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Abstract

In this thesis we investigate centralized and distributed variants of sparse Bayesian

learning (SBL), an effective probabilistic regression method used in machine learn-

ing. Since inference in an SBL model is not tractable in closed form, approximations

are needed. We focus on the variational Bayesian approximation, as opposed to oth-

ers used in the literature, for three reasons: First, it is a flexible general framework

for approximate Bayesian inference that estimates probability densities including

point estimates as a special case. Second, it has guaranteed convergence proper-

ties. And third, it is a deterministic approximation concept that is even applicable

for high dimensional problems where non-deterministic sampling methods may be

prohibitive.

We resolve some inconsistencies in the literature involved in other SBL approxima-

tion techniques with regard to a proper Bayesian treatment and the incorporation

of a very desired property, namely scale invariance. More specifically, among all

discussed methods, we show that the variational Bayesian approximation is the only

approach that can be consistently derived from scale-invariant model assumptions.

A novel fast SBL concept based on fixed-point analysis of the variational up-

date expressions is presented as a variational counterpart to fast marginal likelihood

maximization, a widely known SBL variant. Within this fast framework, which we

denote as fast variational SBL (FV-SBL), we furthermore show how to incorpo-

rate an intuitive trade-off parameter that allows to balance sparsity versus accuracy.

We compare the performance of all methods using real and synthetic data, where

we show that FV-SBL converges several orders of magnitude faster than ordinary

variational SBL.

Large-scale sensor networks allow to monitor spatial phenomena with unprece-

dented resolution. Current research focuses on distributed processing performed

directly on the sensor nodes with only local communications and no need for data

fusion, i.e., the data is not collected and processed at a single point which would be

critical to fail. In the SBL context, our objective is to learn a compact model of the

true underlying spatially sampled field function based on noisy sensor measurements

in a distributed manner. Finding a sparse representation of the data enables its ef-
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ficient handling and processing, which is a desired property especially for wireless

sensor network applications due to energy and bandwidth constraints.

We analyze two distributed variants of SBL, which we denote as variational dis-

tributed SBL (V-dSBL) and fast variational distributed SBL (FV-dSBL). Both algo-

rithms are based on consensus methods, which perform distributed averaging based

on local message passing between neighboring sensors. V-dSBL considers a spatially

distributed probabilistic model that is a combination of SBL and consensus propaga-

tion. For inference, a variational Bayesian approximation with Gaussian loopy belief

propagation as a subroutine is used. The messages involved in this subroutine are

directly sent between adjacent sensors and have a communication complexity that

is quadratic in the number of model components. In FV-dSBL, the FV-SBL fixed-

point solution is collaboratively calculated using any type of consensus algorithm,

which results in a communication complexity that is only linear in the number of

model components for each message. Furthermore, in FV-dSBL, we can test and

add new components to the model. The computational complexity at each sensor

for a single FV-dSBL test is quadratic in the number of components, whereas in

V-dSBL it is cubic for each single message in Gaussian loopy belief propagation.

In real- and synthetic-data experiments, we compare both distributed algorithms to

their centralized counterparts, where similar performance is obtained in most of the

cases.
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Kurzfassung

In dieser Dissertation werden zentralisierte und verteilte Varianten von Sparse Baye-

sian Learning (SBL) untersucht. Dies ist eine effektive bayessche probabilistische

Regressionsmethode des maschinellen Lernens, welche auf dünn besetzten (
”
spar-

se“) Vektoren beruht. Da bayessche Inferenz in SBL Modellen nicht in geschlossener

Form lösbar ist, werden Annäherungsverfahren verwendet. Der Fokus dieser Arbeit

liegt dabei auf bayesschen Variationsmethoden. Dies hat die folgenden drei Gründe:

Erstens stellen sie einen allgemeinen Rahmen für die bayessche approximative In-

ferenz dar, welche Wahrscheinlichkeitsdichten annähert und Punktschätzer als Spe-

zialfall beinhaltet. Zweitens ist ihre Konvergenz garantiert. Und drittens sind sie

deterministische Approximationsmethoden, welche sogar für hochdimensionale Pro-

bleme anwendbar sind, bei denen nicht-deterministische Sampling-Methoden zu viel

Ressourcen brauchen würden.

Weiters werden in dieser Arbeit einige Ungereimtheiten in anderen SBL Approxi-

mationen aus der Literatur ausgeräumt. Diese Ungereimtheiten beziehen sich auf die

Korrektheit der Methoden und die Berücksichtigung einer erwünschten Eigenschaft

namens Skaleninvarianz. Wir zeigen, dass die bayessche Variationsmethode die ein-

zige der diskutierten Methoden ist, welche die Modellannahmen für Skaleninvarianz

in konsistenter Weise berücksichtigt.

Es wird eine schnelle Variante der bayesschen Variationsmethode für SBL vorge-

stellt, welche auf einer Fixpunktanalyse der iterativen Update-Gleichungen beruht.

Diese Methode, welche wir als FV-SBL bezeichnen, ist das bayessche variationsme-

thodische Gegenstück zu einer weit bekannten schnellen SBL Methode namens Fast

Marginal Likelihood Maximization. Außerdem zeigen wir, wie man in FV-SBL einen

Parameter zum Abwägen der Modellkomplexität und Genauigkeit einführen kann.

Wir zeigen mit realen und synthetischen Experimenten, dass FV-SBL um mehrere

Größenordnungen schneller konvergiert als SBL mit der gewöhnlichen bayesschen

Variationsmethode.

Aktuelle Sensornetzwerk-Forschung konzentriert sich auf verteilte Berechnungen,

welche direkt auf den Sensorknoten ausgeführt werden und nur lokale Kommunikati-

on benötigen. Dies steigert die Robustheit gegenüber Sensorausfällen. Wir untersu-
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chen verteilte SBL Algorithmen, welche Feldfunktionen aus verrauschten Sensormes-

sungen in einem kompakten (
”
sparse“) Modell lernen. Die kompakte Repräsentation

der Daten ermöglicht eine effiziente Weiterverarbeitung, welche gerade in Sensornetz-

werken wegen vorhandener Energie- und Bandbreitenbegrenzungen sehr erwünscht

ist.

Es werden zwei verteilte SBL Algorithmen mit den Bezeichnungen V-dSBL und

FV-dSBL vorgestellt. Beide Algorithmen basieren auf Konsensmethoden, welche in

verteilter Weise Durchschnittswerte berechnen. V-dSBL verwendet ein räumlich ver-

teiltes bayessches Modell welches aus einer Kombination einer Konsensmethode und

SBL besteht. Für die Inferenz wird eine bayessche Variationsmethode mit einer

gaußschen Loopy Belief Propagation (LBP) Unterroutine verwendet. Die Nachrich-

ten, welche in der Unterroutine zwischen den Sensoren gesendet werden, haben eine

Kommunikationskomplexität welche quadratisch mit der Anzahl der Modellkompo-

nenten wächst. Bei FV-dSBL wird die Fixpunktlösung von FV-SBL in verteilter

Weise durch eine Konsensmethode berechnet. Die Kommunikationskomplexität von

dieser Methode ist für jede Nachricht nur linear in der Anzahl der Modellkomponen-

ten. Außerdem können bei FV-dSBL neue Komponenten getestet und zum Modell

hinzugefügt werden. Die Rechenkomplexität von jedem FV-dSBL Test wächst an

jedem Sensor quadratisch mit der aktuellen Komponentenanzahl. Bei V-dSBL hin-

gegen wächst sie kubisch in der Anzahl der aktuellen Komponenten für jede einzelne

Nachricht. In realen sowie synthetischen Experimenten werden beide Algorithmen

mit ihren zentralisierten Gegenstücken verglichen, wobei in den meisten Fällen ver-

gleichbare Ergebnisse erzielt werden.
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ψm(x) mth basis function of x

M Number of basis functions

Φ N ×M design matrix with [Φ]nm = ψm(xn)

xxi



xxii Mathematical Notation

ϕm mth basis vector, mth column of Φ defined as

ϕm = [ψm(x1), . . . , ψm(xN )]T

φT
n nth row vector of Φ, φn = [ψ1(xn), . . . , ψM (xn)]T

ǫn Additive noise variable, ǫn ∼ N (ǫn|0, τ−1)

ǫ Vector with i.i.d. noise variables ǫ = [ǫ1, . . . , ǫN ]T ,

ǫ ∼ N (ǫ|0, τ−1I) =
∏N

n=1N (ǫn|0, τ−1)

σ2 Noise variance

τ Noise precision (inverse variance), τ = σ−2

wm Weight parameter for the mth basis function

w Weight vector w = [w1, . . . , wM ]T

αm Hyperparameter for the mth basis function

α Hyperparameter vector α = [α1, . . . , αM ]T

KL(q‖p) Kullback-Leibler divergence, functional of the distributions q(·)
and p(·)

L(q) Variational lower bound as a functional over q(·)

N(k) Set of neighbors of sensor k; see definition in Section 4.3.2

#N(k) Number of neighbors of sensor k; see definition in Section 4.3.2



Chapter 1

Introduction

1.1 Machine learning and regression

Machine learning deals with the design and the analysis of algorithms that make

inferences based on data observations. These algorithms, which are said to learn

from the data, can be categorized into several types. Such types are for instance

supervised learning, unsupervised learning or reinforcement learning, to name a few.

In this thesis we will consider the first mentioned type, namely supervised learning.

In supervised learning, we are given a set of N training samples each consisting of an

input/target pair [4]. We define the inputs, with sample index n, as D-dimensional

vectors xn = [xn,1, . . . , xn,D]T ∈ R
D, which can be used to represent almost any sort

of data. For instance, xn could be a gray scale image, where the dimension D is

the number of pixels and the values xn,i represent the intensity of pixel i. For each

such input xn, we have given an associated target tn ∈ T , where T is the target

set. If the target set T is a finite set, the supervised learning task is denoted as

classification and if it is an infinite set (typically T ⊆ R), it is denoted as regression.

For our gray scale image example above, if we consider classification of, e.g., pictures

with cats and dogs, the target set could be T = {0, 1}, where a ’0’ indicates, e.g.,

a cat and ’1’ a dog. For regression, we could think of, e.g., estimating the angle

from which a picture was taken relatively to the animal. In this case we could define

T = [−π, π) ⊆ R. Throughout this thesis we will only consider regression and more

specifically T = R.

We denote the set of all training samples D = {xn, tn}Nn=1 as the training data

set. In regression, if we assume T = R, the fundamental goal is to learn a prediction

y(x) given an arbitrary input x ∈ R
D, where y : R

D → R. The quality of this

prediction is typically estimated by defining an error measure on some unseen test

dataset [4]. A fundamental problem in supervised learning is overfitting. That is, if

noise is present in the training data D, a learning algorithm that has a small error

1
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Figure 1.1: Weighted sum of three example basis functions. The dotted curves rep-
resent the weighted basis functions wmψm(x) and the solid black curve
shows the superposition.

measure on D leads to bad predictions on the test dataset, i.e., it does not generalize

well for unseen data. A well known method to reduce overfitting is regularization [4].

1.1.1 Linear models for regression

To learn a prediction y(x), we need a flexible model that can be adjusted to a broad

class of datasets D. In this thesis we consider linear models for regression [4], which

are superpositions of M weighted basis functions ψm(x), i.e.,

y(x) =
M∑

m=1

wmψm(x). (1.1)

We give an example for M = 3 in Figure 1.1. The basis functions are fixed and in

general non-linear. However, such models are denoted linear, since they are linear

in the weight parameters wm, which have to be adjusted (learned). Typcially used

basis functions are Fourier-, wavelet-, kernel- or radial basis functions [5, 6, 4, 7].

Note that in the machine learning literature, the terms basis functions and, as we will

also use later in this thesis, basis vectors, differ from the mathematical definition of

a basis, which requires linear independency. Throughout this thesis, we will stick to

the common definition in machine learning, where basis functions and basis vectors

need not to be linearly independent. Basically, there are almost no restrictions on

ψm(x) and we are free to choose any set of fixed basis functions in (1.1). Note that

there are also many other models for the regression functions y(x) that are non-linear

in the parameters, like, for instance multi-layer perceptrons [8]. However, for models

which are linear in the weights, learning w1, . . . , wM and thus y(x) from the data D
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is relatively simple using, e.g., common methods like regularized least-squares [9, 4].

1.1.2 Non-parametric regression using kernels

The chosen set of basis functions strongly influences the predictive performance. It

is not clear in general how to specify these functions. Furthermore, as the input

dimensionality D increases, the required number of basis functions for a reasonable

predictive performance grows rapidly and often exponentially [4].

Let us first discuss a flexible data dependent concept of how to define the set of

basis functions known as kernel methods. Other simple data dependent concepts for

defining basis functions can be found for instance in multivariate adaptive regression

spline models (MARS models); see [10]. Later in Section 1.1.3, we discuss how the

required number of basis functions can be reduced.

Kernel methods are widely used in machine learning. A detailed introduction can

be found in standard textbooks like [11, 4]. However, in the context of regression,

amongst additional restrictions, we can basically interpret kernels as ordinary basis

functions ψm with an extra parameter x′
m, i.e., ψm(x) = κ(x,x′

m), where κ is the

kernel function. The additional restrictions are that a function κ is only denoted as

kernel, if it satisfies Mercer’s theorem [12, 13]. A necessary and sufficient condition

for a valid kernel, based on this theorem, is that, for any finite set {ui}, the Gram

matrix K, with elements defined as Kij = κ(ui,uj), must be positive semidefinite;

see also [14, 4]. Furthermore, in kernel methods, the parameters x′
m are defined by

the training data D, i.e., x′
n = xn for n = 1, . . . , N and we have M = N . That is,

the basis functions are fully specified by the training data and not fixed in advance

like we have, e.g., for Fourier basis functions. We note that in some cases additional

basis functions like a constant bias ψ0(x) = 1 may be added as well, where M > N .

However, once specified, the set of basis functions is fixed and will not be changed

during learning. Such methods that are entirely build on the data, are denoted as

non-parametric1.

Popular kernels are the polynomial kernel and the Gaussian kernel. The poly-

nomial kernel is defined as κ(x,x′) = (xT x′ + c̃)d̃ with degree d̃ and shift param-

eter c̃ > 0. The Gaussian kernel is defined as κ(x,x′) = exp{−θκ‖x − x′‖2} with

inverse width parameter θκ. Note that such a kernel has the shape of a Gaussian

probability density function (pdf) but is not normalized, i.e., it does not necessarily

integrate to 1. Sums of weighted Gaussian kernels are known to be universal approx-

1Note that if an additional bias basis function is used, it is still denoted as a non-parametric model.



4 1. Introduction

0 2 4 6
−15

−10

−5

0

5

10

15

xn, x

t n
,
y
(x

),
w

m
ψ

m
(x

)

(a) N = M = 15

0 2 4 6
−15

−10

−5

0

5

10

15

xn, x

t n
,
y
(x

),
w

m
ψ

m
(x

)

(b) N = 15, M = 5

Figure 1.2: Kernel regression for noisy sine data with (a) a full model and (b) a
sparse model. The predicted function is depicted by a thick red solid
curve and the thin colored curves show the weighted Gaussian kernels
centered at the input data points xn.

imators for arbitrary continuous real valued functions on a compact set [15, 16, 17]2.

Coarsely speaking, this means that a model based on such kernels can approximate

any continuous function up to an arbitrary small error.

1.1.3 Parameter estimation, probabilistic models and sparse regression

For most learning scenarios, if the number of basis functions M in (1.1) is large,

usually only a small subset of basis functions is actually required to represent the

data. This holds especially for kernel basis functions, introduced in Section 1.1.2, if

the training dataset D is large, since we have M ≥ N .3 A kernel regression example

with noisy sine data is depicted in Figure 1.2(a), where we have used regularized

least-squares [9, 4] for the weight parameter estimation (learning).4 A much more

compact model for the same data can be seen in Figure 1.2(b), where only 1/3 of the

kernels compared to Figure 1.2(a) are used. The problem is, without observing the

data, it is not possible to tell in advance which of the basis functions are important.

A famous example of a kernel method that estimates, besides the weight pa-

rameters, also the important components, is the support vector machine (SVM)

2Note that weighted sums of polynomial kernels of fixed degree are no universal approximators,
however, if the degree is not limited, they are universal approximators for arbitrary continuous
real valued functions on a compact set as well [16].

3If only kernels and no extra basis functions are considered we have M = N .
4Note that standard least squares without regularization typically leads to overfitting [4].
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[18, 11, 19]. The less important kernels are simply switched off during learning by

setting the corresponding weights wm to zero. According to (1.1), this has the same

effect as removing the kernels from the model. In such a case, the model is de-

noted as sparse, which is also why SVMs are denoted as sparse kernel machines [4].

Note that SVMs are also defined for classification, however, we only consider the

regression type here in our discussion.

On the other hand, probabilistic models have shown to be successful in many

areas of machine learning; see, e.g., [18, 20, 21, 4]. A big advantage of such models

is that they naturally incorporate the handling of uncertainties. In this way, a

learning algorithm can provide for instance a measure about how sure it is about its

prediction. Furthermore, uncertainties typically involved in the training data, like

the noise in our example from Figure 1.2, can be modelled probabilistically as well.

Probabilistic models basically consist of hidden and observed random variables.

An example for hidden random variables in our context would be the weights wm

in (1.1), since we cannot measure them. The targets from the training dataset for

instance can be modelled as observed random variables. If we know (or in many

cases assume) the probabilistic model that relates these variables to each other, we

can make inference about the posterior probability, i.e., the probability of the hidden

variable given the observed variables. Inference in such probabilistic models typically

requires to apply Bayes’ rule of probabilities [22], which is why these models are

also denoted as Bayesian models.

A Bayesian counterpart to the SVM is the relevance vector machine (RVM) [23, 1]

that is a special case of sparse Bayesian learning (SBL) [1, 24], which we investigate

throughout this thesis.5 However, the models for SBL and RVMs are basically equiv-

alent. The only difference is the used set of basis functions. The more general term

SBL is used for models with arbitrary basis functions as in (1.1), whereas RVMs only

use kernel basis functions and maybe a constant bias. In other words, SBL is the

general term for the probabilistic learning framework and RVMs are the application

of this framework using kernels. A direct comparison of RVMs and SVMs, dis-

cussed above, typically leads to sparser models and better prediction performances

for RVMs [1], although RVMs are computationally more complex than SVMs. RVMs

are also denoted as sparse kernel machines like SVMs [4]. A fundamental difference

of the general SBL model and SVMs is that SBL is a probabilistic model that can

be used with arbitrary basis functions, whereas SVMs use deterministic models that

5Note that even though we only consider regression throughout this thesis, SBL is also defined for
classification [1].
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only allow kernel basis functions.

During the last decade, the research of sparse signal representations has received

considerable attention in many different research areas [25, 26, 27, 28]. Imposing

constraints on the model parameters, in our case w1, . . . , wM , is the key to sparse

signal modelling [26]. For probabilistic models, like SBL, such constraints can be

incorporated via the definition of prior probabilities over such parameters [29].

Finding the optimal sparse representation of the training data, i.e, finding the

sparsest representation in the noiseless case or the representation with the smallest

error and sparsity for a given error-sparsity trade-off, in general is an combinatorial

NP-hard problem [30]. However, in [29] it has been shown that SBL has good

properties in approximating the optimal solution. A very interesting feature of SBL

is that the parameters which control the sparsity are directly learned from the data

itself and additionally act as automatic regularization to avoid overfitting. In most

other methods, like in the ℓ1-regularized LASSO [31] for instance, such parameters

have to be cross-tuned via several algorithm runs.

Unfortunately, exact inference in probabilistic models is often intractable, i.e.,

there exists no closed form solution for the posterior. Yet, numerous approximation

techniques have been developed; see, e.g., [32, 33, 34]. Note that approximations are

also required for SBL, where we will focus on a particular technique, named, varia-

tional Bayesian inference [34] throughout this thesis. This approximation technique

was first applied to the SBL model in [35], where we will develop a much faster

implementation and distributed extensions as we will further discuss in Section 1.3.

1.2 Distributed learning in Wireless Sensor Networks

1.2.1 Wireless Sensor Networks

Wireless technologies have become ubiquitous in our everyday life. The continuing

advances in microelectronics lead to cheaper, smaller and smarter mobile devices

at reduced energy consumption per processing power; a trend that seems not to

stop in the foreseeable future. The lack of cabling, which is essential for the desired

flexibility, typically makes these devices dependent on some limited energy resource

like a battery and thus substantiates the necessity for power aware design at both

the hardware and software development stages.

The type of mobile devices that we consider are wireless sensor nodes, which

together form a wireless sensor network (WSN) [36, 37, 38, 39]. Each sensor node

basically consists of a sensing unit, a transceiver and a processing unit [38]. Note
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that the term sensor node or simply sensor, which is frequently used in the context

of WSNs, is a little misleading since it denotes the whole device and not only the

sensing unit. However, throughout the thesis we also stick to these commonly used

terms.

Sensor networks can be used in many different areas, ranging from military ap-

plications like surveillance and target localization [40] to civilian applications like

environmental-, health- or structural-monitoring [41, 42, 43] and industrial process

control [44]. There are very stringent limitations on the wireless sensor nodes’ en-

ergy consumption due to their usually long operational life span. In most cases,

the nodes are powered by batteries, and typically for large scale networks consisting

of cheap devices, recharging or exchanging batteries is too expensive or even im-

possible, which again points out the necessity for energy awareness to increase the

network’s life time. Even though energy harvesting from external sources like, e.g.,

solar, RF, wind or thermal energy [45] can be used in some cases, it is not always

applicable and the amount of available power is usually fluctuating and often very

small, which makes energy efficiency even more important. Furthermore, due to the

energy constraints and long operational life span, the typical transceiver data rate

of a sensor is quite low.

Note that throughout the thesis we use the terms sensor network and wireless

sensor network interchangeably. Even though all methods that will be discussed

in this thesis can be equivalently applied to “wired” sensor networks as well, the

development of the methods however is strongly motivated by the constraints that

have to be faced within WSNs. Besides the energy and data rate constraints dis-

cussed above, in the following we discuss further issues that may arise particularly

in WSNs.

Sensor networks are designed to spatially measure and process data from the envi-

ronment in which they are deployed. Typically, the sensors together form a wireless

ad-hoc network [38], where only neighboring devices can communicate directly due

to their limited communication range. An example network is depicted in Figure 1.3,

where we have also shown an exemplary underlying field function that is spatially

sampled by the network. Such a field could be any physical measure like, for instance

temperature, light intensity or some level of pollution, to name a few.

In many applications, the measured data is collected and processed at a powerful

central node in the network, which is denoted as the fusion center [46]. Transferring

data from each node to the fusion center requires sensors to relay information from

distant parts of the network towards the fusion center. This strategy requires multi-
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Figure 1.3: Schematic plot of a wireless sensor network (WSN) spatially sampling a
2-dimensional field. Sensors (blue dots) can only communicate along the
communication links (dotted lines).

hop communication and appropriate routing protocols need to be implemented [47].

Such protocols should be robust against dynamically changing network topologies,

i.e., some connections may suddenly fail or build up from scratch due to changes in

the environment. In applications with mobile sensors, such topology changes happen

permanently.

Furthermore, sensors may fail due to damage, malfunction or simply an empty

battery. If the network is still connected, i.e., information can still be transferred

from every working sensor to the fusion center, this may not be a problem in many

realistic scenarios, where measurements are highly correlated or even redundant.6

However, if the fusion center fails, the task of the whole network can no longer be

performed.

For more robustness and/or less energy consumption, especially for large scale

WSNs, distributed processing may be an interesting alternative as we discuss in the

following.

6Note that the correlation of sensor measurements is also an important property for sparse data
modelling that we exploit in our distributed SBL variants later in this thesis.
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1.2.2 Distributed processing and learning

The fundamental purpose of a sensor network is to make inference about the envi-

ronment that it is sensing [46]. In the centralized approach that we discussed above,

all data needs to be relayed to the fusion center, which may be inefficient, especially

for large networks. An interesting alternative is to collaboratively process the data

by all sensors within the network. This approach, which is denoted as in-network

processing or distributed signal and information processing [48, 49, 50, 51], offers

several advantages, namely:

• Local communication

• Routing protocols are not necessarily needed

• Computational resources can be shared by the nodes

• More robustness, since there is no central point of failure.

For distributed algorithms that collaboratively estimate some parameters of inter-

est through local communication without sharing the sensor measurements, another

advantage is privacy. That is, a sensor that updates its estimates based on its local

measurement and the estimates from its direct neighbors does not see the other sen-

sors’ measurements. Such a protocol will be introduced in the context of consensus

algorithms for distributed averaging later in this thesis.

Past research for distributed parametric models has focused on decentralized esti-

mation or detection if the statistics of the phenomena under observation are assumed

to be known [46]. However, in situations where prior knowledge is non-existing or

vague, nonparametric methods are desirable [46]. Methods for nonparametric dis-

tributed learning, including a kernel regression method, are also discussed in [46].

Note that due to the energy and bandwith limitations that have to be faced within

WSNs, distributed learning is fundamentally different from learning approaches in

parallel computing [52, Section 2.2].

From a machine learning perspective, as we discussed in Section 1.1, a distributed

regression problem for field estimation can be defined by considering the sensor

coordinates as inputs xk and the corresponding measurements as the targets tk,

where k = 1, . . . ,K, and K is the number of sensors in the network. Each sensor can

be interpreted as a sample from a distributed training dataset D. For example, in the

D = 2 dimensional network from Figure 1.3, the sensors could collaboratively learn

from their measurements tk to estimate the underlying function. After learning,
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each sensor k obtains a similar predictive function yk(x) that is an estimate of the

true underlying field function.

1.3 Work contributions

The main contributions of this thesis are twofold.

First, we investigate SBL in a centralized setting, where the whole training data D
is directly accessible by a centralized learning algorithm. Here, we discuss several

SBL approximations known in the literature that all lead to the same iterative up-

date equations under slightly different model assumptions. In this context we show

that the variational Bayesian (VB) approximation to SBL is conceptionally supe-

rior to the discussed alternatives. More specifically, we show that a particular SBL

model assumption which naturally incorporates a very desirable property named

scale invariance, can only be correctly considered in the VB approximation to SBL.

Note that one of the other approximation techniques in the literature also leads to

the desired update equations under the same model assumptions, but as we show in

detail, there are some inconsistencies involved in the derivations. There also exists

a fast implementation of SBL in the context of maximum marginal likelihood, one of

the most popular SBL approximation techniques. It is based on a component-wise

decision rule for pruning or keeping a basis function. We show that an equivalent

method can also be derived from a fixed-point analysis of the VB update expres-

sions. Based on the slightly different new form, in which the fast decision rule is now

given, we additionally show a rather straight forward way of how to incorporate a

sparsity vs. accuracy trade-off parameter into the SBL framework.

As for the second contribution of this thesis, we propose and investigate two

different methods for distributed regression in WSNs based on SBL. Sparsity is of

particular interest in WSNs, because finding an effective representation of the data

is very important due to the energy and bandwidth constraints discussed above.

The two distributed algorithms are based on consensus protocols, which try to find

a consensus between all sensors in the network. This makes them robust against

changing network topologies without the need for routing. Note that this holds only

as long as the network is connected, i.e., there always exists a multi-hop path between

any two sensors in the network. We will not consider sensor failures, which remains

an open research issue, because, even in centralized SBL, removing data during

runtime is problematic. Note that the data on each sensor can be seen as a sample

within a distributed dataset. We only investigate the distributed SBL methods
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from a machine learning perspective and do not consider implementation aspects

like energy consumption and so on. However, we do discuss the computational and

communicational complexities involved in the two algorithms. One of the algorithms

is based on a combination of VB inference and probabilistic message passing, where

the latter is used for inter-sensor communication. The other algorithm can use

any distributed averaging protocol to distributedly compute the fixed-points of the

fast VB SBL method discussed above. Here, we show a mechanism of how new

basis functions can be tested and incorporated into the model if they are relevant.

We compare both distributed SBL algorithms to their corresponding centralized

counterparts.

1.4 Related Work

In the following, we discuss related work in the field of SBL and distributed learning.

To our knowledge, there exist no investigations on distributed SBL methods for field

estimation in WSNs.

Let us first start with related work in centralized SBL. In [29], the author is

concerned about the NP-hard problem of finding maximally sparse representations

in overcomplete dictionaries of basis vectors, where the subtle difference between

sparse regression vs. sparse representation is emphasized. In sparse regression,

which is mainly the focus of this thesis, sparsity also acts as a regularization to

avoid overfitting and to obtain compact, more interpretable models that generalize

well on a test dataset. In sparse representation, there is no test dataset, and thus

the only concern is to find a compact representation of the original data. In other

words, overfitting the (training) data is a problem in sparse regression, whereas it is,

to a certain extent, desired in sparse representation, depending on the noise included

in the data. The algorithms that we will derive later in this thesis are applicable to

both scenarios, where we, however, have more focus on sparse regression. That is, we

evaluate the performance on a separate test dataset unless stated otherwise. In [29],

SBL is analyzed as a potential approximation to the NP-hard problem of finding

maximally sparse solutions. As has been shown, the global SBL minimum is always

achieved at the maximally sparse solution if no noise is present, i.e., the model can

perfectly represent the data. However, if noise is present, which we always consider

for the case of sparse regression throughout the thesis, such an analysis is much more

complicated. This is due to the fact that there exists no optimal sparseness anymore

and a sparsity vs. accuracy trade-off needs to be specified for such an analysis.
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In [53], an ℓ1-norm SBL method is proposed. Note that this is different from the

standard ℓ2-norm SBL method [1] that we consider. The ℓ1-norm SBL method is

based on the maximization of the marginal likelihood, similar to a popular variant

of ℓ2-norm SBL. However, due to additionally required approximations, the overall

computational costs increase. It is shown, that ℓ1-norm SBL leads to sparser solu-

tions than ℓ2-norm SBL. However, as shown in the simulation results in [53], the

resulting predictive error is typically larger. This is an example of the ubiquitous

sparsity vs. accuracy trade-off in regression that we also discuss in Chapter 3, where

we propose a separate trade-off control parameter for our fast VB version of ℓ2-norm

SBL.

In [54, 55], SBL is analyzed from a Gaussian Process (see, e.g., [56]) perspective.

The counterintuitive behavior of the SBL prediction variance, namely that it is small

for input regions with low sample densities, is corrected through an augmentation of

the learned model. The presented extensions could be directly incorporated in our

centralized fast VB SBL method as well. However, the computation of the modified

prediction requires access to all training data samples, which is not directly appli-

cable when the data is distributed as assumed for our distributed SBL approaches.

Furthermore, because of the required access to the training data, the augmented

model is not really sparse anymore as mentioned in [55].

In the context of RVMs, there are also efforts to adaptively learn the kernel param-

eters [57]. For a Gaussian kernel, the inverse width parameter θκ could be learned

together with the SBL parameters for instance. This is not considered in this thesis

but constitutes an interesting extension to our methods as well.

Let us now discuss related work in the area of distributed learning. The work [46]

can be seen as a keynote introduction to research in the field of distributed inference

and learning in WSNs; see also the related content in [52]. The discussed distributed

kernel regression methods are closely related to our work. One approach, which was

proposed in [58], considers the distributed computation of a sparse inverse problem

in a WSN. There, a distributed junction tree algorithm is used to efficiently solve

the inverse problem. The sparseness, which allows for the efficient distributed com-

pution in this method, comes solely from the network structure and has nothing to

do with model sparseness in the sense of SBL. The idea is to use localized kernels,

where only sensors in the kernel support regions participate in the partial compu-

tations, i.e., where the kernel functions have non-zero values. In other words, this

approach exploits the localized kernel structure to obtain localized communication

and computations. Note that the neighborhood in the network topology is usually
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strongly correlated with the spatial neighborhood of the localized kernels. In this

method, the sensors can only give local predictions for their surrounding. Thus,

prediction queries have to be relayed to the sensors close to the requested coordi-

nates. Note, that this is different from our approaches, where each sensor finally

obtains an overall model of the predictive function and is able to answer any query

directly. Another approach discussed in [46] is an distributed incremental subgra-

dient functional optimization algorithm based on [59, 60]. The method can be used

with arbitrary kernels. However, it depends on a stable path through the network

since it sequentially updates the current state of the predictive function. Thus, a

query can only be answered properly by the last sensor in the path. Finally, the

method of alternating projections from [61, 62] is discussed. There, sensors can

update their current state of the predictive function through neighborhood commu-

nication. This is basically similar to our approaches. No path though the network

is required, which makes this method robust against topology changes. However, as

with the other two discussed methods, no sparsity in the sense of a compact model

with a reduced number of kernels is considered.

Another related work that leads to sparse kernel models, is the distributed SVM

regression algorithm [63]. Here, the efficient distributed implementation is only

achieved through localized kernel functions that separate the optimizions performed

at different parts of the network. Our framework, although being computationally

more demanding, is more general and can be used with any set of basis functions.

The method [64] also estimates sparse kernel models, where sparsity is obtained

through a sequential testing of kernels based on a kernel coherence criterion. This

method performs this sequential test along a path of sensors, where the prediction

requests have to be relayed to the last sensor in the chain. Furthermore, kernels are

only added but never removed from the model, which makes it inflexible in finding

a very sparse set of kernels. We will show later in this thesis how to adaptively add

or remove basis functions in a non-sequential way bases on a distributed version of

our fast VB method for SBL.

The work [65] is concerned about distributed field estimation in sensor networks.

However, this is different from our interpretation of field estimation. The methods in

[65] are not concerned about learning the overall field functions, but only its values

at the sensor locations. More specifically, the presented methods try to smooth

the noisy measurements distributedly at the sensors according to assumed spatial

correlations. The first approach in [65] is based on a distributed consensus like

protocol that implicitly projects the sensor measurements onto a lower dimensional
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subspace spanned by basis vectors obtained from a set of smooth basis functions.

