
Graz University of Technology

Graz University of Technology

Ecole polytechnique federale de Lausanne

PhD Thesis

Tracking-by-Detection using

Randomized Online Ensemble Methods

Martin Godec
Graz, Austria, 2013

Thesis supervisors

Prof. Dr. Horst Bischof

Dr. Vincent Lepetit

To my small family. . .

I am so smart, I am so smart, s-m-r-t
... I mean s-m-A-r-t.

Homer Simpson; The Simpsons 05-03

http://www.youtube.com/watch?v=anXKnXVm-Kc

v

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

Estimating the movement of an object in an image sequence is a very important task in

computer vision and is utilized in many different applications, such as human-computer

interaction, augmented reality, and video editing. Additionally, tracking of vehicles or

pedestrians is an essential functionality in security and surveillance tasks. However, often

the type of the object is not known a priori. Thus, knowledge about the object has to be

collected during runtime.

In this thesis, we target Tracking-by-Detection, a concept that uses an iterative loop

of online learning and object detection to establish an object model of the target during

runtime. This allows for online accumulation of information about the target object that

is collected frame by frame by utilizing machine learning techniques. Since the object

appearance will change during runtime, the model has to be adapted continuously and

outdated information must be discarded to prevent that the size of the object model grows

to infinity.

To introduce the basics of tracking-by-detection, we explain the different building

blocks that form the so-called tracking-loop, which defines the processing cycle of the

concept. These blocks are object representation, statistical learning, detection, and sample

generation, which contribute to the overall performance of the approach and have to be

carefully harmonized. We review the individual implementations of these blocks that have

been proposed in related work. Additionally, we give an overview about the progress of

tracking in the last decade and touch various different concepts.

In an application chapter, we present three approaches that target improvements of

the individual parts of the tracking loop and compare each of them to appropriate related

work. First, we present Online Random Näıve Bayess (ORNBs), a simple but powerful

learning algorithm. We demonstrate the capabilities of the algorithm by performing ma-

chine learning experiments and examine its core characteristics. Subsequently, we apply

it to tracking-by-detection.

The second application presents a novel scheme of labeling training data during the

ix

x

tracking process. We propose to dynamically split the background class into a various

number of virtual classes, by using an online multi-class learning algorithm and a labeling

scheme that is able to select a proper number of virtual classes during runtime. Therefore,

we modify the learning algorithm to be able to cope with very unbalanced datasets.

Finally, we present a tracking approach that is able to follow non-rigid objects in

complex scenes and avoids the bounding-box restriction of many other approaches. We

combine a novel learning algorithm (i.e., Online Random Ferns (ORFes)) with Hough-

based object detection, which combines a large number of parts in a center-voting fashion.

Using this detection scheme, we create a strong cue for image segmentation resulting in

exact determination of the object boundaries while the initial object annotation is still a

bounding box! We experimentally justify the additional effort of the segmentation and

demonstrate state-of-the-art performance of the proposed tracking approach.

These three approaches give insight into the individual building blocks and their in-

fluence in the overall tracking performance. Additionally, they show the wide variability

of tracking-by-detection approaches.

Keywords. Computer Vision, Object Detection, Object Tracking, Machine Learning,

Online Learning, Object Representation, Image Features, Visual Servoing, Surveillance

Kurzfassung

Die Verfolgung von Objekten in Videos ist ein wichtiger Bestandteil vieler Computer-

Vision Anwendungen und spielt speziell in der Videoüberwachung eine entscheidende

Rolle. In vielen dieser Anwendungen ist jedoch der Typ des zu verfolgenden Objekts

nicht im Vorhinein bekannt, wodurch die Objektbeschreibung erst zur Laufzeit generiert

werden kann.

In dieser Dissertation wird dieses Problem durch Tracking-by-Detection adressiert,

einem Ansatz der Lernverfahren einsetzt, die auch zur Laufzeit weiter trainiert werden

können. Bild für Bild wird so eine Beschreibung des Objekts aufgebaut, wobei eine

zeitliche Gewichtung der Information erfolgt, um die Beschreibung immer an die aktuellen

Anforderungen anzupassen.

Die Abläufe bei Tracking-by-Detection werden durch die sogenannte Tracking-Loop

definiert. Sie beinhaltet alle nötigen Verarbeitungsschritte (Objektbeschreibung, Statis-

tisches Lernverfahren, Objekterkennung und Trainingsmechanismus) und bringt diese in

die richtige Reihenfolge. Diese Verarbeitungsschritte müssen sorgfältig aufeinander abges-

timmt werden, um gute Leistung erzielen zu können. Zu jedem dieser Teile werden ver-

schiedene Umsetzungsvarianten aus der verwandten Literatur vorgestellt.

Als praktische Anwendung von Tracking-by-Detection werden drei Ansätze

präsentiert, in denen spezielle Verbesserungen der Verarbeitungsschritte in der

Tracking-Loop beschrieben werden. Der erste Ansatz verwendet Online Random Näıve

Bayess (ORNBs), einen einfachen aber effizienten Lernalgorithmus. Dessen Eigenschaften

werden auf Lerndatensätze und für den Einsatz in der Tracking-Loop analysiert und

evaluiert.

Die zweite Anwendung verwendet ein neuartiges Konzept zur Generierung von Train-

ingsdaten während der Laufzeit. Dieses Konzept spaltet komplexere Klassen automatisch

in mehrere virtuelle Klassen auf, sodass die Beschreibung des eigentlichen Objekts in

mehrere, einfachere Teile aufgeteilt wird. Dazu wird ein modifizierter Lernalgorithmus

xi

xii

verwendet, dessen Statistik zur Laufzeit erweitert werden kann und der unbalanzierten

Datensätzen umgehen kann.

Der dritte vorgestellte Ansatz ermöglicht die Verfolgung von nicht-rigiden Objekten

ohne die übliche Einschränkung auf eine rechteckige Objektbeschreibung. Dazu werden

Online Random Ferns (ORFes) mit einer flexiblen Objektbeschreibung kombiniert, welche

das Objekt als eine Kombination vieler kleiner Teile beschreibt. Durch zusätzliche Segmen-

tierung des Objekts wird ein Pixel-genaues Ergebnis generiert, welches auch zur Gener-

ierung der Trainingsdaten verwendet wird.

Durch diese drei Beispiele werden die große Variabilität der Ansätze für Tracking-by-

Detection und der Einfluss der einzelnen Vorgehensweisen innerhalb der Tracking-Loop

gezeigt. Durch experimentelle Vergleiche zu relevanter Literatur wird gezeigt, dass die

präsentierten Ansätze sehr gute Ergebnisse am aktuellen Stand der Technik liefern.

Keywords. Maschinelles Sehen, Objekterkennung, Objektverfolgung, Maschinelles

Lernen, Online Lernen, Objektrepresentation, Bildeigenschaften, Visuelle Steuerung,

Überwachung

Acknowledgments

First of all, i want to thank Horst Bischof for giving me the opportunity to write this

thesis and to provide overall guidance and the financial support that made it possible.

Additionally, i want to thank Vincent to act as an examiner and reviewer of my thesis.

Of course, this thesis is not the product of one guy sitting in his office and creating new

ideas and has been influences by a large number of people that i want to mention.

I am especially thankful to Peter M. Roth for his never ending support, corrections,

reading, discussions, and guidance that have paved my way through this thesis, Christian

Leistner and Amir Saffari for giving me the opportunity to work on many fascinating

publications and to introduce me to their way of doing research and writing publications,

Sabine Sternig for long-lasting discussions, code sharing and reviewing, publications and to

walk on the same paths of research for some years, my colleague Thomas Mauthner, Martin

Hirzer, Peter Kontschieder, Hayko Riemenschneider, Markus Heber, Mike Donoser, Martin

Köstinger, Paul Wohlhart, Christian Reinbacher, Samuel Schulter, and Andi Wendel for

many, many discussions during our outside of our reading group, Bernhard Rinner and his

team for their good work and climate within our research projects, Helmut Grabner for

motivating me to do my master’s thesis in computer vision, and all the colleagues from

ICG (including the above mentioned) for having a good time, the one or other beer, always

someone that listens to your problems and for having a lot of fun together!

Beside the support within work, there are also several people outside work that are

worth to be mentioned here, especially my family that gave me the opportunity to go to

the university and my friends from in- and outside the university. But most important,

i have to mention my small family, Katja, Elena and Nora, that filled my non-working

hours with life, accepted my immanent confusion and have always brought me back down

to earth with my thoughts.

xiii

Contents

1 Introduction 1

1.1 From Object Detection to Object Tracking 4

1.1.1 Tracking Challenges . 5

1.2 The Tracking Loop . 6

1.2.1 Object Representation . 8

1.2.2 Statistical Model and Learning . 9

1.2.3 Detection and Training . 10

1.3 About this Thesis . 11

1.3.1 Structure of this Thesis . 11

2 Object Representation 13

2.1 Geometric Models . 15

2.1.1 Template-based Models . 15

2.1.2 Kernel-based Models . 16

2.1.3 Patch-based Models . 18

2.1.4 Part-based Models . 19

2.1.5 More Geometric Models . 21

2.2 Image Features . 21

2.2.1 Integral Images and Histograms . 22

2.2.2 Haar-like Features . 22

2.2.3 Histogram of Oriented Gradients (HOG) 23

2.2.4 More Features . 24

2.2.5 Feature Selection and Combination 24

3 Online Machine Learning 26

3.1 Mathematical Definitions . 27

3.2 Terminology . 28

3.3 Online Ensemble Learning in Computer Vision 31

3.4 Online Random Forests (ORFs) . 33

3.4.1 Bagging . 34

3.4.2 Decision Trees (DTs) . 35

3.4.3 Online Learning . 38

3.4.4 Properties and Discussion . 40

3.5 Online Random Näıve and Semi-Näıve Bayes 41

xv

xvi CONTENTS

3.5.1 Online Random Näıve Bayes (ORNB) 43
3.5.2 Random Ferns (RFes) . 45

4 Detection and Training 47
4.1 Detecting the Object Position . 48

4.1.1 Sliding Window . 48
4.1.2 Particle Filtering . 49
4.1.3 Detection using part-based and combined Models 51

4.2 Training Sample Generation . 51
4.2.1 Geometry-based sampling . 52
4.2.2 Confidence-based Sampling . 53
4.2.3 Labeling with Virtual Classes . 55
4.2.4 Segmentation-based Sampling . 56

4.3 Detection Scores for Quantitative Evaluation 57
4.3.1 Robustness of Scores . 58

5 Implemented Approaches 59
5.1 Online Random Naive Bayes for Tracking 61

5.1.1 Machine Learning . 61
5.1.2 Algorithm Characteristics . 62
5.1.3 Experimental Evaluation . 64
5.1.4 Discussion . 68

5.2 Online Active Learning for Tracking . 69
5.2.1 Virtual Classes for Scene-specific Classification 70
5.2.2 Active Learning . 71
5.2.3 Experimental Evaluation . 72
5.2.4 Discussion . 76

5.3 Hough-based Tracking of Non-Rigid Objects 77
5.3.1 Online Hough Ferns . 80
5.3.2 Closing the Tracking Loop . 82
5.3.3 Experimental Evaluation . 84
5.3.4 Discussion . 90

5.4 Discussion . 96

6 Summary and Conclusion 100
6.1 Contributions of this Thesis . 102
6.2 Future Work . 103
6.3 Closing . 104

A Acronyms and Symbols 105

B List of Publications 107

Bibliography 110

Chapter 1

Introduction

Contents

1.1 From Object Detection to Object Tracking 4

1.1.1 Tracking Challenges . 5

1.2 The Tracking Loop . 6

1.2.1 Object Representation . 8

1.2.2 Statistical Model and Learning 9

1.2.3 Detection and Training . 10

1.3 About this Thesis . 11

1.3.1 Structure of this Thesis . 11

Already in the ancient history, humans dreamed of machines that interact with us or

assist in complex tasks. In the Hellenistic civilization, the Automaton was a machine that

performs a specific task autonomously, but the concept of the humanoid robot did not

evolve since the modern age. Such robots have been a frequent theme in science fiction

stories. Thus, nearly every kid knows examples of this type of robot, such as C-3PO

from Star Wars or Lieutenant Commander Data from Star Trek. Additionally, there exist

different variations that look more like robots, such as Johnny 5 from Short Circuit or

WALL-E from the film of the same title.

All of these robots share the characteristic that they try to copy the human senses as

they mainly use visual information to understand their environment1. Thus, they try to

copy the ability of the visual cortex. However, in contrast to computer vision algorithms

that are developed by scientists, the human visual sense evolved in thousands of years

1In the computer vision community, this capability is denoted as scene understanding.

1

2 Chapter 1. Introduction

to it’s present state. Additionally, the knowledge about the processes within the human

visual cortex and brain is rather limited and computers that are capable of complex image

processing in real-time exist only since a decade. Thus, we cannot simply build a system

that copies our own visual capabilities.

Yet, how far is the development of computer vision algorithms that target such tasks?

While autonomous robots in the sense of the examples mentioned above are far from

real, there exist many applications where computer vision successfully assist humans.

Probably the most popular of these applications is face detection, nowadays integrated

into nearly every consumer camera helping us to take better images. Others are Optical

Character Recognition (OCR), which is integrated into every scanning and image pro-

cessing software, driving assistance, such as lane keeping or traffic sign detection, and

surveillance systems which help, for instance, to detect persons and vehicles in public

places. Especially for the latter one, automatic or semi-automatic computer vision tech-

niques help to process that vast amount of visual information that is captured every day,

which could only hardly be done by humans.

Of course, such tasks are complex and require sophisticated computer vision techniques.

Thus, as with any complex computing system, computer vision applications consist of

many different building blocks, where especially detection and tracking of objects are very

important for video analysis (e.g., in surveillance applications). Additionally, such real-

world applications require robust and fast methods because more and more information

is generated in form of videos.

In particular, this thesis focuses on tracking of arbitrary objects in a natural environ-

ment. This means that we want to determine the location of an object within an image

sequence, where the term location is not limited to the position of the object in the image,

but may also include the size, shape, orientation, and many other parameters. Thereby,

we take real-time capabilities speed, robustness, scene adaptation and online learning into

account.

In general, object tracking is a task that may be used in various applications:

Focus Assistance Consumer cameras provide several features to improve the quality of

the taken image (e.g., smile shutter, face detection). Keeping a moving object in

focus to enable sharp images under difficult conditions can help hobby photographers

to further improve their images.

Image Stabilization In sports broadcasts, the target object may move quite fast. Track-

3

ing of the sportsperson, ball, and puck can be used to stabilize the trajectory of

the camera movement to retrieve smooth videos. Additionally, when tracking all

sportspersons of a team, insight about the strategy can be obtained.

Surveillance In public space, analysis of the stream of pedestrians and vehicles is very

interesting to optimize security or traffic flow. Manual recording of such streams is

very tedious and time-consuming. This makes automatic tracking of the objects an

interesting alternative.

Driver Assistance The vehicle tracks all pedestrians that are moving around the vehicle

and alerts the driver of critical situations.

This short and incomplete list illustrates the large spectrum of applications where tracking

can be used.

All tracking approaches have in common that we want to estimate the motion of some

object. From an application point of view, there are three types of motion estimation:

(a) motion estimation for every individual pixel in the image, also known as optical flow

(e.g., [46]), (b) motion estimation of specific points in the image (i.e., key-points) as used

in structure-and-motion (e.g., [15]), and (c) object specific motion considering all kind of

appearance changes.

In this thesis, we focus on object tracking, especially avoiding any assumptions about

the object appearance, category, size or shape. In short, we define object tracking as

follows:

Object tracking is to estimate the location (e.g., position, size, shape, and

orientation) of an object in every frame of an image sequence, considering

motion, appearance changes, occlusion, clutter, changing illumination, and

other challenges, given a single object annotation in the first frame of the

sequence.

Beside the simple and sketchy definition of the problem, there is a large number of bound-

ary conditions that divide the problem space into numerous fragments:

• Tracking of natural objects or image patches

• Knowledge about the category of objects we want to track

• Changing appearance of the object over time

• Rigid or deformable object structure

4 Chapter 1. Introduction

• Degrees of freedom of the object motion that should be estimated

• Changing background due to camera motion

• · · ·

Hence, it is obvious that the term object tracking delineates a problem with many different

facets, where a prominent concept is tracking by detection.

1.1 From Object Detection to Object Tracking

As already mentioned, one of the most known computer vision applications is face de-

tection, which is integrated in nearly every consumer camera or smartphone today to

optimize the camera settings (e.g., focus, white-balance, shutter speed). This is even more

impressive since there has been just one decade since the first real-time enabled approach

has been presented [153]. In the meantime, camera manufacturers developed the next

functionality that simplifies the users life called focus tracking or AI servo. This means

that an arbitrarily selected region in the image will be in focus whether the camera is

moved or not, where a visual tracking algorithm tries to determine the current position of

that region. However, this functionality does not perform as good as face detection up to

now and is limited to rectangular image patches that have a stable appearance.

Wouldn’t it be great to establish such a functionality to automatically track and focus on

arbitrary objects while their appearance changes?

Of course, there are many different approaches to follow the movement of an object

and implementations, such as focus tracking, combine several techniques to achieve the

required robustness. Tracking-by-detection tackles the task in the following way: Sample

images of the object are acquired and a model is estimated that can detect the object

using the collected knowledge. This is very similar to established detection algorithms

that gain knowledge about the target object category (e.g., faces or cars) using a large

database of sample images. However, detection and tracking differ in time-scale of sample

acquisition and model generation. E.g., the human face does not significantly change

during the runtime of an usual tracking application, but considering the environment, such

as lighting, shadows, and 3D movement, the object may look very different even after a

few frames. Therefore, we perform tracking as repeated re-detection of an object based on

acquired knowledge about the object and iterative accumulation of that knowledge from

already processed frames. Thereby, the recent appearance of the object is most important.

1.1. From Object Detection to Object Tracking 5

1.1.1 Tracking Challenges

Having in mind the different time-scales of tracking and detection, we will face various

problems during runtime. We have separated those into two groups, intrinsic and extrinsic

challenges:

Intrinsic Challenges are caused by the nature of 3D objects that are projected to a 2D

image, such as their inherent non-rigidity. Many approaches do not consider this

problem as they use rectangular, highly rigid object representations. Additionally,

many benchmark datasets include many simple sequences where only translational

movement of the object is present. However, this scenario is very unlikely under real

world conditions.

Beside the deformation that non-rigid objects may undergo, also non-convexity may

cause self-occlusions, which are hard to model inherently in currently used object

models. Moreover, the appearance of the object may change due to out-of-plane

rotations resulting in a change of the view on the object.

Also in-plane rotation and scaling of an object result in drastic changes of the ob-

ject’s appearance when using an approach that does not handle scaling and rotation.

The same also applies for changes of the aspect ratio of the object. From a camera

perspective, fast motion may generate motion blur and changing frame-rates will

result in non-smooth motion, which may decrease the tracking performance.

Extrinsic Challenges are caused by the interaction between objects and their environ-

ment. We already mentioned appearance changes caused by out-of-plane rotations

of the object. However, they can also be caused by illumination changes which can

change color, contrast or texture of the object significantly. Also shadows caused

by the environment or by the object itself can confuse tracking approaches due to

partial appearance changes.

When objects interact with their environment, partial and full occlusions may

occur. While partial occlusions can be handled well by part-based approaches, they

are still critical concerning the information that is collected to enhance the model of

the object. On the other hand, full occlusions and objects leaving the field-of-view

require robust re-detection mechanisms. There is a smooth transition between those

cases depending on the granularity of the model of the object, which makes it an

even problem.

6 Chapter 1. Introduction

Another challenge that may cause immediate tracking failures are cluttered back-

ground or the presence of similar objects. This is especially important if multiple

instances of the object category occur within the scene or the object category occurs

very frequently, such as pedestrians or cars. This can be handled using strong prior

knowledge, such as a pedestrian detector which changes the problem to discrimi-

nation of one pedestrian from others that are present in the scene. However, this

requires information about the expected object category that should be tracked.

To summarize, tracking approaches have to distinguish between valid object transfor-

mations, such as

• deformation,

• rotation in- and out-of the image plane,

• changing appearance, and

• changing illumination,

and invalid transformations, such as

• occlusions,

• target confusion, and

• drift (i.e., slight inaccuracies of the object detection).curacies of the object detec-

tion).

Many different concepts to handle this problem have been proposed in recent years, mostly

using online adaption of an object model or classifier. Despite of all advances that have

been made, the overall task is still far from being solved.

1.2 The Tracking Loop

Defining tracking as an repeated re-detection of an object directly leads to a number of

building blocks that are required within a tracking system. Thinking merely of object

detection, these blocks are (a) the representation that extracts meaningful knowledge

from the raw image data (i.e., image features), (b) the statistical model that describes

the object properties regarding the representation and (c) the detection mechanism

that locates the object within an image using the description within the statistical model.

1.2. The Tracking Loop 7

However, in tracking the knowledge about the target object is usually limited, which

means that we may observe changes of the object appearance that are novel, i.e., that

have not been seen before. Thus, we need to adapt the model during runtime to cover

such changes which leads to one additional building blocks (d) sampling and labeling

of training data during runtime and the statistical model must be extended to support

online model update. This results in the overall tracking loop illustrated in Figure 1.1,

which describes the required steps for each iteration (i.e., for each frame).

Model
&

Representation

Detection
Sample

&
Label

Update

Load next frame

Figure 1.1: The main building blocks of a tracking-by-detection system that define the
Tracking Loop. Starting from the detection of the object, we extract new samples
and update the current object model. This procedure is repeated for every frame of the
sequence.

During the last decade, a large number of approaches following this loop have been

developed, adding different modifications and extensions. Overall, the goal of this concept

is to learn a statistical model of the object with respect to the used object representation.

The representation is given by the used image features and their spatial arrangement. The

statistical model and the representation are not completely independent, as the model has

to be able to capture the complexity of the representation.

Most publications focus on statistical modeling and propose novel learning algorithms

to solve this task. However, the statistical model can only be as good as the data is

that is used to establish it. If the training strategy selects poor training samples, this

8 Chapter 1. Introduction

will influence the tracking performance tremendously, even if the sample labeling itself is

correct. Therefore, in this thesis we will deal with all parts of the tracking loop, including

sampling and labeling of training samples, which is often totally ignored. The following

sections describe the individual building blocks of the tracking loop and list concepts that

have been used in popular approaches.

1.2.1 Object Representation

The object representation defines the combination of visual and geometric information

of the object. This combination allows to interpret the raw image information and to

extracting meaningful information that can be processed using statistical modeling or

learning techniques (see Section 1.2.2) afterwards. However, since both visual and geo-

metric information can change over time, strict separation of representation and model

often difficult.

The most important attribute of image features is that they are distinctive for the

tracked object. This is easy if the target object or object category are known in detail.

Then, feature selection algorithms can perform a pre-selection resulting in a tailored and

high-quality feature pool. However, this is not possible for tracking of arbitrary objects

and feature selection has often to be done during runtime. Anyhow, a single feature type is

often not able to describe an object in a distinctive way, especially when the environment

(e.g., background and illumination) is changing. Therefore, many approaches generate

pools of heterogeneous features and select the ones that perform best regarding the current

settings. Also processing speed is of high importance for visual tracking which makes the

computational complexity of features very relevant. Therefore, complex filter operations

(e.g., Gabor-filters [35]) or normalizations (as used in, e.g., HOG [34]) cannot be used for

real-time applications.

Recently, there is a raising interest also to incorporate geometry information that is

captured within the representation. While traditional approaches use global descriptions,

such as color histograms or templates, there is a clear trend towards including of fine-

grained and flexible geometric information. While global, pixel-based representations allow

for efficient and simple modeling of the object’s appearance, they do not include any

geometric information. Patch-based representations using features which capture a large

portion of the object (e.g., Haar-like [68, 119, 153]) respect the geometric composition of an

object but limit the flexibility of appearance changes. On the other hand, fully part-based

representations need computationally expensive inference to establish both overall result

1.2. The Tracking Loop 9

and individual placement or parts. Thus, there has to be a trade-off between flexibility of

the model, geometric information and computational complexity.

1.2.2 Statistical Model and Learning

Having a good object representation is only the half way to success, the extracted infor-

mation has also to be modeled in a sophisticated way. While raw feature values could be

directly incorporated into statistical models, such as histograms, current approaches use

sophisticated learning techniques to extract the essential information about the object.

Basically, the main intention is to establish a statistical model of the object that allows

to map input information (i.e., observed properties) to a value that indicates of the input

represents the object (i.e., object class). To accomplish this, there are two ideologies that

can be described as the following:

Generative approaches establish a joint probability distribution of all object properties

and a prediction can be made by picking the object class that most likely created

the observed properties.

Discriminative approaches directly model the dependent probability of the object class

and the object properties, which leads to a direct prediction of the object class based

on the observed properties.

While these descriptions sound complex, the main difference is easy to explain: Genera-

tive models describe the properties for a specific object class, independent of any other

information, while discriminative models establish a direct mapping from the observed

information to the desired object class information. This also explains the difference in

getting to a prediction using the different models. A mathematically more sophisticated

description of generative and discriminative classification can be found in [108]. Both

concepts have advantages and disadvantages and there have been several attempts to fuse

these two ideologies (e.g., [40, 85, 150, 158]).

Even though generative and discriminative methods are conceptually quite different,

both finally calculate a score (e.g., a similarity score, probability, likelihood, or confidence

value) for candidate regions in the image to belong to a certain object class. By maximizing

(or sometimes minimizing) this measure the current object position can be estimated.

Within this thesis we primarily focus on discriminative, learning-based methods, as

commonly used in recent tracking approaches. In Chapter 3, we describe randomized

10 Chapter 1. Introduction

online ensemble methods, i.e., Online Random Forests (ORFs), Online Random Ferns

(ORFes), and Online Random Näıve Bayes (ORNB) and their application to tracking.

1.2.3 Detection and Training

The final goal of object tracking is to determine the object’s position in the next frame.

