unpredictable faulty behavior. MBD reasons about finding an instantiation of the AB(C) which can
account for a faulty observation.

Borrowing the modeling from MBD, in MBDe each program statement is seen as a separate com-
ponent communicating with other components via the dependency given by the statement’s variables.
A similar abnormal predicate, AB, is introduced, stating the correctness of a statement. By implying a
MBDe engine we can compute the statements composing the conflict set explaining the failure of the
program on a certain test case.

Model-based diagnosis techniques can be effectively applied to this field. Friedrich et al. [39],
Stumptner and Wotawa [102], Mateis et al. [70], Mayer et al. [74], and most recently Köb and Wotawa
[61] are examples for the application of model-based diagnosis to program debugging. There are also a
lot of papers dealing with debugging which originate from other fields. For example, Staber et al. [95]
and Griesmayer et al. [1] incorporate model-checking techniques into debugging. These techniques
use ideas from model-based diagnosis and allow for the integration of debugging and verification to
some extent. Many of these approaches rely on test cases defining the correct (expected) input/output-
behavior of the program.

Past works on the application of model-based diagnosis to program debugging have also investi-
gated different modeling approaches, in particular dependency-based models (e.g., [39]) and value-
based models (e.g., [74]).

Let us explain model-based debugging for extracting the root cause of a failure. For this purpose

20

2.3. Model Based Debugging

let us consider the test case A from Table 2.1. When running the program on test case A, only the
following statements are executed:

1. i = 1;

2. min = input[0];

3. max = input[0];

4. while (i < length) {

12. }

13. result = min * max;

Let us now assume that each of these statements is represented by a relation (or mathematical
equation) R(v1, . . . ,vk) over the used variables v1, . . . ,vk in that statement. Moreover, let us assume
that each relation has an unique corresponding predicate ¬ABR. A relation is used in a derivation
if its corresponding variable is true. Formally, we represent this using the horn clause ¬ABR →
R(v1, . . . ,vk). For example, we represent statement 1. i = 1; using rule ¬AB1→ i = 1, where
i = 1 is a relation stating that i has to be 1. We obtain similar rules for the other assignment statements.
For simplicity and because of the fact that the while-statement is not executed, we ignore it. We
describe the handling of such statements later on in this chapter.

The idea of model-based debugging is to use the set of obtained rules for debugging. We automati-
cally obtain this set, which is the model, from the source code of the program. Hence, there is no need
to manually construct the model. An explanation, i.e., a root cause, for a test case, which is called a
diagnosis, is an assignment of truth values to the ¬ABR predicates such that the model together with
the test case is satisfiable. Note that we represent the test case itself as a set of relations.

For our example, we have the following model SD and the following set of observations OBS:

SD =

{
¬AB1→ i = 1,¬AB2→ min = input[0],

¬AB3→ max = input[0],¬AB13→ result = min ·max

}
OBS = {input[0] = 1,min = 1,max = 1,result = 2}

Debugging in the model-based debugging approach is reduced to finding a truth assignment to
¬ABR predicates that does not lead to a contradiction. If we assume that ¬AB2 is false and all other
¬ABR predicates to be true, we obtain an inconsistency. From the truth of ¬AB13 and the model we
obtain that result = min ·max must hold. We know that result = 2 and max = 1 and we are, therefore,

21

Chapter 2. Related Approaches

able to compute the value 2 for min, which contradicts the expected values in OBS, i.e., min is expected
to be 1. Consequently, the assumed truth assignment cannot be a diagnosis. When applying the same
procedure for every truth assignment with one predicate to be false and the other to be true, we only
obtain one satisfiable assignment: ¬AB13 is false and the other predicates have to be true. We are able
to conclude that statement 13 is the only root cause comprising only one statement. Note that in the
model-based debugging terminology AB stands for abnormal. If ¬AB is false for a statement, then the
statement has to be abnormal.

Automated and algorithmic debugging has a long tradition in research. Shapiro [96] was one of
the first presenting an algorithm that guides the user when searching for bugs in Prolog programs.
Weiser [113, 114] introduced the theory behind identifying subsets of programs called slices that are
responsible for computing an unexpected variable value. He argued that programmers themselves use
slices for debugging. Since the beginnings of automated debugging, many other approaches have been
presented. We refer the interested reader to Ducassé [34] presenting a general survey on automated
debugging, and to Stumptner and Wotawa [100]. In the rest of this chapter we give a brief overview
on other current debugging techniques, focusing on program slicing and spectrum-based approaches
for debugging.

2.4. Program slicing

Work on program slicing started with Weiser’s initial papers [113, 114]. The idea behind slicing is to
use the dependence information in a program to find the statement responsible for the computation of
wrong variable values. From computational point of view there exist two types of program slicing:
static slicing which does not consider the execution trace corresponding to the test case and dynamic
slicing which operates solely on the trace of the test case.

The dependence information can be statically obtained during program compilation. For this pur-
pose the data and control dependencies in a program have to be taken into account. The drawback
of the static slicing approach is that all statements together with the corresponding dependencies are
taken into account even when the statements are not executed for a certain test case. For large pro-
grams this is of course not feasible.

In order to reduce the size of slices Korel and Laski [62] introduced dynamic slicing that makes use
of a test case to reduce the size of the slice to only those statements that are executed on the given test

22

2.4. Program slicing

case. Unfortunately, dynamic slices may not contain the root cause and therefore improvements like
critical slicing [33] or relevant slicing [132] have been suggested. Gupta and colleagues [48] suggested
combining Delta Debugging [131] with forward and backward slicing, which leads to smaller program
fragments, i.e., chops, to be considered during a debugging session. Other more recent works on
slicing include work by Krinke [63], and Ranganath and colleagues [91]. For a general introduction
into slicing we refer the interested reader to Kamkar [58] and Tip [108]. Other important work include
Kusomoto et al. [65] where the authors report on an empirical analysis of the applicability of slicing
for software debugging. For a more general survey on empirical results and studies about slicing we
recommend Binkley and Harman’s work [12].

The combination of slicing and other approaches for debugging, testing and validation can be found
in many publications. Krinke [64] combined slicing and constraint solving in order to improve accu-
racy. They used the resulting slicer for validation of measurement software. Kamkar [59] presented
an approach that brings together slicing and algorithmic program debugging [96]. The idea is to use
slicing in order to reduce heavy user interactions, which is a drawback of algorithmic debugging. [35]
uses slicing for reducing the size of models for the purpose of formal verification.

There are also publications introducing the combination of slicing with model-based diagnosis, e.g.,
[119] and [120]. [119] proves that static slicing and model-based diagnosis based on a dependence
model lead to the same results. In [120] the author presents the initial ideas and concepts regarding
the combination of dynamic slicing, model-based, and probabilistic reasoning. In [11] the authors
discuss the integration of static slicing and probability theory. In particular this work makes use of
Bayesian reasoning to learn failure probabilities of statements from execution runs and enhance the
corresponding nodes of a program dependence graph with the obtained probabilities. Moreover, the
authors discuss the use of the new program dependence graph for debugging.

Other approaches use slicing for debugging of visual programing languages [60]. Here the authors
introduce the concept of Interrogative Debugging for the visual programing language Alice [6]. They
basically track down events connected to certain objects in order to provide an answer to the question
of ”why?” or ”why did not?” an event occur. The applicability of this method for large complex
system was however not thoroughly studied.

We illustrate debugging with relevant slicing and model-based diagnosis [119, 120], using a variant
of the program depicted in Fig. 2.1. We assume Line 1 to be faulty, i.e., i = 2; instead of i = 1,
and Line 13 to be correct, i.e., result = min + max;. When applying the test cases from Table 2.1,
we get the failing test cases B and E. In the first test case max and result have wrong values, and

23

Chapter 2. Related Approaches

in the second min and result. So what we have to do is to compute the relevant slices for min, max,
and result and to combine them appropriately. In [119, 120] a hitting set algorithm is used for this
purpose, but for this example the intersection of the slices is sufficient.

A relevant slice [132] for max, using test case B, is computed by executing the program on B. The
executed statements form an execution trace from which we extract a directed graph. The edges are
the data and control dependencies. For our example, the obtained execution trace looks like follows:

1. i = 2;

2. min = input[0];

3. max = input[0];

4. while (i < length) {

12. }

13. result = min + max;

Obviously, Statement 3 and Statement 13 are connected via data dependency, because min is defined
in 3 and used in 13. Moreover, we also have a data dependency between Statement 1 and 4. When
computing the relevant slice we mark the node where max is defined the last time and go backwards
the data and control dependence edges. For this example, only Statement 3 is marked. However, in
relevant slicing also potential influences are considered.

The while-statement is not executed, but executing this statement would also allow defining max.
Hence, the while statement has a potential influence over the value of max, and has to be considered
for slicing. We mark Line 4 and go backwards again and therefore mark Statement 1. Hence, in
summary, the relevant slice for max and test case B comprise the statements {1,3,4}.

For the variable result and both test cases, i.e., B and E, we obtain {1,2,3,4,13}. And for variable
min and test case E we obtain {1,2,4}. The intersection of all these relevant slices is the set {1,4},
which is also the debugging result presented to the user. Hence, in this example we are able to reduce
the search space from 13 statements to 2 for debugging. Moreover, the bug location is also included
in the result.

24

2.5. Spectrum-based debugging

2.5. Spectrum-based debugging

Another very promising debugging approach is spectrum-based fault-localization (SFL) [57, 3]. Un-
like slicing based techniques or model based techniques, SFL implies no modeling of the program in
order to deduce the conflict set. One of the first and most popular tools based on SFL is Tarantula
[57]. Recently, Microsoft integrated in its popular IDE, Microsoft Visual Studio 2010, a spectrum-
based debugging reasoning engine [93] which proved to be quite efficient in isolating single bugs in
large programs. Another difference between model based debugging techniques and SFL, is that SFL
makes use of the knowledge about both passing and failing test cases whereas MBDe takes advantage
of only failing test cases. In particular, these approaches count how often a statement is executed for
passing and failing runs. From this knowledge, a similarity coefficient is obtained, which allows for
ranking statements. The approach requires a test suite that should comprise a large number of test
cases. A combination of spectrum-based approaches and model-based approaches for fault localiza-
tion is discussed in [72]. Their approach focuses first on computing a minimal conflict set using a
Model based software debugging (MBSD) engine. The second part implies ranking these compo-
nents based on the similarity coefficient. This has the advantage of focusing the precise technique of
MBDe only on ”highly probable” faults. In [4] the authors discuss the use of probabilistic reasoning
in spectrum-based debugging for ranking the obtained diagnoses. One of the most recent works on
spectrum-based debugging is [5], where the authors focus on multiple faults.

We now illustrate the spectrum-based debugging approach using the modified example program
from Figure 2.1, where Line 6 is changed to max = input[i]; and Line 13 is corrected to result

= min + max;. The first step of spectrum-based debugging is the computation of a block-hit matrix.
A block-hit matrix (or spectrum) h is a n×m matrix if the considered program Π has n statements,
and the test suite T S has m test cases. One entry h(i, j) is set to 1 if the statement i is executed in
test case j. Otherwise, h(i, j) is set to 0. Because we want to obtain a ranking of statements based on
the program executions and the information regarding passing and failing test cases, we also need an
error vector e, with e(j) = 1, if test case j causes the program to fail, and e(j) = 0, otherwise. The
given information can be depicted as:

25

Chapter 2. Related Approaches

Test cases
−→

Statements
y


h11 . . . h1m
...

...
hn1 . . . hnm




r1
...

rn

 y Rank

Error vector
[

e1 . . . em

]

What we want to compute is the rank. A statement is more likely to fail, if it is executed only in
failing runs. A statement that is executed only in passing runs is not likely to fail. Hence, we want to
reflect these facts formally. For this purpose, in spectrum-based debugging a value apq(i) for statement
i is introduced, where p,q ∈ {0,1}, stating the number of passing and failing test cases (parameter q)
where a statement i is executed or not executed (parameter p).

apq(i) =
∣∣{ j|xi j = p∧e j = q

}∣∣

The value of apq(i) is used to compute a rank. Abreu et al. [3] introduced the Ochiai coefficient
used in the molecular biology domain for this purpose. The Ochiai coefficient is defined as follows:

So(i) =
a11(i)√

(a11(i)+a01(i)) · (a11(i)+a10(i))

For our running example, the block-hit spectrum and the rank using the test cases A to E from Table
2.1 is given as follows:

26

2.5. Spectrum-based debugging

Stmnt \ Test case A B C D E Rank So

1. i = 1; 1 1 1 1 1 0.63
2. min = input[0]; 1 1 1 1 1 0.63
3. max = input[0]; 1 1 1 1 1 0.63
4. while (i < length) { 1 1 1 1 1 0.63
5. if (input[i] < min) { 0 1 1 1 1 0.71
6. max = input[i]; 0 0 1 0 1 1.00
7. }

8. if (input[i] > max) { 0 1 1 1 1 0.71
9. max = input[i]; 0 1 1 1 0 0.41
10. }

11. i = i + 1; 0 1 1 1 1 0.71
12. }

13. result = min + max; 1 1 1 1 1 0.63

Error vector 0 0 1 0 1

With respect to the rank S0, Statement 6 is the most likely bug candidate! Hence, in this example
the real bug is identified using spectrum-based debugging.

The real power of the SFL lays in the used similarity coefficient. There exist situations when, even
after running the test suite against the program, not one but more components (in worst case scenario
all) have the highest ranking. In this case the method fails to provide a valuable indicator of the real
bug. Another major drawback of this method, indirectly connected to the first one, is that SFL is
as strong as the available test suite and, if only one or two test cases are available, SFL cannot be
properly exploited. Usually, due to this drawback, SFL is more suited in the testing phase as in the
development phase when most of the programmers have access only to one test case. To overcome this
problem, Dallmeier et al. proposed in [26] a SFL methodology requiring only one failing test case.
Their technique is based on the usage of the AMPLE metric, which needs only one failing test case,
but the existence of more positive test cases. However, this should not be a problem since passing test
cases are easier to generate than failing ones.

Other popular coefficients are: the Jaccard coefficient [82],

S j(i) =
a11(i)

a11(i)+a01(i))+a10(i)
,

27

Chapter 2. Related Approaches

and the Tarantula coefficient [57],

S j(i) =
a11(i)

a11(i)+a01(i)
a11(i)

a11(i)+a01(i)
+ a10(i)

a10(i)+a00(i)

.

In [82] the authors suggest Tarantula as being weaker in predicting the real bug as the Jaccard and
Ochiai coefficient.

Due to its reduced computational requirements, SFL was integrated in several projects. Holmes
[93] is a tool from Microsoft introduced in the first quarter of 2010 and integrated in the .NET Visual
Studio 2010 environment. Holmes performs the debugging/analysis of the programs in two different
modes, either non-adaptive debugging or, the faster version, using previously collected debugging
information, adaptive debugging. Another SFL-based tool is Ample [26], which was developed at
Saarland University. It runs as an Eclipse plug-in and is developed for debugging of Java programs.
VIDA [27] is a visual interactive tool developed at Peking University running also as an Eclipse plug-
in for debugging Java programs. Based on the analyses of passed and failed test-cases, apart from
presenting the fault candidates set, it helps the user in setting breakpoints for further reduction of the
bug-search. For C programs there exists the Zoltar tool [109].

SFL is known for decades in the scientific community, but until recently did not caught a lot of
attention from real software developers. The recent main-stream tools showed that SFL can be suc-
cessfully integrated for debugging of complex programs. However the accuracy and the existence of
the test suites remain challenges that must be addressed in the future. Combing MBDe techniques
with SFL techniques could prove to be an answer to these challenges.

2.6. Other approaches

There are many other approaches for automated debugging. Zeller [131] introduced with delta debug-
ging a technique for test case minimization. The objective in his work is to obtain a smaller test case
pool that still reveals the same fault like the original one in an automated way. Based on the given
algorithms, Zeller and colleagues [130, 21] also applied the same technique for fault localization. The
work is different to slicing-based approaches and model-based approaches because no dependence
information given in the source code is used.

28

2.7. Conclusions

Another very promising debugging approach is based on genetic programming or program muta-
tions. Most recently, Weimer and colleagues [112] presented an approach using genetic programming
for computing changes necessary for passing a given test suite. The basic underlying idea is to ap-
ply mutation and crossover operators to a program until the new program passes all test cases. This
approach is in general not feasible. In order to make the approach applicable for larger programs,
the authors provide some heuristics. They restrict the search space for possible mutations to expres-
sions already used in a program. Moreover, the authors suggested avoiding computing the mutations
for all statements but only for those that are executed when running a test case. The first empirical
results provided are very promising. Similar to delta debugging, approaches using mutations do not
rely on dependency information. It is interesting to note that there is a relationship between mutation-
based approaches and model-based approaches (see [117]). Moreover, Stumptner and Wotawa [102]
used expression replacements in their work on model-based debugging of functional programs. These
replacements can be seen as mutations of the original expressions.

Console and colleagues [23] introduced model-based debugging of logic programs based on model-
based diagnosis [92] improving previous work, i.e., [96]. Bond et al. [16, 15] improves the approach
and eliminates some flaws. It is interesting to note that there are other applications to debugging,
based on model-based diagnosis, e.g., Liver’s work on debugging programs in the telecommunication
industry [66, 67]. This work, in contrast to Console et al. and the one presented in this thesis, relies
on a model of the program that has to be provided by the user of such a system. Other works in
model-based debugging, using different programming languages, include [39, 116, 118] (hardware
description language VHDL), [102] (a simple functional language), and [69, 75, 75] (Java). The use
of constraints for model-based debugging has been reported in [18, 84, 122, 85].

2.7. Conclusions

Because dynamic slices and program spectra are computed directly from execution traces, there is
only a small computational overhead. Therefore, both approaches can be easily adapted to be used
for programs of medium to large size. The slicing-based and model-based approaches require at least
one failing test case, whereas spectrum-based debugging works only if there are enough positive and
negative test cases. The quality of the spectrum-based and the slicing-based approaches is average,
meaning that the expected reduction varies between 50 % and 90 % of the code and maybe more in rare
situations. The reduction is better when considering model-based debugging because this approach

29

Chapter 2. Related Approaches

makes use of both the syntax and the semantics of a program. However, implementing the approach
is not trivial because a compiler for model extraction has to be designed and implemented. The
mutation based technique, although fairly new ([112]), promises to come up with ways of suggesting
repair solutions for a faulty program as well. One weak spot of this approach is the complexity for
mutating each statement in the pursuit of passing all test cases. Furthermore the existence of only
one test case is in this situation not desirable as we need the existence of multiple positive test case
to at least partially confirm the correctness of the proposed repair solution. Usually mutation based
debugging is used in combination with spectrum based techniques (See [112]) for focusing only on
those statements which are likely to be causing the failure.

A combination of all approaches, e.g., computing spectra using slicing information, and using
the obtained diagnoses from the spectrum-based approach for focusing model-based debugging and
then use mutation based debugging to further reduce the conflict set resulted from the model based
debugger, would help to further improve automated debugging both in terms of reduction capabilities
and running time requirements.

In this chapter we presented the most recent developments in automated debugging research. In
the last years, the debugging community is focusing mainly on the above described techniques, i.e.,
slicing-based, spectrum-based, model-based debugging and most recently mutation based debugging.
Our main focus is model based debugging (presented in the next chapter).

The following table lists the result of a comparison between the four methods: slicing-based de-
bugging, spectrum-based debugging, model-based debugging and mutation based debugging.

Program size #test cases passing/failing Quality Impl.
Slicing medium/large ≥ 1 failing avg. easy

Spectrum medium/large >> 1 passing/failing avg. easy
Model-based small/medium ≥ 1 failing opt. difficult

Mutation debugging small/medium/large >> 1 failing avg. avg./difficult

30

Chapter 3
Model Based Debugging: A constraint -
based approach.

”Science knows only one commandment - contribute to science.”
-Bertolt Brecht

In the last three decades, the model based approach was successfully applied in many areas of
the artificial intelligence domain. Testing [25], configuration [98] or diagnosis of hardware systems
[92, 29] are just some of the AI domains where the model based approach was proven to be not only
highly effective and precise, but also highly flexible when it comes to portability between different
systems. Due to the advantages of the model based approach, it did not take long until the idea of
model based software debugging, or for short model based debugging was introduced. Console et
al. [23] were some of the first to introduce this concept in debugging logic programs, being extended
later for more complex programing languages like Java [69].

Model-based debugging is an automated debugging method that is based on a formal model of a
program. The model together with the test cases is used to check consistency under given assumptions
about the correctness of statements. The correctness assumptions are used to invoke or inhibit the
corresponding model of a statement. In case of incorrectness, no model is used and, therefore, there
are no constraints on the values of variables changed by a statement. Hence, the task of debugging
is reduced to finding a set of consistent assumptions. In our work, we implement this idea using

31

Chapter 3. Model Based Debugging: A constraint - based approach.

constraints. Our technique relies on encoding the debugging problem as a constraint satisfaction
problem (CSP) such that a constraint solver can be used to compute the conflict set for the faulty
program. Unlike other model based debugging techniques which rely on some form of program
abstraction to decrease the computational complexity, our approach uses the full semantics of the
program. Hence the obtained results are more accurate and reliable. However, before being able to
perform this conversion, some issues must be tackled. For instance how can you convert a program
written in an imperative language, Java in our case, into a declarative one as required by the constraint
programming (CP) paradigm? Another issue that must be tackled is the conversion of arrays and
function calls. Conditionals and loops are again issues; their dynamic behavior cannot be represented
in a CP language. Later on in this chapter we tackle these issues and explain how we can transform a
program to its CSP equivalent. This part of my thesis relies on the following published papers:

• Converting Programs into Constraint Satisfaction Problems [121];

• On the Compilation of Programs into their equivalent Constraint Representation [122];

• How to debug sequential code by means of constraint representation [84];

• Representing Program Debugging as Constraint Satisfaction Problems [78];

• Automated debugging based on a constraint model of the program and a test case [125];

In what follows, we detail our approach. In Section 3.1 we provide the set of definitions required
to encode the debugging problem together with the semantics of the analyzed programs. Afterwards,
in Section 3.2 we present the encoding process of a program into its static representation. In Section
3.3 we explain how the debugging problem is encoded as constraint satisfaction problem. In Section
3.4 we present the implementation background of our constraint based approach, paying particular
interest on the encoding of the constraint solver. In Section 3.5, we analyze the complexity of the
proposed algorithm. Last, in Section 3.6 we conclude and present a set of results for our approach.

3.1. Definitions and language semantics

In this section we present the theoretical background of our approach.

First, we give the formal definition for the syntax and grammar of the programming language to
be debugged. This is an important step as it states the power and limitation of our debugging algo-
rithm. The language presented here covers all the important constructs that a programming language

32

3.1. Definitions and language semantics

supports. However our defined language is not as refined as a state of the art programming language,
e.g., for loops it only defines the while structure - if we want, we can always express the do while
and for statements as while statements. At a practical level we debug normal Java programs, but we
limit ourselves to the constructs of the presented language. The second part of this section deals with
formally providing the set of definitions which help us state the debugging problem for the defined
language.

3.1.1. Language Semantics and Grammar

We implemented our constraint based algorithm such that it can operate on Java programs. However,
there exists some limitations of the grammar formally describing the language of the debugged pro-
grams. These limitations are no impediment in generalizing, if required, our approach for the complete
grammar of the Java language, e.g., print statements. In order to be self contained we first formally
introduce the syntax and semantics of the programming language used in the rest of this thesis.

The language L is a simple imperative assignment language defined over numbers, boolean values,
and arrays. In this language we ignore variable declarations and type checking. Moreover, pointers
are not considered. The restrictions are for keeping the definition overhead as small as possible. We
further assume the existence of a semantics function JK that maps programs and the current state to a
new state. States are represented by environment variables. Before introducing the syntax of L , we
assume VAR to be the set of variables used in a L program and define expressions EXP recursively as
follows: EXP represents in the language of L the set of all basic elements over which the logical and
arithmetic operators are defined. Formally, this translates to the following definition.

Definition 1 (Syntax of expressions EXP) The expressions used in L can be separated into 2 classes:
the basic expressions and the combined expressions.

• Basic expressions: In EXP we distinguish the following basic expressions:

– Boolean values: true, false are expressions.

– Numbers: n is an expression, if n is a representation of a number, e.g., -1, 0.

– Variables: x is an expression, if x ∈VAR.

– Array access: x[E], with x ∈VAR and E ∈ EXP is an access to an array element.

33

Chapter 3. Model Based Debugging: A constraint - based approach.

• Combined expressions: An element of type combined expression from EXP is a boolean or
arithmetic relation over basic expression from EXP. The operators allowed in this relation can
be either unary: - (minus sign), ! (not), or binary: + (plus), - (minus), * (multiply), / (divide),
&& (logical and), || (logical or), == (if equal), ! = (different)≤ (less equal),≥ (greater equal),
< (less), > (greater).

In the definition of simple expressions, we allow combined expressions to comprise more than one
simple expression. Using the above definition of EXP we now define L :

Definition 2 (Syntax L) The syntax of the programming language L is given as follows:

• A program in L comprises a sequence of statements S1, . . . ,Sn.

• In L we distinguish the following kind of statements:

– Assignment statements are of the form x = E ; or x [E ′] = E ; where x∈VAR is a variable,
and E, E ′ ∈ EXP can be either of type basic expressions or combined expressions.

– Conditional statements are of the form if E { B1 }, where E ∈ EXP is a combined expres-
sion returning a boolean value, and B1 is a program written in L , optionally comprising
an else block of the form else { B2 }, where B2 is again a program.

– Loop statement are of the form while E { B } where E ∈ EXP is a combined expression
and B is a program written in L .

Note that in the given definitions the programs in L and all constructs are represented using an
underscore. This is for distinguishing the syntactical part of L from its semantics. However, in the
rest of this work we do not use the underscore in our examples. For example, the program given in
Chapter 2, Figure 2.1 is obviously a program written in L .

In the following, we define the semantics of L . For this purpose we introduce a function JK mapping
constructs from L together with the current state to a new state. By successively applying the seman-
tics function, the final state of a program, given an initial state, is defined. The state in our context
comprises the variable environment and a memory. The variable environment ω : VAR 7→ DOM is a
function mapping variables from VAR to its values in DOM. The set of possible values DOM com-
prises the boolean values (T,F), all numbers (-1,0,1,2,. . . ,1.2e5,. . .), and all possible array identifiers
IDX . We assume that array identifiers from IDX are unique and start with a @ followed by a natural

34

3.1. Definitions and language semantics

number. The memory itself is a function σ : IDX×N 7→DOM mapping array elements to their value.
Moreover, we assume a function length returning the length of an array.

Note that variable environments induce set of pairs, i.e., Eω = {(x,v)|ω(x)= v}. In the following we
use the set representation and the function representation of variable environments interchangeably.
For simplicity we introduce a set of environments ENV and a set of memories MEM containing all
possible environments and instances of memory respectively.

We start with the definition of the semantics of expressions.

Definition 3 (Semantics of EXP) Given a state (ω,σ) ⊆ ENV ×MEM. The semantics of EXP is
defined as follows:

• Basic expressions

– Boolean values: JtrueK(ω,σ) = T, JfalseK(ω,σ) = F

– Numbers: JnK(ω,σ) = n

– Variables: JxK(ω,σ) = ω(x)

– Array access: Jx[E]K(ω,σ) = σ(ω(x),JEK(ω,σ))

• Combined expressions: In the following we assume that the operators uop and op are repre-
sented by themselves.

– Juop EK(ω,σ) = uop (JEK(ω,σ))

– JE op E ′K(ω,σ) = JEK(ω,σ) op JE ′K(ω,σ)

Note that in L , expressions do not change the state. We now use the semantics of EXP to define
the semantics of programs.

Definition 4 (Semantics of L) Given a state (ω,σ) ⊆ ENV ×MEM. The semantics of L is defined
as follows:

• Sequence of statements: JS1 . . .SnK(ω,σ) = JS2 . . .SnK(JS1K(ω,σ)) with JK(ω,σ) = (ω,σ) as the
base case of this inductive definition over the number of statements.

• Assignments:

– Variable at the left side of the assignment: Jx = E ;K(ω,σ) = (ω′,σ) with ∀y ∈VAR∧y 6=
x : ω′(y) = ω(y) and ω′(x) = JEK(ω,σ).

35

Chapter 3. Model Based Debugging: A constraint - based approach.

– Array access at the left side: Jx [E ′] = E ;K(ω,σ) = (ω,σ′) where ∀i ∈ IDX ∧ i 6=
ω(x) : ∀ j ∈ {0, . . . , length(i)} : σ′(i, j) = σ(i, j), and ∀ j ∈ {0, . . . , length(i)}∧ j 6= e :
σ′(ω(x), j) = σ(ω(x), j) and σ′(ω(x),e) = JEK(ω,σ) with e = JE ′K(σ,ω).

• Conditionals: We distinguish 2 cases:

– Jif E { B1 }K(ω,σ) =

{
JB1K(ω,σ) if JEK(ω,σ) = T
(ω,σ) if JEK(ω,σ) = F

– Jif E { B1 } else { B2 }K(ω,σ) =

{
JB1K(ω,σ) if JEK(ω,σ) = T
JB2K(ω,σ) if JEK(ω,σ) = F

• Loops:

Jwhile E { B }K(ω,σ) =

{
Jwhile E { B }K(JBK(ω,σ)) if JEK(ω,σ) = T
(ω,σ) if JEK(ω,σ) = F

Note that in the above definition, an assignment can change the value of a particular array element.
If two variables point to the same array, such a change leads to a side effect.

Another limitation of the above grammar is the lack of formal definition for function calls. On
a practical level, our approach offers support also for this type of functional structures: by method
in-line copy. This has less to do with the formal definition of the language, being more of a ”syntactic
sugar” issue.

Definition 5 (Grammar) The grammar associated to the syntax of a programing language is a tuple
(VN ,VT ,S,Φ) such that

• VN represents the non-terminal nodes of the production rules, i.e., placeholders. For example
assignment is a placeholder for the actual equation.

• VT represents the terminal nodes, e.g. numbers, variables, operators.

• S is the program entry point, i.e., the start node for the production rules.

• Φ ∈ VT represents the production rules of the grammar, i.e., the allowed combinations for the
syntax of the language.

Usually the terminal nodes are designated in the production rule by underlining them.

The grammar associated to the syntax of L is defined as follows:

36

3.1. Definitions and language semantics

• VN = {Start, ASSIG, COND, LOOP, Statement, EXP, ELSE}

• VT = {ε, begin, end, var, num, bool, i f , then, else, while, boolOp, binOp, unOp, [,],=}, whereas
var, num, and bool are designating the elements of type Definition 3. All allowed binary oper-
ators, binOp, unary operators unOp and boolean binary operators boolOp, are found in Defini-
tion 3. The relation between boolOp and binOp is boolOp⊆ binOp

• S = {Start}

• Φ = {

Start→ begin Statement end
Statement→ ASSIG ; Statement
Statement→COND Statement
Statement→ LOOP Statement
Statement→ ε

A→ var = EXP
A→ var[EXP] = EXP

EXP→ var
EXP→ num
EXP→ bool
EXP→ var[EXP]

EXP→ EXP binOp EXP
EXP→ unOp EXP
COND→ i f (E boolOp E) then begin Statement end ELSE

ELSE→ else begin S end
ELSE→ ε

LOOP→ while (E boolOp E) begin Statement end

}

According to the Chomsky [20] grammars hierarchy, the above grammar is a context free grammar
(also called type 2 grammar). The context free grammars usually represent the theoretical foundation

37

Chapter 3. Model Based Debugging: A constraint - based approach.

for the syntax of any programming language. In a context-free grammar, every production rule fulfills
the following requirement |α| ≤ |β|, α ∈VN , where α→ β.