The smoothed sensor measurements are directly estimated distributedly without

explicitly learning the weights of the basis functions. The second approach in [65] is

based on belief propagation performed on a Gaussian Markov random field within

sensor clusters. The random field models the local dependencies between the sensor

measurements. Note that in this thesis we are concerned about finding a compact

set of basis functions, whereas the methods in [65] only estimate the values directly

at the sensor locations.

In [66], a field reconstruction method based on hybrid shift-invariant spaces is

presented. Simply speaking, a shift-invariant space is the space of functions gener-

ated as in (1.1), where identical but shifted generator basis functions are located at

a uniform grid. A hybrid shift-invariant space is the space of functions generated by

a superposition of functions from different shift-invariant spaces, i.e., with different

generator functions. A maximum likelihood estimator is used for determining the

weights wm in (1.1). This estimator is not sparsity enforcing, i.e., it does not push

irrelevant weights towards zero as in SBL. Furthermore, maximum likelihood esti-

mators are known to overfit the data. In our methods, however, we avoid overfitting

through automatic regularization caused by the sparsity parameters. An efficient

distributed method with different sensor clusters is presented in [66]. This method

requires, however, that the generator basis functions have finite support like in some

of the previously discussed methods. In [66], spline functions are suggested for this

purpose.

1.5 Outline of the thesis and publications

In Chapter 2, we start with a general introduction to variational Bayesian (VB)

approximate inference and discuss several different sparse Bayesian learning (SBL)

approximations. Here, we clarify the conceptual advantages of the VB approxima-

tion to SBL as compared to the other approximations. Furthermore, at the end of

Chapter 2, we present consensus propagation (CP), a distributed averaging protocol

proposed in [67]. We directly show the derivation of CP from a Gaussian loopy

belief propagation (LBP) perspective. This derivation forms an important basis to

understand the later derived distributed SBL methods presented in Chapter 4.

In Chapter 3, we present an alternative derivation of the fast SBL results obtained

in the fast marginal likelihood maximization method [68]. Here, we show that the

same decision rules for keeping or pruning a basis function can be derived from
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a VB perspective. This chapter is in part based on our publication [69], where

I was involved in the derivation of the algorithms and prepared the simulations.

As opposed to [68], we have further extended the fast VB SBL method (FV-SBL)

by an intuitive sparsity vs. accuracy trade-off parameter. Parts of the experimental

analysis for this trade-off, shown in Chapter 3, stem from our publication [70], where

my contribution was the idea and preparation of the sparsity vs. accuracy trade-off

simulations.

In Chapter 4, we present a distributed SBL regression method that is based on a

combination of VB inference and Gaussian LBP. The idea of the underlying proba-

bilistic model is based on CP, introduced in Chapter 2. Parts of the content stem

from our publication [71], which itself is a further development of our work [72]. My

contribution to both publications was the idea and I was heavily involved in writ-

ing the main content and preparing the simulations. Additionally, the publication

[71] was selected for the best student paper award of the conference where it was

presented.

In Chapter 5, we develop a distributed SBL regression method using FV-SBL.

We therefore extend the FV-SBL method presented in Chapter 3, in which basis

functions are tested that are currently in the model, by using a simple keeping or

pruning criterion. This extension, however, also allows the testing of new candidate

basis functions, which can be added to the model as well. We present a way of how

to compute these test criteria distributedly using distributed averaging protocols

like CP.

We finally conclude and discuss new research directions in Chapter 6.

Note that we also present an online FV-SBL method in Appendix D, which is

based on our publication [73], where I contributed substantially to writing the main

content and preparing the simulations. We compare the method to a kernel recursive

least squares (Kernel-RLS) algorithm [74].
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Chapter 2

Background and Preliminaries

In this chapter we discuss the most relevant concepts needed to understand the

methods developed later in this thesis.

In Section 2.1, variational Bayesian (VB) inference is introduced. We show that

it offers a general framework for deterministic approximate inference, which is op-

posed to stochastic approximate methods based on sampling. We further show in

this section that the well known expectation maximization (EM) algorithm can be

interpreted as a special case of VB inference.

Next, in Section 2.2 we present sparse Bayesian learning (SBL), a probabilistic

Bayesian regression method used in machine learning. Different SBL approximation

techniques available in the literature are discussed. However, since there are con-

ceptual inconsistencies involved in most of the methods, we will analyze and clarify

these in detail. We show that the VB approach to SBL does not suffer from such

inconsistencies and, therefore, we use it as the basis for all later developments in

this thesis.

Finally, in Section 2.3, we give a short introduction on consensus propagation

(CP), a distributed averaging protocol used in sensor networks. CP is important

to understand the derivations of a distributed VB SBL method developed later in

Chapter 4. Thus, this section introduces a framework that allows the derivation of a

distributed algorithm based on the methods discussed in Section 2.1 and Section 2.2.

The derivations of CP are presented as an application of the sum-product algorithm

on a loopy Gaussian factor graph, which leads to loopy belief propagation (LBP).

2.1 Variational Bayesian inference

Consider a probabilistic model defined by the joint probability p(H,O) over the

set of hidden random variables H and observed random variables O. Typically,

from such a model we would like to obtain the posterior p(H|O), i.e., we would like

17
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to make inference about H given O. As widely known, the posterior p(H|O) can

be obtained using Bayes’ theorem p(H|O) = p(O|H)p(H)/p(O) = p(H,O)/p(O),

but unfortunately the computations are infeasible for many practical models. For

continuous random variable models this is due to the intractable1 integral in the

normalization term p(O) =
∫
p(H,O) dH, which is referred to as the model evidence.

High dimensional and complex integrands make numerical integration impractical

and especially in such cases alternative approximate inference methods need to be

found. For discrete random variable models, although in principle always tractable,

the number of hidden states in the marginalization sum can be prohibitively large

in many practical models [4]. Note that although the presented concepts hold for

continuous and discrete random variables we restrict all analyses in this thesis on

the continuous case.

Basically there exist two types of approximation schemes to approximate the

intractable posterior p(H|O). The first scheme is based on stochastic approxima-

tion, where sampling methods like Markov chain Monte Carlo [75] are used. These

methods could theoretically lead to the exact posterior densities given unlimited

computational resources [4]. However, considering limited resources, real world im-

plementations often lead to useless approximations, especially for high dimensional

distributions.

The second scheme is based on deterministic approximations, where the intractable

posterior p(H|O) is approximated by a pdf q(H) that typically is of a simpler struc-

ture than the posterior. That is,

q(H) ≈ p(H|O), (2.1)

where for simplicity of notation we omit writing the dependence on the observed

variables O in the approximation q(H).2 The approximation need to be as close as

possible to the intractable posterior p(H|O) according to some distance measure.

Variational Bayesian inference [34, 4, 76], sometimes just termed Variational

Bayes (VB), is such a deterministic approximation scheme and will be explained

in the following. Another example for a deterministic approximation scheme is

expectation propagation [77].

1This means that no closed-form analytical solution exists.
2Note that q(H) indirectly depends on O since it approximates the posterior that obviously depends

on O. The compact form of notation q(H) is common in the literature; see, e.g., [34, 4].
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2.1.1 Variational lower bound

It is easy to show that the logarithm of the intractable model evidence can be

decomposed [4] as

ln p(O) = L(q) + KL(q‖p), (2.2)

where we define the variational lower bound functional L(q) and the Kullback-Leibler

divergence KL(q‖p) as follows:3

L(q) =

∫

q(H) ln

{
p(H,O)

q(H)

}

dH, (2.3)

KL(q‖p) =

∫

q(H) ln

{
q(H)

p(H|O)

}

dH. (2.4)

From a VB perspective, the best approximating distribution q∗(H) is the one that

minimizes the KL-divergence given in (2.4). As by definition of a KL-divergence,

KL(q‖p) ≥ 0 for all valid densities q and p, the best approximation with KL(q∗‖p) =

0 is achieved if and only if q∗(H) = p(H|O). Unfortunately, if p(H|O) is intractable,

we cannot minimize (2.4) directly. The way out of this problem lies in Equation (2.2).

Because ln p(O) is constant with respect to q and KL(q‖p) ≥ 0, maximizing L(q) is

equivalent to minimizing KL(q‖p) with respect to q. This is illustrated in Figure 2.1.

The functional L(q) is typically denoted as the variational lower bound, since it is a

lower bound on ln p(O). The obvious advantage of optimizing over L(q) instead of

the KL-divergence, is that it is tractable while it still solves the same problem.

The reason, the whole discussed approach is denoted as Variational Bayes, lies

in the fact that functionals are optimized here and the mathematical field dealing

with such problems is named calculus of variations; see, e.g., [78]. Even though

in our analysis we will not use typical methods of calculus of variations like the

Euler-Lagrange equation, equivalent results that are based on such analysis can be

found for instance in [34].

Minimizing the divergence KL(q‖p) like in (2.4) is only one approach of obtaining a

deterministic approximation of the posterior. Expectation propagation [77, 4] for in-

stance aims to minimize the reversed KL-divergence KL(p‖q). Both KL-divergences

KL(q‖p) and KL(p‖q) are special cases of the broader alpha family of divergences

[79]. It can be shown that VB focuses the propability mass of the approximation q

3Note that the arguments q and p in L(q) and KL(q‖p) are short form notations for the approxi-
mating distribution q(H) and the true posterior p(H|O) respectively. Thus L(·) and KL(·‖·) are
both functionals, i.e., they take functions as arguments.
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KL(q||p) ≥ 0

L(q)

ln p(O)

Figure 2.1: Maximizing L(q) with respect to q is equivalent to minimizing KL(q‖p)
because the sum of both terms given in (2.2) does not depend on q and
the KL-divergence cannot get negative.

at regions with high probability mass of the true posterior p, whereas expectation

propagation approximates it over a broader region including areas with very low

probability [79, 4]. This property makes VB a very good choice when dealing with

multimodal densities as we typically have in SBL which is introduced in Section 2.2.

2.1.2 Mean field approximation

Up to now we have made no assumptions about the form of q(H). For many prac-

tical problems with numerous hidden variables, it turns out that it is convenient to

separate H into disjoint subsets {H1, . . . ,HS} and assume that q(H) factorizes as

q(H) =

S∏

i=1

qi(Hi). (2.5)

This factorization is called mean field approximation if all individual hidden vari-

ables fully factorize4 and structured mean field approximation if non-fully factorized

subsets of H are used. This approach has its origin in physics [4]. Inserting (2.5)

into the variational lower bound functional (2.3) and separating the terms that de-

pend on a particular factor ql(Hl) from the others, denoted as ql̄(Hl̄) =
∏

i6=l qi(Hi),

which are considered as constants, gives:5

L(q) = L(qlql̄) =

∫ S∏

i=1

qi






ln p(H,O)−

S∑

j=1

ln qj






dH

4In the literature this is also known as singleton or unit subset; see, e.g., [80, Section 1.8.1].
5Similar as before, we write ql and ql̄ instead of ql(Hl) and ql̄(Hl̄) respectively.
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=

∫

ql

{∫

ql̄ ln p(H,O) dHl̄

}

dHl −
∫

ql ln ql dHl + const.

=

∫

ql Eql̄

{

ln p(H,O)
}

dHl −
∫

ql ln ql dHl + const.

=

∫

ql ln







exp
(

Eql̄

{

ln p(H,O)
})

ql






dHl + const.

= −KL(ql‖p̃l) + const., (2.6)

where Eql̄
{·} is the expectation operator with respect to the distribution ql̄. We have

to assure that p̃l is a normalized distribution and thus the maximizing solution of

L(q) with respect to ql is

q∗l (Hl) = p̃l(Hl) =
exp

(
Eql̄
{ln p(H,O)}

)

∫
exp

(
Eql̄
{ln p(H,O)}

)
dHl

, (2.7)

since this is the only case the negative KL-divergence term in (2.6) vanishes. All

other ql 6= p̃l would lead to a lower bound L(q) that is less tight. Since in (2.7)

we wrote ql = p̃l, the optimal solution is assumed to be achievable, which is known

as the unconstrained factor update. If we however restrict ql to a certain family

of probability densities ql ∈ Ql with p̃l 6∈ Q, we need to optimize (2.6) under this

constraint. An example for such a case is given later in Section 2.1.3.

Because the expectation in (2.7) depends on all other factors than ql, i.e., qi

for i 6= l, the expression is not explicit and we need to update all factors in any order

to converge to a local optimum of L(q). Also, since this is an iterative method, we

need to initialize the factors qi for i 6= l at the beginning if we start by updating the

factor ql first. Convergence of mean field (or structured mean field) VB inference to a

local maximum of L(q) is guaranteed, since the individual updates (2.6) are concave

with respect to each ql, l = 1, . . . , S. This is because the KL-divergence in general

and in particular in (2.6) is convex with respect to both of its arguments [81]. Note

that due to the non-convex set of factorized distributions (factorization constraint)6,

convergence of mean field VB can only be guaranteed to a local maximum of L(q)

in general.

6The non-convexity of the set can be shown from the convex combination θ
Q

i qA
i (Hi) + (1 −

θ)
Q

i qB
i (Hi) = qC(H) for 0 ≤ θ ≤ 1, where qC(H) does not factorize ifself in general, i.e., it is

not of the form
Q

i qC
i (Hi); cf. [81].
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2.1.3 Expectation-Maximization as a special case of mean field

variational Bayes

In this section we show that the well known EM algorithm [82, 83, 4] is a special case

of variational Bayesian inference using a structured mean field approximation over

the hidden variables H = {θ, H̃}, where we have separated H into some parameters

of interest θ and the remaining hidden variables H̃ [84]. Note that in this VB

interpretation of the EM algorithm also the parameters of interest θ are considered

as hidden random variables.

However, before we start with the VB interpretation of the EM, we first start with

its common definition to make all further analysis clear. Basically, the EM algorithm

is defined for maximum likelihood (ML) as well as for maximum a posteriori (MAP)

estimation of some parameters θ given p(H̃,O|θ) or p(H̃,O,θ) respectively. In the

ML version we are looking for θ̂ML = argmaxθ p(O|θ), where in the MAP version we

are interested in θ̂MAP = argmaxθ p(θ|O) = argmaxθ p(O|θ)p(θ). As before, we use

O to denote the set of observed random variables, where in the context of EM this is

also known as incomplete data. The set H̃ denotes hidden random variables and the

union {H̃,O} is termed complete data [4]. Since we have no access to the complete

data because H̃ is hidden, the EM algorithm is based on computing expectations

under the posterior of the hidden variables. Note that in this common form of the

EM algorithm, θ is only considered to be a random variable in the MAP version,

where a prior p(θ) needs to be specified.

We summarize the E- and M-steps [4] for both versions of the EM-algorithm be-

low, where the steps need to be iterated until convergence.

EM for ML estimation EM for MAP estimation

Goal: maximize p(O|θ) w.r.t. θ Goal: maximize p(θ|O) w.r.t. θ

E-step:

Determine: q(H̃) = p(H̃|O, θ̂old
ML)

Define: Q(θ, θ̂old
ML) = Eq(H̃){ln p(H̃,O|θ)}

M-step:

Update: θ̂new
ML = argmaxθ Q(θ, θ̂old

ML)

E-step:

Determine: q(H̃) = p(H̃|O, θ̂old
MAP)

Define: Q(θ, θ̂old
MAP) = Eq(H̃){ln p(H̃,O, θ)}

M-step:

Update: θ̂new
MAP = argmaxθ Q(θ, θ̂old

MAP)

We now start with the VB interpretation of the MAP-EM. Since we can interpret

the ML-EM as a MAP-EM with flat priors p(θ) ∝ 1, which can be easily seen from

Bayes’ theorem, it is enough to show that MAP-EM is a special case of mean field

VB. That is, if the latter can be shown for MAP-EM, it also holds for ML-EM.
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Consider a probabilistic model given by the joint distribution p(H,O) = p(H̃,O,θ),

where the hidden variablesH from our VB analysis are now separated into two sets θ

and H̃ as we have already mentioned above. The variational posterior approximation

q(H) is assumed to factorize as

q(H) = q(H̃)q(θ). (2.8)

From (2.7) we can obtain the optimal unconstrained variational updates for q(H̃)

and q(θ), respectively, as

p̃(H̃) =
exp

(

Eqθ
{ln p(H̃,O,θ)}

)

∫
exp

(

Eqθ
{ln p(H̃,O,θ)}

)

dH̃
(2.9)

and

p̃(θ) =
exp

(

EqH̃
{ln p(H̃,O,θ)}

)

∫
exp

(

EqH̃
{ln p(H̃,O,θ)}

)

dθ
. (2.10)

By taking the unconstrained solution (2.9) for q(H̃) while constraining the ap-

proximative parameter density q(θ) to a Dirac delta point mass distribution q(θ) =

δ(θ − θ̂) centered on θ̂, we will show that the MAP-EM algorithm is a special case

of VB inference assuming the factorization (2.8). Using such a point estimate leads

to a deterministic interpretation of q(θ), since there is no more uncertainty involved

in the outcome if samples were drawn from it.

Let us now start with the unconstrained update q(H̃) = p̃(H̃) given in (2.9). This

update corresponds in part to the E-step of the EM algorithm. From (2.9), we see

that the update depends on q(θ) via the expectation, where q(θ) is from the previous

iteration since in VB, as discussed in Section 2.1.2, we need to iterate over the factors

until convergence. We define q(θ) from the previous iteration as δ(θ − θ̂old) with

center θ̂old. Note that we need to specify some initial θ̂old at the beginning.

When we now consider the expectation term from (2.9)

Eqθ
{ln p(H̃,O,θ)} =

∫

δ(θ − θ̂old) ln p(H̃,O,θ)dθ = ln p(H̃,O, θ̂old)

we obtain

q(H̃) =
p(H̃,O, θ̂old)

∫
p(H̃,O, θ̂old)dH̃

= p(H̃|O, θ̂old), (2.11)

which is the hidden posterior given the old parameters. This is a part of the E-step
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for both, the ML- and MAP-EM algorithm as shown above.

Since we have constrained the update of q(θ), the result (2.10) cannot be used

directly as solution and we need to resort to the optimization problem (2.6) under

the Dirac delta constraint. Finding this optimum reduces to the problem of finding

the point mass center, which we denote θ̂new, since this is the only degree of freedom

of q(θ). This parameter can be obtained as

θ̂new = argmin
θ̂

KL( δ(θ − θ̂)‖p̃(θ) ) = argmax
θ̂

ln p̃(θ̂)

= argmax
θ̂

EqH̃
{ln p(H̃,O, θ̂)}, (2.12)

where we have inserted the Dirac delta distribution into the KL-divergence and

solved the integral. Equations (2.11) and (2.12) together form the E- and M-steps

of the MAP-EM (and also for the ML-EM algorithm if flat priors p(θ) ∝ 1 where

used as discussed before). To see the equivalence between both, the E- and M-steps,

we can introduce an intermediate function Q(θ̂, θ̂old) for the expectation in (2.12)

and make it a part of the E-step. Note that this does not change anything from

a mathematical point of view but separates the expectation in the E-step from the

maximization in the M-step.

2.2 Sparse Bayesian learning

In this section we introduce SBL, a Bayesian supervised learning method for regres-

sion, which aims at finding a function that maps arbitrary inputs x ∈ R
D to targets

t ∈ R based on some training data D = {xn, tn}Nn=1. This function, which we denote

y(x,w), depends on a set of parameters w, where w is a vector. The individual

elements of w are only relevant for the shape of the function y(x,w) over x if they

have non-zero values. The term sparse in SBL refers to finding a model that has

many zero elements in w, i.e., we would like to find a sparse vector w. Such models

are computationally cheaper to evaluate and are typically less prone to overfit the

training data as compared to complex models [85]. In an SBL model, this sparsity

is achieved by defining a special kind of prior over w, namely one that leads to a

posterior which is highly peaked at zero for such irrelevant components. We will

describe this mechanism later in more detail.

The next subsections are organized as follows. Section 2.2.1 defines the SBL

model. In Section 2.2.2, we summarize different methods proposed in the literature
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m = 1, . . . ,Mn = 1, . . . , N

tn αmwm

τ

xn
a

b

c

d ψm(·)

Figure 2.2: A Bayesian network representing the Sparse Bayesian learning model.

to tackle the problem of approximate SBL inference, since there exists no closed

form solution for SBL inference. Some of these methods involve inconsistencies in

their derivations related to the original model definitions given in [1], which we also

present in Section 2.2.1. We discuss these inconsistencies in Section 2.2.3 and resolve

why they, despite of their slightly different derivations and model parameterizations,

still lead to the same algorithms after all. Based on this discussion, we also give

reasons why the focus of this work is on the VB approach to SBL and not on the

other presented methods. Finally, in Section 2.2.4 we shortly discuss how sparsity

even arises from the presented probabilistic framework.

2.2.1 Model definition

Consider the probabilistic model represented as a Bayesian network (BN) in Fig-

ure 2.2. Basically, a BN is a graphical model representing the conditional depen-

dencies between random variables in the form of a directed acyclic graph.7 In our

work, we adhere to the notation given in [4], where we use shaded nodes to denote

observed random variables, unshaded nodes to represent hidden random variables

and dots to indicate deterministic parameters. Additionally, we find it convenient to

also represent deterministic functions using the dot notation. This is not common in

the literature but it allows us to include all parts of the SBL model into a single BN.

In such a model, we would like to make inference about the hidden variables

given the observations tn corresponding to inputs xn, n = 1, . . . , N , which are given

from the training data D. After learning the pdfs of the hidden variables given the

observations, we can make predictions about some t∗ given any arbitrary input x∗

as will be discussed in Section 2.2.2.

7For more information on BNs we refer to standard textbooks on probabilistic inference and
machine learning, e.g., [4, 20, 21].
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The SBL model depicted in Figure 2.2, represents the joint probability

p(t, τ,w,α) = p(t|τ,w) p(w|α) p(α) p(τ), (2.13)

where we have used the vector notations t = [t1, . . . , tN ]T , w = [w1, . . . , wM ]T and

α = [α1, . . . , αM ]T to denote targets, weights, and hyperparameters, respectively.

The model of the form (2.13) was first proposed in [1] although it originates from [23],

where α and τ were modeled as deterministic parameters without priors. The exact

meaning of the individual variables will become clear in the next paragraphs, when

we define the individual pdfs given in (2.13).

In (2.13), and also in the following pdf notations, we have only included the

random variables and not the deterministic parameters for a compact notation.

This is common in the literature, since in a fully Bayesian treatment the fixed

deterministic parameters are important to define the individual pdfs but have no

importance in the general Bayesian analysis. The exact influence of these parameters

on the model densities will also be shown in the following.

The first term in (2.13) is defined as p(t|τ,w) = N (t|y, τ−1I), a multivariate

Gaussian pdf with mean vector y = Φw and covariance matrix τ−1I, where τ is

denoted as noise precision (inverse noise variance). The matrix Φ is called design

matrix and its elements are given as Φnm = ψm(xn), where ψm(·) is a basis function

from a dictionary of M predefined fixed basis functions and xn is an input sample

from the training data D. Thus, the design matrix Φ only depends on the dictionary

of basis functions evaluated at the inputs from the training data. The elements yn

in y = [y1, . . . , yN ]T are therefore given as

yn = y(xn,w) =
M∑

m=1

wmψm(xn), n = 1, . . . , N, (2.14)

where the parameters w are the weights for the basis functions, which we further de-

note as weight parameters or simply as weights. The function y(x,w) used in (2.14)

is the regression function that aims to map inputs x to targets t as we mentioned at

the beginning of this section. The pdf p(t|τ,w) is denoted as observation likelihood,

since it is a likelihood function of the noise precision τ and the weight parameters

w for given targets t.

Based on the above definition of the observation likelihood, the observed targets t

can be interpreted as noisy8 versions of the regression function y(x,w) evaluated at

8Here, we use the term noise to denote a perturbation which incorporates both, potential model
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all inputs xn, i.e.,

tn = y(xn,w) + ǫn, (2.15)

where the ǫn ∼ N (ǫn|0, τ−1) are i.i.d. Gaussian noise samples.

If no prior is defined over the weights w, finding the best function y would mean

finding the most likely weights by maximizing the likelihood p(t|τ,w) with respect

to w. This ML result is well known in the literature and is equivalent to the least

squares result which minimizes ‖t−y‖2 over w. The ML result wML = (ΦTΦ)−1ΦT t

is independent of the noise precision and thus there is no need to estimate τ in this

case. ML is known to lead to severe overfitting in many practical situations [4].

Overfitting can be avoided by introducing a prior over the weights, which, under

some conditions, can also encourage sparse solutions [29]. We use the term sparse

to denote solutions w∗ which have a small number of non-zero elements, i.e., the

ℓ0-quasinorm ‖w∗‖0, which gives the number of non-zeros in w∗, is small. From

(2.14) it can be seen, that weights which are zero have no influence on the model

and thus the corresponding basis functions can be pruned.

As the set of basis functions ψm(·) can be chosen freely, one can also make them

depend on the data. Such methods are called non-parametric and can result in

highly flexible models as we already discussed in Chapter 1. The relevance vector

machine (RVM) [23, 1] is such a special case of SBL and uses kernel functions9

ψn(x) = κ(x,xn) (located on the input data samples) beside a constant bias term,

thus resulting in M = N + 1 basis functions.

Now, coming back to the SBL model definition, the overall weight prior as shown

in Figure 2.2 is of a hierarchical nature. That is, the prior p(w|α), which we also

denote as conditional weight prior, depends on another random variable α that

itself has a prior distribution p(α), which we denote as hyper prior. Note that all

distributions used in SBL belong to the exponential family of distributions10 and all

priors are defined as conjugate priors11. We define the conditional weight prior as

p(w|α) =
M∏

m=1

N (wm|0, α−1
m ), (2.16)

which is a zero mean Gaussian distribution with precision (inverse variance) param-

mismatches and real measurement noise. Later in Chapter 3, Section 3.3.3 we analyze both
effects separately.

9For more information on kernels, we refer to standard literature like [11].
10For a general definition of exponential family distributions, see standard textbooks, e.g., [4].
11If a posterior distribution belongs to the same family of distributions as the prior when Bayes’

theorem is used, the prior is called a conjugate prior with respect to the likelihood.
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eters αm for m = 1, . . . ,M . We denote α1, . . . , αM as the hyperparameters.

The hyperprior p(α) and the prior for the noise precision p(τ) are defined as

p(α) =

M∏

m=1

Ga(αm|a, b) (2.17)

and

p(τ) = Ga(τ |c, d), (2.18)

where Ga(z|η, λ) = λη

Γ(η)z
η−1 exp(−λz) is a gamma distribution12 over z ≥ 0 with

η > 0, λ > 0 and the gamma function Γ(η) =
∫∞
0 νη−1 exp(−ν) dν. Note that a

gamma distribution is a conjugate prior for the precision parameter of a Gaussian

likelihood which is the case for both αm and τ .

Although a gamma distribution Ga(z|η, λ) is defined for η > 0 and λ > 0, the

limit case η → 0, λ → 0 is of particular interest in this thesis. Setting a and b

in (2.17) to zero, leads to a Jeffreys prior p(αm) ∝ 1/αm for the hyperparameters.

A Jeffreys prior [87] is an objective non-informative prior that is invariant under

reparameterization; cf. [88, 89, 90]. A non-informative prior is a prior which is in-

dented to have as little influence on the posterior distribution as possible [4]. It is

thus a good choice if no prior information is available. Invariance under reparame-

terization means that if we consider two likelihoods p(x|z) and p(x|z′), which only

differ in the parameterization z and z′, where z′ is a transformation of z defined as

z′ = g(z) using an invertible function g(·), the priors p(z) and p(z′) should lead to

the same posterior p(z|x), no matter if directly computed with p(z) or retransformed

from p(z′|x) obtained with p(z′).13 Such priors can be objectively derived from the

corresponding likelihood function using Jeffreys’ rule [87].

The SBL model, as defined in [1], is specified with non-informative hyperparame-

ters and non-informative noise precision, i.e., also p(τ) is a Jeffreys prior defined as

p(τ) ∝ 1/τ which can be obtained by setting c and d in (2.18) to zero. In [1] it is

stated that such priors lead to scale invariance in the SBL model, i.e., predictions

are independent of linear scaling of both t and the basis functions ψm(·). This is

a pleasing property, since the results do not depend on the unit of measurement.

Such priors are flat over a logarithmic scale, i.e., p(lnαm) ∝ 1 and p(ln τ) ∝ 1. Intu-

12For more information about the gamma distribution see, e.g., [86, 4]. Note that the exact defini-
tions are slightly different in the literature. In [4] for instance, Ga(z|η, λ) is defined for z > 0,
whereas in [86] it is defined for z ≥ 0. Note that throughout the thesis we only consider the
latter definition.

13Note that for the latter we need to apply the transformation rule for random variables [91].
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itively, this means that the prior probability of values between 1 and 10 is the same

as between 10 and 100 and so on. We also note that even though the Jeffreys prior

is an improper prior, i.e., it does not integrate to 1, it is reasonable and widely used

in cases where the posterior has a proper form14. In Appendix A.1, we formally

derive the scale-invariant priors p(α) ∝∏M
m=1

1
αm

and p(τ) ∝ 1/τ from the scale

invariance assumption of the SBL prediction with respect to scaling the targets t.

The predictive scale invariance with respect to scaling the basis functions ψm(·) can

be shown in a similar way.

Sparsity within models of the form (1.1), which are linear in the parameters,

can be obtained through prior distributions p(wm) that have flat tails and a sharp

peak at zero [29, 92]. Such priors are also denotes as sparsity-inducing priors.

In SBL, we have not directly specified p(wm), but it can be obtained through

marginalization, i.e., by integrating over the hyperparameters of the joint prior

p(wm, αm) = p(wm|αm)p(αm). We denote the resulting prior p(wm) as the effective

weight prior. Note the difference to the conditional weight prior p(wm|αm). The

effective SBL weight prior can be computed as

p(wm) =

∫

p(wm|αm)p(αm)dαm ∝
(

b+
w2

m

2

)−(a+ 1
2
)

, (2.19)

which has the form of a Student’s-t distribution; cf. [1]. In Figure 2.3, we show

different settings for a and b compared to a Gaussian distribution. Smaller a and

b lead to peakier distributions around zero. That is, in the limit case a = b = 0,

which we consider in SBL, p(wm) ∝ 1/|wm| is strongly sparsity inducing. However,

note that p(wm) is improper for this case. Later in Section 2.2.4, we further analyze

in detail how sparsity is obtained within the SBL model.

The reason that we included the known parameters a, b, c, d in the first place,

albeit it turned out that all are considered to be 0, was to show their influence on

the model. This general form is important for further analysis presented in the next

sections, where we discuss another improper setting widely used in the literature,

namely a = c = 1 and b = d = 0. Furthermore, working with improper priors

should be done with care, as they are per definition no valid probability densities.

In Appendix B, we show for the particular case of fast variational SBL (later derived

in Section 3.2), that instead of setting a = b = 0 in advance, we can also obtain

equivalent results by computing the nontrivial limits a → 0, b → 0 of the general

14In SBL, we are more interested in a proper posterior approximation, since the true posterior is
intractable; see Section 2.2.2.
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Figure 2.3: (a) Effective SBL weight prior p(wm) for different settings of a and b
compared to a zero mean Gaussian with variance 4. If a and b get
smaller, p(wm) is more peakier at zero. This can be better seen in (b),
where all pdfs are scaled such that their respective largest value is 1.
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solutions with unspecified a and b.

2.2.2 Approximation methods

Based on the model defined in Section 2.2.1, we are interested in making predictions

for a target t∗ given an arbitrary input x∗ and the training data D. That is, we

need to evaluate the distribution15

p(t∗|t) =

∫

p(t∗|τ,w,α)p(τ,w,α|t) dτ dw dα. (2.20)

Unfortunately, the posterior over all hidden variables,

p(τ,w,α|t) =
p(t|τ,w,α)p(τ,w,α)

p(t)
, (2.21)

cannot be computed in closed form due to the intractable model evidence p(t).

Thus, also (2.20) cannot be computed in closed form and we need some effective

approximation.

In the following we discuss four common approximation methods proposed in the

literature, where all of these methods result in the same sequential update expres-

sions

Σ[i] =
(

τ [i−1]ΦTΦ + diag(α[i−1])
)−1

,

µ[i] = τ [i−1]Σ[i]ΦT t,

α[i]
m =

1

(µ
[i]
m)2 + Σ

[i]
mm

, ∀m,

τ [i] =
N

‖t −Φµ[i]‖2 + tr
(
Σ[i]ΦTΦ

) ,

(2.22)

although their derivations are different. Later in Section 2.2.3, we explain why this

is the case. Note that in (2.22), the iteration index i is defined as i = 1, 2, . . . and

some initialization α
[0]
m , ∀m, and τ [0] is required16.

The first two presented methods are based on the fact, that the posterior over all

hidden variables given the data can be decomposed as

p(τ,w,α|t) = p(w|t, τ,α)p(τ,α|t), (2.23)

15Like before, we leave out the known deterministic parts for a compact notation, i.e., also x∗.
16Note that alternatively we may also change the order of the update indices in (2.22) and start

with some initialization µ[0] and Σ[0].
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where the first term is the weight posterior given the noise precision and the hyper-

parameters. We just denote it as the weight posterior. It is a multivariate Gaussian

and can be computed as

p(w|t, τ,α) =
p(t|τ,w)p(w|α)

p(t|τ,α)
= N (w|µ,Σ), (2.24)

with

Σ =
(
τΦTΦ + diag(α)

)−1
(2.25)

µ = τΣΦT t. (2.26)

Equations (2.25) and (2.26) can be simply obtained by comparing the quadratic

exponent of the multivariate Gaussian distributions in (2.24)

p(w|t, τ,α) ∝ exp
{

− τ

2
(Φw − t)T (Φw − t)− 1

2
wT diag(α)w

}

∝ exp
{

− 1

2
wT
(

τΦTΦ + diag(α)
)

w
︸ ︷︷ ︸

wT Σ−1w

+ τwTΦT t
︸ ︷︷ ︸

wT Σ−1µ

}

,

where N (w|µ,Σ) ∝ exp{1
2 (w −µ)T Σ−1(w − µ)}.