Depending on the object model there are different solutions. The simplest way to estimate

the position of the object is to select candidate positions and to calculate a similarity score

to the object model. The use of such a straight-forward technique to estimate the object

position is motivated by the high complexity of current object models, where no closed-

form solution exists. However, the complexity of this search-problem grows with the

degrees of freedom that are used to describe the position of the object (i.e., coordinates,

width, height, scale, rotation,. . .).

Therefore, several simplifications and assumptions have been integrated into the sam-

pling process to enable real-time performance. To reduce the size of the search space,

most approaches assume continuous motion, which means that the object cannot jump

from one position to a completely different one. Besides the computational reasons, this

assumption is based on physical constraints and also reduces the complexity of discrimi-

native models because only a limited amount of background has to be separated from the

object. Additionally, natural motion is smooth because of inertia of masses of real-world

objects2. To further reduce the computational effort, special sampling strategies, such as

particle filtering [4], are applied in many approaches.

Another important point in object tracking is the continuous improvement of the

object model. Therefore, the statistical model has to be adapted to perform optimally

under the current environment. In discriminative, learning-based approaches this means

that positive and negative training samples have to be generated. Hence, it is obvious

that good sample generation is an important within the tracking loop. However, in most

approaches this issue is neglected or only discussed insufficiently. In Chapter 4, we give

a comprehensive review of related work regarding sampling and sample generation in

tracking approaches.

2This assumption does not hold for, e.g., comics, which explains that tracking approaches usually fail
on such sequences.

1.3. About this Thesis 11

1.3 About this Thesis

In this thesis, we focus on the tracking concept tracking-by-detection. The concept uses

learning-based object detection approaches and extends them to the online domain. This

means that the detector is not trained before runtime using a large amount of labeled

training samples, but during runtime. To adapt to the current object appearance it learns

on a frame by frame basis and optimizes the representation and the statistical model based

on it’s own prediction from previous frames.

This concept is the starting point of the thesis. Based on an comparison of rather

similar approaches [60–62] we wanted to investigate the key performance parameters of

the tracking loop more detailed. Therefore, we present, analyze and discuss a large amount

of concepts that have been used in related work. This should give a detailed overview about

the current state-of-the-art. Thereby, we found many limitations and drawbacks of the

related literature that ignore several properties of tracking-by-detection, such as a noise in

sample generation process, unstable foreground appearance of the object or the presence

of background information in the rectangular object patch. This motivated us to think

further on the individual building blocks and to come up with solutions that do not ignore

these properties.

1.3.1 Structure of this Thesis

In this chapter, we introduced tracking-by-detection and described the tracking loop. In

the following chapters, we will examine the individual parts of the tracking loop and

discuss the implementation of this building block in different tracking approaches.

In Chapter 2 we discuss common representations that are used for tracking-by-

detection. We interpret the representation as a combination of image features and a

geometric model that defines the relation of the used features. Of course we have a

look at the important properties runtime and discriminative power and the selection of

useful features. Chapter 3 introduces the basic mathematical foundations of randomized

ensemble learning algorithms. Therein, we describe the theory of Random Forests (RFs)

and Random Ferns (RFes) that are important techniques in randomized learning.

Furthermore, we develop novel online formulations of Random Ferns (RFes) and Random

Näıve Bayess (RNBs) that are used in the presented applications. Sample generation and

detection of the target object are the topic of Chapter 4, a very important point that is

neglected in most scientific publications. However, we think that the sample generation

crucially influences the tracking performance and directly links to the robustness of the

12 Chapter 1. Introduction

learning method.

Chapter 5 addresses three specific implementations of the tracking-by-detection con-

cept. These applications focus on different blocks of the tracking loop and show that these

blocks are not independent and influence each other. Finally, we conclude this thesis in

Chapter 6 and give an outlook on future trends in tracking-by-detection.

We awarely did not structure this thesis by concatenating several publications of the

author because we wanted to give a wide overview on the topic tracking-by-detection.

Therefore, we integrated the contribution of the author in the more general discussions.

However, the main contributions of the author are summarized at an application level

in Section 5.3.1. At last, this thesis should give a wide overview on tracking approaches

based on the tracking-by-detection concept which is a very flexible and powerful concept

to successfully tackle many sub-problems of the infinitely large area of object tracking.

Chapter 2

Object Representation

Contents

2.1 Geometric Models . 15

2.1.1 Template-based Models . 15

2.1.2 Kernel-based Models . 16

2.1.3 Patch-based Models . 18

2.1.4 Part-based Models . 19

2.1.5 More Geometric Models . 21

2.2 Image Features . 21

2.2.1 Integral Images and Histograms 22

2.2.2 Haar-like Features . 22

2.2.3 Histogram of Oriented Gradients (HOG) 23

2.2.4 More Features . 24

2.2.5 Feature Selection and Combination 24

In contrast to humans, computers have a tough time interpreting the visual information

that they receive via digital cameras. Therefore, the extraction of useful information from

raw pixel intensities is important for every computer vision application. Additionally, the

geometric combination of the extracted image information is essential. In this thesis, we

focus on appearance-based methods.

In object detection, the most popular example for a highly sophisticated model is the

deformable parts model [41] that combines gradient-based information in a geometrically

flexible manner. While they showed impressive performance, such complex models require

a very large amount of information (i.e., training samples) about the object.

13

14 Chapter 2. Object Representation

Tracking of unknown objects requires a different thinking to establish a good repre-

sentation. Especially the lack of knowledge about the object requires flexibility of both

parts to keep all options open. Therefore, tracking-by-detection approaches often use a

mixture of diverse features. Additionally, when tracking non-rigid objects, the geometric

characteristics of the target object may change significantly and flexible re-configuration

might be necessary. Therefore, we will focus on established geometric models for tracking

in this section. These models define the geometric configuration of the extracted image

features and the flexibility of this configuration.

A very basic approach in tracking is the use of templates [17, 69, 100] to describe

the object’s appearance. Such methods estimate the transformation parameters (i.e.,

translation, scaling, affine, homography) by comparing the stored template to the current

image and to establish the object’s current position. Template based approaches have

been frequently used in computer vision and thus, their behavior is well-known. However,

one can expect that template-based approaches show limited performance when applied

to highly non-rigid objects.

Another popular concept is followed by kernel-based methods that establish a global

model of the object according to the shape of a kernel [9, 29, 123] rather than to individual

pixels. Such methods are very efficient and have been very popular because of their

simplicity and speed. However, they do no integrate any structural information of the

object. This is an advantage for decreasing the variance of the object appearance regarding

scaling and rotation, but also decreases the discriminant power of the object model.

More recently, patch-based appearance models using set of features became popular

in the tracking community [12, 55, 61, 133]. Using learning-based feature selection, these

approaches are similar to the work of Viola and Jones [153]. Since these features have

a fixed position within a rectangular patch, their geometric relation is integrated into

the model. While the feature positions are fixed, basically, the learning approaches have

been used to select the most discriminative features out of the given pool, which introduces

flexibility to deformations of the object. Therefore, this description can also be interpreted

as a collection of parts, where only stable parts are selected to describe the object.

Recently, the flexibility of the object description has been increased further by inte-

grating dedicated geometric relations of object parts [82, 103, 139], where parts can be

shifted during runtime. These approaches usually use template-based or kernel-based de-

scriptions of the individual parts, but this concept has been combined with segmentation

algorithms to determine the object shape more accurately [26, 40, 56].

2.1. Geometric Models 15

2.1 Geometric Models

As denoted in the Introduction, we define the geometric model as the geometric structure

of the used image features, where different properties, such as the initial construction or

dynamic restructuring are important. Especially in the case of real-world object that may

deform during runtime, geometric models have a high influence on the capabilities of a

tracking approach. While template-based approaches have a long tradition in computer

vision, current developments clearly go towards flexible, part-based models. Especially in

recent years, the complexity of such models has significantly increased. In this section, we

discuss recent approaches and explain their advantages and drawbacks.

2.1.1 Template-based Models

Traditional tracking methods often rely on image templates, where the fundamental idea

can be dated back to the method of Lucas and Kanade [100]. The tracking task is typi-

cally solved by detecting and matching or by correlating salient features from consecutive

frames, which allows the estimation of a transformation matrix.

Benhimane and Malis [16] introduce a homography-based approach to image-based

visual tracking and servoing. They propose to use an efficient second order minimization

method to estimate a homography between consecutive and relies on an iterative mini-

mization technique. Another prominent approach is Incremental Visual Tracking (IVT)

by Ross et al. [128], which uses an incremental algorithm to calculate a subspace represen-

tation of the object. Their incremental Principal Component Analysis (PCA) efficiently

updates the Eigenbases (see Figure 2.1) and allows for continuous registration of the model

to the current image in position, scale and rotation.

Bolme et al. [20] proposed an approach based on adaptive correlation filters. They

use a Minimum Output Sum of Squared Error (MOSSE) filter for correlation, in order

to obtain stable and compact peaks for the object detection. Recently, Sevilla-Lara and

Learned-Miller [138] introduced Distribution Fields for tracking. They split the template

into several layers based on the gray-scale values of an image and perform spatial smooth-

ing within the layers individually. This preserves fine structures while enabling slight

deformations of the object. However, most real-world objects are inherently non-rigid or

perform complex deformations, e.g., for viewpoint changes which are hard to cope with

using template-based approaches.

16 Chapter 2. Object Representation

(a) (b) (c) (d)

Figure 2.1: Sample results for Incremental Visual Tracking (IVT): Tracking result
(first row) for four sample frames, sample mean, tracked image region, reconstructed image
with the mean and Eigenbases, and the reconstruction error (second row), 10 largest
Eigenbases (third and fourth row) (images from [128]).

2.1.2 Kernel-based Models

In contrast to template-based models, kernel-based models basically ignore the geometric

structure of the object completely. However, the introduce the shape of a kernel function

into the representation. While template based models describe every pixel and its concrete

position, kernel-based models describe the whole object at once, based on the shape of

a kernel. This means, that the object is described using an overall image statistic, such

as a color histogram, calculated on a parametrized kernel function. In some approaches,

the kernel’s parameters, such as size and rotation, are additionally optimized based on the

current image and the object’s statistics. These methods are very popular because of their

simplicity and computational efficiency. One of the most popular approaches is Mean-shift

tracking by Comaniciu et al. [29]. They model the object using a color histogram and use

an ellipse as a kernel.

In their WSL-tracker, Jepson et al. [75] represent the object using an elliptical kernel.

Additionally, they separate the description into the three components (a) stable features

(i.e., Stable), (b) transient features (i.e., Wandering), and (c) noise (i.e., Lost). As fea-

tures they use filter responses of a steerable pyramid and the object motion is calculated

using a weighted combination of stable and transient features, but this representation has

been used also with other kinds of features that can be calculated fast given a specific

kernel. One of the most recent features that has been used for kernel-based tracking is

2.1. Geometric Models 17

the covariance descriptor [151] and its Euclidean approximations [72, 79], respectively.

Several approaches separated the global object description into several parts that are

described individually. For example, Adam et al. [1] use 5×2 regions that are individually

modeled with color histograms. This separation preserves the geometric relation of the

extracted statistics with respect to the object’s structure, which is especially useful when

dealing with partial occlusions. As an alternative, Kluckner et al. [79] separate the object

into left, right, upper and lower part, as also proposed in [96] (see Figure 2.2). This

separation allows to handle local variations and partial occlusions more robustly and can

also be interpreted as part-based model (see Section 2.1.4).

Figure 2.2: Representing the object as multiple overlapping parts increases the robustness
regarding partial occlusions (images from [79]). C1 represents the global description of
the object, while C2 − C4 enables robustness to partial occlusions.

Additionally, many segmentation-based tracking approaches can be categorized as

kernel-based methods, but using a dynamic kernel shape rather than a fixed one (i.e.,

elliptical or rectangular). Bibby and Reid [18] describe the tracking problem within a

probabilistic framework. Using pixel-wise posteriors they model the fore- and background

appearance and the object contour jointly. However, the high complexity of their theoretic

framework makes it computationally infeasible. Thus, they separate the tracking process

into registration, level-set segmentation, and online appearance learning for continuous

refinement of both object and background models. As a limitation, they use global color

histograms to describe the object.

Fan et al. [40] use several different techniques to describe the object. They combine

salient points, bag-of-patches and a kernel-based model based on discriminative colors to

generate scribbles for object and background that are used to perform image matting (e.g.,

[93]). There also exist many other segmentation-based approaches, but they either need

prior knowledge about the object or object category (e.g., [31]), use only very simple object

appearance models limiting the discriminative power of the model (e.g., color histograms

[127]), require offline processing of the sequence (e.g., [67, 148]), or are computationally

too complex to allow for real-time applications (e.g., [106, 165]).

18 Chapter 2. Object Representation

2.1.3 Patch-based Models

Patch-based representations have been the common representation concept in object track-

ing for the last decade and are an extension to the kernel-based description. Basically, they

use a rectangular kernel to capture the object dimensions, but instead of using a global

description within the kernel, they use local features1 the represent also the geometric

properties of the object (see Figure 2.3).

Figure 2.3: Patch-based appearance model: A large number of efficient image features
are placed at fixed positions within a rectangular bounding box (images from [153]). A
learning-based feature selection is applied to reduce the over-complete feature set to a
reasonable pool that is optimized for the current object appearance.

Based on the detection framework by Viola and Jones [153], many tracking approaches

used this scheme consisting of a number of features that are placed within a rectangular

patch. Grabner et al. [61] used online Adaboost to learn the object’s appearance during

runtime. At each stage of the boosting algorithm, they select the best rectangular feature

within a selector. The features itself are randomly placed within a rectangular patch and

have a fixed position, size and type regarding the rectangular patch. In their approach

they use a selected feature set of 50 features, where each feature is selected from an

individual pool of about 50 features (i.e., they select 50 out of 2500). Their concept has

been extended to various learning concepts [12, 62, 91, 133]. Kalal et al. [77] uses the

patch-based geometry but with slightly different features. Instead of intensity differences,

they model oriented gradients using combined horizontal and vertical Haar-like features

(see Figure 2.4). These features result in two binary decisions that are used within decision

trees.

1There are other interpretations of patch-based appearance model, but we refer to the feature-based
concept introduced by [153] and [119].

2.1. Geometric Models 19

Figure 2.4: Patch-based appearance model: Kalal et al. model gradient images at
selected rectangular positions (images from [76]) by using combined horizontal and vertical
Haar-like features.

2.1.4 Part-based Models

More recently, the granularity and the flexibility of the geometric model became more

and more important. Many of the approaches listed above can be seen in the context of

part-based representations. For example, Adam et al. [1] and Kluckner et al. [79] separate

the rectangular patch into several smaller parts and use individual statistical descriptions

for these parts. Kluckner et al. [79] use overlapping blocks (upper and lower half, left and

right half and the overall patch) to allow for stable tracking during changes of the object’s

appearance, while Adam et al. separate the object into n ×m non-overlapping parts to

tackle partial occlusions.

Also many patch-based approaches (e.g., [12, 61, 77, 91, 133]) can be interpreted as

part-based models, if each part is described by a single feature. However, these approaches

20 Chapter 2. Object Representation

are usually not able to shift, remove and add new parts during runtime, which would

respect the non-rigid deformations of real-world objects. However, these approaches tackle

such transformations by increasing the learning rate that adapts the statistics to the

current object appearance.

Traditional part-based methods in object detection [3, 23, 30, 41–43, 45, 87, 156] have

shown impressive results for object detection but are computationally too expensive to

be used in real-time applications, such as tracking. Therefore, simplifications have been

applied to speed up the process. Sigal et al. [144] use a loose-limbed model to decrease the

effort for combining human body parts in a tree-like structure. Their approach combines

votes from individual body parts regarding the position of the torso, but is only applicable

for humans in a multi-camera setup.

Schindler and Dellaert [136] track a fixed number of parts in a particle-filter setup.

They integrate the shape of the object to decrease the dimensionality of their constellation

model and to use a particle filter. However, their model parameters are trained from a

fixed training set. Thus, their approach is limited to a specific class of objects and no

parameter update is performed during tracking. Mauthner et al. [103] use a hierarchical

setup to model both the individual particle appearance and the spatial arrangement of the

parts, respectively. The individual parts are tracked by particle filters using a kernel-based

appearance model.

Nejhum et al. [139] use blocks of appearance histograms and shape descriptions to

model articulated objects. Additionally, they use a rough segmentation to find the object

outline and re-arrange the blocks to maximize the overlap and similarity to the current

object appearance and shape. However, they assume stationary foreground appearance

and cannot cope with significant appearance changes of the object during tracking. Kwon

and Lee [82] use a number of object parts that are automatically renewed during tracking

and track the geometric relations of these parts over time (see Figure 2.5). Additionally,

to reduce the computational complexity they apply Basin Hopping Monte Carlo (BHMC)

sampling. They use a template-based method to model the individual parts and adjust

the number of parts during runtime of the tracker dynamically.

In the presented application, we use the generalized Hough-transform to retrieve the

object center. Thereby, the voting-based aggregation of small patches can be interpreted

as a multi-part object model. Additionally, a segmentation is used to establish a pixel-

accurate separation of parts that have a stable geometric relation.

2.2. Image Features 21

Figure 2.5: Sample results for BHMC: Kwon and Lee use tracking of multiple template-
patches to establish a flexible bounding-box over the object (images from [82]). They
update the appearance, position and number of blocks that are used during a video se-
quence.

2.1.5 More Geometric Models

Another branch of part-based models is related to the bag-of-words concept. This means

that there is no real geometric relation between the parts expect their co-occurance within

a given region. Beside those, there are many concepts that heavily rely on the geometric

information of the object, e.g., using a CAD model, or that construct a full 3D model of

the object. However, such approaches either require a large amount of information about

the object that is not given in our task or they require a static scene. Therefore, we do

not discuss such approaches in this thesis.

2.2 Image Features

While geometric models connect parts of the object to establish a powerful representa-

tion, image features transform the raw pixel intensities into more meaningful information.

Depending on the presented application, researchers have proposed both, well-known and

novel image features for the use within tracking. Thus, a comprehensive list of features

would go beyond the scope of this thesis. However, we give a short introduction on the

features that are used in the approaches presented in Chapter 5. Additionally, we take

a glance at several other image features that have been used in recent and popular ap-

proaches.

The most desirable characteristics of image features are (a) calculation speed and

high discriminative power. As with geometric models, the lack of knowledge about

the object may require the combination of different image features within one repre-

sentation. Often, this is handled by using feature selection and a heterogeneous feature

pool. However, in the subsequent discussion of approaches we completely ignore that

22 Chapter 2. Object Representation

many implementations couple features, learning algorithms and geometric models tightly.

To enable fast computation, most approaches use intermediate representations, such as

integral images [33] of intensities or gradients. These representations are only calculated

once per image to speed up the computation.

2.2.1 Integral Images and Histograms

Calculating sum, average or histograms over rectangular regions would be inefficient if

every pixel has to be addressed for every feature again and again. Thus, many descriptors

can be sped up using integral images (i.e., summed area tables [33]). An integral image,

denoted as II, basically is a lookup table

II(x, y) =
∑

0≤x′≤x

∑
0≤y′≤y

I(x′, y′), (2.1)

where I is the actual image and x′ and y′ iterates over the rectangular area from image

coordinates (0, 0) to (x, y). This lookup table can be calculated in a single pass over the

actual image I, which makes the computation very fast. Using II, the sum over rectangle

with corners (x, y) and (x+ w, y + h) can be calculated as

∑
x≤x′≤x+w,y≤y′≤y+h

I(x′, y′) = II(x, y)+II(x+w, y+h)−II(x+w, y)−II(x, y+h) (2.2)

accessing only 4 image coordinates (the corners of the rectangle) of the integral image

II instead of w · h coordinates of the image I. w and h are the width and height of

the rectangular area, respectively. Since the number of calculated features is usually

very large, the cost of creating the integral image can be neglected2. While the original

version of Integral Images [33] is applicable to rectangular areas, there also exist versions

to compute the sum over rotated rectangles ([104] for 45◦ or even for arbitrary rotations

[121]). Naturally, integral images can be extended to more complex structures which

allows to efficiently calculate, e.g., histograms over regions [122].

2.2.2 Haar-like Features

Using single image intensities to describe an object is prone to noise and slight deformations

of the image. Papageorgiou et al. [119] discussed features based on Haar-wavelets [68] and

2The break even point of integral images is reached if the area of the calculated features exceeds the
area of the image, which is easily given if several thousands of features are calculated.

2.2. Image Features 23

Viola and Jones [153] finally used them for object detection in combination with integral

images for faster computation. Haar-like features are a very simple kind of wavelet filter

that calculates the difference of the sum of two or more rectangular patches in an image.

Due to their extend, they are not too sensitive to slight shifts, and due to the difference,

they are also quite robust to illumination changes. Figure 2.6 lists some possible types

of Haar-like features. There also exist Haar-like features that are rotated by 45◦ or even

consist of polynomial shape that can be calculated efficiently [95, 121]. Kalal et al. [77]

use Haar-like features in a slightly different way by simply separating a square into upper,

lower, left and right halves and binary comparison of the sums. The generated binary

pattern is learned using a variant of Decision Trees (DTs). Most common, Haar-like

features are applied to image intensities, however, they can also be used to describe color

channels or gradients.

(a) horiz.
edge

(b) vert.
edge

(c) horiz.
line

(d) vert.
line

(e) diago-
nal line

(f) center
surround-
ing

Figure 2.6: Examples for Haar-like Features.

2.2.3 Histogram of Oriented Gradients (HOG)

Dalal and Triggs [34] proposed the Histogram of Oriented Gradients (HOG) descriptor

for pedestrian detection, but the approach has been extended to other categories and ap-

plications and is also used within the Deformable Parts Model (DPM) [41]. Calculation

of the HOG descriptor consists of the four steps (a) Gradient calculation, (b) orienta-

tion binning, (c) block description, and (d) block normalization. Figure 2.7 shows block

weights and gradient orientations for a pedestrian detector using the HOG descriptor. The

highly related Histogram of Gradients (HoG) descriptor (also known as Edge Orientation

Histogram (EOH)) is a simpler variant without steps (c) and (d). While this prevents

normalization of the gradient values, HoG descriptors can be efficiently calculated over

rectangular regions using integral histograms (see Section 2.2.1).

24 Chapter 2. Object Representation

(a) (b) (c) (d) (e) (f) (g)

Figure 2.7: HOG detectors cue mainly on silhouette contours (especially the head,
shoulders and feet). The most active blocks are centered on the image background just
outside the contour. (a) The average gradient image over the training examples. (b) Each
“pixel” (i.e., cell) shows the maximum positive SVM weight in the block centered on the
pixel. (c) Likewise for the negative SVM weights. (d) A test image. (e) A visualization of
the computed descriptors for the image cells (f,g). A visualization of the positive negative
SVM weights of the descriptors (Images from [34]).

2.2.4 More Features

Of course, Haar-like features and HOG are not the only features that are used for object

tracking. Another popular feature description would be the covariance descriptor [151]

and its Euclidean-space approximations Sigma Sets [72] and Sigma Points [79]. They can

be seen as a combination of various feature channels, RGB-color and first and second

derivatives in X and Y direction are the common choice. Also standard image features,

such as Local Binary Patterns (LBPs) [109] have been used. Beside that, also tailored

features, such as discriminant colors [40], key-point descriptors, such as SIFT [99], or

optical flow (see [13] for a recent evaluation of optical flow approaches) have been used

for tracking and the set of suitable features will increase further with nearly every new

tracking approach.

2.2.5 Feature Selection and Combination

As already mentioned in the beginning of this chapter, many approaches do not rely on

single image features because different tracking applications arise the need for different

descriptions (i.e., untextured objects vs. textured objects, color vs. gray-scale video).

This is also the biggest difference to vector-shaped features, such as HOG, because vector-

2.2. Image Features 25

shaped features consist of several values that are not independent, i.e., they do not cover

diverse information channels. Thus, selecting the right features for a specific task is an

important issue [147]. In tracking, often learning algorithms are applied to select the

best-performing features according to the current tracking task, which may change during

runtime.

Collins et al. [28] perform online feature selection based on the ability of the features

to discriminate foreground and background. However, they only use simple modifications

of the color channels, such as raw R, G, and B values, intensity (R+G+B), approximate

chrominance features (e.g., R−B), and so-called excess color features (e.g., 2G−R−B)

and do not integrate other cues such as gradients.

Grabner et al. [61] use Boosting for Feature Selection to find the best features for the

current situation. They use several small feature pools (denoted as selectors) and perform

feature selection in each of these pools. Since all features are updated during runtime, the

feature ranking may change and thus also the one that is picked for evaluation. They use

Haar-like features, Histogram of Gradients (HoG) and Local Binary Patterns (LBPs) for

tracking, which can be computed efficiently and enable real-time performance. Finally, the

selectors are combined using online boosting. In two of our applications we use random

sampling from the feature space during construction of the used classifiers and perform the

selection of suitable members of the feature ensemble during runtime. These approaches

are explained in detail in Chapter 5, Section 5.1 and 5.3, respectively. Beside the presented

combination methods, many other concepts have been proposed.

Chapter 3

Online Machine Learning using

Randomized Ensemble Methods

Contents

3.1 Mathematical Definitions . 27

3.2 Terminology . 28

3.3 Online Ensemble Learning in Computer Vision 31

3.4 Online Random Forests (ORFs) 33

3.4.1 Bagging . 34

3.4.2 Decision Trees (DTs) . 35

3.4.3 Online Learning . 38

3.4.4 Properties and Discussion . 40

3.5 Online Random Näıve and Semi-Näıve Bayes 41

3.5.1 Online Random Näıve Bayes (ORNB) 43

3.5.2 Random Ferns (RFes) . 45

Machine learning has a strong association to terms like Artificial Intelligence and au-

tonomous Robots in the general public caused by their use in science fiction movies. How-

ever, for most scientists it is more or less a statistical tool to process a large amount of

data and to extract useful information out of it. Arthur Samuel defined Machine learning

as the following (1959)

Machine Learning is a field of study that gives computers the ability to

learn without being explicitly programmed.