The problem of the above grammar is that it is left recursive, i.e., non-deterministic. The ambiguity,
i.e., left recursion, is due to the production rule: EXP→ EXP binOp EXP. However a small patch
can be applied to remove this ambiguity. We introduce a new non-terminal node, PATCH, which
modifies our grammar as follows:

• The production rule EXP→ EXP binOp EXP is replaced by PATCH→ binOp EXP PATCH|ε

• Every production of type EXP→α is replaced by EXP→α PATCH,whereas α is a placeholder
for any right-side production rule.

Hence, after applying our patch, VT and S remain unchanged, VN becomes VN = {Start, ASSIG,COND,

LOOP, Statement, EXP, ELSE}
⋃
{PATCH} and Φ becomes:

Start→ begin Statement end
Statement→ ASSIG ; Statement
Statement→COND Statement
Statement→ LOOP Statement
Statement→ ε

A→ var = EXP
A→ var[EXP] = EXP

EXP→ var PATCH
EXP→ num PATCH
EXP→ bool PATCH
EXP→ var[EXP] PATCH

PATCH→ binOp EXP PATCH | ε

EXP→ unOp EXP PATCH
COND→ i f (E boolOp E) then begin Statement end ELSE

ELSE→ else begin S end
ELSE→ ε

LOOP→ while (E boolOp E) begin Statement end

38

3.1. Definitions and language semantics

3.1.2. Definitions

Our approach implies the usage of a test case for identifying the faults in the program. Hence, in order
to define the debugging problem for programs written in L , we first introduce the formal definition
of a test case. Basically, a test case comprises information about the values of input variables and
some (but not necessarily all) information regarding the expected output. Theoretically it would also
be possible to define expected values for variables at arbitrary locations in the code, but because of
simplicity, we do not extend the definition in this respect.

Definition 6 (Test case) A test case for a given program Π ∈ L is a tuple (I,O) where I ∈ ENV is an
input environment specifying the values of all variables used as inputs, and O ∈ ENV is the expected
output environment.

Note that there are no restrictions on the output environment. Hence, an empty set might also be a
valid expected output environment. Of course for validation and verification, the expected output has
to be defined. A given program Π∈L passes a test case t = (I,O) if and only if JΠKI ⊇O. Otherwise,
we say that the program fails. Because of the use of the⊇ operator, also partial test-cases are allowed,
which do not specify values for all output variables.

Definition 7 (Test suite) A test suite T S for a program Π ∈ L is a set of test cases.

A test suite can be partitioned into two disjoint sets comprising only passing (PASS) respectively
failing (FAIL) test cases, i.e., T S = PASS∪FAIL∧PASS∩FAIL = /0. Formally, we define these two
subsets as follows:

PASS = {(I,O)|(I,O) ∈ T S,JΠKI ⊇ O}
FAIL = T S\POS

We are now able to formalize the debugging problem.

Definition 8 (Debugging problem) A debugging problem is a tuple (Π,T S), where Π ∈ L is a pro-
gram, T S = PASS∪FAIL, a test suite with at least one failing test case, i.e., |FAIL| ≥ 1.

Definition 9 (Correctness Assumption) Given the set of all statements S of a program Π ∈ L , then
∀si ∈ S, i = 1...|S|, the predicate AB(si) denotes the assumption about the correctness of statement si.
if AB(si) is true, then statement si is assumed to be incorrect and any output value is presumed to be
possible except for the correct one. A statement cannot be both in an incorrect and correct state.

39

Chapter 3. Model Based Debugging: A constraint - based approach.

Definition 10 (Diagnosis) Let ∆⊆ ST MNT S(Π) be a set of statements such that ∀ j = 1...|∆|, AB(s j)==

true,where ST MNT S is a function returning all statements of a program. We call ∆ the valid expla-
nation or diagnosis for the debugging problem (Π,T S), if ∆ is consistent with all the test cases.

The motivation behind this definition is that a program passing the whole test suite needs not to
be considered for debugging. A solution to the debugging problem would be in general a variant of
the original program that passes the whole test suite. In the context of this thesis, a solution, i.e.,
diagnosis, is a set of statements that, when assumed to behave wrong, explains all failing test cases.

Lemma 1 (Minimum diagnosis) A diagnosis ∆ for a debugging problem (Π,T S) is called minimal,
when there exists no other diagnosis ∆′ such that ∆′ ≺ ∆, ≺ denotes the subset operator.

A diagnosis ∆ is of minimal cardinality when no other diagnosis ∆′ exists such that |∆′|< |∆|

Definition 11 (Conflict) Given a failing test case T ∈ T S of a debugging problem (Π,T S). A conflict
is a set of one or more statements C = {s,s ∈ ST MNT S(Π)} such that ∀si ∈ C,¬AB(si) → si is
not consistent with the behavior resulted from test case T , ST MNT S is the function returning all
statements of the program Π.

Lemma 2 (Minimal Conflict) A conflict is minimal when none of its subset is minimal. The set of all
program statements is a supra set of all minimal conflicts.

Definition 12 (Conflict Set) The conflict set of a debugging problem (Π,T S) comprises all the mini-
mal conflicts computed with respect to T S and Π.

In our constraint based-approach, the definition of a conflict set is less important since our mod-
eling allows us to directly extract the minimal diagnosis. However in model based diagnosis and in
some model based debugging approaches, after conflict set extraction, an intermediate step is required
for computing the minimal diagnosis. One of the most popular techniques implied for computing the
minimal diagnosis is the hitting set algorithm introduced by Reiter et. all [92]. Slicing based tech-
niques imply also the hitting set for computing the minimal explanation for conflicts computed for
different slicing criteria. Another usage of the hitting set is for integration of multiple test cases in
debugging VHDL programs [10].

In the next section we depict the steps for replacing the dynamic behavior of the analyzed program
with a statical one. Additionally, we model the new resulted program such that the imperative behav-
ior can also be seen as a declarative one, hence in the form specified by the constraint programing
paradigm.

40

3.2. Static Conversion

3.2. Static Conversion

There are certain challenges that we must undergo before converting a program into its constraint
representation. The first challenge is related to answering questions about language dynamic behavior:
what happens with the loop and conditional structures? or how are method calls integrated?.

The second challenge refers to the differences between expressiveness of the imperative languages
of L and expressiveness of the declarative constraint programming language. For example having the
following small program fragment in the imperative language of L :

{

1. result = 0;

....

2. a = 0;

3. b = 5;

4. result = a + b; // result = 0+5 = 5

.....

}

would yield no errors and would compute the correct value of 5 for the variable result. Converting
the same program in an auxiliary constraint programing language yields:

1. equals(result, 0) #result = 0;

....

2. equals(a, 0) #a = 0;

3. equals(b, 5) #b = 5;

4. sum(a,b,result) #result = a + b => result = 5 !!! Inconsistency

.....

The above constraint system is however not solvable. In a declarative language, unlike imperative
languages, all the statements must be true at same time. This property translates in our example to
the following inconsistency: (1.) result = 0 and (4.) result = 5, e.g. 0 = 5 = result, which of course
cannot be satisfied.

41

Chapter 3. Model Based Debugging: A constraint - based approach.

The previous example shows just one possible problem which can appear if the conversion between
the imperative and declarative language is an one to one statement conversion.

We propose to convert programs into constraints in three steps.

* In the first step, the program Π from L is converted into its loop-free representation ΠLF . In
this representation all loops are replaced by nested conditional statements where the nesting
depth has to be larger or equal to the maximum number of iterations of the loops considering
the given test suite.

* From ΠLF we obtain a static single assignment version ΠSSA. In this representation every vari-
able is defined only once.

* The reason for the SSA representation is the easy conversion into the constraint representation
CONΠ, performed in the last step. Given the SSA form, the translation comprises replacing the
statements with language constructs used by the implied constraint solver, and adding informa-
tion regarding the correctness assumptions.

In summary, the conversion process looks like:

Π ∈ L −→ΠLF ∈ L −→ΠSSA ∈ L −→CONΠ

In the following subsections we discuss each conversion step and prove the correctness and com-
pleteness under certain restrictions. It is worth noting that the whole conversion can be automated and
there is no need of user interventions.

3.2.1. Loop elimination

Dynamic structures need further transformation before they can be converted into their constrain rep-
resentation. Our algorithm implies a static analysis of the program, which means, no direct estimation
of the execution is possible. Hence, at the moment of the analysis, we cannot know how an if or while
structure is executed. In the case of an if structure we can interpret it in both directions in the con-
straint system. However loops cannot be directly converted to a constraint representation. Therefore,
a step for eliminating loops is necessary.

The elimination of loops for various purposes like verification [22] and test case generation [41] is
not new and is based on unrolling loops, i.e., to create a loop-free program by replacing the loop of

42

3.2. Static Conversion

the original program by a set of nested if-statements (e.g., see for example also [18] and [84]). When
executing while-statements they behave like a conditional statement in one step. If the condition is
fulfilled the statements in the block are executed and the while-statement is executed again afterwards.
Otherwise, the while-statement is not executed. Hence, it is semantically correct to represent while-
statements using an infinite number of nested if-statements, i.e., while (C) { B } is equivalent
to the representation given in Fig. 3.1, where C represents the condition, and B the statements in the
sub-block of the while statement.

• Hence, we can define loop-elimination as a recursive function where n is the number of itera-
tions:

LF(while C {B},n) ={
if C{B LF(while C {B},n−1)} if n > 0
ε otherwise

This modeling of the loop structures obviously implies that the maximum number of iterations is
known in advance. This is a mandatory condition for the intermediate loop-free model ΠLF ∈ L to be
equivalent with the original program Π ∈ L . It’s worth nothing to us if the loop-free program ΠLF is
an incomplete estimation of Π. To avoid this situation an overestimation of the loop is required. Over-
estimating the loop does not have any negative effect on the program output, i.e., the loop condition
is tested before entering a new if, but can slightly increase the computation time for the CSP solver.

Under this assumption the loop-free program is equivalent to the original program. Note that pro-
gram debugging is based on one or more test cases, and executing the program for those test cases can
also yield an overestimation of the maximum number of iterations in the faulty program for the given
test suite. Another possibility is to deduce this number directly from the program’s specification. Of
course the number of necessary iterations might be large, causing a substantial increase of the size
of the loop-free variant. As we will show in a later chapter, this number has a certain influence on
the debugging complexity, but becomes neutral after a certain level. However, usually test cases are
designed in order to reveal failures using inputs of manageable size. Hence, a small number of itera-
tions is often sufficient for detecting faults (e.g., see [55]). It can be easily proven that the following
corollary, stating the correctness of the conversion into loop-free programs, holds.

Corollary 1 Given a debugging problem (Π,T S). Let ΠLF be the corresponding loop-free program
of Π, where all loops are replaced by nested-if statements and where the nesting depth is larger than
the number of loop iterations for each test case in T S. ΠLF and Π compute the same output values
for all test cases in T S, i.e., ∀(I,O) ∈ T S : JΠKI = JΠLFKI.

43

Chapter 3. Model Based Debugging: A constraint - based approach.

while C {
B

}
−→

if C {
B

while C {
B

}

}
...

↓

if C {
B

if C {
B

...

if C {
too many iterations

}
...

}

}

Figure 3.1.: Loop unrolling

44

3.2. Static Conversion

1. i = 1;

2. min = input[0];

3. max = input[0];

4. while (i < length) {

5. if (input[i] < min) {

6. min = input[i];

7. }

8. if (input[i] > max) {

9. max = input[i];

10. }

11. i = i + 1;

12. }

13. result = min * max; //error should be result = min + max.

Figure 3.2.: A program fragment computing the minimum, maximum, and sum of both for an array
of integers

Let’s recall now the example program given in the Introduction, depicted in this chapter in Fig. 3.2.
In this program we have one while structure and two if statements.

Let’s presume that for the program from Fig.3.2 we assume a number of two iteration for replacing
the while statement. The unrolled version of the program is given in Fig. 3.3.

Method calls are not directly modeled in the of L language. Implying an intermediate step for
replacing all method calls, transforms a program Π into its specific L representation. Converting
method calls is somehow similar to the while structure conversion, i.e., the method call is replaced
with its body overall where there exists an invocation to it. There exist two possibilities to invoke a
method:

1. As a stand alone statement, i.e., it returns void.

2. In an assignment or conditional statement, i.e., the method has a return statement.

We use Algorithm 1 (AlgorithmReplace Method) for replacing a method call in a program.

45

Chapter 3. Model Based Debugging: A constraint - based approach.

1. i = 1;

2. min = input[0];

3. max = input[0];

4. if (i < length) {

5. if (input[i] < min) {

6. min = input[i];

7. }

8. if (input[i] > max) {

9. max = input[i];

10. }

11. i = i + 1;

12. if (i < length) {

13. if (input[i] < min) {

14. min = input[i];

15. }

16. if (input[i] > max) {

17. max = input[i];

18. }

19. i = i + 1;

20. }

21. }

22. result = min * max;

Figure 3.3.: The loop-free version of the program in Fig.2.1 for 2 iterations.

46

3.2. Static Conversion

Algorithm 1 Replace Method (ST,Meth,Arguments,returnType)

Require: The program’s statement ST where the method is invoked, the method’s body without re-
turn statement Meth, its arguments Arguments, and the return value returnStatement.

Ensure: In-line replacement of a method call.
1: if isEmpty(Arguments) == f alse then
2: for all vi ∈ Arguments, i = 1 . . . |Arguments| do
3: Create before ST the local auxiliary variable, vauxi of type vi and vauxi = vi.
4: end for
5: end if
6: for all Variables vari ∈Meth, i = 1... do
7: Create local corresponding local variable vari Meth, before ST ,
8: end for
9: Copy the method’s block, Meth before ST (ignoring its variable declarations).

10: if isEmpty(returnType) == f alse then
11: Create before ST the local variable returnTypeaux of type returnType add returnTypeaux =

returnType, and replace in body of ST the invocation of Meth by returnTypeaux.
12: else
13: delete ST from program.
14: end if

3.2.2. Building the Static Single Assignment (SSA) form

There exists an intensive discussion upon which analysis technique, i.e., static or dynamic, is best
suited for MBDe. The dynamic approach, i.e., based on the program’s trace, is very scalable for
large programs. By using only the program’s trace, there exists the advantage of focusing the search
space only on those statements involved in the execution of the test case. This translates to a smaller
program than the original one, hence, less time required by the algorithm to compute the conflict set.

There is however a drawback of the dynamic approach. There exist situations when the error is not
contained in the trace, and therefor never revealed. Let’s consider the small program from Fig.3.4.
The error is found in statement 3. Due to the fact that this conditional statement evaluates to f alse, it
will not be included in the trace. Basically the debugging algorithm can never identify it as a possible
explanation for the program failure.

47

Chapter 3. Model Based Debugging: A constraint - based approach.

.....

1. div = 2;

2. result = 4;

3. if (div == 0) //error should be !=

4. result = result / 2;

.....

Figure 3.4.: A program for computing
the division of two natural
numbers.

.....

1.div = 2;

2.result = 4;

.....

Figure 3.5.: The program’s trace

The statically analysis of the program implies the whole program as model for the debugging en-
gine. We use the test-case suite only for extracting the number of loop-iterations. And even if after
analyzing the test case suite, a loop is marked as never executed, we include it in the model as a one
iteration loop. Hence we eliminate the drawback of the trace-based analysis of the program.

Elimination of the while loops and method calls was the first step in obtaining the modeling of pro-
gram Π ∈ L into its CSP equivalent. An intermediate representation of all the statements (comprising
now only conditional statements and assignments) must be performed. We call this intermediate rep-
resentation the static single assignment (SSA) form. In what follows we depict the conversion process
of all possible program structures, e.g., conditionals, assignments, arrays.

Before explaining what the SSA form represents, let’s start by considering the following program
together with its constraint representation:

1. result = 0; 1. equals(result, 0) #result = 0;

......

2. a = 0; 2. equals(a, 0) #a = 0;

3. b = 5; 3. equals(b, 5) #b = 5;

4. result = a + b; 4. sum(a,b,result) #result = 0= 5 !!! Inconsistency

......

Even if the above program written in L is correct, its direct constraint language representation is

48

3.2. Static Conversion

not (due to fact that every constraint language is declarative, in our example result must be both equal
to 0 and 5). Let’s rewrite the above example as follows.

1. result_1 = 0; 1. equals(result_1, 0) #result_1 = 0;

......

2. a_1 = 0; 2. equals(a_1, 0) #a_1 = 0;

3. b_1 = 5; 3. equals(b_1, 5) #b_1 = 5;

4. result_2 = a_1 + b_1; 4. sum(a_1,b_1,result_2) #result_2 =5

......

From the semantical behavior point of view, the new program is identical with the original one, but
has the property that its corresponding constraint system is no longer inconsistent. We applied a small
trick, i.e., we rename all the program’s variables such that there exists no assignment with the same
left-side. More practically: by the second usage of the result variable we rename it to result 2. Hence
the constraint system no longer finds an inconsistency between the two values of result. Due to the
renaming process, the statements result 1 = 0 and result 2 = 5 can now be ”true” simultaneously.

Our constraint representation requires that all left-side variables in the program have unique names,
i.e., each variable should be defined only once. Hence, we use the static single assignment (SSA)
form, which is an intermediate representation of the program with the property that no two left-side
variables have the same name (see [24, 17, 111]). This is achieved by replacing each left-side variable
with a new variable whose name is composed of the name of the original variable plus a unique
index as suffix, see Fig. 3.6. Since all variables are defined only once, the SSA form allows for a
clear representation of the dependencies that are established between different variables inside the
corresponding program. The SSA representation of a program is also an intermediate step in the
compiling process; basically before compilation, a file is first transformed into its SSA representation.
The SSA form is then used as input for the compiler.

In order to obtain the SSA form of a program it is also necessary to convert loops, arrays and
conditional statements. As loops are, in our approach, represented by nested if-statements, we only
need to consider the conversion of conditional statements and array structures.

In the language of L a valid conditional statement is of the form:

if(condexpr) then {...} else {...}

49

Chapter 3. Model Based Debugging: A constraint - based approach.

Note that the notation xexpr denotes a whole expression rather than a single variable. Stepwise the
conversion of conditional blocks works as follows:

1. The value of the evaluated condition condexpr is stored in a new boolean variable cond i, where
i is a unique index.

2. The if- and the else-branches are converted separately. For both branches, new variables
with unique indexes are introduced. The statements of both branches are concatenated; i.e., the
program in SSA form will execute the statements of either branch in every run.

3. New variables are added; they have the value of the corresponding variables in the original
program after the execution of the if- or else-branch, respectively. The values of these new
variables depend on the indexed variables which were introduced for the branches and on the
boolean condition condexpr. For the evaluation of those values we define the Φ-function:

Φ(v j,v k,cond i)
def
=

{
v j if cond i= true
v k otherwise

For example, the corresponding SSA form of the program fragment

if(condexpr) {x = e1expr;} else {x = e2expr;}

is given as follows:

cond i = condexpr;

x j = e1expr;

x k = e2expr;

x l = Φ(x j, x k, cond i);

We handle arrays similar to how we handle assignment statements. For the purpose of explaining
the conversion of arrays, we assume an array A of length n > 0 with elements 〈a1...ai...an〉. The access
to elements is assumed to be done using the [] operator, which maps from A and a given index i to the
array element ai. We now discuss two cases, i.e., the array is used at the right side of an assignment,
and the array occurs at the left side of an assignment.

In a statement of type z = A[E], i.e. the array access is found at the right hand side of an equation
with index E, A is represented in the SSA form as A k, where k is the currently given unique index k
for the array A.

50

3.2. Static Conversion

The more difficult part is handling statements like A[m] = xexpr, where the array is on the left
hand side of an assignment. For this purpose we use an update array function [24]: Ψ(A, i,exp). The
function Ψ returns a new array A′, which, except for the value at index i, has the same values as the
array A. For example, if we encounter statement A[m] = xexpr during conversion, then its SSA form
is Ak+1 = Ψ(Ak,m,xexpr). We now formally define the function Ψ. Assume a program fragment A[i]
= f(~x), where the i-th element of A is set to the outcome of function f , given parameters ~x. This
statement only changes the i-th element, but not the others.

{ A } // A before the statement

A[i] = f(~x)
{ A’ } // A after the statement

The new value after executing the statement is given as follows: A’[i] = f(~x) and ∀ j∈{1, . . . ,n}, i 6=
j: A’[j] = A[j]. As a consequence, we say the function Ψ (written as Psi in the source code) has
to implement this semantics in order to allow replacing the original statement with A = Ψ(A,i, f(~x)).

Before stating the correctness of this conversion step, we give another example:

1. min = input[i];

2. input[i] = 5;

3. input[2] = input[1] + 5;

According to our conversion rules we obtain the following SSA representation:

1. min_0 = input_0[i_0];

2. input_1 = Psi(input_0,i_0,5);

3. input_2 = Psi(input_1,2,input_1[1] + 5);

Note that Ψ can be implemented as a function in order to ensure the equivalent behavior even in the
context of program execution. Assume that Psi has the formal arguments A, i, e and that the length of
an array can be accessed via a function length, then the body of function Ψ is defined by Algorithm 2
(Ψ).

The introduction of the Ψ function for handling arrays does not handle correctly the semantics of
arrays stated in the semantics of L , in all cases. The semantic of L allows for side effects. If we have

51

Chapter 3. Model Based Debugging: A constraint - based approach.

Algorithm 2 Ψ (A, i,e)

Require: Array A, index i, value e.
Ensure: Array B that is a copy of A except for element i. Element i receives the new value e.

1: j = 1;
2: while j < length(A) do
3: if j==i then
4: B[j] = e;
5: B[j] = A[j];
6: end if
7: j = j + 1;
8: end while
9: return B;

two variables pointing to the same arrays, then any change of the array using one of the two variables is
visible using the other variable. This is not the case here, where in each array assignment the complete
array content is copied. Consequently, the conversion cannot be correct in general. However, if we
assume that each array is only accessed via one variable, i.e., there are no two variables pointing to
the same array, then the conversion is correct. We again express this equivalence under restrictions in
a corollary. In the corollary we use a function ν that maps variables of the original program to their
last index used in the SSA form.

Corollary 2 Given a loop-free program ΠLF ∈ L and a test suite T S. The SSA representation ΠSSA ∈
L of ΠLF is equivalent to ΠLF with respect to the test suite T S and the corresponding input output
variables, if and only if ΠLF does not contain more than one variable pointing to the same array. I.e.,
∀(I,O) ∈ T S : ∀(y,vy) ∈ JΠLFKI : ∃(y ν(y),vy) ∈ JΠSSAK{(x 0,vx)|(x,vx) ∈ I}.

Note that for debugging purposes the input output equivalence, which is similar to the input output
conformance (IOCO) theory [110] used in testing, is sufficient. The SSA representation of the pro-
gram from Fig. 3.3 is given in Fig. 3.6.

52

3.2. Static Conversion

1. i_0 = 1;

2. min_1=input_0[0];

3. max_1=input_0[0];

4. cond_0=i_0<size_0;

5. cond_1=cond_0 && input_0[i_0]<min_1;

6. min_2=input_0[i_0];

7. min_3= Phi(min_1,min_2,cond_1);

8. cond_2=cond_0 && input_0[i_0]>max_1;

9. max_2=input_0[i_0];

10. max_3= Phi(max_1,max_2,cond_2);

11. i_1=i_0+1;

12. cond_3=cond_0 && i_1<size_0;

13. cond_4=cond_3 && input_0[i_1]<min_3;

14. min_4=input_0[i_1];

15. min_5= Phi(min_3,min_4,cond_4);

16. cond_5=cond_3 && input_0[i_1]>max_3;

17. max_4=input_0[i_1];

18. max_5= Phi(max_3,max_4,cond_5);

19. i_2=i_1+1;

20. min_6= Phi(min_3,min_5,cond_3);

21. max_6= Phi(max_3,max_5,cond_3);

22. i_3= Phi(i_1,i_2,cond_3);

23. min_7= Phi(min_1,min_6,cond_0);

24. max_7= Phi(max_1,max_6,cond_0);

25. i_4= Phi(i_0,i_3,cond_0);

26. result_1=min_7*max_7;

Figure 3.6.: The SSA form corresponding to the program from Fig. 3.3.

53

Chapter 3. Model Based Debugging: A constraint - based approach.

3.3. Fault Localization based on a Constraint Representation

Constraints are a powerful mechanism for modeling different classes of problems from the artificial
intelligence domain. Throughout the past years there was an extensive research aimed at improving
the solving mechanism for constraint systems. This has brought to the market a couple of state-of-the
art constraints solver: MINION ([40]), CHOCO ([19]), JaCoP ([56]), ILOG ([54]), Sugar ([106]),
Mistral ([51]), ZDC ([129]) which are capable of solving large constraint systems efficiently and
fast. Due to this major speed-up gains, plus the powerful modeling language, constraint solving was
rapidly adopted and integrated by the industry. Starting from configuration of phone networks [101],
configuration of software in an automotive system [83], configuration of services [128], recommender
system [89], verification [22] and testing [41], constraints are proven to be efficient and scalable.

By applying constraint modeling for the debugging problem, we make use of the available techno-
logical advances which the constraint community has brought in the last years. This translates to the
possibility to debug relatively large programs without any abstraction from their initial syntax.

A constraint satisfaction problem (CSP) is a tuple (V,D, CO), where V is a set of variables, each
variable v ∈ V has a domain D(v), and CO is a set of constraints. Each constraint defines a relation
between variables. A solution of a CSP assigns values to all variables s.t. all constraints are satisfied.
For more details regarding CSPs we refer to [31].

A solution to a CSP can be computed by implying:

• Constraint propagation. The domains D are updated each time the variables from a constraint
Ci ∈ CO are instantiated, i.e., the variable values inconsistent with Ci are eliminated form the
domain Ci.

• Backtracking or local search. For each variable we search for values in the domain that do not
contradict any constraint from CO.

A CSP is said to be inconsistent, when no valid instantiation of the variables exists such that all
the constraints CO are satisfied. In the CSP standard theory, the constraint system is inflexible (a
solution either satisfies all constraints or violates all of them) and hard, i.e., all constraints must be
satisfiable. When a CSP is inconsistent there exists the possibility of relaxing the constraint system.
Two situations when a CSP can be relaxed are identified:

• Dynamic CSPs (DCSPs). The constraint system is still under construction or it suffers from

54

3.3. Fault Localization based on a Constraint Representation

changes due to new rules. In this situation constraints can be either removed, i.e., relaxation,
or, inserted, i.e., restriction.

• Flexible CSPs (FCSPs). This type of CSPs have the property that whenever a complete satisfac-
tion of all constraints is not possible, it relaxes the CSP until a solution is found. The relaxation
must however respect a certain optimization criteria, e.g., the offered solution must satisfy the
maximum possible number of constraints.

Modeling a problem as a constraint satisfaction problem (CSP) requires first a thorough understand-
ing of what and how constraints are utilized. We can order constraints by the following criteria:

• Cardinality: with respect to the maximum number of variables possibly involved in one con-
straint.

– Unary Constraints: the constraint is defined only over one variable, e.g., equal(x,7),
x ∈VAR.

– Binary Constraints: the constraint is defined over two variables, e.g., lessEqual(x,y),
x,y ∈VAR.

– High-order Constraints: the constraint is defined over three or more variables, e.g., sum(x0, ...,

xi,res), x0, ...,xi,res ∈VAR, i≥ 2

• Constraints type: with respect to the allowed functionalities.

– Logical Constraints: the constraint contains only logical operators, e.g., ”∨ ”, ”∧ ”.

– Arithmetic Constraints: the constraint contains only arithmetic operators, e.g., ”+”, ”−”.

• CSP type: with respect to its satisfiability.

– Standard CSP: is about finding a solution that satisfies all constraints or prove that none
exists.

– Max-CSP: is about finding that instantiation of the variables which satisfies the maximum
number of constraints from the CSP. In this situation not all of the constraints have to be
satisfied.

– Weighted CSP: is about finding that instantiation of the variables that give the minimum
cost. In this situation each constraint has a certain ”weight” used in computing the solu-
tion. These type of CSPs are also known as optimization problems.

55

Chapter 3. Model Based Debugging: A constraint - based approach.

• Constraints representation: with respect to the constraint tuple-value representation.

– Table Constraints: Also called extensional constraints, they have the property that for
each constraint, Ci ∈ CO, the allowed tuples are extensionally specified in a table. In
this table the columns represent the constraint’s variables (there exists a column for each
variable) and the rows represent all the allowed combination of values, which satisfy the
given constraint. A database can be seen as nothing more than a table constraint.

– Propagated Constraints: There exists no explicit representation for the values allowed in
a constraint Ci ∈CO. The constraints are formed out of mathematical and logical relations
and the variables are defined over discrete or continues domains.

According to the above classification we state that, for the programs written in the language of L , the
CSP representation is:

1. A hard Dynamic CSP: No relaxation is possible, but changes to the CSP are possible, e.g.,
adding new constraints encoding new test cases or loop-invariants.

2. Constraints cardinality: Unary, binary and high-order constraints are possible.

3. Constraints type: both arithmetic and logical.

4. Representation: Propagated constraints.

We first introduce some useful formal notations which we need for the subsequent definition of the
debugging problem as a constraint representation:

Definition 13 (σ(S) - Mapping original program↔ SSA)
A program is a sequence of statements. Let Π be the original program in the sequential programming
language L, and let ΠSSA denote the program resulting from the loop-unrolling and SSA-conversion of
Π. Moreover, let ΠΦ

SSA ⊆ ΠSSA be the loop-free SSA form without those statements which contain Φ.
We define a (total) function σ which maps every statement S′ ∈ ΠΦ

SSA backwards to its corresponding
statement S ∈Π:

σ : Π
Φ
SSA 7→Π

More precisely, S′ has the general form v = Eexpr, and we distinguish two cases:

1. if Eexpr corresponds to the loop condition of a while-statement Sw ∈Π, then σ(S′) returns Sw.

2. otherwise: Eexpr corresponds to the right-hand expression of an assignment statement Sa ∈ Π,
and σ(S′) returns Sa.

56

3.3. Fault Localization based on a Constraint Representation

We also define a (total) function for the forward mapping:

σ : Π 7→ 2ΠΦ
SSA

which returns for every S ∈Π the set σ(S) def
= {S′ | σ(S′) = S}.

Example 1. Let us consider our running example program from Fig. 3.2 again. The program Π

comprises 13 statements, i.e., 〈S1, . . . ,S13〉 all of them relevant for debugging. The corresponding
ΠSSA, considering 2 iterations of the while-statement comprises 26 statements 〈S′1, . . . ,S′26〉 (see Fig.
3.6). We obtain the mapping:
σ(S′1) = S1, σ(S′12) = S4, σ(S′23) = φ,

σ(S′2) = S2, σ(S′13) = S5, σ(S′24) = φ,

σ(S′3) = S3, σ(S′14) = S6, σ(S′25) = φ,

σ(S′4) = S4, σ(S′15) = φ, σ(S′26) = φ.

σ(S′5) = S5, σ(S′16) = S8,

σ(S′6) = S6, σ(S′17) = S9,

σ(S′7) = φ, σ(S′18) = φ,

σ(S′8) = S8, σ(S′19) = S11,

σ(S′9) = S9, σ(S′20) = φ,

σ(S′10) = φ, σ(S′21) = φ,

σ(S′11) = S11, σ(S′22) = φ,

From this example two observations can be derived:

I. As it can be seen from the mapping rules, not all the SSA statements are mapped to a statement
in the original program. The SSA-statements corresponding to the φ functions are actually an
intermediate representation with no direct correspondent to the original program. Even though
they are integrated in the debugging reasoning process this type of statement cannot be part of
the conflict set.

