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Abstract

This thesis investigates noncoherent multi-channel ultra-wideband receivers. Noncoherent
ultra-wideband receivers promise low power consumption and low processing complexity as they,
in contrast to coherent receiver architectures, relinquish the need of complex carrier frequency
and phase recovering. Unfortunately, their peak data rate is limited by the delay spread of the
multipath radio channel. Noncoherent multi-channel receivers can break this rate limit due to
their capability to demodulate multi-carrier signals. Such receivers use an analog front-end to
separate the received signals into their sub-channels.

In this work, the modeling and optimization of realistic front-end components is addressed and
their impact on the system performance of noncoherent multi-channel ultra-wideband receivers
is analyzed. With a proposed generalized mathematical framework, it is shown that there exists
a variety of noncoherent multi-channel receiver types with similar system performance which
differ only in their front-end filters. It is also shown that analog multipliers introduce strong
interference due to higher-order mixing products. To analyze the impact of such interference
on the performance of the receiver system, a Wiener-Hammerstein system model is introduced
for the multiplication device. It is shown that the receiver performance strongly depends on the
input power of the nonideal multiplier devices. A proposed mixed-signal integration device is able
to suppress nonlinear cross-products between data carriers. Passive filter structures are analyzed
for this purpose. It is shown that the optimized filter outperforms the reference system using an
ideal sliding window integrator because it is able to mitigate more system noise. Additionally, an
enhanced signal detection is introduced which is able to mitigate undesired nonlinear effects and
hereby reduces the bit-error rate. Finally, a hardware example of a noncoherent multi-channel
receiver is presented which proves the feasibility to design and manufacture such receivers with
today’s technologies.
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Kurzfassung

Diese Arbeit untersucht inkoheränte, mehrkanalige Ultra-Breitbandempfängerstrukturen. Im
Gegensatz zu koheränten Empfängern, müssen inkoheränte Empfänger Frequenz und Phase des
empfangenen Signals nicht wiederherstellen. Sie versprechen daher einen geringeren Stromver-
brauch und weniger komplexe Verarbeitung der empfangenen Signale. Die maximale Datenrate
ist jedoch durch die Dauer der Impulsantwort des Mehrwege-Funkkanals limitiert. Mehrkanalige
inkoheränte Empfänger sind in der Lage parallele Mehrträgersignale zu dekodieren und können
daher diese Limitierung umgehen. Sie verwenden eine analoge Eingangsstufe um die empfange-
nen Signale in die jeweiligen Teilbänder zu separieren.

Diese Arbeit behandelt die Modellierung und Optimierung von realistischen Systemkompo-
nenten der Eingansstufe und analysiert deren Einfluss auf die Gesamtleistung von mehrkanaligen
Ultra-Breitbandempfängern. Mit Hilfe eines allgemeinen mathematischen Modells wird gezeigt,
dass eine Vielfalt von inkoheränten mehrkanaligen Empfängern mit ähnlicher Systemleistung
möglich sind, welche sich nur in deren Eingangsfilter unterscheiden. Es wird auch gezeigt, dass
analoge Multiplizierer durch Mischprodukte höherer Ordnung starke Interferenz verursachen.
Um den Einfluss dieser Interferenz auf die Gesamtleistung zu untersuchen, wird ein Wiener-
Hammerstein Systemmodell für reale analoge Multiplizierer vorgestellt. Mit Hilfe eines vor-
geschlagenen gemischt analog-digitalen Integrators ist es möglich, nichtlineare Kreuzprodukte
der Datenträger zu unterdrücken. Dafür werden passive Filterstrukturen untersucht. Es wird
gezeigt, dass es ein optimierter gemischt analog-digitaler Filter ermöglicht mehr Rauschen zu
unterdrücken und daher ein Referenzsystem mit idealem Integrator zu übertreffen. Zusätzlich
wird eine verbesserte Signaldetektion vorgeschlagen, welche nichtlineare Effekte unterdrückt
und dadurch die Bitfehlerwahrscheinlichkeit reduzieren. Schlussendlich wird ein Prototyp ei-
nes inkoheränter mehrkanaliger Ultra-Breitbandempfänger vorgestellt. Dieses Gerät beweist die
Machbarkeit solcher Empfängerstrukturen mit Hilfe der heute verfügbaren Technologien.
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Generalized Noncoherent Ultra-Wideband Receivers

1
Introduction

Modern society is built on fast accessibility of digital information. Examples include the world
wide web, digital audio and video broadcast, or electronic banking and trading. The amount of
data increases each second1 and the need to transport it as fast as possible from one point to
another is more crucial than ever, especially for systems which require real-time interaction as
traffic control and tracking [3], disaster control [4, 5], or surgical support systems [6].

Another desire of modern society is the demand of easy accessibility to any digital information
or data from every possible location using wireless technology. This need was the main driver for
the rapid evolution of modern mobile cellular multimedia platforms2, wireless communication
standards with high spectral efficiency, as LTE [7] or WiMax [8], and low-power wireless sensor
network protocols, as Bluetooth [9], ZigBee [10], or ANT [11,12].

A big issue is the limited battery capacity all mobile devices have in common, hence low-power
consumption is a must for any of its components, including computing power and communica-
tions. In this thesis the modeling and optimization of noncoherent multi-channel ultra-wideband
(UWB) receivers and their impact on the receiver performance is studied. These receivers are
most suitable for mobile short range high rate applications as they promise low-complexity,
low-power devices but still maintaining reasonable data rates [13].

1 More than 90 % of all the data in the world has been generated over the last three years [1]. E.g. the Large
Hadron Collider (LHC) in CERN alone produced in its first full year (2010) 13 PByte of data, on average,
412 MByte data per seconds [2].

2 The term “phone” seems to be an understatement for the computational power of current devices as Apple’s
iPhone or Google’s Nexus series.
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1 Introduction

1.1 History of Ultra-Wideband Communications

Ultra-Wideband communications have a long history. The cornerstone of any applied wireless
communications lies in the experiments of David Edward Hughes in 1879 [14]. He was successful
in producing radio signals using an electric spark generator which could be detected by a tele-
phone receiver. Due to the lack of band selection filters, these generated sparks were inherently
ultra-wideband. The zenith of this early UWB communication age marked the commercializa-
tion of the spark-gap transmitters for wireless telegraphy – to transmit Morse codes – by Nikola
Tesla [15,16] and Guglielmo Marconi [17]. Those wireless transmission systems got much atten-
tion in media due to the patent battles [18] between Marconi and Tesla on the one hand and due
to the rescue of 710 survivors of the RMS Titanic catastrophe on the other hand. Before the
Titanic sunk completely, a wireless distress call was sent by its spark-gap wireless telegraphs,
owned and operated by the Marconi Company, which got intercepted by the RMS Carpathia
[19].

The end of the spark-gap transmitters and the early UWB communication age was sealed when
in 1904 Otto Nußbaumer transmitted a first audio broadcast within the premises of (which
is nowadays known as) Graz University of Technology3 and when 1906 Reginald Fessenden
transmitted the first amplitude modulated audio broadcast using an alternator-transmitter [20].

During the 1960’s to 1990’s the US department of defense restricted UWB for classified UWB
radar programs and secure military communications. Therefore, little effort was put into public
UWB research [21]. Nevertheless, Gerald F. Ross proposed the first modern UWB patent in
1971 [22]. But still UWB had been fallen into oblivion for a very long time, until modern UWB
was revived for the public by the works of Charles Fowler et al. about the first public UWB
radar [23] in 1990. In 1997 the first works in public UWB impulse radio for communications
were published by Moe Z. Win and Robert A. Scholtz [24].

Due to the emerging interests in UWB, the Federal Communications Commission (FCC) has
defined emission rules regarding UWB transmission systems in 2002 as Revision of Part 15 of
the Commission’s Rules Regarding Ultra-Wideband Transmission Systems [25]. IEEE followed
the specifications of the FCC and specified the standard IEEE 802.15.4a on low data rate
UWB communications [26] in 2006. The draft standard IEEE 802.15.3a on high data rate
UWB communications was withdrawn in 2006 after the IEEE 802.15.3a Task Group failed to
agree on a single system specification [27]. In 2007, ISO adopted parts of the the withdrawn
IEEE 802.15.3a as ISO/IEC 26907 and ISO/IEC 26908 [28, 29]. These standards specify a
physical layer (PHY) for UWB based on multi-band orthogonal-frequency-division multiplexing
(MB-OFDM) which requires complex coherent demodulation of the data at the receiver.

Until today there exist no commercially successful high-rate UWB systems, although MB-
OFDM UWB was considered for wireless transmission of USB [30] and Bluetooth 3.0 [31]. The
promise of the UWB technology to maintain low-power low-complexity transceiver systems could
not be met by coherent MB-OFDM UWB which turned out to be a very complex power hungry
technology. New approaches as noncoherent high rate UWB schemes need to be considered and
studied.

3 Note that this thesis was written 110 years after this remarkable experiment, in which Nußbaumer transmitted
the Styrian anthem “Dachsteinlied”!
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1.2 The Ultra-Wideband Channel

In narrowband and wideband wireless communications fading is a severe problem [32]. Fading
communication links appear when the radio waves travel, due to reflections, over more than
one way from the transmitter to the receiver. Depending on the phases of the received signals,
constructive or destructive interference may appear. For constructive interference the signal gets
boosted, but for destructive interference no signal can be received at all. This phenomenon is
frequency dependent, so that in the same scenario a destructive interference can be resolved for
a different frequency. Hence, those multipath channels are frequency selective.

A multipath channel can be described, using a tapped delay line model, as

c(t, τ) =

N−1∑

n=0

αn(t)δ(τ − τn(t)), (1.1)

where N is the number of paths a signal propagates, αn(t) is the complex gain of the nth ray,
δ (·) is the Dirac delta function [33], and τn is the time the signal needs to propagate via the nth

path. The parameters of the multipath channel can be modeled as stochastic processes and can
be statistically described (cf. Appendix A).

In general the channel c(t, τ) is time-variant, given that receivers, transmitters, or reflectors
may move. For the time-variant channel c(t, τ), t is the time parameter whereas τ is the delay
parameter. The received signal r(t) is therefore given as

r (t) = c (t, τ) ∗ s (t) + n(t) (1.2)

=

∫ +∞

τ=−∞
c (t, τ) s (t− τ) dτ + n(t), (1.3)

where ∗ denotes the convolution operator, s(t) is the sent signal, and n(t) is noise.

(a) Absolute value of the channel impulse response. (b) Magnitude response.

Figure 1.1: Example of a time-variant multipath channel at given time t.

In Fig. 1.1 a sample function of such a time-variant UWB channel response is depicted4. The
first peak in the impulse response represents the line-of-sight (LOS) ray. It can be seen that it is
strong in contrast to all the other rays which arrive later. This scenario is hence a LOS scenario
where there exists a line of sight between the transmitter and receiver. All other components

4 The channel parameters can be found in Tab. 2.2
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are non-line-of-sight (NLOS) rays that travel along paths due to reflections. The magnitude
response shows clearly the deep fading dips which are caused by those reflections.

To conquer those narrowband fading-dips, the bandwidth of the signal can be expanded so
that it becomes more robust to this phenomena. When expanding the signal bandwidth to

1. at least 20 % of its center frequency, or

2. at least 500 MHz

the signal is called an ultra-wideband signal (according to FCC regulations [25]).
In impulse radio, the UWB signals utilize short pulses in the range of one nanosecond to

transmit data [24]. Short pulses always result in large bandwidths. To assure that those signals
do not interfere with other radio systems, the transmit power of UWB transmitters needs to
be reduced [25]. On the contrary, UWB communication systems must be robust to interfering
signals themselves, which might result in the need for interference mitigation schemes [34,35].

The big advantage of UWB communication is its ability to resolve multipath [36, 37] and,
hence, a strong reduction of fading [38, 39]. This allows for reduction of fading margins in the
link power budget and thus allows low-power signal transmissions [24].

(a) Normalized pulse shape in time-domain. (b) Power spectral density.

Figure 1.2: The IEEE 802.15.4a reference pulse. The pulse shape is a root raised-cosine pulse with a pulse
width of Tp = 2 ns and β = 0.6.

In Fig. 2.2 an exemplary UWB pulse is shown. The pulse shape is a root raised-cosine pulse
with a pulse width of Tp = 2 ns and β = 0.6 which resembles the IEEE 802.15.4a reference
pulse [40]. Also the power spectral density (PSD) of such a pulse is shown. It can be seen that
the width of the pulse is 499.2 MHz. It has a center frequency of 3.4944 GHz which represents
the channel 1 specified in IEEE 802.15.4a and complies with the FCC PSD emission limit for
UWB communications [25]. FCC permits a PSD of maximal −41.3 dBm/MHz in the frequency
range between 3.1 GHz and 10.6 GHz and limits the emission in the rest of the spectrum to
−75 dBm/MHz.
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1.3 Noncoherent Ultra-Wideband Receivers

Noncoherent UWB receivers are potentially low-complexity UWB receiver architectures as they,
in contrast to coherent receiver architectures, relinquish the need for complex carrier frequency
and phase recovery. But they are suboptimum as they only exploit the signal envelope.

There are two basic noncoherent receiver classes that perform signal processing in analog and
thus avoid analog-to-digital converters (ADC) with high sampling rate: energy detectors (ED)
and autocorrelation receivers (AcR) [13].

Energy Detector

In Fig. 1.3 a signal flow diagram of an energy detector is depicted. This receiver computes the
energy of a received signal pulse by integrating the instantaneous received signal power over the
symbol period Tsym, which can mathematically expressed for a single transmitted data symbol
d as

y =

∫ Tsym

t=0
(f(t) ∗ c(t) ∗ s(t) + f(t) ∗ n(t))2 dt (1.4)

where s(t) = dϕ(t) is the transmitted signal, ϕ(t) is the bandlimited shape of the transmitted
pulse, c(t) is the time-invariant channel, f(t) is a bandpass filter, and n(t) is noise. The equation
(1.4) can be expanded to

y =

∫ Tsym

t=0
(f(t) ∗ c(t) ∗ s(t))2 dt

︸ ︷︷ ︸

signal-by-signal term

+ 2

∫ Tsym

t=0
(f(t) ∗ c(t) ∗ s(t))× (f(t) ∗ n(t)) dt

︸ ︷︷ ︸

signal-by-noise term

+

∫ Tsym

t=0
(f(t) ∗ n(t))2 dt

︸ ︷︷ ︸

noise-by-noise term

, (1.5)

where the first line is the signal-by-signal term, the second line is the signal-by-noise term, and
the third line is the noise-by-noise term.

c(t)
s(t)

n(t)

f(t) b
∫

Tsym

Tsym
y

Figure 1.3: Signal flow diagram of an energy detector.

Because only the pulse energy is computed in detection, only noncoherent signal modulation
schemes as on-off keying (OOK) or pulse-position modulation (PPM) can be considered, so that
d ∈ {0, 1}. Detection for OOK simplifies to a threshold comparison, hence

d̂ =

{

1 , for y ≥ γ

0 , for y < γ.
(1.6)
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The choice of an appropriate decision threshold γ is based on input noise and signal power
[41]. In comparison to coherent receivers, synchronization simplifies for noncoherent receivers
to determine the start of a symbol period at fractions of the symbol interval instead of fractions
of a pulse duration [42,43].

Autocorrelation Receiver

A different noncoherent architecture is the autocorrelation receiver (see Fig. 1.4). A typical
modulation for AcR is a transmitted reference scheme [44] where for a single symbol two con-
secutive pulses ϕ(t+ τ) and (2d− 1)ϕ(t) are transmitted. The pulse spacing τ is chosen so that
both pulses are aligned by the delay line τ . The autocorrelation in the receiver front-end leads
to an instantaneous phase comparison of the two transmitted pulses [13], which is given as

y =

∫ Tsym

t=0
(f(t) ∗ c(t) ∗ s(t− τ) + f(t) ∗ n(t− τ))× (c(t) ∗ f(t) ∗ s(t) + f(t) ∗ n(t)) dt,

(1.7)

where s(t) = ϕ(t+ τ) + (2d − 1)ϕ(t). For instance, if both pulses have the same phase, that is
for d = 1, the output y of the AcR simplifies to

y =

∫ Tsym

t=0
(c(t) ∗ f(t) ∗ ϕ(t))2 dt+ ν, (1.8)

which resembles a simple energy detection of the pulse shape. The term ν accumulates all
signal-by-noise and noise-by-noise terms. For d = 0, the sign of the second pulse is inverted. For
this case the output y of the AcR is given as

y =

∫ Tsym

t=0
− (c(t) ∗ f(t) ∗ ϕ(t))2 dt+ ν (1.9)

Detection is reduced to a simple sign estimation, hence

d̂ =

{

1 , for y ≥ 0

0 , for y < 0.
(1.10)

Note that no recovery of the absolute carrier phase is needed while the phase information of
the pulses is still exploited. Synchronization complexity is comparable to the synchronization
of energy detectors.

c(t)
s(t)

n(t)

f(t) b

τ

∫

Tsym

Tsym
y

Figure 1.4: Signal flow diagram of an autocorrelation receiver.

The simplicity of noncoherent UWB receivers comes at the cost of reduced robustness in
presence of noise and multipath interference in comparison to coherent UWB receivers. For
instance, to achieve high data rate using an energy detection receiver, a rather hard limit is set
by the excess delay of the multipath channel. Equalization schemes achieve limited gains only
[45].
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Multi-Channel Receivers

An approach for increasing the data rate without the drawbacks of complex coherent MB-
OFDM UWB is noncoherent multi-carrier transmission [46], where an analog front-end is used
to separate the received signal into its subcarriers5.

E.g. [47] presents a noncoherent multi-channel transceiver system based on a 0.35 µm CMOS
technology. The transmitter is able to generate four subcarriers using OOK. The pulse shapes
are obtained by quasi-elliptic microstrip filters [48] and have a bandwidth of 190 MHz. The
signaling has a overall bandwidth of 1.15 GHz with a center frequency of 3.675 GHz. The
subcarriers can be sampled and processed at the receiver with much lower bandwidth; typically
at symbol rate. A fixed implementation of a suitable filter bank results in a very robust high-
rate receiver, but it requires highly selective front-end filters [49]. The authors of [47] suggest
low-temperature co-fired ceramic (LTCC) filters as receiver front-end filters for future revisions
of their transceiver system.

In [50] an approach to optimize the signaling parameters for multi-carrier UWB transmission
is shown by maximizing the channel capacity for given channel parameters (e.g. delay spread6

of the multipath channel) and system constraints (e.g. maximal signaling bandwidth, maximal
number of subcarriers, and duty circle). It was shown that a maximal bit rate of 1.435 Gbit/s
is possible for a multipath channel with a delay spread of 9 ns. The found solution utilizes 16
subcarriers with bandwidths of 464 MHz each and a duty circle of 19.3 %. As can be seen,
this solution exploits the full UWB bandwidth which is designated by FCC. An analysis of how
the channel capacity changes for noncoherent multi-channel UWB receivers due to fading is
presented in [51]. It has been shown that for high signal-to-noise ratio (SNR) scenarios, a high
number of subcarriers is preferable in order to increase the data rate.

In [52] a coexistance-based channel coding for noncoherent multi-channel UWB receivers is
studied. Algorithms based on the nonlinear Teager-Kaiser operator and on the Otsu method
combined with BCH and Reed-Solomon codes were derived. These algorithms show significant
improvement in bit-error rate (BER) in presence of interference while preserving high data rate
communication in comparison to methods which use simple thresholds only.

The impact of narrowband interference on noncoherent multi-channel UWB receivers were
analyzed in [53] and [54]. Interference mitigation methods were derived and it has been shown,
that those methods result in processing gain. Possible options to reduce the impact of narrow-
band interference on the receiver performance are the variation of symbol duration and pulse
shaping. It was also shown, that modified energy detection schemes based on the Teager-Kaiser
operator and high-pass filtering are able to mitigate multiple narrowband interferers, but at the
cost of receiver performance.

The aforementioned studies proof the benefit of noncoherent multi-carrier signaling schemes
for high data rate UWB communication systems. However, a fixed implementation of suitable
highly selective front-end filters of the aforementioned multi-channel receivers lacks any flexibility
concerning the band selection. The flexibility improves with the receiver architecture described
in [55], which performs an autocorrelation operation in the analog front-end and leaves the
band-selection to a digital back-end running at moderately slow symbol rate. This receiver is
discussed in more detail within this thesis.

5 This signaling scheme is also called multi-band impulse radio UWB (MB-IR-UWB).
6 The delay spread is the difference between the time of arrival of the earliest significant and the latest significant

multipath component.
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1 Introduction

1.4 Research Questions and Thesis Outline

The aim of this thesis is to answer following research questions:

How can front-end components of noncoherent multi-channel UWB receivers be

modeled and optimized?

Which impact do realistic front-end components have on the performance of

noncoherent multi-channel UWB receivers?

These two questions were investigated within the NOFDM - Noncoherent Orthogonal Fre-
quency Division Multiplexing project funded by the Autrian Research Promotion Agency (FFG)
under grant 825899. Goal of this project was to develop and evaluate a noncoherent multi-
channel UWB receiver demonstrator.

According to the aforementioned research questions, this thesis is organized as follows: In
Chapter 2 a mathematical framework is derived for generalized noncoherent multi-channel re-
ceivers and a proper noncoherent multi-carrier modulation scheme is introduced. Performance
metrics are defined and the used system simulation framework is described. Additionally three
reference receivers are introduced whose performance metrics will be used for comparison in the
rest of this work.

Chapter 3 analyzes the impact of nonideal front-end components, as front-end filters, multi-
plication devices, or integration devices, on the system performance of the reference receivers.

In Chapter 4, a method for enhanced signal detection is proposed for noncoherent multi-
channel receivers to mitigate undesired nonlinear effects.

A hardware example of an actual, realized noncoherent multi-channel UWB receiver is pre-
sented in Chapter 5. The receiver power-budged and the actually used components devices are
discussed.

Finally, conclusions are drawn in Chapter 6.
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Generalized Noncoherent Ultra-Wideband Receivers

2
The Generalized Noncoherent Multi-Channel

Receiver

This chapter describes a generalized analytical framework for noncoherent multi-channel receiver
systems. Investigating the mathematical framework will lead us to the conclusion that many
different receiver flavors are possible including multi-channel energy detectors and multichannel
autocorrelation receivers. Also a possible signaling scheme will be introduced, namely noncoher-
ent orthogonal frequency-division multiplexing (NOFDM). To ensure high receiver performance,
design rules will be stated for the receiver front-end filters. Finally, some receiver performance
metrics are defined and the used simulation framework is described.
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2 The Generalized Noncoherent Multi-Channel Receiver

2.1 The Noncoherent Multi-Channel Receiver in a Nutshell

Let us assume an inter-symbol-interference (ISI) free scenario. By introduction of a sufficiently
long zero guard interval, our analysis can concentrate on a single transmitted symbol with period
Tsym. Considering a linear orthogonal pulse amplitude modulation (OPAM) signaling scheme
[56] the most generic transmitted signal s(t) can be written as

s(t) =
K∑

k=1

dkφk(t), (2.1)

where φk(t) is the k
th basis of the K-dimensional signal space and dk ∈ R is the kth element of

a K-dimensional symbol vector d. The transmitted signal s(t) gets altered by a communication
channel c(t, τ). This channel is a concatenation of the transmit filter, the actual transmission
channel, and the receiver front-end filter. Assuming that c(t, τ) is time-invariant within the
symbol interval Tsym, the received signal r(t) is given as

r(t) = c(t) ∗ s(t) + n(t), (2.2)

where n(t) is a white Gaussian noise process at the antenna of the receiver.

c(t)
s(t)

n(t)

b

b

b

b

b

r(t)
h1(t)

g1(t)

∫

Tsym

Tsym

y1

h2(t)

g2(t)

∫

Tsym

Tsym

y2

hM (t)

gM (t)

∫

Tsym

Tsym

yM

W
z

Figure 2.1: Signal flow diagram of a Generalized Noncoherenz Multi-Channel Receiver.

In Fig. 2.1 the signal flow diagram is depicted of a generalized noncoherent multi-channel
receiver with M parallel receiver channels. An output sample ym of the mth receiver channel is
given as

ym =

∫ Tsym

λ=0
(hm(t) ∗ r(t))× (gm(t) ∗ r(t)) dt, (2.3)

where m = 1, . . . ,M , hm(t) and gm(t) are linear time-invariant filters called projection filters7.

7 The reason for this nomenclature will come clear in subsequent paragraphs.
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2.1 The Noncoherent Multi-Channel Receiver in a Nutshell

The output of the mth front-end channel can be expanded to

ym =

∫ Tsym

t=0
(hm(t) ∗ c(t) ∗ s(t))× (gm ∗ c(t) ∗ s(t)) dt

︸ ︷︷ ︸

signal-by-signal term

+

∫ Tsym

t=0
(hm(t) ∗ c(t) ∗ s(t))× (gm ∗ n(t)) dt

︸ ︷︷ ︸

signal-by-noise term

+

∫ Tsym

t=0
(hm(t) ∗ n(t))× (gm ∗ c(t) ∗ s(t)) dt

︸ ︷︷ ︸

noise-by-signal term

+

∫ Tsym

t=0
(hm(t) ∗ n(t))× (gm ∗ n(t)) dt

︸ ︷︷ ︸

noise-by-noise term

, (2.4)

where the first line is the desired signal-by-signal term, the second and the third line are undesired
signal-by-noise and noise-by-signal terms, and the fourth line represents the undesired noise-
by-noise term.

Given that we only consider the strictly ISI-free case and that the signal pulse duration
Tp < Tsym, where Tsym is the symbol period, we can expand the integration interval for the
signal-by-signal term to infinity and get

ym =

∫ +∞

t=−∞
(hm(t) ∗ c(t) ∗ s(t))× (gm ∗ c(t) ∗ s(t)) dt+ νm, (2.5)

which represents the correlation of two signals. The additive term νm accumulates all undesired
terms. Due to the fact that the Fourier transform is unitary, and with use of the Parseval
theorem, (2.5) can be rewritten as

ym =
1

2π

∫ +∞

ω=−∞
(Hm(jω)C(jω)S(jω)) × (Gm(jω)C(jω)S(jω)) dt+ νm, (2.6)

which can further be represented as

ym =
1

2π

〈

Hm(jω)G∗
m(jω); |C(jω)S(jω)|2

〉

+ νm, (2.7)

where 〈·; ·〉 is the scalar product operator. In (2.7) the intrinsic functionality of any nonco-
herent multi-channel receiver becomes clear: the power spectral density (PSD) |R(jω)|2 =
|C(jω)S(jω)|2 of the received signal gets projected ontoM different basis functions. The receiver
basis is hence represented by the set {Xm(jω) = Hm(jω)G∗

m(jω)} of its respective projection
filter cross-spectra.
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2 The Generalized Noncoherent Multi-Channel Receiver

When considering a linear signaling scheme (cf. (2.1)), we can further expand (2.7) and obtain
for the mth front-end channel

ym =
1

2π

K∑

k=1

|dk|2
〈

Xm(jω); |C(jω)Φk(jω)|2
〉

︸ ︷︷ ︸

signal co-terms

+
1

2π

K∑

k=1

K∑

l=1
l 6=k

dkd
∗
l

〈

Xm(jω); |C(jω)|2 Φk(jω)Φ
∗
l (jω)

〉

︸ ︷︷ ︸

signal cross-terms

+ νm, (2.8)

where the first line represents the so called signal co-terms, the second line represents the so-
called signal cross-terms.

For easy representation, the output of the M receiver channels can be merged and written in
vector notation as

y = P (d⊙ d∗) +Q
(
d⊗̃d∗

)
+ ν, (2.9)

where ⊙ is the element wise multiplication, ⊗̃ is the reduced Kronecker product where the
squared terms are excluded [33], P is the co-term projection matrix (cf. the signal co-terms in
(2.8)) of size M ×K, Q is the cross-term projection matrix (cf. the signal cross-terms in (2.8))
of size M ×K(K − 1), and ν is a vector which collects all undesired terms.

As we will see in Section 2.2 and Section 2.4, a simple way to obtain the submitted data vector
d from the sample vector y is to use a linear transformation matrix W which inverts P previous
to detection, i.e., WP = IK×K where IK×K is the K × K identity matrix. The so obtained
decision variable z (cf. Fig. 2.1) is, hence, given as

z = Wy (2.10)

= (d⊙ d∗) +WQ
(
d⊗̃d∗

)
+Wν. (2.11)
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2.2 Noncoherent Orthogonal Frequency-Divison Multiplexing

The derivation of the vector representation of the receiver channels gives valuable insight how
the signaling for noncoherent multi-channel receivers needs to look like. As it can be seen in
(2.9), the model unfortunately does not represent a linear system like

y =Ps+ ν (2.12)

which would be preferred for easier signal detection [57]. To obtain such a linear system, the
cross-term projection matrix Q needs to vanish8, i.e.

〈

Xm(jω); |C(jω)|2 Φk(jω)Φ
∗
l (jω)

〉

= 0, (2.13)

for k, l = 1, . . . ,K, and k 6= l. This can be ensured by design of the transmitter signaling. E.g.
if {φk(t)} is separated in frequency domain, that is

Φk(jω)Φ
∗
l (jω) = 0, (2.14)

for ω ∈ R, k, l = 1, . . . ,K, and k 6= l, it will hold independently of the channel response C(jω).
This constraint also ensures orthogonality between all {φk(t)}, which is required by (2.1).

It needs also to be noted that s = (d⊙ d∗). Thus to ensure appropriate and unique symbols
and a bijective mapping from {sk} to {dk}, the elements dk of the symbol vector d need to be

dk ∈ R
+, (2.15)

hence, amplitude-shift keying (ASK) would be a proper modulation. With dk ∈ {0, 1}, so
that {sk} = {dk}, noncoherent modulation schemes as on-off keying (OOK) or pulse position
modulation (PPM) are supported and an inverse mapping from {sk} to {dk} is not needed.
Each data symbol dk might be modulated with a random equiprobable sign ∈ {+,−} to ensure
a zero-mean data vector and thus avoiding spurs in the PSD.

These constraints, the orthogonality and frequency separation of the basis signals {φk(t)},
and the restriction of the symbol vector elements to OOK or PPM, lead to the noncoherent
orthogonal frequency-division multiplexing (NOFDM) modulation scheme [46] defined as

s(t) = ℜ
{

K∑

k=1

dkϕ(t)e
+j(k−K+1

2 )ωscte+jωct

}

, (2.16)

where ℜ{·} resembles the real value operator. This signal consists of K subcarriers with a
frequency spacing of ωsc rad/s, a center frequency of ωc rad/s, and the pulse shape of the
transmitted signal ϕ(t). To ensure frequency separation, the bandwidth Bp of the pulse shape
ϕ(t) needs to be Bp ≤ ωsc. To ensure ISI-free condition, the pulse duration Tp of the pulse shape
ϕ(t) needs to be Tp < Tsym.

In this entire work an NOFDM signal is used with K = 7 subcarriers with a frequency spacing
of 250 MHz and a center frequency of 4 GHz. The used pulse shape ϕ(t) is a root raised-cosine
pulse with a roll-off factor of β = 0.5 which has been truncated at its first zero-crossings next
to the main lobe. The pulse duration is 10.6 ns. An additional minimal zero guard interval is
added to end up with a symbol period of Tsym = 16 ns. Depending on the maximal channel
excess delay of the NLOS multipath components, a longer zero guard interval can be used but
extends the symbol period.

The pulse shape and the PSD of the subcarriers are depicted in Fig. 2.2. Using a proper trans-

8 Note that in practice it is typically not possible to get the cross-terms to vanish, but it is possible to get them
insignificant.
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2 The Generalized Noncoherent Multi-Channel Receiver

mitter filter, the NOFDM signaling complies with the FCC PSD emission limit for UWB commu-
nications [25], which permit a PSD of maximal −41.3 dBm/MHz in the frequency range between
3.1 GHz and 10.6 GHz and limits the emission in the rest of the spectra to −75 dBm/MHz.

In Fig. 2.3 the correlation matrix of the different subcarriers is illustrated. It can be seen
that the pulses are almost orthogonal to each other, with a maximal correlation coefficient of
1.73 · 10−3.

In [58,59] different orthogonal basis signals have been studied, e.g discrete prolate spheroidal
sequences, an orthogonal pulse amplitude modulation scheme based on code-division multiple
access (CDMA) spreading codes, shift-added noise waveforms, and signals obtained by genetic
optimization. It was shown that the NOFDM signaling is superior to all the other studied signals
in terms of system performance metrics (cf. Section 2.5).

(a) Normalized pulse shape ϕ(t) in time-domain. (b) Power spectral density with K = 7 subcarriers.

Figure 2.2: The NOFDM signaling scheme. The pulse shape ϕ(t) is a root raised-cosine pulse truncated at
its first zero-crossing next to the main lobe. The symbol period is 16 ns with a pulse duration of
approximately 10.6 ns. The last 5.4 ns represent a zero guard-interval. The frequency spacing
between the subcarriers is 250 MHz and the center frequency is 4 GHz.The average power of the
signaling is −9 dBm.

Figure 2.3: Correlation matrix of K = 7 NOFDM subcarriers.
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2.3 Design Rules for Ideal Projection Filters

2.3 Design Rules for Ideal Projection Filters

For optimal receiver performance, the receiver projection filters need to be designed to enable
the receiver to detect the transmitted signals as good as possible. Within this section some
design rules will be stated. Let’s begin with a very general and trivial rule:

1. The impulse responses of the projection filters need to be short enough to ensure ISI free
detection, hence the impulse responses need to be shorter than Tsym−Tp−Tmax, accounting
for the maximal channel excess delay Tmax and the pulse duration Tp.

For ISI free transmission we can then consider a single symbol interval [0, Tsym) without loss of
generality. By expanding this symbol period periodically, the sent signal s(t) can be represented
by the Fourier series

s(t) =
+∞∑

i=−∞

sie
jω0it, (2.17)

where ω0 =
2π

Tsym
. The Fourier coefficients si are given as

si =
1

Tsym

∫ Tsym

t=0
s(t)e−jω0itdt (2.18)

=

K∑

k=1

dkϕk,i, (2.19)

where ϕk,i = Φk(jω0i) are the Fourier coefficients of the basis functions defined in (2.1).

The received signal r(t) is (as in (2.2)) given as

r(t) = c(t) ∗ s(t) + n(t),

where c(t) is the transmission channel and n(t) is a band-limited Gaussian noise process with
a flat power density spectrum. Using Fourier series expansion, the received signal r(t) can be
represented in the integration interval Tsym by the Fourier coefficients ri given as

ri = cisi + ni, (2.20)

with ci = C(jω0i) and {ni} being the Fourier coefficients of n(t).