27

28 Chapter 3. Online Machine Learning

This means that a computer may extract rules from a number of training samples

that try to estimate an unknown label from a data sample. This is very useful if training

samples for a specific problem are present, but an explicit algorithm cannot be formulated

(i.e., implemented) because of a lack in knowledge or the high complexity of the task. In

computer vision, this applies to a lot of tasks because every human (that has a working

visual sense) has the ability to understand the surrounding environment but we do not

have deep understanding how this is performed within our visual cortex.

For instance, e.g., finding of a specific object in an image seems to be very easy be-

cause we have wide experience in detection and recognition of humans, but we cannot

describe how we solve that problem explicitly. Thus, machine learning tries to rebuild

the mechanism of learning from experience as every human does when he grows up. This

shifts the complexity of solving a specific problem towards the ability to provide enough

training samples so that a machine learning algorithm can extract the solution approach

on it’s own.

In the following, we introduce the mathematical definitions of machine learning that

are used to describe the different concepts and algorithms that are described within this

thesis. In Sections 3.2 and 3.3, we give an overview over common machine learning terms

and related work in randomized learning. In Sections 3.4 and 3.5 we introduce randomized

online learning algorithms that are used in the applications at the end of this thesis.

3.1 Mathematical Definitions

In the following, we give mathematical definitions, where we follow the notation of [32].

Formally, let v = (x1, x2, · · · , xd) ∈ Rd be a feature vector (or observation) and c ∈ C be

a class label. Then, a training sample is formed as the tuple 〈v, c〉. The label space C
can be defined arbitrarily, according to the task that should be solved. Common cases are

C = {+1,−1} or C = {1, 2, · · · , k} for binary or multi-class / k-class classification, C = R
for regression or C = Rn for structured output prediction. If the algorithm returns a

real-valued confidence along with it’s prediction, this is called confidence-rated prediction.

This additional output is often used for comparison or combination of the predictions of

several learning algorithms or instances.

In general, the goal is to create a mapping H that is able to predict the correct class

label c for an unlabeled test sample v,

H : Rd → C.

3.2. Terminology 29

3.2 Terminology

Beside the basic mathematical formulation of machine learning, we distinguish many dif-

ferent learning tasks. To ease understanding of this chapter, we introduced common terms

within this section. This is especially important since some of these have ambiguous mean-

ing in the community.

Supervised Learning In supervised learning, the experience is presented in form of

sample and label pairs 〈v, c〉. This means that for every training sample the correct

output value is given (i.e., labeled data). The task of “learning from experience” as

described above is an example for supervised learning.

Unsupervised Learning In contrast, for unsupervised learning no labels c are avail-

able for the training samples v (i.e., unlabeled data). Unsupervised learning algo-

rithms often try to uncover a structure within the training samples, e.g., performing

grouping of the samples to retrieve homogeneous groups in the sample space (i.e.,

clustering).

Semi-supervised Learning This is a midway of the above extremal cases. In semi-

supervised learning, the training data consists of labeled and unlabeled samples. In

this case, the unlabeled data is often utilized to recover the whole structure of the

data space whereas the labeled data assigns labels to the retrieved clusters. The aim

of semi-supervised learning is to improve the quality of a learning algorithm based

on a very large amount of unlabeled data, because unlabeled data is usually much

cheaper to acquire than labeled data.

Multiple-Instance Learning Multiple-Instance learning tries to incorporate the uncer-

tainty of labels. For instance, cropping pedestrians in images includes a large amount

of ambiguities, which can be, e.g., slight changes in scale or shifts which add uncer-

tainty to a specific sample. This problem is respected in multiple-instance learning,

where the label is assigned to a group (i.e., bag) of samples rather to an individual

one. This makes the generation of training data much easier, because the precision

of the labeling process can be lower but increases the complexity of the learning

process.

Multi-Label Learning This is a learning concept, where one sample can represent sev-

eral different classes at once. For example, this is the case if a still image is labeled

30 Chapter 3. Online Machine Learning

to include several different categories of objects, without stating the individual po-

sitions of the objects. The learning algorithm has to recover the parts of the sample

that are representative for each class by analyzing the whole dataset.

Beside the kind of samples that are used for learning, there is also a distinction regarding

the arrival of the training data.

Offline Learning In offline learning, all samples are available for the learning algorithm

at once. This is often also called batch learning. Usually, there are no limitations in

memory consumption, complexity and training time or in which order the training

data is processed. This means that a sample can be accessed several times.

Incremental Learning Incremental learning is similar to offline learning, but the sam-

ples are only available in sequential order. Thus, the learning algorithm cannot

access future samples but should converge to an algorithm that is trained offline.

This training mode is important for large-scale datasets that do not fit into memory

or if samples are generated sequentially and have to be processed as soon as possible.

An incremental learning algorithm may be able to perform predictions before the

whole training samples have been processed.

Online Learning In online learning only a limited portion of the dataset is available at

once. This portion may be as small as a single sample or may consist of a larger chunk

of data (i.e., batch online learning). A sample has to be processed immediately and

has to be discarded after training. Thus, the learning algorithm will automatically

adapt to current samples (i.e., the algorithm is updated). As with incremental

learning, the algorithm has to be able to generate predictions at any time. We

distinguish between incremental and online learning as that online learning has

a fixed size knowledge, i.e., memory footprint, whereas incremental learning can

accumulate the information and increase it’s knowledge over time. According to the

actual task, we imply that online learning relates the importance of an information

to the arrival time, which results in out-dating of old information. This implies a

strong relation to the information that has been learned recently.

Basically, there are two types of applications that require incremental or online learning

techniques. First, large-scale data analysis has increased the interest in incremental learn-

ing. Today’s databases may consist of millions of samples that are hard to store at once

without increasing the runtime significantly. This is also an issue when learning from

3.2. Terminology 31

Internet image collections, that cannot be simply “downloaded” to a computer. The sec-

ond example are applications where the environment may change. For example, a mobile

traffic surveillance system may be deployed at several different locations and should adapt

to the current needs. The same also applies for object tracking, because both the object

and the background may changeover time.

Highly related to that are (inter-)active and reinforcement learning problems.

Interactive Learning Interactive learning uses the knowledge of a teacher (usually a

human) that labels unlabeled samples and selects unlabeled samples to question the

teacher under the aspect of maximal gain in knowledge.

Reinforcement Learning In reinforcement learning, the teacher tries to maximize the

knowledge gain of the learner by choosing the best training samples at the right

time, which is highly related to the concept of tracking-by-detection as described in

this thesis.

Regarding the algorithms that are discussed within this thesis we have to define some

terms that are especially related to randomized learning and ensemble learning.

Meta-Learning Meta-learning algorithms are concepts to combine a number of instances

of other learning algorithms. Thus, they work on a higher level of abstraction and

do not perform learning on their own (see [125] for an overview). Popular examples

for meta-learning algorithms are Ensemble methods, Transfer Learning [118], or Co-

training [19].

Ensemble Learning Ensemble learning algorithms perform meta-learning. They com-

bine a larger number of similar learners (see [112] for an overview) to increase the

overall performance. Within this thesis, we refer to the individual learners as mem-

bers of the ensemble. The major goal of ensemble methods is that the overall

ensemble should perform better than just using several individual members of the

ensemble in parallel. This is mainly given by the decreased variance due to the

averaging of the ensemble.

Bagging Bagging, also known as bootstrap aggregation [21], is a very popular ensemble

learning method that is used in, e.g., Random Forests. To improve the overall per-

formance of the ensemble in Bagging, the de-correlation of the individual members

is enforced. This is done by generating individual training sets for all members by

sampling with replacement from the overall training set.

32 Chapter 3. Online Machine Learning

Randomized Learning Another way to increase the de-correlation of the members of

an ensemble is to include randomization at several parts of the learning algorithm.

First, random sub-sampling of the training set avoids that all members of the ensem-

ble receive the same dataset. Additionally, the individual members should include

random feature selection, random threshold selection or similar to prevent training

members that are too similar. This results in increased diversity of the ensemble

members and decreased variance of the resulting classifier. In this thesis, we build

on Random Forests (RFs) and Random Ferns (RFes) and their online equivalents,

which are the most common randomized ensemble learning algorithms (see Sections

3.4 and 3.5.2).

Boosting Boosting [47] is another popular ensemble learning method in computer vision.

While Bagging uses randomization to diversify the ensemble members, Boosting

arranges the members within a chain and re-weights samples while they pass through

this chain. The samples are weighted according to the correctness of the prediction

of the subsequent stages in the chain. This enables that succeeding stages in the

chain to focus on samples that haven’t been solved well in the preceding stages.

Weak and Strong Learner These terms describe the different levels of meta-learning

algorithms. Usually, the members of an ensemble are denoted as weak learners,

because they do not provide maximum performance, while the ensemble is depicted

as strong learner.

Bootstrapping While Bootstrapping has a well-defined meaning, the term is often used

with different meanings in the literature. For us, Bootstrapping describes the process

of refining a learning algorithm based on failures it made within the training set.

Usually, these failure cases are presented to the learning algorithm again or additional

members of an ensemble focus on them.

3.3 Online Ensemble Learning in Computer Vision

As already mentioned at the beginning of this chapter, many problems in computer vision

are hard to solve explicitly because humans are not able to transfer their “approach” to

an actual implementation. Therefore, machine learning has a long tradition in this field

of research. Since we mainly focus on problems that require online learning capabilities,

we summarize the development of such algorithms with special focus on computer vision

3.3. Online Ensemble Learning in Computer Vision 33

applications.

Many online learning algorithms can trace their roots back to the work of Littlestone,

Warmuth, and Vovk [97, 98, 155]. They defined online learning as a sequence of trials.

Every time the learner gets a new sample, it tries to make a prediction. Subsequently,

feedback can be used to refine the model for prediction.

Later, the most popular ensemble methods, Bagging [21] and Boosting [47], have found

their way into the computer vision community. Papageorgiou et al. [119] presented their

concept for a general object detection framework. They proposed to learn a subset from

an over-complete dictionary of wavelet basis functions to retrieve a compact representation

for specific object category. This compact representation is then used to detect instances

of the object category in unconstrained environments using a Support Vector Machine

(SVM) classifier. Subsequently, Viola and Jones [153, 154] proposed one of the most

prominent object detection approaches in computer vision based on [119]. They perform

Boosting to select a set Haar-like features and construct a cascaded classifier. Their

approach was the first to enable real-time object detection. Motivated by their work,

offline boosting has been used for many different computer vision applications, such as

rotation-invariant object detection [152], simultaneous detection and segmentation [161],

multi-view detection [159], feature combination [164], or object recognition [111].

Combining the two branches of research, online learning and ensemble methods, Oza

and Russell [114] proposed an online formulation for Boosting and Bagging. Their work

was the basis and motivation for a large number of online ensemble algorithms (e.g.,

[12, 55, 56, 60, 62, 91, 131, 133, 137]), where tracking-by-detection was a standard use-

case for evaluation.

While online model adaption has already been used for tracking before (e.g., [29, 75]),

Avidan [5, 6] was the first who used ensemble learning methods for tracking. However,

he did not apply online learning on the used members but replaced old members of the

ensemble with newly trained ones.

Online Boosting Based on the work of [153], Grabner and Bischof [60] combined Boost-

ing for feature selection with the concept of online Ada-Boost [114]. To increase the

number of used features, they use feature pools called selectors. This concept has been ex-

tended to various learning paradigms, such as Multiple Instance Learning (MIL) [12], Semi-

supervised Learning (SSL) [62], or Multi-view Learning (MVL) [131] and was applied to

various tasks, such as key-point tracking [64], background modeling [63], or scene-adaptive

object detection [129]. Leistner et al. [91] proposed an online extension of Boosting (i.e.,

34 Chapter 3. Online Machine Learning

Gradient Boost [49]), which allows to use more robust loss-functions. Also Babenko et

al. [11] developed a very similar idea at the same time, but limited their evaluations to

binary classification problems.

Online Bagging Beside Boosting, also Bagging gained a lot of interest in the com-

puter vision community, mostly caused by the popularity of Random Forests (RFs) [22].

Lepetit et al. [92] used an ensemble of randomized trees to recognize key-points for 3D

tracking and Özuysal et al. extended this idea for the use with Random Fern (RFe) [116].

Later, Saffari et al. proposed an online extension of Random Forest (RF), which has been

used for tracking [133] and extended to Multiple Instance Learning [90] and Multi-view

Learning [88]. Additionally, Online Random Forest (ORF) have been used to transform

the Hough-based detection approach of Gall and Lempitsky [50] to the online domain by

Schulter et al. [137]. Besides that, online Bagging has been used in combination with Näıve

Bayes (NB) classification (see Section 5.1) and Hough-based Ferns for tracking (see Section

5.3). This list makes no claim to be comprehensive because Random Forests (RFs) [22]

has been applied to a many different computer vision problem so far and is part of many

current state-of-the-art approaches (see also [32]).

3.4 Online Random Forests (ORFs)

Randomized Trees, also known as Random Forest, or Random Forests (RFs) [22] are a very

popular ensemble learning method. They basically combine a randomized set of Decision

Trees (DTs) (see Section 3.4.2) using Bagging [21]. Additionally, each DT is trained using

a sub-sampled set of training samples to enforce de-correlation. Because of their speed,

capability of parallelization and robustness to noisy training data they are often applied

for various tasks such as key-point recognition [92], semantic segmentation [143] or medical

image analysis [105].

RFs utilize a set of T DTs and belong to the category of Ensemble Learning algorithms.

The final prediction is computed by averaging over the whole set of classifiers

H (v) =
1

T

T∑
t=1

pt (c|v) , (3.1)

where pt (c|v) is the probability for class c given feature vector v.

However, Ensemble Learning algorithms have to ensure that their individual learners

are decorrelated. Otherwise, their prediction will be too similar and the grouping of the

3.4. Online Random Forests (ORFs) 35

classifiers does not give benefits because all members will make the same mistakes. Then,

the classifier will not generalize, i.e., work well on samples not included in the training data.

This axiom is supported by the generalization error GE of RFs that is upper bounded by

GE ≤ ρ̄1− s2

s2
, (3.2)

where s is the strength of the ensemble (i.e., the expected value of the margin over the

entire distribution) and ρ̄ is the mean correlation between pairs of trees in the forest [22].

The correlation is measured in terms of the similarities of the predictions.

3.4.1 Bagging

Therefore, randomized learning methods (e.g., Bagging) rely on the two principles (a)

random input selection and (b) random feature selection. The main advantages of these

methods are the increased stability and decreased variance of the resulting classifier. Using

random input selection, the classifiers are trained on different subsets of the training space.

Random feature selection further increases the problem complexity by limiting a specific

classifier to a subspace of the whole feature space. Bagging has shown to improve the final

classifier in terms of stability and classification accuracy and helps to avoid overfitting.

In RFs, the individual training subsets for each DT are generated using sampling with

replacement, which results in 1− 1
e non-identical samples per set on average:

Given N possible outcomes of a trial (the N cases in the learning set) and

N trials, the probability that the nth outcome is selected 0, 1, 2, . . . times is

approximately Poisson distributed with λ = 1 for large N . The probability

that the nth outcome will occur at least once is 1− 1
e ≈ 0.632.

(Breiman [21])

Sub-sampling of the feature space used for a single DT is performed inherently by using

randomly generated tests.

Training The construction rules for RFs also compensate for the complex construction

of DTs. The applied heuristic generates randomized test parameters over a reduced set

of candidate features. Thus, the feature selection (i.e., selection of parameters φ and ψ)

is done randomly and only τ is optimized over the whole spectrum. This gives an overall

number of tests of N − 1 per parameter pair 〈φ, ψ〉, where N is the number of training

36 Chapter 3. Online Machine Learning

samples. Naturally, the optimization is a demanding task if the number of randomly

chosen parameter pairs 〈φ, ψ〉 is large.

Extreme Randomization Geurts et al. [53] proposed another construction scheme

called Extremely Randomized Decision Tree (ERT). They randomly sample all three

parameters 〈φ,ψ, τ〉 during optimization, where the threshold τ will be selected K times

and the best performing value is selected. Thus, the number of elements that have to be

considered for optimization does not depend on the size of the training set, but on K.

If K is set to be N − 1, the training algorithm is very similar to RFs, setting K = 1

yields complete randomization and the structure of the resulting trees does not depend

on the training data any more. Additionally, due to the full randomization of the tests,

sub-sampling of training data is not necessary any more.

Evaluation During evaluation, a sample v traverses down the tree t according to the

subsequent node tests until it reaches a leaf node. For all leave nodes the probability

pt (c|v) that a sample ending up in this node has the label c is modeled. Finally, the

overall probability pt (c|v) is determined by averaging the individual leaf probabilities pt

over an ensemble of T trees. For classification, the class c of a specific data sample v can

be predicted by late or early fusion. Early fusion performs prediction for each individual

element of the ensemble, while late fusion considers the individual probabilities, such that

H (v) = arg max
c

T∑
t=1

pt (c|v) . (3.3)

Because of the tree-like classifier structure, training can be done recursively and evalu-

ation is very fast (i.e., logarithmic complexity of the classifier according to the number of

nodes). A very comprehensive tutorial about RFs and their applications to classification,

regression and density estimation can be found in [32].

3.4.2 Decision Trees (DTs)

DTs are the basic building block of RFs. Beside the high performance of DTs, they are

very simple to implement. The basic concept is to use very simple tests to split the set

of training samples into smaller sets until the problem defined by the smaller set can be

solved. This is done by performing binary splits in a recursive manner which results in a

tree-like structure.

3.4. Online Random Forests (ORFs) 37

During construction of these trees, for all nodes j, except the leave nodes, binary

splitting tests

h (v,θj) ∈ {0, 1} (3.4)

are defined, which decide if a sample v arriving at the node j is sent to its left (0) or right

(1) child node. Given the parameter triple θ = (φ,ψ, τ), binary tests are defined as

h (v,θj) = [φ(v)×ψ > τ] , (3.5)

where φ is a feature transformation, ψ calculates a linear combination of the features and

τ denotes a threshold.

Using this framework, we can calculate the parameters to perform linear and non-

linear data separation [32]. For example, using a vector φ(v) with a single entry larger

than zero results in feature thresholding with τ . If several entries are larger than zero, a

linear combination of several feature values is thresholded. Such a test, using two feature

entries, is very common and used in, e.g., [50, 56]. If φ(v) is defined properly, non-linear

feature transformation is performed.

During training, DTs optimize these binary tests according to a certain criterion based

on the given training set S (i.e., the subset of S that is processed by the corresponding

node). Some common optimization criteria are described below. After choosing the op-

timal test parameters, the training set is split recursively until the subsets are internally

consistent (i.e., belonging to the same class c) or a maximum tree depth D has been

reached.

When the tree is fully grown, the probability p (c) can be calculated for all classes in

all leaf nodes. The prediction of the DT is made according to the leaf node they end up,

and the corresponding probability, and is denoted as p (c|v), where v indirectly defines the

leaf node the sample ends up. If a DT is fully grown, it is prone to over-fitting because

of a possibly small number of samples in the leaf nodes. Therefore, a large number of

modifications have been proposed, such as restricting the maximum tree depth or different

pruning methods. However, an ensemble of DTs does not show this behavior [22].

Optimization Criteria To optimize the splitting criterion in DT nodes, the Informa-

tion Gain IG of a set of testing parameters θj is measured. In machine learning, the

information gain is equivalent to the Kullback-Leibler divergence [81].

The Information Gain measures the weighted improvement of the purity from an in-

38 Chapter 3. Online Machine Learning

dividual node to it’s child nodes, such that

IG(n) = M(n)−
∑
k

ηnk

ηn
M(nk), (3.6)

where n is the root node, η(·) is the number of samples in leaf node (·) and k iterates over

all child nodes nk.

The measurement of purity of a distribution is of high relevance in statistics and thus,

quite a range of methods has been proposed. However, we will focus on the three most

common criteria (a) Gini coefficient, (b) Entropy, and the (c) Classification Error. While

there has been a lot of discussion if Gini coefficient or Entropy performs better, the

difference between those two has little influence within RF (see Figure 3.1).

The Gini coefficient [54] measures the inequality among values of a frequency distribu-

tion. In the original formulation, a minimal value expresses perfect equality of all values

while a maximal value is reached for completely unbalanced values. The Gini coefficient

is defined as

Mgini = 1−
∑
C
p (c)2 , (3.7)

where p (c) measures the probability of class c of the set of training samples.

Another popular purity measure is the Entropy [140] that quantifies the expected value

of the information contained in a message, which is related to the unpredictability of a

data source. Considering our problem, the prediction for a specific node is definitely if all

samples according to this node share the same label, i.e., the node is pure. Therefore, the

information content of such a node is zero. The Entropy can be formulated as

Mentropy = −
∑
C
p (c) log (p (c)) , (3.8)

which also shows that the computational effort is a bit higher than for the Gini coefficient

due to the computational complexity of the log(·) operation.

For completeness, we also mention the classification error measure, which directly

considers the maximum class probability

Merror = 1−max (p (c)) . (3.9)

Hence, for a pure node Merror = 0 and for an equal probability for each classes Merror =
1
|C| . Figure 3.1 compares the different optimization criteria visually. It shows that equal

3.4. Online Random Forests (ORFs) 39

distribution of all classes results in the highest measure and purity of the dataset results

in the lowest measures. This means that pure nodes give the highest information gain.

Gini coefficient and Entropy appear rather similar, beside of a scaling factor which does

not influence the overall result significantly.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(c)

M

Gini Coeff.

Entropy

Class. Error

Figure 3.1: Comparison of different optimization criteria for the two-class case. The
class probability is plotted on the x-axis, which means that both ends 0 and 1 are cases
where the analyzed dataset is pure and 0.5 is the value of equal class probabilities.

The goal is to find the best test θ for a given node with respect to the given training

data set. The construction of an optimal DT is known to be NP-complete under several

aspects of optimality and even for simple concepts [73, 107]. Therefore, the optimization

θ = arg max
(φ,ψ,τ)

IG(n) (3.10)

is usually based on heuristics or brute-force search on a reduced space of possible parameter

settings. Some of these concepts are discussed in the next section.

3.4.3 Online Learning

RFs have been applied to various tasks in computer vision within the last years and

demonstrated excellent performance. Nevertheless, RFs have several limitations in the

40 Chapter 3. Online Machine Learning

context of object tracking. First, a large training set is required to establish the classifier

structure. Especially when tracking unknown objects, the amount of available training

data is limited. Hence, to cope with streaming data, Online Random Forests (ORFs) [133]

have been proposed recently.

Online learning of RFs consists of (a) online Bagging and (b) online tree learning.

Online Bagging has been proposed by Oza and Russel [114]. They propose to model the

sequential arrival of the data by a Poisson distribution. Each tree t is updated using each

sample k times in a row, where k is a random number generated by

k ∼ Poisson (λ) =
λke−λ

k!
, (3.11)

where λ is usually set to a constant number, in our case λ = 1. This simulates the selection

with replacement scheme from offline Bagging. In fact, in [114] it was proven that online

Boosting converges to the offline version. However, this proof is only valid for näıve Bayes

weak classifiers and an infinite amount of training samples.

While the work of Oza and Russel [114] models the arrival of training samples at

the individual members on the ensemble, the selection of the optimal splitting test, as

performed in offline RFs, is an open issue. Therefore, Extremely Randomized Decision

Trees (ERTs) are grown by generating the test functions and thresholds randomly. During

growing of a randomized tree, each decision node randomly creates a set of tests and picks

the best according to a quality measurement, but the label probabilities p(c) are established

online. More specifically, when a node is created it generates a set of n random tests

S = {θ1, . . . ,θn}. During online training, the node maintains the class distributions that

are generated by each test in S. Also the achieved information gain IG can be calculated

online based on the class distributions for each test.

A specific node is only split into two child nodes if (a) the number of samples that are

modeled by the individual distributions is significant (i.e., above a certain amount) and

(b) the information gain quality of the candidate splits is high enough. When splitting a

node, the already collected class distribution is passed to the corresponding child nodes,

which enables immediate evaluation of these nodes without observing an additional sample.

Beside Online Random Forests (ORFs), also other approaches use a tree-growing scheme

to create classifiers (e.g., [36, 117]).

3.4. Online Random Forests (ORFs) 41

3.4.4 Properties and Discussion

Random Forests (RFs) have been applied to various tasks in machine learning and demon-

strated to be an efficient tool. Due to the recursive training strategy, they can be imple-

mented very easily. The tree-like structure allows for extremely fast evaluation. Another

benefit of the structure is that the training data is split into small coherent groups. This

allows for inherently modeling multi-class and multi-modal data because the data is im-

plicitly clustered within the tree.

Many extensions and modifications of RFs have been developed to further improve the

performance for specific tasks. Tu proposed Probabilistic Boosting Trees (PBTs) [149],

where he uses Boosting to train more complex classifiers at each tree node. The used weak

classifiers improve the overall performance of the process of decision-making. However,

PBTs are prone to over-fitting if the amount of training data is small. Geremia et al. [52]

introduced a spatial component in their RFs, considering the expert knowledge that the

segmented volumes are often symmetric for their medical task. Later, Montillio et al. [105]

introduced Entangled Decision Forests (EDFs), where test results can depend on results

that are on a higher level of the tree structure. This allows to capture long-range semantic

context and shows superior results for the task of anatomy segmentation in Computer

Tomography (CT) images.

Nevertheless, RFs share some properties that may be improper for specific types of

applications. First, they require a large amount of training data to work well. This

is especially a problem if only a small number of samples is available or if a classifier is

required after a small amount of samples (i.e., as this is the case for tracking-by-detection).

Second, the classifier is not able to cope with changing target distributions, as all offline

learning algorithms.

Especially for tracking of unknown objects, it is important that the used learning

algorithm is very flexible because the targets often completely change their appearance.

Another issue is the lack of training data because there is only one sample / annotation

available from the first frame. Therefore, online learning algorithms have been a popular

means for continuous adaption of the used model.

ORFs [133] achieved very good results for the task of tracking [133] and have been

extended to other tasks [141] and learning paradigms (e.g., [88, 90]). However, the used

splitting tests in ORFs are still optimized for a specific subset of the training data (i.e.,

the part of data that arrived first) and cannot be changed afterwards, which would be

beneficial to adapt to changing appearance. One possible way to address this issue would

42 Chapter 3. Online Machine Learning

be to drop individual trees and start to train new ones from time to time.

