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Abstract

Category and pose hypotheses are crucial for certain computer vision applications

such as `active object categorization', where the active movement of a camera can

be based on these hypotheses. Motivated by the success of 2D shape models for

category hypotheses this thesis investigates methods for view-independent object

categorization and pose estimation based on 3D shape models. With this 3D

approach we can resolve problems of sensitiveness to view/pose changes inherent

in 2D models. This thesis addresses three main aspects:

• (How) can we model 3D shape for speci�c objects?

• (How) can we learn one single, pose-invariant 3D category model based on

shape information?

• (How) can we use such a 3D category model for pose estimation in 2D

images?

First, I propose a stereo reconstruction framework for geometric 3D shape model-

ing by 3D contour fragments (1D manifolds in 3D) - the resulting 3D shape model

is called a `3D contour cloud'. In the second part, I describe how to use a set of

such `3D contour clouds' in a probabilistic framework based on Gaussian Mixture

Models for learning a 3D category model. The third major part of this thesis

describes the application of such 3D category models for pose estimation in 2D

images. Several experiments on the GRAZ-STEREO-BASE-XX dataset (which

was also developed as a part of this thesis) as well as on well-known datasets such

as the ETH-80 dataset demonstrate that 3D Gaussian Mixture Category Models

based on 3D contour fragments are suitable category representations for object

categorization and pose estimation.
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Kurzfassung

Kategorie- und Posenhypothesen spielen eine wichtige Rolle in verschiedensten

Anwendungen der Bildverarbeitung. Eines der prominentesten Beispiele hierbei

ist die `aktive Objektkategorisierung' bei welcher die Kamera aktiv um das Ob-

jekt bewegt wird, um eine Kategorie- und Posenhypothese anhand einer weiteren

Ansicht zu veri�zieren und zu verbessern. Meine Dissertation beschäftigt sich

mit Objektkategorisierung und Posenbestimmung basierend auf 3D Formmod-

ellen. Motiviert wird dies durch den Erfolg von 2D formbasierten Modellen, die

jedoch anfällig auf Ansicht- bzw. Posenveränderung reagieren. Diese Dissertation

behandelt im Besonderen folgende drei Fragen:

• (Wie) können wir die 3D Form von spezi�schen Objekten beschreiben?

• (Wie) können wir ein formbasiertes 3D Kategoriemodell lernen?

• (Wie) können wir dieses zur Posenbestimmung in 2D Bildern verwenden?

Zu Beginn präsentiere ich einen Rekonstruktionsalgorithmus zur geometrischen

3D Modellierung von Objekten durch 3D Konturfragmenten, eine so genannte `3D

contour cloud' (3D Konturwolke). Diese Konturwolken für spezi�sche Objekte

bilden die Basis für das 3D Kategoriemodell, bei dem jedes 3D Konturfragment

durch ein Gaussian Mixture Modell repräsentiert und ein probabilistischer Ansatz

zum Lernen eines solchen 3D Kategoriemodells angewendet wird. Im Weiteren

beschreibe ich einen probabilistischen Ansatz zur Posenbestimmung basierend

auf diesen 3D Kategoriemodellen. Durch die experimentelle Auswertung auf un-

serer eigenen GRAZ-STEREO-BASE-XX Datenbank, die im Zuge dieser Arbeit

entstanden ist, und auf Standard-Bilddatenbanken wie etwa der ETH-80 Daten-

bank, wird die Möglichkeit von Kategorisierung und Posenbestimmung basierend

auf 3D Formmodellen demonstriert.
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1
Introduction

Assume an active object categorization system, which takes one image to com-

pute a category and pose hypothesis from one object and which is able to take

another view of the object to verify its hypothesis (see Figure 1.1). For such a cat-

egorization system it is crucial to do object categorization independent from the

view/pose of the object. The way to realize object categorization is to learn for

each category a model and to match this model against the input image. Because

there is an endless number of di�erent poses from which you can see an object,

you have to model all possible aspects for an object, especially for a shape-based

categorization. Most of the current object categorization systems are based on

2D and just learn one aspect per model. What would be the best way to realize

that: to have one 2D model per aspect and learn all aspects separately or to have

one single, pose-invariant 3D representation of a category?

This thesis aims to provide some answers to questions like the above by mod-

eling 3D shape of categories instead of modeling each 2D aspect separately. In

Section 1.1, I start with a motivation for the importance of 3D model based

systems. Then, in Section 1.2, I describe the problem statement of my thesis -

object categorization based on 3D models - my way to compute a category and

pose hypothesis of objects, as well as my contributions.

1



1.1. MOTIVATION 2

(a) (b)

Figure 1.1: Active object categorization system: (a) A camera system captures an image of

an object and a categorization system computes a category hypothesis for that object (e.g.

40% dog, 30% horse). (b) The camera system moves around the object to a view that is

particularly useful to improve the hypothesis (e.g. to 70% horse, 10% dog)). The �gure

shows images for two objects in order to demonstrate that some views, e.g. as shown in (b),

are typically more useful to identify the object category than others, e.g. as shown in (a).

1.1 Motivation

Object categorization - in particular view/pose independent object categoriza-

tion - is important for many computer vision applications such as active object

categorization, active surveillance or robotics (e.g. active object manipulation).

Object categorization (generic object recognition) is the process of detecting

objects in images (detection and localization) and assigning categories (as car,

bike, horse, cow, human ...) to those objects. Object categorization often includes

pose estimation, which is the task of identifying the pose of an object with respect

to a camera (e.g. car front, car rear, car side). In contrast to generic object

categorization, speci�c object recognition is the process of recognizing one speci�c

object (e.g. my car, my bike). In this thesis, I solely address generic object

recognition (I will use the term `object categorization' in this thesis) with a focus

on pose-invariant 3D shape models for object categorization and pose estimation.

Most of the current research in object categorization is based on 2D models.

Here, we distinguish between appearance-based and shape-based categorization
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methods (an overview of object categorization can be found in [Pin05]). On the

one hand, there are appearance-based methods, which focus on describing an

object category by a codebook of appearance patches (interest point + region).

In the simplest way such a model has no geometric information as e.g. Bag-of-

Words model [CDF+04]. Other models as e.g. the constellation model [FPZ03]

combine appearance information with geometric information as spatial relations.

On the other hand, shape based methods have been successfully used in object

categorization. Such methods describe the shape of an object category by 2D

contour fragments of silhouette and inner contour fragments in combination with

spatial relations (see Section 2.1 for a state-of-the-art overview). However, all

these 2D based object categorization systems are view-dependent in that sense

that they are sensitive to view/pose changes. Consequently, one model per as-

pect has to be learned independently to achieve robustness to view and pose

changes. Even if more 2D views are combined in an object categorization system,

they can not cover the whole 3D nature of an object. Beside challenges such

as intra-class variability, inter-class di�erence, background clutter, illumination,

occlusion, rotation, translation, scale and deformation, robustness to viewpoint

and pose changes is among the main di�culty in object categorization (see Fig-

ure 1.2 for various views of the object category `car'). Therefore, pose-invariant

representations of objects and object categories are attractive for vision tasks.

In the last years multi-view and 3D models for object categorization attained

acceptance in computer vision (see Section 2.2).

If the object categorization system is based on one single, pose-invariant 3D

model per category we can overcome problems of categorization systems based on

2D models per aspects1 and objects may be categorized from arbitrary viewpoints.

Moreover, if the underlying category is modeled as 3D, there is no restriction

about the dimension of the input data. The categorization can be done in 3D on

a 3D model or in 2D on a new input image. Another important advantage is that

relations between views are known, which is bene�cial for systems such as e.g.
1In this thesis, the term 'aspect' is used for a signi�cant visual view in a geometrical meaning,

similar as in an aspect graph.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 1.2: A variety of di�erent viewpoints of one car of the 3D object category dataset

by Savarese and Fei Fei [SFF07].

active object categorization, which gain more and more importance in computer

vision (e.g. [JCC09, RP11]). In such systems, category and pose hypotheses

are useful. On the one hand, a category or pose hypothesis can be veri�ed by

moving around the object and taking another view. On the other hand, by

knowing the 3D nature of the object, the system knows how to move around

the object to obtain a good view for the hypothesized category and pose. This

is not only useful in active object categorization systems, but also in multiple

camera systems, where the camera system is static, but objects move around the

cameras and have to be detected and tracked over a scene. Also, when thinking

about scene understanding - including Structure-from-Motion of static scenes

(e.g. [SSP08]), Multi-body Structure-and-motion (e.g. [HP10]) (3D trajectories

and motion pattern of moving objects) and interaction between objects - 3D

models of objects and object categories are also of major importance.
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Summing up, we can group current object categorization systems in several

classes. Figure 1.3 gives an overview about di�erent possibilities. 2D input images

or synthetic 3D models e.g. CAD models are the basis for a categorization system.

Either, a category model is learned directly from 2D input images or there is a

reconstruction step before. The category model itself - 2D or 3D - is either

learned from 2D images or 3D models or by a combination of 2D appearance

and 3D geometry. For the detection there are several approaches: 3D category

model - 3D model, 3D(2D) category model - 2D image, and 2D category model

- 2D image. In this thesis, I follow the way emphasized in green: reconstructing

3D models from 2D image sequences, learning a 3D category model from them,

categorizing new 3D models, and estimating the pose of objects in 2D images

based on a 3D category model.

Figure 1.3: Overview of several ways to realize a categorization system. In my thesis, I

follow the path emphasized in green.

Motivated by the idea to use 3D models for object categorization and based on

the success of 2D category models based on shape information (see Section 2.1)

I face the question: Can we extend 2D shape models per aspect to one single,

pose-invariant 3D model per category?
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1.2 Problem and Contribution

In Section 1.1, I motivate the use of 3D models for object categorization instead

of modeling each 2D aspect separately, without going into detail on how I build

such a 3D category model. This section starts with a short problem statement

and continues with the main idea, my contributions as well as bene�ts of my

research.

1.2.1 Problem Statement

My thesis investigates the problem of 3D object categorization based on the ques-

tion: Can we extend the idea of 2D shape-based category models per aspect towards

one single, pose-invariant 3D shape model per category in order to be invariant

to pose and view changes? Speci�cally, the thesis addresses the following three

main aspects:

• (How) can we model 3D shape for speci�c objects?

• (How) can we learn one single, pose-invariant 3D category model based on

shape information?

• (How) can we use such a 3D category model for pose estimation in 2D

images?

1.2.2 My Contributions

As mentioned before, my intention is to build a 3D category model based on

shape information. I will motivate this decision. Most of the existing object cat-

egorization systems based on 3D models are appearance-based (see Section 2.2).

However, categorization systems based on 2D shape models are very successful

(see Section 2.1). In these 2D shape models, 2D contour fragments of silhouette

and inner contour fragments (texture and shape information) and their spatial

relations are learned. These systems are based on the fact that humans are able

to categorize objects just on the basis of simple line drawings or collections of
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contour or line segments. In contrast to appearance-based systems, which are

built on interest points and patches on them, shape is always visible and does not

depend on texture information e.g. a white cup can be categorized as cup on the

basis of its silhouette, whereas no interest points can be found on it. Sure it can

be argued that in some cases, texture information is very important to distinguish

between objects, e.g. horses and zebras, and I agree that appearance information

is important. Nevertheless, shape information should not be neglected and its

importance for object categorization should be analyzed. My thesis investigates

the possibility to categorize 3D objects on the basis of 3D shape information

and discusses bene�ts of the approach as well as open questions, problems, and

possible solutions.

In Chapter 4, I describe how to model 3D shape of speci�c objects by 3D

contour fragments reconstructed from stereo image sequences. A reader may

expect that when reconstructing 2D contour fragments in 3D, the resulting model

should consists of 3D surface patches, but this is not the only option. Indeed, our

3D shape model - we call it `3D contour cloud' - consists of a set of 3D curves - 1D

embedded in 3D - of silhouette and inner contour fragments. In this thesis I will

use the term `3D contour fragment ' for a 1D manifold in 3D. The reason for this

decision is that I want to model 3D shape by features, which can be used later

on 2D images (pose hypothesis). Contours can be observed in both, 2D and 3D

whereas there are no surfaces in 2D images. I present a reconstruction framework

based on stereo image sequences, which combines a stereo reconstruction based

on 2D contour fragments and motion estimation on interest points.

In Chapter 5, I present the 3D object categorization system based on a prob-

abilistic framework. I model 3D contour fragments by Gaussian Mixture Models

(GMMs). The representation by GMMs is very robust. On the one hand, outliers

and noise can be handled. On the other hand, the 3D geometry of 3D contour

fragments can be maintained. In my model, I learn partitions (discriminative

subsets) of mixture components by introducing a similarity measure based on

intra-class variability. I show the possibility to distinguish between categories
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with small inter-class di�erence and large intra-class variability and demonstrate

translation and scale invariance of the model.

In Chapter 6, I introduce a new pose estimation algorithm, which makes use

of the probabilistic 3D category model. By computing 2D aspect models of the

3D category model and by generating Gaussian Mixture Models for 2D contour

fragments in the input image, a similar principle and similarity measure as for

the categorization in 3D can be used. I demonstrate pose estimation for a large

number of di�erent poses on two well-known datasets: ETH-80 [LS03] and 3D

object category dataset [SFF07]. In contrast to many existing pose estimation

algorithms, the learning itself is not based on the same datasets.

For the task of object reconstruction and categorization I also developed a

new dataset - GRAZ-STEREO-BASE-xx - of stereo image sequences. It is used

for reconstruction of 3D shape models, for learning and categorization based on

3D shape models and for pose estimation based on 3D category models.

In summary, our results demonstrate that 3D shape information can be used

for categorization of 3D objects and for 3D pose estimation of objects in 2D

images.

During the research for this thesis the following papers were published. All of

these papers are related to the topic of this thesis:

[PP11a] Kerstin Pötsch and Axel Pinz. 3D Object Categorization with Prob-

abilistic Contour Models - Gaussian Mixture Models for 3D Shape

Representation. In Proc. VISAPP, 2011.

[PP11b] Kerstin Pötsch and Axel Pinz. 3D Geometric Shape Modeling by

`3D Contour Cloud' Reconstruction from Stereo Videos. In Proc.

CVWW, 2011.

[PP11c] Kerstin Pötsch and Axel Pinz. 3D Object Category Pose from 2D

Images using Probabilistic 3D Contour Models. In Proc. ÖAGM,

2011.



2
State-of-the-Art

Object categorization based on 3D models gains more and more importance in

computer vision. The underlying literature is extensive. Most of the research

in 3D model based object categorization goes towards appearance-based models,

whereas the present work is based on shape information. Therefore, this chapter

is grouped in two di�erent sections - Section 2.1 gives an overview of 2D shape-

based categorization systems, whose success motivates the idea to build a 3D

shape model based on 3D contour fragments. Afterwards, in Section 2.2, existing

categorization and pose estimation systems based on multi-view and 3D models

are discussed and di�erences to this thesis are pointed out.

2.1 2D Shape Models for Object Categorization

Object categorization systems based on 2D shape models are quite successful

in categorizing objects. Such systems are based on the idea that humans can

detect objects on the basis of simple line drawings or collections of contour or

line segments. Psychological experiments like [DWW04] have shown that contour

information is su�cient to recognize objects. Lowe and Binford [LB83] show the

importance of perceptual organization for recognition. Figure 2.1 shows their

well known bicycle example. In [CSD+09] Cole et al. investigate in a study how

9
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well line drawings (i.e. contour information) depict 3D shape. They point out

that good line drawings depict shape nearly as well as shaded images for many

objects.

(a) (b)

Figure 2.1: Bicycle recognition example of Lowe and Binford [LB83]: (a) Line drawing,

which is hard to recognize. (b) One segment is added whereby the line drawing is easier to

recognize.

Several approaches for object categorization using 2D shape models have been

presented, e.g. in [OPZ06, OPZ08, SBC08, LHS07, FFJ+08]. In 2006, Opelt

et al. [OPZ06, OPZ08] proposed the Boundary Fragment Model (BFM), where

they use 2D contour fragments of inner and outer (silhouette) contours, so called

`boundary fragments', and geometric information about the object's centroid in

an Implicit Shape Model [LS04] way. The category model is learned in two steps

(see Figure 2.2(a)) from training images and validation images. First, a discrimi-

nant codebook of 2D contour fragments together with their object centroid votes

is learned from training images. Second, a strong classi�er is built from weak

hypotheses using Adaboost on the validation set. A weak hypothesis consists of

constellations of size k of 2D contour fragments of the codebook (typically k = 2).

The BFM is a supervised method as it requires 2D bounding boxes around the

objects during training and the validation sets need to contain labels and cen-

troids of the objects. The detection of an object in a new input image using
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a voting space is demonstrated in Figure 2.2(b). In [SBC05, SBC08] Shotton

et al. present a similar categorization system using a 2D shape model based on

contour fragments. However, they use a di�erent Boosting technique, where the

centroid prediction and the weak detectors di�er slightly.

(a) (b)

Figure 2.2: Overview of the Boundary Fragment Model [OPZ06]. (a) 2 learning steps of a

BFM. (b) Detection of objects in a new input image .

A completely di�erent approach based on pairwise relations between contour

fragments is proposed by Leordeanu et al. in [LHS07]. They build a structural

representation of objects in�uenced by ideas of Hummel [Hum00], who pointed

out the bene�ts of structural descriptions compared to view-based representa-

tions. Furthermore, he pointed out that humans make other decisions with re-

gard to similarity than view-based recognition systems. This fact depends on

the observation that humans use categorical spatial relations among object parts

for measuring similarity. Consequently, view-based methods have limitations in

object recognition compared to structural representations. Leordeanu et al. show

in their 2D based categorization method that pairwise relations between contour

fragments are su�cient to represent the shape of the object. They sample contour

points on 2D contour fragments and model geometric pairwise relations between

these points. Thereby, they build a clique where each sampled contour fragment

point is related with each other point. The relation is described by a vector of

seven elements e = (θi, θj, σij, σji, αij, βij, dij) (see Figure 2.3). Let (i, j) be a con-
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tour fragment pair. Then dij describes the distance between i and j, βij the angle

between their normals, θi and θj the angles between the normals and the x-axis,

σij and σji the angles between the normals and the distance and αij the angle

between the x-axis and the distance. During learning, a spectral correspondence

algorithm is used [LH05].

Figure 2.3: Illustration ([LH05]) of the geometric relations (distances and angles) between

contour points used in the 2D shape model.

In [FFJ+08] Ferrari et al. propose an object categorization system based on

adjacent contour segments, which they call k adjacent segments, short kAS. Such

kAS are groups of connected, more or less straight lines, thus connectedness is

an important property. They use a scale and translation invariant descriptor and

kAS are matched to an image using a contour segmentation network. To detect

object classes, a codebook of kAS features is learned with a clique-partitioning

clustering and a sliding window approach for detection.

Summing up, all the mentioned 2D shape models for object categorization are

based on 2D contour information in combination with spatial relations. Spatial

relations between fragments are described in di�erent ways by using the object's

centroid, pairwise geometric relations or connectedness information.
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2.2 Multi-view and 3D Models for Object Cate-

gorization

In the last years, object recognition and categorization systems based on multi-

view and 3D models gain more and more importance in computer vision research

e.g. [RLSP06b, RLSP06a, TFL+06, SFF07, SFF08, SSSFF09, SSFFS09, LSS08,

LS10, SGS10, ANB09, YKS07].

