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Chapter 1

Introduction to Digit Expansions
with Applications in
Cryptography

The RSA algorithm [88], the Diffie-Hellman key exchange [26] and the Digital Signature
Algorithm [67] or its extension to elliptic curves ECDSA [59] are widely used protocols
in public-key cryptography. All those cryptographic systems require two separate keys:
a secret and a public one. The two keys are linked and they are constructed such that,
by knowing the public key, it is extremely difficult to calculate the private. Public-key
cryptography can be compared with a locking mechanism, where one of the keys of the
key pair is used for locking (encrypting), the other for unlocking (decrypting). Clearly,
we want those operations, as well as generation of key pairs, to be computationally easy.

From a mathematical point of view all those operations are calculations in Abelian
groups: we have to build (large) multiples of an element of the group. A standard method
to perform this scalar multiplication are double-and-add algorithms. Let n be a positive
integer and P be a group element, then we write n in standard binary expansion, i.e.,
with base 2 and digits 0 and 1, and calculate nP by a Horner scheme. That is done digit-
by-digit from the most significant digit of the binary expansion of n to least significant
one. The number of doublings needed corresponds to the length of the expansion, the
number of non-trivial additions to its weight (that is the number of non-zero digits). This
means, in order to make the mentioned scalar multiplication fast, we want an expansion
of the integer n which is short and has only a low number of non-zeros.

To achieve such expansions, we allow other bases than 2 and other digit sets. For
example, if we use an additional digit —1 and keep base 2, then each integer has many
representations. We choose one that fulfils the criteria above. A candidate for such
a “good” expansion is the so called non-adjacent form, where from each two adjacent
digits at most one is non-zero. We come back to those expansions later. In general,
the strategy of using larger digit sets leads to representations with lower weights. The
prize to pay are more precomputations (before the Horner scheme can be used, we have
to calculate dP for each digit d). So one has to find a balance between the size of the



1 Introduction to Digit Expansions with Applications in Cryptography

digit set (or re-formulated, the weight of an expansion) and the time needed for that
precomputation.

1.1 Non-Adjacent Forms and Typical Questions that Arise

As mentioned above, we come back to non-adjacent forms. Let w be a positive integer,
then an expansion is a width-w non-adjacent form, abbreviated by w-NAF, if in each
block of w consecutive digits at most one is non-zero. This is an expansion with a low
number of non-zero digits. Therefore, it is particularly suited for our scalar multiplication
algorithm, since that leads to a low number of additions. It seems that the term non-
adjacent form was first mentioned in Reitwiesner [86]. There it was used for faster
arithmetic of binary expansions. The generalizations to w-NAFs are independently due
to Blake, Seroussi and Smart [19], Cohen, Miyaji and Ono [77], Solinas [94, 5], and
others.

Now, having the syntactic condition of the w-NAF, several questions arise and will
be discussed in this thesis. A first natural question is, if it is always possible to write
a number as the value of a w-NAF-expansion, i.e., if each element (e.g. each integer)
admits such an expansion. Since this depends on the digit set, the question can be
reformulated: Is there a digit set or how to choose the digit set such that each element
has a w-NAF-expansion? Section gives an introduction to such questions. See also
Chapter

It was mentioned above that the w-NAF is an expansion with a low weight. But is
it an expansion with the minimal possible weight, or is there another expansion, which
gives a “better” representation? This question, namely if the w-NAF is optimal /minimal,
is discussed in Section [I.4] and in the Chapters [2] and

A third question discussed in this thesis concerns the running time of the scalar mul-
tiplication algorithm. To answer that we need a precise analysis of the occurrence of
a digit in all w-NAF-expansions (for example in some region around zero). Section
and Chapter {4] are devoted to that problem.

1.2 Frobenius-and-add Methods

We want to perform calculations in Abelian groups, but up to now we did not use any
special structure or property of the group. When this group comes from elliptic curve
cryptography or hyperelliptic curve cryptography, we can do better. To explain that
more precisely, suppose we have an elliptic curve over a finite field with g elements and
further that the Abelian group is the point group of the curve over a field extension
of that finite field. Alternatively, and more generally, since the elliptic curve case is
included, we can use hyperelliptic curves and the corresponding Jacobian variety. Then,
since we are working over finite fields, we have a ¢-Frobenius endomorphism available,
and that operation is “cheap” (meaning fast), especially using normal bases, see for
example Ash, Blake and Vanstone [I]. So we want to replace the “expensive” doublings
of the double-and-add algorithm by this Frobenius endomorphism. The result is called
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Frobenius-and-add method, see Koblitz [63] and Solinas [94, 05], where this method is
used in conjunction with Koblitz curves in characteristic two, or Smart [93] and Avanzi,
Heuberger and Prodinger [4] for Koblitz curves in characteristic three.

Now let us look at those methods more closely. Suppose we can write n (for example
a positive integer) as

L-1
=Y
=0

with some digits &, out of a digit set and where the base 7 is an algebraic integer. If 7 is a
zero of the characteristic polynomial of the g-Frobenius endomorphism on the Jacobian
of the hyperelliptic curve, then for an element P of the Jacobian we can compute nP by

L-1
nP=>Y &' (P),
/=0

in which ¢ denotes the Frobenius endomorphism. Again, we would evaluate the previous
calculation by a Horner scheme, where we use applications of the Frobenius endomor-
phism instead of doublings.

When we come from elliptic curves, then the Frobenius endomorphism fulfils a quad-
ratic polynomial, see for example Koblitz [64] or Silverman [91], whereas in the general
case, it is of degree 2g, where ¢ is the genus of the curve. Further, that characteristic
polynomial is the reciprocal of the numerator of the zeta-function of the hyperelliptic
curve, cf. Weil [107, 109]. Further, the Riemann Hypothesis of the Weil Conjectures, cf.
Weil [108], Dwork [32] and Deligne [25], state that all conjugates of the zero 7 have the
same absolute value.

Therefore, numeral systems with general algebraic integer bases are of interest and
worth discussing.

1.3 Results on the Existence Question

As discussed above, one major question is, which digit sets should we use in order
to ensure that each element has an expansion as a w-NAF. If a digit set fulfils that
property, then we call it a w-non-adjacent digit set (w-NADS). Note that for now we do
not yet assume our expansions are minimal with respect to their Hamming-weight, cf.
Section [L.4

In the case that the base 7 is an integer, results on that questions can be found in
Reitwiesner [86], Solinas [94] O5], Muir and Stinson [79]. One can choose integers not
divisible by the base 7 with absolute value not larger than % |7 as a digit set in those
cases, see also Example For some imaginary quadratic algebraic integers as a
base, results are due to Solinas [94, [95], Koblitz [65], Lange [71], and Blake, Murty and
Xu [16) [17, 18]. There, they choose a digit set consisting of representatives of minimal
absolute value of residue classes modulo 7, which are not divisible by 7. Such a digit
set is a generalization of the one used with rational integers above. For an arbitrary
imaginary quadratic algebraic integer as base, this was generalized in Heuberger and
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Krenn [49]. Other existence results, most of them for expansions without syntax, are
due to Miiller [80], Smart [93], Giinther, Lange and Stein [46] in the quadratic case
(coming from elliptic curves) and due to Ciet, Lange, Sica and Quisquater [23] and
Lange [71] for higher degree cases (coming from Koblitz curve cryptosystems).

The aim of Chapter [3]is to answer the existence question for expansions with w-NAF-
syntax for a general algebraic integer base. But the set-up in that chapter is even more
general: In Section [3.1] which contains the definitions and some basic results, we work
in an Abelian group and the base is represented by an injective endomorphism on that
group. In the remaining article, starting with Section the set-up is a lattice A in
R™ and an injective endomorphism on A as base. The case of algebraic integer bases is
a special case of this set-up, cf. Examples [3.1.2] and [3.1.7] One main step there was to
use the Minkowski map to transform the 7-adic setting to a lattice.

In Section we prove a necessary condition to be a w-NADS, namely that the
endomorphism has to be expanding. Section deals with the setting when the digit
set comes from a tiling of R™. Theorem [3.3.3| states that we have a w-NADS if w is
sufficiently large. The bound in that result is explicit. Another result of that kind is
given in Section generalising a result of Germén and Kovacs [42] to D-w-NAFs.
There minimal norm digit sets are studied. Again we get a w-NADS if w is larger than
a constant, which depends (only) on the eigenvalues of ®, cf. Theorem As an
important example, we discuss the setting of bases 7 coming from hyperelliptic curves,

see above, in Example

1.4 Results on the Optimality Question

A w-NAF-expansion of an element has low weight and therefore leads to quite efficient
scalar multiplication in the double-and-add and Frobenius-and-add methods. This part
of the introduction and also Chapter [2| is devoted to the following question: Does the
w-NAF minimise the weight, i.e. the number of non-zero digits, among all possible
representations (multi-expansions) with the same digit set? If the answer is affirmative,
we call the w-NAF-expansion optimal or minimal.

To answer that question we will first work in general numeral systems: A general
numeral system is an Abelian group A together with a group endomorphism ® and
a digit set D, which is a finite subset of A including 0. The endomorphism acts as
base in our numeral system. A common choice is multiplication by a fixed element.
In this general setting we consider multi-expansions, which are simply finite sums with
summands ®*(d), where k& € Ny and d is a non-zero digit in D. The “multi” in the
expression “multi-expansion” means that we allow several summands with the same k.
If the k are pairwise distinct, we call the sum an expansion. Note that in the context
of our scalar multiplication algorithms, multi-expansions are as good as expansions, as
long as the weight is low.

In that general set-up, we give conditions equivalent to optimality in Section We
show that each group element has an optimal w-NAF-expansion if and only if the digit
set is w-subadditive, which means that each multi-expansion with two summands has a
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w-NAF-expansion with weight at most 2. This condition can be verified algorithmically,
since there are only finitely many non-trivial cases to check. More precisely, one has
to consider the w-NAFs corresponding to w(#D — 1)? multi-expansions. Another way
to verify w-subadditivity is to use the geometry of the digit set. This is done in the
imaginary quadratic setting and then later in the general algebraic integer base setting,
see below for more details.

Now consider some special cases of number systems, where optimality or non-optimality
of the non-adjacent form is already known. Here, multiplication by a base element is
chosen as endomorphism ®. In the case of 2-NAFs with digit set {—1,0,1} and base 2,
optimality is known, cf. Reitwiesner [86]. This was reproved in Jedwab and Mitchell [56]
and in Gordon [43]. That result was generalised in Avanzi [5], Muir and Stinson [79]
and in Phillips and Burgess [85]. There, the optimality of the w-NAFs with base 2 was
shown. As digit set, zero and all odd numbers with absolute value less than 2¥~1
used. In this setting, there is also another optimal expansion, cf. Muir and Stinson [78].
Using base 2 and a digit set {0, 1,2} with x € Z, optimality of the 2-NAFs is answered
in Heuberger and Prodinger [52]. Some of these results will be reproved and extended to
arbitrary rational integer bases with our tools in Section [2.3] That proof will show the
main idea how to use the geometry of the digit set to show w-subadditivity and therefore
optimality.

We come back to our imaginary quadratic setting, so suppose that the imaginary
quadratic base 7 is a solution of 72 — pr 4+ ¢ = 0, where p and ¢ are rational integers
with ¢ > p?/4. Here, Z[7] plays the role of the group and multiplication by 7 is taken as
the endomorphism. We suppose that the digit set consists of 0 and one representative of
minimal norm of every residue class modulo 7%, which is not divisible by 7, and we call
it a minimal norm representatives digit set, see Section for a precise formulation.

First, consider the cases |[p| = 1 and ¢ = 2, which comes from a Koblitz curve in
characteristic 2, cf. Koblitz [63], Meier and Staffelbach [76], and Solinas [94) [95]. There
optimality of the w-NAFs can be shown for w € {2,3}, cf. Avanzi, Heuberger and
Prodinger [2, 3]. The case w = 2 can also be found in Gordon [43]. For the cases
w € {4,5,6}, non-optimality was shown, see Heuberger [47].

In Chapter 2] we give a general result on the optimality of the w-NAFs with imaginary
quadratic bases, namely when [p| > 3, as well as some results for special cases. So let
|p| > 3. If w > 4, then optimality of the w-NAFs could be shown in all cases. If we
restrict the set-up to |p| > 5, then the w-NAFs are already optimal for w > 3. Further,
we give a condition (p and ¢ have to fulfil a special inequality), when 2-NAF's are optimal.
All those results can be found in Section [2.6l There we show that the digit set in that
cases is w-subadditive by using its geometry.

In the last four sections of Chapter [2| some special cases are examined. Important
ones are the cases |p| = 3 and ¢ = 3 coming from Koblitz curves in characteristic 3.
In Kroll [70] optimality of the w-NAFs was shown for w € {2,3,4,5,6,7} by using a
transducer and some heavy symbolic computations. Here, in Section [2.7, we prove that
the w-NAF-expansions are optimal for all w > 2. In Section [2.8] we look at the cases
|p| = 2 and ¢ = 2. There the w-NAF-expansions are optimal if and only if w is odd. In
the cases p = 0 and ¢ > 2, see Section [2.9] non-optimality of the w-NAFs with odd w

were
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could be shown.

The last section of Chapter [3]is devoted to an answer to the question of optimality
in the case of general algebraic integer bases and in conjunction with lattices. We
provide a positive answer for sufficiently large w and sufficiently large eigenvalues of the
endomorphism in the lattice set-up in Theorem This can then be used to answer
optimality in the 7-adic setting.

1.5 Results on the Analysis

Now we talk about the third question discussed in Section The work presented in
Chapter [4 deals with analysing the number of occurrences of a digit in w-NAF-expansions
with an algebraic integer base 7, where all conjugates have the same absolute value, cf.
also the introduction in Section [1.2} This is needed for the analysis of the running
time of the scalar multiplication algorithm (Frobenius-and-add) mentioned earlier in
this introduction. As brought up in Section and Chapter [3| we will do this analysis
in the set-up of numeral systems in lattices, cf. Section Our main result is the
asymptotic formula
Zy ~ N"A\U) Elog,| N.

for the number Z,, of occurrences of a fixed non-zero digit 7 in w-NAF-expansions in
some region NU (e.g. a ball around 0). There, \(U) denotes the Lebesgue measure of U
and F is a constant, see below. The main term of that formula coincides with the full
block length analysis given in Heuberger and Krenn [49]. There an explicit expression
for the expectation E and the variance of the occurrence of such a digit in all expansions
of a fixed length is given. The result here is more precise: A periodic fluctuation in
the second order term is also exhibited. Such structures—main term, oscillation term,
smaller error term—are not uncommon in the context of digits counting, see for instance,
Heuberger and Prodinger [52] or Grabner, Heuberger and Prodinger [44]. The result here
is a generalisation of the one found in Heuberger and Krenn [49]. The proof, as the one
n [49], follows Delange’s method, cf. Delange [24], but several technical problems have
to be taken into account.

The structure of Chapter [4 is as follows. We start with the formal definition of
numeral systems and the non-adjacent form in Section Sections and contain
our primary set-up in a lattice. We will work in this set-up throughout the entire
chapter. There also the used digit set, which comes from a tiling by the lattice, is
defined. Additionally, some notations are fixed and some basic properties are given.
The end of Section [£.2] is devoted to the full block length analysis theorem given in
Heuberger and Krenn [49]. In Sections to a lot of properties of the investigated
expansions, such as bounds of the value and the behaviour of the fundamental domain
and the characteristic sets, are derived. Those are needed to prove our main result, the
counting theorem in Section The last section will forge a bridge to the 7-adic set-up.
This is explained with details there and the counting theorem is restated in that set-up.

A last remark on the proofs given in Chapter 4. As that chapter is a generalisation
of Heuberger and Krenn [49] several proofs of propositions and lemmata are skipped.
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All those are straightforward generalisations of the ones for the quadratic case, which
means, we have to do things like replacing Z[7] by the lattice, the multiplication by 7
by a lattice endomorphism, the dimension 2 by n, using a norm instead of the absolute
value, and so on. If the generalisation is not that obvious, the proofs are given.






Chapter 2

Optimality of the Width-w
Non-adjacent Form

This chapter contains the article [48] with the title “Optimality of the Width-w Non-
adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases”.
It is joint work with Clemens Heuberger. The article is submitted to Journal de Théorie
des Nombres de Bordeauz. An introduction to this chapter can be found in Chapter
in particular Section (1.4

Abstract

Efficient scalar multiplication in Abelian groups (which is an important operation in
public key cryptography) can be performed using digit expansions. Apart from ratio-
nal integer bases (double-and-add algorithm), imaginary quadratic integer bases are of
interest for elliptic curve cryptography, because the Frobenius endomorphism fulfils a
quadratic equation. One strategy for improving the efficiency is to increase the digit
set (at the prize of additional precomputations). A common choice is the width-w non-
adjacent form (w-NAF): each block of w consecutive digits contains at most one non-zero
digit. Heuristically, this ensures a low weight, i.e. number of non-zero digits, which trans-
lates in few costly curve operations. This chapter investigates the following question: Is
the w-NAF-expansion optimal, where optimality means minimising the weight over all
possible expansions with the same digit set?

The main characterisation of optimality of w-NAF's can be formulated in the following
more general setting: We consider an Abelian group together with an endomorphism
(e.g., multiplication by a base element in a ring) and a finite digit set. We show that
each group element has an optimal w-NAF-expansion if and only if this is the case for
each sum of two expansions of weight 1. This leads both to an algorithmic criterion and
to generic answers for various cases.

Imaginary quadratic integers of trace at least 3 (in absolute value) have optimal
w-NAFs for w > 4. The same holds for the special case of base (£3 4 1/—3)/2 (four
cases) and w > 2, which corresponds to Koblitz curves in characteristic three. In the case



2 Optimality of the Width-w Non-adjacent Form

of 7 = £1 £ i(again four cases), optimality depends on the parity of w. Computational
results for small trace are given.

2.1 Expansions and Number Systems

This section contains the abstract definition of number systems and the definition of
expansions. Further, we specify the width-w non-adjacent form and notions related to
it.

Abstract number systems can be found in van de Woestijne [103], which are general-
isations of the number systems used, for example, in Germén and Kovécs [42]. We use
that concept to define w-NAF-number systems.

Definition 2.1.1. A pre-number system is a triple (A, ®, D) where A is an Abelian
group, ¢ an endomorphism of A and the digit set D is a subset of A such that 0 € D
and each non-zero digit is not in the image of .

Note that we can assume ® is not surjective, because otherwise the digit set would
only consist of 0.

Before we define expansions and multi-expansions, we give a short introduction on
multisets. We take the notation used, for example, in Knuth [62].

Notation 2.1.2. A multiset is like a set, but identical elements are allowed to appear
more than once. For a multiset A, its cardinality #A is the number of elements in the
multiset. For multisets A and B, we define new multisets AW B and A\ B in the following
way: If an element occurs exactly a times in A and b times in B, then it occurs exactly
a + b times in AW B and it occurs exactly max(a — b,0) times in A\ B.

Now a pre-number system (and multisets) can be used to define what expansions and
multi-expansions are.

Definition 2.1.3 (Expansion). Let (A, ®,D) be a pre-number system, and let p be a
multiset with elements (d,n) € (D \ {0}) x Ny. We define the following:

1. We set
weight(p) == #p

and call it the Hamming-weight of p or simply weight of p. The multiset 1 is
called finite, if its weight is finite.

2. We call an element (d,n) € p an atom and ®"(d) the value of the atom (d,n).

3. Let p be finite. We call
value(p) := Z D" (d)

(d,n)ep

the value of p.

4. Let z € A. A multi-expansion of z is a finite p with value(p) = z.

10



2.1 Expansions and Number Systems

5. Let z € A. An expansion of z is a multi-expansion g of z where all the n in
(d,n) € p are pairwise distinct.

We use the following conventions and notations. If necessary, we see an atom as
a multi-expansion or an expansion of weight 1. We identify an expansion ) with the
sequence (1), € Do where 1, = d for (d,n) € n and all other 7, = 0. For an
expansion 7 (usually a bold, lower case Greek letter) we will use 7,, (the same letter, but
indexed and not bold) for the elements of the sequence. Further, we identify expansions
(sequences) in DNo with finite words over the alphabet D written from right (least
significant digit) to left (most significant digit), except left-trailing zeros, which are
usually skipped. Besides, we follow the terminology of Lothaire [73] for words.

Note, if n is an expansion, then the weight of 7 is

weight(n) = #{n € No : 1 7# 0}

and the value of n is

value(n) = Y ®" ().

n€eNp

For the sake of completeness — although we do not need it in this paper — a pre-
number system is called number system if each element of A has an expansion. We call
the number system non-redundant if there is exactly one expansion for each element
of A, otherwise we call it redundant. We will modify this definition later for w-NAF
number systems.

Before going any further, we want to see some simple examples for the given abstract
definition of a number system. We use multiplication by an element 7 as endomor-
phism &. This leads to values of the type

value(n) = Z M T

neNy

for an expansion 7.

Example 2.1.4. The binary number system is the pre-number system
(No, z — 22,{0,1}).

It is a non-redundant number system, since each integer admits exactly one binary
expansion. We can extend the binary number system to the pre-number system

(Z,z +— 22,{—1,0,1}),

which is a redundant number system.

In order to get a non-redundant number system out of a redundant one, one can restrict
the language, i.e. we forbid some special configurations in an expansion. There is one
special kind of expansion, namely the non-adjacent form, where no adjacent non-zeros
are allowed. A generalisation of it is defined here.

11



2 Optimality of the Width-w Non-adjacent Form

Definition 2.1.5 (Width-w Non-Adjacent Form). Let w be a positive integer and D be
a digit set (coming from a pre-number system). Let n = (nj)j eNo € DMo. The sequence n
is called a width-w non-adjacent form, or w-NAF for short, if each faCtOIEI Njtw—1 - - - N
i.e. each block of length w, contains at most one non-zero digit.

A w-NAF-expansion is an expansion that is also a w-NAF.

Note that a w-NAF-expansion is finite. With the previous definition we can now define
what a w-NAF number system is.

Definition 2.1.6. Let w be a positive integer. A pre-number system (A, ®, D) is called
a w-NAF number system if each element of A admits a w-NAF-expansion, i.e. for each
z € A there is a w-NAF n € DY with value(n) = z. We call a w-NAF number system
non-redundant if each element of A has a unique w-NAF-expansion, otherwise we call it
redundant.

Now we continue the example started above.

Ezample 2.1.7. The redundant number system
(Zyz > 22,{—1,0,1})

is a non-redundant 2-NAF number system. This fact has been shown in Reitwiesner [86].
More generally, for an integer w at least 2, the number system

(Z,z — 22,D),

where the digit set D consists of 0 and all odd integers with absolute value smaller
than 2*~!, is a non-redundant w-NAF number system, cf. Solinas [94], 95] or Muir and
Stinson [79).

Finally, since this paper deals with the optimality of expansions, we have to define the
term “optimal”. This is done in the following definition.

Definition 2.1.8 (Optimal Expansion). Let (A, ®,D) be a pre-number system, and let
z € A. A multi-expansion or an expansion u of z is called optimal if for any multi-
expansion v of z we have

weight(p) < weight(v),

i.e. u minimises the Hamming-weight among all multi-expansions of z. Otherwise u is
called non-optimal.

The “usual” definition of optimal, cf. [86, 56, 43| [5 79l 85] 78, 52 2] B3], [47], is more
restrictive: An expansion of z € A is optimal if it minimises the weight among all
expansions of z. The difference is that in Definition we minimise over all multi-
expansions. The use of multi-expansions is motivated by applications: we want to do
efficient operations. There it is no problem to take multi-expansions if they are “better”,
so it is more natural to minimise over all of them instead of just over all expansions.

!See Lothaire [73] for the used terminology on words.
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2.2 The Optimality Result

2.2 The Optimality Result

This section contains our main theorem, the Optimality Theorem, Theorem It
contains four equivalences. Omne of them is a condition on the digit set and one is
optimality of the w-NAF. We start with the definition of that condition on the digit set.

Definition 2.2.1. Let (A, ®, D) be a pre-number system, and let w be a positive integer.
We say that the digit set D is w-subadditive if the sum of the values of two atoms has a
w-NAF-expansion of weight at most 2.

In order to verify the w-subadditivity-condition it is enough to check atoms (¢, 0) and
(d,n) withn € {0,...,w — 1} and non-zero digits c and d. Therefore, one has to consider
w (#D — 1) multi-expansions.

Theorem 2.2.2 (Optimality Theorem). Let (A, ®,D) be a pre-number system with

() @™ (A) = {0},

meENy
and let w be a positive integer. Then the following statements are equivalent:
(1) The digit set D is w-subadditive.

(2) For all multi-expansions w there is a w-NAF-expansion € such that

value(&) = value(p)

and
weight(&) < weight(p) .

(3) For all w-NAF-expansions np and ¥ there is a w-NAF-expansion & such that
value(§) = value(n) + value(®)

and
weight(€) < weight(n) + weight() .

(4) If z € A admits a multi-expansion, then z also admits an optimal w-NAF-expansion.

Note that if we assume that each element A has at least one expansion (e.g. by
assuming that we have a w-NAF number system), then we have the equivalence of
w-subadditivity of the digit set and the existence of an optimal w-NAF-expansion for
each group element.

We will use the term “addition” in the following way: The addition of two group
elements x and y means finding a w-NAF-expansion of the sum x 4+ y. Addition of two
multi-expansions shall mean addition of their values.

13



2 Optimality of the Width-w Non-adjacent Form

Proof of Theorem[2.2.2. For a non-zero z € A, we define
L(z) :=max{m € Ny : z € ®"(A)}.

The function L is well-defined, because

(] ®"(A) = {0}.

meENy

We show that implies (4) by induction on the pair (weight(p) , L(value(p))) for the
multi-expansion p. The order on those pairs is lexicographic. In the case value(u) = 0,
we choose £ = 0 and are finished. Further, if the multi-expansion g consists of less than
two elements, then there is nothing to do, so we suppose weight(n) > 2.

We choose an atom (d,n) € p (note that d € D\ {0} and n € Np) with minimal n. If
n > 0, then we consider the multi-expansion p’ arising from g by shifting all indices by
n, use the induction hypothesis on g’ and apply ®”. Note that p’ and p have the same
weight, but

L(value(p')) = L(value(p)) — n < L(value(p)).

So we can assume n = 0. Set p* := p\ {(d,0)}. Using the induction hypothesis, there
is a w-NAF-expansion n of value(p*) with weight strictly smaller than weight(p) =
weight(p*) + 1.

Consider the addition of n and the digit d. If the digits 7, are zero for all ¢ €
{0,...,w — 1} , then the result follows by setting & = ...7,117,0*"'d. So we can
assume

n= BOw_k_lbOk

with a w-NAF 8, a digit b # 0 and k € {0,...,w — 1}. Note that there are at least
w — 1 zeros on the left hand-side of b in 1, but for our purposes, it is sufficient (and more
convenient) to consider only w—k—1 zeros. Since the digit set D is w-subadditive, there
is a w-NAF ~ of ®*(b) 4-d with weight at most 2. If the weight is strictly smaller than 2,
we use the induction hypothesis on the multi-expansion 0% W~ to get a w-NAF & with
the desired properties and are done. Otherwise, denoting by J the smallest index with
vy # 0, we distinguish between two cases: J =0 and J > 0.

First let J = 0. The w-NAF (3 (seen as multi-expansion) has a weight less than
weight(n), so, by induction hypothesis, there is a w-NAF &’ with

value(¢') = value(B) + value(. .. Yu41Yw)

and
weight (¢') < weight(8) + weight(. .. Yu41Yw) -

We set & = &vy—1...70. Since € is a w-NAF-expansion we are finished, because

value(§) = @ (value(8)) + @“(value(. .. Yy+17w)) + value(yw—1-..70)
= ®¥(value(B)) + ¥ (b) + d = value(n) + d = value(p*) + d = value(p)

14



2.2 The Optimality Result

and

weight(€) = weight (&') + weight(y—1 ... 70) < weight(8) + weight(~)
< weight(n) + 1 < weight(p*) + 1 = weight(p) .

Now, in the case J > 0, we consider the multi-expansion v := 80" & v. We use the
induction hypothesis for v shifted by .J (same weight, L decreased by .J) and apply &’/
on the result.

The proofs of the other implications of the four equivalences are simple. To show that
(@ implies @, take p :=n w1, and (@ implies is the special case when 1 and ¥
are atoms.

Further, for (@) implies take an optimal multi-expansion g (which exists, since z
admits at least one multi-expansion). We get a w-NAF-expansion & with weight(&) <
weight(p). Since p was optimal, equality is obtained in the previous inequality, and
therefore £ is optimal, too. The converse, implies (@, follows using z = value(u) and
the property that optimal expansions minimise the weight. O

Let X and Y be subsets in an additively written semigroup. Then we write
X+Y ={z+y:zeX,yeY},
see, for example, Hungerford [53]. We use that notion from now on.

Proposition 2.2.3. Let (A, ®,D) be a pre-number system with

() @™ (A) = {0},

meNy

and let w be a positive integer. We have the following sufficient condition: Suppose we
have sets U and S such that D C U, =D C U, U C ®(U) and all elements in S are
atoms. If D contains a representative for each residue class modulo ®*(A) which is not
contained in ®(A) and

(@ ' (U)+U +U) Nnd“(A) C Su{0}, (2.2.1)
then the digit set D is w-subadditive.

Sometimes it is more convenient to use of this proposition instead of the def-
inition of w-subadditive. For example, in Section all digits lie in an interval U and
all non-zero integers in that interval have a w-NAF expansion with weight 1. The same
technique is used in the optimality result of Section [2.6]

Proof of Proposition[2.2.3, Let (¢,0) and (d,n) be atoms with n € {0,...,w — 1} and
consider y = value((¢,0) W (d,n)). If y = 0, we have nothing to do, so we can assume
y # 0. First suppose y € ®(A). Because of our assumptions on D there is a digit a such
that

z2:=0"(d)+c—acdP’(A).

15



2 Optimality of the Width-w Non-adjacent Form

If z is not zero, then, using our sufficient condition, there is an atom (b, m) with value z,
and we have m > w. The w-NAF-expansion b0™ 'a does what we want.

Now suppose y € ®¥(A) with a positive integer k, which is chosen maximally. That
case can only happen when n = 0. Since y # 0 and our assumptions on D there is a
w-NAF-expansion of y with an atom (a, k) as least significant digit. If k € {0,...,w — 1},
then

z:=d+c—®"a) € DVTF(A).

If 2z is non-zero it is a value of an atom (b, m), m > w + k, because of (2.2.1]), and we
obtain a w-NAF-expansion of y with atoms (b, m) and (a, k). If & > w, then

z:=d+ce dF(A)
and z is the value of an atom (b, m) by (2.2.1). We get a w-NAF-expansion b0™. O

Sometimes the w-subadditivity-condition is a bit too strong, so we do net get optimal
w-NAFs. In that case one can check whether (w — 1)-NAFs are optimal. This is stated
in the following remark, where the w-subadditive-condition is weakened.

Remark 2.2.4. Suppose that we have the same setting as in Theorem We call the
digit set w-weak-subadditive if the sum of the values of two atoms (¢, m) and (d,n) with
|m —n| # w — 1 has a w-NAF-expansion with weight at most 2.

We get the following result: If the digit set D is w-weak-subadditive, then each element
of A, which has at least one multi-expansion, has an optimal (w — 1)-NAF-expansion.
The proof is similar to the proof of Theorem [2.2.2] except that a “rewriting” only happens
when we have a (w — 1)-NAF-violation.

2.3 Optimality for Integer Bases

In this section we give a first application of the abstract optimality theorem of the
previous section. We reprove the optimality of the w-NAFs with a minimal norm digit
set and base 2. But the result is more general: We prove optimality for all integer bases
(with absolute value at least 2). This demonstrates one basic idea how to check whether
a digit set is w-subadditive or not.

Let b be an integer with [b| > 2 and w be an integer with w > 2. Consider the
non-redundant w-NAF number system

(Z,z > bz,D)

where the digit set D consists of 0 and all integers with absolute value strictly smaller
than £ |b|" and not divisible by b. We mentioned the special case base 2 of that number
system in Example See also Reitwiesner [86] and Solinas [95].

The following optimality result can be shown. For proofs of the base 2 setting cf. Re-
itwiesner [86], Jedwab and Mitchell [56], Gordon [43], Avanzi [5], Muir and Stinson [79],
and Phillips and Burgess [85].
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2.4 Voronoi Cells

Theorem 2.3.1. With the setting above, the w-NAF-expansion for each integer is opti-
mal.

Proof. We show that the digit set D is w-subadditive by verifying the sufficient condition
of Proposition Then optimality follows from Theorem First, note that the
w-NAF-expansion of each integer with absolute value at most %\b\“’*l has weight at
most 1, because either the integer is already a digit, or one can divide by a power of b to
get a digit. Further, we have D = —D. Set U = [—1 |b[*, 5 [b|"'] and S = b¥(UNZ\{0}).
We have to show

TTU+U+U)NBYZ C SU{0} = b"U NbVZ.
If we can show
b (BT U+ U+ U) C [—5 6", 5 16T,
the inclusion above follows by multiplying with " and taking the intersection with b*Z.