II. The mapping of the conflict set corresponds to the original program Π and not to the unrolled
version ΠLF .

An important point is that the set ΠΦ
SSA comprises exactly those statements in the SSA form which

our approach may consider as faulty, whereas the Φ-statements cannot be faulty. As a statement in the
original program may correspond to several statements in the SSA form, a single fault in the original

57

Chapter 3. Model Based Debugging: A constraint - based approach.

program may lead to multiple faulty statements in the SSA form. Considering the original program,
our approach is able to deal (a) with faults in the boolean expressions of loop conditions and (b) with
faults in the expressions on the right hand side of assignment statements.

We now have the prerequisites needed for defining the constraint representation of a sequential
program.

Definition 14 (CONΠ - Constraint representation of Π) The constraint representation CONΠ of a
sequential program Π is a tuple (V,D, CO) with:

• V =VAR
(
ΠSSA

)
∪{ab(S) | S ∈Π} where

– VAR
(
ΠSSA

)
is the set of all variables in ΠSSA.

– ab(S) denotes a single boolean variable stating whether statement S of the original pro-
gram is abnormal (i.e., faulty).

• the domain D(v) of a variable v ∈ VAR
(
ΠSSA

)
is equivalent to the datatype of the variable in

the program, and D
(
ab(S)

)
= {true, f alse}.

• CO comprises exactly one constraint for every statement in the SSA form. CO is created as
follows:

– For every S′ ∈ΠSSA:

1. if S′ has the form v = Φ(. . .): add the relation

v = Φ(. . .)

to CO.

2. otherwise, S′ has the form v = Eexpr and Eexpr does not contain Φ: add the relation

ab(S)∨
(
v = Eexpr

)
to CO, with S = σ(S′).

To be useful for debugging, the mapping from SSA to constraints has to be correct. This is stated in
the following corollary.

58

3.3. Fault Localization based on a Constraint Representation

Corollary 3 Let ΠCSP be the constraint representation of the SSA program ΠSSA, and T = (I,O)

a test case for ΠSSA. Both representations, i.e., ΠCSP and ΠSSA, allow for computing the same
output given the same input with respect to corresponding variables. I.e.: ∀(y ν(y),vy) ∈ JΠKI :
y ν(y) = vy is in the solution of the CSP ΠCSP ∪ I when assuming all statements to be correct,.i.e.,
∀S ∈ ST MNT S(ΠSSA) : ab(S) = f alse, where ST MNT S is a function returning all statements of a
program.

The following constraint representation is extracted from the SSA form in Fig. 3.6:

• V = {min 0,max 0,result 0, . . . ,cond 0,cond 1max 7, . . . , i 4,result 1} ∪
{ab(S1), . . . ,ab(S12),ab(S8),ab(S9),ab(S11),ab(S13)}

• D(a) = Z, D(cond 0) = {true, f alse}, etc.

• constraints:

CO =



ab(S1)∨(inti 0 = 1), [S′1]
ab(S2)∨(min 1 = input 0[0]), [S′2]
ab(S3)∨(max 1 = input 0[0]), [S′3]
ab(S4)∨(cond 0 = i 0 < size 0), [S′4]
ab(S5)∨

(
cond 1 = cond 0)∧ input 0[i 0]< min 1

)
, [S′5]

ab(S6)∨(min 2 = input 0[i 0]), [S′6]
min 3 = Φ(min 1,min 2,cond 1), [S′7]
ab(S8)∨(cond 2 = cond 0∧ input 0[i 0]> max 1), [S′8]
ab(S9)∨(max2 = input0[i0]), [S′9]
max 3 = Φ(max 1,max 2,cond 2) [S′10]
ab(S11)∨(i 1 = i 0+1), [S′11]
ab(S4)∨(cond 3 = cond 0∧ i 1 < size 0), [S′12]
ab(S5)∨

(
cond 4 = cond 3∧ input 0[i 1]< min 3

)
, [S′13]

ab(S6)∨(min 4 = input 0[i 1]), [S′14]
min 5 = Φ(min 3,min 4,cond 4), [S′15]
ab(S8)∨(cond 5 = cond 3∧ input 0[i 1]> max 3), [S′16]
ab(S9)∨(max 4 = input 0[i 1]), [S′17]
max 5 = Φ(max 3,max 4,cond 5) [S′18]
ab(S11)∨(i 2 = i 1+1), [S′19]
min 6 = Φ(min 3,min 5,cond 3) [S′20]
max 6 = Φ(max 3,max 5,cond 3) [S′21]
i 3 = Φ(i 1, i 2,cond 3) [S′22]
min 7 = Φ(min 1,min 6,cond 0) [S′23]
max 7 = Φ(max 1,max 6,cond 0) [S′24]
i 4 = Φ(i 0, i 3,cond 0), [S′25]
ab(S13)∨(result 1 = min 7∗max 7), [S′26]



59

Chapter 3. Model Based Debugging: A constraint - based approach.

3.3.1. Using the constraint model for debugging

From Corollaries 1 to 3 we are able to conclude that the whole conversion process is correct with
respect to its input output behavior and the given restrictions. Therefore, the following theorem must
be true.

Theorem 1 (Conversion) The conversion of a program Π into its constraint representation does not
change the computed output values for the given input values.

Theorem 1is similar to the input-output conformance relation from testing [110].

The proof is actually straight forward: The model for the transformation process is, with respect
to program’s input and output, correct, i.e., the SSA form delivers for the given set of test cases the
same outputs as the original debugged program Π. The statement to statement exit values are, with
respect to the σ function, identical for both the program Π and its SSA representation. Hence, given
a limited input-output environment, we can safely state that the SSA form is a correct representation
of the program. The CSP is a one to one constraint statement encoding of the SSA representation.
Again, for the same set of inputs the exist values of the CSP’s variables are equal to the ones in the
SSA form, thus the CSP representation is equivalent to the original program Π and a given test case
T .

Theorem 1 is important for ensuring the correct computation of fault locations. What is missing for
debugging is the connection between the test suite and the constraint representation of a program. In
the following we show how test cases are represented as constraints, and, afterwards, define a solution
to the debugging problem formally.

Definition 15 (Constraint representation of test cases) Given a program Π and a test case T =

(I,O). The constraint representation of the test case is given as follows: TCSP = {x 0 = vx|(x,vx) ∈
I}∪{y ν(y) = vy|(y,vy) ∈ O}, where v 0 ∈ VAR

(
ΠSSA

)
) and v ν(y) ∈ VAR

(
ΠSSA

)
). The function ν

assigns the maximum index used in the SSA form of Π to each variable. Basically, a test case T is a set
of constraints which assign values to those variables in the SSA form which correspond to input and
output variables in the original program (i.e, variables which represent values passed to and values
returned from the program, respectively).

From the previous discussion we know that we are interested in assignments to the ab variables
introduced for each statement. The purpose of these variables is to state correctness (in case the

60

3.3. Fault Localization based on a Constraint Representation

variable is false) or incorrectness of a statement. In the following, we want to use a constraint solver
to compute such assignments ensuring that the system behaves consistent with respect to the given
test case. Therefore, we introduce now a correctness assumption Γ(∆) as follows.

Definition 16 (Γ(∆)) Let ∆ ⊆ ST MNT S(Π) be a set of statements from the original program. Then
Γ(∆) denotes the following set of constraints:

Γ(∆) = {ab(S) = true | S ∈ ∆}∪{ab(S) = f alse | S ∈ ST MNT S(Π)\∆}

Using the notation Γ(∆) we are now able to formally define a solution to the debugging problem.
This definition is similar to Reiter’s definition of model-based diagnosis [92], but tailored to the con-
text of program debugging:

Definition 17 (Diagnosis - constraint encoding) Given a debugging problem (Π,T S) where Π ∈ L
is a program, T S a test suite. Let T ∈ T S be a failing test case. A set ∆⊆ ST MNT S(Π) is a solution
to the model-based debugging problem (ΠCSP,TCSP), i.e., a diagnosis, if and only if the constraint
problem ΠCSP ∪TCSP ∪Γ(∆) is satisfiable. Given a sequential program Π with CONΠ = (V,D,CO),
a test case T , and the set of statements ∆ ⊆ Π, then ∆ is a diagnosis wrt (Π,T) iff the constraint
satisfaction problem DIAG CSP(Π,T,∆) is satisfiable, where

DIAG CSP(Π,T,∆) def
= (V,D,CO′)

and

CO′ def
=CO∪T ∪Γ(∆)

A diagnosis ∆ is (subset-)minimal iff no proper subset is a diagnosis. Moreover, a diagnosis ∆ has
a minimal cardinality iff there is no diagnosis ∆′ with |∆′|< |∆|. In most cases, someone is interested
in minimal cardinality diagnoses or even single bugs only.

We observe that, analogous to Reiter’s definition of diagnosis, every superset of a diagnosis is also
a diagnosis.

Moreover, note that there is always a diagnosis, given that the test case T does not contradict itself.
If there is no contradiction within T , then CO∪T is satisfiable, hence ∆ = Π is a diagnosis.

The definition of diagnosis can be immediately applied to create a simple algorithm which computes
all single diagnoses for a program Π and a test case T : for every S ∈ Π, the algorithm generates

61

Chapter 3. Model Based Debugging: A constraint - based approach.

DIAG CSP(Π,T,{S}) and employs a constraint solver which checks whether or not this CSP has a
solution. If yes, then ∆ = {S} is a single diagnosis, otherwise ∆ is not a diagnosis.

In the definition of diagnosis, the debugging problem is stated as a CSP and diagnoses are the
solutions of the CSP. Because of the conversion, the diagnosis results are correct and make use of the
syntax and semantics of a program for computing candidates. The level of diagnosis is the statement
level. Hence, only statements can be responsible for misbehavior. Because of the used model, it is not
always guaranteed to find the correct solution. The following example discusses such a situation.

Example 2. In almost all situations our approach is able to identify the faulty statements. There
exists, however, situations where our algorithm cannot identify the faulty statement. If the error is
induced by a missing statement we cannot isolate the root cause. We can perform diagnosis only
on a ”what you see is what you get” principle, i.e., the error must be represented in the model by a
statement.

Sometimes, when the error is found at the left side of an assignment statement and the test case is
too week, it is also possible to ”omit” the error from the conflict set. For example let us again consider
our running example program (Fig. 3.2). Assume furthermore that Line 13 is correct, i.e. , result =

min + max;, but Line 6 is not (see Fig. 3.7). Instead of min = input[i] this line comprises max =

input[i];.

An error revealing test case is input = [1,0,1] with the expected output result = 1, i.e., T =

{(I,O)|I = {input = [1,0,1]},O = {result = 1}}. It can be seen that the faulty version of the program
returns result = 2, which makes T(input = [1,0,1]; result = 1) an error revealing test case. However,
our approach, for this test case, cannot designate statement 6 as faulty.

The reason for this behavior is the following: The only situation in which statement 6 can be a
single fault explanation is when the expressions corresponding to statements 4 and 5 evaluate to true.
For our test case, this happens only when input[1] is evaluated, i.e., (i < length)⇔ (1 < 3) (T) and
(input[i]<min)⇔ (0< 1) (T). In this situation statement 6 sets the value of max to 1. If we designate
this statement, i.e., 6, as abnormal, the constraint solver tries to find a value for max 6= 1, that could
lead to result = min+max = 1. After statement 2, in the faulty version of the program, min is always
1, i.e., the only natural value which max could take such that result = 1, is max = 0. If we set max to 0
or less at statement 6, then at the second iteration the value of statement 8, i.e., i f (input[i]> max), for
input[2] = 1, will evaluate to true, i.e., 1 > 0⇒ true, and max will be set again to 1, which will, again,
contradict the expected value for variable result. Obviously, setting max at statement 6 to something

62

3.3. Fault Localization based on a Constraint Representation

1. i = 1;

2. min = input[0];

3. max = input[0];

4. while (i < length) {

5. if (input[i] < min) {

6. max = input[i]; // New bug, should be: min = input[i];

7. }

8. if (input[i] > max) {

9. max = input[i];

10. }

11. i = i + 1;

12. }

13. result = min + max;

Figure 3.7.: A program fragment computing the minimum, maximum, and sum of both for an array
of integers

greater than 1 will always contradict the expected output value result = 1. Therefore, statement 6, for
test case T(input = [1,0,1]; result = 1), cannot be designated as single fault candidate. However the
same error is successfully identified if we use a different test case, e.g., T ′(input = [1,2,0],result = 2).

The above example shows that there are cases where the real bug cannot be correctly identified.
Moreover, it also indicates that the right test case again is able to solve the problem. Hence, a close
integration of test case generation into the debugging process and the handling of multiple test cases
are recommended. However, even through exhaustive testing, in the case of missing statements, there
exists no possibility for our algorithm to identify the error. This remains a serious limitation also for
the other approaches. The only mechanism through which this type of bug can be overcome is by
mutation [112], i.e., by randomly inserting statements that cause the program to no longer fail on the
test suite.

63

Chapter 3. Model Based Debugging: A constraint - based approach.

Figure 3.8.: The CSP Debugging Framework

3.4. Implementation

The semantic of L implies a relative simple programming language but strong enough for allowing ev-
ery non OO-program to be expressed and modeled into it. In our experiments we tested our approach
against a set of Java programs, which complied these language specifications. We implemented our
tool both as an Eclipse [36] plug-in as well as a stand-alone unit, which we use in most of our exper-
iments. We avoid going into details about the implementation but explain only the framework of our
application and the ”‘know-how”’ of the interaction system.

In Figure 3.8 we depict the framework of the Eclipse plug-in. The process starts with the devel-
opment of the program and of a test suite, i.e., phase (I). The working environment is assured by the
Eclipse-Workbench. For the Java program we use the normal Eclipse Java environment, whereas for
the development of the test cases the Eclipse JUnit environment can be used. Phase (II), comprises
the method call elimination from the original Java program. This step assures the transformation of
the Java program into the L language specifications. The resulted L-specific program is ran against
the available JUnit test suite. If a failing test case is identified, the process stops and the failed test
case triggers phase (III). In phase (III) the failing test case together with the L program is inputted to
the CSP based debugger for computing the fault-explanation. Based on the computed explanations,

64

3.4. Implementation

the user can now compute a repair suggestion. Phase (III) ends with the integration of the repair sug-
gestion in the original program. The whole process is repeated until no other failing test case exists.
Only then, can we say that the program is consistent with the given test suite. Again, passing the test
suite does not assure that the program is bug-free but only that the program is conform to the provided
test suite.

Remark: Every time we repeat the process, it is possible to extend the test suite at the begging
of phase (I). The quality-stop condition remains always the same: the program must pass all the test
cases.

The CSP-Debugger module is actually a system composed out of three components:

• SSA Converter. Uses the Abstract Syntax Tree associated to the analyzed program to build the
SSA form. As input it receives the method-call free program and the number of iterations.

• CSP Converter. Converts the SSA - Program (also written in the syntax of L) into a MINION
[40] specific constraint system.

• CSP solver. The MINION constraint system is inputted to the MINION solver which computes
the diagnosis and outputs it to the user for repair.

As it can be seen from the description of the debugger module, we use the MINION constraint
programing language to express the CSP of the debugging problem. In what follows we briefly explain
some of the key features of the MINION constraint solver. We also depict, later on, the MINION
constraint representation of the debugging problem associated to the program from Fig. 3.2.

3.4.1. MINION representation

In this section we show how to apply a state-of-the-art constraint solver in program debugging. For
this purpose we chose the MINION solver ([40]). We show how to model our constraint representation
in MINION, and how to compute the diagnoses. MINION is an open-source constraint solver, which
exhibited a superior performance on a number of large problem instances (see [40]), compared with
modern constraint toolkits like ILOG or GeCode.

Although it has an expressive input language, its design goal is simplicity: it provides few options
and it is free from syntactic sugar. This assures high gains with respect to performances, but an
increased difficulty when expressing complex constraints.

65

Chapter 3. Model Based Debugging: A constraint - based approach.

One particularity of MINION is that it does not perform an in-between transformation of the input
constraint system; i.e., the constraint solving algorithms operate directly on the input, whereas many
other constraint toolkits transform the input to an internal representation. This property of MINION
aims at increasing the performance, but it also imposes some limitations on the way constraints are
modeled. E.g., nested quantifications, multiple operators are not supported. In order to express such
constraints we need to subdivide it into two or more simple constraints. This type of representation
implies the usage of small data structures for representing the information. This increases the effi-
ciency of memory usage especially for the new computer architectures. Most of the constraint solver
toolkits do not require such a formatting of the constraints but perform an hidden transformation of
the constraint such that it can be brought to the same simplicity as the MINION constraints.

Example 3. Having the following arithmetic constraint:
result = a+b− c in a normal constraint programming language.
Internally this constraint is represented as follows:
temp1 = a+b
temp2 = temp1− c
result = temp2

Example 3 shows that in most constraint-solver toolkits the user has no influence on how constraints
are represented. By implying the MINION representation we are free from this hidden intermediate-
representation and we can optimize our CSP depending on the model specific requirements, hence
speed-ups are possible.

The MINION solver offers four types of variables over which constraints can be defined:

• BOOL which are actually variables defined over {0,1} domain

• BOUND where only the begin and end of the domain are maintained.

• SPARSEBOUND variables where the domain is composed out of ordered discrete variables,
e.g., {2, 5, 68, 90}, again the maintenance can be done only at the domain borders

• DISCRETE where the maintenance is done everywhere in the domain. By domain maintenance
we understand elimination of those values which are not consistent with the CO set.

The MINION syntax assures a simple but powerful language that among others offers support for
arithmetic, logical or even extensional constraints. Additionally, different variables ordering can be
imposed to speed up the search-process.

66

3.4. Implementation

The MINION file structure is dived as follows:

• **VARIABLE**: this section describes the variables of the constraint system.

• **TUPLELIST**: this optional section is used for describing extensional constraints.

• **SEARCH**: describes the search optimization criteria of the CSP, e.g., variable ordering.

• **CONSTRAINTS**: the actual constraint system.

• **EOF**: the end of the actual constraint system, everything after this token is ignored by the
solver.

The SSA form of a program to be debugged comprises assignments, conditional statements, arith-
metic and boolean expressions. Hence, in order to convert these programs into CSPs, we need arith-
metic constraints, conditional constraints and logical constraints. The MINION constraints library
provides an implementation of all arithmetic and logical operators, which are needed for our pur-
poses. In addition, the MINION library contains a constraint of the form:

reify(Condexpr,Condvar)

where the boolean variable Condvar is true if and only if the condition Condexpr is satisfied. We
need this constraint for converting conditional statements.

In Sec. 3.3 we introduced a boolean variable ab(S) for every statement of the original program Π.
In MINION we use an array AB[..] containing boolean values which state the abnormality of the
corresponding statement. The size of this array is equal to the number of statements involved in the
diagnosis process. For example, the MINION syntax corresponding to statement S′4 of the program
given in Fig. 3.6 is:

BOOL cond 0

BOOL AB[1]

DISCRETE i 0 {0..250}
DISCRETE size11 0 {0..250}
...

watched-or({element(AB,4,1),
reify(ineq(i 0,size11 0,-1),cond 0)})

67

Chapter 3. Model Based Debugging: A constraint - based approach.

The above constraint is satisfied if in the array AB the element found at the index 4 is 1 (true) or if
cond 0↔ (i 0 < size 0).

The size of the domain depends on the analyzed program, e.g., in our case {0..250} is sufficient for
performing debugging.

Another challenge in the MINION conversion process is the conversion of the Φ-function. In
MINION two constraints are necessary to express this function. One is of the type cond↔ out putcond

and the other one is of the type ¬cond↔ out putbe f ore. out putcond represents the exit value of variable
out put if the condition has been executed, and out putbe f ore represents the value of the variable out put
if the condition cond was evaluated to false. For example, in MINION, statement S′7 from Fig. 3.6
becomes:

watched-or({eq(cond 1,0), eq(min 3,min 2)})
watched-or({eq(cond 1,1), eq(min 3,min 1)})

The first constraint holds either if cond 1 is 0 (f alse) or if the condition-exit-value of variable min,
min 3 is equal to the last assignment to the variable min within the condition body, min 2. The second
constraint holds when either cond 1 is 1(true) or when the condition-exit-value of variable min, min 3
is equal to the last assignment to the variable min before the condition body, min 1

Minion does not support nested quantifications or assignments with different arithmetic or boolean
operands; hence we have to subdivide such a constraint into two or more simpler constraints. For
example, for modeling statement S′8 in Fig. 3.6 in MINION we need to introduce an extra auxiliary
boolean variable, condAux which first evaluates input 0[i 0] > max 1, and only after we assign to
cond 2 the logic-and product between condAux and cond 0. That is, in MINION we have:

watched-or({element(AB,8,1),
reify(ineq(max 1,input 0[i 0],-1),condAux)})

watched-or({element(AB,8,1),
reify(watchsumgeq([cond 0,condAux], 2),cond 2)})

In our approach, the elements equal to 1 of the abnormal array AB[..], designate the possible faulty
components. The number of elements designates the cardinality of our diagnosis, i.e., single fault -

68

3.4. Implementation

per CSP solution, only one component from the array is equal to one, double fault - per CSP solution
two components of the array are equal to one, etc. As we want to identify all diagnosis of a certain
cardinality, we are interested in all the combinations of the boolean values in the AB[..] array.

Every solution to a CSP is a valid instantiation of all variables such that no constraint from |CO|
is violated. A CSP with a great number of variables can have hundreds or thousand of solutions,
e.g., CSP = {VAR = (a, b), D =((Da:[0...10],Db:[0...10]), Da,Db ∈ N),|CO| = (a < b) } has as valid
solutions: (a = 0, b = 1), (a = 0, b = 2), ... ,(a = 9, b = 10), which sums to C11

2 = 55 possible solutions.
In debugging we are, of course, not interested in all the solutions that satisfy |CO|. Our main focus is
identifying those states that could indicate the possible explanations for the program’s failure. Hence
we have to focus on the abnormal array AB and only on those solutions that differ through the values
of the AB array. For this purpose we use in MINION a solution search ordering based on AB, i.e.,
VARORDER[AB[]] forces the solver to compute all possible solutions of the CSP with the restriction
that no two solutions have the same value assignments to the AB[..] array; i.e., for two solutions at
least one element in this array must have a different value.

Moreover, in practice it is neither possible nor desired to generate all possible diagnoses. A com-
mon approach in model-based diagnosis is to compute all (subset-)minimal diagnoses or all minimal-
cardinality diagnoses. Although a single call to the MINION solver is not able to deliver all subset-
minimal diagnoses, we can achieve that MINION computes all diagnoses ∆ with a certain cardinality
|∆|= n in a single call. For this purpose, we introduce an auxiliary variable sum which is equal to the
sum of the elements in the AB[..] array (each boolean variable has the value 0 or 1). Then we can
achieve our goal by adding a constraint which specifies that sum must be equal to n. The following
MINION code leads to the computation of all single-fault diagnoses:

sumleq(AB, sum)

sumgeq(AB, sum)

eq(sum, 1)

Because of the syntactical limitations of MINON we have to convert an assignment statement with
an expression Eexpr on the right-hand side comprising more than one operator into a sequence of
MINON statements. The idea behind the conversion is simple. A constant or variable is represented
by itself. For an expression of the form E1expr op E2expr we convert E1expr and E2expr separately, and
assign a new intermediate variable for each converted sub-expression. The ComputeExpression
algorithm (Algorithm 3)implements this conversion.

69

Chapter 3. Model Based Debugging: A constraint - based approach.

Algorithm 3 ComputeExpression (Eexpr)

Require: An expression Eexpr and an empty set M for storing the MINION constraints..
Ensure: A set of MINION constraints representing the expression stored in M, and a variable or

constant where the result of the conversion is finally stored.
1: if Eexpr is a variable or constant then
2: return Eexpr.
3: else
4: Eexpr is of the form E1expr op E2expr

5: end if
6: Let aux1 = ComputeExpression (E1expr)
7: Let aux2 = ComputeExpression (E2expr)
8: Generate a new MINON variable result and create MINON constraints accordingly to the given

operator op, which defines the relationship between aux1, aux2, and result, and add them to M.
9: return result

Example 4. The expression a 0 + b 0 - c 0 is converted to the following MINION constraints
using ComputeExpression where aux1 and aux2 represent new variables introduced during conver-
sion.

sumleq([a_0,b_0],aux1)

sumgeq([a_0,b_0],aux1)

weightedsumleq([1,-1],[aux1,c_0], aux2)

weightedsumgeq([1,-1],[aux1,c_0], aux2)

In this example the MINION constraints sumleq and sumgeq are used to represent the plus oper-
ator, and weightedsumleq and weightedsumgeq together with the given list of signs are used for
representing the minus operator.

For convenience we assume a function convert that implements the conversion of programs into
MINION constraints as discussed in this section. Hence, convert takes the number of necessary
iterations for each while-statement and the program as input and returns a set of MINION constraints
as output. We use this function in the next chapter, where we discuss an algorithm for computing
distinguishing test cases.

The complete MINION representation of the program from Fig. 3.6 is given in Fig. 3.9

70

3.4. Implementation

........................

watched-or({element(ab,4,1), reify(ineq(i_0,size_0,-1),cond_0)})

element(input5_0, i_0,auxARRAY1)

watched-or({element(ab,5,1), reify(ineq(auxARRAY1,min_1,-1),cond_aux1)})

watched-or({element(ab,5,1), reify(watchsumgeq([cond_0,cond_aux1], 2),cond_1)})

watched-or({element(ab,6,1), element(input5_0,i_0,aux2)})

watched-or({element(ab,6,1), eq(min_2,aux2)})

watched-or({eq(cond_1,0), eq(min_3,min_2)})

watched-or({eq(cond_1,1), eq(min_3,min_1)})

element(input5_0, i_0,auxARRAY3)

watched-or({element(ab,7,1), reify(ineq(max_1,auxARRAY3,-1),cond_aux2)})

watched-or({element(ab,7,1), reify(watchsumgeq([cond_0,cond_aux2], 2),cond_2)})

watched-or({element(ab,8,1), element(input5_0,i_0,aux4)})

watched-or({element(ab,8,1), eq(max_2,aux4)})

watched-or({eq(cond_2,0), eq(max_3,max_2)})

watched-or({eq(cond_2,1), eq(max_3,max_1)})

watched-or({element(ab,9,1), sumleq([i_0,1],i_1)})

watched-or({element(ab,9,1), sumgeq([i_0,1],i_1)})

watched-or({element(ab,10,1), reify(ineq(i_1,size_0,-1),cond_aux3)})

watched-or({element(ab,10,1), reify(watchsumgeq([cond_0,cond_aux3], 2),cond_3)})

element(input5_0, i_1,auxARRAY5)

watched-or({element(ab,11,1), reify(ineq(auxARRAY5,min_3,-1),cond_aux4)})

watched-or({element(ab,11,1), reify(watchsumgeq([cond_3,cond_aux4], 2),cond_4)})

watched-or({element(ab,12,1), element(input5_0,i_1,aux6)})

watched-or({element(ab,12,1), eq(min_4,aux6)})

watched-or({eq(cond_4,0), eq(min_5,min_4)})

watched-or({eq(cond_4,1), eq(min_5,min_3)})

element(input5_0, i_1,auxARRAY7)

watched-or({element(ab,13,1), reify(ineq(max_3,auxARRAY7,-1),cond_aux5)})

watched-or({element(ab,13,1), reify(watchsumgeq([cond_3,cond_aux5], 2),cond_5)})

watched-or({element(ab,14,1), element(input5_0,i_1,aux8)})

Figure 3.9.

71

Chapter 3. Model Based Debugging: A constraint - based approach.

watched-or({element(ab,14,1), eq(max_4,aux8)})

watched-or({eq(cond_5,0), eq(max_5,max_4)})

watched-or({eq(cond_5,1), eq(max_5,max_3)})

watched-or({element(ab,15,1), sumleq([i_1,1],i_2)})

watched-or({element(ab,15,1), sumgeq([i_1,1],i_2)})

watched-or({eq(cond_3,0), eq(min_6,min_5)})

watched-or({eq(cond_3,1), eq(min_6,min_3)})

watched-or({eq(cond_3,0), eq(max_6,max_5)})

watched-or({eq(cond_3,1), eq(max_6,max_3)})

watched-or({eq(cond_3,0), eq(i_3,i_2)})

watched-or({eq(cond_3,1), eq(i_3,i_1)})

watched-or({eq(cond_0,0), eq(min_7,min_6)})

watched-or({eq(cond_0,1), eq(min_7,min_1)})

watched-or({eq(cond_0,0), eq(max_7,max_6)})

watched-or({eq(cond_0,1), eq(max_7,max_1)})

watched-or({eq(cond_0,0), eq(i_4,i_3)})

watched-or({eq(cond_0,1), eq(i_4,i_0)})

watched-or({element(ab,16,1), product(min_7,max_7, result_1)})

Figure 3.9.: The MINION representation for the program from Fig. 3.6

72

3.5. Analysis

3.5. Analysis

The conversion process must be able to correctly map the information in both directions. From the
program and test case to the CSP model, and backwards from the fault candidates set to the original
program statements. This assures that the correspondence between the possible faults and the original
debugging problem is valid. Also it worths nothing to the user if the debugger returns the diagnosis
mapped on the SSA form of the program. Hence we update the conversion process as follows:

Π
LR−−−−→ ΠLF

SSA−−−−→ ΠSSA
CC−−−→ CONΠ

l l l l

ST MNT S
µLR−−−−→ ST MNT SLF

µSSA−−−−→ ST MNT SSSA
µCC−−−−→ CONST RΠ

Whereas functions ST MNT S, ST MNT SLF , ST MNT SSSA respectively CONST RΠ return the num-
ber of statements in Π, ΠLF , ΠSSA respectively the number of constraints in CONΠ.

Before analyzing the complexity of our approach, let’s summarize the steps needed for com-
puting the fault candidates associated to a debugging problem. These steps are depicted by the
CSP Conversion& Debugging algorithm (Algorithm 4). Hence, the complexity associated to the
algorithm is the complexity of the approach.

Estimating the complexity of the CSP Conversion&Debugging algorithm can be a little tricky. Its
complexity is given by summing up over the complexities of steps 2 to 8, with Step 8 being the most
important in deciding the complexity of the algorithm. Hence, let’s start with the analysis of steps 2
to 5.

• Let N denote the size of the input (lines of code), let #Loop denote the number of loops from the
program and let #Meth denote the number of methods. Each program Π has the property that
its control flow graph is connected, and, with the exception of loops, is free from recursions,
i.e., no recursive method calls.

• The complexity of the CSP Conversion&Debugging algorithm is stepwise given by:

1. The algorithm behind Step 2 if summarized in Algorithm 5.

73

Chapter 3. Model Based Debugging: A constraint - based approach.

Algorithm 4 CSP Conversion&Debugging (Π,T)

Require: A program Π and a failing test case T .
Ensure: A set of MINION constraints representing the expression stored in M, and a variable or

constant where the result of the conversion is finally stored.
1: Let it be the number of loop iterations extracted from T .
2: Replace method calls from Π⇒ Π ∈ L .
3: Loop elimination: each loop is unrolled it times in Π resulting ΠLF ∈ L .
4: SSA conversion, SSA(ΠLF) = ΠSSA

5: Convert ΠSSA and T to their MINION CSP representations M = {CONΠ∪CONT}
6: Let i be 1.
7: while i ≤ number of statements in Π do
8: Call the constraint solver over M to search for solutions regarding the AB variables, where

only i statements are allowed simultaneously to be incorrect.
9: if constraint solver returns a non-empty set of solutions then

10: return M and the set of solutions as result.
11: else
12: let i be i+1.
13: end if
14: end while
15: return M and the empty set as result.

74

3.5. Analysis

Algorithm 5 Remove MethodCalls (Π)

Require: A program Π with a cycle-free control flow graph.
Ensure: A program Π ∈ L free from method calls.

1: Iterate through Π and save the leaf methods, i.e., free from calls to other methods, into array
Lea fMeth.