3D modeling has successfully been used in some speci�c object recognition

methods e.g. [RLSP06b, RLSP06a, DPP09]. To name just a few examples, Roth-

ganger et al. [RLSP06b, RLSP06a] have proposed a speci�c 3D object representa-

tion, where they model the spatial relationships between surface patches. Detry

et al. [DPP09] have presented a probabilistic framework for 3D object modeling

based on spatial relations between 3D contour features in a hierarchical model.

Based on this 3D representation they are able to recognize the modeled object in

an unknown scene as well as to estimate its pose in 3D.

With respect to object categorization, several systems have been suggested,

e.g. in [SFF07, SFF08, SSSFF09, SSFFS09, LSS08, LS10, SGS10]. Most of them

have in common that they are appearance-based. However, they are realized in

completely di�erent ways. They can be divided in 3D categorization methods

with 3D pose estimation e.g. [SFF07, SFF08, LS10, SSFFS09] and without 3D

pose estimation e.g. [TFL+06, YKS07] or they can be divided on the basis of

the multi-view and 3D information. I prefer a grouping based on how geometric

multi-view or 3D information is obtained: multi-view and 3D information can be

obtained from images e.g. [TFL+06, SFF07, SFF08, SSSFF09, SSFFS09, ANB09,

YKS07] or from synthetic 3D models e.g. [LSS08, LS10, SGS10].

In the �rst group of object categorization system, the multi-view or 3D infor-

mation is obtained from images (including pose annotations) [HRW07, KSP07,

CKLP07, TFL+06, SFF07, SFF08, SSSFF09, SSFFS09, ANB09]. In [TFL+06]

Thomas et al. propose a multi-view object detection system, where they combine

the Implicit Shape Model of Leibe and Schiele [LS04] and the multi-view speci�c
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object recognition system proposed by Ferrari et al. [FTG04]. In their model,

single-view codebook entries are linked together among multiple views with so-

called activation links. These activation links are then used in recognition to

transfer votes between views.

Extensions of this work are presented by Savarese and Fei Fei in [SFF07,

SFF08]. For their 3D model based object categorization system they combine 2D

appearance information and 3D geometric information avoiding 3D reconstruc-

tion. 2D appearance information is represented by so called `canonical parts',

which are regions containing a set of image patches seen in several instances of an

object category. So, one of these parts represents more or less one particular view.

Two canonical parts are geometrically linked together when they are visible at

the same time e.g. when one sees the front of a car but also parts of the side view.

The linkage is described by a homography containing an a�ne transformation

and a translation vector. Thereby, a connected graph of canonical parts is built

during the learning stage. When a new input image is categorized, �rst features

are extracted and canonical part candidates are built. Then, these candidates

are matched to the category model using a global optimization. For their experi-

ments they build a new 3D object category dataset (see Section 3.1.1). In [SFF08]

Savarese and Fei Fei extend their model using view synthesis such that they are

able to also recognize poses, which have not been seen during the learning stage.

For this they use a view morphing technique to generate canonical parts for novel

views on category level. The categorization and pose estimation is done using

a two-step algorithm. First, a new image is tested on the category model and

the best model views are computed. Second, view synthesis is computed for a

canonical view of the list with its nearest canonical poses on the viewing sphere.

A multi-view approach is proposed by Yan et al. in [YKS07]. They reconstruct

a 3D model from multiple 2D images, so called model views, for one speci�c

object, using an approach based on homography. Then, 2D features of additional

training images of the category are computed using SIFT and attached to the

3D model. Thus, they build a 3D feature model by combining multiple views
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of one speci�c object and arbitrary views of several additional objects, so-called

supplemental views [KYS07].

In [SSSFF09] Sun et al. propose a generative probabilistic framework for ob-

ject categorization based on a multi-view part-based model. Their model consists

of parts, which are linked together using geometric constraints. The part-based

representation is obtained by computing a part type assignment, a viewpoint as-

signment, as well as a patch appearance distribution and a patch location distri-

bution for each feature patch. Thereby, they model appearance information and

location information over several views. For consistency under nearby viewpoints,

they also include epipolar constraints. Based on this part-based generative cate-

gory model, Su et al. propose a categorization system including view synthesis in

[SSFFS09]. Their categorization system can categorize objects and estimate their

pose even when the view was not seen during training. For the initial model they

build a dense multi-view representation of the viewing sphere without any labeled

pose information. They build a triangle mesh where each new view can be gener-

ated by using a homography and an interpolating morphing parameter. Similar

to [SSSFF09] they compute location, appearance and proportion parameters for

each part. Instead of epipolar constraints, they compute geometric constraints

within one triangle and across several triangles using a�ne transformations. This

3D model is then updated with a set of unsorted, unlabeled training images using

an incremental learning approach.

In [ANB09] Arie-Nachimson and Basri propose a 3D category model for rigid

objects by building a 3D Implicit Shape Model combining 2D appearance infor-

mation and 3D location information. The voting procedure is based on that of a

2D Implicit Shape Model but modi�ed such that a transformation parameter and

a visibility parameter are included. Their 3D reconstruction approach is based

on a factorization method. To construct a 3D class model they match training

images to the initial model by comparing them to those images, which were used

for the 3D model. The category model is particularly constructed for the task of

pose estimation of cars.



2.2. MULTI-VIEW AND 3D MODELS FOR OBJECT CATEGORIZATION16

In the second group of object categorization systems, synthetic 3D models

as e.g. computer aided design (CAD) models are used to obtain geometric 3D

information [LSS08, LS10, SGS10]. This geometric 3D information is then used

in combination with 2D categorization systems.

In [LSS08] Liebelt et al. propose a multi-view object categorization method

based on 3D feature maps consisting of 2D appearance and 3D position informa-

tion built from CAD models. Views are rendered from these 3D CAD models

over the upper hemisphere and features are extracted from rendered views of

these CAD models. For background features an additional dataset of real 2D

images is used. The category model is learned using a two-class support vector

machine.

In [LS10] Liebelt and Schmid present a method where they combine a 2D

appearance-based part model with 3D geometry from CAD models. They build

a 2D part detector per view by dividing the bounding box in a regular grid and

learn a spatial pyramid detector. For the 3D geometry, one or more CAD models

are rendered and the rendered images are divided in the same grid as in the

2D learning. For each part a Gaussian Mixture Model of its 3D point cloud

representation is learned. In the detection process, they combine a 2D detection

based on the 2D model and a pose estimation based on the 3D Gaussian Mixture

Models.

The approach by Stark et al. [SGS10] is solely based on 3D CAD models. They

use non-photorealistic rendering and build a part based approach of thirteen

parts (e.g. wheels, doors, rear window of a car), representing them by edges.

Furthermore, they use a probabilistic model in�uenced by the idea of constellation

models for the spatial layout of these parts.

Summing up, most of the mentioned state-of-the-art research on 3D model

based object categorization use appearance-based methods. The research varies

from combining 2D models with 3D synthetic models to reconstructing 3D models

from images and attaching 2D patches to them or to combine 2D models with



2.2. MULTI-VIEW AND 3D MODELS FOR OBJECT CATEGORIZATION17

3D information. All these approaches use some kind of patches. So far, shape

information played a minor role.

In contrast to this, my aim is object categorization based on a 3D shape

model. Our approach can be assigned to the �rst group. Consequently, all in-

formation for our 3D shape model is computed from stereo image sequences -

no synthetic models are used. Thereby, we do not avoid the reconstruction as

e.g. in [SFF07, SFF08], but we reconstruct a model as in [YKS07] without at-

taching additional 2D information. In contrast to [ANB09], our 3D model is

reconstructed fully automatically. We reconstruct one 3D model per training ob-

ject and learn a category model in 3D. This 3D category model can be used for

both, categorization of 3D models, and pose estimation in still 2D input images.



3
Datasets

For the evaluation of their own experiments and the comparison to other state-

of-the-art work, image and video datasets constitute an important tool for re-

searchers in computer vision. Datasets for the tasks of recognition and catego-

rization are manifold. However, for the task of multi-view categorization, where

objects of di�erent categories are captured from di�erent poses, the number of

datasets is limited. Especially, up to now there exists no dataset for categoriza-

tion which consists of a set of speci�c objects of several categories suitable for

3D reconstruction. Therefore, I have built a new dataset - GRAZ-STEREO-

BASE-xx - of stereo image sequences for the task of reconstruction and cate-

gorization. The dataset includes stereo image sequences, calibration data, 2D

contour fragments as well as estimated camera poses for objects of �ve cate-

gories captured under di�erent conditions. Our GRAZ-STEREO-BASE-xx data-

set, which consists of the GRAZ-STEREO-BASE-EYE, GRAZ-STEREO-BASE-

30, and GRAZ-STEREO-BASE-EYE-TURNTABLE dataset, is described in Sec-

tion 3.2. Additionally, the chapter provides an overview of existing datasets for

the task of categorization from multiple viewpoints in Section 3.1. Both our new

dataset and the previously available datasets are used in the subsequent chapters

for comparison and evaluation of the object categorization method and the pose

estimation approach.

18
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3.1 Existing Multi-view Datasets

There exists a large number of datasets for the task of object categorization e.g.

Pascal, CALTECH, GRAZ-01 or GRAZ-02. These datasets di�er - among other

things - in the type and number of object categories, background clutter, scale,

inter-class di�erence, intra-class variability and viewpoints. However, for the task

of multi-view object categorization only a small number of datasets is available,

where objects have been captured under several viewpoints and where ground

truth information is available (pose, scale, bounding box, etc.). We picked out

two of them: ETH-80 [LS03] and 3D object category dataset [SFF07] for our

experiments. Therefore, these datasets are described below.

3.1.1 3D Object Category Dataset

Savarese and Fei Fei [SFF07] have built a 3D object category dataset for the task

of object categorization based on multi-view and 3D models (see Figure 3.1 for

example images). The dataset consists of ten di�erent categories: bicycle, car,

cellphone, head, iron, monitor, mouse, shoe, stapler, and toaster and contains

around 7000 color images captured under di�erent conditions: eight viewing an-

gles, two or three heights and three scales. In addition, also the ground truth is

provided as a binary mask.

3.1.2 ETH-80

For the task of object categorization, Leibe and Schiele have built the ETH-80

dataset [LS03] (see Figure 3.2). It contains 80 objects of eight categories: ap-

ples, pears, tomatoes, cows, dogs, horses, cups, and cars. The dataset consists

of 41 equally distributed (22.5o) views over the upper hemisphere of each ob-

ject. The ground truth of each color image is included as a segmentation mask.

Additionally, the dataset contains the objects contour.
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Figure 3.1: Sample images from eight of the ten categories of the 3D object category

dataset [SFF07].

3.2 Our GRAZ-STEREO-BASE-xx Dataset

We have built a new dataset of stereo image sequences, which show objects of

several categories from di�erent aspects: GRAZ-STEREO-BASE-EYE, GRAZ-

STEREO-BASE-30, and GRAZ-STEREO-BASE-EYE-TURNTABLE. The data-

set is built using two types of stereo setups, which di�er in the length of their

baseline as well as in their focal length and their vergence angle. In addition to

the stereo image sequences, we also provide camera calibration data, estimated

camera poses and 2D contour fragments with subpixel accuracy. The dataset
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Figure 3.2: Sample image of each object of the ETH-80 dataset [LS03].

can be used for several tasks in computer vision as stereo reconstruction, motion

estimation, multi-view object recognition and categorization as well as 3D model

based recognition and object categorization.

3.2.1 Framework

Our dataset is built using three di�erent settings and two di�erent types of stereo

rigs: STEREO-RIG-EYE and STERE-RIG-30. The dataset GRAZ-STEREO-

BASE-EYE contains stereo image sequences of handheld objects captured using

the STEREO-RIG-EYE. The GRAZ-STEREO-BASE-30 consists of stereo image

sequences in an outdoor environment captured using the STEREO-RIG-30. The

third dataset, GRAZ-STEREO-BASE-EYE-TURNTABLE contains stereo image

sequences of objects on a turntable captured using the STEREO-RIG-EYE.

Our stereo rigs (STEREO-RIG-EYE (see Figure 3.3(a)) and STEREO-RIG-

30 see Figure 3.3(b))) consist of two µEye 1220C cameras and Cosmicar/Pentax
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Table 3.1: Stereo rigs parameters

baseline focal length vergence angle

(cm) (mm) (o)

STEREO-RIG-EYE 6 12.5 5.5

STEREO-RIG-30 30 6.5 6.5

lenses. The detailed parameters can be found in Table 3.1. The frame rate is 15

Hz. The size of the images is 480x752 px. The �eld of view is 40.5o (21.5o) for the

focal length of 6.5mm (12.5mm). For the calibration of the stereo rig we use the

Camera Calibration Toolbox for Matlab [Bou]. To capture the GRAZ-STEREO-

BASE-EYE-TURNTABLE dataset we additionally use a turntable (see Figure

3.3(c)).

(a) (b) (c)

Figure 3.3: Stereo rigs and turntable, which were used to capture our dataset. (a) STEREO-

RIG-EYE (baseline: human eye distance). (b) STEREO-RIG-30. (c) Turntable.

3.2.2 GRAZ-STEREO-BASE-EYE

For the GRAZ-STEREO-BASE-EYE dataset we have captured several stereo

image sequences of small toy objects, which are manipulated in front of the

STEREO-RIG-EYE in the lab. This dataset contains two categories: horses

and cows, with nine horses and �ve cows. Each of these stereo image sequences

typically shows one object, which is presented in a hand-held manner in front of

a homogeneous background. In this dataset, we avoid the controlled setting of a
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turntable. The object is manipulated naturally by hand in front of the stereo rig,

so that it is seen pretty much from all sides, showing as many aspects as possible.

Figure 3.4 shows an overview of the objects in the dataset.

Figure 3.4: Overview of the objects captured for the GRAZ-STEREO-BASE-EYE: 2 cate-

gories, 14 objects of the categories horse and cow.

One stereo image sequence typically contains around 500 to 600 RGB stereo

image pairs. The image sequences were captured in Bayer format. To improve

the color quality of the images, we use the color calibration algorithm by Wolf

[Wol03]. For this, we also captured an image of a color target and calibrate the

values with regard to these reference values. Figure 3.5 shows example stereo

views for one of the horse sequences. In addition to the image sequence, we also

provide the calibration data, 2D contour fragments and the absolute camera poses

per frame. 2D contour fragments are computed using the Canny edge detector

with subpixel accuracy (using linear interpolation) and a linking algorithm based

on Peter Kovesi's [Kov]. Afterwards, we apply a clockwise ordering.

In order to reconstruct just contours of the hand-held objects and not con-

tours of the hand we apply an interactive segmentation system based on vari-

ational methods (see [UMPB09]), which gives us a precise hand segmentation.

Coarse manual labels have to be provided for the initial frames of each stereo

image sequence while the remaining frames are processed automatically, provid-
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ing excellent ground truth for hand segmentation (see Figure 3.6). Features that

belong to the hand are subsequently ignored.

Figure 3.5: Example views from a stereo image sequence of the GRAZ-STEREO-BASE-

EYE, where a horse was manipulated by hand in front of the stereo rig.

The motion analysis is based on the approach by Schweighofer et al. [SSP08].

The system is able to reconstruct structure and motion of stationary scenes and

it is robust if there are at least 50% of the features in the stationary scene,

foreground motion is detected as outliers. In our case, because the majority of

the interest points is located on a rigid object, the system assumes that the stereo

rig is moving around the object although we manipulate the object in front of the

cameras. This leads to an `object-centered' representation as shown in Figure 3.7

for the horse sequence above.



3.2. OUR GRAZ-STEREO-BASE-XX DATASET 25

Figure 3.6: Mask of skin color using [UMPB09] for the example views shown in Figure 3.5.

Figure 3.7: Estimated absolute camera poses (R,t) of the stereo rig around the horse using

[SSP08] represented in an object-centered coordinate system. Each camera pose is drawn

as a stereo rig represented by a green and a blue triangle connected by a red line. In the

middle of the trajectory the point cloud of the horse is shown in grey.

3.2.3 GRAZ-STEREO-BASE-30

The GRAZ-STEREO-BASE-30 contains stereo image sequences of �ve humans

who rotate around their vertical axis in front of the STEREO-RIG-30. One stereo
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image sequence typically contains around 200-300 grey value stereo image pairs,

each image has a size of 480x572 px. The stereo image sequences were captured

outdoors in front of a white wall. Figure 3.8 shows an overview of the humans in

the dataset, Figure 3.9 shows example views for one of the video sequences. In

addition to the image sequence, we also provide the calibration data, 2D contour

fragments and camera poses. The motion analysis, the computation of 2D contour

fragments and the calibration is done in the same way as for the GRAZ-STEREO-

BASE-EYE dataset.

Figure 3.8: Overview of the objects captured for the GRAZ-STEREO-BASE-30: 5 objects

of the category human.

Figure 3.9: Example views from a stereo image sequence of the GRAZ-STEREO-BASE-30,

where humans rotate around their vertical axis in front of the stereo rig.

3.2.4 GRAZ-STEREO-BASE-EYE-TURNTABLE

For the GRAZ-STEREO-BASE-EYE-TURNTABLE dataset we have captured

several stereo image sequences of small toy objects, which are rotated on a
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Figure 3.10: Example stereo pairs from a stereo sequence one rotation on the turntable of

a dog. Example stereo pairs from an image sequence of the GRAZ-STEREO-BASE-EYE-

TURNTABLE, where one rotation on the turntable of a dog is recorded.

turntable in front of the STEREO-RIG-EYE in the lab. This dataset contains

35 objects of four categories: horses, cows, dogs, and cars with ten horses, eight

cows, nine dogs, and eight cars (see Figure 3.11). Each stereo image sequence

typically shows one object, which is presented on a turntable in front of a homoge-

neous background. The object is rotated around its vertical axis on the turntable

for around 360o. Figure 3.11 shows an overview of the objects contained in the

dataset.

One stereo image sequence typically contains around 600 to 700 grey value

stereo image pairs. Figure 3.10 shows example views for one of the dog sequences.

In addition to the image sequence, we also provide the calibration data, 2D con-

tour fragments and camera poses. Again, the motion analysis uses the image

based approach by Schweighofer et al. [SSP08], no position sensor information

from the turntable is used.
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Figure 3.11: Overview of the objects captured for the GRAZ-STEREO-BASE-EYE-

TURNTABLE: 4 categories, 35 objects of the categories cow, horse, dog and car.



4
3D Geometric Shape Modeling by 3D

Contour Cloud Reconstruction

(How) can we model 3D shape for speci�c objects? There are several methods

in computer vision on how the 3D nature of speci�c objects can be modeled e.g.

by means of 3D point clouds or 3D surface meshes. In this chapter, I present a

method on how to model 3D shape for speci�c objects by so called `3D contour

clouds'. On the one hand, a `3D contour cloud' is an extension of 3D point clouds

towards 3D contour fragments instead of 3D points. On the other hand, it is an

extension of 2D shape models based on silhouette and inner 2D contour fragments

towards 3D.