Referring to our definition of online learning algorithms (fixed memory footprint),

ORF could also be categorized as incremental learning algorithms, because it’s memory

footprint increases during training. However, the size of ORF is bounded by the maximum

depth of the individual trees and the overall number of trees. Regarding the computational

efficiency, both Offline and Online Random Forests (ORFs) use tests that sequentially /

hierarchically depend on each other. Such conditional jumps are not ideal for sequential

execution, especially specialized hardware such as General Purpose Graphics Processing

Units (GPGPUs) cannot be fully exploited. However, the concept of RF can be transferred

to other weak learners, such as MultiNomial Logit (MNL) [65] and NB [124]. As with

growing trees for ORF [133], using different members in the ensemble can be used to

establish special properties, such as linear execution without conditional jumps (i.e., RFe)

and online learning (i.e., ORNB and Online Random Fern (ORFe)).

3.5 Online Random Näıve and Semi-Näıve Bayes

While Random Forests (RFs) are very popular for ensemble learning, also other weak

learners can be used within an ensemble. In the following, we focus on näıve and semi-

näıve Bayes formulations, that are quite similar to RFs.

Bayes’ theorem is named after Thomas Bayes (1701–1761), an English mathematician

and Presbyterian minister, and was first proposed as a solution to the problem of ”inverse

probability”. At that time, this idea gained limited exposure until it was independently

rediscovered and further developed by Laplace [83]. According to the mathematical defi-

nitions from Section 3.1, the theorem can be formulated as

p(c|v) =
p(c)p(v|c)
p(v)

, (3.12)

where p(c) is the class label prior, and p(c|v) is the unknown probability distribution of

the joint space of features v and labels c ∈ C. Since these distributions are unknown, we

need to estimate them using the given training data.

We want to model the class conditional probabilities of N binary tests and during

3.5. Online Random Näıve and Semi-Näıve Bayes 43

evaluation we want to select the best matching class c for a given feature vector v as

c = arg max
c

p (c|v)

= arg max
c

p (c|x1, x2, . . . , xN)

= arg max
c

p (x1, x2, . . . , xN |c) ,

(3.13)

assuming a uniform prior over all classes. However, this formulation is problematic, be-

cause the joint distribution over all features cannot be modeled in practice. Therefore,

often a näıve or semi-näıve Bayesian formulation is used to approximate the full Bayesian

formulation.

Näıve Bayes (NB) Näıve Bayes (NB) assumes that all used features are independent.

Thus, the probability of the individual feature values xn can be separately modeled such

that the joint probability can be formulated as

P (x1, x2, ..., xn|c) =

N∏
n=1

p (xn|c) . (3.14)

Although this model is very simple, it has been shown to produce competitive results [124].

Semi-näıve Bayes A more complex formulation to integrate dependencies between fea-

tures can be realized via the semi-NB formulation. In this case, features are grouped into

larger sets (not only individual ones) and the joint distribution within these sets is mod-

eled. The Bayesian formulation is approximated by

P (x1, x2, ..., xn|c) =
M∏
m=1

p (ṽm|c) , (3.15)

where ṽm denotes a specific set of tests. Adjusting the set size |ṽm| and the number of used

groups M enables flexibility in terms of complexity versus performance. This formulation

relates to Random Ferns (RFes) [115], which we describe more detailed in Section 3.5.2.

Sample correction The probability estimate will be zero if a given class and feature

value never occur together in the training set. In this case, at least one probability

will be zero which eliminates the other in the multiplication. Therefore, a small sample

correction is used to preclude that any probability can be exactly zero. To generate an

44 Chapter 3. Online Machine Learning

initial distribution, a Dirichlet prior [44] can be used. The Dirichlet distribution is defined

as

f(x1, . . . , xd;α1, . . . , αd) =
1

B(α)

d∏
i=1

xαi−1
i , (3.16)

where B(α) is a normalization factor and αi controls the distribution. In the special case

of αi = 1 ∀i it boils down to an uniform distribution, resulting in a probability of 1
|C|

for all classes c and feature values that have not been included in the training set. The

distribution is the multivariate generalization of the beta distribution [80] and is often

used as prior distribution in Bayesian statistics. If, e.g., histograms are used to model the

probability distribution, this means that all bins are filled with a constant initial value.

Additionally, Bayesian classifiers can be used within a classifier ensemble, such as

Bagging. In this case, model averaging increases the robustness of the classifiers. Both

methods will be used in the practical implementations in Sections 3.5.1 and 3.5.2. Since

Oza and Russell [113] proposed online Bagging, we only have to adapt the näıve Bayes

classifier to enable online learning.

3.5.1 Online Random Näıve Bayes (ORNB)

Despite this näıve independence assumption, NB has been used in the past and shown

to deliver good results [37, 70, 124]. Especially because features are usually pieces of

local information in computer vision, thus considering them independently is a feasible

assumption. Assuming independence and uniform label distribution, a classifier H(v) can

be written as

H(v) = arg max
c

N∏
n=1

p(xn|c), (3.17)

where xn is an individual feature value and the classification can be estimated by building

the product of all class probabilities for the current feature values.

Randomized Learning Like DTs, single NB classifiers only reach limited performance

according to their simplicity. Therefore, Prinzie and Van den Poel generalized the idea

of Random Forests (RFs) to MultiNomial Logit (MNL) and Näıve Bayes (NB) [124]. As

with RFs, they apply Bagging and random feature selection to increase the stability and

decrease the variance of the resulting classifier:

H(v) = arg max
c

T∑
t=1

F∏
f=1

pt(xf |c), (3.18)

3.5. Online Random Näıve and Semi-Näıve Bayes 45

where T randomly trained NB classifiers are combined, each using F ≤ |N | features.

On-line Learning When creating the Random Näıve Bayes (RNB) classifiers ensemble,

for each classifier we select F features randomly. The probability distribution p(xf |c) of

each individual feature is then modeled for each class c ∈ C. Using randomized threshold

selection, Geurts [53] states that Bagging (i.e., random input selection) can be skipped

without decreasing the performance of the classifier. Since we want to enable on-line learn-

ing for our RNB ensemble, we need to estimate the probability distribution for the given

feature xf on-line. Therefore, we use equally binned histograms to estimate the probabil-

ity distributions since they are very fast and easy to implement. Moreover, histograms are

applicable to incremental learning and can handle multi-modal distributions easily. This

results in a more fine-grained description of the probability distribution, but can also be

interpreted as a larger number of thresholds that are used to split the data which tends

towards a semi-näıve formulation.

Temporal weighting of training data Some learning problems require temporal

weighting, i.e., for unlearning of information. This is required, for instance, if we have to

cope with temporary noise or outliers and concept drift which refers to a non stationary

learning problem over time (see [167]). Since online RFs create their tree-structure based

on training data, they have difficulties to “unlearn” data after some time.

For the fixed structure of RNB, we use an iir-like (i.e., infinite impulse response)

filtering for each histogram bin, where the value of each bin can be calculated as

wnormt0 =

t0∑
t=−∞

wt · rt0−t. (3.19)

Here, wt is the learned sample weight at time t and t0 represents the time of the current

update. The speed of forgetting can be defined with the parameter r.

Hyperplane Features To enhance the significance of the feature pool and to further

weaken the independence assumption, we create random hyperplanes within the feature

space. These hyperplanes xh are computed as a weighted linear combination of the features

v as xH = wTv, where the weights w ∈ [−1, 1]d for each feature are randomly chosen

and
∑d

i=1 |wi| = 1. The weight vector w is chosen to be very sparse to create only small

local subspaces. Breiman [22] used a heuristic of log d features with non-zero weights for

feature sub-sampling.

46 Chapter 3. Online Machine Learning

Although the näıve formulation is intuitive and works well it is hard to model complex

distributions. Even using hyperplane features, it cannot be guaranteed that dependent

distributions are reflected in the generated model. Thus, Random Ferns (RFes) have been

developed, combining groups of features in a semi-näıve Bayes formulation.

3.5.2 Random Ferns (RFes)

RFes [115] are ensemble classifiers that can be interpreted as semi-näıve Bayes classification

(Equation 3.15). Thus, again assuming an uniform label distribution, a classifier H(v)

can be written as

H(v) = arg max
c

M∏
m=1

p (ṽm|c) , (3.20)

where ṽm denotes a set of individual tests. The classification result can be calculated by

building the product of all class probabilities for the current feature values. As already

mentioned in Section 3.5, the estimated probability distributions have to be initialized

appropriately to prevent that any p (ṽm|c) gets zero. Therefore, as with ORNB, we ini-

tialize the used statistics with a Dirichlet prior (i.e., uniform distribution). Additionally,

we perform Bagging to increase the robustness of the classifier, which results in

H(v) = arg max
c

T∑
t=1

M∏
m=1

p (ṽm|c) . (3.21)

This formulation allows for more robust classification and is more similar to the idea of

RFs, only the underlying structure of the learning algorithm is changed from tree-like to

flat structures (see Figure 3.2). Again, adjusting the set size |ṽm| and the number of used

groups M enables flexibility in terms of complexity versus performance.

Comparison to Random Forests (RFs) RFs and RFes can be implemented in a very

similar way, because a Fern can be interpreted as trees using the same test at a whole

depth level as depicted in Figure 3.2. In contrast to RFs, Ferns are usually used with

completely randomized tests [115, 152] and the structure is not optimized at all, which is

very similar to ERTs with choosing only one parameter set.

The main advantage of RFes over RFs is the independence of the individual tests. In

RFs, a node test is only performed if the subsequent tests have a pre-defined pattern (i.e.,

the sample is traverses down the tree to exactly this node). This evaluation scheme implies

a large number of if-then-else statements (i.e., conditional branches), which prevents

3.5. Online Random Näıve and Semi-Näıve Bayes 47

Figure 3.2: Comparison of the classifier structure of Random Ferns and Random
Forests (figure taken from [115]). Random Ferns (right) can be interpreted as flat pro-
jection of Random Forests (left).

an unhampered execution on modern processing architectures (i.e., frequent flushing of

the instruction pipeline).

Online Learning Online learning with RFes works the same way as with NB classifiers.

Since the whole structure of RFes is fixed and is not optimized during training, it can be

established randomly before runtime. During online training of a RFe, we have to model

the class probabilities of the leaf nodes. This can be done incrementally by counting

arriving at a specific leaf node during runtime for each class c. Since this would limit the

adaptivity of the classifier due to saturation effects, we again apply temporal weighting of

the samples as described in Section 3.5.1.

Unbalanced Datasets To overcome unbalanced number of training data per class,

normalization of class probabilities in each leaf node is performed to adjust for unequal

amount of samples for each class. A common normalization is term frequency – inverse

document frequency (TF-IDF)m which is defines as

p(c|v) =
ηnc
ηn
· log η

t

ηtc
, (3.22)

where ηnc is the amount of samples of class c in node n, ηtc is the amount of samples of

class c in Fern t.

In our applications (see Section 5.3), we use a slightly simpler normalization

p(c|v) =
ηnc
ηn
· η

t

ηtc
, (3.23)

which simply simulates an equal amount of samples within each class. Naturally, dataset

balancing can be used in the statistics of all described learning algorithms.

Chapter 4

Detection and Training

Contents

4.1 Detecting the Object Position . 48

4.1.1 Sliding Window . 48

4.1.2 Particle Filtering . 49

4.1.3 Detection using part-based and combined Models 51

4.2 Training Sample Generation . 51

4.2.1 Geometry-based sampling . 52

4.2.2 Confidence-based Sampling . 53

4.2.3 Labeling with Virtual Classes . 55

4.2.4 Segmentation-based Sampling . 56

4.3 Detection Scores for Quantitative Evaluation 57

4.3.1 Robustness of Scores . 58

In the previous chapters, we have discussed how target objects are modeled in tracking-

by-detection approaches and how the model is learned and updated over time. However,

there are two more building blocks that are needed to close the tracking loop (see Figure 1.1

that have significant influence on performance and runtime of an approach. These are (a)

detection, i.e., estimation of the current object position, and (b) generation of training

samples that are used to update the statistical model.

Object detection is a common task in computer vision, the generation of training

samples is mostly ignored in most publications. Nevertheless, the quality of the training

samples has crucial influence on the quality of the overall tracking process. This is a

49

50 Chapter 4. Detection and Training

special characteristic of tracking-by-detection approaches because the generated training

samples usually depend on the detected object position and, thus, the approach performs

self-training during runtime. This implies that errors in the detection process may cause

to imprecise training sample generation. The imprecise training data causes the model to

drift away from the actual object properties which again causes more imprecise detection

results. Thus, the error is accumulated over time and may cause tracking failure.

In this section, we describe two common ways to estimate the object position, sliding

window and particle filtering. For both concepts, we list sample approaches and explain

the modifications they apply to the concepts. Subsequently, we explain several concepts of

training sample generation and list approaches that make use of these concepts. Finally,

we discuss evaluation criteria that are used to measure the quality of the estimated object

position given ground-truth annotation.

4.1 Detecting the Object Position

In single object tracking, finding the object in the current frame often boils down to

finding the maximum in a similarity function between image regions and the object model.

This introduces a search problem in a multi-dimensional likelihood function where the

dimensionality is given by the number of parameters in the object model. Especially for

more complex object representations, such as multi-part models, the number of candidate

positions to evaluate heavily influences the runtime of the approach.

One way to reduce the computational complexity of the size of the search-space is to

assume natural behavior of the tracked object, such as physical constraints (i.e., conser-

vation of momentum). This results in a limited distance the object can move from one

frame to another. However, this does not work for animated or comic films and explains

the poor performance of many tracking approaches on such sequences.

4.1.1 Sliding Window

The easiest way to establish the similarity distribution is to perform a exhaustive search

in the parameter space. In object detection, this is known as sliding window. For most

learning-based tracking approaches, only translational movement of the object is consid-

ered. Then, the used learning algorithm is evaluated on every position of the image plane.

As one can imagine, this can only be done in real-time of the used algorithm and features

are very efficient.

4.1. Detecting the Object Position 51

Figure 4.1: The four main steps of tracking by a classifier: Given an initial position of the
object (a) in time t, the classifier is evaluated at many possible positions in a surrounding
search region in frame t + 1. The achieved confidence map (c) is analyzed in order to
estimate the most probable position and finally the tracker (classifier) is updated (d)
(images from [60]).

While using pixel-based object probabilities, Avidan [8] estimated the position of the

object by sliding a rectangle over the probability map. Grabner and Bischof [60] used

efficient features that enable real-time processing (see Figure 4.1). After them, many

patch-based approaches (see Section 2.1.3) used the same concept because the authors fo-

cused on the learning concept rather than the engineering part of the tracking-by-detection

loop. To decrease the runtime of the brute-force search, most approaches limit the radius

of the search based on the assumption of smooth motion, which means that the object

will appear near the current position in the next frame. Of course, if the dimensionality

of the search-space increases, the runtime increases exponentially. Therefore, [157] uti-

lize integral images and present an efficient way to incrementally calculate the objective

function.

4.1.2 Particle Filtering

Since sliding window creates a dense estimate of the similarity function, it has one major

problem: the computational complexity. Regarding the degrees of freedom, the search

space grows exponentially which makes it expensive for more than 3–4 degrees (i.e., trans-

lation, rotation, scaling), especially if the motion within the degrees may be large (i.e.,

large displacement). Therefore, it would be beneficial to estimate the posterior distribu-

tion of the similarity given a fixed number of measurements to estimate the state of the

object.

Particle filtering (see [4]) can be used to effectively estimate the state of a system using

a sequence of noisy measurements z according to a set of NP weighted particles
{
xi1:k, ω

i
1:k

}

52 Chapter 4. Detection and Training

Figure 4.2: A tracking example of 250 frames. Top: ground truth tracking results of the
right skier (yellow rectangles). Middle: likelihood maps using 163 bins RGB histogram.
Bottom: likelihood maps using 16 bins intensity histogram. On each likelihood map, 10
best local optima are overlayed and labeled as correct (red dashed rectangles) or wrong
(green dashed rectangles) based on their overlap with ground truth (images from [157].

with
∑NP

i=1 ω
i
k = 1 and time k ∈ {1, . . . , t} denoted as 1 : k within the following equations.

The posterior density p (xk|z1:k) can be estimated using the observation model p (zk|xk),
the state transition model p (xk|xk−1) and the proposal density function q

(
xik|xik−1, zk

)
using Eq. (4.1) and (4.2):

ωik ∝ ωik−1
p
(
zk|xik

)
p
(
xik|xik−1

)
q
(
xik|xik−1, zk

) (4.1)

p(xk|z1:k) ≈
NP∑
i=1

ωikδ
(
xk − xik

)
. (4.2)

Choosing the importance density to be the prior q
(
xik|xik−1, zk

)
= p

(
xik|xik−1

)
reduces

Eq. (4.1) to ωik ∝ ωik−1p
(
zk|xik

)
, where the particle weights are directly proportional to

the observation model. These formulations allow for iterative estimation of the posterior

distribution using only the actual measurements and the last object state density, which is

given by the finite set of particles, where each particle simulates the object behavior using

Monte-Carlo simulations and a motion model. To avoid the degeneracy of the particle set,

re-sampling of the weights is done regularly.

In the last decade, particle filtering has been used extensively in many tracking ap-

plications to overcome the complexity of sliding window approach especially if the used

object model is rather complex, as described in the following section.

4.2. Training Sample Generation 53

4.1.3 Detection using part-based and combined Models

Recent approaches use part-based geometric models (see Section 2.1.4) or a combination

of different representations to describe the object. Thus, they have a higher complexity

and more degrees of freedom than simple models which implies that the detection of

the current object position has a higher computational effort. This raises the need for

simplified detection concepts to enable real-time execution.

Basically, three concepts are commonly used to establish flexible object models:

Bag-of-words In the Bag-of-words concept, the different parts of the object representa-

tion exist in parallel and do not have a geometric relation to each other. This means

that each part results in a score for a region or position and the scores are accumu-

lated to determine the combined result. Naturally, this means also an accumulation

of the detection complexity of the overall approach (e.g., [40]).

Layered Splitting the representation into several layers, the object is often described

from coarse to fine. Thus, the first layer is often used to find candidate regions that

limit the computational effort for subsequent layers. Additionally, the layers may

complement each other during the learning phase (in e.g., [24, 82]).

Part-based Part-based representations are very common for high quality object detection

but did not find their way into tracking because of the computational complexity of

the inference of the overall result. In our application (see Section 5.3), we present

a way to utilize the generalized Hough transform to enable part-based tracking.

Here, inference is solved by simple voting towards an expected object center of the

individual parts.

While many other concepts for part-based detection exist, most of them fit into one of

those three categories or share the same computational complexity.

4.2 Training Sample Generation

While most related work describes in detail how the learning algorithm works, sampling

of the used training data is mostly a miracle. Thus, when re-implementing related ap-

proaches, it’s hard to establish similar results due to the missing information. Matthews

et al. [102] discuss the template update problem, which is to find a trade-off between two

extremal cases of online adaption:

54 Chapter 4. Detection and Training

Complete update The appearance of the object is determined by the current frame,

information from previous frames is discarded. Thus, the object model is always

up-to-date, but errors are introduced immediately.

No update After the very first example, which is usually user-annotated, no additional

information about the object is introduced into the object model. Thus, errors

cannot be introduced and the model will be very stable. However, if the object

changes, the model will not fit to the novel appearance.

This problem can also be interpreted as an instance of the stability-plasticity dilemma

[66]. In tracking, it turns out that the update mechanism has to distinguish between valid

(i.e., 3D rotations, scale changes, non-rigid deformations) and invalid transformations (i.e.,

occlusions, inclusion of background) of the object to correctly adjust the update strategy.

To establish a general interpretation for sampling and labeling of training data, we

use the active learning framework. An active learner can be described by the quintuple

(H, s, T, L, U) [94], where H is a classifier, s is a sampling function which identifies valuable

samples, T is a teacher (supervisor), L is a set of labeled data and U is a set of unlabeled

data. In general, an active learning process can be described as follows. First, a classifier

H is trained by the labeled samples L. Then, the sampling function s selects valuable

samples vj from U . For those samples the teacher T assigns a label cj , which is used to

update the classifier H.

4.2.1 Geometry-based sampling

One approach to generate training data for the learning algorithm is to use a fixed sampling

and labeling scheme based on the current object position. Using such a sampling scheme,

one has to trade-off between two aspects: (a) Sampling negative samples in a very small

surrounding of the object decreases the complexity of discriminative models because the

part of the image where the object can be discriminated is small; (b) Sampling at a larger

distance decreases the risk of labeling errors because the current object position might not

be very precise and a “safety zone” that is not considered for learning can be beneficial.

Considering the rising processing power available, a more complex model and distant

sampling is the easiest way to improve the robustness of a tracking approach.

In their patch-based tracking framework, Grabner et al. [61, 62] use the current detec-

tion as a positive sample and four negative patches placed at the corners of the positive

sample. Babenko et al. [12] create their positive training bag in a radius of a few pixels

4.2. Training Sample Generation 55

around the current position and perform random sampling in a larger distance to generate

negative samples. This sampling scheme has also been applied in various other approaches

(e.g., [55, 133, 166]). For a more formal definition, U is defined by the set of samples that

can be sampled from the current image. Then, s performs random sample selection within

a specific region that forms a “doughnut” around the target object and additionally in-

cludes the current object position in the set of samples. The teacher T uses the assumption

that the object has been correctly detected and labels all samples excluding the current

object position as negative. Usually, all samples are weighted equally. Figure 4.3 displays

several possibilities for geometric sampling. Nevertheless, pure geometric sampling highly

depends on the correctness of the current object position.

(a) Current object
position

(b) Local sampling
(for supervised
learning, e.g., [61])

(c) Distant sampling
(for MIL), e.g., [12]

(d) Distant sam-
pling (for supervised
learning, e.g., [133])

Figure 4.3: Geometry-based training sample generation (Green: current object position;
Blue: positive training samples; Red: negative training samples).

4.2.2 Confidence-based Sampling

To overcome completely ignoring the learner H in the purely geometry-based sampling

methods, different ways to incorporate H have been developed. Avidan [7, 9] performs

an outliers rejection scheme to lower the risk of false labels. In his tracking approach,

he uses pixel-based classification confidences but rectangular object boundaries. While

patch-based approaches have to live with the fact that the rectangular regions may include

portions of background, individual pixels are rejected for training in [7], based on their

confidence. Formally, the training label of pixels within the object region rj is defined as

cj =

+1 vj ∈ rj ∧H(vj) < Θ

−1 otherwise
, (4.3)

where Θ is a threshold. Thus, labels of samples that are too “difficult” are changed to

56 Chapter 4. Detection and Training

negative. This is especially important because the used Boosting algorithm is known to

be prone to outliers. Figure 4.4 shows the difference between a training map with and

without outliers rejection. However, Avidan does not use a “safety zone”, which may

cause problems when the object is hard to distinguish from the near background.

(a) Image (b) Update without out-
liers rejection

(c) Update with outliers
rejection

Figure 4.4: Rejection of outliers (pixel intensity corresponds to the weight of the training
samples; images from [7]).

In [88], we used an ensemble setup to weight the training data during update. The

training samples are randomly selected from the whole image, but the weight is assigned

using multi-view training. All ensemble members are individually trained and the sample

label and impact is determined using the prediction of a subset of ensemble members,

denoted as H∗t , such that

c̃t = arg max
c∈C

H∗t (v) (4.4)

w̃t =
1

|H∗t |
∑
t∈H∗t

pt(c̃t|v). (4.5)

Thus, the ensemble members may retrieve different sample weights. Additionally, a geo-

metric prior is included to prevent outliers. In Figure 4.5, the labels and weights of the

training samples are depicted for selected frames of a test sequence. It clearly can be seen

that on disagreement or uncertainty within the ensemble, the training samples only gain

low weight, while the sample weight is increased if the ensemble members agree.

4.2. Training Sample Generation 57

(a) Normal update (b) Partial occlusion (c) Nearly full occlu-
sion

(d) Re-appearing
object

Figure 4.5: Confidence-based training sample generation (blue: positive training samples;
red: negative training samples). The circle diameter represents the sample weight.

4.2.3 Labeling with Virtual Classes

This training strategy [59] has been developed to increase the complexity of the model

on demand to be appropriate for the current complexity of the problem. The basic idea

is to split the current scene into homogeneous parts that can be described individually

by simple models. After determination of the current object position, the whole image is

randomly sampled for false positive detections. If a false positive sample is found, either

a new class is injected or an existing one is updated to prevent false positive detections

in the next frames. To cope with the runtime injection of new classes, we use a multi-

class learning algorithm and normalization of the used statistical models according to the

number of samples per class c as defined in Eq. (3.23) and (3.22).

(a) Update class −4 (b) Add class −8 (c) No update (d) Update class −4

Figure 4.6: Sample generation and labeling with virtual classes (Blue: positive training
samples; Red: negative training samples with according label).

58 Chapter 4. Detection and Training

4.2.4 Segmentation-based Sampling

In contrast to the rectangular description used in most tracking approaches, natural ob-

jects usually do not fit well into a bounding box. Most objects of interest are somehow

articulated or non-rigid and may have an arbitrary shape when they move in 3D space.

Therefore, a pixel-based granularity gives a more precise description and also a more ap-

pealing visualization. Segmentation-based tracking is not a novel idea, but the proposed

approaches usually do not use a classifier to perform appearance learning.

Nejhum et al. [139] use several rectangular patches to describe the object. To improve

the placement of these parts, they perform segmentation of the target object and maximize

the overlap of the parts to the gained segmentation. Fan et al. [40] use discriminative col-

ors, salient points for short-term description and bag-of-patches for long-term description

of the object. Based on their description they generate scribbles (i.e., sparse foreground

and background markings) that are used to perform image matting. Image matting (e.g.,

[93]) then generates a segmentation of the object, also considering non-binary values at

the border of the object. This aims at generating smoother transitions between the object

and the background if matted objects are transferred into another image. The gained

foreground/background separation is used to update the model of the target object. This

concept has also been used in [57], where a part-based model has been combined with a

standard segmentation algorithm.