Each receiver channel output

ym =

∫ Tsym

t=0
(hm(t) ∗ r(t))× (gm(t) ∗ r(t)) dt (2.21)
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2 The Generalized Noncoherent Multi-Channel Receiver

is further given (for hm(t) and gm(t) being real valued and using the Fourier series expansion)
as

ym = Tsym

+∞∑

i=−∞

hm,ig
∗
m,icic

∗
i

K∑

k=1

dkd
∗
kϕk,iϕ

∗
k,i

︸ ︷︷ ︸

signal co-terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,icic

∗
i

K∑

k=1

K∑

l=1
l 6=k

dkd
∗
l ϕk,iϕ

∗
l,i

︸ ︷︷ ︸

signal cross-terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,ici

(
K∑

k=1

dkϕk,i

)

n∗i

︸ ︷︷ ︸

signal-by-noise terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,ic

∗
ini

(
K∑

l=1

d∗l ϕ
∗
l,i

)

︸ ︷︷ ︸

noise-by-signal terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,inin

∗
i

︸ ︷︷ ︸

noise-by-noise terms

(2.22)

where hm,i = Hm(jω0i), and gm,i = Gm(jω0i). In Appendix B.1 this and all following steps to
derive the signal-to-interference-and-noise ration (SINR) are illustrated in more detail.

In matrix representation, the mth receiver output can be written as

ym = Tsymg
H
mHmCHCΨ

︸ ︷︷ ︸

=P

(d⊙ d∗)

+ Tsymg
H
mHmCHCΨ̃

︸ ︷︷ ︸

=Q

(
d⊗̃d∗

)
(2.23)

+ Tsymg
H
mHmCNHΦd

+ Tsymg
H
mHmCHNΦ∗d∗

+ Tsymg
H
mHmn′, (2.24)

where the elements of the vectors gm and n′ are given as [gm]i = gm,i and [n′]i = nin
∗
i . The

matrices Hm, C, and N, are diagonal matrices with [Hm]i,i = hm,i, [C]i,i = ci, and [N]i,i = ni.
The elements of the matrices Φ and Ψ are given as [Φ]i,k = ϕk,i and [Ψ]i,k = ϕk,iϕ

∗
k,i. The

columns of Ψ̃ consist of ϕk ⊙ ϕ∗
l for k = 1, . . . ,K, l = 1, . . . ,K, but l 6= k, where the elements

of the vector ϕk are given as [ϕk]i = ϕk,i.
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2.3 Design Rules for Ideal Projection Filters

If defining a projection filter cross-spectra matrix X with [X]i,m = gm,ih
∗
m,i, the receiver

output vector y can be represented as

y = TsymX
HCHCΨ (d⊙ d∗) } =: α

+ TsymX
HCHCΨ̃

(
d⊗̃d∗

) } =: β

+ TsymX
HCNHΦd

+ TsymX
HCHNΦ∗d∗

+ TsymX
Hn′.







=: ν

(2.25)

With W being the pseudo inverse of P = TsymX
HCHCΨ, the decision variable vector z is

given as

z = (d⊙ d∗)

+ TsymWXHCHCΨ̃
(
d⊗̃d∗

)

+ TsymWXHCNHΦd

+ TsymWXHCHNΦ∗d∗

+ TsymWXHn′. (2.26)

In Fig. 2.4 two alternative signal flow diagrams of this equation are depicted. When inspecting
this equation, it becomes clear that maximizing the SINR means in any case that the projection
filters need to feature two properties: 1) they need to maximize the signal power while minimizing
noise and self-interference, and 2) they need to maintain the orthogonality of the transmitted
basis-functions. Maintaining the orthogonality is given by a low condition number9 of P.

Note that instead of finding the best filters hm and gm, the best cross-spectra xm need
to be found. The found cross-spectra xm can be split into the two filters hm and gm after
optimization. Alternatively only one filter, hm or gm, might be synthesized while the second
filter might resemble an allpass filter. It is also possible to synthesize zero-phase cross-spectra
by choosing hm = gm.

2.3.1 Maximization of the Signal-to-Interference-and-Noise Ratio

To derive the SINR, we focus on a single decision variable zk at first. The decision variable zk
is given as

zk = Tsymw
T
kX

HCHCΨ (d⊙ d∗)

+ Tsymw
T
kX

HCHCΨ̃
(
d⊗̃d∗

)

+ Tsymw
T
kX

HCNHΦd

+ Tsymw
T
kX

HCHNΦ∗d∗

+ Tsymw
T
kX

Hn′, (2.27)

where wT
k is the kth row of W. When we consider ideal NOFDM, that is the subcarriers are

not overlapping and, hence, are mutually orthogonal, we know that Ψ̃ = 0. Hence, the SINR of
ideal NOFDM is represented by its SNR.

9 The condition number also gives a measure how sensitive the inverse is to small input errors [60].
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analog ⇐= =⇒ digital

d
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d⊙ d∗

Ψ |C|2

d⊗̃d∗

Ψ̃ |C|2
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b

n′

X W
z
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Figure 2.4: Two equivalent matrix signal flow diagrams of the generalized noncoherent multi-channel re-
ceiver.

We considerW being the pseudo-inverse of P = TsymX
HCHCΨ, so that TsymWXHCHCΨ =

IK×K . A pseudo-inverse is only given for TsymX
HCHCΨ being full rank, i.e. we can formulate

the following rules:

2. The passbands of the projection filter cross-spectra {Xm(jω)} need to be within the signal
bandwidth to ensure P being full rank.

3. The set of the filter cross-spectra {Xm(jω)} needs to be linearly independent to ensure P
being full rank.

Additionally, when considering TsymWXHCHCΨ = IK×K , we find out that

ψ̂′
k := Tsymw

T
kX

H ≈ ψ′H
k

||ψ′
k||2

, (2.28)

where ψ′
k is the kth column of Ψ′ = CHCΨ. As can be seen, wT

kX
H , which is a linear

combination of the cross-spectra {Xm(jω)}, resembles an approximation of the normalized PSD
of the kth basis signal. This means that each term in (2.27) gets projected onto

{
wT

kX
H
}
.

The terms
{
wT

kX
H
}

can be interpreted as the spectra of the inverse. Therefore, we define
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ψ̂′
k = Tsymw

T
kX

H and simplify (2.27) to

zk = ψ̂′H
k Ψ′ (d⊙ d∗) + ψ̂′H

k NHΦ′d+ ψ̂′H
k NΦ′∗d∗ + ψ̂′H

k n′, (2.29)

where Φ′ = CΦ. With ψ̂′H
k Ψ′ (d⊙ d∗) = |dk|2 we obtain

zk = |dk|2
︸︷︷︸

=:αk

+ ψ̂′H
k NHΦ′d+ ψ̂′H

k NΦ′∗d∗ + ψ̂′H
k n′

︸ ︷︷ ︸

=:νk

, (2.30)

where we can see that the signal-by-noise, noise-by-signal, and noise-by-noise terms are projected

onto the detection space spanned by
{

ψ̂′
k

}

.

Note that for an ideal NOFDM signal where the subcarriers are ideally separated in frequency

domain,
ψ′H

k

||ψ′

k
||2
Φ′d =

ψ′H
k

||ψ′

k
||2
dkϕ

′
k, where ϕ

′
k is the kth column of Φ′, we obtain with (2.28)

zk ≈ |dk|2 + dk
ψ′H

k

||ψ′
k||2

NHϕ′
k + d∗k

ψ′H
k

||ψ′
k||2

Nϕ′∗
k +

ψ′H
k

||ψ′
k||2

n′, (2.31)

where ϕ′
k is the kth column of Φ′. In this ideal case the signal-by-noise and noise-by-signal terms

are only dependent on their respective subcarrier ϕ′
k but not on other subcarriers. It can also

be seen that these terms only exist, if the transmitted data symbol dk = 1.

The SNR of the decision vector z for an ideal NOFDM signalling is defined as

SNR =

∑K
k=1 E

{
|dk|4

}

∑K
k=1 E

{
νkν

∗
k

} (2.32)

where the expectation operator E {·} is taken with respect to the noise {ni} and data {dk}.

The conditioned correlation E {νkν∗l |d} is derived in Appendix B.1.2. It is given for non-

overlapping subcarriers, so that ϕ∗
p,iϕq,i = 0 for p 6= q, and

{

ψ̂′
k

}

being mutually orthogonal,

which can be assumed due to (2.28) and {ψ′
k} being mutually orthogonal, as

E {νkν∗l |d} = 2δk−l
σ2n
Tsym

K∑

p=1

|dp|2
+∞∑

i=−∞

|ψ̂′
k,i|2|ϕ′

p,i|2

+
σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

j=−∞

ψ̂′
l,j + δk−l

σ4n
T 2
sym

+∞∑

i=−∞

|ψ̂′
k,i|2. (2.33)

If we further assume that
(

ψ̂′
k ⊙ ψ̂′∗

k

)

is orthogonal to
(
ϕ′

p ⊙ϕ′∗
p

)
for p 6= k, e.g. if ψ̂′

k does not

overlap with ϕp for p 6= k ,we get

E {νkν∗l |d} = 2δk−l
σ2n
Tsym

|dk|2
+∞∑

i=−∞

|ψ̂′
k,i|2|ϕ′

k,i|2

+
σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

i=−∞

ψ̂′
l,i + δk−l

σ4n
T 2
sym

+∞∑

i=−∞

|ψ̂′
k,i|2. (2.34)
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2 The Generalized Noncoherent Multi-Channel Receiver

With ψ̂′
k ≈ ψ′H

k

||ψ′

k
||2 and ideal NOFDM signaling we can approximate ψ̂′

k as in (2.28) and, obtain

E {νkν∗l |d} ≈ 2δk−l
σ2n
Tsym

|dk|2
∑+∞

i=−∞ |ϕ′
k,i|6

||ψ′
k||4

+
σ4n
T 2
sym

||ϕ′
k||2

||ψ′
k||2

||ϕ′
l||2

||ψ′
l||2

+ δk−l
σ4n
T 2
sym

1

||ψ′
k||2

. (2.35)

The first lines in (2.33) – (2.35) represent the signal-by-noise and noise-by-signal terms. The
second lines represent the noise-by-noise terms. Note that the first terms in the second line of
(2.33) – (2.35) resemble the product of means E {νk|d}E {ν∗l |d}. Using PPM, this product of
means can be mitigated [13].

In (2.33) it can be seen that E {νkν∗l |d} depends on all data {dp} whose respective subcarriers

ϕ′
p overlap with ψ̂k. In (2.34) and (2.35), where the subcarriers do not overlap with ψ̂k, it can

be seen that E {νkν∗l |d} only depends on the data dk. I.e. if dk is equal to zero, the signal-by-
noise and noise-by-signal terms do not contribute to the conditioned correlation. It also can bee
seen in (2.33) and (2.34) that selective cross-spectra result in less noise. It becomes clear that
maximizing the SNR means also to minimize the overlap of the spectra of the inverse wT

kX
H

with subcarriers where p 6= k. This translates into the following design rule:

4. The spectrum of the inverse wT
kX

H of the kth subcarrier, which is a linear combination of
the projection filter cross-spectra {Xm(jω)}, should not overlap with other subcarriers.

For an ideal front-end as in (2.35), it can bee seen that the SNR does not depend on the
projection filter X. But it can be seen that the SNR depends on the channel, due to ||ψ′

k||2 =
∑+∞

i=−∞ |ϕk,i|4|ci|4 and ||ϕ′
k||2 =

∑+∞
i=−∞ |ϕk,i|2|ci|2.

2.3.2 Conservation of Orthogonality

For OOK or PPM signals, where dk ∈ {0, 1}, the detection variable z can be represented as

z = WPd+WQ
(
d⊗̃d

)
+Wν. (2.36)

Let us assume that the chosen signaling causes the elements of Q to become insignificant. We
know that W needs to resemble an inverse operator to P, hence

W =P†, (2.37)

where P† =
(
PHP

)−1
PH represents the Moore-Penrose pseudo inverse [33] of P.

Matrix inversion of P is only possible for M ≥ K, so that the rank of the matrix P is K. As
aforementioned (cf. Rule 3.), the set of the filter cross-spectra {Xm(jω)} needs to be linearly
independent.

To ensure conservation of orthogonality due to P, we require that the condition number of P
converges to unity as close as possible [61], that is

cond {P} =
σmax

σmin
≈ 1, (2.38)

where σmax and σmin are the maximal and minimal singular values of P, respectively.
In the ideal case, the matrixP fulfills cond {P} = 1. IfP fulfills cond {P} = 1 and is quadratic,

P is called unitary and does hence have orthonormal column vectors10 [61]. For a case where P

10 For sake of simplicity we assume that the singular values {σi} of P are σi = 1 for i = 1, . . . ,K.

– 20 –



2.3 Design Rules for Ideal Projection Filters

is rectangular, that is M > K, and cond {P} = 1 is fulfilled, P will have orthonormal column
vectors too and will be called quasi-unitary, so that

PHP = IK×K, (2.39)

where PH is the conjugate transpose of P, and IK×K is the identity matrix of dimension K. (A
proof for the relationship between a quasi-unitary matrix and its condition number is given in
Appendix B.2.)

The projection filter cross-spectra Xm(jω) needs to be designed so that the elements of the
matrix P, given as

[P]m,k =
〈

Xm(jω); |C(jω)|2 |Φk(jω)|2
〉

, (2.40)

do result in a quasi-unitary matrix, at least for a flat channel assumption, where |C(jω)|2 is
constant within the signal bandwidth. For this, we can see the following:

5. The elements of P need to be real valued, hence the impulse responses hm(jω) and gm(jω)
need to be real valued. A proof is given in Appendix B.3.

6. The columns of P must be orthogonal to each other to fulfill the quasi-unitarity constraint.
The projection filters need to have the same energy and their cross-spectra {Xm(jω)} need
to be mutually orthogonal, so that

〈Xm(jω);Xn(jω)〉 = δm−n, (2.41)

for all m,n = 1, · · · ,M , where δi represents the Kronecker delta. A proof is given in
Appendix B.4.

7. The spectra of the basis signals |Φk(jω)|2 must be mutually orthogonal in the space
spanned by the set of the projection filter cross-spectra {Xm(jω)}. A proof is given
in Appendix B.4.

The stated constraints on designing the projection filters are not tight, so many different
noncoherent multi-channel receiver versions are possible. A selection of different receiver flavors
is shown in Section 2.6.

– 21 –



2 The Generalized Noncoherent Multi-Channel Receiver

2.4 ZF and MMSE Linear Detection

To understand how a noncoherent multi-channel receiver is performing its operation, a singular
value decomposition (SVD) [62] can be used. Applying SVD, the quasi-unitary co-term matrix
P can be expressed as

P =UΣVH , (2.42)

where U and V are M -dimensional and K-dimensional unitary matrices, respectively, and Σ is
an M ×K rectangular diagonal matrix with the singular values of P as diagonal elements. For
M ≥ K and P to be quasi-unitary, the singular value matrix Σ needs to fulfill

Σ =

[
IK×K

0M−K×K

]

, (2.43)

where 0M−K×K is the zero matrix withM−K rows and K columns. Further, using the matrices
obtained using SVD, P can be represented equivalently as

P =
[

UM×KV
H ,B

]

ΣIK×K, (2.44)

where UM×K consists of the first K columns of the matrix U, and B is a size M ×M − K
matrix which consists of anyM−K orthonormal basis column vectors which extend the space11

spanned by the orthonormal basis column vectors of UM×KV
H . The equation (2.44) represents

and alternative SVD of P, where
[

UM×KV
H ,B

]

and IK×K are its unitary matrices and Σ is

the M ×K matrix with the singular values of P in its diagonal.
This SVD representation of P in (2.44) explains the very functionality of noncoherent multi-

channel receivers, namely to perform a rotation of the K-dimensional symbol vector d in an
M -dimensional space (with constraint that M ≥ K). Inversion of P can be done by the receiver
post processing matrix W, which is given, due to (2.44), as

W =IK×KΣH
[

UM×KV
H ,B

]H
(2.45)

or equivalently

W =PH , (2.46)

which resembles a back-rotation of the sample vector y, and downsampling into the space of the
symbol vector d.

2.4.1 ZF Linear Detection

As aforementioned, PHP = IK×K holds only for quasi-unitary matrices, while

W =
(
PHP

)−1
PH (2.47)

holds for the general case when M ≥ K.

11 In other words: the column vectors of B span the nullspace.
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2.4 ZF and MMSE Linear Detection

The matrix W resembles, besides to the Moore-Penrose pseudo inverse, the so called zero-
forcing (ZF) linear detector [56] which choosesW to eliminate interference completely, regardless
of noise enhancement12 which might occur. The matrix W is also the unique solution to the
least-square error problem argmind ||y −Pd||2 for y = Pd+ n.

2.4.2 MMSE Linear Detection

An alternative to the ZF detector is the minimum-mean-squared-error (MMSE) linear detector
[56] which chooses W so that the MSE problem MSE = argmind E

{
(||y −Pd||2)

}
gets mini-

mized for y = Pd+n. The MMSE detector achieves an optimum balance of noise enhancement
and interference suppression with W which is obtained as

W =
(
PHP+ σ2nIK×K

)−1
PH (2.48)

for d being uncorrelated with unit energy [56].

2.4.3 Estimation of the Co-Term Matrix

When transmitting an arbitrary sequence T, where T is a size K × L matrix with L being the
number of sent symbols, the receiver front-end output sequence Y for an ISI-free scenario is
given as

Y = PT+QT̄+N, (2.49)

where N is the noise sequence, and the columns {t̄k} of T̄ are given as t̄k = tk⊗̃tk. To apply
a ZF or MMSE linear detector, the co-term matrix P needs to be known. To estimate P,
the sequence T can be used if known a priory. The co-term matrix P can be obtained in a
least-square sense as

P̂ = YT† (2.50)

= P+QT̄T† +NT†. (2.51)

When choosing T = IK×K, the errors caused by the cross-term matrix vanish since ek⊗̃ek = 0
and hence T̄ = 0. The estimated co-term matrix P̂ then simplifies to

P̂ = P+N. (2.52)

2.4.4 Detection of OOK and Binary PPM Symbols

To detect OOK symbols, the elements of the decision variable vector z need to be compared to
a threshold γ. The threshold γ needs to be chosen to minimize the detection error [13]. The
detection rule is hence given as

[

d̂
]

k
=

{

1 , for [z]k ≥ γ

0 , for [z]k < γ,
(2.53)

for k = 1, . . . ,K.

12 This is related to the condition number of P.
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2 The Generalized Noncoherent Multi-Channel Receiver

In binary PPM (BPPM), two consecutive symbol vectors d0 and d1 are transmitted for a
single data vector d, where d1 is the binary compliment of d0, hence d1 = 1−d0. The detection
rule is therefore given as

[

d̂
]

k
=

{

1 , for [z0]k − [z1]k ≥ 0

0 , for [z0]k − [z1]k < 0,
(2.54)

for k = 1, . . . ,K. As can be seen, there is no need of choosing a threshold γ.
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2.5 Performance Metrics and the System Simulation Framework

To compare such noncoherent multi-channel receiver architectures and the influence of system
components as realistic projection filters, multiplication devices or integration filters, various
performance metrics need to be considered. In this section standard metrics are defined which
are used in this entire work. In addition the system simulation framework and the system
simulation parameters are defined.

2.5.1 Definition of Performance Metrics

The most important metric is the bit-error rate (BER) which shows the ability for the basic
objective of receivers: the detection of data bits with as little errors as possible. Related to the
BER are signal power metrics as the signal-to-interference-and-noise ratio (SINR), the signal-
to-noise ratio (SNR), and the signal-to-interference ratio (SIR).

SINR

The SINR shows the performance of the receiver to mitigate signal cross-term interference and
noise and is defined as (cf. Section 2.3 and Appendix B.1)

SINR =
tr
{
WE

{
ααH

}
WH

}

tr {W (E {ββH}+ E {νβH}+ E {βνH}+ E {ννH})WH} . (2.55)

SIR

The SIR shows the performance of the receiver to mitigate signal cross-term interference and is
defined as

SIR =
tr
{
WE

{
ααH

}
WH

}

tr {WE {ββH}WH} . (2.56)

SNR

The SNR shows the performance of the receiver to minimize noise terms and is defined as

SNR =
tr
{
WE

{
ααH

}
WH

}

tr {WE {ννH}WH} . (2.57)

2.5.2 System Simulation Framework

The receiver system simulation framework supports time domain simulations and does consist
of a set of MATLAB scripts, functions, and objects. The framework was designed to support
object-oriented simulation of receiver devices and designs. This has the advantage that a device,
e.g. a specific integrator realization, can be derived from a super-class so that it shares the
same properties and methods interface13. Hence the different realizations of those devices are
interchangeable without any effort, which makes the whole framework very flexible.

13 In object-oriented programming the characteristic to derive a class from a super-class and hence sharing the
same properties and methods is called inheritance. The characteristic that the call of the same method of a
super-class or its derived class executing different code commands is called polymorphism [63].
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2 The Generalized Noncoherent Multi-Channel Receiver

In Fig. 2.5 the signal flow diagram of the simulation framework is depicted to obtain system
metrics as BER, SINR, SNR, and SIR. The sampling rate Rs has been set to Rs = 16 GHz to
be able to model the most important nonlinearities. Due to the nonlinear multiplication device
a baseband simulation is not feasible without high effort. The simulation framework has proven
to give results within adequate runtime.

The signaling scheme was chosen to be an NOFDM scheme (see Tab. 2.1) with K = 7
subcarriers which is generated by an NOFDM signal generator (SG). The pulse shape is a root-
raised-cosine pulse with β = 0.5 which is truncated at its first zero-crossings next to its main
lobe. The pulse duration is 10.6 ns. The symbol period was chosen to be Tsym = 16 ns, hence
includes a zero-guard interval of 5.4 ns. The pulse energies were normalized to 1 Joule. The
subcarrier spacing is 250 MHz with a center frequency of 4 GHz. For the simulation the signal is
generated in baseband and then upconverted. Binary PPM was chosen for easier demodulation.
The data stream has a length of 1000 symbols per UWB channel instantiation, therefore the data
payload is 7000 bits. To ensure separability of signal co- and cross-terms, the signal generator
generates distinct signal sequences per subcarrier.

Table 2.1: NOFDM signal scheme parameter.

Parameter Name Parameter Value

Number of subcarriers K 7

Symbol period Tsym 16 ns

Subcarrier spacing ωsc

2π 250 MHz

Center frequency ωc

2π 4 GHz

Pulse shape ϕ(t)
root-raised-cosine pulse, truncated at
first zero-crossings next to main lobe,
β = 0.5

Pulse duration Tp 10.6 ns

Zero-guard interval 5.4 ns

Modulation Binary pulse position (BPPM)

The UWB channel c [k] is modeled for short-range indoor communication (see Tab. 2.2). It
has an RMS delay spread of 2 ns, a Ricean K-factor of 4, a Nakagami factor of the multipath
components of 2, and an average number of multipath components of 5 per ns (cf. Appendix A
and [64]). The simulations were in general performed over 100 UWB channel instantiations.

Table 2.2: UWB channel parameters.

Parameter Name Parameter Value

RMS delay spread τrms 2 ns

Ricean K-factor KLOS 4

Nakagami m-factor mNakagami 2

Average number of
multipath compo-
nents

λ 5 ns−1

The noise generator (NG) generates a complex additive white Gaussian noise (AWGN) process
with noise power spectral density of N0/2.

After filtering with a root-raised-cosine front-end filter f [k] with β = 0.2 and a pulse width of
462.32 ps the subcarrier signals and the noise get up-converted to a center frequency of 4 GHz.

From here on the simulation is split into three parallel signal paths: the first signal path
processes the subcarrier signals independently; the second signal path processes the summed
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2.5 Performance Metrics and the System Simulation Framework

subcarrier signals, hence the changes in the signal co- and cross-terms can be studied; the third
signal path processes the summed subcarrier signals with the added noise so that the changes
of all signal co- and cross-terms, signal-by-noise, noise-by-signal, and noise-by-noise terms can
be studied.

In each signal path the associated signal gets filtered by 2M projection filters {hm[k]} and
{gm[k]}, respectively, to obtain the signals for the M receiver channels.

For a realistic modeling of hardware multiplication devices the signals need to be conditioned
by the gains g1 and g2 to match the desired input range of the given multiplier model.

After the multiplication device, the subcarrier signals get summed so that in each channel the
signal co-term is obtained.

After the multiplication operation, the signals get integrated over the symbol period Tsym and
down-sampled with a factor of RsTsym to obtain the receiver output vector sequence.

The standard method of determining the co-term matrix P is done using a training sequence
where each subcarrier gets switched on sequentially. The equalizer matrix W is computed using
MMSE optimization (cf. Section 2.4.2). The received output vector sequence gets multiplied
with the equalizer matrix W.

To obtain estimates of the BER a decision device (DD) decides on the transmitted symbols
(cf. Section 2.4.4). The estimated symbols are compared to the sent ones. For each error an
error counter gets increased.

To obtain an estimate of SINR, SNR, and SIR the output signals of the system simulation,
which are a co-terms-only signal, a co-terms-plus-cross-terms signal, and a complete signal with
co, cross, and noise terms, need to be linearly combined (see Fig. 2.5) to obtain a cross-terms
only for the SIR estimator, noise-terms only signal for the SNR estimator, and a cross-terms-
plus-noise-term signal for the SINR estimator.
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2.6 A Variety of Noncoherent Multi-Channel Receivers

In this section three examples of noncoherent multi-channel receivers with ideal projection filters
are presented and compared. These receivers act as reference receivers for the rest of the work.

2.6.1 Multi-Channel Energy Detector

A possible receiver system is the multi-channel energy detector (MC-ED) for NOFDM signaling
[46,49], which utilizes projection filters given as

Xm(jω) = Πm(jω), (2.58)

where {Πm(jω)} represent ideal rectangular passband filters. The filter cross-spectra {Πm(jω)}
are depicted in Fig. 2.7(a) and Fig. 2.7(b). It can be seen that they let pass the ideal mth

subcarrier band, from ωc + ωsc

(
m− K+2

2

)
≤ |ω| < ωc + ωsc

(
m− K

2

)
. So only K receiver

channels are needed. This receiver computes for each receiver channel the energy within the
respective ideal subcarrier bands. The signal flow diagram of the MC-ED is depicted in Fig. 2.6.
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Figure 2.6: Signal flow diagram of the Multi-Channel Energy Detector.

In Fig. 2.7(c), the correlation matrix of the projection filter cross-spectra is depicted. It can be
seen that the filters are orthogonal to each other, as expected. In Fig. 2.7(d) the co-term matrix
P using the NOFDM signaling is depicted. It can be seen that P does have a dominant main
diagonal but non-zero elements otherwise to the main diagonal due to the overlapping subcarrier
spectra. Nevertheless, P is almost orthogonal with a condition number of cond {P} = 1.0187

In Fig. 2.7(e), the spectra of the inverse
{
wT

kX
H
}
are depicted. It can be seen that the spectra

let pass the subcarriers within the ideal rectangular passbands. In Fig. 2.7(f) the detection
correlation matrix WXHΨ is shown. The detection correlation matrix is an estimation of the
identity matrix IK×K. It can be seen that due to the condition number of P, of approximately
one, the estimate is not perfect but does show some minor content with a maximum of 1.79·10−2

in the non-main diagonals.
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2 The Generalized Noncoherent Multi-Channel Receiver

(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure 2.7: Projection filter cross-spectra, correlation matrix, signal co-term matrix P (cond {P} = 1.0187),
and spectra of the inverse of the MC-ED projection for M = 7 channels.
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2.6.2 Multi-Channel Matched-Filter Energy Detector

An additional example is the generic optimum noncoherent receiver which consists of projec-
tion filters matched to the transmitted waveforms [65]. The projection filters are depicted in
Fig. 2.9(a) and Fig. 2.9(b) and given as

Xm(jω) = |Φm(jω)|2 . (2.59)

Each projection filter is chosen that its cross-spectra resembles the PSD of a given subcarrier,
hence again only K front-end channels are needed. Each receiver channel, depicted in Fig. 2.8,
computes the correlation between the PSD of the received signal with templates of the PSD
of the transmitted subcarriers. Therefore, this receiver architecture shows similarities to the
ideal matched filter receiver [66] in frequency domain. The big difference to the ideal matched
filter receiver is, that the received noise vector ν consists of signal-by-noise, noise-by-signal, and
noise-by-noise terms instead of simple AWGN noise samples.
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Figure 2.8: Signal flow diagram of the Multi-Channel Matched Filter Receiver.

In Fig. 2.9(c), the correlation matrix of the projection filter cross-spectra is shown. It can
be seen that the projection filter cross-spectra are almost orthogonal to each other. However,
the maximal cross-correlation coefficient is 1.62 · 10−3. In Fig. 2.9(d) the co-term matrix P is
depicted. Like for the MC-ED, P is not exactly orthogonal and has a the condition number of
cond {P} = 1.0175 due to the overlapping subcarrier spectra.

In Fig. 2.9(e), the spectra of the inverse
{
wT

kX
H
}
are shown. It can be seen that the spectra

resembles the spectrum of the respective subcarriers. In Fig. 2.9(f) the detection correlation
matrix WXHΨ for the MC-MFED is shown. A maximal non-main diagonal element has a
value of 1.20 · 10−2.
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(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure 2.9: Projection filter cross-spetrca, correlation matrices, signal co-term matrix P (cond {P} =
1.0175), and spectra of the inverse of the MC-MFED for M = 7 channels.

– 32 –



2.6 A Variety of Noncoherent Multi-Channel Receivers

2.6.3 Multi-Channel Autocorrelation Receivers

A completely different receiver concept is the multi-channel autocorrelation receiver (MC-AcR)
[55]. This receiver was also chosen to act as hardware example (see Chapter 5). The receiver
architecture and the projection filters are depicted in Fig. 2.10, Fig. 2.11(a), and Fig. 2.11(b),
respectively. The cross-spectra of the MC-AcR are given as

Xm(jω) = e−jτmω, (2.60)

which defines filters to perform different delays {τm} to compute M samples of the short-time
estimate of the autocorrelation function of the received signal r(t). This has the advantage that
the receiver can operate in any defined UWB band without changes to the receiver hardware.
This is not true for MC-ED and MC-MFED due to the fact, that the exact subcarrier frequencies
and bands are fixed a-priori. For illustration the delays of the MC-AcR are chosen to be
τ1 = 0.25 ns, τ2 = 0.75 ns, τ3 = 1.25 ns, τ4 = 1.75 ns, τ5 = τ1−∆τ , τ6 = τ2 −∆τ , τ7 = τ3−∆τ ,
and τ8 = τ4 − ∆τ , with ∆τ = 2π

4ωc
= 62.5 ps. The first four delays are used to compute

the autocorrelation of the the in-phase (I) components and the last four delays compute the
autocorrelation of the quadrature-phase (Q) components of the received signal. The spacing
between delays of the in-phase and quadratur-phase components is given as 0.5 ns ≈ 1

KBp
.
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Figure 2.10: Signal flow diagram of the Multi-Channel Autocorrelation Receiver.

In Fig. 2.11(c), the correlation matrix of the projection filter cross-spectra is depicted. It can
be seen that the cross-spectra are orthogonal to each other. In Fig. 2.11(d) the co-term matrix
P is shown. The condition number of cond {P} = 1.1519, which implies that P is a matrix with
almost orthogonal columns.

In Fig. 2.11(e) the spectra of the inverse
{
wT

kX
H
}
are depicted. It can be seen that those

spectra try to approximate the PSD of the subcarriers, as explained in Section 2.3. I.e., the
subcarriers get separated by the passbands of the spectra of the inverse, but the passbands
do overlap and many out-of-band content is let pass. These effects influence the receiver per-
formance, as will be shown in Section 2.6.4. In Fig. 2.11(f) the detection correlation matrix
WXHΨ for the MC-AcR is depicted. A maximal non-main diagonal element has a value of
6.60 · 10−3.
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2 The Generalized Noncoherent Multi-Channel Receiver

(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure 2.11: Projection filter cross-spectra, correlation matrices, signal co-term matrix P (cond {P} =
1.1519), and spectra of the inverse of the MC-AcR for M = 8 channels.
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2.6 A Variety of Noncoherent Multi-Channel Receivers

2.6.4 Performance Metrics of Reference Receivers

Note that all three presented receivers have in common that their co-term matrix P does have a
condition number close to one. In Fig. 2.12 the BER, SINR, SNR, and SIR of the MC-AcR, the
MC-ED, and the MC-MFED are depicted. It can be seen that the MC-MFED has the highest
SIR due to the fact that the projection filters are equivalent to the orthogonal subcarrier pulses.
It can also be seen that the MC-MFED has the highest SNR up to 19 dB of Eb/N0. From
Eb/N0 = 19 dB the MC-ED does outperform all the other receiver architectures. This can also
be seen in the BER where the MC-ED shows the best performance. This can be explained
due to the fact that the MC-ED does mitigate the most noise per receiver channel due to its
selective ideal rectangular bandpass filters. The MC-AcR has the worst BER performance in
comparison to the other two receiver architectures. This can be explained due to the spectra
of the inverse which overlaps with other subcarriers and let pass noise which is outside the
respective subcarrier spectra.

(a) SINR (b) BER

(c) SNR (d) SIR

Figure 2.12: SINR, SNR, SIR, and BER of the MC-AcR, the MC-ED, and the MC-MFED.
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2.7 Summary

This Chapter introduced a mathematical framework for generalized noncoherent multi-channel
receivers with linear OPAM signaling. It has been shown, that the received signal r(t) gets
projected onto a basis defined by projection filter cross-spectra {Xm(jω) = Hm(jω)G∗

m(jω)},
where Hm(jω) and Gm(jω) represent the front-end filters of the mth receiver channel which
are thus called projection filters. This means for system optimization, that it is sufficient to
obtain an optimal set of cross-spectra {Xm(jω)}. Each Xm(jω) may be decomposed into the
combination of two separate projection filters or into the combination of one projection filter
and one allpass filter. With this method even zero-phase cross-spectra are possible.

A signaling scheme for noncoherent multi-channel receivers was introduced. This signaling
consists of non-overlapping subcarriers which are modulated using on-off keying or pulse position
modulation.

Also some rules to obtain cross-spectra have been defined to ensure optimal receiver perfor-
mance. It has been shown that linear combinations of these cross-spectra need to approximate
the spectra of the transmitted subcarriers to separate the data. It also has been shown that the
orthogonality of the signaling is conserved with low condition number of the co-term matrix P.