In Section 4.1, I start with an introduction, followed by an overview of state-

of-the-art research based on 3D contour fragments in Section 4.2. There, I con-

centrate on 3D curve representations. In Section 4.3, I introduce the stereo recon-

struction framework and describe in detail the `3D contour cloud' reconstruction

method from stereo image sequences. I introduce a novel stereo correspondence

algorithm based on shape and stereo information and I propose the idea of 3D

shape context for outlier reduction. The main part of Section 4.4 comprises re-

construction results on our GRAZ-STEREO-BASE-xx dataset as well as on a

standard multi-view stereo dataset.
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4.1 Introduction

Modeling shape plays an important role in computer vision and graphics and

builds the basis for many applications e.g. in object categorization or 3D shape

retrieval. Methods for generating 3D models give us the opportunity to model

the 3D nature of objects and can thus provide us with additional information

about shape and appearance of the objects.

3D point clouds, generated by laser range scanners, by stereo vision, or by

Structure-from-Motion techniques, are probably the most obvious and simplest

way to represent 3D shape. Often, these 3D point clouds are converted into

triangle meshes or polygonal models. Extensive research has been done to gen-

erate, analyze, match, and classify such models. There exist many 3D model

databases such as the Princeton Shape Benchmark [SMKF04], the McGill 3D

Shape Benchmark [SZM+08] or the ISDB [GSCO07a] for evaluating 3D shape

retrieval algorithms.

In contrast to these 3D point-based methods, we aim to build 3D geometric

shape models for objects using 3D contour fragments. In this thesis we use the

term `3D contour cloud'. A `3D contour cloud' is a set of 3D contour fragments,

which describe the 3D shape of an object. In our terminology a 3D contour

fragment is a 1D manifold in 3D (curve in 3D), not a surface in 3D. These 3D

contour fragments are silhouette contours as well as inner contours, which are

reconstructed from stereo image sequences. For the remaining thesis we make

the following de�nitions:

4.1 De�nition

A `3D contour cloud' C is an unorganized set of N 3D contour fragments Fl in a

three dimensional coordinate system:

C = {Fl, l = 1...N}, (4.1)



4.2. STATE-OF-THE-ART 31

4.2 De�nition

A 3D contour fragment Fl is a 1D manifold in 3D and is de�ned by a set of 3D

points pi given by their X,Y,Z coordinates in an ordered list:

Fl = {[p1, p2, . . . pi . . .] | pi = (xi, yi, zi) ∈ R3 and pi is neighbor of pi+1} (4.2)

4.2 State-of-the-Art

As mentioned before, there exist various 3D shape models based on 3D point

clouds, meshes or polygonal models. The methods for describing such 3D shapes

vary from shape distributions [GSCO07b, MS09, OMT05, OFCD] to symmetry

descriptors [KFR04] or Skeletal Graphs [SSGD03]. I refer to Iyer et al. [IJL+05]

and Tangelder and Veltkamp [TV07] for an overview of 3D shape representation

methods.

So far, only a few methods exist, which represent 3D shape by 3D contour

fragments. The research on 3D contours (1D manifolds embedded in 3D) concen-

trates on 3D curve reconstruction methods [EG07, PH02, FK10] and 3D contour

extraction from existing 3D surface models [DFRS03, DR07, OBS04, PKG03].

With respect to reconstruction methods in this overview I concentrate on 3D

contour fragment reconstruction, not on dense 3D models generated by silhouette

reconstruction as e.g. presented in [Her04]. One reconstruction method based on

the usage of a double stereo rig was presented by [EG07]. The authors describe

a method for 3D reconstruction of object curves from di�erent views as well as

motion estimation based on these 3D curves. In [PH02], the authors propose a

method for Euclidean contour reconstruction including self-calibration, but there

the data is not very natural and their algorithm has problems in matching con-

tour fragments. Recently, Fabbri and Kimia [FK10] presented an approach for

multi-view stereo reconstruction and calibration of curves. In their paper, they

concentrate on the reconstruction of 3D contour fragments without motion anal-

ysis and their algorithm is mainly based on so called view-stationary curves e.g.

shadows, sharp ridges, re�ectance curves. Therefore, it is well applicable for aerial

images as they show in their results.
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3D contour extraction methods are manifold and di�er mainly in the type

of the extracted contour/line fragments, e.g. occluding contours, ridges [OBS04],

suggestive contours [DFRS03], suggestive highlights and principal highlights [DR07].

For a more detailed literature overview we refer to the mentioned publications.

4.3 3D Contour Cloud Stereo Reconstruction

For the reconstruction of a `3D contour cloud' from stereo image sequences, we use

a framework, which combines the stereo reconstruction of 3D contour fragments

from single stereo frame pairs and the motion estimation between consecutive

frames based on the Structure-and-Motion approach by Schweighofer and Pinz

[SP06] (see Section 4.3.1). The main novel idea in our reconstruction framework

is the integration of geometric information in the concept of 2D shape context

proposed by Belongie et al. [BMP02] (see Section 4.3.2) and the extension of

2D shape context towards a `3D shape context' for outlier reduction (see Sec-

tion 4.3.3).

4.3.1 Stereo Reconstruction Framework

An overview of our stereo reconstruction framework can be seen in Figure 4.1.

Our `3D contour cloud' generation is based on calibrated stereo image sequences

of objects. For the task of stereo reconstruction and object categorization we

have built the GRAZ-STEREO-BASE-xx dataset (see Section 3.2). For stereo

image sequences, where objects are manipulated by hand in front of the stereo rig

we start with a preprocessing step where we apply an interactive segmentation

system based on variational methods (see [UMPB09]) to mask the hand. Fea-

tures that belong to the hand are subsequently ignored. To compute 2D contour

fragments we apply the Canny edge detection algorithm at subpixel accuracy in

the left and the right frame of a stereo frame pair. Then, a linking algorithm

[Kov] is used in order to obtain long, connected 2D contour fragments. For the

reconstruction of 3D contour fragments we need to �nd corresponding 2D contour

fragments and point correspondences on them. Here, we combine the well known
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2D shape context and epipolar information into one single cost matrix Cij. The

cost matrix Cij is a weighted combination of the original 2D shape context cost

matrix CSij and an epipolar constraint cost matrix CEij. Based on the contour

point correspondences we reconstruct the 3D contour fragments using the `Object

Space Error for General Camera Models' [SP06], which is based on the `Object

Space Error' [LHM00] as a cost function. For the absolute orientation - rota-

tion, translation, scale (R, t, s) - between 3D contour fragment reconstructions of

consecutive frames we estimate the motion between 3D reconstructions of points

based on [SSP08]. To �nd corresponding 3D contour fragments in consecutive

frames we �rst use correspondences of 2D fragments over time. For 2D corre-

spondences over time we �rst reduce the search space by taking into account only

those 2D contour fragments in the consecutive frame, which lie in a similar region

as the 2D contour fragment in the current frame. Then we match those contour

fragments using 2D shape context. Afterwards, we apply 3D shape context for

the correspondence of 3D contour fragments and outlier reduction. For this, we

compute a cost matrix CFij based on the 3D shape context cost between 3D

contour fragments.

Figure 4.1: Overview of the stereo reconstruction framework.

The determination of long and salient 3D contour fragments is a rather di�cult

task. One main requirement in reconstructing 3D contour fragments is to �nd
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accurate point correspondences on 2D contour fragments of the left and the right

stereo frame. Three problems may occur:

• Linking: Di�erent linking of edges to longer contour fragments in di�erent

views (stereo frame pairs as well as consecutive frames) in�uences a match-

ing procedure. 2D contour fragments may not have the same length, same

start point, and the same end point (see Figure 4.2(b)).

• Shape deformation: The shape of contours changes signi�cantly when view-

ing them from di�erent poses. This fact makes it harder to track contours

over time, to �nd corresponding 2D contour fragments in stereo image pairs,

and point correspondences on them (see Figure 4.2(a) and Figure 4.2(b)).

• Visual rim: When viewing objects from di�erent poses the visual rim

changes. Therefore, the silhouette which is seen in the left and the right

stereo frame di�ers. The same situation occurs due to camera movement be-

tween consecutive frames. Consequently, 2D contour fragments, which arise

from di�erent positions on the object are matched. Therefore, the main fo-

cus is the reconstruction of a qualitative `3D contour cloud' representation

for the shape of a category instead of a precise 3D contour reconstruction,

which is not possible just based on stereo reconstruction.

A standard stereo correspondence algorithm would compute the intersection

between epipolar line and 2D contour fragments and search in a neighborhood of

these intersection points for the corresponding point. In contrast to this method,

our new approach integrates the well known 2D shape context with epipolar

information in one single cost matrix. This is necessary as there are only few

intersections along a contour that would directly permit the identi�cation of point

correspondences.

Nevertheless, 2D contour fragments with similar shape may produce false

correspondences of 2D contour fragments and contour points which result in in-

correctly reconstructed 3D contour fragments. For outlier reduction we introduce

3D shape context as an extension of 2D shape context.
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(a) (b)

Figure 4.2: (a) 3D contour fragments seen from di�erent views of a stereo setting. (b)

Two main problems occur when matching 2D contour fragments in di�erent views. First,

the shape of a contour may change in projection of di�erent views. Therefore, point corre-

spondences are harder to �nd (top). Second, linking of edges to longer contour fragments

may be di�erent when viewing the object from di�erent poses (bottom).

4.3.2 Stereo Reconstruction of 3D Contour Fragments

The stereo correspondence for the reconstruction of 3D contour fragments is done

in two steps. First, we �nd corresponding 2D contour fragments by doing a

coarse stereo matching of 2D contour fragments. Then we compute point corre-

spondences on them. 2D shape context is very suitable for 2D contour fragment

matching but using 2D shape context in combination with epipolar geometry has

further advantages. First, we can limit our search space to a subset of contours

by only taking into account those 2D contour fragments, which lie in regions re-

stricted by the epipolar lines. Second, we rely on point correspondences, which

are more precise than using just one of the methods.

In order to �nd corresponding 2D contour fragments, we compute the epipolar

line for four example points of a 2D contour fragment in the left frame and �nd

those 2D contour fragments in the right stereo frame pair which lie in a region

around one of the four epipolar lines. Shape similarity is tested using 2D shape
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context. Thus, the search space for each 2D contour fragment is reduced to a

small number of possible contour fragments. In order to �nd the correct point

correspondences on matching 2D contour fragments we compute a cost matrix

by combining 2D shape context, epipolar geometry and an ordering constraint.

We �rst achieve a clockwise ordering of contour points. Afterwards we generate

a new cost matrix by building a weighted combination of the 2D shape context

cost matrix and a cost matrix computed from epipolar information.

Let pi be a point on a 2D contour fragment in the left stereo image and qj

be a point on a contour fragment in the right stereo image. Then, the original

2D shape context cost matrix (see [BMP02]) is given by

CSij :=
1

2

K∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
, (4.3)

where hi(k) and hj(k) are the normalized histograms with K bins1 at points pi

and qj

hi(k) := # {g 6= pi : (r , θ) ∈ bin(k)} . (4.4)

In 2D shape context, each point pi on a contour fragment is represented by a

histogram, which contains the relative position to all other points on the contour

fragment. The cost matrix CS is simply the χ2 measure between the point-

histograms of two contour fragments. Hence, the cost matrix CS contains for

each point pi on one fragment the matching cost to each point qj on the second

contour fragment. For our application for stereo correspondences we create an

additional cost matrix, which contains for each epipolar line lpi of one point pi

of the left contour fragment the distance to each point qj on the right contour

fragment and vice versa. Consequently,

lpi = Fpi and lqj = FTqj, (4.5)

1In our experiments K = 12 ∗ 5, where 12 is the number of bins for θ and 5 is the number

of bins for r (cmp. [BMP02])
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where F is the Fundamental Matrix and lpi (lqj) de�nes the epipolar lines for

points pi (qj). This leads to the second cost matrix CE, with

CEij =
(d(lpi ,qj) + d(lqj ,pi))

2

max((d(lpi ,qj) + d(lqj ,pi))
2)
, (4.6)

where d is the Euclidean distance between the epipolar line and the point. The

maximum max((d(lpi ,qj) + d(lqj ,pi))
2) is the maximum over all entries of the

matrix and denotes a normalization factor. We combine both cost matrices by a

weighted sum

Cij = w1 ∗CSij + w2 ∗CEij, (4.7)

where w1 and w2 are weighting factors2.

For a continuous reconstruction, we additionally use an ordering constraint on

the contour fragments, because neighboring points should have neighboring cor-

respondence points. By �rst achieving a clockwise ordering of the contour points,

the corresponding points then are given by a sub-diagonal of the cost matrix or a

path through the cost matrix. Based on these contour point correspondences we

reconstruct the 3D contour fragments using the `Object Space Error for General

Camera Models' [SSP08].

4.3.3 3D Shape Context

Outliers - falsely reconstructed 3D contour fragments - may always occur due to

false stereo correspondences or false matching over time. It is not always possible

to detect falsely reconstructed 3D contour fragments solely on the basis of 2D

information. Therefore, we introduce a 3D shape representation and matching

based on the idea of extending 2D shape context - we call it 3D shape context - to

reduce the number of outliers in a `3D contour cloud'. Koertgen et al. [KPNK03]

describe a similarity measure between 3D models based on 2D shape context,

which is similar to our idea.
2Empirically, we found w1 = 0.3 and w2 = 0.7 to be good choices for the weighting factors.
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Remember, a `3D contour cloud' C consists of a number of 3D contour frag-

ments

C = {Fl, l = 1...N}, (4.8)

where N is the number of 3D contour fragments in a cloud. Each of these 3D

contour fragments has been seen in several frames and tracked over time, so that

each 3D contour fragment Fl consists of a number of reconstructed fragments

Fl = {f li , i = 1...M}, (4.9)

where M is the number of frames in which Fl has been seen. We then use 3D

shape context to verify those fragments f li which have the most similar shape.

3D contour fragments which do not have a similar shape as the majority of Fl

are rejected as outliers. The cost matrix on the fragment Fl is de�ned by

CFij = sc_cost_3D(f li , f
l
j) ∀i, j ∈M, (4.10)

where sc_cost_3D(f li , f
l
j) is the 3D shape context matching cost between frag-

ment f li and f lj. By analyzing the median and variance of this cost matrix we

identify those tracked 3D contour fragments f ln which are not similar to the other

fragments of Fl.

The 3D shape context matching cost sc_cost_3D(f li , f
l
j) is de�ned in a similar

way as in 2D. In order to handle shape deformations as well as spatial displace-

ments of 3D contour fragments on the object (see Section 4.4.1), our 3D shape

context cost depends on two measuresCS3Dab andCP3Dab. Because we are only

interested in corresponding 3D fragments and not in corresponding 3D contour

points, we do not include an ordering constraint (in contrast to Section 4.3.2).

Let pa be a 3D contour point of fragment f li . Similar to 2D shape context

we build a multi-dimensional histogram h1a by computing the relative positions

to all other contour points g on fragment f li in a 3D log-polar space. Hence,

we compute the distance r , the azimuth θ, and elevation φ. The basis for this

computation builds an object-centered coordinate system. Figure 4.3 illustrates

the principle.
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Figure 4.3: 3D shape context description: For each point on a 3D contour fragment (blue

curve) the relative position (r , φ, θ) to all other points is computed.

Then, our 3D shape context is de�ned in the following way

h1a(k) := # {g 6= pa : (r , θ, φ) ∈ bin(k)} . (4.11)

Here, the cost matrixCS3D between two fragments is de�ned in the same manner

as in the 2D case using the χ2 measure

CS3Dab :=
1

2

K∑
k=1

[h1a(k)− h1b(k)]2

h1a(k) + h1b(k)
, (4.12)

for points pa and qb and K bins3. Taking the position on the object into account,

we compute a second, very sparse histogram h2a. To obtain the position of the

contour points to a reference point, we compute the distance r , the azimuth θ,

and elevation φ relative to the de�ned reference point oc e.g. object center:

h2a(k) := # {oc 6= pa : (r , θ, φ) ∈ bin(k)} . (4.13)

3In our experiments the number of bins K = 12 ∗ 12 ∗ 5 where 12 is the number of bins for

θ and φ, and 5 de�nes the number of bins for r .
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This histogram is sparse in the sense, that for each point pa we just have one

entry - the bin which contains (r , θ, φ) for pa. The cost matrix is given by

CP3Dab :=
1

2

K∑
k=1

[h2a(k)− h2b(k)]2

h2a(k) + h2b(k)
. (4.14)

The overall cost matrix is then given by a weighted sum of both cost matrices:

C3Dab = w1 ∗CS3Dab + w2 ∗CP3Dab, (4.15)

where w1 and w2 are weighting factors4. The 3D shape context cost sc_cost_3D

between two 3D contour fragments f li and f
l
j is given by

sc_cost_3D(f li , f
l
j) =

max(
1

A

A∑
a=1

minbC3Dab,
1

B

B∑
i=1

minaC3Dab)
(4.16)

where A and B are the numbers of contour points on fragment f li and f
l
j, respec-

tively. Similar to the 2D case [BMP02], the 3D shape context cost sc_cost_3D

de�nes the 3D shape context distance between two 3D contour fragments on the

basis of their best matching points. 3D contour fragments with a matching cost

above a threshold with respect to the majority of all other fragments are de-

tected as outliers. Here, the threshold is de�ned by computing the median and

the variance of the cost matrix.

4.4 Experimental Evaluation

The di�culty in an experimental evaluation is the lack of ground truth for real

world data. The e�ort to produce ground truth as e.g. point correspondences for

each 2D contour fragment in each frame of a stereo image sequence is all but im-

possible and even for humans it is very hard to �nd exact point correspondences.

Therefore, we evaluate the 3D shape context on the basis of synthetic contours,

where ground truth is available. In addition to this 3D shape context evaluation,

we show reconstruction results in form of `3D contour clouds' for objects of our
4We found empirically w1 = 0.6 and w2 = 0.4 to be good choices for the weighting factors
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own GRAZ-STEREO-BASE-xx dataset (see Section 3.2) as well as for objects of

a standard multi-view dataset [SCD+06].

4.4.1 Evaluation of the 3D Shape Context

In Section 4.3.3 we introduce the concept of 3D shape context for outlier reduc-

tion. Now, we evaluate it on the basis of synthetic contour fragments. In our

experiments we analyze the following cases:

• Incorrect contour fragment stereo correspondences: Our stereo correspon-

dence algorithm is based on 2D shape information, epipolar geometry and

an ordering constraint. Incorrect contour fragment stereo correspondences

happen when 2D shape and epipolar geometry of several contour fragments

are similar e.g. for two contour fragments of horse legs. Such matching

errors lead to a deformation of the 3D shape and to a displacement of 3D

contour fragment position on the object (see Experiment 1).

• Incorrect contour fragment correspondences over time: For the registration

of 3D contour fragments, 2D contour fragments are tracked over time in the

left and the right stereo frame pairs. Similar shape and position may lead

to false correspondences in consecutive frames. Thus, 3D contour fragments

f li with di�erent 3D shape and position on the object are grouped together

to one 3D contour fragment Fl (see Experiment 1).