So let
We=b""leta+d

for some digits a, ¢ and d. A digit has absolute value less than 3 b, so
2 < Lol (1ol +2) S bl” = (oI~ + 2161 ™) 1ol < 3 1o,

where we also used the assumptions |b] > 2 and w > 2. Thus, the desired inclusion is
shown. O

2.4 Voronoi Cells

We first start to define Voronoi cells. Let 7 € € be an algebraic integer that is imaginary
quadratic, i.e. 7 is solution of an equation 72 — pr 4+ ¢ = 0 with p, ¢ € Z and such that
q—p*/4>0.
Definition 2.4.1 (Voronoi Cell). We set

Vi={zeC:YyeZr]: |z| <|z—y|}

and call it the Voronoi cell for 0 corresponding to the set Z[r]. Let u € Z[r]. We define
the Voronoi cell for u as

Vi=u+V={u+z:2€V}={2e€C:VyelZlr]: |z—ul <|z—y|}.

The point u is called centre of the Voronoi cell or lattice point corresponding to the
Voronoi cell.

An example of a Voronoi cell in a lattice Z[r] is shown in Figure [2.4.1] Two neigh-
bouring Voronoi cells have at most a subset of their boundary in common. This can be a
problem, when we tile the plane with Voronoi cells and want that each point is in exactly
one cell. To fix this problem we define a restricted version of V. This is very similar
to the construction used in Avanzi, Heuberger and Prodinger [4] and in Heuberger and
Krenn [49].
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2 Optimality of the Width-w Non-adjacent Form

Figure 2.4.1: Voronoi cell V' for 0 corresponding to the set Z[r]| with 7 = % + %\/g

U1
V15 Vo.5
'UQ/N\ v
IU5.5

\%
Uz.sl (-)

(R} O/OU5
U3.§\o V4.5

Uy

0

Figure 2.4.2: Restricted Voronoi cell V for 0 corresponding to the set Z|r] with T =
3., i
2 T3V3.

Definition 2.4.2 (Restricted Voronoi Cell). Let V,, be a Voronoi cell with its centre u
as above. Let vy, ..., v,,_1 with appropriate m € N be the vertices of V,,. We denote the
midpoint of the line segment from vy to vg41 by vg1y/2, and we use the convention that
the indices are meant modulo m.

The restricted Voronoi cell V,, consists of

e the interior of V,,
e the line segments from vy, /o (excluded) to viy1 (excluded) for all ,
e the points vy, for k € {O, e L%J — 1}, and
e the points v for k € {1, ey L%J }
Again we set V= 170.

In Figure the restricted Voronoi cell of 0 is shown for 7 = % + %\/g The second
condition in the definition is used because it benefits symmetries. The third condition
is just to make the midpoints unique. Obviously, other rulesE] could have been used to

define the restricted Voronoi cell.

2The rule has to make sure that the complex plane can be covered entirely and with no overlaps by

restricted Voronoi cells, i.e. the condition C = LﬂzeZ[T] ‘72 has to be fulfilled.
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The statements (including proofs) of the following lemma can be found in Heuberger
and Krenn [49]. We use the notation B(z,7) for an open ball with centre z and radius r
and B(z,r) for a closed ball.

Lemma 2.4.3 (Properties of Voronoi Cells). We have the following properties:

(a) The vertices of V' are given explicitly by

w=1/2+ 21112(7) (1m(r)? + (Re(r)}* — {Re(r)} )

0= {Re(r)} = 5 + gt (In(r)” = {Re(r)}? + {Re(r)}).

v=—1/2+ m (1m(r)* + {Re(r)}* = {Re(r)}) = v — 1,
v3 = —o,
Vg4 = —V1
and
V5 = —V9.

All vertices have the same absolute value. If Re(T) € Z, then vy = vy and v4 = vs,
i.e. the hexagon degenerates to a rectangle.

(b) The Voronoi cell V is convex.
(c) We get B(0,3) C V.

(d) The inclusion 7=V C V holds.

2.5 Digit Sets for Imaginary Quadratic Bases

In this section we assume that 7 € C is an imaginary quadratic algebraic integer, i.e. 7
is solution of an equation 72 — pr + ¢ =0 with p,q¢ € Z and such that ¢ — p?/4 > 0. By
V' we denote the Voronoi cell of 0 of the lattice Z[r], by V the corresponding restricted

Voronoi cell, cf. Section
We consider w-NAF number systems

(Z[1],z — 72,D),

where the digit set D is the so called “minimal norm representatives digit set”. The
following definition specifies that digit set, cf. Solinas [94], [95], Blake, Murty and Xu [16]
or Heuberger and Krenn [49]. It is used throughout this chapter, whenever we have the
setting (imaginary quadratic base) mentioned above.

19



2 Optimality of the Width-w Non-adjacent Form

(a) Digit set for 7 = (b) Digit set for 7 = (c) Digit set for 7 =
%Jr%\ﬁandw: %Jr%\ﬁandw: 2417 and w = 2.
2. 3.

Figure 2.5.1: Minimal norm representatives digit sets modulo 7. For each digit 7, the
corresponding Voronoi cell V;; is drawn. The large scaled Voronoi cell is
TV

Definition 2.5.1 (Minimal Norm Representatives Digit Set). Let w be an integer with
w > 2 and D C Z[r] consist of 0 and exactly one representative of each residue class
of Z[r] modulo 7% that is not divisible by 7. If all such representatives n € D fulfil
n e T“"7, then D is called the minimal norm representatives digit set modulo 7.

The previous definition uses the restricted Voronoi cell V for the point 0, see Defini-
tion to choose a representative with minimal norm. Note that by construction of
V', there is only one such choice for the digit set. Some examples of such digit sets are

shown in Figures [2.5.1] 2.7.1], 2.8.1] and [2.9.1]

Remark 2.5.2. The definition of a minimal norm representative digit set, Definition[2.5.1]
depends on the definition of the restricted Voronoi cell V', Definition There we had
some freedom in choosing which part of the boundary is included in V, cf. the remarks
after Definition We point out that all results given here for imaginary quadratic
bases are valid for any admissible configuration of the restricted Voronoi cell, although
only the case corresponding to Definition will be presented.

Using a minimal norm representatives digit set, each element of Z[r| corresponds to
a unique w-NAF, i.e. the pre-number system given at the beginning of this section is
indeed a w-NAF number system. This is stated in the following theorem, which can be
found in Heuberger and Krenn [49].

Theorem 2.5.3 (Existence and Uniqueness Theorem). Let w be an integer with w > 2.
Then the pre-number system

(Z|7], z — 72,D),
where D is the minimal norm representatives digit set modulo ™, is a non-redundant

w-NAF number system, i.e. each lattice point z € Z[7] has a unique w-NAF-expansion
n € DN with z = value(n).
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2.6 Optimality for Imaginary Quadratic Bases

In this section we assume that 7 € C is an imaginary quadratic algebraic integer, i.e.
7 is solution of an equation 72 — pr + ¢ = 0 with p,q € Z and such that ¢ — p*/4 > 0.
Further let w be an integer with w > 2 and let

(Z[r],z — 72,D)

be the non-redundant w-NAF number system with minimal norm representatives digit
set modulo 7, cf. Section

Our main question in this section, as well as for the remaining part of this article, is
the following: For which bases and which w is the width-w non-adjacent form optimal?
To answer this, we use the result from Section [2.2] If we can show that the digit set D is
w-subadditive, then optimality follows. This is done in the lemma below. The result will
then be formulated in Corollary which, eventually, contains the optimality result
for our mentioned configuration.

Lemma 2.6.1. Suppose that one of the following conditions hold:
(i) w =4 and [p| > 3,
(i) w=3 and |p| > 5,

(i) w=3, |p|=4 and 5 < ¢ <9,

(e 6o

2
\p|>2\/q+1— .
2+ a)

1 22 pg 12 pg -1
— 4z A P 1.
(Gie) (=50 (=5)

Then the digit set D is w-subadditive.

(iv) w=2, p even, and

or equivalently

(v) w=2, podd and

The conditions (iv) and of Lemma m i.e. the case w = 2, are illustrated
graphically in Figure [2.6.1]

Proof. We denote the interior of V' by int(V). If

W AV 4V Cr¥int(V)
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2.6 Optimality for Imaginary Quadratic Bases

holds, then the digit set D is w-subadditive since D C 7%V, =D C ¥V, V C 7V and
z € 7% int(V) N Z[r] implies that there is an integer £ > 0 with z € 7¢D. The sufficient
condition of Proposition was used with U = 7%V and S = 7% int(V) \ {0}.

Since V is convex, it is sufficient to show that

TV 12V C rint (V).
This will be done by showing
(1717 + 21 ™) Vi< 4,

where |V| denotes the radius of the smallest closed disc with centre 0 containing V. By
setting

T(p,q.w) =2 (|7 + 2177} V],

we have to show that
T(p,q,w) < 1.

Note that T'(p, ¢, w) > 0, so it is sufficient to show
T%(p, q,w) < 1.

For each of the different conditions given, we will check that the inequality holds for
special values of p, ¢ and w and then use a monotonicity argument to get the result for
other values of p, ¢ and w. In the following we distinguish between even and odd p.

Let first p be even, first. Then % + %Im(T) is a vertex of the Voronoi cell V. This

means |V| = £/1+4 ¢ —p?/4. Inserting that and |7| = /g in the asserted inequality

yields
1 2 p2
12(p,q,w) = <+2q_“’/2> <1+q—4> < 1.

V4
It is easy to see that the left hand side of this inequality is monotonically decreasing in
Ip| (as long as the condition ¢ > p?/4 is fulfilled) and monotonically decreasing in w. We
assume p > 0.
If we set p =4 and w = 4, we get

12 4 12 4 3

2 [ S —— —_— e — —_— e —
T (47q74) - q4 + q3 q5/2 + q3/2 q +17

which is strictly monotonically increasing for ¢ > 5. Further we get

lim T%(4,q,4) = 1.

q—o0

This means 72(4,q,4) < 1 for all ¢ > 5. Since p > 4 implies ¢ > 5 and because of the
monotonicity mentioned before, the case ({il) for the even p is completed.
If we set p =6 and w = 3, we get
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2 Optimality of the Width-w Non-adjacent Form

which is obviously less than 1. Therefore, again by monotonicity, the case is done
for the even p.
If we set p =4 and w = 3, we obtain

12 8 1
T2 47CI73 :_7_7+7+17
*.0.3) @ ¢ q
which is monotonically increasing for 5 > ¢ > 18. Further we get

242
T?(4 =-—-<1
and T?%(4,10,3) > 1. This means 72(4,q,3) < 1 for all ¢ with 5 < ¢ < 9. So case is
completed.
The condition given in is exactly

T%(p,q,2) < 1

for even p, so the result follows immediately.

Now, let p be odd. Then ﬁ(ﬂ (Im(7)2 + i) is a vertex of the Voronoi cell V. This
means

1 p2 —1/2 p2 1
“”—2@‘4) =y ta)

Inserting that in the asserted inequality yields

2\ 1)\’ 2
R A -

Again, it is easy to verify that the left hand side of this inequality is monotonically
decreasing in p (as long as the condition ¢ > p?/4 + 1/4 is fulfilled) and monotonically
decreasing in w. We assume p > 0.

If we set p =3 and w = 4, we get

4((] _ 2)2 (q3/2 + 2)2
q*(4g — 9)

which is strictly monotonically increasing for ¢ > 3. Further we get

T%(3,9,4) =

lim T%(3,q,4) = 1.
q—00
This means 72(3,¢,4) < 1 for all ¢ > 3. Since p > 3 implies ¢ > 3 and because of the
monotonicity mentioned before, the case (fi)) for the odd p is finished.
If we set p =5 and w = 3, we get

_4(q—6)2(q + 2)?

T%(5,q,3
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2.6 Optimality for Imaginary Quadratic Bases

which is strictly monotonically increasing for ¢ > 7. Further we get

lim 72(5,q,3) = 1.
q—00

This means 0 < 72%(5,¢,3) < 1 for all ¢ > 7. As p > 5 implies ¢ > 7, using monotonicity
again, the case is done for the odd p.
The condition given in is exactly

T%(p,q,2) < 1

for odd p, so the result follows immediately.
Since we have now analysed all the conditions, the proof is finished. O

Now we can prove the following optimality corollary, which is a consequence of Theo-
rem [2.2.2)

Corollary 2.6.2. Suppose that one of the conditions (i) to (d) of Lemma holds.

Then the width-w non-adjacent form expansion for each element of Z[t] is optimal.

Proof. Lemma implies that the digit set D is w-subadditive, therefore Theorem
can be used directly to get the desired result. O

Remark 2.6.3. We have the following weaker optimality result. Let p, ¢ and w be integers
with |p| > po, ¢ > qo and w > wy for a (po, ¢o, wo) € Y, where

Y = {(0,10,2),(0,5,3), (0,4,4), (0,3,5), (0, 2, 10),
(1,2,8),(2,3,4),(2,2,7),(3,7,2),(3,3,3), (4,5,2)} .

Then we can show that the minimal norm representatives digit set modulo 7 coming
from a 7 with (p, ¢) is w-weak-subadditive, and therefore, by Remark we obtain
optimality of a (w—1)-NAF of each element of Z[7|. The results are visualised graphically

in Figure 2.6.2]
To show that the digit set is w-weak-subadditive we proceed in the same way as in
the proof of Lemma We have to show the condition

T (p,q,w) < 1

where

T'(p.g,w) =2 (77> + 2177 |V]
with |7| = /g. When p is even, we have

1 p?
= 4/1+q—%
and when p is odd, we have
1 P2 -1/2 2 1
“”—2@‘4) 1=y ta)

Using monotonicity arguments as in the proof of Lemma[2.6.1] yields the list Y of “critical
points”.
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2 Optimality of the Width-w Non-adjacent Form

=
Z -0 10) gm(1,10)"0"(2, 11) uggm(3, 12)"@=(4, 14) @m (5. 16)
3 (0,9) A(Lg) '.'(2710)..-(3711)'.'(4, 13)*(5’15)
(0.8) & (1,8) A(29) gu(3,10)0(4.12) g5 14) - 2
(0.7) A (1,7) A28) gu(3,9) (4 11) o5 13) A wss
(0.6) g (1,6 A2T7) gu(z,5) ®(410) g5 12) v
0.5) 41,5 A26) gu(37) @49 o511 X w=4
23(0.4) ye (1 4) A 25 Ao *LS) (10 * w>5
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1 (2,2) -®=(4,5)
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Figure 2.6.2: Optimality of a (w — 1)-NAF-expansion with a digit set used for w-NAFs.
Each symbol is labelled with (|p|, ¢) and represents the minimal w for which
there is an optimal (w — 1)-NAF-expansion of each element of Z[7].
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2.7 The p-is-3-q-is-3-Case

(X
0000
8000
0000
8008
00000
8006
o0 g
LT
00
(a) Digit set for 7 = (b) Digit set for 7 = (c) Digit set for 7 =
%Jr%\/gandw: %Jr%\/gandw: %+%\/§andw:
2. 3. 4.

Figure 2.7.1: Minimal norm representatives digit sets modulo 7. For each digit 7, the
corresponding Voronoi cell V;, is drawn. The large scaled Voronoi cell is
TV,

2.7 The p-is-3-¢-is-3-Case

One important case can be proved by using the Optimality Theorem of Section too,
namely when 7 comes from a Koblitz curve in characteristic 3. We specialise the setting
of Section to p = 3p with g € {—1,1} and ¢ = 3. We continue looking at w-NAF-
number systems with minimal norm representative digit set modulo 7% with w > 2.
Some examples of those digit sets are shown in Figure We have the following
optimality result.

Corollary 2.7.1. With the setting above, the width-w non-adjacent form expansion for
each element of Z[t] is optimal.

Proof. Using the statement of Lemma and Theorem yields the optimality for
all w > 4.
Let w = 2. Then our minimal norm representatives digit set is

D={0}u |J ¢F{1},

0<k<6
where ( is a primitive sixth root of unity, see Avanzi, Heuberger and Prodinger [4].
Therefore we obtain |D| =1 and D = —D. For k € {0,1} we get
_ 1
+DEDEDC B(O,\/§+2> - \/§4B<O, 2) C 2% ing(V),

so the digit set D is w-subadditive by the same arguments as in the beginning of the
proof of Lemma and we can apply the Optimality Theorem to get the desired
result.

Let w = 3. Then our minimal norm representatives digit set is

D:{O}U U Ck{17234_,u7_}7

0<k<6

27



2 Optimality of the Width-w Non-adjacent Form

- 1

i [ ] [ ]
L4 ® [ ] [ ] [ ] ° o ° [
- | . . . . . .
([ ] J :
i —J
(a) Digit set for 7 = (b) Digit set for 7 = (c) Digit set for 7 = (d) Digit set for 7 =
1+7¢and w=2. 1+7and w=3. 14¢and w=4. 1+7¢and w=>5.

Figure 2.8.1: Minimal norm representatives digit sets modulo 7. For each digit 7, the
corresponding Voronoi cell V;, is drawn. The large scaled Voronoi cell is

TV,

where ( is again a primitive sixth root of unity, again [4]. Therefore we obtain |D| =
|4 — ur| = V7 and again D = —D. For k € {0,1,2}, we get |7|¥ |D| < 3/7, because
|7| = v/3. Therefore

_ 1
H#DLDLDC 8(0,5ﬁ) - \/565’(0, 2) C 72 ing(V),

so we can use Theorem again to get the optimality. O

2.8 The p-is-2-g-is-2-Case

In this section we look at another special base 7. We assume that p € {—2,2} and
g = 2. Again, we continue looking at w-NAF-number systems with minimal norm
representative digit set modulo 7% with w > 2. Some examples of those digit sets are

shown in Figure 2.871]
For all possible 7 of this section, the corresponding Voronoi cell can be written explic-

itly as
V = polygon({3(1+4),3(—1+1),3(-1—1),5(1—4)}).

Remark that V is an axis-parallel square and that we have

7V = polygon({# : j € {0,1,2,3}}).

In this section we will prove that the w-NAFs are optimal if and only if w is odd.
The first part, optimality for odd w, is written down as the theorem below. The non-
optimality part for even w can be found as Proposition [2.8.3

Theorem 2.8.1. Let w be an odd integer with w > 3, and let z € Z[r]. Then the
width-w non-adjacent form expansion of z is optimal.

Remark 2.8.2. Let w be an odd integer with w > 3. Let z € 7%V N Z[r], then z can
be represented as a w-NAF expansion with weight at most 1. To see this, consider
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2.8 The p-is-2-q-is-2-Case

the boundary of 7%V. Its vertices are 2(*=1/2j™ for m e {0,1,2,3}. All elements of
A(TV) N Z[r] can be written as 2(0=1/2i™ 4 k(1 4 4)i™ for some integers k, m and n.
Further, all those elements are divisible by 7. Therefore each digit lies in the interior of
7V, and for each z € 7%V NZ[7] there is an integer ¢ > 0 such that 7“2 € D, because
WV CVand |r| > 1.

Proof of Theorem[2.8.1. We prove that the digit set D is w-subadditive. Hence, opti-
mality follows using Theorem [2.2.2] Using the remark above, D = —D and the ideas of
Proposition [2.2.3] it is sufficient to show

v (TkD +D + D) NZ[r]| C vV

for k € {0,...,w—1}.
Let £k = w — 1. We show that

(D prw=D (p g D)) A 7Z[7] € etV (2.8.1)

So let y = b+ a be an element of the left hand side of with b € D and a €
7= (@=1) (D 4+ D). We can assume y # 0. Since y € Z[r] and D C Z[r], we have a € Z[r].
Since D C 7™V, we obtain

=@ (D4 D) C2rV.

The case b = 0 is easy, because 27V = 73V C 7%V. So we can assume b # 0. This
means 71{b. Since T ‘ y, we have 7ta. The set 27V N Z[7] consists exactly of 0, i"™, 2i™
and 7" for m € {0, 1,2,3}. The only elements in that set not divisible by 7 are the ™.
Therefore a = " for some m. The digit b is in the interior of 7%V, thus y = b+ a is in
Ty C ety

Now let k € {0,...,w —2}. If w > 5, then

— (TkD LD+ D) C U2y 49V,

using D C 7%V and properties of the Voronoi cell V. Consider the two squares 7%~V
and 7%V = 27%~2V. The distance between the boundaries of them is at least 3 |72,
which is at least v/2. Since 2V is contained in a disc with radius \/5, we obtain 7% 2V +
2V C V.

We are left with the case w = 3 and k € {0,1}. There the digit set D consists of 0
and i™ for m € {0,1,2,3}. Therefore we have D C 7V (instead of D C 73V). By the
same arguments as in the previous paragraph we get

w7 ("D 4+ D D) CL(rV +2v) C 7V,
so the proof is complete. O

The next result is the non-optimality result for even w.

Proposition 2.8.3. Let w be an even integer with w > 2. Then there is an element of
Z[1] whose w-NAF-expansion is non-optimal.
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2 Optimality of the Width-w Non-adjacent Form

—-B=1 Yy
i T
LI
—1
A=1
Fw—1 B A
A.—T
K

Figure 2.8.2: The w-is-even situation. The figure shows the configuration p = 2, ¢ = 2,
w =6, s = 1. A polygon filled grey represents a digit, a dot represents a
point of interest in Lemma

Again, some examples of the digit sets used are shown in Figure The proof of
the proposition is split up: Lemma handles the general case for even w > 4 and
Lemma gives a counter-example (to optimality) for w = 2.

For the remaining section—it contains the proof of Proposition [2.8.3}—we will assume
7 = 1+14. All other cases are analogous.

Lemma 2.8.4. Let the assumptions of Proposition|[2.8.3 hold and suppose w > 4. Define
A= 7" 1(1—1i) and B := 1A and set s = —i'=%/2. Then

(a) 1,14, —1 and —i are digits,
(b) A—11is a digit,

(c) —B —1 is a digit,

(d) itv=t — 571 is a digit, and
(e) we have

(A=) 4 (—s H =57 4 (=B - D)7 + (i7¥ L —s71).

Figure shows the digits used in Lemma for a special configuration.
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2.8 The p-is-2-q-is-2-Case

Proof. (a) A direct calculation shows that the lattice elements 1, ¢, —1 and —i are in

the interior of
SOy — [_211;/271 2w/271} I |:_2w/271 2w/271}i
and are not divisible by 7. So all of them are digits.

We can rewrite A as
A=2v71(1 =) = —2w/* Y,

therefore 72 | A. We remark that A is a vertex (the lower-right vertex) of the scaled
Voronoi cell 7V and that the edges of 7%V are parallel to the real and imaginary
axes. This means that A — 1 is on the boundary, too, and its real part is larger than
0. By using the construction of the restricted Voronoi cell, cf. Definition [2.4.2] we
know that A — 1 is in 7%V. Since it is clearly not divisible by 7, it is a digit.

We have
B=14=—ovwl

Therefore 7 ‘ B, and we know that B halves the edge at the bottom of the Voronoi

cell 7¥V. By construction of the scaled restricted Voronoi cell 7'“"7, cf. Defini-
tion we obtain that B + 1 is a digit, and therefore, by symmetry, —B — 1 is a
digit, too.

Rewriting yields

and we obtain
STw — _Z‘l—w/2(1 + Z)’u} — _2’11}/2Z',
-k

since (14 4)2 = 2i. Further we can check that the vertices of 7%V are i*7%~! for an
appropriate k € Z.

Now consider is7®~!. This is exactly the lower-right vertex A of V. Therefore,
we have

it sl =571 (A - 1).

Using that A — 1 is a digit and the rotational symmetry of the restricted Voronoi
cell, it~ — 571 is a digit.

As before, we remark that s7% = —2%/2;. Therefore we obtain
B-1-st"=-B—-1.
Now, by rewriting, we get
(A-1D)7m 4 (—s H=A-1)r L+ Grv -5
= (B-Drv+ (it 1 —s71
= 572 + (B—1—st")71% 4+ (iwal — sil)
=572 4 (=B — 1)7¥ + (it¥ 7t — 57,

which was to prove. O

31



2 Optimality of the Width-w Non-adjacent Form

Lemma 2.8.5. Let the assumptions of Proposition [2.8.5 hold and suppose w = 2. Then
(a) —1 and —i are digits and

(b) we have

6 2

—r—1=—ir — 7t —ir? — 4.

Proof. (a) The elements —1 and —i are on the boundary of the Voronoi cell 72V, cf.
Figure[2.8.1((a)l More precisely, each is halving an edge of the Voronoi cell mentioned.
The construction of the restricted Voronoi cell, together with the rotation and scaling
of 72 = 24, implies that —1 and —i are in 72V . Since none of them is divisible by 7,
both are digits.

(b) The element i has the 2-NAF-representation

i=—irt =% —i.

Therefore we obtain

—r—1l=(=14i)7+Gr—1)=ir? + (=i) = —ir® =7t —ir? —

as required. O
Finally, we are able to prove the non-optimality result.

Proof of Proposition[2.8.3, Let w > 4. Everything needed can be found in Lemma [2.8.4}
We have the equation

A-Dr 4 (—sH =57 + (=B - 1)1 + (itv ' —s7h),

in which the left and the right hand side are both valid expansion (the coefficients are
digits). The left hand side has weight 2 and is not a w-NAF, whereas the right hand
side has weight 3 and is a w-NAF.

Similarly the case w = 2 is shown in Lemma We have the equation

—7—1=—ir® =7t —ir? -,

which again is a counter-example to the optimality of the 2-NAF's. ]

2.9 The p-is-0-Case

This section contains another special base 7. We assume that p = 0 and that we have
an integer ¢ > 2. Again, we continue looking at w-NAF-number systems with minimal
norm representative digit set modulo 7% with w > 2. Some examples of the digit sets
used are shown in Figure [2.9.1

For all possible 7 of this section, the corresponding Voronoi cell can be written explic-
itly as

V =polygon({3(r+1),5(r = 1), (-7 — 1), 3(-7+ 1)}).

Remark that V' is an axis-parallel rectangle.

In this section we prove the following non-optimality result.
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o .
. F R FF T
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° . .
(a) Digit set for 7 = (b) Digit set for 7 = (c) Digit set for 7 = (d) Digit set for 7 =
iv2 and w = 3. iv2 and w = 5. iv3 and w = 3. iv3 and w = 5.

Figure 2.9.1: Minimal norm representatives digit sets modulo 7. For each digit 7, the

corresponding Voronoi cell V;, is drawn. The large scaled Voronoi cell is
TV,

Proposition 2.9.1. Let w be an odd integer with w > 3 and the setting as above. Then

there is an element of Z[t] whose w-NAF-expansion is non-optimal.

For the remaining section—it contains the proof of the proposition above—we will
assume 7 = i,/q. The case 7 = —i,/q is analogous. Before we start with the proof of
Proposition 2.9.1] we need the following two lemmata.

Lemma 2.9.2. Let the assumptions of Proposition lhold, and suppose that q is
even. Define A = I7[“* and B := 1A, and set s = (=1)z2+) | Then

(a) 1 and —1 are digits,

(b) A—1—1 is a digit,

(c) —B —1 is a digit,

(d) —s — 1%~ is a digit, and
(e) we have

(A-1- 7')7'“’*1 —s=sT" 4+ (=B—-1)1" + (—s — T“’fl).

Figure shows the digits used in Lemma for a special configuration.

Proof. (a) A direct calculation shows that —1 and 1 are in an open disc with radius
2 |7|", which itself is contained in 7*V. Both are not divisible by 7, so both are
digits.

(b) Because w is odd, ¢ is even and 7 = i,/q, we can rewrite the point A as

1
A= 5 |T’w+l _ gq%(wfl)

and see that A is a (positive) rational integer and that 7%~} ‘ A. Furthermore, A
halves an edge of 7”V. Therefore, A — 1 is inside 7*V. If ¢ > 4 or w > 5, the
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TV
“B-1
[
st =101 s(=s — 7¥=1) " |A
A-1-7 [A-~
B-1 B
ST.“’

Figure 2.9.2: The g¢-is-even situation. The figure shows the configuration p = 0, ¢ = 4,
T =2, w=3,s =1. A polygon filled grey represents a digit, a dot
represents a point of interest in Lemma [2.9.2

point A —1— 7 is inside 7%V, too, since the vertical (parallel to the imaginary axis)
side-length of 7%V is |7|" and |r| < § |7[”. Since 72 | A, we obtain 7{A —1—7, so
A—1—7isadigit. If =2 and w =3, we have A—1—7 =1 — 7. Due to the
definition of the restricted Voronoi cell TN/, cf. Definition we obtain that 1 — 7
is a digit.

(c) Previously we saw 7%~ | A. Using the definition of B and w > 3 yields 7 | B. It
is easy to check that B = %57'1”. Furthermore, we see that B is on the boundary of
the Voronoi cell 7¥V. By a symmetry argument we get the same results for —B.
By the construction of the restricted Voronoi cell V, cf. Definition we obtain
that —B — 1 is in 7V and since clearly 71 (—B — 1), we get that —B — 1 is a digit.

(d) We first remark that 7%~! € Z and that ‘Tw_1’ < A. Even more, we get 0 <
—s7~1 < A. Since A is on the boundary of 7%V, we obtain —1—s7%~1 € 7% int(V).
By symmetry the result is true for —s—7%~! and clearly 7{(—s—7%"1), s0 —s—7%~1
is a digit.
(e) We get
(A-1- T)Tw_l +(—s)=(A—- 7‘)7‘“’_1 +(—s— T“’_l)
=(B-1)1"+(-s— 7'“’_1)
=5t 4 (B—1—s7Y)7Y 4 (—s — 7%71)
=57 4 (=B — )7 + (—s — 771,
which can easily be verified. We used B = %A. O
Lemma 2.9.3. Let the assumptions of Proposition hold, and suppose that q is
odd. Define A’ .= % \T|w+1, B = %A, A=A — % and B := B'+ %, and set C = —A,
t=(q+1)/2 and s = (—1)%(“’“) € {—1,1}. Then
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TV
—B-1
7
¢ g1l 510 1 .s(sC —trvl) A
A7 | ATt
B
B —.1 -7
ST.w

Figure 2.9.3: The ¢-is-odd situation, The figure shows the configuration p = 0, ¢ = 5,
7 =iV5, w =3, s = 1. A polygon filled grey represents a digit, a dot
represents a points of interest in Lemma [2.9.3

(a) 1 and —1 are digits,

(b) A—7 is a digit,

(c) sC is a digit,

(d) —B —1 is a digit,

(e) sC —tr*~ is a digit, and

(f) we have

(A—7)r 1 4 (s0) = s7%° + (=B — 1)1 + (sC — t7*7 ).

Figure shows the digits used in Lemma [2.9.3] for a special configuration.
Proof. (a) See the proof of Lemma [2.9.2]

(b) We can rewrite the point A as

A= % |t — % _ % <q%(w+1) _ 1) ‘
Since ¢ is odd with ¢ > 3 and w is odd with w > 3, we obtain A € Z with
0<A<g |7[“*! and gt A. Therefore 74 A and A is in the interior of the Voronoi
cell 7¥V. The vertical (parallel to the imaginary axis) side-length of 7%V is |7[*
and |7| < & |7|¥, so A— 7 is in the interior of 7V, too. Since 71 A — 7, the element
A — 7 is a digit.
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2 Optimality of the Width-w Non-adjacent Form
(c) We got 71 A and A is in the interior of the Voronoi cell 7#V. Therefore A is a digit,
and—by symmetry—sC' is a digit, too.
(d) We obtain
1 _ 1 1 _
B=—Zivalrl" " +izva=5r (- 1T 1),

which is inside 7%V. Therefore the same is true for —B. The horizontal (parallel to
the real axis) side-length of 7%V is larger than 2, therefore —B — 1 is inside 7%V,
too. Since 7 ! B we get 7{(—B — 1), so —B — 1 is a digit.

(e) We obtain

0<s(sC—tr ) = 3 (@ + D el = fr 1)

1 1
=2 (1" + 1) < S 1

This means that sC—#7%~1 is in the interior of the Voronoi cell 7%V Since 74(—A) =

C, the same is true for sC —t7%~! i.e. it is a digit.
(f) We get

(A=) 4 (sC) = (A= T+ )70 L+ (sC — t7v7h)
=(B—1-71)7"+ (sC —tr71)
= s72% 4+ (B=1—7—sm)7"+ (sC — twal)
=572 4 (=B —1)1¥ + (sC — tT“’_l),

which can be checked easily. O

The two lemmata above now allow us to prove the non-optimality result of this section.

Proof of Proposition[2.9.1]. Let g be even. In Lemma [2.9.2] we got
(A=1-7)1v -5 =514 (=B - 1)7¥ 4 (—s — %71

and that all the coefficients there were digits, i.e. we have valid expansions on the left
and right hand side. The left hand side has weight 2 and is not a w-NAF, whereas
the right hand side has weight 3 and is a w-NAF. Therefore a counter-example to the
optimality was found.

The case ¢ is odd works analogously. We got the counter-example

(A—=7)7 1 4 (sC) = 572 + (=B — 1)7% + (sC — t7¥71)

in Lemma [2.9.3] O
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Figure 2.10.1: The optimality map including computational results. Below each block
the parameters |p| and ¢ (fulfilling 72 — p7 4 ¢ = 0) are printed. A block
is positioned according to 7 in the complex plane. Above each block are
the w. The symbol O means that the w-NAF-expansions are optimal, N
means there are non-optimal w-NAF-expansions. If a result is surrounded
by a circle, then it is a computational result. Otherwise, if there is no
circle, then the result comes from a theorem given here or was already
known. A dot means that there is no result available.