A simulation framework with the simulation parameters has been presented. The simulation
framework supports the time domain evaluation of receiver performance metrics as BER, SINR,
SIR and SNR.

Finally, the MC-ED, MC-MFED, and the MC-AcR have been introduced as reference re-
ceivers. It has been shown that all three concepts have ideal projection filters. However, they
show different receiver performance which can be explained by their different capability of ap-
proximating the spectra of the subcarriers.
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Generalized Noncoherent Ultra-Wideband Receivers

3
Analysis of Realistic Front-End Components

The analog front-end of a noncoherent multi-channel receiver consists of several receiver channels
which only differ in their projection filters. Additionally to the projection filters, each channel
utilizes an analog multiplier and an integration filter. In this chapter the impact on the receiver
performances of those realistic front-end components is shown and discussed.

Parts of this Section have been published as

• A. Pedross-Engel, H. Schumacher, and K. Witrisal, “Modeling and identification of ultra-
wideband analog multipliers,” IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, submitted.

• A. Pedross and K. Witrisal, “Analysis of nonideal multipliers for multichannel autocorre-
lation UWB receivers,” in 2012 IEEE International Conference on Ultra-Wideband, Sept.
2012, pp. 140 – 144.

• A. Pedross and K. Witrisal, “Sliding window integrator approximations for multichannel
autocorrelation UWB receivers,” in 2012 IEEE International Symposium on Circuits and
Systems, May 2012, pp. 2537 – 2540.
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3 Analysis of Realistic Front-End Components

3.1 Realistic Projection Filters using Meta-Heuristic Optimization

This section studies the design of optimal projection filters using global optimization algorithms
with a multi-objective cost-function and the impact of the obtained filters on the receiver per-
formance. Main filter design goals are to find filters which do increase the receiver performance
as much as possible while still being easy synthesizeable in real hardware. Hence filters with low
filter order are preferred and studied. For sake of simplicity only discrete-time infinite impulse
response (IIR) filters are considered, due to the fact that equivalent continuous-time filters can
be found easily [67,68].

3.1.1 Cost-Function for Optimal Projection Filter Designs

Typically, filters are specified in the frequency domain. Consequently, most filter design methods
employ a cost-function derived from meeting different filter specifications in frequency domain
as cut-off frequency, passband and stopband attenuation. For the design of the projection filters
there are no frequency domain specifications given but several design rules (cf. Section 2.3). A
possible way to obtain filters which comply with those rules is the use of meta-heuristic global
optimization algorithms [69]. There are several optimization algorithms available. Especially
the use of population-based computation algorithms such as particle swarm optimisation [70],
genetic algorithms [71–73], the seeker optimization algorithm [74], and differential evolution
[75–78] is common. Irrespective of the method employed, many different objectives for the filter
design process are possible [79].

A Particle Swarm Optimization (PSO) algorithm with multi-objective cost-functions was cho-
sen to find optimal projection filters. Subsequently a Hill Climbing (HC) algorithm was used to
refine the solution found by the PSO. The used parameters are listed in Tab. 3.1 and Tab. 3.2.
A detailed description of both algorithms is given in Appendix C.

The Multi-Objective Cost-Function

The multi-objective cost-function J (Φ) consists of a weighted sum of partial cost-functions,
hence

J (Φ) = w1Jcond (Φ) + w2JSINR (Φ) + w3Jp (Φ) + w4Jz (Φ) + w5JT (Φ) + w6JG (Φ) ,
(3.1)

where {wi} are the weights of the partial cost-functions and Φ is a parameter vector which
consists of the filter coefficients of all 2M projection filters. The PSO tries to find the best
solution Φ0 which results in the lowest possible cost. The cost-function and the partial cost-
functions are designed to obtain costs ≥ 0 only. In the following, the partial cost-functions are
discussed.

Minimal Co-Term Matrix Condition Number

The main objective of the PSO is to find those set of realistic projection filters which result in
a co-term matrix P with lowest possible condition number. The partial cost-function Jcond (Φ)
is given as

Jcond (Φ) = cond {P(Φ)} − 1, (3.2)

where P is a function of the discrete-time projection filters cross-spectra
{
Xm

(
ejΩ
)}

which are
parametrized by Φ.
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Table 3.1: PSO algorithm parameters.

Parameter Name Parameter Value

Number of iterations ITERATIONS 150

Number of particle SWARMSIZE 109

Number of informants per particle INFORMANTS 6

Ratio to conserve original velocity ALPHA 0.8

Velocity ratio to particles personal
best solution

BETA 0.1

Velocity ratio to particles informants
best solution

GAMMA 0.1

Velocity ratio to the overall best solu-
tion

DELTA 0

Speed gain EPSILON 1

SINR offset γSINR 100

Impulse response drop γT 0.1

Weight for Jcond (Φ) w1 103

Weight for JSINR (Φ) w2 103

Weight for Jp (Φ) w3 1

Weight for Jz (Φ) w4 1

Weight for JT (Φ) w5 1

Weight for JG (Φ) w6 1

Table 3.2: HC algorithm parameters.

Parameter Name Parameter Value

Number of iterations ITERATIONS 5000

Number of gradient samples SAMPLES 500

std. deviation of gradient sampling SIGMA 0.01

Maximal SINR

This objective tries to find projection filters which maximize the SINR. As the PSO searches for
a minimal cost, JSINR (Φ) is therefore given as

JSINR (Φ) = γSINR − 10log10SINR (Φ) , (3.3)

where γSINR > 0 is an offset which prohibits negative costs. The SINR is compute as given in
Appendix B.1 where the filter frequency responses are parametrized by Φ.

Ensure Filter Stability

To ensure an optimal solution with stable filters, Jp (Φ) adds a penalty for any pole of
{
Xm

(
ejΩ
)}

which is outside the unit circle. The penalty for each pole pn is given as its distance from the
unit circle, hence

Jp (Φ) =

Np∑

n=1

dp (pn) , (3.4)
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where

dp (pn) =

{

|pn| − 1 , for |pn| > 1

0 , for |pn| ≤ 1,
(3.5)

and Np is the number of all poles given by Φ.

Ensure Minimum-Phase Filters

The objective of this partial cost-function is to ensure minimum-phase projection filters. This
cost-function adds a penalty for any zero of

{
Xm

(
ejΩ
)}

which is outside the unit circle. The
penalty for each zero zn is given as its distance from the unit circle, hence

Jz (Φ) =

Nz∑

n=1

dz (zn) , (3.6)

where

dz (pn) =

{

|zn| − 1 , for |zn| > 1

0 , for |zn| ≤ 1,
(3.7)

and Nz is the number of all zeros given by Φ.

Minimum Time Dispersion

To ensure ISI free detection it is necessary that the projection filter do have as little contribution
to time dispersion as possible. The objective of this cost-function is to obtain projection filter
impulse responses which do contribute as little as possible to time dispersion. To measure this
contribution the pulse duration until the impulse responses drop to a certain percentage γT of
their maximum absolute value which exceeds Tsym − Tp is taken. The cost-function JT (Φ) is
hence given as

JT (Φ) =

M∑

m=1

dT(xm[k]) (3.8)

where

dT(hm[k]) =







argmin
τ

{∣
∣
∣
∣

xm[τ ]

maxk {xm[k]}

∣
∣
∣
∣
− γT

}

− (Tsym − Tp) , for τ > Tsym − Tp

0 , for τ ≤ Tsym − Tp,

(3.9)

where xm[k] is the impulse response of Xm

(
ejΩ
)
. If there exists for a filter more than one

solution to (3.9), the solution with the maximal delay dT (·) is taken as partial cost. Note that
if we restrict the pulse width of xm[k] = hm[k] ∗ gm[−k] also the pulse width of gm[k] and hm[k]
are restricted.

Normalized Gain

The objective of this partial cost-function is to obtain filters with unit gain at the passbands.
This cost-function adds penalties for deviation of a maximum gain of 0 dB. Therefore, JG (Φ)
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is defined as

JG (Φ) =

M∑

m=1

∣
∣
∣
∣
max
Ω

{
20 log10

∣
∣Xm(ejΩ)

∣
∣
}
∣
∣
∣
∣
. (3.10)

3.1.2 Analysis and System Simulation

The projection filter optimization was done for 2nd, 4th, and 6th order of projection filter cross-
spectra. In Fig. 3.1 the evolution of their respective cost-functions using the PSO (from iteration
1 to iteration 300) and HC (from iteration 301 to 5300) is depicted. It can be seen that the
algorithms converge and have, hence, found possible filter candidates. In Appendix D.1 for two
alternative results of 2nd order projection filter cross-spectra can be found for comparison.

Figure 3.1: Cost of best found filter per iteration of different order of projection filter cross-spectra for a
M = 8 channel receiver.

In Figs. 3.2 – 3.4 the projection filter cross-spectra, the cross-spectra correlation matrices, the
co-term matrix P, the spectra of the inverse

{
wT

kX
H
}
, and the detection correlation matrices of

the found solutions are depicted. It can be seen that most of the filters do have their maximum
within the signal bandwidth with a maximal gain of one. The correlation between the cross-
spectra of the different found solutions show a maximal cross-correlation between 7.85 ·10−1 and
9.24 · 10−1. Therefore, the cross-spectra are not ideal orthogonal but linearly independent. The
obtained filter solutions do have a low condition number of P between 19.35 and 25.54. It can
also be seen, that the spectra of the inverse

{
wT

kX
H
}
do function as bandpass filters for their

respective subcarrier, but also let pass parts of other overlapping subcarriers. The detection
correlation matrices WXHΨ resemble an estimate of the identity matrix IK×K, with maximal
non-main diagonal element values between 1.32 · 10−2 and 2.37 · 10−2.

In Fig. 3.5 the BER, SINR, SNR, and SIR of all filter sets are shown. It can be seen,
that all three solutions obtain a similar BER as the MC-AcR. The SIR of the found sets are
almost equivalent and are slightly worse than the MC-AcR and MC-MFED. The 2nd order
projection filter cross-spectra have the best SNR performance in comparison to the other two
solutions. However, they show worse SNR performance than the reference receivers caused by
the overlapping bandpass filter behavior of their spectra of the inverse. The BER shows that
projection filter cross-spectra of 2nd order are sufficient to obtain a BER performance similar to
the MC-AcR.
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(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure 3.2: Frequency response, Correlation matrix, and signal co-term matrix P of a projection filter cross-
spectra of 2nd order. The shown cross-spectra do have a condition number of cond {P} = 19.48.
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(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure 3.3: Frequency response, Correlation matrix, and signal co-term matrix P of a projection filter cross-
spectra of 4th order. The shown cross-spectra do have a condition number of cond {P} = 25.53.
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(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure 3.4: Frequency response, Correlation matrix, and signal co-term matrix P of a projection filter cross-
spectra of 6th order. The shown cross-spectra do have a condition number of cond {P} = 19.35.
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(a) SINR (b) BER

(c) SNR (d) SIR

Figure 3.5: SINR, SNR, SIR, and BER of the generalized noncoherent multi-channel receivers with various
orders of projection filter cross-spectra.
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3.2 Analog Multipliers

The multiplication of signals is a fundamental algebraic concept that is extensively used in signal
processing and communications. Its mathematical properties are well studied and understood.
In fact almost all signal processing concepts utilize this basic operator, no matter if analog
or digital, continuous- or discrete-time. The need for devices to perform the multiplication
operation is tremendous, e.g. for digital filtering, Fourier transformation of signals, energy
detection, auto- and crosscorrelation. Therefore, a lot of work has been put into studying
analog and digital hardware realizations of this mathematical operation.

An important example of analog multipliers are frequency conversion mixers, which are exten-
sively used in RF front-ends [80]. Mixers are used to change the center frequency of bandlimited
signals by multiplying the input signal x(t) by a single-tone signal14, e.g.

z(t) = M{x(t), A cos(2πft+ φ)} , (3.11)

where f is the difference between the center frequencies of the input signal x(t) and the de-
sired output signal z(t), A is an amplitude, φ is some phase offset, and M{·, ·} represents the
multiplication operator

M{x(t), y(t)} = x(t) · y(t). (3.12)

Hence, such devices are commonly designed for the purpose of frequency shifting only. For
analysis of this operation, the mixer can be considered as a single-input single-output (SISO)
system, exploiting the fact that one mixer input signal is considered to be known, e.g. a single-
tone signal A cos(2πft+φ). This assumption leads to mixer characteristics which can be obtained
from single-tone and two-tone measurements of the device, e.g. conversion gains and third-order
intercept-points (IP3) [80].

gx(t)
x(t)

gy(t)
y(t)

bivariate
polynomial

h(t)
z(t)

Figure 3.6: Wiener-Hammerstein system model consisting of input filters gx(t) and gy(t), an output filter
h(t), and a bivariate polynomial as static nonlinearity.

However, these narrowband characteristics cannot give a reasonable description of the input-
output behavior of a mixer when used as a non-narrowband analog multiplier, e.g. for multi-
plying two UWB signals in UWB receiver systems. In particular energy detectors [81] and au-
tocorrelation receivers [82] are noncoherent receivers [13] that are based on multipliers. Hence,
multipliers play a crucial role in their performance, e.g. in mitigation of narrowband interference
[54,83,84] or synchronization [85]. Multipliers are also used in alternative UWB approaches as
compressed sensing [86, 87] or hybrid matched filter correlation receivers [43] for which their
influence on the receiver performance needs to be analyzed. In [88], for example, it was shown
that analog multipliers create undesired signal content, which have an impact on the system
performance of a noncoherent UWB receiver [55]. These undesired signal components cause
self-interference due to nonlinearities of higher order, which results in a degradation of the

14 The authors want to note, that in real mixer applications x(t) gets “switched” by the signal of a local oscillator,
so the input signal gets rather multiplied with a rectangular function y(t) = Asign (cos(2πft+ φ)) instead of
a single-tone. But for illustration of the concept of frequency shifting, we prefer to consider the ideal case of
multiplication of x(t) with a single sinusoidal signal.
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signal-to-interference-and-noise ratio of the test statistic and hence in a degradation of the bit-
error rate. These effects can only be modeled using UWB models.

In general, Volterra system models [89, 90] are often used to model nonlinear RF devices
[91]. An example is shown in [92], where a Volterra system model with a periodic kernel is
proposed. Such a kernel is suitable to model the frequency-conversion behavior of a mixer. It
was shown that the proposed model can reconstruct metrics like transconductance or third-
order intermodulation (IM3). The big drawback of Volterra systems is that they may consist of
kernels of high dimensionality, which are hard to identify and which do not give insight into the
operation of the devices per se.

Wiener-Hammerstein systems are a subclass of Volterra system models [93] which give better
intuition about the device operation. In [94,95] identification methods for Wiener-Hammerstein
systems [90] are proposed, with the drawback that they cover SISO systems only. On the other
hand, [96] shows an approach to identify multiple-input multiple-output (MIMO) Wiener and
MIMO Hammerstein systems, but not their concatenations: Wiener-Hammerstein or Hammer-
stein-Wiener systems.

In [97] a multiple-input single-output (MISO) Wiener-Hammerstein model and a dedicated
recursive identification method is presented. This model consists of parallel SISO Wiener-
Hammerstein models for each input signal, while the MISO model output is the sum of the
partial SISO model outputs. Although this model gives good insight into the system behavior,
it cannot model multiplicative cross terms of the input signals, which is crucial for modeling
analog multipliers.

This section proposes a MISO Wiener-Hammerstein system model consisting of input and
output filters and a bivariate polynomial kernel (cf. Fig. 3.6) that can model accurately ultra-
wideband analog multipliers. The model is flexible and, due to its structure, it gives insight
in the behavior of such devices. E.g. in [88], the influence of undesired signal content on
system performance metrics was shown. Performance degradations have been explained using
the proposed Wiener-Hammerstein system model. A method is proposed which facilitates easy
and accurate identification of the model parameters. It is shown that the proposed model reaches
the accuracy of Agilent ADS circuit simulations but with less computational effort. The model
allows to study the nonideal behavior of systems caused by analog multipliers, e.g. the influence
of undesired signal content.

In [88] the authors introduced another method to perform identification of the model param-
eters on Agilent ADS simulations. The Wiener-Hammerstein input filters were estimated using
intermediate signals of the circuit-level simulation, which are normally not accessible in real
hardware. In contrast, the newly proposed approach is able to identify real hardware multipliers
based on measurements.

3.2.1 Signal Models of Nonideal Multipliers

To study the UWB behavior of multipliers, exemplarily a UWB mixer (see Fig. 3.7) designed
by Ulm University was investigated [98, 99]. This mixer was designed to perform a multipli-
cation operation for a UWB correlation receiver [100] that supports the full UWB frequency
range from 3.1 GHz to 10.6 GHz defined by the FCC [25]. It has been manufactured using
Telefunken Semiconductor’s Si/SiGe2 HBT technology [101] and consists of two active single-
ended-to-differential converter input stages (baluns), biasing circuitry, a four-quadrant Gilbert
cell multiplier, and an output buffer stage with a lowpass filter.
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Gilbert cell multipliers do have, for the bipolar case, an input-output relationship given as
[98]

z(t) = ITtanh

(
x(t)

2VT

)

tanh

(
y(t)

2VT

)

, (3.13)

where IT is the total emitter bias current, VT is the thermal voltage, x(t) and y(t) are two input
voltage signals, and z(t) is an output current signal. This topology is known to approximate
the ideal multiplication operation sufficiently well for low input levels, due to the approximately
linear working points of the tanh-functions [102].
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Figure 3.7: Circuit model of the UWB mixer designed by Ulm University consisting of two active single-
ended-to-differential converter input stages (baluns), biasing, a four-quadrant Gilbert cell multi-
plier, and an output buffer.

Unfortunately, typical Gilbert cell mixers consist of additional circuitry as the aforementioned
single-ended-to-differential converters, the output buffer stage, and some biasing circuitry. These
auxiliaries introduce distortions to the output signal, which are not modeled by (3.13). Neither
are parasitic effects as e.g. memory effects due to parasitic capacitors or current leakage. There-
fore, a more generic approach is proposed.

A possible way is to express the tanh function using Taylor-expansion [33], which is given as

tanh(x) =

∞∑

n=1

22n
(
22n − 1

)

(2n)!
B2nx

2n−1, (3.14)

with B2n being the 2nth Bernoulli number. Comparing (3.14) with (3.13) and having the auxil-
iaries in mind, it seems possible to describe the static nonlinearity of the system using a bivariate
polynomial.

In addition, linear time-invariant filters need to be considered at the input and the output
stages, which do not exist in an ideal multiplier. A nonideal multiplication of two independent
signals x(t) and y(t) can hence be modeled as

M{x(t), y(t)} = h(t) ∗
[

U∑

u=0

u∑

v=0

cu−v,v (gx(t) ∗ x(t))u−v (gy(t) ∗ y(t))v
]

, (3.15)
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which represents a Wiener-Hammerstein system with U being the maximum order of a static
bivariate polynomial nonlinearity, gx(t) and gy(t) being impulse responses of linear time-invariant
input filters, respectively, h(t) being the impulse response of a linear time-invariant output filter,
and {cu−v,v} being the coefficients of the polynomial. These coefficients can be used to derive
signal metrics and to investigate the influence of output distortions on a considered application
[88]. The coefficient c1,1 represents a constant gain of the desired ideal multiplication term, c0,0
gives the constant DC bias, and c2,0, c0,2 represent the gains of the squared filtered input signals.
In Fig. 3.8, a multiplier model of order U = 3 is illustrated.

gx(t)

gy(t)
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b
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c2,0

c1,1

c0,2
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c0,3

x(t)

y(t)

z(t)

Figure 3.8: A nonideal multiplier system z(t) = M{x(t), y(t)} of order U = 3 consists of two input filters
and one output filter, and seven ideal multipliers and gains, which model the static bivariate
nonlinearity.

To identify the system model of the analog multiplier given in (3.15), an approach with two
steps is proposed. The first step is to identify the filters gx(t), gy(t), and h(t), respectively. The
second step is to estimate the polynomial coefficients {cu−v,v} using these identified filters.

3.2.2 Filter Identification

A way to identify the input and output filters of a given analog multiplier is to excite the device
with two different single-tones, e.g. x(t) = Ax cos (2πfxt+ φx) and y(t) = Ay cos (2πfyt+ φy).
It is assumed that the multiplier has negligible undesired output components for small input
signals, hence the signal term which is represented by c1,1 is predominant. The output z(t) of
the device is thus given as

z(t) ≈ ℜ
{
1

2
c1,1AxAye

j2π(fx+fy)tej(φx+φy)Gx(fx)Gy(fy)H(fx + fy)

}

+ℜ
{
1

2
c1,1AxAye

j2π(fx−fy)tej(φx−φy)Gx(fx)G
∗
y(fy)H(fx − fy)

}

, (3.16)

which represents two single-tones at frequencies |fx+fy| and |fx−fy|, respectively, where Gx(f),
Gy(f), H(f) are the frequency responses of the input and output filters, G∗

y(f) represents the
complex conjugate of Gy(f). It can be seen that both tones exhibit complex gains which contain
those frequency responses at certain frequencies. The complex amplitude of the signal with the
difference frequency15 |fx − fy| is given as

α (fx, fy) =
1

2
c1,1AxAye

j(φx−φy)Gx(fx)G
∗
y(fy)H(fx − fy), (3.17)

15 For simplicity, the method is shown using the difference frequency |fx − fy | only. The method can easily be
expanded to support the sum frequency |fx + fy | too.
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which can be easily measured, e.g. by sampling the input and output signals and performing a
discrete Fourier transform (DFT) to get the complex amplitudes of these tones.

If these measurements are done in an equidistant two-dimensional input frequency sweep,
equidistant samples of the frequency responses of the filters can be obtained. N2 measurements
are taken, where N =

fup−flow
∆f +1 ∈ Z is the number of the frequencies within the desired input

frequency range [flow, fup] at a spacing of ∆f . We define the vector

σ = [flow, flow +∆f, flow + 2∆f, . . . , fup]
T (3.18)

of input frequencies16. The vector ρ of output frequencies is then given as

ρ = [0,∆f, 2∆f, . . . , (N − 1)∆f ]T . (3.19)

Magnitude Responses

The magnitude responses can be obtained by taking the absolute value and the logarithm of
(3.17) to get a linear relation,

log|α (fx, fy) | = log |1
2
c1,1|+ log |AxAy|+ log |Gx(fx)|+ log |Gy(fy)|+ log |H(|fx − fy|)|.

(3.20)

We formulate the linear system of equations

α =Am+ ξ + ν, (3.21)

where α is the measurement vector with elements

[α]k+(l−1)N = log |α ([σ]k , [σ]l) |, (3.22)

k, l = 1, 2, . . . , N , and ν represents any errors in the measurements or model, e.g. nonlinear
terms of higher order or nonlinear memory which are not modeled, and measurement noise. The
vector ξ corrects for the measured input amplitudes. Its elements are given as

[ξ]k+(l−1)N = log |Ax ([σ]k , [σ]l)Ay ([σ]k , [σ]l) |, (3.23)

where the possible dependency of the input signal amplitude on measurement point (k, l) is
explicitly shown. The vector m is the concatenation of the sampled logarithmic magnitude
responses given as

m =

[

log |gx|T , log |gy|T , log |h|T , log |
1

2
c1,1|

]T

, (3.24)

whose elements are [gx]i = Gx([σ]i), [gy]i = Gy([σ]i), and [h]i = H([ρ]i), i = 1, . . . , N . The
matrix A is an indicator matrix, which is defined as

A = [A1 A2 A3 1N2 ] , (3.25)

16 Note that the input frequencies can be chosen differently, e.g. variable frequency spacings or frequency regions
can be covered. The output frequency vector depends on the input frequency vectors. The choice by the
authors was to show a simple example.
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where 1N2 is an all-ones vector with N2 elements, and

[A1]k+(l−1)N,i =

{

1 , for [σ]k = [σ]i
0 , otherwise

(3.26)

[A2]k+(l−1)N,i =

{

1 , for [σ]l = [σ]i
0 , otherwise

(3.27)

[A3]k+(l−1)N,i =







1 , for | [σ]k − [σ]l | = [ρ]i 6= 0

2 , for | [σ]k − [σ]l | = 0

0 , otherwise

(3.28)

where k, l, i = 1, 2, . . . , N . Note that A needs to have a full rank, hence N ≥ 4 needs to hold.
Using this data model, the magnitude response can be estimated in a least-squares sense using

m̂ = A† (α− ξ) , (3.29)

where A† represents the Moore-Penrose pseudo inverse of A. For a valid least-squares solution,
the matrix A needs to be full rank and uncorrelated with the error ν [103]. Measurements have
shown (see Section 3.2.4), that these assumptions are fulfilled17.

Phase Responses

The phase responses can be estimated in a similar way. The phase of the output signal z(t) is
given (cf. (3.17)) as

∠α (fx, fy) = (φx − φy)

+ ∠Gx(fx)− ∠Gy(fy) + ∠H(|fx − fy|). (3.30)

The elements of the measured phase vector β are defined as

[β]k+(l−1)N = ∠α([σ]k , [σ]l), (3.31)

hence

β =Bψ + ζ + ν, (3.32)

where ν represents any errors in the measurements or model which have the same causes as in
(3.21). The vector ζ, with elements

[ζ]k+(l−1)N =(φx ([σ]k , [σ]l)− φy ([σ]k , [σ]l)), (3.33)

corrects for the measured input phases. The indicator matrix B, which is full rank for N ≥ 4, is

B = [A1 A2 A3] . (3.34)

17 For the identification using measurements, the power of the error ν was found to be −30.7 dB below the power
of the dependent variable vector α − ξ. For the identification using ADS, the power of ν was found to be
−28.5 dB below the power of the dependent variable vector. The corresponding correlation coefficients are
0.1452 for the identification using measurements and 0.1382 for the identification using ADS. These numbers
suggest, that ν is uncorrelated to A.
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Finally the estimate of the phase response vectors

ψ =
[
∠gT

x ,−∠gT
y ,∠h

T
]T

(3.35)

is obtained in a least-square sense as

ψ̂ = B† (β − ζ) . (3.36)

The matrix B needs to be full rank and uncorrelated with the error ν to obtain a valid least-
squares solution [103].

Equivalent IIR Filter Modeling

To model the input and output filters, the estimated magnitude and phase responses can be used
to find equivalent discrete-time IIR filters, e.g. utilizing metaheuristic algorithms [69,104,105].
The used cost-function can be chosen, e.g. as the sum of squared differences from the given
sampled target frequency responses. To avoid ambiguities due to gain exchange between the
filters and the bivariate polynomial coefficients, the filters should be normalized to a passband
gain of one. Effects like exchange of group delay between the input and output filters do not
play a crucial role due to the fact that the identification method does identify the phase response
of the input and output filters. Phase ambiguities are resolved by fitting the IIR filter models.
Note that the measurement setup needs to be calibrated to ensure that any delays induced by
the measurement setup are removed.

3.2.3 Polynomial Coefficients Identification

To estimate the coefficients {cu−v,v} of the bivariate polynomial kernel of the system model,
the device has to be excited with signals which fit into its input frequency region and have a
given amplitude distribution. The amplitude distribution can be seen as a weighting of the
estimation: an amplitude interval with a higher probability mass is modeled more accurately
than an amplitude interval with a lower probability mass. The amplitude distribution should
hence depend on the signals of the application under consideration, just like the input frequency
range18.

Segments of length L of the sampled input signals are stored in vectors x and y, respectively.
These signals need to be filtered with discrete-time equivalents of the identified input filters ĝx(t)
and ĝy(t), respectively. The filtered input signals x̂ and ŷ are thus given as

x̂ = Ĝxx (3.37)

ŷ = Ĝyy, (3.38)

with Ĝx and Ĝy being the Toeplitz matrices of the discrete-time equivalents of ĝx(t) and ĝy(t).
The sampled device output vector z is then

z = X̂c+ ν, (3.39)

where

c = [c0,0, c1,0, c0,1, c2,0, c1,1, c0,2, . . . ]
T (3.40)

18 It is possible to use other signals than the desired signals of the application under consideration. However,
only an estimation with the desired signal amplitude distribution will lead to minimal modeling errors.
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represents the vector of polynomial coefficients and the vector ν represents the measurement
noise. The Matrix and X̂ is given as

X̂ = Ĥ
[
1M , x̂, ŷ, x̂

2, (x̂⊙ ŷ) , ŷ2, . . .
]

(3.41)

where Ĥ is the Toeplitz matrix of the discrete-time equivalent of ĥ(t), ⊙ represents the element-
wise multiplication and the exponentiation represents an element-wise exponentiation of the
vector elements19. Note that L needs to be chosen to ensure that X̂ has full rank.

The polynomial coefficient vector can finally be estimated in a least-square sense using

ĉ = X̂†z. (3.42)

3.2.4 Model Verification

The verification of the model is performed using the aforementioned UWB mixer designed by
Ulm University. The device consists of a bare mixer die which has been bonded onto a printed
circuit board (PCB). The signal inputs and the output are AC coupled with capacitors of 100 pF.
For comparison, the proposed identification methods are also evaluated using an Agilent ADS
circuit-level model of that UWB mixer circuit.

Model Performance

A metric to evaluate the performance of the system identification is the normalized mean square
error (NMSE) of the system model output z passed through an application-specific target filter
T (f) represented by its discrete-time equivalent Toeplitz matrix T. This filter extracts the
frequency range of interest. The NMSE is thus defined as

NMSE = E







(

Tz−TX̂ĉ
)T (

Tz−TX̂ĉ
)

zTTTTz







, (3.43)

where E {·} represents the expectation operator.
The filter T (f) was chosen to be a Bessel filter of order 6 with cut-off frequency of 91.9 MHz. It

approximates a sliding window integrator for a noncoherent multichannel autocorrelation UWB
receiver [55,58] as described in Section 3.3.

Measurement Setup

The measurement setup is depicted in Fig. 3.9. To estimate the frequency responses, a two
dimensional frequency sweep from 100 MHz to 6 GHz with a ∆f of 100 MHz was performed
using an Agilent E8267C signal generator and a Rohde&Schwarz ZVA24 network analyzer. The
single-tones x(t) = Ax cos(2πfxt + φx) and y(t) = Ay cos(2πfyt + φy) generated by the signal
generators got amplified, and after power splitting had a power of −20 dBm at the input ports
of the mixer. The input and output signals were sampled at a rate of 20 GHz using an Agilent
Infiniium 54855A scope. To obtain the magnitude and phase of the input tones and of the desired
output tone Az cos(2π|fx − fy|t + φz), a DFT was performed20. The DFT has the advantage,

19 We assume that the Toeplitz matrices Ĝx, Ĝy , and Ĥ are designed such that transient effects at the signal
boundaries are excluded.

20 Sample rate, signal frequencies and sample lengths need to be chosen properly to avoid leakage effects of the
DFT.
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that it mitigates all undesired frequencies. It was observed from those measurements that such
components have negligible power, which validates the assumption from Section 3.2.2 that an
ideal multiplier can be assumed for the filter identification step. The signal powers of the desired
output single-tones of the two-dimensional frequency sweep measurements, i.e. |Az (fx, fy)|2, are
shown in Fig. 3.10. Each grid point represents the signal power of the output tone at a frequency
of |fx − fy|, where fx and fy are frequencies of the input single-tones.

UWB mixer

x(t)

y(t)

z(t)

Signal

Generator
Signal

Acquisition
Signal

Generator

PC PC

Figure 3.9: Measurement setup for mixer identification.

Figure 3.10: Magnitude response of two dimensional frequency sweep measurements. Each grid point repre-
sents the output power of the output single-tone at a frequency of |fx − fy |, where fx and fy
are frequencies of the input single-tones.

To estimate the polynomial coefficients the two input ports of the device were excited with
application-specific, uncorrelated signals. For this measurement, NOFDM pulses as defined in
Tab. 2.1 were used. The pulses were generated using the Tektronix AWG7102 arbitrary waveform
generator with a sampling rate of 10 GHz. Due to the fact that the Tektronix AWG7102 does
not have a sufficient output lowpass filter to avoid an image signal of the desired one, the
excitation signal shows additional frequency components from 5.125 GHz to 6.875 GHz. These
image signals are accounted for in the coefficient estimation procedure. The input power to
the mixer ports was −20 dBm, which is sufficient to drive the mixer at times into saturation
due to a peak-to-average-power ration (PAPR) of the UWB signals of 18 dB. The input and
output signals were again sampled using the Agilent Infiniium 54855A scope at a sampling rate
of 20 GHz.

Model Parameter Estimation

Fig. 3.11 shows the magnitude responses of the estimated filters (cf. Section 3.2.2) obtained from
the measurement. For comparison, the estimated filter magnitude responses are also shown for
the ADS circuit model.
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Figure 3.11: Input and output filter magnitude responses of the system model fitted to the measurement and
to the ADS circuit model simulation.

It can be seen that the estimated output filters Ĥmeas.(f), ĤADS(f) and the input filters
Ĝx,meas.(f), Ĝx,ADS(f) are very similar to one another. They differ in the region of interest (from

DC to 2 GHz for Ĥmeas.(f) and ĤADS(f) and from 3.125 GHz to 4.875 GHz for Ĝx,ADS(f) and

Ĝx,meas.(f)) up to 1.3 dB and 1.6 dB, respectively. The input filters Ĝy,meas.(f) and Ĝy,ADS(f)
do differ up to 18.9 dB on the shown frequency range, but 0.6 dB in the region of interest. The
differences between the ADS system model and the measurement system model might be caused
by parasitic effects that are not modeled by the ADS circuit-model, but which certainly exist in
the hardware mixer.

To model the input and output filters, the magnitude responses of the estimated filters (cf.
Section 3.2.2) were used to find equivalent discrete-time minimum-phase IIR filters, utilizing a
differential evolution (DE) algorithm [79] which is in detail described in Appendix C.2. The
used multi-objective cost-function is given as

J (Φ) = w1Jmag (Φ) + w2Jp (Φ) + w3Jz (Φ) , (3.44)

where

Jmag (Φ) =

fup∑

f=flow

(

|X (f)| −
∣
∣
∣X̂
(

ej
2π
Rs

f ,Φ
)∣
∣
∣

)2
(3.45)

represents sum of squared differences of the solution X̂
(

ej
2π
Rs

f ,Φ
)

filter from the given sampled

target magnitude response |X (f)|, and Jp (Φ) and Jz (Φ) ensure for stable and minimum-phase
filters (see Section 3.1.1). The parameters of the DE algorithm are listed in Tab. 3.3. The filter
order of Gx(f), Gy(f), and H(f) were set to two.