• Incorrect point correspondences: Due to the ordering constraint in our

stereo correspondence algorithm, it can not happen that crossings occur in

our point correspondences (see Figure 4.4(b)). However, shifts may occur

i.e. points do not match to their corresponding point but to their neighbors

(see Figure 4.4(c)). One or more shifts lead to a shape deformation of the

reconstructed 3D contour fragment (see Experiment 2).
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(a) (b) (c)

Figure 4.4: (a) Perfect point correspondence between two 2D contour fragments. (b)

Crossings - point pi of �rst fragment should match to point qi of second fragment, point

pi+1 to point qi+1, but point pi match to qi+1 and pi+1 to qi - occur. (c) Shifts of 2

positions - point pi of �rst fragment should match to point qi of second fragment, pi+1 to

qi+1 and so on, but pi match to qi+2, pi+1 match to qi+3 and so on - occur.

Experiment 1

In this experiment we show the behavior of the 3D shape context in the case of

3D shape deformation and spatial displacement of 3D contour fragments on the

object. As mentioned before, 3D shape deformations and spatial displacements

occur as a result of incorrectly determined contour fragment stereo correspon-

dences and incorrect contour fragment correspondences over time.

We use the following testing framework in this experiment: We randomly

generate a synthetic 3D contour fragment f l1 by randomly choosing points in 3D,

which build supporting points for interpolating splines. To achieve 3D shape

deformation we iteratively add noise to a subset of spline points. To achieve

a spatial displacement of the 3D contour fragment we iteratively add noise to

all points of the 3D contour fragment. For the evaluation we measure the 3D

shape context cost sc_cost_3D between manipulated 3D contour fragments and

the original 3D contour fragment. For a statistical evaluation we repeat the

experiment for 1000 times and build the average cost.

To evaluate the in�uence of 3D shape deformation on the 3D shape context

cost, we start with a �rst experiment where we just manipulate the shape (see

Figure 4.5(a) for an example). Figure 4.5(b) shows the behavior of the 3D shape
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context cost sc_cost_3D. As desired, the more 3D shape deformations occur

the larger becomes the 3D shape context cost sc_cost_3D.

(a)

(b)

Figure 4.5: (a) Shape deformations for the �rst 10 iterations for an example synthetic

3D contour fragment; the original 3D contour fragment f l1 is shown in dark, the deformed

contour fragments f l2 . . . f
l
10 are shown as dotted lines in gray colors. (b) Average 3D shape

context cost sc_cost_3D over 1000 test runs for increasing deformations (300 iterations).

To evaluate the in�uence of 3D shape deformation and spatial displacements

of a 3D contour fragment at the same time we simultaneously deform the 3D
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shape and displace the 3D contour fragment regarding to the 3D coordinate

system (see Figure 4.6(a)). Figure 4.6(b) shows how the 3D shape context cost

sc_cost_3D increases when simultaneously simulating 3D shape deformations

and spatial displacements.

Experiment 2

In this experiment we show the behavior of the 3D shape context cost in the case

of incorrect point stereo correspondences (shifts).

We use the following testing framework in this experiment: We generate a syn-

thetic 3D contour fragment f l1 by randomly choosing points in 3D, which build

supporting points for interpolating splines. In order to simulate shifted point

correspondences, we reproject this 3D contour fragment f l1 to 2D (in a left and a

right stereo frame) and compute shifted correspondences (up to �fteen pixels) for

this 2D contour fragment pair. Afterwards, we reconstruct the 3D contour frag-

ments f l2 . . . f
l
16 from these correspondences and compute the 3D shape context

cost sc_cost_3D between f l2 . . . f
l
16 and the original 3D contour fragment f l1. For

a statistical evaluation we repeat the experiment 1000 times.

Figure 4.7(a) shows an example of an original 3D contour fragment and those

3D contour fragments which were reconstructed from 2D contour fragments with

shifted point correspondences. Figure 4.7(b) shows the average 3D shape con-

text cost sc_cost_3D. We can see how the cost increases when more shifted

correspondences occur. Whereas a one pixel shift (f l2) results in a 3D shape

context cost sc_cost_3D = 0.0855, it increases to a 3D shape context cost

sc_cost_3D = 0.5275 for a 15 pixel shift (f l16). As desired, larger shifts, which

lead to heavily distorted contour fragments, lead to higher costs.
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(a)

(b)

Figure 4.6: (a) Shape deformations and spatial displacements for the �rst 10 iterations of

an example synthetic 3D contour fragment; the original 3D contour fragment f l1 is shown

in dark, the deformed and displaced 3D contour fragments f l2 . . . f
l
10 are shown as dotted

lines in gray colors. (b) Average 3D shape context cost sc_cost_3D for 300 iteration steps

(plotted in green). The average is built over 1000 test runs; the curve of the Experiment in

Figure 4.5 is shown for comparison (dotted blue line).
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(a)

(b)

Figure 4.7: (a) f l1: Original contour fragment (red), example shifted correspondences up to

the �rst 10 pixels are simulated in the stereo correspondences: f l2 . . . f
l
11. (b) Evaluation of

the average 3D shape context cost shape_cost_3D; the experiment was done 1000 times

and the average over the costs are computed.

4.4.2 Evaluation on GRAZ-STEREO-xx Dataset andMulti-

view Dataset

We evaluate our `3D contour cloud' reconstruction approach on our own GRAZ-

STEREO-xx dataset, which consists of three types of stereo image sequences (see

Section 3.2), as well as on a standard multi-view dataset [SCD+06].
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3D Contour Clouds of GRAZ-STEREO-BASE-EYE

The GRAZ-STEREO-BASE-EYE consists of stereo image sequences of small

hand-held objects, which are manipulated in front of the stereo rig (see Sec-

tion 3.2.2). First, we demonstrate our `3D contour cloud' reconstruction frame-

work on one horse stereo image sequence from this dataset. The stereo im-

age sequence shows a small toy horse with the dimensions length = 175mm,

height = 95mm, and width = 45mm (see Figure 4.8 �rst and third row).

The estimated camera poses of the stereo rig are shown in Section 3.2.2 in

Figure 3.7. We can see that we manipulate the object by �rst rotating it for

approximately 360o around the vertical axis of the horse and then by about

180o around the horizontal axis. In our reconstruction framework we compute

3D contour fragments of the object for every �fth frame. Figure 4.8 shows the

output for this stereo reconstruction process - 3D contour fragments for single

stereo frame pairs. We can see how the 3D shape changes over time when we

rotate the object.

Figure 4.9 shows a `3D contour cloud' of the horse for 201 frames without

outlier reduction. Figure 4.10 shows the same `3D contour cloud' after outlier

reduction using the 3D shape context. Furthermore, only 3D contour fragments

are drawn, which were tracked for at least 3 frames. 201 frames correspond to

a rotation of the object of approximately 270o around its vertical axis. We used

every �fth frame during the reconstruction. Instead of visualizing one represen-

tative contour fragment, we show all registered contours in corresponding color.

This explains the width of the visualized contour fragments. We see that a large

fraction of outliers has been removed successfully so that the shape of the horse

is clearly visible. One can observe that there are no contours reconstructed for

the back of the horse. This is caused by the fact that the back is occluded by the

hand during the �rst part of manipulating the horse.

Figure 4.11 shows a reconstructed `3D contour cloud' with an automatically

generated 3D bounding box and object-centered coordinate system. We choose

the longest dimension of the 3D bounding box as x-axis. For the purpose of
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Figure 4.8: 3D contour fragments per stereo frame pair for a small subset of stereo frame

pairs over 180o. For space-saving only the left frames of stereo pairs are shown above their

corresponding reconstructions; 3D contour fragments per stereo frame pair are drawn in the

same color to demonstrate the shape di�erences between several camera poses.

visualization, we choose a `3D contour cloud' with a reduced number of 3D contour

fragments, which were reconstructed just over a short subsequence of the stereo

image sequence.

3D Contour Clouds of GRAZ-STEREO-BASE-30

The GRAZ-STEREO-BASE-30 consists of calibrated stereo image sequences show-

ing humans that rotate around their vertical axis (see Section 3.2.3). Figure 4.12(b)

shows the estimated camera poses of the stereo rig around the human seen in Fig-

ure 4.12(a) in an object centered coordinate system. We can see that the human
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Figure 4.9: `3D contour cloud' of a horse for 201 frames. In this reconstruction, outliers

have not been removed and thus all reconstructed 3D contour fragments are drawn.

Figure 4.10: `3D contour cloud' of a horse for 201 frames. Outliers have been removed

using 3D shape context and the median as threshold. Only those 3D fragments are visible

which have been tracked over ≥ 3 frames.

rotates approximately 360o around his vertical axis. Figure 4.12(c) shows a `3D

contour cloud' of the human. We can clearly identify the shape of the human.

Again, instead of visualizing one representative 3D contour fragment, we show
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Figure 4.11: `3D contour cloud' with automatically generated 3D bounding box and object-

centered coordinate system.

all registered contours in corresponding color, which explains the width of the

visualized contour fragments. We can see by the example of the green 3D con-

tour fragment on the arm of the person how the visual rim is tracked over several

frames.

Figure 4.13 shows the results for a second human from our GRAZ-STEREO-

BASE-30 dataset. Again, the human makes a full turn around his vertical axis

(see Figure 4.13(b)). Figure 4.13(c) shows a `3D contour cloud' of the human gen-

erated from the entire stereo image sequence without outlier reduction, whereas

the outlier reduction using 3D shape context is demonstrated in Figure 4.13(d).

3D Contour Clouds of GRAZ-STEREO-BASE-EYE-TURNTABLE

The GRAZ-STEREO-BASE-EYE-TURNTABLE consists of calibrated stereo im-

age sequences showing toy objects on a turntable (see Section 3.2.4). Figure 4.14(b)

shows the estimated camera poses of the stereo rig around a dog (see Fig-

ure 4.14(a)) in an object centered coordinate system. We can see a rotation

of approximately 360o around its vertical axis. Figure 4.14(c) shows the cor-

responding `3D contour cloud'. We can clearly identify the shape of the dog.

Again, instead of visualizing one representative contour fragment, we show all

registered contours in corresponding color, which explains the width of the visu-
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(a) (b)

(c)

Figure 4.12: `3D contour cloud' (c) and camera trajectory (b) of a human (a) of the

GRAZ-STEREO-BASE-30 dataset.

alized contour fragments. Outliers have been removed using 3D shape context

and the median as threshold. Only those 3D fragments are visible, which have

been tracked over at least three frames.

3D Contour Clouds of the Multi-view stereo dataset

To demonstrate that our method is also applicable to standard datasets, we apply

it to the multi-view dataset of [SCD+06], which consists of the Dino-dataset

(see Figure 4.15) and the Temple-dataset (see Figure 4.16), including camera



4.4. EXPERIMENTAL EVALUATION 52

(a) (b)

(c) (d)

Figure 4.13: Stereo reconstruction of a human: (a) Left frame. (b) Estimated camera

poses. (c) `3D contour cloud' with outliers. (d) `3D contour cloud' without outliers and 3D

contour fragments which are tracked over ≥ 2 frames.

parameters and camera poses. For these datasets, views sampled on a hemisphere

or on a ring are available.

Figure 4.17 shows a `3D contour cloud' for a subset of images of the Dino-

dataset, and Figure 4.18 for the Temple-dataset. For the visualization we choose

a small subsample of images captured from the same aspect (side view of the dino

and the temple). Similar to the other datasets, we show all registered contours in

corresponding color, which explains the width of the visualized contour fragments.

We can see that the plates of the stegosaurus result in many di�erent 3D contour
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(a) (b)

(c)

Figure 4.14: (a) Left frame of a dog of the GRAZ-STEREO-BASE-EYE-TURNTABLE

dataset. (b) Camera poses of the stereo rig (green and blue triangle connected by a red

line) estimated around the dog using [SSP08]. (c) `3D contour cloud' for 651 frames where

outliers were reduced.

Figure 4.15: Sample images of the Dino-dataset. 363 views are sampled on a hemisphere.
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Figure 4.16: Sample images of the Temple-dataset. 312 views are sampled on a hemisphere.

fragments because of di�erent illumination e�ects and that the striation on the

pillars delivers many non-distinguishable inner contour fragments.

Figure 4.17: `3D contour cloud' of the dino.

4.5 Discussion

At the moment our reconstruction algorithm works on stereo image sequences,

where an object is presented to the camera in front of a homogeneous back-

ground and either the object or the camera is rigid. This is due to the underlying

Structure-and-Motion framework, which was built for the reconstruction of a rigid

scene using a moving camera. The system is stable up to 50% outliers, which

means that more than half of the tracked feature points have to be stationary on a

rigid object; no (major) foreground motion is allowed. In contrast, in the present
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Figure 4.18: `3D contour cloud' of the temple.

application we use stereo image sequences from a stationary camera whereas the

foreground object is moved. However, the stereo reconstruction framework is in

principle also applicable to more sophisticated stereo image sequences using a

multibody structure and motion framework e.g. [HP10] .

We discussed earlier in this chapter problems and di�culties of reconstructing

long and salient 3D contour fragments and we have presented a novel method for

stereo correspondence and outlier reduction. However, we did not discuss the

behavior of the system regarding matching consistency and evolution of shape

in time. In order to make sure that the 3D contour cloud contains only those

3D contour fragments which are consistent over time, each 3D contour fragment

has to be tracked over a de�ned number of frames. There are several scenarios:

a contour fragment momentarily breaks, a contour fragment constantly changes

(as it is the case at the visual rim), or the linking of a contour fragment changes.

In these cases, a contour fragment is just tracked as long as the shape similarity

(based on a threshold) is granted. Therefore, it may happen, that one or more

3D fragments represent the same contour on the object. We do not discard the

individual 3D contour fragments but we keep them in our representation (which

explains the `thickness' of some fragments in our experiments). Thus, also the

shape variability of the visual rim is represented. For the task of categorization, it
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is left to the learning process to select the category speci�c 3D contour fragments.

4.6 Conclusion

I have presented an automatic reconstruction method that can generate `3D con-

tour clouds' for several objects and various databases. For this, I have developed

a stereo correspondence algorithm which integrates 2D shape context informa-

tion, epipolar information and an ordering constraint into one single cost matrix.

Furthermore, the system generates 3D bounding boxes and object-centered coor-

dinate systems. Although, most of the experimental results are obtained on the

GRAZ-STEREO-BASE-xx dataset, I show that the approach is also applicable

to a standard multi-view stereo dataset. Moreover, an extension of standard 2D

shape context towards 3D is presented. This can be useful in various 3D shape

matching applications. I have shown the application of 3D shape context for

outlier reduction in `3D contour clouds'.

The representation by `3D contour clouds' constitutes a powerful method for

geometric modeling of 3D shape of objects. Various computer vision and graphics

applications e.g. 3D shape retrieval or matching may bene�t from such 3D shape

modeling by `3D contour clouds' as presented in this thesis. However, my main

interest is in object categorization using pose-invariant 3D shape models. Here,

the focus is not a precise reconstruction but rather a qualitatively convincing

representation of 3D shape of a category by salient contour fragments. I'm aware

that an exact silhouette reconstruction is not possible based on two views where

di�erent silhouette contours may be seen on the `visual rim' of the object. On

the other hand, there is the advantage that all aspects of the object's `visual rim'

are integrated into one single 3D model. Especially, active object categorization

systems [RP11] can bene�t from such 3D category models to get a category

and a pose hypothesis. The use of this 3D shape representation for 3D object

categorization is subject of the next chapter.
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3D Gaussian Contour Category Model

(How) can we learn one single, pose-invariant 3D category model based on shape

information? The previous Chapter 4 introduces a model that describes the

shape of a speci�c object with 3D contour fragments (1D manifolds embedded in

3D). The idea is now to use several such models to learn one model that describes

a whole category with all its intra-class variability and inter-class di�erence to

other categories.

In this chapter, I present a probabilistic framework based on Gaussian Mixture

Models for 3D contour fragments (see Section 5.3) for learning such a 3D category

model. The category model itself consists of partitions of Gaussian Mixture

Models, which are selected based on local shape information and 3D geometric

information (see Section 5.4). Experiments and results on the GRAZ-STEREO-

BASE-xx dataset are discussed. The results demonstrate the capability of the

method to categorize 3D objects from categories with small inter-class di�erence.

5.1 Introduction

2D object categorization based on 2D contour models [OPZ06, SBC08] relies on

the fact that contour fragments are su�cient to represent object shape [LB83].

2D object categorization systems based on shape information try to mimic the

57
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human ability to categorize objects just using a few contour fragments. Similarly,

we want to extend this concept to 3D. Figure 5.1(b) demonstrates this: When

humans look at Figure 5.1(b), they can easily identify the object depicted by this

simple collection of straight 3D lines only. For our category model we make use

of the following principle:

Let us assume that we have a 3D model of an object such as the horse in

Figure 5.1(a). Such a horse consists of several parts, e.g. head, legs, back, tail

etc. All these parts are in certain spatial relations to each other. Consequently, if

we assume we have found contour fragments that represent the head of a horse,

we also assume that there are regions in the vicinity of these fragments which

have a high probability to show a leg or a tail. In our model we essentially

describe these spatial relations between parts of an object by means of small sets

of contour fragments.

(a) (b)

Figure 5.1: (a) Photography of a horse. (b) A collection of 3D line segments that describes

the horse.

The probabilistic framework can be summarized as follows: We use proba-

bilistic density functions for 3D shape modeling. The 3D contour fragments - 1D

manifolds in 3D - are represented as Gaussian Mixture Models (GMMs). The

main idea is to perform a partitioning - selection of discriminative subsets - of

the GMM representations of speci�c objects. During the learning process only

such partitions are kept that are commonly found in many GMM representations
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of objects of this category. We �nd discriminative subsets of the probability den-

sity functions using a random feature selection algorithm and a special distance

function based on pairwise spatial relations and similarity of mixture components.

In our framework the 3D contour fragments for speci�c objects are recon-

structed from stereo image sequences (`3D contour clouds' for speci�c objects of

a category, ref. to Chapter 4). However, any other method for the generation of

3D contour fragments for speci�c object may be used. In contrast to 2D based

approaches, we build one single 3D model per category instead of one 2D model

per signi�cant view.

5.2 State-of-the-Art

Gaussian Mixture Models (GMMs) are often used in computer vision for appli-

cations such as pose estimation [LS10], shape modeling, shape matching, shape

retrieval [PR09, LViAN10] or point set registration and atlas construction [CT99,

WVRE08, JV05]. Most of these methods take the whole Gaussian Mixture Mod-

els into account by de�ning or approximating information theoretic divergences

on these mixtures.

Wang et al. [WVRE08] have presented an approach for atlas construction

(i.e. computing a single representative of a population of shapes) and a non-

rigid registration of shapes. They model each shape using a Gaussian Mixture

Model (obtained from a point-set representation of the shape) and minimize the

Jenson-Shannon divergence between di�erent shape models of the population. In

contrast to other atlas construction methods where the atlas construction requires

the non-rigid registration computation beforehand, Wang et al. compute the atlas

simultaneously with non-rigid registration.

Jian and Vermuri [JV05] have presented a robust method for the registration

of 2D and 3D point sets. Their method is based on the usage of Gaussian Mixture

Models for point set representation. The registration is done using a closed-form

expression of the L2 distance between them.
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Peter et al. [PR09] represent a uni�ed 2D shape representation and deforma-

tion framework based on Gaussian Mixture Models for landmark shape analysis

where correspondence is known. They show that the Fisher-Rao metric is a Rie-

mannian metric and can be used to compute a geodesic between shapes which

describes an intrinsic deformation. Additionally, and due to lack of a closed form

Fisher-Rao metric between GMM they develop a new Riemannian metric - the

α-order entropy metric.