2 Optimality of the Width-w Non-adjacent Form

2.10 Computational Results

This section contains computational results on the optimality of w-NAF's for some special
imaginary quadratic bases 7 and integers w. We assume that we have a 7 coming from
integers p and g with ¢ > p?/4. Again, we continue looking at w-NAF-number systems
with minimal norm representative digit set modulo 7% with w > 2.

As mentioned in Section the condition w-subadditivity-condition—and therefore
optimality—can be verified by finding a w-NAF-expansion with weight at most 2 in
w (#D — 1) cases. The computational results can be found in Figure The calcu-
lations were performed in Sage [96].
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Chapter 3

Existence and Optimality of
w-Non-adjacent Forms with an
Algebraic Integer Base

This chapter contains the article [50] with the title “Existence and Optimality of w-
Non-adjacent Forms with an Algebraic Integer Base”. It is joint work with Clemens
Heuberger. The article was accepted for publication by Acta Mathematica Hungarica
on October 31, 2012. An introduction to this chapter can be found in Chapter [1] in

particular Sections and

Abstract

We consider digital expansions in lattices with endomorphisms acting as base. We focus
on the w-non-adjacent form (w-NAF), where each block of w consecutive digits contains
at most one non-zero digit. We prove that for sufficiently large w and an expanding en-
domorphism, there is a suitable digit set such that each lattice element has an expansion
as a w-NAF.

If the eigenvalues of the endomorphism are large enough and w is sufficiently large,
then the w-NAF is shown to minimise the weight among all possible expansions of the
same lattice element using the same digit system.

3.1 w-Non-Adjacent Forms and Digit Sets

In this section, we recall the notion of w-non-adjacent forms and formally introduce
w-non-adjacent digits sets.

We use the abstract setting mentioned in the introduction (and already used in the
previous chapter): We consider an Abelian group A, an injective endomorphism & of A
and an integer w > 1. Let D® be a system of representatives of those residue classes of
A modulo ®“(.A) which are not contained in ®(A). We set D = D* U {0}.
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3 Existence and Optimality of w-Non-adjacent Forms

We call the triple (A, ®, D) a pre-w-non-adjacent digit set (pre-w-NADS).

Definition 3.1.1. 1. A word n = np_1...7m9 over the alphabet D is said to be a
D-w-non-adjacent form (D-w-NAF), if every factor njiw—1...15, 0 < j < £ —w,
contains at most one non-zero letter 7. Its value is defined to be

1
value(ne_1...1m0) = Z @/ (n;).-
j=0

We say that i is a D-w-NAF of a € A if value(n) = «a.

2. We say that D is a w-non-adjacent digit set (w-NADS), if every o € A admits a
D-w-NAF.

Example 3.1.2. Let K be a number field of degree n, O be an order in K and 7 € 9. We
consider the endomorphism ®.: 9 — 9O with « — T«, i.e., multiplication by 7. Then

let D* be a system of representatives of those residue classes of O modulo 7% which are
not divisible by 7 and D = D* U {0}. Then (O, ®,,D) is a pre-w-NADS. Note that

{—1
value(ng—1...m0) = Z anj
7=0

for a word 7y_1 . ..ng over the alphabet D.
We state a few special cases.

Ezample 3.1.3. Let 7 € Z, |7| > 2 and w > 1 be an integer. Consider
w w
D._{dGZ:—h—<dS|T|,T)[d}
2 2
and D = D*U{0}. Then (Z, ®,,D) is a pre-w-NADS, where @, still denotes multiplica-
tion by 7. It can be shown that (Z, ®,, D) is a w-NADS. This will also be a consequence
of Theorem [3.4.11

Ezample 3.1.4. Let 7 be an imaginary quadratic integer and D® a system of represen-
tatives of those residue classes of Z[r] modulo 7% which are not divisible by 7 with the

property that
if a =4 (mod 7) and o € D°®, then |a| < |3

holds for a, 8 € Z[r] which are not divisible by 7. This means that D contains a
representative of minimal absolute value of each residue class not divisible by 7. As
always, we set D = D* U {0}.

Then, for w > 2, (Z[7], ®,, D) is a w-NADS (cf. Heuberger and Krenn [49]), where @,
still denotes multiplication by 7.

For 7 € {(£1++/-7)/2,(£3£v=3)/2,1+v—1,v/=2,(1 +/—11)/2}, this has been
shown by Solinas [94], [95] and Blake, Murty and Xu [16, 18], cf. also Blake, Murty and
Xu [I7] for other digit sets to the bases (1 4 /=7)/2.
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3.1 w-Non-Adjacent Forms and Digit Sets

At several occurrences, it is useful to consider equivalent pre-w-NADS.

Definition 3.1.5. The pre-w-NADS (A, ®,D) and (A’, &', D’) are said to be equivalent,
if there is a group isomorphism @: A — A’ such that the diagram

AT)A

o 4

A/?A/

commutes and such that D' = Q(D).
It is then clear that the following proposition holds.

Proposition 3.1.6. Let (A, ®,D) and (A, ®', D) two equivalent pre-w-NADS. Then D
is a w-NADS if and only if D' is a w-NADS.

Proof. Straightforward. O

Example 3.1.7. We continue Example [3.1.2] i.e., K is a number field, O an order in K,
7 € 9, the endomorphism considered is ®., the multiplication by 7, and the digit set D
is as in Example [3.1.2

The real embeddings of K are denoted by o1, ..., 0s; the non-real complex embeddings
of K are denoted by gst1, st1, --., Os+t, Os1¢, where = denotes complex conjugation
and n = s 4+ 2t. The Minkowski map ¥: K — R"™ maps a € K to

(o1(),...,05(a), Rosyi1(a), Sospi(a), ..., Rosyi(a), Sosie(a)) € R™.

We write A = X(O) for the image of O under ¥. Note that A is a lattice in R™. We
consider the n x n block diagonal matrix

A ding <01(T)’ o), <§R03+1(T) —%as+1(7)) . <§R05+t(7) —%as+t(7)>)

Sosi1(7)  Rosy1(7) Sospi(T)  Rospe(T)

and set D’ := 3(D). Then the pre-w-NADS (O, ®,,D) and (A, ., D’) are easily seen
to be equivalent, where @’ (z) := A; -z for z € R™.

Note that if K is an imaginary quadratic number field (cf. Example , this con-
struction merely corresponds to a straight-forward identification of C with R2.

In order to investigate the w-NADS property further, it is convenient to consider the
following two maps.

Definition 3.1.8. Let (A, ®,D) be a pre-w-NADS. We define

1. d: A — D with d(a) = 0 for @ € ®(A) and d(a) = o (mod ¥ (A)) for all other
o€ A,

2. T: A— Awith a— & Ha —d(a)).
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3 Existence and Optimality of w-Non-adjacent Forms

Note that the map d is well-defined as D*® contains exactly one representative of every
residue class of .4 modulo ®"(.A) which is not contained in ®(.A). Furthermore, we have
a = d(a) (mod ®(A)) for all & € A. Therefore and by the injectivity of ®, the map T'
is well-defined. We remark that by definition, we have 7°(0) = 0.

We get the following characterisation, which corresponds to the backwards division
algorithm for computing digital expansions from right (least significant digit) to left
(most significant digit).

Lemma 3.1.9. Let o € A. Then a has a D-w-NAF ng_1 ... 1o if and only if T*(a) = 0.
In this case, we have ny, = d(T*()) for 0 < k < £. In particular, the D-w-NAF of an
a € A, if it exists, is unique up to leading zeros.

Proof. Assume that ny_1 ...ng is a D-w-NAF of a. We clearly have o = 19 (mod ®(A)),
so that « is an element of ®(A) if and only if ny = 0. Otherwise, the w-NAF-condition
ensures that a =y (mod ®*(A)). In both cases, we get d(a) = o and therefore

T () = value(ne—1 ...m1).

Iterating this process yields T%(a) = value(ny_y ...nx) for 0 < k < ¢, where ny_1 ... 15
is a D-w-NAF. For k = ¢, we see that T(«) is the value of the empty word, which is
zero by the definition of the empty sum.

Conversely, we assume that T*(«)) = 0. We note that if d(8) # 0 for some 8 € A, we
have f—d(8) =0 (mod ®¥(A)), which results in 77 (8) = ®~7(8—d(8)) =0 (mod ®(A))
and d(T7()) = 0 for 1 < j < w—1. Therefore, the word n = d(T*"(a)) ... d(T(c))d(c)
is a D-w-NAF. Iterating the relation 8 = ®(T'(5))+d(B) valid for all 5 € A, we conclude
that a = ®(T*(«)) + value(n) = value(n). O

3.2 Lattices and D-w-NAFs

We now specialise our investigations to the case that the abstract Abelian group A is
replaced by a lattice in R”, i.e., A=A =wZ & --- & wyZ for linearly independent w,
..., wy € R™. Further let ® be an injective endomorphism of R" with ®(A) C A, w > 1
be an integer, and D*® a system of representatives of those residue classes of A modulo
®"(A) which are not contained in ®(A), and set D = D* U {0}.

The results are still applicable to the case of multiplication by 7 in the order of a
number field, as the purpose of Example was to describe it as equivalent to a
lattice A C R”™ via the isomorphism X..

The aim of this section is to prove a necessary criterion for a pre-w-NADS to be a
w-NADS.

Proposition 3.2.1. Let D be a w-NADS. Then ® is expanding, i.e., |\| > 1 holds for
all eigenvalues A of ®.

Proof. 1. We first consider the case that there is an eigenvalue A of ® with |A| < 1.

In a somewhat different wording, this has been led to a contradiction by Vince [104].
The idea is the following: After a suitable change of variables, the endomorphism
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3.3 Tiling Based Digit Sets

® can be represented by a Jordan matrix such that the first & coordinates, say,
correspond to the eigenvalue A. Thus the first & coefficients of value(n) are bounded
independently of the word 1 over the alphabet D. Thus it is impossible to have a
representation of all elements of A. This is completely independent of the w-NAF-
condition (and gives, in fact, a stronger result, as representability by any word over
the digit set is impossible).

2. We next consider the case that |[A| > 1 for all eigenvalues A of ® with equality
|[Ao| = 1 for at least one eigenvalue Ag.

We again follow Vince [104], see also Kovéacs and Pethé [66], to see that Ao must
be a root of unity. The idea is that Ao is a unit in Z[Ao, Ag], as Ag is its inverse.
Therefore, A\ has absolute norm +1. As we already assumed that all its absolute
conjugates are at least 1 in absolute value, this implies that all absolute conjugates
of Ag lie on the unit circle. Thus \g is a root of unity.

As a consequence, there is some ¢ such that )\6 = 1. In other words, 1 is an
eigenvalue of ®. After a suitable change of coordinates, A can be assumed to be Z"
and ® can be represented by a matrix with integer entries. Let a be an eigenvector
of ®¢ with eigenvalue 1. Multiplying a by a suitable integer if necessary, we can
assume that a € Z" = A. As a = ®/(a), we get a € ®*(A) for all integers k > 0,
which implies that d(7%(«)) = 0 holds for all k. Furthermore, we cannot have
T*(a) = 0 for any k > 0. Thus, o cannot be represented. O

3.3 Tiling Based Digit Sets

In this section, we consider a fixed lattice A C R™ and an expanding endomorphism &
of R" with ®(A) C A. We will discuss digit sets constructed from tilings.

Definition 3.3.1. Let V be a subset of R"™. We say that V tiles R™ by the lattice A, if
the following two properties hold:

L U,ea(z+V)=R",
2. VN (z+ V) C OV holds for all z€ A with z # 0.
We now assume that V' be a subset of R” tiling R" by A.
Lemma 3.3.2. Let w > 1 and
D:={aecA:d"(a)eV}
Then D contains a complete Iesidue system of A modulo ®*(A).

Furthermore, if a, &' € D with a # o and a = o (mod ®*(A)), then % («),
(o) € OV.
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3 Existence and Optimality of w-Non-adjacent Forms

Proof. Let f € A. Then thereisay € A and av € V such that ®~%(8) = v+v. Setting
a:= 3 — ®¥(y), this implies that

() =27(B) —y=veV,

ie,acDand f=a (mod ®™(A)).
Assume now «, @/ € D with a # o and @ = o (mod ®¥(A)). We write o =
a+ % (~) for a suitable v € A. We obtain

() = 27"(a) +,
which implies that ®~%(a’) € V. Analogously, we get &~ (a) € V. O

For an integer w > 1, we choose a subset D® of D in such a way that D*® contains
exactly one representative of every residue class modulo ®*¥(A) which is not contained
in ®(A). We also set D :=D* U {0}.

Theorem 3.3.3. Let || - || be a vector norm on R™ such that for the corresponding
induced operator norm, also denoted by || - ||, the inequality ||®~1|| < 1 holds. Let r and
R be positive reals with

{eR": ||lz[| <r} CV C{zeR": || < R}. (3.3.1)

If w is a positive integer such that

1
1+ R/r’

@ 1Y < (3.3.2)

then D is a w-NADS.

Remark 3.3.4. In the case of expansions in an order of a number field (Example ,
we may take || - || to be the Euclidean norm || - ||2, as the corresponding operator norm
fulfils || A2 = max{1/|o;(7)| : 1 < j < s+ t}. In this case, is equivalent to
loj(T)[* >1+ R/rforall 1 <j<s+t.

Proof of Theorem[3.5.3 Let o € A. We claim that

IT* () + 27 H* - el (3.3.3)

| < —%Ta
o1
holds for all k& with the property that d(T* (a)) = 0 holds for all non-negative k’ with
k—w<k <k.
For k =0, (3.3.3)) is obviously true. We assume that (3.3.3)) holds for some k. As an
abbreviation, we write 3 = T*(«) and = d(B). If n = 0, then we have

o=t - R

T—o1* + (| @ FF e,

1T D)l = ITB)] = 127 (B < 127 - 18]l <

which proves (3.3.3) for k£ + 1.
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3.4 Minimal Norm Digit Set

In the case n # 0, we get

1T (@)l = 1o~ (8 —m)ll < @~ - 18I+ @7 - Inll < @~ - 18] + 1R

R
<@ | ——= + 127" R
< 1870 (1= e + 107l ) +
R

- - (I)—l k+w .

e+ 107 ol

which is (3.3.3) for k + w.
By (3.3.2)) and (3.3.3)), we can choose a kqy such that
(I)—w Tk‘ < H(P_l”w R @—1 k+w X 3.3.4
12T ()] = T =1 TG HOTHF - el < (3.3.4)

holds for all k& > kg.

If T% () = 0, then o admits a D-w-NAF by Lemma Otherwise, choose k > kg
maximally such that T%0 («) € ®¥~F0(A). This is possible because ® is expanding. This
results in T%(a) ¢ ®(A). Then implies that

| (T* ()| < 7.

By (3.3.1)), we conclude that ®~*(T%(«)) is an element of the interior of V.
By Lemmal3.3.2| we obtain ®~*(T%(a)) € D*, hence d(T*(a)) = T*(a) and T+ () =
0. Thus o admits a D-w-NAF by Lemma [3.1.9 O

3.4 Minimal Norm Digit Set

In this section, we study a special digit set, the minimal norm digit set. In the case of
an imaginary quadratic integer 7, this notion coincides with the minimal norm represen-
tative digit sets introduced by Solinas [94), 95].

Let again A be a lattice in R™ and ® an expansive endomorphism of R" with ®(A) C A.
Choose a positive integer wy such that [A| > 21/ holds for all eigenvalues X of ®. Thus
the spectral radius of ®~! is less than 1/21/%0. We choose a vector norm || - || on R"
such that the induced operator norm (also denoted by || - ||) fulfils |®~|| < 1/2'/%0. As
a consequence, we have ||[®~1[|“ < 1/2 for all w > wy.

Again, in the case of expansions in an order of a number field (Example , we
may take || - || to be the Euclidean norm || - ||, cf. Remark [3.3.4]

Let V' be the Voronoi cell of the origin with respect to the point set A and the vector
norm || - ||, i.e.,

V={zeR":|z| <|z+ «af holds for all a € A}.

While V' does not necessarily tile R™ by A (consider the norm || - || and the lattice
generated by (1,0) and (0, 10) in R?), for a given integer w > 1, we can still select a set
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3 Existence and Optimality of w-Non-adjacent Forms

D* of representatives of those residue classes of A modulo ®*(A) which are not contained
in ®¥(A) such that
D*C{aeA:d7 () eV}
As usual, we also set D := D* U {0} and call it a minimal norm digit set modulo ®v.
Adapting ideas of German and Kovécs [42] to our setting, we prove the following
theorem.

Theorem 3.4.1. If w > wy, then D is a w-NADS.
Proof. We set M := max{||n|| : n € D}. For § € A, we have

IT@B) = 2718 = d(B))] < |8~ (I8 + M).

Setting

o7 <
M=
1— @1

we see that

TN <8l it 18l > M,
T3 <M i [|B]] < M.

As A is a discrete subset of R™, we conclude that the sequence (T*(a))y>0 is eventually
periodic for all o € A.
For g € ®(A) with 8 # 0, we have

ITBI =12~ B < @M - 181l < I5]]-
Consider the set
P:={B€A:B¢g®) and (T*(8))r>o is purely periodic}.

The set P is empty if and only if for each a € A, there is an ¢ with T%(a) = 0, i.e.,
a admits a D-w-NAF. Therefore, by Lemma P is empty if and only if D is a
w-NADS.

We therefore assume that P is nonempty. We choose an o € P such that ||~ («)|| >
|®~*(B)|| holds for all 8 € P. This is possible, since all elements 5 of P fulfil ||3|| < M,
which implies that P is a finite set.

Next, we choose £ > 0 with T%(a) = a and set n = d(T*(a)) for 0 < k < £. We set

N:={0<k<l:n,#0}

By the w-NAF-condition, we have |k — k| > w for distinct elements k and k" of N.
By definition of T', we have

1 1
a=Ta)=2" (a -> ‘I’k(ﬁk)) =3 (a) = Y B (mp),
k=0 k=0
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3.4 Minimal Norm Digit Set

Applying ®~% once more and rearranging yields

d(a) = (id - ( Zcpk ‘(o ))). (3.4.1)
kGN

Note that we restricted the sum to those k corresponding to non-zero digits.
We claim that
1 (m)l| < [ @7(T* ()| < |27 ()] (3.4.2)

holds for £ € N. The first inequality is an immediate consequence of the definition of

D*, as ®~(T*(a)) = ®~%(nx) + 7 for a suitable v € A. Here, we used that n # 0

implies that T%(a) ¢ ®(A). Therefore and as TF(a) = T*(T*(a)) = T*(a), we also

get T*(a) € P. By the choice of a, we conclude the second inequality in .
Taking norms in yields

_ ||<I>
[ ()] < H‘I’ 1Hg Z (R (3.4.3)
RN
As /€ N, we have
Z @1 < B o o — ot LI g
L— o=t "
RN
where m = |¢/w]. Combining (3.4.3) and (3.4.4) yields
- H‘P_IHU’ 1— ||@_1Hm“’ _ _
oV < H—W v
o @)l < s o e e @l < ol
as ||®~1||* < 1/2, contradiction. O

We restate this result explicitly for expansion in orders of algebraic number fields.

Corollary 3.4.2. Let K be an algebraic number field of degree n, o1, ..., os the real
embeddings and 511, G511, - -, Os+t, Os+¢ be the non-real complex embeddings of K.
Let © be an order of K and 7 € O such that |o;(7)| > 1 holds for all j. Let w be an
integer with
log 2
log |oj(7)]
Let D* be a system of representatives of those residue classes of O modulo ™ which
are not divisible by T such that
ﬂ 2
()]

where aj =1 forj € {1,...,s} andaj =2 forj € {s+1,...,s+t}. Then D :=D*U{0}
s a w-NADS.

w>max{ :1§j§s—|—t}.

s+t

() <

J=

s+t
if o = (mod 7) with 71 a and a € D, then Zaj
j=1
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3 Existence and Optimality of w-Non-adjacent Forms

Example 3.4.3. Let C be an algebraic curve of genus g defined over Fy (a field with
q elements). The Frobenius endomorphism operates on the Jacobian variety of C' and
satisfies a characteristic polynomial x € Z[T] of degree 2g. Let 7 be a root of x. Set
K = Q[r] and © = Z[7], and denote the embeddings of K by ¢;. Using Corollary
a minimal norm digit set modulo 7 is a w-NADS if

1
w > Og4.
log q

This is true because of the following reasons: The polynomial x fulfils the equation
X(T) = T*Y (1/T),

where Y (T') denotes the numerator of the zeta-function of C' over Fy, cf. Weil [107,
109]. The Riemann Hypothesis of the Weil Conjectures, cf. Weil [I08], Dwork [32] and
Deligne [25], state that all zeros of Y have absolute value 1/,/q. Therefore |o;(7)| = /g,
which was to show.

3.5 Optimality of D-w-NAFs

In this section, we consider a lattice A C R™ and an expanding endomorphism ® of R"
with ®(A) C A. First, we recall the definition of weight as in the previous chapter.

Definition 3.5.1. Let n = ny_1...m9 be a word over the alphabet D. Its (Hamming)
weight is the cardinality of {j : n; # 0}, i.e., the number of non-zero digits in 7.

Let z = value(n). The expansion 1 is said to be optimal if it minimises the weight
among all possible expansions of z, i.e., if the weight of 1 is at most the weight of & for
all words &€ over D with value(§) = z.

We will show an optimality result for D-w-NAFs in Theorem where the digit
set comes from a tiling as in Section

Lemma 3.5.2. We have

lim ™(A) = () @A) ={0}.
meENy

Proof. Let a € im0 @™(A) = (,,en, P (A). Then there is a sequence (By)meny»
all 5, € A and with §,, = ®™(a). As @ is expanding, we obtain f,, — 0 as m tends
to infinity. The lattice A is discrete, so B,, = 0 for sufficiently large m. We conclude
that a = 0. O

Now we define the digit set: We start with a subset V' of R" tiling R™ by A. For a
positive integer w let B
D:={acA: P Y(a) eV}

and B
Dint :={a € A: P Y(a) € int(V)},
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3.5 Optimality of D-w-NAFs

where int(V') denotes the interior of V. We choose a subset D*® of D in such a way that
D* contains exactly one representative of every residue class modulo ®*(A) which is not
contained in ®(A). We also set D := D* U {0}. This is the same construction as in
Section 3.3l

Lemma 3.5.3. Assume that V C ®(V). Then each element of Diy \ {0} has an expan-
sion of weight 1.

Proof. Let a € Dint \ {0}, and let 8 = ®(a) € A such that the non-negative integer ¢
is maximal. Therefore 3 ¢ ®(A). We have that ®~%(3) = ®~*~Y(a) is in the interior
of ®¥(V). Using V C ®(V) yields ®~%(8) € int(V), and therefore, by Lemma m
B € D*. Thus a = ®¢(S) has an expansion of weight 1. O

Theorem 3.5.4. Assume that V C ®(V), V. = =V and that there are a vector norm
| - || on R™ and positive reals r and R such that

{zeR":||z|| <r}CV C{zeR":|z|] <R} (3.5.1)

and such that the induced operator norm (also denoted by | - ||) fulfils || @~ < %.
If w is a positive integer such that

1/7r

e (— —Jlo? ) 3.5.2

1e= " <5 (7 — 17 (3.5.2)

and D is a w-NADS, then the D-w-NAF-expansion of each element of A is optimal.
The proof relies on the following optimality result.

Theorem (Heuberger and Krenn [48]). If
lim ®™(A) = {0}, (3.5.3)

m—00

and if there are sets U and S such that D C U, =D C U, U C ®(U), all elements in
SN A are singletons (have expansions of weight 1) and if

(@ HU)+ 7™ (U)+ @ “(U))NA C Su{0},
then every D-w-NAF is optimal.

Proof of Theorem[3.5.4 Condition (3.5.3)) is shown in Lemma [3.5.2] For the second
condition, we choose U = ®¥(V) and S = ®"(int(V)) \ {0}, and we show

(@ HV)+ @ (V) + & %(V)) Cint(V).

Optimality then follows, since each element in S N A has a weight 1 expansion by
Lemma [8.5.31 So let z be an element of the left hand side of the inclusion above.

Using (35.1) and (35.2) yields
J=ll < 18 IR+ 2@ "R <1,

therefore z is in the interior of V. O
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Chapter 4

Analysis of the Width-w
Non-Adjacent Form

This chapter contains the article [68] with the title “Analysis of the Width-w Non-
Adjacent Form in Conjunction with Hyperelliptic Curve Cryptography and with Lat-
tices”. The article is submitted to Theoretical Computer Science. An introduction to
this chapter can be found in Chapter [1} in particular Section

Abstract

We analyse the number of occurrences of a fixed non-zero digit in the width-w non-
adjacent forms of all elements of a lattice in some region (e.g. a ball). Our result is an
asymptotic formula, where its main term coincides with the full block length analysis.
In its second order term a periodic fluctuation is exhibited. The proof follows Delange’s
method. This results in a general lattice set-up, which is then used for numeral systems
with an algebraic integer as base. Those come from efficient scalar multiplication meth-
ods (Frobenius-and-add methods) in hyperelliptic curves cryptography, and our result is
needed for analysing the running time of such algorithms.

4.1 Non-Adjacent Forms

This section is devoted to the formal introduction of width-w non-adjacent forms. Let A
be an Abelian group, ® an injective endomorphism of A and w a positive integer. Later,
starting with the next section, the group A will be a lattice with the usual addition of
lattice points.

We start with the definition of the digit set used throughout this article.

Definition 4.1.1 (Reduced Residue Digit Set). Let D C A. The set D is called a reduced
residue digit set modulo ®, if it is consists of 0 and exactly one representative for each
residue class of A modulo ®“A that is not contained in ®A.
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4 Analysis of the Width-w Non-Adjacent Form

Next we define the syntactic condition of our expansions. This syntax is used to get
unique expansions, because our numeral systems are redundant.

Definition 4.1.2 (Width-w Non-Adjacent Forms). Let n = (1;) ., € DZ. The sequence
n is called a width-w non-adjacent form, or w-NAF for short, if each factor nj4p—1...7;,
i.e., each block of width w, contains at most one non-zero digit.

Let J:={j € Z : nj # 0}. Wecall sup({0} U (J + 1)), where J+1={j+1:j€ J},
the left-length of the w-NAF n and —inf({0} U J) the right-length of the w-NAF m.
Let ¢ and r be elements of Ny U {fin, 00}, where fin means finite. We denote the set
of all w-NAFs of left-length at most ¢ and right-length at most r by NAFﬁ;r. The
elements of the set NAFfL"'O will be called integer w-NAFs. The most-significant digit
ofanc NAF';L”'OO is the digit n; # 0, where j is chosen maximally with that property.

For n € NAF!M we call

value(n) := Z I,
JEZ
the value of the w-NAF n.

The following notations and conventions are used. A block of digits zero is denoted
by 0. For a digit n and k € Ny we will use

’I’/k = n...1,
——
k
with the convention 7" := €, where ¢ denotes the empty word. A w-NAF n = <77j)j€Z
will be written as n;.nr, where n; contains the n; with j > 0 and nr contains the 7;
with j < 0. ny is called integer part, ng fractional part, and the dot is called ®-point.
Left-leading zeros in 17 can be skipped, except 7y, and right-trailing zeros in iy can be
skipped as well. If nr is a sequence containing only zeros, the ®-point and this sequence
are not drawn.
Further, for a w-NAF 7 (a bold, usually small Greek letter) we will always use 7; (the
same letter, but indexed and not bold) for the elements of the sequence.
The set NAF{L”'OO can be equipped with a metric. It is defined in the following way.
Let p > 1. For n € NAFfi"> and ¢ € NAFfin> define

pnaxG€Zin 6} if g £ €,

So the largest index, where the two w-NAFs differ, decides their distance. See for
example Edgar [34] for details on such metrics.

We get a compactness result on the metric space NAFf,;OO C NAF‘:L”'OO, ¢ € Ny, see
the proposition below. The metric space NAF;(L”'OO is not compact, because if we fix
a non-zero digit n, then the sequence (an )j €N has no convergent subsequence, but all

707 are in the set NAFfin-o°,

dnar(n, §) = {

N,

Proposition 4.1.3. For every £ > 0 the metric space (NAFffO,dNAF) 18 compact.

This is a consequence of Tychonoff’s Theorem, see [49] for details.
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4.2 The Set-Up and Notations

4.2 The Set-Up and Notations

In this section we describe the set-up, which we use throughout this article.

1.

Let A be a lattice in R™ with full rank, i.e., A = w1Z & --- & w,Z for linearly
independent wy,...,w, € R™.

. Let n € N and ® be an endomorphism of R™ with ®(A) C A. We assume that each

eigenvalue of ® has the same absolute value p, where p is a fixed real constant with
p > 1. Further we assume that p" € N. Additionally, we take this p as parameter
in the definition of the metric dnaf.

Suppose that the set T C R" tiles the space R" by the lattice A, i.e., the following
two properties hold:

a‘) UzeA(Z + T) - ]Rn7
b) TN (z+T) C 9T holds for all z € A with z # 0.

Further, we assume that T is closed and that A\(OT) = 0, where A denotes the
n-dimensional Lebesgue measure. We set dp := A\(T).

Let || - || be a vector norm on R"™ such that for the corresponding induced operator
norm, also denoted by || - ||, the equalities ||®| = p and ||®~!|| = p~! hold.

For a z € A and non-negative » € IR the open ball with centre z and radius r is
denoted by
Bzr) = {y €At 2 —yll <7}

and the closed ball with centre z and radius r by

B(z,r):i={y €A : |z —yl <r}.
Let r and R be positive reals with
B(0,7) CT C B(0,R). (4.2.1)
Let w be a positive integer such that

L pv — 1. (4.2.2)
.

Let D be a reduced residue digit set modulo ®, cf. Definition [£.1.1] corresponding
to the tiling T, i.e. the digit set D fulfils D C ®¥T.

Further, suppose that the cardinality of the digit set D is

pn(wfl) (pn _ 1) +1.
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4 Analysis of the Width-w Non-Adjacent Form

We use the following notation concerning our tiling: for a lattice element z € A we set
T, := z+T. Therefore | J,., 7> = R™ and T, N T,, C 9T for all distinct y,z € A.

Next we define a fractional part function in IR™ with respect to the lattice A, which
should be a generalisation of the usual fractional part of elements in R with respect to
the rational integers Z. Our tiling T induces such a fractional part.

Definition 4.2.1 (Fractional Part). Let T be a tiling arising from 7' in the following
way: Restrict the set T C T such that it fulfils W.enlz + T) = R".

For z € R™ with z = u 4+ v, where v € A and v € T define the fractional part
corresponding to the lattice A by {z}, = v.

_Note that this fractional part depends on the tiling 7’ (or more precisely, on the tiling
T'). We omit this dependency, since we assume that our tiling is fixed.

4.3 Some Basic Properties and some Remarks

The previous section contained our set-up. Some basic implications of that set-up are

now given in this section. Further we give remarks on the tilings and on the digit sets

used, and there are also comments on the existence of w-NAF-expansions in the lattice.
We start with two remarks on our mapping ®.

Remark 4.3.1. Since all eigenvalues of ® have an absolute value larger than 1, the function
® is injective. Note that we already assumed injectivity of the endomorphism & in the
basic definitions given in Section

Remark 4.3.2. We have assumed ||[®|| = p and ||®~!|| = p~'. Therefore, for all J € Z
the equality H<I>J H = p’ follows.

Remark 4.3.3. The endomorphism & is diagonalisable. This follows from the assumptions
that all eigenvalues have the same absolute value p and the existence of a norm with
[ = p-

One special tiling comes from the Voronoi diagram of the lattice. This is stated in the
remark below.

Remark 4.3.4. Let
Vi={zeR":VyeA:|z]| <|z—-yl}.

We call V' the Voronoi cell for 0 corresponding to the lattice A. Let u € A. We define
the Voronoi cell for u as V,, ;== u+ V.
Now choosing T' = V results in a tiling of the R™ by the lattice A.

In our set-up the digit set corresponds to the tiling. In Remark this is explained
in more detail. The Voronoi tiling mentioned above gives rise to a special digit set,
namely the minimal norm digit set. There, for each digit a representative of minimal
norm is chosen.
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4.3 Some Basic Properties and some Remarks

Remark 4.3.5. The condition % < p* — 1 in the our set-up implies the existence of
w-NAFs: each element of A has a unique w-NAF-expansion with the digit set D. See
Heuberger and Krenn [50] for details. There numeral systems in lattices with w-NAF-
condition and digit sets coming from tilings are explained in detail. Further it is shown
that each tiling and positive integer w give rise to a digit set D.
Because D C ®¥T, we have
pUr < ||d| < p“R

for each non-zero digit d € D.

Further, we get the following continuity result.
Proposition 4.3.6. The value function value is Lipschitz continuous on NAFEJ”'OO.

This result is a consequence of the boundedness of the digit set, see [49] for a formal
proof.

We need the full block length distribution theorem from Heuberger and Krenn [49].
This was proved for numeral systems with algebraic integer 7 as base. But the result
does not depend on 7 directly, only on the size of the digit set, which is dependent on
the norm of 7. In our case this norm equals p™. That replacement is already done in the
theorem written down below.

Theorem 4.3.7 (Full Block Length Distribution Theorem). Denote the number of
w-NAFs of length m € Ny by Cp,. We get

1

n(m-+w) n\m
D1’ +O((up™)™) s

Cm =

where p = (1 + p”1w3)_1 < 1.