Figure 4.7: Scribble generation for selected frames: Cropped images (upper row) and the
generated scribbles that are used for image matting (lower row) (images from [40]).

4.3. Detection Scores for Quantitative Evaluation 59

4.3 Detection Scores for Quantitative Evaluation

To evaluate the tracking accuracy of an approach and to compare different ones we have to

perform a quantitative evaluation with respect to a common dataset. However, there does

not exist a common measure for evaluation of tracking approaches which makes comparison

complicated and tedious. Thus, we introduce three common evaluation criteria and note

additional performance measures that give a more detailed view on the quality of a tracking

approach.

Distance Measure A simple measure to quantify the quality of a detection is the

distance between the tracked object center and the center of the ground-truth annotation.

This measure is used in many publications but has two drawbacks: (a) It does not take into

account the size of the object, which results in no penalty for differently-sized detections

of the tracker; (b) It is limited by the image size because trackers and the target object

usually do not leave the image. These two facts may cause misleading results and suppress

the effects of a lost tracker.

Agarwal Overlap Score Another measure has been used by Agarwal et al. [2] (see

Section 4.3). Given the ground-truth detection rectangle RGT and the currently tracked

rectangle RT , the Agarwal score is defined as

scoreAgarwal =
RT ∩RGT

RT
. (4.6)

Of course, this score completely ignores the scale of the detections. However, we use this

score within the evaluation in Chapter 5 because standard benchmark datasets do not

consider scaling in the ground-truth annotation.

VOC Overlap Score The VOC overlap criterion is defined as

scoreV OC =
RT ∩RGT
RT ∪RGT

(4.7)

and is used within the VOC-Challenge [38] to calculate the detection scores within the

evaluation dataset. This score is widely used within the detection community but not

for tracking approaches. Having a look on Figure 4.8 shows that using the VOC overlap

criterion makes it much harder to achieve a high value in comparison to the Agarwal

criterion. However, it also results in a value of zero if there is no overlap between tracking

60 Chapter 4. Detection and Training

result and ground-truth. Thus, it does not influence the ranking of the different approaches

significantly but requires different levels of accuracy of the ground-truth annotation.

Figure 4.8: Comparison of VOC and Agarwal Overlap Scores: While the Agarwal score
gives 0.5 for 50% overlap, the VOC score already decreases to 25%. This penalizes inprecise
detection results, but requires highly accurate groundtruth annotation.

4.3.1 Robustness of Scores

Many tracking approaches make use of randomization which causes different tracking

result in each run. Therefore, the score of a single run is not meaningful. This can be

compensated easily by averaging over several runs or giving the median result of several

runs. However, the averaging hides frames where the track is lost in a single run. This

is especially a problem when using standard sequences to compare to other approaches

because the possibility of re-detecting the object is given. In real-world scenarios, where

the camera movement may be controlled by the tracker itself this may not the case. A

common method to overcome this corruption of the actual performance of the tracking

approach is to also report the number of lost frames or the number of frames until tracking

failure. This can be easily calculated for the Agarwal or VOC score.

Chapter 5

Implemented Approaches

Contents

5.1 Online Random Naive Bayes for Tracking 61

5.1.1 Machine Learning . 61

5.1.2 Algorithm Characteristics . 62

5.1.3 Experimental Evaluation . 64

5.1.4 Discussion . 68

5.2 Online Active Learning for Tracking 69

5.2.1 Virtual Classes for Scene-specific Classification 70

5.2.2 Active Learning . 71

5.2.3 Experimental Evaluation . 72

5.2.4 Discussion . 76

5.3 Hough-based Tracking of Non-Rigid Objects 77

5.3.1 Online Hough Ferns . 80

5.3.2 Closing the Tracking Loop . 82

5.3.3 Experimental Evaluation . 84

5.3.4 Discussion . 90

5.4 Discussion . 96

In this chapter, we focus on three particular tracking approaches that have been im-

plemented and evaluated in this thesis. They focus on improvements of the statistical

model (i.e., the learning algorithm), the geometric model, and the update mechanism of

61

62 Chapter 5. Implemented Approaches

the tracking loop. We evaluate all three approaches against related work to demonstrate

their strengths and weaknesses.

In Section 5.1, we present Online Random Naive Bayes for Tracking [55]. Therein, an

online learning algorithm based on Näıve Bayes (NB) is used to establish the statistical

model and is evaluated for machine learning and visual tracking. The object representation

and update methodology used for tracking has been inherited from related approaches,

such as [61] and [133].

In Section 5.2 we present Context-driven Clustering by Multi-class Classification in

an Active Learning Framework [59]. We investigate both, the learning algorithm and the

labeling of training data during training. The key assumption is that the tracked object

can often be modeled by simple statistics, while the background may change heavily or be

arbitrarily cluttered. Thus, we model complex scenes by using online multi-class learning

and an intelligent way to label background samples. The same tracking concept was also

used in [131] but in combination online another, novel learning algorithm.

In Section 5.3 we present Hough-based tracking of non-rigid objects [56–58], where we

investigate all parts of the tracking loop, representation, learning and labeling of samples.

We learn a flexible representation based on Hough-voting using an Online Random Ferns

(ORFes) classifier and utilize GraphCut segmentation [130] to improve the labeling process.

The combination of these methods enables tracking of highly non-rigid objects and partial

occlusions quite naturally.

Finally, in Section 5.4 we discuss the assets and drawbacks of the presented approaches

and compare them to each other.

5.1. Online Random Naive Bayes for Tracking 63

5.1 Online Random Naive Bayes for Tracking

In Section 3.5.1, we propose Online Random Näıve Bayes (ORNB), a randomized ensemble

learning algorithm. Compared to Online Random Forest (ORF) [133], the algorithm

utilizes several simplifications which makes it very easy and straight forward to implement.

Furthermore, the parameter set of the approach is very small. Thus, the configuration

is easy and the computational complexity and memory consumption is low. Finally, the

classifier converges very fast to the final classification performance (see Section 5.1.2) as

denoted for generative models in general in [108]. Hence, it can be used for tasks where a

limited amount of training data is available.

While the work of Prinzie and van den Poel [124] compares on specific machine learn-

ing datasets only, we show that also the online version is able to compete with Random

Forest (RF) and ORF on both, machine learning and object tracking tasks. Addition-

ally, we perform several experiments that show the characteristics of the algorithm. First,

we evaluate on several multi-class learning datasets and compare the performance of On-

line Random Näıve Bayes (ORNB) to Online Ada-Boost (OAB) and Online Random

Forests (ORFs). Second, we examine different characteristics of the algorithm, i.e., speed

of convergence and parameter influences. Finally, we apply the method to tracking-by-

detection and compare to related approaches on a standard tracking benchmark.

5.1.1 Machine Learning

For evaluation of the learning performance, we use the DNA, Letter, and USPS datasets

from the LibSVM [25] repository, because the are very different in terms of numbers of

samples, number of classes, and number of features. Table 5.1 shows the statistics of these

datasets.

Dataset # Train # Test # Class # Feat.

DNA 1400 1186 3 180

Letter 15000 5000 26 16

USPS 7291 2007 10 256

Table 5.1: Datasets used for different machine learning experiments.

For these experiments, we use a setting of 200 ORNB classifiers, each using a set of

20 features. To increase the descriptiveness of the features we combine 2 features and

use histograms to model the probability distributions. Since the proposed algorithm is

64 Chapter 5. Implemented Approaches

randomized, we process all datasets 10 times and report the average classification error.

One of the biggest advantages of the proposed ORNB algorithm is that it is readily

trained after one epoch and converges very fast to the final classification performance (see

Figure 5.1). Training the classifier over several epochs does not increase the performance

any more because the selected features do not change and the statistical information of

the training samples from one epoch to another is the same.

For comparison to other on-line algorithms, we also train an OAB classifier with his-

tograms as weak learners and an ORF, both trained for 5 epochs. Note that for OAB,

we employ the one-vs-all strategy for the multi-class datasets. These two algorithms as

way more complex than ORNB, because they use either a complex tree-growing scheme

or have to train a large number of binary classifiers.

The results for these experiments in terms of classification error are shown in Table 5.2.

As can be seen, on these datasets the ORNB classifier outperforms the on-line OAB

classifier and reaches comparable results to the ORF. Using histograms for OAB showed

better results than using stumps, which also supports the decision on using histograms for

the ORNB classifier.

Dataset ORNB OAB ORF

DNA 0.098 0.146 0.101

Letter 0.196 0.223 0.169

USPS 0.183 0.184 0.127

Table 5.2: The average classification error on the test sets for ORNB, OAB using his-
tograms and ORF after 5 training epochs.

5.1.2 Algorithm Characteristics

Speed of Convergence Since theoretically the statistics of the Random Näıve Bayes

(RNB) classifier in off-line and on-line version should be the same after one epoch, we

show the convergence speed of the trained classifier. Therefore, we evaluated the trained

classifier for the DNA dataset during training. Figure 5.1 shows the classification error

over the amount of training data used for learning. It can be seen, that with a usage of

more than 30% of the training set, the classification performance is more or less constant

and reaches the final error rate. This effect has been observed on all datasets listed in

Table 5.1.

5.1. Online Random Naive Bayes for Tracking 65

Figure 5.1: Classification performance of the ORNB classifier on the test set over percent-
age of trained samples of the training set for the DNA dataset.

Parameter Settings As already mentioned in previous sections, one main advantage

of the ORNB classifier is the very small parameter set, consisting only of the bag size b

(i.e., number of NB used), the number of hyperplane features within one NB f and the

number of features used to build the hyperplane features h. To visualize the influence of

these parameters, we evaluated classifiers with different settings on the DNA dataset (see

Table 5.3). It can be seen that the dimension of the hyperplane features and the number

of features dramatically increase the performance of the classifier. Although the bag size

does not have that much influence, it reduces the variance of the classifier.

Runtime and Memory Consumption To examine all characteristics of the algorithm,

we have a look at the runtime complexity and memory consumption of the compared

classifiers. For training, all three have a linear relation between the number of samples

to process and their runtime, apart from the time for calculating the boosting loss and

splitting the tree nodes. The main speedup here for the ORNB comes from the fact that it

is already converged after the first epoch, while the other classifiers need several training

epochs (i.e., iterations on the training data).

During testing, OAB is much faster, since it only selects a small subset of features (i.e.,

weak learners) which are evaluated. In comparison, the complexity of ORF is linear with

66 Chapter 5. Implemented Approaches

Setting Number of Features

h = 1 0.156

h = 2 0.098

h = 3 0.072

Setting Number of Hyperplanes

f = 5 0.244

f = 10 0.143

f = 20 0.098

Setting Number of NB

b = 50 0.104

b = 100 0.101

b = 200 0.098

Table 5.3: The influence of different parameters on the evaluation result of the ORNB
classifier for the DNA dataset. We use the basic settings of h = 2, f = 20 and b = 200
and vary only one of the parameters. For h = 3, we can even improve the result from
Table 5.2.

the depth of the tree. ORNB depends linearly in the number of used features, but has

an advantage concerning parallelization in comparison to ORF. Considering the memory

consumption, we can see that it is linear with the number of used weak learners for OAB

and ORNB, but grows exponentially with the tree depth of ORF, which results in a higher

memory-consumption.

5.1.3 Experimental Evaluation

This experiment evaluates the performance of our on-line Random Naive Bayes classifier on

various publicly available tracking scenarios in comparison to trackers based on OAB [60]

and ORF [133] because they represent two very prominent learning concepts in computer

vision, namely Ada-Boost (AB) and Random Forests (RFs). To allow for a fair comparison

to these two methods, we use the same type of features for all algorithms (i.e., simple Haar-

like features). We did not implement rotation, scaling, or any complex post-processing

to directly compare the learning algorithms, not any additional improvement. While this

would definitely lead to more precise tracking results, the implementation is not as straight

forward as one would assume1.

1We do not want to go into details here, but using scaling and Haar-like features in a self-learning
environment has shown to be very tricky and quickly leads to a self-affirmation of the statistical model
that has nothing to do with the object under observation.

5.1. Online Random Naive Bayes for Tracking 67

For all experiments, we use a setting of 50 NB classifiers, each consisting out of 10

hyperplanes with 3 features. To measure the probabilities within each feature we use

histograms with 32 bins and the infinite impulse response (IIR) like forgetting method as

described in Equation 3.19. The feature pool used for all methods is completely random-

ized and the initial training is done on the first frame and virtual samples generated out of

this frame (i.e., applying affine transformations on the frame and train on the transformed

images). The forgetting rate r was set to 0.95, which corresponds to a rather stable model

and slow adaptation.

We use a subset of the publicly available sequences from [12] that give a representative

overview on common tracking challenges. These sequences including variations in illumi-

nation, pose, scale, rotation and appearance, and partial occlusions. The Sylvester and

David sequence are initially taken from [128], and Face occlusion 2 from [12]2.

(a) Start Frame (b) Scaling (c) Illumination (d) Pose

Figure 5.2: Results for Sylvester sequence (Red: ORNB; Blue: OAB; Yellow: ORF).

(a) Low contrast (b) Scaling (c) Out-of-plane ro-
tation

(d) Appearance
change

Figure 5.3: Results for David sequence (Red: ORNB; Blue: OAB; Yellow: ORF).

For the evaluation of our tracker we use the Agarwal Detection-Criterion as described

in Section 4.3. We measure the accuracy of a tracker by computing the average detection

2We do not compare to this work, since they use Multiple Instance Learning (MIL), which is an extension
to the original OAB algorithm.

68 Chapter 5. Implemented Approaches

(a) Start Frame (b) Occlusion (c) Rotation (d) Appearance
change

Figure 5.4: Results for Face Occlusion 2 sequence (Red: ORNB; Blue: OAB; Yellow:
ORF).

score for the entire video. To eliminate effects of the randomized feature pool, we run each

tracker 5 times and report the average score of the median run.

Sequence ORNB OAB ORF

Sylvester 0 .60 0.60 0.62

David 0.88 0.39 0 .82

Face Occlusion 2 0.90 0 .81 0.72

Table 5.4: Detection score: bold-face shows the best method, while italic-font indicates
the second best.

Having a detailed look on the David and the Face Occlusion 2 sequence (see Figure 5.3

and 5.4), it can be seen that tracking with ORNB is very stable under illumination and

scale changes. Especially the alignment of the object, and thereby also the selected pos-

itive samples for self-training, are very well aligned using the ORNB. Considering large

appearance variations, as present in the Sylvester sequence (see Figure 5.2), it seems that

the learned object model is sometimes too inertial for the sequence with the given settings,

even if tracking works well. Therefore, the forgetting factor r should be chosen appropriate

to the type of application domain.

The experiments show that ORNB achieves competitive performance while being more

robust to noise and outliers than the OAB approach. ORF deliver a slightly better per-

formance than ORNB, but has a larger memory footprint. Since ORF uses (randomized)

thresholding on feature values to decide which branch to use in the tree, a lot of infor-

mation of the available features is not used at all, whereas ORNB directly links between

feature responses and statistics.

5.1. Online Random Naive Bayes for Tracking 69

(a) Sylvester

(b) David

(c) Face Occlusion 2

Figure 5.5: Tracking Score Comparison for different sequences.

70 Chapter 5. Implemented Approaches

5.1.4 Discussion

The difficult task in tracking using an on-line adapting classifier is to continuously self-

train an appearance model while avoiding wrong updates that may cause drifting. Robust

statistics can help to keep track of the object in case of small occlusions or partial changes

of the object appearance. This is an advantage for objects that only change slightly

or stay more or less constant during runtime. However, such a behavior of the object

is very common in standard tracking benchmark datasets because of the use of plush

toys or faces as target objects. The integrated forgetting scheme (see Eq. 3.19) allows

for slow adaption as it slowly removes out-dated information. While ORNB delivers a

confidence-rated classification, the underlying statistics are generative, which means that

the more likely class defines the classification result, while the ratio of the likelihoods of the

two modeled classes defines the confidence. However, the main advantage of the ORNB

algorithm is it’s simplicity.

Failure Cases Due to the slow adaption of the statistics, the algorithm will not be

able to follow highly dynamic object changes during runtime. As denoted above, this

is basically caused by the stability-plasticity-dilemma, that is present in every tracking

application where no information about the object is present from the beginning.

5.2. Online Active Learning for Tracking 71

5.2 Online Active Learning for Tracking

Usually, object detection and single target tracking are formulated as binary classification

problems, where a discriminative classifier distinguishes between the object of interest

and the background. While this is a natural interpretation of the problem, the assump-

tion oversimplifies the real-world scenario. Thus, many vision systems work well on test

sequences with low complexity but are unable to cope with real-world scenarios. Very

often this problem comes from large intra-class variability that causes multi-modality in

the data. This arises the need for a rather complex and large classifier complicates learn-

ing, reduces the evaluation speed, and may cause over-fitting. Additionally, in binary

classification, the complexity of the two classes can vary considerably. For instance, for

surveillance scenarios, the resolution is low and the object class usually can be described

with a simple model, whereas the background might be cluttered, changing and arbitrarily

complex.

In object detection or tracking, however, often either the object of interest or the

background are changing over time. Hence, an adaptive representation would be bene-

ficial. Therefore, the goal would be to introduce a classifier that automatically adapts

its complexity to the complexity of the current task. We realize this by using a binary

classifier and a multi-class representation. In particular, the background multi-modality is

described by a number of virtual classes, which are generated autonomously using context

information (i.e., the number of classes corresponds to the complexity of the background

class). Furthermore, we robustly adapt the classifier to changing conditions (e.g., changing

illumination conditions, changing backgrounds, etc.). A number of approaches has been

proposed where the multi-modality in the data is described by multiple classes or multiple

classifiers (e.g., [10, 74, 78, 146, 160]). Babenko et al. [10] developed a boosting algo-

rithm that performs multiple pose learning, where the aim is to simultaneously split the

data into groups and to train a separate classifier for each group. Another approach has

been proposed by Kim and Cipolla [78], where image clustering and training of multiple

boosted classifiers are performed in parallel using multiple classifiers. Torralba et al. [146]

developed a multi-class and multi-view object detector, where features used for different

views or different classes are shared. Wu and Nevatia [159] split the training samples into

different classes by unsupervised clustering. They select the image features for clustering

using a boosting algorithm. For most of these approaches the number of classes needs to

be given in advance and all of them are trained in an off-line manner. Jacobs et al. [74]

used the mixture of experts, where a separation scheme for the training set is learned and

72 Chapter 5. Implemented Approaches

each part is addressed by an individual expert, i.e., learner.

In the following, we describe the concept of virtual classes for unsupervised training an

adaptive, scene specific classifier. Then, we demonstrate this approach for visual tracking

on several publicly available datasets.

5.2.1 Virtual Classes for Scene-specific Classification

Input Image

Create Virtual Classes

Contextbased
Background Clustering

Object Background #1

Background #3Background #2

Figure 5.6: Generation of virtual classes: The input image is used for the bootstrapping
(left image), the created virtual classes (right image), and an illustration of the virtual
classes (center image).

We introduce a concept for context-driven adaption of the classifier complexity to the

actual task and to changing situations. An online multi-class classifier is used to model

the multi-modality within the data. In a first stage, bootstrapping is performed to train

an initial classifier. Then, during evaluation, the complexity of the classifier is adapted to

changing situations.

Context-driven On-line Clustering In order to adapt the complexity of a classifier

to a scene, we propose to split the object as well as the background class into a number of

virtual classes. The crucial point is how to find these clusters. Manual pre-clustering of

the training data would require to manually label all samples, which is tedious and often

not possible. To avoid this, we propose an iterative clustering approach to deal with this

intra-class variability. In particular, we apply a classifier-based bootstrapping using an

on-line multi-class classifier (e.g., [84, 133]) and virtual classes.

Such a virtual class can be considered as one normal class within a multi-class setup.

However, the virtual classes are grouped into positive Cpos and negative Cneg to represent

5.2. Online Active Learning for Tracking 73

complex data. During evaluation, a normal multi-class classification is performed. Using

the group assignment of the virtual classes a binary classification result is established (e.g.,

a sample is classified as positive if it is classified as one virtual class of the positive group).

To start the clustering, we use an initial classifier H0 which can be arbitrarily good.

We apply this general classifier to the current scene and add virtual classes with the label

cv for samples v where the output of the classifier H0 differs from our context knowledge

about the scene or where the confidence of the classifier is very low (i.e., the samples

are very close to the decision boundary). In this way, the complexity of the classifier

is automatically adapted to the complexity of the current scene, i.e., for more complex

scenes more virtual classes are generated. The creation of virtual classes is described in

Algorithm 1 more formally and illustrated in Figure 5.6, where the input image and the

clusters created within the bootstrapping stage are shown.

Algorithm 1 Generation of virtual classes during update

Require: Initialized Classifier H = H0

Output: Final classifier: H
1: Extract background samples V neg

2: Cpos = {+1}
3: Cneg = {−1}
4: v = −1
5: for vi ∈ V neg do
6: c = eval(H,vi)
7: // Evaluated class label for vi should be of group Cneg
8: if c ∈ Cpos then
9: // If not in group Cneg, get new virtual class index and add virtual class

10: v = v − 1
11: cnew = cv
12: update(H,vi, cnew)
13: Cneg = Cneg ∪ cnew
14: else
15: // Update classifier
16: update(H,vi, c)
17: end if
18: end for

5.2.2 Active Learning

After training the initial multi-class classifier in the bootstrapping phase, the classifier is

able to discriminate between object and actual background using several virtual classes.

However, this initial classifier is not able to cope with changing environmental conditions

74 Chapter 5. Implemented Approaches

(e.g., changing illumination conditions and background) that typically occur during op-

eration. Hence, an on-line adaption is required which allows to adapt the classifier to

changing scenes. To reduce the learning effort (i.e., the number of required samples) we

use a context-driven active learning strategy.

Active learning (see Section 4.2 for a formal definition) is a widely used strategy when

dealing with labeled and unlabeled data for sampling along the decision boundary in order

to (a) select a reduced set of samples arranged around an optimal decision boundary and

(b) to reduce the labeling effort (e.g., [27, 94, 120, 162]).

In the presented approach, the sampling function s as well as the teacher T are de-

fined by using contextual information about the actual application. Since Park and Choi

[120] showed that it is most effective to sample at the current estimate of the decision

boundary, the most informative samples are those which are misclassified by the current

classifier. Hence, we define our sampling function s such that it identifies samples close

to the decision boundary. In particular, we run the classifier H yielding confidences on

background samples extracted from the current scene and identify the samples which are

very close to the decision border (i.e., result in a very low confidence of the classifier)3.

Those samples are then labeled by using the teacher (i.e., denoted as scene context) as the

following: If the decision is close to one of the actual background classes (i.e., the sample

is similar to a virtual class that has already been trained), the corresponding virtual class

is updated. Otherwise (i.e., the sample does not fit to an existing virtual class) a new

virtual class is added to the multi-class classifier. This procedure is basically an online

version of Algorithm 1.

5.2.3 Experimental Evaluation

In the following, we integrate our concept into a tracking-by-detection approach [28, 60].

In particular, we use online multi-class gradient-boosting derived from [91] and [132].

Boosting is the ideal playground for the active learning concept because it is very prone to

errors in the labels (see [48]) of the training samples in contrast to, e.g., Online Random

Forests (ORFs). However, the concept can be integrated into any other learning algorithm.

In our setup, we assume that the background changes continuously, but slowly, during

runtime, which holds for most tracking scenarios. Further, we use the context knowledge

that only a single instance of the tracked object is present in the scene at a time. This

implies the assumption that background samples can be drawn from positions different

3This assumption only holds for margin-classifiers, such as boosting [135].

5.2. Online Active Learning for Tracking 75

from the object’s current position.

We use this context information to create and update the set of virtual classes within

the multi-class classifier. We initialize our classifier H0 by randomly selecting a single

sample from the background and using it together with the object position to update

the classifier. These two samples are the only “manual” update of the classifier and

enable the context-based mechanism and the use of virtual classes. Subsequently, we

perform bootstrapping to update or add virtual classes by using all background samples

(see Algorithm 1). During tracking, we seek for false-positives within the current scene

and perform the same update strategy on the extracted patches. We enable an adaptive

number of classes in the statistics by using intelligent normalization in the weak classifier

statistics and confidence rated prediction by using on-line histograms (see Sections 3.5.1

and 3.5.2).

In the current implementation, we use the estimated object position within the current

frame to update the positive class, but virtual classes, semi-supervised or multiple instance

learning could easily be integrated. However, since the foreground appearance usually is

much more stable than the background appearance we performed our experiments using

a single foreground class only. To further increase the stability of our classifier, we per-

form classifier averaging by combining one classifier that is not updated any more after

bootstrapping and one classifier that performs online learning during runtime. Figure 5.7

compares the tracking performance with and without the use of virtual classes. In gen-

eral, for the used tracking sequences, the amount of virtual classes was in a range of 3 to

5 during tracking. This number is directly related to the complexity of the scene and is

automatically adapted by the algorithm.

For the evaluation of our tracker we use the overlap-criterion of Agarwal [2]. This

criterion is directly related to the accuracy of the detection of the classifier, in comparison

to the raw distance measure between the target and background. We compute the overlap

score for the entire video sequence and run each tracker 5 times, reporting the overlap

score of the median run.

Table 5.5 lists the average overlap score for several publicly available benchmark se-

quences [12, 128] in comparison to other state-of-the-art tracking methods. In fact, in 4

out of 8 sequences our tracker outperforms the compared methods. For the remaining 4,

it delivers state-of-the-art results close to the best method.

We’ve carefully selected the approaches for our comparison to represent different kinds

of tracking concept. Fragment-based tracking [1] uses a simple, color-based model of the

76 Chapter 5. Implemented Approaches

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame #

O
v
e
rl
a
p

with Virtual Classes

without Virtual Classes

0 100 200 300 400 500

1

2

3

4

5

Frame #

N
u
m

b
e
r

o
f
C

la
s
s
e
s

Figure 5.7: Comparison of tracking with and without virtual classes for the Sylvester
sequence (blue solid: overlap for tracking with virtual classes; blue dashed: overlap without
virtual classes - binary; red: number of virtual classes over time).