Liu et al. [LViAN10] have introduced the Total Bregman divergence for shape

retrieval. We compare this approach to our method by applying it on our dataset.

For details we refer to Section 5.5.3.

All these methods have in common that they obtain mean shape models solely

based on the GMM models of speci�c objects. Intra-class variability is not explic-

itly addressed. Our probabilistic framework also uses Gaussian Mixture Models

to represent shape. However, in contrast to above methods we assume that in-

formation about shape deformation probabilities between objects of the same

category is not incorporated in the GMMs. Our similarity measure hypothe-

sis testing framework makes use of local shape information (which is commonly

ignored in most of the mentioned approaches by setting the covariance matrix

to the identity matrix) and 3D geometric information. Based on a mathemati-

cal derivation we emphasize the di�erences of our approach with respect to the

well-known Kullback-Leibler divergence.

5.3 Representation Model: From 3D Contour

Clouds to 3D Gaussian Contour Models

Modeling 3D contour fragments by probability density functions has several ad-

vantages. The representation of 3D contour fragments by Gaussian Mixture Mod-

els (GMMs) is very �exible and robust. In particular, noise, outliers, and defor-

mations can be handled in a simple, natural way and the 3D geometry of the 3D

contour fragments can be maintained. The time complexities of generation and
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matching are closely interrelated to the quality of the 3D geometry description.

On the one hand, a higher number of mixture components leads to a more accu-

rate representation of the shape of a contour fragment (see Figure 5.2). On the

other hand, the time complexity of the learning stage increases due to the higher

number of mixture components.

(a) (b) (c)

Figure 5.2: Gaussian Mixture Models (represented by blue ellipsoids) for a 3D contour with

di�erent numbers of mixture components K. (a) K = 10. (b) K = 5. (c) K = 3.

The representation with Gaussian Mixture Models can handle several prob-

lems that may occur:

• Noise/Outliers: When working with real data like reconstructed 3D con-

tours from images instead of synthetic 3D models, noise (i.e. slightly dis-

placed reconstructions) always plays an important role. If a few contour

points are noisy, a reconstructed 3D contour fragment may no longer be

identi�ed as a single connected contour. With the representation by a set

of probability density functions contours are always split into smaller parts.

Parts that are only caused by noise/outliers are then suppressed during the

learning stage.

• Linking: When working with contour fragments, linking of edges to long

connected contours always plays a role. Di�erent linking in di�erent models

may have a strong in�uence on a matching algorithm. With the representa-

tion as GMMs, mixture components can be �exibly grouped during learning,

resulting in partitions (discriminative subset) that are adapted to particular

linkings (see Figure 5.3).
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• Deformation: By modeling with probability density functions, intra-class

variability in form of shape deformations probabilities can be handled with

a comparatively low computational e�ort.

It is worth mentioning that our approach may appear cumbersome: Initially,

it seems we throw away the information on how contours are linked during the

generation of the GMMs. Later, during the learning stage, we then reconstruct

the spatial relation between GMMs. However, the initial reconstruction of long

contours helps to provide good GMM representations of the shape. Furthermore,

the linking in the learning stage does not solely depend on one speci�c object

model. This is actually the strength of the concept as it can overcome problems

like incorrect linking or contour splitting due to noise.

(a) (b)

(c) (d)

Figure 5.3: 2D example for di�erent linking of the T-shape. (a) & (b) Di�erently linked

edges that form longer contour fragments. (c) & (d) Representation as GMMs.

Our algorithm is applicable to all kind of 3D contour fragments, which describe

the shape of an object. As mentioned in Section 4.2, there are many possibil-

ities to generate 3D contour fragments. For the experiments in this thesis, we

reconstruct `3D contour clouds' from stereo image sequences of several objects.

Exemplary `3D contour clouds' of several objects are shown in Section 4.4.2.
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Given a `3D contour cloud' C consisting of a set of 3D contour fragments Fl

C = {Fl, l = 1 . . . N}, (5.1)

where N is the number of 3D contour fragments in a cloud and Fl = p1, ..., pn

is a set of 3D points, we can �t a mixture of multivariate Gaussian distributions

to each 3D contour fragment Fl using the standard Expectation-Maximization

(EM) algorithm (see e.g. [XJ96]), so that each 3D contour fragment Fl is given
by

Θi
K(x) =

K∑
k=1

αkp(x|N(µk,Σk)) (5.2)

with probability

p(x|N(µk,Σk)) =
1

(2π)
n
2 ‖Σk‖

1
2

exp

(
−1

2
(x− µk)TΣ−1

k (x− µk)
)

(5.3)

Θi
K is the Gaussian Mixture Model for a fragment Fl and K is the number of

mixture components with mean µk, variance Σk, and weight αk. In our represen-

tation, K is chosen according to the length of the 3D contour fragment (with a

maximum of K = 10). We call this representation `3D Gaussian Contour Model',

where each 3D contour fragment of a `3D contour cloud' is represented by a GMM.

In many of the mentioned approaches it is assumed that the Gaussians are

spherical and the covariance matrix is thus set to the identity matrix. In our

case, the covariance matrix gives essential information about the orientation of

a 3D contour fragment. We assume that each mixture component has the same

weight, so that αk = 1. We do not decide on the basis of the weights, whether a

mixture component is relevant for a category model or not. We assume that even

a mixture component with an originally small weight in the GMM representation

can be important for a category model. The decision about this importance is

left to the learning stage.
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5.4 Category Model: From 3D Gaussian Contour

Models to a 3D Gaussian Contour Category

Model

The category model - we call it 3D Gaussian Contour Category Model - is built

from a set of 3D Gaussian Contour Models of speci�c objects of a category. We

use a random feature selection algorithm to �nd a discriminant set of features for

a category. Each feature is a set of probability densities - we call such a set a

partition1 - which is (weakly) discriminative for a category against another one.

The distance measure is given by a similarity measure combining local shape

information and 3D geometric information between densities. In the following we

describe the test statistic (see Section 5.4.1) and the practical implementation in

form of a random feature selection algorithm (see Section 5.4.2).

5.4.1 Test Statistic

Our approach uses a hypothesis test2, to identify, if a given speci�c object O

belongs to an object category C

H0 : O ∈ C
H1 : O /∈ C

reject H0 if SM(fO‖gC) > γ

(5.4)

where gC is a learned 3D Gaussian Contour Category Model and fO is the

3D Gaussian Contour Model of the speci�c object. The test statistic TS =

1In this thesis, the term `partition' is used for a discriminative subset of mixture components,

not a partition in a strictly mathematical meaning.
2The statistical hypothesis, which has to be tested is the null hypothesis H0. The alternative

hypothesis is denoted by H1. The test statistic TS is a statistic on whose value the null

hypothesis will be rejected or not. The threshold of rejecting a null hypothesis is given by γ

(notation is based on [Ros05]).
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SM(fO‖gC) is a similarity measure between two GMMs. On the basis of the

threshold γ, the null hypothesis is rejected or not.

Most of the existing shape matching methods that use Gaussian Mixture

Models are based on the Kullback-Leibler (KL) divergence between GMMs or,

similarly, the Jensen-Shannon divergence (e.g. [WVRE08]) as a similarity measure

SM . There exists no closed-form for the KL divergence between two Gaussian

Mixture Models, but there exists a closed-form Kullback-Leibler divergence be-

tween two Gaussians N(µ1,Σ1) and N(µ2,Σ2). It is given by

KL = 1
2
(log |Σ2|

|Σ1| + tr(Σ−1
2 Σ1) + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)) (5.5)

Given two Gaussian Mixture Models f and g, where

f =
n∑
i=1

fi =
n∑
i=1

αip(x|N(µi,Σi)) (5.6)

and

g =
m∑
j=1

gj =
m∑
j=1

βjp(x|N(µj,Σj)), (5.7)

the following approximation of the KL-divergence between them has been sug-

gested in [GGG03]:

KL(f‖g) ≈
n∑
i=1

αi min
j

(KL(fi‖gj) + log
αi
βj

) (5.8)

With (5.8) we can rewrite the hypothesis test (5.4) as

reject H0 if

KL(f‖g) ≈
n∑
i=1

αi min
j

(KL(fi‖gj) + log
αi
βj

) > γ.

(5.9)

With the simpli�cation that all mixture components have the same weight αi =

βj = 1 and with γ0 = γ/n, we further obtain

reject H0 if

n∑
i=1

min
j

(KL(fi‖gj)− γ0) > 0.

(5.10)
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In this approximation, the term minj(KL(fi‖gj)−γ0) might be very high when a

part of an object is missing as there will be no gj which is near to fi. However, for

our application we want to permit that certain parts of an object can be missing.

Therefore, we �rst suggest using only discrete values for the similarity measure

between two Gaussians:

reject h0 if

n∑
i=1

sgn(min
j

(KL(fi‖gj)− γ0)) > −n+ 2l

(5.11)

where l is the number of Gaussians that are permitted to be missing in the sample.

Please note that due to the discretization, the term sgn(minj(KL(fi‖gj) − γ0)),

which is equivalent to minj(sgn(KL(fi‖gj)−γ0)), can be considered a hypothesis

test: It is -1 (keep `local' hypothesis h0), if there is at least one Gaussian in the

set g that is equal (with respect to a certain signi�cance level) to fi and +1 (reject

h0) otherwise. The `global' hypothesis H0 is rejected if the number of Gaussians

of f that do not have a match in g is larger than a prede�ned number l. In

our case the Kullback-Leibler divergence KL(fi‖gj) is not a particularly useful

similarity measure. The probability density function, especially the covariance

matrix Σi of points, gives no evidence about the shape variability of 3D contours

in an object category. It is rather a representation of the reconstruction quality;

noise/outliers may have an important in�uence on the covariance matrix. Fur-

thermore, it also re�ects the curvature of the corresponding contour fragment,

but this also depends on the number of mixture components which describe the

3D contour fragment. The major information about the orientation lies in the

main principal axis which we will use for our similarity measure. Finally, in

the Kullback-Leibler divergence a shift of the mean µi has more e�ect on the

divergence measure than changes of the covariance matrix Σi.

Therefore, we propose a di�erent similarity measure between two Gaussians,

which is better suitable for our objective, i.e. the learning of a 3D category shape

model. As mentioned above, the covariance matrix represents the orientation of

a contour by its principal component and it can handle noise and reconstruction
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errors by the other two dimensions. Consequently, GMMs are better suitable for

shape representations than just an approximation by straight lines.

In the remaining section we use the following notation: (R, T ) denotes the

global transformation between objects, (Ri, Ti) denotes the local transformation

of a single mixture component (µi,Σi). (µOj ,Σ
O
j ) and (µCi ,Σ

C
i ) are mixture com-

ponents of a speci�c object O and a model C. Further, we de�ne vab as the

di�erence vector between a pair of mixture components ((µOa ,Σ
O
a ), (µOb ,Σ

O
b )) of

the object O and vxy as the di�erence vector between a pair of mixture compo-

nents ((µCx ,Σ
C
x ), (µCy ,Σ

C
y )) of the model C.

We can de�ne the following hypothesis to test the similarity of Gaussians:

H0 : (µOj ,Σ
O
j ) = (µCi + Ti, Ri · ΣC

i )

H1 : (µOj ,Σ
O
j ) 6= (µCi + Ti, Ri · ΣC

i )

reject H0 if TS1 > γ1 or TS2 < γ2

(5.12)

where γ1 and γ2 are the thresholds and TS1 and TS2 are test statistics. As the

GMM's may be subject to translation, we also need to �nd this translation. In

order to achieve this, we de�ne the test statistics (between a mixture component

of the sample and a mixture component of the model) on pairs of mixture com-

ponents. By means of TS1 and TS2, a translation between the two models is

described. In doing so, the second component of the pairs essentially de�nes the

translation and is used as kind of an anchor point for aligning the two models

which are tested on similarity. By testing the angles between anchor point of

model and sample we further reduce the space for possible alignments and thus

the computational cost.

TS1 is the test statistic for the pairwise di�erence of pairs of mixture compo-

nents

TS1 = ‖vOab − vCxy‖2
. (5.13)

with

vOab = µOa − µOb and vCxy = µCx − µCy . (5.14)
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Let eOa (eOb ) be the principal eigenvectors of ΣO
a (ΣO

b ) and e
C
x (eCy ) the principal

eigenvectors of ΣC
x (ΣC

y ), then TS2 is given by the scalar product between the

eigenvectors

TS2 = eOi · eCj for i = a, b and j = x, y. (5.15)

With this, we can introduce a discrete similarity measure

SM(fi, gj) =

−1 if TS1 < γ1 and TS2 > γ2

1 otherwise.
(5.16)

Consequently, SM(fi, gj) = −1 means that the two pairs of mixture components

have approximately the same relative orientation (TS2 > γ2) and the same rela-

tive position (TS1 < γ1). Otherwise, H0 (see 5.12) will be rejected. With this

similarity measure instead of the Kullback-Leiber divergence equation (5.11) is

modi�ed to
reject H0 if

n∑
i=1

min
j

(SM(fi, gj)) > −n+ 2l

(5.17)

Invariance Properties

Speci�c objects of a category may di�er by a global rigid transformation (R, T )

between their 3D Gaussian Contour Models and a local shape transformation

(Ri, Ti) between mixture components. Then the global and local transformation

can be described by

(µOj ,Σ
O
j ) = (R · µCi + Ti + T,R ·Ri · ΣC

i ). (5.18)

To be insensitive to the global translation, we consider pairwise relations between

mixture components, which is given by

vOab = µOa − µOb . (5.19)

Because of
vCxy = (µCx + T + Tx)− (µCy + T + Ty)

= (µCx + Tx)− (µCy + Ty),
(5.20)
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the global rigid translation T can be eliminated. To be insensitive to a global

rotation we may also consider pairs of mixture components. We can compute

a global rotation R between a pair of the object and the pair of the model by

estimating the rotation between their principal eigenvectors. However, for per-

formance reasons we avoid to compute the global rotation for each pair. Instead,

we did as preprocessing step a coarse alignment of the rotation of the whole 3D

models based on the longest elongation to reduce the matching space to four

possibilities.

By normalizing the relative pairwise di�erence TS1 by a scaling factor we are

moderately scale invariant. Let BO be the bounding box diagonal of the object

model and BC be the bounding box diagonal of the category model. Then TS1

can be rewritten as

TS1 =

∥∥∥∥∥ vOabBO
−
vCxy
BC

∥∥∥∥∥
2

. (5.21)

Partition model

The presented approach is suitable when we have more or less rigid objects that

are deformed only by small translations and rotations of the contours. However,

an object may actually be composed of several parts. For example, the head of

a horse will be a rather rigid object but can have signi�cant displacement with

respect to other parts of the animal. Therefore, we do not consider the GMM of a

3D model in a whole, instead we randomly select discriminative subsets of mixture

components which we call partition (see Figure 5.4). Such a discriminative subset

lets us handle each part of an object independently or in context to other parts.

The partitioning model ΘM of a subset of probability functions of sizeM is given

by:

ΘM =
M∑
m=1

αmN(µm,Σm) with ΘM ⊂
N⋃
i=1

Θi
K . (5.22)

A 3D Gaussian Contour Category Model consists of sets of partitions which are

learned using the method described in Section 5.4.2. Whether a partition belongs
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to a category or not is decided on the basis of equation (5.17) such that we de�ne

a hypothesis test for each partition ΘM .

(a) (b)

Figure 5.4: Simple illustration of the representation model of a horse including a partition.

(a) 3D Gaussian Contour Model where each 3D contour fragment is represented by a GMM

Θi
K . (b) Selection of one partition ΘM with M = 5. Selected partition is drawn in green.

5.4.2 Learning by Random Feature Selection

In the previous section it was shown how we can test a sample object on a model of

a category. In this section we describe how we extract a model of a category from

a number of sample objects. In our practical implementation we use a random

feature selection algorithm (see Figure 5.5) for the partitioning of probability

density functions. Random feature selection is a simple method for reducing the

number of features to a discriminative subset of features. In the random feature

selection, we randomly select partitions of probability density functions and verify

if they are discriminant on training data by testing the hypothesis above for pairs

of the partitions. Before starting the random feature selection, the 3D models

are aligned on the basis of their bounding box in that way that all animals show

in the same direction. For performance issues it is useful to do a preprocessing

by considering the position of probability densities on the object. The random

selection algorithm stops when a number of iterations or a number of selected

partitions is reached.
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Figure 5.5: Random feature selection algorithm with validation.

By the partitioning of probability density functions we can generate additional

constraints about their distribution on the object:

• Locality constraint: The selected partitions of probability density functions

should be distributed in a local environment on the object. By this con-

straint we may represent local features on the object, e.g. the leg or the

head of an animal.

• Uniformity constraint: The selected partitions of probability densities should

be distributed on the object, so that no two density functions should be in

a local neighborhood. This constraint yields partitions that are distributed

on the object such that each density may represent one part of the object.

• No constraint: The partitions are selected randomly without restrictions on

the spatial distribution on the object.

In the random feature selection algorithm we �rst test if a selected partition

of densities is discriminative on the positive training data, afterwards, if it is

discriminative against the negative data. Finally, we obtain a subset of partitions

of probability density functions.
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The classi�cation output hq(O) of a partition Θq
M on a 3D model O is given

by

hq(O) =


0 if

M∑
m=1

min
i

(SM(fi, gm)) > −M + 2l

∀fi ∈ O

1 otherwise

(5.23)

where M is the number of mixture components of the subset and q de�nes the

qth subset. We check for all components of the subset ∀gm ∈ Θq
M if there is a

corresponding component in the model O allowing l missing components. The

output of the whole detector H(O) then is

H(O) =
1

Q

Q∑
q=1

(hq(O)). (5.24)

5.5 Experimental Evaluation

We evaluate our 3D object categorization system on four categories of our GRAZ-

STEREO-BASE-xx dataset. On the one hand, we show that the random feature

selection algorithm applied to positive training data can be used to reduce out-

liers in 3D models. On the other hand, - and this is the main part of this section

- we show several experiments and results to achieve several 3D Gaussian Con-

tour Category Models. The di�culties in our dataset are the large intra-class

variability and the small inter-class di�erence between horses and cows, but also

dogs. Therefore, we show the possibilities to distinguish between the categories

`horse' and `cow', as well as between the categories `dog' and `horse'. We also

learn a model for the category `car' against `horse', `cow', and `dog', where the

inter-class di�erence is large.

5.5.1 Cross Validation

We use a k-fold cross validation to evaluate our experiments. Given a dataset

D, this dataset is split into k subsets of approximately equal size. In our case
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D = {Dp
1, ..., D

p
S1
, Dn

1 , ..., D
n
S2
} of positive and negative 3D models and k = S1+S2

subsets. Consequently, one subset is one 3D model. We train the classi�er S1×S2

times. In each iteration t ∈ 1, ..., S1 × S2, we leave out one positive and one

negative 3D model. So we train on D\{Dp
i , D

n
j } ∀i = 1, ..., S1 and ∀j = 1, ..., S2

and test on Dp
i and Dn

j . In the cross validation we then build the average over

the results for the positive and the negative test data.