Further let 0 # n € D be a fized digit and define the random variable X, , to be
the number of occurrences of the digit n in a random w-NAF of length m, where every
w-NAF of length m is assumed to be equally likely. Then we get

E(Xpmy) = Em + O(1)

for the expectation, where

1
o@D (o — Dw+ 1)

E =

The theorem in [49] gives more details, which we do not need for the results in this
article: We have
E(Xm,y) = Em + Ey+ O(mu™)

with an explicit constant term Ey. Further the variance
V(Xnwg) =Vm+ Vo + O(mQMm)

with explicit constants V and Vj is calculated, and a central limit theorem is proved.
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4 Analysis of the Width-w Non-Adjacent Form

4.4 Bounds for the Value of Non-Adjacent Forms

In this section we have a closer look at the value of a w-NAF. We want to find upper
bounds, as well as, a lower bound for it. In the proofs of all those bounds we use bounds
for the norm || - ||. More precisely, geometric parameters of the tiling 7', i.e., the already
defined reals r and R, are used.

The following proposition deals with three upper bounds, one for the norm of the

value of a w-NAF-expansion and two give us bounds in conjunction with the tiling.
Proposition 4.4.1 (Upper Bounds). Let n € NAFfi"> and denote the position of the
most significant digit of n by J. Let

“R
By= B

1—pv

Then the following statements are true:

(a) We get
[value(n)|| < p” Bu
(b) We have
value(n) € U E(z,p*“’*‘]BU) .
zePwtIT
(c) We get

value(n) € ®2¥H/T.

(d) For each ¢ € Ny we have
value(0.7_1 ...n_¢) + T C 2w 1T,

Note that p”/ = dyar(n, 0), so we can rewrite the statements of the proposition above
in terms of that metric, see also Corollary

Proof. (a) In the calculations below, we use the Iversonian notation [expr| = 1 if expr
is true and [expr] = 0 otherwise, cf. Graham, Knuth and Patashnik [45].

The result follows trivially for n = 0. First assume that the most significant digit
of  is at position 0. Since ||n—_;|| < p"R, see Remark |4.3.5 on the preceding page]
p > 1 and n is fulfilling the w-NAF-condition we obtain

o0 . o0 )
|lvalue(n ZCI) In_ll < Z H(I)_luj -5l = ZP_] [l
< prZp | < prZp_J =0 (mod w)]
“R
— prZp = p — = BU.
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4.4 Bounds for the Value of Non-Adjacent Forms

In the general case we have the most significant digit of n at a position J. Then
value(n) = ®” value(n’) for a w-NAF n’ with most significant digit at position 0.
Therefore

[value(n)|| = ||®7 value(n') || < @’ |value(n')|| < p” By,
which was to prove.

(b) There is nothing to show if the w-NAF n is zero. First suppose that the most
significant digit is at position w. Then, using @), we have

lvalue(n) — ®“nw|| < By,

therefore
value(n) € B(®"“ny, By) .

Since n,, € ®“T', the statement follows for the special case. The general case is again
obtained by shifting.

(¢) Using the upper bound found in () and the assumption ([#.2.2)) yields

J PR <rp2w+‘].

I < p'By =p/ L—
Ivalueon)| < p” By = o 22 <

Since B(0, rp* /) C ®* /T the statement follows.

(d) Analogously to the proof of @, except that we use ¢ for the upper bound of the
sum, we obtain for v € T

Hvalue(O.n_1 coaM—g) + ®*£vH < |lvalue(0.n_1...n_¢)|| + p ‘R

< pflip R <1 — p_wl_z_quwJ) + pfeR

< — o
-1
PR _rl— —i1— _
< — (1—,0 CHl-w g =t w(l—p w))
1—pw

Since 1 — p~ 172w < 1 we get

PR _
e

value(0.n—1...1m—¢) + <I>_£TH <p!

for all £ € Nyg. By the same argumentation as in the proof of , the statement
follows. O

Next we want to find a lower bound for the value of a w-NAF. Clearly the w-NAF 0
has value 0, so we are interested in cases where we have a non-zero digit somewhere.
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4 Analysis of the Width-w Non-Adjacent Form

Proposition 4.4.2 (Lower Bound). Let n € NAFI™® be non-zero, and denote the
position of the most significant digit of n by J. Then we have

lvalue(n)|| > p”’ By,

where
R

Br=r—p *By=r-— :
L=T—p U7’pw_1

Note that By > 0 is equivalent to § < p¥ — 1, i.e. the assumption (4.2.2). Moreover,
we have

R j—
T—BL_

Proof of Proposition[{.4.3 First suppose the most significant digit of the w-NAF 7 is
at position 0 and the second non-zero digit (read from left to right) at position J. Then

oY —1.

o0
value(n) —np = Z dFn_y e U E(z,p_w+JBU) - U E(z,p_QwBU)
k=w zeT zeT

according to (]ED of Proposition [4.4.1 on page 56, Therefore

value(n) € U B(z,p *"By).

2€Ty,

This means that value(n) is in T}, or in a p~ 2% By-strip around this cell. The two tiling
cells Ty, for no and Ty = T for 0 are disjoint, except for parts of the boundary, if they
are adjacent. Since a ball with radius r is contained in each tiling cell, we deduce that

_ R
Ivalue(m)]| > r = p* By = r — = = By,

which was to show. The case of a general J is again, as in the proof of Proposition [4.4.1
obtained by shifting. O

Combining the previous two propositions leads to the following corollary, which gives
an upper and a lower bound for the norm of the value of a w-NAF by looking at the
largest non-zero index.

Corollary 4.4.3 (Bounds for the Value). Let n € NAFi™® then we get

dnar(n,0) By, < ||value(n)|| < dnar(n,0) By.

Proof. Follows directly from Proposition [4.4.1 on page 56| and Proposition [4.4.2] since
the term p” is equal to dnar(n,0). O

Last in this section, we want to find out if there are special w-NAFs for which we know
for sure that all their expansions start with a certain finite w-NAF. This is formulated
in the following lemma.
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Lemma 4.4.4. There is a kg € Ny such that for oll k > ko the following holds: If
n € NAF_O,LU'OO starts with the word 0%, i.e., n_1 =0, ..., n_ = 0, then we get for all
€ € NAF!N that value(€) = value(n) implies &€ € NAF%:>.

Proof. Let & = &£7.€p. Then ||value(&;.€F)|| < Br implies &5 = 0, cf. Corollary
Further, for our 17 we obtain z = ||value(n)|| < p~*By. So it is sufficient to show that

p "By < By,

which is equivalent to

B
k> long—U.
L

We obtain ,
k‘>2w—logp<ﬁ(pw—1)—1),

where we just inserted the formulas for By; and By. Choosing an appropriate kg is now
easily possible. 0

Note that we can find a constant k; independent from w such that for all k£ > 2w + &k
the assertion of Lemma holds. This can be seen in the proof, since 5 (p* —1) — 1
is monotonically increasing in w.

4.5 Right-infinite Expansions

We have the existence of a (finite integer) w-NAF-expansion for each element of the
lattice A C R", cf. Remark But that existence condition is also sufficient to get
w-NAF-expansions for all elements in R™. Those expansions possibly have an infinite
right-length. The aim of this section is to show that result. The proofs themselves are
a minor generalisation of the ones given in [49] for the quadratic case.

We will use the following abbreviation in this section. We define

@ A= | 277A.
Jj€No

Note that A € &~ LA.
To prove the existence theorem of this section, we need the following three lemmata.

Lemma 4.5.1. The function value|y apfinin 5 injective.

Proof. Let 17 and € be elements of NAFN-fin with value(n) = value(¢). This implies that
®7 value(n) = ®” value(§) € A for some J € Z. By uniqueness of the integer w-NAFs
we conclude that n = &. O

Lemma 4.5.2. We have vaIue(NAFfL”‘ﬁ”) = [®1A.

Proof. Let i € NAFZ”'“". There are only finitely many n; # 0, so there is a J € Ny
such that value(n) € ®~7A. Conversely, if 2 € ®~7/ A, then there is an integer w-NAF of
@72, and therefore, there is a £ € NAFifin with value(¢) = 2. O
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4 Analysis of the Width-w Non-Adjacent Form

Lemma 4.5.3. [®!A is dense in R™.

Proof. Let A = unZ & --- ® w,Z for linearly independent w1, ...,w, € R". Let z € R"
and K € Ny. Then Xz = zyw; + - - - + 2wy, for some reals Zly. .., 2n. We have

Iz = (Lz1) @ Fwi 4+ [za] @ Fawn) || < o7 (Jor]l + -+ + [Jwnl)),
which proves the lemma. ]
Now we can prove the following theorem.

Theorem 4.5.4 (Existence Theorem concerning R"). Let 2 € R". Then there is an
n € NAFN-° quch that z = value(n), i.e., each element in R"™ has a w-NAF-expansion.

Proof. By Lemmam there is a sequence 2, € [®~!]A converging to z. By Lemma
lon the previous pagﬂ there is a sequence , € NAFI™ with value(n,) = 2, for all
n. By Corollary 4.4.3 on page 58| the sequence dnap (7, 0) is bounded from above, so
there is an ¢ such that n, € NAFfi',‘cin C NAFfl;OO. By Proposition |4.1.3 on page 52,
we conclude that there is a convergent subsequence 1), of n,,. Set n := lim,_,o 7,,. By
continuity of value, see Proposition [4.3.6 on page 55, we conclude that value(n) = z. O

4.6 The Fundamental Domain

We now derive properties of the Fundamental Domain, i.e., the subset of R™ repre-
sentable by w-NAF's which vanish left of the ®-point. The boundary of the fundamental
domain is shown to correspond to elements which admit more than one w-NAFs differing
left of the ®-point. Finally, an upper bound for the Hausdorff dimension of the boundary
is derived.

All the results in this section are generalisations of the propositions and remarks found
in [49]. For some of those results given here, the proof is the same as in the quadratic
case or a straightforward generalisation of it. In those cases the proofs will be skipped.

We start with the formal definition of the fundamental domain.

Definition 4.6.1 (Fundamental Domain). The set
F = value(NAF%™) = {value(¢) : € € NAF)>®}.

is called fundamental domain.

The pictures in Figure [4.8.1 on page 68| show some fundamental domains for lattices
coming from imaginary-quadratic algebraic integers 7. We continue with some properties
of fundamental domains. We have the following compactness result.

Proposition 4.6.2. The fundamental domain F is compact.

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49]. 0
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4.6 The Fundamental Domain

We can also compute the Lebesgue measure of the fundamental domain. This result
can be found in Remark [4.8.3 on page 691 To calculate A(F), we will need the results of
Sections 4.7 and 4.8

The space R”™ has a tiling property with respect to the fundamental domain. This
fact is stated in the following proposition.

Proposition 4.6.3 (Tiling Property). The space R™ can be tiled with scaled versions of
the fundamental domain F. Only finitely many different sizes are needed. More precisely:
Let K € Z, then

R" = U (<I>k value(§) + @kfwﬂ}") ,
ke{K,K+1,....K+w—1}

EENAFIO
k# K 4+ w— 1 implies &9 # 0

and the intersection of two different ® value(€) + ®*~FTLF in this union is a subset of
the intersection of their boundaries.

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49). O

Note that the intersection of the two different sets of the tiling in the previous corollary
has Lebesgue measure 0. This will be a consequence of Proposition [4.6.6 on the next|

[PAEE

Remark 4.6.4 (Iterated Function System). Define fo(z) = ® 'z and for a non-zero digit
¥ € D* define fy(z) = ®19+® 2. Then the (affine) iterated function system (fg)gep
cf. Edgar [34] or Barnsley [6], has the fundamental domain F as an invariant set, i.e.,

F=Jpr =2Fu ] (@ W+ vF).
YeD deDe

That formula also reflects the fact that we have two possibilities building the elements
£ € NAF?U'OO from left to right: We can either append 0, what corresponds to an
application of !, or we can append a non-zero digit 9 € D*® and then add w — 1 zeros.

Furthermore, the iterated function system (fy)ycp fulfils Moran’s open set condz’tz’onﬂ
cf. Edgar [34] or Barnsley [6]. The Moran open set used is int F. This set satisfies

fo(int F) N for (int F) = 0

for 9 £ ¢ € D and
int F 2 fg(int F)

for all ¥ € D. We remark that the first condition follows directly from the tiling property
in Corollary with K = —1. The second condition follows from the fact that fy is
an open mapping.

LMoran’s open set condition” is sometimes just called “open set condition”
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4 Analysis of the Width-w Non-Adjacent Form
Next we want to have a look at the Hausdorff dimension of the boundary of F. We

will need the following characterisation of the boundary.

Proposition 4.6.5 (Characterisation of the Boundary). Let 2 € F. Then z € OF if and
only if there exists a w-NAF €7.€p € NAFI with € £ 0 such that z = value(&;.£x).

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49). O

The following proposition deals with the Hausdorff dimension of the boundary of F.

Proposition 4.6.6. For the Hausdorff dimension of the boundary of the fundamental
domain we get dimyg OF < n.

The idea of this proof is similar to a proof in Heuberger and Prodinger [52], and it is
a generalisation of the one given in [49].

Proof. Set k := ko + w — 1 with ky from Lemma 4.4.4 on page 59, For j € N define

U; = {s € NAFY : € (€ g1 b qupory 2 0F forall e {1,...,j —k+ 1}} .

The elements of Uj, or more precisely the digits from index —1 to —j, can be described
by the regular expression

w—2 k-1 * k-1

(oS (3 5 o) (2o
deD* (=0 deD® f=w—1 =0

This can be translated to the generating function

A w—2 1 k—1
G(2) =) #U;Z’ = (1 +#D° ) Z“l) D il g (Z Zﬁ)
-1 £=0

JEN /=0 {=w

used for counting the number of elements in U;. Rewriting yields

o(2) = 1—ZF 14+ (#D* - 1)Z — #D*Zv
1= Z 1—Z — #D*Zv + #D*Zk+1’

and we set
Q(Z2):=1—Z —#D*°Z% + #D*Z~+1.

Now we define B
Uj I:{SGU]' : f_j?é()}

and consider U := U ien Uj- Suppose w > 2. The w-NAFs in that set, or more precisely
the finite strings from index —1 to the smallest index of a non-zero digit, will be recog-
nised by the automaton A which is shown in Figure [4.6.1 on the facing page] and reads
its input from right to left. It is easy to see that the underlying directed graph G 4 of the
automaton A is strongly connected, therefore its adjacency matrix M 4 is irreducible.
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4.6 The Fundamental Domain

Figure 4.6.1: Automaton A recognising | J jeN ﬁj from right to left, see proof of Proposi-
tion The state S is the starting state, all states are valid end states.
An edge marked with # 0 means one edge for each non-zero digit in the
digit set D. The state # 0 means that there was an non-zero digit read, a
state 0° means that ¢ zeros have been read.

Since there are cycles of length w and w + 1 in the graph and ged(w,w 4+ 1) = 1, the
adjacency matrix is primitive. Thus, using the Perron-Frobenius theorem we obtain

#17 ; = #(walks in G 4 of length j from starting state S to some other state)
1
=1 0 ... 0)M)|:|=C(cp") (1+0O(s))
1
forac>0,ac >0, and an s with 0 < s < 1. Since the number of w-NAFs of length j

is (’)(p"j), see Theorem |4.3.7 on page 55|, we get 0 < 1.
We clearly have

J
U= | U
t=j—k+1
SO we get ‘ ' '
#U; = [Z7] G(Z) = c(op™) (1+ O(s))

for some constant ¢ > 0.
To rule out o = 1, we insert the “zero” p~" in ¢(Z). We obtain

q(p") =1—p " = #D*p " 4+ #D*p "D
-1_ p—n - pn(w—l) <pn o 1) p—nw + pn(w—l) (pn o 1) p—n(k—i—l)
— (pn - 1) pn(wfku) >0,

where we used the cardinality of D® from our set-up in Section [4.2]and p > 1. Therefore
we get 0 < 1. It is easy to check, that the result for #U; holds in the case w = 1, too.
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4 Analysis of the Width-w Non-Adjacent Form

Define
U= {vame(g) . € € NAFS™ with € 6 (1) .. E_(ppp1) # O for all £ > 1} .

We want to cover U with hypercubes. Let C' C IR™ be the closed paraxial hypercube
with centre 0 and width 2. Using Proposition 4.4.1 on page 56| yields

ve |J (z+BupC)

z€value(Uj)

for all j € N, i.e., U can be covered with #U; boxes of size 2Byp~/. Thus we get for the
upper box dimension, cf. Edgar [34],

S ) log #U;
dimgU < lim —— 7~ |
Y = gggo —log(2Byp—7)
Inserting the cardinality #U; from above, using the logarithm to base p and 0 < s <1
yields
S log, c + jlog,(op") + log, (1 + O(s’
Tl < lim 82T d108,(00") +log,(1 + O(s7))
j—o0 j+0(1)
Since o < 1, we get dimpU < 2.

Now we will show that 0F C U. Clearly U C F, so the previous inclusion is equivalent
to F\U C int(F). So let z € F\U. Then there is a £ € NAF%:> such that z = value(§)
and € has a block of at least k zeros somewhere on the right hand side of the ®-point.
Let £ denote the starting index of this block, i.e.,

=n+log,o.

£=0.61 & (0m1) 0" (€ (ernsn) - - - -
~—_——
=:£a
Let 9 = 91.940_00_(441) ... € NAF{in with value(®) = z. We have

2 = value(0.€4) + &2 = value(97.94) + &2y

for appropriate z¢ and zy. By Lemma [4.4.4 on page 59, all expansions of z¢ are in
NAFY>. Thus all expansions of

value(994) + &~ Vzy — value(€4) = &'z — value(€4) = Q_(w_l)zg

start with 0.0Y~!, since our choice of k is kg + w — 1. As the unique w-NAF of
value(9794) — value(£4) concatenated with any w-NAF of ®~(¥—1 2, gives rise to such
an expansion, we conclude that value(9¥;94) — value(€4) = 0 and therefore ¥; = 0 and
Y4 = &€4. So we conclude that all representations of z as a w-NAF have to be of the
form 0.£ AO“’_ln for some w-NAF 7. Thus, by using Proposition 4.6.5 on page 62| we
get z ¢ OF and therefore z € int(F).

Until now we have proved

dlimBa]: < diiIHBU <n.

Because the Hausdorff dimension of a set is at most its upper box dimension, cf.
Edgar [34] again, the desired result follows. O
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4.7 Cell Rounding Operations

4.7 Cell Rounding Operations

In this section we define operators working on subsets of the space R™. These will use
the lattice A and the tiling 7. They will be a very useful concept to prove Theorem [4.9.]

Definition 4.7.1 (Cell Rounding Operations). Let B C R"™ and j € Z. We define the
cell packing of B (“floor B”)

| B = U T, and |Bly,; =07(|®'B],),

zEA
T.CB

the cell covering of B (“ceil B”)

[Bl; = |BOJ] and [Bly,; =277 ([¢'B],).
the fractional cells of B
{B}r = B\ |Blr and {B}p, =27 ({2'B},),
the cell covering of the boundary of B
d(B)y :=[Bly \ Bl and d(B)r; =277 (9(2'B),),

the cell covering of the lattice points inside B

| Bl = U T, and |Bly, =®7/(|#'B],),
z€BNA

and the number of lattice points inside B as

#(B); :=#(BNA) and #(B) ;= #(¥'B) .

For the cell covering of a set B an alternative, perhaps more intuitive description can
be given by

[Bly= |J T.
zEA
T.NB#)

The following proposition deals with some basic properties that will be helpful when
working with those operators.

Proposition 4.7.2 (Basic Properties of Cell Rounding Operations). Let B C R" and
j € Z.
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4 Analysis of the Width-w Non-Adjacent Form

(a) We have the inclusions o
Bly; € BCBC By,
and
[Blr; € [Blr; € [Blr;-
For B' C R™ with B C B" we get |B|r; C |B'|r;, |Blr; € By, and [Blr; C

(B’]T’j, i.e., monotonicity with respect to inclusion.

(b) The inclusion
{B}r; € 9(B)r,
holds.

(¢c) We have B C O(B)r; and for each cell T' in O(B)p; we have T'N OB # 0.
d) For B' C R™ with B’ disjoint from B, we get
( ] 9

#(B U B/)T,j = #(B)TJ + #(B/)T,j ’

and therefore the number of lattice points operation is monotonic with respect to
inclusion, i.c., for B" C R™ with B" C B we have #(B" )y ; < #(B)ry ;. Further we

get
#ﬁm:ﬂWh%fﬂmwwfyﬁ

Proof. The proof is a straightforward generalisation of the proof for Voronoi-tilings in
the quadratic case in [49]. O

We will need some more properties concerning cardinality. We want to know the
number of points inside a region after using one of the operators. Especially we are
interested in the asymptotic behaviour, i.e., if our region becomes scaled very large. The
following proposition provides information about that.

Proposition 4.7.3. Let U C IR" bounded, measurable, and such that
#OWU))y = O(Jdet /")
for |det ¥| — oo with maps ¥: R™ — R"™ and a fized § € R with 6 > 0.

(a) We get that each of #(|YU | 7). #([YU | 1)y, #( YU 1)y and #(YU) equals
|det U | AEZU) + (9(|det \If|5/”) .
A

In particular, let N € R, N > 0, and set ¥ = diag(N,...,N), which we identify
with N. Then we get that each one of #(|NU |p)r, #(INU|z)p, #([NU|p)p and
#(NU)p equals

N”)\;[A]) +<9(N5).
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4.8 The Characteristic Sets

(b) Let N € R, N > 0, and set ¥V = diag(N, ..., N), which we identify with N. Then
we get

#((N+ 1)U\ NU)p = o(m) .

Proof. Again, the proof is a straightforward generalisation of the proof for Voronoi-tilings
in the quadratic case in [49]. O

Note that 6 =n — 1 if U is, for example, a ball or a polyhedron.

4.8 The Characteristic Sets

In this section we define characteristic sets for a digit at a specified position in the w-NAF
expansion and prove some basic properties of them. Those will be used in the proof of

Theorem [4.9.71
Definition 4.8.1 (Characteristic Sets). Let n € D®. For j € Ny define

Wy = {value(§) : €€ NAFYI T with ¢, = n}.
We call |~W777j-|Tj+w the jth approrimation of the characteristic set for n, and we define

W, j o= { LWn,HT,ﬁw}A '

Further we define the characteristic set for n
W, := {value(¢) : €€ NAFY>® with £, = n}
and
Wy = {Wy}, -
For j € Ny we set
B = A(Lwﬂvj—‘T,jer) —AWy) -

Note that sometimes the set W, will also be called characteristic set for n, and analo-
gously for the set W, ;. In Figure 4.8.1 on the following page|some of these characteristic
sets, more precisely some approximations of the characteristic sets, are shown.

The following proposition deals with some properties of those defined sets.

Proposition 4.8.2 (Properties of the Characteristic Sets). Let n € D°.

(a) We have
Wy =nr " + @2,

(b) The set W, is compact.

(¢c) We get
Wy = |J Wy, = Tim W, ;.

. Jj—00
j€Np
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4 Analysis of the Width-w Non-Adjacent Form

(a) Wy, ; for a lattice coming from 7 with 72 —  (b) W, ; for a lattice coming from 7 with 72 —27+2 =
31+3=0,w=2and j=7 0, w=4and j =11

Figure 4.8.1: Fundamental domains and characteristic sets ¥,. Each figure shows a
fundamental domain. The light-gray coloured parts represent the approxi-
mations W, ; of the characteristic sets W,.

(d) The set I-Wn»j—lTj—f—w is indeed an approximation of W;, i.e., we have

W, = liminf |[W,, ;| ... = limsup [Wy 7.0, -
[ J J
n j€ENo I T j+w jeNo I 1T, 54w

(e) We have int W, C liminf ey, [Wn,ﬂT’jer.

(f) We get W, — @ *“n C T, and for j € Ng we obtain [W, ;] — oWy CT.

T,7+w
(g9) For the Lebesgue measure of the characteristic set we obtain A(W;) = A(W,)) and
for its approzimation A([WnﬂTﬁw) = AXW,;)-
(h) Let j € Ny, then
A(LWnﬂT,ijw) =d\E+O(1)

with E and p < 1 from Theorem[4.5.7 on page 55

(i) The Lebesque measure of Wy, is

AWy) = daE,

again with E from Theorem [4.3.7 on page 59,
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4.9 Counting the Occurrences of a non-zero Digit in a Region
(j) Let j € Ng. We get

Bus= [ (@, =) (@) dz = O().

Again p < 1 can be found in Theorem [{.3.7 on page 5.

Proof. The proof is a straightforward generalisation of the proof in [49]. O

We can also determine the Lebesgue measure of the fundamental domain F defined
in Section

Remark 4.8.3 (Lebesgue Measure of the Fundamental Domain). We get

Py

MNF)=prPv-Dpgy = L 4
(F)=r A (" —Dw+1

using @ and (fi)) from Proposition[4.8.2 on page 67/and E from Theorem|4.3.7 on page 55}

The next lemma makes the connection between the w-NAF's of elements of the lattice
A and the characteristic sets Wi .j-

Lemma 4.8.4. Letn€D®, j>0. Let z € A and let € € NAFg,"'0 be its w-NAF. Then
the following statements are equivalent:

(1) The jth digit of & equals 1.
(2) The condition {@_(j+w)z}A € Wy, holds.
(3) The inclusion {<I>_(j+w)TZ}A C W, holds.

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49). O

4.9 Counting the Occurrences of a non-zero Digit in a Region

In this section we will prove our main result on the asymptototic number of occurrences
of a digit in a given region.

Note that Iverson’s notation [expr] = 1 if expr is true and [expr] = 0 otherwise, cf.
Graham, Knuth and Patashnik [45], will be used.

Theorem 4.9.1 (Counting Theorem). Let 0 #n € D and N € R with N > 0. Further
let U C R™ be measurable with respect to the Lebesgue measure and bounded with U C
B(0,d) for a finite d, and set § such that #(O(NU)p), = O(N°) with 1 <6 < n. We
denote the number of occurrences of the digit n in all integer width-w non-adjacent forms
with value in the region NU by

Zp(N) = Z Z [jth digit of z in its w-NAF-expansion equals 1] .
2€NUNA jeNg
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4 Analysis of the Width-w Non-Adjacent Form

Then we get
Z,(N) = N"\(U) Elog, N + N" 4, (log, N) + O(N*log, N) + 0(N5 log,, N) ,
in which the expressions described below are used. The Lebesgue measure on R™ is

denoted by \. We have the constant of the expectation

1

E= :
D (o = Dw+ 1)

cf. Theorem[].3.7 on page 53. Then there is the function

wn(:n) = PYp.M (z) + ¢n,P($) + ¢n,Q($) )

where

Unm(x) = AMU) (Jo+1—{a}) E,

n(Jo—{z}) .
Yy p(z) = pT jzg/ (Lw ({®7 7 y},) — A(W)) dy,

ye{e-lel=JoprU}

and

MU) &
Yno = 22)25]‘-
A =0

We have a = n +log, pp <mn, wz’thuz(l—l—ﬁ) <1, and

Jo = Llogpd — logp BLJ +1

with the constant By, of Proposition|4.4.2 on page 58,
Further, let

® = Q diag pewl, e ,pew”Qfl,

where Q) is a reqular matrixz. If there is a p € N such that
QdiageP, ... PQ7U = U,

then 1, is p-periodic. Moreover, if 1, is p-periodic for some p € N, then it is also
continuous.

Remark 4.9.2. Consider the main term of our result. When N tends to infinity, we get

the asymptotic formula
Zy~ N"AU) Elog, N.

This result is not surprising, since intuitively the number of lattice points in the region
NU corresponds to the Lebesgue measure N™ A\(U) of this region, and each of that
elements can be represented as an integer w-NAF with length about log, N. Therefore,
using the expectation of Theorem [4.3.7 on page 55| we get an explanation for this term.
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4.9 Counting the Occurrences of a non-zero Digit in a Region

Remark 4.9.3. If § = n in the theorem, then the statement stays true, but degenerates
to

Z,(N) = O(N" log,,, N) .

This is a trivial result of Remark [4.9.2 on the preceding pagel

The proof of Theorem [4.9.1 on page 69| follows the ideas used by Delange [24]. By
Remark we restrict ourselves to the case § < n.

We will use the following abbreviations. We omit the index 7, i.e., we set Z(N) :=
Zy(N), W := W, and W; := W, ;, and further we set 3; := 3, ;, cf. Proposition
By log we will denote the logarithm to the base p, i.e., logz = log,z. These
abbreviations will be used throughout the remaining section.

Proof of Theorem[[.9.1. By assumption every element of A is represented by a unique
element of NAF‘;L”'O. To count the occurrences of the digit n in NU, we sum up 1 over
all lattice points z € NU N A and for each z over all digits in the corresponding w-NAF
equal to n. Thus we get

Z(N) = Z Z [jth digit of w-NAF of z equals 7].
2€NUNA jeNo

The inner sum over j € Ny is finite, we will choose a large enough upper bound J later
in Lemma 4.9.4 on page 73|
Using

[jth digit of w-NAF of z equals ] = Ly, ({CID*j*wz}A)

from Lemma [4.8.4 on page 69| yields

:Z Z ﬂWj({(I)_j_wZ}A)v

j=0 zeNUNA

where additionally the order of summation was changed. This enables us to rewrite the
sum over z as an integral

ZZA

j=02ze NUNA
Z [, 07
NU]T

We split up the integrals into the ones over NU and others over the remaining region
and get

Lw, ({®77 7"z}, ) dz
z€eT,

Z/:BENU {q)_] Yz }A) dz + Fp(N)

in which 7, (V) contains all integrals (with appropriate signs) over regions | NU |\ NU
and NU \ |[NU].

71



4 Analysis of the Width-w Non-Adjacent Form

By substituting 2 = ®/y, dz = |det ®|” dy = p"/ dy we obtain

nt _J )
Z(N) = A’)(T) Z/ Ly, ({ &7y} ) dy + Fy(N).

]:0 y€<I>—JNU

Reversing the order of summation yields

nt J ‘
A = )f)(T) jz::o /ye@JNU Ly, , ({2 7y},) dy + Fp(NV) .
We rewrite this as
nJ
Z(N)= ;(T) (J + 1) A(W) /yeIDJNU dy
an J
") Z/mw (Lw ({2775} ) = (W) dy

With ®/NU = L(IFJNUJTj_w U {(ITJNU}T]._w for each area of integration we get

Z(N) = My(N) + Z,(N) + Py(N) + Qn(N) + S;(N) + Fy(N),

in which M, is “The Main Part”, see Lemma [4.9.6 on page 74}

nJ

My(N) = S0 [y

Z, is “The Zero Part”, see Lemma [4.9.7 on page 74}

nJ _J

P
Z,(N) = /
" =5 & e v,

(1w ({®77"y},) — A(W)) dy,

Py is “The Periodic Part”, see Lemma [4.9.8 on page 79|

nJ J

p
Py(N) = /
") =5 2 o oo,

(1w ({@77"y},) — A(W)) dy,

Qy is “The Other Part”, see Lemma 4.9.9 on page 77),

nt J

oM =4S [ (s = 1) ({70} ) s
j=0"Y

0 €|_<I>—JNUJT’].7w
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4.9 Counting the Occurrences of a non-zero Digit in a Region

Sy is “The Small Part”, see Lemma [4.9.10 on page 78|

(Tw,_, — 1w) ({®'“y},) dy (4.9.1¢)

ye{® ' NU}p ;_,,

and F, is “The Fractional Cells Part”, see Lemma {4.9.11 on page 80}

J
1 ,

= —— Ty, ({@77% d
AT ;/;CELNU]T\NU w;({ 7hy) do

(4.9.1f)

J
1 )

— 1w, ({&777% dzx.
T)jzz:o/zeNU\LNUWT w;({ 7hy) do

To complete the proof we have to deal with the choice of J, see Lemma [4.9.4] as well

as with each of the parts in (4.9.1), see Lemmata to [4.9.11| on pages [74H80l The

continuity of v, is checked in Lemma 4.9.12 on page 80} O

Lemma 4.9.4 (Choosing .J). Let N € R>q. Then every w-NAF of NAF"0 with value
in NU has at most J + 1 digits, where

J=|logN|+ Jy

with
Jo = |logd —log Br,| +1

with By, of Proposition|4.4.2 on page 58,

Proof. Let z € NU, z # 0, with its corresponding w-NAF & € NAFg)“‘O7 and let 7 € Ny
be the largest index such that the digit &; is non-zero. By using Corollary
we conclude that

P’ Br, < ||z|| < Nd.

This means
7 <log N +logd — log By,

and thus we have
j < |log N +logd —log B| < [log N|+ |logd —log By | + 1
Defining the right hand side of this inequality as J finishes the proof. O

Remark 4.9.5. For the parameter used in the region of integration in the proof of The-
orem 4.9.1 on page 6Y we get

|det (@77 N)| = O(1).

In particular, we get HCID_JNH =0(1).
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4 Analysis of the Width-w Non-Adjacent Form

Proof. We have
|det (@7 N)| = (p/N)".