2: for i = 0...|Lea fMeth| do
3: replace every call to Methi, Methi ∈ Lea fMeth, in program Π with body of Methi.
4: delete Methi from Π.
5: end for
6: Empty Lea fMeth.
7: Iterate through Π and if there ∃ method calls go back to Step 1.
8: return Π

The class of analyzed programs has a recursions-free CFG wtr. to method calls. Hence
for a finite input, the Remove MethodCalls algorithm always terminates. The complexity
of the Remove MethodCalls algorithm is O(N2), whereas N is the input size of program
Π.

2. The algorithm behind Step 3 of the CSP Conversion&Debugging algorithm is summarized
by Algorithm 6 (is somehow similar to the algorithm from Step 1).

Algorithm 6 Remove Loops (Π, it)

Require: The program Π resulted after applying the Remove MethodCall algorithm, and a number
of iteration it.

Ensure: A loop free program ΠLF ∈ L .
1: Iterate through Π and save the leaf loops, i.e., free from loops in body, into array Lea floops.
2: for i = 0...|Lea floops| do
3: Replace loop Loopi, Loopi ∈ Lea floops, in program Π, with it nested if Loopi - blocks.
4: end for
5: Empty Lea floop.
6: Iterate through Π and if there ∃ loops go back to Step 1.
7: return Π

It can be easily seen that the Remove Loops algorithm, for a finite it and for a finite

75

Chapter 3. Model Based Debugging: A constraint - based approach.

program written in L , always terminates. Its complexity is again O(N2), whereas N is the
input size of program Π.

3. The conversion processes behind Steps 4 and 5 of the CSP Conversion&Debugging algo-
rithm makes use of the rules defined in Sections 3.2.2 and 3.3. As the input of both steps is
finite, their corresponding conversion algorithms always terminate. For both algorithms,
the complexity is O(N) (a almost one to one statement conversion from ΠLF →ΠSSA and
from ΠSSA→CON(Π,T))

• The complexity of steps 2, 3, 4 and 5 is given by their associated conversion algorithms and is
in all cases polynomial. The question that arises now is: are we able to state the same thing
about step 8?

Step 8 of the algorithm deals with the actual solving of the debugging problem, encoded as a
constraint satisfaction problem. It is a commonly known fact that a CSP can be either NP complete
or PT IME [31]. Deciding if a CSP is solvable in polynomial time can be done by analyzing the
structural properties of the CSP graph, i.e.,by hypergraph. More about CSP hypergraphs and structural
properties of hyper graphs can be found in Chapter 5. In this Chapter we show that in our case we
work only on the class of constraint systems where the CSP can be solved in polynomial time.

Solving the CSP is the most time consuming step of the algorithm. If the difficulty of debugging is
given by the difficulty of solving the associated CSP, can we make any prediction over the debugging
difficulty by analyzing different structural properties of the analyzed CSP? We try to answer this
question in Chapter 5 and to analyze if this actually can correlate to an indicator for measuring the
debugging complexity.

3.6. Results and conclusions

3.6.1. Experimental results

We implemented the described approach using MINION and compare it with the abstract interpretation-
based model (AIM) approach, proposed by Mayer and colleagues [73]. For this purpose, we used a
variation of the well-known Traffic Alert and Collision Avoidance System (TCAS) benchmark, taken
from [94]. The TCAS benchmark comprises a set of 41 faulty versions of a correct loop-free program.
The obtained results can be found in Table 3.1. The results corresponding to the AIM approach were

76

3.6. Results and conclusions

taken from [71]. All the experiments were carried out using an Intel Pentium Dual Core 2 GHz with
4 GB of RAM. In our experiments no out-of memory error was encountered.

It can be seen from Table 3.1, that the number of single-fault candidates computed with the MBM
approach is sometimes slightly higher than the one computed using the AIM approach. However,
these differences can be neglected. From the running time point of view, the MINION approach
exhibits superior performances over the AIM approach although a direct comparison is somehow
unfair because of different computing equipment used. In all tests the time required by MINION to
compute the single-fault candidates was less than half of a second, whereas the best time needed for
the AIM approach was 5 seconds and the worst one was 83 seconds, with an average of 16 seconds.

Furthermore we tested our approach on a set of small programs including the one used as running
example through this chapter. The programs implement basic arithmetic functions, like division,
multiplication, greatest common divisor, power, and others. The diagnosis time was always less than
1/10 seconds. The approach allowed for reducing the number of statements to be considered during
debugging. It is worth noting that in almost all cases a slicing-based approach would not allow to
reduce the statements to be considered even by one.

3.6.2. Conclusions

This chapter presented a detailed overview of the insides of our constraints model based approach.
For the purpose of explaining model-based debugging, we introduced the syntax and semantics of a
small, but Turing-complete sequential and imperative language. The language together with a test
suite, which comprises test cases stating inputs and expected outputs, forms a debugging problem.
We provided the background model used in model-based debugging to compute a solution to a given
debugging problem. We showed that the background model can be automatically obtained from the
source code. Furthermore, we proved the correctness of this conversion process. The model itself is
represented as a set of constraints. When using this model together with the constraint representation
of a test case, we formulate the debugging problem as a constraint satisfaction problem. Solutions
to the constraint satisfaction problem can be easily obtained using a modern constraint solver. Our
empirical results indicate that the approach is feasible for smaller programs up to several 1000 lines
of code, from which follows that an application for automated debugging methods or functions is in
reach. More results for our approach can be found in Chapters 4 and 5.

77

Chapter 3. Model Based Debugging: A constraint - based approach.

MINION AIM
Variant #LOCΠ #D Time(s) #DAIM Time(s)AIM

min max worst best
tcas v01 78 28 0,28 21 23 16 83
tcas v02 78 26 0,28 12 22 11 33
tcas v03 78 29 0,32 2 23 15 18
tcas v04 78 25 0,26 20 23 13 16
tcas v05 78 25 0,33 18 21 12 25
tcas v06 78 25 0,28 19 22 15 18
tcas v07 78 9 0,26 10 22 12 19
tcas v08 78 27 0,36 22 22 26 26
tcas v09 78 11 0,26 11 12 11 22
tcas v10 78 29 0,23 21 26 16 31
tcas v11 78 23 0,31 17 24 12 29
tcas v12 78 23 0,21 17 23 12 37
tcas v13 78 27 0,26 21 22 24 28
tcas v14 78 6 0,15 6 6 5 35
tcas v15 78 24 0,25 18 21 13 19
tcas v16 78 26 0,29 20 22 17 47
tcas v17 78 9 0,21 10 22 16 44
tcas v18 78 9 0,24 10 22 13 51
tcas v19 78 9 0,26 10 22 14 24
tcas v20 78 27 0,28 22 23 15 29
tcas v21 78 27 0,24 22 22 15 29
tcas v22 78 8 0,28 9 9 10 13
tcas v23 78 9 0,29 11 11 11 15
tcas v24 78 24 0,24 19 21 14 18
tcas v25 78 9 0,26 10 10 14 16
tcas v26 78 25 0,24 18 21 16 22
tcas v27 78 25 0,23 18 21 14 21
tcas v28 78 14 0,23 10 22 10 65
tcas v29 78 10 0,23 10 22 9 37
tcas v30 78 13 0,28 12 22 11 33
tcas v31 78 24 0,21 18 21 12 14
tcas v32 78 23 0,28 16 19 13 18
tcas v33 78 9 0,26 10 23 14 30
tcas v34 78 22 0,28 18 20 13 26
tcas v35 78 14 0,26 10 22 9 68
tcas v36 78 2 0,24 3 3 10 13
tcas v37 78 9 0,26 10 23 13 17
tcas v38 78 1 0,001 3 11 13 30
tcas v39 78 9 0,26 10 10 12 12
tcas v40 78 8 0,23 12 12 14 16
tcas v41 78 27 0,21 21 24 13 15

Table 3.1: Each program Variant is char-
acterized by the number of
statements #LOCΠ,the number
of single fault candidates com-
puted with the MINION ap-
proach #D, the time needed to
compute the single fault can-
didate with the MINION ap-
proach Time(s), the minimal
and maximal number of single
fault candidates obtained using
the AIM approach #DAIM, and
the time needed for AIM ap-
proach to compute the worst /
best diagnosis Time(s)AIM.

78

3.6. Results and conclusions

Name LOCΠ #It LOCssa #D Ts |CO| #VarCO

Division V0 21 1 26 4 0,01 24 22
Division V1 21 1 26 3 0,01 24 22
Division V2 21 1 26 2 0,01 24 22
Division V3 21 2 32 5 0,01 33 28
Division V4 21 2 32 5 0,01 33 28
Division V5 21 2 32 2 0,01 33 28

Mult V0 12 1 20 4 0,01 13 12
Mult V1 12 1 20 4 0,01 13 12
Mult V2 12 1 20 2 0,01 13 12
Mult V3 12 2 25 5 0,01 21 17
Mult V4 12 2 25 5 0,01 21 17
Mult V5 12 2 25 2 0,01 21 17

MultV2 V0 18 1 27 6 0,01 24 20
MultV2 V1 18 1 27 6 0,01 24 20
MultV2 V2 18 1 27 6 0,01 24 20
MultV2 V3 18 2 48 6 0,01 65 49
MultV2 V4 18 2 48 5 0,01 65 49
MultV2 V5 18 2 48 8 0,01 65 49

Sum V0 13 1 21 4 0,01 13 10
Sum V1 13 1 21 2 0,01 13 10
Sum V2 13 1 21 2 0,01 13 10
Sum V3 13 2 26 5 0,01 22 16
Sum V4 13 2 26 2 0,01 22 16
Sum V5 13 2 26 5 0,01 22 16
gCD V0 24 2 37 3 0,01 31 34
gCD V1 24 2 37 4 0,01 31 34
gCD V2 24 2 37 5 0,01 31 34

Power V0 5 1 6 2 0,01 12 14
Power V1 5 1 6 3 0,01 12 14
Power V2 5 1 6 2 0,01 12 14
Power V3 5 2 11 2 0,01 21 24
Power V4 5 2 11 5 0,01 21 24
Power V5 5 2 11 2 0,01 21 24

sumPower V0 10 1 13 3 0,01 23 22
sumPower V1 10 1 13 3 0,01 23 22
sumPower V2 10 1 13 2 0,01 23 22
sumPower V3 10 2 21 3 0,01 34 43
sumPower V4 10 2 21 5 0,01 34 43
sumPower V5 10 2 21 8 0,01 34 43

Data V1 21 2 34 7 0,02 59 47
Data V2 21 2 34 4 0,06 55 45
Data V3 21 2 34 5 0,01 61 49
Data V4 21 2 34 5 0,01 61 49
Data V5 21 2 34 2 0,01 58 47
Data V6 21 2 34 5 0,01 59 47
Data V7 21 2 34 4 0,01 59 47

Table 3.2: Each program Name has
associated its number
of statements, LOCprog,
the number of iteration
for the loop unrolling,
#It, the number of SSA-
statements, LOCssa, the
number of diagnosis, #D,
the MINION computation
time, Ts and the total
number of constraints
and constraints vari-
able from the MINION
file, |CO| and #VarCO

respectively.

79

80

Chapter 4
Extensions

”Research is to see what everybody else has seen, and to think what nobody else has thought.” –
Albert Szent-Gyoergi.

Applying a constraint based approach to the debugging problem assures great speed-ups when
computing the fault candidates set. However, for large programs the number of fault candidates can
sometimes be too large for the user to employ debugging. Hence further filtering techniques must
be applied such that the fault-candidates set becomes easier to address. In this chapter we propose
further improvements to our constraint based debugging approach and study their impact on the fault
candidates set. Basically we discuss two major extensions to the debugging problem, both approaches
being general enough to be also integrated in other MBDe engines:

• Based on integration of specification knowledge discussed in Section 4.1.

• Based on mutation and distinguishing test cases which is discussed in Section 4.2.

Both techniques are interesting and, as we will show in this chapter, successful in reducing the
size of the conflict set. However each method has its drawbacks when applying it. Of course a
combination of both is always preferable but not always realizable. For instance when we want to
integrate specification knowledge the user must be able to correctly compute loop invariants or the
pre- and post-conditions of each software block. Additionally, the computed invariant must be strong
enough to be able to discriminate between the diagnosis candidates. In our experiments we tried

81

Chapter 4. Extensions

to compute the program invariants by implying both an out-of-the-box tool and manual computation.
When we rely on the tool to compute the program invariants, for all programs, the computed invariants
were too poor to reduce the conflict set. However the manual computed invariant was strong enough
to substantially reduce the conflict set. The major drawback of the manual approach is that it is
(obviously) not automatic and that is a very time consuming task.

This part of my thesis is based on the following papers:

• From constraint representations of sequential code and program annotations to their use in
debugging [86]

• On the use of Specification Knowledge in Program Debugging [85]

• Generating Distinguishing Tests using the MINION Constraint Solver [123]

• Does testing help to reduce the number of potentially faulty statement in debugging? [68]

4.1. Integrating Specification Knowledge

Throughout the software development process the use of specifications to formally describe the soft-
ware requirements is a commonly-met practice. This is especially useful when dealing with large
software modules which need extensive maintenance over time. For example one important step of
the software development process, where specifications are often required, is the testing phase. Many
state-of-the-art testing approaches imply specifications to generate test cases for the developed soft-
ware. Hence the question which now arises is: ”can we use specification knowledge also in the process
of debugging?”, and if so, ”what effect will that have?”. In what follows we tackle these questions
and explain how the current constraint approach can be extended such that it can integrate invariants.

In this section we focus on improving the precision of the debugging results based on integration
of program specification knowledge in the form of loop invariants. Debugging which is based on a
single test case often exhibits a bad discrimination among diagnosis candidates; i.e., a large number
of program statements cannot be eliminated as potential fault candidates. Two important approaches
for tackling this problem are the integration of multiple test cases (see [10]) and the usage of addi-
tional specification knowledge. Specifications can be provided by, e.g., assertion statements in the
program, pre- and postconditions, or class and loop invariants. Previous papers suggested that the
use of specification knowledge may improve the results of model-based debugging by reducing the

82

4.1. Integrating Specification Knowledge

number of diagnoses or the number of statements considered as possibly faulty ([18], [84]). However,
those works did not provide any experimental results which confirmed this claim.

In order to integrate specification knowledge into model-based debugging we rely further on the
constraint representation of programs presented in Section 3.3. The constraint representation is able
to express the full semantics of the specification knowledge, and it allows us to use a state-of-the-art
constraint solver for computing the diagnoses. In this section we also extend the formalization of the
constraint representation presented in Section 3.3 to the extent of integrating program specification
knowledge in the form of loop invariants.

We also present first empirical results which compare the precision of the diagnostic results with
and without specification knowledge. For this purpose, we used a set of programs which implement
simple arithmetic operations, and we defined assertions like invariants, pre- and postconditions for
those programs. We manually injected bugs into the programs, and we found test cases which are not
satisfied by the faulty programs.

The obtained empirical results are very promising. Using specification knowledge we were able
to further reduce the number of statements to be considered as possibly faulty by about 20% to 60%
in the single-fault case. The average reduction was about 30%. The results are even better in the
double-fault case.

4.1.1. Specifying the Knowledge

Although programmers often regard assertions as programming-language constructs which are used
for fault detection at runtime, the concept of assertions has originally been introduced for the purpose
of formal program specification and verification. In Hoare logic assertions are utilized to prove the
(partial) correctness of programs, see [52]. Common types of assertions are preconditions, postcon-
ditions, and loop invariants. In what follows we present the mechanism behind computing the loop
invariants, pre- and post-condition relying on Hoare logic [52] to formally express it.

The Hoare logic is usually used to reason about correctness of certain software. It can be seen
as a contract between two clients, the one invoking the software, and the software-block itself, e.g.,
functions, loops. That is, we have on one side the preconditions, which describe the ”obligations”
of the invoker and on the other side the postconditions which are the ”obligations” of the invoked
software-block. If the preconditions are fulfilled then, after the execution of the software block (if it

83

Chapter 4. Extensions

terminates), the postconditions are true. These specifications, i.e., pre- and postconditions, are actually
checking the correctness of the software block.

When the preconditions are true, if the software-block terminates and the postconditions are also
true the software is said to be partially correct. If additionally, the software block is guaranteed to
always terminate such that for true preconditions the postconditions are always true, the software
block is said to be totally correct. If the software-block is invoked but the preconditions do not hold,
no prediction about the behavior of the postconditions can be made, i.e., the postconditions could no
longer hold. In this situation the software block is said to always be correct.

Formally a Hoare specification is a triplet of form: {P} S {Q}, whereas P are the preconditions, S
the actual software-block and Q represents the postconditions.

Example 5. Let’s presume we have the following Hoare triplet:

{x = 3} result = x ∗ 2 {x > 0}, it can be easily seen that for the precondition P : x = 3 and S =

x∗2 = 3∗2 = 6; the postcondition always holds, i.e., x > 0⇐⇒ 6 > 0 which is always true.

It can be seen that in Example 5 for the given P and S, Q can be further improved. In our case the
best approximation of Q would be Q : x == 6. In this case Q is called the strongest postcondition and
is formally defined as:

Definition 18 (Strongest postcondition) A postcondition Q, {P} S {Q}, is called the strongest post-
condition, i f f f or ∀ Q′, {P} S {Q′}, Q→ Q′.

Similarly, presume that the precondition P : x = 3 is replaced by P : x > 0. Let’s presume that S
is executed only for positive values of x. Then P : x > 0 would be the most unrestrictive possible
precondition. Hence,

Definition 19 (Weakest Precondition) A precondition P, {P} S {Q} is called the weakest precondi-
tion i f f f or ∀ P′, {P′} S {Q}, P′→ P.

It can be clearly seen that in Example 5 the initial precondition, P′ : x = 3 also implies P : x > 0.

Formally the two definitions from above can be also written as:

P′→P, {P} S {Q}, Q→Q′

{P′} S {Q′}

84

4.1. Integrating Specification Knowledge

After introducing some basic concepts about pre- and post-conditions, in what follows we introduce
some notions about loop invariants and present how they can be formalized within the Hoare logic.

A loop invariant INV states a condition which must hold before and after each iteration of the loop.
More precisely, the body of a while-loop preserves the invariant INV , given that the loop condition C
holds before the execution of the body. The following rule of inference, taken from [52], formalizes
this concept, and it allows us to conclude which conditions hold after the execution of the loop is
finished:

{C∧ INV} body {INV}
{INV} while(C) do body {¬C∧ INV}

This rule formalizes the following deductive inference: if the Hoare triple {C∧ INV} body {INV}
holds, then it can be concluded that the successful execution of while(C) do body leads from a
state in which INV holds to a state in which ¬C∧ INV holds (provided that the loop terminates). A
Hoare triple has the general form {P} stmt {Q}: if the condition P holds before the execution of
stmt, then the execution of stmt establishes the condition Q (provided that stmt terminates).

4.1.2. Integrating annotations

In Chapter 3 we presented a constraint based framework for debugging sequential programs with syn-
tax and semantics similar to well-known languages like Java, but without object-oriented constructs.
In what follows we extend the presented framework by integrating additional debugging information,
i.e., specification knowledge.

At the moment we rely on specification knowledge given in the form of loop invariants, pre- and
post-conditions, for further discriminating between the diagnosis candidates. In order to be fully
automated, our framework presumes the prior existence of the loop invariants (manually computed
by the user), integrated in the analyzed source code. This limitation is imposed by the fact that we
cannot rely on a tool to automatically compute the loop invariants for a certain piece of code (sadly
most tested tools performed poor when extracting the loop invariant).

To better illustrate our approach we make use of a small program for computing aexp given in Fig.
4.1.

Before integrating annotation we proceed to converting the program into its constraint representa-
tion. Again we follow the steps presented in Chapter 3: remove loops (Fig. 4.2), conversion to the

85

Chapter 4. Extensions

int power(int a, int exp)
1. int e = exp;

2. int res = 1;

3. while (e > 0) {
4. res = res * a;

5. e = e - 1;

}

Figure 4.1.: A program for computing aexp, where a and exp are integers. The variable res denotes the
result.

SSA representation (Fig. 4.3) and last encoding the debugging problem as a constraint satisfaction
problem (Fig. 4.4).

We summarize the conversion of the SSA statements to MINION constraints in Table 4.1 using
some of the statements from the example given in Fig. 4.3.

SSA Statement MINION Constraint

int e 0 = exp;
auxVar = ComputeExpression(exp),

eq(e 0, auxVar)

bool cond 0 = (e 0 > 0); reify(ineq(0,e 0,-1),cond 0)

bool cond 1 = cond 0 & (e 1 > 0);
reify(ineq(0,e 1,-1),cond aux)

reify(watchsumgeq([cond 0,cond aux], 2),cond 1)

int res 4 = Φ(res 3, res 0, cond 0);
watched-or(eq(cond 0,0), eq(res 4,res 3))
watched-or(eq(cond 0,1), eq(res 4,res 0))

Table 4.1.: MINION constraints conversion

Example 6. We inject a fault in statement S1 of the program in Fig. 4.1 by replacing e = exp with
e = 0. The faulty program is depicted in Fig. 4.5. Accordingly, statement S′1 of the SSA form is
changed to int e 0 = 0, and the corresponding constraint in CONΠ is ab(S1)∨(e 0 = 0).

We consider the test case T = {a = 2,exp = 2,res 4 = 4}, which would lead to 2 loop iterations
in the correct program. As the faulty program, which never executes the loop body, returns res = 1

86

4.1. Integrating Specification Knowledge

int power loopfree(int a, int exp)
1. int e = exp;

2. int res = 1;

3. if (e > 0) {
4. res = res * a;

5. e = e - 1;

6. if (e > 0) {
7. res = res * a;

8. e = e - 1;

}
}

Figure 4.2.: The loop-free version of the program in Fig.4.1 for 2 iterations.

int power SSA(int a, int exp)
1. int e 0 = exp;

2. int res 0 = 1;

3. bool cond 0 = (e 0 > 0);

4. int res 1 = res 0 * a;

5. int e 1 = e 0 - 1;

6. bool cond 1 = cond 0 ∧ (e 1 > 0);

7. int res 2 = res 1 * a;

8. int e 2 = e 1 - 1;

9. int res 3 = Φ(res 2, res 1, cond 1);

10. int e 3 = Φ(e 2, e 1, cond 1);

11. int res 4 = Φ(res 3, res 0, cond 0);

12. int e 4 = Φ(e 3, e 0, cond 0);

Figure 4.3.: The loop-free SSA form of the program in Fig. 4.1 for 2 iterations. The variable res 4

represents the output of the program (i.e., the final result).

87

Chapter 4. Extensions

• V = {a,exp,e 0, . . . ,e 4,res 0, . . . ,res 4, cond 0, cond 1}∪{ab(S1), . . . ,ab(S5)}

• D(a) = Z, D(cond 0) = {true, f alse}, etc.

• constraints:

CO =



ab(S1)∨(e 0 = exp), [S′1]
ab(S2)∨(res 0 = 1), [S′2]
ab(S3)∨

(
cond 0 = (e 0 > 0)

)
, [S′3]

ab(S4)∨(res 1 = res 0∗a), [S′4]
ab(S5)∨(e 1 = e 0−1), [S′5]
ab(S3)∨(

cond 1 = (cond 0∧(e 1 > 0))
)
, [S′6]

ab(S4)∨(res 2 = res 1∗a), [S′7]
ab(S5)∨(e 2 = e 1−1), [S′8]
res 3 = Φ(res 2,res 1,cond 1), [S′9]
. . .


Figure 4.4.: The CSP representation of the program in Fig. 4.3.

(res 4= 1 in the SSA form, respectively), this test case fails, and so the empty set {} is not a diagnosis.
The algorithm for finding all single-fault diagnoses, which is described above, yields 3 diagnoses:
∆1 = {S1},∆2 = {S2},∆3 = {S3}.

E.g., when the algorithm checks whether the candidate ∆2 = {S2} is a diagnosis, then we have
Γ({S2}) = {ab(S1) = f alse,ab(S2) = true,ab(S3) = f alse, . . .}, and the constraint solver can deter-
mine that the constraint system CO∪T ∪Γ({S2}) has a solution which assigns the value res 0 = 4.
Intuitively, S2 is a single diagnosis because if we replaced S2 in the faulty program (Fig. 4.5) by
int res = 4, then the resulting program would satisfy the test case T . Moreover, S3 is also a diagno-
sis, because the constraint system has a solution with the assignment cond 0= true and cond 1= true.
In other words, S3 is a diagnosis because the loop condition could be changed s.t. the resulting pro-
gram has 2 loop iterations for the given test case.

88

4.1. Integrating Specification Knowledge

int power faulty (int a, int exp)
1. int e = 0;

2. int res = 1;

3. while (e > 0) {
4. res = res * a;

5. e = e - 1;

}

Figure 4.5.: A faulty program for computing aexp. It is almost equal to the (correct) program in Fig.
4.1, but statement S1 was changed from e = exp to e = 0.

4.1.3. Improving the Diagnostic Precision by Integrating Specification Knowledge

In the diagnosis example above we obtained 3 single-fault diagnoses, i.e., less than half of the state-
ments in Fig. 4.5 could be eliminated as potential single-faults. It is obvious that automated debugging
should strive for a higher diagnostic precision in order to be useful in practice. The low precision in
the example above results from the fact that the correct program behavior is only specified by a single
test case, and that a test case is a black-box specification, meaning that it defines only the input-output
behavior of a program, but does not specify expected behavior inside the program.

In this section we tackle this problem by integrating assertions and empirically investigating their
benefit. With assertions we denote specifications, which state conditions that must hold at specific
locations within the program. Many programming languages, like C or Java, have assert(cond)-
statements, which can be placed at arbitrary locations in the source code and which are checked at
runtime. In recent years the use of assertions has gained wide acceptance among software developers,
which has also been fostered by growing tool support. Assertions are also closely related to Design
by Contract, see [77].

Our approach presumes that the loop invariant is correct, i.e., it specifies the desired behavior of
a loop, and a correct implementation of the loop must conform to this specification. For a given
program, it can be proven by induction over loop iterations that the program conforms to the loop
invariant; i.e., it has to be shown that the loop body preserves the invariant, provided that the loop
condition holds. However, if the program contains a bug, then the (correct) loop invariant may contra-
dict the faulty program. Hence, the intention is that a loop invariant is defined before the loop’s body
is implemented, because the written code may be faulty, and deriving a loop invariant from a faulty

89

Chapter 4. Extensions

int power faulty annot(int a, int exp)
‖ PRE : exp≥ 0 ‖

1. int e = 0;

2. int res = 1;

3. while (e > 0) {
‖ INV : (res== aexp−e)∧(e≥ 0) ‖

4. res = res * a;

5. e = e - 1;

}
‖ POST : res== aexp ‖

Figure 4.6.: The faulty program from Fig. 4.5 annotated with three assertions: the program’s pre- and
postcondition and a loop invariant.

program can lead to an invariant which does not express the desired behavior and which is useless for
debugging.

Also note that the invariant of a given loop is ambiguous because a loop invariant does not need
to state all conditions which are preserved by the loop body. If INV1 and INV2 are invariants of a
given loop, we say that INV1 is stronger than INV2 iff INV1 |= INV2 and INV2 6|= INV1. For debugging
purposes we desire invariants which are as strong as possible in order to improve the diagnostic pre-
cision. However, in practice it is often not possible to find the strongest invariant, but our experience
has shown that even a ”weak” invariant can often be useful to eliminate diagnosis candidates.

Example 7. Figure 4.6 depicts the faulty example program annotated with assertions. It can be
seen that the chosen invariant is strong enough to prove that the postcondition POST holds after
the loop, provided that the loop is correctly implemented and that it terminates. More precisely,
¬C∧ INV |= POST holds, where C is the loop condition (e > 0), because ¬C∧ INV |= (e == 0), and
so ¬C∧ INV |= (res == aexp).

Fig. 4.7 sketches a schematic depiction of a loop invariant: it can be seen that the invariant must
hold before the first iteration of the loop and after each executed iteration. The formulation of a
debugging problem as a CSP allows for the usage of the full semantics of assertions. The integration
of assertions in the loop-free SSA form is done as follows. Every pre- or postcondition P of a program

90

4.1. Integrating Specification Knowledge

loop with invariant:
assert(INV); [A1]

while(C) {
... [body]

assert(INV); [A2]

}

Figure 4.7.: General schema showing how a loop invariant can be represented by two assert(cond)-
statements.

is directly mapped to a single SSA-statement of the form

assert(Pexpr);

Moreover, for a loop invariant INV the loop-free SSA form contains n+1 additional assert-statements,
where n is the number of loop iterations considered in the SSA form: regarding the general schema in
Fig. 4.7, the assertion A1 is mapped to the SSA form

assert(INV 0expr);

where INV 0expr represents the invariant INV referring to the variable values before the first loop
iteration. A2 is mapped to

assert
(
(cond i= false) ∨ INVi+1,expr

)
;

where variable cond i corresponds to the loop condition after i iterations (i.e., if cond i is true, then
the (i+1)th loop iteration is executed), and INVi+1,expr refers to the variable values after the (i+1)th

loop iteration. The SSA form for the example program enhanced by assertions is shown in Fig. 4.8.

The following definition deals with the integration of assertions into the constraint representation:

Definition 20 (Integration of assertions into CONΠ)
The constraint representation CONΠ, which was defined in Def. 14, is extended as follows. The set

of constraints CO comprises exactly one constraint for every statement in the SSA form, including
assert-statements. If a statement S′ ∈ ΠSSA of the SSA form has the form assert(condexpr),
then add the relation condexpr to CO. Otherwise, translate S′ as defined in Def. 14.

91

Chapter 4. Extensions

int power SSA annot(int a, int exp)
... ...

13. assert
(
exp≥ 0

)
;

14. assert
(
(res 0== aexp−e 0)∧(e 0≥ 0)

)
15. assert

(
(cond 0== false)

∨(res 1== aexp−e 1)∧(e 1≥ 0)
)

16. assert
(
(cond 1== false)

∨(res 2== aexp−e 2)∧(e 2≥ 0)
)

17. assert
(
res 4== aexp

)
;

Figure 4.8.: The loop-free SSA form, from Fig. 3.6 enhanced with the assertions from Fig. 4.6.

Example 8. Integrating the assertions from Fig. 4.8 adds the following constraints to CO:

CO =


.

exp≥ 0, [S′13]
(res 0 = aexp−e 0)∧(e 0≥ 0), [S′14]
.


In the following example we demonstrate the benefit of assertions for improving the diagnostic

precision:

Example 9. As in the diagnosis example from Sec. 3.3, we use the test case T = {a = 2,exp =

2,res 4 = 4}, which led without the use of assertions to the single-fault diagnoses ∆1 = {S1},∆2 =

{S2},∆3 = {S3}. Remember that S3 was a diagnosis because the constraint system CO∪T ∪Γ({S3})
has a solution with the assignment cond 0= true and cond 1= true. However, if we integrate the loop
invariant as given in Fig. 4.6 into CO, then this constraint system has no solution: if cond 0 = true,
then the invariant enforces the condition e 1≥ 0 (see statement S′15 in Fig. 4.8), which contradicts the
constraints e 0 = 0 and e 1 = e 0−1 (which correspond to statements S1 and S5 in the faulty program
in Fig. 4.6). Hence, the candidate {S3} is no longer a diagnosis, and only two single-fault diagnoses
remain (∆1, ∆2).

Also note that the invariant INVw : (e≥ 0), which is weaker than the complete invariant as defined
in Fig. 4.6, was here sufficient to eliminate {S3} as diagnosis candidate.

92

4.1. Integrating Specification Knowledge

4.1.4. Experimental Results

We evaluated our debugging approach on a set of small Java programs which have the property that
they contain at least one while-loop. We annotated these programs with pre- and postconditions
and with loop invariants. We investigated the benefit of assertions by performing the diagnosis for
the annotation-free programs as well as for the annotated programs and by comparing the diagnostic
results afterwards.

