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Abstract

This thesis is concerned with open conjectures in graph theory which revolve around
colourings of graphs, colour preserving automorphisms, and the concepts of “distin-
guishing number” and “motion” which naturally arise in this context. Interestingly part
of our results could be achieved using probabilistic methods: in many cases we could
show the existence of objects having a certain property by proving the much stronger
statement that a randomly chosen objects has that property almost surely.

A colouring of a graph G is called distinguishing if it is not preserved by any non-trivial
automorphism of G. The distinguishing number is the least number of colours used by
a distinguishing colouring. The motion of G is the least number of vertices moved by
a non-trivial automorphism of G. For finite graphs Russel and Sundaram showed that
the two concepts are related. More precisely they proved that if G is a finite graph with
motion m and |AutG| ≤ d

m
2 for some d ∈ N, then the distinguishing number of G is at

most d.
If G is locally finite and has infinite motion then the inequality holds for every d ≥ 2.

Tucker conjectured that the conclusion also remains true in this case, that is, every
locally finite graph with infinite motion has distinguishing number at most 2.
We show that Tucker’s conjecture is true for graphs with growth O(2(1−ε)

√
n

2 ). Fur-
thermore, we investigate random 2-colourings of locally finite graphs. We prove that
random colourings are good candidates for being distinguishing, since they are almost
surely only preserved by a sparse subgroup of AutG. This holds even in the more general
setting of a subdegree finite, closed permutation group of a countable set. It also turns
out that random colourings are almost surely distinguishing for many classes of locally
finite graphs. Finally, we show that local finiteness is indeed necessary for the validity
of Tucker’s conjecture by giving non-locally finite counterexamples.
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1 Introduction

A colouring of the vertices of a graph G is called distinguishing if it is not preserved
by any non-trivial automorphism of G. The notion has been introduced by Albertson
and Collins [1], but problems involving distinguishing colourings have been around for
much longer. A classic example is Rubin’s key problem [22] which can be summed up
as follows.
Problem 1.1. A blind professor wants to distinguish the keys on his key ring by using
different handle shapes. How many different shapes does he need to uniquely determine
each key?

Obviously, the solution of the problem amounts to finding a distinguishing colouring
of the cycle Cn where n is the number of keys and colours correspond to the different
shapes. The solutions for some small values of n are shown in Figure 1. It may be
surprising that, if the number of keys is at most 5, then 3 different colours are needed
while for 6 or more keys 2 colours always suffice.
A distinguishing colouring clearly exists for every graph (simply colour every vertex

with a different colour). Finding a distinguishing colouring with the minimum number
of colours can however be challenging.

In this thesis we focus on infinite, locally finite graphs with infinite motion, that is, ev-
ery non-trivial automorphism moves infinitely many vertices. Specifically we investigate
the following conjecture of Tucker [26].

Conjecture 1.2. Let G be an infinite, connected, locally finite graph with infinite mo-
tion. Then there is a distinguishing 2-colouring of G.

This conjecture generalises a result on finite graphs due to Russel and Sundaram [24].

Lemma 1.3. Let G be a finite graph and assume that every non-trivial automorphism
moves at least m vertices. If |AutG| ≤ d

m
2 , then G has a distinguishing colouring with

d colours.

Figure 1: Distinguishing colourings of C3, C4, C5, C6, and C7. It is easy to check that
there are no distinguishing colourings with fewer colours. It is also easy to
extend the idea of the colouring of C6 and C7 to larger cycles.
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CHAPTER 1. INTRODUCTION

A proof of this result can be found in Section 3.3. The connection to Tucker’s conjec-
ture is also outlined there.

The conjecture is known to be true for many classes of infinite graphs including trees
[27], tree-like graphs [13], and graphs with countable automorphism group [14]. In [25]
it is shown that graphs satisfying the so-called distinct spheres condition have infinite
motion as well as distinguishing number two. Examples of such graphs include leafless
trees, graphs with infinite diameter and primitive automorphism group, vertex-transitive
graphs of connectivity 1, and Cartesian products of graphs where at least two factors
have infinite diameter.

The proof of Lemma 1.3 does not depend on the actual graph structure but only on
the action of the automorphism group. A graph and its complement, for example, always
have the same automorphism group while their graph structure usually differs. Hence it
is reasonable to generalise Conjecture 1.2 to a group theoretical setting. The following
conjecture appeared in [14].

Conjecture 1.4. Let Γ be a group acting faithfully on a countable set S. If Γ has
infinite motion, is closed in the permutation topology and subdegree finite, then there is
a 2-colouring which is not preserved by the action of any non-trivial element of Γ.

The notions of closedness and subdegree finiteness will be explained later. For now we
only remark that the automorphism group of a locally finite graph G = (V,E) always
has those properties. Hence, by setting S = V and Γ = AutG, we recover Conjecture
1.2 from Conjecture 1.4 which therefore is indeed a generalisation.
The aim of this thesis is to make further progress towards Conjectures 1.2 and 1.4. In

Chapter 4 we investigate graphs with bounded growth. We show that if a graph does not
grow faster than O(2(1−ε)

√
n

2 ), then it cannot be a counterexample to Tucker’s conjecture.
This is achieved by inductively constructing a distinguishing colouring, using the result
for finite graphs as a tool. The results in this chapter can be found in [5, 19].

In Chapter 5 we pursue a different approach. Rather than using the result for fi-
nite graphs as a tool, we use its (probabilistic) proof as a motivation to study random
colourings of locally finite graphs. It turns out that such colourings are almost surely
distinguishing for many graph classes, and even if they are not, their stabiliser is almost
surely a very sparse subgroup of the automorphism group. This suggests the following
conjecture.

Conjecture 1.5. Let G be an infinite, connected, locally finite graph with infinite mo-
tion, then a random 2-colouring of G is almost surely distinguishing.

Many results in Chapter 5 are formulated in the more general setting of a subdegree
finite closed group Γ acting on a countable set S, thus also providing progress towards
Conjecture 1.4. The results of Chapter 5 have been published in [18].
In Chapter 6 we investigate colourings of graphs with infinite vertex degrees. We show

that in all of the above conjectures the requirement of local finiteness or subdegree finite-
ness is necessary by giving appropriate counterexamples. Most of this is unpublished
joint work with Möller.

2



CHAPTER 1. INTRODUCTION

Furthermore we consider uncountable graphs or rather groups acting on potentially
uncountable sets and show a statement similar to Lemma 1.3 in this setting. This result
has appeared in [5] and its proof is essentially due to Imrich.

Finally, in Chapter 7 we pose several interesting open problems related to the infinite
motion conjecture.

3



2 Notions and notations

Throughout this thesis, N denotes the set of positive integers, while N0 stands for the
set of non-negative integers, that is, N0 = N ∪ {0}. The symbol log denotes the base 2
logarithm. Greek letters are used predominantly for group related variables while the
Latin alphabet is used for graphs or more generally for sets on which the groups act.

2.1 Graph theoretical notions

This section contains some basic graph theoretical concepts. The exposition follows the
textbook [6] whose terminiology will also be used for notions that are not explicitly
defined.

Throughout this thesis, G = (V,E) denotes a graph with (usually countably infinite)
vertex set V and edge set E ⊆

(
V
2

)
, where

(
V
2

)
is the set of all 2-element subsets of V .

For the sake of simplicity we write uv instead of {u, v} for an edge connecting vertices u
and v. Two vertices u and v are called neighbours if uv ∈ E. The neighbourhood N(v)
of a vertex v is the set of neighbours of v.
From the above definition of the edge set it is clear that all graphs in consideration are

simple, that is, they contain no loops or multiple edges. Furthermore, unless explicitly
stated otherwise, all graphs are locally finite, meaning that every vertex has only finitely
many neighbours.

A walk in a graph is a sequence v1, e1, v2, e2, v3, . . . , en−1, vn where vi ∈ V and ei =
vivi+1 ∈ E for 1 ≤ i ≤ n. We say that such a walk connects v1 to vn. If all vi are
distinct, then the walk is called a path. The length of a walk is the number of edges
contained in it. We say that a graph is connected, if for any two vertices there is a path
connecting them. All graphs considered in this thesis are assumed to be connected.

It is possible to equip the vertex set with a natural metric. The distance d(u, v) is
defined as the minimal length of a walk connecting u and v. The closed ball with centre v
and radius r with respect to this metric is denoted by Bv(r). Since Bv(r) = Bv(brc), we
can restrict ourselves to r ∈ N0. The sphere Sv(r) with centre v and radius r consists of
all vertices whose distance from v is exactly r. If r ∈ N0 then Sv(r) = Bv(r) \Bv(r− 1),
otherwise the sphere is empty. Both Bv(r) and Sv(r) depend on the graph G. However,
since G is usually clear from the context we omit this dependency in the notation for
the sake of readability.

A concept central to this thesis is the notion of the automorphism group of a graph.
Let G = (VG, EG) and H = (VH , EH) be graphs. A function ϕ : VG → VH such that
uv ∈ EG implies ϕ(u)ϕ(v) ∈ EH is called a graph homomorphism from G to H. A graph
endomorphism is a graph homomorphism from G to itself. A graph automorphism is a

4



CHAPTER 2. NOTIONS AND NOTATIONS

bijective graph endomorphism whose inverse is a homomorphism as well. Clearly the
automorphisms of a graph form a group. This group is denoted by AutG.

2.2 Group actions and permutation groups

In this section we briefly introduce some notions related to group actions. For a more
extensive introduction see for example [2].

Let Γ be a group with group operation ◦ and neutral element id and let S be a set.
A left action of Γ on S is a mapping

Γ× S → S

(γ, s) 7→ γs

such that

∀s ∈ S : ids = s,

∀γ1, γ2 ∈ Γ: ∀s ∈ S : (γ1 ◦ γ2)s = γ1(γ2s).

Analogously we can define a right action, simply replacing left multiplication with right
multiplication.

Clearly every group acts on itself from the left and from the right by left and right
multiplication, respectively. The two actions coincide if and only if Γ is abelian. Another
example of a group action which plays a central role in this thesis is the action of AutG
on V , where G = (V,E) is a graph. By convention, automorphisms act from the left.
For a “generic” example of a group action consider the following. Take a countable

set S and let SymS be the symmetric group on S, that is, SymS consists of all bijective
mappings from S onto itself with composition as the group operation. Clearly SymS

acts on S by bijective mappings and so does every subgroup of SymS. The elements of
SymS are called permutations, and subgroups of SymS are called permutation groups.

To see that this is indeed a generic example, observe that every group action gives rise
to a group homomorphism from Γ to SymS. The action of Γ is faithful if different group
elements act by different permutations on S, that is, if the homomorphism mentioned
above is injective. In this case we do not distinguish between γ ∈ Γ and the corresponding
permutation of S and consider Γ a permutation group. We

An important notion throughout this thesis is the notion of stabilisers.

Definition 2.1. Let Γ be a group acting on a set S and let s ∈ S. The stabiliser of s
in Γ is defined as

Γs = {γ ∈ Γ | γs = s}.

The following result on stabilisers is well known.

Proposition 2.2. Let Γ be a group acting on a set S and let s ∈ S. Then the stabiliser
Γs is a subgroup of Γ.

5



CHAPTER 2. NOTIONS AND NOTATIONS

Proof. Clearly Γs 6= ∅ since id ∈ Γs. Now let γ, δ ∈ Γs. Then

(γ ◦ δ)s = γ(δs) = γs = s,

hence γ ◦ δ ∈ Γs.
Finally assume that γ−1 /∈ Γs. Then

(γ−1 ◦ γ)s = γ−1(γs) = γ−1s 6= s.

But this contradicts the fact that ids = s.

If S ′ ⊆ S, then we denote by ΓS′ the setwise stabiliser of S ′ in Γ, that is,

ΓS′ = {γ ∈ Γ | ∀s ∈ S ′ : γs ∈ S ′}.

It is not hard to see that ΓS′ is the stabiliser of S ′ with respect to the action of Γ on the
power set of S defined by

γT = {γs | s ∈ T}
for γ ∈ Γ and T ⊆ S. Hence in particular setwise stabilisers are subgroups of Γ by
Proposition 2.2.
The pointwise stabiliser of S ′ in Γ is the set Γ(S′) =

⋂
s∈S′ Γs. Pointwise stabilisers are

intersections of stabiliser subgroups and hence also subgroups of Γ.
The kernel of an action of a group Γ on a set S is defined as Γ(S). By the above remark,

this is a subgroup of Γ. The following proposition shows that this subgroup is normal.
Moreover it states that faithful group actions—or equivalently actions of permutation
groups—cover all possible group actions on a set.

Proposition 2.3. Let Γ be a group acting on a set S. Then the kernel Γ(S) is a normal
subgroup of Γ and the group Γ/Γ(S) acts faithfully on S in a natural way.

Proof. By Proposition 2.2 we know that Γ(S) is a subgroup of Γ. Now let γ ∈ Γ(S) and
let δ ∈ Γ. Then

(δ ◦ γ ◦ δ−1)s = δ(γ(δ−1s)) = δ(δ−1s) = (δ ◦ δ−1)s = ids = s

for every s ∈ S. Hence δ ◦ γ ◦ δ−1 ∈ Γ(S) and thus Γ(S) is a normal subgroup of Γ.
Define an action of Γ/Γ(S) on S by (γ ◦ Γ(S))s = γs for every γ ∈ Γ and s ∈ S. This

is well defined because Γ(S) fixes every s ∈ S, and it is a group action because Γ acts on
S.

Definition 2.4. Let Γ be a group acting on a set S and let ∆ be a subset of Γ. We
denote by ∆s = {γs | γ ∈ ∆} the orbit of s under ∆.

Note that in the above definition we do not require ∆ to be a subgroup of Γ. If it is
a subgroup, then it is well known that

s ∼ t ⇐⇒ s ∈ ∆t

is an equivalence relation on S whose equivalence classes are the orbits.

6



CHAPTER 2. NOTIONS AND NOTATIONS

Definition 2.5. Let Γ be a group acting on a set S. A suborbit is a set of the form Γst,
where s, t ∈ S, that is, it is an orbit under a point stabiliser. We say that (the action
of) Γ is subdegree finite, if all suborbits are finite.

The property of being subdegree finite is a property of the action of Γ rather than the
group itself. However, we are mostly interested in the case where Γ ≤ SymS. In this
setting it does make sense to speak of a subdegree finite group because the action on S
is known.

Many results on distinguishing numbers of graphs remain true if we take a subdegree
finite permutation group acting on a set instead of AutG acting on the vertex set. There
are several examples of this in Chapter 5, where results on locally finite graphs follow
from results for subdegree finite permutation groups.

The automorphism group of a locally finite graph G = (V,E) (acting on its vertex
set) is easily seen to be subdegree finite. Simply observe that every automorphism is an
isometry. Since in a locally finite graph there are only finitely many vertices at a given
distance from v, it follows that Γvw is finite for every pair v, w ∈ V .

2.3 The permutation topology

In this section we describe a family of metrics on a group Γ of permutations of a countable
set S and discuss some of the properties of the induced topology. The way the metrics
are constructed may seem familiar to many readers. In fact, the construction is similar
to the construction of the p-adic norm, and a similar approach can also be used to equip
the end space of a locally finite graph with a metric. It turns out that every metric in
this family induces the same topology on Γ, the so called permutation topology. This
topology was first studied in the 1950s by Karass and Solitar [15] and Maurer [20] and
is a rather natural topology for groups of permutations. Another way of introducing the
same topology is to equip the set S with the discrete topology and consider the topology
of pointwise convergence on Γ. The paper [21] by Möller gives a good overview on the
permutation topology on closed, subdegree finite permutation groups.

For the construction of the metric, let S be a countable set and let Γ be a group of
permutations of S. Let (Si)i∈N be a sequence of finite subsets of S such that Si ⊂ Si+1

and limi→∞ Si =
⋃
i∈N Si = S. For two permutations γ1, γ2 ∈ Γ define the confluent of

γ1 and γ2 as
conf(γ1, γ2) = min{i ∈ N | ∃s ∈ Si : γ1γ

−1
2 s 6= s} − 1,

that is, the confluent is the maximum i such that γ1 and γ2 coincide on Si and it is zero
if they differ on S1. Note that the value of conf(γ1, γ2) clearly depends on the choice of
the sequence Si.
Now define the distance between γ1 and γ2 as

δ(γ1, γ2) =

{
0 if γ1 = γ2,

2−conf(γ1,γ2) otherwise.

7



CHAPTER 2. NOTIONS AND NOTATIONS

The following proposition shows that the term distance is justified. In fact, δ even
satisfies the ultrametric triangle inequality δ(γ1, γ3) ≤ max{δ(γ1, γ2), δ(γ2, γ3)}. As we
mentioned earlier, the topology induced by δ does not depend on the choice of the
sequence Si.

Proposition 2.6. The function δ as defined above is an ultrametric on Γ. All such
metrics induce the same topology on Γ, which makes Γ a topological group.

Proof. It is readily verified that δ(γ1, γ2) is symmetric, non-negative, and zero if and
only if γ1 = γ2. Furthermore, if r = min{conf(γ1, γ2), conf(γ2, γ3)} then both γ1γ

−1
2 and

γ2γ
−1
3 fix Sr pointwise and hence so does γ1γ

−1
2 γ2γ

−1
3 = γ1γ

−1
3 . Thus

δ(γ1, γ3) ≤ 2−r = max{δ(γ1, γ2), δ(γ2, γ3)},

so δ is an ultrametric.
Clearly, every sequence Si induces a different metric on Γ but we claim that all of

them induce the same topology.
Indeed, let ∆ be an open neighbourhood of a permutation γ ∈ Γ in the topology which

comes from the distance δ defined using the sequence (Si)i∈N. Then there is a natural
number n such that ∆ contains a δ-ball with centre γ and radius 2−n. This implies that
∆ contains all automorphisms γ′ such that γγ′−1 fixes Sn pointwise.