With J of Lemma [4.9.4 on the preceding page| we obtain

prN _ prlogNJfJoplogN _ plongLlogNijo _ p{logN}fJol

Since ptlog N}=Jo is hounded by p'~%, it is O(1). Therefore det (@~/N) is O(1). Since
[@7t| = p~" we conclude that ||®~/N|| is O(1). O

Lemma 4.9.6 (The Main Part). For (4.9.1a)) in the proof of Theorem|4.9.1 on page 69
we get

My (N)=N"AU)Elog N + N" ¢, rm(log N)
with a 1-periodic function 1, am,
Upm(@) =AU) (Jo+1—{z}) E

and E of Theorem|4.5.7 on page 59

Proof. We have

nJ
My(N) = Lm0y [

As AM(@~/NU) = p~/N" A(U) we obtain
AW)

My(N) = W(J‘f‘ N"™AU).

By taking A(W) = A(T) E from (fi) of Proposition[4.8.2 on page 67]and J from Lemma[4.9 4
[on the preceding page| we get

My(N) = N" \U) E ([log N| + Jo +1).

Finally, the desired result follows by using |z| = z — {x}. O

Lemma 4.9.7 (The Zero Part). For (4.9.1b)) in the proof of Theorem|4.9.1 on page 69
we get

Z,(N) =0.

Proof. Consider the integral
L= [ (1w ({277}, ) = (W) dy.
ye Lq>_JNUJT,j7w

We can rewrite the region of integration as

@ INU|, . =0 U [0 INU|, = U | ] T

ZEijw

,j—'Ll)
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4.9 Counting the Occurrences of a non-zero Digit in a Region
for some appropriate Rj_,, C A. Substituting z = &%y, dz = p"U=w) dy yields

I=p o) (Lw({},) — A(W)) da.

zEUZeRj_w T,

We split up the integral and eliminate the fractional part {x}, by translation to get

L=proe S f  (lw(e) = A7) dar

ZEijw

=0

Thus, for all j € Ng we obtain I; = 0, and therefore Z,(N) = 0. O

Lemma 4.9.8 (The Periodic Part). For (4.9.1c)) in the proof of Theorem/|4.9.1 on page 69

we get

Po(N) = N" 4 p(log N) + O (N5)
with a function ¥, p,

prJo—{z}) =

Yy p(T) = TNT)

/ye{étzJJOme}T,j_w (Tw ({277y},) = A(W)) dy.

J=0

Let ' .
® = Qdiag pe'®, ..., pe Q1

where Q) is a reqular matrixz. If there is a p € N such that
QdiageP, ... P PQ7U =T, (4.9.2)
then 1y, p is p-periodic.

Proof. Consider

I = / (L ({®72y} ) — A(W)) dy.
ye{q>7JNU}T,j7w
The region of integration satisfies

(87N}, CO@IND) =0 T

ZEijw

(4.9.3)

for some appropriate R;j_,, C A.
We use the triangle inequality and substitute z = ®~%y, dz = p"U=®) dy in the
integral to get

L] < pno) / L ({x}) — A(W)| da.

erzER]-_w T.

<1HA(W)
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4 Analysis of the Width-w Non-Adjacent Form

After splitting up the integral and using translation to eliminate the fractional part, we
get

LI < p U (14 AW) Y /ET dz = p™"U7) (14 A(W)) N(T) #(Rj—w) -

ZER]'_w

Using #(0(YU) )y = (’)(|det \I/](S/n> as assumed and (4.9.3) we gain

#(Rj_w) = ‘det (@*JN@jfw)}é/n _ O(p(j—w)é) 7

because !det (q)_JN)} = O(1), see Remark [4.9.5 on page 73| and |det ®| = p". Thus

Ll =0 (pau—w)fn(jfw)) —0 ( p((s,n)j) .

Now we want to make the summation in P, independent from J, so we consider

an >
\T) 2 4

j=J+1

I:=

Again we use triangle inequality and we calculate the sum to obtain
|I| — O(pnj) Z O<p(6fn)j> — O<anp(5fn)J> — O(,O(SJ) )
j=J+1

Note that O(p’) = O(N), so we obtain |I| = O(N?).
Let us look at the growth of

nt _J
_ P
We get
J
|’P?7(N)‘ _O(an)ZO<p(5—n)]> O(an) O(Nn),
=0
using & < n.

Finally, inserting J from Lemma and extending the sum to infinity, as described
above, yields

nJ J .
P, (N) = fm 3 / o, (1w ({®7y} ) — A(W)) dy

Jj=0

= N" 4, p(log N) + O <N5) .

with the desired v, p.
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4.9 Counting the Occurrences of a non-zero Digit in a Region

Now suppose holds. Then
@—LzJ—J()pxU — pr dlag p— \_xJ—Joe—iel(ij-i-Jo)’ . p— lz|— J()6 (|_CCJ+J0)Q—1U
= plzt=hQ diag e 01 (l21+0) | c=inllzl+l) =1y,
Now, we can conclude that the region of integration in v, p(x) is p-periodic using (4.9.2).

All other occurrences of = in v, p(x) are of the form {x}, i.e., 1-periodic, so period p is
obtained. ]

Lemma 4.9.9 (The Other Part). For (4.9.1d) in the proof of Theorem|.9.1 on page 69
we get

Q,(N) = N™jy o + O(N*log N) + O<N5) :
with -
AU)

7977
e = X@)

=0

and o =n +log p < n, where p < 1 can be found in Theorem [4.3.7 on page 5.

Proof. Consider
L= | (1w, = 1) ({9979},) .
yet¢7JNUJT,j w

We can rewrite the region of integration and get

|~ /NU|,,. =& U e ve/NU|, =20 | ] T,

ZGijw

7]7

for some appropriate R;_,, C A, as in the proof of Lemma4.9.7 on page 74l Substituting
= ®I vy, dz = p"U=) dy yields

Le=p0m) [ (1w, = 1) (o) do
erzeR T,

—w

and further

Le=0) S [ (L = 1) @) de = g0 (R 1

ZER;_y

=B

by splitting up the integral, using translation to eliminate the fractional part and taking
B¢ according to (ED of Proposition 4.8.2 on page 67, From Proposition |4.7.3 on page 66|
we obtain

#(Ryy) _ Jdet (0TINST) [ AU) - f |det (@I NS0
Gw . gpGm NT) 1Gw) ’
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4 Analysis of the Width-w Non-Adjacent Form

which can be rewritten as
AU)

#Bjw) _ _nspymAU) (6—n)j
iy PN )\(T)+O<p )

because |det ®| = p™ and because |T_‘]N‘ = O(1), see Remark [4.9.5 on page 73|
Now let us have a look at

nJ J

ZIJJ —=J:

Inserting the result above and using 8, = (9(,1/), see @) of Proposition |4.8.2 on page 67|7
yields

Q,(N) = NHM EJ:BJ—‘ _i_anszo(p@—n)j) O(’uJ—j) '
' N R

Therefore, after reversing the order of the first summation, we obtain

n MU) & oI nes)
9,(N)=N ()\(T))Q;Bjer JMsz::O(f)((Np 6) >

If 1p™ % > 1, then the second sum is J O(1), otherwise the sum is O(M*Jp(‘S*Q)J). So
we obtain

J
AU) Z,Bj+(9(p”JuJJ)+O<p5J).

N)=N"
N =N R 2

Using J = ©(log N), see Lemma [4.9.4 on page 73| and defining o = n + log p yields

AU) i iﬂj + O(N"“O%ﬂ logN) + (9<N5) .

N)=N"—2_
QN =N e &

-~

=0O(Nlog N)

Now consider the first sum. Since §3; = O(uj ), see @ of Proposition |4.8.2 on page 67|7
we obtain

N"Z/jj N"O(u') = O(N®).
j=J+1

Thus the lemma is proved, because we can extend the sum to infinity. ]

Lemma 4.9.10 (The Small Part). For (4.9.1€) in the proof of Theorem|4.9.1 on page 69
we get

S,(N) = O(N“log N) + (’)(N5>

with o =n+logu <n and p <1 from Theorem|4.3.7 on page 5.
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4.9 Counting the Occurrences of a non-zero Digit in a Region

Proof. Consider

L= | (U, — 1w) ({2979}, ) dy.
ye{q)_JNU}T,j—w

Again, as in the proof of Lemma [4.9.8 on page 75| the region of integration satisfies

{07/NU} ., , CO@TINU)y, =07V | T (4.9.4)

ZGRj_w

for some appropriate R;_,, C A.
We substitute z = ®7~%y, dz = p"U=%) dy in the integral to get

L4 = p G / ] (Lw, — Tw)({z},) dz] .
e zER; z

J—w

Again, after splitting up the integral, using translation to eliminate the fractional part
and the triangle inequality, we get

el < p7n0)

ZEijw

= p "Um L(R_y) Bl

/ (L, — 1) () da
xzeT

=|Bel

in which [5] = O(;/) is known from (EI) of Proposition 4.8.2 on page 67 Using
#OWWU) ) = (’)<|det \Il|5/”>, Remark 4.9.5 on page 73| and (4.9.4) we get

#(Rj—w) = O(|det @*JN@f*wf@ = O(p‘“j*”)) )
because |det ®| = p” and }T_JN‘ = O(1). Thus
1] = @(Mepwfn)(j—w)) _ (9(/} p(afmj)

follows by assembling all together.
Now we are ready to analyse

nt _J
p
Sp(N) = T > I
=0

Inserting the result above yields
nJ _J J nJ

1S, (N)| = ){)(T) ‘ O<MJ—jp(6—n)j) _ M)\(PT) io((upn—(s)—j)

Jj=0

and thus, by the same argument as in the proof of Lemma [4.9.9 on page 77,

Sy (N)| = MJP”JO(J + u“’p(‘s‘”)") =0(u!p™J) + 0(#”) -
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4 Analysis of the Width-w Non-Adjacent Form

Finally, by using Lemma [4.9.4 on page 73| we obtain

1S, (N)| = O(N®log N) + O(N‘S)
with o = n + log p. Since p < 1, we have a < n. O

Lemma 4.9.11 (The Fractional Cells Part). For (4.9.1]) in the proof of Theorem
we get
Fy(N) =0 (N5 log N) .

Proof. For the regions of integration in JF,, we obtain

NU\ [NUT; € [NUp\ [NU 7 = 0(NU)p = | T2
zER

and

LNUWT\NUQ (NU—‘T\LNUJT:a(NU)T: UTZ
zER

for some appropriate R C A using Proposition [4.7.2 on page 65 Thus we get

N Z/xeu w, ({87770} SAZZ/

zeRTZ j=0 2€R z€T,

in which the indicator function was replaced by 1. Dealing with the sums and the
integral, which is O(1), we obtain

[Fa(N)| = (J+1)#RO(1).

Since J = O(log N), see Lemma |4.9.4 on page 73L and #R = (’)(N‘S), the desired result
follows. O

Lemma 4.9.12. If the vy, from Theorem|({.9.1 on page 69 is p-periodic for some p € N,
then 1y, is also continuous.

Proof. There are two possible parts of v, where a discontinuity could occur: the first is
{z} for an z € Z, the second is building {...},;_,, in the region of integration in ¢, p.
The latter is no problem, i.e., no discontinuity, since

/ye{chzJJo,oxU}T,j_w (Tw ({277"y},) = A(W)) dy

-/ (1 ({94}, ~ AW
yed—lel=Jopzy

because the integral over the region LQ)_ lz]=Jo pr 7 J Tiw is zero, see proof of Lemmaw

NDag /
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4.9 Counting the Occurrences of a non-zero Digit in a Region

Now we deal with the continuity at x € Z. Let m € x4 pZ, let M = p™, and consider
Zy(M) — Z,(M ~ 1).
For an appropriate a € R we get
Zy(M) = aM™log M + M™ 4, (log M) + O(M*log M) + O (MS log M) ,
and thus
Zp(M) = aM™m + M" ), (m) + O(M®m) + O (M5m) .
——
=1n ()
Further we obtain
Z,(M = 1) = a (M = 1)" log(M — 1) + (M — 1)" ¢, (log(M — 1))
+O((M —1)*log(M — 1)) + O((M — 1) log(M — 1)) ,

and thus, using the abbreviation L = log(l — M_l) and 6 > 1,

Zy(M — 1) = aM™m + M™ b (m + L) + O(M%m) + O<M5m> .
—_——
:1/;,,(:1:+L)
Therefore we obtain
Zy(M) = Zy(M — 1)
Mn
Since #(MU \ (M —1)U); is clearly an upper bound for the number of w-NAFs with

values in MU \ (M — 1) U and each of these w-NAF's has at most |log M |+ Jy+1 digits,
see Lemma |4.9.4 on page 73| we obtain

= () — by(x + L) + O(M*"m) + (9(M5—"m) .

Zy(M)—Zy(M = 1) <# MU\ (M -1)U)p(m+Jo+2).

Using (]ED of Proposition [4.7.3 on page 66| yields

Zy(M) = Zy(M 1) = O(Mm) .
Therefore we get
Un(z) — Yp(z+ L) = O(M(L"m) +O(M*™m) + O<M5*"m> .
Taking the limit m — oo in steps of p, and using a < n and § < n yields

tp(z) — lim ¢y (z+¢) =0,

e—0~

i.e., 1y, is continuous at x € Z. O
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4 Analysis of the Width-w Non-Adjacent Form

4.10 Counting Digits in Conjunction with Hyperelliptic Curve
Cryptography

As mentioned in the introduction, we are interested in numeral systems coming from
hyperelliptic curve cryptography. There the base is an algebraic integer, where all con-
jugates have the same absolute value.

Let H be a hyperelliptic curve (or more generally an algebraic curve) of genus g
defined over F, (a field with ¢ elements). The Frobenius endomorphism operates on the
Jacobian variety of H and satisfies a characteristic polynomial f € Z[T] of degree 2g.
This polynomial fulfils the equation

F(T) =T*LQ/T),

where L(T) denotes the numerator of the zeta-function of H over Fy, cf. Weil [107,
109]. The Riemann Hypothesis of the Weil Conjectures, cf. Weil [I0§], Dwork [32] and
Deligne [25], states that all zeros of L have absolute value 1/,/q. Therefore all roots of
f have absolute value ,/q.

Later we suppose that 7 is a root of f, and we consider numeral systems with a
base 7. But before, we describe getting from that setting to a lattice, which we need in
Section This is generally known and was also used in Heuberger and Krenn [50].

First consider a number field K of degree n. Denote the real embeddings of K by o1,

.., 05 and the non-real complex embeddings of K by 0541, Ts41, - - -, Tstt, Ost, Where
~ denotes complex conjugation and n = s 4+ 2t. The Minkowski map >: K — R™ maps
a € K to

(o1(a), ..., 05(a), Roga(a), Sosti(a), ..., Rogi(a), Sosi(a)) € R™

Now let 7 be an algebraic integer of degree n (as above, where 7 was supposed to be a
root of the characteristic polynomial f of the Frobenius endomorphism) and such that
all its conjugates have the same absolute value p > 1. Note that the absolute value of
the field norm of 7 equals p™. Set K = Q(7) and consider the order Z[r]. We get a
lattice A = X(Z[r]) of degree n in the space R™. Application of the map ®: A — A on a
lattice element should correspond to the multiplication by 7 in the order, so we define ®
as block diagonal matrix by

& = diag o1 (1), . .., 05(7), <§RUS+1(7') —305+1(7')> N <§RUs+t(T) _%Us+t(7-)> )

Sost1(r)  Rosa(r) Sosti(r)  Roste()

The eigenvalues of ® are exactly the conjugates of 7, therefore all eigenvalues have
absolute value p. For the norm | -| we choose the Euclidean norm ||-||,. Then the
corresponding operator norm fulfils

@] = max {|oj(7)| : j€{1,2,....s+1}} = p.

In the same way we get H<I>_1H =p L
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4.10 Counting Digits in Conjunction with Hyperelliptic Curve Cryptography

Now let T C R™ be a set which tiles the R™ by the lattice A, choose w as in the set-up
in Section and let D be a reduced residue digit set modulo ®% corresponding to the
tiling, cf. also Heuberger and Krenn [50]. Since our lattice A comes from the order Z[r]
and our map P corresponds to the multiplication by 7 map, the size of the digit set D
is p(w=1) (p" — 1) + 1, see [49] for details.

Since our set-up, see Section is now complete, we get that Theorem holds.
We want to restate this for our special case of T-adic w-NAF-expansions. This is done
in Corollary To prove periodicity of the function 1, in that corollary, we need
the following lemma.

Lemma 4.10.1. Suppose
d = Qdiag pewl, e ,peiG”Qfl,
where @ is a reqular matriz and let U = B(0,1) be the unit ball. Then

Qdiage™, ... QU =U.
Proof. Since ® is normal, the matrix Q diage®, ..., e»Q~" is unitary. Therefore balls
are mapped to balls bijectively, which was to prove. ]

Now, as mentioned above, we reformulate Theorem for our 7-adic set-up. This
gives the following corollary.

Corollary 4.10.2. Let 7 be an algebraic integer, where all conjugates have the same
absolute value, denote the embeddings of Q(1) by o1, ..., 0s4t as above, and define a
norm by ||2|* = 354 di |oi(2)|? withdy = - =ds =1 and ds11 = - = dspy = 2.

Let 0 #n €D and N € R with N > 0. We denote the number of occurrences of the
digit n in all width-w non-adjacent forms in Z[r], where the norm of its value is smaller
than N, by

Zy(N) = Z Z [7th digit of z in its w-NAF-expansion equals 1) .

z€Z[r] j€No
[zl <NV
Then we get
7Tn/2
Zy(N) nmElog[, N+ N" 4, (log, N) + O(Nﬁ log, N) :

where we have the constant of the expectation

1

E= ,
pr =D ((p" — Dw + 1)

cf. Theorem |4.3.7 on page 59, a function vy,(x) which is 1-periodic and continuous and
B <n.
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4 Analysis of the Width-w Non-Adjacent Form

Proof. We choose U = B(0,1) the unit ball in the R™. Then U is measurable, d = 1

an/2
(31"
The condition #(d(NU);), = O(N°®) can be checked easily. In the case of a quad-
ratic 7 this is done in [49]. The periodicity (and therefore continuity) of v, follows from
Lemma We can choose f = max {a,n — 1}. O

and 0 = n — 1 < n. Further the n-dimensional Lebesgue measure of U equals

84



Chapter 5

On Linear Combinations of Units
with Bounded Coeflicients

This chapter contains the article [69] with the title “On Linear Combinations of Units
with Bounded Coeflicients and Double-Base Digit Expansions”. It is joint work with Jorg
Thuswaldner and Volker Ziegler. The article was accepted for publication by Monatshefte
fiir Mathematik on September 5, 2012.

Abstract

Let o be the maximal order of a number field. Belcher showed in the 1970s that every
algebraic integer in o is the sum of pairwise distinct units, if the unit equation u +v = 2
has a non-trivial solution u,v € 0*. We generalize this result and give applications to
signed double-base digit expansions.

5.1 Introduction

In the 1960s Jacobson [54] asked, whether the number fields Q(v/2) and Q(+/5) are the
only quadratic number fields such that each algebraic integer is the sum of distinct units.
Sliwa [92] solved this problem for quadratic number fields and showed that even no pure
cubic number field has this property. These results were extended to cubic and quartic
fields by Belcher [8,[9]. In particular, Belcher solved the case of imaginary cubic number
fields completely by applying the following criterion, which now bears his name, cf. [9].

Belcher’s Criterion. Let F' be a number field and o the mazimal order of F'. Assume
that the unit equation

utv=2, u,v € 0"

has a solution (u,v) # (1,1). Then each algebraic integer in o is the sum of distinct
units.
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5 On Linear Combinations of Units with Bounded Coefficients

The problem of characterizing all number fields in which every algebraic integer is a
sum of distinct units is still unsolved. Let us note that this problem is contained in
Narkiewicz’ list of open problems in his famous book [81} see page 539, Problem 18].

Recently the interest in the representation of algebraic integers as sums of units arose
due to the contribution of Jarden and Narkiewicz [55]. They showed that in a given
number field there does not exist an integer k, such that every algebraic integer can be
written as the sum of at most k (not necessarily distinct) units. For an overview on this
topic we recommend the survey paper due to Barroero, Frei, and Tichy [7]. Recently
Thuswaldner and Ziegler [102] considered the following related problem. Let an order o
of a number field and a positive integer k£ be given. Does each element o € 0 admit a
representation as a linear combination o = cie1 + - - - + ¢pgp of units €1,...,p € 0* with
coefficients ¢; € {1,...,k}? This problem was attacked by using dynamical methods
from the theory of digit expansions. In the present paper we address this problem again.
In particular, we wish to generalize Belcher’s criterion in a way to make it applicable to
this problem.

In order to get the most general form, we refine the definition of the unit sum height
given in [102].

Definition 5.1.1. Let F' be some field of characteristic 0, I' be a finitely generated
subgroup of F*, and R C F be some subring of F'. Assume that o« € R can be written
as a linear combination

a=avy + -+ apy, (5.1.1)

where v1,...,vp € I' N R are pairwise distinct and a; > --- > ay > 0 are integers. If
a1 in the representation of « of the form is chosen as small as possible, we call
wrr(e) = a1 the R-I'-unit sum height of o. In addition we define wr(0) := 0 and
wrr(e) := oo if @ admits no representation as a finite linear-combination of elements
contained in I' N R. Moreover, we define

wr(R) = max{wrr(a) : « € R}
if the maximum exists. If the maximum does not exist we write
w ifwpr(a) < oo for each a € R,
wr(R) = . :
oo if there exists o € R such that wg(a) = o0,
where w is a symbol (representing the cardinality of N).

Let us note that for a number field F' with the group of units I' of an order o of F' we
have wr(0) = w(o), where w(o) is the unit sum height defined in [102].
With those notations our main result is the following.

Theorem 5.1.2. Let F C C be a field and I' o finitely generated subgroup of F* with
—1 €T'. Let R be a subring of F' that is generated as a Z-module by o finite set £ C 'NR.
Assume that for given integers n > I > 2 the equation

UL+ - +ur=mn, ug,...,ur ETNR (5-1-2)

has a solution (ui,...,ur) # (1,...,1). Then we have wp(R) <n — 1.
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5.2 Proof of Theorem

The following section, Section is devoted to the proof of Theorem [5.1.2] In the
third section we apply our main theorem, Theorem to some special orders of
Shanks’ simplest cubic fields. A special case of that theorem yields applications to
double-base expansions. There we choose FF' = Q, R = Z and I" = (—1,p,q), where p
and q are coprime integers. We discuss that in Section

5.2 Proof of Theorem [5.1.2

We start this section by giving a short plan of the proof.

Plan of Proof. Let a € R be arbitrary. Our goal is to find a representation of « of the
form in which the coefficients a1, ..., a, are all bounded by n — 1. We first show
that a can be represented as a linear combination of the form with v1,...,1p
chosen in a particular way. The idea of the proof is rather simple and is based on induc-
tion over the total weight of this representation (this is the sum of all of its coefficients,
see Definition . Start with a representation of « as above and choose a coefficient
which is greater than or equal to n (if such a coefficient does not exist, we are finished).
Now apply . This leads to a new representation of « of the form whose to-
tal weight does not increase (and actually remains the same after excluding some trivial
cases). This process is now repeated until we either have a representation in which all
coefficients are bounded by n — 1, or the support of the representation contains big gaps.
In the first case we are finished. In the second case we can split the representation in two
parts which are separated by a large gap. The total weight of each part is less than the
total weight of the original representation of a. We thus use the induction hypothesis
on both of them, so we get a new representation of each part with coefficients bounded
by n — 1. Now, since the gap between the supports of these two parts is large, they do
not overlap after we apply to them in the appropriate way and we can put them
together to find a representation as desired also in this case. O

Now we start with the proof of Theorem First we introduce some notations.
For integers a and b we write

[a,b] :={a,a+1,...,b}

for the integers in the interval from a to b. For tuples x = (z1,...,2)) and € =

(e1,...,enm) We set

X ._ 71 LM
8 -—81 ...(€M.

Observe first that each element of R has at least one representation of the form (/5.1.1).
The coeflicients of that representation are integers, but not necessarily smaller than n.

A. There exists a K-th root of unity (, elements n1,...,n € &, and multiplicatively
independent elements €1,...,epr € I' N R, abbreviated as € = (e1,...,en), such that

w=cker™ e,
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5 On Linear Combinations of Units with Bounded Coefficients

for some ki, ...,k € [0,K — 1] and somer®, ... v € ZM  each o € R can be written
as
a= Z Z Z ak,o.xCFnee
ke[0,K —1] £€[1,L] xezZM
with non-negative integers ay o x, and such that no relation of the form
CFmie* =n;e¥, i
with integer vectors x and 'y as exponents and k € Z holds.

Proof of[A]. Let ui,...,u; be as in (5.1.2). Choose a K-th root of unity ¢ € TN R
(note that the torsion group of I is finite and cyclic) and multiplicatively independent
€1,---,em € I'N R with M < I, such that

(i) (@) )

uizgkisgl 67;\9[4 = (kig (i € [1,1])
holds for some r, ... r) € ZM  We set
ri= max{r,(fl) cie1,I],me [[1,M]]} (5.2.1)

and want to mention that we reference to that r later in this section.
Let us consider a finite subset {71,...,nr} C £ such that all @ € R can be written as

a linear combination
_ k X
a = E E E ak.0,xC M€

kelo,K—1] ¢€[1,L] xezM

with apex € Z (which is possible since &£ finitely generates R as Z-module). We can
(and do) choose that finite subset such that no relation of the form

CFne* =me¥, i#j

with integer exponents and k£ € Z holds.

Note that ¢(*ne* € T' N R. Furthermore, we can choose the coefficients arex to be
non-negative, since, by assumption, we have —1 € I', which allows us to choose the
“signs” in our representation. O

From now on we suppose that ¢, n1,...,nz, and € are fixed and given as in[A] We use
the following convention on representations.

Convention 5.2.1. Let @ € R and suppose we have a representation of a where the
coefficients are denoted by aj ¢x (small Latin letter with some index), i.e., o is written

as
a= Z Z Z ke xCFmee™

ke[0,K—1] £€[1,L] xezZM

We denote by A ¢ ZM (capital Latin letter corresponding to the letter used for the
coefficients) the minimal M-dimensional interval including all x with ay¢x # 0. We
write

A= [A, AL x - x [Ay, And]

88



5.2 Proof of Theorem

We omit the range of the indices k and ¢ since they are always the same. Thus « will

be written as
k
a=> " apex( ne.
k,l xcA

An important quantity is the weight of a representation. It is defined as follows.

Definition 5.2.2. Let o € R and suppose we have a representation as in [A] i.e.,

o= Z Z a0 xCFmee™.

kit x€A
with non-negative integers ay ¢ x. We call the minimum of all
PBPILIAE
kl xcA

among all possible representations (as above) of « the total weight of o and write w,, for
it.

As mentioned in the plan of the proof of Theorem we apply Equation ([5.1.2))
to an existing representation to get another one. In the following paragraph, we define
that replacement step, which will then always be denoted by $K.

sk (Replacement Step). Suppose we have a representation

a= Z Z ak.0xCrmeE™,

kit x€A

where at least one coefficient a; s x > n. We get a new representation by applying

U+ - +ur=n.

More precisely, if u; = Ckier(i), then the coefficient a; ;. ;) is increased by 1 for each
i € [1,1] and ay ¢« is replaced by ay¢x — n.

The following statements [B] and [C| deal with two special cases.
B. If a € R with w,, < I, then Theorem[5.1.9 holds.

We use that statement as the basis of our induction on the total weight w.

Proof of [Bl Since I < n we have w, < n. So the sum of all (non-negative) coefficients is
smaller than n. Therefore all coefficients themselves are in [0,n — 1], which proves the
theorem in that special case. O

From now on suppose we have an o € R with a representation

k
a=> " apex( ne”,

kl x€A

which has minimal weight. That means, we have w := w,.
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C. If I < n, then Theorem[5.1.4 holds.

Proof of[Cl Assume that there is a coefficient ay¢x > n in the representation of a. We
apply $K to obtain a new representation. But because I < n, the new one has smaller
total weight, which is a contradiction to the fact that w was chosen minimal. O

Because of [B] and [C] we suppose from now that w > I and I = n. As indicated above,
we prove Theorem by induction on the total weight w of a. More precisely we want
to prove the following claim by induction.

Claim 5.2.3. Assume that o € R has a representation

a= Z Z ak,0xC o™

k.l x€A

with non-negative integers ay¢x and with minimal total weight w. Then o has also a

representation of the form
a=> " grexCFne*.
kL xeG

with integers grox € [0,n — 1] and where
G = [[Al _f(w)vzl +f(w)]] X X [[AM _f(w)aZM"‘f(w)ﬂ

with f(1) =0 and
fw)=Tw)r+ flw-1)  (weN),

where
T(w) = (w+ 2w —1)f(w — 1)) Kv LY.

In order to prove Theorem [5.1.2] it is sufficient to prove Claim As already
mentioned, we use induction on the total weight w of . Note that the induction basis
has been shown above in [Bl

Let us start by looking what happens if one applies $K.

D. Repeatedly applying 3R yields pairwise “essentially different” representations of a.
More precisely, by repeatedly applying $R, it is not possible to get two representations

a=> " arexC e =" apox(Fneett

kel xEA k0 xEA

with some L € ZM \ {0}.

Proof of[D} Remember that we assumed I = n. First, let us note that we have

n< Yy fuil

i€[1,n]
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because of Equation (5.1.2]). Using the Cauchy-Schwarz inequality yields

2
n? < Z 1wl | <n Z lug)?.

i€[1,n] i€1,n]
Hence,
2
n < g lui|”,
i€1,n]
unless |u1| = -+ = |up| =1 and ), u; = n, ie, uy = --- = u, = 1. Since the trivial

solution has been excluded, we see that every application of $§¢ makes the quantity

Z Z arex (1™ - Jear[™)? (5.2.2)

kt x€A

larger, i.e., the quantity (5.2.2]) coming from coefficients aj, , , is larger than (5.2.2)) from
ak.¢,x, where the aﬁd’x are the coefficients after an application of $% on a representation

with coefficients ay ¢ x. Note that the €1,...,ep are fixed, cf. statement @

Hence, repeatedly applying $K produces pairwise disjoint representations. Moreover,
we cannot get the same representation up to linear translation in the exponents twice,
i.e., we cannot get representations

Q= Z Z ak,é,xcknﬁsx = Z Z au,kamex“‘

kl x€A kt x€A

with L € ZM \ {0}. Such a relation would imply that e = 1, which is a contradiction
to the assumption that the 1, ..., e, are multiplicatively independent. O

Now we look what happens after sufficiently many applications of $K.

E. Set
T(w) = (w+ 2w — 1) fw — )M KoL

and suppose we have a representation

= Z Z a0 xCFmee™.

kl x€A

After at most T'(w) applications of 3R we get a representation

a=> > brexCme™,

kit x€B
such that one of the following assertions is true:
1. Each coefficient satisfies by ¢ x € [0,n — 1] and

By — B, <w+2w—-1)f(w—-1)
holds for all m € [1, M].
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2. There exists an index m such that

By — B, >w+2(w—1)f(w—1)
holds.

Proof of [B. Each replacement step $K yields an essentially different representation, see@
and there are at most T'(w) possibilities to distribute our new coefficients in an interval
[0, K — 1] x [1, L] x B with

By — B, <w+2w—1)f(w—1)

for each m with 1 < m < M. Therefore after at most 7'(w) replacement steps we are
either in case [l or in case 2] of [El O

F. With the setup and notations of[E}, a possible “translation of the indices” stays small.
More precisely, we have

max {|A4,, — B,,| : m € [1,M]} < T(w)r,

m]

and
max{}zm —§m| :m € [[LM]]} < T(w)r,

where 1 is as defined as in (5.2.1)).

Proof of [F] The quantity r is the maximum of all exponents in the representation of the
u; as powers of the €1,...,e). Thus, an application of 3% can change the exponents,
and therefore the upper and lower bounds, respectively, by at most r. We have at most
T(w) applications of 3k, so the statement follows. O

Now we look at the two different cases of [E] The first one leads to a result directly,
whereas in the second one we have to use the induction hypothesis to get a representation
as desired.

G. If we are in case of@ then we are “finished”.
Proof of [G| Since
|Am — Bi| < T(w)r < T(w)r + fw—1) = f(w)

and

Ay — B S T(w)r <T(w)r + f(w—1) = f(w)
hold for each m € N we have found a representation as desired in Claim [5.2.3 O
H. If we are in case @ of@ then we can split the representation into two parts and

between them there is a “large gap”.
More precisely, there is a constant ¢ such that we can write o = v + & with

Y=Y > brexCFme® #0

k.t x€B
xm<c
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and

xeB
zm>c+2f(w—1)

5= > brexCneEe* #0.
k.l

Proof of [H. In case 2] of [E] we have an index m € [1, M] with

By, —B,, > w+2(w-—1)f(w—1)
The total weight of « is w, so the representation
a=>"" BrexCne,
k¢ xeB

has at most w non-zero coefficients. Therefore, by the pigeon hole principle we can find
an interval J of length at least 2f(w — 1) and with the property that all coefficients ay ;
fulfilling x,,, € J are zero. Therefore we can split up a as mentioned. O

I. If we have the splitting described in[H} then Claim [5.2.3 follows for weight w.

Proof of [I. After renaming the intervals and coefficients, we have aw = vy + ¢ with

T=D ) crexCnee

k.t xeC

§ = Z Z o xCFnee™.

k,l xeD

and

Both total weights w, and ws, respectively, are smaller than w = w,, so we can use
induction hypothesis: We get representations

Y=Y erexCFnee™ (5.2.3)
k.t x€E

with e ¢ x € [0,n — 1] and

6= Z Z FreoxCFmee™ (5.2.4)

kt xeF

with fi ¢ x € [0,7 — 1]. The upper and lower bounds of the intervals in C' to E differ by
at most f(wy) < f(w—1) in each coordinate. The same is valid for the intervals of D to
F'. Since the intervals in C and D were separated by intervals of length at least 2f(w—1),
therefore the intervals in E and F' are disjoint. In other words, the two representations
in and do not overlap. So we can add these two representations and obtain

o= Z Z e xCinee™

k.t xeG
with g ¢x € [0,n — 1]. We have
max {[ G — Ap| = m € [1,M]} < T(w)r+ f(w—1) = f(w)

and
max {|G,, — Ap,| : m € [1, M]} <T(w)r + f(w—1) = f(w),
which finishes the proof. O
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5.3 The Case of Simplest Cubic Fields

Let a be an integer and let « be a root of the polynomial
X3 —(a-1)X% - (a+2)X — 1.