The obtained filters were taken to identify the polynomial coefficients. The order of the
bivariate polynomial was chosen to minimize the NMSE. For the given application it was found
to be six. In Fig. 3.12, the estimated polynomial coefficients {cu−v,v} are depicted for the
measurement system model and the ADS system model. It can be seen that both sets of
coefficients are similar, however, some coefficients differ. The maximal difference is 52.9 dB for
c0,0, but at very low magnitude. The average difference is 6.6 dB. Also these differences between
the ADS system model and the measurement system model might be caused by parasitic effects.

The time and frequency domain representations of the output signal are shown in Figs. 3.13
– 3.14(b). The model output signal is compared with the measured output signal, the ADS
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Table 3.3: DE algorithm parameters.

Parameter Name Parameter Value

Number of iterations GENERATIONS 100

Number of particle POPULATION 1000

Mutation rate ALPHA 0.75

Weight for Jmag (Φ) w1 10

Weight for Jp (Φ) w2 1

Weight for Jz (Φ) w3 1

Figure 3.12: Polynomial coefficients {cu−v,v} of the system models fitted to the measurement and to the ADS
simulation, respectively. The coefficients are normalized to the desired signal coefficient c1,1.
The pair (a, b) represents the respective polynomial coefficient ca,b.

simulation output, and the system model output matched to the ADS simulation.

In the time domain, it can be seen that the output waveforms are similar. In the frequency
domain it can be seen that all signals have a similar power-spectral-density (PSD) in the range
from DC up to about 3 GHz. In Fig. 3.14(a) and Fig. 3.14(b) also the PSDs of the model errors
are depicted. The power of errors is −30.5 dBm and −38.5 dBm for the the measurement-fitted
model and the ADS-simulation-fitted model, respectively. (For comparison, the output power
of the measurement and the ADS simulation is −24.3 dBm and −26.0 dBm, respectively.) For
frequencies higher than 3 GHz, the PSDs deviate but are rather small compared to the lower fre-
quency region. The strong attenuation of the measured output signal at frequencies higher than
6 GHz is due to the strong lowpass filter of the scope. The signal content within the frequency
band from 3.125 GHz to 6.875 GHz in the measured output signal resembles the signal which is
fed into the mixer and may hence be crosstalk from the inputs, e.g. it may be induced by the
PCB or may be current leakage through the mixer. This crosstalk is not modeled in the proposed
multiplier model and can thus not be identified and reconstructed using that particular model.
However, the crosstalk and current leakage might be identified separately after subtracting the
measurement-fitted model output from the sampled measurement output. Alternatively, the
model could be extended to support nonlinear memory as in [93], thus representing a Volterra
system model instead of a Wiener-Hammerstein system model.

The NMSE of the measurement-fitted model compared to the measurement is −11.5 dB, the
NMSE of the ADS simulation compared to the measurement is −5.1 dB, and the NMSE of
the ADS-simulation-fitted model compared to the ADS simulation output is −21.1 dB. These
values are obtained using a training set of 750 pulses to estimate the polynomial coefficients
and a validation set of 750 pulses to perform the NMSE computation. The noise level of the
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Figure 3.13: Time domain output signals of the nonideal multiplier system model in comparison to the
measurement, the output signal of the ADS circuit model, and the system model fitted onto the
ADS circuit model.

(a) Measurement-fitted system model. (b) ADS-simulation-fitted system model.

Figure 3.14: Frequency domain output signals in comparison to the ADS circuit model and the model error.

measurement is about −47.6 dBm, hence 17.1 dB less than the measurement-fitted model error.
These values confirm that the fit of the proposed system model works very well. They show
that the proposed system model is more accurate than the ADS circuit model simulation for
the given application, due to the fact that the ADS circuit model does not model parasitic
effects. Nonlinear memory effects, which are not considered in the system model, might cause
the increased NMSE of the measurement-fitted model with respect to the ADS-fitted one.

In Fig. 3.15, the output power of the individual nonlinear signal parts is depicted. This
representation gives intuition about the structure of the output signal and which terms are
dominant or which can be neglected for further analysis. It can be seen that the desired signal
with c1,1 has the highest power of about −24 dBm. Also the signal parts of fourth order with
coefficients c3,1 and c1,3 show significant powers. It also can be seen, although the coefficients
seem to be very similar for the ADS model and the measurement model, that the power of some
dominant nonlinear signal parts differ more than 30 dB. The average difference is 5.6 dB.

– 57 –



3 Analysis of Realistic Front-End Components

Figure 3.15: Power of the nonlinear signal with the respective coefficients {cu−v,v} of the system model
fitted to the measurement and the system model fitted to the ADS simulation. The pair (a,b)
represents its respective nonlinear coefficient ca,b.

3.2.5 Analysis and System Simulations

Narrowband characteristics are not a suitable metric for evaluating broadband multipliers as
they do not explain the nonlinear behavior of broadband signals in a sufficient way. Due to the
nonlinear behavior of the nonideal multiplier, interference terms may be mapped into the base-
band, which is the desired output signal band of noncoherent multi-channel receiver channels.
Indeed, every even-order nonlinear term does map into the baseband and is therefore considered
as interference term.

Substituting the ideal multiplication operator with the nonideal multiplier operator M{·, ·},
the mth receiver output can be rewritten21 as

ym =

∫ Tsym

λ=0
Mm {hm(t) ∗ r(t), gm(t) ∗ r(t)} dt (3.46)

=

U∑

u=0

u∑

v=0

cu−v,v

∑

κ1+···+κK=u−v

∑

ι1+···+ιK=v

(
u− v

κ1, · · · , κK

)(
v

ι1, · · · , ιK

)

×
∫ Tsym

λ=0

{

h(t) ∗
[

K∏

k=1

dκk+ιk
k (gx(t) ∗ hm(t) ∗ c(t) ∗ φk(t))κk (gy(t) ∗ gm(t) ∗ c(t) ∗ φk(t))ιk

]}

dt+ ν. (3.47)

Using vector notation we can rewrite the equation as

y =P (d⊙ d) +Q
(
d⊗̃d

)
+

U∑

u=0

u∑

v=0
u−v 6=1∧v 6=1

Mu−v,v

⊗

u
{d}+ νm, (3.48)

where Mu−v,v is the interference matrix corresponding to the effects of the cu−v,v component,

21 A detailed derivation is given in Appendix B.5.
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and
⊗

N {·} defines a manifold Kronecker product of order N , e.g.

⊗

3
{x} = x⊗ x⊗ x. (3.49)

An adequate metric to study the influence of the nonideal multiplier induced distortion is the
signal to interference ratio (SIRu−v,v) of any nonlinear term of the decision variable z which is
defined as

SIRu−v,v =
E
{
dTPTWTWPTd

}

E
{⊗

u {dT }MT
u−v,vW

TWMu−v,v
⊗

d {d}
} , (3.50)

where the expectation operator is evaluated with respect to the symbol vector d.
To investigate the SIRu−v,v for the different nonlinearity terms, a NOFDM signaling is used

with an input signal Eb/N0 of 18 dB.
In Fig. 3.16, the SIR of various polynomial coefficients for the ADS-simulation-fitted model

is depicted. It can be seen that those even-order terms which do show a significant contribution
to the multiplier output signal (cf. Fig. 3.15) do disturb the signal most. Odd-order terms are
mitigated very well due to the lowpass behavior of the multiplier. It also can be seen that the
MC-AcR is more sensitive to the undesired multiplier terms than the MC-ED or MC-MFED,
specially when considering c0,4, c1,5, and c5,1.

In Fig. 3.17, the SINR for the ADS-simulation-fitted model is illustrated for different input
power levels. It can be seen that for increasing input powers the SINR starts getting worse,
which is due to the increased nonlinear effects which result in a decreased SIR. The BER
strongly degrades with increasing input power levels due to decreasing SINR. It can be seen
that, in comparison to the ideal multiplier case, the BER for the MC-AcR with higher input
power values (P0 ≥ −20 dBm) does show a significant error floor, which are not visible for
the BER of MC-ED and MC-MFED. The later are more robust to undesired nonlinear signal
content, due to the fact that they compute the energy of the received signal pulses but, in
contrast to the MC-AcR, do not require any additional linear post-processing to obtain spectra
of the inverse to separate the received subcarriers.

A summary of SINR, SIR and BER results are listed in Appendix D.2.
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(a) MC-AcR (b) MC-ED

(c) MC-MFED

Figure 3.16: SIRu−v,v for various nonlinear terms of different noncoherent multi-channel receivers.

– 60 –



3.2 Analog Multipliers

(a) SINR of MC-AcR with nonideal multipliers. (b) BER of MC-AcR with nonideal multipliers.

(c) SINR of MC-ED with nonideal multipliers. (d) BER of MC-ED with nonideal multipliers.

(e) SINR of MC-MFED with nonideal multipliers. (f) BER of MC-MFED with nonideal multipliers.

Figure 3.17: SINR and BER of various multiplier input power levels of different noncoherent multi-channel
receiver architectures.
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3.3 Mixed-Signal Sliding Window Integrators

This section studies a realistic implementation of UWB sliding window integration devices.
These devices do play an essential role in suppressing cross-products between subcarriers that
arise in the nonlinear frontend. The proposed integration system consists of passive filter struc-
tures combined with conventional ADCs. This yields a solution that can potentially be realized
using standard building blocks and it may save power compared with an active design as in
[106] and gives a trade-off between digital sampling rate and analog filter complexity. It is also
shown that the optimized filter outperforms the reference system using an ideal sliding window
integrator because it is able to mitigate more system noise.

3.3.1 Approximation of Sliding Window Integrators

In (2.3) it can be seen that the system has to perform an integration over the symbol period
Tsym. This operator can be described as a filter with the impulse response

hT (t) = σ(t)− σ(t− T ), (3.51)

where T is the integration window, and σ(t) is the Heaviside unit step function. The frequency
response of the filter is given as

HT (jω) = Te−j T
2
ωsinc

(
T

2π
ω

)

, (3.52)

where sinc(x) = sin(πx)
πx . Unfortunately, this ideal filter cannot be realized in real hardware.

Therefore approximations of this ideal integration filter are needed.

A feasible approximation of the analog sliding window integrator can be obtained by using a
lowpass Bessel filter and several notch-filters. The Bessel filter is used to get the dropping mag-
nitude frequency response while maintaining a constant group-delay up to an upper frequency.
The notch-filters are used to get the zeros in the frequency response. For broadband signals this
could lead to analog filters of very high order, due to the need of many notch filters. A mixed
analog / digital implementation can relax this issue, as described below.

The impulse response (3.51) can be rewritten as

hT (t) = (σ(t)− σ (t− Ts)) ∗
NT−1
∑

k=0

δ (t− kTs) , (3.53)

where Ts = T
NT

, NT ∈ N. The sliding window integrator is hence split up into an integrator

with a shorter window of length T
NT

and a filter consisting of equally spaced Dirac impulses: a
comb filter which can be described by a digital FIR filter easily, where Ts is the discrete-time
sampling period. The comb filter has the discrete-time frequency response

D
(

ejθ
)

=

NT−1∑

k=0

e−jθk, (3.54)

where θ is the normalized angular frequency, θ = ωTs.

The frequency response of the new analog sliding window integrator A(jω) is given as

A(jω) = Tse
−j Ts

2
ωsinc

(
Ts
2π
ω

)

, (3.55)
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A (jω)

Ts

D
(
ejθ
)

Figure 3.18: Signal flow graph of the mixed-signal sliding window integrator.

which resembles (3.52) but with reduced integration interval Ts. The frequency-spacing of the
zeros increases when decreasing the integration interval, therefore the need of analog notch-
filters within the signal bandwidth is relaxed. The digital filter introduces additional zeros at
frequencies ω = k2π/(NTTs), k ∈ {Z | (k mod NT ) 6= 0}. In other words, the order of the
analog filter is minimized by making the length of the sampling time Ts as small as possible.
The accumulation of these partial integrations can be done by the digital comb filter without
much effort. This gives a trade-off between analog filter complexity and digital sampling rate.

An additional design goal for the filter approximation is a high SINR to ensure minimal
miss-detection of the receiver.

Bessel-Notch Approximation

The filter parameters, which are the upper frequency (Fg) of constant group-delay of the Bessel
filter and the quality factors (Q1, Q2) of the notch-filters, can be found numerically for a given
NT applying the optimization

θI =argmin
θ

∫
|HT (f)−A(f,θ)D(f)G(f,θ)|2 df

∫
|HT (f)|2 df

, (3.56)

where θI = {Fg,Q1,Q2, τg} is the parameter vector and G(f,θ) = ej2πfτg is a correction term
for a constant group-delay difference between the ideal filter HT (f) and the approximation filter
A(f,θ)D(f). The found filter parameters for NT = 2 are listed in Tab. 3.4 for various filter
orders. The impulse response, magnitude response, and the group delay of an example filter
with filter order of eight can be seen in Figs. 3.19 – 3.21.

Table 3.4: Analog filter parameters (Fg, Q1, and Q2) of the two different filter approximations for various
filter orders N.

Bessel-Notch Approx. Bessel-Only Approx.

N Fg Q1 Q2 Fg

[MHz] [MHz]

1 39.9

2 60.9

3 72.3

4 80.2

5 82.3 1.0 2.2 86.5

6 157.8 0.7 2.4 91.9

7 236.9 0.6 1.9 96.8

8 254.5 0.6 1.9 101.4

9 277.4 0.6 1.8 105.8

10 293.3 0.6 1.8 110.1
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Bessel-Only Approximation

Other filter approximations can be made too. A possibility is to reduce the combination of a
lowpass filter and notch filters to a single Bessel type lowpass filter. Its upper frequency of
constant group-delay Fg can be found for given NT applying

Fg =argmin
Fg

∫
||HT (f)| − |A(f,Fg)D(f)||2 df

∫
|HT (f)|2 df

, (3.57)

which is a simplification of (3.56) due to lower degree of freedom. The found filter parameters are
listed in Tab. 3.4 for various filter orders with NT = 2. The impulse response, the magnitude
response, and the group delay of an example filter with filter order of eight can be seen in
Figs. 3.19 – 3.21. Surprisingly these approximations can lead to a better performance than the
ideal sliding window integrator.

(a) Bessel-Notch approximation (b) Bessel-Only approximation

Figure 3.19: Impulse response of the Bessel-Notch approximation and Bessel-Only approximation sliding
window integrator with 8th filter order.

(a) Bessel-Notch approximation (b) Bessel-Only approximation

Figure 3.20: Magnitude response of the Bessel-Notch approximation and Bessel-Only approximation sliding
window integrator with 8th filter order.
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(a) Bessel-Notch approximation (b) Bessel-Only approximation

Figure 3.21: Group delays of the Bessel-Notch approximation and Bessel-Only approximation sliding window
integrator with 8th filter order.

3.3.2 Analysis and System Simulations

To minimize erroneous detection of d (cf. Section 2.1), interference and noise have to be reduced.
Because d is reconstructed by the linear transformation W of the receiver channel outputs y,
and M will be chosen only slightly greater than or equal to K for complexity reason, it is
necessary to mitigate signal cross-terms and noise at the level of the receiver channel outputs
{ym}. These signal terms can be minimized by applying a lowpass filter.

When recalling (2.3) and assuming NOFDM as signaling scheme, the mth receiver front-end
channel output ym is given as

ym =

∫ Tsym

λ=0

[(

hm(t) ∗ c(t) ∗ ℜ
{

K∑

k=1

dkϕ(t)e
+j(k−K+1

2 )ωscte+jωct

})

×
(

gm(t) ∗ c(t) ∗ ℜ
{

K∑

l=1

dlϕ(t)e
+j(l−K+1

2 )ωscte+jωct

})]

dt+ νm. (3.58)

Due to the lowpass behavior of the sliding window integration filter, the mth receiver channel
output can be simplified to

ym =
1

2

K∑

k=1

K∑

l=1

dkdl

∫ Tsym

λ=0
ℜ
{

ϕ̃k,hm
ϕ̃∗
l,gme

+j(k−l)ωsct
}

dt+ νm, (3.59)

where

ϕ̃k,hm
= ϕ(t) ∗ ℜ

{

(c(t) ∗ hm(t)) e−j(k−K+1
2 )ωscte+jωct

}

(3.60)

and

ϕ̃l,gm = ϕ(t) ∗ ℜ
{

(c(t) ∗ gm(t)) e−j(l−K+1
2 )ωscte+jωct

}

(3.61)

are the different subcarrier pulse shapes altered by their respective channel frequency band and
their respective projection filters.

It can be seen from (3.59) that the signal co-terms terms (where l = k) map to baseband pulses.
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A different behavior can be seen for the signal cross-terms (with l 6= k), where the baseband
pulses are transformed to different frequencies (k− l)ωsc. In Fig. 3.22, the co- and cross-terms of
a K = 7 subcarrier NOFDM signaling scheme are depicted in the frequency domain when using
allpass projection filters22 before integration. These cross-terms are undesired. Due to the fact
that they are transformed to higher frequencies, they can be mitigated to a certain extent by
the lowpass Bessel filter.

Figure 3.22: Power spectrum density of the signal co- and cross-terms of an NOFDM transmission scheme
after the multiplication in a ProjR channel for K = 7 subcarrier NOFDM signaling scheme.

To investigate the performance of the various sliding window integrator approximations SINR
and BER can be considered. The SINR and BER are depicted in Figs. 3.23 – 3.24. For
comparison SNR and SIR can be found in Appendix D.3. It can be seen that the MC-ED and
the MC-MFED are much more robust to nonidealities of the filters than MC-AcR. It can also
be seen that an ideal sliding window integrator has the best SINR performance. This is obvious
when considering its good SIR performance due the fact that the cross-terms should vanish
completely for the ideal case. The SINR of the Bessel-Only approximation does show that offset
of the slope differs depending on the filter order which is due to a different SNR. In contrast,
the offset of the SINR slopes of the Bessel-Notch approximation are similar for the different
filter orders. But it can be seen that for lower filter orders the SINR goes into saturation for
the Bessel-Notch approximation, which is due to a lower SIR performance. The better SIR
performance of the Bessel-Only approximation can be explained due to its steeper frequency
response of the second approximation filter that attenuates the high-frequency parts (i.e. the
cross-terms) more heavily. Note that both approximation methods are able to outperform the
ideal sliding window integrator, due to the fact that the steeper filter slope of the Bessel filter
is able to mitigate more noise than the the ideal sliding window filter.

22 Allpass projection filters are e.g. given by the MC-AcR.
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(a) SINR of MC-AcR with Bessel-Notch filter approxi-
mation.

(b) BER of MC-AcR with Bessel-Notch filter approxi-
mation.

(c) SINR of MC-ED with Bessel-Notch filter approxima-
tion.

(d) BER of MC-ED with Bessel-Notch filter approxima-
tion.

(e) SINR of MC-MFED with Bessel-Notch filter approx-
imation.

(f) BER of MC-MFED with Bessel-Notch filter approx-
imation.

Figure 3.23: SINR and BER of various MC-ProjR architectures.
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(a) SINR of MC-AcR with Bessel-Only filter approxima-
tion.

(b) BER of MC-AcR with Bessel-Only filter approxima-
tion.

(c) SINR of MC-ED with Bessel-Only filter approxima-
tion.

(d) BER of MC-ED with Bessel-Only filter approxima-
tion.

(e) SINR of MC-MFED with Bessel-Only filter approx-
imation.

(f) BER of MC-MFED with Bessel-Only filter approxi-
mation.

Figure 3.24: SINR and BER of various MC-ProjR architectures.
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3.4 Summary

In this Chapter the analysis of realistic front-end components has been presented. It has been
shown that meta-heuristic optimization algorithms utilizing multi-objective cost-functions can
be used to obtain projection filter cross-spectra

{
Xm

(
ejΩ
)}

. It has been shown that the found
filter solutions result in cond {P} ≈ 20 and that cross-spectra of 2nd order are sufficient to
achieve similar BER than the MC-AcR reference receiver.

To analyze the influence of realistic analog multipliers a Wiener Hammerstein MISO model
has been proposed. Such a model consists of linear time-invariant input and output filters and
a static bivariate polynomial to model the inherent nonlinear effects. Also an identification
method based on single-tone and UWB measurements has been described to obtain the model
parameters from measurements and circuit-level simulations. The obtained models were verified
and it has been shown that the proposed identification method does result in accurate models of
an analog multiplier designed by Ulm University. Furthermore, it has been shown that undesired
nonlinear terms (e.g. of fourth and sixth order), which depend on the power of the multiplier
input signals, strongly influence the receiver performance. For the given UUlm UWB mixer, the
mixer input power should not exceed −25 dBm. It has been shown that the MC-ED and the
MC-MFED receivers are robust to those undesired effects in contrast to the MC-AcR.

Approximations of sliding window integrators have been studied. It has been shown that a
mixed-signal approach gives a trade-off between analog filter complexity and digital sampling
rate. In fact, approximations which utilize analog Bessel lowpass filters, with and without addi-
tional analog notch filters, are able to outperform receivers with ideal sliding window integrators
in terms of BER. This is due to the steeper filter slope of the Bessel filter which can mitigate
more noise in comparison to the ideal sliding window filter.
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4
Enhanced Signal Detection of Nonlinear

Memoryless MIMO Channels

Due to the nonideal nature of analog multiplication devices, the signal detection suffers from
undesired higher-order nonlinear signal content. To conquer this problem, a nonlinear multiple-
input-multiple-output (MIMO) model can be identified and post-correction methods can be
applied to enhance signal detection. In [107] and [108] maximum likelihood detectors for nonlin-
early distorted multi-carrier systems are proposed. These approaches use an iterative detection
to correct memoryless nonlinear distortion present in transmitter amplifiers and assume AWGN
after the distortions, which can not be assumed for noncoherent multi-channel receivers. In
contrast, [109] proposes a polynomial MIMO model for OFDM communication systems which
incorporates a linear MMSE detector and uses an iterative post-correction to mitigate the non-
linear effects despite noise characteristics. In addition [110] proposes a neural network modeling
and identification approach for nonlinear MIMO channels. None of the aforementioned works
do model nonlinear cross-term effects between the MIMO channels which are fundamentally
present when using NOFDM signaling for noncoherent multi-channel receivers.

This chapter proposes a least-squares method to estimate the nonlinear MIMO channel in-
cluding cross-term effects and to enhance signal detection.
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4.1 Identification of Nonlinear Memoryless MIMO Channels

Identification of the analog receiver front-end as a whole for ISI free communication channels
can be done using a respective training symbol sequence at the input of the receiver. As stated
in Section 3.2.5 the system model in vector notation is given as

y =M¯̄d+ ν, (4.1)

where ¯̄d =
[

1,dH , (d⊗ d∗)H ,
⊗

3 {d}
H , · · · ,⊗U {d}H

]H
,M is the nonlinear memoryless MIMO

receiver model, and U is the maximum order of the nonlinearity. To identify the receiver means
to estimate M.

The estimation of M can be done using a least squares approach. Consider sending and receiv-
ing N different symbols, hence sending the K ×N symbol matrix T and obtaining observation
matrix

Y = M ¯̄T+N, (4.2)

where the columns
{¯̄tn
}
of ¯̄T are given as ¯̄tn =

[

1, tHn , (tn ⊗ t∗n)
H ,
⊗

3 {tn}
H , · · · ,⊗U {tn}H

]H
,

and N consist of all undesired terms. The vector tn resembles the nth column of the symbol
matrix T. The estimated nonlinear MIMO matrix M̂ is therefore given as

M̂ = Y ¯̄T†. (4.3)

Sufficient rank of Y and ¯̄T is important, i.e. the rows of ¯̄T need to be linearly independent so
that ¯̄T ¯̄TH is invertible and ¯̄T† exists. Simple OOK or PPMmodulation where the symbols dk are
limited to {0, 1} do not comply with this prerequisite as they cannot assure linearly independent
vectors

{¯̄tn
}
. Using ASK symbols (positive and negative) and a sufficient long training sequence

is inevitable. To ensure proper estimation of M̂, the condition number of ¯̄T needs to be as small
as possible. In Fig. 4.1 the dependency of rank and condition number of the number of ASK
levels for different U is shown. The length of the sequence was chosen to be 5000 symbols. It
can bee seen that trainings sequences with higher number of ASK levels the condition number
does decrease. An exception is U = 1, whereas the condition number increases. In Fig. 4.2 the
dependency of rank and condition number of the length of the trainings sequence for different
U is shown, where the number of ASK levels was set according to the minimum number of
ASK levels listed in Tab. 4.1. It can be seen that increasing sequence lengths for a given U , the
condition number does decrease. In Tab. 4.1 the minimal ASK levels and the minimal sequence
length to obtain full rank are listed.

Table 4.1: Minimum number of ASK levels and length of trainings sequence to fulfill sufficient rank and low
condition number.

U min. ASK levels min. length

1 2 8

2 3 36

3 4 120

4 5 330

5 6 792

6 7 1716
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(a) Rank of matrix ¯̄T . (b) Condition number of matrix ¯̄T .

Figure 4.1: Rank and condition number of matrix ¯̄T for various ASK levels and order U of nonlinearity.

(a) Rank of matrix ¯̄T . (b) Condition number of matrix ¯̄T .

Figure 4.2: Rank and condition number of matrix ¯̄T for various sequence lengths and order U of nonlinearity.
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4.2 Enhanced Signal Detection

When considering the nonlinear MIMO model identification in Section 4.1 the detection can
be enhanced by estimating the nondesired and nonideal signal content. This can be done by
incorporating the estimated nonlinear MIMO matrix M̂.

Consider the front-end output vector

y = M¯̄d+ ν. (4.4)

Detection means to estimate ¯̄d as good as possible. Signal detection can be done in the minimum-
distance sense, which means to find d which obtains the smallest error, hence

d̂ = arg min
d

{(

y − M̂¯̄d
)H (

y − M̂¯̄d
)}

(4.5)

= arg min
d

{

yHy − ¯̄dHM̂Hy − yHM̂¯̄d+ ¯̄dHM̂HM̂¯̄d
}

(4.6)

= arg min
d

{
¯̄dHM̂HM̂¯̄d− 2¯̄dHM̂Hy

}

(4.7)

To proof the enhanced detection method, exemplarily the BER is shown for the MC-AcR with
a nonideal multiplier model (see Section 3.2) in Fig. 4.3. The operating point of the multipliers
were set to −15 dBm and −20 dBm, respectively. It can be seen that by using the enhanced
signal detection for −20 dBm mixer input power with U = 2, and a trainings sequence with 3
ASK levels and a length of 4000 symbols, the BER can be minimized. To achieve a BER of 10−3

the enhanced signal detection method requires 2.5 dB less Eb/N0. For lower BER the difference
of required Eb/N0 increases, e.g. for a BER of 5 · 10−4 about 4.5 dB less Eb/N0 is required. For
a mixer input power of −15 dBm a model of U = 6 is needed. With a trainings sequence of 7
ASK levels and a length of 12000 symbols the BER can only be minimized for a Eb/N0 > 19 dB.

Figure 4.3: BER of the non-enhanced and enhanced detection with mixer input power of −20 dBm (U = 2,
3 ASK levels, 4000 symbols) and −15 dB (U = 6, 7 ASK levels, 12000 symbols).
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4.3 Summary

In this Chapter a method to identify the nonlinear memoryless MIMO channel of noncoherent
multi-channel receivers for ISI free scenarios has been proposed. The method is based on the
least-squares estimation using a trainings sequence with ASK symbols. The minimum number
of ASK levels and minimum sequence length was depicted.

Using the identified nonlinear memoryless MIMO channel, a minimum-distance based en-
hanced detection method has been proposed. It has been shown that method is able to reduce
the BER of an MC-AcR with a nonideal multiplier model.
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5
A Hardware Example

This chapter shows an actual hardware implementation of a noncoherent multi-channel receiver
architecture: an UWB multichannel autocorrelation receiver (MC-AcR). The hardware speci-
fication, design, and validation was part of the NOFDM - Noncoherent Orthogonal Frequency
Division Multiplexing project funded by the Autrian Research Promotion Agency (FFG) under
grant 825899. Project partners were, next to Signal Processing and Speech Communication Lab-
oratory of the Graz University of Technlology, who were responsible for the project management,
system engineering, signal processing, and algorithm design, EPCOS OHG (in the following re-
ferred to as EPCOS ) who were responsible for the design, production, and validation of the
custom-made low-temperature cofired ceramics (LTCC) filter, XERXES Electronics GmbH (in
the following referred to as XERXES ) who were responsible for the design, production, assem-
bly, and validation of the printed circuit boards (PCB), and xFace e.U. (in the following refered
to as xFace) who were responsible for the digital design and validation of a field-programmable
gate-array (FPGA) used for data acquisition and streaming of the captured data.

– 77 –



5 A Hardware Example

5.1 Multichannel Autocorrelation Receiver Hardware Architecture

An overview of the realized MC-AcR architecture is shown in Fig. 5.1. The target signaling was
an NOFDM signaling scheme as specified in Tab. 2.1. The receiver was hence specified to consist
of eight autocorrelation channels: four channels compute a short time estimate of the received
in-phase (I) signal for four different delay lags {τ1 = 0.5 ns, τ2 = 1.0 ns, τ3 = 1.5 ns, τ4 = 2.0 ns},
and four channels compute a short time estimate of the received quadrature-phase (Q) signal
of the same delay lags {τ1, τ2, τ3, τ4}. The I- and Q-signals are generated using delay lines with
τI = 0.45 ns and τQ = τI +

1
4fc

= 0.5125 ns delay23, respectively. The receiver front-end output
signals are sampled with double the symbol rate with a resolution of 14 bit. The actual hardware
consists of an RF board and a DSP board.

1. RF board: After signal reception with the UWB antenna, the received signal is filtered
by a band-selection filter (BP) and amplified with a low-noise amplifier. These two devices
were not part of the hardware design process. The amplified signal is then split into two
signals using a resistive power splitter. Each signal branch can be attenuated (PE43602
in Fig. 5.1) and gets amplified (HMC311SC70 ) individually to change the operating point
of the receiver. The delay lags, the I-signal, and the Q-signal are produced by filtering the
amplified received signal with UWB delay filters (EPCOS NOFDM LTCC ). The multipli-
cation of the I-signals or Q-signals with delayed versions of themselves is done by UWB
multiplication devices (UUlm UWB Mixer). After multiplication, the resulting signals are
amplified (AD4950 ) and filtered using a Bessel lowpass filters of 5th order with cut-off
frequency of 86.5 MHz. Cables with SMB connectors are used to connect the RF board
with the DSP board. The connector to the antenna is an SMA connector. Following is
the list of the used RF board components which play a role in the signal path:

• Peregrin Semiconductor PE43602 [111]: digital RF attenuator, frequency range from
9 kHz up to 5 GHz, attenuation range from 0 dB to 31.5 dB in 0.5 dB steps, insertion
loss of 2.2 dB.

• Hittite HMC311SC70 [112]: amplifier with a gain of 15 dB, frequency range from
0 Hz up to 8 GHz, noise figure is 5 dB.

• EPCOS NOFDM LTCC : delay lag filters, frequency range from 3 GHz up to 5 GHz,
loss between −9 dB and −25 dB.

• UUlm UWB Mixer [98]: UWB multiplier, input frequency range from 3 GHz up to
11 GHz for both input ports, first-order output lowpass filter with cut-off frequency
of 900 MHz, adds additional output noise of −68 dBm.

• Analog Devices AD4950 [113]: buffer amplifier with a gain of 4.8 dB, frequency range
from 0 Hz up to 750 MHz, output voltage noise density of 9.2 nV/

√
Hz (hence a noise

figure of 26 dB).

• Bessel 5th: 5th order Bessel lowpass filter, cut-off frequency of 86.5 MHz.

2. DSP board: The input of the DSP board is a buffer stage (ADA4938 ). After the buffer,
the signals are converted into digital domain using an analog-to-digital converter (ADC;
AD9640 ). The sampling rate is 125 MHz with an amplitude resolution of 14 bit. The
sampled signals are fed to an FPGA (XC6SLX150 ) which is responsible for data acquisition
and streaming of the captured data to a host PC. A Gigabit Ethenet transceiver (PHY;
VSC8641 ) is responsible for the data handling on of the Ethernet interface. The host PC
functions as data sink and handles the digital signal processing algorithms as equalization

23 Actually planned target delays were τI = 0 ps and τQ = 62.5 ps which unfortunately could not be met during
the LTCC design process. For all channels an additional delay was added due to the power splitters.
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5 A Hardware Example

and signal detection. Following is the list of the used DSP board components which play
a role in the signal path:

• Analog Devices ADA4938 [114]: low-distortion amplifiers used as buffers with gain
of 0 dB, frequency range from 0 Hz up to 1 GHz, noise figure of 26 dB.

• Analog Devices AD9650 [115]: ADC, resolution of 14 bits (effective number of bits
is 11.6 bits), sampling rate of 125 Msamples/s, frequency range from 0 Hz up to
650 MHz.

• Xilinx XC6SLX150 [116]: FPGA, clock frequency of 150 MHz.

• Vitesse VSC8641 [117]: Gigabit Ethernet transceiver.

Both, RF and DSP board (see Fig. 5.2), were designed, produced, and tested by XERXES.

(a) RF-board (b) DSP-board

Figure 5.2: Photographs of the RF- and DSP-board of the NOFDM MC-AcR.

5.2 Power and Noise Budget

In Tab. 5.1 the power-and noise-budget of the NOFDM receiver is shown. The maximal transmit
output power was set to be −9 dBm according to the FCC regulations for UWB communications
[25]. The channel loss was assumed to be between 40 dB and 60 dB, which represents a distance
between transmitter and receiver between 5 cm and 50 cm, respectively, according to the Friis
transmission equation [118]. For the used bandwidth of 2 GHz the noise power at the receiver
antenna is given as −80.97 dBm [119]. After band selection filtering, a cascade of low-noise am-
plifiers and tunable attenuators give the possibility to set the operation point of the multipliers,
hence the power of the multiplier input signals. The operation point of the multipliers is the
most critical specification of the receiver hardware. If the multiplier input signals are chosen
too low, the noise added by the multipliers would minimize the system SINR. If the multiplier
input signals are chosen too high, e.g. higher than −20 dBm, the multiplier introduce much
undesired signal content to their output signal (cf. Section 3.2.5).
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5 A Hardware Example

The hardware design was chosen to allow tuning of the two multiplier input signals inde-
pendently from each other, to be able to set different operating points for their input signal
powers. The eight multipliers have different input powers due the different attenuation of the
LTCC filters. The output SINR of the analog-front-end channels is given between 18.8 dB and
25.67 dB. An optional 15 dB amplification of the signals before the ADCs would be beneficial
to ensure a full swing of the ADCs but were neglected due to the fact, that the 14 bit of the
ADCs enable the reveicer to handle a high dynamic range.