Now consider a different sequence (S ′i)i∈N of finite subsets of S whose union is S and
use this sequence to define another metric δ′. Then there is an index m such that
Sn ⊂ S ′m. So if a permutation γ′ fulfils δ′(γ, γ′) ≤ 2−m then it certainly holds that
δ(γ, γ′) ≤ 2−n. In other words, ∆ contains a δ′-ball with centre γ and radius 2−m.

So we have proved that an open set with respect to the metric δ is also open with
respect to the metric δ′. Since the converse can be shown in a completely analogous way
we conclude that the respective topologies must coincide.

Finally, it is easy to see that this topology makes Γ a topological group. Simply note
that both left and right multiplication as well as taking inverses are isometries.

Definition 2.7. Let Γ ≤ SymS be a group of permutations of a countable set S. We
say that Γ is closed, if it is closed as a subset of SymS with respect to the permutation
topology.

It is a well known fact that in an ultrametric space any two balls are either contained
in one another or disjoint. In particular, distinct balls with the same radius must be
disjoint. From this it follows that for any ball ∆ with radius %, the subballs of ∆ with
radius %′ < % form a partition of ∆. The following lemma states that this partition is
countable if we partition the whole space, and finite if Γ is subdegree finite and ∆ is a
strict subset of Γ.

Lemma 2.8. There are only countably many distinct balls of radius % < 1 in Γ. If Γ is
subdegree finite, then each ball of radius % < 1 only has finitely many distinct subballs of
radius %′ < %.

8



CHAPTER 2. NOTIONS AND NOTATIONS

Proof. By the definition of δ, balls of radius % are exactly the cosets with respect to the
pointwise stabiliser of Si where i is the unique integer such that 2−i+1 > % ≥ 2−i. Since
Si is finite, there are only countably many possibilities to choose the image of Si. So the
set of cosets—and hence also the set of balls with radius %—is at most countable.
Now let ∆ ⊆ Γ be a ball of radius % < 1. Since multiplication by a group element is

an isometry, we may without loss of generality assume that the centre of ∆ is id. This
implies that ∆ is the pointwise stabiliser of Si where 2−i+1 > % ≥ 2−i.
A subball of ∆ with radius %′ is a coset of ∆ with respect to the stabiliser of Sj where

j is the unique natural number such that 2−j+1 > %′ ≥ 2−j. Hence it suffices to show
that there is only a finite number of such cosets.
To see that this is the case note that every automorphism in ∆ fixes S1. Furthermore

note that Γ is subdegree finite, hence the orbit of each s ∈ S under ∆ is finite. Since Sj
is finite there are only finitely many possibilities to choose an image of Sj.

We can use the previous lemma to show that small balls in a closed, subdegree fi-
nite permutation group Γ are compact. From this result we can derive a multitude of
topological properties of Γ.

Lemma 2.9. If Γ is closed and subdegree finite, then Γ is locally compact. More specif-
ically, balls of radius % < 1 are compact.

Proof. Since in a metric space compactness and sequential compactness are equivalent,
it suffices to show that every sequence has a convergent subsequence. So assume we have
a sequence (γi)i∈N of pairwise different permutations all of which lie inside a ball ∆ of
radius % < 1.
Let k0 ∈ N such that 2−k0 < %. Then, by Lemma 2.8, ∆ has only finitely many

subballs of radius 2−k0 and hence we can find an infinite subsequence of γi which is
completely contained in one of the subballs ∆0, say.
The ball ∆0 again has only finitely many subballs of radius 2−k0−1 so we can find

an infinite sub-subsequence which lies completely in a subball ∆1 of ∆0. Proceeding
inductively we obtain a sequence of nested balls (∆k)k∈N in Γ, each ball containing
infinitel many γi, where the radius of ∆k is 2−k0−k.
Now we define a permutation γ as follows: to determine γs for s ∈ Sk0+k look at the

coset ∆k. All permutations in this coset map s to the same vertex t. Choose γs = t.
Since the sets ∆k are nested, γ is well defined.

It follows easily from subdegree finiteness that γ is bijective and hence a permutation.
Simply observe that if γi and γj are in ∆k then γis = γjs and hence γ−1

i γjs = s for
every s ∈ S0. By subdegree finiteness there are only finitely many possible values for
γ−1
i γjt for every t ∈ S and hence there are only finitely many values for γ−1

i u (recall that
γj is bijective) for every u ∈ S. Now choose k such that all of the possible values are
contained in Sk0+k. Then all permutations in ∆k map the same vertex to u and hence u
has a preimage under γ.

If we can find a subsequence of γi which converges to γ in the set SymS of all permu-
tations of S, then it follows that γ ∈ Γ since Γ is closed in SymS. Furthermore in this
case we found a convergent subsequence of γi, which completes the proof of the lemma.

9
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To construct such a subsequence choose ik such that ik > ik−1 and γik ∈ ∆k. Since γ
coincides with γik on Sk+i0 it follows that δ(γik , γ) → 0 as k → ∞, so γik converges to
γ.

Various nice topological properties of Γ follow from the above results by well known
theorems of topology which can for example be found in [11]. In the sequel we only
use separability, local compactness and σ-compactness. However we present a more
extensive list of nice topological properties to emphasise how well behaved Γ is as a
topological space.

Corollary 2.10. Let Γ be a closed, subdegree finite group of permutations of a set S.
Then Γ equipped with the permutation topology has the following properties:

• locally compact, that is, every point has a compact neighbourhood,

• σ-compact, that is, it can be covered by countably many compact sets,

• separable, that is, there is a countable dense subset,

• Lindelöf, that is, every cover of the space with open sets has a countable subcover,

• second countable, that is, there is a countable basis of the topology,

• totally disconnected, that is, for any two points there are disjoint open neighbour-
hoods whose union covers all of Γ,

• complete (with respect to the metric δ), that is, every Cauchy sequence converges.

Proof. The group is locally compact because small balls are compact. It is σ-compact
because there are only countably many distinct balls of radius r < 1. The Lindelöf
property follows from the fact that every σ-compact space is Lindelöf. Separablity and
second countability are equivalent to Lindelöf for metric spaces. Total disconnectedness
follows from the fact that in an ultrametric space balls are both open and closed. The
metric is complete because every Cauchy sequence eventually stays within a small ball.
Since this ball is compact, it must contain an accumulation point of the sequence which
must be the limit of the sequence because it is Cauchy.

10



3 Motion and distinguishing
numbers

3.1 Distinguishing numbers of graphs and groups

As mentioned earlier, we are investigating the problem of finding a colouring of a graph
which is not preserved by any non-trivial automorphism. By a colouring of a graph G we
simply mean a map c from its vertex set to a set C of colours. Usually C will be finite.
We speak of a C-colouring or a |C|-colouring, since C1-colourings and C2-colourings are
the same up to relabelling the colours if C1 and C2 have the same size. The set of all
C-colourings of G is denoted by C(G,C). The case of 2-colourings, that is, |C| = 2 is of
particular interest to us.

Definition 3.1. Let G = (V,E) be a graph, let c : V → C be a C-colouring of G and
let γ ∈ AutG. We say that γ preserves c if c(γv) = c(v) for every v ∈ V . Otherwise we
say that c breaks γ.

The colouring c breaks ∆ ⊆ AutG, if it breaks every non-trivial element of ∆.

Note that in the above definition ∆ need not be a subgroup of Γ. The reason for this
is, that sometimes it is more convenient to be able to split up the group into arbitrary
parts instead of just subgroups.

Definition 3.2. Let G = (V,E) be a graph and let c : V → C be a colouring of G.
Then c is called distinguishing, if the only automorphism ϕ of G that preserves c is the
identity.

The distinguishing number of G is the minimal number of colours needed for a distin-
guishing colouring. It is denoted by D(G). If D(G) ≤ k for some k ∈ N then we say
that G is k-distinguishable.

The above definitions implicitly use a natural action of AutG on the set of C-
colourings of G. If the automorphism group acts on V from the left then we can define
a right action of AutG on C(G,C) as follows. For c ∈ C(G,C) and γ ∈ AutG define the
action of γ on c by (c, γ) 7→ cγ where cγ(v) = c(γv). This action gives an alternative
definition of a distinguishing colouring.

Proposition 3.3. A colouring c is distinguishing if and only if its stabiliser with respect
to the above action is trivial, that is, (AutG)c = {id}.

Proof. An automorphism γ is contained in the stabiliser if and only if c(v) = cγ(v) =
c(γv) for every v ∈ V .

11
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Note that D(G) = 1 for all asymmetric graphs. This means that almost all finite
graphs have distinguishing number one, because almost all graphs are asymmetric, see
Erdős and Rényi [7]. Clearly D(G) ≥ 2 for all other graphs. Again, it is natural to
conjecture that almost all of them have distinguishing number two. This is supported
by the observations of Conder and Tucker [4].

However, for the complete graph Kn, and the complete bipartite graph Kn,n we have
D(Kn) = n, and D(Kn,n) = n + 1. Furthermore, as we have already seen in Chapter
1, the distinguishing number of the 5-cycle is 3, but cycles Cn of length n ≥ 6 have
distinguishing number 2.

This compares with more general results of Klavžar, Wong and Zhu [16] and of Collins
and Trenk [3], which assert thatD(G) ≤ ∆(G)+1, where ∆ denotes the maximum degree
of G. Equality holds if and only if G is a Kn, Kn,n or C5.

For V ′ ⊆ V a partial C-colouring of G = (V,E) with domain V ′ is a map c′ : V ′ → C.
We denote by C(V ′, C) the set of all partial C-colourings with domain V ′. There is an
action of AutG on the set of all partial colourings defined similarly to the action on the
colourings above, that is, c′γ(v) = c′(γv) for v ∈ V ′. Clearly, if c′ is a partial C-colouring
with domain V ′ then c′γ is a partial C-colouring with domain {γv | v ∈ V ′}
This implies that AutG does not act on C(V ′, C) because unless an automorphism

stabilises V ′ setwise it does not map colourings with domain V ′ to colourings with the
same domain. Furthermore the stabiliser of c′ ∈ C(V ′, C) with respect to the above
action is always contained in the setwise stabiliser (AutG)V ′ . Now assume that we have
a partial colouring c′ with domain V ′ and let γ be an automorphism that moves V ′ to
a disjoint set. Then it is possible that we can extend c′ to a colouring c of the whole
vertex set which is preserved by γ although γ is not contained in the stabiliser of c′. To
prevent such things from happening, we use a different notion of stabilisers for partial
colourings.

Definition 3.4. Let G = (V,E) be a graph, let V ′ ⊆ V , and let c′ : V ′ → C be a partial
C-colouring of G. Let γ ∈ AutG. We say that γ preserves c′ if there are colourings c1

and c2 of V such that c1(v) = c2(v) = c′(v) for every v ∈ V ′ and c1γ = c2. Otherwise
we say that c′ breaks γ.

This definition deals with the problem mentioned before. If we can extend a partial
colouring c′ to a colouring c which is preserved by γ ∈ AutG, then setting c1 = c2 = c
shows that γ preserves c′. Conversely, if c′ breaks γ then we cannot find such a colouring
c. Note however that the colourings c1 and c2 in the above definition do not necessarily
coincide.
We now define the stabiliser of a partial colouring completely analogously to the

definition of the stabiliser of a colouring.

Definition 3.5. The stabiliser (AutG)c′ of a partial colouring c′ consists of all auto-
morphisms which preserve c′.

Although the definitions look very similar, stabilisers of partial colourings behave
differently to stabilisers of colourings. They do not come from any group action. In

12
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Figure 2: A partial colouring of K3,3. Observe that for every uncoloured vertex (drawn
half black, half white) there is an automorphism γ1 ∈ (AutG)c′ which maps
it to a black vertex and an automorphism γ2 ∈ (AutG)c′ which maps it to a
white vertex. It follows immediately that the stabiliser cannot be a subgroup
because γ1 ◦ γ−1

2 maps a white vertex to a black vertex and hence does not
preserve the partial colouring.

particular observe that—unlike the stabiliser of a colouring—the stabiliser of a partial
colouring need not be a subgroup of AutG (see Figure 2).
So far in this section we were concerned with automorphism groups of graphs, but the

attentive reader will have noticed that the graph structure did not play a role. Indeed one
can formulate all of the above in the more general setting of a group Γ of permutations
of a countable set S.
A C-colouring of the set S in this context is a function c : S → C. A partial C-

colouring of S is a map c′ : S ′ → C where S ′ ⊆ S. The set S ′ is called the domain
of the partial C-colouring. The set of all C-colourings of S and the set of all partial
C-colourings of S with domain S ′ are denoted by C(S,C) and C(S ′, C) respectively.
In analogy to Definitions 3.1 and 3.2 we define distinguishing colourings of a permu-

tation group.

Definition 3.6. Let Γ ≤ SymS. An element γ ∈ Γ preserves a colouring c of S, if
c(γs) = c(s) for every s ∈ S. Otherwise c breaks γ. We say that c breaks ∆ ⊆ Γ if it
breaks every non-trivial element of ∆.
A colouring of S is called Γ-distinguishing if it is only preserved by the identity element

of Γ. We omit the Γ in “Γ-distinguishing” if the group is clear from the context.
The distinguishing number of Γ is the mininal number of colours needed for a Γ-

distinguishing colouring of S. It is denoted by D(Γ). If D(Γ) ≤ k for some k ∈ N then
we say that Γ is k-distinguishable.

Observe that again there is a group action of Γ on the set of C-colourings of S hiding in
this definition: for γ ∈ Γ and for c ∈ C(S,C) define the colouring cγ by (cγ)(s) = c(γs)
for all s ∈ S.
It is easy to check that this is a right action. An analogous statement to Proposition 3.3

holds for permutation groups as well, that is, a colouring c of S is Γ-distinguishing if
and only if its stabiliser in Γ is trivial.
Finally, we have the following definition of the stabiliser of a partial colouring of S

following the spirit of Definitions 3.4 and 3.5.

13



CHAPTER 3. MOTION AND DISTINGUISHING NUMBERS

Definition 3.7. Let Γ be a group of permutations of a set S and let c′ : S ′ → C be
a partial C-colouring of S with domain S ′. An element γ ∈ Γ preserves c′ if there
are C-colourings c1 and c2 of S such that c1γ = c2 and for every s ∈ S ′ it holds that
c1(s) = c2(s) = c′(s). Otherwise we say that c′ breaks γ.

The stabiliser Γc′ of a partial C-colouring is the set of all γ ∈ Γ which preserve c′.

3.2 Stabilisers of colourings

In this section we outline some basic properties of stabilisers of colourings, partial colour-
ings, and subsets of S. We start with a well known result about the stabiliser of a single
element s of S which can for example be found in [28].

Lemma 3.8. Let Γ be a closed, subdegree finite group of permutations of a countable set
S. Then for every s ∈ S the stabiliser Γs is a compact subgroup of Γ.

Proof. It is clear that the stabiliser must be a subgroup of Γ so we only need to show that
it is compact. In the construction of the metric δ in Section 2.3 choose S1 = {s}. Then
Γs is the ball centred at id with radius % = 1

2
. Hence it is compact by Lemma 2.9.

A similar result can also be obtained for the setwise stabiliser of a finite subset S ′ ⊆ S.
In fact, the following lemma exactly tells us when a closed and subdegree finite group
of permutations of a countable set is compact.

Lemma 3.9. Let Γ be a closed, subdegree finite group of permutations of a countable set
S. Then the following are equivalent:

1. Γ is compact.

2. Γ setwise stabilises some finite subset S ′ of S.

3. The orbit of some element s ∈ S is finite.

4. All orbits under the action of Γ are finite.

Proof. Clearly 4 ⇒ 3. The implication 3 ⇒ 2 follows from the fact that Γ stabilises
every orbit setwise. The converse implication follows from the fact that the orbit of
s ∈ S ′ must be contained in S ′ if the set is setwise stabilised. So we only need to show
the implications 3 ⇒ 1 ⇒ 4 in order to prove the equivalence of the statements.
First assume that there is some s ∈ S such that the orbit Γs is finite. Clearly Γ is the

union of the (finitely many) cosets with respect to the stabiliser Γs. All of the cosets are
compact, because the stabiliser is compact by Lemma 3.8. Hence we have decomposed
Γ into finitely many compact sets and Γ itself must be compact.
To see that 1 ⇒ 4, let Γ be compact and assume that there is some s ∈ S whose

orbit is infinite. Then we can find an infinite sequence (γi)i∈N of permutations in Γ such
that no two permutations map s to the same point. Since Γ is compact, this sequence
must have a convergent subsequence. This is impossible because no two permutations
coincide on s, which gives a lower bound on their distance.
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Next we would like to turn to stabilisers of colourings of S. In general such a stabiliser
is not compact, but we can show that it is always a closed subgroup of Γ.

Lemma 3.10. Let Γ be a group of permutations of a countable set S. Then the stabiliser
Γc of a colouring c of S is a closed subgroup of Γ.

Proof. Again it is clear that the stabiliser of c is a subgroup of γ since cγ = c ◦ γ defines
a right action of Γ on the set C(S) of colourings of S. Hence we only need to show that
it is closed.
Consider a permutation γ /∈ Γc. There must be some s ∈ S such that c(s) 6= c(γs).

This point is contained in some set Si, where (Si)i∈N is the non-decreasing sequence of
finite subsets of S, which was used to construct the metric in Section 2.3. Every permu-
tation γ′ with δ(γ′, γ) < 2−i coincides with γ on Si. This implies that no permutation
in the ball Bγ(2

−i) is contained in Γc. So γ has an open neighbourhood which is disjoint
to Γc and hence the complement of Γc is open.