Then the family of real cubic fields Q(«) is called the family of Shanks’ simplest cubic
fields. These fields and the orders Z[a| have been investigated by several authors. In
particular, in a recent paper of the second and third author [102] it was shown that the
unit sum height of the orders Z[a] is 1 in case of a = 0,1,2,3,4,6,13,55 and the unit
sum height < 2 in case of a = 5. Moreover, it was conjectured that w(Z[a]) = 1 for all
a € 2.

Using our main theorem we are able to prove the following result.

Theorem 5.3.1. We have w(Z[a]) < 2 for all a € Z.

Proof. First let us note some important facts on Q(«) and Z[«], see for example Shanks’
original paper [90]. We know that Q(«) is Galois over Q with Galois group G = {id, o, 0}
and with ag = o(a) = —1— é If we set a1 := «, then a1 and as are a fundamental sys-
tem of units. Now we know enough about the structure of Z[a] to apply Theorem

If we can find three units uj, ug,us € Z[a]* such that u; + ug + ug = 3 and u; # 1,
then the theorem is a direct consequence of Theorem Indeed we have

=u1

3=(a?+ (—a+2)og —a)

=ug

+ (=202 + (2a — 1)y +a +4)

=us
+(ai + (-a=1)a1 = 1)

= ala% + al_2a2_1 + alag_l. O

5.4 Application to Signed Double-Base Expansions
We start with the definition of a signed double-base expansion of an integer.

Definition 5.4.1 (Signed Double-Base Expansion). Let p and g be different integers.
Let n be an integer with
a= > dyp'd,

1€Np,j€Ng

where d;; € {—1,0,1} and only finitely many d;; are non-zero. Then such a sum is called
a signed p-q-double-base expansion of c. The pair (p, q) is called base pair.

A natural first question is, whether each integer has a signed double-base expansion
for a fixed base pair.
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If one of the bases p and ¢ is either 2 or 3, then existence follows since every integer has a
binary representation (base 2 with digit set {0,1}) and a balanced ternary representation
(base 3 with digit set {—1,0,1}), respectively. To get the existence results for general
base pairs, we use the following theorem, cf. [15]

Theorem 5.4.2 (Birch). Let p and q be coprime integers. Then there is a positive
integer N(p, q) such that every integer larger than N(p,q) may be expressed as a sum of
distinct numbers of the form p'q? all with non-negative integers i and j.

Corollary 5.4.3. Let p and q be coprime integers. Then each integer has a signed
p-q-double-base expansion.

Next we want to give an efficient algorithm that allows to calculate a signed double
base expansion of a given integer. Birch’s theorem, or more precisely the proof in [15],
does not provide an efficient way to do that. However, using our main result, there is a
way to compute such expansions efficiently at least for certain base pairs.

Corollary 5.4.4. Let p and q be coprime integers with absolute value at least 3. If there
are non-negative integers x and y such that

2= |p® — ¢, (5.4.1)

then each integer has a signed p-q-double-base expansion which can be computed effi-
ciently (there exists a polynomial time algorithm). In particular given a p-adic expansion

of an integer o, one has to apply (5.4.1) at most O(log()?) times.

Proof. We start to prove the first part of the corollary and therefore apply Theorem
with ' = Q, R = Z and I' is the multiplicative group generated by —1,p and q.
Since by assumption 2 = +(p* — ¢¥) we have a solution to and Theorem
yields that p-g-double-base expansions exist.

Now let us prove the statement on the existence of a polynomial time algorithm.
Assume that for the integer « the p-adic expansion

a:ao—l—alp—i---'—i—akpk

is given, with ag, ...,ax € [0,p — 1]. Let us note that the weight w of this representation
is at most O(log ). Now the following claim yields the corollary. O

o= Z aip'

1€[0,1]

Claim 5.4.5. Assume

w?—w
2

with a; € Z and I € No, and set w =} cqo 1y las|. Then, after at most
steps 3R we arrive in a representation of the form

o = Z qjy Z bk,jpk)

j€lo0,J] ke[0,K]

replacement

where the by, ; are integers with |by ;| <1, and J, K € Ny.
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Proof. We prove the claim by induction on w. If w < 1 the statement of the claim is
obvious. Further, if all the a; are in {—1,0,1} we are done. Therefore we assume that
there is at least one index 7 with |a;| > 1.

We now apply the replacement step $R in the following way: If a; > 1, then a; is
replaced by a; — 2, if a; < 1, then a; is replaced by a; + 2. After at most w — 1 such
steps, we get a new representation of the form

= Z ap' + ¢Y Z dip',

1€[0,1.] 1€[0,14]

I.,1; € Ny, ¢;,d; € Z, such that all ¢; fulfil |¢;] < 1. Note that no replacement step $&
increases the weight w.
Now consider
B= > dip
1€[0,14]
The weight of 3 fulfils
wo= Yl <u-1,
1€[0,14]

since in each replacement step it is increased exactly by 1. Now, by the induction
hypothesis we obtain a representation

B= > ¥ > e

jefo,J.]  ke[0,K.]

where the ey, ; are integers with |e; ;| < 1 and Je, K. € Ny. Further, this can be done in

5— steps. Setting b; o = ¢; and b; ;, = €; ;1 for k > 0 yields the desired representation.
Moreover, this can be done with at most

2

ws —w — — _
whows o _w-Dw-2), | ww-D
2 2 2
applications of $%&, which finishes the proof of the claim. O

Now we want to give some examples for base pairs, where the corollary can be used.

Ezample 5.4.6. Let (p,q) be a twin prime pair, i.e., we have ¢ = p+ 2 and both p and ¢
are primes. Then clearly

2=q-p,
so, by Corollary every integer has a signed p-g-double-base expansion, which can
be calculated efficiently.

Ezample 5.4.7. Let p=>5 and ¢ = 23. We have
2 =52 — 23,

therefore every integer has a signed 5-23-double-base expansion, which can be calculated
efficiently. Again Corollary was used.
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To see some concrete expansions, we calculated the following:

995 = —5° +5* +5%.23 52 +5.23+232 +1

996 = —5% +5%-23+232 —5+23—1

997 = —5% +52.23 + 232 — 5423

998 =5% —5° —52+232 -5 -1

999 = 5% — 5% — 52+ 232 -5

1000 = 5% — 5% =52 +23% —5+1

1001 = —5% +5%2-23 +232 +23 -1

1002 = —5% + 5% - 23 + 23% + 23

1003 = 5% — 5% — 52 +232 — 1
In each case we started with an jnitigl expansion, which is obtained by a greedy algorithm:
For a v € Z find the closest 5° - 237, change the coefficient for that base, and continue

with v — 5237, Then we calculated the expansion by applying the equation 2 = 5% — 23
as in the proof of Theorem The implementatiorﬂ was done in Sage [97].

One can find pairs (p, q) where Corollary does not work. The following remark
discusses some of those pairs.

Remark 5.4.8. Consider the equation
2= |p — ¢ (5.4.2)

with non-negative integers x, y. A first example, where the corollary fails, is p = 5 and
g = 11. Indeed, looking at Equation modulo 5 yields a contradiction. Another
example is p = 7 and ¢ = 13, where looking at modulo 7, yields a contradiction.
A third example is p =7 and ¢ = 11.

So in the cases given in the remark above, as well as in a lot of other cases, we cannot
use the corollary to compute a signed double-base expansion efficiently. This leads to
the following question.

Question 5.4.9. Is there an efficient (polynomial time) algorithm for each base pair (p, q)
to compute a signed p-g-double-base expansion for all integers?

There is also another way to use Theorem [5.1.2l For some combinations of p and
q we can get a weaker result. First, we define an extension of the signed double-base
expansion: we allow negative exponents in the p’q’, too.

Definition 5.4.10 (Extended Signed Double-Base Expansion). Let p and ¢ be different
integers (usually coprime). Let z € Q. If we have

2= Y dgp'd,

1€EL,JEL

!The source code can be found on http://www.danielkrenn.at/belcher/. Further a full list of expan-
sions of the natural numbers up to 10000 can be found there.
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where d;; € {—1,0,1} and only finitely many d;; are non-zero, then we call the sum an
extended signed p-q-double-base expansion of z.

With that definition, we can prove the following corollary to Theorem [5.1.2

Corollary 5.4.11. Let p and q be coprime integers. If there are integers a, b, ¢, and d
with (a,b,c,d) # (0,0,0,0) and such that

2 =p"q" £p°q’, (5.4.3)

then every element of Z[1/p,1/q] has an extended signed p-q-double-base expansion which
can be computed efficiently (polynomial time algorithm).

Remark 5.4.12. If we have a solution to the equation in Corollary then Corol-
lary works, too. But more can be said about the existence and efficient com-
putability of extended double-base expansions for the elements of Z[1/p,1/q]. If each
integer has an efficient computable signed p-g-double-base expansion, then each element
of Z[1/p,1/q| has an extended signed p-g-double-base expansion which can be computed
efficiently. This result is not difficult to prove.

Now we prove the corollary.

Proof of Corollary[5-4.11} The proof of this corollary runs along the same lines as the
proof of Corollary

We apply Theorem with F = Q, R = Z[1/p,1/q] and T is the multiplicative
group generated by —1, p and ¢. Since, by assumption, 2 = +(p%¢® — pch) we have a
solution to ([5.1.2)), Theorem yields that p-g-double-base expansions exist.

Next, we claim that we may assume p and ¢ are odd and p,q > 3. Indeed assuming
that p € {2,3}, then we can write o € Z[1/p,1/q| in the form

(0%
prrqra

with o € Z and appropriate exponents x, and x,. Moreover, @ has a representation of
the form
Ge Y
1€[0,k]
with a; € {—1,0,1}. However the computation of such a represenation can be done
efficiently and takes polynomial time in the height h(a), where
h(n/m) = max{log n|, log|m] , 1}

provided n, m € Z are coprime.
Since we may assume p, g > 3, we want to show next that a solution to equation
necessarly takes the form
2=4p *+p ¢,
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with a,b > 0. We observe that a solution to ([5.4.3)) with a,c¢ > 0 or b,d > 0 does not
exist, since otherwise p ’ 2 orq ’ 2. Next we note that if a # ¢ (b # d respectively) the p-
adic valuation (¢g-adic valuation) on the right hand side of (5.4.3]) would be the minimum
of a and ¢ (b and d respectively) and in view of the left hand side, this minimum must
be 0. Thus any solution to equation (5.4.3|) must be of one of the following forms:

2=4pgb +1,

2=+p g " +p g,

2=4p " +p ¢,

or
2=+4p" +¢°,

where a and b are positive integers. Obviously the first two cases have no solution and
the last case has been treated in Corollary
Now let us write o € Z[1/p,1/q] in the form

_agtaipt -+ apt
B grap®r ’

We are now in a similar situation as in the proof of Corollary |5 Let w = Zf 1 lail.
Then by similar arguments as in Corollary b.4.4 we find an extended signed p-g-double-
base expansion of o with at most wl—w applications of $%. Thus we have a polynomial
in h(e) time algorithm. O

We can use the corollary proved above to get the following examples.
Ezample 5.4.13. Let p be a Sophie Germain prime and g = 2p + 1. We obtain

2=qgp ! —p .
Using Corollary[5.4.11|yields that every element of Z[1/p, 1/¢] has an efficient computable
extended signed p-g-double-base expansion.
The case when p is a prime and ¢ = 2p — 1 is a prime works analogously.

The end of this section is dedicated to a short discussion. All the results on efficient
computability in this section needed a special representation of 2. We have given some
pairs (p,q) where the methods given here do not work.

Further, one could ask, whether the representations we get have a special structure.
Of particular interest would be an algorithm to get expansions with a small number of
summands (small number of non-zero digits). For a given base pair (p, ) this leads to
the following question

Question 5.4.14. How to compute a signed p-g-double-base expansion with minimal
weight for a given integer?

A greedy approach for solving this question can be found in Berthé and Imbert [13],
some further results can be found in Dimitrov and Howe [27].
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Chapter 6

Sylow p-groups of Polynomial
Permutations

This chapter contains the article [41] with the title “Sylow p-groups of Polynomial Per-
mutations on the Integers mod p"”. It is joint work with Sophie Frisch. The article is
submitted to Journal of Number Theory.

Abstract

We enumerate and describe the Sylow p-groups of the group of polynomial permutations
of the integers mod p".

6.1 Introduction

Fix a prime p and let n € N. Every polynomial f € Z[z]| defines a function from
L = L /p"Z to itself. If this function happens to be bijective, it is called a polynomial
permutation of Zyn. The polynomial permutations of Z,» form a group (Gy,o) with
respect to composition. The order of this group has been known since at least 1921
(Kempner [61]) to be

|Go| =pl(p— 1P and |G| = pl(p — 1)PpPp>i=s"®) for n > 3,

where B(k) is the least n such that p* divides n!, but the structure of (Gy, o) is elusive.
(See, however, Nobauer [84] for some partial results). Since the order of G,, is divisible
by a high power of (p— 1) for large p, even the number of Sylow p-groups is not obvious.

We will show that there are (p—1)!(p—1)P=2 Sylow p-groups of G,, and describe these
Sylow p-groups, see Theorem 4.5.

Some notation: p is a fixed prime throughout. A function g: Zy» — Zy» arising from
a polynomial in Z,n [z] or, equivalently, from a polynomial in Z[z], is called a polynomial
function on Zyn. We denote by (F,,o) the monoid with respect to composition of
polynomial functions on Zy», and by (Gj, o) its group of units, the group of polynomial
permutations of Zpn.
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The natural projection of polynomial functions on Zy,n.+1 onto polynomial functions
on Zyn we write as mp: Fy1 — Fy,. If f is a polynomial in Z[z] (or in Zym[z] for m > n)
we denote the polynomial function on Zyn[z] induced by f by [f]n.

The order of F), and that of G,, have been determined by Kempner [61] in a rather
complicated manner. His results were cast into a simpler form by Nobauer [83] and
Keller and Olson [60] among others. Since then there have been many generalizations
of the order formulas to more general finite rings [89, [82], 20, 40, 14, 57, (8. Also,
polynomial permutations in several variables (permutations of (an)k defined by k-tuples
of polynomials in k variables) have been looked into [39} 22] 110, 106, 105} [72].

6.2 Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other
places, in [61], 83] 21l [60]. The reader familiar with polynomial functions on finite rings
is encouraged to skip to section 3. This section does not contain new material but reviews
the state of the art.

Definition 6.2.1. For p prime and n € N, let

) =3 [5] and ) = mingon [ ay(m) 2 )

k=1
If p is fixed, we just write a(n) and B(n).

Notation 6.2.2. For k € N, let (z)y =x(z—1)...(x —k+1) and (x)o = 1. We denote
p-adic valuation by v,,.

Fact 6.2.3.

(1) apl(n) = uy(n).

(2) For 1 <n <p, By(n) =np and for n > p, B,(n) < np.

(3) For alln € Z, vy((n)g) > ap(k); and vp((k)k) = vp(k!) = ap(k).

Proof. Easy. O

Remark 6.2.4. The sequence (5,(n))s; is obtained by going through the natural num-
bers in increasing order and repeating each k € N v,(k) times. For instance, f2(n) for

n>1is: 2,4,4,6,8,8,8,10,12,12, 14, 16, 16, 16, 16, 18, 20, 20, . . ..

The falling factorials (x)o =1, (z)r = x(z —1)...(x —k+ 1), k > 0, form a basis of
the free Z-module Z[z], and representation with respect to this basis gives a convenient
canonical form for a polynomial representing a given polynomial function on Zn.

Fact 6.2.5. A polynomial f € Z[x], f =, ai (), induces the zero-function mod p"
if and only if ar, = 0 mod p*=*®) for all k (or, equivalently, for all k < B(n)).
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Proof. Induction on k using the facts that (m); = 0 for m < k, that v,((n)r) > op(k)
for all n € Z, and that v,((k)r) = vp(k!) = ap(k). O
Corollary 6.2.6. Every polynomial function on Zyn is represented by a unique f € Z[x]
of the form f = Zi(:no)*l ay (z), with 0 < ap < p"~*®) for all k.

Comparing the canonical forms of polynomial functions mod p™ with those mod p"~!
we see that every polynomial function mod p" ! gives rise to p®(™ different polynomial
functions mod p™:

Corollary 6.2.7. Let (F},,0) be the monoid of polynomial functions on Zyn with respect
to composition and 7, : F,+1 — F, the canonical projection.

(1) For all n > 1 and for each f € F, we have |7, *(f)| = p®+1.

(2) For all n > 1, the number of polynomial functions on Zpn is

[y | = pien ).

Recall the following notation already given in the introduction.
Notation 6.2.8. We write [f],» for the function defined by f € Z[x] on Zyn.
Lemma 6.2.9. Every polynomial f € Z[x] is uniquely representable as
fl@) = fo(x) + fi(@)(@? — z) + fa(2)(@? — 2)° + ...+ fru(2) (2P —2)" + ...
with fn, € Z[z], deg fi < p, for all m > 0. Now let f,g € Z|x].
(1) If n < p, then [f]pn = [glpn is equivalent to: fiy = gr mod p" *Z[z] for 0 < k < n.
(2) [f]p2 = [glp2 is equivalent to: fo = go mod p?Z]x] and f1 = g1 mod pZ[z].

(3) [flp = lglp and [f'], = [¢]p is equivalent to: fo = go mod pZlx] and fi = g1 mod
PZ[x].

Note that (2) is just the special case of (1) with n = 2.

Proof. The canonical representation is obtained by repeated division with remainder by
(zP—1x), and uniqueness follows from uniqueness of quotient and remainder of polynomial
division. Note that [f], = [folp, and [f'], = [fj — filp. This gives (3).

Denote by f ~ g the equivalence relation f, = g mod p" *Z[z] for 0 < k < n.
Then f ~ g implies [f],» = [g]pn. There are pPT2P+3PT-+7P equivalence classes of ~ and
pPOFBRFBE)+45(0) different [f]n. For k < p, B(k) = kp. Therefore the equivalence
relations f ~ g and [f]y» = [g]pn coincide. This gives (1). O

We can rephrase this in terms of ideals of Z[z].
Corollary 6.2.10. For every n € N, consider the two ideals of Z[z]
Lo={feZfs] | }@) CpZ} and  Jy=({p" @ —2)* [0 <k <n)).

Then [Z[z]: I,] = pPMHB@+BE+-+B0) gng (Z[z]: J,] = pPt2P3pt—tn2  Therefore,
Jn = I, for n < p, whereas for n > p, J, is properly contained in I.
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6 Sylow p-groups of Polynomial Permutations

Proof. J, C I,. The index of J,, in Z[z] is pPT2PT3PT+mP because f € J, if and only
if fx =0 mod p" *Z[x] for 0 < k < n in the canonical representation of Lemma
The index of I,, in Z[z] is pPMHB@+BB)-+5() By Corollary [6.2.7] (2) and [Z[z]: I,,] <
[Z[x]: J,] if and only if n > p by Fact (2). O
Fact 6.2.11 (cf. McDonald [75]). Let n > 2. The function on Zyn induced by a polyno-
mial f € Z[x] is a permutation if and only if

(1) f induces a permutation of Z, and

(2) the derivative f' has no root mod p.

Lemma 6.2.12. Let [f],» and [f], be the functions defined by f € Zlx] on Zyn and Zy,
respectively, and [f'], the function defined by the formal derivative of f on Z,. Then
(1) [f]p2 determines not just [fl,, but also [f'],.

(2) Let n> 2. Then [f]pn is a permutation if and only if [f],2 is a permutation.

(3) For every pair of functions (o, ), a: Zy, — Ly, B: Ly — Ly, there are exactly pP
polynomial functions [f],2 on Zye with [f], = o and [f'], = 5.

(4) For every pair of functions (o, 8), o Zy — Zy bijective, B: Zy, — Zp \ {0}, there are
exactly pP polynomial permutations [fl,2 on Zye with [f], = « and [f'], = 5.

Proof. (1) and (3) follow immediately from Lemma for n = 2 and (2) and (4) then
follow from Fact [6.2.11] O

Remark 6.2.13. Lemma/|6.2.12|(2) implies that the inverse image of Gy, under 7, : Fj, 41 —
F, is Gpy1. We denote by m,: Gpy1 — G, the restriction of m, to G,,. Then Corol-

lary implies, for all n > 2,
| ker(my,)| = pP Y.
Corollary 6.2.14. The number of polynomial permutations on Zy> is
|Ga| = pl(p — 1)"p”
and for n > 3 the number of polynomial permutations on Z,2 is
|Gl = plp — 1)PpPp>izs A0,

Proof. In the canonical representation of f € Z[z] in Lemma there are pl(p — 1)P
choices of coefficients mod p for fy and f; such that the criteria of Fact for a
polynomial permutation on Z,: are satisfied. And for each such choice there are p”
possibilities for the coefficients of fi mod p?. The coefficients of fy mod p? and those of
f1 mod p then determine the polynomial function mod p?. So |Ga| = p!(p — 1)PpP. The
formula for |G| then follows from Remark O

This concludes our review of polynomial functions and polynomial permutations on
Zyn. We will now introduce a homomorphic image of G2 whose Sylow p-groups bijectively
correspond to the Sylow p-groups of G, for any n > 2.
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6.3 A group between G and Go

6.3 A group between G; and G,

Into the projective system of monoids (F},, o) we insert an extra semi-group E between
Fy and F5 by means of monoid epimorphisms 6: F» — F and ¢: E — F} with ¥ = 7.
w 0 ™2 T3
Fy«— FE+— Fy<— F3+— ...

The restrictions of 6 to G2 and of ¥ to the group of units H of E will be group-
epimorphisms, so that we also insert an extra group H between G2 and G; into the
projective system of the G;.

G Gy gy &

In the following definition of E and H, f and f’ are just two different names for
functions. The connection with polynomials and their formal derivatives suggested by
the notation will appear when we define 6 and 1.

Definition 6.3.1. We define the semi-group (FE, o) by
E={(f,f)| }: 2y~ T, f': Ty — T}
with law of composition
(f,f)o(g.9) =(fog, (fog)-9)

where (f o g)(x) = f(g9()) and ((f o g) - ¢')(x) = f'(9(x)) - ¢ ().
We denote by (H, o) the group of units of E.

Lemma 6.3.2.

(1) The identity element of E is (id, 1), with id denoting the identity function on Z, and
1 the constant function 1.

(2) The group of units of E has the form
H={(f,f")]|f: Z, — Z, bijective, f':Z, — Z,\ {0}}.

(3) The inverse of (9,4') € H is

(9.9) " =(g7"

where g~ is the inverse permutation of the permutation g and 1/a stands for the mul-

tiplicative inverse of a non-zero element a € Zy,, such that

L @)= ——

g og- g (g7 1(z))

(

means the multiplicative inverse in Z, \ {0} of ¢'(¢7*(z)).
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6 Sylow p-groups of Polynomial Permutations

Note that H is just a wreath product (designed to act on the left) of the permutation
group S, and a cyclic group of p—1 elements (here appearing as the multiplicative group
of units of Z,).

Now for the homomorphisms 6 and .

Definition 6.3.3. We define ¢: E — F| by ¥(f, f') = f. As for §: F, — E, given an
element [g],2 € Fy, set 8([g],2) = ([g]p, [¢9]p) — this is well-defined by Lemma [6.2.12] (1).

Lemma 6.3.4.

i) 0: Fy — E is a monoid-epimorphism.

(
(i) The inverse image of H under 0: Fy — E is Gs.
(711) The restriction of 0 to Gy is a group epimorphism 0: Go — H with |ker(8)| = pP.

(iv) ¥: E — Fy is a monoid epimorphism and v restricted to H is a group-epimorphism
’QZ): H — Gy.

Proof. (i) follows from Lemma 6.2.12f (3) and (ii) from Fact |6.2.11] (iii) follows from
Lemma [6.2.12| (4). Finally, (iv) holds because every function on Z, is a polynomial

function and every permutation of Z, is a polynomial permutation. O

6.4 Sylow subgroups of H and G,

We will first determine the Sylow p-groups of H. The Sylow p-groups of G,, for n > 2 then
are obtained as the inverse images of the Sylow p-groups of H under the epimorphism
G, — H.

Lemma 6.4.1. Let Cy be the subgroup of S, generated by the p-cycle (012...p —1).
Then one Sylow p-subgroup of H is

S={(f.f)eH|feCo f =1},
where f' =1 means the constant function 1. The normalizer of S in H 1is
Nu(S) ={(9,9") | gy € Ns,(Co), ¢" a non-zero constant }.
Proof. As |H| = pl(p — 1), and S is a subgroup of H of order p, S is a Sylow p-group
of H. Conjugation of (f, f') € S by (g,¢') € H (using the fact that f' = 1) gives
(0:9) 0 0) = (67 g = 7 o Fog )

The first coordinate of (g, ¢")~*(f, f')(g, ') being in Cy for all (f, ') € S is equivalent to
g € Ng,(Co). The second coordinate of (g,¢') ' (f, f')(g,g') being the constant function
1 for all (f, f') € S is equivalent to

VeeZ, ¢(z)=4g(g " (fl9(@))),

which is equivalent to ¢’ being constant on every cycle of ¢~! fg, which is equivalent to
¢’ being constant on Z,, since f can be chosen to be a p-cycle. O
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Lemma 6.4.2. Another way of describing the normalizer of S in H is
Ng(S)={(f,f) € H| 3k #0 VYa,b f(a)— f(b) = k(a—b); ' anon-zero constant}.
Therefore, [Ny (S)| = p(p — 1)* and [H: Ny (S)] = (p — 1)!(p — )P,
Proof. Let 0 = (012...p—1) and f € S, then
fof =t =(f(0) f() f(2)... f(p— 1))

Now f € Ng, (Cp) if and only if, for some 1 <k <p fof~' =o", ie,

(fO) f(1) f(2) ... flp—1))=(0 k 2k ... (p—1)k),
all numbers taken mod p. This is equivalent to f(z + 1) = f(z) + k or

flea+1) = f(z)=Fk

and further equivalent to f(a)—f(b) = k(a—b). Thus k and f(0) determine f € Ng,(Co),
and there are (p — 1) choices for k and p choices for f(0). Together with the (p — 1)
choices for the non-zero constant f’ this makes p(p — 1)? elements of Ny (S). O

Corollary 6.4.3. There are (p — 1)!(p — 1)P=2 Sylow p-subgroups of H.

Theorem 6.4.4. The Sylow p-subgroups of H are in bijective correspondence with pairs
(C, @), where C is a cyclic subgroup of order p of Sy, ¢: Zy, — Zy\ {0} is a function and
@ 1s the class of ¢ with respect to the equivalence relation of multiplication by a non-zero
constant. The subgroup corresponding to (C, @) is

S(C,@):{(faf,)€H|f607 f’(.ﬁl?):

Proof. Observe that each S ) is a subgroup of order p of H. Different pairs (C, )
give rise to different groups: Suppose S(c ) = S( D). Then C = D and for all x € Z,

and for all f € C' we get
Plf() _ (/@)

p(z) oY)
As C' is transitive on Z, the latter condition is equivalent to
v(z) _ Y(y)
Vr,y €7Z = —
Tow) ely)

which means that ¢ = ki for a nonzero k € Z,,.

There are (p —2)! cyclic subgroups of order p of S,, and (p—1)P~1 equivalence classes
¢ of functions ¢: Z, — Z,\ {0}. So the number of pairs (C, @) equals (p—1)!(p — 1)P~2,
which is the number of Sylow p-groups of H, by the preceding corollary. O
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6 Sylow p-groups of Polynomial Permutations

In the projective system of groups
’lll 0 i) Tn—1
Gi+— H<+——Gy+= ... +— G,

the kernel of the group epimorphism G,, — H is a finite p-group for every n > 2, because,
firstly, the kernel of m,_1: G, — Gp_1 is of order p?(™ by Remark and secondly,
the kernel of §: Go — H is of order p? by Lemma [6.3.4] (iii). So the Sylow p-groups of
Gy, for n > 2 are just the inverse images of the Sylow p-groups of H:

Theorem 6.4.5. Let n > 2. Let Gy, be the group (with respect to composition) of
polynomial permutations on Zyn. There are (p — 1)!(p — 1)P=2 Sylow p-groups of Gy,.
They are in bijective correspondence with pairs (C, @), where C is a cyclic subgroup of
order p of Sp, v: Ly, — Zp\ {0} a function and ¢ its class with respect to the equivalence
relation of multiplication by a non-zero constant. The subgroup corresponding to (C, @)

* Pllflp())
o(x)

One particularly easy to describe Sylow p-group of G, corresponds to a constant
function ¢ and the subgroup C generated by (012...p—1) of S,,. It is the inverse image
of S defined in Lemma and consists of those polynomial functions on Z,» which
modulo p are a power of (012...p — 1), and whose derivative is constant 1 mod p.

One last remark: Each Sylow p-group of G| = S, is isomorphic to C,, where C),
denotes the cyclic group of order p. Also, it is not difficult to see (using the description
of Gy in [40]) that the Sylow p-groups of G are of the form Cj, ! C,. It is an open
question, posed by W. Herfort (personal communication), if every finite wreath product
Cp1Cp... 200, of cyclic groups of order p can be embedded in G, for some n.

Sicip) = Uflpm € G| [flp € C, [f']p(x) =
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Chapter 7

Analysis of Parameters of Trees
Corresponding to Huffman Codes
and Sums of Unit Fractions

This chapter contains the article [51] with the title “Analysis of Parameters of Trees Cor-
responding to Huffman Codes and Sums of Unit Fractions”. It is joint work with Clemens
Heuberger and Stephan Wagner. The article was accepted for publication in the pro-
ceedings of SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO13)
on September 13, 2012.

Abstract

For fixed ¢t > 2, we consider the class of representations of 1 as sum of unit fractions
whose denominators are powers of ¢ or equivalently the class of canonical compact t-ary
Huffman codes or equivalently rooted t-ary plane “canonical” trees.

We study the probabilistic behaviour of the height (limit distribution is shown to be
normal), the number of distinct summands (normal distribution), the path length (nor-
mal distribution), the width (main term of the expectation and concentration property)
and the number of leaves at maximum distance from the root (discrete distribution).

7.1 Introduction

Let t > 2 be an integer. We consider the following combinatorial classes which turn out
to be equivalent. See Figure for examples.

1. Partitions of 1 into powers of ¢ (representation of 1 as sum of unit fractions whose
denominators are powers of t):

T

CPartition:{(xlv---’xr) €Z r>0,0<z <3< <y, Z
=1

1
- 1}.
i
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110

The external size |(x1,...,xz,)| of such a representation (x1,...,z,) is defined to
be the number r of summands.

. Canonical compact t-ary Huffman codes:

Ccoode = {C C{1,...,t}* | C is prefix-free, compact and canonical}.

Here,
e {1,...,t}* denotes the set of finite words over the alphabet {1,... ¢},

e a code C' is said to be prefix-free if no word in C' is a proper prefix of any
other word in C,

e a code (' is said to be compact if the following property holds: if w is a proper
prefix of a word in C, then for every letter a € {1,...,t}, wa is a prefix of a
word in C,

e a code C is said to be canonical if the lexicographic ordering of its words
corresponds to a non-decreasing ordering of the word lengths. This condition
corresponds to taking equivalence classes with respect to permutations of the
alphabet (at each position in the words).

The external size |C] of a code C' is defined to be the cardinality of C.

If C € Cepge with C' = {wy, ..., w,} and the property that length(w;) < length(w;41)
for all 4, then (length(w;),...,length(w,)) € Cpartition- This is a bijection between
Code and Cpgrtition pPreserving the external size.

. Canonical rooted t-ary trees:

Crree = {T rooted t-ary plane tree | T' is canonical}.

Here,
e t-ary means that each vertex has no or ¢ children,

e plane tree means that an ordering “from left to right” of the children of each
vertex is specified,

e canonical means that the following holds for all k: if the vertices of depth
(i.e., distance to the root) k are denoted by wvi, ..., vk from left to right,
then deg(v;) < deg(v;+1) holds for all 1.

The external size |T| of a tree is given by the number of its leaves, i.e., the number
of vertices of degree 1.

If C € Cepge, then a tree T' € Cpyee can be constructed such that the vertices of T
are given by the prefixes of the words in C, the root is the vertex corresponding
to the empty word, and the children of a proper prefix w of a code word are given
from left to right by wa for a =1, ..., t. This is a bijection between Ccoge t0 Crree
preserving the external size.