5.3 LTCC Delay Filters

The delay line filters were designed and produced by EPCOS as one integrated system using low-
temperature cofired ceramics (LTCC) technology. The LTCC technology is capable of providing
highly integrated passive components as e.g. filters, power couplers, resonators with low resistive
and dielectric loss, good thermal conductivity, and high working temperature [120]. LTCCs
consist of many layers of ceramics used as insulators and silver used as conductor. Using these
layers it is possible to build lumped 3D elements as inductors or capacitors. Other components
as resistors or active devices can be mounted on top of the LTCC device using soldering, wire
bonding or using controlled collapse chip connection24. So called thermal vias can be used to
enhance heat transportation for mounted active components [121].

Figure 5.3: Photograph of the realized MC-AcR LTCC module with eight mounted UUlm UWB mixers.

The different delay line filters of the LTCC have a bandwidth of 2 GHz and due to the power
splitters do attenuate the signal between 10 dB and 25 dB (see Fig. 5.4). The LTCC design was
split into two parts. The first part consists of the delay filters with delays of {τ1, τ2, τ3, τ4} (see
Fig. 5.5(a)). The second part consists of delay filters with four delays of τI and four delays of
τQ (see Fig. 5.5(b)). The LTCC was designed to serve as substrate where the eight UUlm mixer
dies are bonded onto, to form a system-in-package (SiP). In Fig. 5.3 a photograph of an actual
LTCC module is depicted. Note the eight mixer dies and their wire bonding. In Fig. 5.6(a) the
correlation matrix of the LTCC filter cross-spectra is depicted. It can be seen that the channels
CH7 and CH8 are very similar to each other, but also CH1 and CH2 do have a high correlation
coefficient. This might explain the 2 dB Eb/N0 loss of the BER shown in Fig. 5.7 compared to

24 The controlled collapse chip connection is also known under the name flip chip.
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the BER of an ideal MC-AcR. This result was obtained by system simulations using frequency
response simulations of the LTCC by EPCOS.

(a) LTCC part 1 (b) LTCC part 2

Figure 5.4: Magnitude response of the LTCC delay line filters.

(a) LTCC part 1 (b) LTCC part 2

Figure 5.5: Group delay of the LTCC filters.
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(a) Cross-spectra correlation matrix (b) Signal co-term matrix

Figure 5.6: Correlation matrices of the LTCC filter cross-spectra and signal co-term matrix P (cond {P} =
13.86) for M = 8 channels.

(a) SINR (b) BER

Figure 5.7: SINR and BER of the MC-AcR with LTCC filters.
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5.4 UWB Multiplication Devices

The UWB multiplication devices were designed by Ulm University [98, 99]. They were de-
signed to perform a multiplication operation for a UWB correlation receiver [100] that supports
the full UWB frequency range from 3.1 GHz to 10.6 GHz defined by the FCC [25]. It has
been manufactured using Telefunken Semiconductor’s Si/SiGe2 heterojunction bipolar transis-
tor (Si/Ge2 HBT) technology [101]. As seen in its schematic Fig. 3.7, it consists of two active
single-ended-to-differential converter input stages (baluns), biasing circuitry, a four-quadrant
Gilbert cell multiplier, and an output buffer stage with a lowpass filter. In Fig. 5.8 a micrograph
of an actual mixer die is shown. In the realized MC-AcR design, the mixer dies are wire bonded
onto the LTCC module to form a SiP. Detailed description on the operation of the device is
given in Section 3.2 and [98].

Figure 5.8: Micrograph of the UWB mixer die designed by Ulm University. (Picture taken from [99].)

5.5 Mixed-Signal Integrators

The sliding window integration operation is done using a mixed-signal approach discussed in
Section 3.3 and [122]. The operator consists of a 5th order Bessel lowpass filter with a cut-
off frequency of 86.5 MHz in analog-domain and two-tap comb filter in digital-domain. The
impulse response and frequency response of the concatenated mixed-signal sliding window filter
are shown in Fig. 5.9.
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(a) Impulse response. (b) Frequency response

Figure 5.9: The mixed-signal impulse and magnitude response of the sliding window integration filter.

5.6 Digital Processing

After analog processing in the RF front-end, the processed signals are sampled using a 14 bit
ADC and a sampling rate of 125 MHz, which is the double symbol rate 1/Tsym. The digital design
on the FPGA, which was designed by xFace, is able to perform a raw-data packet streaming of
the ADC data output to a host PC using gigabit ethernet. The FPGA handles all the network
protocols as address resolution protocol (ARP) and transmission control protocol of the internet
protocol suite (TCP/IP).

A raw-data packet consists of 16384 samples of 9 synchronous streams with a resolution
of 14 bit each which are stored in a buffer during signal capturing. The first eight streams
represent the ADC outputs of the eight receiver channels. The last stream is used for triggering
and synchronization.

The digital back-end of the receiver can be operated in two ways to capture data:

1. Simple request: the host requests the actual data streams of the receiver. After the
request the receiver starts to capture the ADC raw-data. When the packet length of
16384 samples is reached, the receiver transmits the data to the host. The last stream in
the data packet is nonrelevant and filled with zeros.

2. Triggered request: the host requests a data stream of the receiver which is triggered
by the signal source. The signal source has, additionally to the data signal, to generate a
trigger signal which is connected with the CLKIN1 port of the receiver DSP-board. The
receiver starts capturing the data, when a trigger event was detected. After capturing of
16384 samples, the raw-data packet is sent to the host. The last stream in the data packet
shows now a one for all the samples which were captured after the trigger event.

To perform data capturing, xFace supports a Python [123] API which handles capturing requests
to the receiver, data reception, formatting, and saving the received data on the PCs hard-disk.
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5.7 System Validation

In Fig. 5.10 BER measurements are shown, where the input signal powers of the multipliers are
varied. The UWB signal was generated by a Tektronix AWG7102 waveform generator with a
sampling rate of 10 Gsamples/s. The input power P1 is the signal power of the input signal fed
to first part of the LTCC which is responsible for the delays {τ1, τ2, τ3, τ4} (cf. Fig. 5.1) whereas
the input power P2 is the signal power of the input signal fed to the second part of the LTCC
which is responsible for the delays τI and τQ. It can be seen that the minimal BER is given about
2.8 % at P1 = −2 dBm and P2 = 0 dBm. These measurements proof the general functionality
of such an MC-AcR concept, but the operating point of the multipliers has a big impact on
the receiver performance. It needs to be noted, that the data sampling of the receiver was not
synchronized to the start of the symbol periods generated by the signal generator which caused
the BER deviations that can be observed in the figure. Due to a broken RF board, planed
synchronized measurements using the trigger capabilities of the DSP board could unfortunately
not be carried out. Those measurements should have given a more detailed insight about the
receiver operational point.

Figure 5.10: Measured BER for various LTCC input powers.

5.8 Summary

In this Chapter a hardware example of an MC-AcR has been presented. The receiver architec-
ture, the used components, and the power and noise budgets have been discussed. The core
receiver technology consists of LTCC delay lines, Si/SiGe2 HBT UWB mixers, and 5th-order
analog Bessel lowpass integration filters. The frequency response of the LTCC delay line filters
varied from the specifications. Nevertheless, simulations have obtained a BER only 2 dB worse
than an ideal MC-AcR. Also a BER measurement has been presented, where the LTCC input
signal power has been varied. The measurements of the hardware receiver have obtained a min-
imum BER of 2.8 %. This shows that the investigated receiver works, in principle. However, it
also shows that the undesired impact of the analog multipliers plays a crucial role. The receiver
performance strongly depends on the operating point of those multipliers.
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6
Thesis Summary and Conclusions

To conclude this thesis, this Chapter gives a brief summary and draws some general conclusions.

6.1 Thesis Summary

Chaper 1: Introduction

• The need of noncoherent multi-channel receivers has been motivated.

• A historical summary of the evolution of the first experiments with spark-gap transmitters
to noncoherent multi-channel receivers has been drawn.

• The ultra-wideband channel has been shortly discussed.

• An overview of noncoherent ultra-wideband receiver as energy detectors and autocorrela-
tion receivers has been given. Additionally, current works on noncoherent multi-channel
receivers have been discussed.

• The research question of this thesis has been stated.

Chaper 2: The Generalized Noncoherent Multi-Channel Receiver

• This thesis studies the class of noncoherent multi-channel receivers. To do so, a general-
ized mathematical framework has been formulated, which includes multi-channel energy
detectors and multi-channel autocorrelation receivers.

• A noncoherent multi-carrier signaling, called NOFDM, has been introduced. This signaling
scheme consists of subcarriers which insignificantly overlap and are modulated using on-off
keying or pulse position modulation.

• Rules have been stated to obtain front-end filter to ensure optimal noncoherent multi-
channel receiver performance.

• Zero-forcing and minimum-mean-square error linear detection have been described for on-
off keying and binary pulse position modulated multi-carrier signals.
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• Performance metrics, as bit-error rate, signal-to-interference-and-noise ration, signal-to-
interference ration, and signal-to-noise ration have been introduced. To evaluate those
metrics, a simulation framework has been discussed.

• Reference receivers have been defined, namely the multi-channel energy detector, the multi-
channel matched-filter energy detector, and the multi-channel autocorrelation receiver.
Their system performance has been discussed.

Chaper 3: Analysis of Realistic Front-End Components

• The design of optimal front-end filters using meta-heuristic optimization algorithms has
been studied. A possible multi-objective cost-function was proposed. Filter solutions
found by those algorithms have been discussed and their performance has been compared.

• A MIMO Wiener-Hammerstein system has been introduced, to model realistic nonideal
multiplication devices. Such a model consists of linear time-invariant input and output
filters and a static bivariate polynomial to model the inherent nonlinear behavior of such
devices. An identification method for the model parameters has been shown using single-
tone and UWB measurements and least-squares estimators. Using the obtained models,
the impact of those realistic analog multipliers on the system performance has been dis-
cussed.

• A mixed-signal sliding window integrator has been proposed which consist of an analog
lowpass Bessel filter and a digital comb filter. The impact of these integrators on the
system performance has been shown.

Chaper 4: Enhanced Signal Detection of Nonlinear Memoryless MIMO Channels

• A postcorrection method has been proposed for noncoherent multi-channel receivers to
mitigate undesired nonlinear effects for ISI free scenarios.

Chaper 5: A Hardware Example

• The architecture and hardware components of a multi-channel autocorrelation receiver
have been discussed.

• The power and the noise budgets have been presented.

• The characteristics of the LTCC delay line filter have been shown. Its influence on the
system performance has been discussed.

• The UWB mixer designed by Ulm University, the used mixed-signal integration filter, and
the digital back-end have been discussed.

• Finally, bit-error rate measurements have been presented to validate the system perfor-
mance.
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6.2 Discussion of Research Hypothesis

This thesis analyzed if noncoherent multi-channel UWB communication systems are a potential
low-complexity low-power alternative to coherent MB-OFDM UWB for high data rate appli-
cations. Due to the noncoherent detection, no power hungry and complex carrier and phase
estimations are needed at the receiver. The multi-channel signaling drastically increases the
data rate, while maintaining low-complexity receiver systems known from conventional single-
channel UWB receivers as ED and AcR.

The introduced noncoherent multi-carrier signaling, called NOFDM, consists of subcarriers
which insignificantly overlap and are modulated using OOK or PPM. It has proven to be suitable
for noncoherent multi-channel receivers.

The generalized mathematical framework introduced in this thesis shows that all noncoherent
multi-channel receivers belong to the same class. Next to receivers with ideal projection fil-
ters, such as multi-channel energy detectors, multi-channel matched-filter energy detectors, and
multi-channel autocorrelation receivers, there exist many receiver types with various different
projection filters. Second-order projection filter cross-spectra have proven to be sufficient to
obtain a BER performance similar to the multi-channel autocorrelation reference receiver.

The most crucial components within the receiver signal processing chain are the analog mul-
tipliers. These devices may introduce many undesired signal terms if the operating point is not
chosen wisely. The presented MISO Wiener-Hammerstein model gives insight about these unde-
sired signal terms and offers the possibility to identify an optimal operating point. The obtained
model parameters are also useful to compare different multiplier devices with each other, while as
conventional single-tone and dual-tone mixer metrics cannot give any meaningful characteristics
for mixers used as multiplication devices.

The proposed UWB mixed-signal sliding window integrators are able to improve the receiver
performance by mitigating system noise and signal cross-terms using standard system blocks as
analog Bessel filters and analog-to-digital converters. The inherent trade-off between analog filter
order and digital sampling rate is an advantage which might also be useful in other applications.

The insight which is obtained by the MISOWiener-Hammerstein multiplier model is a possible
way forward towards equalizing undesired nonlinear signal components of noncoherent multi-
channel receivers. The proposed nonlinear MIMO estimation and enhanced detection approach
has shown gain.

The presented multi-channel autocorrelation hardware receiver is a proof that it is possible
to design and manufacture generalized noncoherent multi-channel receivers with today’s tech-
nologies. Problems caused by the analog multipliers, e.g. insertion loss, operating point, and
power consumption, might be solvable for receivers completely designed in (Bi)CMOS. Due to
the relaxed complexity of second-order projection filters, an integration in (Bi)CMOS appears
to be possible.
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A
Description of UWB Channel Parameters

The multipath channel can be described, using a tapped delay line model, as

c(t, τ) =

N−1∑

n=0

αn(t)δ(τ − τn(t)),

where N is the number of paths a signal propagates, αn(t) is the complex gain of the nth ray,
δ (·) is the Dirac delta function [33], and τn is the time the signal needs to propagate via the
nth path. In general the channel c(t, τ) is time-variant, given that receivers, transmitters, or
reflectors may move. For the time-variant channel c(t, τ), t is the time parameter whereas τ is
the delay parameter. The received signal r(t) is therefore given as

r (t) =

∫ +∞

τ=−∞
s (t− τ) c (t, τ) dτ + n(t),

where s(t) is the sent signal, and n(t) is noise.

The multipath channel can be modeled as stochastic processes and can be statistical described.
An important figure is the power delay profile (PDP) of the channel, which is defined for wide-
sense stationary uncorrelated scattering (WSSUS) channels as [32]

Pc(τ) = lim
T→∞

1

2T

∫ +T

−T
|c(t, τ)|2 dt. (A.1)

The PDP shows how much power arrives on average at the receiver with a certain delay τ . In
[64] a possible simple channel model is described which will be used in this work. It defines an
exemplary PDP which is given as

Pc (τ) =







KLOS

KLOS+1δ(τ) , for τ = 0

1
KLOS+1

1
τRMS

e
− 1

τRMS
τ

, for τ > 0,

where we assume that the first ray is the dominant line-of-sight (LOS) ray and arrives at τ = 0.
All other rays with τn > 0 are the non-line-of-sight (NLOS) rays. The parameter KLOS is the
Ricean K-factor which gives the ratio between the LOS power and the power of the NLOS rays.
The parameter τRMS is the so called RMS delay spread [32]. The parameters of the channel
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model can be obtained from stochastic processes. For independent realizations the parameters
are defined as follows:

The ray amplitudes are given as

αn =







√
KLOS

KLOS+1e
jγn , for n = 0

βne
jγ , for n > 0,

where βn shows Nakagami-m distributed statistics [124] with given probability distribution func-
tion (PDF) of

p (βn) =
2mm

Γ (m) Ωm
β2m−1e−

m
Ω
β2

, (A.2)

where Γ(·) is Euler’s Gamma function [33], and

Ωn =
1

τRMS

1

K + 1

1

λ
e
− τ

τRMS .

The phase γn is uniformly distributed within γn ∈ [0, 2π).
The delays {τn} are modeled similar to the Saleh-Valenzuela delay model [125], so that the

difference between two delays ∆τ = τn − τn−1 is distributed with a PDF of

p (∆τ) = λe−λ∆τ ,

for ∆τ > 0 and where λ is the ray arrival rate.

(a) Absolute value of the channel impulse response. (b) Magnitude response.

Figure A.1: Example of a time-variant multipath channel at given time t.

In Fig. A.1 a sample function of a time-variant multipath channel is shown. The channel
parameters are given in Tab. 2.2. In Fig. A.1(a) the impulse response is shown. The dominant
LOS ray can be easily seen. The NLOS rays have amplitudes which decay in an exponential
fashion for increasing delay τ , corresponding to the exponential PDP. In Fig. 1.1(b) the magni-
tude response is shown. Clearly visible are the deep fading-dips which would cause narrowband
and wideband communication systems which operate at those fading frequencies to experience
degraded performance. Due to the ultra-wide bandwidth of UWB signals, they would still have
signal components outside the fading-dips and are, hence, robust against fading in contrast to
those narrowband and wideband communication signals.
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B
Proofs

B.1 SINR

For ISI free condition we can consider a single symbol period Tsym only without loss of generality.
By expanding this symbol period periodically, the sent signal s(t) can be represented as the
Fourier series

s(t) =
+∞∑

i=−∞

sie
jω0it,

where ω0 =
2π

Tsym
. The Fourier coefficients si are given as

si =
1

Tsym

∫ Tsym

t=0
s(t)e−jω0itdt.

The received signal r(t) is (as in (2.2)) given as

r(t) = c(t) ∗ s(t) + n(t),

where c(t) is the transmission channel and n(t) is a band-limited Gaussian noise process with
a flat power density spectrum. Using Fourier series expansion the noise process n(t) can be
represented in the integration interval Tsym as

n(t) =

+∞∑

i=−∞

nie
jω0it

with its Fourier coefficients

ni =
1

Tsym

∫ Tsym

t=0
n(t)e−jω0it.
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Hence, the Fourier coefficients ri of the received signal

r(t) =
+∞∑

i=−∞

rie
jω0it

is given as

ri =
1

Tsym

∫ Tsym

t=0
(c(t) ∗ s(t) + n(t)) e−jω0itdt

=
1

Tsym

∫ Tsym

t=0

(∫ +∞

τ=−∞
c(t− τ)s(τ)dτ + n(t)

)

e−jω0itdt

=
1

Tsym

∫ Tsym

t=0

(∫ +∞

τ=−∞
c(t− τ)s(τ)dτ

)

e−jω0itdt+
1

Tsym

∫ Tsym

t=0
n(t)e−jω0itdt

=
1

Tsym

∫ Tsym

t=0

(
∫ +∞

τ=−∞
c(t− τ)

+∞∑

k=−∞

ske
jω0kτdτ

)

e−jω0itdt+ ni

=
1

Tsym

∫ Tsym

t=0

(
+∞∑

k=−∞

sk

∫ +∞

τ=−∞
c(t− τ)ejω0kτdτ

)

e−jω0itdt+ ni

=
1

Tsym

∫ Tsym

t=0

(
+∞∑

k=−∞

sk

∫ +∞

τ=−∞
c(τ + t)e−jω0kτdτ

)

e−jω0itdt+ ni

=
1

Tsym

∫ Tsym

t=0

(
+∞∑

k=−∞

C(jω0k)ske
jω0kt

)

e−jω0itdt+ ni

=
1

Tsym

+∞∑

k=−∞

C(jω0k)sk

∫ Tsym

t=0
ejω0kte−jω0itdt+ ni

=
1

Tsym

+∞∑

k=−∞

C(jω0k)sk

∫ Tsym

t=0
ejω0(k−i)tdt+ ni.

The integral

∫ Tsym

t=0
ejω0(k−i)tdt =

∫ Tsym

t=0
cos (ω0(k − i)t) + j sin (ω0(k − i)t) dt

=

[
sin (ω0(k − i)t)

ω0(k − i)
− j

cos (ω0(k − i)t)

ω0(k − i)

]Tsym

t=0

=
sin (ω0(k − i)Tsym)

ω0(k − i)
− j

cos (ω0(k − i)Tsym)

ω0(k − i)
+ j

1

ω0(k − i)

=
sin (2π(k − i))

ω0(k − i)
− j

cos (2π(k − i))

ω0(k − i)
+ j

1

ω0(k − i)

simplifies, using L’Hôpital’s rule, to

∫ Tsym

t=0
ejω0(k−i)tdt = Tsymδk−i,

where δi is the Kronecker delta. Using this equality the Fourier coefficients of r(t) can be
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rewritten to

ri =

+∞∑

k=−∞

C(jω0k)skδk−i + ni

= C(jω0i)si + ni.

With the ci = C(jω0i) the Fourier coefficients of r(t) are finally given as

ri = cisi + ni.

The mth receiver channel output ym is hence given as

ym =

∫ Tsym

t=0
(hm(t) ∗ r(t)) (gm(t) ∗ r(t)) dt

=

∫ Tsym

t=0

(

hm(t) ∗
+∞∑

k=−∞

rke
jω0kt

)(

gm(t) ∗
+∞∑

l=−∞

rle
jω0lt

)

dt

=

∫ Tsym

t=0

(
+∞∑

k=−∞

Hm(jω0k)rke
jω0kt

)(
+∞∑

l=−∞

Gm(jω0l)rle
jω0lt

)

dt

=

∫ Tsym

t=0

(
+∞∑

k=−∞

hm,krke
jω0kt

)(
+∞∑

l=−∞

gm,lrle
jω0lt

)

dt

=
+∞∑

k=−∞

+∞∑

l=−∞

hm,kgm,lrkrl

∫ Tsym

t=0
ejω0ktejω0ltdt

=

+∞∑

k=−∞

+∞∑

l=−∞

hm,kgm,lrkrlTsymδk+l

= Tsym

+∞∑

k=−∞

hm,kgm,−krkr−k,

where hm,k = Hm(jω0k) and gm,l = Gm(jω0l). Further simplification gives

ym = Tsym

+∞∑

i=−∞

hm,ig
∗
m,irir

∗
i

= Tsym

+∞∑

i=−∞

hm,ig
∗
m,ik (cisi + ni) (c

∗
i s

∗
i + n∗i )

= Tsym

+∞∑

i=−∞

hm,ig
∗
m,i

(

ci

K∑

k=1

dkϕk,i + ni

)(

c∗i

K∑

l=1

d∗l ϕ
∗
l,i + n∗i

)

for real valued hm(t) and gm(t).
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Expansion of the mth receiver output ym gives

ym = Tsym

+∞∑

i=−∞

hm,ig
∗
m,icic

∗
i

K∑

k=1

dkd
∗
kϕk,iϕ

∗
k,i

︸ ︷︷ ︸

signal co-terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,icic

∗
i

K∑

k=1

K∑

l=1
l 6=k

dkd
∗
l ϕk,iϕ

∗
l,i

︸ ︷︷ ︸

signal cross-terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,ici

(
K∑

k=1

dkϕk,i

)

n∗i

︸ ︷︷ ︸

signal-by-noise terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,ic

∗
ini

(
K∑

l=1

d∗l ϕ
∗
l,i

)

︸ ︷︷ ︸

noise-by-signal terms

+ Tsym

+∞∑

i=−∞

hm,ig
∗
m,inin

∗
i

︸ ︷︷ ︸

noise-by-noise terms

where the signal co-, cross-, signal-by-noise, noise-by-signal, and noise-by-noise terms are explic-
itly shown.

In matrix representation, the mth receiver output can be written as

ym = Tsymg
H
mHmCHCΨ (d⊙ d∗)

+ Tsymg
H
mHmCHCΨ̃

(
d⊗̃d∗

)

+ Tsymg
H
mHmCNHΦd

+ Tsymg
H
mHmCHNΦ∗d∗

+ Tsymg
H
mHmn′,

where the elements of the vectors gm and n′ are given as [gm]i = gm,i and [n′]i = nin
∗
i . The

matrices Hm, C, and N, are diagonal matrices with [Hm]i,i = hm,i, [C]i,i = ci, and [N]i,i = ni.

The elements of the matrices Φ, Ψ, and Ψ̃ are given as [Φ]i,k = ϕk,i, [Ψ]i,k = ϕk,iϕ
∗
k,i, and the

columns of Ψ̃ consist of ϕk ⊙ϕ∗
l for k = 1, . . . ,K, l = 1, . . . ,K, but l 6= k. The elements of the

vector ϕk are given as [ϕk]i = ϕk,i.

Note that the projection filter cross-spectra
{
xH
m = gH

mHm

}
do play a crucial role in the

processing of all signal, noise, and cross terms. If defining a projection filter cross-spectra
matrix X with [X]i,m = gm,ih

∗
m,i, the receiver output vector y can be represented as

y = TsymX
HCHCΨ (d⊙ d∗) } =: α

+ TsymX
HCHCΨ̃

(
d⊗̃d∗

) } =: β

+ TsymX
HCNHΦd

+ TsymX
HCHNΦ∗d∗

+ TsymX
Hn′,







=: ν
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hence,

y = α+ β + ν.

The decision variable vector z is therefore given as

z = (d⊙ d∗)

+ TsymWXHCHCΨ̃
(
d⊗̃d∗

)

+ TsymWXHCNHΦd

+ TsymWXHCHNΦ∗d∗

+ TsymWXHn′,

where W is the inverse of XHCHCΨ.

B.1.1 SINR for an Arbitrary Signaling

The SINR of the decision vector can be defined as

SINR =
E
{
αHWHWα

}

E {βHWHWβ}+ E {νHWHWβ} + E {βHWHWν} + E {νHWHWν}

=
tr
{
WE

{
ααH

}
WH

}

tr {W (E {ββH}+ E {νβH}+ E {βνH}+ E {ννH})WH} .

The co-term covariance matrix E
{
ααH

}
is given as

E
{
ααH

}
= T 2

symE
{

XHCHCΨ (d⊙ d∗) (d⊙ d∗)H ΨHCHCX
}

= T 2
symX

HCHCΨE
{

(d⊙ d∗) (d⊙ d∗)H
}

ΨHCHCX

= T 2
symX

HCHCΨRd⊙d∗ΨHCHCX,

where

[Rd⊙d∗ ]k,l = E {dkd∗kdld∗l } .

Using the equality

XHCHCΨ̃
(
d⊗̃d∗

)
= XHCHC ˜̃Ψ (d⊗ d∗)−XHCHCΨ (d⊙ d∗) ,

where
[
˜̃Ψ
]

i,k+K(l−1)
= ϕk,iϕ

∗
l,i with k = 1, . . . ,K, l = 1, . . . ,K, the cross-term covariance matrix

E
{
ββH

}
is given as

E
{
ββH

}
= T 2

symE

{(

XHCHC ˜̃Ψ (d⊗ d∗)−XHCHCΨ (d⊙ d∗)
)

×
(

XHCHC ˜̃Ψ (d⊗ d∗)−XHCHCΨ (d⊙ d∗)
)H
}
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E
{
ββH

}
= T 2

symE
{(

XHCHC ˜̃Ψ (d⊗ d∗)−XHCHCΨ (d⊙ d∗)
)

×
(

(d⊗ d∗)H ˜̃ΨHCHCX− (d⊙ d∗)H ΨHCHCX
)}

= T 2
symX

HCHC ˜̃ΨE
{

(d⊗ d∗) (d⊗ d∗)H
}

˜̃ΨHCHCX

− T 2
symX

HCHC ˜̃ΨE
{

(d⊗ d∗) (d⊙ d∗)H
}

ΨHCHCX

− T 2
symX

HCHCΨE
{

(d⊙ d∗) (d⊗ d∗)H
}

˜̃ΨHCHCX

+ T 2
symX

HCHCΨE
{

(d⊙ d∗) (d⊙ d∗)H
}

ΨHCHCX

= T 2
symX

HCHC ˜̃ΨRd⊗d∗

˜̃ΨHCHCX

− T 2
symX

HCHC ˜̃ΨR̃d⊗d∗ΨHCHCX

− T 2
symX

HCHCΨR̃H
d⊗d∗

˜̃ΨHCHCX

+ T 2
symX

HCHCΨRd⊙d∗ΨHCHCX,

where

[Rd⊗d∗ ]k+K(l−1),u+K(v−1) = E {dkd∗l dud∗v}

and
[

R̃d⊗d∗

]

k+K(l−1),u
= E {dkd∗l dud∗u}

with u = 1, . . . ,K, v = 1, . . . ,K.

The correlation matrix E
{
νβH

}
is given as

E
{
νβH

}
= T 2

symE

{
(
XHCNHΦd+XHCHNΦ∗d∗ +XHn′

)

×
(

XHCHC ˜̃Ψ (d⊗ d∗)−XHCHCΨ (d⊙ d∗)
)H
}

= T 2
symE

{
(
XHCNHΦd+XHCHNΦ∗d∗ +XHn′

)

×
(

(d⊗ d∗)H ˜̃ΨHCHCX− (d⊙ d∗)H ΨHCHCX
)}

= T 2
symX

HCE
{
NH

}
ΦE

{

d (d⊗ d∗)H
}

˜̃ΨHCHCX

+ T 2
symX

HCHE {N}Φ∗E
{

d∗ (d⊗ d∗)H
}

˜̃ΨHCHCX

+ T 2
symX

HE
{
n′
}
E
{

(d⊗ d∗)H
}

˜̃ΨHCHCX

− T 2
symX

HCE
{
NH

}
ΦE

{

d (d⊙ d∗)H
}

ΨHCHCX

− T 2
symX

HCHE {N}Φ∗E
{

d∗ (d⊙ d∗)H
}

ΨHCHCX

− T 2
symX

HE
{
n′
}
E
{

(d⊙ d∗)H
}

ΨHCHCX
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Due to E {ni} = 0 and E {n∗ini} = σ2
n

Tsym
, the covariance matrix E {νβ} simplifies to

E
{
νβH

}
= T 2

symX
HE

{
n′
}
E
{

(d⊗ d∗)H
}

˜̃ΨHCHCX

− T 2
symX

HE
{
n′
}
E
{

(d⊙ d∗)H
}

ΨHCHCX

= Tsymσ
2
nx̄

∗rHd⊗d∗

˜̃ΨHCHCX

− Tsymσ
2
nx̄

∗rHd⊙d∗ΨHCHCX

with

[x̄]m =

+∞∑

i=−∞

gm,ih
∗
m,i,

[rd⊗d∗ ]k+K(l−1) = E {dkd∗l } ,

and

[rd⊙d∗ ]k = E {dkd∗k} .

The correlation matrix E
{
βνH

}
is similarly given as

E
{
βνH

}
= E

{
νβH

}H

= Tsymσ
2
nX

HCHC ˜̃Ψrd⊗d∗ x̄T

− Tsymσ
2
nX

HCHCΨrd⊙d∗x̄T .

The covariance matrix E
{
ννH

}
is given as

E
{
ννH

}
= T 2

symE
{ (

XHCNHΦd+XHCHNΦ∗d∗ +XHn′
)

×
(
XHCNHΦd+XHCHNΦ∗d∗ +XHn′

)H
}

= T 2
symE

{ (
XHCNHΦd+XHCHNΦ∗d∗ +XHn′

)

×
(
dHΦHNCHX+ dTΦTNHCX+ n′HX

)}

= T 2
symX

HCE
{
NHΦddHΦHN

}
CHX

+ T 2
symX

HCE
{
NHΦddTΦTNH

}
CX

+ T 2
symX

HCE
{
NHΦdn′H

}
X

+ T 2
symX

HCHE
{
NΦ∗d∗dHΦHN

}
CHX

+ T 2
symX

HCHE
{
NΦ∗d∗dTΦTNH

}
CX

+ T 2
symX

HCHE
{
NΦ∗d∗n′H

}
X

+ T 2
symX

HE
{
n′dHΦHN

}
CHX

+ T 2
symX

HE
{
n′dTΦTNH

}
CX

+ T 2
symX

HE
{
n′n′H

}
X.

We know and with E {ninj} = E
{

n∗in
∗
j

}

= 0 for i, j ∈ Z and for complex zero-mean ni, nj . Fur-

ther we known from the Isserlis’ theorem [126] that for Gaussian random variables E {ninjnk} =
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0 holds, hence

E
{
ννH

}
= T 2

symX
HCE

{
NHΦddHΦHN

}
CHX

+ T 2
symX

HCHE
{
NΦ∗d∗dTΦTNH

}
CX

+ T 2
symX

HE
{
n′n′H

}
X

= 2Tsymσ
2
nX

HCSCHX

+ σ4n
(
x̄∗x̄T +XHX

)
,

where

[S]i,i =

K∑

k=1

K∑

l=1

E {dkd∗l }ϕk,iϕ
∗
l,i.

�

B.1.2 SINR for an Ideal NOFDM Signaling

For a single decision variable zm we get

zk = Tsymw
T
kX

HCHCΨ (d⊙ d∗)

+ Tsymw
T
kX

HCHCΨ̃
(
d⊗̃d∗

)

+ Tsymw
T
kX

HCNHΦd

+ Tsymw
T
kX

HCHNΦ∗d∗

+ Tsymw
T
kX

Hn′,

where wT
k is the kth row of W. When we consider ideal NOFDM, that is the subcarriers are

not overlapping and, hence, are mutually orthogonal, we know that Ψ̃ = 0. Hence, the SINR of
ideal NOFDM is represented by its SNR.

When we consider ideal NOFDM, that is that the subcarriers are not overlapping and, hence,
are ideal mutually orthogonal, and when we consider that TsymWXHCHCΨ = IK×K , so that
W is the pseudo inverse of TsymX

HCHCΨ, we know that Ψ̃ = 0 and that

ψ̂′
k = Tsymw

T
kX

H ≈ ψ′H
k

ψ′H
k ψ

′
k

, (B.1)

where ψ′
k is the kth column of Ψ′ = CHCΨ. Therefore, we can simplify the previous equation

to

zk = ψ̂′H
k Ψ′ (d⊙ d∗) + ψ̂′H

k NHΦ′d+ ψ̂′H
k NΦ′∗d∗ + ψ̂′H

k n′,

where Φ′ = CΦ. With ψ̂′H
k Ψ′ (d⊙ d∗) = |dk|2 we obtain

zk = |dk|2
︸︷︷︸

=:αk

+ ψ̂′H
k NHΦ′d+ ψ̂′H

k NΦ′∗d∗ + ψ̂′H
k n′

︸ ︷︷ ︸

=:νk

,

where we can see that the signal-by-noise, noise-by-signal, and noise-by-noise terms are projected

onto the detection space spanned by
{

ψ̂′
k

}

.

Note that for an ideal NOFDM signal where the subcarriers are ideally separated in frequency
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domain,
ψ′H

k

||ψ′

k
||2Φ

′d =
ψ′H

k

||ψ′

k
||2dkϕ

′
k, where ϕ

′
k is the kth column of Φ′, we obtain

zk ≈ |dk|2 + dk
ψ′H

k

ψ′H
k ψ

′
k

NHϕ′
k + d∗k

ψ′H
k

ψ′H
k ψ

′
k

Nϕ′∗
k +

ψ′H
k

ψ′H
k ψ

′
k

n′,

where ϕ′
k is the kth column of Φ′. It needs to be noted that in this ideal case the signal-by-noise

and noise-by-signal terms are only dependent on the transmitted data symbol dk, but not on
the transmitted data of the other subcarriers.