What happens if we consider partial colourings instead of colourings? It is readily
verified that the stabiliser of a partial colouring c′ is in general not a subgroup of Γ,
so we cannot hope for a verbatim extension of Lemma 3.10 to partial colourings. But
it turns out that apart from the group property everything generalises nicely. If the
domain of the partial colouring is finite, we even get a better result: in this case the
stabiliser is a set that is both closed and open in the permutation topology.

Lemma 3.11. Let Γ be a group of permutations of a countable set S and let c′ be a
partial colouring of S. Then the stabiliser of c′ is closed. If the domain of c′ is finite
then the stabiliser is also open.

Proof. Denote by S ′ the domain of c′. Clearly, a permutation γ ∈ Γ preserves c′ if and
only if there is a colouring c′′ of the set

T = S ′ ∪ γ−1S ′

such that for every s ∈ S ′ it holds that c′′(γ−1s) = c′′(s) = c′(s).
If S ′ is finite then so is T and hence T is contained in Si for some i ∈ N. Consider a

permutation γ′ such that δ(γ, γ′) < 2−i. It follows from the definition of δ that γ′s = γs
for every s ∈ T . Hence a colouring of T with the above property exists for γ if and
only if it exists for γ′. It follows that if γ ∈ Γc′ then the ball with centre γ and radius
2−i is completely contained in the stabiliser of c′, showing that the stabiliser is open.
Conversely, if γ /∈ Γc′ then this ball is completely contained in the complement of the
stabiliser, proving that the complement is open as well.

Now let us turn to the case where S ′ is infinite. In this case choose a sequence S ′i of
finite subsets of S ′ such that S ′i ⊆ S ′i+1 and limi→∞ S

′
i = S ′. Let c′i be the colouring with

domain S ′i which coincides with c′ on S ′i. We know that Γc′i is closed because of the first
part of the proof. If we can show that Γc′ =

⋂
i∈N Γc′i then it is closed because it is the

intersection of closed sets.
But this is easy: if a permutation is contained in Γc′ then it is clearly contained in

every Γc′i (simply use the same colourings to extend c′ and c′i). If a permutation γ is
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not contained in Γc′ then this means that there is no partial colouring with domain T
such that c′′(γs) = c′′(s) for each s ∈ S ′. since we can colour every s ∈ T \S ′ arbitrarily
this implies that there are two elements s, t ∈ S ′ with different colours such that γs = t.
now choose i large enough that s, t ∈ S ′i. Clearly γ /∈ Γc′i and hence γ is not contained
in the intersection.

3.3 The motion lemma and the infinite motion
conjecture

In this section we introduce the notion of motion. Its connection to distinguishing
numbers is the central topic of this thesis. We introduce motion in terms of permutation
groups. Analogous definitions for a graph G = (V,E) and its automorphism group are
obtained by setting S = V and Γ = AutG.

Definition 3.12. Let γ be a permutation of a set S. The motion m(γ) is the cardinality
of the set {s ∈ S | γs 6= s}.

The motion of a set ∆ ⊆ SymS is the least motion of a non-trivial element contained
in ∆.

Technically the motion could be any cardinal number. However, we are mostly con-
cerned with permutations of countable sets. In this case the motion is contained in
N ∪ {ℵ0}, where ℵ0 denotes countable infinity. If there is no possible confusion with
other infinite cardinals we write ∞ instead of ℵ0.

If ∆ is the automorphism group of a graph then instead of the motion of ∆, we simply
speak about the motion of the graph G.

Definition 3.13. Let G = (V,E) be a graph. then the motion of G is the motion of
AutG acting on V .

Consider the case where S ′ ⊆ S and ∆ ⊆ ΓS′ . Then the elements of ∆ can also be
seen as permutations of S ′, possibly with the same permutation occurring more than
once. This viewpoint is useful because it allows us to break all permutations in ∆ that
act non-trivially on S ′ with a partial colouring with domain S ′.

Definition 3.14. If γ fixes S ′ ⊂ S as a set, we define the restriction γ|S′ of γ to S ′ to
be the permutation which γ induces on S ′.

For a set ∆ ⊆ ΓS′ of permutations we define the restriction ∆|S′ to be the set of all
distinct permutations γ|S′ where γ ∈ ∆. Note that ∆|S′ may contain fewer elements
than ∆, because there may be multiple elements of ∆ inducing the same permutation
on S ′. This permutation is only present once in ∆|S′ .

The restricted motion m(∆)|S′ is the motion of ∆|S′ seen as a subset of SymS′ .
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3.3.1 The motion lemma

In Chapter 1 we already mentioned the a by Russell and Sundaram [24] connecting the
motion of a finite graph to its distinguishing number. Let us recall the statement of this
result.

Lemma 1.3. Let G be a finite graph and assume that every non-trivial automorphism
moves at least m vertices. If |AutG| ≤ d

m
2 , then G has a distinguishing colouring with

d colours.

This lemma can be seen as the finite analogue of Tucker’s conjecture. We outline this
connection in the next section. Before that, however, we have a look at its proof as well
as several generalisations which can be obtained in a very similar way.

In order to prove Lemma 1.3, Russell and Sundaram [24] first defined the cycle norm
of an automorphism γ. For the definition of the cycle norm recall that every permutation
can be written as a product of disjoint cycles.

Definition 3.15. Let G = (V,E) be a graph and let γ be an automorphism of G.
Assume that

γ = (v11v12 . . . v1l1)(v21 . . . v2l2) . . . (vk1 . . . vklk),

is the decomposition of γ (seen as a permutation of V ) into disjoint cycles. The cycle
norm cn(γ) of γ is defined as

cn(γ) =
k∑
i=1

(li − 1).

The cycle norm cn(G) of the graph G is defined as

cn(G) = min
γ∈Aut (G)\{id}

cn(γ).

Note that in the above definition the graph structure did not play a role. This means
that we can define the cycle norm of a permutation of a set S and the cycle norm of a
set of such permutations in a completely analogous way.
There is a close relation between the cycle norm of a graph and its motion. Assume

that an automorphism γ has cycle norm k. From the definition of cn(γ) it should be
obvious that the motion of γ is obtained from the cycle norm by adding the number of
non-trivial cycles. This immediately gives

cn(γ) + 1 ≤ m(γ) ≤ 2 cn(γ).

Minimising over all γ ∈ AutG we get

cn(G) + 1 ≤ m(G) ≤ 2 cn(G).

Next let us elaborate on the connection between the cycle norm and distinguishing
colourings. Let G be a graph, let γ ∈ AutG and let c be a colouring of G. It is an easy
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observation that γ preserves c if and only if every cycle of γ is monochromatic. Choose
the colouring c randomly by assigning a colour to each vertex uniformly at random, such
that the colours of different vertices are independent. Then the probability that each
cycle is monochromatic is d− cn(γ).
We now reprove Theorem 2 of [24] with ≥ instead of >. In fact, the only difference

from the original proof is the insertion of the middle term in Equation (3.2) below.

Theorem 3.16. Let G be a finite graph, and dcn(G) ≥ |Aut (G)|. Then G is d-distinguishable,
that is, D(G) ≤ d.

Proof. Let c be a random d-colouring of G, the probability distribution being given by
selecting the colour of each vertex independently and uniformly in the set {1, . . . , d}.
For a fixed automorphism γ ∈ Aut (G) \ {id} consider the probability that the random
colouring c is preserved by γ:

Pr[cγ = c] = d− cn(γ) ≤ d− cn(G) . (3.1)

Collecting these events yields the inequality

Pr[∃γ ∈ AutG \ {id} : cγ = c] ≤ (|Aut (G)| − 1)d− cn(G) < |Aut (G)|d− cn(G). (3.2)

By hypothesis the last term is at most 1. This implies that the probability that a random
colouring is not distinguishing is strictly less than 1, and there exists a distinguishing
colouring c.

Since m(G) ≤ 2 cn(G) it is clear that Theorem 3.16 implies Lemma 1.3. We now state
some generalisations of Lemma 1.3. In the rest of the thesis we are only concerned with
2-colourings, hence we state them only for d = 2. However, the proofs are completely
analogous to the above proof, so all of the generalisations also hold for d-colourings.
The first generalisation we would like to mention is obtained by observing that the

graph structure did not play a role anywhere in the proof. Hence with the exact same
proof we can show an analogous statement for permutation groups.

Lemma 3.17. Let S be a finite set and let Γ be a group of permutations of S with
motion m. Assume that 2

m
2 ≥ |Γ|. Then there is a Γ-distinguishing 2-colouring of S.

To further generalise the above result, observe that the proof did not depend on the
group structure either, that is, we can show the same result for arbitrary sets of permuta-
tion using the exact same arguments. We have to be careful about the inequality though,
because the identity element need not be contained in the set of permutations. Finally,
to get to the most general version of Lemma 1.3, observe that instead of colourings of
the whole set it suffices to consider partial colourings.

Lemma 3.18. Let S be a (possibly infinite) set and let ∆ be a set of permutations of S.
Let S ′ ⊂ S be a finite set that is fixed by every γ ∈ ∆. If

2
m(∆)|S′

2 >
∣∣∆|S′∣∣,

then there is a partial 2-colouring of S with support S ′ which breaks ∆.
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3.3.2 Tucker’s conjecture

In the previous section we showed that there is a connection between the motion of a
finite graph and its distinguishing number. An analogous connection for infinite graphs
has been conjectured to be true by Tucker [26], as already mentioned in the introduction.

Conjecture 1.2. Let G be an infinite, connected, locally finite graph with infinite mo-
tion. Then there is a distinguishing 2-colouring of G.

To see the analogy to Lemma 1.3, recall that the only assertion in the condition of
the lemma (for d = 2) is that

|AutG| ≤ 2
m(G)

2 .

Let us take a closer look at the above inequality for locally finite connected graphs
with infinite motion. Let G = (V,E) be such a graph. Then the vertex set of G must
be countable, and hence

|AutG| ≤ |V ||V | = ℵℵ0
0 .

On the other hand the motion is infinite. Since V is countable, we have m(G) = ℵ0

and the right hand side of the above equation evaluates to

2
m(G)

2 = 2
ℵ0
2 = 2ℵ0 .

It is a well known fact that 2ℵ0 = ℵℵ0
0 . Thus the inequality in the condition of

Lemma 1.3 holds for every countable graph with infinite motion. Hence Conjecture
1.2 can really be seen as an infinite analogue to Lemma 1.3. By completely analogous
arguments Conjecture 1.4 can be seen as an infinite analogue to Lemma 3.17.

If the inequality in the condition of the conjecture is strict, then the following theo-
rem of Halin [10], which is independent of the continuum hypothesis, tells us that the
automorphism group must be countable.

Theorem 3.19. Let G be a locally finite graph. Then |AutG| < 2ℵ0 if and only if there
is a finite subset of V whose pointwise stabiliser is trivial.

Clearly, if there is such a set then an automorphism is uniquely determined by the
image of this set. Since there are only countably many possibilities to map a finite set
to a countable set the automorphism group is at most countable.

A similar result holds for closed permutation groups by the following result of Evans [8].
Again this is independent of the continuum hypothesis.

Theorem 3.20. If Γ and ∆ are closed permutation groups on a countable set S and
∆ ⊆ Γ, then either |Γ : ∆| = 2ℵ0 or ∆ contains the pointwise stabiliser of some finite
set in Γ.

Taking ∆ = {id} in the above theorem, we obtain that a closed permutation group Γ
either has cardinality 2ℵ0 , or there is some finite subset of S whose pointwise stabiliser
is trivial. In particular, Theorem 3.19 and all of its implications remain true in the more
general setting of closed permutation groups.
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The above results also imply that Conjectures 1.2 and 1.4 are true if the inequality is
strict. The following theorem has been known for a while. The proof we give here has
first appeared in [14].

Theorem 3.21. Let Γ be a group of permutations of a set S and assume that Γ has
infinite motion. If Γ is countable, then there is a Γ-distinguishing 2-colouring of S

Proof. We inductively construct a distinguishing 2-colouring. For the construction let
(γi)i∈N be an enumeration of all non-trivial elements of Γ.

Inductively select si ∈ S such that for every j ≤ i it holds that γjsj 6= si and γisi 6= sj.
Note that this in particular implies that γi is not contained in the stabiliser of si. Such
an si always exist because there are infinitely many elements s such that γis 6= s and
only finitely many which we are not allowed to choose due to the above restrictions.

Now define a 2-colouring which assigns one colour to all of the si and the other colour
to the rest of S. This colouring breaks all permutations in Γ because clearly si and γisi
are assigned different colours for every i ∈ N.

Chapter 5 contains an alternative proof of this theorem using probabilistic methods.
It is worth noting that the proof does not depend on the group structure. In particular,
a similar proof can be given if we replace the group Γ by an arbitrary countable set of
permutations.
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4 Growth, motion, and
distinguishability

Although our graphs are usually infinite, as long as they are locally finite, all balls and
spheres of finite radius are finite. Hence the following definition makes sense.

Definition 4.1. Let G = (V,E) be a locally finite graph and let v0 ∈ V . The growth
function of G with respect to the base point v0 is defined as

growthv0
(n) = |Bv0(n)|.

While this function is defined for all real values of n it is constant between two consec-
utive integers. Hence we might as well consider it a function from N to N. The number
of vertices in Bv0(n) is a strictly increasing function of n, because

|Bv0(n)| =
n∑
i=0

|Sv0(i)|

and
|Sv0(i)| ≥ 1.

Note that the growth function does not only depend on the graph G, but also on the
base point v0. However, we are not interested in the exact values of the growth function.
Instead we consider the growth rate which describes its asymptotics. We use the usual
Landau notation to describe the asymptotic behaviour. A sequence g(n) has growth

• O(f(n)) if g(n) is bounded from above by cf(n) for some constant c,

• Ω(f(n)) if g(n) is bounded from below by cf(n) for some constant c,

• o(f(n)) if g(n)
f(n)

converges to zero, and

• ω(f(n)) if f(n)
g(n)

converges to zero.

Definition 4.2. Let G = (V,E) be a graph and let v0 ∈ V . Let f : N → N be a
monotonically increasing function. We say that the growth of G is O(f(n)) if

growthv0
(n) = O(f(n)).

Similarly we can define graphs of growth o(f(n)), Ω(f(n)) and ω(f(n)).
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Under mild restrictions on the function f it is relatively easy to see that the asymp-
totics of the growth of G do not depend on the base point.

Proposition 4.3. Let G = (V,E) be a graph and let f : N → N be a monotonically
increasing function. If there is a function g : N→ N such that

∀n, k : f(n+ k) ≤ f(n)g(k)

then G has growth O(f(n)) for one base point v0 if and only if it has growth O(f(n))
for every base point.

Proof. Let v0, v1 ∈ V and assume that growthv0
(n) = O(f(n)). Let k = d(v0, v1). Then

clearly
Bv1(n) ⊆ Bv0(n+ k).

From this we infer that

growthv1
(n) ≤ growthv0

(n+ k) ≤ cf(n+ k) ≤ cg(k)f(n) = O(f(n))

because g(k) is just an additional multiplicative constant.

Analogous proofs can be given for growth o(f(n)), Ω(f(n)) and ω(f(n)). The following
example shows that the existence of the function g is vital for the validity of the above
proposition.

Let G be a graph with vertex set V = V1 ] V2 ] V3 ] . . . such that |Vi| = (i+ 1)!− i!
and all possible edges between Vi and Vi+1 for every i ∈ N. Clearly V1 consists of a
single vertex v. It is easy to check that it is not possible to find a function g as in the
proposition. Furthermore

growthv(n) = n!

but for d(v, w) = k and n > k it holds that

growthw(n) = (n+ k)! ≈ nkn!.

So for this particular graph growth does depend on the chosen base point, even if we are
only interested in its asymptotics.

However, for all growth functions f considered in this thesis there is a function g
as asserted in Proposition 4.3. In particular, the asymptotic behavour of the growth
function does not depend on the base point, and it makes sense to speak about the
growth of the graph rather than its growth with respect to a base point.

Definition 4.4. Let G be a graph. We say that G has polynomial growth if the growth
of G is O(nc) for some constant c. If c = 1 then G has linear growth, if c = 2 it has
quadratic growth.

The graph G has exponential growth if its growth is Ω(cn) for some constant c.
Finally, by a graph with intermediate growth we mean a graph whose growth is su-

perpolynomial, but still not exponential, that is, the growth is ω(nc) and o(cn) for every
constant c > 1.

22



CHAPTER 4. GROWTH, MOTION, AND DISTINGUISHABILITY

4.1 Linear growth

In this section we discuss a result due to Imrich et al. [14] which shows that Conjecture
1.2 is true for graphs with linear growth. We include a proof not only for the sake of
completeness but also because some of the core ideas turn out to be useful in the proofs
of the more sophisticated results in the following sections.

Theorem 4.5. Let G = (V,E) be a locally finite, connected graph with linear growth
and infinite motion. Then G is 2-distinguishable.

The following lemma is the key to the proof of the above theorem and probably the
most important observation in this section.

Lemma 4.6. Let G be a graph with infinite motion, γ ∈ AutG. Denote by Vfix ⊆ V the
set of fixed points of γ. Then the graph G− Vfix, which is obtained from G by removing
Vfix and all incident edges, has only infinite components.

Proof. If there were a finite component C then we could define an automorphism γ′ which
coincides with γ on this component and fixes every vertex v /∈ C. This automorphism
is easily seen to have finite motion, which contradicts G having infinite motion.

Let us have a look at some implications of this result.

Corollary 4.7. Let G be a graph with infinite motion, let V ′ ⊆ V be a finite set of
vertices, and denote by ∂V ′ the set of vertices in V \ V ′ which have a neighbour in V ′.
If an automorphism γ fixes ∂V ′ pointwise, then it must also fix V ′ pointwise.

Proof. If this was not the case then V ′ would be a finite component of G− Vfix.