Sequence CONTEXT MIL [12] Frag [1] OAB [60]

Sylvester 0.74 0.73 0.74 0.60

Face 1 0 .93 0.73 0.94 0.63

Face 2 0.89 0 .81 0.51 0 .81

Girl 0.84 0.68 0 .73 0.57

Tiger 1 0.65 0.65 0.26 0.33

Tiger 2 0 .49 0.69 0.22 0.41

David 0 .71 0.73 0.52 0.39

Coke 0 .42 0.47 0.10 0.25

Table 5.5: Average detection score: bold-face shows the best method, while italic-font
indicates the second best.

object. To overcome multi-modality, the object is separated into rigid, rectangular parts.

Multiple-Instance Tracking [12] uses a complex learning paradigm to make the self-learning

process more robust. However, the used statistics are not designed to cope with multi-

modal distributions. This is also the case for Online AdaBoost [60] that is the basis for

our approach.

Table 5.5 shows that we reach state-of-the-art performance on this dataset and out-

perform both static [1] and adaptive [60] approaches. Figure 5.8 shows several illustrative

5.2. Online Active Learning for Tracking 77

samples from different tracking sequences. It is clearly visible that our tracker is able

to recover if the object was occluded or the tracking result was not well aligned. With

our implementation we achieve a frame rate of about 15 frames per second on a standard

desktop computer.

Figure 5.8: Illustrative tracking results on the Sylvester, Tiger1, Faceocc2, David sequences
(red: our approach; blue: MIL [12]; yellow: Frag [1]; magenta: OAB [60]).

78 Chapter 5. Implemented Approaches

5.2.4 Discussion

The presented approach shows that it performs on a state-of-the-art level. However, the

main message it delivers is the fact, that multi-modality in the data may be difficult do

handle if the learning algorithm does not support complex statistics. Therefore, it provides

a concept to automatically split the samples that are present in the scene into groups,

where the group size corresponds to the level of complexity the classifier can handle. We’ve

also applied this concept to bootstrapping for object detection [59], where we were able

to cope with different scenes where the complexity was significantly different.Thus, the

concept may make sense also for more complex classifiers to absorb the multi-modality of

very complex scenarios. Beside that, it showed that flexible and dynamic labeling reduces

the learning effort during tracking, because in the presented approach, samples that are

already covered well by the current classifier are directly discarded. This reduces the

amount of training samples to only a few per frame without loss in performance.

Failure Cases One issue regarding the presented approach comes to the fore if a second

instance of the tracked object or a very similar one appears in the scene. Then, the labeling

scheme will automatically assign a new negative class to the second object and those class

will basically get very similar statistics to the positive one. This effect will finally lead to

tracking failure, since learning of the appearance of the second object will be enforced in

every frame. In pure geometric sample generation processes, this problem will only appear

if the second object appears within the range of the update process.

Implementation Issues While implementation of a multi-class learning algorithm is

quite straight forward if the underlying theory is known, the on-the-fly integration of

new classes is not. Basically, there are two problems that have to be solved for that: (a)

extension of the statistical model within the weak learners and (b) handling of a completely

unbalanced number of samples per class. The first issue can be tackled easily by the use of

dynamic maps that allow for extension during runtime. The second issue can be addressed

by intelligent normalization of the statistics as described in Section 3.5.2.

5.3. Hough-based Tracking of Non-Rigid Objects 79

5.3 Hough-based Tracking of Non-Rigid Objects

While object tracking has been a vital field of research, most of the presented approaches

are limited to a bounding-box-based representation. Therefore, they have to cope with

a rather inaccurate object description (e.g., parts of the bounding-box may consist of

background). To avoid this problem, non-rigid or articulated objects can be represented by

a part-based representation such as the Deformable Parts Model [41] and models obtained

via the generalized Hough-transform [50, 101, 110]. However, these methods need a very

large amount of labeled training data. This is not a problem for detection/tracking tasks

where the object classes are known in advance (e.g., pedestrians [51]), but makes them

infeasible for tracking of unknown objects. In contrast, level-sets have been used for

tracking frequently (e.g., [18, 142]). They are able to copy with a changing shape of the

object, but use holistic object descriptions. Thus, they are quite similar to kernel-based

methods.

In this section, we address two major limitations of previous approaches in the tracking-

by-detection domain. First, we get rid of the bounding-box description by using a part-

based model. In particular, we transfer the Hough-based classification idea to the online

domain by introducing totally randomized Hough Ferns using simple pixel comparisons

on different feature channels as splitting tests. This allows us to robustly detect non-rigid

objects. Second, we use back-projection to locate the support of our detection, which

gives a fine-grained detection of object parts that have a valid geometric relation. This

support guides a segmentation process (using GrabCut [130] in our case), which roughly

separates the object from the background pixel-wise. While bounding-box annotations are

common and sufficient for detection tasks, tracking-by-detection approaches directly use

this annotation to update themselves. Since the amount of training data is also limited

to the current frame, all pixels within the bounding-box that are not covered by the

object are technically noise (i.e., false positive samples). Because the rough segmentation

delivers a more precise description of the object than a simple bounding-box, the amount of

background pixels included in the object description (i.e., noise) is much lower. Thereby,

our approach, denoted as HoughTrack, allows tracking of objects with changing aspect

ratio, scale, and orientation.

Figure 5.9 shows an illustrative example for our approach; the overall principle is

depicted in Figure 5.13 and described in Section 5.3.1. Starting from a bounding-box

initialization, the Hough-based detector is continuously trained with the current object

appearance and guides the segmentation process. Our approach robustly tracks the object

80 Chapter 5. Implemented Approaches

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Tracking of non-rigid objects: simple bounding-box initialization in the
first frame (a) and continuous tracking and segmentation of the object (b) to (f) (green:
initialization; red: tracking result).

during non-rigid transformations, appearance changes, and partial occlusions.

To avoid the limitations of a bounding-box, Nejhum et al. [139] propose a tracker for

articulated objects. They use blocks of appearance histograms and shape descriptions but

assume stationary foreground appearance. Additionally, they use a rough segmentation to

find the object outline and re-arrange the blocks to maximize the overlap and similarity

to the current object appearance and shape. Kwon and Lee [82] define a fixed number

of object parts that are automatically renewed during tracking and track the geometric

relations of these parts over time. Additionally, to reduce the computational complexity

they apply Basin Hopping Monte Carlo (BHMC) sampling.

Bibby and Reid [18] describe the tracking problem within a probabilistic framework.

Using pixel-wise posteriors they model the fore- and background appearance and the ob-

5.3. Hough-based Tracking of Non-Rigid Objects 81

ject contour jointly. However, the high complexity of their theoretic framework makes it

computationally infeasible. Thus, they separate the tracking of non-rigid objects into reg-

istration, level-set segmentation, and online appearance learning for continuous refinement

of both object and background models.

Another branch of research is the development of segmentation-based trackers. Such

methods, however, either need prior knowledge about the object or object category (e.g.,

[31]), use only very simple object appearance models limiting the discriminative power

of the model (e.g., color histograms [18, 127]), require offline processing of the sequence

(e.g., [67, 148]), or are computationally too complex to allow for real-time applications

(e.g., [106, 165]). Recently, Fan et al. [39] proposed a tracking approach, where salient

points within and outside the object are tracked and used to generates scribbles (i.e.,

foreground/background markings with high probability). Subsequently, these scribbles are

used for image matting (e.g., similar to interactive image segmentation) which results in a

high-quality object segmentation. Cehovin et al. [24] proposed a coupled-layer visual model

for tracking of non-rigid objects. They combine a local layer for tracking of single patches

and their geometric relations and a global layer describing holistic object properties.

In the domain of generic object detection, part-based representations have recently

become very popular, since they provide excellent generalization power but still can handle

intra-class variations very well [3, 23, 30, 42, 43, 45, 87, 156]. The most prominent approach

is the deformable parts model [41], which allows to reliably detect objects even under heavy

non-rigid transformations and partial occlusions. Using a latent SVM a discriminative

part-based object detector is trained which is able to handle a small number of parts

selected automatically during training phase. However, due to its complexity the approach

is infeasible for real-time applications and no online variant of the learning algorithm exists

so far.

A different, recently revisited approach is the Generalized Hough Transform [14, 86],

which was successfully applied to object detection [50, 101, 110], action recognition [163],

and tracking [51]. In addition to the detection of objects, the Hough-based classification

framework also allows to determine the support of a detectors decision (i.e., which positions

in the image voted for the assumed object center position). This issue has been addressed

in detail by Razavi et al. [126] and is of major interest for our work. Though, in the

case of tracking, only objects from a certain pre-defined class can be recognized using a

pre-trained classifier. During tracking only specific instances are distinguished from each

other by an additionally online estimated prior.

82 Chapter 5. Implemented Approaches

5.3.1 Online Hough Ferns

The theoretical basics of Random Forests (RFs) and Random Ferns (RFes) are described

in Chapter 3. However, for tracking of unknown objects, offline training and node op-

timization makes only little sense for two reasons. First, since only the initial frame is

labeled, there is not much training data available to optimize the tree or fern structure.

This issue could be addressed by a tree-growing scheme as proposed by Saffari et al. [133].

However, this is computationally demanding considering the more complex statistics used

for the Hough-transform. Second, considering the limited training data, optimization on

the object appearance of the very first frame only may result in very tailored node tests.

Though, these tests may not be able to cover the changing appearance of the object.

Therefore, we use completely randomized node tests.

Hough Voting While the leaf nodes of Random Forests and Ferns only store proba-

bilities pt (c|v) of a sample v ending up in this node being of class c, a Hough Forest

additionally stores displacement vectors dt ∈ R2 that point toward the expected object

center. Thus, a positive (i.e., c = +1) training sample for a Hough Forest consists of

the triplet 〈v, c,d〉, where d is the displacement vector to the object’s center position.

Negative training samples (i.e., c = −1) do not contain a displacement vector since there

is no relation towards the object center. The distribution of these votes within each leaf

node can be modeled by a sum of Dirac measures according to the displacement vectors

dt from all samples 〈v,+1,d〉 that ended up in leaf node t. While training a tree node of

a Hough Forest, either the information gain or the uncertainty of the displacement vectors

of the given training set is optimized while selecting the best test [51].

During evaluation, a voting map M can be generated by accumulating the displacement

vectors dt, weighted by the foreground probability pt (+1|v) of the corresponding leaf node

(see Figure 5.10). This is done for all possible locations in the image. The value of the

voting map on a specific position corresponds to the probability of an object being centered

there.

Incremental Leaf Node Statistics To establish a Hough-based classifier, we have to

model (a) the foreground probability of the leaf node and (b) the displacement vectors

during online training. We model the foreground probability incrementally by counting

positive and negative samples arriving at a specific leaf node during runtime.

Since the tests in our classification tree are not trained to cluster similar voting di-

5.3. Hough-based Tracking of Non-Rigid Objects 83

(a) (b) (c)

Figure 5.10: Hough-based Detection: Input Image (a); Patches (i.e., feature vectors v)
classified as foreground (green squares) (b) are allowed to cast their votes into the common
voting map M (c). The detected object center is given by maximum of M (red circle).

rections, we have to handle a very diverse set of displacement vectors within a single leaf

node. Therefore, we discretized the displacement space into small rectangular cells and

measure the weight of each cell incrementally. When the classifier is applied to a certain

image position, we retrieve the corresponding leaf node n and select a subset of strong

displacement vectors from the collected displacement map (see Figure 5.11). This is done

by picking v voting cells with the largest weights ωcell and setting their vote strength to

ωvote = P+
n · ωcell. (5.1)

Since this learning procedure would limit the adaptivity of the classifier due to satura-

tion effects, we apply infinite impulse response-like forgetting, as described in Chapter 3.

The same function is also applied to the weight the negative data η−n . Additionally, we

normalize the foreground probability P+
n in each leaf node n to simulate an equal amount

of positive and negative training data for each tree. To adapt the displacement map to

the current object configuration, we apply the same forgetting scheme to each cell in the

displacement map.

The described adaptations allow for online training of Hough Forests using the current

frame and to detect the object in the subsequent frame. Therefore, we apply the classifier

to all positions in the image and accumulate the responding votes and their weights. After

performing a non-maxima suppression, we assume the maximum to be the current object

position.

84 Chapter 5. Implemented Approaches

(a) (b) (c)

Figure 5.11: Displacement Map: (a) training / input votes, (b) weighted voting cells,
(c) weighted output votes for v = 3.

Support Beside the detection capabilities, the voting mechanism of Hough Forests can

also be applied in the opposite direction to localize the support of a specific center position.

Given a local maximum at position m, we define the support of this maximum as the

sample set S(m, ρ) containing all samples v that have voted to the center position m with

maximum position deviation ρ. By using the corresponding displacement vectors dt, we

can back-project the original position of a sample v onto the image space. In this way, we

obtain a sparse point-set of positions supposable belonging to the object that voted for

the center position m (see Figure 5.12).

5.3.2 Closing the Tracking Loop

Up to now, we have defined all parts that are necessary to perform online learning in

a Hough-voting based classification framework. However, there is a crucial part missing

to close the tracking loop: online training sample selection. Selecting the right update

strategy is important for online tracking-by-detection. The major problem is that the

correctness of the tracking result is not guaranteed (due to misalignments, occlusions

and cluttered background) but the learning algorithm has to generate training samples

including as little noise as possible.

Therefore, we propose to use a rough segmentation of our object, initialized by the

support set S of the detected object center. We then use this segmentation to accurately

update our classifier, which allows for learning of highly non-rigid objects during tracking.

Figure 5.13 illustrates the application flow and all parts of our tracking system.

5.3. Hough-based Tracking of Non-Rigid Objects 85

(a) (b) (c)

Figure 5.12: Support: The object center is determined by the voting vectors of foreground
patches (i.e., feature vectors v). Contrary, given a specific image position (red circle), i.e.,
the object’s center (a), we can retrieve patches that successfully voted for this position
(red squares) (b). The final support is the sparse map of positions of those foreground
patches (red dots) (c).

We use the support S of the detected object position (i.e., the parts having a stable

geometric relation to the object center) to guide a rough segmentation process that extracts

the object. Even if this segmentation is not very precise, it lowers the amount of label noise

that is produced during self-learning. We apply the well-known GrabCut [130]4 algorithm

to establish a reasonable binary segmentation B using the color channels, initialized by

the support S(m, ρ) of our object position as foreground and a maximum-object-sized

rectangle as background. This rough segmentation separates our image into two regions:

positive samples, located on the object and negative ones, located in the background.

To further improve the visual result of our segmentation, we could easily incorporate

image matting methods (e.g., [93]) or alternative interactive segmentation approaches

(e.g., [134]), where our back-projection provides scribbles (i.e., the necessary user input).

However, we do not rely on an exact segmentation (due to, e.g., missing parts, over-

segmentations). Thus, we consider a narrow band in-between these two sets as uncertain

and do not use this region for training.

To be adaptive to geometric reconfiguration of the object, we shift the object’s center

position to the current center-of-mass in the foreground segment, even if this point does not

belong to the object. This mechanism does not distinguish if object parts are occluded or

vanished. However, this simple but efficient strategy delivers accurate training data which

4Implementation from http://opencv.willowgarage.com.

http://opencv.willowgarage.com

86 Chapter 5. Implemented Approaches

(a) (b) (c)

(d) (e) (f)

Figure 5.13: Tracking Loop: (a) current image, (b) Hough-based object detection, (c)
back-projection and supporting image positions, (d) guided segmentation, (e) robust up-
dating and (f) tracking result (red: foreground support, segmentation and updates; blue:
background segmentation and updates).

is used to update our classifier during tracking. If the segmentation fails, our tracker acts

like a bounding-box-based tracker, but Random Forests are known to be robust to noise

and are able to handle a notable amount of incorrectly labeled samples. Algorithm 2

describes the complete tracking process in detail.

5.3.3 Experimental Evaluation

To demonstrate the performance of our tracking approach denoted as HoughTrack (HT),

we evaluate and compare it to existing approaches using two different datasets. First,

we compare to two standard tracking approaches, [12] and [133], using a bounding-box

dataset from [12]. This demonstrates that our tracker produces competitive results on this

5.3. Hough-based Tracking of Non-Rigid Objects 87

Algorithm 2 HoughTrack: The tracking algorithm in detail

Mark object in the first frame I0
Generate object mask B from the user’s initialization
Calculate center of mass of B → m
Train Fern using I0, B and m
for all frames In do

Evaluate Fern on In →M
Find maximum of M → m
Back-project votes from m to image space → S
Segment object using S → B
Calculate center of mass of B → m
Train Fern In, B and m
Output segmentation B

end for

well-known dataset. The second evaluation compares our approach to recent part-based

tracking approaches [24, 82] using their set of sequences. Additionally, we collected a set

of very diverse and challenging sequences including highly non-rigid object transforma-

tions. Finally, we also justify the additional effort of segmenting the object in comparison

to a simple bounding-box and compare to tracking approaches that focus on accurate

segmentation [26, 148].

Parameter Settings We use the same settings for all sequences: the classifier pool

consists of 20 ferns and we pick the T = 10 ferns with the highest population for detection

and the used ferns consist of M = 1 groups of size S = 8. Please note that the group

size S corresponds to the tree depth D and that we use single-group ferns (M = 1) as

we embed them into an ensemble of size T . We are using Lab-color space (3 channels),

first and second derivatives in X and Y directions (4 channels) and a 9-bin histogram of

gradients (9 channel) as feature vector v (as used in [50]). The used patch size of our

samples is 12 × 12 and we return v = 10 strong votes from a leaf node if a sample ends

up there. The forgetting constant τ is set to 0.9 (see Eq. 3.19) and the maximum support

deviation ρ is 0.5 (see Section 5.3.1).

Bounding-Box Dataset For quantitative analysis, we use the publicly available track-

ing dataset of Babenko et al. [12] (see Figure 5.14 for illustrative samples). We compare to

MILTrack [12] using the original configuration of 50 weak classifiers and Online Random

Forests [133] using 50 trees and standard settings provided by the implementation. Since

the compared trackers only report bounding-boxes, we also convert our result to bounding-

88 Chapter 5. Implemented Approaches

boxes of original size, centered around the center-of-mass of our segmentation. Table 5.6

clearly shows that our approach delivers competitive results, even not considering partial

and full occlusions in the evaluation due to the lack of annotations.

Sequence HT MIL [12] ORF [133]

David 100/9 84/23 95/16
Sylvester 99/7 93/11 71/19
Girl 86/38 85/32 99/16
Face Occlusion 1 100/22 91/27 100/11
Face Occlusion 2 100/20 94/20 70/29
Coke 24/21 46/21 17/45
Tiger 1 45/35 78/15 27/48
Tiger 2 71/16 78/17 21/44

Average 78/21 81/21 63/29

Table 5.6: Babenko Sequences: Percentage of correctly tracked frames (score > 0.5) /
mean center distance in pixels for all sequences and average.

Based on the ground-truth annotation included in the dataset of Babenko et al. [12],

which is represented by a simple bounding-box of the same size as the initialization, our

tracker cannot be compared fairly with other bound-box-based trackers because object

occlusions are ignored completely. We measure the tracking accuracy using the Agarwal-

criterion [2], which is defined in Section 4.3. We report the amount of successfully tracked

frames (score > 0.5), since this value is less sensitive to the effect described above. Addi-

tionally, we state the average center distance error, as also reported in [12]. Figure 5.14

shows selected frames from the dataset and demonstrates that the raw accuracy values

from Table 5.6 fail to meet the true performance of our tracking approach.

Tracking of Non-Rigid Objects Since the intended purpose of our tracking approach

is the tracking of objects that may deform during runtime, we want to demonstrate the

performance on several challenging sequences. Therefore, we have collected several videos

showing different ranges of complexity and non-rigid deformations, consisting of about

2500 frames. We compare to Basin Hopping Monte Carlo Tracking (BHMC)5 [82], and

LGT6 [24] because these trackers also perform tracking of non-rigid objects. We also

include the sequences provided by the authors in our comparison (see Table 5.7). However,

both trackers do not report a segmentation of the object, but a bounding-box containing

all tracked parts.

5Implementation from http://cv.snu.ac.kr/research/˜bhmctracker/.
6Implementation from http://vicos.fri.uni-lj.si/lukacu/.

http://cv.snu.ac.kr/research/~bhmctracker/index.html
http://vicos.fri.uni-lj.si/lukacu/

5.3. Hough-based Tracking of Non-Rigid Objects 89

Figure 5.14: Illustrative Tracking Results: Selected frames from the Babenko Se-
quences.

90 Chapter 5. Implemented Approaches

We also list the results of Online Random Forests (ORF)7 [133] and MILTrack

(MIL) [12], two bounding-box-based trackers that are not designed to cope with the

amount of transformation presented in these videos. Since these trackers cannot adapt

the aspect ratio of the bounding-box, we accept the tracking result to be correct if the

center position of the tracked bounding-box is roughly correct, although the result is

much more inaccurate than using the three part-based approaches.

Table 5.7 depicts tracking results of the selected approaches evaluated on our sequences.

We have denoted the percentage of frames for each sequence until the tracking approach

fails by visual inspection. Figure 5.17 shows some selected frames of our sequences and

our tracking results.

Sequence HT BHMC [82] LGT [24] ORF [133] MIL [12]

Cliff-dive 1 100 100 100 100 100
Motocross 1 100 5 100* 15 17
Skiing 100 − 5 5 10
Mountain-bike 100 50 100* 100 41
Cliff-dive 2 100 30 26 50 30
Volleyball 100 60 100* 45 100
Motocross 2 100 25 100 10 100

Transformer 100 100 100 100∗ 100∗
Diving 75* 100 100 30 43
High Jump 100 100 60 5 10
Gymnastics (BHMC) 100* 100* 50* 65 55

Dinosaur 95 32* 100 18 25
Gymnastics (LGT) 60* 31* 100 15 17
Hand 1 100 − 100 8 20
Hand 2 50* 13 100 5 10
Torus 100∗ 75 100 4 6

Average 92 59 84 36 43

Table 5.7: Tracking of non-rigid objects: Percentage of frames correctly tracked until
failure (tracks that only include parts of the object are marked with *).

Bounding-Box vs. Segmentation-based Tracking The major remaining question

is if the effort of an additional segmentation is justified. Therefore, we perform a simple

experiment comparing our approach with and without the subsequent segmentation step.

Thus, the only difference between the compared methods is the set of update patches that

is used to update the classifier.

7Implementation from http://lrs.icg.tugraz.at/download/.

http://lrs.icg.tugraz.at/download/

5.3. Hough-based Tracking of Non-Rigid Objects 91

We use a subset of the sequences from Sections 5.3.3 and 5.3.3, which have different

grades of deformation and occlusion. The first block of Table 5.8 shows the comparison for

standard sequences taken from the Babenko [12] dataset including Sylvester, Girl, Face

Occlusion 2, and Coke. The target objects in this sequences only get slightly deformed,

which does not affect the bounding-box version of our approach too much (e.g., Sylvester,

Girl). However, significant occlusions (e.g., Face Occlusion 2) decrease the tracking per-

formance and the tracker starts to drift if the occluding object is not removed from the

update region. Also out-of-plane rotations of the appearance of the tracked object (e.g.,

Coke) decrease the performance because the segmentation helps to stick to the original

object if the appearance is different than that of the background.

Comparing both versions on more challenging sequences Motocross 1, Volleyball,

Transformer, High Jump, Gymnastics (LGT), and Hand 1 from [24, 56, 82] including

highly non-rigid deformations of the target object, the influence of the segmentation gets

much higher. This can be clearly seen in the second block of Table 5.8, where rotations

(e.g., Motocross 1 and Gymnastics (LGT)), non-rigid deformations (e.g., Volleyball,

Transformer, and High Jump) and fast motion (e.g., Hand 1) are present. Overall, the

results with segmentation are far better than without, which experimentally justifies the

additional effort of back-projection and segmentation of the target object.

Sequence with Seg. without Seg.

Sylvester 99 90
Girl 86 84
Face Occlusion 2 100 91
Coke 24 10

Motocross 1 100 5
Volleyball 100 42
Transformer 100 30
High Jump 100 14
Gymnastics (LGT) 60* 14
Hand 1 100 16

Average 87 40

Table 5.8: Bounding-Box vs. Segmentation-based Tracking: Percentage of cor-
rectly tracked frames for selected sequences and average.

Comparison of Segmentation Quality Although, our method does not rely on highly

accurate segmentations, we compare our tracking result to two approaches that especially

focus on that. We use the sequences presented in [148], and compare to Motion Coherent

92 Chapter 5. Implemented Approaches

Tracking (MCT) [148] and Adaptive fragments-based tracking (AFT) [26]. Table 5.9

shows that our approach gives reasonable segmentation results for 4 out of 6 sequences.

However, our approach fails on tracking the Penguin sequence due to similar colors in the

background. This is especially a problem of the used GrabCut implementations, separating

foreground and background using a color-based Gaussian mixture model.

Sequence HT MCT [148] AFT [26]

Parachute 350 235 502
Girl 3301 1304 1755
Monkeydog 651 563 683
Penguin 16097 1705 6627
Birdfall 271 252 454
Cheetah 1037 1142 1217

Table 5.9: Segmentation Quality: Average number of wrong segmented pixels per frame
(bold numbers mark the approach that performs best, italic numbers second best).

5.3.4 Discussion

Tracking of unknown, non-rigid objects is a hard task, because of the lack of prior knowl-

edge. While the object model has to be updated during runtime to cope with appearance

and illumination changes, the tracker has also to distinguish between valid and invalid

transformations of the object. Object parts that have not been visible may appear during

runtime, while others may disappear. Therefore, the sample generation (i.e., the decision

which part belongs to the object and which not) is extremely important and substantially

influences the tracking result. While mis-detections and small failures may not disturb the

visual result much, the inherent self-training of the classifier enforces the propagation of

errors, which may finally lead to drifting and to failure of tracking. The challenge is now to

update the detector regularly without introducing such failures. Therefore, we use the as-

sumption that the overall object exhibits similar appearance. We utilize back-projections

to initialize this appearance model (in our case a Gaussian mixture model of the color

channels as provided by the OpenCV GrabCut implementation) and let the segmentation

algorithm find the object boundaries. Even if the segmentation does not provide perfect

results in every frame it improves the sample selection noticeable.