The second term in (2.23) is the posterior of the noise precision τ and the hyper-

parameters α given the targets t. The assumed forms of the noise precision prior

p(τ) and the hyperpriors p(α) affect the form of p(τ,α|t), which essentially distin-

guishes the first two presented methods as we will see in the next paragraphs. Both

methods are based on an alternating update procedure between the weight posterior

(2.24) and the MAP point mass approximation of p(τ,α|t), i.e.,

{τMAP,αMAP} = argmax
τ,α

p(τ,α|t)

= argmax
τ,α

p(t|τ,α)p(τ)p(α).
(2.27)

Maximizing the marginal likelihood (MML)

Let us start with the method first proposed in [23], the maximum marginal likeli-

hood (MML) approach, which is also called type-II maximum likelihood method or

evidence procedure. The MML method assumes a flat prior for the noise precision

and the hyperparameters, i.e., it essentially maximizes p(t|τ,α), which is denoted as

the marginal likelihood. In the sense of the general model definition using gamma
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priors in Section 2.2.1, this is equivalent to setting a = c = 1 and b = d = 0, which

results in p(τ) ∝ 1 and p(αm) ∝ 1 for all m. Again, these are improper priors, but

not Jeffreys priors [87] as discussed above. Using such priors makes MAP estima-

tion equivalent to ML estimation. Note that for flat priors, the SBL prediction now

depends on the scaling of the targets t and the basis functions ψm(·). This is not

true for scale-invariant Jeffreys priors as stated in [1] and discussed in Section 2.2.1.

We further discuss this issue in Section 2.2.3.

The marginal likelihood, can be determined as17

p(t|τ,α) =

∫

p(t|w, τ)p(w|α)dw

=

∫

N (t|Φw, τ−1I)N (w|0, diag(α)−1)dw

= N (t|0, C), (2.28)

where C = τ−1I + Φ
(
diag(α)

)−1
ΦT , which can be simply obtained from standard

results for Gaussian marginalization [4]. Its maximum, as mentioned in [1], cannot

be obtained in closed form, although update expressions that depend on the previous

state of the weight posterior can be derived as

αm =
1

µ2
m + Σmm

, ∀m, (2.29)

and

τ =
N

‖t−Φµ‖2 + tr (ΣΦTΦ)
, (2.30)

where µm is the mth element of µ and Σmm the mth main diagonal element of Σ

defined in (2.25) and (2.26), respectively. The detailed derivations of (2.29) and

(2.30) are given in Appendix A.2. Note that the updates (2.29) and (2.30) are not

given in an explicit form since αm and τ depend on their previous states through Σ

and µ from (2.25) and (2.26), respectively. Thus, an iterative update procedure can

be defined and if we start with an initialization for α
[0]
m , ∀m, and τ [0], the method

(2.22) directly follows from the MML approach as we wanted to show.

By rearranging the terms in (2.29), one can also define implicit hyperparameter

updates in (2.22) that also depend on the previous α
[i−1]
m , namely

α[i]
m =

1− α[i−1]
m Σ

[i]
mm

(µ
[i]
m)2

, ∀m. (2.31)

17Note that it has the form of a Gaussian process [56, 4].
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This updates, as shown in [23, 1], are based on a related idea shown in [93] and

typically converge much faster; also see [29] for more comments. Because this re-

arranged updates have practical relevance for faster implementations but not for

our ongoing discussion, we restrict our further analysis on (2.29), although we use

the implicit updates for performance comparisons later in this thesis. Furthermore,

this heuristic implicit updates have no convergence guarantees as opposed to (2.29),

which will be shown in the context of the EM and VB approach later. To distinguish

the method with the update (2.29) from the method with the implicit update (2.31),

we denote them as MML and MML*, respectively, for later reference.

Updating α1, . . . , αM and τ alternately with µ and Σ as in (2.22) typically leads

to sparse solutions in the sense that many αm diverge towards infinity, which renders

the corresponding weight posterior over wm highly peaked at zero. In the limit case,

where wm = 0, the related basis function ψm(·) becomes irrelevant as can be seen

from (2.14), i.e., it can be pruned from the model.

With the MML approximation, the predictive distribution (2.20) becomes tractable

for given estimates τML and αML, and has a Gaussian form

∫

p(t∗|τML,w)p(w|t, τML,αML) dw = N
(
t∗|y∗, (τ∗)−1

)
, (2.32)

where we have inserted the delta approximation and made use of the identity

p(t∗|τ,w,α) = p(t∗|τ,w), since the targets are independent of the hyperparame-

ters given the weights. The latter relation is also directly visible from Figure 2.2,

where α is not in the Markov blanket [4] of t, which also holds for any predicted

target t∗. The prediction mean y∗ and precision τ∗ can be computed as

y∗ = µT φ(x∗) (2.33)

and τ∗ =
(

τ−1
ML + φ(x∗)T Σφ(x∗)

)−1
, (2.34)

with φ(x∗) = [ψ1(x
∗), . . . , ψM (x∗)]T . We note that since (2.32) is Gaussian, the

best prediction for the targets given the training data is the mean y∗ which is also

the mode.

Maximization of the marginal posterior over log-scale (MMP-log)

A maximization method of the marginal posterior over a logarithmic scale, which we

denote as MMP-log, is also presented in [1]. It differs from the MML approach by

assuming Jeffreys priors (a = b = c = d = 0) instead of flat priors and, furthermore,
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by maximizing the marginal posterior p(τ,α|t) over a logarithmic scale instead of a

linear scale. Note that, over a logarithmic scale, the priors are flat, as we already

mentioned in Section 2.2.1, and so the influence of the prior vanishes again, namely

{[ln τ ]MAP, [ln α]MAP} = argmax
ln τ, ln α

p(t| ln τ, ln α)p(ln τ)p(ln α)

= argmax
ln τ, ln α

p(t| ln τ, ln α).
(2.35)

After transforming the log-MAP estimators back to linear scale, it is easy to see that

the resulting update expressions are equivalent to MML. This seems counterintu-

itive, since we have assumed different priors p(τ) and p(α) for MML and MMP-log.

Indeed, there is a fundamental problem involved in this approach which will be

discussed in Section 2.2.3.

Finally we note, that since the updates are equivalent, all results from the MML

method can be equivalently applied to MMP-log.

Expectation maximization (EM-SBL)

If we treat the weights as the hidden variables, we can perform point estimation

for τ and α using the MAP-EM framework, which was presented to be a special

case of variational Bayes in Section 2.1.3. As we show in the following, the resulting

EM updates are only equivalent to the updates (2.22) if we consider flat priors p(τ)

and p(αm), ∀m.

In the E-step, we simply update the weight posterior p(w|t, τold,αold) given the

previous estimates τold and αold and consider the expectation

Ep(w|t,τold,αold){ln p(t, τ,w,α)} (2.36)

to be maximized over α and τ in the M-step. The maximization in the M-step leads

to the updates

αnew
m =







2a−1
µ2

m+Σmm+2b , a > 1/2

0 0 ≤ a ≤ 1
2

, ∀m. (2.37)

and

τnew =







N+2c−2
‖t−Φµ‖2+tr(ΣΦT Φ)+2d

, c > 1− N
2 and c ≥ 0

0, otherwise
, (2.38)

where the detailed derivations can be found in Appendix A.3.

From (2.37) we see that the MAP-EM approach to SBL with 0 ≤ a ≤ 1
2 fails
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for sparse estimation, since all αm get stuck at αm = 0, independent of the weight

posterior and thus also independent of the observations t. It is easy to see, that

(2.37) reduces to the known hyperparameter update in (2.22) only for a = 1 and

b = 0, i.e., for a flat hyperprior. Obviously, for Jeffreys priors, as a = b = 0, EM-SBL

fails for sparse estimation as discussed before.

From (2.38), we see that the update is only equivalent to our known update in

(2.22) for c = 1 and d = 0, which corresponds to a flat prior p(τ). Note that since N

is typically much larger than 2, the first solution τnew > 0 in (2.38) can be practically

achieved for any c ≥ 0.

We must note that our results (2.37) and (2.38) differ from the EM-SBL solutions

presented in [1, Section A.3, Eq. (48) and (50)]18, which in our opinion are flawed.

Since it turns out that the hyper- and noise-precision-priors must be flat to obtain

the same updates as in (2.22), the MAP-EM reduced to an ML-EM procedure for

this case and thus is closely related to the MML approach.

After convergence, predictions for targets t∗ can be equivalently made as before,

using (2.33) and (2.34).

Variational Bayesian approximation (V-SBL)

Compared to all previous approaches, the VB approximation is the only method not

using point estimates, i.e., the posterior is approximated by pdfs different from point

mass distributions. This approach, denoted as V-SBL, was presented in [35], but

together with the EM-SBL method did not get as much attention in the literature

compared to the MML and MMP-log method. We discuss in Section 2.2.3 why

this may be the case, although compared to the other presented methods, it is

conceptually the most profound one.

Given the joint distribution from (2.13), in consistency with our notation in Sec-

tion 2.1 we can define the set of hidden variables as H = {τ,w,α} and the observed

variables as O = {t}. We further assume a structured mean field approximation over

the approximate posterior as

q(H) = q(τ)q(w)q(α) = q(τ)q(w)
M∏

m=1

q(αm), (2.39)

where q(α) =
∏M

m=1 q(αm) automatically follows from the independence assumption

18Note that in [1, Equation (50)], the transformation (σ2)old
P

i γi = tr(ΣΦT Φ), shown in [1,

Section A.2.2], must be used for direct comparison. We further note that τ , β = σ−2 in [1].
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(pdf factorization) between the w and α posterior approximations. By applying

the optimal unconstrained update given in (2.7) to each factor from (2.39), we

obtain closed form solutions q(w) = N (w|µ̂, Σ̂), q(αm) = Ga(αm|âm, b̂m), and

q(τ) = Ga(τ |ĉ, d̂), with the parameters

Σ̂ =
(
τ̂ΦTΦ + diag(α̂)

)−1
, µ̂ = τ̂Σ̂ΦT t (2.40)

âm = a+ 1/2, b̂m = b+ (µ̂2
m + Σ̂mm)/2, (2.41)

ĉ = c+
N

2
, and d̂ = d+

‖t −Φµ̂‖2 + tr(Σ̂ΦTΦ)

2
, (2.42)

where τ̂ = Eq(τ){τ} = ĉ/d̂, α̂m = Eq(αm){αm} = âm/b̂m, α̂ = [α̂1, . . . , α̂M ]T , µ̂m is

the mth element of the mean vector µ̂, and Σ̂mm is the mth element on the main

diagonal of the covariance matrix Σ̂. For a detailed derivation we refer to [35].

The variational lower bound L[q(H)] (see Section 2.1.1) can be locally maximized,

by updating the distributions q(w), q(α) and q(τ) in any arbitrary order until

convergence, namely by updating the equations (2.40)-(2.42) in any order. Note

that we can directly work with α̂m instead of âm and b̂m because âm is a constant

and α̂m only depends on the other variables through b̂m. The same holds for τ̂ in

combination with ĉ and d̂, where both α̂m and τ̂ are sufficient to fully specify the

distributions q(αm) and q(τ), respectively. When we rewrite (2.41) and (2.42) in

terms of the expectations α̂m and τ̂ as specified above, we obtain

α̂m =
1 + 2a

µ̂2
m + Σ̂mm + 2b

, ∀m (2.43)

and

τ̂ =
N + 2c

‖t−Φµ̂‖2 + tr
(

Σ̂ΦTΦ
)

+ 2d
, (2.44)

where we would like to stress the differences in the numerators compared to the

EM-SBL solutions in (2.37) and (2.38). It is easy to see, that the updates are only

equivalent to the results presented in (2.22) if we set a = b = c = d = 0, i.e., if we

consider Jeffreys priors. Another difference to the previous methods is that we now

consider the expectations α̂m and τ̂ instead of point estimators at the modes.

Now, since we have a factorized posterior approximation q(H), predictions based

on (2.20) result in

p̂(t∗|t) =

∫

p(t∗|τ,w)q(τ)q(w) dτ dw, (2.45)

where we have integrated out α. Unfortunately, as mentioned in [35], the integration
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Name of Type of Uses point-
the method prior estimation

MML Flat Yes
MMP-log Jeffreys Yes
EM-SBL Flat Yes

V-SBL Jeffreys No

Table 2.1: Properties of the four approximations: maximizing the marginal likelihood
(MML), maximizing the marginal posterior over log-scale (MMP-log), ex-
pectation maximization SBL (EM-SBL) and variational SBL (V-SBL).

over both τ and w is intractable. However, according to [35], it can be reasonably

approximated by ∫

p(t∗|τ̂ ,w)q(w) dw = N (t∗|y∗, τ∗), (2.46)

with y∗ and τ∗ specified as in (2.33) and (2.34), where we use Σ̂, µ̂ and τ̂ instead of

Σ,µ and τML respectively; cf. [35]. Note that when the noise precision τ is known,

i.e., we do not have a q(τ) in (2.39), then (2.46) directly follows from (2.45) for τ̂ = τ .

2.2.3 Comparison and analysis of the discussed methods

In this section we want to compare and analyze the four previously presented meth-

ods used for SBL approximate inference. They all lead to the same iterative up-

dates (2.22) under certain assumptions. However, there are also some inconsistencies

involved which we will discuss in detail.

Since SBL optimization is multimodal, we are not guaranteed to find a global

optimum. However, empirically, in many situations these local optima typically

lead to very sparse solutions with good predictive performance. A more detailed

analysis of SBL local optima in the MML context can be found in [29].

Table 2.1 summarizes the main properties of the methods. Type of prior refers to

the used parameterization for the noise precision and hyperparameter priors defined

by (2.18) and (2.17) to obtain update expressions of the form (2.22) for each method.

From this perspective, the only two methods that are consistent with the SBL model

defined in Section 2.2.1 and [1], which uses scale-invariant Jeffreys priors, are MMP-

log and V-SBL. We further see from Table 2.1 that V-SBL is the only method

not using point mass approximations, i.e., it is the only approach with a Bayesian

treatment that approximates the posterior with a pdf different to a point mass mode

estimator.
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Convergence of all four methods given in Table 2.1 is guaranteed. This automat-

ically follows from the general convergence properties of EM and VB and the fact

that all methods lead to equivalent updates under their respective settings. Note

that for MML*, which is based on the implicit updates (2.31), convergence has not

been proven to our knowledge.

Now let us analyze MMP-log, which is consistent with the SBL model definition

using Jeffreys priors. We want to find out why it obtains equivalent results as MML,

even though MML is not consistent with our scale-invariant definition of the SBL

model, since it uses flat priors. The main difference of MMP-log related to MML, is

that the maximization of the marginal noise precision and hyperparameter posterior

is performed over a logarithmic scale instead of a linear scale. As pointed out

in [94, 54], for a variable-transformation using an invertible function g(·), the MAP

estimate [α]MAP in general is not equal to g−1([g(α)]MAP), where g−1(·) is the inverse

function of g(·). That is, transforming the random variables to log-scale does not

solve the same problem and thus the MMP-log approach is misleading. The reason

why MMP-log nevertheless leads to the same results as MML, is that the influence

of the Jeffreys prior vanishes over log-scale, i.e., it becomes an ML approach instead,

and the relation [α]ML = g−1([g(α)]ML) always holds for ML. Note the fundamental

difference between the transformation of a random variable vs. the transformation

of a likelihood parameter.

In the following we investigate the difference between the EM and the VB ap-

proach. EM-SBL uses point estimates τ and α, whereas V-SBL can be expressed

in terms of the expectations τ̂ and α̂.19 By noting that the mode of the gamma

pdf Ga(αm|âm, b̂m) is (âm − 1)/b̂m for âm > 1 and zero for 0 ≤ âm ≤ 1, whereas

its expectation is âm/b̂m, it is clear that both estimates lead to the same result for

flat and Jeffreys priors, respectively. Based on the discussion about EM and VB

in Section 2.1.3, this can be seen from (2.41), where the mode estimate over q(αm)

using a = 1 and b = 0 in (2.37) equals the expectation for a = b = 0 in (2.43).

Similarly, the same equivalence holds for the noise precision τ when we compute the

point estimator (2.38) for d = 1 and c = 0 and the expectation estimator (2.44) for

c = d = 0 from (2.42).

To summarize, the equivalence of EM-SBL and V-SBL for their respective priors

seems to be a coincidence. It is only based on the mode and expectation relations of

the gamma distribution. That is, the difference between the mode and the expecta-

tion estimator corrects the effect of the different prior assumptions, namely for the

19This is not true for VB in general, but holds for V-SBL.
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flat and Jeffreys prior, respectively.

There are further methods for approximate SBL inference in the literature. Many

are closely related to the presented ones. The approach [95] for instance uses Jef-

freys hyperpriors with the EM algorithm, where the hyperparameters are considered

as hidden variables while the weights and noise precision are estimated in the M-

step. Note that this is different from EM-SBL, where the weights are considered as

hidden variables. Nonetheless, it is also just a special case of VB, although the up-

date expressions turn out to be slightly different for this modified usage of the EM.

Another alternative method is presented, e.g., in [96]. In this work, the negative

log-marginal likelihood function is minimized via an auxiliary upperbounding func-

tion. This procedure, however, still optimizes the marginal likelihood and produces

point estimators rather then densities, i.e., it has the same conceptual weaknesses

as discussed for MML, namely that it does not consider a scale-invariant model.

Finally, it should be mentioned that as we have shown in this section, all four

discussed methods, which are based on different approximation techniques, lead

to the same implementations under different model assumptions. However, as we

have shown, the V-SBL approximation is the only method that is able to properly

consider a scale-invariant SBL model, which is defined with the Jeffreys prior settings

a = b = c = d = 0 as pointed out in [1].

Why variational sparse Bayesian learning?

Throughout this thesis we investigate the VB approach to SBL for many reasons.

Although some reasons were already discussed before and given in Table 2.1, let us

summarize the main ones as follows:

• VB is more general than EM, where the latter is included as a special case

(see Section 2.1.3).

• VB approximates the posterior of hidden variables given the data by a density

which is located around regions with large probability mass. That is, it uses a

Bayesian approximation that carries information beyond the posterior mode.

• Convergence of VB is always guaranteed, since the lower bound is convex with

respect to each approximation factor [4].

• VB allows to use different prior distributions including scale-invariant Jeffreys

priors, which have desired properties for SBL as mentioned in [1] and discussed

in Section 2.2.1.
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• VB is a general deterministic approximate inference framework that can be

applied to many different models. This also includes extensions to the SBL

model as we will show in Chapter 4.

The EM-SBL and the VB-SBL methods did not get as much attention in the

literature compared to MML and MMP-log. We think that this mostly has practi-

cal reasons. For MML/MMP-log [1], a faster method with implicit hyperparameter

updates (i.e., MML* with update (2.31)) is defined, although, compared to (2.29),

these updates have no proven convergence guarantees to our knowledge. Further-

more, in [68], a very fast but greedy algorithm was proposed to further speed up

MML’s convergence. It computes a maximizer of the marginal likelihood with re-

spect to each single αm in closed form, but still assumes flat priors and thus is not

consistent with the SBL model definition based on scale-invariant priors (see Sec-

tion 2.2.1). In Chapter 3, we develop an equivalent fast method for V-SBL based

on fixed-point iterations, where our derivations are consistent with scale-invariant

priors as discussed in Section 2.2.1.

2.2.4 How sparse Bayesian learning leads to sparsity

First, consider the fundamental sparse recovery problem [29]

wλ
0 = argmin

w
‖Φw − t‖22 + λ‖w‖0, λ > 0, (2.47)

where λ is an accuracy of fit vs. sparsity trade-off parameter, and ‖ · ‖0 is the

ℓ0-quasinorm which counts the number of non-zeros of a vector argument. Note

that in general it is not clear how to set λ in the presence of model mismatches

and/or data noise to obtain a certain sparsity and/or accuracy of fit, although the

optimization problem (2.47) can be interpreted as the augmented Lagrangian form

of both problems

wM̃
0 = argmin

w
‖Φw − t‖22, s.t. ‖w‖0 ≤ M̃, M̃ > 0 (2.48)

and

w
η
0 = argmin

w
‖w‖0, s.t. ‖Φw − t‖22 ≤ η, η > 0, (2.49)

which allow to specify these parameters, respectively. For the noiseless case without

model mismatches, when perfect reconstruction is possible, i.e., Φw = t, we obtain
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the exact sparse recovery problem as λ → 0 [97]20, thus there is no trade-off pa-

rameter in this case. Both, the exact sparse recovery problem and (2.47), although

theoretically important, are combinatorial NP-hard problems, which makes them

computationally impractical for many scenarios. Alternatively, relaxations to the

ℓ0-quasinorm have been defined to reduce this computational burden. The tightest

convex approximation to the ℓ0 quasinorm is the ℓ1 norm, which results in widely

used methods called LASSO [31] or equivalently Basis Pursuit21 [25]. This convex

approximation, although leading to a unique global optimum, is not as sparse com-

pared to non-convex approximations closer to the ℓ0 quasinorm like, e.g., ‖w‖p with

p < 1 [97, 98]. Roughly speaking, the better we approximate the ℓ0 quasinorm, the

more sparse our solution may be, but this is at the expense of getting more and

more local optima, which again increases the computational burden when we are

seeking for the best solution. So, basically we are interested in a method that can

be computed quite efficiently while at the same time has a small number of local

optima. It turns out that SBL is a very useful tool to trade-off these issues by having

few local optima which typically correspond to very sparse solutions. That means,

in practical situations, we can only locally optimize SBL to obtain good solutions.

Furthermore, as pointed out in [29], for the noiseless case, the SBL global optimum

is always equal to the maximally sparse solution, which does not hold for LASSO.

In the following we only consider the noise and/or model mismatch case (2.47) and

relaxations thereof, i.e., we do not consider exact sparse recovery problems.

Before we show how MAP estimation in the SBL model relates to the structure

of the problem (2.47), we note that all the above mentioned sparse recovery prob-

lems can be rewritten as MAP estimation problems using sparsity inducing prior

distributions over w. That is

wMAP = argmax
w

p(t|w)p(w), (2.50)

with a Gaussian likelihood

p(t|w) ∝ exp

{

− 1

2λ
‖Φw − t‖22

}

(2.51)

and a factorial prior

p(w) ∝ exp

{

−1

2

M∑

m=1

g(wm)

}

. (2.52)

20Note that, as mentioned in [97], the limit must be taken outside the minimization.
21Sometimes also called Basis Pursuit Denoising when noise and/or model mismatches are present.
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A prior of the form (2.52) is termed a sparse prior if g(
√·) is a concave and non-

decreasing function on the interval [0,∞) [92, 99, 97]. In this sense, the equivalent

prior for (2.47), defined as

p0(w) ∝ exp

{

−1

2
‖w‖0

}

= exp

{

−1

2

M∑

m=1

I(wm 6= 0)

}

, (2.53)

obviously is a sparse prior22, where we have used the indicator function defined as

I(wm 6= 0) =







0 wm = 0

1 wm 6= 0
. (2.54)

Let us now return to the SBL model, where for the following discussion we con-

sider the noise precision τ to be known. To obtain the effective weight prior density

p(w) for SBL, we need to integrate over the hyperparameters of the joint hierarchical

prior p(w,α) = p(w|α)p(α). The resulting density is given as p(w) =
∏M

m=1 p(wm),

a product of Student’s-t distributions p(wm) as pointed out in [1], which we already

defined in (2.19). For a = b = 0, this prior is of the form p(wm) ∝ 1/|wm|, which

is highly peaked at zero23. Exact inference based on the effective weight prior is

intractable, as pointed out in Section 2.2.2, because we cannot compute the normal-

ization p(t). However, as the MAP estimator has no normalization requirements,

we can find the equivalent optimization problem as

wMAP = argmax
w

ln
{
p(t|w)p(w)

}

= argmin
w

‖t−Φw‖22 +
2

τ

M∑

m=1

ln |wm|. (2.55)

When we define the relation λ = 2/τ , we obtain g(wm) = ln |wm| from (2.51) and

(2.52), which again corresponds to a sparsity inducing prior. Although sparsity

inducing, the exact SBL MAP optimization is practically useless, because whenever

any weight becomes zero, a global minimum of (2.55) is achieved independently of

the data fitting term.24 That means, also wMAP = 0 is a global optimum. From

this perspective, the only reason why one can obtain useful results from SBL, is

22Note that this prior is improper.
23Note that this improper prior is sometimes denoted as a Jeffreys prior in the literature, which is

not correct, since the Jeffreys prior for a linear function of the Gaussian mean is flat.
24Note that these problems also remain for flat hyperpriors with a = 1 and b = 0, where p(wm) ∝

1/|w|3.
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because of the more suitable posterior approximations made for inference, i.e., such

approximations that incorporate information beyond the mode.

In this sense we support the comment given in [54, Section 2.2.2] that one should

rather speak of “Sparse Approximate Bayesian” instead of “Sparse Bayesian”. How-

ever, throughout this work we retain using the common “SBL” terminology to refer

to the results obtained from approximate inference.

Note that from a Bayesian perspective, we should not claim that exact inference

in the SBL model is useless, it is only intractable and the MAP estimation given

in (2.55) is what makes no sense. When we however consider posterior information

beyond the mode, things get decidedly different.

Later in Chapter 6, Section 6.2, we discuss an idea about how the MAP approach

could possibly lead to usefull results.

From the optimization (2.55), we can only get a notion about how SBL may lead

to sparsity after approximations were made, especially when we optimize over the

hyperparameters. However, in a recent work [97], an analysis of Type-I methods

(optimization over w) vs. Type-II methods (optimization over α) is presented. It

is shown that one can transform both problems to the respective other space, which

allows for investigating the effective equivalent SBL prior in weight space for the

approximative Type-II methods presented in Section 2.2.2. It turns out, that the

resulting effective weight prior is sparsity inducing, but in general non-factorial,

i.e., not of the form (2.52). For further details on this issue we refer the reader to

[100, 97].

2.3 Consensus propagation

Complementary to the discussions in the previous sections, we now present the main

properties of consensus propagation (CP) [67], a method for distributed averaging in

networks based on message passing25. Amongst other distributed averaging methods

like [103, 104], CP can be described in terms of loopy belief propagation (LBP),

which is an approximate probabilistic inference algorithm for loopy graphs. Since

CP has a Bayesian interpretation, it offers nice opportunities to be combined with

the SBL model as we will show in Chapter 4.

25Note that we only consider standard loopy belief propagation [101, 4] here in this section and
not any variational type of message passing [102] which our previous analysis in Section 2.1 may
suggest.
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Figure 2.4: A factor graph representation of the consensus propagation (CP) model.
Only local messages between neighboring nodes are necessary for infer-
ence using loopy belief propagation (LBP).

2.3.1 Model definition

We have already considered Bayesian networks as probabilistic directed acyclic

graphs in Section 2.2.1. Now let us discuss CP in terms of factor graphs [105, 4],

which are undirected bipartite graphs that consist of nodes, which represent random

variables, and factors (black boxes) that represent functions of the variables they

are connected to. Figure 2.4 shows the CP factor graph, which we assume to be

connected, i.e., there is at least one path connecting each node in the graph. It

can be interpreted as being overlayed on a sensor network, where each sensor k

has some observation tk that is connected to a hidden variable νk via a factor

fkt(νk, t̃k) = exp
{
−1

2(t̃k − νk)
2
}
. The hidden variables of different sensors k and

l are connected via the factor fkl(νk, νl) = exp
{

−β
2 (νk − νl)

2
}

, which is called cou-

pling factor and β is denoted as the coupling parameter. All factors represent un-

normalized Gaussian distributions and thus, large β values in the factor fkl increase

the probability that hidden variables at neighboring sensors have similar values.26

That is, for large β, a strong consensus is achieved.

Inference using LBP on the factor graph in Figure 2.4 leads to approximate Gaus-

sian marginal posterior distributions p̃(νk|t1, . . . , tK) with mean values close to the

desired average 1
K

∑K
k=1 tk at each sensor. The messages in LBP are only sent be-

tween neighboring nodes. Thus, the algorithm can be implemented distributedly on

a sensor network.

26Note that factors need not to be normalized. Normalization can be also done at a later stage
during message passing.
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2.3.2 Gaussian loopy belief propagation

By applying the sum-product algorithm [4], which is a generalization of belief propa-

gation [101], on the loopy factorgraph presented in Figure 2.4, an LBP algorithm can

be derived. To obtain an approximation of the marginal probability p(νk|t1, . . . , tK)

the following messages need to be computed and passed through the network until

convergence:

mt̃k→fkt
= δ(t̃k − tk) , k = 1, . . . ,K, (2.56)

mfkt→νk
=

1

Z

∫

mt̃k→fkt
fkt(νk, t̃k) dt̃k =

1

Z
fkt(νk, tk)

= N (νk|tk, 1) , k = 1, . . . ,K, (2.57)

mνk→fkl
=

1

Z
mfkt→νk

∏

u∈N(k)\l

mfuk→νk
, (2.58)

mfkl→νl
=

1

Z

∫

mνk→fkl
fkl(νk, νl) dνk

= N (νl|ν̂kl, θ̂
−1
kl ) , ∀l ∈ N(k), k = 1, . . . ,K, (2.59)

where the variables Z are appropriate normalization constants, which are not nec-

essary in general, but allow for a Gaussian interpretation27, N(k) denotes the set of

neighbors of sensor k and N(k)\l the set of neighbors of k except the l-th sensor.

The mean ν̂kl and precision θ̂kl in (2.59) can be computed as

ν̂kl =
tk +

∑

u∈N(k)\l θ̂ukν̂uk

1 +
∑

u∈N(k)\l θ̂uk

(2.60)

and θ̂kl =
1 +

∑

u∈N(k)\l θ̂uk

1 + β−1
(

1 +
∑

u∈N(k)\l θ̂uk

) , (2.61)

which are functions of the incoming mean an precision messages at sensor k. Thus,

the message passing part of LBP can be fully described by (2.60) and (2.61). After

some initialization, e.g., ν̂
[0]
kl = θ̂

[0]
kl = 0, the messages (2.60) and (2.61) have to be

send through the network until convergence. To obtain the approximative marginal

posterior at node νk after convergence, the normalized product of the incoming

27Using Z as a general symbol is a convenient notation for a normalization constant. Note that it
may have different values, depending on where the normalization is applied.
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messages needs to be computed by

p̃(νk|t1, . . . , tK) =
1

Z

∏

u∈N(k)

mfuk→νk
= N (νk|ν̂k, θ̂

−1
k ) (2.62)

with

ν̂k =
tk +

∑

u∈N(k) θ̂ukν̂uk

1 +
∑

u∈N(k) θ̂uk

(2.63)

and θ̂k = 1 +
∑

u∈N(k)

θ̂uk, (2.64)

where Z =
∫ ∏

u∈N(k)mfuk→νk
dνk. If the network is connected and β → ∞, the

mean (2.63) converges exactly to the average 1
K

∑K
k=1 tk [67]. That is, each node in

the network obtains the average value of all observations tk in the network. A large

value β leads to very slow convergence but good average estimates. On the other

hand, a small β leads to fast convergence but induces errors in the estimates. Thus,

for practical applications, a trade-off between accuracy and convergence time needs

to be found. Convergence of CP is guaranteed for all β > 0 [67].

We must note that for LBP, convergence is not guaranteed in general. For Gaus-

sian LBP, however, there exist sufficient conditions for convergence [106, 107].

Finally we note, that the graph topology and the order in which messages are sent

also influences the convergence speed. For more discussions on this topic we refer to

[67]. However, from a practical point of view, the easiest way to implement CP is

to transfer the messages synchronously, although accurate synchronization in WSN

is a great challenge [108]. For an alternative update scheme used for CP, see, e.g.,

[109], which is based on an aloha-like protocol.
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Chapter 3

Fast Variational Sparse Bayesian Learning

In Section 2.2.3, we discussed different approximations used for SBL inference. We

showed the advantages of VB inference over other existing methods, especially in

terms of its usability with non-informative Jeffreys priors and its Bayesian density

approximation rather than point estimation. Although conceptually superior, up to

now there was no fast method like [68] defined for variational SBL, which may be

one of the reasons for its lower popularity compared to MML. In this chapter we

show how to derive such a fast method from fixed point analysis of the variational

update expressions and further show its equivalence to the results obtained in [68].

We denote this method as fast variational sparse Bayesian learning (FV-SBL). Ad-

ditionally, we also show that the resulting pruning criteria can be interpreted as

comparing a basis function’s signal to noise ratio (SNR) with a 0dB threshold. By

changing this threshold to values larger than 0dB, one obtains an intuitive parameter

for trading-off quality of fit vs. sparsity, which we analyze in different experiments.

3.1 Introduction

Consider the canonical model

t = Φw + ǫ (3.1)

as defined in Section 2.2.1, where we now represent Φ = [ϕ1, . . . ,ϕM ] by its M

column vectors ϕm ∈ R
N , which we denote as basis vectors.