The special case where V ′ = Bv0(n) and hence ∂V ′ = Sv0(n + 1) is of particular
interest. If additionally v0 is a fixed point of γ, we get the following result.

Corollary 4.8. Let G = (V,E) be an infinite, locally finite, connected graph with infinite
motion. Let γ, γ′ ∈ AutG and assume that there is v0 ∈ V such that γ(v0) = v0. Then

1. for every i ∈ N it holds that γ fixes Sv0(i) as a set,

2. m(γ)|Sv0(i)
> 0 implies that ∀j > i : m(γ)|Sv0(j)

> 0,

3. γ|Sv0(j)
= γ′|Sv0(j)

if and only if γ|Bv0(j)
= γ′|Bv0(j)

.

Proof. The first property follows from the fact that every automorphism of a graph
preserves all distances between vertices.

The second property immediately follows from Corollary 4.7 with V ′ = Bv0(j−1) and
∂V ′ = Sv0(j).
For the third property note that Sv0(j) ⊆ Bv0(j). Thus it is clear that if γ and γ′

coincide on the ball then they must also coincide on the sphere. Conversely assume that
there were two automorphisms γ and γ′ which coincide on the sphere but not on the
ball. Then γ−1 ◦γ′ acts trivially on Sv0(j) but non-trivially on Bv0(j). Hence there must
be some i < j such that γ−1 ◦γ′ acts non-trivially on Sv0(i). This contradicts the second
statement of the corollary.
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We are now ready to prove the main result of this section.

Proof of Theorem 4.5. We claim that the stabiliser of every vertex v ∈ V is finite. Since
the vertex set is countable, the stabiliser can only have countably many conjugacy classes
and hence the automorphism group itself must be countable. So if the point stabilisers
are finite, we can conclude from Theorem 3.21 that G is 2-distinguishable.

In order to prove the claim recall that linear growth means that the size of Bv(n) is
bounded from above by cn for some constant c. Since |Bv(n)| =

∑n
i=0 |Sv(i)| there must

be infinitely many n such that |Sv(n)| ≤ c.
Assume that there are more than c! different automorphisms in the stabiliser of v

and select a set of c! + 1 such automorphisms.All of them fix every Sv(n) setwise and
by the pigeonhole principle two of them must induce the same permutation on Sv(n)
whenever |Sv(n)| ≤ c. This implies that there must be two automorphisms in the set
whose actions on Sv(n) coincide for infinitely many values of n. By Corollary 4.8 these
two automorphisms must coincide on every Bv(n) and hence they cannot be distinct.

Note that in Lemma 4.6 we do not require that the graph is connected or locally finite,
in fact it may even be uncountable. If G is locally finite and connected then we can say
even more about G− Vfix.

A ray is a one sided infinite path, that is, an infinite sequence (vn)n∈N of vertices
where vn is connected to vn+1 by an edge. It is a well known fact that any connected,
locally finite, infinite graph contains a ray. Hence it is clear that every component of
G− Vfix must contain a ray. The following result says that if Vfix 6= ∅ then we can even
find a ray which is mapped to a disjoint ray in every component of G− Vfix.

Lemma 4.9. Let G be a connected locally finite graph with infinite motion, let γ ∈ AutG
and assume that there is a vertex v ∈ V such that γv = v. Then every component of
G− Vfix contains a ray R which is mapped to a disjoint ray R′.

Proof. Let C be a component of G−Vfix. First note that there must be a ray in C since
G is locally finite and C is infinite by Lemma 4.6.
Any two vertices in C are connected by a path which does not use any vertex in Vfix.

Clearly the image of such a path is again a path which does not contain any vertex in
Vfix. Hence if some vertex in C has an image outside of C then so do all vertices of C.
So in this case each ray in C is mapped to a disjoint ray.
Now assume that C is fixed by γ. Choose a fixed point v0 of γ which is adjacent

to some vertex in C. Note that such a vertex v0 must exist because there is a path
connecting C to v. Consider the graph G′ which is obtained from C by adding v0 and
all edges between v0 and C.
Using breadth-first-search, construct a spanning tree T of G′ with root v0. Note that

γ acts on G′ as an automorphism. Since every automorphism is an isometry, for every
w ∈ C the vertices w and γw have the same distance from v0 in G′. Thus they also have
the same distance from v0 in T .
Choose a ray R in T which starts at a neighbour of v0 but does not use v0. Then all

vertices in R have different distances from v0. Since no w ∈ R is mapped to itself it is
clear that R must be mapped to a disjoint ray.
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v0

Figure 3: Replacing the egdes of T3 by paths. The lengths of the paths are determined
by the desired growth function f and the distance from the root v0.

In the last part of this chapter we discuss why the proof of Theorem 4.5 does not work
once the growth becomes non-linear. Some of the key ideas (most prominently Lemma
4.6 and its corollaries) still work for graphs of larger growth. However, the following
example from [5] shows that even if the growth is only slightly non-linear, the vertex
stabilisers can become uncountable, causing the proof to break down.

Theorem 4.10. Let f : N → N be a strictly increasing function of growth ω(n). Then
there exists an infinite, locally finite, connected graph G with uncountable automorphism
group and infinite motion whose growth is O(f).

Remark 4.11. Since AutG is uncountable, Theorem 4.5 implies that G cannot have
linear growth.

Proof. We construct G from the 3-regular tree T , that is, the tree in which every vertex
has degree 3. First, choose an arbitrary vertex v0 of T . Our strategy is to replace the
edges of T by paths such that Bv0(n) contains at most 6f(n) vertices. To get an idea of
the construction see Figure 3.

Since f(n) = ω(n), it is clear that for every i ∈ N there is an integer ni such that

∀n ≥ ni : f(n) ≥ 2in.

Furthermore, n0 = 0 because f is strictly increasing.
We obtain G by replacing every edge of T by a path. The length of the path is

determined by the distance from the edge to v0: if x is the endpoint of the edge lying
closer to v0 and d(v0, x) = i, then we replace the edge by a path of length ni+1 − ni.
Now let n ∈ N. There is some i such that ni ≤ n < ni+1. By our construction it is

clear that for every k ≤ n the sphere Sv0(k) in G contains at most 3 · 2i vertices. We
conclude that

|Bv0(n)| =
n∑
k=0

|Sv0(k)| ≤ 3 · 2i · (n+ 1) ≤ 6 · 2i · n ≤ 6f(n).
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Every automorphism of T that fixes v0 induces an automorphism of G. This corre-
spondence is bijective unless all the path lengths in the construction were equal. But in
this case AutG = AutT . Thus, AutG is uncountable. Furthermore, G inherits infinite
motion from T .

4.2 Non-linear growth

Although we cannot assume that the automorphism groups of our graphs are countable,
we prove that infinite, locally finite, connected graphs with infinite motion and non-
linear, but moderate, growth are still 2-distinguishable, that is, they have distinguishing
number either 1 or 2. All results in this section have appeared in [5], the main result
being the following extension of Theorem 4.5 to graphs of almost quadratic growth.

Theorem 4.12. Let G be a graph with growth o( n2

logn
). Then G is 2-distinguishable.

The proof of this theorem consists of two stages. First, in Lemma 4.13 we show
how to colour a part of the vertices in order to break all automorphisms that move a
distinguished vertex v0.
In the second step we need to break the remaining automorphisms by colouring the

rest of the vertices. Lemma 4.17 shows how to colour some of the remaining vertices in
order to break more automorphisms. Iteration of this procedure yields a distinguishing
colouring.

So let us start by constructing a partial colouring whose stabiliser is contained in the
stabiliser of a vertex v0.

Lemma 4.13. Let G = (V,E) be an infinite, locally finite, connected graph with infinite
motion and v0 ∈ V . Then, for every k ∈ N, one can 2-colour all vertices in Bv0(k + 3)
and Sv0(λk+ 4), λ ∈ N, such that this partial colouring breaks all automorphisms which
move v0.

Proof. If k = 1, then we colour v0 black and all v ∈ V \ {v0} white, whence all automor-
phisms that move v0 are broken. So, let k ≥ 2. First, we colour all vertices in Sv0(0),
Sv0(1), and Sv0(k + 2) black and the remaining vertices in Bv0(k + 3) white. Moreover,
we colour all vertices in Sv0(λk + 4), λ ∈ N, black and claim that, no matter how we
colour the remaining vertices, v0 is the only black vertex that has only black neighbours
and only white vertices at distance r ∈ {2, 3, . . . , k + 1}, see Figure 4.
It clearly follows from this claim that this colouring breaks every automorphism that

moves v0. It only remains to verify the claim.
Consider a vertex v ∈ V \{v0}. If v is not in Sv0(1), then it is easy to see that v cannot

have the aforementioned properties. So, let v be in Sv0(1) and assume it has only black
neighbours and only white vertices at distance 2. Then it cannot be neighbour to any
vertex in Sv0(2), but must be neighbour to all vertices in Bv0(1) except itself. Therefore,
the transposition of the vertices v and v0 is a non-trivial automorphism of G with finite
support. Since G has infinite motion, this is not possible.
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Sv0(0)

Sv0(1)

Sv0
(k + 2)

Sv0(k + 4)

Sv0(2k + 4) Sv0
(3k + 4) Sv0(4k + 4)

Figure 4: Breaking all automorphisms that move v0. Note that there are still many
vertices left uncoloured (drawn half black, half white). These vertices are later
used to break the automorphisms that fix v0.

Before we proceed to the second step we need some auxiliary results on colourings.
The following implication of Lagrange’s theorem is well known.

Lemma 4.14. Let Γ be a finite group acting on a set S. If a colouring of S breaks some
element of Γ, then it breaks at least half of the elements of Γ.

Proof. The elements of Γ that preserve a given colouring form a subgroup. If some
element of Γ is broken, then this subgroup is proper and thus, by Lagrange’s theorem,
cannot contain more than half of the elements of Γ.

If the action is non-trivial, then we can always find a colouring that breaks at least
one element. Hence, we have the following result.

Lemma 4.15. If Γ is a finite group acting non-trivially on a set S, then there exists a
2-colouring of S that breaks at least half of the elements of Γ.

The proof of Lemma 4.15 is based on the fact that Γ is a group. But a very similar
result holds for any finite family of non-trivial automorphisms, as the following lemma
shows. Note that we do not only drop the group structure but also allow elements to
appear more than once in the family.

Lemma 4.16. Let G = (V,E) be a finite graph. If ∆ is a finite set equipped with a
mapping φ : ∆ → Aut (G) \ {id}, then there exists a 2-colouring of G that breaks φ(δ)
for at least half of the elements δ ∈ ∆.

Proof. Let V = {v1, v2, . . . , vn}. For every k ∈ {1, 2, . . . , n}, let ∆k be the set of all
δ ∈ ∆ with supp(φ(δ)) ⊆ {v1, v2, . . . , vk}. We show by induction that the assertion
holds for all ∆k and, in particular, for ∆.
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Because ∆1 is the empty set, the assertion is true for ∆1. Suppose it is true for ∆k−1.
Then we can choose a 2-colouring of G that breaks φ(δ) for at least half of the elements
of ∆k−1. This remains true, even when we change the colour of vk.
Note that, for every δ ∈ ∆k \ ∆k−1, φ(δ) either maps vk into a white vertex in
{v1, v2, . . . , vk−1} or into a black vertex in {v1, v2, . . . , vk−1}. We colour vk with the
colour which appears less frequently as colour of φ(δ)vk.

By construction this 2-colouring also breaks φ(δ) for at least half of the elements of
∆k \∆k−1 and, hence, for at least half of the elements of ∆k.

We can use Lemma 4.16 to break some of the automorphisms that preserve the partial
colouring of Lemma 4.13 in the following way.

Lemma 4.17. Let G = (V,E) be an infinite, locally finite, connected graph with infinite
motion and v0 ∈ V . Moreover, let ε > 0. Then there exists k ∈ N such that, for every
m ∈ N and for every n ∈ N that is sufficiently large and fulfils

|Sv0(n)| ≤ n

(1 + ε) log n
,

one can 2-colour all vertices in Sv0(m + 1), Sv0(m + 2), . . . , Sv0(n), but not those in
Sv0(λk + 4), λ ∈ N, such that all automorphisms are broken that fix v0 and act non-
trivially on Bv0(m).

Figure 5 illustrates which vertices are actually used for the colouring.

Proof. First, choose an integer k > 1 + 1
ε
. Then

k − 1

k
>

1

1 + ε
.

Let m ∈ N. Then there is an n0 ∈ N such that

∀n ≥ n0 : (n−m) · k − 1

k
≥ n · 1

1 + ε
+ 1.

Choose n ≥ n0 such that n fulfils the inequality in the condition of the lemma. Then, the
number of spheres Sv0(m+1), Sv0(m+2), . . . , Sv0(n) that are not of the type Sv0(λk+4),
λ ∈ N, is at least ⌊

(n−m) · k − 1

k

⌋
≥
⌊
n · 1

1 + ε
+ 1

⌋
>

n

1 + ε
.

Our goal is to 2-colour the vertices in these spheres in order to break all automorphisms
that fix v0 and act non-trivially on Bv0(m).
Every automorphism in the stabiliser of v0 fixes Bv0(n) setwise. Let ∆ be the group

of permutations of Bv0(n) obtained by restricting the stabiliser of v0 to this set. Since
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· · ·

v0 Sv0
(m) Sv0(n)Sv0(λk + 4)

Figure 5: Breaking automorphisms that fix v0. The grey boxes indicate, which vertices
are coloured in order to break all automorphisms that fix v0 and act non-
trivially on Bv0(m).

by Corollary 4.8 two elements of ∆ are equal if and only if their action on Sv0(m) is the
same, we get the following bound on the size of ∆:

|Sv0(n)|! ≤ |Sv0(n)||Sv0 (n)|−1

≤
(

n

(1 + ε) log n

) n
(1+ε) log n

−1

≤ n
n

(1+ε) log n
−1

= 2( n
(1+ε) log n

−1) logn

≤ 2
n

1+ε
−1.

It is clear that, if an element σ ∈ ∆ acting non-trivially on Bv0(m) is broken by a
suitable 2-colouring of some spheres in Bv0(n), then all γ ∈ AutG with γ|Bv0 (n) = σ
are broken at once. Thus breaking all σ ∈ ∆ that act non-trivially on Bv0(m) by a
suitable 2-colouring of some spheres in Bv0(n) will break all γ ∈ AutG that fix v0 and
act non-trivially on Bv0(m).

Note that by Corollary 4.8 any element σ ∈ ∆ that acts non-trivially on the ball
Bv0(m), also acts non-trivially on every sphere Sv0(m + 1), . . . , Sv0(n). This implies
that we can break σ by breaking the action of σ on any one of the spheres Sv0(m +
1), . . . , Sv0(n).

Consider the subset Σ ⊆ ∆ of all elements that act non-trivially on Bv0(m). As
already remarked, every σ ∈ Σ acts non-trivially on each sphere Sv0(m+ 1), . . . , Sv0(n).
Hence, we can apply Lemma 4.16 to break at least half of the elements of Σ by a suitable
colouring of Sv0(m + 1). What remains unbroken is a subset Σ′ ⊆ Σ of cardinality at
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most |Σ|
2
. Now, we proceed to the next sphere. We can break at least half of the elements

of Σ′ by a suitable colouring of Sv0(m + 2). What still remains unbroken, is a subset
Σ′′ ⊆ Σ of cardinality at most |Σ|

4
.

Iterating the procedure, but avoiding spheres of the type Sv0(λk+ 4), we end up with
the empty subset ∅ ⊆ Σ after at most log |Σ|+ 1 ≤ log |∆|+ 1 ≤ n

1+ε
steps. This is less

than the number of spheres not of the type Sv0(λk+ 4), λ ∈ N, between Sv0(m+ 1) and
Sv0(n). Thus, we remain within the ball Bv0(n). Hence, we have broken all σ ∈ Σ and,
therefore, all γ ∈< (AutG)v0 that act non-trivially on Bv0(m).

We now apply Lemma 4.17 iteratively to break all automorphisms that fix v0, and
hence also all automorphisms that preserve the partial colouring given by Lemma 4.13.

Theorem 4.18. Let G = (V,E) be an infinite, locally finite, connected graph with
infinite motion and v0 ∈ V . Moreover, let ε > 0. If there exist infinitely many n ∈ N
such that

|Sv0(n)| ≤ n

(1 + ε) log n
,

then G is 2-distinguishable.

Proof. Consider the integer k provided by Lemma 4.17. First, we use Lemma 4.13 to
2-colour all vertices in Bv0(k + 3) and in Sv0(λk + 4), λ ∈ N, such that this partial
colouring breaks all automorphisms that do not fix v0.
Let m1 = k + 3. Among all n ∈ N that satisfy the inequality in the condition of the

theorem we choose a number n1 ∈ N that is larger thanm1 and sufficiently large to apply
Lemma 4.17. Hence, we can 2-colour all vertices in Sv0(m1 +1), Sv0(m1 +2), . . . , Sv0(n1),
except those in Sv0(λk + 4), λ ∈ N, in order to break all automorphisms that fix v0 and
act non-trivially on Bv0(m1). Next, let m2 = n1 and choose an n2 ∈ N to apply Lemma
4.17 again. Iteration of this procedure yields a 2-colouring of G.
If an automorphism γ 6= id moves v0, then our colouring breaks γ by Lemma 4.13. If it

fixes v0, consider a vertex v with γv 6= v. Since G is connected and m1 < m2 < m3 < . . .,
there is an i ∈ N such that v is contained in Bv0(mi). Hence, γ acts non-trivially on
Bv0(mi) and is again broken by our colouring.

Finally, we have the following result which is clearly a strengthening of Theorem 4.12
(and hence also implies the theorem) because under the conditions asserted in Theorem
4.12 the inequality in the corollary below is true infinitely often for every choice of v0.