For this purpose we performed the following steps:

1. In every program we injected different single- and double-faults (see below).

2. For each faulty program we created two loop-free SSA representations: one with and one with-
out assertions.

3. We converted the resulting programs into a constraint system in MINION syntax.

4. For each program we defined a test case which leads to either 1 or 2 loop iterations. Based on
this test case, we computed the diagnoses using the MINION implementation provided by [80].

In the first set of experiments we injected 3 different single faults in every program; i.e., there were
three different faulty versions for each program. The experimental results are given in Tbl. 4.2. Each
fault changes either the right-hand side of an assignment statement or the boolean expression of a
loop condition. In Tbl. 4.2 we use identifiers to denote each fault (column Er). For example, in the
program power(a, exp) (see Fig. 4.1) we injected the faults P1-P3, where P1 changes line 2 to int

res = 0, P2 changes line 1 to int e = exp, and P3 changes line 4 to res = res + a.

When comparing the columns #D and #Dinv in Tbl. 4.2, it can be clearly seen that the integration
of loop invariants significantly increases the diagnostic precision: on average, only 1.8 single-fault
diagnoses remain after integrating the assertions. Moreover, we defined the metrics E% and E%,inv

which denote the percentage of statements which are eliminated as potential faults by our debugging
approach. In case of single-faults they can be simply computed as follows:

E%
def
= 100∗ LΠ−#D

LΠ

; E%,inv
def
= 100∗ LΠ−#Dinv

LΠ

As average value of all experiments we obtained avg(E%,inv−E%) = 30.6%; i.e., the integration of as-
sertions significantly improved the diagnostic precision by further eliminating 30.6% of the statements
as fault candidates.

93

Chapter 4. Extensions

In all experiments it took less than 0.1sec to compute all solutions on a PC with a Pentium 4 2.0
GHz CPU.

In the second set of experiments we injected a double fault in each program (one fault before the
loop and another one in the loop condition). The results are given in Tbl. 4.3. A remarkable finding is
that without using assertions we obtained several single-fault diagnoses for every program, although
the programs contained two faulty statements. The integration of loop invariants greatly improved
the diagnostic results: in all of those experiments, the invariant was able to eliminate the single-fault
diagnoses, and the number of double-fault diagnoses was significantly smaller. The integration of
assertions improved the diagnostic precision by further eliminating avg(E2

%,inv−E2
%) = 31.9% of the

statements as fault candidates.

4.2. Mutation Based Debugging

Computing assertions can sometimes prove to be a difficult task, e.g., in software maintenance, when
the software maintainer is other than the code’s owner. This limits the approach only to programs
(methods) were the user has enough information over the source code to the extent that it can extract
the specification knowledge. Another drawback of the approach is that the computed invariant cannot
guarantee to further discriminate over the conflict set.

In what follows, we propose an algorithm for further reducing the size of the conflict set correspond-
ing to a given debugging problem. In order to discriminate between the possible faults, the proposed
algorithm relies on the concept of distinguishing test cases and program mutation. An advantage of
this approach is the fact that it can be combined with any existent conflict-based debugger.

Additionally to the existent program and test suite, our proposed algorithm requires the existence
of a prior computed conflict set. Contrary to this, the specification based approach, discriminates
between components during the debugging reasoning process and is restricted only to the framework
proposed in Chapter 3. The distinguishing test cases approach reasons at the end of the debugging
process, i.e., over the conflict set, and by implying mutation-based techniques tries to reduce the
conflict set or, in some situations, even repair the existing bug. Further details about mutation will be
given later on in this chapter. We present first the distinguishing test case approach which is at the
foundation of this approach.

94

4.2. Mutation Based Debugging

No Name LΠ #It LΠSSA Er #D E% #Dinv E%,inv E%,inv−E%

1. Division 8 1 12 D1 4 50.0 % 2 75.0 % 25.0 %
2. Division 8 1 12 D2 3 62.5 % 1 87.5 % 25.0 %
3. Division 8 1 12 D3 2 75.0 % 2 75.0 % 0.0 %
4. Division 8 2 18 D1 5 37.5 % 2 75.0 % 37.5 %
5. Division 8 2 18 D2 5 37.5 % 2 75.0 % 37.5 %
6. Division 8 2 18 D3 2 75.0 % 2 75.0 % 0.0 %
7. Mult 5 1 9 M1 4 20.0 % 1 80.0 % 60.0 %
8. Mult 5 1 9 M2 4 20.0 % 2 60.0 % 40.0 %
9. Mult 5 1 9 M3 2 60.0 % 1 80.0 % 20.0 %
10. Mult 5 2 15 M1 5 0.0 % 1 80.0 % 80.0 %
11. Mult 5 2 15 M2 5 0.0 % 2 60.0 % 60.0 %
12. Mult 5 2 15 M3 2 60.0 % 1 80.0 % 20.0 %
13. MultV2 8 1 16 M21 6 25.0 % 2 75.0 % 50.0 %
14. MultV2 8 1 16 M22 6 25.0 % 4 50.0 % 25.0 %
15. MultV2 8 1 16 M23 6 25.0 % 3 62.5 % 37.5 %
16. MultV2 8 2 41 M24 6 25.0 % 1 87.5 % 52.5 %
17. MultV2 8 2 41 M25 5 37.5 % 1 87.5 % 50.0 %
18. MultV2 8 2 41 M23 8 0.0 % 3 62.5 % 62.5 %
19. Sum 5 1 8 S1 4 20.0 % 1 80.0 % 60.0 %
20. Sum 5 1 8 S2 2 60.0 % 1 80.0 % 20.0 %
21. Sum 5 1 8 S3 2 60.0 % 1 80.0 % 20.0 %
22. Sum 5 2 14 S2 5 0.0 % 1 80.0 % 80.0 %
23. Sum 5 2 14 S3 2 60.0 % 1 80.0 % 20.0 %
24. Sum 5 2 14 S4 5 0.0 % 2 60.0 % 60.0 %
25. gCD 9 2 22 G1 3 77.7 % 1 88.8 % 11.1 %
26. gCD 9 2 22 G2 4 55.5 % 4 55.5 % 0.0 %
27. gCD 9 2 22 G3 5 44.4 % 4 55.5 % 11.1 %
28. Power 5 1 6 P1 2 60.0 % 1 80.0 % 20.0 %
29. Power 5 1 6 P2 3 40.0 % 2 60.0 % 20.0 %
30. Power 5 1 6 P3 2 60.0 % 1 80.0 % 20.0 %
31. Power 5 2 11 P1 2 60.0 % 1 80.0 % 20.0 %
32. Power 5 2 11 P4 5 0.0 % 2 60.0 % 60.0 %
33. Power 5 2 11 P3 2 60.0 % 1 80.0 % 20.0 %
34. sumPower 10 1 13 SP1 3 70.0 % 1 90.0 % 20.0 %
35. sumPower 10 1 13 SP2 3 70.0 % 2 80.0 % 10.0 %
36. sumPower 10 1 13 SP3 2 80.0 % 2 80.0 % 0.0 %
37. sumPower 10 2 21 SP1 3 70.0 % 1 90.0 % 20.0 %
38. sumPower 10 2 21 SP2 5 50.0 % 2 80.0 % 30.0 %
39. sumPower 10 2 21 SP3 8 20.0 % 6 40.0 % 20.0 %

average: 3.9 42.4 % 1.8 73.0 % 30.6 %

Table 4.2.: Experimental results for the first set of experiments. For each program Name, LΠ is the number of statements
in the original program, #It denotes the number of considered loop iterations, LΠSSA denotes the number
of statements in the loop-free SSA form, Er identifies the injected fault, #D is the number of single-fault
diagnoses obtained without loop invariants and #Dinv is the number of single-fault diagnoses when using loop
invariants. Moreover, E% and E%,inv denote the percentage of statements of the original program which do
not occur in any single-fault diagnosis without assertions (E%) or when using assertions (E%,inv); see the text
for details. Hence, the last column E%,inv−E% states the percentage of statements which can be eliminated
as single-fault candidates when integrating assertions.

95

Chapter 4. Extensions

Name LΠ #It LΠSSA Er #D2 E2
% #D1 #D2

inv E2
%inv #D1

inv E2
%inv−E2

%

Division 8 2 18 D1 + D2 19 0.0 % 4 4 50.0 % 0 50.0 %
Mult 5 2 15 M1 + M2 7 0.0 % 2 3 40.0 % 0 40.0 %

MultV2 8 2 41 M21 + M22 25 0.0 % 5 7 0.0 % 0 0.0 %
Sum 5 2 14 S1 + S2 7 0.0 % 2 2 40.0 % 0 40.0 %
gCD 9 2 22 G1 + G2 21 0.0 % 3 6 33.0 % 0 33.8 %

Power 5 2 11 P1 + P4 7 0.0 % 2 3 20.0 % 0 20.0 %
sumPower 10 2 21 SP1 + SP2 27 0.0 % 3 5 40.0 % 0 40.0 %

average: 15.7 0.0 % 2.9 4.3 31.9 % 0 31.9 %

Table 4.3.: Experimental results for the double diagnosis and specification knowledge. #D1 and #D2

denote the number of diagnoses with cardinality 1 and 2, respectively, when no loop in-
variants are used, whereas #D1

inv and #D2
inv state the number of diagnoses when using loop

invariants. E2
% and E2

%inv denote the percentage of statements of the original program
which do not occur in any double-fault diagnosis without assertions (E2

%) or when using
assertions (E2

%inv). The column E2
%inv−E2

% states the percentage of statements which can
be eliminated as candidates when integrating assertions.

4.2.1. Generating Distinguishing Test Cases

Constraints have been used for various purposes like verification [22], debugging [18, 122], program
understanding [115] as well as testing [32, 41, 42]. Some of the proposed techniques use constraints
to state specification knowledge like pre- and post-conditions. Others use constraints for modeling
purposes. In this section we rely on the latter and use constraints obtained from the program directly.
In contrast to previous research we focus on generating test cases that can be used for distinguishing
between different implementations. A test case distinguishes between two implementations if it re-
veals a different output behavior using the same inputs for both implementations. Of course such a
distinguishing test case might not always exist. Moreover, we assume that the implementations be-
have deterministically. Otherwise, it is not guaranteed that a given input always generates the same
outputs.

There are many potential applications of distinguishing test cases. The first application scenario is
debugging. In debugging we might obtain too many diagnosis candidates, i.e., parts of the program
that explain a detected misbehavior. In order to reduce the size of the diagnosis candidates set, for

96

4.2. Mutation Based Debugging

each fault candidate we compute a set of mutants as possible explanation for the faulty statements. The
distinguishing test case generator together with an oracle helps to discriminate between two possible
repairs. The other scenario is test case generation based on program mutation. In such an application
mutants for a given program are generated. The distinguishing test case generator is used to compute
test cases for each mutant and the original program.

The idea behind our approach is to convert two implementations into constraints and to represent
the problem of generating distinguishing test cases as a constraint satisfaction problem. In order to
convert a program into a constraint system we make use the approach described in Chapter 3, i.e.,
we first remove the loops, replacing them with a bounded sequence of conditionals; we then compile
the resulting program into its static single assignment form, from which we directly compute the
constraints. For the constraint representation and the solving, we rely on the MINION constraint
solver [40, 80].

Before discussing our technique for generating distinguishing test cases in detail, we outline the
underlying ideas on a small example program. More details are given in the rest of this section.

1. begin

2. i = 2 * x;

3. j = 2 * y;

4. o1 = i + j;

5. o2 = i * i;

6. end;

This program can be easily converted into a constraint representation using the constraint lan-
guage from MINION. We only need to convert the program statement by statement. For representing
constraints we use a relational notation. For example, the multiplication x ∗ y = z is represented
by product(x,y,z) and for the sum x + y = z we use the two relations sumleq([x,y],z) and
sumgeq([x,y],z) stating x+ y ≤ z and x+ y ≥ z respectively. Hence, the constraint representation
of our program is the following:

product(2,x,i)

product(2,y,j)

sumleq([i,j],o1)

97

Chapter 4. Extensions

sumgeq([i,j],o1)

product(i,i,o2)

Now consider a variant of the program where Line 3 is changed to j = 3*y and let us again convert
it into its constraint representation. Note that in this case we added a post-fix string ” v” to each
variable to distinguish the variables of the original program from the variables of the variant.

product(2,x_v,i_v)

product(3,y_v,j_v)

sumleq([i_v,j_v],o1_v)

sumgeq([i_v,j_v],o1_v)

product(i_v,i_v,o2_v)

Informally speaking, a distinguishing test case is a test case for separating the behavior of two pro-
grams where the input values for each program is the same but the computed output is not. Hence, we
have to state that the inputs are the same and that there exists at least one output where the computed
values are not equivalent. Using the MINION constraint eq for stating equivalence, diseq for stat-
ing that two variables have different values, and the logical constraint watched-or for formalizing a
disjunction, we give the constraints necessary to obtain a distinguishing test case in our example:

eq(x,x_v)

eq(y,y_v)

watched-or({diseq(o1,o1_v),diseq(o2,o2_v)})

A solution for the given constraints is also a distinguishing test case. Using MINION as constraint
solver we are able to compute more than one distinguishing test cases for this example, e.g., one
solution is x=2, y=2 and there are many others. All solutions have in common that y is not equal to 0.

The rest of this section is organized as follows. Next we give all necessary definitions and discuss
the preliminaries of our approach. Afterwards, we outline the algorithm for computing distinguishing
test cases and present first empirical results. Finally, we discuss related research and conclude.

98

4.2. Mutation Based Debugging

Computing distinguishing test cases

We assume that the program Π ∈ L to be compiled into a constraint representation is deterministic
and written in an imperative assignment language with the usual kinds of statements, e.g., variable
assignments, conditional statements, and loops. The underlying type system of the language com-
prises basic datatypes like Booleans, integers, floating point numbers and arrays. Each variable stores
a value of the corresponding datatype. The values of variables are stored in a variable environment.
A variable environment (or environment for short) is a function mapping variables to their values. We
further assume that each program Π has some input variables and output variables. We use JΠK(I)
to denote execution of Π on a specific input environment (or input for short) I. The result of the
execution is always an environment, i.e., the output environment. In the following we also represent
environments as set of tuples (x,v) where x is a variable and v is a value.

According to Definition 6, a test case is a tuple (I,O) where I is the input environment denoting
the given values of input variables, and O is the output environment where the expected values of the
output variables are specified. Note that, regarding the definition, it is also possible that O is empty.
A program Π is passing a test case (I,O) if and only if the execution of Π on I returns the expected
output values specified in O. Formally, we define passing and failing test cases as follows:

JΠK(I)⊇ O⇔Π passes test case(I,O)

¬(Π passes test case(I,O))⇔Π fails test case(I,O)

Note that not all values have to be specified. However, it is necessary that all given values are
returned as expected. A variable where no value is specified in O can have an arbitrary value after
program execution.

Definition 21 (Distinguishing test case) Given programs Π and Π′. A test case (I, /0) is a distin-
guishing test case if and only if there is at least one output variable where the value computed when
executing Π is different from the value computed when executing Π′ on the same input I.

(I, /0) is distinguishing Π from Π′⇔
∃x : (x,v) ∈ JΠK(I) & (x,v′) ∈ JΠ′K(I) & v 6= v′

We call the problem of finding an input environment that distinguishes two programs Π and Π′

the distinguishing test case problem. It is worth noting that a distinguishing test case is according to

99

Chapter 4. Extensions

our definitions always a passing test case, because the output environment is not specified. From the
distinguishing test case we are always able to derive a test case with a specified expected output. This
can be done manually or in some cases automatically. The latter is used to compute test cases from
the mutations of a given program. In this case, the program is assumed to be correct and the output
of the execution of the program is therefore the expected output of the test case. When searching for
distinguishing test cases for all mutants we finally receive a test suite that can be used to separate the
original program from all its mutations.

In order to compute distinguishing test cases for two programs Π1 and Π2 we have to ensure that
the inputs for both programs are the same whereas the computed outputs are different. This idea can
be easily represented in MINION. We only have to add the corresponding constraints to the converted
programs. Moreover, we have to ensure that the converted programs use different names for the
variables. Hence, we have to rename the variables in the constraint representation before putting them
together. Algorithm computeDistinguishingTC (Algorithm 7) depicts the process of computing the
distinguishing test case of two programs.

Algorithm 7 computeDistinguishingTC(Π1, Π2,#It)

Require: Two programs Π1 and Π2 having the same input variables (IN) and output variables (OUT),
and a maximum number of iterations #It.

Ensure: A distinguishing test case.
1: Call convert(Π1,#It) and store the result in M1.
2: Call convert(Π2,#It) and store the result in M2.
3: Rename all variables x used in constraints M1 to x P1.
4: Rename all variables x used in constraints M2 to x P2.
5: Let M be M1∪M2.
6: for all input variables x ∈ IN do
7: Add the constraint eq(x P1, x P2) to M.
8: end for
9: for all output variables x ∈ OUT do

10: Add the constraint diseq(x P1, x P2) to M.
11: end for
12: return the values of the input variables obtained when calling the MINION constraint solver on

M as result.

100

4.2. Mutation Based Debugging

The computeDistinguishingTC algorithm obviously terminates. The given programs and sets are
all finite and the conversion terminates. Moreover, the constraint solver also terminates after checking
all possible solutions when considering only finite domains. The computational complexity is mainly
determined by the constraint solver. The conversion itself is polynomial in the size of the programs.
Finding a solution for a finite domain is exponential in the number of used variables.

Note that, the whole approach is not necessary restricted to the MINION constraint solver. All
discussed steps can be adapted to other constraint solvers. In the following section, we present first
empirical results of the approach using MINION.

Experimental results

We implemented the discussed approach in Java and applied it on some small Java programs ignoring
object-oriented features. For each program we have the original bug-free version, and a set of four mu-
tants obtained by manually injecting different single-faults into the original program. Each program
comprises at least one loop structure. We generate the discriminating test cases, i.e., kill the mutants,
considering 2, 4 and 7 iterations of each loop statement. We present the obtained results in Table 4.4.
All the experiments were performed using an Intel Pentium Dual Core 2 GHz computer with 4 GB
RAM. We imposed a limit of two hours in which the mutant should be killed and a distinguishing test
case has to be computed. In our experiments no out-of memory error was encountered. All variables
from the tested programs are either of type boolean or of type integer. All integer variables are defined
over the finite discrete domain [−250 . . .250].

In some cases the inserted fault leads to an infinite execution of the loop structure, e.g., replacing a
minus with a plus in a while-structure. Due to the fact that our analysis is based on a static represen-
tation of the programs using a fixed number of iterations, the constraint solver is still able to compute
an output that satisfies the requirements. But when executing the program and its mutant, the mutant
will never stop. Hence, our approach does not require checking program termination for computing
test cases.

Another limitation of this approach is that there is no guarantee for computing a solution, i.e., a test
case that kills the mutant. In order to identify a faulty statement both the original and its mutant must
execute that faulty statement. However there are situations when the faulty statement does not have
an influence over the output. In this case a distinguishing test case cannot be determined.

One problem we faced in our experiments was the time needed for computing a solution for some

101

Chapter 4. Extensions

examples. See for example the results of program GcdATC in Table 4.4 where MINION was not able to
compute a solution for the versions V3 and V4 within 2 hours. The reason was the huge search space
and the fact that no variable ordering was imposed. However, after applying a variable ordering where
variables are ordered with respect to their first definition in the program, the situation changed. When
using the variable ordering MINION had no problem in killing them in less than a second. Due to this
particularity, in our approach we always impose an ordering over the input and output variables. Note
that for programs of reduced complexity the variable ordering leads to no gains with respect to time
performances.

The obtained results are very promising but further studies have to be performed. In particular,
generating test cases for larger programs comprising several thousands lines of code and the ability to
handle object-oriented constructs are of interest.

Related research

Distinguishing test cases can play an essential role in improving the debugging process but also in
mutation testing [123].

The idea of distinguishing two programs via a test case computed with the help of their constraint
representation is, as far as we know, new. However there exists a number of approaches which
are based on same principle. The authors of [7] concentrate on discriminating between two non-
deterministic Mealy machines via the input and output behavior. They introduce the concept of distin-
guishing strategies. For a Mealy state machine, without an initial state specification, they try to find
all the possible initial states differentiated via the input output behavior. The authors of [76] use the
concept of distinguishing test cases for the purpose of discriminating between competing hypothesis
for a fix propositional language. They define the concept of discriminating tests as a test case which
for a hypothesis space, e.g, diagnosis, is able to prove that at least on hypothesis is false. In [99]
the authors propose a testing mechanism for hardware system based on faulty behavior consistency
check. If faulty behaviors exists which are not cover by the existent test suite, new test cases are
generated. Another problem which is tackled here is computing the smallest set of tests which can
cover all possible faulty behaviors.

In classical mutation testing, the distinguishing test cases are not generated, but a given test suite is
assessed with respect to its ability of distinguishing all mutants, i.e. to find all injected faults [50, 90].
It would not be useful to inject faults and then generate a distinguishing test case to find these known

102

4.2. Mutation Based Debugging
N

am
e

L
O

C
#I

/O
#I

t
V

1
V

2
V

3
V

4
#C

O
#V

ar
C

O

Mu
lt
AT
C

12
2/

1
2

K
ill

ed
(0

,0
7s

)
K

ill
ed

(0
,0

6s
)

K
ill

ed
(0

,0
4s

)
K

ill
ed

(0
,0

3s
)

47
32

4
K

ill
ed

(0
,0

4s
)

K
ill

ed
(0

,0
8s

)
K

ill
ed

(0
,0

7s
)

K
ill

ed
(0

,0
7s

)
87

56
7

K
ill

ed
(0

,0
1s

)
K

ill
ed

(0
,1

0s
)

K
ill

ed
(0

,1
1s

)
K

ill
ed

(0
,1

1s
)

15
1

92

Su
mA
TC

13
2/

1
2

K
ill

ed
(0

,4
s)

K
ill

ed
(0

,0
3s

)
K

ill
ed

(0
,4

s)
K

ill
ed

(0
,4

s)
49

34
4

K
ill

ed
(0

,4
s)

K
ill

ed
(0

,0
7s

)
K

ill
ed

(0
,4

9s
)

K
ill

ed
(0

,4
7s

)
89

58
7

K
ill

ed
(0

,6
7s

)
K

ill
ed

(0
,1

1s
)

K
ill

ed
(0

,6
2s

)
K

ill
ed

(0
,0

9s
)

14
9

94

Mu
lt
V2
AT
C

18
2/

1
2

K
ill

ed
(0

,2
s)

K
ill

ed
(0

,1
2s

)
K

ill
ed

(0
,2

1s
)

K
ill

ed
(0

,1
8s

)
13

2
86

4
K

ill
ed

(0
,3

4s
)

K
ill

ed
(0

,2
3s

)
K

ill
ed

(0
,3

1s
)

K
ill

ed
(0

,3
1s

)
41

8
25

8
7

K
ill

ed
(2

,0
9s

)
K

ill
ed

(2
,0

9s
)

K
ill

ed
(2

,1
5s

)
K

ill
ed

(2
,1

5s
)

11
44

69
6

Di
vA
TC

22
2/

1
2

K
ill

ed
(0

,0
6s

)
K

ill
ed

(0
,0

6s
)

K
ill

ed
(0

,0
6s

)
K

ill
ed

(0
,0

6s
)

65
52

4
K

ill
ed

(0
,0

8s
)

K
ill

ed
(0

,0
8s

)
K

ill
ed

(0
,6

s)
K

ill
ed

(0
,0

8s
)

10
5

76
7

K
ill

ed
(0

,1
0s

)
K

ill
ed

(0
,1

0s
)

K
ill

ed
(0

,0
9s

)
K

ill
ed

(0
,1

2s
)

16
5

11
2

Gc
dA
TC

24
2/

1
2

K
ill

ed
(0

,0
7s

)
K

ill
ed

(0
,3

5s
)

K
ill

ed
(4

6s
/0

,6
s)

X
/K

ill
ed

(0
,1

5s
)

12
6

90
4

K
ill

ed
(0

,0
8s

)
K

ill
ed

(0
,0

8s
)

X
/K

ill
ed

(0
,1

2s
)

X
/K

ill
ed

(0
,5

s)
20

6
13

8
7

K
ill

ed
(0

,1
0s

)
K

ill
ed

(0
,1

0s
)

X
/K

ill
ed

(0
,4

s)
X

/K
ill

ed
(0

,6
5s

)
33

3
22

0

Ra
nd
om
AT
C

52
3/

1
2

K
ill

ed
(0

,2
5s

)
K

ill
ed

(0
,2

5s
)

K
ill

ed
(0

,2
4s

)
K

ill
ed

(0
,2

4s
)

30
3

21
3

4
K

ill
ed

(0
,8

s)
K

ill
ed

(0
,8

s)
K

ill
ed

(0
,8

s)
K

ill
ed

(0
,8

s)
66

7
43

3
7

K
ill

ed
(3

,5
s)

K
ill

ed
(3

,4
7s

)
K

ill
ed

(3
,6

s)
K

ill
ed

(3
,5

9s
)

15
13

94
3

.

Table 4.4: For each program Name,
LOC is the number of state-
ments in the original pro-
gram, #I/O represents the
number of inputs and out-
puts involved in the gen-
erated test case, #It repre-
sents the number of itera-
tions for the loop-unrolling,
V1,V2,V3 and V4 designate
four different mutants of the
program, #CO designates
the number of MINION
constraints whereas #VarCO

designates the number of
variables associated to the
MINION constraint system.
The table indicates the time
necessary to identify a suit-
able test case, able to ”kill”
the mutant. X stands for not
being able to kill the mutant
within less than 2 hours

103

Chapter 4. Extensions

faults. However, the idea found application in model-based mutation testing, where distinguishing
test cases are generated from mutated models and then executed on an implementation. Very early,
Tai and Su [105] proposed algorithms for generating test cases that guarantee the detection of Boolean
operator errors in electronic circuits.

The closest work to ours is [41, 42]. In these papers the authors described the use of constraint
solving for test case generation. They also make use of similar conversion techniques. In contrast to
the previous work we are focusing on computing distinguishing test cases to be used for debugging
and also for test case generation based on program mutations.

4.2.2. Mutation Based Debugging

In the previous section we introduced a constraint based algorithm for generating distinguishing test
cases for two different programs written in L . This can be useful both in testing and debugging.
In this section we focus on the later and explain how the debugging process can be improved using
distinguishing test cases together with repair suggestions generated by program mutation. In particular
we show how test cases can be generated to distinguish potential diagnosis candidates. A potential
diagnosis candidate, or diagnosis candidate for short, is a statement that can explain why the test cases
fail. A diagnosis candidate needs not to be the real bug. But the real bug should be included in the list
of diagnosis candidates delivered by an automated debugger.

The main idea behind this approach is to first compute the conflict set by applying the algorithm
introduced in Chapter 3 and then for every element of the conflict set try to generate all possible
corrections. We do this by implying mutation, i.e., for each statement which is part of the conflict set
we generate the set of all possible mutants. We then analyze which mutated versions of the program
passes all the test cases (positive and negative) of the test suite. Further discrimination is done by
computing distinguishing test cases between the passing mutants.

We now consider the following code snippet to illustrate our combined debugging and testing ap-
proach. We use this small program to avoid introducing too much technical overhead and to focus on
the underlying idea.

104

4.2. Mutation Based Debugging

...
1. i = 2 * x;

2. j = 2 * y;

3. o1 = i + j;

4. o2 = i * i;

...

We cannot say anything about the correctness of such a code fragment without any additional spec-
ification knowledge. Let us assume that we also have the following test case specifying expected
outputs for the given inputs: x = 1, y = 2, o1 = 8, o2 = 4. Obviously, the program computes
the outputs o1 = 6 and o2 = 4, which contradicts the given test case. Therefore, we know that there
is a bug in the program and we have to localize and correct it. At this stage we might use different
approaches for computing potential fault locations. If using the data and control dependencies of the
program, we might traverse the dependencies from the faulty outputs to the inputs backward. In our
example, we are able to identify statements 1, 2, and 3 as potential candidates.

A different way to locate bugs is to consider statements as equations and to introduce correctness as-
sumptions (as proposed in Chapter 3). If the test case together with the assumptions and the equations
are consistent, the assumptions stating incorrectness of statements can be used as potential diagnosis
candidates. Consider we are looking only for single faults. Let’s assume Statement 1 to be faulty, i.e.,
AB(S1) = true, and all other statements to be correct. As a consequence, Statement 1 does not deter-
mine a value for variable i, hence i can have any other value except the one implied by the behavior
of S1. However, from Statement 4 and the test case (o2 = 2,y = 2) we can conclude that i has to be
2 (if assuming only positive integers). This results in o1 = i+ j = 4. But the value of o1 from the
test case is o1 = 8 hence a contradiction of the given test case appears. Therefore, the assumption that
Statement 1 is a diagnosis candidate cannot be correct.

By implying the same reasoning for making and checking correctness assumptions for the other
statements of the program we finally obtain statements 2 and 3 as diagnosis candidates. That is two of
the four program statements must be investigated. If in the case of a small program we may investigate
a small number of statements, for larger programs we must consider a larger number of potential
diagnosis candidates. In this situation, further discrimination is required. One possible solution is
the integration of specification knowledge. Another solution is to ask the user about the expected
value of intermediate variables (sort of breakpoint) like i or j for specific test cases. This approach
requires more or less executing the program stepwise. Moreover, especially in the case of software

105

Chapter 4. Extensions

maintenance where a programmer is not very familiar with the program answering questions about
values of intermediate variables, both approaches can hardly be implemented. Therefore, we suggest
computing test cases that allow distinguishing between diagnosis candidates. More specifically, we
are searching for inputs that reveal a different behavior of diagnoses candidates. In case no such
distinguishing test case can be computed, the diagnosis candidates are, from the perspective of their
input output behavior, equally good.

What prevents us from applying the approach of distinguishing test cases to distinguish diagnosis
candidates is the fact that the fault localization approaches only give us information about the incor-
rectness and correctness of some statements but not about the correct behavior of potentially faulty
statements. Hence, computing test cases is hardly possible. In order to solve this problem we borrow
the idea of mutation or genetic-based debugging [112, 30]. Mutants, i.e., variants of the original pro-
gram, are computed and tested against a test suite. The mutants that pass all test cases are potential
diagnosis candidates. Computing mutants for all statements and testing them against the test suite is
very time consuming and some techniques for focusing on relevant parts of the program have been
suggested. In our case, we are able to use the diagnosis candidates for focusing on relevant parts of
the program. Hence, when finding a mutant for a diagnosis candidate that passes all test cases, we do
not only localize the bug, but also state a potential correction.

According to our proposed approach, for the example program, we must compute mutants for
statements 2 and 3, i.e., for the fault candidates. For the sake of simplicity let’s presume that we
compute only one mutation per conflict. Let m1 and m2 be the mutants for statements 2 and 3, e.g.:
S2 : j = 2∗ y; /m1 :2. j=3*y and
S3 : o1 = i+ j; /m2 :3. o1=i+j+2.

It can be easily seen that both proposed mutants pass the original failing test case (x = 1, y = 2,

o1 = 8, o2 = 4), that is they are both eligible repair suggestions for the existent bug. Obviously
there are more mutations available but for illustrating the distinguishing test cases we only use these
two now. A distinguishing test case for these mutants is x = 1, y = 1. Mutant m1 computes the
value 5 and mutant m2 the value 6 for the output variable o1. If we know the correct value of o1 (via
an oracle, e.g., the user or the program’s specifications), we are able to distinguish the two mutants
and eliminate the candidate which explanation (mutant) failed to pass the generated distinguishing
test case. From this example we conclude that we are able to discriminate between the diagnosis
candidates by means of distinguishing test cases. What remains an open research issue is to provide
empirical evidence that the approach is feasible and provides a reduction of diagnosis candidates when

106

4.2. Mutation Based Debugging

applied to general programs.