In the MML approach to SBL [1], as described in Section 2.2.2, the sparsity

parameters α are estimated by maximizing the marginal likelihood p(t|τ,α) =
∫
p(t|τ,w)p(w|α)dw. Unfortunately, MML is known to converge rather slowly and

the computational complexity of the algorithm scales as O(M3) [68, 1]1, which makes

This chapter is partly based on our publications [69] and [70].
1Also MML*, which uses implicit hyperparameter updates (2.31) that lead to faster overall con-

49
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its application impractical for a large number of basis functions M . In [68] an al-

ternative learning scheme was proposed to alleviate this drawback. Specifically, for

a Gaussian prior p(w|α) ∝ exp(−∑m αm|wm|2/2) the maximum of the marginal

likelihood function with respect to a single sparsity parameter αm, assuming the

sparsity parameters of the other basis functions are fixed, can be evaluated in closed

form.2

An alternative approach to SBL is based on approximating the posterior

p(w, τ,α|t) with a pdf q(w, τ,α) = q(w)q(τ)q(α) [35] so as to maximize the varia-

tional lower bound on ln p(t); see Section 2.2.2. There are several advantages of the

variational approach to SBL as compared to others, as we discussed in detail in Sec-

tion 2.2.3. Unfortunately, the variational approach to SBL [35] also suffers from the

same computational complexity as MML and is prone to a slow convergence rate.

Also, the pdfs q(α) and q(τ) are estimated so as to approximate the true posterior

pdfs, thus obscuring the structure of the marginal likelihood that was exploited in

[68] to accelerate the convergence rate of the learning scheme.

One possible strategy to improve the convergence rate of variational inference is to

reduce coupling between the estimated random variables (see, e.g., [110] and [111]).

In this chapter we propose an alternative approach that in some sense imitates fast

marginal likelihood maximization (FMLM) [68].

Specifically, we consider the maximization of the variational lower bound with

respect to a single factor q(αm). As we will demonstrate, it then becomes possible

to analytically compute the stationary points of the repeated updates of q(αm)

and q(w) that maximize the bound and thus accelerate convergence. In [112] this

was done both for a Gaussian prior p(wm|αm) and a Laplace prior p(wm|αm) ∝
exp(−αm|wm|) when q(w) =

∏

m q(wm), i.e., when the correlations between the

elements of w are ignored. Here we present an extension of these results for the

Gaussian prior case when q(w) does not factorize, i.e., q(w) 6=∏m q(wm). We derive

the closed form expressions for the stationary points of the variational updates of

q(αm) and determine conditions that ensure convergence to these stationary points.

We demonstrate that the convergence condition for each q(αm) has a simple and

intuitive interpretation in terms of the component signal to noise ratio (SNR), which

provides further insight into the performance of SBL and eventually allows one to

improve it. Moreover, we show that this convergence condition coincides with the

vergence, has a computational complexity of O(M3) over the iterations due to the unchanged
weight updates (2.25) and (2.26).

2Fast suboptimal solutions to SBL with Laplace prior p(w|α) ∝ exp(−
P

m αm|wm|) have also
been proposed [28].
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condition in [68], which determines the maximum of the marginal likelihood function

with respect to a single sparsity parameter.

3.2 Variational fixed-point analysis

Essentially, the variational update expressions (2.40)–(2.42), obtained in Section 2.2.2,

provide the estimates of the parameters of the corresponding approximating pdfs.

Due to the convexity of the variational lower bound in the approximating factors

q(w), q(τ), q(αm), m = 1, . . . ,M , we can update these factors in any order [4];

furthermore, a group of factors can be updated successively while keeping the other

factors fixed.3

3.2.1 General a and b parameters

We now start to study the expression for the mean α̂m of q(αm) of some basis m

for arbitrary a ≥ 0 and b ≥ 0.4 Later in Section 3.2.2, we restrict ourselves to

a = b = 0, since the expressions turn out to get quite involved and difficult to

analyze. This simpler case, representing non-informative Jeffreys hyperpriors, is

anyway the desired case for SBL, since it leads to scale invariance as discussed

in Section 2.2.1. In Appendix B we formally show that if we compute the limits

a→ 0, b→ 0 of the general fixed point solutions (discussed in the following), we

obtain the same results as if we set a = b = 0 before computing the fixed points,

which will be presented in Section 3.2.2. By computing these limits, we can first

follow a proper justified Bayesian analysis and only in the end determine the effect

of approaching the improper prior limit.

From (2.41) it follows that

α̂m = Eq(αm){αm} =
âm

b̂m
=

2a+ 1

2b+ eT
m(µ̂µ̂T + Σ̂)em

, (3.2)

where em = [0, . . . , 0, 1, 0, . . . , 0]T is a vector of all zeros but a 1 at the mth position.

Let us now assume that q(w) and q(αm) are successively updated while keeping

3Note, however, that the order in which the factors are updated is important since different update
orderings might lead to different local optima of the variational lower bound. We will return to
this issue later in the text.

4Notice that since a and b are constants, âm from (2.41) is also a constant and only b̂m depends on
the parameters of the other factors. With α̂m = âm/b̂m, there is a direct connection between b̂m

and α̂m. Thus, it makes sense to study the stationary point of the variational update expression
in terms of α̂m, rather than in terms of âm and b̂m. This is also more intuitive, because (2.40)
directly depends on α̂m.
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q(τ) and q(αl) for l 6= m, fixed. This will generate a sequence of estimates {α̂[i]
m =

â
[i]
m/b̂

[i]
m}Ii=1, with each element in the sequence computed according to (3.2). Our

goal is to compute the stationary point α̂
[∞]
m of this sequence as I →∞.

With µ̂µ̂T = τ̂2Σ̂ΦT ttTΦΣ̂T we consider the influence of a single sparsity param-

eter α̂m on the right hand side of (3.2). By noting that diag(α̂) =
∑

m α̂memeT
m,

we rewrite Σ̂ as

Σ̂ =



τ̂ΦTΦ + α̂memeT
m +

∑

l 6=m

α̂lele
T
l





−1

= Σ̄m −
Σ̄memeT

mΣ̄m

α̂−1
m + eT

mΣ̄mem

,

(3.3)

where the latter expression was obtained using the matrix inversion lemma [113]

and defining

Σ̄m =



τ̂ΦTΦ +
∑

l 6=m

α̂lele
T
l





−1

. (3.4)

Finally we define

ςm = eT
mΣ̄mem and ρm = τ̂eT

mΣ̄mΦT t. (3.5)

Now, by substituting (3.3) into (3.2) and using the definitions (3.5) we obtain

α̂m =
(1 + 2a)(1 + α̂mςm)2

ρ2
m + ςm + α̂mς2m + 2b(1 + α̂mςm)2

. (3.6)

Expression (3.6) is a modified version of (3.2) that is now an implicit equation for α̂m.

Solving (3.6) explicitly for α̂m naturally leads to the desired stationary points α̂
[∞]
m .

As the equations for the stationary points get quite involved, we present these in

Appendix B, Equations (B.1)-(B.3). Further stability analysis of these general terms

is very complex and may not give much insight. Thus, we restrict ourselves on the

simpler case of Jeffreys priors, i.e., a = b = 0, in the following.

3.2.2 Restriction to a = b = 0

In this section we compute the stationary points α̂
[∞]
m for improper Jeffreys priors

with a = b = 0. In Appendix B we show that the same results can also be obtained

by computing the limits a → 0 and b → 0 of the general solutions discussed in

Section 3.2.1 and solved in Appendix B.
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By setting a = b = 0, Equation (3.6) simply becomes

α̂m =
(1 + α̂mςm)2

ρ2
m + ςm + α̂mς2m

. (3.7)

Observe that both, (3.6) and (3.7) can be seen as nonlinear maps α̂
[i+1]
m = F (α̂

[i]
m)

that at iteration i map α̂
[i]
m to α̂

[i+1]
m . Naturally, the stationary points of these maps

are equivalent to the desired (possibly multiple) stationary points α̂
[∞]
m .

The following theorem provides analytical expressions for the stationary points of

the map α̂
[i+1]
m = F (α̂

[i]
m) given in (3.7).

Theorem 1. Assuming a = b = 0 and the initial condition 0 ≤ α
[0]
m < ∞, the

iterations of the nonlinear map

α̂[i+1]
m = F (α̂[i]

m) =
(1 + α̂

[i]
mςm)2

ρ2
m + ςm + α̂

[i]
mς2m

, (3.8)

where ρm and ςm are defined in (3.5), converge as i→∞ to

α̂[∞]
m =

{

(ρ2
m − ςm)−1, ρ2

m > ςm

∞, ρ2
m ≤ ςm.

(3.9)

Proof. The proof is separated into the following three parts:

• We first compute the stationary points of the map (3.8).

• Then, we analyze the linear stability of the resulting finite stationary point.

• Finally, we show that for all initializations 0 ≤ α
[0]
m < ∞ a unique stationary

point is reached, depending on ρm and ςm.

We begin by computing the stationary points of the map α̂
[i+1]
m = F (α̂

[i]
m). By

inspecting (3.7) we observe that α̂
[∞]
m =∞ is a stationary point. The other solution

is found by solving α̂∗
m = F (α̂∗

m) with respect to α̂∗
m. After straightforward algebraic

manipulations we obtain the second stationary point at

α̂[∞]
m = α̂∗

m = (ρ2
m − ςm)−1. (3.10)

We now investigate the linear stability of (3.10) by analyzing the map (3.8) in the

vicinity of α̂∗
m = (ρ2

m−ςm)−1. It is known that a stationary point of a map is linearly

stable if the eigenvalues of the Jacobian of the map evaluated at this stationary point
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are all within the unit circle (see, e.g., [114, Section 10.1] for one-dimensional maps).

Thus, we compute
dF (α̂m)

dα̂m

∣
∣
∣
∣
α̂m=α̂∗

m

= − ςm(ςm − 2ρ2
m)

ρ4
m

. (3.11)

Now it can be shown5 that
∣
∣
∣
ςm(ςm−2ρ2

m)
ρ4

m

∣
∣
∣ < 1 when

ρ2
m > ςm, (3.12)

or

ρ2
m < ςm < (1 +

√
2)ρ2

m. (3.13)

Observe that the condition (3.13) suggests that the stationary point (3.10) might

become negative. However, a negative value of α
[i]
m cannot be reached for α

[0]
m ≥ 0

since the map (3.8) can be shown to be positive for ςm and ρ2
m satisfying (3.13).6

Thus, α̂
[∞]
m = α̂∗

m is a finite stable positive stationary point when ρ2
m > ςm.

To see that this stationary point is reached for any α
[0]
m satisfying 0 ≤ α

[0]
m <

∞ with ρ2
m > ςm, we further need to analyze the original map F (α̂

[i]
m) given in

(3.8), which is a rational function of α̂
[i]
m. It is important to notice that the map

is continuous for α̂
[i]
m ≥ 0, since the only discontinuous point, corresponding to the

root of the denominator of F (α̂
[i]
m), is at −(ρ2

m + ςm)/ς2m, which is always negative.

Now consider the cobweb diagrams [114] shown in Figure 3.1(a) and 3.1(b), where

we illustrate iterations starting at α̂
[0]
m > α̂∗

m and 0 ≤ α̂[0]
m < α̂∗

m, respectively. We see,

that at each iteration, α̂
[i]
m gets closer to α̂∗

m from the respective side of initialization

if ρ2
m > ςm. To show that this is true for all 0 ≤ α

[0]
m < ∞, it is sufficient to show

that the following conditions hold:

F (α̂m) ≥ α̂∗
m for α̂m > α̂∗

m, (3.14)

F (α̂m) < α̂m for α̂m > α̂∗
m, (3.15)

F (α̂m) ≤ α̂∗
m for 0 ≤ α̂m < α̂∗

m, (3.16)

F (α̂m) > α̂m for 0 ≤ α̂m < α̂∗
m. (3.17)

The area of possible functions F (α̂m) that satisfy these conditions are illustrated in

Figure 3.2.

5Assuming ςm > 0 according to definition (3.5), where all α̂l ≥ 0 for l 6= m.
6Since for α̂

[i]
m ≥ 0, the map (3.8) is positive for any ρ2

m and ςm ≥ 0, this also holds for (3.12).



3.2. Variational fixed-point analysis 55

−0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

 

 

α̂
[i]
m

α̂
[i
+

1
]

m

trajectory starting at α̂
[0]
m

F (α̂
[i]
m )

α̂
[i+1]
m = α̂

[i]
m

α̂
[0]
m

α̂
[∞]
m = α̂∗

m

ρ2
m > ςm

(a)

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

α̂
[i]
m

α̂
[i
+

1
]

m

α̂
[0]
m

α̂
[∞]
m = α̂∗

m

ρ2
m > ςm

(b)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α̂
[i]
m

α̂
[i
+

1
]

m

α̂
[0]
m

α̂
[∞]
m =∞

ρ2
m = ςm

(c)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α̂
[i]
m

α̂
[i
+

1
]

m

α̂
[0]
m

α̂
[∞]
m =∞

ρ2
m < ςm

(d)

Figure 3.1: Cobweb diagram to illustrate the iterations to the stationary point α̂
[∞]
m

dependent on the relations between ρ2
m and ςm for different initializations

α̂
[0]
m . The situations (a) and (b) illustrate a stable finite stationary point,

whereas in (c) and (d) the iterations diverge towards infinity.

By noting that for α̂m ≥ 0, F (α̂m) is continuous and

dF (α̂m)

dα̂m
=
ςm(α̂mςm + 1)

(
α̂mς

2
m + 2ρ2

m + ςm
)

(α̂mς2m + ρ2
m + ςm)2

> 0, (3.18)

i.e., we have a positive slope for all α̂m ≥ 0, it is easy to see that conditions (3.14)



56 3. Fast Variational Sparse Bayesian Learning
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m

Figure 3.2: For ρ2
m > ςm and any initial α

[0]
m satisfying 0 ≤ α

[0]
m < ∞, the iterations

of the map (3.8) converge steadily from the side of the initialization to
the stationary point α̂∗

m, if the function F (α̂m) lies within the shaded
area defined by (3.14)-(3.17).

and (3.16) are always satisfied, since by definition F (α̂m) = α̂m only if α̂m = α̂∗
m or

α̂m =∞.

Furthermore, the continuity of F (α̂m) for α̂m ≥ 0 together with the fact that we

only have a single finite stationary point, namely α̂∗
m, lets us conclude that (3.15)

and (3.17) are also satisfied. This is because, otherwise, there should exist another

finite stationary point F (α̂∗∗
m ) = α̂∗∗

m , which, however, is not the case.

Finally, both remaining situations ρ2
m = ςm and ρ2

m < ςm, as depicted in Fig-

ure 3.1(c) and 3.1(d), respectively, lead to α̂
[∞]
m = ∞, i.e., the iterations simply di-

verge. This is clear since for ρ2
m = ςm we have a unique stationary point at α̂∗

m =∞
and for ρ2

m < ςm it is straightforward to show that for any α̂m ≥ 0, F (α̂m) > α̂m,

i.e., the value for α̂
[i]
m increases at every iteration i.

This ends the proof.

Corollary 1. Assume that a = b = 0 and (3.12) is satisfied for some basis vector

ϕm. Then the following is true: (i) the repeated updates of q(w) and q(αm) from

(2.40) and (2.41), respectively, maximize the variational lower bound7 and (ii) q(αm)

converges to q(αm) = Ga(αm|1/2, (ρ2
m − ςm)/2).

Expression (3.10) together with the pruning condition (3.12) allow one to assess

the impact of themth basis vector ϕm in the matrix Φ on the variational lower bound

by computing (3.9): a finite value of α̂
[∞]
m instructs us to keep the mth component

7Note that the maximization is meant locally here.
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since it should increase the bound, while an infinite value of α̂
[∞]
m indicates that the

basis vector m is superfluous. In this way all M basis vectors can be processed

sequentially in a round-robin fashion.

3.2.3 Equivalence between fast variational sparse Bayesian learning and

fast marginal likelihood maximization

Theorem 2. Consider a basis vector ϕm and assume that the pdfs q(αl), l 6= m,

and q(τ) are fixed. Let α̂
[∞]
m be the mean of q(αm) obtained by repeatedly updating ad

infinitum q(w) and q(αm) from (2.40) and (2.41), respectively, where we assume a =

b = 0. Then, α̂
[∞]
m given by (3.9) is a maximizer of the marginal likelihood function

p(t|αm, α̂m̄, τ̂) with respect to the sparsity parameter αm.

Proof. It has been shown [68] that the maximum of ln p(t|αm, α̂m̄, τ̂) with respect

to αm is obtained at

α̂m =

{

s2m(q2m − sm)−1, q2m > sm,

∞, q2m ≤ sm,
(3.19)

where sm = ϕT
mC−1

m̄ ϕm, qm = ϕT
mC−1

m̄ t, and Cm̄ = τ̂−1I +
∑

l 6=m α̂−1
l ϕlϕ

T
l .

Using the matrix inversion lemma [113] applied to C−1
m̄ it is easy to show that

ςm = s−1
m and ρ2

m = q2m/s
2
m (details are given in Appendix A.4). Thus, (i) the

condition for keeping a basis function q2m > sm in (3.19) is equivalent to the condition

ρ2
m > ςm in (3.12), and (ii) the value of α̂m in (3.19) and that of α̂

[∞]
m in (3.9)

coincide.

This means that, as we have already discussed in Section 2.2.2 for MML and

V-SBL, also the corresponding fast methods FMLM and FV-SBL lead to the same

pruning conditions under their respective model assumptions. More specifically,

FMLM assumes flat hyperpriors p(αm) ∝ 1, whereas FV-SBL assumes Jeffreys hy-

perpriors p(αm) ∝ 1/αm. That is, only the derivation of FV-SBL is in accordance

with a scale-invariant model as we discussed in Section 2.2.1. Note that the updates

for the noise precision in FMLM and FV-SBL are equivalent to the updates in MML

and V-SBL, respectively.

3.2.4 Analysis of the pruning condition

Since the pruning condition (3.12) is a key to model sparsity, let us study it in

greater detail. From (3.5) it follows that ρm is the mean weight of the basis ϕm and
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ςm is the estimated variance of this weight obtained when α̂m = 0 and α̂l, l 6= m,

are fixed. Notice that the ratio ρ2
m/ςm can be recognized as an estimate of the mth

component signal-to-noise ratio (SNR) for α̂m = 0, i.e., when the mth basis function

is unregularized. Furthermore, according to (3.12) the basis vector ϕm is retained in

the model provided SNRm = ρ2
m/ςm > 1, i.e., when the component’s SNR is above

0dB; otherwise, the component is pruned.

This simple interpretation of the pruning condition can be used to generalize (3.12)

to any desired SNR above 0dB. More specifically, given a certain desired SNR′
m ≥ 1,

the pruning condition (3.12) can be empirically adjusted as

ρ2
m > ςm × SNR′

m, (3.20)

which allows for the removal of the mth component when the SNR satisfies SNRm ≤
SNR′

m. Note, however, that the adjustment (3.20) might potentially decrease the

variational lower bound since it will remove basis functions with finite sparsity pa-

rameters.

Despite the empirical nature of (3.20), it can be theoretically justified as a statis-

tical composite hypothesis test. For more details see [115].

3.3 Implementation aspects and simulation results

3.3.1 Efficient computation of the test parameters ςm and ρm

Consider the matrix Σ̄m in (3.4) in an alternative (permuted) form, where ϕm is

shifted to the last column of Φ:

[

τ̂ΦT
m̄Φm̄ + diag(α̂m̄) τ̂ΦT

m̄ϕm

τ̂ϕT
mΦm̄ τ̂ϕT

mϕm

]−1

. (3.21)

Here Φm̄ is a matrix obtained from Φ by removing the mth basis ϕm and α̂m̄ = [α̂]m̄

is the vector α̂ without the element α̂m. Using a standard result for block matrix

inversion [116, 113], the expression (3.21) can be re-written as





(

Σ̂−1
m̄ − τ̂ ΦT

m̄ϕmϕT
mΦm̄

ϕT
mϕm

)−1
−τ̂Σ̂m̄ΦT

m̄ϕmγ
−1
m

−τ̂ γ−1
m ϕT

mΦm̄Σ̂m̄ γ−1
m



 , (3.22)

where γm = τ̂ϕT
mϕm − τ̂2ϕT

mΦm̄Σ̂m̄ΦT
m̄ϕm and Σ̂m̄ = (τ̂ΦT

m̄Φm̄ + diag(α̂m̄))−1 =
[

Σ̂− Σ̂emeT
mΣ̂

eT
mΣ̂em

]

m̄m̄
. Note that the notation [B]m̄m̄ denotes a matrix obtained after
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removing the mth row and column of B.

Using (3.22), ρm and ςm in (3.5) can now be computed as

ςm = (τ̂ϕT
mϕm − τ̂2ϕT

mΦm̄Σ̂m̄ΦT
m̄ϕm)−1

and ρm = τ̂ ςmϕT
mt− τ̂2ςmϕT

mΦm̄Σ̂m̄ΦT
m̄t.

(3.23)

Notice that when the basis ϕm is retained in the model, the matrix Σ̂ can be

efficiently updated with

Σ̂ = Σ̂− Σ̂emeT
mΣ̂

(α̂
[∞]
m − α̂old

m )−1 + eT
mΣ̂em

, (3.24)

where α̂
[∞]
m = (ρ2

m − ςm)−1 and α̂old
m is a previous estimate of the mean of q(αm).

3.3.2 Algorithm summary

We summarize the main steps of the proposed fast variational SBL scheme in Algo-

rithm 3.1. It should be mentioned that updating q(τ), which leads to a new value

τ̂ , requires the covariance matrix Σ̂ to be recomputed, an O(M3) operation. The

recomputation of Σ̂ after some α̂m has changed is a rank-1 update and can be imple-

mented much more efficiently with complexity of O(M2) as given in (3.24). Notice

that for both the FMLM algorithm [68] and the fast variational SBL algorithm the

relevance of the vectors ϕm can theoretically be processed in any order. However,

the exact order in which the basis vectors are processed matters since different up-

date protocols can lead to different local optima. In the following simulations we

first update components with large values of α̂m, i.e., those basis functions that

are least well aligned with the measurement t. This should potentially reduce the

dimensionality of the model already at early iterations.

For algorithm initialization we use the following simple procedure. First, the

initial value for the mean τ̂ of the noise pdf q(τ) is chosen. Then, the parameters of

q(w) are initialized as Σ̂ = (τ̂ΦTΦ + α̃0I)−1 and µ̂ = τ̂Σ̂ΦT t for some small value

of α̃0; finally, parameters of q(αm), m = 1, . . . ,M , are found using (2.41). Such

initialization provides an initial ranking of the components ϕm based on the values

of α̂, which is then used to define a sequence of basis function updates used by the

FMLM and the fast variational SBL algorithms as mentioned above. Notice that

FV-SBL can also start with an empty model and add basis functions sequentially,

each time testing whether a new basis function should be added to the model or
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Algorithm 3.1

1: Initialize q(w), q(α), q(τ)
2: while Not converged do
3: for m ∈ {1, . . . ,M} do
4: Compute: ςm and ρm from (3.23)
5: if ρ2

m > ςm then

6: α̂
[∞]
m = 1/(ρ2

m − ςm), update Σ̂ from (3.24)
7: else
8: Σ̂ = Σ̂m̄, α̂ = [α̂]m̄, M = M − 1;
9: end if

10: end for
11: Compute µ̂ from (2.40), q(τ) from (2.42) and recompute Σ̂ from (2.40)
12: Check for convergence
13: end while

not. Such a scheme is discussed later in Chapter 5 (see also [117]).

3.3.3 Simulation results

Comparison of different SBL approaches

In this section we compare the proposed fast variational SBL algorithm (FV-SBL)

with the MML* algorithm [1] that uses the implicit update (2.31), the variational

SBL algorithm (V-SBL) [35], and parameter-expanded variational Bayesian infer-

ence (PX-VB) [111]. Note that according to Theorem 2, FV-SBL and FMLM [68]

are equivalent methods. However, we also analyze the results for FV-SBL with

adjusted pruning as discussed in Section 3.2.4.

In the first experiment we consider a sparse vector estimation problem with ran-

dom Φ and a fixed number of nonzero weights8. In the second experiment we test

the algorithms on the Concrete Compressive Strength (CCS) dataset [118] from the

UCI Machine Learning Repository [119], which is a multivariate regression data set

with 8 attributes and 1030 instances.

MML*, V-SBL and PX-VB methods require one to specify a pruning threshold for

the sparsity parameters α̂; specifically, when some α̂m exceeds the pruning threshold,

the corresponding basis function is removed from the model. In all simulations we

set this threshold to 1012, as suggested in [1]. Obviously the estimated sparsity

depends on a particular choice of this threshold. In contrast, for FV-SBL and

8The first experimental setup is not directly related to regression, but rather falls into another
important area of SBL applications, namely sparse basis selection, see, e.g., [29]. Sparse basis
selection on random matrices is also frequently used in compressed sensing [26].
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FMLM methods the divergence of sparsity parameters is detected using closed form

pruning conditions.

For all methods the same convergence criteria is used: the algorithm stops (i) when

the number of basis functions between two consecutive iterations has stabilized and

(ii) when the ℓ2-norm of the difference between the values of hyperparameters at

two consecutive iterations is less than 10−3. Note that (i) is necessary to properly

evaluate the norm in (ii). In the first experiment we also interrupt the algorithms

when the number of iterations exceeds 104. Also, to simplify the analysis of the

simulation results we assume the noise precision τ̂ to be known and fixed in all

simulations, i.e., we also do not estimate q(τ) in FV-SBL.

We now begin with the discussion of the synthetic data experiment. To gen-

erate data for the sparse vector estimation we construct a random design matrix

Φgen ∈ R
N×N with N = 100 by drawing N2 samples independently from a stan-

dard Gaussian distribution N (0, 1); the target vector t is then generated according

to t = Φgenwgen + ǫgen with a weight vector wgen having only 5 nonzero elements

equal to 1 at random locations. White Gaussian noise is added via ǫgen such that

specific SNR levels are achieved. Our goal is to estimate wgen out of the noisy ob-

servations t when the same basis vectors as in the data generation are used, i.e., we

have Φ = Φgen. We also test the performance of FV-SBL with adjusted pruning

condition (3.20) (FV-SBL, adj.) by simulating an oracle estimator that knows the

true signal SNR; the true SNR is then used as the SNR′
m adjustment in (3.20). The

corresponding simulation results are summarized in Figure 3.3, where the normal-

ized mean square error (NMSE) is the prediction MSE normalized by tT t/N . The

performance is directly evaluated at the training samples t. Thus, this experimental

setup is more of a sparse representation kind as opposed to sparse regression, since

we use no separate test dataset; cf. Section 1.4.

It can be seen from the plots in Figures 3.3(a) and 3.3(b) that FV-SBL with

adjusted pruning condition is able to estimate the true sparsity of the signal by

achieving the smallest normalized mean-square error (NMSE) almost over the whole

tested SNR range. V-SBL as well as PX-VB, although they perform well in terms

of the reached NMSE, do not produce sparse estimates. The reason for the V-SBL

algorithm is that we had to abort the simulation in all averaging runs, since the

required number of necessary iterations for the algorithm to terminate is enormous

for a pruning threshold of 1012. Note that the hyperparameters diverge linearly in

V-SBL and for much smaller pruning thresholds similar results as for MML* are

expected. However, for a fair comparison we had to use the same thresholds for
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Figure 3.3: Random vector estimation. Results are averaged over 50 independent
noise realizations. (a) Normalized mean square error (NMSE) versus the
SNR; (b) the estimated number of components versus the SNR; (c) the
convergence of the estimated weights versus the number of iterations for
SNR=10dB; (d) the estimated number of basis functions (Bfs) versus
the number of iterations for SNR=10dB.

MML*, V-SBL and PX-VB. The reason PX-VB does not produce sparse estimates,

although it converges faster than V-SBL (see Fig. 3.3(c)), is that it quickly con-

verges to a non-sparse local optimum of the variational objective function. FV-SBL

without the adjustment (or equivalently FMLM) perform similar to MML*, V-SBL

and PX-VB methods in terms of NMSE and slightly better in terms of the number

of estimated components. In Figures 3.3(c) and 3.3(d) we demonstrate the con-

vergence properties of the algorithms for an SNR of 10dB. Observe that FV-SBL

clearly outperforms other estimation schemes; FV-SBL with adjusted pruning cri-

terion converges rapidly (in roughly 3-4 iterations). PX-VB converges faster than

MML* and V-SBL, but does not lead to a sparse estimate with the used pruning

threshold as discussed before.

Now, let us investigate the algorithms on the CCS dataset. We normalized the
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MML*
V-SBL

[aborted]
PX-VB

FV-SBL
(FMLM)

FV-SBL
(SNR′

m = 10dB)
# iterations 1774 (105) 294 13 6
NMSE (dB) −15.74 (−16.06) −16.96 −15.56 −14.41

#basis functions 66 (722) 722 55 31

Table 3.1: Performance results for Concrete Compressive Strength data. See text
for details.

data to zero mean and unit variance; 70% of the data were picked at random for

training and the remaining set was used for testing. The design matrix Φ includes a

bias term ϕ0 = [1, . . . , 1]T and N Gaussian kernels ϕn = [κ(x1,xn), . . . , κ(xN ,xn)]T

centered at the measurement samples, where κ(xi,xj) = exp{−θκ‖xi − xj‖2}. The

variance of the additive noise τ̂−1 as well as the Gaussian kernel parameter θκ were

optimized by validating different settings on the test set with the FV-SBL algorithm;

these parameters were then fixed at the estimated values τ̂−1 = 0.1 and θκ = 0.115

for all compared methods. For the FV-SBL method with the adjusted pruning

criterion we use SNR′
m = 10dB for all components. Note that the 10dB assumption

is somewhat arbitrary and, as we see later in Figure 3.8, is a particular choice for

balancing accuracy of fit versus sparsity. Additionally, the assumption that the

SNR′
m are equal for all m = 1, . . . ,M components might also be incorrect for the

CCS dataset. The corresponding performance results are summarized in Table 3.1.

Here again the FV-SBL approach outperforms the other methods. It achieves very

sparse results with only 55 basis functions in 13 iterations, only marginally losing in

NMSE as compared to MML*, V-SBL and PX-VB. The latter method achieves the

best NMSE and is second to both FV-SBL schemes in terms of convergence rate;

however, it does not lead to a sparse solution. Observe that the V-SBL algorithm

is interrupted after 105 iterations. Although the sparsity parameters αm continue

to diverge, the rate of divergence is very low, which prevents them from reaching

the used pruning threshold within our specified limit of iterations. Notice also that

FV-SBL with the adjusted pruning condition leads to the sparsest estimator and

converges very rapidly, but nonetheless loses in the achieved NMSE. As previously

mentioned, the trade-off between NMSE and sparsity depends on how the parameters

SNR′
m are set. In the following we analyze the influence of these parameters, set

equally for each component, in more detail and on different datasets.
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Investigations on the FV-SBL adjusted pruning condition

We now analyze the trade-off between quality of fit and sparsity for FV-SBL based

on different settings for the adjusted threshhold SNR′
m from (3.20). We consider the

homogeneous case, where SNR′
m = SNR′ for all m and use four different datasets.

Namely, two realizations of the random basis experiment with 5 and 10 active com-

ponents out of 100, a one-dimensional sinc function and the CCS dataset. For all

four simulations, the noise precision τ was automatically estimated as τ̂ = ĉ/d̂ using

the update (2.42) in a sequel amongst the other variational updates.

Let us now start with the random basis experiment, where we generate the data

equivalently as before from t = Φgenwgen + ǫgen with a sparse vector wgen. More

specifically, we generate two datasets wgen having 5 or 10 elements respectively with

value 1 at random locations, where all other elements are zero. The matrix Φgen,

like before, is a random matrix of size 100 × 100 and is sampled from a standard

Gaussian distribution. The elements of ǫgen are sampled independently from a zero-

mean Gaussian distribution with the variance set to achieve an SNR of 10dB. For

both datasets we analyze two situations, one with a model match, i.e., Φ = Φgen

and one with a model mismatch, i.e., Φ 6= Φgen. Note that, like above, we evaluate

the prediction performance on the training samples t; cf. sparse representation in

Section 1.4.

First consider the case when we have a model mismatch. Since we have a design

matrix Φ different from the data generating matrix Φgen, where Φ is also sampled

from a standard Gaussian, the error term ǫ in (3.1) not only models the noise ǫgen

in the data but also the model errors occurring from the differences of Φ and Φgen.

The averaged results are shown in Figure 3.4, where we can clearly see that SNR′ is

a suitable design parameter to trade-off quality of fit vs. sparsity in FV-SBL models.

We must note that there exists no optimal setting for SNR′ without specifying this

trade-off. That is, when we increase sparsity we sacrifice the quality of fit in terms

of NMSE and vice versa.

Now let us consider the model match case. Here we have the same matrix for

estimation as for data generation, i.e., Φ = Φgen. The averaged results are shown in

Figure 3.5, where we clearly see a difference compared to the model mismatch case.

We now have a clear optimal setting for SNR′ with values around the data SNR of

10dB, where the true sparsity, respectively for the 5 and 10 active component exper-

iments, is revealed in both cases. For SNR′ values smaller than 10dB, the number

of basis components as well as the NMSE increases. For values larger then 10dB,

the NMSE is also increasing while the number of components stays approximately
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Figure 3.4: Quality of fit vs. sparsity for different SNR′ settings in a sparse vector
estimation problem with model mismatch, i.e., Φ 6= Φgen. The data was
generated with an SNR of 10dB and the results were averaged over 10000
noise realizations.
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the same. Thus we have a clear optimum in this case. Note that for the FV-SBL

adj. results presented previously in Figure 3.3(a) and 3.3(b) for different SNR, we

assumed SNR′ = SNR, i.e., we assumed to know the true SNR of the data. From

the results presented now here in Figure 3.5 we see that this is indeed the optimal

value if we have a model match, even though in many cases we do not know the true

SNR.