Corollary 4.19. Let G = (V,E) be an infinite, locally finite, connected graph with
infinite motion and v0 ∈ V . Moreover, let ε > 0. If there exist infinitely many n ∈ N
such that

|Bv0(n)| ≤ n2

(2 + ε) log2 n
,

then the G is 2-distinguishable.
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Proof. Let n1 < n2 < n3 < . . . be an infinite sequence of integers that fulfil the inequality.
Note that, for every k ∈ N,

nk∑
i=1

i

(1 + ε
2
) log i

>
nk

2

(2 + ε) log nk
≥ |Bv0(nk)| >

nk∑
i=1

|Sv0(i)| .

Since

lim
k→∞

((
nk∑
i=1

i

(1 + ε
2
) log i

)
− nk

2

(2 + ε) log nk

)
=∞,

we infer that

lim
k→∞

nk∑
i=1

(
i

(1 + ε
2
) log2 i

− |Sv0(i)|
)

=∞,

and that, for infinitely many i ∈ N,

|Sv0(i)| < i

(1 + ε
2
) log i

.

Hence, we can apply Theorem 4.18 to show that G is 2-distinguishable.

4.3 Intermediate growth

In this section we improve Theorem 4.12 even further. This yields a result which is
currently the strongest known growth condition for the validity of Conjecture 1.2.

Theorem 4.20. Let G be a connected, locally finite graph with infinite motion and
growth O

(
2(1−ε)

√
n

2

)
. Then G is 2-distinguishable.

Before proving Theorem 4.20 we would like to provide a sketch of the proof to explain
the main ideas some of which may seem familiar from the previous section.

By Lemma 4.13 we can assume that there is a vertex v0 which is fixed by every
automorphism that we still need to break. By Corollary 4.8 every such automorphism
fixes every sphere Sv0(i) as a set, so it makes sense to speak of restricted motion.
Now assume that we would like to break the set ∆ of all automorphisms that act non-

trivially on Sv0(m). We know by Corollary 4.8 that every γ ∈ ∆ also acts non-trivially
on every higher sphere. We choose k “large enough” (we will specify later, how large it
must be) and split up the set of spheres Sv0(m+ 1) , . . . , Sv0(m+ k) in some small sets Pi
and a remainder set Pr. Following a suggestion of Imrich we partition ∆ into several sets
∆i of automorphisms whose motion on one of the spheres Sv0(m+ 1) , . . . , Sv0(m+ k) is
small and a remainder set ∆r in which every automorphism has large restricted motion
on each of those spheres.
Since the cardinality of the sets ∆i is small, we can apply Lemma 3.18 to break all

of ∆i by a colouring of Pi although the motion of the elements of ∆i may be small.
Similarly we can break all automorphisms in ∆r by a colouring of Pr since the motion
is large.
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Having broken all automorphisms in ∆ we proceed inductively, breaking all automor-
phisms which act non-trivially on Sv0(m+ k). In the limit we obtain a colouring which
breaks every non-trivial automorphism because every such automorphism has to act
non-trivially on some sphere.

We now turn to a detailed proof of Theorem 4.20. We will be using the following
slightly weaker version of Lemma 4.13.

Lemma 4.21. Let G = (V,E) be an infinite, locally finite, connected graph with infinite
motion, v0 ∈ V . For every δ > 0 there is a partial colouring c of the vertices of G with
the following properties:

1. c is ∆-distinguishing for ∆ = {γ ∈ AutG | γ(v0) 6= v0}.

2. There is k0 such that less than δk of the spheres Sv0(m+ 1) , . . . , Sv0(m+ k) are
coloured for every k > k0 and every m ∈ N.

Proof of Theorem 4.20. First of all apply Lemma 4.21 with δ = ε
2
and an arbitrarily

chosen vertex v0. This gives a colouring of a small fraction of the spheres which breaks
all automorphisms that do not fix v0. Recall from the statement of the theorem that
δ > 0 is arbitrary, hence we can assume 0 < ε < 1. As mentioned before, every unbroken
automorphism must fix every sphere Sv0(i) as a set.
Now assume that all spheres up to Sv0(m) have already been coloured while Sv0(m+ 1)

is still uncoloured. We know that there is a constant c such that for large n

|Bv0(n)| ≤ c 2(1−ε)
√
n

2 .

By increasing the constant c we can guarantee that this inequality holds for every n.
Next note that √

m+ k ≤
√
m+

√
k

and hence

|Bv0(m+ k)| ≤ c 2(1−ε)
√
m+k
2

≤ c 2(1−ε)
√
m
2 2(1−ε)

√
k

2

= c̃ 2(1−ε)
√
k

2 ,

where c̃ depends on c and m. Note that this implies

|Sv0(i)| < c̃ 2(1−ε)
√
k

2 (4.1)

for every i ≤ m+ k.
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Now choose k larger than the value k0 given by Lemma 4.21 and large enough that
each of the following inequalities holds:

log c̃ <
ε
√
k

8
, (4.2)

log k <
ε
√
k

8
, (4.3)

4
√
k <

1

2
ε
(

1− ε

2

)
k, (4.4)

c̃

√
k

2
<
ε

4
k. (4.5)

These inequalities are by no means independent. For example it is easy to see that
if c̃ is large (which usually is the case) then (4.5) implies (4.2) and (4.4). However, we
need all four inequalities in the proof so we might as well explicitly require them.

Next consider the spheres Sv0(m+ 1) , . . . , Sv0(m+ k). We know that at least (1− ε
2
)k

of these spheres are still uncoloured, denote those spheres by S1, . . . , Sl ordered in a way
that Si lies closer to v0 than Si+1.
Define

κ =
⌈
2
√
k
(

1− ε

2

)⌉
,

r =

⌈
(1− ε)

√
k

2

⌉
+ 1.

We now show that it is possible to split up the spheres S1, . . . Sl into r sets such that
the first r − 1 sets each contain κ spheres and the last set still contains O(k) spheres.
For 1 ≤ i ≤ r − 1 let Pi be the set of vertices contained in S(i−1)κ+1, . . . , Siκ. The

vertices contained in S(r−1)κ, . . . , Sl are collected in the set Pr. Obviously Pi contains κ
spheres for i < r. Let us check how many spheres there are in Pr:

l −
r−1∑
i=1

κ ≥
(

1− ε

2

)
k − κ(r − 1)

≥
(

1− ε

2

)
k −

(
2
√
k
(

1− ε

2

)
+ 1
)(

(1− ε)
√
k

2
+ 1

)

=
(

1− ε

2

)
k −

((
1− ε

2

)
(1− ε)k + 2

√
k
(

1− ε

2

)
+ (1− ε)

√
k

2
+ 1

)

≥ ε
(

1− ε

2

)
k −

(
2 +

1

2
+ 1

)√
k

≥ ε
(

1− ε

2

)
k − 4

√
k

>
ε

2

(
1− ε

2

)
k.

33



CHAPTER 4. GROWTH, MOTION, AND DISTINGUISHABILITY

The last inequality follows from (4.4). So altogether we have partitioned the spheres
S1, . . . , Sl into r − 1 sets of κ spheres and a set of more than ε

2

(
1− ε

2

)
k spheres.

Next we would like to partition the set ∆ of automorphisms that act non-trivially on
Sv0(m) into sets ∆i such that

m(∆i)|Pi
> 2 log |(∆i|Pi

)| .

This enables us to apply Lemma 3.18 to break all permutations in ∆i by a colouring of
the set Pi. If we colour every Pi according to this colouring, we obtain a partial colouring
of G which breaks every automorphism that acts non-trivially on Sv0(m).

In order to define the sets ∆i, let

∆′i =
{
γ ∈ ∆ | ∃Sj ⊆ Pi′ , r ≥ i′ > i such that m(γ)|Sj

≤ 2i
}
.

In words, ∆′i contains all automorphisms γ which move at most 2i vertices in some sphere
that lies above Pi. Define ∆i = ∆′i \ ∆′i−1 for 1 ≤ i < r and ∆r = ∆ \

⋃
i<r ∆i where

∆′0 = ∅. Note that for Sj ⊆ Pi and γ ∈ ∆i it holds that

m(γ)|Sj
> 2i−1

because otherwise γ would be contained in ∆′i−1.
Now that we have partitioned both the uncoloured spheres and the automorphisms

that we wish to break, let us check if we can apply Lemma 3.18 to the sets ∆i and Pi.
We establish an upper bound for |(∆i|Pi

)| and a lower bound for the restricted motion
of an automorphism γ ∈ ∆i on Pi.
Clearly |(∆i|Pi

)| ≤ |(∆′i|Pi
)|. First we consider the case i < r. The case i = r is

treated later.
To estimate the cardinality of ∆′i|Pi

, observe that by Corollary 4.8 every permutation
in a sphere Sj in Pi+1, . . . , Pr induces a unique permutation on Pi. Hence we only need to
count the permutations which move at most 2i elements in one of these spheres. There
are at most k such spheres and the cardinality of each of them is bounded from above
by
⌊
c̃2(1−ε)

√
k

2

⌋
according to (4.1). Thus, we get the following estimate:

|(∆i|Pi
)| ≤ k

(⌊
c̃2(1−ε)

√
k

2

⌋
2i

)(
2i
)
!

≤ k

(
c̃2(1−ε)

√
k

2

)2i

(2i)!

(
2i
)
!

= 2
log k+

(
log c̃+(1−ε)

√
k

2

)
2i

≤ 2

(
log k+log c̃+(1−ε)

√
k

2

)
2i

< 2(1− ε
2)
√
k

2
2i .

The last inequality follows from (4.2) and (4.3).
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In order to estimate the restricted motion of γ ∈ ∆i on Pi, recall that there are κ
spheres in Pi and γ moves at least 2i−1 elements in each of the spheres. Hence we get
the following inequality:

m(γ)|Pi
≥ κ2i−1 ≥ 2

√
k
(

1− ε

2

)
2i−1.

If we combine the two estimates, we obtain
m(∆i)|Pi

2
≥
√
k
(

1− ε

2

)
2i−1 > log |(∆i|Pi

)|.

This is exactly the inequality in the condition of Lemma 3.18. So for 1 ≤ i < r we can
apply the lemma in order to break all elements of ∆i by a suitable colouring of Pi.

Finally we need to verify that the inequality also holds for ∆r and Pr. By Corollary
4.8 the number of permutations in ∆r|Pr is bounded by the number of permutations of
Sm+k, that is

|(∆r|Pr)| ≤ |Sm+k|! ≤
⌊
c̃2(1−ε)

√
k

2

⌋
! ≤ 2

(
log c̃+(1−ε)

√
k

2

)
c̃2(1−ε)

√
k

2
< 2c̃(1−

ε
2

)
√
k

2
2(1−ε)

√
k

2 .

The last inequality easily follows from (4.2).
In order to estimate the motion note that every γ ∈ ∆r moves at least 2r−1 vertices

in each sphere in Pr. Since there are more than ε
2

(
1− ε

2

)
k spheres in Pr we get

m(γ)|Pr >
ε

2

(
1− ε

2

)
k2r−1 ≥ ε

2

(
1− ε

2

)
k2(1−ε)

√
k

2 .

Putting these estimates together we obtain the inequality in the condition of Lemma 3.18:

m(∆r)|Pr

2
>
ε

4

(
1− ε

2

)
k2(1−ε)

√
k

2 > c̃
(

1− ε

2

) √k
2

2(1−ε)
√
k

2 > log |(∆r|Pr)|

where the middle inequality is a direct consequence of (4.5). This proves that we can
apply Lemma 3.18 to find a 2-colouring of Pr which breaks every automorphism in ∆r.

So we have shown that we can break all of ∆ by a 2-colouring of the part of the spheres
Sv0(m+ 1) , . . . , Sv0(m+ k) that has not been coloured when we applied Lemma 4.13.

Iteratively proceed by breaking all automorphisms that fix v0 and act non-trivially
on Sv0(m+ k). Clearly in the limit this yields a colouring that breaks every non-trivial
automorphism. Simply note that every non-trivial automorphism that fixes v0 has to
act non-trivially on some sphere Sv0(n) and thus also on every higher sphere.

The reader may have noticed that in the proof we have only used that the size of the
spheres is bounded by 2(1−ε)

√
n

2 . Since the ball Bv0(n) is the union of all spheres of radius
at most n one might wonder if the same proof gives a better bound on the growth of
the graph. This is however not the case, because

n∑
k=1

2(1−ε)
√
k

2 ≤ c

∫ n

0

2(1−ε)
√
x

2 dx ≤ c′
√
n2(1−ε)

√
n

2 ≤ 2(1− ε
2

)
√
n

2

for large values of n and suitable constants c, c′. So if the sphere of radius n has size
O
(

2(1−ε)
√
n

2

)
, then the same holds true for the ball of radius n with a slightly different

ε.
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4.4 Growth of ends

In this section we would like to outline a possible generalisation of Theorem 4.20 to
graphs with countably many ends. For readers not familiar with the notion of ends we
refer to [6] for an accessible introduction to the topic. Before stating this extension,
however, we need to introduce the notion of the growth of an end.

If we consider an end ω of a graph and a base vertex v0, we can define the set

Sωv0
(n) = {v ∈ Sv0(n) | v lies in the same component of G \Bv0(n− 1) as ω} .

An end ω has growth O(f(n)) if the cardinality of Sωv0
(n) is O(f(n)). In general one

has to be careful about this definition because it may depend on the base point v0.
However, as long as f is non-decreasing and for every k ∈ N there is a constant ck such
that f(n + k) ≤ ckf(n) there is no such dependency. Compare this to Proposition 4.3,
the only diference is that we need to explicitly require monotonicity. Clearly, the growth
function f(n) = 2(1−ε)

√
n

2 has these properties.

Theorem 4.22. Let G be a connected graph with countably many ends each of which
has growth O(2(1−ε)

√
n

2 ) for the same fixed ε. If G has infinite motion, then G is 2-
distinguishable.

Proof. First of all—just as in the proof of Theorem 4.20—find a partial colouring c which
fixes a vertex v0. The only difference is that we choose δ = ε

4
rather than δ = ε

2
.

The rest of the proof consists of two steps. First we extend c to a partial colouring
that breaks every automorphism of G which does not fix the set of ends of G pointwise,
still leaving a large fraction of the vertices uncoloured. Then we use the same argument
as in the proof of Theorem 4.20 in order to colour the rest of the vertices such that the
remaining automorphisms are broken.

For the first step choose an increasing sequence ni such that the spheres Sv0(ni) are
still uncoloured and ni−ni−1 >

4
ε
. Consider the set of spheres Sv0(ni). We wish to colour

those spheres such that every automorphism that fixes v0 and preserves the colouring also
fixes every end of G. Note that after colouring these spheres the fraction of uncoloured
spheres is still at least 1− ε

2
.

It is not hard to see that the sets Sωv0
(ni) carry a rooted tree structure. Consider v0,

the root, which is connected by an edge to every Sωv0
(n1). Draw an edge from Sωv0

(ni−1)
to Sωv0

(ni). To see that this is indeed a tree just note that if Sω1
v0

(n) = Sω2
v0

(n), then
Sω1
v0

(m) = Sω2
v0

(m) for every m < n, so there cannot be any circles.
Next, note that every automorphism γ ∈ Aut (G) that fixes v0 but does not fix all ends

also acts as a non-trivial automorphism on this rooted tree. By [27] the distinguishing
number of infinite leafless trees is at most 2, therefore it is possible to 2-colour the sets
Sωv0

(ni) such that every such automorphism is broken. It is also worth noting that so
far we did not use the countability of the end space of G, nor did we use the growth
condition on the ends.
For the second step of the proof let us check which automorphisms of G have not yet

been broken. Denote the set of such automorphisms by ∆. We already know that every
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γ ∈ ∆ must fix v0 as well as every end of G. Lemma 4.9 implies that every automorphism
of G moves some ray of G into a disjoint ray. Hence every automorphism in ∆ permutes
some rays which belong to the same end ω.
For an end ω of G let ∆ω be the set of permutations in ∆ which move some rays in

ω. Note that these sets are not necessarily disjoint but their union is all of ∆. Also note
that every automorphism γ ∈ ∆ω acts non-trivially on every Sωv0

(n) from some index n0

on.
Furthermore, let (ωi)i∈N be an enumeration of the ends of G. Choose a function

f : N → N such that f−1(i) is infinite for every natural number i. Assume that all
spheres up to Sv0(m) have been coloured in the first i − 1 steps. In the i-th step we
would like to colour some more spheres in order to break all automorphisms in ∆ωf(i)

that act non-trivially on Sωf(i)
v0 (n) for every n > m. Since we only coloured an ε

2
-fraction

of all spheres so far, this can be achieved by exactly the same arguments as in the proof
of Theorem 4.20.

As we already mentioned, every automorphism that was not broken in the first step
acts non-trivially on the rays of some end. Since, in the procedure described above,
every end is considered infinitely often, it is clear that every such automorphism is
broken eventually. This completes the proof.

The same proof still works if we can partition the (possibly uncountably many) ends
into countably many classes such that the combined growth of all ends contained in each
class C is O(2(1−ε)

√
n

2 ).

Theorem 4.23. Let G be a locally finite connected graph. Assume that there is a
decomposition (Ci)i∈N of the set of ends of G and an ε > 0 such that for every i it holds
that

∣∣SCiv0
(n)
∣∣ = O(2(1−ε)

√
n

2 ), where

SCiv0
(n) =

⋃
ω∈Ci

Sωv0
(n).

Then G is 2-distinguishable.

This can be seen as a generalisation of both Theorem 4.20 (all ends in the same class)
and Theorem 4.22 (every end has its own class).
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5 Random colourings

All the results mentioned so far were achieved by deterministically colouring vertices in
order to break certain automorphisms. In this chapter we pursue a different approach.
We investigate how random colourings behave with respect to automorphism breaking.
The idea suggests itself, especially since the proof of Lemma 1.3 uses probabilistic meth-
ods. As it turns out, in all of the examples mentioned so far a random colouring is
almost surely distinguishing. The same is true in many other graph classes where the
validity of Conjecture 1.2 has been proved.