The SNR of the decision vector z for an ideal NOFDM signalling is given as

SNR =

∑K
k=1 E

{
|dk|4

}

∑K
k=1 E

{
νkν

∗
k

}

where the expectation operator E {·} is taken in respect to the noise {ni}.

Mean

For optimization and analysis of detectors, we need to derive noise statistics. The conditioned
mean E {νk|d} is given as

E {νk|d} = E
{

ψ̂′H
k NHΦ′d+ ψ̂′H

k NΦ′∗d∗ + ψ̂′H
k n′

}

.

With E {ni} = 0 the equation simplifies to

E {νk|d} = E
{

ψ̂′H
k n′

}

=
σ2n
Tsym

+∞∑

i=−∞

ψ̂′∗
k,i.

With ψ̂′
k ≈ ψ′H

k

ψ′H
k
ψ′

k

and ideal NOFDM signaling we can approximate E {νk|d} as in the previous

equation and, finally, obtain

E {νk|d} =
σ2n
Tsym

||ϕ′
k,i||2

||ψ′
k,i||2

.

�

Correlation

The conditioned correlation E {νkν∗l |d} is given

E {νkν∗l |d} = E
{(

ψ̂′H
k NHΦ′d+ ψ̂′H

k NΦ′∗d∗ + ψ̂′H
k n′

)

×
(

ψ̂′H
l NHΦ′d+ ψ̂′H

l NΦ′∗d∗ + ψ̂′H
l n′

)H
}

.

– 103 –



B Proofs

When expanding the terms, we obtain

E {νkν∗l |d} = E
{

ψ̂′H
k NHΦ′ddHΦ′HNψ̂′

l

}

+E
{

ψ̂′H
k NHΦ′ddTΦ′TNHψ̂′

l

}

+E
{

ψ̂′H
k NHΦ′dn′Hψ̂′

l

}

+E
{

ψ̂′H
k NΦ′∗d∗dHΦ′HNψ̂′

l

}

+E
{

ψ̂′H
k NΦ′∗d∗dTΦ′TNHψ̂′

l

}

+E
{

ψ̂′H
k NΦ′∗d∗n′Hψ̂′

l

}

+E
{

ψ̂′H
k n′dHΦ′HNψ̂′

l

}

+E
{

ψ̂′H
k n′dTΦ′TNHψ̂′

l

}

+E
{

ψ̂′H
k n′n′Hψ̂′

l

}

.

With E {ninj} = E
{

n∗in
∗
j

}

= 0 for i, j ∈ Z and for complex zero-mean ni, nj and E {ninjnk} = 0

for Gaussian random variables we get

E {νkν∗l |d} = E
{

ψ̂′H
k NHΦ′ddHΦ′HNψ̂′

l

}

+E
{

ψ̂′H
k NΦ′∗d∗dTΦ′TNHψ̂′

l

}

+E
{

ψ̂′H
k n′n′Hψ̂′

l

}

.

When rewriting the equation in index notation, we obtain

E {νkν∗l |d} =
+∞∑

j=−∞

ψ̂′
l,j

+∞∑

i=−∞

ψ̂′∗
k,i

K∑

p=1

dpϕ
′
p,i

K∑

q=1

d∗qϕ
′∗
q,jE {n∗inj}

+

+∞∑

j=−∞

ψ̂′
l,j

+∞∑

i=−∞

ψ̂′∗
k,i

K∑

p=1

d∗pϕ
′∗
p,i

K∑

q=1

dqϕ
′
q,jE

{
nin

∗
j

}

+

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

j=−∞

ψ̂′
l,jE

{
nin

∗
injn

∗
j

}

=
σ2n
Tsym

K∑

p=1

K∑

q=1

dpd
∗
q

+∞∑

i=−∞

ψ̂′
l,iψ̂

′∗
k,iϕ

′
p,iϕ

′∗
q,i

+
σ2n
Tsym

K∑

p=1

K∑

q=1

d∗pdq

+∞∑

i=−∞

ψ̂′
l,iψ̂

′∗
k,iϕ

′∗
p,iϕ

′
q,i

+
σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

j=−∞

ψ̂′
l,j (1 + δi−j) .
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For non-overlapping subcarriers, so that ϕ∗
p,iϕq,i = 0 for p 6= q, we can rewrite the previous

equation to

E {νkν∗l |d} =
σ2n
Tsym

K∑

p=1

|dp|2
+∞∑

i=−∞

ψ̂′
l,iψ̂

′∗
k,i|ϕ′

p,i|2

+
σ2n
Tsym

K∑

p=1

|dp|2
+∞∑

i=−∞

ψ̂′
l,iψ̂

′∗
k,i|ϕ′

p,i|2

+
σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

j=−∞

ψ̂′
l,j +

σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,iψ̂

′
l,i.

For
{

ψ̂′
k

}

being mutually orthogonal, which can be assumed due to (B.1) and {ψ′
k} being

mutually orthogonal, the equation can be rewritten to

E {νkν∗l |d} = 2δk−l
σ2n
Tsym

K∑

p=1

|dp|2
+∞∑

i=−∞

|ψ̂′
k,i|2|ϕ′

p,i|2

+
σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

j=−∞

ψ̂′
l,j + δk−l

σ4n
T 2
sym

+∞∑

i=−∞

|ψ̂′
k,i|2.

If we assume that
(

ψ̂′
k ⊙ ψ̂′∗

k

)

is orthogonal to
(
ϕ′

p ⊙ϕ′∗
p

)
for p 6= k, e.g. if ψ̂′

k does not overlap

with ϕp for p 6= k ,we get

E {νkν∗l |d} = 2δk−l
σ2n
Tsym

|dk|2
+∞∑

i=−∞

|ψ̂′
k,i|2|ϕ′

k,i|2

+
σ4n
T 2
sym

+∞∑

i=−∞

ψ̂′∗
k,i

+∞∑

i=−∞

ψ̂′
l,i + δk−l

σ4n
T 2
sym

+∞∑

i=−∞

|ψ̂′
k,i|2. (B.2)

Note that the first term in the second line resembles E {νk|d}E {ν∗l |d}.
With ψ̂′

k ≈ ψ′H
k

ψ′H
k
ψ′

k

and ideal NOFDM signaling we can approximate E {νkν∗l |d} as in (B.2)

and, finally, obtain

E {νkν∗l |d} ≈ 2δk−l
σ2n
Tsym

|dk|2
∑+∞

i=−∞ |ϕ′
k,i|6

||ψ′
k||4

+
σ4n
T 2
sym

||ϕ′
k||2

||ψ′
k||2

||ϕ′
l||2

||ψ′
l||2

+ δk−l
σ4n
T 2
sym

1

||ψ′
k||2

.

�
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B.2 Condition Numbers of Quasi-Unitary Matrices

The M ×K matrix P can be expanded into

P = UΣVH

using the singular value decomposition (SVD) [60]. The matrices U and V are unitary by
definition. The matrix Σ is a M × K diagonal matrix with the singular values {σi} of P as
diagonal elements. The maximal and the minimal singular values are σmax and σmin, respectively,
For

cond {P} =
σmax

σmin
= 1

to hold, all singular values {σi} need to be equal. With this constraint Σ is quasi-unitary. If we
multiply VH from the right to the quasi-unitary Σ, we can observe that ΣVH is quasi-unitary
too. This is obvious when considering that by this multiplication the orthogonal columns of
VH become scaled by their respective singular value, which does not change the orthogonality
due to identical singular values. If we multiply U from the left to ΣVH the orthogonality in
the columns stays unchanged due to the unitarity of U. This becomes clear, when considering
that U does perform a rotation onto ΣVH . Such a rotation does not change the orthogonality.
Hence, UΣVH leads to an quasi-unitary matrix!

�
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B.3 Real Valued Co-Term Matrices of Real Valued Projection Filters

The elements of the co-term matrix P are defined in (2.40) to be

[P]m,k =
〈

Hm(jω)G∗
m(jω); |C(jω)|2 |Φk(jω)|2

〉

=

∫ +∞

ω=−∞
H∗

m(jω)Gm(jω) |C(jω)|2 |Φk(jω)|2 dω, (B.3)

where Hm(jω) and Gm(jω) are the frequency responses of the input projection filters of the
corresponding mth receiver channel. C(jω) and Φk(jω) are the frequency response of the com-
munication channel and the kth basis signal, respectively.

For real-valued filter impulse responses the relationships

Hm(−jω) =H∗
m(jω) and

Gm(−jω) =G∗
m(jω)

hold [33].
Due to linearity and the aforementioned relationships, (B.3) can be rewritten as

[P]m,k =

∫ 0

ω=−∞
Hm(−jω)G∗

m(−jω) |C(jω)|2 |Φk(jω)|2 dω

+

∫ +∞

ω=0
H∗

m(jω)Gm(jω) |C(jω)|2 |Φk(jω)|2 dω.

When substituting ν = −ω, swapping the boundaries of the first integral, and keeping in mind
that |C(jω)|2 and |Φk(jω)|2 are symmetric we get

[P]m,k =

∫ +∞

ν=0
Hm(jν)G∗

m(jν) |C(jν)|2 |Φk(jν)|2 dν

+

∫ +∞

ω=0
H∗

m(jω)Gm(jω) |C(jω)|2 |Φk(jω)|2 dω

Comparing the first integral with the second, it becomes obvious that their results form a
complex conjugate pair. By adding those complex values the imaginary parts of the results
cancel out, hence

[P]m,k =2

∫ +∞

ω=0
ℜ{Hm(jω)G∗

m(jω)} |C(jω)|2 |Φk(jω)|2 dω.

This proofs that for real valued projection filter impulse responses the inner-product defined in
(2.40) results in real-valued coefficients!

�
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B.4 Orthogonality of Projection Filter Cross-Spectras

The elements of the co-term matrix P are defined in (2.40) to be

[P]m,k =
〈

Hm(jω)G∗
m(jω); |C(jω)|2 |Φk(jω)|2

〉

=

∫ +∞

ω=−∞
H∗

m(jω)Gm(jω) |C(jω)|2 |Φk(jω)|2 dω,

where Hm(jω) and Gm(jω) are the frequency responses of the input projection filters of the
corresponding mth receiver channel. C(jω) and Φk(jω) are the frequency response of the com-
munication channel and the kth basis signal, respectively.

Using vector equivalents of the filter frequency responses and the symbol pulse shapes, P can
be represented as the matrix multiplication of the filter cross-spectra matrix X and the signal
basis matrix Φ. I.e. the co-term matrix P is given as

P = XHΦ.

The elements of the cross-spectra matrix X are defined as

[X]n,m = Hm (jω0n)G
∗
m (jω0n) ,

where n = 1, . . . , N , N is the number of frequency bins, and ω0 is the spacing between the
frequency bins.

The elements of the signal basis matrix Φ are defined as

[Φ]n,k = |Φk (jω0n)|2 ,

where k = 1, . . . ,K.

It can be shown, that for P and Φ being quasi-unitary, also X needs to be a quasi-unitary
matrix. Using SVD we can decompose XH to

XH = UΣVH ,

where the columns of U span the column space of XH , the first K columns of V span the row
space of XH , the last N −K columns of V span the nullspace of XH , the first M columns of
Σ consist of the diagonal matrix with the singular values of XH as diagonal elements, the last
N −M columns are zero vectors, and N ≥M ≥ K [60].

It is now to show, that XHx and XHy are mutually orthogonal when x and y are mutually
orthogonal under some constraints on XH . Lets define some vectors xU, xΣ, xV, yU, yΣ, yV,
so that

xU = UxΣ

xΣ = ΣxV

xV = VHx,

and for y correspondingly.

For xU and yU being mutually orthogonal, xΣ and yΣ need to be mutually orthogonal, due
to the fact that U is unitary and does preserve inner-products and angles. For xV and yV

being mutually orthogonal x and y need to be mutually orthogonal, since V is unitary too.
Unfortunately, these two findings do not give any constrains at all.

But for xΣ and yΣ being mutually orthogonal, 1) the singular values of XH need to be equal
and 2) xV and yV need to be mutually orthogonal in the first M elements.
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The first constraint is sufficient for XH to be quasi-unitary, which proofs the given claim. An
interpretation of this result is that the input filter cross-spectra need to be mutually orthogonal
to each other!

The second constraint means that the vectors x and y need to be mutually orthogonal in the
row space of XH . Additionally it tells us, that the energies of the filters need to be equal.

�
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B.5 Receiver Channel Output with Nonideal Multiplier

As in (3.15), the nonideal multiplication of two independent signals x(t) and y(t) can be modeled
as

M{x(t), y(t)} = h(t) ∗
[

U∑

u=0

u∑

v=0

cu−v,v (gx(t) ∗ x(t))u−v (gy(t) ∗ y(t))v
]

, (B.4)

where gx(t) and gy(t) are input filters, h(t) is the output filter, and {cu−v,v} are the coefficients
of the bivariate polynomial.

The mth receiver output ym where the multiplication is modeled using (3.15) is given as

ym =

∫ Tsym

λ=0
Mm {hm(t) ∗ r(t), gm(t) ∗ r(t)} dt

=

∫ Tsym

λ=0

{

h(t) ∗
[

U∑

u=0

u∑

v=0

cu−v,v (gx(t) ∗ hm(t) ∗ r(t))u−v · (gy(t) ∗ gm(t) ∗ r(t))v
]}

dt

=

U∑

u=0

u∑

v=0

cu−v,v

∫ Tsym

λ=0

{
h(t) ∗

[
(gx(t) ∗ hm(t) ∗ r(t))u−v · (gy(t) ∗ gm(t) ∗ r(t))v

]}
dt

=
U∑

u=0

u∑

v=0

cu−v,v

∫ Tsym

λ=0

{
h(t) ∗

[
(gx(t) ∗ hm(t) ∗ c(t) ∗ s(t) + gx(t) ∗ hm(t) ∗ n(t))u−v

× (gy(t) ∗ gm(t) ∗ c(t) ∗ s(t) + gy(t) ∗ gm(t) ∗ n(t))v]} dt.

Using the binomial theorem (x+ y)n =
∑n

k=0

(
n

k

)

xn−kyk we get

ym =

U∑

u=0

u∑

v=0

cu−v,v

∫ Tsym

λ=0

{

h(t) ∗
[

u−v∑

p=0

(
u− v
p

)

(gx(t) ∗ hm(t) ∗ c(t) ∗ s(t))u−v−p (gx(t) ∗ hm(t) ∗ n(t))p

×
v∑

q=0

(
v
q

)

(gy(t) ∗ gm(t) ∗ c(t) ∗ s(t))v−q (gy(t) ∗ gm(t) ∗ n(t))q









dt

=

U∑

u=0

u∑

v=0

cu−v,v

u−v∑

p=0

v∑

q=0

(
u− v
p

)(
v
q

)∫ Tsym

λ=0

{

h(t) ∗
[

(gx(t) ∗ hm(t) ∗ c(t) ∗ s(t))u−v−p (gx(t) ∗ hm(t) ∗ n(t))p

× (gy(t) ∗ gm(t) ∗ c(t) ∗ s(t))v−q (gy(t) ∗ gm(t) ∗ n(t))q
]}

dt.
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After substituting for the definition of the sent signal s(t) =
∑K

k=1 dkφk(t) we obtain

ym =

U∑

u=0

u∑

v=0

cu−v,v

u−v∑

p=0

v∑

q=0

(
u− v
p

)(
v
q

)∫ Tsym

λ=0

{

h(t) ∗
[

(

gx(t) ∗ hm(t) ∗ c(t) ∗
K∑

k=1

dkφk(t)

)u−v−p

(gx(t) ∗ hm(t) ∗ n(t))p

×
(

gy(t) ∗ gm(t) ∗ c(t) ∗
L∑

l=1

dlφl(t)

)v−q

(gy(t) ∗ gm(t) ∗ n(t))q









dt.

The multinomial theorem
(
∑I

i=1 xi

)n
=
∑

κ1+···+κI=n

(
κ1, · · · , κI

)∏I
i=1 x

κi

i simplifies the

equation to

ym =

U∑

u=0

u∑

v=0

cu−v,v

u−v∑

p=0

v∑

q=0

(
u− v
p

)(
v
q

)∫ Tsym

λ=0

{

h(t) ∗
[

∑

κ1+···+κK=u−v−p

(
u− v − p
κ1, · · · , κK

) K∏

k=1

dκk

k (gx(t) ∗ hm(t) ∗ c(t) ∗ φk(t))κk (gx(t) ∗ hm(t) ∗ n(t))p

×
∑

ι1+···+ιK=v−q

(
v − q

ι1, · · · , ιK

) K∏

l=1

dιll (gy(t) ∗ gm(t) ∗ c(t) ∗ φl(t))ιl (gy(t) ∗ gm(t) ∗ n(t))q
]}

dt

=
U∑

u=0

u∑

v=0

cu−v,v

u−v∑

p=0

v∑

q=0

∑

κ1+···+κK=u−v−p

∑

ι1+···+ιK=v−q

(
u− v
p

)(
v
q

)(
u− v − p
κ1, · · · , κK

)(
v − q

ι1, · · · , ιK

)

×
∫ Tsym

λ=0

{

h(t) ∗
[

K∏

k=1

dκk

k (gx(t) ∗ hm(t) ∗ c(t) ∗ φk(t))κk

K∏

l=1

dιll (gy(t) ∗ gm(t) ∗ c(t) ∗ φl(t))ιl

× (gx(t) ∗ hm(t) ∗ n(t))p (gy(t) ∗ gm(t) ∗ n(t))q
]}

dt.

With the equality (
∏

k xk) (
∏

k yk) =
∏

k xkyk the equation cn be rewritten to

ym =

U∑

u=0

u∑

v=0

cu−v,v

u−v∑

p=0

v∑

q=0

∑

κ1+···+κK=u−v−p

∑

ι1+···+ιK=v−q

(
u− v
p

)(
v
q

)(
u− v − p
κ1, · · · , κK

)(
v − q

ι1, · · · , ιK

)

×
∫ Tsym

λ=0

{

h(t) ∗
[

K∏

k=1

dκk+ιk
k (gx(t) ∗ hm(t) ∗ c(t) ∗ φk(t))κk (gy(t) ∗ gm(t) ∗ c(t) ∗ φk(t))ιk

× (gx(t) ∗ hm(t) ∗ n(t))p (gy(t) ∗ gm(t) ∗ n(t))q
]}

dt.
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Finally we obtain

ym =

U∑

u=0

u∑

v=0

cu−v,v

∑

κ1+···+κK=u−v

∑

ι1+···+ιK=v

(
u− v

κ1, · · · , κK

)(
v

ι1, · · · , ιK

)

×
∫ Tsym

λ=0

{

h(t) ∗
[

K∏

k=1

dκk+ιk
k (gx(t) ∗ hm(t) ∗ c(t) ∗ φk(t))κk (gy(t) ∗ gm(t) ∗ c(t) ∗ φk(t))ιk

]}

dt+ ν.
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C
Meta-Heuristic Algorithms

Meta-heuristic algorithms are tools for a strategic search for the best solution Φ0 of an opti-
mization problem. For whatever best stands for. In general the best solution is the solution
with the minimal (or maximal25) cost J (Φ0). The cost of a solution is defined by a so called
cost-function f (Φ), hence

J (Φ) = f (Φ) .

A way of finding the best solution is by finding the roots of the gradient of the cost-function.
In a more mathematical sense, this means to find Φ0 for which

∂f

∂Φ

!
= 0

holds. If f (Φ) is given analytically, and if f (Φ) is differentiable, a analytical expression of Φ0

can be found. If there exist only a single solution for which ∂f
∂Φ

!
= 0 is true, the optimization

problem is called convex, non-convex otherwise. If the problem is non-convex, the best solution
Φ0 is still the solution with the minimal cost compared to all the other possible solutions.

The aforementioned method for finding the best solution has the drawback, that it does not
work if the analytical gradient is not known or does not exist (differentiability). Also if the
problem is non-convex, there might be too many possible solutions which might make it hard
to find the best one. Here, meta-heuristic algorithms come into play: they do only require the
cost-function and use heuristic search strategies to find the best solution.

For efficient search, those algorithms need to be configured to make a trade off between
exploration and exploitation. Exploration is the capability of the algorithm to explore the full
search space and to find new possible solutions, whereas exploitation denotes to the capability
of the algorithm to refine found possible solution and to converge on the best one.

In this appendix a short overview of meta-heuristic algorithms is given with a focus on three
algorithms which are used in this work: the Hill Climbing algorithm (see Appendix C.1), the
Differential Evolution algorithm (see Appendix C.2), and the Particle Swarm Optimization
algorithm (see Appendix C.3). A more elaborate overview of many meta-heuristic algorithms
with easy to use code samples can be found in [69].

25 “minimal” and “maximal” can be seen interchangeable in optimization and only depend on how best is inter-
preted. For sake of simplicity we will stick with “minimal” cost and minimizing the cost-function.
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C.1 Hill Climbing

The Hill Climbing26 (HC) algorithm does only work properly for convex cost-functions, where
it is ensured that he does find the global optimal solution if the algorithm is run long enough.
For non-convex problems the algorithm might converge to a local optimum, depending on its
initialization, tendency to explore or exploit.

Starting with a random initial starting point, it heuristically samples the cost-function in the
proximity of this point. If one of the sampled points has a lower cost, this point will be set to
the new starting point for the next iteration. These steps are done until the algorithm converges
or a before defined maximal number of iterations is reached. This algorithm can be interpreted
as a heuristic version of a gradient-decent algorithm. In Listing C.3 a MATLAB pseudo code of
the used HC algorithm (Hill Climbing with steepest gradient) is shown.

The presented HC algorithm can be configured using some parameters: ITERATIONS sets the
number of iterations, SAMPLES sets the number of samples evaluated in the proximity of the best
solution found so far to sample the gradient, PARAMETERS sets the dimension of the parameter
search space, and SIGMA sets the deviation of the gradient evaluation samples from the so far
best found solution. The cost function() defines the optimization problem and is a function
which needs to be minimized by finding the optimal solution.

26 The Hill Climbing algorithm has his name by searching for the “maximal” cost, hence metaphorically “climbing
up the cost hill”. Because this work focuses on minimizing the cost, the algorithm should maybe be renamed
to Crater Sliding or Dungeon Crawling.

– 114 –



C.1 Hill Climbing

1 % HILL CLIMBING WITH STEEPEST GRADIENT

2
3 % Setting Algorithm Parameters :

4 % ############################################################################

5 N_iterations = ITERATIONS ; % number of interations

6 N_samples = SAMPLES ; % number of neighborhood sam -

7 % ples

8 N_parameters = PARAMETERS ; % dimension of parameter space

9 sigma = SIGMA ; % spreading of the neighbor -

10 % hood samples

11
12 % Initialization:

13 % ############################################################################

14 Best = random_init (N_parameters); % random initialization of

15 % best solution

16 Best_cost = cost_function(Best); % set cost of initial best so -

17 % lution

18 R = zeros (N_parameters ,N_samples ); % initializing random neigh -

19 % borhood samples

20 R_cost = Inf *ones(1, N_samples ); % setting initial costs of

21 % random neighborhood sample

22 S = Best; % initialize best neighborhood

23 % sample

24 S_cost = Best_cost ; % initialize best neighborhood

25 % sample cost

26
27 % Iterations :

28 % ############################################################################

29 for iter = 1: N_iterations

30
31 % Gradient Sampling :

32 % ##########################################################################

33 for samp = 1: N_samples

34 R(:, samp) = Best + random_offset(mu); % random sample in the neigh -

35 % borhood of best solution

36 R_cost (samp) = cost_function(S(:, samp)); % obtaining the cost of the

37 % random sample

38 end

39
40 % Searching for the Solution with Steepest Gardient :

41 % ##########################################################################

42 S = Best; % setting the actual best

43 % neighboorhood solution

44 S_cost = Best_cost ; % setting the cost of the ac -

45 % tual best neighboorhood so -

46 % lution

47 for samp = 1: N_samples

48 if R_cost (samp) < S_cost % comparing actual best neigh -

49 % borhood solution with a

50 % neighborhood solution

51 S = R(:, samp); % storing new best neighbor -

52 % hood if better one found

53 S_cost = R_cost ; % storing the new best neigh -

54 % borhood sample cost

55 end

56 end

57
58 % Storing the Best Solution :

59 % ##########################################################################

60 if S_cost < Best_cost % comparing overall best solu -

61 % tion with best found neigh -

62 % borhood solution

63 Best = S; % storing new overall best so -

64 % lution if one found

65 Best_cost = S_cost ; % storing the new overall best

66 % solution cost

67 end

68
69 end

Listing C.1: MATLAB pseudo code of the Hill Climbing algorithm with steepest gradient.
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C.2 Differential Evolution

The Differential Evolution algorithm is a population based algorithm. Instead of remembering
only a single best solution from iteration to iteration, it remembers a full set of solutions. Such a
set is called population. Population based methods are summarized in the field of Evolutionary
Computation. Population based methods use nature as model, eg. from biology, genetics, or
evolution and generate or revise a new population per iteration based on the results from older
ones. Well known Evolutionary Computation algorithms are th Genetic Algorithm, Evolution
Strategies, and the Differential Evolution (DE) algorithm.

From each iteration (or called generation in Evolutionary Computation) a new population
(the children) for the next iteration is generated from the actual population (the parents) using
concepts as mutation, crossover, and selection. Mutation: A child Q(i) is generated by linear
combination of three randomly picked parents (A,B, and C), hence Q(i) = A+α (B − C), where
α (commonly set between 0.5 and 1.0) is the mutation rate. The idea is, that if the parent
generation is widely spread in the parameter space, the new children will also be widely spread
after generation. If the parents are more condensed, the mutation to generate the children will
be small. This results in an adaptive mutation where at the end of the runtime the population
converges to the best solution. Crossover: The child Q(i) is crossed over with its parent R(i).
This is done by copying a random number of parameters of the parent. This ensures that in each
child Q(i) some parameters from its parent R(i) survives. Selection: the cost (or called fitness
in Evolutionary Computation) of each child Q(i) is compared to the cost of its parent R(i). If
the child has a smaller cost than its parent, the child replaces the parent for the next iteration,
otherwise the parent stays in the population. This is a selection by based on the survival of the
fittest.

The presented DE algorithm can be configured using some parameters: GENERATIONS sets the
number of iterations, POPULATION sets the size of the population, PARAMETERS sets the dimension
of the parameter search space, and ALPHA sets the mutation rate α. The cost function() defines
the optimization problem and is a function which needs to be minimized by finding the optimal
solution.
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1 % DIFFERENTIAL EVOLUTION

2
3 % Setting Algorithm Parameters :

4 % ############################################################################

5 N_generations = GENERATIONS ; % number of generations (iter -

6 % ations )

7 N_popsize = POPULATION ; % size of population

8 N_parameters = PARAMETERS ; % dimension of parameter space

9 alpha = ALPHA ; % mutation rate

10
11 % Initialization:

12 % ############################################################################

13 Best = random_init (N_parameters); % random initialization of

14 % best solution

15 Best_fitness = cost_function(Best); % obtaining the cost of best

16 % solution

17 R = random_init (N_parameters ,N_population); % random initialization of pa -

18 % rent generation

19 R_fitness = Inf *ones(1, N_population); % setting initial fitness of

20 % parent generation

21 Q = zeros (N_parameters ,N_population); % initializing the children

22 % generation

23 Q_fitness = Inf *ones(1, N_population); % setting initial fitness of

24 % childern generation

25
26 % Iteration over Generations :

27 % ############################################################################

28 for gen = 1: N_generations

29
30 % Children obtained by Mutation of Parents :

31 % ##########################################################################

32 for pop = 1: N_popsize

33 a_idx = random_index(pop ); % random index which is not

34 % pop , but between 1 and

35 % N_popsize

36 A = R(:, a_ide); % storing parent A

37 b_idx = random_index([pop ,a_idx ]); % random index which is not

38 % pop or a_idx , but between 1

39 % and N_popsize

40 B = R(:, b_ide); % storing parent B

41 c_idx = random_index([pop ,a_idx ,b_idx ]); % random index which is not

42 % pop or a_idx or b_idx

43 C = R(:, c_ide); % storing parent C, but be -

44 % tween 1 and N_popsize

45 Q(:, pop ) = A + alpha *(B - C); % mutation to get new chil -

46 % dren

47 end

48
49 % Crossover of Children with their Parents :

50 % ##########################################################################

51 for pop = 1: N_popsize

52 swap_idx = random_swap_indices; % list of random length with

53 % random swap indices ;

54 % maximal N_parameters - 1 el -

55 % ements in list

56 Q(swap_idx ,pop ) = R(swap_idx ,pop ); % crossover between child and

57 % parent

58 Q_fitness (i) = Inf ; % setting fitness of child

59 end

60
61 % Obtaining Fitness of Children :

62 % ##########################################################################

63 for pop = 1: N_popsize

64 Q_fitness (pop ) = cost_function(Q(:, pop )); % obtaining fitness of child -

65 % ren generation

66 end

67
68 % Selection (Survival of the Fittest ):

69 % ##########################################################################

70 for pop = 1: N_popsize

71 if Q_fitness (pop ) < R_fitness (pop ) % comparing the fitness of ac -
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72 % tual generation with its pa -

73 % rent

74 R(:, pop ) = Q(:, pop ); % if parent is fitter , it

75 % stays in population

76 R_fitness (pop ) = Q_fitness (pop ); % storing the fitness of old

77 % parent

78 end

79 end

80
81 % Storing Best Solution :

82 % ##########################################################################

83 for pop = 1: N_popsize

84 if R_fitness (pop ) < Best_fitness % comparing the fitness of

85 % best solution with new pa -

86 % rents

87 Best = R(:, pop ); % storing best solution if new

88 % one is found

89 Best_fitness = R_fitness (pop ); % storing the best fitness

90 end

91 end

92
93 end

Listing C.2: MATLAB pseudo code of the Differential Evolution algorithm.
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C.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm does also belong to the field of Evolutionary
Computation. But in contrast to the in this work discussed DE (see Appendix C.2) is this
algorithm not modeled after evolution but after the behavior of animals swarms, like swarms of
birds and fishes. It does also not resample the population to produce a new population for the
next iteration. There is also no selection process involved. The PSO algorithm does maintain
a single swarm of particles which are moved in the parameter space from iteration to iteration.
The movement of the swarm is towards the best solutions found so far.

A particle of a swarm consists of a location R(i) and a velocity Rv(i) in the parameter space
which both are initialized at the beginning. The swarm remembers the best solution S(i) each
particle has found so far, the best solution I(i) so far found by random informants of each
particle (commonly a small number of informants is used, also R(i) is an informant), and the
best solution A any particle has found so far. The particle position for the next iteration is given
as R(i) = R(i) + ǫRv(i), with Rv(i) = αRv(i) + β (S(i)−R(i)) + γ (I(i)−R(i)) + δ (A−R(i)).
The parameter α controls how much of original velocity is retained, β controls how much of the
personal best of each particle in mixed in, γ controls how much of the informants best is mixed
in, δ controls how much of the overall best is mixed in (commonly set to 0), and ǫ controls the
gain of the speed of the particles (commonly set to 1).

The presented PSO algorithm can be configured using some parameters: ITERATIONS sets the
number of iterations, SWARMSIZE sets the number of particles in the swarm, PARAMETERS sets the
dimension of the parameter search space, INFORMANTS sets the number of informants of each par-
ticle, and ALPHA, BETA, GAMMA, DELTA, and EPSILON sets α, β, γ, δ, and ǫ. The cost function()

defines the optimization problem and is a function which needs to be minimized by finding the
optimal solution.
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1 % PARTICLE SWARM OPTIMIZATION

2
3 % Setting Algorithm Parameters :

4 % ############################################################################

5 N_iterations = ITERATIONS ; % number of iterations

6 N_swarmsize = SWARMSIZE ; % number of particles in the

7 % swarm

8 N_parameters = PARAMETERS ; % dimension of parameter space

9 N_informants = INFORMANTS ; % number of informants per

10 % particle

11 alpha = ALPHA ; % ratio of retained original

12 % velocity

13 beta = BETA; % attraction parameter to the

14 % best solution found by sin -

15 % gle particle

16 gamma = GAMMA ; % attraction parameter to the

17 % best solution found by in -

18 % formant particles

19 delta = DELTA ; % attraction parameter to the

20 % best solution found by all

21 % particles

22 epsilon = EPSILON ; % movement speed parameter of

23 % whole swarm

24
25 % Initialization:

26 % ############################################################################

27 Best = random_init ( N_parameters); % random initialization of

28 % best solution

29 Best_cost = cost_function(Best); % obtaining cost of best solu -

30 % tion

31 R = random_init (N_parameters ,N_swarmsize ); % random initialization of

32 % swarm

33 Rv = R - random_init (N_parameters ,N_swarmsize ); % random initialization of ve -

34 % locity of particles

35 R_cost = Inf *ones(1, N_swarmsize ); % initialization of cost of

36 % particles

37 S = random_init (N_parameters ,N_swarmsize ); % random initialization of

38 % best solution found by sin -

39 % gle particle

40 S_cost = Inf *ones(1, N_swarmsize ); % initialization of cost of

41 % best solution found by sin -

42 % gle particle

43 A = randnom_init(N_parameters); % random initialization of

44 % best solution found by all

45 % particels

46 A_cost = Inf ; % initialization of cost of

47 % best solution found by all

48 % particels

49 I = random_init (N_parameters ,N_swarmsize ); % random initialization of

50 % best solution of informants

51 I_cost = Inf *ones(1, N_swarmsize ); % initialization of cost of

52 % informants

53
54 % Iterations :

55 % ############################################################################

56 for iter = 1: N_iterations

57
58 % Obtaining Cost of Swarm :

59 % ##########################################################################

60 for swm = 1: N_swarmsize

61 R_cost (swm ) = cost_function(R(:, swm )); % obtaining costs of swarm

62 % particles

63 end

64
65 % Storing Very Best Solution :

66 % ##########################################################################

67 for swm = 1: N_swarmsize

68 if R_cost (swm ) < Best_cost % comparing cost of swarm par -

69 % ticles with cost of best so -

70 % lution

71 Best = R(:, swm ); % storing new best solution if
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72 % found

73 Best_cost = R_cost (swm ); % storing cost of best solu -

74 % tion

75 end

76 end

77
78 % Storing Best Solution of each Single Particel :

79 % ##########################################################################

80 for swm = 1: N_swarmsize

81 if R_cost (swm ) < S_cost (swm ) % comparing cost of particle

82 % with the cost of the

83 % best solution ever found by

84 % itself

85 S(:, swm ) = R(:, swm ); % storing new best solution if

86 % found

87 S_cost (swm ) = R_cost (swm ); % storing cost of best solut -

88 % ion

89 end

90 end

91
92 % Storing Best Solution of All Particles :

93 % ##########################################################################

94 for swm = 1: N_swarmsize

95 if R_cost (swm ) < A_cost % comparing cost of swarm par -

96 % ticles with cost of best so -

97 % lution ever found by swarm

98 A = R(:, swm ); % storing new best solution if

99 % found

100 A_cost = R_cost (swm ); % storing cost of best solu -

101 % tion

102 end

103 end

104
105 % Retrieving Best Solution of Informant Particles :

106 % ##########################################################################

107 for swm = 1: N_swarmsize

108 idx = random_index(N_informants); % generating indices to each

109 % praticle ’s random informants

110 I(:, swm ) = R(:, swm ); % initially set best informant

111 % to be the particle

112 I_cost (swm ) = R_cost (swm ); % initially set best informant

113 % cost

114 for infts = 1: N_informants

115 if S_cost (idx (infts )) < I_cost (swm ) % search for best informant of

116 % the particle

117 I(:, swm ) = S(:, idx (infts)); % storing new best informant

118 % solution if found

119 I_cost (swm ) = S_cost (idx (infts )); % storing cost of best infor -

120 % mant solution

121 end

122 end

123 end

124
125 % Swarm Movement :

126 % ##########################################################################

127 for swm = 1: N_swarmsize

128 b = beta*rand(1) *(S(:, swm )-R(:, swm )); % randomly partial velocity to

129 % the best solution ever found

130 % by the particle

131 c = gamma *rand (1) *(I(:, swm )-R(:, swm )); % randomly partial velocity to

132 % the best solution ever found

133 % by the particle ’s informants

134 d = delta *rand (1) *(A - R(:, swm )); % randomly partial velocity to

135 % the best solutions ever

136 % found by all particles

137 Rv(:, swm ) = alpha *Rv(:, swm ) + b + c + d; % new velocity of particle

138 end

139 R = R + epsilon *Rv; % new location of swarm par -

140 % ticles

141 end

Listing C.3: MATLAB pseudo code of the Particle Swarm Optimization algorithm.
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D
Collection of Simulation Results

D.1 Alternative Second Order Projection Filter Cross-Spectra

Figure D.1: Cost of best found filter per iteration of three 2nd order projection filter cross-spectra for a M = 8
channel receiver.
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(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure D.2: Frequency response, Correlation matrix, and signal co-term matrix P of an alternative (alt. 1)
projection filter cross-spectra of 2nd order. The shown cross-spectra do have a condition number
of cond {P} = 16.78.
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D.1 Alternative Second Order Projection Filter Cross-Spectra

(a) Cross-spectra magnitude response (b) Cross-spectra phase response

(c) Cross-spectra correlation matrix (d) Signal co-term matrix

(e) Magnitude response of the inverse (f) Detection correlation matrix

Figure D.3: Frequency response, Correlation matrix, and signal co-term matrix P of an alternative (alt. 2)
projection filter cross-spectra of 2nd order. The shown cross-spectra do have a condition number
of cond {P} = 20.83.
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(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.4: SINR, SNR, SIR, and BER of the generalized noncoherent multi-channel receivers with various
2nd order projection filter cross-spectra.