Figure 3.6 shows the averaged quality of fit vs. sparsity trade-off of the sinc data

experiment for different SNR′ values, where we used a constan bias basis function

and Gaussian kernels with parameter θκ = 0.2174 and N = 100 samples. Additive

zero mean white Gaussian noise was added to the sinc function samples such that

an SNR of 10dB was achieved. The inputs x where randomly placed in an interval

[−10, 10] drawn from a uniform distribution; cf. samples in Figure 3.7. Since we use

a constant bias and Gaussians kernels as basis functions, we clearly have a model

mismatch in this case. From Figure 3.6 we see that by adjusting the SNR′ value, we

can directly trade-off the quality of fit vs. the sparsity equivalently as in the random

basis mismatch case. Also, we cannot determine an optimal SNR′ value without

selecting a quality of fit vs. sparsity trade-off that specifies what is more important

for us. In Figure 3.7 we show sinc regression examples for different SNR′ values.

In our final experiment, depicted in Figure 3.8, we show the quality of fit vs.

sparsity trade-off for the CCS dataset which consists of N = 1030 samples. The

results are obtained using 50-fold cross-validation. The data was first normalized and

bias plus Gaussian kernels (θκ = 0.115) were used as before. Thus, in this scenario

we also have a model mismatch. Compared to the Sinc and random basis model

mismatch experiment (see Figure 3.4 and Figure 3.6) the curve looks still similar

but now shows a slightly sharper upwards turn. This may intuitively suggest that

an SNR′ in the region around 10dB to 14dB seems to be a better choice compared

to other values. But again, without specifying the desired trade-off we cannot prefer

any SNR′ (except for some small jitter variations of the points, which we neglect

here).

Considering all the presented experiments, we should keep in mind that with

SNR′ = 0dB the algorithm is equivalent to unmodified FV-SBL and FMLM. We see

from our different quality of fit vs. sparsity trade-off curves, that we have always

obtained the smallest NMSE for SNR′ = 0dB when we have a model mismatch. On

the other hand, when we have a model match, as shown in Figures 3.5, the worst

NMSE was achieved over the plotted SNR′ region in this case, because the SNR of

the data was different from 0dB. That is, in the model match situation we have
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Figure 3.5: Quality of fit vs. sparsity for different SNR′ settings in a sparse vector
estimation problem with model match, i.e., Φ = Φgen. The data was
generated with an SNR of 10dB and the results were averaged over 10000
noise realizations.
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Figure 3.6: Quality of fit vs. sparsity for sinc data with different SNR′ settings.
Data was generated with an SNR of 10dB and the results were averaged
over 20000 noise realizations.

a clear optimum for SNR′ and do not have to trade-off quality of fit vs. sparsity,

which we need for cases of model mismatch.

3.4 Discussion

In this chapter we have developed a fast variational sparse Bayesian learning (FV-

SBL) algorithm. The algorithm is based on stationary point computations of the

variational sparse Bayesian learning (V-SBL) update expressions when non-informative

hyperpriors are used. This method, which dramatically increases the convergence

speed, leads to equivalent pruning conditions as in fast marginal likelihood max-

imization (FMLM) [68]. It has been shown that for the case of non-informative

hyperpriors, the mean of the sparsity parameter pdf that maximizes the variational

lower bound also maximizes the marginal likelihood function with respect to this

sparsity parameter. But, as opposed to FMLM, the form of the pruning condi-

tions of FV-SBL reveals it as a comparison of a weight-component’s SNR (when the

influence of the component’s hyperparameter is removed) with a 0dB threshold.

This perspective on the pruning condition brings up the idea of modifying the

0dB threshold to larger values. As it turns out, the modified threshold, which we

denoted as SNR′, is an intuitive parameter for trading off quality of fit vs. sparsity.
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Figure 3.7: Sinc regression examples for different SNR′ values. The circle marked
samples are denoted relevance vectors (RVs) [1]. Except for those kernel
basis functions corresponding to RVs, all other kernel basis functions,
which are centered on the inputs xn of the samples, were pruned from
the model.
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Figure 3.8: Quality of fit vs. sparsity for the CCS dataset with different SNR′ set-
tings. Results were obtained using 50-fold cross-validation.

In our simulations we showed, that when we plot this trade-off over different settings

of SNR′, the resulting curves look fundamentally different for cases with a model

match compared to a model mismatch. That is, if the same basis components that

have generated the data in the first place are available to the algorithm or not.

This analysis led to the general discussion in which situation we can prefer certain

quality of fit and sparsity results amongst others. The simple answer is that, when

we want to maximize both terms, we can only prefer results that are larger in both

terms or in one term while the other is equivalent. In all other cases we need to

specify a trade-off objective function that somehow specifies which term is more

important to us, quality of fit or sparsity. We showed in our experiments that the

case of a model match was the only situation that allowed us to improve both terms

at the same time.



Chapter 4

Variational Distributed Sparse Bayesian

Learning

In this chapter we discuss a variational distributed sparse Bayesian learning (V-

dSBL) regression algorithm that is based on the idea of consensus propagation (CP)

which we discussed in Section 2.3. It can be used for collaborative sparse estimation

of spatial functions in wireless sensor networks (WSNs). The sensor measurements

are modeled as a weighted superposition of basis functions equivalent to centralized

SBL (see Section 2.2). When kernels are used, the algorithm can be seen as a dis-

tributed version of the relevance vector machine [23, 68]. The proposed method is

based on a combination of variational inference and loopy belief propagation (LBP)1,

where data is only communicated between neighboring nodes without the need for

a fusion center. We show that for tree structured networks, under certain param-

eterization, V-dSBL coincides with centralized V-SBL. For general loopy networks,

V-dSBL and V-SBL are differend. However, simulations show that V-dSBL requires

less hyperparameter updates as compared to V-SBL. That is, it converges faster

over the variational inference iterations.

4.1 Bayesian model definition

Consider a sensor network with K sensors, where each sensor k = 1, . . . ,K observes

a scalar measurement tk, which we also denote as the target signals. We assume

that the measurements t1, . . . , tK are noisy observations of some unknown static field

function f(x), spatially sampled at the sensor positions x1, . . . ,xK , where xk ∈ R
D

This chapter is partly based on our publications [71] and [72].
1Note that we use LBP as a subroutine of variational inference. The method is not related to

variational message passing as in [102].

71
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m = 1, . . . ,Mk = 1, . . . ,K

tk αmwm

τ

xk
a

b

ψm(·)

Figure 4.1: A Bayesian network representing the centralized SBL model with known
noise precision τ .

and D is the coordinate system dimension (e.g., D = 2 for planar deployment)2.

Since we assume a static field function, the set D = {xk, tk}Kk=1 can be considered

as constant distributed training data with inputs xk and targets tk only available to

sensor k.

However, before we show how to learn from the training data D in a distributed

fashion, we first assume D to be available at some central unit and return to our

distributed considerations later in this chapter. Let us therefore first consider the

centralized SBL model depicted as a Bayesian network in Figure 4.1. For simplicity,

we assume the noise precision τ to be known. Note that it is also possible to estimate

the noise precision in a distributed manner. We give some comments on how this

could be done in Section 4.5.

The targets are modeled as

tk =

M∑

m=1

wmψm(xk) + ǫk, (4.1)

a superpositions of M weighted basis functions ψm(·) with additive perturbation

ǫk ∼ N (ǫk|0, τ−1). Remember from our discussion in Chapter 3 that since we do

not know the underlying true function f(x), and our model (4.1) may not be rich

enough to perfectly represent any f , the perturbation term ǫk can be seen not only

as including sensor measurement noise, but also any model mismatches.

As in Section 2.2, we define the hierarchical prior on the weights and hyperparame-

ters as p(wm|αm)p(αm) with p(wm|αm) = N (wm|0, α−1
m ) and p(αm) = Ga(αm|a, b) ∝

αa−1
m e−bαm .

2Note that although we use xk as sensor coordinates here, it could also be any other kind of input
vector available at sensor k.
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4.2 Variational approximation

We now derive the V-SBL algorithm with known noise precision τ . To this end we

define the VB approximation of the intractable SBL posterior p(w,α|t) as

q(w,α) = q(w)q(α) ≈ p(w,α|t) =
p(t|w)p(w|α)p(α)

p(t)
, (4.2)

where we again use the vector notations w = [w1, . . . , wM ]T , α = [α1, . . . , αM ]T and

t = [t1, . . . , tK ]T for the weights, hyperparameters and targets, respectively. The

factorization of q(w) and q(α) in (4.2), known as structured mean field approxima-

tion, forms the only relaxation to the problem. By maximizing the variational lower

bound [4] (cf. Section 2.1.1)

L[q(w,α)] =

∫

q(w,α) ln
p(w,α, t)

q(w,α)
dwdα, (4.3)

we obtain the optimal unconstrained updates as

q∗(w) =
exp

(
Eq(α){ln[ p(t|w)p(w|α) ]}

)

∫
exp

(
Eq(α){ln[ p(t|w)p(w|α) ]}

)
dw

(4.4)

and

q∗(α) =
exp

(
Eq(w){ln[ p(w|α)p(α) ]}

)

∫
exp

(
Eq(w){ln[ p(w|α)p(α) ]}

) (4.5)

By solving (4.4) and (4.5), we obtain q∗(w) = N (w|µ̂, Σ̂) and q∗(α) =
∏M

m=1 Ga(αm|âm, b̂m) (cf. (2.40) and (2.41) in Section 2.2.2), with

Σ̂ =
(
τ̂ΦTΦ + diag(α̂)

)−1
, µ̂ = τ̂Σ̂ΦT t, (4.6)

and

âm = a+ 1/2, b̂m = b+ (µ̂2
m + Σ̂mm)/2, (4.7)

where α̂m = Eq(αm){αm} = âm/b̂m, α̂ = [α̂1, . . . , α̂M ]T , Φ = [φ1, . . . ,φK ]T , φk =

[ψ1(xk), . . . , ψM (xk)]
T , µ̂m is the mth element of the mean vector µ̂, and Σ̂mm is

the mth element on the main diagonal of the covariance matrix Σ̂.

Consecutive updates of (4.6) and (4.7) lead to the desired posterior approxima-

tion (4.2). Components of the density q(w), which have large probability mass

around zero have no influence on the model (4.1), as we also discussed in Sec-
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tion 2.2.2. These components, which correspond to irrelevant basis functions, can

be equivalently detected by large elements of α̂. Practically, one defines a large

threshold θth and considers all α̂m > θth, for m = 1, . . . ,M , as infinite, where the

corresponding basis functions can be pruned from the model.

4.3 Distributed sparse Bayesian learning

Let us now extend the centralized SBL model in such a way that we can derive

the V-dSBL algorithm step by step. The fundamental problem is how to obtain a

distributed versions of the variational updates (4.4) and (4.5).

First, consider the update expression (4.5). If we knew q(w) at each sensor in the

network, i.e., if we knew its parameters µ̂ and Σ̂, we could compute α̂, which fully

specifies q(α), from (4.7). This is because âm is constant and b̂m = âm/α̂m. That

means, updating q(α) is only a local computation at each sensor in the network if

q(w) is known everywhere.

Second, we modify the update expression (4.4) for q(w) slightly to obtain an

intermediate model with K hyperparameter vectors α̂1, . . . , α̂K , one for each sensor

k with α̂k = [α̂k,1, . . . , α̂k,M ]T . Then, we introduce a factor graph representation

and show that we can obtain q(w) when α̂1 = . . . = α̂K = α̂ by using message

passing inference schemes.

Finally, we tackle the remaining question. Namely, how to obtain q(w) at each

sensor when our data D is distributed across the network. Since we are not inter-

ested in collecting all the data {xi, ti} for i 6= k at each sensor k, we propose a

further modification of the update expression (4.4) that better resembles the dis-

tributed nature of our problem. The resulting factor graph representation includes

multiple marginal densities q(wk) at each sensor k with wk = [wk,1, . . . , wk,M ]T .

These marginals can be estimated by applying LBP message passing which only

requires communication between neighboring nodes. We show that under certain

assumptions, q(wk) = q(w), ∀k.

4.3.1 Factor graph representation

We have already introduced factor graphs in the context of CP in Section 2.3.

We now show that the weight update expression (4.4), defined by its sufficient

statistics (4.6), can be obtained through inference performed on the factor graph

in Figure 4.2(a), where we now have multiple vectors α̂1, . . . , α̂K instead of one
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model to derive (b) variational distributed SBL (V-dSBL).

vector α̂. The factors of the graph in Fig. 4.2(a) are specified as3

ft(t̃,w) = exp{−τ
2
‖t̃ −Φw‖22}, (4.8)

3Note that factors need not to be normalized.
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and

fkα(αk,w) = exp{− 1

2K
wTAkw}, ∀k, (4.9)

where Ak = diag(αk).

Note that for the definition of the local factors (4.9), each sensor k needs to

know K, the total number of sensors in the network. Although we assume that K is

known everywhere, it can be easily obtained via consensus algorithms like [104, 67],

as pointed out in [120]. The fundamental idea is to average the value 1 at one

node with the values 0 at all other nodes accross the network. Using consensus

algorithms, each node should obtains 1/K, which can be locally inverted to obtain

K. Note that this estimation method, equivalently to the concepts derived here for

V-dSBL in the following, can be performed fully decentralized without the need for

routing protocols.

Let us now apply the sum-product algorithm [4] to the factor graph in Figure 4.2(a)

by noting that due to our previous discussion about distributed hyperparameter up-

dates, when q(w) is available everywhere, we have α̂k = α̂, ∀k, where α̂k is the

expectation of the hyperparameter vector at sensor k. We start to pass messages

from the leave nodes to w and consider observed variables as Dirac delta distri-

butions, i.e., mαk→fkα
= δ(αk − α̂k), ∀k, and mt̃→fkt

= δ(t̃ − t). Furthermore we

have the messages from the factors to w defined as the integral over the product

of all incoming messages times the factors itself, i.e., mfkα→w = fkα(α̂k,w), ∀k,
and mfkt→w = ft(t,w). Finally, we compute q(w) as the normalized product of all

incoming messages given as

1

Z
ft(t,w)

K∏

k=1

fkα(α̂k,w), (4.10)

where Z is a normalization constant. By plugging (4.8) and (4.9) into (4.10), it

is now straight forward to show that (4.10) is a Gaussian distribution with mean

vector and covariance matrix as defined in (4.6) and thus equivalent to centralized

V-SBL.

4.3.2 Distributed computation of q(w)

So far we have assumed that q(w) is known to all sensors. Before we investigate on

how to distribute q(w) across the network, let us define a WSN as an undirected

connected graph G = (V, E) which consists of vertices (or sensors) V and edges (or

links) E defined as a set of unordered pairs {k, l} ⊂ V representing the communi-
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cation links. Note that by defining an undirected graph, we implicitly assume that

sensors can communicate in both directions along a communication link4. We define

the set of neighbors of sensor k as N(k) = {l | {k, l} ∈ E} and its cardinality, i.e.,

the number of neighbors of sensor k, as #N(k).

Tree Networks

When we consider tree networks, i.e., networks without loops, we can define a factor

graph, as depicted in Figure 4.2(b), that has marginal distributions q(wk), ∀k, which

are equal to the centralized q(w) distribution. That is, we can obtain q(wk) = q(w)

at each sensor in the network. The marginals q(wk) can be efficiently obtained by

again using the sum-product algorithm, where we pass messages from the leaves to

an arbitrary root node and from there back to the leaves [4]. Let us define the new

factors used in Figure 4.2(b), as

fkt(t̃k,wk) = exp{−τ
2
(t̃k − φT

k wk)
2}, ∀k, (4.11)

and

fkl(wk,wl) = exp

{

−β
2
‖wk −wl‖22

}

, ∀{k, l} ∈ E , (4.12)

where (4.11), as opposed to (4.8), now has only a single (the locally available) target

variable t̃k, and we denote (4.12) as the coupling factors. The factors fkα are defined

as in (4.9), but are now connected to a local wk instead of a global w. Compared to

Figure 4.2(a), the factors (4.12) are conceptually new and form a fundamental part

in the V-dSBL model. Wherever sensors k and l are connected in the WSN graph, a

factor fkl is also defined in the factor graph, i.e., the physical structure G coincides

with the probabilistic structure between the weights q(wk). That is, the sum-product

algorithm can be distributedly performed by the WSN, where no routing scheme

with any kind of multi-hop communication is needed. By inspecting (4.12) with

β > 0, we have larger values of fkl when wk, in terms of ℓ2 distance, is close to wl,

which is the driving force to achieve consensus in the network since there is a larger

probability that neighbors have similar weight distributions. This coupling is even

stronger when the precision parameter β, further denoted as coupling parameter, is

large. When β →∞, then fkl(wk,wl) ∝ δ(wk−wl) and we obtain the same weight

distributions everywhere.

In the following, we generally derive the messages and show that as β → ∞, for

4It is assumed that the physical and logical topologies in the communication network coinside.
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tree structured graphs G, the equivalence q(wk) = q(w) holds for all k. Similar as

before, the messages from the observations to wk can be determined as mt̃k→fkt
=

δ(t̃k−tk) and mfkt→wk
= fkt(tk,wk), ∀k. In the same manner we obtain mαk→fkα

=

δ(αk − α̂k) and mfkα→wk
= fkα(α̂k,wk), ∀k. Since all factors in Figure 4.2(b)

have Gaussian shape, also the messages between the sensors have Gaussian shape.

Additionally, as normalization can be done at any stage during message passing, we

further assume normalized messages for simplicity. Thus, we can generally define the

incoming message at node wk, coming from some factor fuk, as normalized Gaussian

mfuk→wk
∝ exp

{

−1

2
(wk − µ̂uk)

T Λ̂uk (wk − µ̂uk)

}

, (4.13)

with mean vector µ̂uk and precision matrix (inverse covariance matrix) Λ̂uk. We

can determine the messages send from sensor k to sensor l as5

mwk→fkl
∝ mfkt→wk

mfkα→wk

∏

u∈N(k)\l

mfuk→wk
, (4.14)

and

mfkl→wl
∝
∫

fkl(wk,wl) mwk→fkl
dwk, (4.15)

where the parameters of the Gaussian message (4.15) can be obtained from standard

results for multivariate Gaussian distributions (see, e.g., [4, Appendix B]). That is,

Λ̂kl =

((Âk

K
+ τφkφ

T
k +

∑

u∈N(k)\l

Λ̂uk

)−1
+ β−1I

)−1

, (4.16)

µ̂kl = (Λ̂−1
kl − β−1I)

(

τφktk +
∑

u∈N(k)\l

Λ̂ukµ̂uk

)

, (4.17)

with Âk = diag(α̂k). Passing messages (4.16) and (4.17) from the leave nodes to

an arbitrary root node wk in the tree network, leads to the marginal distribution

q(wk) with mean vector µ̂k and precision matrix Λ̂k defined as

Λ̂k =
Âk

K
+ τφkφ

T
k +

∑

u∈N(k)

Λ̂uk (4.18)

5The notation N(k)\l denotes the set of all neighbors of k except l.
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and

µ̂k = Λ̂−1
k

(

τφktk +
∑

u∈N(k)

Λ̂ukµ̂uk

)

. (4.19)

Passing messages from the root node back to all other nodes wl, for l 6= k, allows

all other marginal distributions to be obtained. Now, inserting β →∞, for trees it

is easy to verify that

(
Λ̂

[β→∞]
k

)−1
=

(

1

K

K∑

k=1

Âk + τΦTΦ

)−1

(4.20)

and

µ̂
[β→∞]
k = τ

(

Λ̂
[β→∞]
k

)−1
ΦT t, (4.21)

which is equivalent to (4.6) for α̂k = α̂, ∀k, as we intended to show. That is,
(
Λ̂

[β→∞]
k

)−1
= Σ̂ and µ̂

[β→∞]
k = µ̂ for all k.

General Loopy Networks

When we consider loopy graphs G, which is a more general model for a WSN,

applying the sum-product algorithm leads to LBP, an iterative approximate inference

method [4]. Convergence of LBP cannot be guaranteed in general, but for the

particular case of Gaussian LBP, which applies here, there exist convergence criteria

for the marginal mean and marginal variance; see [107, 106].

Unfortunately, these criteria are not suitable for V-dSBL, since they are designed

for what we denote as elementary Gaussian LBP, i.e., when we consider messages

between all individual scalar random variables. More specifically, in V-dSBL as de-

picted in Figure 4.2(b) we have multivariate Gaussian random variables, i.e., vectors

instead of scalars. Thus, in V-dSBL the messages are also multivariate, which is not

considered in [107, 106]. In this sense, even if we have tree networks as discussed

before, the elementary Gaussian graph has loops because the elements of all vectors

wk, i.e., wk,1, . . . , wk,M , in general are fully connected. This is already due to the

local factors fkt at each node. Note that when we see the factor fkt as a multivariate

Gaussian over wk, the resulting precision matrix τφkφ
T
k typically has only non-zero

off-diagonal elements and thus corresponds already to a fully connected graph [106].

However, as the messages sent in V-dSBL are costly to communicate and due to

the matrix inversion (4.16) also costly to compute, elementary Gaussian LBP seems

to be an efficient alternative. Unfortunately, in our experiments elementary Gaus-

sian LBP almost never converged. Also the sufficient convergence criterion derived
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in [106] was almost never fulfilled. In Appendix C, we give more details about the el-

ementary Gaussian LBP approach to V-dSBL and discuss further research directions

to overcome the convergence problems. We also show in detail in Appendix C how

the sufficient convergence criterion [106] can be evaluated for the V-dSBL model.

In consensus propagation (CP), as pointed out in [67], the coupling parameter β, is

critical to trade off fast convergence (small β) and accurate mean estimates (large β).

In V-dSBL, the same applies for β, since the V-dSBL coupling factor (4.12) is just

a vector extention of the coupling factors in CP defined in Section 2.3.

Furthermore, in loopy graphs, we need to define a schedule in which messages

are updated until convergence. Algorithm 4.1 presents V-dSBL with synchronous

message updates, where we have reformulated the messages as functions of interme-

diate marginals, which directly follow from (4.16)-(4.19). Note that we only consider

synchronous message updates in all our simulations throughout this thesis.

Algorithm 4.1 Variational distributed SBL (V-dSBL)

Initialize: α̂k (e.g., α̂k,m = 10−1, ∀m), ∀k.
% Variational update loop
while (Not converged) do

Initialize: n = 0, Λ̂
(0)
uk = 0 and µ̂

(0)
uk = 0 , ∀(u, k) ∈ E

% Message passing update loop
while (LBP not converged) do
n = n+ 1

% Compute intermediate marginal estimates, ∀k
Λ̂

(n)
k

= K−1Âk + τφkφT
k +

P

u∈N(k) Λ̂
(n−1)
uk

µ̂
(n)
k =

“

Λ
(n)
k

”−1“

τφktk +
P

u∈N(k) Λ̂
(n−1)
uk µ̂

(n−1)
uk

”

% Send messages, ∀(k, l) ∈ E
Λ̂

(n)
kl

=

„

“

Λ̂
(n)
k

− Λ̂
(n−1)
lk

”−1
+ β−1I

«−1

µ̂
(n)
kl

=
“

Λ̂
(n)
k

− Λ̂
(n−1)
lk

”−1“

Λ̂
(n)
k

µ̂
(n)
k

− Λ̂
(n−1)
lk

µ̂
(n−1)
lk

”

end while

% Compute the marginal estimates, ∀k
Σ̂k =

“

K−1Âk + τφkφT
k +

P

u∈N(k) Λ̂
(n)
uk

”−1

µ̂k = Σ̂k

“

τφktk +
P

u∈N(k) Λ̂
(n)
uk

µ̂
(n)
uk

”

% Update hyperparameters, α̂k,m, ∀m, ∀k
α̂k,m = (2a+ 1)/(2b + µ̂2

k,m + Σ̂k,mm)

end while

Compute the final marginals with LBP as before
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In conclusion, as the convergence criteria [107, 106] do not apply for V-dSBL, we

cannot guarantee convergence of the marginal distribution estimates, i.e., marginal

mean vectors and marginal covariance matrices. Furthermore, if the marginal mean

vectors and marginal covariance matrices converge, we cannot guarantee their cor-

rectness6.

However, in none of our simulations presented in Section 4.4 we had convergence

problems. Especially for the synthetic data experiments presented in Section 4.4.1

V-dSBL performed similar to V-SBL. This was achieved at a much faster conver-

gence rate over the variational inference iterations. That is, the algorithm requires

less iterations in the variational update loop (outer loop in Algorithm 4.1) compared

to centralized V-SBL. We further show in the real data experiments presented in Sec-

tion 4.4.2, that the performance V-dSBL strongly depends on the network topology,

more specifically on the number of connections. For a large number of connections,

even though Gaussian LBP always converged, the performance was not that good.

4.3.3 Exploiting sparsity for efficient communication

When a hyperparameter α̂k,m diverges, or practically considered as infinite after

reaching a large predefined threshold θth, the basis function m can be pruned at

node k. Also the messages, i.e., µ̂kl and Λ̂kl, can be transmitted to all neighbors

l ∈ N(k) without the irrelevant components.

By inspecting Equation (4.16), it is easy to show that the inner inverse has only

zeros in the m-th row and column if α̂k,m →∞. When we also consider the addition

of the β−1I term, after computing the outer inverse, we obtain a matrix Λ̂kl with

the m-th row and column equal to zero, except the m-th main diagonal element

which is β. This can be easily shown by using matrix permutation and blockwise

inversion rules. Since β is a design parameter in our model and is known by all

sensors, there is no need for transmitting it to the neighbors. Thus, we can delete

the m-th row and column of Λ̂kl and transmit the resulting sparse message, which

we denote Λ̆kl. The receiving sensor l, which is getting the message Λ̆kl, can reinsert

β in the diagonal and thus reproduce Λ̂kl if it knows the correct positions of the

pruned elements. Thus, the only information we need to transmit additionally from

a sensor k to l is a binary mask of size M indicating the used basis functions7.

6Note that even for elementary Gaussian LBP, as we further discuss in Appendix C, if the algorithm
converges, only the mean is guaranteed to be correct [107, 106].

7Note that the binary mask does not add much extra communication, since M is limited anyway.
This is due to the initial communicational complexity of O(M2) stemming from the precision
matrix (4.16).
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Similarly, it can be shown that the mean message µ̂kl defined in (4.17) obtains zero

elements at all positions m if α̂k,m diverges. After pruning the zero elements from

the vector, we send the sparse mean message µ̆kl, which can also be reproduced at

sensor l to obtain µ̂kl by reinserting zeros according to the binary mask.

It is important to mention that also all local computations can be done efficiently

by taking sparsity patterns into account, i.e., to consider only the matrix and vec-

tor elements corresponding to finite α̂k,m values similar to the previous discussion.

For each α̂k,m = ∞, the marginal covariance matrix Σ̂k at sensor k, defined in

Algorithm 4.1, only consists of zeros in the m-th row and m-th column. Likewise

the mean vector µ̂k has a zero at position m. Thus, the corresponding elements,

including the corresponding hyperparameters, can be pruned from the local model.

4.4 Simulations

In this section we show simulation results for synthetic data and real data experi-

ments, where we compare the performance to centralized V-SBL. For both, the syn-

thetic data and real data experiment, we define the basis functions like in RVMs, i.e.,

a bias ψ1(x) = 1 and Gaussian kernels ψm(x) = κ(x,xm−1) for m = 2, . . . ,K + 1

centered on the sensor positions8, where κ(x,xm−1) = exp{−θκ‖x− xm−1‖2} with

kernel parameter θκ.

4.4.1 Synthetic data

We randomly deployK = 50 sensors in aD = 2 dimensional area, where both coordi-

nates lie in the interval [0, 1]. Figure 4.3 shows the sensor positions and connections,

where we generated the connections by increasing the transmission radius equally

for each sensor until a connected graph was obtained. The sensor measurements

(targets) are generated by adding zero-mean white Gaussian noise with variance

σ2 = 10−3 to the underlying spatial function f(x) = 1
2 sinc(5x1 − 5

2)) + 1
2 + x2. We

assume τ = σ−2, where this is only an approximation, since we neglect any possible

model mismatches. Nonetheless, this is a good choice since we do not know how

well our model fits the data in advance. Comments on possible implementations for

distributed estimation of τ are given in Section 4.5. The hyperprior parameters a

8For kernel basis functions, it is assumed that each sensor knows about the position of the others
initially to be able to define the fixed basis function set. This is not necessary for general
predefined fixed basis functions, where sensors need only information about their own position
to compute φk.
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Figure 4.3: Sensor network with 50 randomly deployed sensors.

and b were both defined as zero, we use a kernel parameter of θκ = 15 and initialize

the hyperparameters to α̂k,m = 10−1.

Table 4.1 shows a comparison of V-dSBL and V-SBL, where we compare the

mean squared error (MSE), the no. of basis functions (#Bfs) and the no. of vari-

ational inference iterations (#varIter) until the algorithms converge. We define

the MSE for the variational approximate predictor given in (2.20) for V-SBL as
1

Ntest

∑Ntest
i=1

(
f(xtest,i) − φT

test,iµ̂
)2

, where Ntest = 104 is the number of test points

xtest,i, i = 1, . . . , Ntest, which we placed on a uniform 100 × 100 grid on the sensor

deployment area and φtest,i = [ψ1(xtest,i), . . . , ψM (xtest,i)]
T . For V-dSBL, we have

multiple MSEk (one for each sensor), where for its computation we use µ̂k instead

of µ̂. In this sense, we give average and maximum numbers for MSE and #Bfs over

the set of sensors. The algorithms are considered to have converged when the max-

imum absolute change of all α̂k,m or α̂m, respectively for V-dSBL and V-SBL, over

the variational inference iterations is smaller than 10−3. Similar, for the V-dSBL

algorithm, we consider Gaussian LBP as converged when the maximum absolute

change of all elements of the intermediate marginal parameters µ̂
(n)
k and Λ̂

(n)
k for

all sensors k over the message iterations n to be smaller than 10−3. We denote the

final number n, after convergence, as the number of message iterations (#msgIter).
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V-dSBL V-SBL

θth β
MSE [dB] #Bfs #msgIter

#varIter MSE [dB] #Bfs #varIter
avg. max. avg. max. avg. max.

104 104 −20.72 −20.60 12 12 25.3 29 22 −21.04 15 29524

...
106

−22.30 −22.30 14 14 24.3 27 19 −21.04 15 29524
108

−22.32 −22.32 14 14 28.4 31 18 −21.04 15 29524
106 104 −20.57 −20.44 51 51 25.9 29 25 −21.09 15 3047768

...
106

−22.30 −22.30 14 14 24.3 27 19 −21.09 15 3047768
108

−22.32 −22.32 14 14 28.4 31 18 −21.09 15 3047768
108 104 −20.57 −20.44 51 51 25.9 29 25 −21.09 15 307263780

.

..
106

−22.30 −22.30 51 51 24.2 27 29 −21.09 15 307263780
108

−22.32 −22.32 14 14 28.4 31 18 −21.09 15 307263780

Table 4.1: Synthetic data performance comparison of V-dSBL and V-SBL for the
network shown in Figure 4.3. See text for details.

The average and maximum numbers for #msgIter are computed over the variational

iterations.

The results in Table 4.1 are given for different pruning thresholds θth and coupling

parameters β. Note that V-SBL only depends on θth and not on β. Boldface numbers

highlight better MSE or sparsity performance. It is very interesting to see that when

β is large compared to θth, V-dSBL performes similar to V-SBL but requires much

less variational inference iterations. We note that centralized V-SBL is known for its

slow convergence as, e.g., compared to MML* (cf. to Section 2.2.2), but this does

not hold for V-dSBL. During all simulations, no convergence problems occurred in

V-dSBL. As we further see in Table 4.1, the max. and avg. values of MSE and

#Bfs are mostly equivalent in V-dSBL, which means that the network has achieved

consensus. When θth is large compared to some fixed β, no pruning happens and all

V-dSBL results are equivalent. This is because all elements of α̂k quickly converge

to finite values lower than θth. As we empirically observed in our simulations, the

largest values of α̂k after convergence settle at a level around β#N(k), where in

V-SBL they diverge towards infinity. Later in Section 4.4.3 we try to give some

explanation on why this is happening. Figure 4.4 compares two examples of the

hyperparameter evolution of Sensor 22 and Sensor 31 with centralized V-SBL, whith

settings θth = 106 and β = 104. Note that Sensor 22 and 31 are also highlighted in

Figure 4.3, where we see that #N(22) = 1 and #N(31) = 4. Thus, the largest

hyperparameters α̂k converge at a level around β on Sensor 22 and 4β on Sensor 31

as can be seen in Figure 4.4(a) and 4.4(b), respectively.

4.4.2 Real data

For the real data experiments on V-dSBL, we used atmospheric pressure data over

Europe obtained from [2]. The data is depicted in Figure 4.5, where we also show
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Figure 4.4: Hyperparameter evolution over the variational iterations.
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Figure 4.5: Atmospheric pressure over Europe (reduced to sea level) on May 25,
2011, 06:00 UTC. The sensor data was obtained from [2]. (a) Gray
dots depict the locations of the 1466 weather stations from the dataset.
The contours were generated using centralized MML* kernel regression
to qualitatively depict the pressure field. The contour levels are given
in hectopascal (hPa). (b) Atmospheric pressure at the same day and
time obtained from the Austrian Central Institution for Meteorology
and Geodynamics (ZAMG) [3] for comparison. The yellow dashed region
approximately highlights the area depicted in (a).
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V-dSBL V-SBL

θth β NT
MSE [dB] #Bfs #msgIter

#varIter MSE [dB] #Bfs #varIter
avg. max. avg. max. avg. max.