Besides investigating properties of random colourings for various graph classes we also
show that Conjecture 1.5 is “almost true” in the following sense.

Recall that a colouring is distinguishing if and only if its stabiliser is trivial. While
the stabiliser of a random colouring may be non-trivial we can show that at least it is
almost surely very sparse in two ways:

• it is almost surely nowhere dense in the permutation topology, and

• it is almost surely a null set with respect to the corresponding Haar measure.

Before proving these results let us define what we mean by a random colouring. In the
finite case there are only finitely many colourings, hence we can choose one uniformly at
random (which is what we did in the proof of Lemma 1.3). If the graph is infinite then
this is not possible. There is, however, a probability measure on the set of colourings
with similar properties.

The product measure of countably many uniform 0–1 random variables can be seen as
a probability measure on the set of 2-colourings of a countable set. This measure has the
property that every vertex receives its colour uniformly at random and that the colours
on disjoint vertex sets are independent. From now on a random colourings are always
chosen according to this measure P. Furthermore, instead of just considering graphs and
their automorphism groups we work in the more general setting of a subdegree finite,
closed group Γ of permutations of a countable set S. The graph case can always be
recovered by setting S = V and Γ = AutG.

From Theorem 3.21 we know that a countable group of permutations with infinite
motion of a countable set admits a distinguishing 2-colouring. The following theorem
shows that almost every 2-colouring has this property. Its proof closely follows the lines
of the proof of Lemma 1.3.

Theorem 5.1. Let Γ be a countable group of permutations with infinite motion of a
countable set S and let c be a random colouring of S. Then c is almost surely Γ-
distinguishing.
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Proof. For any given permutation γ ∈ Γ it follows from infinite motion that there are
infinitely many disjoint pairs (si, γsi) ∈ S × S such that si 6= γsi. For γ to preserve the
colouring it is necessary that all of those pairs are monochromatic. However, for each pair
this only happens with probability 1

2
. So there is almost surely a non-monochromatic

pair (si, γsi) and hence γ is almost surely broken by c.
In order to see that c is almost surely distinguishing we use σ-subadditivity of the

probability measure P:

P[∃γ : cγ = c] ≤
∑
γ∈Γ

P[cγ = c] = 0

because every summand is 0.

Just like for Lemma 1.3 the proof of the above result is easily seen to be independent
of the group structure of Γ.

5.1 Sparsity of the stabilisers of random colourings

The proof of Theorem 5.1 breaks down if Γ is uncountable, because summation is no
longer possible. However, we know from Section 2.3 that a closed, subdegree finite group
of permutations is always separable with respect to the permutation topology. Applying
our argument to a dense countable subset yields the following.

Theorem 5.2. Let Γ be a separable group of permutations of a countable set S with
infinite motion and let c be a random colouring of S. Then Γc is almost surely nowhere
dense in Γ.

Proof. Choose a dense countable subset of Γ. By the same arguments as before, the ran-
dom colouring c almost surely breaks every automorphism in this subset. By Lemma 3.10
the stabiliser of c is a closed subgroup, hence its complement is almost surely an open
dense set. This implies that the stabiliser must be almost surely nowhere dense in Γ.

In [14] it is shown that every closed permutation group has a dense subgroup which ad-
mits a distinguishing 2-colouring. Observing that the subgroup generated by a countable
set is again countable, we get the same result for every separable permutation group.

So far we have shown that, if Γ is closed and subdegree finite, then the stabiliser
subgroup of a random colouring is almost surely topologically sparse, which was more or
less a direct consequence of separability. But it turns out that under suitable conditions
the set of unbroken permutations is small in at least one more way: it is almost surely
a null set with respect to the Haar measure, a natural measure fore locally compact
topological groups. It was introduced by Haar [9] who proved the following.

Theorem 5.3. Let Γ be a locally compact topological group. Then there is a non-trivial
measure H on the Borel σ-Algebra such that

1. compact sets have finite measure, and

39



CHAPTER 5. RANDOM COLOURINGS

2. the measure is left translation invariant, that is H(γ∆) = H(∆) for every measur-
able ∆ ⊆ Γ.

The measure H is unique up to multiplication by a constant.

Definition 5.4. A non-trivial measure H satisfying properties 1 and 2 from the above
theorem is called a left Haar measure, where “left” refers to the invariance under left
multiplication.

A right Haar measure can be defined in an analogous way. It is worth noting that left
and right Haar measures need not coincide, that is, there may be left Haar measures
which are not invariant under right multiplication and vice versa. However, our result is
true for both left and right Haar measures. In fact, we do not even need the translation
invariance, so the proof still works for a measure which only satisfies property 1 of
Theorem 5.3.

Theorem 5.5. Let Γ be a closed, subdegree finite group of permutations of a countable
set S, and assume that the motion of Γ is infinite. Then a random colouring c almost
surely breaks almost every (with respect to the Haar measure) element of Γ.

The basic ideas of the proof again come from the proof of Theorem 5.1, the main
difference being that we replace the sum by an integral with respect to the Haar measure.
In the proof we need the following version of Fubini’s theorem which is sometimes also
known as Tonelli’s theorem.

Theorem 5.6. Let (X,X , µ) and (Y,Y , ν) be σ-finite measure spaces and let f : X×Y →
R be a non-negative, (X × Y)-measurable function. Then∫

X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).

For a proof see [23].

Proof of Theorem 5.5. First of all recall that Γ is locally compact by arguments in Sec-
tion 2.3. So we can define a Haar measure H on Γ.
We now claim that for a random colouring c the expected value of H(Γc) is 0. Since

H(Γc) is a non-negative random variable, this implies that H(Γc) = 0 almost surely, thus
proving the lemma.

To see that the expected value is indeed 0 we calculate

E(H(Γc)) =

∫
C(S)

H(Γc) dP(c)

=

∫
C(S)

∫
Γ

I[cγ=c] dH(γ) dP(c).

We know that Γ is the union of countably many compact balls by Lemma 2.8 and
Lemma 2.9, hence Γ is a σ-compact group. Compact sets have finite Haar measure, so
the Haar measure on Γ is σ-finite.
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In order to be able to apply Theorem 5.6, we still need to show that the function
which we would like to integrate is measurable. Since it is the indicator function of the
set

U = {(c, γ) ∈ C(S)× Γ | cγ = c}

it suffices to show that U is measurable. For this purpose let (Si)i∈N be a sequence of
finite subsets of S such that limi→∞ Si = S. For each partial colouring c′ with domain
Si define

Ui(c
′) = {(c, γ) ∈ C(S)× Γc′ | ∀s ∈ Si : c(s) = c′(s)}.

Observe that C = {c ∈ C(S) | ∀s ∈ Si : c(s) = c′(s)} is a cylinder set and thus both open
and closed. The set Γc′ is both open and closed by Lemma 3.11. Since Ui(c′) = C × Γc′
it is clearly contained in the product σ-algebra. Now let

Ui =
⋃

c′∈C(Si)

Ui(c
′).

This set is measurable because it is the finite union of measurable sets. We claim that

U =
⋂
i∈N

Ui.

To see that this is indeed the case consider (c, γ) ∈ U . Clearly c coincides with some
partial colouring c′ on Si and γ preserves this partial colouring because it preserves c.
Hence (c, γ) is contained in every Ui and thus also in the intersection.
Conversely, let (c, γ) ∈

⋂
i∈N Ui. Assume that γ does not preserve c. Then there is

s ∈ S such that c(s) 6= c(γs). Take i large enough that s and γs are contained in Si.
Clearly, γ does not preserve the partial colouring c′ which coincides with c on Si. Hence
(c, γ) /∈ Ui, a contradiction to (c, γ) ∈

⋂
i∈N Ui.

Altogether we have shown that U can be written as a countable intersection of mea-
surable sets. So it is measurable itself and hence the indicator function IU = I[cγ=c] is
measurable as well.
This implies that we can apply Fubini’s theorem to the iterated integral above and

obtain

E(H(Γc)) =

∫
Γ

∫
C(S)

I[cγ=c] dP(c) dH(γ)

=

∫
Γ

P[cγ = c] dH(γ).

We already observed earlier that the probability that a given permutation preserves a
random colouring is 0 unless γ = id. Hence we integrate over the characteristic function
of the singleton set {id} and this integral is easily seen to be 0.
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5.2 The distinct spheres condition and a useful
equivalence relation

The distinct spheres condition was introduced in [25] as a sufficient condition for 2-
distinguishability.

Definition 5.7. Let G = (V,E) be a graph. We say that G satisfies the distinct spheres
condition if there is a vertex v0 ∈ V such that for any two distinct vertices x, y ∈ V we
have

d(v0, x) = d(v0, y) =⇒ Sx(n) 6= Sy(n) for infinitely many n.

The following result from [25] states that the distinct spheres condition is sufficient for
2-distinguishability not only for locally finite graphs but for general countable graphs.

Theorem 5.8. Let G be a connected, countable graph satisfying the distinct spheres
condition. Then G is 2-distinguishable.

We show later (Theorem 5.18) that for locally finite graphs satisfying this condition a
random 2-colouring is almost surely distinguishing. The following equivalence relation
is one of our main tools.

Let S be a countable set and let Γ be a subdegree finite group of permutations of
S with infinite motion. Define an equivalence relation ∼Γ on the set S as follows: two
points s, t ∈ S are called Γ-equivalent, if the following holds:

• there is a permutation ϕ ∈ Γ such that ϕs = t and

• for all but finitely many x ∈ S the orbits Γsx and ϕΓsx coincide.

Note that the latter requirement is true for ϕ if and only if it is true for every γ such that
γs = t because in this case γ = ϕγs for a suitable γs ∈ Γs. Hence the second condition
does not depend on the choice of ϕ.

Proposition 5.9. The relation ∼Γ is indeed an equivalence relation.

Proof. To show reflexivity simply choose ϕ = id.
For symmetry assume that s ∼Γ t and let ϕ ∈ Γ such that ϕs = t. Note that

Γs = ϕ−1Γtϕ, so for Γsx = ϕΓsx we have

Γtϕx = ϕΓsx = Γsx = ϕ−1Γtϕx.

This implies that Γty = ϕ−1Γty for all but finitely many values of y = ϕx, that is t ∼Γ s.
Finally, we need to show transitivity. Assume that s ∼Γ t and that t ∼Γ u and let

ϕ and ψ be the corresponding permutations. By definition this implies that for all but
finitely many x ∈ S it holds that ϕΓsx = Γsx and ψΓtϕx = Γtϕx. Using the fact that
ϕΓs = Γtϕ we obtain

ψϕΓsx = ψΓtϕx = Γtϕx = ϕΓsx = Γsx

for all but finitely many x ∈ S.
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We denote the equivalence class of s ∈ S with respect to ∼Γ by [s]Γ. With the above
notation we have the following lemma.

Lemma 5.10. Let S, Γ, and ∼Γ be defined as above. Assume that Γ has infinite motion
and let c be a random 2-colouring of S. Then c almost surely fixes every equivalence
class with respect to ∼Γ, that is

Γc ⊆
⋂
s∈S

Γ[s]Γ

where Γ[s]Γ denotes the setwise stabiliser of [s]Γ.

Proof. For t �Γ s and u ∈ S consider the event

Astu = [∃γ ∈ Γc : γs = t, γt = u].

If we can show that the probability of Astu is 0 we are done, because in this case

P[∃s �Γ t, γ ∈ Γ: γs = t] = P
(⋃
s∈S

⋃
t∈S
s�Γt

⋃
u∈S

Astu

)
≤
∑
s∈S

∑
t∈S
t�Γs

∑
u∈S

P(Astu) = 0.

So let us take a closer look at P(Astu). If there is no permutation in Γ which maps
s to t and t to u, then this probability clearly is 0. So assume that there is such a
permutation γ. Let v ∈ S. Since s is mapped to t the set Γsv must be mapped to the
set γΓsv. Note that the set γΓsv does not depend on the particular choice of γ, that
is, it is the same for every γ ∈ Γ with γs = t. In particular this implies that if the set
Γsv \ γΓsv is non-empty, then it must be mapped to the disjoint set γΓsv \ γ2Γsv by
every automorphism which maps s to t. The set γ2Γsv depends only on u, that is, the
image of s under γ2 and not on the particular choice of γ.
There are infinitely many points v for which these difference sets are non-empty be-

cause s �Γ t and each of the sets is finite because of subdegree finiteness. Hence
we can choose infinite sequences of non-empty, disjoint sets Pi := Γsvi \ γΓsvi and
Qi = γΓsvi \ γ2Γsvi such that all of the Pi and Qj are also pairwise disjoint for all
i, j ∈ N.
Now assume that there is a colour preserving permutation which maps s to t. This

can only happen if the sets Pi and Qi contain the same number of vertices of each colour
for every i. Let ni := |Pi| = |Qi| and denote by pi and qi the number of elements of Pi
and Qi with colour 0 respectively. Then the probability that the colour distributions on
Pi and Qi coincide, can be expressed as

P[pi = qi] =

ni∑
j=0

P[pi = j | qi = j]P[qi = j]

=

ni∑
j=0

P[pi = j]P[qi = j]

=

ni∑
j=0

(
ni
j

)
2−ni

(
ni
j

)
2−ni ,
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where the second equality follows from the fact that Pi and Qi are disjoint and hence
their colourings are independent. To get an estimate for the last sum observe that(

ni
j

)
2−ni ≤ 1

2

and
ni∑
j=0

(
ni
j

)
2−ni = 1.

Hence

P[pi = qi] ≤
1

2

ni∑
j=0

(
ni
j

)
2−ni ≤ 1

2
.

Recall that in order to have an automorphism which maps s to t and t to u we need
pi = qi for every i ∈ N. These events are independent because all of the sets are disjoint.
Hence we have

P[∃γ ∈ Γc | γs = t, γt = u] ≤
∏
i∈N

P[pi = qi] = 0.

This completes the proof.

Remark 5.11. Note that Lemma 5.10 can be iterated as follows. Let Γ0 = Γ and denote
by ∼0 the relation ∼Γ0 . Inductively, for i ≥ 0 define

Γi+1 =
⋂
s∈S

Γi[s]i ,

where [s]i is the equivalence class of s with respect to ∼i and Γi[s]i is its setwise stabiliser.
Define ∼i+1=∼Γi+1 .
Let c be a random colouring of S. Inductively applying Lemma 5.10 we obtain that

almost surely Γc ⊆ Γi for each i ∈ N0. Define

Γ∞ = lim
i→∞

Γi =
⋂
i∈N0

Γi.

Then almost surely
Γc ⊆ Γ∞.

Remark 5.12. The set of permutations in Γ, that fix all equivalence classes with respect
to ∼Γ setwise, is a group ∆. If there is a finite equivalence class then Lemma 3.9
implies that ∆ is compact and hence the stabiliser of a random colouring is almost
surely compact.
But even if ∆ is not compact, ∆ is the limit of a sequence of compact subgroups. To

see this, note that for a fixed s ∈ S every permutation γ ∈ ∆ must fix all but finitely
many suborbits ∆sx setwise. Let ∆sxi be an enumeration of all suborbits and define

∆i = {γ ∈ ∆ | ∀j > i : γ∆sxj = ∆sxj}.
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Then ∆i is compact by Lemma 3.9 because the ∆i-orbit of xj is contained in the finite
suborbit ∆sxj for j > i. Clearly the sequence ∆i is non-decreasing and every γ ∈ ∆ is
contained in some ∆i. Thus

∆ = lim
i→∞

∆i =
⋃
i∈N0

∆i.

The above remark tells us that in order to prove Conjecture 1.5 it suffices to consider
compact groups. More precisely, we have the following.

Corollary 5.13. Assume that for every compact, subdegree finite permutation group
with infinite motion a random colouring is almost surely distinguishing. Then the same
is true for every subdegree finite permutation group with infinite motion.

Proof. With the above notation every non-trivial permutation is contained in some ∆i.
Since ∆i is compact the stabiliser in ∆i of a random colouring c is almost surely trivial.
By σ-subadditivity of the probability measure we get

P[Γc is not trivial] ≤
∞∑
i=1

P[(∆i)c is not trivial] = 0.

5.3 Random colourings of graphs

The last section of this chapter is devoted to random colourings of graphs. First of all
recall that the automorphism group of a locally finite graph is always a closed, subdegree
finite group of permutations of the vertex set. Hence all results from Section 5.1 apply
to automorphism groups of locally finite graphs.

Theorem 5.14. Let G be a locally finite graph with infinite motion and let c be a random
colouring of G. Then (AutG)c is almost surely a nowhere dense, closed subgroup with
Haar measure 0.

Instead of colouring all vertices randomly, we could first colour part of the vertices
deterministically. This will make the stabiliser subgroup of the resulting colouring com-
pact, as the following theorem shows.

Theorem 5.15. Let G be a locally finite graph with infinite motion. Then there is a
colouring of G which is only stabilised by a nowhere dense, compact subgroup of AutG
with measure 0.

Proof. First apply Lemma 4.13 in order to break all automorphisms which move a given
vertex v0. This gives a partial colouring c′ of the graph which by Lemma 3.11 is only
preserved by a closed subset of AutG. The set Γc′ is completely contained in (AutG)v0 ,
which is compact by Lemma 3.8.

It is easy to see that Γc′ has infinite motion on the set of yet uncoloured vertices. Now
let c be the colouring obtained by randomly colouring all vertices that have not been
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coloured yet. We apply Theorem 5.5 to show that c almost surely breaks almost every
remaining automorphism of G.
The stabiliser Γc ⊆ Γc′ forms a closed and hence compact subgroup of (AutG)v0 . Since

it has measure 0 in (AutG)v0 , it must also have measure 0 in AutG. The property of
being nowhere dense also carries over from (AutG)v0 to AutG.