5.5.2 Outlier Reduction

I mentioned in Section 5.3 that outliers in form of wrongly reconstructed contour

points always play an important role in 3D reconstruction. Noise is represented

in the probability density function. But there exist also outliers that result from

the reconstruction process. The corresponding probability density functions do

not actually belong to the shape of the object. By running the random feature se-

lection only on the positive training data, we can observe that noisy parts can be

substantially suppressed. Given nine horses, we randomly select 1000 partitions

of �ve mixture components, where in each round of the cross validation a horse is

randomly selected from a set of eight horses. Figure 5.6(a) and Figure 5.6(b) show

the 3D Gaussian Contour Models of two horses. For visualization, the probability

densities are drawn by 3D lines given by their mean and the principal eigenvector.

We can see that outliers exist, which result from the `3D contour cloud' gener-

ation. In Figure 5.6(c) and Figure 5.6(d), we can see selected partitions of size

5 from the two horses which were discriminant for all other horses. We can see,

that most of the discriminative probability densities are located on the head, the

back, and the tail of the horses. Fewer densities are located on the legs, because

of di�erent arrangements of the legs in the 3D horse models. Outliers have been

signi�cantly reduced.
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(a) (b)

(c) (d)

Figure 5.6: (a) & (c) 3D Gaussian Contour Model of a horse and 28 partitions which have

been selected. (b) & (d) 3D Gaussian Contour Model of another horse and 128 partitions

which have been selected. We see, that the number of outliers is signi�cantly reduced. A

partition of size M = 5 is represented by the same color.

5.5.3 3D Object Categorization on the GRAZ-STEREO-

BASE-xx

Now, we evaluate our probabilistic 3D object categorization framework for the

task of 3D object categorization. Our aim is to learn one category against one

or several others. The di�culties are the small inter-class di�erence between the

animals in our GRAZ-STEREO-BASE-xx dataset. We show that we are able to

handle this small inter-class di�erence as well as the large intra-class variability.
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`Horse' against `cow'

The aim of the following experiments is to learn a 3D Gaussian Contour Category

model `horse' against `cow'. The challenge in this learning experiment is the small

inter-class di�erence between horses and cows. Our object categorization system

is validated using the cross validation scheme described in Section 5.5.1. We did

several experiments with di�erent kinds of constraints (see Section 5.4.2) on the

random selection of partitions. We can summarize the experiments as follows:

• Experiment HORSE 1: We randomly select partitions of size M = 3 or M

= 5 of probability density functions from the 3D Gaussian Contour Models

of randomly selected horses, where we use the uniformity constraint (see

Section 5.4.2). We perform a cross validation experiment where the results

of this experiment are summarized in Table 5.1.

• Experiment HORSE 2: We randomly select partitions (M = 5 or M = 7)

of probability densities from the 3D Gaussian Contour Models of randomly

selected horses, where we use no constraint. The results of this experiment

are summarized in Table 5.2.

• Experiment HORSE 3: We randomly select partitions (M = 5) of proba-

bility density functions from the 3D Gaussian Contour Models of randomly

selected horses, where we use the locality constraint. The results of this

experiment are summarized in Table 5.3.

For these experiments we typically choose γ2 = 0.98 and l = 0. For Experiment

HORSE 1 and Experiment HORSE 2 γ1 = 0.2, for Experiment HORSE 3 γ1 = 0.1.

Too small γ1 and γ2 do not handle intra-class variability, too large γ1 and γ2

do not handle inter-class di�erence. The result tables (Table 5.1, Table 5.2,

Table 5.3) contain seven entries for each experiment. The average result of the

cross validation for the positive training set `horse' and the negative training set

`cow' is shown in the �rst (µhorse) and the third (µcow) row. Assuming a normal

distribution we can also compute the standard deviations σhorse and σcow, as well

as a classi�cation threshold c_thresh on whose basis we can decide if a 3D test
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model is a `horse' or a `cow'. c_errorhorse and c_errorcow are the classi�cation

errors which represent the true positive rate and the false positive rate. Figure 5.7

shows a graphical representation of the results of Experiment HORSE 1 - partition

(M = 3). We can see that the two categories are well separable. Figure 5.10 shows

the Receiver Operating Characteristic (ROC) curves for all three experiments3.

As the results show, Experiment HORSE 1 and Experiment HORSE 2 perform

better than Experiment HORSE 3 with the local features. In Experiment HORSE

1 and Experiment HORSE 2, the classi�cation errors are ≤ 21%. The locality

constraint seems to be less useful than a uniform distribution. This result is not

very surprising. Local features often have similar shape which is not category

speci�c, e.g. legs of horses and cows. Only combinations with other local features

(e.g. leg and head of an animal) could give more discriminance. Moreover, we

saw that we have to learn longer for Experiment HORSE 3 for the same number

of partitions than for Experiment HORSE 1 or Experiment HORSE 2. This is

also true for learning smaller partitions e.g. Experiment HORSE 1 - partition (M

= 3).

Figure 5.8 shows an example of a learned 3D Gaussian Contour Category

Model `horse' from one training step of Experiment HORSE 1 - partition (M =

5). For this model we randomly choose 1000 partitions, where 135 are found

to be discriminative for horses and not for cows. The Gaussian Contour Cat-

egory Model in Figure 5.8 has 135 partitions from eight horses. All partitions

are drawn in one model without special aligning. We can see that discriminant

probability density functions are located mainly on the head, the back and the

tail, fewer are on the legs which is due to di�erent arrangements of legs on dif-

ferent training models. We can see a similar behavior for Experiment HORSE

2. Figure 5.9 shows a learned 3D Gaussian Contour Category Model `horse' for

Experiment HORSE 2 - partition (M = 7). The distribution of the probability

density functions is similar to that of Experiment HORSE 1, on head, back, and

tail. However, most of the densities are located on the head of the horse.
3All ROC curves in this work (Figure 5.10, Figure 5.12, and Figure 5.15) were generated by

varying the classi�cation threshold c_thresh.
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Table 5.1: Experiment HORSE 1: partition selection based on the uniformity constraint .

Partition (M = 3) Partition (M = 5)

µhorse 0.7380 0.6781

σhorse 0.1965 0.2328

µcow 0.3141 0.2481

σcow 0.2432 0.2191

c_thresh 0.5248 0.4632

c_errorhorse 0.1390 0.1788

c_errorcow 0.1931 0.1635

Table 5.2: Experiment HORSE 2: partition selection based on no constraint .

Partition (M = 5) Partition (M = 7)

µhorse 0.7066 0.6648

σhorse 0.2225 0.2271

µcow 0.2836 0.2325

σcow 0.2555 0.2302

c_thresh 0.4912 0.4485

c_errorhorse 0.1660 0.1704

c_errorcow 0.2082 0.1741

`Dog' against `horse'

The aim of the following experiments is to learn a 3D Gaussian Contour Category

Model `dog' against `horse'. Subjectively, the inter-class di�erence between the

category `dog' and the category `horse' is larger than between `horse' and `cow'.

Again, our object categorization system is validated using the cross validation

scheme described in Section 5.5.1. In the Experiment DOG we randomly select

partitions of size M = 5 from 3D Gaussian Contour Models of randomly selected

dogs based on the uniformity constraint. As parameters, we choose γ2 = 0.98 and

l = 1. The results of this experiment are summarized in Table 5.4. As the results
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Table 5.3: Experiment HORSE 3: partition selection based on the locality constraint .

Partition (M = 5)

µhorse 0.5723

σhorse 0.3304

µcow 0.2619

σcow 0.2907

c_thresh 0.4462

c_errorhorse 0.3514

c_errorcow 0.2631

Figure 5.7: Graphical representation of the results of Experiment HORSE 1: Partition (M

= 3). The two categories are well separable.

show, we achieve classi�cation errors≤ 11% for the Experiment DOG. Figure 5.11

shows a graphical separable representation of the results of Experiment DOG -

partition (M = 5). We see that dogs and horses are better a than horses and cows.

As the features were initially selected such that they are frequently observed for

the category 'dogs' they only have random matches on horses. Therefore, it is not

surprising that the Gaussian bell curve for the horses is quite �at. Figure 5.12

shows the Receiver Operating Characteristic (ROC) curve for this experiment.
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Figure 5.8: 3D Gaussian Contour Category model `horse' with 154 partitions from eight

horses of size M = 5 of Experiment HORSE 1. The probability densities are drawn by 3D

lines given by their mean and the principal eigenvector.

Figure 5.13 shows an example of a 3D Gaussian Contour Category Model

for the category 'dog' as it has been learned in the training with partitions of

size M = 5. For this model we initially generated 50000 partitions, 1720 thereof

are found to be discriminative for dogs versus horses. The 3D Gaussian Contour

Category Model in Figure 5.13 shows the 1720 partitions which are obtained from

eight dog models. A single partition comprises GMMs form one dog model only;

no special aligning has been applied. We can see that discriminant probability

densities are located mainly on the head, the tail, and the legs, fewer are on the

body. Although, the number of discriminant partitions is higher than, e.g. in

the 3D Gaussian Contour Category Model `horse' (Figure 5.8), the 'dog' model

seems comparatively sparser. This is because one or more mixture component

have been selected for multiple partitions.
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Figure 5.9: 3D Gaussian Contour Category Model `horse' with 142 partitions (M = 7) from

eight horses of Experiment HORSE 2. The probability densities are drawn by 3D lines given

by their means and their principal eigenvectors.

`Car' against `cow', `horse', and `dog'

On the one hand, the aim of this experiment is to show how the classi�cation

error decreases when the inter-class di�erence increases. On the other hand, the

aim is to demonstrate scale invariance of our approach. Therefore, we perform

an experiment where we scale the car models by factors from 1/10 to 50 and the

horse models by a factor from 1/10 to 50. The size of the dog models and cow

models are unchanged. We run a leave-one-out-test (see Section 5.5.1) where we

randomly select partitions of size M = 5 from the 3D Gaussian Contour Models

of randomly selected cars without any constraint. The results of this experiment

are summarized in Table 5.5.

For the experiment we choose γ1 = 0.1, γ2 = 0.99, and l = 0. The results

are summarized in Table 5.5. The average results of the cross validation for the

positive training set `car' and the negative training set (containing the categories

`cow', `horse' and `dog') are shown in the �rst (µcar) and the third (µnocar) row,
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Figure 5.10: ROC curves for Experiment HORSE 1, HORSE2, and HORSE3.

Figure 5.11: Graphical representation of the results of the experiment `dog' against `horse':

Partition (M = 5) with classi�cation threshold c_thresh = 0.9345. The two categories are

well separable with a classi�cation error c_errordog = 4.10−4 and c_errorhorse = 0.1020.

respectively. Assuming a normal distribution we can also compute the stan-

dard deviations σcar and σnocar, as well as a classi�cation threshold c_thresh
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Table 5.4: Experiment DOG: partition selection based on uniformity constraint.

Partition (M = 5)

µdog 0.9807

σdog 0.0139

µhorse 0.6367

σhorse 0.2335

c_thresh 0.9345

c_errordog 0.0004

c_errorhorse 0.1020

Figure 5.12: ROC curve for Experiment DOG (M=5).

between the categories `car' and 'no car'. The classi�cation errors c_errorcar and

c_errornocar de�ne at which percentage we would obtain an incorrect categoriza-

tion. Figure 5.14 shows a graphical representation of the results of Experiment

CAR, and Figure 5.15 shows the ROC curve for this experiment. We can see

that the category `car' is clearly separated from the other three categories with

a classi�cation error ≤ 1.2%. One reason for the good performance is the larger

inter-class di�erence between cars and the other categories than in the experi-

ments before (`horse' against `cow' and `dog' against `horse'). The scaling of the

cars has no signi�cant in�uence on the results when using the scale invariant test

statistic.
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Figure 5.13: 3D Gaussian Contour Category Model `dog' model with 1720 partitions (M =

5) from eight dogs. The probability densities are drawn by 3D lines given by their means

and their principal eigenvectors. We can clearly identify the overlap of several 3D Gaussian

Contour Models. Despite this overlap, regions corresponding to legs, heads or tails can still

be identi�ed by a human observer.

Figure 5.16 shows an example of a learned 3D Gaussian Contour Category

Model `car' from one training step of Experiment CAR. For this model we ran-

domly choose 50000 partitions, where 1500 are found to be discriminative for the

category `car' and not for the other three categories. All partitions are drawn in

one model without special aligning except the car sizes which were di�erent for

these experiment. We can see that discriminant probability density functions are

located mainly on the car silhouette and the wheels.

Bregman Divergence vs. Our Approach

We motivate our similarity measure by the fact that the Kullback-Leibler and

similar divergences are not applicable for our goal - learning a 3D category model
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Table 5.5: Experiment CAR: partition selection based on no constraints.

Partition (M = 5)

µcar 0.7422

σcar 0.1620

µnocar 0.0777

σnocar 0.1267

c_thresh 0.3770

c_errorcar 0.0121

c_errornocar 0.0091

Figure 5.14: Graphical representation of the results of the scale invariance Experiment CAR:

partition (M = 5). The classi�cation threshold c_thresh = 0.3770. The two categories are

well separable with a classi�cation error c_errorcar = 0.0121 and c_errornocar = 0.0091.

- for several reasons. The Kullback-Leibler divergence is a special case of a Breg-

man divergence. Liu et al. [LViAN10] introduce a Total Bregman divergence for

shape matching and shape retrieval in an MPEG-7 dataset of 2D shapes. In our

experiment we apply this Total Bregman divergence described in [LViAN10] to

object categorization and explain the di�culties.

The Bregman divergence is often used to compute cluster centers. Liu et

al. have adapted this idea and compute a cluster representative - the so called

t-center - of a set of shape models. The t-center is the best model that minimizes

the l1-norm Total Bregman divergence between itself and the other shape models.
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Figure 5.15: ROC curve for Experiment CAR (M=5).

Figure 5.16: 3D Gaussian Contour Category Model `car' model with 1500 partitions (M =

5) from six cars of Experiment CAR. The probability densities are drawn by 3D lines given

by their means and their principal eigenvectors. For illustration we did a coarse alignment

of the car sizes which were scaled di�erently for this experiment.
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Moreover, they de�ne the tSL (total square loss divergence) between two GMMs

to compute the dissimilarity between them.

In our experiments we did a leave-one-out test on the same dataset which was

used for Experiment HORSE 1 (M = 3). In each iteration of the cross validation

we leave out one 3D model and compute the t-center of the remaining horses and

cows as representative of the class - 3D category model. This t-center we test on

the remaining model using the tSL and compute the average recognition rate for

all models.

In our experiments we have to deal with two challenges: Time complexity and

robustness. The time complexity of computing the t-center and the tSL is O(n2)

where n is the number of mixture components. Assuming a 3D model dataset

of nine horses where each horse has 5000-10000 mixture components, we have in

each leave-one-out iteration a t-center of 40000 to 80000 mixture components.

It is impossible to use the Total Bregman divergence for such large models, as

the computational e�ort would be excessive. Therefore, in order to reduce the

computation time we have to reduce the size of the datasets. Therefore, we

randomly sample a subset of 500 mixture components from each 3D Gaussian

Contour Model and evaluate the algorithm using the cross validation. We iterate

the experiments several times. During these experiments we make the observation

that the algorithm is very sensitive to the actual choice of mixture components.

If there are outliers in at least one of the 3D Gaussian Contour Models, we get

no reasonable results because of too high tSL dissimilarities.

Table 5.6 summarizes the comparison of the recognition rate of our approach

with the Total Bregman divergence. Due to the sensitivity to noise and outliers

we report the best recognition rate that we achieved in series of seven experiments

for the Total Bregman divergence.

5.6 Discussion

We performed experiments on our own dataset GRAZ-STEREO-BASE-xx. Be-

cause of the size of the dataset, several questions arise:



5.6. DISCUSSION 87

Table 5.6: Comparison of recognition rates.

Recognition rate (%)

Our approach 85.9

Total Bregman divergence [LViAN10] 55.6

• How scalable is the presented approach with respect to a large number of

categories?

• Is the approach applicable to non-rigid objects?

To answer these questions: In my opinion it is scalable to a large number of ob-

jects independent if they are rigid or non-rigid objects (except maybe for some

categories like humans with all their very di�erent poses). The number of cate-

gories mainly depends on the size of the dataset, which was in my experiments

- due to the underlying Structure-and-Motion framework - restricted to a lab

environment. If the underlying Structure-and-Motion framework would allow

go outside and to identify and model moving objects, e.g. as in a multi-body

Structure-and-Motion framework [SSP08], such a dataset of 3D shape models

could be generated for a large number of di�erent objects of di�erent categories.

The experiments show that it is possible to di�er between categories with small

inter-class di�erence although we have a very small dataset of objects.

We use a simple random feature selection algorithm to �nd a discriminative

subset of features for a category. We saw in the results, that non-rigid parts of

objects as legs are less often selected for the 3D category model than rigid parts.

Therefore, we can make the assumption that our approach currently favors more

or less rigid objects. There are several concepts on how to improve this behav-

ior: First, it is known that sophisticated learning algorithms are often capable

to partially deal with non-rigid object. Our current learning algorithm is still

rather simple. Second, a hierarchical approach might be used, i.e. the relation

between partitions due to motion might be exploited: Let us assume we have the

category `horse'. The moving parts of the horse are the head, the tail, and the

legs. Each of these moving parts has a restricted movement, e.g. the head can
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move left, right, up and down. Each movement causes a change in local shape in-

formation and changes in spatial relation to other shapes of the object. But there

is a relation between this local shape information, e.g. orientation of a mixture

component. Thus, spatial and temporal relations to other mixture components

could be learned.

5.7 Conclusion

I have presented a new approach for learning a 3D Gaussian Contour Category

Model using a probabilistic framework based on Gaussian Mixture Models. In-

stead of modeling the whole shape by a GMM and computing a divergence be-

tween shapes, I represent 3D contour fragments by GMMs and apply a parti-

tioning on them, i.e. our category model is represented by a set of small GMMs.

In the similarity measure I combine local shape information and global 3D geo-

metric information. The experiments show that it is possible to build one single,

pose-invariant 3D model per category. This is in contrast to building one model

per signi�cant view as it is the case in 2D shape based models. The results

demonstrate that we can learn one category against another one even when the

inter-class di�erence is small. Furthermore, the experiments show that global

partitions, i.e. partitions where the used components are spread over the entire

object, are better suitable for a category model than local features.

A further question arises: Can we use such a probabilistic 3D model for pose

estimation in 2D images (e.g. [LS10]) or even for categorization in 2D images?

This would overcome known problems of standard 2D categorization like sensitiv-

ity to pose/view changes. An example pose estimation algorithm for 2D images

is shown in the next chapter.