104 106 (a) 14.10 14.10 8 8 291.2 377 23 2.40 25 7413170

..

.
..
.

(b) 8.10 8.14 8 8 464.6 688 25 2.40 25 7413170
(c) 9.73 9.74 8 8 944.8 1375 14 2.40 25 7413170

106 108 (a) 14.74 14.75 9 9 276.8 375 22 2.40 25 741274899

...
...

(b) 6.51 6.52 10 10 466.7 692 24 2.40 25 741274899
(c) 8.97 8.98 9 9 956.3 1383 40 2.40 25 741274899

Table 4.2: Real data performance comparison of V-dSBL and V-SBL for the three
networks (NTs) depicted in Figure 4.6(a), (b) and (c). See text for details.

the pressure field obtained from the Austrian Central Institution for Meteorology

and Geodynamics (ZAMG) website [3] for comparison. The pressure is reduced to

sea level and stems from May 25, 2011, 06:00 UTC. The total number of sensor

measurements is 1466. However, for training we only use 293 measurements for

computational reasons and hold back the remaining for testing. The training mea-

surements are considered as the sensor measurements in our network, i.e., we have

K = 293. Each sensor’s position is given by the longitude and latitude coordinates

of the weather stations from the training set.

We artificially design three sensor networks by connecting the sensors that are

close to each other using different numbers of connections. The networks are depicted

in Figure 4.6.

We use a kernel parameter θκ = 10−2 and a noise precision of τ = 1. Table 4.2

shows a performance comparison of V-dSBL and V-SBL for the three networks from

Figure 4.6. Table 4.2 can be interpreted the same way as Table 4.1 (see Section 4.4.1

for details). There is only one additional column, titled NT, in Table 4.2 which

indicates the network topology as shown in Figure 4.6. In all cases β was chosen

larger than θth, which guarantees that the pruning threshold can be reached for all

α̂m that correspond to irrelevant basis functions as we discussed in Section 4.4.1.

All other V-dSBL settings, like, e.g., the convergence detection, are equivalent as in

Section 4.4.1.

From Table 4.2, we clearly see that V-dSBL performs different for the particular

network topologies, even though the sensor positions and measurements are equiv-

alent in all three cases. As the boldface numbers indicate, the centralized V-SBL

algorithm performs much better in terms of MSE compared to V-dSBL. However,

in all cases V-dSBL leads to sparser results. The required number of variational

inference iterations of V-dSBL is again in all cases much lower than for central-

ized V-SBL. The two settings of the pruning threshold θth do not influence the

performance of centralized V-SBL. But, as the hyperparameters for irrelevant ba-
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Figure 4.6: Three sensor networks with equivalent sensor locations but different con-
nectivities. The maximum number of neighbors in the networks (a), (b),
(c) are 51, 10, 5, respectively.



4.4. Simulations 89

sis functions diverge quite linearly (cf. Figure 4.4(c)), the number of variational

inference iterations is about 100 times larger due to the change of θth by a factor

of 100.
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(c) V-dSBL, Sensor 121, Network Fig 4.6(c)
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(d) Centralized V-SBL

Figure 4.7: Comparison of the estimated V-dSBL pressure fields (a)–(c) of the net-
works given in Figure 4.6(a)–4.6(c), respectively, with (d) centralized
V-SBL. The crosses indicate the sensor positions. We use the settings
θth = 104 and β = 106. The V-dSBL contours are given for one particu-
lar sensor with index 121. Its position is highlighted in the plots (a)–(c)
and also in Figure 4.6.

We exemplarily show the contours of the estimated pressure field for all three

networks based on the estimate of one particular sensor with index 121 in Fig-

ures 4.7(a)–4.7(c). The position of Sensor 121 was already highlighted in Figure 4.6.

We used the settings θth = 104 and β = 106. For comparison, we also show the

estimated pressure field of centralized V-SBL in Figure 4.7(d). As we know from

Table 4.2, the networks in Fig 4.6(b) and 4.6(c) lead to better predictions, i.e, smaller

MSE. This can be also clearly seen by comparing the contour plots of Figure 4.7(b)
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and 4.7(c) with Figure 4.5. Note that for the real data experiments, the prediction

of centralized V-SBL, also shown in Figure 4.7(d), obtains the smallest MSE.

4.4.3 Discussion of simulation results

As we mentioned in Section 4.4.1, we observed that the largest elements α̂k,m of α̂k

that correspond to irrelevant basis functions do not diverge towards infintiy as in V-

SBL, but rather convergence at a level around β#N(k). Unfortunately, due to LBP,

it is very difficult to analyze in detail why this is happening. However, intuitively,

one may argue that because of the coupling factors fkl, we add some extra noise to

the messages between the sensors, i.e., we somehow reduce the trust in the beliefs

of the direct neighbors. The variance of this noise term is inversely proportional

to the coupling parameter β. Thus, the marginal variance estimate Σ̂k, coarsely

speaking, collects the incoming noise terms via Λ̂uk. The more neighbors, the more

of these terms are added together as we see in the Σ̂k update in Algorithm 4.1.

This could be seen as an attempt to explain the dependency on the number of

neighbors, #N(k). Since α̂k,m is inversely proportional to Σ̂k,m (see Algorithm 4.1)

and Σ̂k,mm has some sort of noise floor, i.e., Σ̂k,mm > 0, due to the noise corrupted

incoming messages, α̂k,m cannot obtain larger values than Σ̂−1
k,mm. That is, α̂k,m is

upper bounded due to the noise created by the coupling factors. Note that this is

only an intuitive explaination of why the hyperparameters do not diverge towards

infinity. To clarify this in detail, much more investigations are needed. However,

as we mentioned above, this is a very complicated task due to LBP. For practical

situations on the other hand, we showed that by setting the coupling parameter β

larger than the pruning threshold θth, we can find αk,m > θth, i.e., we can detect

irrelevant basis functions. Especially for the synthetic data experiments, in such

situations, the performance of V-dSBL was similar to centralized V-SBL.

4.5 Conclusions and open issues

In this chapter we have presented a variational distributed sparse Bayesian learn-

ing (V-dSBL) algorithm for sensor networks based on the idea of consensus prop-

agation (CP) [67]. When the network graph is a tree and the coupling parameter

β →∞, we have shown that V-dSBL is equivalent to centralized variational sparse

Bayesian learning (V-SBL), where all data is available at one central location. Based

on this equivalence, we have extended the algorithm for arbitrary networks with

loops, which leads to an iterative Gaussian loopy belief propagation (LBP) sub-
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routine. In this case, the coupling parameter β becomes crucial to trade-off LBP’s

convergence speed vs. its accuracy as described for consensus propagation (CP)

in [67]. Performance comparison of V-dSBL and V-SBL on synthetic data showed,

that for large β, V-dSBL performs very similar to V-SBL. This was however achieved

at a much faster convergence rate over the variational inference iterations. This

convergence speed discrepancy even increases for higher pruning thresholds. Unfor-

tunately, for the real data experiments, the performance of centralized V-SBL was

better, even though V-dSBL always led to sparser models.

As widely known, the convergence of LBP is not guaranteed in general. However,

for Gaussian LBP, there exist convergence criteria [107, 106]. Unfortunately, these

criteria are not applicable for V-dSBL as we explicitly pointed out in Section 4.3.2

and Appendix C. Thus, even though we have never observed any convergence prob-

lems during all of our simulations, there is no theoretical proof, that Gaussian LBP

converges. More specifically, as far as we know, there exists no convergence criteria

for Gaussian LBP that is generalized to multivariate nodes and messages. We see

this as a very interesting open research issue which has also not been touched by

this thesis.

Throughout this chapter we have assumed τ to be known for simplicity. However,

as we know from centralized V-SBL (see Section 2.2.2 and [35]), it is possible to

estimate τ during the variational inference updates. Although not done in this thesis,

it would be straight forward to also implement the update for the expectation τ̂ given

by (2.44) in a distributed way using distributed averaging protocols like [104, 67].

Note that the inverse of τ̂ (i.e., the noise variance estimator) can be interpreted as

a distributed average of squared errors across the network.
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Chapter 5

Fast Variational Distributed Sparse

Bayesian Learning

In Chapter 4 we have shown that based on the idea of consensus propagation (CP),

a distributed V-SBL (V-dSBL) algorithm can be derived. This method requires

the distributed estimation of the SBL weight posterior mean vector and covariance

matrix using Gaussian loopy belief propagation (LBP). For elementary Gaussian

LBP, as we discuss in Appendix C, it is known [107, 106] that the marginal variance

estimates do not converge to the true marginal variances in general, even if conver-

gence is guaranteed based on the criteria in [107, 106]. However, the marginal mean

in elementary Gaussian LBP always converges to the true mean if convergence is

guaranteed [107, 106]. Unfortunately, to our knowledge, such criteria do not exist

for multivariate Gaussian LBP as we proposed for V-dSBL in Chapter 4. Thus, we

are not able to guarantee the convergence of Gaussian LBP in V-SBL.

In this chapter, we investigate on fast variational distributed SBL (FV-dSBL),

a distributed adaptive version of FV-SBL, which we discussed in Chapter 3. The

method allows us to use any kind of distributed averaging protocol, e.g., [104, 67],

to compute the FV-SBL decision to determine whether to keep or prune a basis

functions. Additionally, to be computationally more efficient, the method further

allows us to add new basis functions based on an extension of the keeping or pruning

criteria given in Theorem 1, Chapter 3. We further denote this extension as adaptive

FV-SBL and will first explain it from a centralized perspective in Section 5.1 (also

cf. [117]). Note that in Appendix D we also show a sliding-window online learning

method for adaptive FV-SBL based on our publication [73]. The obvious advantage

of using distributed averaging protocols for the distributed implementation of this

adaptive FV-SBL, is that no problematic variance estimators as in V-dSBL are

required. For instance, if Consensus Propagation (CP) [67] (see also Section 2.3)

is used for averaging, we only need the Gaussian LBP mean, which has guaranteed

93
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convergence properties for any initialization and any coupling parameter β > 0

[67]. However, other distributed averaging protocols may be used as well. The

performance of FV-dSBL, as compared to centralized FV-SBL, only depends on

the quality of the distributed average estimates. The FV-dSBL algorithm will be

explained in Section 5.2.

We finally note that the methods derived in this chapter should be only seen as

a rather straight forward distributed implementation of FV-SBL. It only shows one

particular choice of how to collaboratively estimate the relevant basis components,

where one may also think of many other alternative approaches in this direction.

5.1 Incorporating new basis functions in fast variational

sparse Bayesian learning

The FV-SBL stationary point (3.9) from Theorem 1, Chapter 3, provides a fast rule

for deciding whether to keep or delete a basis function from the model, corresponding

to a finite or infinite value α̂
[∞]
m , respectively. In the following we will show how to

use this mechanism to decide if a new candidate basis function should be added to

a given model or not. Note that this method is similar to the adaptive learning

approach presented in fast marginal likelihood maximization [68].

To test a new candidate basis function M + 1 for an existing model with M

components, we need to compute ςM+1 and ρM+1 similarly as in (3.5). Thus, we

first need to define

Σ̄M+1 =

[

τ̂ΦTΦ + diag(α̂) τ̂ΦT ϕM+1

τ̂ϕT
M+1Φ τ̂ϕT

M+1ϕM+1

]−1

, (5.1)

which is equivalent to (3.4) with m = M + 1 if we extend Φ by a new basis vector

ϕM+1 in an additional column at the end. By using the inversion rule for structured

matrices [116, 113], (5.1) is equivalent to

Σ̄M+1 =

[

Σ̂ + γM+1τ̂
2Σ̂ΦT ϕM+1ϕ

T
M+1ΦΣ̂ −γM+1τ̂Σ̂ΦTϕM+1

−γM+1τ̂ϕ
T
M+1ΦΣ̂ γM+1

]

(5.2)

where γM+1 = (τ̂ϕT
M+1ϕM+1 − τ̂2ϕT

M+1ΦΣ̂ΦTϕM+1)
−1. We can now compute the
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stationary point α̂
[∞]
M+1 equivalently to (3.9) as

α̂
[∞]
M+1 =

{

(ρ2
M+1 − ςM+1)

−1, ρ2
M+1 > ςM+1

∞, ρ2
M+1 ≤ ςM+1

, (5.3)

with

ςM+1 = eT
M+1Σ̄M+1eM+1 = γM+1 =

= (τ̂ϕT
M+1ϕM+1 − τ̂2ϕT

M+1ΦΣ̂ΦT ϕM+1)
−1

(5.4)

and

ρM+1 = τ̂eT
M+1Σ̄M+1[Φ,ϕM+1]

T t

= τ̂ ςM+1ϕ
T
M+1t− τ̂2ςM+1ϕ

T
M+1ΦΣ̂ΦT t.

(5.5)

For finite stationary points α̂
[∞]
M+1 < ∞, we can efficiently compute the extended

covariance matrix, which we denote as Σ̂M+1, from

Σ̂M+1 =

[

Σ̂ + λM+1τ̂
2Σ̂ΦT ϕM+1ϕ

T
M+1ΦΣ̂ −λM+1τ̂Σ̂ΦT ϕM+1

−λM+1τ̂ϕ
T
M+1ΦΣ̂ λM+1

]

= Σ̄M+1 −
Σ̄M+1eM+1e

T
M+1Σ̄M+1

(
α̂

[∞]
M+1

)−1
+ eT

M+1Σ̄M+1eM+1

,

(5.6)

where λM+1 = (τ̂ϕT
M+1ϕM+1 + α̂

[∞]
M+1 − τ̂2ϕT

M+1ΦΣ̂ΦTϕM+1)
−1.

For α̂
[∞]
M+1 =∞, there is no need to extend the model by the corresponding basis

function. This can be also seen from (5.6), where for the case if we nevertheless

would add the basis M + 1, its corresponding weight would be zero. Note that in

this situation λM+1 = 0 and

Σ̂M+1 =

[

Σ̂ 0

0T 0

]

.

That is, there is no need to add the basis, since also the mean for this component

would be zero, i.e., µ̂M+1 = τΣ̂M+1[Φ,ϕM+1]
T t = [µ̂T , 0]T , and thus it does not

influence the model.

Algorithm 5.1 summarizes the main steps for adding or rejecting a new candidate

basis function in FV-SBL.
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Algorithm 5.1 Testing and adding or rejecting a new basis ϕM+1

Compute ςM+1 from (5.4) and ρM+1 from (5.5)
if ρ2

M+1 > ςM+1 then

% add new basis
α̂M+1 = (ρ2

M+1 − ςM+1)
−1

Compute: Σ̂ = Σ̂M+1 using (5.6)
Φ = [Φ,ϕM+1], α̂ = [α̂T , α̂M+1]

T , M = M + 1
If needed, update µ̂ = τ̂Σ̂ΦT t

else
% reject new basis - no action needed

end if

5.2 Distributed processing

5.2.1 Computation of ςm and ρm via distributed averaging

To compute the FV-SBL stationary points of the hyperparameters {α̂[∞]
m }Mm=1 for the

current basis functions and α̂
[∞]
M+1 for the new basis function from (3.9) and (5.3), re-

spectively, we need to determine {ςm, ρm}Mm=1 and {ςM+1, ρM+1}. To compute these

stationary points, which indicate the relevance of the corresponding basis functions,

in a distributed manner, we thus need to distributedly compute {ςm, ρm}Mm=1 and

{ςM+1, ρM+1}. For simplicity, in the following we do not distinguish between cur-

rent and new basis functions in our notation, i.e, we now consider m being in the

range 1, . . . ,M + 1 instead of 1, . . . ,M . This is no problem, since (3.9) and (3.23)

are equivalent to (5.3) and {(5.4), (5.5)}, respectively, by setting m to M + 1. Note

that ΦM+1 = Φ and Σ̂M+1 = Σ̂. Let us thus rewrite Equation (3.23) over the new

range as

ςm = (τϕT
mϕm − τ2ϕT

mΦm̄Σ̂m̄ΦT
m̄ϕm)−1

ρm = τςmϕT
mt− τ2ςmϕT

mΦm̄Σ̂m̄ΦT
m̄t.

, m = 1, . . . ,M + 1 (5.7)

for our further analysis.

As in V-dSBL from Chapter 4, we assume that each sensor k knows the current set

of basis functions ψ1(·), . . . , ψM (·), its own position xk and its local measurement tk.

Furthermore, for FV-dSBL we assume that each sensor knows the current weight

covariance matrix Σ̂, the current weight mean vector µ̂ and the current hyperpa-

rameter vector α̂. Additionally, when a new basis function ψM+1(·) is tested, each
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sensor will be informed about this function1. As in Chapter 4, we assume the noise

precision τ to be known for simplicity, although its distributed estimation would be

straight forward as we discussed in Section 4.5.

The fundamental question in FV-dSBL is how to distribute the computation

of (5.7) across the sensor network without using any routing protocols. More specif-

ically, we want to use distributed averaging protocols like CP. Unfortunately, there

is no direct way of transforming the computation of ςm and ρm from (5.7) into a

distributed average form. However, the inner products, ϕT
i ϕm and ϕT

i t inside (5.7)

are distributed sums. That is2,

ϕT
i ϕm =

K∑

k=1

ψi(xk)ψm(xk), i ∈ {1, . . . ,M} ∪ {m} (5.8)

and

ϕT
i t =

K∑

k=1

ψi(xk)tk, i ∈ {1, . . . ,M} ∪ {m}, (5.9)

where all ψi(xk) and tk are available at sensor k. We note that ΦT
m̄ϕm = (ϕT

mΦm̄)T =

[ΦTϕm]m̄ =
[
[ϕT

1 ϕm,ϕ
T
2 ϕm, . . . ,ϕ

T
Mϕm]T

]

m̄
. If we know the number of sensors K,

we can compute the sums in (5.8) and (5.9) by multiplying K times the distributed

average, i.e, K(ϕT
i ϕm/K) = ϕT

i ϕm and K(ϕT
i t/K) = ϕT

i t. Luckily, as we already

pointed out in Section 4.3.1, K can be also easily obtained from consensus protocols

like [104, 67]; see [120]. However, in the following we just assume K to be known. By

computing (5.8) and (5.9) in a distributed way using consensus protocols, we can now

easily compute ςm and ρm from (5.7) at each sensor. Note that Σ̂m̄ can be computed

locally at each sensor from Σ̂ using the rank-1 update Σ̂m̄ =
[

Σ̂− Σ̂emeT
mΣ̂

eT
mΣ̂em

]

m̄m̄
; cf.

to Section 3.3.1.

5.2.2 Fast variational distributed sparse Bayesian learning algorithm

with average consensus

We now show how to implement FV-dSBL using average consensus (AC) [104, 121].

We have implemented AC in the form as described in [120]. We also tried to use

CP, but empirical observations show that the averaging errors occurring in AC are

much smaller compared to CP for reasonable coupling parameter setting β. Large

1Or about the parameterization of a family of the functions, e.g., kernel center and kernel parameter
for kernel basis functions.

2Note that the element M + 1 is only included in the set {1, . . . , M} ∪ {m} if m = M + 1.
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averaging errors can lead to wrong results of the overall FV-dSBL algorithm. Note

that the averaging errors of CP can be made arbitrarily small for large values of β,

but this is due to a dramatic increase in the convergence time.

Let us now present a simple form of AC as presented in [120]. For details we

refer to [120, 121, 104] and references therein. Consider a sensor network with

distributed variables ν
(l)
1 , . . . , ν

(l)
K initialized with the values that are to be averaged

at time l = 0. By combining all values to a vector ν(l) = [ν
(l)
1 , . . . , ν

(l)
K ]T , we can

distributedly iterate

ν(l) = Qν(l−1), l = 1, 2, . . . (5.10)

until the network converges to the desired average: liml→∞ ν(l) = 1
K

∑K
k=1 ν

(0)
k . The

matrix Q is defined as Q = I−(γAC/∆)L, where the AC convergence coefficient γAC

must lie in the interval 0 < γAC < 1 (larger values γAC lead to faster convergence),

the variable ∆ denotes the maximum number of neighbors in the network3, i.e.,

∆ = maxk #N(k) and L is the graph Laplacian with elements defined as4

Lkl =







N(k), k = l

−1, k 6= l, l ∈ N(k)

0, otherwise

. (5.11)

In FV-dSBL, since we consider sensor networks without any superior node, like

a fusion center, we randomly select a responsible node that initiates the distributed

testing of a new candidate basis function. That means, given an initial model, any

arbitrary node suggests to the network a candidate basis function, which has to be

tested using (5.3) with ςM+1 and ρM+1 computed distributedly. If α̂
[∞]
M+1 is finite, the

new basis function is added to the model, otherwise the basis is rejected and another

randomly selected node initiates a new candidate. The main idea is that one node,

after a random waiting time, broadcasts a testing request for some particular basis

function across the network without any routing protocol by using, e.g., flooding

or gossiping [38]. After that, the network computes the required inner products

from (5.8) and (5.9) to determine ςM+1 and ρM+1 using AC as described above. To

3In [120], ∆ is described as the maximum node degree, but since we do not consider self-
connections, this is equivalent to the maximum number of neighbors. Note that a maximum in a
sensor network can be simply obtained distributedly by propagating the maxima of the current
maxima of all neighbors recursively across the network.

4Note that in [120], the diagonal elements of the graph Laplacian Lkl for k = l are defined as the
node degree of sensor k, but since we do not consider self connections, this is equivalent to the
number of neighbors.
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guarantee that only one node suggests a basis function at a given time, one can, e.g.,

think of timestamps to allow each node within time synchronized networks [108] to

decide which one was first. If we consider unsynchronized networks, we can also

think of sending a random number along with the basis function test request, such

that each node only accepts requests with, e.g., the smallest number. However, these

are just basic ideas and there are many different ways of how to randomly suggest a

new basis function in a distributed way. In the following we simply assume that at

one time only a single node is randomly selected and that data from this particular

node can be easily broadcasted to all other nodes via multihop communication. The

above example was only meant to show that this is in principle possible.

Another practical issue of using distributed averaging protocols, is that in real-

istic scenarios, we need to stop the iterations after a finite time and the averaging

estimates are, although not totally correct, also slightly different. This could lead

to different decisions at different sensors whether to add or reject a new basis func-

tion. To avoid such situations, the responsible node simply broadcasts its own final

estimates to the others to guarantee that all nodes are in an equivalent state.

Similar to the discussion above, also basis functions that are currently in the

model can be tested and then kept or pruned depending on α̂
[∞]
m for m ≤ M . In

both cases we need to compute ςm and ρm from (5.7). The fundamental difference

in testing a new versus a current basis function, is that we only need to run AC for

testing a new one. This can be achieved, if each sensor locally stores the current

inner products between all basis vectors, i.e., ΦTΦ, and the inner products between

all current basis vectors and the targets, i.e., ΦT t. Thus, according to (5.7), all

information for testing a current basis function is locally available. These inner

products, can be easily updated if some basis function m is pruned. Namely, by

locally removing the appropriate entries of the matrix ΦTΦ and the vector ΦT t

with ΦTΦ ← ΦT
m̄Φm̄ = [ΦTΦ]m̄m̄ and ΦT t ← ΦT

m̄t = [ΦT t]m̄. If a new basis

function M + 1 is added, we locally need to update

ΦTΦ←
[

ΦTΦ ΦTϕM+1

ϕT
M+1Φ ϕT

M+1ϕM+1

]

(5.12)

and

ΦT t←
[

ΦT t

ϕT
M+1t

]

. (5.13)

That is, in this case each sensor only additionally needs to know ΦT ϕM+1, ϕT
M+1ϕM+1
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and ϕT
M+1t. Exactly these values need to be broadcasted from the responsible sensor

to all others. The prior distributed estimation of these inner products for testing a

new basis function only requires M+2 parallel AC runs. Thus, the communicational

complexity during message passing is O(M), which is smaller than O(M2), as used

in V-dSBL; see Chapter 4.

Algorithm 5.2 summarizes the main steps of FV-dSBL using AC. In our notation,

we omit the sensor index k for all distributed variables. These are, although pro-

cessed in parallel and stored locally at each sensor, anyway equivalent everywhere in

the network. This is guaranteed, since we broadcast the estimates from the current

responsible sensors to all others as discussed above.

Finally, we use a simple convergence criteria. Namely, the algorithm stops if the

number of consecutive basis function rejects Rc is larger than Rc,max. Thus Rc is

increased if a basis function is rejected and reset to zero if accepted. Note that

the responsible sensor can simply broadcast the current state of Rc, so the next

responsible sensor can use it for further processing.

5.3 Simulations

In this section we apply the FV-dSBL algorithm on the same datasets as in Chap-

ter 4, i.e, the synthetic Sinc dataset and the real atmospheric pressure dataset.

A detailed description of the datasets can be found in Section 4.4. We compare

FV-dSBL to an adaptive version of centralized FV-SBL, i.e., FV-SBL where basis

functions can be added to the the model in the same manner as we discussed for

FV-dSBL in Algorithm 5.2. Basically, centralized adaptive FV-SBL can be seen

as FV-dSBL without AC, where the correct inner products are directly computed.

Note that all data is assumed to be centrally available and the basis functions are

tested in the same way as in in Algorithm 5.2 for FV-dSBL.

For both, the synthetic and real data experiments, like in Section 4.4, we use a

constant bias and kernel basis functions that are centered at the sensor positions.

More specifically, we first initialize the model with the bias function ψ1(x) = 1 and

set α̂1 = 0. This leads to ϕ1 = [1, . . . , 1]T and ΦTΦ = ϕT
1 ϕ1 = K, which does not

depend on the sensor position and can be initialized everywhere without AC (assum-

ing we already knowK). However, for the inner product ΦT t = ϕT
1 t we need AC and

thus a responsible sensor as described in Algorithm 5.2. Afterwards, each responsible

sensor k suggests a candidate basis function which we define as the Gaussian kernel

centered at its own position, i.e., ψM+1(x) = κ(x,xk) = exp{−θκ‖x−xk‖2}. If the
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Algorithm 5.2 Fast Variational distributed SBL (FV-dSBL)

% Start with some basis function ψ1(·)
Initialize: α̂ = α̂1, M = 1, Rc = 0
Compute: K, the number of sensors, using AC; cf. Section 4.3.1

• Select a responsible sensor at random and compute the inner products:
ΦTΦ = ϕT

1 ϕ1 and ΦT t = ϕT
1 t using AC

• Broadcast and use the responsible sensor’s estimates everywhere

At each sensor, compute: Σ = (τϕT
1 ϕ1 + α̂1)

−1

while ( Rc ≤ Rc,max) do

% Test a new basis function

• Randomly select a responsible sensor which then suggests a new basis M + 1
Compute: ΦTϕM+1, ϕT

M+1ϕM+1 and ϕT
M+1t using AC

% Only at the responsible sensor:
Compute: ςM+1 and ρM+1 from (5.7)

if ρ2
M+1 > ςM+1 then

% Add new basis function everywhere
• Broadcast and use the responsible sensor’s estimates for ΦTϕM+1,
ϕT

M+1ϕM+1 and ϕT
M+1t everywhere

Compute: ςM+1 and ρM+1 from (5.7) everywhere

Update: α̂ = [α̂T , α̂
[∞]
M+1]

T , ΦTΦ and ΦT t from (5.3), (5.12) and (5.13)

Update: Σ̂ = Σ̂M+1 from (5.6), M = M + 1, Rc = 0

% Test current basis functions

• For all desired basis functions m ≤M , repeat the following everywhere
% - - - - - begin - - - - -
Compute: ςm and ρm from (5.7)

if ρ2
m > ςm then

% Keep basis
α̂m = (ρ2

m − ςm)−1, update Σ̂ from (3.24)
else

Σ̂ =
[

Σ̂− Σ̂emeT
mΣ̂

eT
mΣ̂em

]

m̄m̄
, α̂ = [α̂]m̄, M = M − 1

end if
% - - - - - end - - - - -

else
% Reject new basis, increase the reject counter
Rc = Rc + 1

end if

% If desired, locally compute the mean at each sensor
µ̂ = τΣ̂ΦT t

end while
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FV-dSBL adapt. FV-SBL (centralized)

γAC ξAC MSE [dB] #Bfs
#msgIter

MSE [dB] #Bfs
max. avg.

0.9 10−6
−20.85 17 330 292.79 −20.61 18

...
10−8

−20.61 18 478 441.08 −20.61 18

10−10
−20.61 18 626 589.04 −20.61 18

10−12
−20.61 18 774 737.15 −20.61 18

0.99 10−6
−20.80 18 302 268.45 −20.61 18

...
10−8

−20.61 18 436 403.35 −20.61 18

10−10
−20.61 18 571 537.67 −20.61 18

10−12
−20.61 18 705 671.98 −20.61 18

Table 5.1: Synthetic data performance comparison of FV-dSBL and adaptive FV-
SBL for the network shown in Figure 4.3. See text for details.

basis function is rejected, another responsible sensor suggests the kernel centered at

its own position. If the basis function gets accepted, each sensor locally tests all

current basis functions except for the bias. Note that in our simulations we do not

test the bias, i.e., α̂1 will never be updated and will always stay at α̂1 = 0. More

specifically, this means that there is no regularization for the bias weight and it will

always remain in the model.

The implementation of AC also requires some convergence criteria. In our sim-

ulations we consider AC as converged if the maximum absolute change of the

intermediate average estimates between the updates (5.10), is smaller than ξAC,

i.e., if ‖ν(l) − ν(l−1)‖∞ < ξAC, where ‖u‖∞ = max(|u1|, . . . , |uN |) for some u =

[u1, . . . , uN ]T . In both experiments, we analyze three different settings for ξAC

and two different settings for the AC convergence coefficient γAC. Namely, ξAC =

{10−6, 10−8, 10−10, 10−12} and γAC = {.9, .99}.
Finally, in both experiments, for the overall convergence, we define the maximum

number of consecutive basis function rejects as Rc,max = K.

5.3.1 Synthetic data

The specific settings for the Sinc dataset is basically equivalent to Section 4.4.1.

In particular, θκ = 15 and τ = σ−2 = 103, where σ2 is the true underlying noise

variance; see Section 4.4.1. The comparison to centralized adaptive FV-SBL is

shown in Table 5.1, where better or equivalent mean square error (MSE) or number

of basis functions (#Bfs) performance is highlighted with boldface numbers. For

the number of AC message iterations (#msgIter), we give maximum and average

numbers. From Table 5.1 it is clearly visible, that AC needs less iterations if γAC

and/or ξAC are large. In general, the MSE and #Bfs performance of FV-dSBL and
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FV-dSBL adapt. FV-SBL (centralized)

γAC ξAC NT MSE [dB] #Bfs
#msgIter

MSE [dB] #Bfs
max. avg.

0.9 10−6 (a) 2.35 19 5956 5372.50 2.27 20

...
10−8 ...

2.26 20 7827 7210.55 2.27 20

10−10 2.37 20 9705 9060.61 2.27 20

10−12 2.43 18 11576 10931.40 2.27 20

...

10−6 (b) 2.31 18 2782 2601.65 2.27 20
10−8 ...

2.37 18 3640 3459.90 2.27 20
10−10 2.28 20 4499 4319.94 2.27 20

10−12 2.41 17 5358 5177.51 2.27 20

.

..

10−6 (c) 2.48 19 7809 7295.99 2.27 20
10−8 ..

.
2.35 20 10409 9878.53 2.27 20

10−10 2.36 19 13010 12482.11 2.27 20
10−12 2.33 17 15617 15078.77 2.27 20

0.99 10−6 (a) 2.46 18 5449 4921.59 2.27 20

...
10−8 ...

2.28 20 7150 6590.49 2.27 20

10−10 2.43 16 8857 8280.57 2.27 20
10−12 2.35 20 10558 9979.81 2.27 20

.

..

10−6 (b) 2.32 17 2544 2385.26 2.27 20
10−8 ..

.
2.28 20 3325 3162.22 2.27 20

10−10 2.35 21 4105 3941.80 2.27 20

10−12 2.41 18 4885 4722.54 2.27 20

...

10−6 (c) − − − − 2.27 20
10−8 ...

2.51 20 9511 9043.84 2.27 20

10−10 2.35 18 11875 11400.45 2.27 20
10−12 2.35 19 14243 13768.78 2.27 20

Table 5.2: Real data performance comparison of FV-dSBL and adaptive FV-SBL
for the three networks (NTs) depicted in Figure 4.6(a), (b) and (c). For
γAC = .99 and ξAC = 10−6, the algorithm did not converge. See text for
details.

adaptive FV-SBL is similar and in most cases equivalent.

5.3.2 Real data

Equivalently to Section 4.4.2, for the real atmospheric pressure experiment, we have

θκ = 10−2 and τ = 1. The results for the three different networks shown in Fig-

ure 4.6 are presented in Table 5.2. The three networks only differ in the number of

connections (see Figure 4.6). In most cases the algorithm converged and obtained

similar results as its centralized counterpart. Note that since the centralized adap-

tive FV-SBL considers the knowledge of all sensor measurements, it is independent

of the network structure. This explains why the adaptive FV-dSBL performance is

are always the same. In one situation, the algorithm did not converge. Namely for

the network shown in Figure 4.6(c) when γAC = .99 and ξAC = 10−6. According

do other experiments, not shown here, such situations can happen when ξAC is too

large. If this is the case, the error of the AC estimator leads to poor inner prod-



104 5. Fast Variational Distributed Sparse Bayesian Learning

−10 −5 0 5 10 15 20 25 30
30

35

40

45

50

55

60

65
999.71

1002.741005.78
1008.82

1011.86

1011.86

1014.90

10
14

.9
0

1014.90

10
17

.9
4

1017.94

1
0
1
7
.9

4

1020.98

10
20

.9
8

10
24

.0
2

1024.02

1027.06

x1, longitude [◦]

x
2
,
la

ti
tu

d
e

[◦
]

(a) FV-dSBL, γAC = .9, ξAC = 10−8, Network
Fig 4.6(b)
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(b) adaptive FV-SBL (centralized)

Figure 5.1: Contour plots of (a) the prediction of one particular setting of FV-dSBL
and (b) the centralized adaptive FV-SBL.

uct estimators, which prevents the algorithm from selecting a proper set of basis

functions.