– 126 –
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D.2 SINR, SNR, SIR, and BER of various Multiplication Device

Input Powers

(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.5: SINR, SNR, SIR, and BER of the MC-AcR simulation-fitted multiplier model.
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(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.6: SINR, SNR, SIR, and BER of the MC-ED simulation-fitted multiplier model.
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D.2 SINR, SNR, SIR, and BER of various Multiplication Device Input Powers

(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.7: SINR, SNR, SIR, and BER of the MC-MFED simulation-fitted multiplier model.
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D Collection of Simulation Results

D.3 SINR, SNR, SIR, and BER of Sliding Window Approximation

Filters

(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.8: SINR, SNR, SIR, and BER of the MC-AcR with various filter orders N of Bessel-Notch filter
approximations.
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D.3 SINR, SNR, SIR, and BER of Sliding Window Approximation Filters

(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.9: SINR, SNR, SIR, and BER of the MC-AcR with various filter orders N of Bessel-Only filter
approximations.
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(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.10: SINR, SNR, SIR, and BER of the MC-ED with various filter orders N of Bessel-Notch filter
approximations.
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D.3 SINR, SNR, SIR, and BER of Sliding Window Approximation Filters

(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.11: SINR, SNR, SIR, and BER of the MC-ED with various filter orders N of Bessel-Only filter
approximations.
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(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.12: SINR, SNR, SIR, and BER of the MC-ED with various filter orders N of Bessel-Notch filter
approximations.
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D.3 SINR, SNR, SIR, and BER of Sliding Window Approximation Filters

(a) SINR (b) BER

(c) SNR (d) SIR

Figure D.13: SINR, SNR, SIR, and BER of the MC-ED with various filter orders N of Bessel-Only filter
approximations.

– 135 –





Generalized Noncoherent Ultra-Wideband Receivers

E
Timetable of High Data Rate Ultra-Wideband

Communications

1864 James Clerk Maxwell: publishes “dynamical theory of the electromagnetic field” where
he introduced general equations of the electromagnetic field: the well known Maxwell’s
equations [127].

1879 David Edward Hughes: first attempts (trial and error) producing wireless signal using a
spark generator which could be detected by a telephone receiver [14].

1886 Heinrich Hertz: prove of of existence of electromagnetic waves [128].

1891 Nikola Tesla: starts research on high frequency [129].

1895 Guglielmo Marconi: first transmission of wireless signals over long distance [18].

1896 Guglielmo Marconi: first radio patent [17].

1897 Nikola Tesla: first US radio patents [15,16].

1898 Nikola Tesla: first remote radio control (radio controlled boat) [130].

1901 Guglielmo Marconi: first transatlantic transmission [131].

1904 Otto Nußbaumer: first broadcast of music (“Dachsteinlied”, at Graz University of Tech-
nology) [20].

1906 Reginald Fessenden: first amplitude modulated audio broadcast using an alternator-
transmitter [20].

1907 Guglielmo Marconi: first transatlantic radio service [131].

1912 The White Star liner R.M.S. Titanic collides with an iceberg and sinks during its maiden
voyage. A Marconi spark-gap wireless telegraphs saved 705 lives [19].

1933 Edwin Howard Armstrong: patent on FM radio [132].

1947 John Bardeen, Walter Brattain, and William Shockley: invention of the transistor [133].
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1948 Claude Elwood Shannon: foundation of modern digital communication and its theory
[134].

1971 Gerald F. Ross: first modern UWB patent [22].

1987 foundation of GSM by four members of the European Economic Community (a predecessor
of the European Union) [135].

1990 Charles Fowler et al.: first public Ultra-wideband technology for radar [23].

1997 Robert A. Scholtz and Moe Z. Win: first works on modern UWB impulse radio [24].

2002 FCC defines rules regarding UWB transmission systems [25].

2004 Stéphane Paquelet, Louis-Marie Aubertl, and Bernard Uguen: introduction of noncoherent
UWB signals for high data rate communications [46].

2006 first IEEE standard which specifies low data rate UWB communications (IEEE 802.15.4a)
[26].

2006 first IEEE standard which specifies high data rate UWB communications (IEEE 802.15.3a)
was withdrawn [27].

2007 parts of the withdrawn IEEE 802.15.3a got adopted by ISO/IEC as ISO/IEC 26907 and
ISO/IEC 26908 [28,29].
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This work focuses on integration devices, which are part of multi-channel autocorrelation
receivers and are essential to suppress nonlinear cross-products between data carriers.
Passive filter structures are analyzed for this purpose. It is shown that the optimized filter
outperforms the reference system using an ideal sliding window integrator because it is
able to mitigate more system noise. Parts of this paper are shown in Section 3.3.
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author of this PhD thesis and M. Mücke, with Sustainable Computing Research, Vienna,
Austria. The results of this journal paper did not contribute to this PhD thesis. However,
references of the literature studies are reused in Section 3.1.

• A. Pedross-Engel, H. Schumacher, and K. Witrisal, “Modeling and identifica-
tion of ultrawideband analog multipliers,” IEEE Transactions on Circuits and

Systems I: Regular Papers, submitted.
This work focuses on modeling and identification of realistic RF multipliers. It pro-
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Abstract—Noncoherent UWB receivers promise low power
consumption and low processing complexity but their peak data
rate is limited by the delay spread of the multipath radio channel.
A recently proposed multichannel autocorrelation receiver (AcR)
can break this rate limit because it can demodulate multicarrier
signals. The hardware implementation of this receiver architec-
ture is addressed in this paper. We focus on the integration device,
which is part of the AcR and essential to suppress nonlinear
cross-products between data carriers. Passive filter structures are
analyzed for this purpose. It is shown that the optimized filter
outperforms the reference system using an ideal sliding window
integrator because it is able to mitigate more system noise.

I. INTRODUCTION

Noncoherent receivers are a possible way forward to exploit

the advantages of UWB technology in low-complexity, low-

power devices [1]. However, their simplicity comes at the

cost of reduced robustness in presence of noise and multipath

interference. For instance to achieve high data rate using an

energy detection receiver, a rather hard limit is set by the

excess delay of the multipath channel. Equalization schemes

achieve limited gains only [2].

An alternative approach to increasing the data rate is

multicarrier transmission [3], [4], where an analog frontend

is used to separate the received signal into its subcarriers.

The subcarriers can be sampled and processed at much lower

bandwidth; typically at symbol rate. A fixed implementation

of a suitable filter bank would result in a very robust high-rate

receiver, but it would require highly selective frontend filters

and lack any flexibility concerning the band selection. The

flexibility improves with the receiver architecture described in

[4], which performs an autocorrelation operation in the analog

frontend (cf. Fig. 1) and leaves the bandselection to a digital

backend running at moderately slow symbol rate.

This paper addresses the hardware requirements of the

latter receiver. It concentrates on the integration and sampling

blocks, which have an essential role in suppressing cross-

products between subcarriers that arise in the nonlinear fron-

tend. We investigate passive filter structures combined with

conventional ADCs. This yields a solution that can potentially

be realized using standard building blocks and it may save

power compared with an active design as in [5].

The paper is organized as follows. In Section II a review

of the multichannel AcR system is given for a better under-

This work is conducted in the framework of the NOFDM project, a
collaborative project funded by the Austrian Research Promotion Agency
(FFG), grant number 825899.
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Fig. 1. The multichannel AcR architecture consists of delay filters, multi-
plication devices, and integration filters.

standing of the integrator design constraints. The passive filter

design is addressed in Section IV. The analysis and system

performance concerning the signal, noise, and self-interference

is given in Section V. In Section VI bit-error-rate comparisons

are shown, followed by conclusions.

II. REVIEW OF THE MC-ACR

The aim of the multichannel AcR is to avoid the need for

directly sampling the passband signal, which would require

sampling-rates of several GSamples/s. The crucial signal pro-

cessing is the computation of a short-time estimate of the

autocorrelation function for the delays {τm}. It is done in

the analog domain, therefore the received signal only needs to

be sampled at symbol-rate Rsym.

The system is briefly reviewed below to understand the

requirements of the sliding window integrator in the multi-

channel AcR system.

Assuming an inter-symbol-interference (ISI) free scenario,

by introduction of a sufficient long zero guard interval, our

analysis can concentrate on a single transmitted symbol with

period Tsym. The transmitted signal can be written as

s(t) = ℜ







e+jωct

+K−1
2

∑

k=− K−1
2

skϕ(t)e+jkωsct







, (1)

where sk is the (K+1
2 +k)-th element of a K-dimensional sym-

bol vector s, ϕ(t) is the sub-carrier pulse shape, ωsc is the sub-

carrier spacing, ωc is the center frequency, j is the imaginary
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unit, and ℜ{.} is the real operator. The terms ϕ (t) e+jkωsct,

with k ∈ K, K =
{

−K−1
2 , ..., +K−1

2 | K is odd
}

, are

orthogonal basis functions which span a K-dimensional signal

space.

The received signal is given as

r(t) = hch(t) ∗ s(t) + n(t) (2)

= ℜ

{

e+jωct
∑

k∈K

skϕ̃k(t)e+jkωsct

}

+ n(t), (3)

where hch(t) is the convolution of the channel impulse re-

sponse (CIR) and the front-end band-selection filter hfef(t),
ϕ̃k(t) is the k-th sub-carrier pulse shape which is distorted by

the channel hch(t), and n(t) is filtered Gaussian noise.

The analog signal processing of the multichannel noncoher-

ent autocorrelation receiver, c.f. Fig. 1, consists of a front end

filter for frequency band selection and M AcR channels which

perform the autocorrelation. The m-th AcR output is given as

ym =

∫ Tsym

λ=0

r(λ) · r(λ − τm)dλ (4)

≈
1

2

∑

k∈K

s2
kℜ

{

Φ̃kk(τm)e+jωcτm

}

+

+
1

2

∑

k∈K

∑

l∈K
l 6=k

skslℜ
{

Φ̃kl(τm)e+jωcτm

}

+

+ νm (5)

≈ sco (τm) + scross (τm) + νm, (6)

where τm is its delay time, sco (τm) is the signal co-terms,

scross (τm) is the the signal cross-terms, νm is the combination

of all noise terms, and

Φ̃kl(τm) = e+jlωscτm

∫ Tsym

λ=0

ϕ̃k(λ)ϕ̃∗
l (λ − τm)e+j(k−l)ωscλdλ

(7)

is the cross-correlation of the k-th and l-th basis function

at given τm. Because the basis functions are assumed to be

orthogonal for any delay τm, the cross-terms (where l 6= k)
will vanish [4], [6]. For l = k we get the autocorrelation of

the k-th basis function at delay lag τm.

It can be seen from (7) that the autocorrelation terms (l = k)
of the basis set map to baseband pulses plus an additional

phase shift dependent on the sub-carrier frequency lωsc and

the AcR channel delay lag τm. A similar behavior can be seen

for l 6= k, except that the baseband pulses are transformed to

different frequencies (k − l)ωsc. In Fig. 2, the co- and cross-

terms, before integration, of a K = 7 sub-carrier UWB OFDM

signaling scheme are depicted in the frequency domain.

Using vector notation we can rewrite (6) as

y = Hs + G (s ⊗ s) + ν, (8)

where H is the MIMO channel matrix of the co-terms, G

is the cross-terms interference matrix (⊗ denotes the reduced

Kronecker product), and ν is the noise vector. This equation
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Fig. 2. Power spectrum density of the co- and cross-terms of an OFDM
transmission scheme after the multiplication in an AcR channel for K = 7

sub-carrier UWB OFDM signaling scheme.

becomes y = Hs + ν for orthogonal basis functions, given

that the cross-terms vanish and therefore G = 0.

Assuming M ≥ K it is possible to reconstruct s using

the Moore-Penrose pseudoinverse or a minimum-mean-square-

error (MMSE) approach [6], [7], which is denoted by a

transformation matrix W. The decision variable vector z (c.f.

Fig. 1) is therefore defined as

z = Wy (9)

= WHs + WG (s⊗ s) + Wν. (10)

III. MOTIVATION

To minimize erroneous detection of s, interference and noise

have to be reduced. Because s is reconstructed by the linear

transformation W of the AcR channel outputs y, and M will

be chosen only slightly greater than K for complexity reason,

it is necessary to mitigate signal cross-terms and noise at the

level of the AcR channel outputs ym. These signal terms can

be minimized by applying a low-pass filter (c.f Fig. 2).

In (7) it can be seen that the system has to perform an

integration over the symbol period Tsym. This operator can be

described as a filter with the impulse response

hT (t) = σ(t) − σ(t − T ), (11)

where T is the integration window, and σ(t) is the unit step

function. The frequency response of the filter is given as

HT (jω) = Te−j T

2
ωsinc

(

T

2π
ω

)

, (12)

where sinc(x) = sin(πx)
πx

and ω is the angular frequency.

Unfortunately, this ideal filter cannot be realized in real

hardware. Therefore approximations of this ideal integration

filter are needed.

Design goals for the filter approximation are a high output

signal-to-noise ratio (SNRz), which is defined as

SNRz =
E

{

sTHTWTWHs
}

E {νTWTWν}
, (13)
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Fig. 3. Signal flow graph of the mixed-singal sliding window integrator.

and a high output signal-to-interference ratio (SIRz), which is

defined as (c.f. (6), (10))

SIRz =
E

{

sTHTWTWHs
}

E
{

(s⊗ s)
T

GTWT WG (s⊗ s)
} . (14)

IV. APPROXIMATED SLIDING WINDOW INTEGRATORS

Approximation of the sliding window integrator (12) can

be obtained using a low-pass Bessel filter and several notch-

filters. The Bessel filter is used to get the magnitude frequency

response and a constant group-delay up to an upper frequency,

while the notch-filters are used for the zeros in the frequency

response. For broadband signals this could lead to analog

filters of very high order, due to the need of many notch filters.

A mixed analog / digital implementation can relax this issue,

as described below.

A. Approximation I

The impulse response (11) is rewritten as

hT (t) = (σ(t) − σ (t − Ts)) ∗

NT −1
∑

k=0

δ (t − kTs) , (15)

where Ts = T
NT

, NT ∈ N. The sliding window integrator is

split up into an integrator with a shorter window of length
T

NT
and a filter consisting of equally spaced Dirac impulses:

a comb filter which can be described by a digital FIR filter

easily, where Ts is the discrete-time sampling period. The

comb filter has the discrete-time frequency response

D
(

ejθ
)

=

NT−1
∑

k=0

e−jθk, (16)

where θ is the normalized angular frequency, θ = ωTs.

The new sliding window integrator A(jω) is given by

(12) but with reduced integration interval Ts. The frequency-

spacing of the zeros increases when decreasing the inte-

gration interval, therefore the need of analog notch-filters

within the signal bandwidth is relaxed. The digital filter

introduces additional zeros at frequencies ω = k2π/(NT Ts),
k ∈ {Z | (k mod NT ) 6= 0}. In other words, the order of

the analog filter is minimized by making the length of the

sampling time Ts as small as possible. The accumulation of

these partial integrations can be done by the digital comb filter

without much effort.

The filter parameters (the upper frequency (Fg) of constant

group-delay of the Bessel filter and the quality factors (Q1,

Q2) of the notch-filters) can be found numerically, applying

θI =argmin
θ

∫

|HT (f) − A(f, θ)D(f)G(f, θ)|
2
df

∫

|HT (f)|
2
df

, (17)

where θI is a parameter vector and G(f, θ) = ej2πfτg is a cor-

rection term for a constant group-delay difference between the

ideal filter HT (f) and the approximation filter A(f, θ)D(f).
The magnitude responses and the impulse responses of an

example filter can be seen in Fig. 4.

B. Approximation II

Other filter approximations can be made too. A possibility is

to reduce the combination of a low-pass filter and notch filters

to a single Bessel type low-pass filter. Its upper frequency of

constant group-delay Fg can be found applying

Fg =argmin
Fg

∫

||HT (f)| − |A(f, Fg)D(f)||2 df
∫

|HT (f)|
2
df

, (18)

which is a simplification of (17) due to lower degree of

freedom. The magnitude responses and the impulse responses

of an example filter are illustrated in Fig. 4. Surprisingly this

approximation can lead to a better performance than the ideal

sliding window integrator.

V. FILTER ANALYSIS

To investigate the performance of the various sliding win-

dow integrator approximations SNRz and SIRz are considered,

c.f Section III. The signaling scheme is a K = 7 sub-carrier

UWB OFDM signal, where a truncated root-raised-cosine

pulse was used with signal bandwidth and sub-carrier spacing

of 250 MHz, and binary pulse position modulation (BPPM).

This signaling scheme is used for the rest of the paper. The

input signal Eb

N0
(bit energy Eb over noise spectral density N0)

was set to be 18 dB.

In Table I, the SNRz and SIRz values and filter parameters

are listed for the two different approximation techniques, c.f.

Section IV, as a function of the overall analog filter order. It

can be seen, that the ideal sliding window integrator has the

best SIRz performance, which is obvious when considering

that the cross-terms should vanish completely for the ideal

case. The SIRz of the second approximation method is in

general higher than that of the first approximation with compa-

rable filter order. This is due to the steeper frequency response

of the second approximation filter that attenuates the high-

frequency parts (i.e. the cross-terms) more heavily. The SNRz

of the second approximation exceeds the SNRz of the ideal

sliding window integration filter, due to the steeper magnitude

response.

VI. SYSTEM SIMULATIONS & RESULTS

In Fig. 5 a comparison of the bit-error-rate (BER) of

the aforementioned approximation methods is depicted. The

simulated communication system and signals are described in

Sections II and V. The resulting BER shows that both ap-

proximation methods are able to achieve similar performance

compared with with an ideal sliding window integrator. Due

to the better SNRz, Approx. II shows the best BER results.
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Fig. 4. Magnitude response and impulse response of the Approx. I and Approx. II sliding window integrator.

TABLE I
ANALOG FILTER PARAMETERS (FILTER ORDER N, FG , Q1 , AND Q2 ) AND

OUTPUT SNR (SNRz) AND OUTPUT SIR (SIRz) OF THE TWO FILTER

APPROXIMATIONS. THE IDEAL INTEGRATOR HAS AN SNRz OF 13.4 DB
AND AN SIRz OF 49.0 DB.

Approx. I Approx. II

N Fg Q1 Q2 SNRz SIRz Fg SNRz SIRz

[MHz] [dB] [dB] [MHz] [dB] [dB]

1 39.9 12.6 33.2

2 60.9 13.4 28.4

3 72.3 13.5 28.3

4 80.2 13.5 29.5

5 82.3 1.0 2.2 13.0 18.9 86.5 13.5 31.2

6 157.8 0.7 2.4 13.3 24.2 91.9 13.5 33.0

7 236.9 0.6 1.9 13.3 23.3 96.8 13.5 34.2

8 254.5 0.6 1.9 13.4 26.4 101.4 13.5 35.3

9 277.4 0.6 1.8 13.4 27.6 105.8 13.4 37.8

10 293.3 0.6 1.8 13.4 28.7 110.1 12.2 37.8

VII. CONCLUSION

This work investigates approximation methods for ideal

sliding window integrators. It has been shown that a simple

mixed-signal system is able to perform a sliding window

integration with low-complexity and rather high accuracy

compared to the reference system with an ideal sliding window

integrator. Additionally, it has been shown for the discused

UWB OFDM scenario that the resulting mixed-signal imple-

mentation can exceed the performance of the reference system.
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Abstract—Noncoherent UWB receivers promise low power
consumption and low processing complexity but their peak data
rate is limited by the delay spread of the multipath radio channel.
A recently proposed multichannel autocorrelation receiver (AcR)
can break this rate limit due to its multicarrier signal demodula-
tion capability. In this paper, the hardware implementation of this
receiver architecture is addressed. We focus on the multiplication
device, which is a core part of the AcR and introduces strong
interference due to nonlinear effects. To analyze the signal-to-
interference ratio performance of the receiver system, a combined
Wiener-Hammerstein system model of the multiplication device
is introduced. It is shown that the receiver performance strongly
depends on the input power of the nonideal multiplier devices.

Index Terms—Autocorrelation receiver, Mixers, Nonlinear dis-
tortions, Noncoherent receivers, UWB

I. INTRODUCTION

Noncoherent receivers are a possible way forward to exploit

the advantages of UWB technology in low-complexity, low-

power devices [1]. However, their simplicity comes at the

cost of reduced robustness in presence of noise and multipath

interference. To achieve, for instance, high data rate using an

energy detection receiver, a rather hard limit is set by the

excess delay of the multipath channel. Equalization schemes

can achieve limited gains only [2].

An alternative approach to increasing the data rate is

multicarrier transmission [3], [4], where an analog frontend

is used to separate the received signal into its subcarriers.

The subcarriers can be sampled and processed at much lower

bandwidth; typically at symbol rate. A fixed implementation

of a suitable filter bank would result in a very robust high-

rate receiver, but it requires highly selective frontend filters

and lack any flexibility concerning the band selection. The

flexibility improves with the receiver architecture described in

[4], which performs an autocorrelation operation in the analog

frontend (cf. Fig. 1) and leaves the bandselection to a digital

backend running at moderately slow symbol rate.

For computing autocorrelation in analog hardware, a device

is needed with a transfer function given as

z(t) = x(t) · y(t), (1)

where x(t) and y(t) are input signals, z(t) is the output signal.
Well known multiplication devices are the so called mixers.

In communication systems, mixers are used to transform

This work has been conducted in the framework of the NOFDM project,
a collaborative project funded by the Austrian Research Promotion Agency
(FFG), grant number 825899.
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Fig. 1. The multichannel AcR architecture consists of delay filters, multi-
plication devices, and integration filters.

baseband signals or signals with low center frequency up to

radio frequency (RF) and vice versa. They are doing this by

multiplying the input signal with a single tone signal e.g.

z(t) = x(t) · cos(2πFt+ φ), where x(t) is a broadband input

signal, F is the difference between the center frequency of

the input signal x(t) and the center frequency of the output

signal z(t), and φ is some phase offset. I.e., these devices

are designed only for the specific frequency transformation

purpose. For analysis of this frequency transformation, the

mixer can be considered as single-input-single-output (SISO)

device, due to the fact that the input from the local oscillator,

except for the phase offset, is considered to be known. This

assumption leads to mixer characteristics which are taken

from single-tone and two-tone excitation of the signal port,

e.g. conversion gains and input intercept points of third order

(IIP3). However, these narrowband characteristics cannot give

a reasonable description of the mixer output for using it as

UWB multiplication device.

This paper addresses the hardware requirements of the mul-

tichannel AcR. In a previous work, the influence on the signal-

to-interference ratio of the implementation of the integrate-

and-dump device using a mixed-signal approach was shown

[5]. In contrast, this work concentrates on the self-interference

induced by the nonideal multiplier used to compute the auto-

correlation.

The paper is organized as follows. In Section II a review

of the multichannel AcR system is given for a better under-

978-1-4577-2032-1/12/$26.00  2012 IEEE ICUWB 2012140



standing of the nonlinear multiplier induced self-interference.

The multiplier signal model is addressed in Section III. The

analysis and system performance concerning self-interference

is given in Section V. In Section VI bit-error-rate comparisons

are shown, followed by conclusions.

II. REVIEW OF THE MC-ACR

The aim of the multichannel AcR is to avoid the need

for ADCs for sampling the passband signal, which would

require sampling-rates of several GSamples/s. The crucial

signal processing is the computation of a short-time estimate

of the autocorrelation function for the delays {τm}. It is done
in the analog domain, therefore the received signal only needs

to be sampled at symbol-rate Rsym = 1
Tsym

.

Assuming an inter-symbol-interference (ISI) free scenario

by introduction of a sufficient long zero guard interval, our

analysis can concentrate on a single transmitted symbol with

period Tsym. The transmitted signal can be written as

s(t) = ℜ

⎧

⎨

⎩

e+jωct

+K−1
2

∑

k=−K−1
2

skϕ(t)e
+jkωsct

⎫

⎬

⎭

, (2)

where sk is the (k+K+1
2 )-th element of aK-dimensional sym-

bol vector s, ϕ(t) is the sub-carrier pulse shape, ωsc is the sub-

carrier spacing, ωc is the center frequency, j is the imaginary

unit, and ℜ{.} is the real operator. The terms ϕ (t) e+jkωsct,

with k ∈ K, K =
{

−K−1
2 , ...,+K−1

2 | K is odd
}

, are

orthogonal basis functions which span a K-dimensional signal

space.

The received signal is given as

r(t) = hch(t) ∗ s(t) + n(t) (3)

= ℜ

{

e+jωct
∑

k∈K

skϕ̃k(t)e
+jkωsct

}

+ n(t), (4)

where hch(t) is the convolution of the channel impulse re-

sponse (CIR) and the front-end band-selection filter hfef(t),
ϕ̃k(t) is the k-th sub-carrier pulse shape which is distorted by

the channel hch(t), and n(t) is filtered Gaussian noise.

The analog signal processing of the multichannel noncoher-

ent autocorrelation receiver, c.f. Fig. 1, consists of a front end

filter for frequency band selection and M AcR channels which

perform the autocorrelation. The m-th AcR output is given as

ym =

∫ Tsym

λ=0

r(λ) · r(λ − τm)dλ (5)

≈
1

2

∑

k∈K

s2kℜ
{

Φ̃kk(τm)e+jωcτm
}

+

+
1

2

∑

k∈K

∑

l∈K
l �=k

skslℜ
{

Φ̃kl(τm)e+jωcτm
}

+

+ νm, (6)

where τm is its delay time, νm is the combination of all noise

terms, and

Φ̃kl(τm) = e+jlωscτm

∫ Tsym

λ=0

ϕ̃k(λ)ϕ̃
∗
l (λ − τm)e+j(k−l)ωscλdλ

(7)

is the cross-correlation of the k-th and l-th basis function

at given τm. Because the basis functions are assumed to be

orthogonal for any delay τm, the cross-terms (where l �= k)

will vanish [4], [6]. For l = k we get the autocorrelation of

the k-th basis function at delay lag τm.

Using vector notation we can rewrite (6) as

y = Hs+G
(

s⊗̃s
)

+ ν, (8)

where H is the MIMO channel matrix of the co-terms, G

is the cross-terms interference matrix (⊗̃ denotes the reduced

Kronecker product), and ν is the noise vector. This equation

becomes y = Hs + ν for orthogonal basis functions, given

that the cross-terms vanish and therefore G = 0.

Assuming M ≥ K , it is possible to reconstruct s using

the Moore-Penrose pseudoinverse or a minimum-mean-square-

error (MMSE) approach [6], [7], which is denoted by a

transformation matrix W. The decision variable vector z (c.f.

Fig. 1) is therefore defined as

z = Wy (9)

= WHs+WG
(

s⊗̃s
)

+Wν. (10)

III. SIGNAL MODEL OF NONIDEAL MULTIPLIERS

To study the UWB behavior of commercial multipliers, an

Agilent ADS circuit-level model of a UWB mixer designed by

the University of Ulm [8] was used. This mixer was designed

to perform a multiplication operation for a UWB correlation

receiver that supports the full UWB frequency range defined

by the FCC. It is produced using TELEFUNKEN Semicon-

ductor’s SiGe2 HBT technology and consists of two active

single-ended-to-differential converter input stages, an output

buffer stage with lowpass filter, and a four-quadrant Gilbert

cell multiplier.

Gilbert cell multipliers do have, for the bipolar case, a

transfer function given as [8]

z(t) = Istanh

(

x(t)

2VT

)

tanh

(

y(t)

2VT

)

, (11)

where Is is a total bias current driven by an ideal current

source, VT is the thermal voltage, x(t) and y(t) are two

input voltage signals, and z(t) is an output current signal.

This topology is known to approximate the ideal multiplication

operation sufficient well for very low input levels due to the

approximate linear working points of the tanh functions [9].

On the other hand, the Taylor-expansion of the tanh function

[10], given as

tanh(x) =

∞
∑

n=1

22n
(

22n − 1
)

(2n)!
B2nx

2n−1, (12)
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Fig. 2. A nonideal multiplier system z(t) = M{x(t), y(t)} of order U = 3
consists of two input and one output filters, and seven ideal multipliers and
gains, which model the static bivariate nonlinearity.

with B2n being the n-th Bernoulli number, shows certain

effects which needs to be modeled for a detailed analysis of

system self-interference due to nonlinearities. In addition to the

nonlinear behavior of the Gilbert cell, the linear time-invariant

filters at the input and the output stages, which do not exist

in an ideal multiplier, need to be considered for real devices.

In general, such a nonideal multiplication of two indepen-

dent signals x(t) and y(t) can be described as

z(t) =M{x(t), y(t)} (13)

with

M{x(t), y(t)} = h(t)∗
[

U
∑

u=0

u
∑

v=0

cu−v,u (g1(t) ∗ x(t))
u−v

(g2(t) ∗ y(t))
v

]

, (14)

where M{x(t), y(t)} is the multiplier signal model which

represents a combined Wiener-Hammerstein system [11], with

U being the maximum order of the a static bivariate poly-

nomial nonlinearity, g1(t), g2(t), and h(t) being linear time-

invariant filters and the coefficients {cu−v,u} being the gains of
the nonlinear terms. In Fig. 2 a nonideal multiplier system of

order U = 3 is illustrated. Using g1(t) = g2(t) = h(t) = δ(t)
with δ(t) being Dirac impulses, and cu−v,u = δ[u−v−1]δ[u−
1] with δ[n] being the Kronecker delta, the model represents

a simple ideal multiplication of the input signals (c.f. (1)). In

general, it has to be assumed that the filters and the gains

depend on the power of the input signals x(t) and y(t).
Substituting the ideal multiplication operator with the non-

ideal multiplier operator M{·, ·}, the m-th AcR output can

be rewritten as

ym =

∫ Tsym

λ=0

M{r(λ), r(λ − τm)} dλ (15)

=
U
∑

u=0

u
∑

v=0

K
∑

|αk|=u−v

K
∑

|βk|=v

(

u− v

α1, ..., αK

)(

v

β1, ..., βK

)

·

∫ Tsym

λ=0

cu−v,vh̃(λ) ∗

{

K
∏

n=0

sαn+βn

n ·

· ℜ
{

ϕ̃(n−K+1
2 ),1(λ)e

+j(ωc+(n−K+1
2 )ωsc)λ

}αn

·

· ℜ
{

ϕ̃(n−K+1
2 ),2(λ− τm)e+j(ωc+(n−K+1

2 )ωsc)(λ−τm)
}βn

}

dλ+ νm, (16)

where the multifold sum
∑K

|αn|=A is defined as

K
∑

|αn|=A

=

K
∑

α1=0

...

K
∑

αK=0

δ [α1 + ...+ αK −A] , (17)

with
(

A
α1,...,αK

)

being the multinomial coefficient which is

defined as
(

A

α1, ..., αK

)

=
A!

α1!...αK !
, (18)

where ϕ̃n,1(t) is the received
(

n− K+1
2

)

-th sub-carrier pulse

shape convolved with g1(t), and ϕ̃n,2(t) is the received
(

n− K+1
2

)

-th sub-carrier pulse shape convolved with g2(t).
Note that the nonlinear term corresponding to the effects of

the c1,1 component denotes to the desired ideal multiplication

as in (6). All other terms, e.g. corresponding to cu−v,v with

u − v �= 1 and v �= 1, lead to signal interference due to the

nonideal multiplication device.