7.1 Introduction

0 0
10 00 01 10
110 100 101 110 111 110
1110 1111
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2 4 8 16 16 2 8 8 8 8 4 4 4

Figure 7.1.1: All elements of external size 5 (and internal size 4) in Cryee, Coode and
CPartition for t = 2.

Further formulations, details and remarks can be found in [35]. We will simply speak of
an element in the class C when the particular interpretation as an element of Cpyrtition,
Ccode 0T Cryree is mnot relevant. Our proofs will use the tree model, therefore Cqppee is
abbreviated as 7.

The external size of an element in C is always congruent to 1 modulo ¢t — 1. This can
easily be seen in the tree model, where the number of leaves r and the number of internal
vertices n are connected by the identity

r=1+n(t—1).

Therefore, we will from now on consider the internal size: for a tree T € Crpyee the
internal size of T" is the number n(7T') of internal vertices, for a code C' € C¢ypge the internal
size is the number of proper prefixes of words of C, and for a partition (x1,...,2,) €
Cpartition, the internal size is defined to be (r—1)/(t—1). We will omit the word “internal”
and will always use the variable n to denote the size.

The asymptotics of the number of elements in C of size n has been studied by various
authors, cf. again [35]. In that paper, building upon a generating function approach by
Flajolet and Prodinger [37], the following result has been obtained:

Theorem 7.1.1 ([35]). Fort > 2, the number of elements of size n in C can be estimated
as

Rp™ 4+ ©(p}),

where p > p2 and R are positive real constants depending on t with asymptotic expansions
(ast — o0)

1 t log 2 1 1 t—2 12

In fact, all O-constants can be made explicit and more terms of the asymptotic ex-
pansions in t of p, po and R can be given.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

The purpose of this contribution is to study the probabilistic behaviour of various
parameters of a random element in C of size n (all elements considered to be equally
likely):

1.

112

The height h(T') of a tree T € Crpyee is defined to be the maximum distance of a
leaf from the root. In the interpretation as a code, this is the maximum length of
a code word. In a representation of 1 as a sum of unit fractions, this corresponds
to the largest denominator used (more precisely, to the largest exponent of the
denominator).

The height is discussed in Section [7.3] It is asymptotically normally distributed
with mean ~ ppn and variance ~ U%n, where

1 t—2 t2 s 1 —t24+5t—2 t3
'uh:2+2t+3+0<22t> and Jh:Z—FT—FO ﬁ s

cf. Theorem [7.3.1]

. The number of distinct summands of a representation (z1,...,z,) of 1 as sum of

unit fractions is denoted by d(x1,...,z,). In the tree model, this corresponds to
the cardinality d(7T") of the set of depths of leaves in a tree T' € Cryee. In the code
model, this is the number of distinct lengths of code words.

The number d(T') is studied in Section It is asymptotically normally dis-
tributed with mean ~ pgn and variance ~ agn, where

1 t—4 t2 s 1 —t2+9t-14 t2
Md:2+2t+3+0(22t> and O-d:4+2t+4+0<22t>’

cf. Theorem [T.4.1]

. The mazimum number of equal summands of a representation (z1,...,z,) of 1 as

sum of unit fractions is denoted by w(z1,...,x,). In the code model, this is the
maximum number of code words of equal length; in the tree model, this is the
“leaf-width” w(T'), the maximum number of leaves on the same level.

The number w(T") is studied in Section We prove that E(w(T")) = p logn +
O(loglogn) with g, = 1/(tlog2) + O(1/t?) and a concentration property, cf.
Theorem [T.7.1]

The (total) path length £(T') of a tree T € Cryee is defined to be the sum of the depths
of all vertices of the tree. In our context, it is perhaps most natural to consider the
external path length Cegternal(T), though, which is the sum of depths over all leaves
of the tree, as this parameter corresponds to the sum of lengths of code words
in a code C' € Cgpge. Likewise, the internal path length Cipterna(T) is the sum of
depths over all non-leaves. Clearly, we have Ccyternai(T) + Linternat(T) = €(T"), and
the relations
-1

Eemternal(T) = TK(T) + n(T) and einternal(T) = %E(T) - n(T)



7.1 Introduction

for t-ary trees are easily proven. Therefore, all distributional results for any one
of those parameters immediately cover all three. The total path length turns out
to be asymptotically normally distributed as well (see Theorem , with mean
~ ,uthQ and variance ~ o2 n3. The coefficients have asymptotic expansions

tpl
t t t(t—2) £3 2 —th 4+ 513 + 2t £5
Pipl = 5 Hh = g+ "o O<22t> and oy = oty o O\ 2

The path length is studied in Section [7.6} its analysis is based on a generating
function approach for the moments, combined with probabilistic arguments to
obtain the central limit theorem.

5. The number of leaves on the last level (i.e., maximum distance from the root) of a
tree T' € Crye is denoted by m(T). This corresponds to the number of code words
of maximum length and to the number of smallest summands in a representation
of 1 as a sum of unit fractions.

This parameter may appear to be the least interesting of the parameters we study.
However, it is a natural technical parameter when constructing generating func-
tions for the other parameters. From these generating functions, the probabilistic
behaviour of m(7T") can be read off without too much effort, so we do include these
results in Section [7.5

The limit distribution of m(7T) is a discrete distribution with mean 2t + o(1) and
variance 2t? + o(1), cf. Theorem m

A noteworthy feature of the results listed above is the fact that the distributions we
observe are quite different from those that one obtains for other probabilistic random
tree models, specifically Galton—Watson trees (which include, amongst others, random
t-ary trees), but also recursive trees and general families of increasing trees, see [29] for
a general reference. Specifically,

e the asymptotic order of the height of a random Galton—Watson tree of order n
is only /n, and it is known that the limiting distribution (which is sometimes
called a Theta distribution) coincides with the distribution of the maximum of a
Brownian excursion [36]. The height of random recursive trees (or other families
of increasing trees) is even only of order log n, and heavily concentrated around its
mean, see [28].

e The path length of random Galton-Watson trees is of order n®/2, and it follows an
Airy distribution (like the area under a Brownian excursion) in the limit [I00]. For
recursive trees, the path length is of order nlogn with a rather unusual limiting
distribution [74].

e While the height of our canonical trees is greater than that of Galton—Watson
trees, precisely the opposite holds for the width (as one would expect): it is of
order /n for Galton-Watson trees [30} [101], with the same limiting distribution as
the height, as opposed to only logn in our setting. For recursive trees, the width
is even of order n/+/logn, see [31].
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Indeed, the structure of our canonical t-ary trees is comparable to that of compositions:
counting the number of internal vertices on each level from the root, we obtain a restricted
composition (see the series of papers by Bender and Canfield [10, 1), 12] on recent results
concerning compositions with various local restrictions), in which each summand is at
most t times the previous one. In the limit ¢ — 0o, one obtains compositions of n starting
with a 1 in this way.

Last in this introduction a remark on the notations of the error terms: In all our
major results those error terms have an explicit O-constant. The error functions ¢;(...)
that appear there are real functions which fulfil |e;(...)| < 1 for all values of the indi-
cated parameters. Those constants were calculated with the computer algebra system
Sage [98].

7.2 The Generating Function

The height h(T), the cardinality d(T") of the set of different depths of leaves and the
number m(T") of leaves on the last level of a tree T € T of size n = n(T') can be analysed
by studying a multivariate generating function H (g, u,v,w), where ¢ labels the size n(T),
u labels the number m(T') of leaves on the last level, v labels the cardinality d(T") of the
set of depths of leaves and w labels the height h(T).

Theorem 7.2.1. The generating function

TeT

can be expressed as

a(Q? 17 /U7 w)

H(q,u,v,w) = a(q, u,v,w) + b(q, u, v, w)m (7.2.1)
with
Z [, JH —v - gl
a(q,u,v,w) vg u” w | gllat
Iyt i 221 — o — oIyt
b(q,u,v,w) = Z v n W H R , (7.2.2)

1— q[[ﬂ]]utJ ey 1— q[[lﬂutz

=
where [j] =1+t +---+t/7L

Proof. The proof of Theorem follows ideas of Flajolet and Prodinger [37], (see also
[35]), which we only sketch briefly. Details can be found in Appendix One first
considers

Hp(q,u,v) = [wh]H(q,u,v,w) = Z ¢ D) (1) ()

TeT
h(T)=h
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7.3 The Height

for some h > 0. A tree T” of height h+1 arises from a tree T of height h by replacing j of
its m(T') leaves on the last level by internal vertices with ¢ succeeding leaves respectively,
where 1 < j < m(T). If j < m(T), then d(T") = d(T') + 1; otherwise, we have d(T") =
d(T). For the generating function Hj, this translates to the recursion

m(T)—1
Hpi1(q, u,v) = Z ( Z qn(T)+jujtvd(T)+1_|_qn(T)+m(T)um(T)tUd(T)>
j=1

TeT (7.2.3)
h(T)=h
with
( ) qutv ( ) 1—v—qut
T u,v) = S Uy = —
q’ ) 1 _ qut7 Q7 b} 1 _ qut
and initial value Hy(q,u,v) = uv. This further means that
H(q,u,v,w) = uv+ wr(q,u,v)H(q,1,v,w) +ws(q,u,v)H(q, qu’,v,w),
and this functional equation can be solved by iteration. One obtains
H(q,u,v,w) = a(q, u,v,w) + b(q, u,v,w)H(g,1,v,w),
and ((7.2.1)) results by plugging in v = 1 and solving for H(q, 1, v, w). O

Next we recall results on the singularities of H(g,1,1,1), see Proposition 10 of [35].

Lemma 7.2.2 ([35]). The generating function H(q,1,1,1) has exactly one singularity
q=qo with |¢g| <1— O'tﬂ. This singularity qo is o simple real pole. For t > 4, we have

11 t+4  3t*423t+38 7t
=5+ 553 T 55t 93t+8 100 - 24t€1(t)'

For t € {2,3}, the values are given in Table m Furthermore, let

1  log2 0.06
Q*Tr 2t 2

fort > 6 and Q be given by Table for2 <t <5. Then qo is the only singularity of
H(q,1,1,1) with [q| < qo/Q-

Using this result, we will be able to apply singularity analysis to all our generating
functions in the coming sections.

7.3 The Height

We start our analysis with the height h(T") of our canonical trees T' € 7. We show that
the height is asymptotically (for large sizes n = n(T")) normally distributed and calculate
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

t | q0 Q |t Q
0.5573678720... 0.71317958 4 0 5090030531 ... 0.59306918
5

31 0.5206401166 ... 0.63074477 0.5042116835... 0.57200784

Table 7.2.1: Constants gy and @ for 2 < ¢ < 5.

its mean and variance. We will do this by means of the generating function H (g, u, v, w)
defined in Section [7.2]
So let us have a look at the bivariate generating function

(Qa 17 17 ’UJ)
(¢,1,1,w) qn(T h(T) - _ N\ H )
7;— 1_b(Q71717w)

for the height. We consider its denominator
J
gl

D(q,w) :==1-0b(q,1,1,w) = Z 1)/ w? H

0<y

— i

From Lemmal7.2.2) we know that D(g, 1) has a simple zero go. Expanding D(g, w) around
(qo, 1) and using Theorem IX.9 (meromorphic singularity perturbation) from the book
of Flajolet and Sedgewick [38] yields the desired results for the height without much
effort. They are stated precisely in the following theorem.

Theorem 7.3.1. The height is asymptotically normally distributed. Its mean is ppn +
O(1) and its variance is cin + O(1) with

1 t—2 2t243t—8 93 +45t2+2t—88  0.044¢*
5 T o3 T T2 93148 + g e2(t)

Mh =

and
o 1 —t245t—2 4>+ 42427t —7  0.058¢*
Oh = 4 T o 9216 + o5 es(t)

fort > 3. In the case t =2 we have pp = 0.5662757699... and 0,21 = 0.2665499010. ...

We calculated the values of the constants pj and O'}QZ numerically for 2 < ¢t < 30.
Those values can be found in Table in Appendix where a complete proof of
Theorem is given as well.

7.4 The Number of Distinct Depths of Leaves

In this section we study the number of distinct depths of leaves d(T") of our canonical
trees T € T, motivated by the interpretation as the number of distinct code lengths
in Huffman codes. This parameter is also asymptotically normally distributed, and the
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7.5 The Number of Leaves on the Last Level

approach is essentially the same as for the height, based on the generating function
H(q,u,v,w) from Section To analyse the parameter d(T"), we look at the bivariate
generating function

a(q,1,v,1)
q,LU 1 qn(T) a(T) _
:Z;_ 11— b(q,1,v,1)

for the number of distinct depths of leaves. Again, we consider its denominator

1—v— gl
D(q,v) :=1-b(q,1,v,1) =1~ Z 1— qﬂJ]] H —qlil

and proceed as in the previous section. Lemma tells us the existence of a simple
zero qo of D(q,1). Again, we expand the denominator D(gq,v) around (qo,1) and use
Theorem IX.9 from the book of Flajolet and Sedgewick [38]. This results in the following
theorem.

Theorem 7.4.1. The number of distinct depths of leaves is asymptotically normally
distributed. Its mean is pgn + O(1) and its variance is o3n + O(1) with

1 t—4 22—t—14 93+ 2712 — 76t — 144 0.046754

P =5+ 5 T oms T 93148 o ca(t)
and
5 1 —t24+9t—14  —43 +20t2 + 3t — 54 0.056t*
947 3 ot+d 22+6 93t es(1)
fort>2.

Again, as in the previous section, we calculated the values of the constants g and Ufl
numerically for 2 < ¢ < 30, and they are given in Table in Appendix where
the proof of Theorem is detailed as well.

7.5 The Number of Leaves on the Last Level

For analysing the parameter m(7) counting the number of leaves of maximum depth
(labelled by the variable w in the generating function H(q,u,v,w)), we note that for
fixed |u| < 1, the dominant simple pole gy of H(q,1,1,1) is also the dominant singularity
of H(q,u,1,1) and is still a simple pole. Therefore, m(T") tends to a discrete limiting
distribution, we refer again to the book of Flajolet and Sedgewick [38, Section IX.2].
Note that the number m(T') is always divisible by ¢ by construction.

Theorem 7.5.1. Let qy and Q) be as described in Lemma. Set pm = [u™]b(qo,u,1,1)
form > 1. Then, for a random tree T € T of size n, we have

P(m(T) = mt) = pm + O(Q")

form > 1.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Furthermore, we have

22—t 34+6t2—5t 3t*+32t3 + 6112 — 56t o
E(m(T)) =2t — ot+1 92t+3 - 23t+8 +0 <24t Qn)
and
th —3t2 P4 13t — 3t — 172 6
_ 2
V(m(T)) = 2t — 2t+1 — 22t+3 O<23t + Qn)

The proof can be found in Appendix This theorem (slightly generalised) is a
very useful tool in proving the central limit theorem for the path length in the following
section.

7.6 The Path Length

This section is devoted to the analysis of the path length, as defined in the introduction.
While the external path length is most natural in the setting of Huffman codes, it is more
convenient to work with the total and the internal path length. As it was pointed out
in the introduction, the three are essentially equivalent as they are (deterministically)
related by simple linear equations.

We first use a generating functions approach to determine the asymptotic behaviour
of the mean and variance. Let us define a generating function L, for the r-th moment
of the total path length as follows:

q’u w Z g r n(T)um(T)wh(T)'
TeT

Note that Ly(q,u,w) = H(q,u,1,w) in the notation of the previous sections. We are
specifically interested in Ly and Ls. In analogy to the approach we used to determine a
formula for H(q,u,v,w), we obtain a functional equation for L,(q,u,w) by first intro-
ducing
Ly p(q,u) = [wh]L (¢, u,w) Z o) gDy,
TeT

R(T)=h
Replacing j leaves of depth h by internal vertices, thus creating ¢j new leaves of depth
h + 1, increases the total path length by ¢j(h + 1). Thus we get

Ly na(qu) = Z (h+ 1)m(T)g" ™) 4 Z Z UT) g™ D)+t

TeT TeT j=1
h(T)=h+1 hT)=h

qu
L (Lunla, ) = Lualg aut)

0
= (h+ 1)U%L0,h+1(%u) +
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7.6 The Path Length

Define, for the sake of convenience, the linear operators ®, = ua%, P, = w% and
¢, = qa@q acting on our generating functions. Then we obtain

Utw
Ll(Qa u, w) = (I)uq)wLO(Q7 u, w) + 1—7qut (LI(Q7 17 w) - Ll (Q7 qut7 ’LU)) .

Likewise, one gets a functional equation for La(q,u, w):

utw

LZ(Q? u, 'lU) = zq)uq)le(q’ u, w)_q)iq)i)[/o(qa u, w)+ 1q (LQ(Q7 17 'LU) - L2(Q7 qut7 w)) .

— qut
Both functional equations can be solved by means of iteration in the same way as the
functional equation for the generating function H(q,u,v,w) that we used in previous
sections, see Appendix for details. In order to determine the asymptotic behaviour
of mean and variance, one only needs to find the expansion around the dominating
singularity ¢o and apply singularity analysis. The main term of the mean is easy to
guess: assuming that the vertices are essentially uniformly distributed along the entire
height, it is natural to conjecture that ¢(T") is typically around ¢tn(T)h(T")/2 and thus
of quadratic order. This is indeed true, and the variance turns out to be of cubic order
(terms of degree 4 cancel, as one would expect). The details are rather lengthy and given
in the appendix.

In order to prove convergence to the Gaussian distribution, a different, more proba-
bilistic approach is needed. Standard theorems from analytic combinatorics no longer
apply since the path length grows faster than, for example, the height, so that mean and
variance no longer have linear order.

We number the internal vertices of a random canonical t-ary tree of size n from 1 to
n in a natural top-to-bottom, left-to-right way, starting at the root. Let X}, denote
the depth of the k-th internal vertex in a random tree T' € T of order n. Moreover, set
Yin = Xit1n — X € {0,1}. In words, Yy, is 1 if the (k + 1)-th internal vertex has
greater distance from the root than the k-th, and 0 otherwise. It is clear that the height
can be expressed as

n—1
hT) =1+ m]?xkan =1+ Xyn=1+ ;Ym,

which would indeed be an alternative approach to the central limit theorem for the
height. More importantly, though, the internal path length can also be expressed in
terms of the random variables Y}, ,,:

n n k—1 n—1
batona) = 3 X0 = 303 Vi = S0 = i
k=1 k=1 j=1 j=1
Now
n—1
n—7

n- ! ginternal (T) -
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

can be seen as a sum of n—1 bounded random variables Z;,, = n—;JYJn An advantage of
this decomposition over other possible decompositions (e.g., by counting the number of
vertices at different depths) is that the number of variables is not random. The Z;,, are
neither identically distributed (which is not a major issue) nor independent. Fortunately,
however, they are almost independent in that they satisfy a so-called “strong mixing con-
dition”. Let F,, be the o-algebra induced by the random variables Z1 ,, Zon, ..., Zs, n,
and let G,, be the o-algebra induced by the random variables Z, , Zsy+1,n,- - - Zn—1n-
There exist constants x and A such that

IP(AN B) — P(A)P(B)| < ke Ms2751) (7.6.1)

for all 1 < 51 < s9 < n and all events A € F,, and B € G5,. The main idea is simple:
events A € F;, describe the shape of the random tree 7" up to the s;-th internal vertex,
while events B € G, describe the shape of the random tree T' from the so-th internal
vertex on. The probabilities of such events can be calculated by means of the generating
function approach explained in Section and the exponential error terms that one
obtains through this approach (as in Theorem yield the estimate above. A
more detailed explanation can be found in the appendix once again.

Once the stated mixing condition has been proven, one can apply general central limit
theorems for sums of random variables with strong mixing conditions, here specifically
a result of Sunklodas [99, Theorem 1]. Putting everything together, we get

Theorem 7.6.1. The total path length (as well as the internal and external path lengths)
18 asymptotically normal distributed. Its mean is asymptotically utpan + O(n) and its
variance is asymptotically a?pln?’ + O(n?) with

ot ot 22t 234312 -8t | 9tt 4 4563 + 242 — 88¢ o ¢t
Fapl = SH = 3+ g T e 23149 b
and
o 2 53427 —atd + 4t 4 13 4 1442 6
Tipl = 15 T T3 gid 3. 9216 0 93t
fort > 2.

7.7 The Width

In this final section, we consider the width w(7'), the maximum number of leaves on the
same level, for which we have the following theorem:

Theorem 7.7.1. For a random T € T of size n, we have
E(w(T)) = pywlogn + O(loglogn),

where [, 18 given by

S S — A R .
'uw_—(t—l)logqo_tlog@) 21og(2) | t3log(2) ' t*log(2) | tolog(2) | 6 °
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7.8 Supplement to Section “The Generating Function”

Haw b P b pw

1.7107... ]| 910.1804... || 16 | 0.0961...
0.7660... || 10 | 0.1603... || 17| 0.0901...
0.4936... (| 11| 0.1442... || 18| 0.0848. ...
0.3650... (| 12 | 0.1311... || 19| 0.0801...
0.2902... || 13| 0.1202... || 20 | 0.0759...
0.2411... {14 | 0.1109... || 21| 0.0721 ...
0.2063... || 15 ] 0.1030... || 22 | 0.0686. ..

00 ~J O U i W N+

Table 7.7.1: Values of u,, for 2 <t < 22.

fort > 23. For 2 <t <22, the values of , are given in Table|7.7.1].
Furthermore, we have the concentration property

1
P T) — ty L > w log 1 = . 7.1
(0(T) = pt log ] > 3p1 log log ) 0<1ogn> (7.7.1)

Once again, we only sketch the idea of the proof here, details can be found in Ap-
pendix
We consider the trees with width bounded by K. The corresponding generating func-
tion Wk (q) = > (Te)T ¢" D) can be constructed by a suitable transfer matrix, and we
w(T)<K

quantify the obvious convergence of Wik (q) to H(q,1,1,1). The dominant singularity qx
of Wk (q) is estimated by truncating the infinite positive eigenvector of an infinite trans-
fer matrix corresponding to H(g,1,1,1) and applying methods from Perron-Frobenius
theory. Then the probability P(w(T) < K) can be extracted from Wg(q) using singu-
larity analysis. Our key estimate states that the singularity gx converges exponentially
to qo, from which the main term of the expectation as well as the concentration property
are obtained quite easily. A more precise result on the distribution of the width would
depend on a better understanding of the behaviour of g as K — oo, which seems to be
quite complicated.

7.8 Supplement to Section [7.2], “The Generating Function”
Proof of Theorem [7.2.1 As it was already mentioned in Section we first consider

Hy(q,u,v) == [w'H (g u,v,w) = Y q"DumTydd)
TeT
W(T)=h
for some h > 0.
A tree T of height h + 1 arises from a tree T of height h by replacing j of its m(T)
leaves on the last level by internal vertices with ¢ succeeding leaves respectively, where
1 <j<m(T). If j = m(T), then all old leaves become internal vertices, so that
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

d(T") = d(T); otherwise, at least one of them becomes a new leaf, meaning that we have
a new level that contains one or more leaves, hence d(7") = d(T) + 1. For the generating
function, this translates to the following functional equation:

Hp1(q, u,v) Z ( Z q" +jujtvd(T)+1+qn(T)+m(T)um(T)tvd(T)>

TeT j=1
h(T)=h
(o t\m(T) (7.8.1)
= > ¢ (qutvl e +<1—v><qut>m<T>)
TeT —qu
h(T)=h

where we set
qutv 1—v—qut

r(q7 u7 v) = 8(Q7 u7 /U) =

1 — qut’ 1 — qut

Note that the initial value is given by Hoy(q, u,v) = uv. Now set
Dy = {(Q7U7U7/w) € (D4 | ‘Q| < 1/57 ’U| < 17 "U - 1| < 1/57 ’U)| < 1}

We note that if (¢, u,v,w) € Dy, we have

—

<2 <=
<15 Blewol<s
This and (7.8.1)) imply that |H},(q,u,v)| < (4/5)" holds for h > 0 and (q,u,v,w) € D.
This implies that H (g, u,v,w) = >, < Hn(q, u, v)w" converges uniformly for (g, u, v, w) €
Dy. -
Multiplying (7.8.1)) by w"*! and summing over all 2 > 0 yields the functional equation

|7 (q, u,v)

H(q,u,v,w) = uv + wr(q,u,v)H(q,1,v,w) +ws(q,u,v)H(q, qu’,v,w). (7.8.2)
We iterate this functional equation and obtain
H(Q> u, v, ’LU) = ak’(Qv u, v, w) + bk((L u, v, w)H(Q? 17 v, w)
+ c(g,u, v, w) H (g, ¥ ™ v w) - (7.8.3)

for k > 0 with

7j—1
ar(q, u,v,w) = quMut w’ Hs q, qmut v),
7=0 =0
k j—1
bi(q, u, v, w) Zr q, ¢y i w”le q, qmut v),
7=0 =0
k .
er(qu,v,w) = whtt H s(q, gt v).
i=0
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7.9 Supplement to Section “The Height”
Let now
D = {(¢,u,v,w) € C* | |g| < |ul'"", |w| - |1 — o] < 1}.

For (q,u,v,w) € D, we have limy_, q[[k]]utlc = 0 and limy_, o ws(q, q[[k]]utk,v) = |w|-|v—
1] < 1 and the limits

g ,
a<q7 u,v, ’U)) = kli)m ak(qu u, v, U)) =0 Z qﬂ]]]ut] 'LU] H S(qv qﬂl]]utl7 ’U),
o =0 i=0
%) ' , ' j—1 ' ,
b(q v, w) = lim by(q,u,0,w) =Y r(g,q"u” v)w ™ [ s(g, ¢, v)
=0 i=0

exist. As limy_, oo ck(q, u,v,w) = 0 for these (q,u,v,w) € D, the limit of (7.8.3)) for
k — oo is
H(q,u,v,w) = alq,u,v,w) + b(q,u,v,w)H(q,1,v,w). (7.8.4)

Setting u = 1 in ([7.8.4)) yields (7.2.1)). O

We also state a simplified expression and a functional equation for b(q, u,v,w) in the
case v =1, w=1:

Lemma 7.8.1. We have

o0

J [a], ¢ ¢
j— e qu
b(q,u, L, 1) = Z(_l)] ! H 1 qmuti = 1— qut(l - b(‘]a quta 1, 1))
i=1

j=1
In particular, the coefficient [u/]b(q,u,1,1) vanishes if j is not a multiple of t.

Proof of Lemma[7.8.1. This is an immediate consequence of (7.2.2)). O

7.9 Supplement to Section [7.3], “The Height”

This section is, as the title reveals, a supplement to our discussion of the height. It
contains numerically calculated values for the constants of Theorem and the proof
of this theorem. We start with the latter. Note that a brief sketch of the proof was
already given in Section [7.3

Proof of Theorem [7.3.1. Throughout this proof the notations of Section are used.
Further, we make use of Theorem IX.9 of Flajolet and Sedgewick [38] and apply that
theorem to the function H(q, 1,1, w).

Recall the notation D(q,w) as the denominator of H(q,1,1,w) and let gy be the zero

of D(q,1) according to Lemma Set
oiti

1] = : -D 3
Cij aqzawj (q U))

q=qo,w=1
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Then the expectation of h(7T) is asymptotically normally distributed and we can obtain

the mean ppn + O(1) with
co1

b
€10490

and the variance to oin + O(1) with

o2 — 001020(10 + 001010610 -2 601610011% + 002010% + 001010
h=

C10q0

To calculate the coeflicients c¢;; we need derivatives of D(q,w). In order to avoid
working with infinite sums, we use the approximations

kool
q
Dk (q,w) == g (—1)kwk | I 0T
=1

0<k<K

Lemma shows that the error made by using those approximations is small. For the
calculations themselves, Sage [98] was used. O

Lemma 7.9.1. Leti € {0,1,2} and j € Ny, and let ¢ € C with 1/2 < |q| < 1/r3, where
rg =1+ 10%2 — 710g2_10g22. Then
1
o(3)
w=1 2

2¢2
Proof. The result was shown for i € {0,1} and j = 0 in [35]. Here we follow the proof of
Lemma 9 of that article. We first note that it is sufficient to show the result for j = 0,
since that derivative results in a polynomial in k, which is asymptotically smaller than
the factor t* which appears.
Now set

giti
OqtOwI

(D(Q) w) - D4(q7 w))

U1

filq) ==

We obtain

2 (s = o (3L
O \ ;= i o R

for its first derivative and

pe k 1k k L] 2 k L]
87]2 ]l_Ilf] 721;[ <Zl—jq[[ﬂ]> _Zl—q[[J]] Z ’

Jj=1

q[[J]]

q[[]]

for its second. As in [35], we can find the bounds

k

t
H (1/2) 2 THi(k—1)/2+ (k—3)2
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and
k

[s]

Therefore, we also deduce that

This yields the bound

ai—i—j 2 &
’aqiawj (D@w) = Dilgw)| | < 2P Z T (204Kt + 4kt
Z k‘2t2k+1 0
— k—3)t2+(k—1)t/2—
2( +(k=1)t/ k:42

for some positive constant c¢. Since the last sum in the previous inequality is 0(2*t2),
the result follows. O

The end of this section contains the following: For ¢ < 30 we calculated the constants
of Theorem numerically. The computer algebra software Sage [98] was used for
this purpose. The results can be found in Table [7.9.1

7.10 Supplement to Section [7.4], “The Number of Distinct
Depths of Leaves”

Similar to the previous supplementary section, this section contains explicitly calculated
values for the constants of Theorem and a detailed proof of this theorem, following
the proof sketch that was given in Section We start with the latter. The ideas used
are very similar to the ones in the analysis of the height.

Proof of Theorem[7.4.1 Throughout this proof the notations of Section are used.
Again, as with the heights, we make use of Theorem IX.9 of Flajolet and Sedgewick [38]
and apply that theorem to the function H(q,1,v,1).

Again, we use the notation D(q,v) for the denominator of H(q,1,v,1) and let gg be
the zero of D(g, 1) according to Lemma [7.2.2 We expand D(q,v) around (go, 1) and can
then calculate the main term of mean and variance from the coefficients of that series.
The required formulas can be found in the proof of Theorem in Appendix

Again, to calculate the coefficients we need derivatives of D(gq,v) and we use the
approximations

1_v_q[[J]]
Dilgv):=1= > 5 MH il

1§k<K
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Hh

2
Ih

—_ =
DS © 010 otk Wi

W NN DNDNDNDNDNDDNDNDDNRFE P = = ===
O O 00O Uik WO OOWwNNO Ok W

0.5662757699172865
0.5330981433252730
0.5216132420088969
0.5137644953351326
0.5084950082063058
0.5051047365215813
0.5030001253275541
0.5017308605343554
0.5009832278618641
0.500551313637743

0.5003057656286383
0.5001680187030247
0.5000916023570357
0.5000496052425100
0.5000267068978588
0.5000143062444377
0.5000076297101404
0.5000040532034994
0.5000021457914275
0.5000011324949086
0.500000596048271

0.5000003129248821
0.5000001639129082
0.500000085681714

0.5000000447034934
0.5000000232830670
0.5000000121071942
0.500000006286428

0.5000000032596291

0.2665499010273937
0.2636253024859229
0.2465916388296734
0.2404182925457133
0.2396633993739495
0.2411570855092153
0.2432575483836213
0.2452173961787763
0.2467757623911674
0.2479077234990245
0.2486821135530906
0.2491894707701658
0.2495111461587043
0.2497099052572736
0.2498301915991255
0.2499017551259219
0.2499437283128117
0.2499680504612380
0.2499819989727347
0.2499899266916567
0.2499943971277963
0.2499969005482699
0.2499982938141369
0.2499990649513116
0.2499994896349970
0.2499997224658077
0.2499998495913860
0.2499999187421003
0.2499999562278376

Table 7.9.1: Numerical values of the constants in mean and variance of the height for
small values of ¢, cf. Theorem It would be possible to calculate the
values with even higher accuracy.
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7.11 Supplement to Section “The Number of Leaves on the Last Level”

Lemma [7.10.1] shows that the error in this approximation is small. Again, for the calcu-
lations themselves, Sage [98] was used. O

Lemma 7.10.1. Let i,5 € {0,1,2}, and let ¢ € C with 1/2 < |q| < 1/rs, where
rg =1+ 10%2 _ log2-log?2 oy,
1
o(2)
v=1 2

212
iti
Proof. The proof is similar to the proof of Lemma [7.9.1 O

6qiavj (D(Q)v) - D4(Q)U)>

The end of this section contains numerically calculated values for the constants of
Theorem We used the computer algebra software Sage [98], and the results can
be found in Table [.10.1

7.11 Supplement to Section [7.5, “The Number of Leaves on
the Last Level”

Proof of Theorem|[7.5.1] Let g1 = 1 — %. Then singularity analysis shows that the
probability generating function p,(u) of m(7T) is given by

pn(u) = b(qo,u,1,1) + O(Q"),

uniformly for |u| < 1.