Figure 5.1 shows an example of the FV-dSBL prediction compared to centralized

adaptive FV-SBL.

5.4 Conclusions and discussion

In this chapter we discussed an efficient adaptive and distributed implementation of

FV-SBL, which we denote as FV-dSBL. We first showed how to adaptively add and

delete arbitrary basis functions within the FV-SBL framework. This methodology,

which we denote as adaptive FV-SBL, offers an interesting and efficient alternative

to the other centralized SBL methods. Due to the fact that basis function are only

added if required, the algorithm is more efficient especially at the initial phase.

Note that all previously discussed SBL methods start from a full model where basis

functions can be only deleted. In Appendix D, we present a sliding-window online

learning algorithm based on adaptive FV-SBL.

The difference of distributed FV-dSBL as compared to adaptive FV-SBL is that

parts of the computation of the basis function test parameters have to be done

distributedly. More specifically, we need to compute inner products that are basically

distributed sums of values across the network. As we have shown, this sums can be

simply computed using distributed averaging protocols. Furthermore, as we have

shown, the distributed computation of the inner products is only required when new
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basis functions are tested. For current basis functions, the test parameters can be

obtained locally at each sensor.

When we compare FV-dSBL to V-dSBL from Chapter 4, FV-dSBL has several

advantages. First, since we directly compute the FV-SBL stationary points , we do

not need to iterate the hyperparameters until a threshold for pruning is reached.

Thus, we do not even require such a threshold. Secondly, since we can use any

distributed averaging protocol, convergence is guaranteed as long as the averaging

protocol converges to the true average. Note that we were not able to guarantee

the convergence of multivariate Gaussian loopy belief propagation (LBP) as used

in V-dSBL. Finally, the communicational complexity of FV-dSBL is O(M) during

averaging, whereas for V-dSBL it is O(M2) for LBP. The computational complexity

of FV-dSBL is O(M2) at each iteration, whereas O(M3) in V-dSBL for each message.

In our synthetic and real data experiments we used average consensus (AC) as

distributed averaging protocol. From the results we see that the overall performance

of FV-dSBL strongly depends on the quality of the average estimates. In nearly all

cased the performance of FV-dSBL was very similar to centralized adaptive FV-SBL.

However, for inaccurate averaging estimates, as for one particular parameter setting

of the real data experiments, the algorithm did not convergence.
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Chapter 6

Conclusions

6.1 Summary and discussion

Throughout this thesis we have discussed and analyzed several extentions of varia-

tional sparse Bayesian learning (V-SBL).

In Chapter 2, we introduced variational Bayesian (VB) inference and discussed

different sparse Bayesian learning (SBL) approximation techniques used in the liter-

ature. We have shown that all methods lead to the same update expressions under

slightly different model assumptions. As we pointed out extensively, the VB ap-

proximation is the only method that can be consistently derived from the desired

scale-invariant model assumption, i.e., the model assumption that makes the pre-

dictions invariant of the unit of scale of the data and/or the basis functions [1].

We discussed the particular model assumptions of the other methods and clarified

some conceptual inconsistencies involved in one of the methods that is also derived

from the scale-invariant model assumption. A fundamental difference between the

VB approximation and the other discussed methods is that VB approximates the

involved probability density functions (pdfs) with other approximating pdfs rather

then point estimates, which the other discussed methods do.

Based on the conceptual advantages of the VB approximation to SBL discussed

in Chapter 2, we derived a fast V-SBL (FV-SBL) method analogous to fast marginal

likelihood maximization (FMLM) [68] in Chapter 3. We showed, that the resulting

pruning conditions of FV-SBL are equivalent to FMLM even though our method is

consistent with the scale-invariant SBL model assumption, which is not the case for

FMLM. The slightly different structure in which the pruning condition of FV-SBL

is given after its derivation, however, led to the insight that it corresponds to the

comparison of a basis function’s signal-to-noise ratio (SNR) with a 0dB threshold.

By changing this threshold to larger values, a trade-off between model sparsity and

prediction accuracy can be achieved. As we have shown in our experiments, the

107
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sparsity vs. accuracy trade-off behavior strongly depends on wether we have a model

match or mismatch, i.e., if basis functions involved in the data generation process

are also included in the set of basis functions during learning or not, respectively.

For the model mismatch case, which holds for most real world data experiments,

we have shown that there is no optimal trade-off, i.e., if we increase the sparsity

of the model, we reduce the accuracy at the same time and vice versa. However,

if we have a model match, a clear trade-off optimum can be found as we showed

in our experiments. We note that this sparsity vs. accuracy trade-off extension for

FV-SBL has many advantages for practical applications, since the complexity of the

SBL model can be intuitively adapted, e.g., to hardware constraints.

In Chapter 4, we proposed a distributed variant of V-SBL that can be imple-

mented in distributed environments like sensor networks. The method is based on

a probabilistic model that is specified by a loopy factor graph, which combines the

probabilistic models of SBL and consensus propagation (CP), as described in Sec-

tion 2.3. A combination of VB inference and Gaussian LBP as subroutine is used

to learn the model parameters at each sensor. The sensor’s measurements are not

shared directly, which makes the algorithm also useful for privacy aware learning

problems. Each message sent between neighboring sensors in V-dSBL has a commu-

nication complexity of O(M2) and its computation is an O(M3) operation, which

is very inefficient if M , the number of basis functions, is large. This complexi-

ties, however, are strongly reduced during runtime when basis functions are pruned

from the model, i.e., when M gets smaller. In our synthetic data experiment, the

performance of V-dSBL was similar to centralized V-SBL in terms of sparsity and

prediction error. However, the required number of VB updates was much smaller

for V-dSBL. In the real data experiments, even though V-dSBL again required less

VB updates and led to sparser results, the prediction error was larger compared

to centralized V-SBL. We are not able to guarantee the convergence of the Gaus-

sian LBP subroutine in V-dSBL even though convergence problems never occurred

during our experiments. The reason is that the general Gaussian LBP convergence

criteria [107, 106] are not valid for multivariate Gaussian messages like in V-dSBL.

Extending these criteria for such cases is a research topic on its own, which we also

point out in the following outlook, Section 6.2; also cf. our discussion in Section 4.3.2

and Appendix C. We have shown that if the coupling parameter β → ∞ and the

network graph is a tree, i.e., LBP turns into the sum-product algorithm, V-dSBL is

always equal to centralized V-SBL.

In Chapter 5, we presented a straightforward distributed implementation of FV-
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SBL discussed in Chapter 3. We showed how the inner products involved in the

computations of the pruning conditions can be obtained within a sensor network

using distributed averaging protocols. Furthermore, we showed how new candidate

basis functions can be tested and added to the model bases on the same FV-SBL

conditions. The computational complexity of FV-dSBL is O(M2) at each iteration,

whereas the communication complexity for each averaging message is O(M). Thus,

FV-dSBL is more efficient than V-dSBL. Furthermore, since FV-dSBL is based on

the stationary point analysis as in FV-SBL, no hyperparameter threshold has to

be specified as opposed to V-dSBL. The comparison of FV-dSBL with centralized

adaptive FV-SBL led to a very similar performance in both sparsity and prediction

error. However, the algorithm strongly depends on the quality of the averaging

estimate, where convergence problems can occur for larger errors as we have seen in

one situation.

Both distributed methods, V-dSBL and FV-dSBL, are based on consensus pro-

tocols for distributed averaging. This makes them robust against changes in the

network topology as long as the sensor network remains connected. Even though

consensus protocols are also robust against sensor failures, we have not considered

this situation in this thesis, where we give some comments in the following outlook;

Section 6.2.

Finally, as we already mentioned in Section 2.2.3, the VB approach to SBL did

not receive as much attention in the literature as its counterparts MML and MMP-

log (cf. Section 2.2.2), even though, as we have shown in Section 2.2.3 and also

mentioned above, it is the most profound method from a Bayesian perspective.

That is, it naturally incorporates scale invariance through non-informative Jeffreys

priors [1]. We have shown in this thesis that a fast version similar to FMLM and

even distributed variants of SBL can be derived from the VB approach. We hope,

that based on our results and our clarifications of the conceptual advantages of V-

SBL, future reseach will have more focus on the VB approach, which may lead to

better insights and further variants of SBL.

6.2 Outlook

In the previous section we have summarized and discussed the major contributions

made by this thesis. During our research, however, we found interesting issues,

problems and ideas that we would like to list in the following and hope that these

may serve as entry points for future investigations.
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• In Section 2.2.4, we showed that SBL MAP estimation leads to the problematic

optimization problem (2.55), where every solution, with at least one element

in w being zero, leads to a global minimum. However, if we consider gen-

eral gamma hyperpriors p(αm), i.e., with unspecified a and b, we obtain the

following MAP estimation problem

w
(a,b)
MAP = argmin

w
‖Φw − t‖22 +

2

τ

(

a+
1

2

) M∑

m=1

ln
(

b+
w2

m

2

)

, (6.1)

where for b > 0 the singularities, caused by weights wm being zero through

the logarithm in (6.1), vanish. It would be very interesting to analyze how the

structure of local minima in (6.1) changes for different settings of a and b. The

idea is to investigate if it is possible to converge to useful optima of (2.55) by

changing a and b during the optimization process, e.g., using gradient descent,

and finally let both parameters converge to a → 0, b → 0. Note that it is

straightforward to compute the gradient of (6.1). However, it is not clear how

such a method relates to the other methods discussed in this thesis, which

all require some form of optimization over the hyperparameters. Note, that

the MAP estimation over w, as shown in (6.1), directly assumes an effective

Student’s-t weight prior and does not involve any hyperparameters.

• In Appendix D we presented a sliding window online SBL method based on

FV-SBL. Due to the sliding window, the algorithm abruptly forgets the past.

It would be very interesting to develop a recursive version of FV-SBL that

adds and prunes basis functions as data samples arrive online. Such a method

would allow to learn from huge datasets, since the samples are processed online

and must not be kept in memory. Since SBL can be interpreted as a Gaussian

process [1, 56], a related work in online Gaussian process learning is, e.g., [122],

which itself is strongly related to the kernel recursive least squares (Kernel-

RLS) [74] algorithm that we used for comparison in Appendix D. Note that in

Kernel-RLS, kernels are only added but never pruned from the model, which

is sometimes also denoted as constructive sparsity.

• As we already mentioned above, the convergence of Gaussian LBP in V-dSBL

cannot be guaranteed. The reason is that the known convergence criteria

for Gaussian LBP in [107, 106] are only valid for scalar messages. Since we

have multivariate messages in V-dSBL, the convergence criteria [107, 106] need

to be extended for such a case. Note that a multivariate graph like in V-
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dSBL can always be dissected into an elementary scalar graph. However, as

discussed in Appendix C, the convergence criteria [107, 106] for the elementary

dissected graph of V-dSBL were not fulfilled in our test experiments. There is,

nonetheless, a clear argument for the development of a convergence criterion for

multivariate Gaussian LBP. Namely, for tree networks, when the (multivariate)

sum product algorithm can be applied and convergence is always guaranteed,

the convergence criteria [107, 106] were still not fulfilled for the elementary

dissected graph.

• When Gaussian LBP converges according to [107, 106], the marginal mean

estimates are guaranteed to be correct. However, although the convergence

of the marginal variance estimators are also guaranteed, their estimates are

typically different from the true marginal variances. For most applications,

like consensus propagation [67], only the marginal mean estimates are relevant,

where the variance estimates are mostly ignored. However, as we have seen for

multivariate Gaussian LBP in V-dSBL, also the covariance matrix estimates

are of particular interest. It would be very interesting to investigate how the

variance (or covariance) estimates can be corrected to coincide with the true

marginal variances (or covariances).

• In the distributed algorithms V-dSBL and FV-dSBL, each sensor k was con-

sidered to observe a measurement tk. If a sensor fails, which we did not

consider throughout the thesis, also a sample from the dataset gets lost. It

would be interesting to investigate how to make even centralized V-SBL or

FV-SBL robust against the removal of a sample tk during runtime. Extending

such concepts to V-dSBL and FV-dSBL would make both algorithms robust

against sensor failures. Note that both algorithms are already robust against

changing network topologies.
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Appendix A

Proofs and Derivations

A.1 Priors p(τ) and p(α) for scale-invariant sparse Bayesian

learning prediction

In this section we show, based on a single conjecture, that the non-informative priors

p(α) ∝∏M
m=1

1
αm

and p(τ) ∝ 1/τ are the only priors that lead to scale invariance in

the SBL prediction p(t∗|t) if we scale the targets t. Note that the pdf p(t∗|t) repre-

sents the prediction for target t∗ given a new input sample x∗ and all observations

from the training dataset D = {xn, tn}Nn=1. Since we only use random variables in

our notation for readability reasons, and thus leave out all deterministic variables

like xn and x∗, we, however, simply write the prediction as p(t∗|t). The above men-

tioned non-informative priors correspond to the limit case a = b = c = d = 0 of the

gamma prior parameterizations, as discussed in Section 2.2.1.

The scale invariance property of the SBL prediction for a = b = c = d = 0 was

mentioned already in [1], but has not been proven there. Here, in this section, we

will formally derive these priors from the scale invariance assumption.

By scaling the targets t by a factor ν > 0, we obtain an SBL prediction p(t∗|νt).
The prediction is invariant under this scaling of t if

p(t∗|νt) =
1

ν
p
(1

ν
t∗
∣
∣
∣t
)

, (A.1)

where p(t̃∗|t) is an unscaled prediction over t̃∗, which we have scaled by setting

t∗ = νt̃∗ using the transformation rule for random variables [91]

pY (y) = pX

(
g−1(y)

)
∣
∣
∣
∣

dg−1(y)

dy

∣
∣
∣
∣
, for Y = g(X). (A.2)

Note that g−1(·) is the inverse function, which in our case is t̃∗ = 1
ν t

∗. The scale
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invariance in (A.1) means that if we scale the data t by a factor ν we should obtain

the same prediction as if we scale (random variable transformation) the unscaled

prediction p(t̃∗|t).

Based on the SBL model definition in Section 2.2.1 we can write the left- and

right-hand sides in (A.1) as

p(t∗|νt) =

∫

p(t∗|τ,w) p(τ,w|νt) dτ dw, (A.3)

and
1

ν
p
(1

ν
t∗
∣
∣
∣t
)

=
1

ν

∫

p
(1

ν
t∗
∣
∣
∣τ̃ , w̃

)

p(τ̃ , w̃|t) dτ̃ dw̃, (A.4)

respectively. From the definitions p(t∗|τ,w) = N (t∗|wTφ∗, τ−1) and p(t̃∗|τ̃ , w̃) =

N (t̃∗|w̃T φ∗, τ̃−1) with φ∗ = [ψ1(x
∗), . . . , ψM (x∗)]T it is easy to see that

1

ν
p
(1

ν
t∗
∣
∣
∣τ̃ , w̃

)

=
1

ν

√

τ̃

2π
exp

{

− τ̃
2

(
1

ν
t∗ − w̃Tφ∗

)2
}

=

√

τ̃

2πν2
exp

{

− τ̃

2ν2

(
t∗ − νw̃Tφ∗

)2
}

= N
(

t∗
∣
∣
∣
∣
νw̃Tφ∗,

(
τ̃

ν2

)−1)

= p
(
t∗
∣
∣
τ̃

ν2
, νw̃

)
. (A.5)

Let us now analyze the posterior p(τ̃ , w̃|t) from (A.4), which is defined as

p(τ̃ , w̃|t) =
1

p(t)
p(t|τ̃ , w̃)p(τ̃ )

∫

p(w̃|α̃)p(α̃) dα̃. (A.6)

By transforming the variables τ̃ and w̃ to τ = τ̃
ν2 and w = νw̃, the posterior in

(A.6) can be written as

ν(2−M) p
(
ν2τ,

w

ν

∣
∣t
)
, (A.7)

which gives
ν(2−M)

p(t)
p
(

t
∣
∣
∣ν2τ,

w

ν

)

p(ν2τ)

∫

p
(w

ν

∣
∣
∣α̃
)

p(α̃) dα̃, (A.8)

where we have used the transformation rule for multivariate random variables;

see [91]. When we apply the same transformation to the parameters of the pdf

(A.5) and insert its new form together with (A.7) into (A.4), we obtain the trans-



A.1. Priors p(τ) and p(α) for scale-invariant SBL prediction 115

formed integral over τ and w as

1

ν
p
(1

ν
t∗
∣
∣
∣t
)

= ν(2−M)

∫

p(t∗|τ,w) p
(
ν2τ,

w

ν

∣
∣t
)
dτ dw. (A.9)

For scale invariant predictions, i.e., when (A.1) holds, (A.9) needs to be equivalent

to (A.3), which obviously is the case for all values of t∗ if

p(τ,w|νt) = ν(2−M) p
(
ν2τ,

w

ν

∣
∣t
)
, (A.10)

Note that all further derivations are based on the conjecture that (A.1) only holds

if (A.10) holds, i.e., we strongly belief that the integrals (A.9) and (A.3) are only

equivalent for all values t∗, given the model assumptions from Section 2.2.1, if and

only if (A.10) holds.

We can rewrite the terms p
(
t
∣
∣ν2τ, w

ν

)
and p

(
w
ν

∣
∣α̃
)

in (A.8) as

p
(

t
∣
∣
∣ν2τ,

w

ν

)

= N
(

t
∣
∣
∣
w

ν
, (ν2τ)−1I

)

=

(
ν2τ

2π

)N
2

exp

{

−ν
2τ

2

(

t− 1

ν
Φw

)T (

t− 1

ν
Φw

)}

= νN
( τ

2π

)N
2

exp
{

−τ
2

(νt−Φw)T (νt−Φw)
}

= νN N ( νt |Φw, τ−1I )

= νN p( νt | τ,w ) (A.11)

and

p
(w

ν

∣
∣
∣α̃
)

= N
(w

ν

∣
∣
∣0, diag(α̃)−1

)

=

(∏M
m=1 α̃m

2π

)M
2

exp

{

−1

2

(w

ν

)T
diag(α̃)

(w

ν

)}

= νM

(∏M
m=1

α̃m

ν2

2π

)M
2

exp

{

−1

2
wT diag

(
α̃

ν2

)

w

}

= νM N
(

w
∣
∣
∣0, diag

(
α̃

ν2

)−1 )

= νMp
(

w
∣
∣
∣
α̃

ν2

)

, (A.12)

where α̃ = [α̃1, . . . , α̃M ]T . By transforming the hyperparameters α̃ in p(α̃) to
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α = α̃
ν2 , we can write the transformed hyperprior as

ν2Mp(ν2α), (A.13)

which also changes the integral in (A.8) to

ν3M

∫

p(w|α)p(ν2α) dα, (A.14)

where we have also inserted (A.12). We can thus rewrite (A.8), which is equivalent

to the right-hand side term of (A.10), as

ν(2−M) p
(
ν2τ,

w

ν

∣
∣t
)

=
νN

p(t)
p( νt | τ,w )ν2p(ν2τ)

∫

p(w|α)ν2Mp(ν2α) dα (A.15)

where we also used (A.11).

Similar to (A.6), the left-hand side of (A.10) is defined as

p(τ,w|νt) =
1

p(νt)
p
(
νt
∣
∣τ,w

)
p(τ)

∫

p(w
∣
∣α)p(α) dα. (A.16)

Thus, if and only if (A.15) equals (A.16) from (A.10), then (A.1) holds according

to our conjecture. This is the case if and only if the following two equalities are

satisfied:

p(τ) = ν2p(ν2τ), (A.17)

p(α) = ν2Mp(ν2α). (A.18)

Note that another dimensionality dependent allocation of the normalization terms

ν(·) makes no sense, since the vectors t and α are N and M dimensional, respec-

tively. Furthermore note that the integrals in (A.15) and (A.16) lead to Student’s-t

distributions, as we discussed in Section 2.2.1, which are only equivalent if (A.18)

holds.

In the following we show that p(t) = νNp(νt), as we further need for the equiva-

lence of (A.15) and (A.16), if (A.17) and (A.18) hold. The term νNp(νt) is defined

as

νNp(νt) = νN

∫

p(νt|τ,w)p(τ)p(w|α)p(α) dτdwdα. (A.19)
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We can further rewrite p(t) as

p(t) =

∫

p(t|τ̃ , w̃)p(τ̃)p(w̃|α̃)p(α̃) dτ̃dw̃dα̃

= νN+2M+2

∫

p(νt|τ,w)p(ν2τ)p(w|α)p(ν2α) dτdwdα, (A.20)

where we have transformed the variables τ̃ , w̃, α̃ to τ = τ̃
ν2 , w = νw̃, α = α̃

ν2 like

above and made use of the results (A.11) and (A.12). If we now insert (A.17) and

(A.18) into (A.20), we see that (A.20) is equivalent to (A.19).

We would like to stress here that the scale invariance of the SBL model according

to (A.1) thus only holds for priors that have the properties (A.17) and (A.18). From

the definition (2.17), Section 2.2.1, we see that due to the factorization, (A.18) can

be separated to

p(αm) = ν2p(ν2αm), m = 1 . . . ,M, (A.21)

where p(α) =
∏M

m=1 p(αm). Since both, p(αm) and p(τ), are gamma priors and have

the same constraints (A.17) and (A.21), both obviously have to be of the same form.

Priors with the property p(η) = ν2p(ν2η), as in (A.17) and (A.21), are known

as scale invariant priors and are defined as p(η) ∝ 1/η as we wanted to show;

cf. [4]. Note that this is easy to see if we insert an arbitrary value, e.g. η∗ = 1 into

p(η) = ν2p(ν2η), which gives p(1) = ν2p(ν2). It follows that p(ν2) = p(1)/ν2 and

thus p(η) = p(1)/η ∝ 1/η. Such priors are also known to assign equal probability

mass to the intervals A ≤ η ≤ B and ν2A ≤ η ≤ ν2B, i.e.,

∫ B

A
p(η)dη =

∫ ν2B

ν2A
p(η)dη = ν2

∫ B

A
p(ν2η)dη, (A.22)

cf. [4, Section 2.4.3]. Finally note that such priors are improper and flat over a

logarithmic scale as we already mentioned in Section 2.2.1.

A.2 Derivation of Equation (2.29) and (2.30)

Let us first derive the result from (2.29). By computing the derivative of the log of

the marginal likelihood given in (2.28) and equating to zero, we obtain

∂ ln p(t|τ,α)

∂αm
=

∂

∂αm

{

− N

2
ln 2π − 1

2
ln |C| − 1

2
tTC−1t

}

= 0, (A.23)
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where C = τ−1I + Φ
(
diag(α)

)−1
ΦT and |C| denotes the determinant of C. We

can transform the term ln |C| as follows

ln |C| = ln |τ−1I + Φ
(
diag(α)

)−1
ΦT |

= ln(τ−N |I + τΦ diag(α)−1ΦT |)
= −N ln τ + ln |I + τ diag(α)−1ΦTΦ|
= −N ln τ + ln(|diag(α)−1| · |diag(α) + τΦTΦ|)
= −N ln τ +− ln |diag(α)|+ ln |τΦTΦ + diag(α)|

= −N ln τ +−
M∑

m=1

lnαm − ln |Σ|, (A.24)

where we have used the matrix identities |B−1| = |B|−1, |cB| = cN |B| for any

N × N matrix B and |I + QT R| = |I + RT Q| for M × N matrices Q and R,

cf. [4, 116], and Σ =
(
τΦTΦ + diag(α)

)−1
from (2.25). Furthermore, using the

Woodbury matrix inversion identity [113], we can rewrite tT C−1t in (A.23) as

tTC−1t = tT (τ−1I + Φ
(
diag(α)

)−1
ΦT )−1t

= tT
[
τI − τ2Φ

(
τΦTΦ + diag(α)

)−1
ΦT
]
t

= τtT t− τ2tTΦΣΦT t. (A.25)

By inserting the αm dependent terms from (A.24) and (A.25) into (A.23) we obtain

∂ ln p(t|τ,α)

∂αm
=

∂

∂αm

{1

2

M∑

m=1

lnαm +
1

2
ln |Σ|+ τ2

2
tTΦΣΦT t

}

=
1

2αm
+

1

2
tr
(
Σ−1 ∂Σ

∂αm

)
+
τ2

2
tTΦ

∂Σ

∂αm
ΦT t = 0, (A.26)

where we have used the matrix derivative rule ∂ ln |B|
∂z = tr(B−1 ∂B

∂z ) with tr(·) being

the trace opterator, cf. [116, 4]. Using the derivative rule for inverse matrices ∂B−1

∂z =

−B−1 ∂B
∂z B−1 [116, 4], it is easy to show that

∂Σ

∂αm
=
∂(Σ−1)−1

∂αm
= −Σ

∂Σ−1

∂αm
Σ,

where, by inserting for Σ−1 using (2.25), we obtain

∂Σ

∂αm
= −Σ

∂ diag(α)

∂αm
Σ. (A.27)
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Note that the matrix ∂ diag(α)
∂αm

has zeros everywhere except for themth main diagonal

element, which contains a 1. If we insert (A.27) into (A.26) we finally obtain

∂ ln p(t|τ,α)

∂αm
=

1

2αm
− Σmm

2
− 1

2
µT ∂ diag(α)

∂αm
µ

=
1

2αm
− Σmm

2
− 1

2
µ2

m = 0, (A.28)

where we have used µ = τΣΦT t from (2.26). The result (2.29), namely αm =

(µ2
m + Σmm)−1, directly follows from (A.28). Note that (2.29) is not explicit in

αm but it can be incorporated into an iterative update procedure depending on the

previous state of αm through µm and Σmm as in (2.22). To finalize the proof, we

need to show that (2.29) is a maximum of ln p(t|τ,α) with respect to αm for fixed

values µm and Σmm from the previous iteration. This can be easily seen from

∂2 ln p(t|τ,α)

∂α2
m

∣
∣
∣
∣
αm=(µ2

m+Σmm)−1

= −(µ2
m + Σmm)2

2
≤ 0, (A.29)

where we consider µ2
m + Σmm > 0 in general. µ2

m + Σmm is only zero if we have

reached a mode of p(t|τ,α) that corresponds to an irrelevant basis function ψm(·),
i.e., αm =∞.

To derive the result (2.30), we compute the derivative of the log of the marginal

likelihood with respect to τ and equate to zero. That is,

∂ ln p(t|τ,α)

∂τ
=

∂

∂τ

{

− N

2
ln 2π − 1

2
ln |C| − 1

2
tT C−1t

}

= 0, (A.30)

which can be simplified to

∂ ln p(t|τ,α)

∂τ
= −1

2

∂ ln |C|
∂τ

− 1

2
tT ∂C−1

∂τ
t

= −1

2
tr
(
C−1 ∂C

∂τ

)
+

1

2
tT C−1 ∂C

∂τ
C−1t = 0, (A.31)

where
∂C

∂τ
=
∂τ−1I

∂τ
= −τ−2I. (A.32)

By inserting (A.32) into (A.31) and applying the matrix inversion identity, we can

finally obtain

∂ ln p(t|τ,α)

∂τ
=

1

2
tr
( 1

τ2
C−1

)

− 1

2τ2
tT C−1C−1t
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=
1

2
tr
( 1

τ2
(τI − τ2ΦΣΦT )

)

−
1

2τ2
tT (τI − τ2ΦΣΦT )(τI − τ2ΦΣΦT )t

=
1

2
tr(τ−1I)− 1

2
tr
(
ΦΣΦT

)
− 1

2
tT t + τtTΦΣΦT t−

τ2tTΦΣΦTΦΣΦT t

=
N

2τ
− 1

2
tr
(
ΦΣΦT

)
− 1

2
tT t + tTΦµ− µTΦTΦµ

=
N

2τ
− 1

2
tr
(
ΣΦTΦ

)
− 1

2
‖t −Φµ‖2 = 0, (A.33)

where we have used the identity tr(P QR) = tr(QRP ) = tr(RP Q) [116, 4].

From (A.33) we can directly compute (2.30), which is also not explicit in τ and

we need to incorporate it into a sequential update scheme that depends on previous

states via µ and Σ like in (2.22). For given µ and Σ (from the previous iteration),

(2.30) is clearly a maximum, since we have

∂2 ln p(t|τ,α)

∂τ2

∣
∣
∣
∣
τ= N

‖t−Φµ‖2+tr(ΣΦT Φ)

= −(‖t −Φµ‖2 + tr(ΣΦTΦ))2

N
≤ 0, (A.34)

where we consider the general case ‖t −Φµ‖2 + tr(ΣΦTΦ) > 0. Note that in the

limit case ‖t−Φµ‖2 + tr(ΣΦTΦ) = 0, τ =∞ and the model exactly (over-)fits the

training data, since we must have ‖t −Φµ‖ = 0 in this case, because tr(ΣΦTΦ) is

always greater or equal zero.

A.3 Derivation of Equation (2.37) and (2.38)

If we apply the MAP-EM algorithm exactly as described in Section 2.1.3 for the

MAP estimation of α and τ where we consider w as the hidden variables we obtain

the following method:

MAP-EM for α and τ in SBL

Goal: maximize p(α, τ |t) w.r.t. α and τ

E-step:

Determine: q(w) = p(w|t, τ old, αold)

Define: Q
“

{α, τ}, {αold, τ old}
”

= Eq(w){ln p(t, τ, w, α)}

M-step:

Update: {αnew, τnew} = argmax{α,τ} Q
“

{α, τ}, {αold, τ old}
”
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The weight posterior q(w) is equivalent to (2.24), where we have τold and α̂old

instead of τ and α, respectively. This fully specifies the E-step.

For the M-step, the joint maximization over α and τ separate into the individual

optimizations over αm, ∀m, and τ . That is,

{αnew, τnew} = argmax
{α,τ}

Eq(w)

{

ln p(t, τ,w,α)
}

= argmax
{α,τ}

Eq(w)

{

ln p(t|τ,w) + ln p(τ)

+ ln p(w|α) + ln p(α)
}

separates into

τnew = argmax
τ

Eq(w)

{

ln p(t|τ,w) + ln p(τ)
}

(A.35)

and

αnew = argmax
α

Eq(w)

{

ln p(w|α) + ln p(α)
}

, (A.36)

= argmax
α

Eq(w)

{ M∑

m=1

[

ln p(wm|αm) + ln p(αm)
]}

, (A.37)

where the latter further separates into

αnew
m = argmax

αm

Eq(w)

{

ln p(wm|αm) + ln p(αm)
}

, ∀m. (A.38)

Let us now analyze (A.38) first. Since p(αm) is a gamma distribution and a con-

jugate prior for the Gaussian p(wm|αm), the term within the expectation in (A.38)

has the form of a log gamma distribution over αm. Note that the pdf normalization

only adds a constant in the log-domain. We can further simply the expectation in

(A.38) as

Eq(w)

{

ln p(wm|αm) + ln p(αm)
}

= Eq(w)

{1

2
lnαm −

αm

2
w2

m + (a− 1) lnαm − bαm

}

+ const.

=
(

a− 1

2

)

lnαm −
(1

2
Eq(w){w2

m}+ b
)

αm + const.

= ln Ga(αm|ãm, b̃m) + const.,
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where the parameters ãm and b̃m can be obtained as

ãm = a+
1

2
(A.39)

b̃m = b+
1

2
Eq(w){w2

m} = b+
1

2
(µ2

m + Σmm). (A.40)

The mode of a gamma distribution Ga(αm|ãm, b̃m) ∝ αã−1
m exp{−b̃αm} is (ãm −

1)/b̃m for ãm > 1 [4] and we consider it as zero for 0 ≤ ãm ≤ 1, since the pdf has its

largest values at zero in this case. Note that in [4], the gamma pdf is only defined for

αm > 0 and thus the mode at zero does not exist. However, throughout the thesis,

as already mentioned in Section 2.2.1, we consider the gamma pdf for αm ≥ 0. From

this perspective, (A.38) directly leads to (2.37), as we wanted to show.

Similarly, we can derive the update (2.38) from (A.35) with

Eq(w)

{

ln p(t|τ,w) + ln p(τ)
}

= Eq(w)

{N

2
ln τ − τ

2
‖t −Φw‖2 + (c− 1) ln τ − τd

}

+ const.

=
2c− 2 +N

2
ln τ − τ

2

(

tT t− 2tTΦµ + µTΦTΦµ + tr(ΣΦTΦ) + 2d
)

+ const.

=
2c− 2 +N

2
ln τ − τ

2

(

‖t−Φµ‖2 + tr(ΣΦTΦ) + 2d
)

+ const.

= ln Ga(τ |c̃, d̃) + const. (A.41)

where we have used the standard identity for expectations of quadratic forms

Eq(w){wT Bw} = µT Bµ + tr(ΣB), cf. [116].