Another assumption of our approach is that several parts of the object will share a

stable geometric relationship within a few frames. This requirement is directly enforced

by the generalized Hough-transform. While this requirement will not hold for more than

5.3. Hough-based Tracking of Non-Rigid Objects 93

a few frames considering a highly non-rigid object deformation, shifting the objects center

position to the center-of-mass of the current segmentation enforces the object model to

adapt to the current needs. Combining a part-based detection method to handle non-

rigid objects with a segmentation mechanism that enforces aggregation of all parts is the

quintessence of the proposed approach. Figure 5.15 illustrates the geometric relationship

of foreground and background patches and their corresponding votes.

(a) frame t (b) frame t + 3 (c) frame t + 6 (d) frame t + 12

Figure 5.15: Geometric relation of parts: Votes from foreground patches (red/green)
share a stable geometric relationship and establish a stable voting maximum while back-
ground votes do not support the voting maximum if the object moves.

Failure Cases Since we use a rectangular initialization of our tracker in the first frame,

the support of our detection in the subsequent frames may also include background posi-

tions because they have also been included in the initial training set. This may end up in

confusion of the classifier.

However, the stable geometric relation of the background collapses as soon as the object

moves and the according votes do not match the support criterion (i.e., distance smaller

than ρ) any more. Only if the majority of the support originates from the near background

of the object, the recognized object center will be supported by the background and the

tracker is not able to follow the object any longer. This effect may occur when there is very

cluttered background (Diving) or the segmentation algorithm fails due to similar colors

in the background (Gymnastics) as visible in Figures 5.16 (a-c). Figure 5.16 also shows

some frames where our approach fails due to fast motion (d and e) or the segmentation is

not optimal due to the shape of the object (f).

Parameter Optimization The chosen settings are a trade-off between performance of

the classifier and execution speed of the tracker. As stated above, T = 10 ferns of depth

94 Chapter 5. Implemented Approaches

(a) Diving (b) Diving (c) Gym (BHMC)

(d) Gym (LGT) (e) Hand2 (f) Torus

Figure 5.16: Failure Cases: Selected frames where the approach fails or does not work
well (images are cropped for better visibility).

S = 8 are used during evaluation, which gives a reasonable simpler classifier than used in

[51], which uses 15 trees of depth 12. Thus, the statistics within the leaf nodes of the used

Hough Ferns are not as distinctive as that of Hough Forests. Additionally, no clustering

based on the voting direction is performed, which results in a scattered displacement map.

A viable way to automatically optimize the fern depth S would be to grow ferns on demand

similar to Schulter et al. [137]. Using online Hough Forests would also enable to perform

test optimization during runtime, but using forests is computationally more complex and

the obtained tree structure is less flexible. The number of returned votes v can also be

adapted such that the returned votes represent the majority of the weight of all votes. This

would automatically adjust the number and the weight of the returned votes according to

the spreading of the displacement map within each leaf node. The forgetting is a trade-off

between speed of adaptation of the classifier and robustness of the model.

5.3. Hough-based Tracking of Non-Rigid Objects 95

Complexity The memory complexity of the approach is O(T ·M ·2S) (approximative 195

MB for the used settings) and the runtime mainly depends on the object size (i.e., number

of pixels that cover the object). Without parallelization our approach runs with about

2–5 fps on a 3GHz (single core) desktop computer. In the current implementation, the

runtime consumption is split to 20% for feature calculation, detection and training of the

classifier, respectively, and 40% for the GrabCut segmentation. Thus, the whole process

could be speeded-up by using a more efficient segmentation algorithm and parallelizing

the fern implementation.

Implementation Issues We have defined a maximum object size for background ini-

tialization of our segmentation algorithm, preventing too severe over-segmentations. This

can be recognized in sequence Cliff-dive 2 (see Figure on next page). It is clearly visible

that the segmentation changes over time and that it gets more accurate during tracking.

To overcome changing aspect ratio of the object, we reshape the maximum object size to

a square box. However, if no change in the aspect ratio is expected this setting can be

switched off. For comparison to future approaches, our reference implementation and the

used sequences are available online8.

8Download from http://lrs.icg.tugraz.at/research/houghtrack/.

http://lrs.icg.tugraz.at/research/houghtrack/

96 Chapter 5. Implemented Approaches

Illustrative Results: Initialization (green box) and selected frames (red segmentation).

5.3. Hough-based Tracking of Non-Rigid Objects 97

Figure 5.17: Illustrative Results: Initialization (green box) and selected frames (red seg-
mentation). More results can be found at http://lrs.icg.tugraz.at/research/houghtrack/.

http://lrs.icg.tugraz.at/research/houghtrack/

98 Chapter 5. Implemented Approaches

5.4 Discussion

This chapter presents three individual implementations of the tracking-by-detection con-

cept. Especially Sections 5.1 and 5.3 have a strong relation to each other. Bayes’ theorem

has shown to be an effective way to model the statistical distribution of related feature

channels. However, since the number of features in tracking is very high, the resulting

dimensionality of the statistical model precludes real-time performance. Therefore, we

made several simplifications that are shared by both approaches:

• Randomization is used to create a pool of features to extract some information from

the images. While this is not the best choice, it may be the only one that eliminates

any bias that may be introduced by wrong assumptions.

• Histograms are used in both cases to model the distribution in the leaf nodes of the

classifiers. In ORNB, we directly use them to model the probability of a sample end-

ing up in this node to belong to the foreground, while in ORFe, we use 2D-histograms

to capture the voting vectors towards the expected object center. However, in both

cases we use the exponential forgetting function (see Eq. 3.19) to get rid of out-dated

information and to ensure adaptivity of the classifier.

• During evaluation, the probabilities of the individual members of the ensemble is

summed up for the overall result. While multiplication of the individual probabilities

would be the correct choice, addition is the more stable and robust one due to the

averaging effect.

As a complement, Section 5.2 presents a completely different concept to handle the

complexity of the data present in the video sequences. Here, the data is autonomously sep-

arated into groups, which can be interpreted as a simple clustering algorithm. Therefore,

new classes are introduced until there is no conflict of any portion of the current back-

ground with the target object. This concept works as long as there is only one instance

of the object visible in the image because we assume that everything except the current

detection is background. Otherwise, the active learning scheme would repeatedly penalize

the detection of the second instance by repeatedly adding new negative classes that are

trained with the second object instance. As expected, this will cause immediate failure of

the approach. Nevertheless, the presented concept is an interesting way to overcome the

problem of very complex classes that can only be handled by using huge classifier statistics

which makes the learning algorithm slow and unbalanced, because usually only one class

if complex.

5.4. Discussion 99

In contrast to Sections 5.1 and 5.2, Section 5.3 integrates a flexible object represen-

tation into the tracking loop. Hough-based object detection allows for combination of a

very large number of small object parts into a unified detection by combining votes of the

individual parts that point towards the expected object center. Of course, the single parts

are way to simple and small to give in a useful detection result, but the very large number

of parts enables highly accurate center estimation without complex inference.

However, the big change in the object representation causes big changes in the learning

algorithm, because the use statistics are much more complex due to the integration of the

voting mechanism. Therefore, we again utilize the concept of histograms that we already

use as statistics in the other applications, but in this case they are two-dimensional.

The use of histograms again allow to use the established forgetting scheme. While the

detection of the object center basically works straight-forward by selecting the maximum

in the distribution of the center votes, there is much more that we can gain from the part-

based concept. Using the back-projections helped us to immediately get rid of both, the

rectangular bounding-box result of the originally proposed Hough-based object detector

and the large amount of noise that is introduced into the learning process due to non-

rectangular objects that are surrounded by the bounding-box. This is achieved by using

an out-of-the-box segmentation algorithm that is initialized using the object parts that

successfully voted for the selected center position. This was basically the enabling factor

that resulted in very robust behavior and high performance of the tracking approach.

Beside the contribution, the kind of presentation we chose for the approaches may raise

several questions that we want to address here:

Why didn’t we compare the three approaches against each other?

The presented approaches address the individual parts of the tracking loop. However,

we did not explicitly compare these approaches to each other, because they represent very

different examples and interpretations of tracking: While Section 5.1 primarily focuses

on the learning algorithm and statistical model, Section 5.2 presented a novel update

strategy. Section 5.3 then modifies a flexible object detection approach to be used for

tracking. Since the focus of the methods is quite different, a direct comparison of results

on a benchmark dataset may not really give a benefit, because all three focus on very

different parts of the tracking-by-detection concept.

Why din’t we use exactly the same scheme to perform the evaluation of the approaches?

100 Chapter 5. Implemented Approaches

To compare against related work, we calculated the average Agarwal detection score

(see Section 4.3) for each sequence based on the given ground-truth. For Sections 5.1 and

5.2 we reported these numbers without any further processing (see Tables 5.4 and 5.5).

However, since the approach presented in Section 5.3 does not give bounding-box results,

the reported scores did visually not correspond to the perceived tracking performance.

This was caused by the fact that we reported a rectangle surrounding the center of mass

of our segmentation result, but the center of mass of the objects did not correspond to the

center of the given ground-truth annotation. Therefore, we decided to widely eliminate the

influence of the ground-truth annotation by reporting only the correctness of the tracking

result.

Another issue regarding evaluation datasets is the very limited range of operation of

the objects. Thus, a tracker that lost the object can simply wait for the object to pass

by its current position. Since this will not happen in real-world scenarios, we decided to

stop tracking on a complete failure (score = 0) and report the percentage of successfully

tracked frames for each sequence.

Why did we present exactly these three applications?

Given the fact that these three methods are presented with respect to the chronological

order of their development, they cover the evolution of tracking-by-detection from the basic

concept of [61] towards a more flexible interpretation in [56]. Many more approaches could

have been presented here, but we think that these three are the corner posts of this thesis

and demonstrate the different aspects of tracking-by-detection quite well.

Also, the selected approaches show that the statistical model and the update mecha-

nism can be exchanged quite easily for bounding-box approaches (Sections 5.1 and 5.2),

but using a more complex object representation may cause comprehensive changes of all

other parts (Section 5.3). Altogether, we wanted to show different facets of tracking-by-

detection by showing very different ideas and implementations.

Finally, what are the components to create the optimal tracking loop?

While we have evaluated and implemented a large number of different components, i.e.,

learning algorithms, labeling schemes, and object models, this question cannot be answered

easily. The main problem is that ”‘tracking of unknown objects”’ is an enormously broad

field of applications and the requirements from task to task may vary significantly. Thus,

it is very important to have a closer look on the object (i.e., static or dynamic appearance,

5.4. Discussion 101

rigid or non-rigid shape), the scene (i.e., static camera or PTZ camera, static or dynamic

background, changing illumination) and the desired output (i.e., bounding-box, convex

hull, or precise shape). Finally, we think that there can be no optimal solution, as long as

no knowledge about the object is available.

Chapter 6

Summary and Conclusion

Contents

6.1 Contributions of this Thesis . 102

6.2 Future Work . 103

6.3 Closing . 104

Within this thesis, we examine the basic principle of tracking-by-detection, which

is a popular approach for tracking of unknown objects and has been used frequently

in the last decade. To explain the basic concept of tracking-by-detection, we introduce

the tracking loop (see Section 1.2) that is composed of (a) object representation (see

Chapter 2), (b) statistical model and learning algorithms (see Chapter 3), and (c) detection

of the object and generation of new training samples (see Chapter 4). Beside a detailed

discussion of every building block, we give a detailed overview on the different possibilities

of implementation that have been presented in the recent literature.

For object representation, we put a special focus on the geometric model, which mainly

defines the complexity of the approach. While traditional approaches preferred kernel-

(see Section 2.1.2) or template-based (see Section 2.1.1) models, more recent approaches

go towards part-based (see Section 2.1.4) models. Since concepts that have been used in

detection tasks are usually computationally too expensive for real-time operation, many

tailored solutions have been presented and are discussed in Section 2.1.4.

The extracted information is then integrated into a statistical model, mainly using ma-

chine learning techniques. We introduce the mathematical foundations (see Section 3.1),

explain the relevant terminology (see Section 3.2). Technically, we focus on random-

ized ensemble learning techniques and describe Random Näıve Bayes (RNB), Random

103

104 Chapter 6. Summary and Conclusion

Forests (RFs), and Random Ferns (RFes) and their online learning variants (e.g., Online

Random Näıve Bayes (ORNB), Online Random Forests (ORFs), and Online Random

Ferns (ORFes)) and discuss their use in related tracking approaches in Sections 3.4 and

3.5.

At last, regarding the tracking loop, we analyze the detection mechanism and the

training sample generation process. Especially the second is very important, because this

is mostly neglected in scientific publications. However, it has a large influence on the

performance and stability of every tracking approach (see Section 4.2.

In these three chapters, we discuss different solutions to the individual building blocks

that have been presented in related work within the last decade. Since there is a very

large amount of related publications that use similar concepts, we present representative

approaches that cover all different types of implementations.

In Chapter 5, we introduce three approaches that target improvement of the individual

parts and perform detailed evaluations against related work. In Section 5.1, we propose a

novel online learning algorithm called Online Random Näıve Bayess (ORNBs). We evalu-

ate the algorithm based on machine learning datasets and within a tracking-by-detection

framework. Additionally, the core characteristics, such as the convergence speed and the

parameter influence of the algorithm are explored. While this algorithm is pretty simple

to implement and configure it delivers good performance. In Section 5.2, we concentrate

on the update mechanism within the tracking loop. We discover the problem of complex

background classes and propose to dynamically split the background class into several

virtual classes. However, this approach requires an online multi-class learning algorithm

that is able to add new classes on the fly. Therefore, we propose several modifications

to the weak learners that allow for use of our update mechanism and can handle highly

unbalanced datasets.

Finally, we overcome the bounding-box limitation of many recent approaches by

proposing a tracking approach based on ORFes and Hough-based object detection in

Section 5.3. This approach investigates all three parts of the tracking-loop by using

a flexible, part-based object representation, an online randomized ensemble learning

method to establish the object model and an update scheme based on segmentation

of the object. The combination of these three techniques results in a robust tracking

approach that delivers accurate object segmentation during runtime.

6.1. Contributions of this Thesis 105

6.1 Contributions of this Thesis

We awarely did not mark the contribution of the thesis in the Sections 2, 3, and 4 where

it is discussed beside related work. Therefore, we summarize the individual points in the

following:

Online Random Naive Bayes Learning The work of Prinzie and van den Poel [124]

gave the main motivation to establish an online version of Näıve Bayes (NB) learn-

ing (see Section 3.5). It turned out that the algorithm performed quite well on

classical test data while being very simple and easy to implement. Additionally,

we demonstrated the applicability of the algorithm to the task of tracking (see Sec-

tion 5.1.1). The experimental outcome of the experiments motivated on the use

of statistical models that are able cover multi-modality, e.g., histograms, for weak

learners instead if using uni-modal Gaussian distributions.

Context-based Clustering for Multi-class Learning To further improve the granu-

larity of the statistical model, we split complex classes into several simple ones (see

Section 5.2). To fit the complexity of the model to the complexity of the task, i.e., the

tracking sequence, we adapt the number of classes that model the background dy-

namically during runtime. The experimental evaluations show that complex scenes

result in very complex distributions (see Figure 5.6), even using weak learns that

are basically able to model multi-modal data (i.e., using histograms). However, this

requires a learning algorithm that is capable of multi-class learning. In the presented

application, we used online Gradient Boost [131].

Online Hough-Ferns Online Random Forests (ORFs) have shown great capabilities in

modeling of complex data. However, their tree-growing scheme is very complex to

implement. On the other hand, Online Random Näıve Bayes (ORNB) is very easy

to implement, but has limited capabilities in modeling of complex objects due to the

limited number of features that are used. Random Ferns (RFes), a learning algorithm

that can be interprets as an implementation of the semi-näıve Bayes formulation,

has been introduced by Özuysal [116] and shows impressive performance on different

computer vision tasks (e.g., key-point recognition). Therefore, we develop an online

version of RFes, Online Random Ferns (ORFes) (see Section 3.5). Therefore, we use

the findings and concepts of ORNB to calculate our statistical information online and

to perform forgetting to get rid of out-dated information. To get rid of the bounding-

box scheme of previous approaches, we combine the ORFes implementation with an

106 Chapter 6. Summary and Conclusion

adaptation of the Hough-based object representation from [50].

Sampling of Training Data using Segmentation While a Hough-based object rep-

resentation allows to detect flexible objects, the update mechanism presented in [50]

still uses rectangular annotations. However, this does not fully utilize the capabilities

of the approach since every background pixel in the rectangular box still introduces

label noise into the update mechanism. Therefore, we introduce an out-of-the-box

segmentation algorithm to give a more precise annotation (see Section 4.2). This

results in a much better tracking quality (see Table 5.8).

In our applications, we demonstrate state-of-the-art performance of the individual ap-

proaches by comparison to related work. Section 5.4 discusses the individual characteristics

of the implementations and their assets and drawbacks.

6.2 Future Work

During the implementation and evaluation of the presented approaches, several ideas could

not be addressed that may lead to further improvements and real-world applicability of

the tracking-by-detection concept:

Combination There are two very prominent concepts that are used in computer vision

to represent objects: (a) Key-points, and (b) patches. Both have shown good performance

in different tasks and approaches, but a recent trend is to combine them. This idea follows

the problem that, especially for tracking of unknown objects, the properties of the object

are unknown and so is the optimal representation and feature type. The use of a larger pool

of diverse features and representations should be investigated to enable runtime adaption

of the representation to the current requirements. It would also be interesting to combine

the strength of several tracking approaches into an unified framework.

Customization Online learning has reached a level of performance where improvements

are very difficult. Naturally, tuning of parameters improves the result but it is much more

important to check if the learning concept fits the target application. Thus, we will

adapt also other standard learning algorithms to fit to the task of tracking-by-detection.

Thereby, integration of the geometric model, runtime adaptation (i.e., forgetting of out-

dated information) and reduced computational complexity are the main issues that will

be addressed.

6.3. Closing 107

Flexibility In recent object tracking approaches there is a strong trend towards flexible

object representations that can cope with deformable, non-rigid objects. For the geomet-

ric model, flexibility will be one of the key features of upcoming approaches which will

also bring up more complex evaluation datasets consisting of natural objects performing

complex motion. Reporting of an object segmentation is an interesting option, as it al-

lows for, e.g., high-quality extraction of a moving object from an arbitrary background

during runtime. However, estimation of the current orientation of the object would also

be beneficial and will be investigated in the future.

6.3 Closing

In the Introduction (see Chapter 1), we raised some questions about the tasks that com-

puter vision applications should fulfill, mainly focused on assistance for humans in their

daily life.

So, what is today’s state of the development?

Well, computing devices proceed entering our daily life and getting more and more

ubiquitous. Nowadays, everyone carries a mobile phone, tablet-pc, digital music player

and other devices that are equipped with cameras. This means that the hardware, i.e.,

cameras, processing power, and network connections, are today available everywhere and

of course many applications using vision exist. Face recognition (e.g., used in Picasa1 and

iPhoto 2) for name tagging, smile shutter, and focus assistance will definitely find their

way into everyday’s life.

All these applications share that they target a more or less isolated task or use a vast

amount of data and are thus overdetermined. However, these computer vision services

and applications are far from the imagination that is given by science fiction movies as

denoted in the motivation of this thesis. Thus, while there is a large amount of tasks

where computer vision is integrated already today, there is still a long way to go to use

computer vision everywhere, where it can give a benefit.

1Official Picasa website: http://picasa.google.com
2Official iPhoto website: http://www.apple.com/ilife/iphoto

http://picasa.google.com
http://www.apple.com/ilife/iphoto

Appendix A

Acronyms and Symbols

AB Ada-Boost

CAD Computer-aided Design

CT Computer Tomography

DPM Deformable Parts Model

DT Decision Tree

EDF Entangled Decision Forest

EOH Edge Orientation Histogram

ERT Extremely Randomized Decision Tree

GPGPU General Purpose Graphics Processing Unit

HoG Histogram of Gradients

HOG Histogram of Oriented Gradients

IIR infinite impulse response

IVT Incremental Visual Tracking

LBP Local Binary Pattern

MIL Multiple Instance Learning

MNL MultiNomial Logit

109

110 Chapter A. Acronyms and Symbols

MOSSE Minimum Output Sum of Squared Error

MVL Multi-view Learning

NB Näıve Bayes

OAB Online Ada-Boost

OCR Optical Character Recognition

ORF Online Random Forest

ORFe Online Random Fern

ORNB Online Random Näıve Bayes

PCA Principal Component Analysis

PBT Probabilistic Boosting Tree

PTZ pan-tilt-zoom

RF Random Forest

RFe Random Fern

RNB Random Näıve Bayes

SSL Semi-supervised Learning

SVM Support Vector Machine

TF-IDF term frequency – inverse document frequency

Appendix B

List of Publications

1. Hough-based Tracking of Non-rigid Objects [57]

Martin Godec, Peter M. Roth, and Horst Bischof

Computer Vision and Image Understanding, to appear in 2013

2. Segmentation-based Tracking by Support Fusion [71]

Markus Heber, Martin Godec, Matthias Ruether, Peter M. Roth, and Horst Bischof

Computer Vision and Image Understanding, to appear in 2013

3. Hough-based Tracking of deformable Objects [57]

Martin Godec, Peter M. Roth, and Horst Bischof

Decision Forests for Computer Vision and Medical Image Analysis

Antonio Criminisi and Jamie Shotton (Eds.)

4. Hough-based Tracking of Non-rigid Objects [56]

Martin Godec, Peter M. Roth, and Horst Bischof

In Proceedings International Conference on Computer Vision, 2011

5. Improving Classifiers with Unlabeled Weakly-Related Videos [89]

Christian Leistner, Martin Godec, Samuel Schulter, Amir Saffari, Manuel Werl-

berger, and Horst Bischof

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2011

6. Proceedings 16th Computer Vision Winter Workshop

Andreas Wendel, Sabine Sternig, and Martin Godec (Eds.)

Verlag der Technische Universität Graz, 2011

111

112 Chapter B. List of Publications

7. Autonomous Audio-Supported Learning of Visual Classifiers for Traffic

Monitoring

Horst Bischof, Martin Godec, Christian Leistner, Andreas Starzacher, and Bernhard

Rinner

IEEE Intelligent Systems, 2010

8. On-line Random Naive Bayes for Tracking [55]

Martin Godec, Christian Leistner, Amir Saffari, and Horst Bischof

In Proceedings International Conference on Pattern Recognition, 2010

9. Context-driven Clustering by Multi-class Classification in an Active

Learning Framework [59]

Martin Godec, Sabine Sternig, Peter M. Roth, and Horst Bischof

In Proceedings Workshop on Use of Context in Video Processing (CVPR), 2010

10. Online Multi-View Forests for Tracking [88]

Christian Leistner, Martin Godec, Amir Saffari, and Horst Bischof

In Proceedings DAGM Symposium, 2010

11. Online Multi-Class LPBoost [131]

Amir Saffari, Martin Godec, Thomas Pock, Christian Leistner, and Horst Bischof

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2010

12. Robust Multi-View Boosting with Priors [132]

Amir Saffari, Christian Leistner, Martin Godec, and Horst Bischof

In Proceedings European Conference on Computer Vision, 2010

13. TransientBoost: On-line Boosting with Transient Data [145]

Sabine Sternig, Martin Godec, Peter M. Roth, and Horst Bischof

In Proceedings IEEE Online Learning for Computer Vision Workshop (CVPR), 2010

14. Audio-Visual Co-Training for Vehicle Classification

Martin Godec, Christian Leistner, Horst Bischof, Andreas Starzacher, and Bernhard

Rinner

In Proceedings IEEE Conference on Advanced Video and Signal Based Surveillance,

2010

113

15. Speeding Up Semi-Supervised On-line Boosting for Tracking

Martin Godec, Helmut Grabner, Christian Leistner, and Horst Bischof

In Proceedings Workshop of the Austrian Association for Pattern Recognition, 2009

16. On-line Random Forests [133]

Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof

In Proceedings IEEE On-line Learning for Computer Vision Workshop, 2009

114

Bibliography

[1] Adam, A., Rivlin, E., and Shimshoni, I. (2006). Robust Fragments-based Tracking

using the Integral Histogram. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, pages 798–805.

[2] Agarwal, S., Awan, A., and Roth, D. (2004). Learning to Detect Objects in Images

via a Sparse, Part-Based Representation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(11):1475–1490.

[3] Amit, Y. and Trouve, A. (2007). POP: Patchwork of parts models for object recogni-

tion. International Journal of Computer Vision, pages 267–282.

[4] Arulampalam, S., Maskell, S., and Gordon, N. (2002). A tutorial on particle filters for

online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing,

pages 174–188.

[5] Avidan, S. (2001). Support Vector Tracking. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, pages 184–191.

[6] Avidan, S. (2004). Support Vector Tracking. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26:1064–1072.

[7] Avidan, S. (2005). Ensemble Tracking. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 494–501.

[8] Avidan, S. (2006). SpatialBoost: Adding Spatial Reasoning to AdaBoost. In Proc.

European Conference on Computer Vision, pages 386–396.

[9] Avidan, S. (2007). Ensemble Tracking. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, volume 2, pages 261–271.

[10] Babenko, B., Dollár, P., Tu, Z., and Belongie, S. (2008). Simultaneous Learning and

Alignment: Multi-Instance and Multi-Pose Learning. In Faces in Real-Life Images.

[11] Babenko, B., Yang, M.-H., and Belongie, S. (2009a). A family of online boosting

algorithms. In Proc. On-line Learning for Computer Vision Workshop, pages 1346–

1353.

BIBLIOGRAPHY 115

[12] Babenko, B., Yang, M.-H., and Belongie, S. (2009b). Visual Tracking with Online

Multiple Instance Learning. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 983–990.

[13] Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. (2011).

A database and evaluation methodology for optical flow. International Journal of Com-

puter Vision, 92(1):1–31.