In this section, we introduce and discuss the approach and tackle the research question regarding
the approach’s practical applicability, with some exceptions. The programs used for the empirical
evaluation are small programs and they mainly implement algebraic computations. Moreover, we do
not handle object-oriented constructs. However, we do not claim to answer the research question com-
pletely. We claim that the approach can be used for typical programs comprising language constructs
like conditionals, assignments, and loops. The structures of the used programs are similar to those of
larger programs or at least we do not see why there should be any big differences.

Next we present the theoretical background of our approach. We introduce the basic definitions
and a new program serving as running example. Since the debugging approach is based on a model
of the program, we briefly introduce the constraint representation of the example program that serves
our purpose in the next section. This model can be used for debugging as well as for computing
distinguishing test cases. We then introduce the diagnosis algorithm using constraints and mutations.
Last we present and discuss the obtained empirical results and the related research.

Discriminating between the Bug candidates

The proposed approach uses the models of programs to compute the mutants and to perform debug-
ging. The class of debugged programs adopts the syntax of the language L . We further restrict the data
domain of the language to integers and booleans. In Figure 4.9 we state an example program, which
serves as running example. The program implements the division of two natural numbers where a bug
is introduced in Line 1.

For computing the conflict set we rely on the framework proposed in Chapter 3. The definitions
of the debugging problem, of a test case and of distinguishing test cases, are given in Section 3.1,
Definition 4.2.1. Implying the prior definitions and algorithms, in the context of our work, we still
need to formally define program mutation.

Definition 22 (Mutant) Given a program Π and a statement SΠ ∈ Π. Further let S′
Π

be a statement
that results from SΠ when applying changes like modifying the operator or a variable. We call the
program Π′, which we obtain when replacing SΠ with S′

Π
, the mutant of program Π with respect to

statement SΠ.

107

Chapter 4. Extensions

1. tmp = (a + 1); // ERROR

2. if (b == 0) {

3. result = -1;

} else {

4. result = 0;

5. while (tmp > 0) {

6. result = result + 1;

7. tmp = tmp - b;

}}

Figure 4.9.: A program for dividing two natural numbers

Example 10. Let’s presume that in the program Π ∈ L from Fig. 4.9 we change statement 1.tmp =

(a+1); to tmp = a;. Then the resulted program Π′ ∈ L ,

1. tmp = a;

2. if (b == 0) {

3. result = -1;

} else {

4. result = 0;

5. while (tmp > 0) {

6. result = result + 1;

7. tmp = tmp - b;

}}

is called the mutant of Π with respect to statement 1. In this special situation the chosen mutant is
also the correct repair suggestion for the bug introduced in the program from Fig. 4.9.

Program mutation together with generation of distinguishing test cases, can be used for improving
the debugging results in combination with any debugging engine as long as access to the source code
is provided. In our case we use our constraint based approach to compute the conflict set. For the
resulted conflict set we compute all mutants. The stepwise process for integrating the mutation-based
add-on is:

108

4.2. Mutation Based Debugging

1. The first step comprises the computation of bug candidates, i.e., program statement that might
cause the revealed misbehavior, from the constraint representation of a program Π ∈ L .

2. In the second step, for each candidate, a set of mutants is computed that would lead to a new
program passing all previously failing test cases. If no such mutant can be found, the bug
candidate is removed from the list of potential candidates.

3. In the third step, distinguishing test cases are computed. These allow choosing between two
randomly selected bug candidates. The third step can be executed several times to further reduce
the number of bug candidates.

The first step has already been detailed in the previous chapters. What we still have to explain are the
last two steps of the mutation based debugging process. We do that in what follows.

Let CONΠ be the constraint representation of a program Π and CONT the constraint representation
of a failing test case T . The debugging problem formulated as a CSP comprises CONΠ together with
CONT . Note that in CONΠ assumptions about correctness or incorrectness of statements are given,
which are represented by a variable AB assigned to each statement. The algorithm for computing bug
candidates calls the CSP solver using the constraints and asks for a return value of AB as a solution.
The size of the solution corresponds to the size of the bug, i.e., the number of statements that must be
changed together in order to explain the misbehavior. We assume that single statement bugs are more
likely than bugs comprising more statements. Hence, we ask the constraint solver for smaller solutions
first. If no solution of a particular size is found, the algorithm increases the size of the solutions to be
searched for and iterates calling the constraint solver. This is done until either a solution is found or
the maximum size of a bug, which is equivalent to the number of statements in Π, is reached.

For the sake of clarity we present a simplified version of the CSP Conversion&Debugging (Algo-
rithm 4, Chapter 3) algorithm, which is given in Algorithm 8.

For example, for the constraint system corresponding to the program from Fig. 4.9 the constraint
solver MINION finds 5 possible explanations for the failing test case I : (a 0 = 0,b 0 = −250),O :
(result 7 = 0) in less the 0.1s. This result is very satisfactory, especially with respect to computation
time. However, further steps might be performed in order to reduce the size of the bug candidates.
For this purpose we suggest to use mutations.

Assume a faulty program Π and a failing test case (I,O). Let DAB be the set of bug candidates
obtained when calling Algorithm 8 on the constraint representation of Π and (I,O). The following
algorithm makes use of program mutations for further restricting DAB.

109

Chapter 4. Extensions

Algorithm 8 CSP Debugging (Π,T)

Require: A constraint representation CONΠ of a program Π, and a constraint representation CONT

of a failing test case T .
Ensure: A set of minimal bug candidates DAB.

1: Let i be 1.
2: while i ≤ number of statements in Π do
3: Call the constraint solver over CON(Π,T) to search for solutions regarding the AB variables,

where only i statements are allowed to be simultaneously incorrect.
4: if constraint solver returns a non-empty set of solution then
5: DAB = solution set.
6: return DAB.
7: end if
8: Otherwise, let i be i+1.
9: end while

10: return the empty set as result.

Algorithm 9 Generate Valid Mutants (DAB,Π,T)

Require: A set of bug candidates DAB, the faulty program Π, and the failing test case T .
Ensure: A set of mutants MutΠ of program Π.

1: Let MutΠ be the empty set.
2: for all elements d ∈ DAB do
3: Generate all mutants of program Π with respect to the statements from d and store them in

VMut .
4: Add every program Π′ ∈VMut passing test case T to MutΠ.
5: end for
6: return MutΠ.

Algorithm 9 (Generate Valid Mutants) returns for the faulty program Π a set of repair possibili-
ties MutΠ. Due to the usage of the debugging algorithm CSP Debugging (Algorithm 8), we compute
the repair only for the resulting bug candidates set DAB. A mutant is part of MutΠ, i.e., a repair, if and
only if it is able to pass the failing test case T . If more test cases are available, a mutant has to pass all
of them in order to be considered correct. Hence, we expect that the number of bug candidates can be

110

4.2. Mutation Based Debugging

reduced. Moreover, since mutation is only applied for bug candidates we do not need to compute all
possible mutations even in the case when they cannot explain the revealed misbehavior.

Definition 23 (Fault Explanations Set) Let MutΠ be the set of mutants resulted after applying the
Generate Valid Mutants algorithm (Algorithm 9) for the tuple (DAB,Π,T). Let Mi ⊆ MutΠ be the
set of all mutants of program Π computed with respect to a diagnosis Di ⊆ DAB, such that ∀Mi,M j ⊂
MutΠ, i 6= j, Mi ∩M j = {φ} then

⋃
i=1..|DAB|Mi = MutΠ. We call MutΠ the explanations set for the

failure of program Π on a test case T . This set can also be used for computation of a valid repair
suggestion.

The number of repair possibilities for a statement of the DAB set is strongly tied to the capabilities
of the used mutation operators and the used mutation tool. Because of this fact this part of the ap-
proach is as good as the available capability of the used mutation tool. Note that after applying the
Generate Valid Mutants algorithm, in our experiments we were able to eliminate between 20% and
60% of the bug candidates. That happened because of the inability of the suggested repair to pass the
test case. Hence, filtering based on mutations was very successful.

The last step of our algorithm comprises the integration of distinguishing test cases to further reduce
the bug candidates set. Let MutΠ be the set of mutants for a program Π obtained after applying
the Generate Valid Mutants algorithm. And let CONMutΠ be the constraint representation of the
programs from MutΠ.

Algorithm 10 (DistingTC Generator) searches, i.e., generates, a test case that can distinguish
between two mutants. The algorithm in the current form is restricted to finding only one pair of such
mutants, but can be easily changed in order to compute several different pairs where a distinguishing
test case is available. The algorithm generates a valid test case which has the property that is both
correct with respect to the program specification and is able to eliminate at least one mutant. We use
the resulted test case against the remaining mutants, i.e., step 23, and eliminate the mutants failing on
it. The only disadvantage of this algorithm is that Step 10 requires an interaction with an oracle. If
no automated oracle is available, user interactions are required and prevent the approach from being
completely automated.

To solve the constraint system resulted at step 9 we use the MINION constraint solver. Another
particularity of this approach is that, for the CSP to be solvable, the name of the variables of the
two mutants should differ. This is however an encoding problem which can be easily overcome by
encapsulating in the name of each variable the name of the mutant file.

111

Chapter 4. Extensions

Algorithm 10 DistingTC Generator (DAB,Π,T)

Require: A set of valid repair possibilities, MutΠ, for a faulty program Π and their constraint repre-
sentation CONMutΠ .

Ensure: A subset of MutΠ.
1: Let Tested be empty.
2: if ∃ mutants Π′,Π′′ ∈MutΠ with (Π′,Π′′) /∈ Tested then
3: Add (Π′,Π′′) to Tested and proceed with the algorithm.
4: else
5: return MutΠ.
6: end if
7: Let CONΠ′ and CONΠ′′ ∈ CONMutΠ be the constraint representation of programs Π′ and Π′′ re-

spectively.
8: Let CONTC be the constraints encoding InputΠ′ = InputΠ′′ = I∧Out putΠ′ 6= Out putΠ′′ .
9: Solve the CSP: CONΠ′ ∪CONΠ′′ ∪CONTC using a constraint solver.

10: Let O be the correct output for the original program Π on input I (derived from user interaction
or specifications).

11: if Out putΠ′ = O∧Out putΠ′′ 6= O then
12: Delete Π′′ from MutΠ.
13: end if
14: if Out putΠ′′ = O∧Out putΠ′ 6= O then
15: Delete Π′ from MutΠ.
16: end if
17: if Out putΠ′ 6= O∧Out putΠ′′ 6= O then
18: Delete Π′ and Π′′ from MutΠ.
19: end if
20: if (CSP has no solution) then
21: go to step 2.
22: end if
23: for all Π′ ∈MutΠ do
24: if Π′ fails on generated test case (I,O) then
25: Delete Π′ from MutΠ.
26: end if
27: end for
28: return MutΠ.

112

4.2. Mutation Based Debugging

When using the above approach for the example from Fig. 4.9 we are able to reduce the conflict set
to one element, which was also the correct one. For more information regarding distinguishing test
cases and their computation using MINION, we refer the interested reader to [124].

Regarding step 2 of the DistingTC Generator algorithm (Algorithm 10): if more than one conflict
exists, it is preferred to first choose the pair of mutants such that, they are not belonging to the set of
explanations of the same fault candidate. This increases the chances of finding a valid distinguishing
test case, but also of eliminating a fault candidate without the necessity of generating new distinguish-
ing test cases. This property is important when the main focus is debugging. If we already reduced the
conflict set to one element, then we can use the distinguishing test case approach in order to identify
the best repair suggestion to the user.

To obtain the program’s set of mutants relative to the set of fault candidates we rely on the JAVA
mutation tool MuJava [127]. MuJava is a Java based mutation tool, which was originally developed
by Offut, Ma, and Kwon. Its main three characteristics are:

1. Generation of mutants for a given program.

2. Analysis of the generated mutants.

3. Running of provided test cases.

Due to the new implemented add-ons, the tool supports a command line version for the mutation
analysis framework, which offers an easy integration of the tool in the testing or debugging process.

Offutt proved that the computational cost for generating and executing a large number of mutants
can be expensive, and thus he proposed a selective mutation operator set that is used by the MuJava
tool. It works with both types of mutation operators:

• Method level mutation operators (also called traditional), which modify the statements inside
the body of a method;

• Class level mutation operators, which try to simulate faults specific to the object oriented
paradigm (for example faults regarding the inheritance or polymorphism).

For our experiments we take into account only the traditional mutation operators, i.e., at method
level. As we do not support object oriented programs, the Class level operators are ignored. Moreover,
we further restrict the mutation operators to mutations on expressions comprising deletion, replace-
ment, and insertion of primitive operators (arithmetic operators, relational operators, conditional oper-
ators, etc.). Mutation by deletion of operands or statements was proved to be inefficient [2]. Because

113

Chapter 4. Extensions

of the selected tools there are currently some limitations of our implementation. If the bug is on the
left hand side of an assignment we cannot correct it. Another limitation is with respect to constants. If
the bug is due to an initialization, MuJava is not able to generate any mutants. Missing statements are
another limitation of the approach. We currently do not consider bugs because of missing statements.
Finally, there is a limitation regarding multiple bugs in one statement. In this case the MuJava tool
is not able to mutate more than one variable or operator per statement and mutant, i.e., each mutant
contains only one change when compared with the original program (this limitation is however easy to
overcome). The last problem regarding mutation is that sometimes equivalent mutants are generated.
For example if we have statement a = b+ c and MuJava generates for this statement the mutants:

m1: a = b+c+1;

m2: a = b+c+(2-1);

then, m1 and m2 are told to be equivalent mutants, i.e., they are both describing the same semantically
functionality. There exist mechanisms through which equivalent mutants are detected and removed,
however this is not always feasible.

4.2.3. Empirical Results

We tested our approach against a set of faulty programs. In each program we injected a single fault.
All the faults are found at the right-hand side of the assignment operator and with the exception of the
tcas03 program all faults are functional faults. We used as test oracle the original bug free version of
each faulty program. Using the output values of the original bug-free program we were able to decide
which of the mutants are to be eliminated after computing the distinguishing test cases. In a real life
situation we cannot benefit from the existence of such a program. Therefore, we must rely on the user
or a given formal specification to determine the correct output for a given input.

The process of mutant generation, program to CSP conversion, and the computation of the con-
flict set are fully automated. However the generation of the distinguishing test cases require user
intervention to decide which test case is valid with respect to the correct behavior of the program.

In order to obtain the empirical results, we applied the following process. For each program we first
performed the conversion into its constraint representation. Then, we computed the fault candidates.
For each fault candidate, i.e., faulty statement, we computed all its possible mutants. We eliminated
from the generated set of mutants all mutants which were not able to pass the error revealing test case.

114

4.2. Mutation Based Debugging

In addition, we tested the number of oracle-interactions required to obtain the minimal set of faulty
components. By an oracle-interaction we understand repeating the DistingTC Generator (Algorithm
10) algorithm until no other distinguishing test case can be generated, i.e., each time we applied the
algorithm we asked the oracle, i.e., the original fault free program in our case, to provide the correct
output for the generated test case.

The results of the empirical study are given in Table 4.5. In most cases we were able to eliminate
more than half of the initial fault candidates set. Reducing the diagnosis candidates by eliminating
those candidates where no mutant that passes the original test suite can be found, is very effective.
The use of distinguishing test cases further reduces the number of fault candidates. Thus finally, only
one diagnosis candidate remains, which was always the correct one. When using larger programs like
tcas a reduction to one diagnosis candidate was not possible. However, even in this case the approach
leads to a reduction of more than 60% regarding the computed diagnosis candidates.

Another factor, which influences the quality of the obtained results, is the way of choosing the
mutant pairs for computing distinguishing test cases. There is no way to predict if a certain pair of
mutants will produce the best or worst distinguishing test case. Therefore, we randomly selected
the pair of mutants when carrying out the empirical evaluation. For example, we observed that after
trying out all mutant pairs for the DivATC V4 program the best distinguishing test case would lead to
1 element in the conflict set contrary to 3 as given in Table 4.5.

Another particularity of Table 4.5 is that, columns #UI and |DiagTC|, for some entries, have more
than one value. This values indicate after how many user iterations, #UI, the minimal number of
fault candidates |DiagTC| was obtained, and how this number evolved at each user iteration, e.g., for
GcdATC V 2 after 5 user iterations only one fault candidate remains, whereas for SumPowers V 2 only
after two iterations the conflict was isolated.

It is also worth noting that computing the diagnosis candidates and the distinguishing test cases
using the CSP solver MINION was very fast. For all examples, the necessary time never exceeded
0.3 seconds using a Pentium 4 Dual core 2 GHz with 4 GB of RAM computer. Hence, for smaller
programs or program parts that can be separately analyzed like methods, the proposed approach is
feasible.

115

Chapter 4. Extensions

N
am

e
It

Va
r Π

L
O

C
Π

In
pu

ts
O

ut
pu

ts
L

O
C

SS
A

|C
O
|

Va
r C

O
|D

ia
g|

|D
ia

g fi
lt
|

#U
I

|D
ia

g T
C
|

D
iv

A
T

C
V

1
2

5
21

2
1

32
33

29
3

2
1

2
D

iv
A

T
C

V
2

2
5

21
2

1
32

33
29

5
3

1
1

D
iv

A
T

C
V

3
2

5
21

2
1

32
33

29
3

2
1

2
D

iv
A

T
C

V
4

2
5

21
2

1
32

33
29

4
4

1/
2

3(
1)

/1
G

cd
A

T
C

V
1

2
6

35
2

1
49

61
46

2
2

1
1

G
cd

A
T

C
V

2
2

6
35

2
1

49
61

46
10

3
1/

2/
3/

4/
5

3/
3/

2/
2/

1
G

cd
A

T
C

V
3

2
6

35
2

1
49

61
46

2
2

1
1

M
ul

tA
T

C
V

1
2

5
16

2
1

26
24

19
2

2
1

1
M

ul
tA

T
C

V
2

2
5

16
2

1
26

24
19

2
2

1
1

M
ul

tA
T

C
V

3
2

5
16

2
1

26
24

19
2

2
1

1
M

ul
tA

T
C

V
4

2
5

16
2

1
26

24
19

5
2

1
1

M
ul

tV
2A

T
C

V
1

2
6

20
2

1
49

67
46

6
2

1
1

M
ul

tV
2A

T
C

V
2

2
6

20
2

1
49

67
46

2
1

1
1

M
ul

tV
2A

T
C

V
3

2
6

20
2

1
49

67
46

6
1

1
1

Su
m

A
T

C
V

1
2

5
18

2
1

27
24

20
2

2
1

1
Su

m
A

T
C

V
2

2
5

18
2

1
27

24
20

3
2

1
1

Su
m

A
T

C
V

3
2

5
18

2
1

27
24

20
5

2
1

1
Su

m
Po

w
er

s
V

1
2

11
36

3
1

72
87

70
16

6
1/

2/
3/

4
4/

4/
2/

2
Su

m
Po

w
er

s
V

2
2

11
36

3
1

72
87

70
11

6
1/

2
2/

1
Su

m
Po

w
er

s
V

3
2

11
36

3
1

72
87

70
11

1
1

1
tc

as
08

1
48

12
5

12
1

12
5

98
13

2
27

13
1/

2/
3/

4
11

/1
1/

11
/1

0
tc

as
03

1
48

12
5

12
1

12
5

98
13

2
27

13
1/

2/
3/

4
13

/1
2/

9/
9 Table 4.5: Each program Name, has

associated a number of
iterations It, the number
of variables Varπ, its size
given in lines of code
LOCΠ, the number of
inputs Inputs, number
of outputs Outputs, the
size of its SSA repre-
sentation given as lines
of codeLOCSSA, the
number of MINION con-
straints |CO|, the number
of MINION variables
over which the constraint
system is defined VarCO,
the number of fault
candidates |Diag|, the
size of the conflict set
resulted after applying
Generate Valid Mutants
algorithm, |Diagfilt|, the
number of calls to the
DistingTC Generator
algorithm, #UI to obtain
the number of fault
candidates |DiagTC|.

116

4.3. Conclusion

4.2.4. Related research

In [72] the authors present a method for combining model based debugging with spectrum based
techniques for further reducing the fault candidates set. They rely also on a debugging engine for
computing the conflict set, and based on spectrum-based techniques they rank the fault candidates
according to their probabilities to be the cause for program’s failure. They rely both on positive
and negative test cases for computing this ranking. However this technique does not eliminate any
of the fault candidates and can sometimes mislead the user, as the highest ranked component must
not always be the actual fault. Another limitation of the approach is the fact that, in the case that
the used coefficient (Ohciai) ranks the same for all faulty components, no discrimination is possible.
Contrary to this, our work combines model based debugging with distinguishing test case generation
and mutation to reduce the fault candidates set. Hence in our case the conflict set is reduced to a
smaller one but no ranking is possible between the components. A combination of both methods
would be interesting and would most probably lead to an improvement of the debugging results.

In [112] and more recently [30], the authors describe the application of mutations and genetics
programming to software debugging. In order to avoid computing too many mutants, the authors use
focusing techniques based on dependencies and spectrum-based methods respectively. The use of
mutations is similar to our work. The difference is that we are using constraint-based debugging for
focusing and integration of testing for reducing the size of the conflict set, which, to the best of our
knowledge, has not been introduced before.

4.3. Conclusion

In order to improve the diagnostic precision, we first extended our approach by integrating specifica-
tion knowledge into the Framework proposed in Chapter 3. Such knowledge is provided by program
annotations like pre- and postconditions or loop invariants.By integrating specification knowledge in
the debugging process we managed to obtain considerable gains with respect to the size of the con-
flict set. However computing the right annotation is not always easy. This restricts somehow the
approach only to programs well specified. Another advantage of this method is the possibility to
use pre- and post-condition for modularizing the debugging process at method level, i.e., isolates the
method where the error may be and focus the debugger on it. Finally we provide the first empirical
results for model-based debugging based on constraint representation and specification knowledge.

117

Chapter 4. Extensions

In particular, we compare the diagnostic results obtained with and without using loop invariants. Our
results clearly demonstrate the advantage of integrating specification knowledge wrt. the number of
statements which are eliminated as possible fault candidates.

The second extension which we tackle in this chapter is the integration of mutation and distinguish-
ing test cases for reducing the conflict.

A distinguishing test case for two programs is a test case that reveals different values for the output
variables of the programs when using the same input. The application areas are automated test case
generation based on program mutations and fault localization. With respect to mutation testing, the
distinguishing test cases serve the following purposes: The tests are defined to kill the set of known
mutants, which would not be useful in itself. However, these test cases (1) can be used as a basis
for further regression testing, (2) they guarantee a certain coverage in the code (it is well-known
that mutation coverage subsumes classical coverage criteria, like e.g. branch coverage), (3) via the
mutation testing assumption of the coupling effect, these test cases will detect more subtitle faults in
the program. With respect to fault localization distinguishing test cases are of interest for reducing the
number of fault candidates.

Besides test case generation, we make use of distinguishing test case approach to extend and im-
prove the results of a debugger. If we could compute repair suggestions over a conflict set (several per
conflict) and try to distinguish them via a test case and an oracle (which decides upon the correctness
of the output), we could further eliminate conflict explanation (together with the conflict).

Hence we proposed an approach for restricting the number of potential diagnosis candidates by
providing distinguishing test cases. A distinguishing test case for two diagnosis candidates is charac-
terized by a set of inputs that reveal different executions for both diagnosis candidates such that they
can be distinguished with respect to their output behavior. Just using the distinguishing test case alone,
we are not able to decide which diagnosis candidate to remove or if we should eliminate both from the
list of candidates. This can only be done after consulting a test oracle, e.g., the user or a formal specifi-
cation, for the expected output of the distinguishing test case. Candidates where the computed output
is not equivalent to the expected one can be eliminated. The advantage of this approach is that only
the input-output behavior of a program is used for distinguishing diagnosis candidates. Moreover,
the approach computes additional test cases based on their discriminating power for distinguishing
diagnosis candidates. Usually, test cases are generated for fulfilling coverage criteria like statement
coverage or branch coverage.

Apart from the theoretical contribution, we present first empirical results of the mutation and dis-

118

4.3. Conclusion

tinguishing test cases approach. The results indicate that the approach allows a substantial reduction
of the diagnosis candidates. For smaller programs we were able to reduce the diagnosis candidates
to the real bug. Obviously, this was not always the case. For larger programs more diagnosis candi-
dates remain. This has been somehow expected because programs cannot be usually corrected only
by replacing one statement with another. Instead, the right repair actions might comprise changes at
different positions in the program.

119

120

Chapter 5
Complexity

In Chapter 3 we started a discussion about the complexity of our approach, there we show that the
algorithm for converting a program into its constraint representation, has a complexity of O(N2). The
last open issue is with respect to the actual complexity of debugging. In our proposed framework (see
Chapters 3 and 4) we make use of constraints to encode the debugging problem. Hence the complexity
of debugging is, in our case, given by the complexity of solving the resulted constraint system.

A CSP can be solvable in either PTIME or can be NP complete. The question is: can we guarantee
that for every debugging problem (Π,TC) the resulted CSP is always solvable in polynomial time? In
this chapter we answer this question and show that for every program Π ∈ L , the constraint system
associated to its debugging problem (Π,TC) can be solved in polynomial time. Moreover we identify
a metric capable of indicating the complexity of debugging a certain program.

The objective of this chapter is not to provide a new model for debugging but instead to focus on
the computational requirements in terms of running time needed for finding all minimal faults in the
source code given a failing test case. A worst case estimation considers the computational complexity
of the program to be debugged and the computational complexity of the debugging itself. In the case
of model-based diagnosis all subsets of the set of components, i.e., program statements, have to be
considered. This estimation is very coarse and needs to be improved in order to be of practical interest.
In particular, we aim to provide a complexity measure for debugging, given the debugging problem,
i.e., the source code of a program and a test suite.

Thorup [107] presented a similar approach on stating complexity of certain tasks on given programs.

121

Chapter 5. Complexity

In his paper the focus is on program analysis methods used in compiler construction. The main
contribution is that there is a close relationship between the complexity and the use of programming
language constructs like goto-statements. Hence, the complexity, given in terms of tree width [14],
depends on the programming language. It is worth noting that Thorup’s work is not directly of use in
the case of debugging because of its dynamic nature.

This chapter relies on the following prior published papers:

• Converting Programs into Constraint Satisfaction Problems [121];

• On the Compilation of Programs into their equivalent Constraint Representation [122];

• On the complexity of program debugging using constraints for modeling the programs syntax
and semantics [126];

We extend Thorup’s work on the dynamic case. In particular, we consider a constraint representa-
tion of programs to be used for debugging [18, 84, 85, 122]. Moreover, instead of tree width we use
hypertree width [43, 44, 45, 46] as a measure of the structural properties of programs. Using these
two ingredients of our approach, we are able to identify the reasons for the debugging complexity.

The structure of this chapter is as follows. In Section 5.1 we start by introducing the underlying the-
ory behind the structural tractability of a constraint system. Here we also reflect on previous theorems
stating the relationship between the debugging problem and the hypertree width and give a summary.
Section 5.2 introduces the theory behind computing complexity from the structural representation of
the constraint system associated to the debugging problem. In Section 5.3 we present the results of our
complexity study, correlating the debugging time with different metrics and analyzing the relationship
between them. In Section 5.4 we draw our conclusions.

5.1. Structural properties of a CSP

Our model based debugger implies the use of a state-of-the-art constraint solver for computing the
debugging results. That is, both the program Π and the error revealing test case TC, which describe
the debugging problem (Π,TC), are converted into a constraint system. Furthermore, each constraint
system, based on the constrains scopes, has associated a hypergraph describing the dependencies
that are established between different constraints. We propose to use the structural properties of

122

5.1. Structural properties of a CSP

T Ssimple ={
({red= 1,blue= 5,green= 8,yellow= 2},

{sweet= 40,sour= 40,salty= 7,bitter= 49})

}
When executing simple using the test case in T Ssimple the program delivers

wrong values for sweet, sour, and bitter as outputs.

1. red = 2 * red; // BUG: red=5*red;

2. sweet = red * green;

3. sour = 0;

4. i = 0;

5. while (i < red) {

6. sour = sour + green;

7. i = i + 1; }

8. salty = blue + yellow;

9. yellow = sour + 1;

10. bitter = yellow + green;

Figure 5.1.: The program simple adapted from [48]

the constraint system, i.e., its hypergraph, to decide the complexity of a given debugging problem
(Π,TC).

We start by first explaining the basic notions about the structural properties of a constraint system.
This, among others, includes: the definition of hypergraph, constraint graph, hypertree decomposition,
tree decomposition, hypertree width and the tree width.

Throughout this chapter we use the program from Fig. 5.1 as running example. Its SSA represen-
tation (for two iterations) is given in Fig. 5.2.

Theorem 2 (Solution Equivalence) Given a program Π, its SSA representation Π′ and its corre-
sponding CSP CΠ, then the value assignments of the variables in Π′, which are caused by executing
Π′ on an input I are a solution to the corresponding CSP CΠ and vice versa.

This holds now directly for debugging and we are interested in classifying programs with regard
to their debugging complexity. We define debugging complexity as a measure that corresponds to the

123

Chapter 5. Complexity

1. red 1 = 2 * red 0; //scope (1): (red 1, red 0)

2. sweet 0 = red 1 * green 0; //scope (2): (sweet 0, red 1, green 0)

3. sour 0 = 0; //scope (3): (sour 0)

4. i 0 = 0; //scope (4):(i 0)

5. cond 0 = (i 0 < red 1); //scope (5):(cond 0, i 0, red 1)

6. sour 1 = sour 0 + green 0;//scope (6):(sour 1, sour 0, green 0)

7. i 1 = i 0 + 1; //scope (7):(i 1, i 0)

8. cond 1 = cond 0 && (i 1 < red 1); // scope (8):(cond 1, cond 0, i 1, red 1)

9. sour 2 = sour 1 + green 0; //scope (9): (sour 2, sour 1, green 0)

10. i 2 = i 1 + 1; //scope (10):(i 2, i 1)

11. i 3 = φ(i 2, i 1, cond 1); //scope (11):(i 3, i 2, i 1, cond 1)

12. sour 3 = φ(sour 2, sour 1, cond 1);//scope (12):(sour 3, sour 2, sour 1, cond 1)

13. i 4 = φ(i 3, i 0, cond 0); // scope (13): (i 4, i 3, i 0, cond 0)

14. sour 4 = φ(sour 3, sour 0, cond 0); //scope (14): (sour 4, sour 3, sour 0, cond 0)

15. salty 0 = blue 0 + yellow 0;// scope (15):(salty 0, blue 0, yellow 0)

16. yellow 1 = sour 4 + 1; // scope (16): (yellow 1, sour 4)

17. bitter 0 = yellow 1 + green 0; // scope (17): (bitter 0, yellow 1, green 0)

Figure 5.2.: The SSA form corresponding to the program from Figure 5.1 for two iteration unrolling.
Additionally each statement has associated the scope of the derived constraint.

124

5.1. Structural properties of a CSP

complexity of computing a solution using CSP algorithms. In the following, we discuss structural
properties of CSPs, which can be used for classification and which are based on the hypergraph
representation of programs.

Definition 24 (Constraint scope) Let CO be a set of constraints over a set of variable V , defined on
the set of domains D. For all constraints Ci ∈CO, i = 1..|CO|, the set of all variables Vi ⊆V involved
in the relation Ci is called the scope of the constraint Ci. The set of all constraints scopes is called
the scheme of the constraint system.