6
3D Object Category Pose from 2D

Images using 3D Contour Models

(How) can we use a 3D category model for pose estimation? Pose hypotheses are

important for many computer vision applications such as active object categoriza-

tion. This chapter presents a novel pose estimation algorithm, which computes

pose hypotheses of objects in 2D images on the basis of 3D Gaussian Contour

Category Models. Chapter 5 already described this probabilistic framework for

learning a 3D category model based on 3D shape information. There, we use a

similar principle for pose estimation. The algorithm consists of several parts: the

representation model for a 2D input image, the 2D aspect models and the voting

procedure. Each 2D contour fragment of the image is represented as a Gaussian

Mixture Model (see Section 6.3). For the comparison, the algorithm computes

probabilistic 2D aspect models from the 3D Gaussian Contour Category Model

(see Section 6.4). The voting procedure combines geometric information and

local shape information in a novel similarity measure, which we introduce in a

hypothesis testing framework (see Section 6.5). Experiments on several poses of

the known ETH-80 dataset for the categories `horse', `cow', and `dog' as well as

on the 3D object category dataset for the category `car' demonstrate the appli-

cability of shape information for pose estimation. For our experiments we learn

89
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the 3D Gaussian Contour Category Models for pose estimation just from the toy

objects of our GRAZ-STEREO-BASE-xx dataset, whereas the testing is done on

the ETH-80 dataset and the 3D object category dataset. Here, our approach

di�ers from many existing pose estimation approaches, which perform learning

and testing on the same data by splitting the dataset in a training and a test set.

6.1 Introduction

Objects di�er signi�cantly when they are viewed from di�erent poses. Espe-

cially shape-based categorization systems [LHS07, OPZ06, SBC08] are sensitive

to pose/view changes, because the visual rim changes signi�cantly on the object

(see Figure 6.1). We use the following idea for our pose estimation algorithm:

When shape information of an object changes when it is viewed in di�erent poses,

we can use the shape information to compute a pose hypothesis for an object in

a 2D image.

(a) (b) (c) (d) (e)

Figure 6.1: Visual rim of an ETH-80 cow seen from di�erent views. (a) azimuth α = 0o

and elevation λ = 0o. (b) α = 35o and λ = 315o. (c) α = 90o and λ = 0o. (d) α = 90o

and λ = 90o. (e) α = 90o and λ = 270o.

Most of the current pose estimation algorithms are appearance based (see

Section 6.2). In contrast, our approach for pose estimation on 2D images is purely

shape-based in that sense that we use the visual rim of objects and inner contour

fragments as shape information. Our algorithm is based on probabilistic 3D

category models - 3D Gaussian Contour Category Models (see Chapter 5)- which

use a 3D shape representation based on 3D contour fragments (1D manifolds in
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3D), so called `3D contour clouds' (see Chapter 4). Our pose estimation algorithm

consists of several steps. First, we build probabilistic 2D Gaussian Aspect Models

from 3D Gaussian Contour Category Models using an Unscented Transformation,

which approximates a probability density function that undergoes a nonlinear

transformation using just a small number of weighted points. For this, we can

estimate the mean and the variance of our Gaussian Mixture Models (GMMs)

in our projected 2D Gaussian Aspect Models. Second, we build a 2D Gaussian

Contour Model for each 2D input image by representing each 2D contour fragment

by a Gaussian Mixture Model. Third, we establish a voting procedure on the basis

of the probabilistic 2D Gaussian Aspect Models to compute a pose hypothesis

for an object in a given 2D input image. We combine local shape information

and global geometric information in a similarity measure, which we introduce in

a hypothesis testing framework.

Our experimental evaluation uses the available ground truth of the horses,

cows, and dogs of the well-known ETH-80 dataset (see Section 3.1.2 for an

overview) and cars of the 3D object category dataset (see Section 3.1.1 for an

overview).

6.2 State-of-the-Art

Most of the current pose estimation algorithms combine object categorization and

pose estimation by doing both simultaneously [LS10, SGS10, SFF08, SSSFF09,

ÖLF09] or by building a model for a special category for pose estimation [ANB09].

Section 2.2 discusses most of the current research in 3D object categorization and

pose estimation. To summarize these methods: In [LS10] Liebelt and Schmid

present a multi-view object class detection system where they combine a 2D

part-based categorization approach with a 3D geometry-based model built from

synthetic data (CAD models) for pose estimation. In [SGS10] Stark et al. also

present multi-view object categorization built on 3D CAD Models. In [SFF08]

Savarese and Fei Fei develop an approach where they build a 3D part based model

from images of di�erent poses for categorization and pose estimation. They also
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present a synthesis of object categories. In [ANB09] Arie-Nachmison and Basri

build a 3D Implicit Shape Model for pose estimation of cars.

Most of the mentioned methods are appearance based. In contrast to them,

our method is based on shape information - especially contour information (sil-

houette and inner contours). Similar to Arie-Nachmison and Basri [ANB09] we

build a 3D category model and use this model for pose estimation in 2D images.

In contrast to them, our model is generated fully automatically. Whereas most

of the current systems split the dataset in training data and test data, our 3D

model is completely separated from the dataset, i.e. we do not learn on the same

dataset as we use for the evaluation of our pose estimation algorithm.

6.3 2D Aspect Model: From 3D Gaussian Con-

tour Category Model to 2D Gaussian Aspect

Models

Our pose estimation algorithm is based on the principle that we do not learn

each 2D aspect of a category separately but we learn one pose-invariant 3D model

per category and compute 2D aspect models of it afterwards. This has several

advantages e.g. we know the relations between views, we have just to learn one

model and we are independent of the number of 2D aspect models. We �rst learn a

3D Gaussian Contour Category Model and compute afterwards 2D aspect models

using an Unscented Transformation for the perspective projection - we call them

2D Gaussian Aspect Models. In our practical implementation we choose the

camera pose on the basis of azimuth and elevation angles. Thereby, we are able

to compute 2D Gaussian Aspect Models from arbitrary poses.

6.3.1 Unscented Transformation

For 3D to 2D projection of a 3D Gaussian Contour Category Model to a 2D

Gaussian Aspect Model we use an Unscented Transformation (see [JU96]). An
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Unscented Transformation computes the mean and the variance of a random

variable, which has been transformed by a transformation f . Let X be an L-

dimensional random variable with mean µk, and variance Σk, so that y = f(X).

In our case the transformation f is a perspective projection. For the Unscented

Transformation, we �rst compute 2L+ 1 weighted points, so called sigma points,

using the following equations:

X0 = µX τ0 = κ
L+κ

i = 0

Xi = µX + (
√

(L+ κ)ΣX)i τi = 1
2(L+κ)

i = 1, ..., L

Xi = µX − (
√

(L+ κ)ΣX)i−L τi = 1
2(L+κ)

i = L+ 1, ..., 2L

(6.1)

where τi is the weight of the ith sigma point with
∑2L

i=0 τi = 1 and κ is a scaling

factor1. The notation (
√

(L+ κ)ΣX)i means that we choose the ith row of the

matrix for the computation of the sigma point. Now, we compute the mean and

the variance of our projected sigma points Yi = f(Xi) by

µy =
2L∑
i=0

τiYi and Σy =
2L∑
i=0

τi(Yi − µy)(Yi − µy)T . (6.2)

6.3.2 Practical Implementation

In our practical implementation we de�ne a viewpoint for the 2D Gaussian Aspect

Model by choosing an azimuth and an elevation angle with respect to the object

centered coordinate system. Figure 6.2 shows a sample illustration for the upper

hemisphere around an object and several camera poses. By the azimuth and

elevation angles we are able to compute the camera pose around the object for

the perspective projection. For our experiments we use a de�ned set of poses that

correspond to poses available in the test dataset. In an additional experiment,

we investigate the e�ect when poses that are available in the test dataset do not

have a direct correspondence in the 2D Gaussian Aspect Models.
1In our experiments L = 3 and we choose κ = 1.
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Figure 6.2: 3D to 2D projection of a 3D Gaussian Contour Category Model from several

viewpoints that are chosen on a hemisphere around the object.

6.4 Representation Model: From 2D Input Im-

ages to 2D Gaussian Contour Models

The representation of 2D contour fragments by Gaussian Mixture Models (GMMs)

is very �exible and robust. Noise, outliers, and deformations can be handled, the

2D geometry of the contour shapes can be maintained. The advantages of repre-

sentation by Gaussian Mixture Models have already been discussed in Section 5.3

for 3D contour fragments. The same apply to 2D contour fragments.

As mentioned in Section 6.3, we compute 2D Gaussian Aspect Models for

several poses from a 3D Gaussian Contour Category Model. Such a 2D Gaus-

sian Aspect Model consists of partitions of 2D Gaussian Mixture Models. For

our voting procedure we need the same representation for the 2D input image.

Therefore, we compute 2D contour fragments of our input image by applying

the Canny edge detector and a linking algorithm based on smoothing constraints

[LHS07]. Afterwards, we compute for each 2D input image a 2D Gaussian Con-

tour Model by representing each 2D contour fragment by a GMM. Given a 2D
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input image I consisting of a set of 2D contour fragments Tl

I = {Tl; l = 1 . . . N}, (6.3)

where N is the number of 2D contour fragments in the image and Tl = p1, ..., pn

is a set of 2D edges, we can �t a Gaussian Mixture Model to each 2D contour

fragment Tl using the standard Expectation-Maximization (EM) algorithm (see

e.g. [XJ96]). Each 2D contour fragment Tl is given by

Θi
K(x) =

K∑
k=1

αkp(x|N(µk,Σk)) (6.4)

with probability

p(x|N(µk,Σk)) =
1

(2π)
n
2 ‖Σk‖

1
2

exp

(
−1

2
(x− µk)TΣ−1

k (x− µk)
)

(6.5)

and Θi
K is the Gaussian Mixture Model for a fragment Tl and K is the number of

mixture components with mean µk, variance Σk, and weight αk. In our represen-

tation, K is chosen according to the length of the 2D contour fragment (with a

maximum of K = 10). Similar to the representation of 3D contour fragment (see

Section 5.3), the covariance matrix gives essential information about the orien-

tation of a 3D contour fragment, so we do not simplify it to the identity matrix.

We assume that each mixture component has the same weight, so that αk = 1.

That means our algorithm does not decide on the basis of the weight, whether

a mixture component is relevant for the pose hypothesis or not, because even a

mixture component with a small weight may provide essential information about

the pose.

6.5 Pose Estimation Algorithm

We establish a voting procedure to compute a pose hypothesis of an object in

a given 2D input image. In the voting procedure we compare the 2D Gaussian

Contour Model of a 2D input image with 2D Gaussian Aspect Models of several

poses. Our pose estimation algorithm requires a similarity measure between mix-

ture components of Gaussian Mixture Models in order to identify the pose of an
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object in a given 2D input image. The novel similarity measure can be derived

as a modi�cation of the well-known Kullback-Leibler (KL) divergence, which is

used in many existing shape matching methods as the divergence between two

GMMs, but is not direct applicable to our pose estimation algorithm. In contrast

to the Kullback-Leibler divergence, we combine local shape information and 2D

geometric information in one voting procedure. We present our pose estimation

algorithm in a hypothesis framework.

Similar to the test statistic we use for learning a 3D Gaussian Contour Cat-

egory Model (see Section 5.4.1), we start with the approximation of the KL-

divergence between two GMMs [GGG03] by:

KL(f‖g) ≈
n∑
i=1

αi min
j

(KL(fi‖gj) + log
αi
βj

), (6.6)

where f and g are two GMMs:

f =
n∑
i=1

fi =
n∑
i=1

αip(x|N(µi,Σi)) (6.7)

and

g =
m∑
j=1

gj =
m∑
j=1

βjp(x|N(µj,Σj)), (6.8)

The KL-divergence between two GMMs uses the closed-form Kullback-Leibler

divergence between two Gaussians N(µ1,Σ1) and N(µ2,Σ2). It is given by

KL =
1

2

(
log
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1) + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

)
(6.9)

where |.| denotes the determinant.

In the remaining section we use the following notation: I denotes the 2D

Gaussian Contour Model of a given 2D input image containing an object of a

given category. P = P1, ..., PC denotes the 2D Gaussian Aspect Models of C

poses. (µ
Pp

j ,Σ
Pp

j ) and (µIi ,Σ
I
i ) are mixture components of 2D Gaussian Aspect

Model Pp and a 2D Gaussian Contour Model I. Further, we de�ne ocI to be the
object center of the detected object in the input image I and we de�ne ocPp to

be the object center of the object in the 2D Gaussian Aspect Model Pp. Let v
Pp

j
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be the relative di�erence between a mixture component µPp

j and the object center

ocPp of the 2D Gaussian Aspect Model, and vIi be the position di�erence between

a mixture component µIi and the object center ocI of a 2D Gaussian Contour

Model. (Ri, Ti) denotes the local transformation i.e. rotation and translation of

a single mixture component (µi,Σi).

For our pose estimation algorithm we introduce

1. SM(fi, gj): Similarity measure between mixture components, where the

orientation of a mixture component (given by the principal eigenvector of

its variance), and hence the orientation of the contour fragment as well as

its position on the object (given by the mean) have the same importance.

2. SM(f‖g): Similarity measure SM(f‖g) between two GMMs. It is de-

�ned on the basis of the KL-divergence approximation (6.6), but by using

SM(fi, gj) we introduce a discretization.

3. H(P): Pose hypothesis H(P). Here, we use SM(f‖g) as a similarity mea-

sure between a 2D Gaussian Contour Model I of a given input image and

a 2D Gaussian Aspect Model Pp. In contrast to the 3D Gaussian Contour

Category Model we do not use the partitioning but the GMMs as a whole.

Similar to Section 5.4.1 we introduce a similarity measure SM(fi, gj) between

two Gaussians which takes into account the orientation of the eigenvector and

the position of the mixture component on the object. Due to a �rst alignment of

the bounding boxes of a 2D Gaussian Aspect Model and the detected object in

the input image, we can neglect the global transformation between the GMMs.

We de�ne the following hypothesis test for the similarity between a mixture com-

ponent of a 2D Gaussian Contour Model and a mixture component of a given 2D

Gaussian Aspect Model

H0 : (µIi ,Σ
I
i ) = (µ

Pp

j + Tj, Rj · ΣPp

j )

H1 : otherwise

reject H0 if TS1 > γ1 or TS2 < γ2

(6.10)
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where γ1 and γ2 are the thresholds and TS1 and TS2 are test statistics. TS1 is

the test statistic which de�nes the position on the object. Let

vIi = µIi − ocI and v
Pp

j = µ
Pp

j − ocPp (6.11)

be the vectors between mixture components and object center. Then TS1 is given

by

TS1 = ‖vIi − v
Pp

j ‖2
. (6.12)

Let eii be the principal eigenvector of ΣI
i and e

Pp

j the principal eigenvector of Σ
Pp

j ,

then TS2 is given by the scalar product between these eigenvectors

TS2 = eIi · e
Pp

j . (6.13)

The threshold γ1 de�nes the allowed displacement, and γ2 de�nes the allowed

orientation di�erence2. On the one hand, too low thresholds would not be able to

handle shape deformations of di�erent objects of a category. On the other hand,

too high thresholds would not be able to handle di�erent poses of an object. Our

discrete similarity measure between two Gaussians is then given by

SM(fi, gj) =

0 if TS1 < γ1 and TS2 > γ2

1 otherwise.
(6.14)

To identify which pose hypothesis Pp is the correct one we use a modi�cation of

the KL-divergence (6.6). Assuming that all mixture components have the same

weight αi = 1 and βj = 1 and using our own similarity measure SM(fi, gj) instead

of the KL-divergence KL(fi, gj) between two mixture components we can rewrite

(6.6) to

ˆSM(f‖g) ≈
n∑
i=1

min
j

(SM(fi‖gj)) (6.15)

Using this formulation, ˆSM(f‖g) de�nes the number of mixture components in

f which have no correct match in g. Similarly,

SM(f‖g) ≈
n∑
i=1

max
j

(1− SM(fi‖gj)) (6.16)

2In our experiments, typically we choose γ2 = 0.98 and we choose γ1 as 5%-10% of the

bounding box size.
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de�nes the number of mixture components in f which have a correct match in g.

For all 2D Gaussian Aspect Models in P the pose hypothesis H(P) is given by

H(P) = arg max
p∈P

SM(I‖Pp)
ˆSM(I‖Pp)

. (6.17)

6.6 Experimental Evaluation

For our experimental evaluation we compute 3D Gaussian Contour Category

Models for the categories `horse', `cow', `dog', and `car' on our GRAZ-STEREO-

BASE-xx dataset (i.e. it is not trained on ETH-80 or 3D object category dataset).

Based on these 3D Gaussian Contour Category Models, we test our pose estima-

tion algorithm on 17 poses of the ETH-80 dataset [LS03] for the categories `horse',

`cow', and `dog' and 8 poses for two heights of the 3D object category dataset for

the category `car' [SFF08]. For these experiments we use a de�ned set of poses

(17 for ETH-80 and 2 × 8 for 3D object category dataset) for the 2D Gaussian

Aspect Models that correspond to the selected poses of the dataset. To demon-

strate that our approach also works for poses that do not have a precise match in

the 2D Gaussian Aspect Models, we additionally test 8 intermediate poses of the

ETH-80 dataset, which lie between the 17 poses of the 2D Gaussian Aspect Mod-

els. In our experiments we assume that the category and location of the object

in a given 2D input image is known, leaving us with the task of pose estimation.

The complexity of the pose estimation algorithm is linear in the number of poses.

The reconstruction of 3D Gaussian Contour Category Models is computationally

demanding, but needs to be done only once per category.

6.6.1 Visualization of 2D Gaussian Aspect Models and 2D

Gaussian Contour Models

The basis of our pose estimation algorithm are 2D Gaussian Aspect Models de-

rived from a 3D Gaussian Contour Category Model on the one hand and 2D

Gaussian Contour Models computed for the 2D input image on the other hand.

Figure 6.3 shows an example of such a 3D model and two example 2D Gaussian
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Aspect Models for the poses P5 and P13 (cf. Figure 6.5), which were computed

using the Unscented Transformation (see Section 6.3.1). In our experiments, we

choose several viewpoints over the top hemisphere around the object according

to the tested dataset.

Figure 6.3: Example 3D Gaussian Contour Category Model (mid) and two 2D Gaussian

Aspect Models (left and right) of poses P5 and P13 (cf. Figure 6.5). The probability

densities are drawn by 2D lines given by their mean and the principal eigenvector of their

variance. For purpose of visualization only discriminative mixture components of one training

object are shown.

Figure 6.4 shows two example input images and their 2D Gaussian Contour

Models for the same poses as in Figure 6.3.

Figure 6.4: Example 2D input images and Gaussian Mixture Models for two example poses

P5 and P13 (cf. Figure 6.5). The probability densities are depicted as 2D lines given by the

mean and the principal eigenvector of the covariance matrix of the mixture component.
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6.6.2 Evaluation on the ETH-80 Dataset

In our experiments on the ETH-80 dataset we estimate the pose of the categories

cows, horses, and dogs. We select 17 poses of all ten horses, seven cows (except

the lying cow and the cows with head-down), and all ten dogs of the ETH-80

dataset (see Figure 6.5 for a cow example of the selected 17 poses). We evaluate

our 3D pose estimation algorithm by computing the similarity measure between

the 2D Gaussian Contour Models and 2D Gaussian Aspect Models for the selected

categories and compare these pose hypotheses with the ground truth given by the

ETH-80 dataset.

Figure 6.6 shows the confusion matrix of the pose estimation experiments on

the ETH-80 cows. We achieve an average accuracy of 68% of the pose estimation.