The parameters of the gamma distribution (A.41) can be obtained as

c̃ = c+
N

2
(A.42)

d̃ = d+
1

2

(

‖t −Φµ‖2 + tr(ΣΦTΦ)
)

. (A.43)

By computing the mode of the gamma pdf (A.41) defined as (c̃− 1)/d̃ for c̃ > 1 and

zero otherwise, we can finally obtain (2.38), as we wanted to show.
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A.4 Proof of Theorem 2

Using the Woodbury matrix identity [113] for Cm̄ = τ̂−1I +
∑

l 6=m α̂−1
l ϕlϕ

T
l , we

obtain the inverse as

C−1
m̄ =



τ̂−1I +
∑

l 6=m

α̂−1
l ϕlϕ

T
l





−1

= τ̂I − τ̂2Φm̄

(

diag(α̂m̄) + τ̂ΦT
m̄Φm̄

)−1

︸ ︷︷ ︸

Σ̂m̄

ΦT
m̄,

(A.44)

where Φm̄ is Φ without the mth basis ϕm, α̂m̄ is the vector α̂ without the ele-

ment α̂m, and we used the equivalence
∑

l 6=m α̂−1
l ϕlϕ

T
l = Φm̄ diag(α̂m̄)ΦT

m̄. With

sm = ϕT
mC−1

m̄ ϕm and qm = ϕT
mC−1

m̄ t we obtain

sm = τ̂ϕT
mϕm − τ̂2ϕT

mΦm̄Σ̂m̄ΦT
m̄ϕm (A.45)

and

qm = τ̂ϕT
mt− τ̂2ϕT

mΦm̄Σ̂m̄ΦT
m̄t. (A.46)

From (A.45) and (A.46), in combination with the results (3.23) obtained in Sec-

tion 3.3.1 for efficient computation of ςm and ρm, it is easy to see that ςm = s−1
m and

ρ2
m = q2m/s

2
m. Thus, the condition q2m > sm in (3.19) is equivalent to the condition

ρ2
m > ςm in (3.12).
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Appendix B

Jeffreys Prior Limit of the General Fast

Variational Sparse Bayesian Learning

Fixed-Point

In this appendix we show that the fixed point solutions (3.9) can be equivalently

obtained by computing the Jeffreys’ prior limit of the general fixed point equations.

By solving (3.6) explicitly for α̂m, we obtain three stationary points as a function

of the gamma prior parameters a and b as1

α̂
[∞]
m,I

(

a, b
)

=
1

3 22/3bςm

{

4a3ς3m + 3b
([

− 3ς2m
(
a2ρ4

m−

2(a(12a+ 11) + 3)bρ2
m + b2

)
− 6ς3m

(
(a+ 1)b− a2(4a+ 1)ρ2

m

)
−

3a2ς4m + 6bρ2
mςm

(
2(6a+ 5)b− (10a+ 3)ρ2

m

)
+ 6b

(
2bρm + ρ3

m

)2
]1/2

+

aςm
(
(4a+ 3)ςm − 3ρ2

m

) )

+ 3b2
(
(4a+ 3)ςm + 6ρ2

m

)
+ 4b3

}1/3

+

(

2a2ς2m + (4a+ 3)bςm + b
(
2b− 3ρ2

m

))

/
{

3bςm

[

8a3ς3m + 6b
({
− 3ς2m

(
a2ρ4

m − 2(a(12a+ 11) + 3)bρ2
m + b2

)
−

6ς3m
(
(a+ 1)b− a2(4a+ 1)ρ2

m

)
− 3a2ς4m + 6bρ2

mςm (2(6a+ 5)b−

(10a+ 3)ρ2
m

)
+ 6b

(
2bρm + ρ3

m

)2 }
+ aςm

(
(4a+ 3)ςm − 3ρ2

m

))

+

6b2
(
(4a+ 3)ςm + 6ρ2

m

)
+ 8b3

]1/3}

+
1

3

(
a

b
− 2

ςm

)

,

(B.1)

1This results and the following limit computations are obtained using Wolfram MathematicaR©,
Version 8.0.4.0.

125



126 B. Jeffreys Prior Limit of the General FV-SBL Fixed-Point

α̂
[∞]
m,II

(

a, b
)
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1

6 22/3bςm

{
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(√

3 + j
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(B.2)

and
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m,III
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,

(B.3)

where j stands for the imaginary unit of complex numbers. Note that we are only

interested in solutions α̂
[∞]
m ∈ R

+
0 ∪ {∞}, where we used the notation R

+
0 = {ν ∈ R :

ν ≥ 0} to denote non-negative real numbers.

We now compute the limit a → 0, b → 0 for all angles in which a and b could

possibly reach the origin in the ab-plane. Since for proper Gamma distributions
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b

a

γ < 1

γ = 1

γ > 1

Figure B.1: All possible directions in which a and b could approach the point (0, 0).

we have a > 0 and b > 0, we can introduce a slope variable γ ∈ R
+, where

R
+ = {ν ∈ R : ν > 0}, and define a = γb. By computing the limits

α̂[∞]
m,s = lim

b→0
α̂[∞]

m,s

(

γb, b
)

, ∀s ∈ {I, II, III}, (B.4)

it can be shown that the solutions α̂
[∞]
m,s are valid for all ab-directions, as depicted in

Figure B.1, if they are independent of the slope variable γ.

We determine the solutions which are indeed independent of γ as

α̂
[∞]
m,I =







(ρ2
m − ςm)−1, ρ2

m > ςm

∞, ρ2
m ≤ ςm

, (B.5)

α̂
[∞]
m,II =







j∞, ρ2
m > ςm

−∞, ρ2
m = ςm = 0

∞ · ej 2π
3 , ρ2

m = ςm > 0

−∞ ρ2
m < ςm

, (B.6)

and

α̂
[∞]
m,III =







−j∞, ρ2
m > ςm

−∞, ρ2
m = ςm = 0

∞ · e−j 2π
3 , ρ2

m = ςm > 0

(ρ2
m − ςm)−1 ρ2

m < ςm

, (B.7)

where the notation ∞ · ejθ denotes a type of infinity in the complex plane with an

angle θ, sometimes also denoted as directed infinity. Since we only need to consider
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solutions in R
+
0 ∪ {∞}, it is easy to see that α̂

[∞]
m,I from (B.5) is the only solution

that always lies in this domain. The other solutions (B.6) and (B.7) never lie in

R
+
0 ∪ {∞} and can thus be ignored. Note that even the finite number (ρ2

m − ςm)−1

in (B.7) is not in the desired domain as it becomes negative under the condition

ρ2
m < ςm.

Since the only valid solution α̂
[∞]
m,I from (B.5) is equivalent to (3.9), we have shown

that setting a = b = 0 before computing the fixed points is the same as computing

the limit of the general fixed point with a > 0 and b > 0 unspecified. In other words,

it is reasonable to work with an improper hyperprior. Finally, note that also the

stability analysis can be done in the limit case, where it is straight forward to show

its equivalence to the analysis in Section 3.2.2.



Appendix C

Elementary Gaussian Loopy Belief

Propagation in Variational Distributed

Sparse Bayesian Learning

In Chapter 4, Section 4.3.2, we discussed a variational distributed SBL algorithm

(V-dSBL) which is based on a combination of V-SBL [35] and consensus propagation

[67]. We showed that the update of the weight posterior, which is a subroutine of

the V-dSBL algorithm, can be performed distributedly using Gaussian loopy belief

propagation (Gaussian LBP). As depicted in Figure 4.2(b), the random variables

at each node k = 1, . . . ,K are considered as multivariate Gaussians of dimension

M . That is, the messages that need to be communicated between the nodes, by

applying Gaussian LBP, are precision matrices (inverse covariance matrices) and

mean vectors. These messages, which are defined in (4.16) and (4.17) respectively,

have a communicational complexity of O(M2) due to sending Λ̂kl. Furthermore, as

matrices of size M×M need to be inverted, the computational complexity is O(M3)

for each message. Since the communication and computation is very complex for

a large number of basis functions M , there would be a more efficient alternative

by applying what we denote as elementary Gaussian LBP. This approach considers

the graph of all elementary Gaussian random variables, i.e., the messages have to

be sent between the elements inside each vector wk and between the elements of

the vectors wk and wl for all (k, l) ∈ E . Note that in this case the communication

complexity between the sensors is O(M) due to the non-crossing connections of the

coupling factors (4.12), i.e., there are only scalar mean and scalar precision messages

between wk,i and wl,j for i = j and (k, l) ∈ E . In Section C.2, we show how

elementary Gaussian LBP can be implemented for the V-dSBL model. The reason

why elementary Gaussian LBP is potentially applicable for V-dSBL, is because we

only require the marginal mean and marginal variance components µ̂k,m and Σ̂k,mm

129
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in the hyperparameter updates α̂k,m = (2a+1)/(2b+ µ̂2
k,m +Σ̂k,mm) at each sensor k

(cf. Algorithm 4.1). For elementary Gaussian graphs in the form of a tree, the sum-

product algorithm [4] would exactly lead to marginal means and marginal variances.

However, in general, the elementary Gaussian graph for the V-dSBL model has

no tree structure since the elements of each wk are already fully connected via

the factors (4.11) and thus form a loopy graph. That means, even multivariate

Gaussian tree graphs discussed in Section 4.3.2 are essentially elementary Gaussian

loopy graphs.

Sufficient convergence criteria for elementary Gaussian LBP can be found in

[107, 106]. Unfortunately in cases where the convergence according to [107, 106]

is guaranteed, only the marginal mean estimators are correct. That is, although the

marginal variance estimators converge, their resulting estimates are typically wrong.

Note that this influences the outcome of the overall V-dSBL prediction, since the

hyperparameter updates depend on both, the marginal means and variances. How-

ever, in [106, Section 5] it is shown, that the variance error in general tends be

small, except for situations close to the point where where the convergence criteria

is not fulfilled. In the following we show how the convergence criteria [106] can be

evaluated for the elementary Gaussian LBP approach to V-dSBL.

C.1 Convergence of elementary Gaussian loopy belief

propagation in variational distributed sparse Bayesian

learning

As mentioned before, sufficient convergence criteria for elementary Gaussian LBP

are given in [107, 106]. We only consider the criteria [106], which is denoted as

walk-summability, for our analysis here, since it is more general than the criteria

presented in [107]. More specifically, all models satisfying the criteria proposed in

[107] also satisfy the criteria proposed in [106].

Consider the joint density over all local weight vectors w1, . . . ,wK collected to

a global vector w̄ = [wT
1 , . . . ,w

T
K ]T ∈ R

MK given as q(w̄) = N (w̄|µ̄, Λ̄−1). The

global precision matrix Λ̄ or sometimes denoted as information matrix (as in [106]) is

essential for determining if elementary Gaussian LBP converges. It can be obtained

from the product of all factors in the graph presented in Figure 4.2(b) with the
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observed variables inserted, i.e.,

q(w̄) ∝
K∏

k=1

fkα(α̂k,wk)fkt(tk,wk)
∏

{k,l}∈E

fkl(wk,wl). (C.1)

When we take the logarithm of both sides in (C.1) and use the term ’const.’ to

denote all parts that are independent of w̄, we obtain

ln q(w̄) =− 1

2
w̄T Λ̄w̄ + µ̄T Λ̄w̄ + const.

=− 1

2

K∑

k=1

wT
k

( 1

K
Âk + τφkφ

T
k

)

wk −
β

2

∑

{k,l}∈E

‖wk −wl)‖22

+ τ
K∑

k=1

tkφ
T
k wk + const.

=− 1

2

K∑

k=1

wT
k

( 1

K
Âk + τφkφ

T
k + #N(k)βI

)

wk

− 1

2

∑

{k,l}∈E

[

wT
k (−βI)wl + wT

l (−βI)wk

]

+ τ

K∑

k=1

tkφ
T
k wk + const. ,

(C.2)

and can directly determine Λ̄ as

Λ̄ =




















D1 0 · · · 0 · · · 0 · · · 0

0 D2 0 · · · 0 · · · 0
...

. . .
...

0 0 Dk −βI 0
...

...
. . .

...

0 0 −βI Dl 0
...

...
. . .

0 0 · · · 0 · · · 0 DK




















, (C.3)

where Dk = K−1Âk + τφkφ
T
k + #N(k)βI. Note that in the representation (C.3),

the off-diagonal block matrices are all zero, except for those corresponding to a

connection between sensors k and l, i.e., for all {k, l} ∈ E we have two off-diagonal

matrices −βI symmetrically placed at the block positions (k, l) and (l, k) indicated
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by the main diagonal blocks Dk and Dl in (C.3). Note that in (C.3) we have only

depicted one particular exemplary connection between k and l. However, as can be

seen in (C.2), this off-diagonal block matrices are meant to occur at all positions

wherever the respective sensors k and l are connected.

By defining the matrix

R = I − diag(Λ̄)−1/2 Λ̄ diag(Λ̄)−1/2, (C.4)

according to [106], elementary Gaussian LBP is guaranteed to converge if the spectral

radius of |R| is smaller than 1, i.e., ρ(|R|) < 1, where we have used the operator

| · | to denote the elementwise absolute value and define the spectral radius of some

matrix V with eigenvalues vi as ρ(V ) = maxi(|vi|).

C.2 Implementation of elementary Gaussian loopy belief

propagation for variational distributed sparse Bayesian

learning

Algorithm C.1 summarizes the synchronous update version of the elementary Gaus-

sian LBP algorithm for V-dSBL.

Algorithm C.1 Elementary Gaussian LBP in V-dSBL

We define: Λ̄ as in (C.3) and h̄ = τ [t1φ
T
1 , . . . , tKφT

K ]T

Initialize: n = 0, λ
(0)
ui = 0 and h

(0)
ui = 0 for all (u, i) where Λ̄ij 6= 0

% Message passing update loop
while (elementary Gaussian LBP not converged) do
n = n+ 1

% Compute messages for all (i, j) where Λ̄ij 6= 0

λ
(n)
ij = −Λ̄2

ij(Λ̄ii +
∑

u∈Ñ(i)\j λ
(n−1)
ui )−1

h
(n)
ij = Λ̄−1

ij λ
(n)
ij (h̄i +

∑

u∈Ñ(i)\j h
(n−1)
ui )

end while

% Compute the marginal estimates at each sensor k

Define: zkm = (k − 1)M +m

Σ̂k,mm =
(
Λ̄zkmzkm

+
∑

u∈Ñ(zkm) λ
(n)
uzkm

)−1
, ∀k, ∀m

µ̂k,m = Σ̂k,mm

(
hzkm

+
∑

u∈Ñ(zkm) h
(n)
uzkm

)
, ∀k, ∀m

The algorithm is based on [106, 123] and adopted to the elementary V-dSBL
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model. We make use of the notation Ñ(i) to denote the elementary neighbors of the

elementary node i in the Gaussian graph. Similarly to the notation in Chapter 4, we

use Ñ(i)\j to denote the elementary neighbors of the elementary node i excluding

the elementary node j. Note that in elementary Gaussian LBP, the messages to

such neighbors do not always require communication between different sensors in

the network. These messages are often sent locally between the elements of some

vector wk at sensor k. The vector h̄ in Algorithm C.1 is denoted as the potential

vector [106] and is defined as h̄ = τ [t1φ
T
1 , . . . , tKφT

K ]T . This result can be easily

obtained from (C.2) by defining h̄T w̄ = µ̄T Λ̄w̄, which leads to the equivalence

h̄ = Λ̄µ̄. From the latter perspective it is clear that elementary Gaussian LBP can

be used to solve systems of linear equations, a fundamental problem in computer

science [124]. More specifically, if it converges, the marginal mean estimates are

guaranteed to be equal to the elements of µ̄ [107, 106].

C.3 Test experiments

We tried to apply the more efficient elementary Gaussian LBP approach for V-dSBL

to the synthetic data experiment from Section 4.4.1. The simulation setup was

equivalent, except that elementary Gaussian LBP was used instead of multivariate

Gaussian LBP. Unfortunately, the convergence criteria [106] was never fulfilled at

the initial variational iteration for any of the algorithm settings listed in the first two

columns of Table 4.1. When we nevertheless tried to start the algorithm for some

of these cases, we always obtained useless results, since all basis functions where

pruned from the model. This typically happend already after the first variational

iteration.

C.4 Summary and future directions

Unfortunately, in our experiments, V-dSBL did not work in combination with el-

ementary Gaussian LBP and furthermore the convergence criteria based on walk-

summability [106] was never fulfilled for elementary Gaussian LBP at the initial

variational iteration.

However, as the idea seems to be, in terms of computation and communication,

much more efficient than V-dSBL with multivariate Gaussian LBP as in Chapter 4,

we give some comments on potential future research directions to overcome the

problems.
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In [123], a method is proposed for obtaining the true marginal means from non-

walk-summable models. It is based on a double-loop algorithm which at each itera-

tion performs elementary Gaussian LBP on an intermediate walk-summable model.

This walk-summability is achieved by adding a proper diagonal matrix to the non-

walk-summable precision matrix. The potential vector needs to be adapted at every

iteration to assure convergence to the true mean of the original non-walk-summable

model. Unfortunately, the method [123] has its focus on the application of elemen-

tary Gaussian LBP for solving systems of linear equations, and thus only on the

marginal means. As we also need the marginal variances in V-dSBL, further re-

search in this direction is required. Furthermore, the method adds another outer

loop to the already existing message passing loop, which is assumed to lower the

overall convergence speed. In this sense, the single-loop alternative, also proposed

in [123], seems more interesting for V-dSBL.

Finally, we note that since even for walk-summable models, the marginal variance

estimates obtained from elementary Gaussian LBP are typically wrong [107, 106],

it would be of great interest in future research to investigate on how to obtain the

correct marginal variances in a distributed way.



Appendix D

Sliding Window Online Fast Variational

Sparse Bayesian Learning

In this appendix we present an online learning algorithm for fast adaptive nonlinear

filtering based on fast variational sparse Bayesian learning (FV-SBL) introduced in

Chapter 3. A sequential decision rule for inclusion and deletion of basis functions

is applied to a sliding window block of data. In this manner, data can be processed

online, where the set of basis functions is adjusted for each time instant.

We show that the proposed method has better sparsity and mean square error

(MSE) performance compared to a state of the art online kernel recursive least

squares (Kernel-RLS) algorithm. Furthermore, the proposed algorithm implicitly

estimates the noise precision (inverse variance), which does not apply for Kernel-

RLS.

D.1 Introduction

Online learning is used in diverse areas of signal processing [125]. In applications

like system identification, channel equalization and time series prediction, in which

data is time varying and arrives sequentially, online learning can be the only method

of choice.

We define the available training set at time instant i ≥ 1 as a set {xn, tn}in=1

consisting of D-dimensional real input vectors xn ∈ R
D and real valued scalar

targets tn ∈ R.

We model the target ti at time i as

ti =

Mi∑

m=1

wi,mψi,m(xi) + ǫi, (D.1)

This appendix is based on our publication [73].
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where ψi,m(·) is the mth basis function from a set of m = 1, . . . ,Mi basis functions

at time i, wi,m is the mth weight parameter at time i and ǫi is a zero mean additive

white Gaussian perturbation with variance τ−1
i at time i.

In online sparse signal representation, the aim is to find a small number of

weighted basis functions Mi to represent the targets t1, . . . , ti for their respective

inputs x1, . . . ,xi according to (D.1).

Recently, a new approach called kernel adaptive filtering [17] has emerged, which

has its origin in kernel methods [11, 4], a powerful method in machine learning.

One famous example of a kernel adaptive filters is the kernel recursive least squares

(Kernel-RLS) algorithm [74]. In kernel methods, the basis functions are placed

at the inputs xn, for n = 1, . . . , i. Thus, kernel models are build directly from

the data itself. Naturally, the online implementation of Kernel-RLS requires some

sparsification rule, since data arrives sequentially and the model complexity would

otherwise explode. The Kernel-RLS therefore uses a criteria called approximate

linear dependency (ALD) which decides if the current kernel is added to the model

or not. The ALD criteria requires a threshold parameter to be set in advance. The

performance of the Kernel-RLS strongly depends on the adjustment of this threshold.

Another drawback of the Kernel-RLS is its limitation to only kernel basis functions,

which is due to the incorporation of the kernel-trick [11, 4].

In sparse Bayesian learning (SBL) [1, 35], there is no need for such a sparsification

parameter and selecting components is done automatically using automatic relevance

determination (ARD). Also, because SBL uses no kernel trick, it does not only

rely on kernel basis functions like other kernel methods. Since SBL is designed

for batch learning, i.e., access to all data is needed, it is not directly suitable for

online processing. Another drawback, which limits the use of SBL in many online

applications, is its slow convergence speed.

To overcome these drawbacks of SBL, we first suggest not to use all the data,

which we cannot even access in most situations. Instead we propose to use a block

of the last l samples. More specifically, we model the targets included in a sliding

window block of length l at time i ≥ l as

ti = Φiwi + ǫi, (D.2)

where Φi = [ϕi,1, . . . ,ϕi,Mi
] is a design matrix consisting of Mi basis vectors ϕi,m =

[ψi,m(xi−l+1), . . . , ψi,m(xi)]
T with basis functions ψi,m(·) at time i, the vector ti =

[ti−l+1, . . . , ti]
T contains all the targets within the window at time i, the vector
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wi = [wi,1, . . . , wi,Mi
]T is denoted as weight vector at time i and ǫi is a zero mean

additive white Gaussian perturbation vector with covariance matrix τ−1
i I as before.

Secondly, to learn the set of basis functions and their respective weights wi at

time i, we make use of the FV-SBL method proposed in Chapter 3, which is a

variational counterpart to the fast marginal likelihood maximization method [68].

This method provides a fast decision rule for selecting model components and allows

for addition of new basis functions as well as deletion of components currently in the

model. This is opposed to the constructive sparsity of the Kernel-RLS, which only

controls the addition of new components by using the ALD criteria. Furthermore,

since no kernel-trick is used, this method is not limited to only use kernel basis

functions and thus arbitrary functions can be incorporated.

Note that in (D.2) only the last l targets are modeled with the weights and basis

functions at the current time i. This can be seen as a batch learning problem with

the last l samples as training data. However, there is a time dependency between

the sliding window batches in terms of the set of basis functions. This is due to the

way we add and delete basis functions. The current set of basis functions depends

on the previous set and is only adapted to fit the current batch of training data ti

at time i. This mechanism will be later explained in detail.

D.2 Adaptive deletion and inclusion of basis functions

In Chapter 3 we have presented a simple criteria to decide whether to keep or delete

a basis function from a given model corresponding to an α̂
[∞]
m of finite or infinite

value respectively. Furthermore, as we have presented in Section 5.1, we can detect if

a new candidate basis function should be added to the current model or not. In the

following we will adapt both methods to our online learning problem and summarize

the main results.

D.2.1 Testing basis functions currently in the model

To decide if the mth basis function corresponding to the mth column in Φi at

time i should be kept in or pruned from the model we need to compute the FV-SBL

stationary point α̂
[∞]
i,m (see Section 3.2.2, Theorem 1) given as

α̂
[∞]
i,m =

{

(ρ2
i,m − ςi,m)−1, ρ2

i,m > ςi,m

∞, ρ2
i,m ≤ ςi,m,

(D.3)
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with

ςi,m = (τ̂iϕ
T
i,mϕi,m − τ̂2

i ϕT
i,mΦi,m̄Σ̂i,m̄ΦT

i,m̄ϕi,m)−1

and ρi,m = τ̂iςi,mϕT
i,mti − τ̂2

i ςi,mϕT
i,mΦi,m̄Σ̂i,m̄ΦT

i,m̄ti,
(D.4)

where the particular variables are basically defined as in Chapter 3 but are now

applied to the sliding window block of data at time i. Note that based on the

notation in Section 3.3.1, we now have Σ̂i,m̄ = (τ̂iΦ
T
i,m̄Φi,m̄ + diag(α̂i,m̄))−1 =

[

Σ̂i − Σ̂iemeT
mΣ̂i

eT
mΣ̂iem

]

m̄m̄
, where Φi,m̄ is a matrix obtained from Φi by removing the

mth basis vector ϕi,m and α̂i,m̄ = [α̂i]m̄ is the hyperparameter vector α̂i at time i

without the element α̂i,m. We summarize the procedure for testing a particular basis

function m in Algorithm D.1. Note that in Algorithm D.1 we use α̂old
i,m to denote the

value of α̂i,m before it is updated according to (D.3).

Algorithm D.1 Testing the mth basis ϕi,m at time i

Compute ςi,m and ρi,m from (D.4)
if ρ2

i,m > ςi,m then
% keep basis

Compute: α̂i,m = α̂
[∞]
i,m from (D.3)

Update: Σ̂i = Σ̂i − Σ̂iemeT
mΣ̂i

(α̂i,m−α̂old
i,m)−1+eT

mΣ̂iem
, cf. (3.24) in Chapter 3

else
% prune basis
Compute: Σ̂i = Σ̂i,m̄, α̂i = α̂i,m̄, Φi = Φi,m̄, Mi = Mi − 1

end if

D.2.2 Testing basis functions not included in the model

To test a new candidate basis function Mi+1 corresponding to a new column ϕi,Mi+1

added to the design matrix at time i, i.e., [Φi, ϕi,Mi+1], we need to compute the

FV-SBL stationary point α̂
[∞]
i,Mi+1 from (D.3) with

ςi,Mi+1 = (τ̂iϕ
T
i,Mi+1ϕi,Mi+1 − τ̂2

i ϕT
i,Mi+1ΦiΣ̂iΦ

T
i ϕi,Mi+1)

−1

and ρi,Mi+1 = τ̂iςi,Mi+1ϕ
T
i,Mi+1ti − τ̂2

i ςi,M+1ϕ
T
i,Mi+1ΦiΣ̂iΦ

T
i ti.

(D.5)



D.3. Sliding window online learning 139

This results are adopted from Section 5.1, Chapter 5. The resulting algorithm is

presented in Algorithm D.2, were Σ̂i,Mi+1 is given as

[

Σ̂i + λi,Mi+1τ̂
2
i Σ̂iΦ

T
i ϕi,Mi+1ϕ

T
i,Mi+1ΦiΣ̂i −λi,Mi+1τ̂iΣ̂iΦ

T
i ϕi,Mi+1

−λi,Mi+1τ̂iϕ
T
i,Mi+1ΦiΣ̂i λi,Mi+1

]

(D.6)

with λi,Mi+1 = (τ̂iϕ
T
i,Mi+1ϕi,Mi+1 + α̂

[∞]
i,Mi+1 − τ̂2

i ϕT
i,Mi+1ΦiΣ̂iΦ

T
i ϕi,Mi+1)

−1

= (ς−1
i,Mi+1 + α̂

[∞]
i,Mi+1)

−1. Note that for ρ2
i,Mi+1 > ςi,Mi+1, i.e., α̂

[∞]
i,Mi+1 from (D.3) has

a finite value, we simply obtain λi,Mi+1 = ςi,Mi+1 − ς2i,Mi+1/ρ
2
i,Mi+1.

Algorithm D.2 Testing and adding or rejecting a new basis ϕi,Mi+1

Compute ςi,Mi+1 and ρi,Mi+1 from (D.5)
if ρ2

i,Mi+1 > ςi,Mi+1 then
% add new basis
Compute α̂i,Mi+1 from (D.3)

Update Σ̂i = Σ̂i,M+1 from (D.6)
Update Φi = [Φi,ϕi,Mi+1], α̂i = [α̂T

i , α̂i,Mi+1]
T , Mi = Mi + 1

else
% reject new basis - no action needed

end if

D.3 Sliding window online learning

Now we are ready to combine the two key elements of FV-SBL, namely pruning and

adding basis functions, with the online sliding window idea discussed before. We

denote the resulting method as the sliding window fast variational sparse Bayesian

learning (SW-FV-SBL) algorithm. Algorithm D.3 presents the implementation de-

tails of SW-FV-SBL.

In the initial phase of Algorithm D.3, the sliding window length l is assumed to

grow until l = L, where L is the final sliding window length. Computing Φi and ti

during the algorithm depends on the current window length l and thus the number

of rows in both terms also grows until l = L. The method starts with an arbitrary

basis function ψ∗ evaluated at the first input sample x1 in the design matrix. The

other variables are then initialized according to Algorithm D.3. In some cases it is

better not to start the re-estimation of the noise precision τ̂i at the very beginning.

We have observed that especially at the initial phase where basis functions are rare,

the noise precision estimate performs poorly and a delayed re-estimation start could

give better results. At each iteration, all basis functions in the model are tested, then
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Algorithm D.3 Sliding-window (SW) online learning algorithm

Initialize Φ1 = ψ∗(x1) with some basis function ψ∗(·)
Set τ̂1 to an initial value, i = 1, l = 1, M1 = 1, α̂i,1 = 0
Compute Σ̂1 = (τ̂1Φ

2
1)

−1 and µ̂1 = τ̂1Σ̂1Φ1t1 = Φ−1
1 t1

for i = 2, 3, . . . do
Update τ̂i = l+2c

‖ti−Φi−1µ̂i−1‖2+tr(Σ̂i−1Φ
T
i−1Φi−1)+2d

, cf. (2.44), Chapter 2

if l < L then
l = l + 1 % grow sliding window (SW) length until l = L

end if
Update Φi with the current SW data using the basis functions at time i− 1
Update ti with current SW data
Set α̂i = α̂i−1

Compute Σ̂i = (τ̂iΦ
T
i Φi + diag(α̂i))

−1, cf. (2.40), Chapter 2

% Test all current basis functions
Run Algorithm D.1, ∀m=1, . . . ,Mi

% Test a new candidate basis function ψi,Mi+1(·)
Run Algorithm D.2 with candidate basis ϕi,Mi+1

Compute the mean at time i as µ̂i = τ̂iΣ̂iΦ
T
i ti, cf (2.40), Chapter 2

end for

updated or pruned according to Algorithm D.1. A new candidate basis function is

tested, then kept or rejected according to Algorithm D.2. As given in [35] (see also

V-SBL in Section 2.2.2), the model prediction at time i for a test input sample x∗

can be computed as

y∗i = φi(x
∗)T µ̂i, (D.7)

with φi(x) = [ψi,1(x), . . . , ψi,Mi
(x)]T , the vector of all basis functions currently in

the model evaluated at the input x.

D.4 Simulation

In this section, we evaluate the performance of the proposed algorithm on one-

step-ahead prediction of Mackey-Glass chaotic time series, where we have generated

the data as described in [17, Section 2.11.1]. Mackey-Glass has been extensively

used for benchmarking different time-series prediction algorithms [126, 127]. In one-

step-ahead time-series prediction, the training (and test) data {xn, tn}in=1 can be

generated with xn = [tn−D, . . . , tn−2, tn−1]
T , where each element in xn is a sample

from the time-series with additive white Gaussian noise having variance σ2. For
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the simulations we have used an input dimension of D = 7 and a noise variance

σ2 = 10−3. We compare the simulation results with a Kernel-RLS [74], which uses

ALD as a constructive sparsification criterion. That is, the criteria restrains the

model from growing too much but never reduces its complexity. As basis functions

ψi,m(·), we use the same Gaussian kernels as for Kernel-RLS. These are defined as

κ(x,xj) = exp{−||x−xj ||2}. Similarly to the Kernel-RLS, we define the candidate

basis vector in Algorithm D.3 at time i as ϕi,Mi+1 = [κ(xi−l+1,xi), . . . , κ(xi,xi)]
T

and the initial basis function as ψ∗(·) = κ(·,x1). For the noise precision estimate τ̂ ,

as in Algorithm D.3, we consider a non-informative prior with c = d = 0. For the

initialization we set τ̂1 = 105.

For the ALD criterion in the Kernel-RLS a threshold parameter needs to be speci-

fied [74]. This parameter, which we denote as ALD threshold ν, qualitatively adjusts

the amount of sparsity in Kernel-RLS. That is, large ALD thresholds lead to more

sparsity whereas smaller lead to less sparsity. In comparison to Kernel-RLS, our

method has no need for such a parameter. However, in our case, since we work with

blocks of windowed data, a window length L has to be chosen. Another difference

from the Kernel-RLS is that the SW-FV-SBL method provides an estimator for the

noise precision τ̂i, where in the Kernel RLS no such estimator exists. An exemplary

learning curve resulting in the same sparsity of 14 kernels is presented in Fig. D.1. A

sliding window length of L = 300 for the SW-FV-SBL and an ALD threshold ν = 0.3

for the Kernel-RLS was used. In Fig. D.2 we see a comparison of both methods for

different parameter settings. One can see that for a particular estimated sparsity, the

Kernel-RLS has a higher test mean square error (MSE) than our proposed method.

Additionally, for a specific test MSE performance, SW-FV-SBL leads to a sparser

model, i.e., is uses less kernels than Kernel-RLS.

D.5 Conclusions

In this appendix, we have presented a sliding window fast variational sparse Bayesian

learning (SW-FV-SBL) algorithm for online learning and nonlinear filtering. The

method exploits fast variational SBL, introduced in Chapter 3, to determine the set

of relevant basis functions from a sliding window block of data. Based on the FV-

SBL pruning criterion, basis functions are consecutively added and removed from

the model. By performing this addition and deletion at each time for the current

block of data, the model is able to adapt to changes in the data over time. However,

as the set of basis functions is updated based on the previous time instant, the
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Figure D.1: Example learning curves of the SW-FV-SBL algorithm using a sliding
window length of L = 300 and the Kernel-RLS using an ALD threshold
of ν = 0.3. Both methods result in the same number of 14 kernels at
the last iteration. For the MSE, a test set of 200 samples was used.

model benefits from older choices of basis functions and thus incorporates some sort

of memory in the set of basis functions.

The simulation results for SW-FV-SBL on Mackey-Glass chaotic time-series pre-

diction with kernel basis functions showed better performance compared to a state

of the art Kernel-RLS. More specifically, for different settings of the ALD thresh-

old and sliding window length of the Kernel-RLS and the SW-FV-SBL algorithm,

respectively, SW-FV-SBL uses less basis functions at a smaller achieved test MSE

performance over a wide region as depicted in Figure D.2.
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Figure D.2: Comparison of the SW-FV-SBL algorithm with an ALD Kernel-RLS
for one-step ahead prediction of Mackey-Glass data with sliding win-
dow length L and ALD threshold ν. Results are averaged over 200
independent realizations with data 500 samples. For the MSE, a test
set of 200 samples was used.
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