Example 11. Let’s presume we have the following three-constraints system (one boolean and two
arithmetical) : C1 : a∗b = c
C2 : a+d < 10
C2 : a1+a2 = result
D = {Da,Db,Dc,Dd ,Da1,Da2,Dresult}
V = a,b,c,d,a1,a2,result

The scope of constraint C1 is (a,b,c), for C2 we have (a,d) and for C2, (a1,a2,result).

In Fig. 5.2 for each SSA statement we depict the resulted constraint scope. We ignore the abnormal
and the auxiliary variables required by the specific constraint modeling language.

Based on the scopes involved in the constraints of CO we build the graphical representations of the
structural dependencies of the constraint system. The graphical representation of a CSP is used to
compute the complexity of the debugging process.

Definition 25 (Graph and Hypergraph) A graph is a pair {V,E}, where V = v1...vn is a set of ver-
tices, and E = {(vi,v j)|vi 6= v j ∧ vi,v j ∈ V} a set of edges. A hypergraph is a pair (HV,HE), where
HV is a set of vertices and HE a set of hyperedges. Each hyperedge is a non-empty subset of HV ,
HE = {HE1...HEt} ⊆ HV ; i.e., it may connect more than two vertices.

Definition 26 (Constraints Graph) The graph of a constraint system is an undirected graph (V,E)
where the vertices V are the constraint’s variables, and ∀vi,v j ∈V , vi 6= v j, if vi,v j are involved in at
least one common constraint scope, there exists one and only one edge (vi,v j) ∈ E, whereas the set E
represents the edges of the constraints graph.

The graph corresponding to the program from Fig. 5.2 is given in Fig. 5.3.

125

Chapter 5. Complexity

�����

�����

�������

�	����

������

	
���

	
���

��������

���

	
���

���

���

	
���

	
���

�	����

���

���
������

��
���

����	���

����	���

Figure 5.3.: The constraint graph corresponding to the program from Fig.5.2

126

5.1. Structural properties of a CSP

Definition 27 (Tree Decomposition[81]) A tree decomposition of a hypergraph (V E,HE) is a pair
< T,χ > where T = (V,E) is a rooted tree, and χ is a labeling function which associates to each
vertex v ∈V the set χ(v)⊆V E such that:

1. For every hyperedge h ∈ HE there exists v ∈V such that scope(h)⊆ χ(v)

2. For each variable of the hypergraph, vi ∈V E the set {vt ∈V |vi ∈ χ(vt)} induces a subtree of T

Every hypergraph that contains cycles can be converted into a hypertree by implying hypertree
decomposition techniques. The following definition is adapted from [46].

Definition 28 (Constraints hypergraph) The hypergraph of a constraint system is a tuple (V,HE),
where V is the variables set of the constraint system, and the hyperedges set is defined by HE =

{{scope(Ci)}|∀Ci ∈CON}, where function scope(Ci) returns a subset of V designating the scope of
constraint Ci. Hence the hypergraph for a CSP represents variables as vertices and the constraint
scopes as edges.

It is well known that solving a CSP is NP-complete. However, there are CSPs that can be solved in
polynomial time. CSPs whose corresponding hypergraph is acyclic can be solved in polynomial time
[31]. From Definition 28 we know that the induced hypergraph of a CSP can easily be obtained by
creating a vertex for each variable, and an edge for each constraint. Because solutions to CSPs with
acyclic hypergraphs can be computed fast, the question remains whether all CSPs can be converted to
an equivalent CSP with an acyclic hypergraph. Four our class of programs, the answer to this question
is yes. By joining constraints we are able to finally compute such a CSP but at the cost of increasing
the number of constraint tuples. Therefore, it is of interest to find an equivalent acyclic CSP where
only a small number of constraints have to be joined. This problem is referred to as composition
problem and hypertree decomposition [45, 44].

Definition 29 (Hyper Tree) A hypertree (HE,E) is an acyclic rooted hypergraph (V E,HE), where
the hyperedges {∀HEi ∈ HE,HEi ⊆ V E} become the tree vertices and the tree edges connect every
two hyperedges that share at least one common variable vi ∈V E.

Every hypergraph that contains cycles can be converted into a hypertree by implying hypertree
decomposition techniques. The following definition is adapted from [46].

Definition 30 (Hypertree Decomposition) [46] A hyper tree decomposition of a hypergraph (V E,HE)
is a triple < T,χ,ψ > where T = (V,E) is a rooted tree, and χ and ψ are labeling functions which
associate with each vertex v ∈V two sets χ(v)⊆V E and ψ(v)⊆ HE satisfying the following:

127

Chapter 5. Complexity

{1, 17} {red_1, red_0, green_0, yellow_1, bitter_0}

{15} {salty_0, blue_0, yellow_0} {2} {red_1, sweet_0, green_0} {8, 17} {red_1, green_0, cond_0, cond_1, yellow_1}

{12, 14, 17} {green_0, sour_0, cond_0, sour_1, cond_1, sour_3, yellow_1}

{2, 12} {green_0, sour_1, cond_1, sour_2, sour_3}

{14, 16} {sour_0, cond_0, sour_3, sour_4, yellow_1}

{8, 11} {red_1, cond_0, i_1, cond_1, i_2, i_3}

{5, 11} {red_1, i_0, cond_0, i_1, i_3}

{13} {i_0, cond_0, i_3, i_4}

Figure 5.4.: The hypertree corresponding to the constraint system resulted from the program given in
Fig. 5.2

1. For every hyperedge h ∈ HE there exists v ∈V such that h ∈ ψ(v) and scope(h)⊆ χ(v)

2. For each variable of the hypergraph, vi ∈V E the set {vt ∈V |vi ∈ χ(vt)} induces a subtree of T

3. For each vt ∈V , χ(vt)⊆ (ψ(vt))

4. For each vt inV , scopes (ψ(vt))∩χ(Tvt)⊆ χ(vt), where Tvt = (Vvt ,Evt) is the subtree of T rooted
at vt and χ(Tvt) =

⋃
u∈Vvt

χ(u)

Definition 31 (Hypertee width) The hypertree width of a hypertree decomposition is given by hw =

maxv(ψ(v)), i.e., the maximum of constraints joined in one vertex of the hyper tree.

From now on we presume that by hypertree width we always refer to the optimal hypertree decom-
position.

The hypertree decomposition of the program from Fig. 5.2 is given in Fig. 5.4. The hypertree width
of the resulted hypertree is hw = 3, i.e.,{12,14,17}. That is the maximum number of constraints that
have to be joined in order to remove all the cycles of the program is 3.

5.2. Estimating complexity

What are the consequences when joining constraints for the computational complexity? In [43] the
authors state that worst case scenario for computing a solution to a CSP is limited by O(|I|hw ∗ log|I|),

128

5.2. Estimating complexity

where hw is the hypertree width and |I| designates the input size. The smaller hw is, the faster we can
compute a solution to a CSP, i.e., a small hw indicates a reduced solving complexity and vice versa.
Hence finding the best decomposition is crucial for solving the constraint system.

Lemma 3 (Optimal hypertree decomposition) A hypertree decomposition is optimal if its hyper-
tree width is the smallest possible from all possible hypertree decompositions.

Computing the best hypertree decomposition is NP hard. Most of the proposed algorithms compute
an approximation of the best decomposition. For computing the hypertree decomposition and the
hypertree width we relied on an implementation provided by [53] which employs the Bucket Elimi-
nation algorithm [81] found in Algorithm 11. Note that this algorithm is an approximation algorithm,
i.e., it does not always generate the optimal hypertree decomposition with a minimal width. However,
as reported in [8], the algorithm which performs the optimal decomposition is very time and space
demanding and is therefore not suitable for practical use, and the Bucket Elimination algorithm in
most cases provides better approximations than other known approximation algorithms.

The tree decomposition resulted from Algorithm 11 is a hypertree decomposition 〈T,χ,ψ〉 if it
satisfies the extra constraint:
Let 〈T : (B,E),χ〉 be the tree decomposition returned by the Bucket Elimination algorithm, then for
each p ∈ B, χ(p)⊆ ψ(p).

If a node Bvi ∈ B of the tree decomposition resulted after applying the Bucket Elimination algo-
rithm does not fulfill the above condition, the authors of [81] suggest adding hyperedges from the
original hypergraph to the node until the additional property is satisfied.

For more information on hypertree decomposition and a comparison of different hypertree decom-
position we refer the interested reader to [46]. The hypertree width is the number of constraints to be
joined in order to obtain an acyclic CSP. A small hypertree width is an indicator for the tractability of a
problem. The hypertree width is a number between 1 and the number of constraints. Hence, knowing
the hypertree width of programs should also be an indicator for the computational complexity of the
corresponding debugging problem, which is of practical interest.

This work is however limited to extensional or table constraints, i.e., for each constraint all allowed
tuples are fully specified in a table. A solution to such a CSP is found by applying the join operator
over constraints that share common variables. If after applying the join operator, there exist tables
with 0 tuples, we say that the CSP has no solution.

129

Chapter 5. Complexity

Algorithm 11 Bucket Elimination (H = (V,HE),σ), given in [81]

Require: A hypergraph H = (V,HE) and a variable ordering σ = (v1...vn),
⋃

i=1..n vi =V .
Ensure: A tree decomposition 〈T,χ〉.

1: let B = and E = .
2: for all vi ∈V do
3: Introduce an empty bucket Bvi such that (χ(Bvi) = {φ})
4: end for
5: Fill the buckets Bv1 ...Bvn such that:
6: for all h ∈ HE do
7: Let v ∈ h be the maximum vertex of h according to the ordering σ

8: χ(Bv) = χ(Bv)∪h
9: end for

10: for i = n...2 do
11: Let A = χBvi{vi}
12: Let v j ∈ A be the highest vertex smaller than vi according to ordering σ

13: χ(Bv j) = χ(Bv j)∪A
14: E = E ∪ (Bvi ,Bv j)

15: end for
16: return 〈(B,E),χ〉 where B = Bv1 ...Bvn .

Hence, the use of hypertree width as a complexity measure was originally relevant for table or
extensional constraints, i.e., for every relation of the constraint system, all allowed combination of
values are explicitly specified in a table which has a column for each variable from the constraint’s
scope. For cycle-free hypergraphs this implies only semi join operation over the tables. Additionally,
for a hypertree decomposition < T,χ,ψ >, T = (V,E), for all v ∈ V , with ψ(v) ≥ 2 a natural join
between the constraints is required.

Example 12. Given the constrains:
C1 : a+b = c
C2 : d− c = e
0 < e < 2
D = {0..2}
The extensional representation is:

130

5.2. Estimating complexity

{2} {red_1, sweet_0, green_0}

{10} {salty_0, blue_0, yellow_0}

{1} {red_1, red_0}

{5, 6} {red_1, green_0, sour_0, i_0, cond_0, sour_1}

{2, 9} {green_0, sour_0, cond_0, sour_1, sour_2}

{2, 11} {green_0, sour_2, yellow_1}

{12} {green_0, yellow_1, bitter_0}

{8} {i_0, cond_0, i_1, i_2}

Figure 5.5.: The hypertree corresponding to the constraint system resulted from the program given in
Fig. 5.1 for one loop iteration.

C1 a b c

1. 0 0 0
2. 1 0 1
3. 0 1 1
4. 1 1 2
5. 2 0 2
6. 0 2 2

C2 c d e

1. 0 0 0
2. 0 1 1
3. 1 1 0
4. 1 2 1
5. 0 2 2
6. 2 2 0

C1 ∧ C2 ∧ C3 a b c d e

1. 0 0 0 1 1
2. 1 0 1 2 1
3. 0 1 1 2 1

There exists a tight relationship between the number of iterations used for unrolling a program’s
loops and the hypertree width. For example the hypertree decomposition of the hypergraph corre-
sponding to the one loop iteration version of the program from Fig 5.1, results in an hypertree width
of 2, see Fig. 5.5. Whereas the hypertree decomposition of the hypergraph corresponding to the two
iterations version has a hypertree width of 3, see Fig. 5.4.

In the following we discuss the consequences of the debugging model in terms of complexity. In
particular we are interested whether the hypertree width is bounded for such a model or not. In [107]
the author proved that structured programs have a hypertree width of 6 in the worst case. Unfortu-
nately, the result is based on considering only the control flow graph and not the data flow, which is
sufficient for some tasks to be solved in compiler construction. The following theorem shows that the

131

Chapter 5. Complexity

result of [107] cannot be applied in the context of debugging where the control and data flow is of
importance.

Theorem 3 (Hypertree width upper bound) There is no constant upper-bound for the hypertree
width of arbitrary programs.

Proof: We prove this theorem indirectly. We assume that there is a constant value which serves as
upper-bound for all programs and show that there is a class of programs where this assumption does
not hold. Consider the class of programs that is obtained running the following algorithm for n > 0:

1. Let Πn be a program comprising an empty block statement.

2. For i = 1 to n do:

a) For j = i+1 to n do:

i. Add the statement
x j,i = xi,i−1 + x j,i−1

at the end of the block statement of program Πn.

3. Return Πn.

In this class, programs have n inputs and 1 output. Every variable depends on any other directly or
indirectly via another variable. Hence, the hypertree width depends on the number of statements and
there is no constant value, which contradicts our initial assumption. 2

Note that there is always an upper-bound of the hypertree width of a particular program, which
is given by the number of statements. However, the above theorem states that there is no constant
which serves as upper-bound for all programs. What is missing is a clarification whether the number
of nested if-statements after loop-unrolling has an influence on the hypertree width. If the hypertree
width of a program comprising a while-statement depended on the number of considered iterations,
then the complexity of debugging would heavily depend on the used test cases. Fortunately this is not
the case as it is stated in the following theorem.

Theorem 4 (Maximal upper bound of a program) Given an arbitrary program Π comprising at
least one while statement, there always exists an upper bound on the hypertree width when the number
of iterations increases.

132

5.2. Estimating complexity

Exte
rn

all
y i

nd
uc

ed
 cy

cle

Exte
rn

all
y i

nd
uc

ed
 cy

cle

Ext
er

na
lly

 in
du

ce
d

cy
cle

External variables dependecies

C
om

m
on

 v
ar

ia
bl

es

(1) {C1
1....C

1
k}, HW: K

(2) {C2
1....C

2
k}, HW: K

(it) {Cit
1....C

it
k}, HW: K

C
om

m
on

 v
ar

ia
bl

es

Common variables

C
o
m

m
o
n
 v

a
ri
a
b
le

s

C
o
m

m
o
n
 v

a
r
ia

b
le

s

C
o

m
m

o
n

v
a

r
i
a

b
l
e

s

(it-1) {Cit-1
1....C

it-1
k}, HW: K

Figure 5.6.: The worst case-scenario of a partial hypertree-decomposition for an it-iterations loop un-
rolling (without the external dependencies)

Proof:

For this proof we make use of Fig. 5.6. We start by analyzing how an while structure affects the
overall hyper tree width when unfold. Let’s presume that {C1...Ck} are the constraints of the while
block. Presume that in a worst case scenario, all constraints of the block have to be joined to remove
all cycles from the hypergraph induced by {C1...Ck}, i.e., the hypertree width of the resulted hypertree
decomposition is k. Naturally the same hypertree width corresponds to the other iterations of the while
loop. Basically if we have it iteration the hypertree induced by the unrolling of a loop has a depth of
it and a worst case scenario hypertree width of k. Hence increasing the number of iterations always
induces a constant hypertree width which is always≤ than the number of statements, i.e., constraints,
from the while block. In the worst case scenario, when all k constraints are joined, the unrolling of
the while-structure is actually an acyclic hypergraph (as depicted in Fig. 5.6). Each iteration shares
common variables only with its prior (except the first iteration) and the next iteration (except the last
iteration). In this situation there exist no cycles induced by the internal structure of the hypergraph
resulted from unrolling the while loop and, hence, no need to join any other constraints (see Fig. 5.6).

The next point to be tackled is analyzing the dependencies created between the external variables
and the statements of the while block. Clearly these dependencies are the same for all iterations and

133

Chapter 5. Complexity

(1) {C1
1....C

1
k}

(2) {C2
1....C

2
k}, HW: k

(it) {Cit
1....C

it
k}, HW: k

(it-1) {Cit-1
1....C

it-1
k}, HW: k

jo
in HW: k+t{Ce

1...Ce
t}

Figure 5.7.: The worst case-scenario of the hypertree-decomposition of the structure given in Fig. 5.6

induce external cycles in the hypergraph (see Fig. 5.6).

From the definition of the hypertree decomposition (Definition 30),we see that in order to remove
the cycles created by the external variables, it is enough (worst-case scenario) to join the constraints
of the first loop iteration with the external constrains. The resulted hypertree decomposition is given
in Fig. 5.7 and has the hypertree width equal with the hypertree width of the first loop iteration. In the
worst case scenario the resulted hypertree width is (k+ t), where k is the number of the original loop
body statements and t is the total number of external constraints which influence the loop’s body. The
other iterations do not have any influence on the hypertree width, hence it is bounded by the behavior
of the first iteration and the external dependencies.

2

In our original approach we used an extensional representation of our constraint system and used
the T REE∗ [103] solving algorithm for computing the fault candidates set for the faulty programs.
The problem is that for larger programs the extensional representation of constraints is no longer
feasible with respect to computation time and memory requirements.

As described in Chapter 3, we changed the modeling of our constraint system into the language of
MINION. The MINION solver uses Partial Assignment Membership (PAM) propagators [47] together

134

5.3. Experimental Results

with backtrack search for computing the solutions to a CSP. The question which we now answer is:
Can the hypertree width further be an indicator of the debugging complexity?

Deciding if the resulted constraint system is tractable means in our case deciding if the PAM rep-
resentation of the constraint system is tractable. From [47] we know that a PAM representation is
tractable only if the following theorem holds:

Theorem 5 (PAM tractability [47]) Given any list of structures H, generate the list of structures
H ′ by removing from members of H all isolated vertices. Then the PAM representation of all multi-
hypergraphs of H is tractable if and only if H ′ is of bounded arity and has bounded hypertree width.

For our class of programs H is equal to the list of constraints scopes. We know that all constraints
have bounded arity, i.e., the hyperedges and that the hypertree decomposition of the CSP’s hypergraph
always has a bounded hypertree width (Theorem 4). Hence the PAM representation of our constraint
system, remains tractable.

We now try to identify the relationship between the complexity of solving the constraint system
and the hypertree width. We know that in the case of the extensional representation this relationship
is tight, e.g., a hypertree width of 6 is an indicator of a complex problem.

The relationship between the hypertree width and the running time for diagnosis has not been
explored before. We discuss an experimental study using a number of programs in the next section.

5.3. Experimental Results

In order to answer the question whether the hypertree width is a good indicator of the debugging
complexity given a constraint representation we conducted a set of experiments. We implemented
the conversion process and the debugging algorithm. In our implementation we make use of the
MINION constraint solver [40] to find solutions for the debugging problem. It is interesting to note
that MINION does not rely on the join operator but on PAM propagators. Therefore, it is even more
interesting to give an answer to the question whether the hypertree width, as a representative of the
structural properties of the constraint system, still remains a good complexity indicator even for PAM
propagators.

To empirically answer this question, we tested our approach over a set of Java programs ranging
from 10 LOC up to 1,360 LOC respectively between 21 and 2,000 LOC in the SSA form. The

135

Chapter 5. Complexity

Figure 5.8.: Running time vs. the LOC for the SSA
form

Figure 5.9.: Running time vs. HT width

Figure 5.10.: Average running time vs. HT width

136

5.3. Experimental Results

associated hypertree widths range from 2 up to 30. We implemented the conversion as described in
Chapter 3 in the language of Java. For each program containing loops we compute different versions
of loop elimination, ranging from 2 up to 21 iterations. Further, we compute the hypertree width using
the decomposition tool from [53], which implies bucket elimination [81].

We performed all the experiments on a Intel Pentium Dual Core 2 GHz PC with 4 GB of RAM
machine. Table 5.1 summarizes the obtained results. The given time is for reading the MINON
files and computing all minimal cardinality diagnoses. In the experiments only single faults were
considered.

From the data in Table 5.1 we obtained the Figures 5.8 and 5.9 that show the relation between
the running time for computing all solutions and the lines of code (LOC) of the SSA form, and the
hypertree width, respectively. It can be seen that in both cases there is a relationship but there is also a
huge variance especially when the LOC or hypertree width increases. Note that the data indicates the
LOC to be a better estimator of the running time than the hypertree width. However, in Figure 5.10 is
depicted the average running time divided by the LOC of the SSA form depending on the hypertree
width. In this case there is a very strong correspondence, showing that the hypertree width is a good
indicator of the running time on average. Moreover, we also computed the correlation coefficient for
the three cases:

Parameter 1 Parameter 2 Correlation coeff.

Time LOC SSA 0.8401
Time/LOC SSA Hypertree width 0.7426

Avg. Time/LOC SSA Hypertree width 0.9016

We see that the best correlation is between the average time divided by the LOC of the SSA form
and the hypertree width.

Regarding the applicability of the approach for debugging the obtained numbers showed that even
programs of up to 2,000 LOC can be debugged in less than 1 1/2 minutes when using constraint
solving. Hence, the approach can be effectively used for debugging methods in the context of object-
oriented systems.

137

Chapter 5. Complexity

5.4. Conclusions

In this section we reflect on the objective to state whether there is a relationship between the hypertree
width of the constraint representation of a program, and the running time of debugging. For this
purpose, we described how a program can be compiled into a constraint representation and discussed
the obtained empirical results. From the obtained results we are able to say that programs up to 2,000
LOC can be debugged in less than 1 1/2 minute. Moreover, with a correlation coefficient of 0.9 we can
state that there is a high correlation between the hypertree width and the average debugging running
time divided by the LOC. In addition to this result, we obtained a strong correlation between the LOC
and the running time. Hence, both measures are good for estimating the running time and the average
running time of debugging. We are now able to summarize all findings regarding the influence of
hypertree width to debugging: (1) there is an upper bound of the hypertree width with respect to the
number of iterations considered to obtain the constraint model, (2) the hypertree width correlates with
the average running time divided by LOC, and (3) the latter correlation is higher than the correlation
between the running time and LOC.

138

5.4. Conclusions

Name It VarΠ LOCΠ Inputs Outputs NoWhiles LOCSSA |CO| VarCO Time |Diag| HW

Binomial
1

37 189 6 3 16
233 329 244 1.544 5 13

· ·
4 1277 2261 1480 61.589 5 30

BinSearch
1

8 37 3 1 1
44 54 48 0.031 3 3

· ·
21 484 1014 748 4.633 213 14

ComplexHypertree
1

9 39 4 1 1
41 44 31 0.031 5 3

· ·
21 421 804 431 4.492 32 18

Data
1

5 40 1 1 1
34 33 32 0.046 11 3

· ·
21 254 513 392 1.263 0 9

DivATC
1

5 21 2 1 1
27 23 23 0.015 3 2

· ·
21 127 223 143 0.546 68 8

GcdATC
1

6 35 2 1 1
38 40 33 0.015 4 3

· ·
21 258 460 293 1.139 8 9

Hamming
1

15 77 2 1 5
85 97 79 0.171 7 3

· ·
5 1169 2117 1331 53.384 71 17

MultATC
1

5 16 2 1 1
21 14 13 0.015 3 1

· ·
21 121 214 133 0.281 4 8

MultV2ATC
1

6 20 2 1 2
28 26 21 0.015 10 2

· ·
16 1393 2741 1656 46.051 14 13

RandomATC
1

8 53 3 1 4
63 90 73 0.031 3 5

· ·
16 1578 3105 1888 31.106 8 12

SumATC
1

5 18 3 1 2
22 14 14 0.015 3 1

· ·
21 122 214 134 0.421 7 6

SumPowers
1

11 36 3 1 2
46 41 40 0.046 6 2

· ·
16 1486 2621 1750 79.576 872 18

whileTest
1

16 94 4 1 3
77 81 67 0.141 12 2

· ·
7 275 477 283 2.324 28 8

tcas01 1 48 125 12 1 0 125 98 132 0.265 28 5
tcas22 1 48 125 12 1 0 125 98 132 0.250 8 5
tcas41 1 48 125 12 1 0 125 98 132 0.265 27 5

IscasC432V1 1 199 412 1 1 0 415 633 744 2.121 5 10
IscasC432V2 1 199 412 1 1 0 415 633 744 2.091 3 10
IscasC432V3 1 199 412 1 1 0 415 633 744 2.153 7 10

replaced 1 192 1256 3 1 11 1929 4236 2420 24.192 144 30

Table 5.1.: Each program Name, has associated a number of iterations It, the number of variables
VarΠits size given in lines of code LOCΠ, the number of inputs Inputs, number of out-
puts Outputs, the number of contained while structures NoWhiles the size of its SSA
representation given as lines of codeLOCSSA, the number of MINION constraints |CO|,
the number of MINION variables over which the constraint system is defined VarCO, the
time in which MINION found all solutions Time, the number of diagnosis candidates
|Diag| and the hypertree width associated to the CSP’s hypergraph HW.

139

140

Chapter 6
My Conclusions and Future Work

”Nothing in the world that’s worth having comes easy” - Dr. Kelso , Scrubs TV Series.

In this last chapter of my thesis I took the liberty of being a little more informal about my work.
Each chapter of my thesis already contains a section comprising the conclusions of the work presented
in it. So, please refer to this if you would like to know more about a specific topic presented in this
thesis.

What I intend to do in this part of my thesis is to present an overview of my work together with my
view about the future of debugging.

In the spirit of how I began, I will end up my thesis, by telling a short story.

In one of my lectures I once ask my students (third year bachelors) how many of them used an
automated debugger. The answer was, as expected, none. Nobody tried to use one of the automated
debugging tools. Hmmm... no need of debugging perhaps? I asked them another question regarding
debugging, but this time I wanted to know how many of them used a symbolic debugger so far. The
answer was: less than 50%. The last question which I asked was regarding how many of them used
(at least once) the ”insert print statements” -method to identify the fault. Almost all of them admitted
to do so when confronted with a bug.

The truth is that, there exists no coding without the need to debug. So, why don’t we use more
advanced techniques but rely instead on the ”old fashion way” to isolate the bug? I think this question

141

Chapter 6. My Conclusions and Future Work

should puzzle all of us, from the debugging community. We have a lot of model based debugging
algorithms, spectrum based algorithms and lately mutation based debugging algorithms but no real
industrial tool.

The problem is that no unification between the different approaches exists. We have the algorithms,
the scientific-implementations (with quite a lot of restrictions on the input program), but there is no
real desire to implement state of the art tools which can be used in the more general case for debugging
high level programing languages, like Java or C++. A combination of the available techniques would
be more than appropriate and would definitely lead to an improvement of the results. Even more, it
was proven that by combining different debugging approaches the scalability problem can be solved.

For example, in this thesis we showed that by combining program mutation with constraint repre-
sentation and distinguishing test cases, the efficiency of the algorithm increases. The same happens if
we integrate specification knowledge in our approach. However the main drawback of our algorithm
is with respect to scalability. We can be efficient (small computation times) only for programs of rel-
atively small size (up to thousand lines of code). Hence we can use our approach to debug programs
at method level or for debugging small embedded software systems. But if we combine our method
with, let’s say, spectrum based technique, and focus only on the components that are high ranked we
could use it to debug larger programs.

So, as far as I am concerned, there are two ”moral” issues which I would still like to address in a
future research:

• Industry. trying to make my implementation of the algorithm to work, not only under a set
of restriction but also on the general case, e.g., object oriented. In addition I would really like
to see how different techniques would work together. For the moment I am concentrating on
spectrum based and specification knowledge for improving the scalability of my approach. A
good example in software debugging is Microsoft that delivered its Microsoft Visual Studio
2010 with an integrated spectrum based debugger: Holmes. In hardware diagnosis there exists
the RODON tool which proved to be quiet efficient in identifying the faulty components of a
system’s model (based on its symptoms, i.e., observations).

• Communication. The debugging community is becoming smaller and smaller with every year,
but still it remains a ”one man’s game”. It would be interesting if we could form some sort of
exchange networking, where we could develop together algorithms and, why not, strategies for
making our techniques as close as possible to the user requirements. Since 2009 there exists

142

6.1. Trivia

within the Workshop on Principles of Diagnosis (DX), a competition which tries to unify and
compare the available diagnosis techniques. But this ”only” after 20 years of DX existence.
This year, DX was even co-located with an industry-closed conference. So perhaps in the near
future more steps would be made by the community in this direction.

6.1. Trivia

This part of my theses gathers personal thoughts about the three years that I spent at TU-Graz. This
period was both for my personal and professional experience of most importance (although very often
my personal life was my professional life or vice-versa).

As I started the project I did not knew much about program debugging, and asked myself back then
(like I, after two years, asked my students) if it is possible for a tool to really debug a program and
also be feasible. When I started working on the project we used the TREE* algorithm for debugging
programs. It worked perfectly fine for boolean programs but was a ”horror” when it dealt with large
domains variables. There was however a good part to it. It gave us the idea of using the structural
properties of the program’s constraint system hypergraph to measure the complexity of debugging.
The higher the number of cycles in the graph (measured by the hypertree width) the higher the time
for debugging (due to backtracking). They correlated more than perfect, that is for the extensional
representation. But debugging was still hard to perform, e.g., it took us, for large domain variables,
more than 20 minutes to debug a 20 lines of code program. Surely that was not feasible.

Next, we tried to use a state of the art constraint solver, together with a new encoding of the debug-
ging problem, and I came up with MINION. It was proven to be a very efficient and scalable solution.
We could finally debug large methods written in Java (I have made also an Eclipse plug-in version of
it). Afterwards we tried to integrate annotations, which was nice but not very practical and last we
integrated program mutation together with distinguishing test cases, which I personally found to be
very promising. We tried again to see if the structural representation of the programs is a good indi-
cator of the tractability of the debugging problem. To some extend, as I showed in this work, it still
is. However, not as accurate, as in the case of using the extensional representation of the constraint
system.

Another interesting activity during my stay at TU-Graz, was teaching and working with the stu-
dents. By teaching two bachelor-lectures and one master-lecture I understood that the best ideas come

143

Chapter 6. My Conclusions and Future Work

not from a ”big-bang”, which you have in the middle of night (although I do not exclude the possi-
bility of this happening), but by asking yourself or be asked the right questions. I am not saying that
all students had the right questions (there exist no silly questions, only silly answers), but sometimes
there was that ”one question” that help me better understand a problem or a topic, and finally help me
come up with the right answer. Hence, never be afraid of asking yourself or be asked questions (as
long as the question is well intended) and most important (also a lesson learned when I taught) do not
be afraid of the ”I don’t know” answer. It’s no crime to say this, that is, as long as you will try to know
the answer by the end of the day.

So, my advice to someone who thinks about doing a PhD, would be: don’t start a PhD because you
want to be a ”Doctor”; it does not worth it. Start it in the pursuit of finding answers to questions which
bring something, not just to yourself but also to others. Do not try to slip between, but walk straight
and you will see that in the end you will gain far more satisfaction for your achievements, far more
knowledge and far more expertise, as in the case when you would have ”cheated” the system just to get
the title. Cause a title without the knowledge that it presumes, becomes in reality an embarrassment...

Last, I should ask myself the question: ”Did it worth it?”. Absolutely. As long as you are doing
it with passion for science I would say it’s worth it. Being paid to learn is no bad deal. And, writing
a PhD, implies a lot of reading, sometimes traveling, and always learning. For me it was a period
of important changes both in the way I saw myself and in the way I saw the world. A period which
brought me a lot (professionally and -especially- personally), which opened my mind and offered me
the chance to experiment things (again professionally and personally) that otherwise I don’t think I
would have had the chance to experiment. For all this, I am grateful and say, if I were to go back in
time, I would do it all over again...