[14] Ballard, D. (1981). Generalizing the Hough Transform to Detect Arbitrary Shapes.

Pattern Recognition, pages 714–725.

[15] Beardsley, P. A., Zisserman, A., and Murray, D. W. (1997). Sequential updating of

projective and affine structure from motion. International Journal of Computer Vision,

23(3):235–259.

[16] Benhimane, S. and Malis, E. (2007). Homography-based 2D Visual Tracking and

Servoing. International Journal of Robotics Research, pages 661–676.

[17] Bergen, J. R., Anandan, P., Hanna, J., and Hingorani, R. (1992). Hierarchial model-

based motion estimation. In Proc. European Conference on Computer Vision, pages

237–252.

[18] Bibby, C. and Reid, I. (2008). Robust Real-Time Visual Tracking Using Pixel-Wise

Posteriors. In Proc. European Conference on Computer Vision, pages 831–844.

[19] Blum, A. and Mitchell, T. (1998). Combining Labeled and Unlabeled Data with

Co-training. In Proc. Conference on Computational Learning Theory, pages 92–100.

[20] Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M. (2010). Visual object

tracking using adaptive correlation filters. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, pages 2544–2550.

[21] Breiman, L. (1996). Bagging Predictors. Machine Learning, 24:123–140.

[22] Breiman, L. (2001). Random Forests. Machine Learning, 45:5–32.

[23] Burl, M., Weber, M., and Perona, P. (1998). A probabilistic approach to object

recognition using local photometry and global geometry. In Proc. European Conference

on Computer Vision, pages 628–641.

116

[24] Cehovin, L., Kristan, M., and Leonardis, A. (2011). An adaptive coupled-layer visual

model for robust visual tracking. In Proc. IEEE International Conference on Computer

Vision, pages 1363–1370.

[25] Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[26] Chockalingam, P., Pradeep, N., and Birchfield, S. T. (2009). Adaptive fragments-

based tracking of nonrigid objects using level sets. In Proc. IEEE International Confer-

ence on Computer Vision, pages 1530–1537.

[27] Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active Learning with Sta-

tistical Models. Journal of Artificial Intelligence Research, pages 129–145.

[28] Collins, R., Liu, Y., and Leordeanu, M. (2005). Online Selection of Discriminative

Tracking Features. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10):1631–1643.

[29] Comaniciu, D., Ramesh, V., and Meer, P. (2000). Real-time tracking of non-rigid

objects using mean shift. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, volume 2, pages 142–149.

[30] Crandall, D., Felzenszwalb, P., and Huttenlocher, D. (2005). Spatial Priors for Part-

Based Recognition Using Statistical Models. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, volume 1, pages 10–17.

[31] Cremers, D. and Funka-lea, G. (2006). Dynamical statistical shape priors for level

set based tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 1262–1273.

[32] Criminisi, A., Shotton, J., and Konukoglu, E. (2011). Decision Forests for Classifica-

tion, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning.

Technical Report MSR-TR-2011-114, Microsoft.

[33] Crow, F. C. (1984). Summed-Area Tables for Texture Mapping. In Proc. ACM

SIGGRAPH, volume 18, pages 207–212.

[34] Dalal, N. and Triggs, B. (2005). Histograms of Oriented Gradients for Human Detec-

tion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1,

pages 886–893.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 117

[35] Daugman, J. (1980). Two-dimensional spectral analysis of cortical receptive field

profiles. Vision Research, 20(10):847–856.

[36] Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Proc. ACM

Conference on Knowledge discovery and data mining, pages 71–80.

[37] Domingos, P. and Pazzani, M. (1997). On the Optimality of the Simple Bayesian

Classifier under Zero-One Loss. Machine Learning, pages 103–130.

[38] Everingham, M., van Gool, L., Williams, C., Winn, J., and Zisserman, A. (2007).

The PASCAL Visual Object Classes Challenge.

[39] Fan, J., Shen, X., and Wu, Y. (2010). Closed-Loop Adaptation for Robust Tracking.

In Proc. European Conference on Computer Vision, pages 411–424.

[40] Fan, J., Shen, X., and Wu, Y. (2012). Scribble Tracker: A Matting-based Approach

for Robust Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 1633–1644.

[41] Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D. (2010). Object

Detection with Discriminatively Trained Part Based Models. IEEE Transactions on

Pattern Analysis and Machine Intelligence, pages 1627–1645.

[42] Felzenszwalb, P. and Huttenlocher, D. P. (2005). Pictorial Structures for Object

Recognition. International Journal of Computer Vision, pages 55–79.

[43] Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsu-

pervised scale-invariant learning. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, volume 2, pages 264–271.

[44] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The

Annals of Statistics, pages 209–230.

[45] Fischler, M. and Elschlager, R. (1973). The representation and matching of pictorial

structures. IEEE Transactions on Computer, pages 67–92.

[46] Fleet, D. and Weiss, Y. (2005). Optical Flow Estimation, pages 239–257. Springer.

[47] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and

Computation, 121:256–285.

118

[48] Freund, Y. and Shapire, R. E. (1996). Experiments with a New Boosting Algorithm.

In Proc. International Conference on Machine Learning, pages 148–156.

[49] Friedman, J. (2001). Greedy function approximation: A gradient boosting machine.

The Annals of Statistics, pages 1189–1232.

[50] Gall, J. and Lempitsky, V. (2009). Class-specific Hough forests for object detection. In

Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1022–1029.

[51] Gall, J., Razavi, N., and van Gool, L. (2010). On-line Adaption of Class-specific

Codebooks for Instance Tracking. In Proc. British Machine Vision Conference, pages

55.1–55.12.

[52] Geremia, E., Menze, B., Clatz, O., Konukoglu, E., Criminisi, A., and Ayache, N.

(2010). Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel MR

Images. In Proc. Medical Image Computing and Computer Assisted Intervention, pages

111–118.

[53] Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely Randomized Trees. Ma-

chine Learning, pages 3–42.

[54] Gini, C. (1912). Variability and Mutability (Italian: Variabilita e mutabilita). C.

Cuppini, Bologna.

[55] Godec, M., Leistner, C., Saffari, A., and Bischof, H. (2010a). On-line Random Naive

Bayes for Tracking. In Proc. International Conference on Pattern Recognition, pages

3545–3548.

[56] Godec, M., Roth, P. M., and Bischof, H. (2011). Hough-based Tracking of Non-Rigid

Objects. In Proc. IEEE International Conference on Computer Vision, pages 81–88.

[57] Godec, M., Roth, P. M., and Bischof, H. (2013a). Hough-based tracking of deformable

objects. In Criminisi, A. and Shotton, J., editors, Decision Forests for Computer Vision

and Medical Image Analysis, chapter 11, pages 159–174. Springer.

[58] Godec, M., Roth, P. M., and Bischof, H. (2013b). Hough-based Tracking of Non-Rigid

Objects. Computer Vision and Image Understanding.

[59] Godec, M., Sternig, S., Roth, P. M., and Bischof, H. (2010b). Context-driven Cluster-

ing by Multi-class Classification in an Active Learning Framework. In Proc. Workshop

on Use of Context in Video Processing, pages 19–24.

BIBLIOGRAPHY 119

[60] Grabner, H. and Bischof, H. (2006). On-line Boosting and Vision. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, pages 260–267.

[61] Grabner, H., Grabner, M., and Bischof, H. (2006a). Real-Time Tracking via On-line

Boosting. In Proc. British Machine Vision Conference, volume 1, pages 47–56.

[62] Grabner, H., Leistner, C., and Bischof, H. (2008). Semi-supervised On-Line Boosting

for Robust Tracking. In Proc. European Conference on Computer Vision, pages 234–

247.

[63] Grabner, H., Roth, P. M., Grabner, M., and Bischof, H. (2006b). Autonomous Learn-

ing of a Robust Background Model for Change Detection. In Proc. IEEE International

Workshop on Performance Evaluation of Tracking and Surveillance, pages 39–46.

[64] Grabner, M., Grabner, H., and Bischof, H. (2007). Learning Features for Tracking.

In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.

[65] Greene, W. H. (2003). Econometric Analysis. Prentice Hall, Upper Saddle River, NJ,

5. edition.

[66] Grossberg, S. (1987). Competitive Learning: From Interactive Activation to Adaptive

Resonance. Cognitive Science, pages 23–63.

[67] Grundmann, M., Kwatra, V., Han, M., and Essa, I. (2010). Efficient Hierarchical

Graph Based Video Segmentation. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, pages 2141–2148.

[68] Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme. Mathematische

Annalen, 69(3):331–371.

[69] Hager, G. D. and Belhumeur, P. N. (1998). Efficient Region Tracking With Parametric

Models of Geometry and Illumination. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 20:1025–1039.

[70] Hand, D. J. and Yu, K. (2001). Idiot’s Bayes: Not So Stupid after All? International

Statistical Review, pages 385–398.

[71] Heber, M., Godec, M., Ruether, M., Roth, P. M., and Bischof, H. (2013).

Segmentation-based tracking by support fusion. Computer Vision and Image Under-

standing, 117(6):573–586.

120

[72] Hong, X., Chang, H., Shan, S., Chen, X., and Gao, W. (2009). Sigma set: A small

second order statistical region descriptor. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 1802–1809.

[73] Hyafil, L. and Rivest, R. L. (1976). Constructing Optimal Binary Decision Trees is

NP-complete. Information Processing Letters, pages 15–17.

[74] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural Computation, pages 79–87.

[75] Jepson, A. D., Fleet, D. J., and El-Maraghi, T. (2001). Robust Online Appearance

Models for Visual Tracking. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 1296–1311.

[76] Kalal, Z., Matas, J., and Mikolajczyk, K. (2009). Online learning of robust object

detectors during unstable tracking. In Proc. On-line Learning for Computer Vision

Workshop, pages 1417–1424.

[77] Kalal, Z., Matas, J., and Mikolajczyk, K. (2010). P-N Learning: Bootstrapping

Binary Classifiers by Structural Constraints. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, pages 49–56.

[78] Kim, T.-K. and Cipolla, R. (2009). MCBoost: Multiple Classifier Boosting for Per-

ceptual Co-clustering of Images and Visual Features. In Advances in Neural Information

Processing Systems, pages 841–856.

[79] Kluckner, S., Mauthner, T., and Bischof, H. (2009). A Covariance Approximation on

Euclidean Space for Visual Tracking. In Proc. Workshop of the Austrian Association

for Pattern Recognition.

[80] Kotz, S., Johnson, N., and Balakrishnan, N. (2004). Continuous Multivariate Distri-

butions, Models and Applications. Continuous Multivariate Distributions. Wiley.

[81] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals of

Mathematical Statistics, pages 49–86.

[82] Kwon, J. and Lee, K. (2009). Tracking of a non-rigid object via patch-based dynamic

appearance modeling and adaptive Basin Hopping Monte Carlo sampling. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition, pages 1208–1215.

BIBLIOGRAPHY 121

[83] Laplace, P. (1812). Théorie analytique des probabilités. Courcier.

[84] Laskov, P., Gehl, C., Krüger, S., and Müller, K.-R. (2006). Incremental Support Vec-

tor Learning: Analysis, Implementation and Applications. Journal of Machine Learning

Research, pages 1909–1936.

[85] Lasserre, J. A., Bishop, C. M., and Minka, T. P. (2006). Principled Hybrids of

Generative and Discriminative Models. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, volume 1, pages 87–94.

[86] Leibe, B., Leonardis, A., and Schiele, B. (2004). Combined Object Categorization

and Segmentation with an Implicit Shape Model. In Proc. Workshop on Statistical

Learning in Computer Vision, pages 17–32.

[87] Leibe, B., Leonardis, A., and Schiele, B. (2008). Robust Object Detection with In-

terleaved Categorization and Segmentation. International Journal of Computer Vision,

77:259–289.

[88] Leistner, C., Godec, M., Saffari, A., and Bischof, H. (2010a). Online Multi-View

Forests for Tracking. In Proc. DAGM Symposium, pages 493–502.

[89] Leistner, C., Godec, M., Schulter, S., Saffari, A., Werlberger, M., and Bischof, H.

(2011). Improving Classifiers with Unlabeled Weakly-Related Videos. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, pages 2753–2760.

[90] Leistner, C., Saffari, A., and Bischof, H. (2010b). MIForests: Multiple-Instance Learn-

ing with Randomized Trees. In Proc. European Conference on Computer Vision, pages

29–42.

[91] Leistner, C., Saffari, A., Roth, P. M., and Bischof, H. (2009). On Robustness of On-

line Boosting – A Competitive Study. In Proc. On-line Learning for Computer Vision

Workshop, pages 1362–1369.

[92] Lepetit, V. and Fua, P. (2006). Keypoint recognition using randomized trees. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28:1465–1479.

[93] Levin, A., Lischinski, D., and Weiss, Y. (2008). A Closed Form Solution to Natural

Image Matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages

228–242.

122

[94] Li, M. and Sethi, I. K. (2006). Confidence-Based Active Learning. IEEE Transactions

on Pattern Analysis and Machine Intelligence, pages 1251–1261.

[95] Lienhart, R. and Maydt, J. (2002). An extended set of Haar-like features for rapid

object detection. In Proc. IEEE International Conference on Image Processing, pages

900–903.

[96] Lim, J., Ross, D., Lin, R., and Yang, M. (2005). Incremental Learning for Visual

Tracking. In Advances in Neural Information Processing Systems, pages 793–800.

[97] Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm. Machine Learning, pages 285–318.

[98] Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm. In-

formation and Computation, pages 212–261.

[99] Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60:91–110.

[100] Lucas, B. D. and Kanade, T. (1981). An Iterative Image Registration Technique with

an Application to Stereo Vision. In Proc. International Joint Conference on Artificial

Intelligence, volume 2, pages 674–679.

[101] Maji, S. and Malik, J. (2009). Object detection using a max-margin Hough trans-

form. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages

1038–1045.

[102] Matthews, I., Ishikawa, T., and Baker, S. (2004). The Template Update Problem.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:810 – 815.

[103] Mauthner, T., Donoser, M., and Bischof, H. (2008). Robust Tracking of Spatial

Related Components. In Proc. International Conference on Pattern Recognition, pages

1–4.

[104] Messom, C. H. and Barczak, A. L. C. (2006). Fast and Efficient Rotated Haar-like

Features Using Rotated Integral Images. In Proc. Australian Conference on Robotics

and Automation, pages 1–6.

[105] Montillo, A., Shotton, J., Winn, J. M., Iglesias, J. E., Metaxas, D. N., and Criminisi,

A. (2011). Entangled Decision Forests and Their Application for Semantic Segmentation

of CT Images. In Proc. Information Processing in Medical Imaging, pages 184–196.

BIBLIOGRAPHY 123

[106] Moreno-Noguer, F., Sanfeliu, A., and Samaras, D. (2008). Dependent Multiple Cue

Integration for Robust Tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, pages 670–685.

[107] Murthy, S. K. (1997). Automatic Construction of Decision Trees from Data: A

Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2:345–389.

[108] Ng, A. Y. and Jordan, M. I. (2001). On Discriminative vs. Generative classifiers: A

comparison of logistic regression and naive Bayes. In Advances in Neural Information

Processing Systems, pages 841–848.

[109] Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 24:971–987.

[110] Okada, R. (2009). Discriminative generalized Hough transform for object dectection.

In Proc. IEEE International Conference on Computer Vision, pages 2000–2005.

[111] Opelt, A., Pinz, A., Fussenegger, M., and Auer, P. (2006). Generic Object Recogni-

tion with Boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(3):416–431.

[112] Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research, pages 169–198.

[113] Oza, N. C. (2001). Online Ensemble Learning. PhD thesis, University of California,

Berkeley.

[114] Oza, N. C. and Russell, S. (2001). Online bagging and boosting. In Proc. Artificial

Intelligence and Statistics, volume 3, pages 2340–2345.

[115] Özuysal, M., Calonder, M., Lepetit, V., and Fua, P. (2010). Fast Keypoint Recog-

nition Using Random Ferns. IEEE Transactions on Pattern Analysis and Machine

Intelligence, pages 448–461.

[116] Özuysal, M., Fua, P., and Lepetit, V. (2007). Fast Keypoint Recognition in Ten Lines

of Code. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages

1–8.

[117] Pakkanen, J., Iivarinen, J., and Oja, E. (2006). The Evolving Tree-Analysis and

Applications. IEEE Transactions on Neural Networks, 17:591–603.

124

[118] Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions

on Knowledge and Data Engineering, pages 1345–1359.

[119] Papageorgiou, C., Oren, M., and Poggio, T. (1998). A General Framework for Object

Detection. In Proc. IEEE International Conference on Computer Vision, pages 555–562.

[120] Park, J.-H. and Choi, Y.-K. (1996). On-line Learning for Active Pattern Recognition.

IEEE Signal Processing Letters, pages 301–303.

[121] Pham, M.-T., Gao, Y., Hoang, V. D., and Cham, T.-J. (2010). Fast polygonal inte-

gration and its application in extending haar-like features to improve object detection.

In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 942–949.

[122] Porikli, F. (2005). Integral Histogram: A Fast Way to Extract Histograms in Carte-

sian Spaces. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

volume 1, pages 829–836.

[123] Porikli, F., Tuzel, O., and Meer, P. (2006). Covariance Tracking using Model Update

Based on Lie Algebra. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 728–735.

[124] Prinzie, A. and Van den Poel, D. (2007). Random Multiclass Classification: Gen-

eralizing Random Forests to Random MNL and Random NB. In Database and Expert

Systems Applications, pages 349–358.

[125] R., V. and Y., D. (2002). A perspective view and survey of meta-learning. Journal

of Artificial Intelligence Review, pages 77–95.

[126] Razavi, N., Gall, J., and van Gool, L. (2010). Backprojection Revisited: Scalable

Multi-view Object Detection and Similarity Metrics for Detections. In Proc. European

Conference on Computer Vision, pages 620–633.

[127] Ren, X. and Malik, J. (2007). Tracking as Repeated Figure/Ground Segmentation.

In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.

[128] Ross, D., Lim, J., Lin, R.-S., and Yang, M.-H. (2007). Incremental Learning for

Robust Visual Tracking. International Journal of Computer Vision, pages 125–141.

[129] Roth, P. M., Sternig, S., Grabner, H., and Bischof, H. (2009). Classifier Grids for

Robust Adaptive Object Detection. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, pages 2727–2734.

BIBLIOGRAPHY 125

[130] Rother, C., Kolmogorov, V., and Blake, A. (2004). GrabCut: Interactive Foreground

Extraction using Iterated Graph Cuts. ACM Transactions on Graphics, pages 309–314.

[131] Saffari, A., Godec, M., Pock, T., Leistner, C., and Bischof, H. (2010a). Online

Multi-Class LPBoost. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 3570–3577.

[132] Saffari, A., Leistner, C., Godec, M., and Bischof, H. (2010b). Robust Multi-View

Boosting with Priors. In Proc. European Conference on Computer Vision, pages 776–

789.

[133] Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009). On-line

Random Forests. In Proc. On-line Learning for Computer Vision Workshop, pages

1393–1400.

[134] Santner, J., Leistner, C., Saffari, A., Pock, T., and Bischof, H. (2010). PROST

Parallel Robust Online Simple Tracking. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 723–730.

[135] Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998). Boosting the

Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of

Statistics, 26(5):1651–1686.

[136] Schindler, G. and Dellaert, F. (2005). A rao-blackwellized parts-constellation tracker.

In Proc. Workshop on Dynamic Vision, pages 178–189.

[137] Schulter, S., Leistner, C., Roth, P. M., van Gool, L., and Bischof, H. (2011). On-line

Hough Forests. In Proc. British Machine Vision Conference, pages 128.1–128.11.

[138] Sevilla-Lara, L. and Learned-Miller, E. (2012). Distribution Fields for Tracking. In

Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1910–1917.

[139] Shahed Nejhum, S., Ho, J., and Yang, M.-H. (2008). Visual tracking with histograms

and articulating blocks. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8.

[140] Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems

Technical Journal, pages 379–423.

126

[141] Shi, X., Zhang, X., Liu, Y., Hu, W., and Ling, H. (2011). Multi-cue based multi-

target tracking using online random forests. In Proc. IEEE Conference on Acoustics,

Speech, and Signal Processing, pages 1185–1188.

[142] Shi, Y. and Karl, W. (2005). Real-time tracking using level sets. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, volume 2, pages 34–41.

[143] Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic texton forests for image

categorization and segmentation. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–8.

[144] Sigal, L., Bhatia, S., Roth, S., Black, M. J., and Isard, M. (2004). Tracking loose-

limbed people. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

pages 421–428.

[145] Sternig, S., Godec, M., Roth, P. M., and Bischof, H. (2010). TransientBoost: On-

line Boosting with Transient Data. In Proc. On-line Learning for Computer Vision

Workshop, pages 22–27.

[146] Torralba, A., Murphy, K. P., and Freeman, W. T. (2007). Sharing Visual Features

for Multiclass and Multiview Object Detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29:854–869.

[147] Toussaint, G. (1971). Note on optimal selection of independent binary-valued fea-

tures for pattern recognition. IEEE Transactions on Information Theory, 17:618–618.

[148] Tsai, D., Flagg, M., and Rehg, J. M. (2010). Motion Coherent Tracking with Multi-

label MRF optimization. In Proc. British Machine Vision Conference, pages 190–202.

[149] Tu, Z. (2005). Probabilistic boosting-tree: learning discriminative models for classi-

fication, recognition, and clustering. In Proc. IEEE International Conference on Com-

puter Vision, volume 2, pages 1589–1596.

[150] Tu, Z. (2007). Learning Generative Models via Discriminative Approaches. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.

[151] Tuzel, O., Porikli, F., and Meer, P. (2006). Region Covariance: A Fast Descriptor

for Detection and Classification. In Proc. European Conference on Computer Vision,

pages 589–600.

BIBLIOGRAPHY 127

[152] Villamizar, M., Moreno-Noguer, F., Andrade-Cetto, J., and Sanfeliu, A. (2010).

Efficient rotation invariant object detection using boosted Random Ferns. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition, pages 1038–1045.

[153] Viola, P. and Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of

Simple Features. In Proc. IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 511–518.

[154] Viola, P. and Jones, M. (2002). Robust Real-time Object Detection. International

Journal of Computer Vision, pages 137–154.

[155] Vovk, V. G. (1990). Aggregating strategies. In In Proc. Workshop on Computational

Learning Theory, pages 371–386.

[156] Weber, M., Welling, M., and Perona, P. (2000). Towards automatic discovery of ob-

ject categories. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

volume 2, pages 101–108.

[157] Wei, Y. and Tao, L. (2010). Efficient histogram-based sliding window. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition, pages 3003–3010.

[158] Woodley, T., Stenger, B., and Cipolla, R. (2007). Tracking Using Online Feature

Selection and a Local Generative Model. In Proc. British Machine Vision Conference,

pages 86.1–86.10.

[159] Wu, B. and Nevatia, R. (2007a). Cluster Boosted Tree Classifier for Multi-View,

Multi-Pose Object Detection. In Proc. IEEE International Conference on Computer

Vision, pages 1–8.

[160] Wu, B. and Nevatia, R. (2007b). Improving Part based Object Detection by Unsu-

pervised, Online Boosting. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8.

[161] Wu, B. and Nevatia, R. (2007c). Simultaneous Object Detection and Segmenta-

tion by Boosting Local Shape Feature based Classifier. In Proc. IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8.

[162] Yan, R., Yang, J., and Hauptmann, A. (2003). Automatically Labeling Video Data

Using Multi-class Active Learning. In Proc. IEEE International Conference on Com-

puter Vision, volume 1, pages 516–523.

128

[163] Yao, A., Gall, J., and van Gool, L. (2010). A Hough transform-based voting frame-

work for action recognition. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 2061–2068.

[164] Yin, X.-C., Liu, C.-P., and Han, Z. (2005). Feature Combination using Boosting.

Pattern Recognition, 26:2195–2205.

[165] Yin, Z. and Collins, R. (2009). Shape Constrained Figure-Ground Segmentation

and Tracking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,

pages 731–738.

[166] Zeisl, B., Leistner, C., Saffari, A., and Bischof, H. (2010). On-line Semi-supervised

Multiple-Instance Boosting. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 1879–1886.

[167] Zliobaite, I. (2009). Learning under Concept Drift: an Overview. Technical report,

Vilnius University, Faculty of Mathematics and Informatic.

	Introduction
	From Object Detection to Object Tracking
	Tracking Challenges

	The Tracking Loop
	Object Representation
	Statistical Model and Learning
	Detection and Training

	About this Thesis
	Structure of this Thesis

	Object Representation
	Geometric Models
	Template-based Models
	Kernel-based Models
	Patch-based Models
	Part-based Models
	More Geometric Models

	Image Features
	Integral Images and Histograms
	Haar-like Features
	Histogram of Oriented Gradients (HOG)
	More Features
	Feature Selection and Combination

	Online Machine Learning
	Mathematical Definitions
	Terminology
	Online Ensemble Learning in Computer Vision
	Online Random Forests (ORFs)
	Bagging
	Decision Trees (DTs)
	Online Learning
	Properties and Discussion

	Online Random Naïve and Semi-Naïve Bayes
	Online Random Naïve Bayes (ORNB)
	Random Ferns (RFes)

	Detection and Training
	Detecting the Object Position
	Sliding Window
	Particle Filtering
	Detection using part-based and combined Models

	Training Sample Generation
	Geometry-based sampling
	Confidence-based Sampling
	Labeling with Virtual Classes
	Segmentation-based Sampling

	Detection Scores for Quantitative Evaluation
	Robustness of Scores

	Implemented Approaches
	Online Random Naive Bayes for Tracking
	Machine Learning
	Algorithm Characteristics
	Experimental Evaluation
	Discussion

	Online Active Learning for Tracking
	Virtual Classes for Scene-specific Classification
	Active Learning
	Experimental Evaluation
	Discussion

	Hough-based Tracking of Non-Rigid Objects
	Online Hough Ferns
	Closing the Tracking Loop
	Experimental Evaluation
	Discussion

	Discussion

	Summary and Conclusion
	Contributions of this Thesis
	Future Work
	Closing

	Acronyms and Symbols
	List of Publications
	Bibliography