The limiting distribution follows from [38, Theorem IX.2]. Expectation and variance
follow upon differentiating b(qo, u, 1,1) with respect to v and inserting the asymptotic
expression for qg. O

7.12 Supplement to Section 7.6, “The Path Length”

Here we provide some more details of our analysis of the total (internal, external) path
length, starting with the generating functions. Recall that we defined the generating
function L, (g, u,w) for the r-th moment of the total path length:

q’u w Z f 7‘ n(T m(T)wh(T)'
TeT

In particular, Ly(q, u,w) is the ordinary generating function for all trees, where u marks
the number of leaves on the highest level and w the height. From the recursive charac-
terisation of canonical trees, we got the identity

t

u
ut (LO(qa 1, w) - LO(Qa quta 'IU)) )

L(](Q,U,’UJ) =u+ 1—

from which we obtained, by means of iteration, an explicit formula for Ly, namely

LO(Q? u, ’UJ) = aU(Qa u, ’lU) + b(Qa u, w)LO(Qa 1a w)

127



7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Hd

2
94

—_ =
DS © 010 otk Wi

W NN DNDNDNDNDNDDNDNDDNRFE P = = ===
O O 00O Uik WO OOWwNNO Ok W

0.4042366935349558
0.4868358747318154
0.5024585834463688
0.5050331954313614
0.5043408269340329
0.5030838633817897
0.5020050053196333
0.5012375070905983
0.5007377066674932
0.5004288693844008
0.5002446296853791
0.5001374740872935
0.5000763363460676
0.5000419739265400
0.5000228916911940
0.500012398761189

0.500006676000353

0.5000035763570187
0.5000019073704041
0.5000010132849795
0.5000005364434586
0.500000283122517

0.5000001490117357
0.500000078231130

0.5000000409782024
0.5000000214204217
0.5000000111758715
0.5000000058207663
0.5000000030267984

0.2491723144610512
0.2900504810033636
0.2741245386044700
0.2607084552774208
0.2530808413030350
0.2495578056054625
0.2483362931739360
0.2482103208441572
0.2485046286268309
0.2488904008073738
0.2492332759318571
0.2494951950687874
0.2496791536316180
0.2498015045792620
0.2498797960254888
0.2499284618053178
0.2499580344990146
0.2499756801559131
0.2499860521721408
0.2499920724820041
0.2499955296224207
0.2499974965964656
0.2499986067389993
0.2499992288642147
0.2499995753167091
0.2499997671693008
0.2499998728744530
0.2499999308492945
0.2499999625142652

Table 7.10.1: Values of the constants in mean and variance of the number of distinct
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It would be



7.12 Supplement to Section “The Path Length”

and in particular,

aO(qv 17'1,0)
L 1 =
O(Q7 7w) 1—b(q,1,w)’
where
S J J [[J]] t7 un
0(q: u, w) ZO w H — Iyt
J:
and
oo . J qmu
J J
b(q,u,w) z; w H q[[lﬂu“'
]:

Likewise, the functional equations one obtains for L; and Lo can be solved by means of
iteration: one has

t

Ll(q7 u, 'IU) = q)u(I)’wLO(Q7 u, w) + —

1— qut (Ll(q7 1,'11)) - Ll(Q7qut7w)) y

and thus
Ll(Qa u, w) = al(q7 u, 'LU) + b<q7 u, w)Ll (q7 17 ’LU),

and in particular

al(Q? 17 U))
L 1 =
1((]; ,’U}) 1 — b(q,l,w)
with
N i,,# d gl
] ] J
]_O =1
Finally,

u
L2(Q7 u, U)) = 2(I)uq)wL1(Qa u, w)_q)zq)zzuLO(Qa u, QU)—i— ut (LQ(qv 1, ’U)) - L2(Q7 qut7 w)) )

1—

and thus
L2(q7 u, ’LU) = (12((], u, w) + b(Qa u, w)LZ(qa 17 ’(U),

and in particular

a2(Q711w)
L 1 = " ' 7
2(q’ 7w) I b(Q? 1aw)
with
2(q, u,w) Oog ( (P, Py L1)(q, gl w) — (9282 Lo)(q gl w)) |J| 7q[[i]]uti
) = 1 u*w0/\4, ) il 1 q[[’ﬂutl .
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Substituting back, we get an explicit expression for L;(q, 1, w):

o0

- ao(q,l U)) q717w ] ] [[J]]
Ll(Qalﬁw)_ (1—b(q,1 U) ]z:% Hl— [[Z]] ( 7w)

aolg, Lw) o~y a Il
" (1—5(%1,@0))2 Z( 1w E 1_q[[i]] (PuPuwb)(g, ¢, w)

Jj=0

i (Pwao)(g, 1, w) i(—l)jwjﬁqm(@ b)(q, ¢V, w)
(1 _ b(q’ 1’ ’UJ))2 = Py 1— q[[’b]] u ) )

1 S L .
—— ) (D || — 51

The dominant term in this sum is the first one, with a triple pole at the dominant
singularity qo. The second and third term, however, are also relevant in the calculation
of the variance, where one further term in the asymptotic expansion is needed in view
of the inevitable cancellation in the main term. Singularity analysis immediately yields
the asymptotic behaviour of the mean: since the pole is of cubic order, the order of the
mean is quadratic, i.e., it is asymptotically equal to ,utpmg, where the constant jiz,; is
given by

@), S, LI o B
H T 2 @b) (0, 1,1)2 ;( H(@ub)e0, 57 1) ZH@—q“

Plugging in the definition of b as a sum, it is possible to simplify this further: one has

q[[h]] Uth k th

0 k
(®ub)(g,u 1) =Y (-1 11:[1 qﬂhﬂuthz_:l—q[hﬂuth

k=1

by logarithmic differentiation and thus

%0 G 13 R0 ) [
Ll 1) — L q
(®ub)(g, %", 1) H q[[h]]+th[[]] Z qﬂh]]th” [4]
k:l
i =
— (_1)k71 -
k=1 i1 LT gl =1 - q[[hﬂ]]

since [h] + t"[j] = [k + j] by definition. Plugging in, we find

o) S5 ]
Htpl = 2( 2 Z Z(_ J H [[z]] [h+s] "
ab §=0 k=1 =1 1— h=11—4qo
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7.12 Supplement to Section “The Path Length”

Substituting £ = j + k and interchanging the order of summation, we arrive at

o ¢ Wtk h
((I)wb) (QO7 17 1) /—1 0] l
= (-1) T D) PR .
" 30,0, LIE 2 i:llqg%%;l %“““
[e's) /
(q)wb) (QO7 17 1) /—1 qO
_ 1)
T NI | B I
o ¢ [t
(Pwb)(q0,1,1) -1 9 t[r]
= (-1
SOTITRRTP DU | P Drpc

Noting now that

which can be seen by another logarithmic differentiation, we can replace the sum in the
expression for pu, above by ¢ - (®4b)(go,1,1), which finally yields

(Pwb)(g0,1,1)

t
Hrt =5 @) (@0, 1,1)

and the fraction is precisely up since the generating function of the mean height is

aO(Qa L, 1)((I)wb)(qv 1, 1) + ((I)waO)((L 1, 1)
(1-0(q,1,1))2 1-0(q,1,1) °

of which the first term dominates (yet another application of singularity analysis). This
means that we have proven the identity piy, = tup/2.

For the variance, one also needs the asymptotic behaviour of La(g, 1, 1) at the dominant
singularity. Only the terms of pole order 4 and 5 (i.e., highest and second-highest) are
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes
needed: they are
2
6a0(q,171)(¢wb)(Q7171)2 = J J [51

4040(%171)((1)71)(7)(‘]7171)2 . J q
S ey P S I |

<[[j+1]]((1> b)(q, ¢, 1) +Z tM (®ub)( M,1)>

j=0 i=1
8ao(¢,1,1)(Pub) (0,1, 1) o=, 1y ' DI VIR [*]
Py 2 gm0 T (et )
4 } )
6(Pwa0)(¢,1,1)(Pub) (@, 1,1) (=, v s1p " .
* (1—b(g,1,1))* ;0( 1)’w El—q”i” (Pub)(g,q7",1)

2a0(g,1,1)(Puwb)(q,1,1)* [ < ity ; 2
= (1—b(q,1,1))* (Z(_l) w gl_q[m](@ub)(q,qw,l)>

o - . ,
2a0(g,1,1)(®wb)(g,1,1) y o gl L] K q! %]
P gLy 2O T m @ e d 0 > O] 1 gy (#u) a1

Jj=0 i=1 1 et
2a0(q71’1)(© b Q7171 2 - J d qﬂ]] [51
(1-=0b(g,1,1))* ]z: }:[1 1— gl (@3b)(g, 4", 1)

Applying singularity analysis to the highest- and second-highest order terms of both L;
and Ly yields the variance: the terms of order n* cancel (as one would expect), and one
finds that the variance is asymptotically a?pln3, where

52— Fla0)’(®3b)(90,1,1)  F(go)(®qF)(q0)
= (@) (a0, 1, 1) (®4b)(q0, 1,1)*
[:1

7 (@20)(q0, a8, 1)

tir
% ([[J +1](®5b) (g0, a8, 1) +Z 1 _[[ ]][[r]] b) (0. a8, 1))

+MZH>%H q°q DD BN | PR CRDICR)

3(¢‘qb)(q0, 17 1)3 =0 i=1 1-— 0 k=0 i=1 1- 0
. 2

(@ub) (g0, 1, 1)? [ L qg’“ 1l
—+ —1 Db q07q 1

3(<I>qb)(qo, 17 1)3 ;( ) el 1_ O ( )( )

- ; ; oo k Il

(®2b)(q0, 1, 1) T 1 ! % [%]
4 WA T —1)? o0 q07qj 1 1)k q)b) qo,qo 51

3(®.) (g0, 1, 1)? j;)( ) gl—qo (®ub)(q0, 4 );( ) }_[11 A 7 (®ub) (90,405 1)

and the function F'(q) is given by

0 J gl .
F(q) = (Pub)(q,1,1) z;) Hl o) (®ub) (g, g1, 1).
Jj= 1=

We determined numerical values of these constants as in the previous sections, they are
given in Table

132



7.12 Supplement to Section “The Path Length”

2

t Hipl i

2 | 0.5746406730225036 | 0.636553899565319
3 1 0.7996893802701904 | 0.9538514746097371
4 11.043226570739454 | 1.424940599745666
5 | 1.284411238386164 | 2.078739994014109
6 | 1.525485024618925 | 2.926628748193911
7 | 1.767866577825535 | 3.972171302166417
8 | 2.012000501310217 | 5.210807673614956
9 | 2.257788872404600 | 6.634216448921346
10 | 2.504916139309320 | 8.23405080979501
11 | 2.753032225007583 | 10.00388584911538
12 | 3.001834593771830 | 11.93967669304990
13 | 3.251092121569661 | 14.03939441023803
14 | 3.500641216499250 | 16.30239232264572
15 | 3.750372039318825 | 18.72881526046276
16 | 4.000213655182871 | 21.31916858572890
17 | 4.250121603077721 | 24.07405283275217
18 | 4.500068667391264 | 26.99402565883372
19 | 4.750038505433244 | 30.07954611947160
20 | 5.000021457914275 | 33.33096498586472
21 1 5.250011891196540 | 36.74853674754146
22 | 5.500006556530974 | 40.33243901952973
23 | 5.750003598636143 | 44.08279205182939
24 | 6.000001966954898 | 47.99967527333957
25 | 6.250001071021418 | 52.08314008372820
26 | 6.500000581145415 | 56.33321917051825
27 | 6.750000314321405 | 60.74993301181408
28 | 7.000000169500719 | 65.33329426993452
29 | 7.250000091153200 | 70.08331068457584
30 | 7.500000048894436 | 74.99998693820047

Table 7.12.1: Values of the constants in mean and variance of the total path length ¢,
cf. Theorem It would be possible to calculate the values with even
higher accuracy.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Finally, let us describe in some more detail how the central limit theorem is obtained.
Recall that X}, ,, is the (random) depth of the k-th vertex, and that Yy ,, = Xp11.n—Xp 1.
The internal path length is given by

1

n

Einternal(T) = (n - j)ij,n’
j=1
and thus
n—1 n— ,]
n_lginternal (T) = Z Ty},n
j=1
Setting Z; , = %Y}n, we obtain a decomposition for the random variable n ™ s emar (T):
n—1
n_lfinternal(T) = Z Zjmn
j=1

The point behind this rescaling is that the Z;, are bounded now, so that they have
bounded third absolute moments (and generally bounded moments of any order), which
is one of the conditions to make Theorem 1 of Sunklodas [99] applicable. Another
condition is that the variance of the sum grows at least linearly, which is satisfied in
view of our considerations above (the variance of ¢(T") is of cubic order, so the variance
of the rescaled random variable is still of linear order). In Sunklodas’ paper, the variables
are also assumed to have expectance 0, which we could of course achieve by subtracting
the mean from each Zj,,.

The main criterion is the strong mixing inequality that was already mentioned in
Section Let two events A € F,, in the o-algebra generated by Zi,,...,Zs, » and
B € G, in the o-algebra generated by Zs, », Zso41m,---,Zn—1,n be given. The event A
consists of a collection of possible shapes of the random tree 1" up to the si-th vertex
vs, , and likewise B consists of a collection of possible shapes of the random tree 7" from
the s9-th vertex vs, onwards.

Let Hp be the number of vertices with label > s; on the same level as v, and let H;
be the number of vertices on the following level. For any possible shape that is allowed
in the event A, there is only a limited number of possibilities for Hy and H;. Likewise,
we define K to be the number of vertices on the same level as vs,, but with lower label,
and K the number of vertices on the previous level. The part between the levels of v,
and vg, (excluding the levels on which these two vertices are located) can be regarded
as a canonical forest, which is defined like a canonical tree, but with H; different roots
and K different leaves on the last level.

It is not complicated to modify our generating functions approach that we used to
obtain Theorem to the case of several roots. Let the generating function for this
purpose be Hp(q,u), where h is the number of roots, ¢ marks the size and « the number
of leaves on the last level. Then it follows that

an(g,1)b(g, u)

Hh(Q7u> - ah(Qau) + 1_ b(q 1) s
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7.12 Supplement to Section “The Path Length”

where

> R M ) I 8
an(g, u) :Z(—l)]qhﬂjﬂuhtjn _—

=0 i 1 aliu”
.- 1)7-1 ! QMU

b<q7 u) Z H 1 _ ql[l}]utl :
J=1

The number of canonical t-ary forests with A roots, k leaves on the last level and r internal
vertices is [¢"u*]H}, (g, u). Singularity analysis yields a distributional result analogous to
Theorem [7.5.1] with an error term that is even uniform in A (note that as (g, ) is bounded
as a function of h in the relevant region!), but unfortunately not in k: one has

lq"u™" | Hp(q, u)
la"] Hn(q. 1)

where py, is defined as in Theorem [7.5.1] and 0 < Q1,Q2 < 1. However, p,, decreases
exponentially in m as well, which we can use to our advantage: it is also true that

"™ Hyg,u) _
[ ]Hh(Q7 )

0(Q3")

for some real number 0 < @3 < 1.

Note that [¢"u*]H} (g, u) gives the number of ways to fill a “gap” of r vertices, starting
with h roots and ending with k leaves. This can be applied to the part of our tree T
between the vertices vs, and vs,, the part between the root v; and v, (where we just set
h =1) as well as the part from vy, to v, (where we can sum over all k, which amounts
to taking [¢"|Hp(q,1)).

The estimate above implies the following: the event that K7, the number of vertices
on the level before vy, , is greater than Mt, has probability O(Qg(srsl)) it M =0d(s2—s1)
for some suitably chosen §. Conditioned on the event that this is not the case, however,
the difference of the probability of A N B and the product of the probabilities of A and
B is small:

P(ANB|K) < Mt) = P(A[Ky < Mt)P(B|K) < Mt)<1 +O(Q " - 81))_
Combining the two, we arrive at
—0(s2—s So—S O(s2—s
P(ANB) ~P(AP(B)| = 0(@ " @y + Q5 ),

and if § is chosen sufficiently small, but fixed, then both terms decrease exponentially in
$o — 81, proving the strong mixing condition and thus the central limit theorem.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

7.13 Supplement to Section [7.7], “The Width”

This appendix is devoted to the proof of Theorem
Apart from the width w(T'), we also need the “inner width” w*(T') defined to be

(T := Lp(k
)= o 2y P )

for a recursive construction, where Ly (k) denotes the number of leaves at level k. By
definition, the inner width w*(T") does not take the leaves on the last level into account.
For K > 0, we are interested in the generating function

Wk (q) = Z g,

TeT
w(T)<K
We represent Wi (q) in terms of the generating functions

Wirm 3 o™

TeT
w(T)<K
m(T)=tr

for » > 0 such that

Wi(g) =1+ Y W,

Here, the summand 1 corresponds to the tree of order 1. For all other trees, the number
m(T) of leaves on the last level is clearly a multiple of ¢.

In order to compute Wi, recursively, we will do so for 1 <r < N(K) with N(K) :=
[K/(t —1)] — 1. Thus we consider the column vector

WK(q) = (WKJ(Q)a s 7WK,N(K))T‘

We consider the “transfer matrix”

where the Iversonian notation

1 if expr is true,
[expr] = : .
0 if expr is false

popularised by Graham, Knuth and Patashnik [45] has been used.
We now express Wk (q) in terms of Mg/(q):

'Keep in mind that we also use square brackets for extracting coefficients: [¢"]Q(q) gives the nth
coefficient of the power series Q.
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7.13 Supplement to Section “The Width”

Lemma 7.13.1. For K > t, we have

q

Wielo) = (1= M) | - | (.13.1)

0
Proof. As in the proof of Theorem a tree T" of height h + 1 > 2, inner width at
most K and m(T") = rt arises from a tree T of height h, inner width at most K and
m(T') = st by replacing r of the st leaves of T' on the last level by inner vertices with ¢
succeeding leaves each. We obviously have r < st. In order to ensure that w*(7") < K,
we have to ensure that st —r < K. We rewrite these two inequalities as
g IHE (7.13.2)
t t
If we have r < N(K), we have r < K/(t — 1) and therefore s < K/(t — 1) by (7.13.2),
i.e., s < N(K). This justifies our choice of N (k). This construction yields s new inner
vertices in 7.
There is only one tree 7" of height < 2, inner width at most K and m(T") = rt, namely
the star of order ¢ + 1 for 7 = 1 which has one internal vertex (the root).
Translating these considerations into the language of generating functions yields

N(k) K
r r
Wir(g) =qlr=1+>_ ¢ [t <s< } Wi.s(q).
s=1
Rewriting this in vectorial form yields ([7.13.1)). O

In order to get asymptotic expressions for the coefficients of W g, we have to find the
singularities of (I — Mg (q))~! as a meromorphic function in g. A value q is a singularity
of (I — Mg(q))~! if and only if it is a zero of the determinant det(I — Mx(q)), which
holds if and only if 1 is an eigenvalue of Mg(q). In the next lemma, we collect a few
results connecting Mg (q) with Perron—Frobenius theory.

Lemma 7.13.2. Let K >t and ¢ > 0. Then
1. the matriz Mg (q) is a non-negative, irreducible, primitive matrix;

2. the function ¢ — Amax(MK(q)) mapping q to the spectral radius of My (q) is a
strictly increasing function from (0,00) to (0, 00);

3. if Mg(q)x < x or Mi(q)x > = holds componentwise for some positive vector x,
then Amax(MK(q)) < 1 or Amax(MK(q)) > 1, respectively.

Proof. 1. The matrix Mk(q) is non-negative by definition. We note that § <r —1
holds for all » > 2 and r + 1 < # holds for all » < N(K). This implies that
all subdiagonal, diagonal and superdiagonal elements of Mg (q) are positive. Thus
Mg (q) is irreducible. As all diagonal elements are positive, it is also primitive.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

2. By Perron—Frobenius theory, the spectral radius is the largest eigenvalue. For
E > 1, set ap(q) = (1,...,1)Mg(¢)*(1,...,1)T and assume that q; < ¢o. As
ax(q) is ¢*NE) times a polynomial in ¢ with positive integer coefficients, we have
ar(q2) > (q2/q1)*NFay(qr). This implies that limy_o ax(g2)/ax(q1) = +00.

On the other hand, ag(q;) ~ ¢jAmax(Mr (g;))* for j € {1,2} and suitable positive
constants cq, co. As

+o00 = lim
k—o0 G,

ar(@) . e <Amax<MK<q2>>>>‘“
Amax(Mg (a1))))

( ) k—oo C1
we conclude that Apax (Mg (g2)) > Amax(Mk(q1))-

3. Assume that Mg (g)z < x for some positive x. Iterating this equation and multi-
plying with z” from the left yields

2T My (¢)*z < 2T zz

for all k > 1. As 27 Mg (¢)* 2 ~ cAmax(Mg(q))* for some positive constant ¢ and
k — oo, we conclude that Apax (Mg (q)) < 1.

The same argument can be used for the case My (q)x > x, too.

We consider the infinite matrix

et = ([ =)

1<s

and the infinite determinant det(I — My (q)) which is defined to be the limit of the

principal minors det([r = s] — ¢" [# < s])1<;<ny when N tends to oo, cf. Eaves [33]. For
1<s<N
|g| < 1, this infinite determinant converges by Eaves’ sufficient condition.
We now show that the infinite determinant is indeed the denominator of the generating

function H(q,1,1,1).
Lemma 7.13.3. We have
det(l — M(q)) =1—0b(¢,1,1,1)

where b(q,u,1,1) is given in Lemma|7.8.1|.

Proof. When expanding the infinite determinant, we take the 1 on the diagonal in almost
all rows and some other entry in rows a; < as < - -+ < ag for some k. These other entries
have to come from —M(q). Extracting the sign for these rows, we get

det(I — Mu(q)) = > _(—1)F > det(q¢*[ai < taj))i<ij<k

k>0 1<ai1<az<--<ag
=Y (D Y g det((o; < tag)i<igi-
k>0 1<ai<az<--<ag
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We trivially have a; < ta; for j > i, so all entries above and on the diagonal of ([a; <
taj])i<ij<k are 1. If as < taq, the first and the second row of ([a; < taj])i<ij<k are
identical, so the determinant vanishes. Therefore, we only have to consider summands
with ag > ta;. In this case, we clearly have a; > tay for all ¢ > 2, i.e., the first column of
([a; < taj])1<ij<k is (1,0,...,0)T. Repeating this argument, we see that only summands
with aj41 > ta; for 1 < j < k contribute to the determinant. In this case, the matrix
(la; < taj])i<ij<k equals ([j > i])1<i j<k and has determinant 1.
We therefore obtained the representation

det(I — Mao(q)) = 3 (1) 30 gutton,

k>0 ai,...,a
Vjiaj11>ta;

With the change of variables a1 =: by and aj;1 — ta; =: by_; for 1 < j < k, we obtain

det(I — Mx(q)) = Z(_l)k Z PANESEAL

E>0 bi,...,bp>1
k
=S T @) =1 - g, 1,1,1),
£>0 j=1 b;>1

O

If K tends to infinity, we do expect Wik (q) to tend to H(q,1,1,1), as the restriction
on the width becomes meaningless. We will need a slightly stronger result: we also
need convergence of the numerator and the denominator of Wi (q) given by
and Cramer’s rule to the numerator a(g,1,1,1) and the denominator 1 — b(q,1,1,1) of
H(q,1,1,1), respectively. We prove this in two steps: first, we prove that the numer-
ator and the denominator of W (q) given by and Cramer’s rule tend to the

corresponding infinite determinants.

Lemma 7.13.4. For |q| < 1, we have
det(I — Mk (q)) = det(I — Muo(q)) + O(¢"/®").

The same conclusion holds when the s-th column of both I — My (q) and I — My (q) are
replaced by the vector (q,0, .. .)T with K —1 and infinitely many zeroes, respectively. The
estimate still holds for derivatives with respect to q.

Proof. The infinite determinant det(I — My, (q)) consists of summands
+ H q"®) = £g2ses(s)
seS

where 7w : N — N is a bijection such that there are only finitely many non-fixed points
s of m and S is a finite subset of N containing all non-fixed points of m. Note that
the complement of S corresponds to those columns where 1 has been chosen on the
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

diagonal in the expansion of the determinant. Not all (,.S) will actually occur due to
the Iversonian expression in the definition of My (q).
For every k € N, there is a bijection from the set

{(7r, S) | m: N — N bijective, S C N finite such that {s € N | 7(s) # s} C S

and ZW(S) = k‘}

ses

to the set

J
{(:L‘l, com) ENY | jEN, Zl’z = k with pairwise distinct xz}

i=1

of compositions of k£ with distinct parts: the set .S can be recovered as the set of sum-
mands in the composition, the permutation 7 can be recovered from the order of the
summands.

As there are at most exp(2\/Elog k) compositions of k with distinct parts by a result
of Richmond and Knopfmacher [87], there are at most that many summands +¢* in the
infinite determinant det(I — My (q)).

The difference between det(I —My(q)) and det(I —Mg (q)) consists of those summands
which do not choose the 1 on the diagonal in some row > N(K) or choose some column
s in some row r with s > (r + K)/t. In the latter case, the 1 on the diagonal cannot be
chosen in row s, so that the exponent of ¢ in this summand is at least r + s > K/t. So
all summands in the difference are of the form +¢* for some k& > K/t. By the triangle
inequality and the above estimates, we obtain

|det(I — Mao(@)) — det(I ~ Mi(q)| < 3 exp(2vElogk)g" = 0("/).
k>K/t

The argument does not change if the s-th column of both matrices is replaced by the

column vector (g,0,...,0)7.
Differentiating the determinant can be done term by term. The error term does not
change as the bound O(¢"/(?Y)) is weak enough. O

The second step in the proof of the convergence of numerator and denominator of
Wik (q) consists of the following simple lemma.

Lemma 7.13.5. The denominator det(I — Mg (q)) of Wk (q) converges to 1—b(q,1,1,1)
with error O(q/®Y).  The numerator det(I — My (q))Wk(q) of Wi(q) converges to
a(q,1,1,1) with the same error. The same is true for derivatives with respect to q.

Proof. The first statement is simply the combination of Lemmata [7.13.4] and [7.13.3]

As a formal power series, W (q) converges to H(q,1,1,1) as [¢"|Wk(q) = [¢"]H(¢,1,1,1)
holds for n < (K —1)/(t — 1), as a tree with n internal states has at most 1 + n(t — 1)
leaves and therefore width at most 1+ n(t — 1).
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7.13 Supplement to Section “The Width”

As 1 —b(q,1,1,1) has no root with |¢| < 1/2 by Lemma Wik (q) converges to
H(q,1,1,1) for |¢| < 1/2. As the denominator is already known to converge to the
denominator 1 —b(q,1,1,1) of H(g,1,1,1), we conclude that the numerators (which are
already known to converge to some infinite determinant) actually have to converge to
a(q,1,1,1).

Taking derivatives with respect to ¢ does not change the argument by Lemma [7.13.4]

O

In order to obtain information on the roots of det(l — Mg(q)) and therefore the
singularities of Wk (q), we approximate the Perron—Frobenius eigenvector of Mg (q) by
the eigenvector of the infinite matrix My (g). In the following lemma it turns out that
we actually met this infinite eigenvector earlier.

Lemma 7.13.6. Forr > 1, we have

[/t -1
q’"(l— 3 [uﬁ]b(q,u,l,m) = [u"]b(g,u,1,1). (7.13.3)
j=1

In particular, (py)r>1 as defined in Theorem is a right eigenvector of M (qo) to
the eigenvalue 1, i.e.,

MOO(qO) : (pr)T21 - (pr)er‘ (7134)
Proof. Multiplying the left hand side of ((7.13.3) with " and summing over r > 1 yields

t t o [e.e]

qu . qu .
1—out Z(qut)r[ujt]b(qvua L1)= o Z[uyt]b(q,u, 1,1) Z (qub)”
q r%% q j=1 r=jt+1
jjt_<7'
_ o qu! qu' o~ it 1,1
- 1—qut o 1—qut;(qu) [U ] (Q7u7 ) )
¢
__gu t -
= 1—7qut(1 —b(q,qu’,1,1)) = b(q, u, 1, 1),

which concludes the proof of ((7.13.3]).
Setting ¢ = go in ((7.13.3)) and noting that 1 = b(go,1,1,1) = > < pr yields (7.13.4).
- O

We now use the fact that (p,),>1 is an eigenvector of My (g) to derive bounds for its
entries.

Proposition 7.13.7. All p., r > 1, are positive and we have
1
;q: <4 pr <4 T

with
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Proof. By Theorem the p, are limits of probabilities and therefore non-negative.
By the eigenvalue equation ([7.13.4]), we have

Pr > QD)1

for all » > 1. Iterating this, we get

sollose =1 r, 45 Soios T (119
pr> gy Pprjtliosi vl >t Qo °
> quOgt TS50 T/t _ g, q0q6(1+1/(t_1))'

As go > 1/t by Lemma [7.2.2) we have log, go > —1 and the lower bound follows.

To prove the upper bound, we proceed in two steps. In a first step, we note that the
eigenvalue equation ([7.13.4]) together with the fact that ) -, p, = 1 yields the weaker

upper bound
pTZQS Z psSQSZPSZQS-
s>[r/t] s>1

In a second step, we use induction on r and assume that ps < cs?¢® for s < r for some
constant ¢ depending on t. Then the eigenvalue equation ([7.13.4]) yields

1
pr<dy Y, pa<cdy Y, Sy @ <cd Y, stat——a
s>[r /1] [r/t]<s<r r<s [r/t]<s )

r<ﬁ"/ﬂz 2q.[r/t] q*(1+q*)>q(r/t1+ 1 2
* 1_

=c
O\l T )
- CQS< (r+1)?  2q(r+1t) q*(l—l-Q*)) g L
T\ —g)  t(1-g)? (I-q)? 1-qo
As t3(1 — q.) > 1 for t > 2 (cf. Lemma[7.2.2), we obtain
1+1(1+L
by < Crzng:/t _ cr2qg( +i(+)) _ gl

for sufficiently large r.
O

Lemma 7.13.8. The generating function Wi (q) has a unique singularity qx with |qr| <
0.6 for K > ¢1 for a suitable positive constant qq depending on t. It is a simple pole and
a zero of det(I — Mk (q)). Furthermore

1 k/i-1) K/(t—1)

% + @70 < qx < g+ @K/t

for suitable positive constants q, qg depending on t.
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Proof. In the following, c4, c5, ... denote suitable constants depending on ¢.

As H(g,1,1,1) has a unique pole ¢ with |¢| < 0.6 by Lemma[7.2.2] and numerator and
denominator of Wi (q) tend to the numerator and denominator of H(g,1,1,1) respec-
tively by Lemma Wik (q) also has a a unique pole with |¢| < 0.6 for sufficiently
large K.

We set zx = (pl,...,pN(K))T. If we find a ¢ such that Mg (q)rx > xk, then

Lemma [7.13.2| implies that Apax (Mg (q)) > 1 and gx < gq.
We therefore consider the r-th row of Mk (q)zk for some 1 <r < N(K). We have

Pr  Pr+K
(Mk(q)xk)r =4q" Z ps > q" Z ps=4q <q: q:j:K>

0
N
qo prQo

by the eigenvalue equation ([7.13.4)). By Proposition [7.13.7, we have

r+ K

Pr+K 4y K/(t—1 K/(t—1
TR < aqp(r+ K = q(r+ K)2qg Y < e iBqg /Y.
prQO 499
Therefore, we have
Pr+K 1 1 1
r/1l — — Z Z
prdy (1- pHK)—l/’“ 1 e =y g KTED
pradf Prdo

This means that for ¢ = g9 + C7K2qé</(t_1), we have Mk (q)rx > xk, as requested.

The proof of the lower bound runs along the same lines.

O
Proof of Theorem|7.7.1 By singularity analysis, we have
—n—1
P(w(T) < K) = (1 + 0(0.65/2t)) <qu> (14 0(0.99™))
0
for K > cg.
We now estimate
E(w(T)) = > (1-Pw(T) < K)). (7.13.5)

K>0

We use the abbreviation S :=1/¢{"* > 1.
First, we consider the summands of (7.13.5) with S¥ < n/log?n. By Lemma [7.13.8

we have
g \" 1 " logn\"
=1 >(1 —— ] > (1 > 1 .
() = (agrigs) = (1r ") > anoen
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

We conclude that these summands of ([7.13.5]) contribute loggn + O(loglogn). In par-
ticular, the above estimates imply that

P(w(T) — loggn < —2logglogn) = O(1/logn). (7.13.6)

Now, we consider the summands of with n/log?n < S¥ < nlog®n. These
are O(loglogn) summands with each trivially contributing at most 1, so the total con-
tribution is O(loglogn).

Next, we consider the summands of with nlog®n < SK < n*l°gS We now

have )
qr log*n
214 <1+

nlogn

and therefore

P(w(T) < K) > (14 O(n~1108s061/20)y) axpy (—nlog <%>) >1—ci2
q0
The total contribution of these summands is therefore O(1). In particular, the above
estimates imply that

P(w(T) — loggn > 3logglogn) = O(1/logn). (7.13.7)

Next, we consider the summands of (7.13.5)) with n*!°85 < §K < S This time, we
have )
n
T <4 13—
q0 n

and therefore

P(w(T) < K) = (1+ O(n~218%61)) exp <—nlog (Z’;)) >1- 014%.

The total contribution of these summands is therefore O(1).

Finally, we note that all summands with K > tn vanish: any tree with n internal
nodes has at most width ¢n.

Collecting all terms, we obtain

logn

E(w(T)) =loggn + O(loglogn) = —————— 4 O(loglogn).
(w(T)) = logg (loglogn) ——1)loz g0 (loglogn)
Combining ([7.13.6)) and (|7.13.7) immediately yields the concentration property ([7.7.1)).

O]
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