144

List of Theorems
and Definitions

List of Definitions

Definition 1. Syntax of expressions EXP . 33

Definition 2. Syntax L . 34

Definition 3. Semantics of EXP . 35

Definition 4. Semantics of L . 35

Definition 5. Grammar . 36

Definition 6. Test case . 39

Definition 7. Test suite . 39

Definition 8. Debugging problem . 39

Definition 9. Correctness Assumption . 39

Definition 10. Diagnosis . 40

Definition 11. Conflict . 40

Definition 12. Conflict Set . 40

Definition 13. σ(S) - Mapping original program↔ SSA 56

Definition 14. CONΠ - Constraint representation of Π . 58

145

List of Theorems and Definitions

Definition 15. Constraint representation of test cases . 60

Definition 16. Γ(∆) . 61

Definition 17. Diagnosis - constraint encoding . 61

Definition 18. Strongest postcondition . 84

Definition 19. Weakest Precondition . 84

Definition 20. Integration of assertions into CONΠ . 91

Definition 21. Distinguishing test case . 99

Definition 22. Mutant . 107

Definition 23. Fault Explanations Set . 111

Definition 24. Constraint scope . 125

Definition 25. Graph and Hypergraph . 125

Definition 26. Constraints Graph . 125

Definition 27. Tree Decomposition[81] . 127

Definition 28. Constraints hypergraph . 127

Definition 29. Hyper Tree . 127

Definition 30. Hypertree Decomposition . 127

Definition 31. Hypertee width . 128

Theorems, Corollaries, and Lemmas

Lemma 1. Minimum diagnosis . 40

Lemma 2. Minimal Conflict . 40

Theorem 1. Conversion . 60

Theorem 2. Solution Equivalence . 123

Lemma 3. Optimal hypertree decomposition . 129

146

Theorem 3. Hypertree width upper bound . 132

Theorem 4. Maximal upper bound of a program . 132

Theorem 5. PAM tractability [47] . 135

147

148

Bibliography

[1] A. GRIESMAYER, R. B. AND COOK., B. 2006. Repair of boolean programs with an application
to C. Proc. 18th Conference on Computer Aided Verification (CAV’06), 358–371. (Cited on
page 20.)

[2] A. J. OFFUTT, A. LEE, G. R. R. U. AND ZAPF, C. 1996. An experimental determination of
sufficient mutation operators. ACM Transactions on Software Engineering Methodology 5, 99–
118. (Cited on page 113.)

[3] ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. 2006. On the accuracy of spectrum-
based fault localization. In Proceedings TAIC PART’07. IEEE, 89–98. (Cited on pages 25 and 26.)

[4] ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. 2008. An observation-based model for
fault localization. In WODA’08, Procedings of the 6th Workshop on Dynamic Analysis, B. Liblit
and A. Rountev, Eds. ACM Press, Seattle, WA, USA, 64–70. (Cited on page 25.)

[5] ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. 2009. Spectrum-based multiple fault
localization. In Proc. IEEE/ACM International Conference on Automated Software Engineering
(ASE). 88–99. (Cited on page 25.)

[6] ALICE. Alice programming language. http://www.ps.uni-saarland.de/alice/papers.html. (Cited
on page 23.)

[7] ALUR, R., COURCOUBETIS, C., AND YANNAKAKIS, M. 1995. Distinguishing tests for nonde-
terministic and probabilistic machines. In STOC ’95: Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing. ACM, 363–372. (Cited on page 102.)

149

Bibliography

[8] ARTAN DERMAKU, TOBIAS GANZOW, G. G. B. M. N. M. M. S. 2005. Heuristic methods for
hypertree decompositions. DBAI-TR-2005-53. (Cited on page 129.)

[9] ATKINSON, R. joke adapted from rowan atkinson. http://www.berniecode.com/blog/. (Cited on
page 9.)

[10] B. PEISCHL, N. R. AND WOTAWA, F. 2008. Model-based reasoning with multiple test cases
and its application to debugging. In Proceedings of the 19th International Workshop on Principles
of Diagnosis DX 2008, 315–323. (Cited on pages 40 and 82.)

[11] BAAH, G. K., PODGURSKI, A., AND HARROLD, M. J. 2008. The probabilistic program de-
pendence graph and its application to fault diagnosis. In Proceedings of the ACM/SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA). 189–200. (Cited on page 23.)

[12] BINKLEY, D. AND HARMAN, M. 2004. A survey of empirical results on program slicing. In
Advances in Software Engineering – Advances in Computers Vol. 62, M. Zelkowitz, Ed. Academic
Press Inc., 106–172. See also citeseer.ist.psu.edu/661032.html. (Cited on page 23.)

[13] BLOG, G. T. Google testing blog. http://googletesting.blogspot.com/. (Cited on page 17.)

[14] BODLAENDER, H. L. 1993. A linear time algorithm for finding tree-decompositions of small
treewidth. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing. ACM, New York, NY, USA, 226–234. (Cited on page 122.)

[15] BOND, G. W. 1994. Logic Programs for Consistency-Based Diagnosis. Ph.D. thesis, Carleton
University, Faculty of Engineering, Ottawa, Canada. (Cited on page 29.)

[16] BOND, G. W. AND PAGUREK, B. 1994. A Critical Analysis of “Model-Based Diagnosis Meets
Error Diagnosis in Logic Programs”. Tech. Rep. SCE-94-15, Carleton University, Dept. of Systems
and Computer Engineering, Ottawa, Canada. (Cited on page 29.)

[17] BRANDIS, M. M. AND MÖSSENBÖCK, H. 1994. Single-pass generation of static assignment
form for structured languages. ACM TOPLAS 16(6), 1684–1698. (Cited on page 49.)

[18] CEBALLOS, R., GASCA, R. M., VALLE, C. D., AND BORREGO, D. 2006. Diagnosing errors in
dbc programs using constraint programming. Lecture Notes in Computer Science 4177, 200–210.
(Cited on pages 29, 43, 83, 96, and 122.)

[19] CHOCO TEAM, T. 2008. choco: an open source java constraint programming library. In In: The
Third International CSP Solver Competition. 31–40. (Cited on page 54.)

150

Bibliography

[20] CHOMSKY, N. 1956. Three models for the description of language. IRE Transactions on Infor-
mation Theory, 113124. (Cited on page 37.)

[21] CLEVE, H. AND ZELLER, A. 2005. Locating causes of program failures. In Proc. 27th Inter-
national Conference on Software Engineering (ICSE 2005). St. Louis, Missouri, USA. (Cited on
page 28.)

[22] COLLAVIZZA, H. AND RUEHER, M. 2007. Exploring different constraint-based modelings
for program verification. In In Principles and Practice of Constraint Programming (CP 2007).
Providence, RI, USA, 49–63. (Cited on pages 16, 42, 54, and 96.)

[23] CONSOLE, L., FRIEDRICH, G., AND DUPRÉ, D. T. 1993. Model-based diagnosis meets error
diagnosis in logic programs. In Proceedings 13th International Joint Conf. on Artificial Intelli-
gence. Chambery, 1494–1499. (Cited on pages 29 and 31.)

[24] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991.
Efficiently computing static single assignment form and the control dependence graph. ACM
TOPLAS 13, 4, 451–490. (Cited on pages 49 and 51.)

[25] DALAL, S. R., JAIN, A., KARUNANITHI, N., LEATON, J. M., LOTT, C. M., PATTON, G. C.,
AND HOROWITZ, B. M. 1999. Model-based testing in practice. In ICSE ’99: Proceedings of
the 21st international conference on Software engineering. ACM, New York, NY, USA, 285–294.
(Cited on page 31.)

[26] DALLMEIER, V., L. C. AND ZELLER, A. 2005. Lightweight defect localization for java.
Springer-Verlag, Proceedings of the 19th European Conference on Object-Oriented Programming
(ECOOP05) 3586, 528550. (Cited on pages 27 and 28.)

[27] DAN HAO, LINGMING ZHANG, L. Z. J. S. AND MEI, H. 2009. Vida: Visual interactive
debugging. Proceedings of the 2009 IEEE 31st Internationa Conference on Software Engineering,
583–586. (Cited on page 28.)

[28] DAVIS, R. 1984. Diagnostic reasoning based on structure and behavior. Artificial Intelli-
gence 24, 347–410. (Cited on page 20.)

[29] DE KLEER, J. AND WILLIAMS, B. C. 1987. Diagnosing multiple faults. Artificial Intelli-
gence 32, 1, 97–130. (Cited on pages 20 and 31.)

[30] DEBROY, V. AND WONG, W. E. 2010. Using mutation to automatically suggest fixes for faulty
programs. In Third International Conference on Software Testing, Verification and Validation
(ICST 2010). IEEE. (Cited on pages 106 and 117.)

151

Bibliography

[31] DECHTER, R. 2003. Constraint Processing. Morgan Kaufmann. (Cited on pages 54, 76,
and 127.)

[32] DEMILLO, R. A. AND OFFUTT, A. J. 1991. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering 17(9), 900–910. (Cited on page 96.)

[33] DEMILLO, R. A., PAN, H., AND SPAFFORD, E. H. 1996. Critical slicing for software fault
localization. In International Symposium on Software Testing and Analysis (ISSTA). 121–134.
(Cited on page 23.)

[34] DUCASSÉ, M. 1993. A pragmatic survey of automatic debugging. In Proceedings of the 1st In-
ternational Workshop on Automated and Algorithmic Debugging, AADEBUG ’93. Springer LNCS
749. 1–15. (Cited on page 22.)

[35] DWYER, M. B., HATCLIFF, J., HOOSIER, M., RANGANATH, V., ROBBY, AND WALLENTINE,
T. 2006. Evaluating the effectiveness of slicing for model reduction of concurrent object-oriented
programs. In Proceedings TACAS. Springer LNCS 3920, 73–89. (Cited on page 23.)

[36] ECLIPSE. The ibm eclipse project. http://www.eclipse.org/. (Cited on page 64.)

[37] EDMUND M. CLARKE, O. G. AND LONG., D. E. 1994. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 15121542. (Cited on page 16.)

[38] FATTAH, Y. E. AND DECHTER, R. 1995. Diagnosing tree-decomposable circuits. In Proceed-
ings 14th International Joint Conf. on Artificial Intelligence. 1742 – 1748. (Cited on page 11.)

[39] FRIEDRICH, G., STUMPTNER, M., AND WOTAWA, F. 1999. Model-based diagnosis of hard-
ware designs. Artificial Intelligence 111, 2 (July), 3–39. (Cited on pages 20 and 29.)

[40] GENT, I. P., JEFFERSON, C., AND MIGUEL, I. 2006. Minion: A fast, scalable, constraint
solver. 17th European Conference on Artificial Intelligence ECAI-06. (Cited on pages 54, 65, 97,
and 135.)

[41] GOTLIEB, A., BOTELLA, B., AND RUEHER, M. 1998. Automatic test data generation using
constraint solving techniques. In In Proceedings of the International Symposium on Software Test-
ing and Analysis (ISSTA). (Cited on pages 42, 54, 96, and 104.)

[42] GOTLIEB, A., BOTELLA, B., AND RUEHER, M. 2000. A clp framework for computing
structural test data. In Proceedings of the International Conference on Computational Logic
(CL) Springer LNAI 1861, 399–413. (Cited on pages 96 and 104.)

152

Bibliography

[43] GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 1999a. A comparison of structural csp de-
composition methods. In Proceedings 16th International Joint Conf. on Artificial Intelligence.
Stockholm, Sweden, 394–399. (Cited on pages 122 and 128.)

[44] GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 1999b. Hypertree Decomposition and
Tractable Queries. In Proc. 18th ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems (PODS-99). Philadelphia, PA, 21–32. (Cited on pages 122 and 127.)

[45] GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 1999c. On Tractable Queries and Constraints.
In Proc. 12th International Conference on Database and Expert Systems Applications DEXA 2001.
Florence, Italy. (Cited on pages 122 and 127.)

[46] GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000. A comparison of structural CSP de-
composition methods. Artificial Intelligence 124, 2 (December), 243–282. (Cited on pages 122,
127, and 129.)

[47] GREEN, M. J. AND JEFFERSON, C. 2008. Structural tractability of propagated constraints. In
CP ’08: Proceedings of the 14th international conference on Principles and Practice of Constraint
Programming. Springer-Verlag, Berlin, Heidelberg, 372–386. (Cited on pages 134, 135, and 147.)

[48] GUPTA, N., HE, H., ZHANG, X., AND GUPTA, R. 2005. Locating faulty code using failure-
inducing chops. In Automated Software Engineering (ASE). 263–272. (Cited on pages 6, 23,
and 123.)

[49] HAILPERN, B. AND SANTHANAM, P. 2002. Software debugging, testing, and verification. IBM
Systems Journal 41(1), 412. (Cited on pages iii and v.)

[50] HAMLET, R. G. 1977. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering 3(4), 279–290. (Cited on page 102.)

[51] HEBRARD, E. 2008. Mistral, a constraint satisfaction library. In In Proceedings of the Third
International CSP Solver Competition. (Cited on page 54.)

[52] HOARE, C. A. R. 1969. An axiomatic basis for computer programming. Communications of
the ACM 12(10), 576–583. (Cited on pages 83 and 85.)

[53] HTTP://WWW.DBAI.TUWIEN.AC.AT/PROJ/HYPERTREE/INDEX.HTML. (Cited on pages 129
and 137.)

[54] ILOG. Ilog constraint solver. http://www-01.ibm.com/software/websphere/ilog-migration/.
(Cited on page 54.)

153

Bibliography

[55] JACKSON, D. 2006. Software abstractions: logic, language, and analysis. MIT Press. (Cited
on page 43.)

[56] JACOP. Jacop constraint solver. http://www.jacop.eu/. (Cited on page 54.)

[57] JONES, J. A. AND HARROLD, M. J. 2005. Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings ASE’05. ACM Press, 273–282. (Cited on pages 25
and 28.)

[58] KAMKAR, M. 1995. An overview and comparative classification of program slicing techniques.
J. Systems Software 31, 197–214. (Cited on page 23.)

[59] KAMKAR, M. 1998. Application of program slicing in algorithmic debugging. Information and
Software Technology 40, 637–645. (Cited on page 23.)

[60] KO, A. J. AND MYERS, B. A. 2004. Designing the whyline: a debugging interface for asking
questions about program behavior. In CHI 04: Proceedings of the SIGCHI conference on Human
factors in computing systems, 151158. (Cited on page 23.)

[61] KÖB, D. AND WOTAWA., F. 2006. Fundamentals of debugging using a resolution calculus.
Fundamental Approaches to Software Engineering (FASE’06) 3922. (Cited on page 20.)

[62] KOREL, B. AND LASKI, J. 1988. Dynamic Program Slicing. Information Processing Letters 29,
155–163. (Cited on page 22.)

[63] KRINKE, J. 2004. Advanced slicing of sequential and concurrent programs. In 20th Interna-
tional Conference on Software Maintenance. IEEE. (Cited on page 23.)

[64] KRINKE, J. AND SNELTING, G. 1998. Validation of measurement software as an application
of slicing and constraint solving. Information and Software Technology 40, 661–675. (Cited on
page 23.)

[65] KUSUMOTO, S., NISHIMATSU, A., NISHIE, K., AND INOUE, K. 2002. Experimental evalua-
tion of program slicing for fault localization. Empirical Software Engineering 7, 49–76. (Cited on
page 23.)

[66] LIVER, B. 1993. Repair of communication systems by working around failures. In Proceedings
of the Fourth International Workshop on Principles of Diagnosis. Aberystwyth, UK, 270–277.
(Cited on page 29.)

[67] LIVER, B. 1994. Modeling software systems for diagnosis. In Proceedings of the Fifth Interna-
tional Workshop on Principles of Diagnosis. New Paltz, NY, 179–184. (Cited on page 29.)

154

Bibliography

[68] M. NICA, S. N. AND WOTAWA, F. 2010. Does testing help to reduce the number of potentially
faulty statement in debugging. Proceedings of The Testing: Academic and Industrial Conference -
Practice and Research Techniques TAIC-PART 2010. (Cited on pages 13, 17, and 82.)

[69] MATEIS, C., STUMPTNER, M., WIELAND, D., AND WOTAWA, F. 2000. Model-Based De-
bugging of Java Programs. In Proceedings of the 4th International Workshop on Automated and
Algorithmic Debugging, AADEBUG ’00. Munich, Germany. (Cited on pages 29 and 31.)

[70] MATEIS, C., STUMPTNER, M., AND WOTAWA, F. 2000. Modeling Java Programs for Diagno-
sis. In Proceedings of the European Conference on Artificial Intelligence (ECAI). Berlin, Germany.
(Cited on page 20.)

[71] MAYER, W. 2007. Static and hybrid analysis in model-based debugging. PhD Thesis, School of
Computer and Information Science University of South Australia. (Cited on pages 10 and 77.)

[72] MAYER, W., ABREU, R., STUMPTNER, M., AND VAN GEMUND, A. J. 2009. Prioritising
model-based debugging diagnostic reports. In Proceedings of the International Workshop on Prin-
ciples of Diagnosis (DX). (Cited on pages 25 and 117.)

[73] MAYER, W. AND STUMPTNER, M. 2003. Model-based debugging using multiple abstract
models. Proceedings of the 5th International Workshop on Automated and Algorithmic Debug-
ging AADEBUG-03, 55–70. (Cited on pages 10 and 76.)

[74] MAYER, W., STUMPTNER, M., WIELAND, D., AND WOTAWA, F. 2002a. Can ai help to
improve debugging substantially? debugging experiences with value-based models. In Proceedings
of the European Conference on Artificial Intelligence (ECAI). IOS Press, Lyon, France, 417–421.
(Cited on page 20.)

[75] MAYER, W., STUMPTNER, M., WIELAND, D., AND WOTAWA, F. 2002b. Towards an inte-
grated debugging environment. In Proceedings of the European Conference on Artificial Intelli-
gence (ECAI). IOS Press, Lyon, France, 422–426. (Cited on page 29.)

[76] MCILRAITH, S. AND REITER, R. 1992. On tests for hypothetical reasoning. In Readings in
Model-Based Diagnosis. Morgan Kaufmann, 89–96. (Cited on page 102.)

[77] MEYER, B. 1997. Object-Oriented Software Construction, 2nd edn. OSE Press. (Cited on
page 89.)

[78] MIHAI NICA, M. I. AND WOTAWA, F. 2009. Representing program debugging as constraint
satisfaction problem. Nordic Workshop on Programming Theory’09. (Cited on pages 13 and 32.)

155

Bibliography

[79] MIKE BARNETT, K. RUSTAN, W. S. 2004. The spec# programming system: An overview.
LNCS Springer 3362. (Cited on page 16.)

[80] MINION. 2009. The minion constraint solver. http://minion.sourceforge.net. (Cited on
pages 93 and 97.)

[81] MUSLIU, N. AND SCHAFHAUSER, W. 2007. Genetic algorithms for generalised hypertree
decompositions. European Journal of Industrial Engineering 1(3), 317 – 340. (Cited on pages 127,
129, 130, 137, and 146.)

[82] NAISH, H. J. L. L. AND RAMAMOHANARAO, K. 2010. A model for spectra-based software
diagnosis. ACM Transactions on Software Engineering and Methodology. (Cited on pages 27
and 28.)

[83] NICA, M., PEISCHL, B., AND WOTAWA, F. 2008. A constraint model for automated deploy-
ment of automotive control software. In SEKE. 899–904. (Cited on page 54.)

[84] NICA, M., WEBER, J., AND WOTAWA, F. 2008. How to debug sequential code by means of
constraint representation. 19th International Workshop on Principles of Diagnosis (DX-08). (Cited
on pages 13, 29, 32, 43, 83, and 122.)

[85] NICA, M., WEBER, J., AND WOTAWA, F. 2009. On the use of specification knowledge in
program debugging. 20th International Workshop on Principles of Diagnosis (DX-09). (Cited on
pages 10, 13, 29, 82, and 122.)

[86] NICA, M. AND WOTAWA, F. 2008. From constraint representations of sequential code and
program annotations to their use in debugging. In Proceeding of the 2008 conference on ECAI
2008. IOS Press, Amsterdam, The Netherlands, The Netherlands, 797–798. (Cited on pages 12
and 82.)

[87] NIELSON, H. R. AND NIELSONL, F. 1992. Semantics with applications : A formal introduction.
John Wiley & Sons Chichester. (Cited on page 16.)

[88] PATTON, R. 2006. Software Testing (2nd Edition). Sams Publishing. (Cited on page 16.)

[89] PEISCHL, B., NICA, M., ZANKER, M., AND SCHMID, W. 2009. Recommending effort estima-
tion methods for software project management. In Web Intelligence/IAT Workshops. 77–80. (Cited
on page 54.)

[90] R. DEMILLO, R. L. AND SAYWARD, F. 1978. Hints on test data selection: Help for the
practicing programmer. IEEE Computer 11(4), 34–41. (Cited on page 102.)

156

Bibliography

[91] RANGANATH, V. P., AMTOFT, T., BANERJEE, A., HATCLIFF, J., AND DWYER, M. B. 2006.
A new foundation for control dependence and slicing for modern program structures. Tech. Rep.
#2004-8, Kansas State University. Part of this work was published in the Proceedings of European
Symposium on Programming (ESOP) 2005. (Cited on page 23.)

[92] REITER, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32, 1,
57–95. (Cited on pages 11, 12, 20, 29, 31, 40, and 61.)

[93] RESEARCH, M. 2009. Holmes: Automated statistical debugging for .net.
http://research.microsoft.com/en-us/projects/holmes. (Cited on pages 25 and 28.)

[94] ROTHERMEL, G. AND HARROLD, M. J. 1990. Empirical studies of a safe regression test
selection technique. IEEE Transactions on Software Engineering 24, 6, 401–419. Siemens test
suite is available at http://www-static.cc.gatech.edu/aristotle/Tools/subjects/. (Cited on page 76.)

[95] S. STABER, B. J. AND BLOEM., R. 2005. Finding and fixing faults. Springer-Verlag,Proc.
13th Conference on Correct Hardware Design and Verification Methods 3725, 35–49. (Cited on
page 20.)

[96] SHAPIRO, E. 1983. Algorithmic Program Debugging. MIT Press, Cambridge, Massachusetts.
(Cited on pages 22, 23, and 29.)

[97] SLAM. 2002. Microsoft SLAM project. http://research.microsoft.com/en-us/projects/slam/.
(Cited on page 16.)

[98] STEGMANN, R., KOCH, M., LACHER, M., LECKNER, T., AND RENNEBERG, V. 2003. Gen-
erating personalized recommendations in a model-based product configurator system. In in IJCAI.
(Cited on page 31.)

[99] STRUSS, P. 1994. Testing physical systems. In AAAI ’94: Proceedings of the twelfth national
conference on Artificial intelligence (vol. 1). American Association for Artificial Intelligence, 251–
256. (Cited on page 102.)

[100] STUMPTNER, M. AND WOTAWA, F. 1998a. Mbd research activities at vienna university of
technology. In Proceedings of the ECAI-98 Workshop W5 ’Model-based systems and qualitative
reasoning’. Brighton, UK. (Cited on page 22.)

[101] STUMPTNER, M. AND WOTAWA, F. 1998b. Model-based reconfiguration. In Proceedings
Artificial Intelligence in Design. Lisbon, Portugal. (Cited on page 54.)

157

Bibliography

[102] STUMPTNER, M. AND WOTAWA, F. 1999. Debugging Functional Programs. In Proceedings
16th International Joint Conf. on Artificial Intelligence. Stockholm, Sweden, 1074–1079. (Cited
on pages 20 and 29.)

[103] STUMPTNER, M. AND WOTAWA, F. 2001. Diagnosing tree-structured systems. Artificial
Intelligence 127, 1, 1–29. (Cited on pages 11 and 134.)

[104] STUMPTNER, M. AND WOTAWA, F. 2003. Coupling CSP decomposition methods and diag-
nosis algorithms for tree-structured systems. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03). Acapulco, Mexico, 388–393. (Cited on page 11.)

[105] TAI, K.-C. AND SU, H.-K. 1987. Test generation for Boolean expressions. Proceedings of the
Eleventh Annual International Computer Software and Applications Conference (COMPSAC) 3(4),
278–284. (Cited on page 104.)

[106] TAMURA, N. AND BANBARA, M. 2008. Sugar: A csp to sat translator based on order encod-
ing. In In Proceedings of the Second International CSP Solver Competition. editors, M.R.C.van
Dongen, Christophe Lecoutre, and Olivier Roussel, 65–69. (Cited on page 54.)

[107] THORUP, M. 1998. All structured programs have small tree-width and good register allocation.
Inf. Comput. 142, 2, 159–181. (Cited on pages 121, 131, and 132.)

[108] TIP, F. 1995. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages 3, 3 (Sept.), 121–189. (Cited on page 23.)

[109] TOM JANSSEN, R. A. AND VAN GEMUND, A. J. 2009. Zoltar: a spectrum-based fault local-
ization tool. In SINTER ’09: Proceedings of the 2009 ESEC/FSE workshop on Software integration
and evolution @ runtime, 2330. (Cited on page 28.)

[110] TRETMANS, J. 1996. Test generation with inputs, outputs and repetitive quiescence. Software
- Concepts and Tools 17, 3, 103–120. (Cited on pages 52 and 60.)

[111] WEGMAN, M. AND ZADEK, F. 1991. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems 13(2). (Cited on page 49.)

[112] WEIMER, W., NGUYEN, T. V., GOUES, C. L., AND FORREST, S. 2009. Automatically find-
ing patches using genetic programming. In ACM/IEEE International Conference on Software En-
gineering (ICSE). 512–521. (Cited on pages 17, 29, 30, 63, 106, and 117.)

[113] WEISER, M. 1982. Programmers use slices when debugging. Communications of the
ACM 25, 7 (July), 446–452. (Cited on page 22.)

158

Bibliography

[114] WEISER, M. 1984. Program slicing. IEEE Transactions on Software Engineering 10, 4 (July),
352–357. (Cited on page 22.)

[115] WOODS, S. AND Q. YANG, Q. 1998. Program understanding as constraint satisfaction: Rep-
resentation and reasoning techniques. Automated Software Engineering 5(2), 147–181. (Cited on
page 96.)

[116] WOTAWA, F. 2000. Debugging VHDL Designs using Model-Based Reasoning. Artificial
Intelligence in Engineering 14, 4, 331–351. (Cited on page 29.)

[117] WOTAWA, F. 2001. On the Relationship between Model-based Debugging and Programm
Mutation. In Proceedings of the Twelfth International Workshop on Principles of Diagnosis. San-
sicario, Italy. (Cited on page 29.)

[118] WOTAWA, F. 2002a. Debugging Hardware Designs using a Value-Based Model. Applied
Intelligence 16, 1, 71–92. (Cited on page 29.)

[119] WOTAWA, F. 2002b. On the Relationship between Model-Based Debugging and Program
Slicing. Artificial Intelligence 135, 1–2, 124–143. (Cited on pages 23 and 24.)

[120] WOTAWA, F. 2008. Bridging the gap between slicing and model-based diagnosis. In Proc. of
the 20th Intl. Conference on Software Engineering and Knowledge Engineering (SEKE). 836–841.
(Cited on pages 23 and 24.)

[121] WOTAWA, F. AND NICA, M. 2008a. Converting programs into constraint satisfaction prob-
lems. In Advances in Intelligent and Distributed Computing, C. Badica and M. Paprzycki, Eds.
Studies in Computational Intelligence, vol. 78. Springer Berlin / Heidelberg, 228–236. (Cited on
pages 12, 32, and 122.)

[122] WOTAWA, F. AND NICA, M. 2008b. On the compilation of programs into their equivalent
constraint representation. Informatika 32, 359–371. (Cited on pages 12, 29, 32, 96, and 122.)

[123] WOTAWA, F., NICA, M., AND AICHERNIG, B. K. 2010a. Generating distinguishing tests
using the minion constraint solver. In ICSTW ’10: Proceedings of the 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops. IEEE Computer Society,
Washington, DC, USA, 325–330. (Cited on pages 13, 82, and 102.)

[124] WOTAWA, F., NICA, M., AND AICHERNIG, B. K. 2010b. Generating distinguishing tests us-
ing the minion constraint solver. In CSTVA 2010: Proceedings of the 2nd Workshop on Constraints
for Testing, Verification and Analysis. IEEE. (Cited on page 113.)

159

Bibliography

[125] WOTAWA, F., NICA, M., AND IULIA, M. Automated debugging based on a constraint model
of the program and a test case. (Cited on pages 13 and 32.)

[126] WOTAWA, F., WEBER, J., NICA, M., AND CEBALLOS, R. 2010. On the complexity of pro-
gram debugging using constraints for modeling the programs syntax and semantics. In Current
Topics in Artificial Intelligence, P. Meseguer, L. Mandow, and R. Gasca, Eds. Lecture Notes in
Computer Science, vol. 5988. Springer Berlin / Heidelberg, 22–31. (Cited on pages 13 and 122.)

[127] YU-SEUNG MA, J. O. AND KWON., Y. R. 2005. Mujava : An automated class mutation
system. Software Testing, Verification and Reliability 15, 97–133. (Cited on page 113.)

[128] ZANKER, M., ASCHINGER, M., AND JESSENITSCHNIG, M. 2007. Development of a collab-
orative and constraint-based web configuration system for personalized bundling of products and
services. In in 8 th International Conference on Web Information Systems Engineering (WISE.
Springer, 273–284. (Cited on page 54.)

[129] ZDC. Zdc constraints solving system. http://www.bracil.net/CSP/cacp/cacpdemo.html. (Cited
on page 54.)

[130] ZELLER, A. 2002. Isolating cause-effect chains from computer programs. In Proc. ACM
SIGSOFT 10th International Symposium on the Foundations of Software Engineering (FSE-10).
ACM, Charleston, South Caroline, USA. (Cited on page 28.)

[131] ZELLER, A. AND HILDEBRANDT, R. 2002. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering 28, 2 (feb). (Cited on pages 23 and 28.)

[132] ZHANG, X., HE, H., GUPTA, N., AND GUPTA, R. 2005. Experimental evaluation of using
dynamic slices for fault localization. In Sixth International Symposium on Automated & Analysis-
Driven Debugging (AADEBUG). 33–42. (Cited on pages 23 and 24.)

160

	Abstract (English)
	Abstract (German)
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Forward
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution

	2 Related Approaches
	2.1 Terminology
	2.2 Introduction
	2.3 Model Based Debugging
	2.4 Program slicing
	2.5 Spectrum-based debugging
	2.6 Other approaches
	2.7 Conclusions

	3 Model Based Debugging: A constraint - based approach.
	3.1 Definitions and language semantics
	3.1.1 Language Semantics and Grammar
	3.1.2 Definitions

	3.2 Static Conversion
	3.2.1 Loop elimination
	3.2.2 Building the Static Single Assignment (SSA) form

	3.3 Fault Localization based on a Constraint Representation
	3.3.1 Using the constraint model for debugging

	3.4 Implementation
	3.4.1 MINION representation

	3.5 Analysis
	3.6 Results and conclusions
	3.6.1 Experimental results
	3.6.2 Conclusions

	4 Extensions
	4.1 Integrating Specification Knowledge
	4.1.1 Specifying the Knowledge
	4.1.2 Integrating annotations
	4.1.3 Improving the Diagnostic Precision by Integrating Specification Knowledge
	4.1.4 Experimental Results

	4.2 Mutation Based Debugging
	4.2.1 Generating Distinguishing Test Cases
	Computing distinguishing test cases
	Experimental results
	Related research

	4.2.2 Mutation Based Debugging
	Discriminating between the Bug candidates

	4.2.3 Empirical Results
	4.2.4 Related research

	4.3 Conclusion

	5 Complexity
	5.1 Structural properties of a CSP
	5.2 Estimating complexity
	5.3 Experimental Results
	5.4 Conclusions

	6 My Conclusions and Future Work
	6.1 Trivia

	List of Theorems and Definitions
	Bibliography