We see that problems occur with neighboring views (e.g. P14 votes not only for

P14, but also for P8; P10 votes not only for P10, but also for P6 and P11) and

pose ambiguity (e.g. P17 votes for P17 and P11). On the one hand, Figure 6.5

shows that neighboring views may look similar and so shape features have a

similar appearance of position and orientation on the object. On the other hand,

we see that pose ambiguity plays an important role. When working with 2D

images we lose one important information: depth. In several poses e.g. front or

back view of shape models (see Figure 6.1(d) and Figure 6.1(e) for an example)

it is hard to di�er solely on the basis of their shape. Figure 6.8(a) demonstrates

the shape similarity on the basis of superimposing 2D Gaussian Mixture Models

for P11 and P17. Apart from these two points, many poses can be estimated

correctly, six poses achieve 100%.

Figure 6.7 shows the confusion matrix of the pose estimation experiments on

the ETH-80 horses. We achieve an average accuracy of 64% of the pose esti-

mation. We see a similar behavior as in the cow experiment for similar views

(neighboring views, pose ambiguity). Figure 6.8(b) demonstrates the shape sim-

ilarity on the basis of superimposing 2D Gaussian Mixture Models for P12 and

P16. Here, it is even for humans hard to distinguish between these two poses.

Figure 6.9 shows example pose estimation results on the ETH-80 dataset.
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(a) P1 (b) P2 (c) P3 (d) P4 (e) P5

(f) P6 (g) P7 (h) P8 (i) P9 (j) P10

(k) P11 (l) P12 (m) P13 (n) P14 (o) P15

(p) P16 (q) P17

Figure 6.5: 17 poses of a cow chosen from the ETH-80 (azimuth and elevation denoted

on the basis of their �le names). (a) P1: azimuth α = 0o and elevation λ = 0o. (b) P2:

α = 35o and λ = 45o. (c) P3: α = 35o and λ = 135o. (d) P4: α = 35o and λ = 225o. (e)

P5: α = 35o and λ = 315o. (f) P6: α = 45o and λ = 0o. (g) P7: α = 45o and λ = 90o.

(h) P8: α = 45o and λ = 180o. (i) P9: α = 45o and λ = 270o. (j) P10: α = 90o and

λ = 0o. (k) P11: α = 90o and λ = 45o. (l) P12: α = 90o and λ = 90o. (m) P13: α = 90o

and λ = 135o. (n) P14: α = 90o and λ = 180o. (o) P15: α = 90o and λ = 225o. (p) P16:

α = 90o and λ = 270o. (q) P17: α = 90o and λ = 315o.
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Figure 6.6: Confusion matrix for pose estimation for seven cows of the ETH-80 cows

(average accuracy 68%).

Figure 6.7: Confusion matrix for pose estimation on the ETH-80 horse dataset for all ten

horses (average accuracy 64%).

Figure 6.10 shows the confusion matrix of the pose estimation experiments on

the ETH-80 dogs. We achieve an average accuracy of 59% for the pose estimation.

Similar to the horse and cow results there are problems with neighboring views
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(a) (b)

Figure 6.8: Illustration of 2D Gaussian Mixture Model similarity. (a) Two poses P11 (blue)

and P17 (green) of two example ETH-80 cows (right). (b) Two poses P12 (blue) and P16

(green) of two example ETH-80 horses (left).

(a) (b) (c) (d)

Figure 6.9: Example pose estimation results. (a) P15 of an ETH-80 cow. (b) P2 of an

ETH-80 cow. (c) P8 of an ETH-80 horse. (d) P11 of an ETH-80 horse.

and pose ambiguity. Apart from these two points, many poses can be estimated

correctly, two poses achieve 100%, three poses achieve 90%.

Evaluation on non-matching poses of the ETH-80 dataset

What happen if the tested view do not directly correspond to a projected 2D

Gaussian Aspect Model? To test the robustness of our approach to that situation

we select 8 additional poses of seven cows of the ETH-80 dataset which lie between

P11 and P17 (see Figure 6.12(a)). Figure 6.11 shows the selected 8 poses for one

cow of the ETH-80 dataset. We test these 8 poses on the 2D Gaussian Aspect
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Figure 6.10: Confusion matrix for pose estimation on the ETH-80 dog dataset for all ten

dogs (average accuracy 59%).

Models for P11 to P17 of the Experiment in the last section. We would expect

that the view vote for those poses which are most similar to its own pose.

Figure 6.12(b) shows the confusion matrix for this experiment. As desired,

the selected poses vote for those poses which are most similar. As before (see

Section 6.6.2), we observe di�culties due to pose ambiguity for poses C and

G. However, we demonstrate that also poses which are not in the 2D Gaussian

Aspect Models obtain good pose estimation results.

6.6.3 Evaluation on the 3D Object Category Dataset

In our experiments on the 3D object category dataset we estimate the pose of

the category car. We select 8 poses of ten objects, two heights (H1 and H2)

and two scales (S1 and S2) (see Figure 6.13 for the illustration of H1, H2, S1,

S2). For our experiments we split them into two sets depending on their azimuth

angle. Figure 6.14 gives an overview of these poses for one car (out of ten)

and one scale. We evaluate our 3D pose estimation algorithm by computing the

similarity measure between the 2D Gaussian Contour Models and 2D Gaussian
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(a) A (b) B (c) C (d) D

(e) E (f) F (g) G (h) I

Figure 6.11: 8 poses of a cow chosen from the ETH-80 which lies between that in Figure 6.5

(azimuth and elevation denoted on the basis of their �le names). (a) A: azimuth α = 90o

and elevation λ = 22o. (b) B: α = 90o and λ = 68o. (c) C: α = 90o and λ = 112o. (d) D:

α = 90o and λ = 158o. (e) E: α = 90o and λ = 202o. (f) F: α = 90o and λ = 248o. (g)

G: α = 90o and λ = 292o. (h) I: α = 90o and λ = 338o.

(a) (b)

Figure 6.12: (a) Illustration of the pose distribution for the 8 additional poses which lies

between P10 and P17 a distance of 22.5o. (b) Confusion matrix for pose estimation on 8

additional poses of seven ETH-80 cows .

Aspect Models for the selected category and compare these pose hypotheses with

the ground truth given by the dataset.
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(a) H1− S1 (b) H1− S2 (c) H2− S1 (d) H2− S2

Figure 6.13: Illustration of the two heights H1 and H2 and the two scales S1 and S2 on

the basis of one example car from the 3D object category dataset.

Figure 6.15(a) shows the confusion matrix of the pose estimation experiments

on the 3D object category dataset car (H1) for the poses BH1 to BRH1. We

achieve an average accuracy of the pose estimation of 51%. On the one hand,

there occur problems due to pose ambiguity (FLH1 - BLH1). On the other hand,

false pose hypotheses are computed because of shape symmetry of cars, e.g. FH1

votes for BH1 and vice versa or BLH1 votes for FRH1.

Figure 6.15(b) shows the confusion matrix of the pose estimation experiments

on the 3D object category dataset car (H2) for the poses BH2 to BRH2. We

achieve an average accuracy of the pose estimation of 58%. Except for the poses

FH2 and FRH2, the entries of the diagonal are above 60%. For those with less

than 60% problems with symmetric views can occur (i.e. FH2 votes for BH2; FRH2

votes for BLH2). For these views we obtain a similar silhouette and similar shape

information due to symmetry (e.g. wheels front and back windows, lights).

Due to the combination of object categorization and pose estimation, a direct

comparison to other approaches is hard. Arie-Nachmison and Basri [ANB09] test

their 3D Implicit Shape Model for `car' on 160 images (5 objects, 16 viewpoints

and two scalings) of the 3D object category dataset. The other 5 objects of the

dataset were used for learning. Their pose estimation evaluation is only done on

those images, where a car is correctly detected and only for eight viewing direc-

tions. They achieve an average accuracy rate of 48.5% with similar problems due

to pose ambiguity, neighboring views, and symmetry as in our approach, which

shows that these problems are not only related to the use of shape information.
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(a) BH1 (b) BLH1 (c) LH1 (d) FLH1

(e) FH1 (f) FRH1 (g) RH1 (h) BRH1

(i) BH2 (j) BLH2 (k) LH2 (l) FLH2

(m) FH2 (n) FRH2 (o) RH2 (p) BRH2

Figure 6.14: 16 poses of a car from the 3D object category dataset (azimuth α and elevation

λ denoted in the same way as for the ETH-80 dataset). (a) BH1: α = 90o and λ = 270o.

(b) BLH1: α = 90o and λ = 225o. (c) LH1: α = 90o and λ = 180o. (d) FLH1: α = 90o

and λ = 135o. (e) FH1: α = 90o and λ = 90o. (f) FRH1: α = 90o and λ = 45o. (g) RH1:

α = 90o and λ = 0o. (h) BRH1: α = 90o and λ = 315o. (i) BH2: α = 45o and λ = 270o.

(j) BLH2: α = 45o and λ = 225o. (k) LH2: α = 45o and λ = 180o. (l) FLH2: α = 45o

and λ = 135o. (m) FH2: α = 45o and λ = 90o. (n) FRH2: α = 45o and λ = 45o. (o)

RH2: α = 45o and λ = 0o. (p) BRH2: α = 45o and λ = 315o.

Liebelt and Schmid [LS10] test their algorithm also on the category `car' of

the 3D object category dataset. In contrast to [ANB09] they chose randomly 7
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(a) (b)

Figure 6.15: (a) Confusion matrix for pose estimation on 3D object category dataset for

the category car for height H1. (average accuracy 51%); (b) Confusion matrix for pose

estimation on 3D object category dataset for the category car for height H2. (average

accuracy 58%).

object for learning and test on the remaining 3 objects, for three scalings. Their

confusion matrix for eight viewpoints (L, BL, B, BR, R, FR, F, FL) shows an

average accuracy of 70%.

Min et al. [SSSFF09] have tested their 3D Class Model on 160 images (5

objects, 16 viewpoints and two scalings) of the 3D object category dataset for

the category `car'. Similar to [ANB09] they used the other 5 objects of the dataset

for learning. They achieve an average accuracy of 67% on eight viewpoints (L,

BL, B, BR, R, FR, F, FL).

6.7 Discussion

When analyzing the results of the pose estimation we see that three main problems

occur:

• Neighboring views: It is hard to distinguish between neighboring views e.g.

P10 - P6 - P14 of the ETH-80 or FLH1 - FH1 of the 3D object category

dataset. One reason is that there are no major di�erences in the 2D shape,

another reason is the loss of depth information in 2D images.
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• Pose ambiguity: Due to the lack of depth information, we have to deal

with pose ambiguity. It is hard to distinguish if the object looks towards

the camera or in the opposite direction e.g. P17-P11 (front-right and back-

right) or P13-P15 (front-left and back-left).

• Symmetry: In the case of symmetric objects such as cars, several poses are

hardly distinguishable just on the basis of 2D shape information. On the

one hand, the silhouettes of cars look similar for e.g. LH1-RH1 or BH1-FH1

or BH2-FH2. On the other hand the 2D shape properties of windows, wheels

or lights are also similar for those poses.

There are several ways to overcome these problems. Depth information could

help in many cases. By the use of the 3D Gaussian Category Model, the depth in-

formation, 2D and 3D spatial relations between object parts and di�erent aspects

are already known (also for the 2D Gaussian Aspect Models). Furthermore, when

active object categorization is possible, a second view could be used to verify a

pose hypothesis. Especially for such an application it is important to know the

3D nature of an object and the relations between views. With such an active

object categorization system, the problem of neighboring views and pose ambi-

guity might be solved in most cases. For the remaining problem of symmetry, a

combination of appearance and shape information could be the solution for many

object categories such as e.g. car (the red back light identi�es the rear of the car).

What do we gain by learning a 3D model from stereo images and using that for

pose estimation? By learning from stereo image sequences we achieve one model

for all views. Only the �nal model has to be annotated with regard to orientation.

Thus, we overcome the problem of annotating a huge set of individual images and

their relations. Most of the mentioned multi-view and 3D model based methods

which build their models from static images rely on view annotations. In our

approach we just have to move a camera around the 3D model and compute the

views directly, which also allows to produce new views. By using a stereo setup,

depth information and 3D geometry of an object as well as camera poses can be

computed and used for learning, detection and pose estimation.
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Whereas most of the current state-of-the-art approaches split the dataset in

training data and test data, our 3D model is completely separated from the

dataset. We learn the 3D Gaussian Contour Category Models from our own

GRAZ-STEREO-BASE-xx dataset of toy objects, i.e. we do not learn on the

same dataset that we use for the evaluation of our pose estimation algorithm.

We even learn the category model from toy objects and our approach is still

applicable to real world objects as it is demonstrated for the category `car'.

6.8 Conclusion

This chapter presents a pose estimation algorithm for 2D input images solely

based on shape information. The method uses a probabilistic 3D Gaussian Con-

tour Category Model based on Gaussian Mixture Models of 1D manifolds in 3D.

2D Gaussian Aspect Models are then generated using an Unscented Transforma-

tion. I have introduced a novel voting procedure to compute a pose hypothesis

for an object in a given 2D input image by integrating 2D shape information and

geometric information in a sophisticated similarity measure between GMMs.

I evaluate our pose estimation on two well known datasets on four di�erent

categories: the ETH-80 (cow, horses and dogs) and the 3D object category dataset

(car). The experiments on the ETH-80 dataset show the applicability of pose

estimation based on shape information for the categories `cow' (average accuracy

68%), `horse' (average accuracy 64%), and `dog' (average accuracy 59%)) for 17

views (standard eight views + nine views from above). On the 3D object category

dataset I achieve an average accuracy of 58% (H2) and 51% (H1) for the category

cars.

Future work may focus on several aspects: A combination of this pose estima-

tion algorithm and object categorization on 2D images based on a 3D Gaussian

Contour Category Model would be interesting. Furthermore, one big goal is the

integration in an active object categorization system.



7
Discussion and Conclusion

This thesis investigates the problem of 3D object categorization based on three

main aspects:

• (How) can we model 3D shape for speci�c objects?

• (How) can we learn one single, pose-invariant 3D category model based on

shape information?

• (How) can we use such a 3D category model for pose estimation in 2D

images?

As a short summary of the outcomes, we can answer above questions with `yes'.

This thesis presents a 3D object categorization system based on 3D shape infor-

mation. Section 7.1 gives a summary of the developed object categorization and

pose estimation system and provides an overview of the outcomes. Afterward, I

discuss limitations as well as possible improvements (Section 7.2) and I give an

outlook on future work (Section 7.3).

7.1 Summary - Outcomes

I have developed a comprehensive object categorization system based on 3D shape

information. It consists of three main parts: 3D geometric shape modeling by

112



7.1. SUMMARY - OUTCOMES 113

stereo reconstruction, object categorization based on 3D shape information, and

pose estimation on 2D images based on a 3D category shape model.

In the �rst part I have presented a stereo reconstruction framework that can

generate `3D contour clouds' of objects, which are sets of reconstructed 3D con-

tour fragments (1D manifolds in 3D). For this, it was mandatory to develop the

following novel methods:

• A novel stereo correspondence algorithm integrating epipolar information,

2D shape context information, and an ordering constraint into one single

cost matrix.

• The concept of 3D shape context for matching 3D contour fragments in

order to reduce outliers in `3D contour clouds'.

In the second part I have presented a novel probabilistic framework based on

Gaussian Mixture Models for 3D contour fragments for learning one single 3D

shape model per category. This framework makes use of `3D contour clouds' for

speci�c objects based on the reconstruction approach developed in the �rst part.

The major results are:

• A 3D Gaussian Contour Category Model, which consists of partitions of

Gaussian Mixture Models including a novel similarity measure hypothe-

sis testing framework based on local shape information and 3D geometric

information.

• The demonstration of the ability of the 3D object categorization method

to categorize objects from categories with small inter-class di�erence and

large intra-class variability.

In the third part, I have presented a pose estimation algorithm for objects in

2D images, which makes use of the 3D category shape model as learned in the

second part. A probabilistic voting procedure computes pose hypotheses between

2D Gaussian Aspect Models and the 2D input image based on a Gaussian Mixture

Model representation. The following results were obtained:
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• A novel pose estimation algorithm based on 2D Gaussian Aspect Models

computed from a 3D Gaussian Contour Category Model and 2D Gaussian

Contour Models for input images. Moreover, I have developed a voting pro-

cedure, which combines geometric information and local shape information

in a novel similarity measure, which has been introduced in a hypothesis

testing framework.

• An experimental evaluation on the well-known ETH-80 dataset and the

3D object category dataset demonstrates the applicability of 3D category

models based on shape information for pose estimation.

In addition to these three main parts, I have presented a new dataset for the task

of stereo reconstruction and 3D object recognition and 3D object categorization,

which comprises

• The GRAZ-STEREO-BASE-EYE, and the GRAZ-STEREO-BASE-EYE-

TURNTABLE datasets which consist of stereo image sequences of objects of

(up to) four categories: `toy horses', `toy cows', `toy dogs' and `toy cars', and

the GRAZ-STEREO-BASE-30 with objects from the category `humans'.

• Calibration data, 2D contour information as well as estimated camera poses

for all stereo image sequences of the dataset.

7.2 Limitations - Improvements

Some problems and possible improvements have already been discussed in the

discussion sections of the particular chapters. Now, I discuss general limitations

of the system with regard to further applications.

In my opinion the strongest limitation of the whole system is that it requires a

long chain of steps until the �nal object categorization and pose estimation system

is achieved. Another drawback is the stereo reconstruction framework based on

stereo image sequences, which itself requires many data processing steps. Due

to the underlying Structure-and-Motion framework, there is the limitation to
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stereo image sequences, where an object is presented in front of a homogeneous

background. A system which works on monocular image sequences of real world

objects would be preferable, as more such data is available. Current research on

multi-body Structure-and Motion leads in this direction. Thus, also the size of

the datasets (number of object, number of categories, real world objects) can be

enlarged, as a huge amount of such data is already available.

A limitation of the 3D category model is the random feature selection al-

gorithm. This algorithm is a simple way to �nd a �rst subset of discriminant

features. However, feature selection algorithms are normally used as a �rst step

during learning to reduce the feature space. On the one hand, such a feature

selection can be improved by using e.g. boosting for selection of discriminative

subsets. On the other hand, by a more sophisticated learning algorithm as e.g.

Adaboost, more variability in the dataset as e.g. arrangements of legs may be

learned. However, even without such a learning step, we already achieve good

results.

In the experimental evaluation of the pose estimation algorithm we see the

limitations relying on shape information only. For many di�erent poses shape

information is enough, but when poses have too similar 2D shape (neighboring

views, pose ambiguity and symmetry) it is hard to di�er between them. Pos-

sible solutions such as depth information, active object categorization, and the

combination with appearance information are discussed in Section 6.7.

7.3 Perspective

Future work may focus on various aspects. Some of them have already been

discussed in the last section in order to improve the whole system. In this section,

I want to go one step further and consider the application in an active object

categorization system.

I have already mentioned the importance of category and pose hypotheses

for an active categorization system, which uses several views of an object for a

robust identi�cation. In addition to a category hypothesis, a pose hypothesis is
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important for planning the further steps (how to move around an object and which

view will be chosen as the next one). For such category and pose hypotheses a

pose-invariant representation for a category has many advantages. In this thesis

I focus on object categorization of 3D models by 3D Gaussian Contour Category

Models and I demonstrate its application to pose estimation in 2D images. For

an integration in an active object categorization system, it would be of interest

to extend our system by an object categorization system on 2D images based on

our 3D Gaussian Contour Category Models.
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