The following definition is a weaker version of the equivalence relation of Lemma 5.10.
It is easy to verify that it is indeed an equivalence relation. Also note the similarity of
the definitions of sphere equivalence and the distinct spheres condition.

Definition 5.16. Call two vertices u and v sphere equivalent (u ∼S v), if there is an
automorphism of G which maps u to v and an integer n0 ∈ N such that Su(n) = Sv(n)
for every n ≥ n0.

Considering Lemma 5.10, it is not surprising that the stabiliser of a random colouring
is almost surely contained in the setwise stabiliser of each equivalence class with respect
to the above relation.

Lemma 5.17. Let G be a locally finite graph with infinite motion. A random colouring
almost surely setwise fixes all equivalence classes with respect to ∼S.

Proof. Recall that the automorphism group of a locally finite graph is always subdegree
finite. For Γ = AutG the relation ∼Γ defined in Section 5.2 is finer than ∼S. Since by
Lemma 5.10 a random colouring almost surely fixes every equivalence class with respect
to ∼Γ, it also almost surely fixes every equivalence class with respect to ∼S.

In the remainder of this section we focus on examples of graphs, where a random
colouring is almost surely distinguishing. The above lemma is one of our main tools.

5.3.1 The distinct spheres condition

As mentioned earlier, graphs satisfying the distinct spheres condition have infinite motion
and are 2-distinguishable and hence they support Conjecture 1.2. The similarity between
the distinct spheres condition and sphere equivalence suggests that for such graphs a
random 2-colouring is also likely to be distinguishing. And indeed we can show that if a
locally finite graph satisfies the distinct spheres condition, then it supports Conjecture
1.5, that is, a random colouring is almost surely distinguishing.

Theorem 5.18. If a locally finite graph G = (V,E) satisfies the distinct spheres condi-
tion, then a random 2-colouring c is almost surely distinguishing.

Proof. Let γ be an automorphism of G which is contained in the setwise stabiliser of each
equivalence class with respect to ∼S. By Lemma 5.17 it suffices to show that γ = id.
Assume that γ is non-trivial. If γv0 �S v0 then γ is not contained in the setwise

stabiliser of all equivalence classes with respect to ∼S.
So assume γv0 ∼S v0. If γv0 = v0 then γ stabilises all spheres with centre v0 setwise.

As γ 6= id there must be some n ∈ N such that γ acts non-trivially on Sv0(n).
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If γv0 6= v0 but γv0 ∼S v0 then there is some n0 ∈ N such that γ stabilises Sv0(n)
for n > n0. Because γ acts non-trivially on Bv0(n), it must also act non-trivially on the
boundary Sv0(n).

Since x �S y for any two vertices x, y ∈ Sv0(n) we can conclude that γ is not contained
in the setwise stabiliser of all equivalence classes with respect to ∼S.
Corollary 5.19. Let G be an infinite, locally finite graph. Then each of the following
properties implies that a random 2-colouring is almost surely distinguishing:

• G is a leafless tree,

• G can be written as a product of two infinite factors,

• the automorphism group of G acts primitively on the vertex set,

• G is vertex-transitive and has connectivity 1.

Proof. All of these graphs satisfy the distinct spheres condition by [25].

5.3.2 Graphs with a global tree structure

Trees probably are the most elementary example of a family of graphs which is known
to satisfy Conjecture 1.2. As we have seen, leafless trees also satisfy Conjecture 1.5. The
following corollary to Theorem 5.18 shows that the same holds true for arbitrary trees
with infinite motion.

Corollary 5.20. A random colouring of a locally finite tree with infinite motion is almost
surely distinguishing.

Proof. Since we assume infinite motion we can ignore finite subtrees and consider the
subgraph induced by those vertices whose removal results in at least 2 infinite compo-
nents. On this set the relation ∼S is easily seen to be trivial. Alternatively one could
note that the resulting graph is a leafless tree and hence satisfies the distinct spheres
condition.

Tree-like graphs are graphs with the following property: there is a vertex v0 ∈ V such
that every vertex v ∈ V has a neighbour w such that v lies on every shortest w-v0-path.
It is readily verified that this class of graphs again staisfies the distinct spheres condition.

Corollary 5.21. A random colouring of a locally finite, tree-like graph is almost surely
distinguishing.

It is a well known fact that every graph has an end faithful spanning tree [6], that is,
the ends of a graph can be seen as the ends of a spanning tree of the same graph. We
now show that this large-scale tree structure is also almost surely preserved by every
automorphism that preserves a random colouring. First of all we show that if G has
more than one end, then Γc is almost surely compact and hence by Lemma 3.9 stabilises
a finite set which plays the role of a root. Thus translations can only happen on a small
scale. Then we show that such an automorphism almost surely fixes every end. Both of
these results are again consequences of Lemma 5.17.
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Lemma 5.22. Let c be a random colouring of a locally finite graph with at least two
ends. Then (AutG)c is almost surely compact.

Proof. By Lemma 3.9 it suffices to show that there is a finite orbit which is the case if
the equivalence class of some vertex v with respect to ∼S is finite.

So let v ∈ V . There is a ball Bv(n0) such that G − Bv(n0) has at least two infinite
components. Assume that there is a vertex w ∼S v such that d(v, w) ≥ 2n0 + 1 and
assume that Sv(n) = Sw(n) for every n > N .

Now note that if u and w lie in a different components of G−Bv(n), then every path
from w to u has to pass through Bv(n0). This implies that d(v, u) < d(w, u) since a
shortest path from v to u takes n0 steps before exiting Bv(n0) while a shortest w-u-path
takes n0 + 1 steps to reach Bv(n0).

So all vertices equivalent to v must lie within the ball Bv(2n0) which is finite.

Lemma 5.23. Let c be a random colouring of a locally finite graph. Then (AutG)c
almost surely only contains automorphisms which fix the set of ends of G pointwise.

Proof. For one-ended graphs there is nothing to show, so we may assume that G has
at least 2 ends. A random colouring is almost surely only preserved by automorphisms
which setwise stabilise the equivalence classes with respect to ∼S. Hence it suffices to
show that every such automorphism also fixes the set Ω of ends of G pointwise.

Assume that γ is contained in the setwise stabiliser of each equivalence class and
that γω 6= ω for some end ω of G. Let (vi)i∈N be a sequence of vertices converging to
ω. The sequence (γvi)i∈N converges to γω and hence vi and γvi lie in different infinite
components of G \Bv0(n) for large n and i. By similar arguments as in the proof of the
previous theorem this implies that vi �S γvi for large values of i.

So γ does not stabilise the equivalence classes with respect to ∼S setwise, a contra-
diction.

5.3.3 Cartesian products

Another class of graphs where 2-distinguishability results are known are Cartesian prod-
ucts. The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
G = (V,E) where V = V1×V2 and two vertices (v1, v2) and (w1, w2) are adjacent either if
v1w1 ∈ E1 and v2 = w2, or if v1 = w1 and v2w2 ∈ E2. In this case we write G = G1�G2.
The Cartesian product of finitely many factors is obtained by iterating this construc-

tion. One has to be a bit more careful when considering products with infinitely many
factors. However, it can be shown that a locally finite, connected graph cannot be such
a product. In particular, since all graphs in this section are locally finite and connected,
we do not need to deal with the difficulties that arise when dealing with products graphs
with infinitely many factors.
It is easy to see that the Cartesian product is associative and commutative, that is,

the graphs obtained by changing the order in which Cartesian products are taken are
isomorphic. We use this fact throughout this section without explicitly mentioning it.
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A G1-layer of G = G1 �G2 is the subgraph of G induced by the set {(v, v2) | v ∈ V1}
where v2 ∈ V2 is fixed. Analogously define a G2-layer.
Throughout this section we state state some well known facts about Cartesian products

of graphs without proving them. All of the results and their proofs can be found in [12].
The first fact that we need is that the distance between two vertices in a Cartesian

product is the sum of the distances of the projections to the factors. Hence a composition
of shortest paths in the factors is a shortest path in the Cartesian product. This can be
used to show the following result.

Lemma 5.24. Let G be a locally finite, connected graph with infinite motion which is
not prime with respect to the Cartesian product. Choose a decomposition G = G1 �G2

such that G1 is infinite. Let c be a random colouring of G. Then c almost surely fixes
every G1-layer setwise.

Proof. Once again we would like to use Lemma 5.17. So assume that there are two
sphere equivalent vertices v ∼S w of G which lie in different G1-layers.

Let R = (v = v0v1v2v3 . . .) be a geodesic ray (that is, d(v0, vi) = i) starting in v which
remains inside the same G1-layer forever. Denote by R′ = (v′0v

′
1v
′
2v
′
3 . . .) the ray in the

layer of w which is obtained from R by only changing the G2-coordinates.
Then d(w, vi) < d(w, v′i) while d(v, vi) > d(v, v′i) for every i ∈ N. The spheres Sv(r)

and Sw(r) are supposed to be equal for r ≥ r0 which implies that d(v, vr) = d(w, vr) and
d(v, v′r) = d(w, v′r) for large enough values of r. But then we have

d(v, v′r) > d(v, vr) = d(w, vr) > d(w, v′r) = d(v, v′r),

a contradiction.

It is known that each graph G has a unique decomposition into prime graphs with
respect to the Cartesian product. It is easy to see that, if G is locally finite, then it
only has finitely many factors. Hence an infinite, locally finite graph must have at least
one infinite prime factor. If there is more than one infinite prime factor, then G can be
decomposed into two infinite factors and in this case G is 2-distinguishable by Corollary
5.19. However, this fact can also be seen as a corollary to Lemma 5.24.

Corollary 5.25. Let G be a locally finite, connected graph with more than one infinite
prime factor. Then a random colouring of G is almost surely distinguishing.

Proof. If G has two infinite prime factors then it can be written as G = G1 �G2 where
both G1 and G2 are infinite. Now every vertex is uniquely defined by its G1-layer and
its G2-layer. Both of these layers are almost surely fixed by a random colouring. Hence
for every vertex v the probability that the stabiliser of a random colouring is contained
in the stabiliser of v is 1.
Since there are only countably many vertices this implies that the stabiliser of a

random colouring is almost surely trivial.

As a direct consequence we get the following result about powers of locally finite
graphs.
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Corollary 5.26. Let G be a locally finite Cartesian power of an infinite, locally finite,
connected graph. Then a random colouring of G is almost surely distinguishing.

Finally, the following result states that in order to prove Conjecture 1.5, it suffices to
consider prime graphs.

Corollary 5.27. If a random colouring is almost surely distinguishing for every locally
finite, connected, prime graph with infinite motion, then it is almost surely distinguishing
for every locally finite, connected graph with infinite motion.

Proof. By Corollary 5.25 it suffices to consider graphs with only one infinite prime factor.
Let G = G1�G2 be a factorisation of such a graph where G1 is the unique infinite prime
factor and let c be a random colouring of G.
By Lemma 5.24 all G1-layers are almost surely setwise fixed by every automorphism

in (AutG)c. By assumption c is almost surely distinguishing for G1 because G1 is an
infinite prime graph. Hence c almost surely fixes every G1-layer pointwise.

5.3.4 Growth bounds

In the last part of this chapter we are concerned with growth bounds. We show the
following probabilistic version of Theorem 4.20.

Theorem 5.28. Let G be a graph with infinite motion and growth O
(

2( 1
2
−ε)
√
n
)
. Then

a random colouring of G is almost surely distinguishing.

In order to prove this result we need the following probabilistic version of Lemma 1.3.
The proof given for Lemma 1.3 in Section 3.3 also works for this result.

Lemma 5.29. Let S be a finite set and let ∆ be a set of non-trivial permutations of S
with motion ≥ m. Let c be a random colouring of S. Then

P[∃γ ∈ ∆: cγ = c] ≤ |∆| 2−
m
2 .

Proof of Theorem 5.28. Let c be a random colouring of G, and choose a vertex v0 ∈ V .
For every v ∈ V let ∆v

v0
be the set of automorphisms which map v0 to v. Clearly,

(∆v
v0

)v∈V is a countable decomposition of AutG. Hence we only need to show that ∆v
v0

almost surely contains no automorphism γ such that γc = c.
For v �S v0 this follows from Lemma 5.17. If v ∼S v0, then it follows from the

following claim:

(∗) Let ∆k be the set of automorphisms that fix Sv0(i) setwise but not pointwise, for
every i ≥ k. Then a random colouring almost surely breaks every automorphism
in ∆k.

Assume that (∗) is true and let γ ∈ ∆v
v0

for some v ∼S V0. For every v ∼S v0 there is
some index i such that Sv0(i) = Sv(i). Hence γ setwise fixes Sv0(i) if i is large enough.
Furthermore, since G has infinite motion, γ acts non-trivially on infinitely many of the
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spheres. If it acts non-trivially on some sphere Sv0(k) then it also acts non-trivially on
Sv0(i) for each i > k. Hence γ is contained in some set ∆k.

By (∗) a random colouring c almost surely breaks all of ∆k and there are only countably
many possible values for k. Hence c almost surely breaks every automorphism in the
union of the ∆k. This implies that a random colouring almost surely breaks all of ∆v

v0
.

This completes the proof of the theorem.
So we only need to show that (∗) holds for every k. Let n > k. Because of the growth

condition on the graph we know that there is some constant c such that

|Bv0(n2)| ≤ c 2( 1
2
−ε)n.

This in particular implies that the same upper bound holds for the size of each sphere
Sv0(i) for i < n2. For 1 ≤ j ≤ n− 1, define

Rj = Bv0((j + 1)n) \Bv0(jn),

Λ′j = {γ ∈ ∆k | γ moves at most 2jvertices in some Sv0(i) for i > (j + 1)n},
Λj = Λ′j \ Λ′j−1.

Let Πj = Λj|Rj
, that is, Πj is the set of different permutations induced by Λj on Rj.

The next step is to estimate the probability that a random colouring of Rj breaks
all automorphisms in Λj or, equivalently, all permutations in Πj. Since we would like
to use Lemma 5.29 we need to establish estimates for the cardinality of Πj and for the
restricted motion of Πj on Rj.
To estimate the number of different permutations, observe that any two automor-

phisms that coincide on Si for some i > (j + 1)n must also coincide on Rj. Hence it
suffices to estimate the number of permutations on Si which move less than 2j vertices
and add up those estimates. Since the size of Si is bounded by 2( 1

2
−ε)n, the number of

such permutations is bounded by(
c 2( 1

2
−ε)n

2j

)
(2j)! ≤ 22j( 1

2
−ε)n+2j log c

(2j)!
(2j)! = 22j( 1

2
−ε)n+2j log c.

Adding up those estimates for (j + 1)n ≤ i ≤ n2, we obtain

|Πj| ≤ n222j( 1
2
−ε)n+2j log c.

In order to estimate the motion m of Πj on Rj observe that an element of Λj moves
at least 2j−1 vertices in every sphere Si for jn < i < (j + 1)n. Otherwise it would be
contained in Λ′j−1. Adding up those estimates, we get

m ≥ n2j−1.

Let Xj denote the event that there is a permutation π ∈ Πj that preserves a random
colouring c of Rj. Plugging the estimates from above into Lemma 5.29, we obtain

logP[Xj] ≤ log |Πj| −
m

2

≤ 2 log n+ 2j(
1

2
− ε)n+ 2j log c− 2j−1n

= −ε2jn+ 2j log c+ 2 log n.
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If we choose n large enough, this implies that

logP[Xj] ≤ −ε2j−1n ≤ −εn.

The probability that for every j a random colouring of Rj breaks Πj is now given by

n−1∏
j=1

(1− P[Xj]) ≥ (1− 2−εn)n.

This probability tends to 1 as n goes to infinity. Finally observe that if n is large enough,
then

∆k =
n−1⋃
j=1

Λj,

because the motion on Bv0(n2) is bounded by the number of vertices in Bv0(n2). The
set Λ′j contains all automorphisms whose motion is at most 2j, hence for n large enough
and j ≥ n

2
it is true that ∆k = Λ′j.

52



6 Graphs with infinite degrees

6.1 Non-locally finite counterexamples

In this section we give some examples to show that we cannot drop the local finiteness
condition in Conjectures 1.2 and 1.5. In the case of Conjecture 1.5 this is even the case
for trees, as the following example shows.

Theorem 6.1. Denote by T∞ the regular tree with countably infinite degree. If c is
a random colouring of T∞ with finitely many colours, then there is almost surely an
automorphism of T∞ which preserves c.

Proof. First of all note that in a random colouring every vertex almost surely has in-
finitely many neighbours of each colour. Hence it suffices to find a non-trivial automor-
phism preserving a colouring with this property.

Let c be such a colouring and choose a vertex v0 of T∞. Define γv0 = v0. Next choose
an arbitrary colour-preserving permutation π of the neighbours of v0 and define γv = πv
for every neighbour v of v0.
Assume that γ has already been defined for all vertices v with d(v, v0) ≤ n. For a

vertex v with d(v, v0) = n let (w
(v,j)
i )i∈N be an enumeration of the neighbours of v with

colour j which lie further away from v0 then v. Recall that there are always countably
many such neighbours, hence the sequence is infinite.

Define γw(v,j)
i = w

(γv,j)
i . Clearly this assignment is bijective if the assignment on

Sv0(n) is bijective, which is the case since we started with a permutation for n = 1. It
is also straightforward to check that it preserves adjacency and colours.
Proceeding inductively we obtain the desired automorphism.

Another example of a graph where a random colouring with finitely many colours is
almost surely not distinguishing is the Rado graph, also known as the infinite random
graph.

It can be obtained by the following random process. Take a countable set V of vertices
and independent 0-1-random variables xuv for each pair {u, v} ∈

(
V
2

)
. The edge set is

{uv | xuv = 1}. It is possible to show that the result of this random process almost
surely has the following property.

(R) For any two disjoint finite sets U,U ′ ⊆ V there is a vertex v ∈ V \ (U ∪ U ′) such
that uv ∈ E for every u ∈ U and u′v /∈ E for every u′ ∈ U ′.

It can be shown that any two countable graphs with property (R) are isomorphic, hence
this property characterises the Rado graph.
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CHAPTER 6. GRAPHS WITH INFINITE DEGREES

Theorem 6.2. A random colouring of the Rado graph with finitely many colours is
almost surely not distinguishing.

Proof. Note that all the colour classes are almost surely infinite. Secondly, since the
colours are chosen independently from the edges, the induced graph of every colour class
is isomorphic to the Rado graph. Hence it is not surprising that the randomly coloured
Rado graph has the following property.

(∗) For any two disjoint finite sets U,U ′ ⊆ V and for every colour c there is a vertex
v ∈ V \ (U ∪U ′) such that uv ∈ E for every u ∈ U , u′v /∈ E for every u′ ∈ U ′, and
v has colour c.

For the proof of property (∗) observe that the probability that a vertex has the right
neighbours in U ∪ U ′ and the correct colour is p = 1

k
2−|U |−|U

′|, where k is the number
of colours. Let v1, . . . vN be vertices not contained in U ∪ U ′. Then the probability that
none of these vertices has the right neighbours and the correct colour is (1− p)N , which
tends to 0 as N goes to infinity, because p is strictly larger than 0.

Now we use property (∗) to show that there is a non-trivial automorphism which
preserves the colouring. In fact we show even more, namely that the randomly coloured
Rado graph is homogeneous. That is, whenever we have a colour preserving automor-
phism of two finite induced subgraphs, then this automorphism can be extended to a
colour preserving automorphism of the whole graph. Clearly this implies that there is a
non-trivial colour preserving automorphism since the induced subgraphs of two single-
tons are always isomorphic.

So assume that we have a colour preserving automorphism γ of two finite induced
subgraphs. Let (vi)i∈N be an enumeration of the vertices which have no image or no
preimage under γ. We proceed inductively.

In step i, denote by Vi the set of vertices whose image under γ has already been
defined. If vi /∈ Vi then we find a vertex v such that

• for w ∈ Vi there is an edge connecting γw to v if and only if wvi is an edge, and

• v and vi have the same colour.

Note that such a vertex exists by (∗). We set γvi = v.
If vi /∈ γVi, that is, vi has no preimage under γ yet, then we can use an analogous

argument to find a vertex v such that

• for w ∈ γVi there is an edge connecting γ−1w to v if and only if vi is an edge, and

• v and vi have the same colour.

Clearly we can choose γv = vi.
Hence after step i the vertex vi has both an image and a preimage under γ. If we let

i go to infinity we end up with a function γ : V → V . By construction γ is bijective.
There is an edge from γu to γv if and only if uv is an edge, because both u and v
are eventually contained in Vi. Thus γ is an automorphism. Furthermore it preserves
colours by construction.
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γQ

Q a

a

γ

b

b

qi

qi

pi pi

si si

Figure 6: Finding an image and preimage for qi. Arrows indicate, which values of γ
have already been chosen inside the interval I = [a, b]. Note that the arrows
cannot cross because the function is order preserving by construction. The
grey triangles show the possible choices for γqi and γ−1qi.

A similar construction shows that (for any finite set C of colours) the randomly C-
coloured Rado graph is universal for the set of C-coloured graphs, that is, any countable
coloured graph is an induced subgraph of the randomly C-coloured Rado graph.

We now proceed to show that local finiteness is also necessary in Conjecture 1.2. It
can easily be seen that any countable tree with infinite motion admits a distinguishing
2-colouring. Hence trees are not sufficient to show that we cannot drop the assumption
in Conjecture 1.2. The Rado graph is also no counterexample as it was shown to be
2-distinguishable in [13].
The construction that we use relies on the following result from [17] which also shows

that there are permutation groups of countable sets whose distinguishing number is infi-
nite. In particular Conjecture 1.4 becomes false if we drop the assumption of subdegree
finiteness.

Theorem 6.3. Let Γ be the group of all bijective, order preserving functions γ : Q→ Q.
Then Γ has infinite motion but its distinguishing number is infinite.

Proof. Clearly Γ has infinite motion because if some element q ∈ Q is moved by γ ∈ Γ,
then all elements that lie between q and γq must be moved as well.

It remains to show that there is no distinguishing colouring with a finite number of
colours. Let c : Q→ C be a colouring of the rationals with a finite number of colours. It
is easy to see that we can find an open interval I such that the preimage of each colour is
either dense in I or it does not intersect I at all. We can choose I such that the interval
boundaries are rational.

We now use the interval I to define a colour preserving function γ ∈ Γ. For q ∈ Q \ I
let γq = q. In order to define γ on I let (qi)i∈N be an enumeration of all elements of
Q ∩ I.
We now inductively define γ on I. Assume that we have already chosen γqj and γ−1qj

for each j < i. The process of finding an image and a preimage of qi is sketched in
Figure 6. Denote by Pi the set of all q ∈ Q such that γq has already been defined. Note
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that

pi = min{q ∈ Pi | q ≥ qi} and pi = max{q ∈ Pi | q ≤ qi}

exist. This is because there are only finitely many candidates for the minimum and
maximum, namely the boundary points of the interval and the finite set of points inside
I whose image has already been chosen. If pi = pi, then they must both coincide with qi
and hence we have already chosen the image of qi in an earlier step. Otherwise we can
choose γqi ∈ (γpi, γpi) such that c(qi) = c(γqi) because the preimage of c(qi) is dense in
I and hence also in (pi, pi) ⊆ I. Furthermore we can choose γqi 6= qi.
Next we define γ−1qi. For this purpose let Si be the set of all q ∈ Q whose preimage

has already been defined. The elements

si = min{q ∈ Pi | q ≥ qi} and si = max{q ∈ Pi | q ≤ qi}

exist for the analogous reasons as pi and pi. If si = si then they must both coincide with
qi and hence we have already chosen the preimage of qi in an earlier step. Otherwise we
can choose γ−1qi ∈ (γ−1si, γ

−1si) such that c(qi) = c(γ−1qi).
If we repeat this construction then we end up with a function γ : Q → Q. This

function is bijective because every q ∈ Q has a unique image and a unique preimage. It
preserves the colouring and the order by construction and it is not the identity because
in the first step we can choose γq1 6= q1.

We have showed that for any colouring c of Q with a finite number of colours there is
a non-trivial permutation γ ∈ Γ which preserves c. Hence the distinguishing number of
this group must be infinite.

Clearly the group Γ of the above theorem is the full automorphism of a directed
graph. Simply draw an arrow from q to r if q ≤ r. The underlying undirected graph
is the complete countable graph which also has infinite distinguishing number but only
finite motion.

One standard way to turn a directed graph into a graph is replacing every vertex v
by an isomorphic copy of an asymmetric graph H. In this graph fix two vertices xin and
xout. Denote by xinv and xoutv the vertices corresponding to xin in the copy of H that
replaced the vertex v. Finally connect xoutv to xinw whenever there is a directed edge from
v to w.

If we apply this construction to the directed graph obtained from the order of the
rationals, then we end up with a undirected graph G with the same automorphism
group. Automorphisms of this graph simply permute the copies of H in the same way
as the corresponding order automorphism of Q permuted the rationals. Clearly we can
choose H to be finite. If H has n vertices then there are only kn different colourings of
H with k colours. In particular every colouring of G with k colours corresponds to a
colouring of Q with nk colours and hence it cannot be distinguishing.

However, there is an even more elegant way to use Theorem 6.3 to show that Conjec-
ture 1.2 is not true for arbitrary countable graphs.
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1+ 2+ 3+ 4+ 5+ 6+ 7+

1− 2− 3− 4− 5− 6− 7−

Figure 7: An induced subgraph of the graph in Theorem 6.4. Note that edges only go
from top left to bottom right. In fact, by the definition of the graph all such
edges are present and every edge is of this type.

Theorem 6.4. There is a countable, connected, transitive graph with infinite motion
which has no distinguishing colouring with a finite number of colours.

Proof. Let Q+ and Q− be two disjoint copies of Q. Denote the element corresponding to
q ∈ Q in these copies by q+ and q− respectively. Consider the graph G = (V,E) where
V = Q+ ∪Q− and q+r− ∈ E whenever q ≤ r. Figure 7 shows an small subgraph of this
graph to give an idea of what it looks like.

Clearly the graph is countable and connected. To see that it is transitive note that
if γ is an order automorphism of Q, then the maps γ↑ and γ↓ where γ↑(q+) = (γ(q))+,
γ↑(q

−) = (γ(q))−, γ↓(q+) = (−γ(q))−, and γ↓(q−) = (−γ(q))+ are automorphisms of G.
We claim that there are no further automorphims of G. To prove this claim, note that

G is bipartite with bipartition Q+∪Q−. Hence every automorphism of G either fixes Q+

and Q− setwise, or swaps the two sets. Furthermore every edge q+q− must be mapped
to an edge r+r− because q+ is the unique vertex with the property N(q+) =

⋂
v∼q− N(v)

and vice versa. So the action on Q+ uniquely determines an automorphism of G.
It is not hard to see that q ≤ r if and only if N(q+) ⊆ N(r+). This implies that

N(g(q+)) ⊆ N(g(r+)) for every automorphism ϕ of G. If ϕ fixes Q+ setwise we conclude
that ϕ preserves the order on Q+, hence it is γ↑ for a suitable order automorphism γ.
An analogous argument shows that if ϕ swaps Q+ and Q−, then ϕ = γ↓ for an order
automorphism γ of Q.
Every map of the type γ↑ and γ↓ moves infinitely many vertices, hence G has infinite

motion.
Finally assume that there is a distinguishing colouring c of G with n ∈ N colours. In

particular this colouring would break every automorphism of the form γ↑. Hence the
map q 7→ (c(q+), c(q−)) would be a distinguishing colouring of Q with n2 < ∞ colours,
a contradiction to Theorem 6.3.

57



CHAPTER 6. GRAPHS WITH INFINITE DEGREES

6.2 Sets with higher cardinality

Recall that by Theorem 5.1 any countable set ∆ of permutations of a countable set S
is 2-distinguishable. In this section we prove an uncountable analogue of this result.
The proof is essentially due to Imrich and has been published in [5]. We stress that in
contrast to all results in this thesis so far, in the following theorem the set S does not
have to be countable. In fact, if it is countable we recover the special case of Theorem
5.1.

Theorem 6.5. Let Γ be a group acting on a set S. Then ℵ0 ≤ |Γ| ≤ m(Γ) implies
D(Γ) = 2.

Proof. Set n = |Γ|, and let ζ be the smallest ordinal number of cardinality n. Further-
more, choose a well ordering ≺ of ∆ = Γ \ {id} of order type ζ. Then for every α ∈ ∆
the cardinality of the set ∆α = {β ∈ ∆ | β ≺ α} is strictly smaller than n ≤ m(Γ).
We now define a colouring of S by transfinite recursion. In each step of the recursion

we find the minimal α ∈ ∆ such that α preserves the partial colouring c defined so far.
We then find an s ∈ S such that αs 6= s and neither s nor αs have been coloured so far.
Colouring s and αs with different colours clearly breaks α.
The recursion ends if either all elements of ∆ are broken or if we cannot find an s as

stated. Thus it remains to show that such an s always exists.
Denote by S ′ the support of the partial colouring c. If α is the minimal element of

∆ with respect to ≺ such that α preserves c then there was at most one step for each
β ∈ ∆α. In each of those steps only two elements of S were assigned a colour. Hence
|S ′| ≤ 2|∆α|. Since m(Γ) is infinite and |∆α| < m(Γ) this implies that |S ′| < m(Γ).
In particular, if S ′′ is the set of elements moved by α then

|S ′′ \ (S ′ ∪ α−1S ′)| ≥ m(Γ)− 2|S ′| = m(Γ).

Thus in every step there is an element s ∈ S which is moved by α such that neither s
nor αs have been coloured so far.

Note that just like in Theorem 5.1, the group structure did not play any role in the
proof. Hence we can get an analogous result by taking an arbitrary set of permutations
instead of the group Γ.
Furthermore, if the generalised continuum hypothesis holds, then we have the following

result. Note the similarity to Lemma 1.3.

Corollary 6.6. Let Γ be a group acting on a set S. If the generalised continuum hy-
pothesis holds, and if |Γ| < 2m(G), then D(G) = 2.

Proof. For finite values of m(Γ) this follows from Lemma 1.3.
If m(Γ) is infinite then under the assumption of the general continuum hypothesis

2m(Γ) is the successor of m(Γ). Hence |Γ| ≤ m(Γ), and the assertion of the corollary
follows from Theorem 6.5.

In particular, if S is countable we get the following result.
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Corollary 6.7. Let Γ be a group acting on a countably infinite set S with infinite motion.
If the continuum hypothesis holds, and if |Aut (G)| < 2m(G), then D(G) = 2.
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7 Outlook and open questions

In the last three chapters we have seen how both deterministic and probabilistic methods
can be used to make progress towards Conjecture 1.2. In its full generality, however, the
conjecture is still wide open.

The main goal of this final chapter is to highlight some interesting questions, whose
answers could help to settle the infinite motion conjecture and give more insight in the
structure of infinite permutation groups.

In light of Corollary 5.13 it is clear that knowing more about compact subdegree finite
groups brings us closer to a solution of Conjectures 1.2, 1.4, and 1.5. Lemma 3.9 tells us
that for such groups every orbit must be finite. Clearly, if the group has infinite motion,
then the action on those orbits cannot be independent. However, very little is known
about their interplay. We formulate this as a (admittedly very vague) question.

Question 7.1. What can we say (in terms of structure) about the action of compact
subdegree finite permutation groups with infnite motion? What about point stabilisers
in such groups?

The second question we pose is related to the distinct spheres condition. Recall that
a graph G = (V,E) satisfies the distinct spheres condition if there is a vertex v0 such
that for every pair of distinct vertices u, v ∈ V the condition d(v0, u) = d(v0, v) implies
that Su(n) 6= Sv(n) for infinitely many values of n. If an automorphism γ maps u to
v, then it maps the set Su(n) \ Sv(n) to a subset of Sv(n). Clearly the two sets are
disjoint. If G satisfies the distinct spheres condition, then it is easy to see that they are
non-empty. As a consequence, we can enumerate infinitely many vertices which must
be moved whenever u is mapped to v. This infinite sequence can be used to define a
distinguishing colouring.
For many graphs with infinite motion which do not satisfy the distinct spheres con-

dition it is still possible to find such an infinite sequence of vertices. There are however
examples of locally finite graphs with infinite motion where this fails. Consider for
example the following graph.
Let V0, V1, V2 be sets of vertices with |V1| = 2|V0| and |V2| = 2|V0|. Assign to each

v ∈ V0 two vertices vl and vr in V1 such that the sets {ul, ur} and {vl, vr} are disjoint for
u 6= v. Connect every v ∈ V0 to vl and vr. To each vertex z ∈ V2 assign a subset Vz ⊆ V0

and connect z to vl if v ∈ Vz and to vr otherwise. Figure 8 shows this construction for
|V0| = 3.
Iterate this construction with V2 playing the role of V0. This gives an infinite, locally

finite graph with infinite motion which does not satisfy the distinct spheres condition.
Furthermore, for every permutation π of V0 and every z ∈ V2 there is an automorphism
of G which acts like π on V0 and fixes z. In particular we cannot give an infinite sequence
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Figure 8: Avoiding distinct spheres. By iterating the construction above we get a graph
with infinite motion which does not satisfy the distinct spheres condition.

of vertices which must be moved, if some particular vertex u is mapped to another vertex
v.
However, one can show that this graph satisfies the following generalisation of the

distinct spheres condition which was a joint discovery with Simon Smith.

(∗) For every pair u, v of vertices there is an infinite sequence (Ui)i∈N of finite subsets
of V such that for every automorphism γ with γu = v it holds that γUi 6= Ui for
every i ∈ N.

It is not hard to see that such a graph must have infinite motion, and that there is
a distinguishing 2-colouring. The proof is very similar to the proof of Theorem 3.21.
However, it seems hard to come up with an example of a locally finite graph with infinite
motion which does not satisfy (∗). This brings us to the following question.

Question 7.2. Is there an infinite, locally finite graph with infinite motion which does
not satisfy (∗)?
Clearly, if such a graph does not exist, then this would immediately imply that Tucker’s

conjecture is true. But even if we can come up with an example of such a graph it may
be another step towards proving (or disproving) the conjecture, because it may give
more insight on the structure of locally finite graphs with infinite motion.

The next question is related to the random colourings studied in Chapter 5. The
reader my have noticed that for all graphs studied there and in Section 6.1 a random
2-colouring of the vertices was either almost surely distinguishing or almost surely not
distinguishing. Hence it is only natural to ask if such a 0–1-law holds more generally.

Question 7.3. Let G = (V,E) be a countable graph with infinite motion and let c be a
random colouring of G. Is there a 0–1-law for the probability that c is distinguishing,
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that is, is it always true that

P[c is distinguishing] ∈ {0, 1}?

The final question we would like to ask has already been posed by Imrich et al. [14]
and is related to Conjecture 1.4. As we have seen, this conjecture becomes false when we
drop the requirement of subdegree finiteness. The question whether closedness is really
necessary, however, is still open.

Question 7.4. Is there a subdegree finite non-closed permutation group with infinite
motion and distinguishing number > 2?

Similarly to Question 7.2, if the answer to this question is no, then Conjecture 1.4
and hence also Conjecture 1.2 is certainly true. A positive answer to this question has
no immediate consequence on the status of the conjectures. Nevertheless it is possible
that such an example can be used to construct a counterexample.
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