Using vector notation we can rewrite (16) as

y = Hs+G
(

s⊗̃s
)

+

U
∑

u=0

u
∑

v=0
u−v �=1∧v �=1

Mu−v,v

⊗

u
{s}+ ν,

(19)

where Mu−v,v is the interference matrix corresponding to

the effects of the cu−v,v component, and
⊗

N {·} defines a

manifold Kronecker product of order N , e.g.
⊗

3
{x} = x⊗ x⊗ x. (20)

IV. BROADBAND MODEL IDENTIFICATION

A fitting of a given multiplier device to the signal model in

(14) can be done in a two steps approach:

In the first step, an identification of the input and output fil-

ters needs to be performed. For a given circuit-level simulation

model of the multiplier, intermediate signals of the filter inputs

and outputs can be accessed. Using these intermediate signals

and exciting the inputs with uncorrelated noise, it is possible

to use a least mean square (LMS) approach for identifying the

two input filters. Using the same excitation signals, the output

of the multiplier is noise shaped by the output filter. From the

topology of the multiplier circuit, we know that this filter is a

first-order lowpass filter. To identify its cut-off frequency, the

power spectral density (PSD) of the output signals is calculated

and the lowpass filter is fitted to the PSD using a squared error

norm.

In the second step, the coefficients {cu−v,v} of the static

nonlinearity are identified using a least squares method (LS),

since the signal model (14) is linear in these coefficients. The

excitation signals for this identification can be chosen using
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Fig. 3. Coefficients of the static nonlinearity.

the input signals of the desired multiplier application, e.g.

NOFDM signals given in (4).

To investigate the behavior of the UWB mixer by the

University of Ulm (c.f. Section IV), the identification was

done using the previously mentioned ADS circuit model. The

input filters g1(t) and g2(t) were modeled as 32 tap FIR

filters. They show a highpass behavior with an input power

independent cut-off frequency of approximately 3 GHz. The

output filter h(t) of the signal model was identified to be

a first-order lowpass filter with an input power independent

cut-off frequency of approximately 380 MHz. In Fig. 3, the

signal model parameters {cu−v,v} of the dominant static

nonlinearities (which introduce most of the interference) are

listed for various input power levels at both input ports. It

can be seen that the coefficients stay fairly constant up to

−20 dBm where the saturation of the tanh function starts to

have a stronger influence on the coefficients.

In Fig. 4 and Fig. 5 , a time domain signal and the PSD of

a multiplier output of the identified signal model is illustrated

in comparison to the circuit model. The mean square error

(MSEfit) of the approximation for this signal is about −18 dB.

Note that the integration operation of each AcR channel

is done using a mixed-signal approach introduced in [5]. It

proposes an analog seven-order Bessel lowpass filter with a

frequency up to which the group delay is considered to be

constant of 96.8 MHz, and a digital two tap summation filter.

All MSE values in this work are evaluated after lowpass

filtering the signals in consideration using the introduced

integration filter.

V. INTERFERENCE ANALYSIS

Narrowband characteristics are not a suitable metric for

evaluating broadband multipliers as they do not explain the

nonlinear behavior of broadband signals in a sufficient way.

Due to the nonlinear behavior of the nonideal multiplier,

interference terms may be mapped into the baseband, which

is the desired signal band of the AcR channels. Indeed, every

even-order nonlinear term does map into the baseband and is

therefore considered as interference term.

An adequate metric to study the influence of the nonideal

multiplier induced distortion is the signal to interference ratio
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Fig. 4. Time domain output signals of the nonideal multiplier model in
comparison to the output signal of the circuit model of five NOFDM pulses.
The input signals had a power of -20 dBm.
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Fig. 5. Frequency domain output signals of the nonideal multiplier model in
comparison to the output signal of the circuit model of five NOFDM pulses.
The input signals had a power of -20 dBm.

(SIR) of any nonlinear term of the decision variable z which

is defined as

SIRz

u−v,v =
E
{

sTHTWTWHT s
}

E
{
⊗

u {s
T }MT

u−v,vW
TWMu−v,v

⊗

u {s}
} ,

(21)

where the expectation operator is evaluated with respect to the

symbol vector s.

To investigate the SIRz

u−v,v for the different nonlinearity

terms, a signaling scheme of a K = 7 sub-carrier UWB

OFDM signal was used. The sub-carriers were truncated root-

raised-cosine pulses with signal bandwidth and sub-carrier

spacing of 250 MHz using binary pulse position modulation

(BPPM). This signaling scheme is used for the rest of the

paper. The input signal Eb

N0
(bit energy Eb over noise power

spectral density N0) was set to be 18 dB.

In Fig. 6, the SIR of various signal model coefficients is

depicted. It can be seen that even-order terms do disturb the

signal most. Odd-order terms are mitigated very well due to

the lowpass behavior of the multiplier. Also the fitting MSE

(MSEfit), the MSE (MSEcm) of the circuit model output and

the MSE (MSEsm) of the signal model output regarding an

ideal multiplication, and the total SIR (SIRz) are depicted in

Fig. 6 for comparison.
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VI. SYSTEM SIMULATIONS & RESULTS

To evaluate the influence of the nonideal multiplier on the

receiver performance two figures-of-merit are considered: the

signal-to-interference-and-noise ratio of the decision variable

z, which is defined as

SINRz =
E
{

sTHTWTWHs
}

E
{

(Wy −WHs)
T
(Wy −WHs)

} , (22)

and the bit-error rate (BER).

In Fig. 7, the SINRz is illustrated for different input power

levels. It can be seen that for increasing input powers the

SINRz start getting worse, which is due to the increased

nonlinear effects which result in a decreased SIRz.

The BER strongly degrades with increasing input power

levels due to decreasing SINRz. In Fig. 8, the BER curves are

depicted for different input power levels. It can be seen that,

in comparison to the ideal multiplier case, the BER for higher

input power values (P0 ≥ −20 dBm) does show a significant

error floor.

VII. CONCLUSION

This work proposes a signal model of nonideal multipli-

cation devices for UWB applications. It has been shown that

the identified signal model is able to reconstruct the output

of a circuit model with an MSE of about −18 dB. Using the
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identified multiplier model the influence of the input power

levels on the receiver system performance was shown. Due to

nonlinear effects of the multiplier device, the SINR degrades

strongly for increasing multiplier input power. However, the

BER does not degrade as strongly as the SINR. The system

model in (19) shows that the nonlinear terms are additive,

therefore additional postprocessing might be able to enhance

the SINR and BER of the receiver system.
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Digital IIR ilter implementations are important building blocks of most communication systems. he chosen number format
(ixed-point, loating-point; precision) has a major impact on achievable performance and implementation cost. Typically, ilter
design for communication systems is based on ilter speciications in the frequency domain. We consider IIR ilter design as an
integral part of communication system optimisation with implicit ilter speciication in the time domain (via symbol/bit error rate).
We present a holistic design low with the system’s bit error rate as the main objective. We consider a discrete search space spanned
by the quantised ilter coeicients. Diferential Evolution is used for eicient sampling of this huge inite design space. We present
communication system performance (based on bit-true simulations) and both measured and estimated receiver IIR chip areas.
he results show that very small number formats are acceptable for complex ilters and that the choice between ixed-point and
loating-point number formats is nontrivial if precision is a free parameter.

1. Introduction

In signal processing, ilters are building blocks removing
unwanted signal components (oten, but not exclusively,
speciied in the frequency domain). Design (i.e., identiica-
tion of suitable structures and coeicients) of digital ilters
given some speciication in the frequency domain (e.g., pass-
band ripple, cutof frequency, stop-band frequency, or stop-
band attenuation) is a well-established ield [1]. In many
advanced systems, however, the ultimate goal is rarely speci-
iable in the frequency domain but is relected in amore com-
plex measure. Examples include bit error rate, peak power
consumption, or power trace entropy. Designing eicient
systems therefore requires embedding of the ilter design
process in a larger system design context. Implementation of
digital ilters requires identiication of arithmetic units to be
implemented, the choice of a speciic number format for each
arithmetic unit, and quantisation of ilter coeicients. hese
actions alter the ilter characteristics and, if not foreseen in
the design process, can have a severe impact on the system’s
performance.

here is a vast literature on digital ilter design and
optimisation of resource usage under some constraints. All
design approaches we are aware of have in common that the
number format’s underlying error model has to be chosen
in advance; that is, the designer has to take the decision
if ixed-point or loating-point arithmetic is used prior to
optimisation. Optimisation then identiies acceptable ilter
coeicients. Some systems allow for estimating minimally
required precision.

We hypothesise that both the choice of the best error
model (i.e., if ixed-point or loating-point arithmetic allows
for the most eicient implementation) and identiication of
quantised ilter coeicients are nontrivial and do not lend
themselves to direct speciication. In contrast to current prac-
tice, identiication of number format and ilter coeicients
should be included in the communication system design
process which should be seen as an integrated optimisation
process. To verify our hypothesis, we developed a bit-true
time domain simulation of a prototypical communication
system including an IIR receiver ilter.his simulation is used
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for cost function evaluation in a global optimisation algo-
rithm directly searching for quantised ilter coeicients. he
central requirement of a communication system is considered
achieving some target bit error rate (BER) while minimising
implementation costs (like chip area and power consump-
tion). We employ Diferential Evolution (DE) [2] as a direct
search method to identify the most eicient implementation
under varying constraints.

he scientiic contributions of our work are

(i) considering IIR ilter design in the context of com-
munication systems (i.e., BER-guided ilter coeicient
identiication);

(ii) providing a bit-accurate simulation framework allow-
ing for evaluation of the objective function;

(iii) employing DE to the previous process;

(iv) considering the previous process without prior choice
of number format (ixed- or loating-point; preci-
sion);

(v) identiication of minimum required precision as a
function of system constraints;

(vi) extending the objective function by implementation
speciic measures allowing for ASIC- or FPGA-
speciic ranking of BER-equivalent ilter realisations.

he paper is structured as follows. Section 2 reviews
related work. Section 3 introduces a prototypical commu-
nication system and related measures. Section 4 details the
general IIR ilter design process. It recapitulates the idea of
formulating digital ilter design as an optimisation problem.
Filter realisation is assumed to be a cascade of biquadratic
ilter stages. Section 5 presents the DE algorithm as a means
to quickly sample a huge multimodal search space. Section 6
considers the problem of ilter design under the objective
of optimising a communication system’s performance and
details the use of DE to directly search the resulting design
space. Section 7 describes in detail all implementation and
choices made for performing experiments. Section 8 reports
results of diferent experiments employing DE to search
directly for the most suitable IIR ilter implementation
minimising BER of the communication system considered.
Giving an acceptable BER allows to search for the minimal
acceptable precision of loating-point and ixed-point imple-
mentations. Further experiments extend the objective func-
tion by measures relevant to the ilter’s implementation cost.
Section 9 discusses the experiment’s results. Section 10 sum-
marises the work and discusses challenges ahead. Section 11
details possible future research directions.

2. Related Work

Many authors have described strategies to derive ilter coef-
icients for some given ilter structure such that a given
frequency response is matched. Usually, quantisation of
coeicients is considered as a distinct and subsequent task.

Shyu and Lin [3] employ a variational approach to
identify quantised coeicients by trying to match an ideal

impulse response. Ater initial identiication of continuous
coeicients, they are iteratively substituted by quantised ones
while the remaining coeicients are modiied to compensate
for the resulting modiication.

Alternatively, direct derivation of quantised ilter coef-
icients can be done by considering ilter design a search
problem over a huge (yet inite) discrete space. Storn [4,
5] used diferential evolution to search for realisable ilter
coeicients using speciications in the frequency domain.
Ramos and López [6] combine a direct search method
with a heuristic parametric optimization to identify optimal
realisable ilter coeicients of an equaliser structure for
loudspeakers implemented using biquadratic ilter stages.

here are several optimisation algorithms available that
tackle this issue. Especially the use of population-based
computation algorithms such as genetic algorithms [7–9],
diferential evolution [2, 9–12], particle swarm optimisation
[13], and the seeker optimization algorithm [14] is common.

Irrespective of the method employed, many diferent
objectives for guiding the ilter design process are possible.
Typically, ilters are speciied in the frequency domain.
Consequently, most ilter design methods employ an objec-
tive function derived from ilter speciications in frequency
domain (like the integral over the frequency response mis-
match).

he matched ilter theory readily provides optimal ilter
speciication in frequency domain relevant under commu-
nication system constraints. he matched ilter theory relies
on linear system characteristics, though. his assumption
is violated many times for real-world systems. Stücke et al.
[15] investigate nonlinear efects in communication systems
and their impact on ZigBee transceiver systems in terms of
BER. To the best of our knowledge, our work is the irst
one employing a BER objective function in a direct search
approach, basically solving the inverted problem compared
to the work of Stücke et al. A related approach for optimising
transmitter and receiver FIR ilter speciications under BER
constraints in a MIMO setting is presented by Hjorungnes
et al. [16].

he DE algorithm was presented by Storn in 1995 in a
technical report followed by a paper authored by Storn and
Price in 1997 [2]. Design of digital ilters was one of the
original motivations for the development of the algorithm.
In 2005, DE was presented in the IEEE Signal Processing
Magazine [4]. he up-to-date references for DE are the
books by Price et al. [17] and Chakraborty [18] as well as
the recent survey by Das and Suganthan [19]. Compared
to the original schemes suggested by Storn and Price [2],
many additional variants have been conceived and methods
for selecting parameters have been described. Notably, Zhu
et al. [20] propose a method to adapt the (usually static)
population size, while Pan [21] suggests a scheme where the
DE parameters � and � are adapted during optimisation.
Zaharie [22] investigates the efect of diferent crossover
schemes.

Pan [21] applies DE for pole-placement design, while Zhu
et al. [20] apply DE for IIR coeicient identiication in the
context of system identiication.
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Most current design methods do not perform a rigour
veriication of the actual ilter being implemented, that is,
taking all quantisation efects into account.

Widrow and Kollár [23] have suggested a generic method
for modeling the probability density functions of intermedi-
ate results yielded by limited-precision arithmetic and have
employed it to (both arithmetic and coeicient) error analysis
of IIRs. hey point out, however, that the method becomes
more unreliable with decreasing precision. Cox et al. [24]
present bit-precise veriication techniques and show cases
where reasoning on the bit level is necessary. Kar [25]
presents a stability criterion for digital ilters considering both
quantisation and overlow efects.

While many methods derive ilter coeicients in double-
precision loating point, this is a very costly number format
to be implemented in hardware. Hardware implementation
of digital ilters typically resorts to low-precision ixed-point
arithmetic as the respective operations are considered less
expensive in terms of time-area product. Very few authors
have investigated low-precision loating-point number for-
mats for the implementation of digital ilters.

To the best of our knowledge, our work is the irst one
considering loating-point precision a free parameter on a
per-bit resolution in the IIR design process.

Our work is the irst in-depth comparison between
respective implementation costs of ixed-point and loating-
point custom-precision IIR ilter implementations.

3. System Model

his section presents the communication system which will
be used throughout the rest of this paper.he communication
system is a base-band transceiver concept as illustrated in
Figure 1. Without loss of generality, the system is modeled
in discrete-time. he signaling under consideration is a
one-dimensional pulse-amplitude modulation (PAM). We
assume absence of intersymbol interference (ISI). herefore,
only a single symbol period of duration �sym needs to be
considered. he sent signal �[�] is therefore given as

� [�] = � ∗ ℎT [�] , (1)

where � ∈ {��} is the transmitted symbol, {��} is the set of �
available complex valued symbols, ℎT[�] is the pulse shape,
and ∗ denotes to the convolution operator.

For simplicity, the transmission channel is modeled using
additive white Gaussian noise (AWGN). he received signal�[�] is therefore given as

� [�] = � [�] + ] [�] , (2)

where ][�] is a white Gaussian noise process with a power
spectrum density of�0/2.

To remove out-of-band noise at the receiving side, a
receiver ilter with impulse response ℎR[�] is required. he
receiver ilter’s output is given as

� [�] = ℎR [�] ∗ � [�] + ℎR [�] ∗ ] [�] . (3)

It is known that the optimal (i.e., minimising detection
errors) receiver ilter forAWGNchannels and linear signaling

�[�]

�[�]

�[�] �[�] �
DDℎR[�]

�̃

Figure 1: Discrete-time domain communication system model.

schemes is thematched ilter [26].herefore, ℎR[�] = ℎ∗T[−�],
where (⋅)∗ denotes the complex conjugate. It should be noted
that thematched ilter gives a lower boundwith respect to the
bit error rate [26]. Any approximation of this matched ilter
can only perform worse. As shown later, direct search (using
DE) can ind a ilter solution close to the theoretical matched
ilter BER performance.

Ater iltering, the signal �[�] is sampled, which results
into the decision variable �. he ideal sample time is at the
end of the symbol period; hence, the decision variable � is
given as

� = � [�sym]
= � + ], (4)

where � is the projection of the transmit pulse ℎT[�] onto the
receiver ilter ℎR[�] scaled by the transmitted symbol �, and
thus

� = � +∞∑
�=−∞

ℎT [�] ℎR [�] , (5)

and ] is a zero-mean Gaussian distributed random variable
with variance �2

]
= (�0/2)∑+∞�=−∞ |ℎR[�]|2. Note that for the

case that the receiver’s impulse response ℎR[�] does have unit
energy, hence,∑+∞�=−∞ |ℎR[�]|2 = 1, and the variance �2] of the
random variable ] is equal to the noise power spectral density�0/2 of the noise sequence ][�] so that �2

]
= �0/2. Note

that � is given as � ∈ {��} if ℎT[�] with unit energy and ℎR[�]
represents the corresponding unit energy matched ilter.

For detection, the decision device (DD) compares the
decision variable � with a set of thresholds {��}. he interval
between two threshold values �� and ��+1 deines the range of
the symbol ��. If � is in the interval of the two threshold values�� and ��+1, the decision device decides for �̃ = ��.

For a binary antipodal one-dimensional PAM, for exam-
ple, binary phase-shit-keying (BPSK), the symbols � are
given as � ∈ {−√E�, +√E�}, whereE� denotes the bit energy
for a unit energy pulse shape.he ratioE�/�0 is awell-known
metric for comparing the performance of communication
systems. he theoretical bit error probability �� for the
optimum matched ilter receiver of a binary antipodal PAM
is given as

�� = Q{√2E��0 } , (6)

where Q{⋅} is the Q-function. As discussed before, this
theoretical bit error probability represents a lower bound to
technically achievable (i.e., approximating ℎR[�]) BERs.
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4. IIR Filter Design

Ininite impulse response ilters provide comparable perfor-
mance at less computational/hardware requirements com-
pared to inite impulse response (FIR) ilters. he disadvan-
tage of IIR ilters is the fact that they can become unstable and
that the error surface for inite-precision implementations is
nonlinear and multimodal [10]. he latter renders inding an
optimal set of quantised ilter coeicients for implementation
in inite precision arithmetic a hard problem.

Due to the relevance of digital ilters in general and the
resource savings possible through use of IIRs, there exists a
high interest in converting continuous into quantised ilter
coeicients. Consequently, many diferent respective meth-
ods have evolved. Matching a certain frequency response
speciication is the major target of most of them. However,
there are also interesting approaches that design the ilter in
the time domain. he latter is used in this work as it has
several advantages for the design of digital ilters used in
communication systems.

Especially for IIR ilters designed to meet certain ilter
speciications such as pass-band ripple, cutof frequency,
stop-band frequency, or stop-band attenuation, it is common
to adjust poles and zeros in the �-plane as this automatically
ensures stability [27]. However, for a digital implementation,
coeicients still need to be calculated out of the poles/zeros
and quantised. Furthermore, depending on the ilter struc-
ture, scaling factors that are used to limit the numerical range
for inite-wordlength architectures do not come out from
such designs in the �-plane. hat is why, in contrast to [27],
we adjust the coeicients of the ilter directly in order to avoid
this issue. To verify stability of these coeicients, poles and
zeros need to be computed. Verifying location of poles and
zeros is a simple operation with low computational efort,
though.

Designing the ilter in time domain can be incorporated
by trying tomatch, for instance, a reference impulse response.
Besides the fact that the evaluation is simple, quantisation
errors can be evaluated convenient in time domain. Further-
more, computations of the impulse response can be done bit-
true such that the simulation corresponds exactly to the inal
hardware implementation.

Instead of taking the impulse response, we generate a
randomdata sequence as reference out of the communication
system model (Figure 1) and aim at to minimising the bit
error rate.

4.1. Filter Structure. here exist many possible ilter struc-
tures to implement a given transfer function. he cascading
of second-order (or biquadratic) ilter sections is beneicial
as the number range is limited by the scale values in front of
each section.herewith, even quantisation errors are reduced
[28] which is the main purpose of utilizing SOS direct-form
II ilter structures in this work (see Figure 2). Alternative
ilter structures include lattice wave ilters [29, 30], but there
is the issue that in general this ilter structure needs the
double amount of multipliers compared to direct-form II
implementations [1].

�−1

�−1

�[�]

−�1

−�2

�0

�1

�2

�[�]

Figure 2: Direct-form 2 implementation of a biquadratic (or se-
cond-order) ilter stage.

he transfer function of a cascaded SOS is given as

�(�) = ��∏
�=1
�� �0� + �1��−1 + �2��−21 − �1��−1 + �2��−2 , (7)

where �� is the number of sections, �� is the scale value for
each SOS, and the ilter coeicients are represented by �0�, �1�,�2�, �1�, and �2�. Note that there is full freedom in ordering the
sections itself.

Starting at the entry of an SOS, the scale value is a useful
factor for limiting the numerical range of inite-precision
arithmetic; thus, overlows can be suppressed in an elegant
way. Furthermore, this scale value can be used to weight the
SOS itself. As each SOS is a ilter of order two, quantisation
errors are mainly inluencing one section. he impact on
the overall ilter transfer function is reduced as the signal is
damped and the noise bandlimited by subsequent sections.
Finally, the number of delay elements is decreased compared
to direct-form I sections [1, 12, 28].

4.2. Filter Evaluation. he typical quality measure employed
to quantify how well a ilter matches the system speciication
is the mean squared error (MSE) between original speci-
ication and actual ilter characteristic. For demonstration,
we compare in the following the magnitude response of
the matched ilter with the one of the considered standard
ilter design approaches given the matched ilter magnitude
response as design objective.

For the transceiver system model presented in Section 3
with root-raised-cosine shaped pulses, the matched ilter is
a lowpass. We design three standard lowpass ilter types to
demonstrate the achievable match of magnitude responses.
he ilter types are Butterworth, Elliptic, and Chebyshev
type I [1]. All ilters are designed with order 6. A simulation
is done exemplary for a binary antipodal PAM.he optimum
BER is obtained by varying the cut-of frequency �� between
0.05� and 0.1� in steps of 0.005�. hese parameters are
selected by evaluating the magnitude response of the pulse
shaping ilter ℎT[�]. he reference ilters are designed to
match it as close as possible (Figure 11). Table 1 lists the iden-
tiied best cut-of frequency �� for each ilter type together
with the respective MSE compared to the matched ilter’s
magnitude response. he Butterworth ilter performs best;
that is, its magnitude response is closest to thematched ilter’s
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Table 1: Best cut-of frequency �� and corresponding MSE to the
matched ilter’s magnitude’s response.

Filter type
�� MSE

normalised frequency (dB)

Butterworth 0.07� −10.63
Elliptic 0.075� −8.83
Chebyshev 0.075� −8.61
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Figure 3: Transceiver BER for a Butterworth, elliptic, and Cheby-
shev ilters based on the exemplary communication system model
(Figure 1). All ilters are designed with order 6. he simulation is
done for�� = 106 bits.

one. As illustrated in Figure 3, the theoretical BER given in (6)
is not reached.

4.3. Discrete Design Space. Given some ilter structure imple-
mented using inite precision arithmetic, the set of possible
ilter coeicients (and therefore ilter characteristics) can be
enumerated.his set represents a huge, yet inite design space.
Given a sixth-order IIR ilter implemented as a cascade of
biquadratic ilter stages, every possible implementation can
be described by an instance of the SOSmatrixC, representing
the ilter coeicients where

C = [[[[
[

�01 �11 �21 1 �11 �21�02 �12 �22 1 �12 �22
...

...
...

...
...

...�0�� �1�� �2�� 1 �1�� �2��
]]]]
]

(8)

and the scale vector s

s = [�1, �2, . . . , ���]T, (9)

where�� is the number of biquadratic ilter stages.

8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of fractional portions in state variable

Fixed-point

Floating-point

×105

C
h

ip
 a

re
a 

(�
m
2 )

Figure 4: Chip area for programmable coeicients of the IIR ilter
with three biquadratic ilter stages for ixed- and loating-point.

4.4. Arithmetic. Besides the ilter architecture, the arithmetic
in which the computations are performed in digital hardware
is amajor design decision. Especially the number of fractional
bits for ixed-point and the precision for loating-point
implementations is a major design decision as a tradeof
between performance and hardware costs needs to be found.
his will be evaluated in detail in Section 7.4.

4.5. Implementation Cost-Chip Area. Digital ilters are com-
plex structures requiring a signiicant amount of chip area
for implementation. We have developed a generic code
describing the cascaded ilter structure in both ixed- and
loating-point with the precision as a parameter. here exist
two versions. One integrates the coeicients directly into
the design while the other one implements a register. he
latter option allows for arbitrary changes of parameters
through reprogramming of the registers. All multiplier paths,
however, need to be fully instantiated, resulting in a much
higher area requirement compared to predeined coeicients.

Synthesis results for diferent loating-point and ixed-
point number formats are given in Table 2 and depicted in
Figure 4.

4.6. Limit Cycle. An IIRilter can exhibit an unstable behavior
under inite precision arithmetic for speciic constant input
signals.his type of instability usually results in an oscillatory
periodic output called a limit cycle [31].

here are two types of limit cycles: (1) granular limit cycle
(LSB oscillations; typically of low amplitude) and (2) overlow
limit cycle (MSB oscillations; typically of large amplitude).

Criteria considering the combined efect of these two
phenomena have only recently started to appear [25].

Many ilter design methods aim at reducing or avoiding
limit cycle efects. Our chosen ilter realisation (cascaded
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Table 2: Chip area for an IIR ilter (order 6, cascade of three
biquadratic ilter stages) with programmable coeicients.

Fractional bits (bit)
Area ixed-point(�m2) Area loating-point(�m2)

7 112370 244905

8 125379 279039

9 154582 309891

10 169388 339441

11 202143 388644

12 218251 406734

13 256645 458154

15 313606 533592

19 430632 705147

Table 3: Evolutionary computation nomenclature (from [32]).

Individual A candidate solution

Child, parent A child is the tweaked copy of its parent

Population Set of candidate solutions

Fitness Quality, directly related to the cost function

Selection Picking individuals based on their itness

Mutation
Plain tweaking of parameters based on
population

biquadratic DF II ilter) is known to limit the possible efects
of limit cycles but does not exclude them.he current design
low does not check for possible limit cycles.

5. Differential Evolution

he Diferential Evolution (DE) optimisation algorithm is
proposed in [2]. Since it shows excellent performance com-
pared to other much more complex heuristic optimisation
algorithms [19], we utilize this algorithm. As described in
Section 2, many variants and improvements of the original
schemes have been conceived. As the task at hand is per-
formed oline and the basic scheme does deliver good results,
we have not explored further opportunities for tweaking the
DE scheme.We discuss future improvements in Section 11. In
the following, the DE algorithm’s steps are described in detail.
As evolutionary computationmethods have diferent naming
conventions, a short nomenclature is provided in Table 3.

(1) Initialization. he following constants need to be chosen.�� is the number of biquadratic ilter stages, � is the
population size, and� the maximum number of generations.
Furthermore, the number format (ixed- or loating-point)
and the respective precision needs to be selected.

he initial population of individuals is randomly gener-
ated. One individual represents the scale vector s and the SOS
matrix C. he scales are generated as

�� = U (0, 0.1) ∀� = 1, . . . , ��, (10)

where U(�, �) denotes the continuous uniform distribution
in between � and �. he coeicient matrix is initialized as

��� = U (−1, 1) ∀� = 0, . . . , 5, � = 1, . . . , ��. (11)

In general, the number range of coeicients and scales of
the initial population is of little importance. We found that
the algorithm inds a satisfying solution with any random
initialization.

(2) Scales and Coeicient Quantisation (Optional). In case
of optimisation for bit-true ilter coeicients (i.e., ixed- or
loating-point), the scales and coeicients are quantised to
their predeined number format.

(3) Compute and Evaluate the Cost Function. A system simu-
lation is performed for all individual in the current generation
(i.e., ��,� and C�,� ∀� = 1, . . . , �) and the BER computed at a
given operating point according to (16). Depending on the
objective function used, additional criteria are evaluated to
arrive at the inal itness of each individual.

(4) Mutation and Selection. here are two basic schemes for
mutation suggested in [2] (DE1 and DE2). DE1 performs
mutation relying on a random diference vector. he difer-
ence vector is built using two randomly selected individuals
(indices �, �, � ∈ {1, . . . , �} and mutually diferent). he scales
and coeicients are tweaked according to

��,�+1 = ��,� + � ⋅ (��,� − ��,�) ∀� = 1, . . . , �,
C�,�+1 = C�,� + � ⋅ (C�,� − C�,�) ∀� = 1, . . . , �. (12)

DE2 performs mutation as DE1 but takes the best solution
in the current generation into account, too. he scales and
coeicients are tweaked according to

��,�+1 = ��,� + � ⋅ (�best,� − ��,�) + � ⋅ (��,� − ��,�) ,
C�,�+1 = C�,� + � ⋅ (Cbest,� − C�,�) + � ⋅ (C�,� − ��,�) . (13)

Choice of DE variant and parameters � and � will be
discussed in Section 7.5.

Depending on the cost function, the parents or the
mutated children stay within the population or not [2, 4].

(5) Termination. he termination condition is met if the
number of maximum generations (i.e., � = �) is reached.
Otherwise, the algorithm continues with step 2.

6. Filter Design under Communication
System Constraints

In this section, the optimisation of a quantised IIR ilter
considering the overall system model is derived. Ater dei-
nition of the optimisation problem, the theoretical optimum
receiver and the DE optimisation algorithm are proposed.
he transceiver performance is then analysed with respect to
implementation costs in digital hardware.

6.1. Optimisation Problem Deinition. Based on the blocks
of the transceiver model described so far (Figure 1),
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Figure 5: Communication system optimisation. Transmitted sym-
bols are compared against the received ones to design the receiver
ilter.

the optimisation problem to minimise the bit errors of the
receiver is deined and illustrated in Figure 5. he received
symbols �̃[�] are compared against the transmitted symbols�[�] deining the error as

� [�] = � [�] − �̃ [� − Δ] , (14)

where Δ is a time delay introduced by the communication
system.

For stable coeicient sets, we deine the bit error rate as
the squared error

BER = 1��
��−1∑
�=0

�2 [�] , (15)

where �� is the number of transmitted symbols for the
training sequence. he cost function is dependent on the
SOSmatrixC representing the ilter coeicients and the scale
vector s.

he speciic cost functions used will be detailed in
Section 7.

7. Experiment Setup

In the following, we detail the experiment setup. Results of
experiments performed are reported in Section 8.

7.1. SystemModel Speciication. Without loss of generality, the
signaling scheme is chosen to be a binary antipodal PAM
with � = {−√E�, +√E�}. he symbol rate �sym is 125 kbit/s
and the upsampling factor � = 16. he pulse shape of the
transmitted pulses is a root-raised-cosine pulse with a roll-
of factor of � = 0.5. he symbol sequence {�[�]} is randomly
generated with equiprobal symbols, and the simulation is

done for�� = 106 bits.
he communication system’s target BER is set to 10−3

(or better). he corresponding E�/�0 ratio is 7.288 dB (see
Figure 6 for an illustration).

he gain � which is introduced in Figure 5 is used to
prescale the input number range of the receiver ilter to ensure
fair comparison between ixed- and loating-point.

7.2. Emulation of Finite Precision Hardware. In order to allow
for a correct evaluation of quantisation efects, a bit-true
simulation of the implementations considered is required.
We provide bit-true simulation of BER calculation for both
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Figure 6: Transceiver BER for the optimum solution found by the
DE algorithm. he operating point for ixed- and loating-point
analysis is chosen to be at a BER of 10−3 resulting in anE�/�0 ratio
of 7.288 dB.

loating-point and ixed-point arithmetics. Both simulations
allow the choice of arbitrary values for the number format’s
precision.

7.2.1. Fixed-Point. For ixed-point, the BER is evaluated for
diferent �� ⋅ � number formats for the state variable of
the ilter. his notation deines the number of integer (�)
and fractional (�) bits within the representation. � is kept
constant at 8 bits. Experimentally, this has been found to be
suicient to avoid overlows for all of the diferent solutions
obtained by the DE. An overlow is indicated by a dedicated
lag in the bittrue reference design. However, it might occur
depending on the randomly generated noise added to the
data sequence, especially when approaching a low number of
fractional bits as the quantisation noise increases.

he signal range at the input of the ilter is scaled to 90%
of the input value range by setting � = 0.9 in Figure 5. his
choice is signiicant, especially when comparing the BER to
the loating-point scenario. Furthermore, it implies that for
any E�/�0 ratio the signal needs to be scaled accordingly by
a dedicated gain control unit.

he iltering for the analysis is done based on a hard-
ware equivalent implementation in C code and called from
MATLAB using MEX [33] interface. Due to this, the iltering
operation lasts a multiple of the double-precision loating-
point implementation. A comparison is given in Table 4.

7.2.2. Floating-Point. For the loating-point analysis, the BER
computation in Figure 12(b) is performed for diferent preci-
sions while the exponent is constrained to 4 bits.

For hardware equivalent iltering, the GNU MPFR [34]
library is used. It allows for loating-point operations on
custom number formats (i.e., arbitrary mantissa (precision)
and exponent bit widths). As the execution time is dominated
by the Matlab-to-C interface, observed times are equivalent
to the ixed-point implementation (see Table 4).
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Table 4: Execution time analysis of a single generation of the DE1
algorithm (population size: 100).

Matlab Bit-true

(double) (ixed/loat)

[s] [s]

Initialization 0.935 0.908
Filtering operation 0.603 27.25
Evaluate itness/cost function

Calculate BER 2.488 2.488
Check stability 0.327 0.327
Multiobjective itness functions — 0.123

Mutation and selection 0.284 0.284
Total time for single generation 4.637 31.380

7.3. Single-Objective Optimisation for Target Bit Error Rate.
he objective function uses the BER deinition given in (16).

For stable coeicient sets, we deine the cost function to
equal the bit error rate

�BER (s,C, ��, E��0) = BER. (16)

(a) Stability. Digital ilters can be speciied using ilter
coeicients or pole/zeros. In R, these speciications are
interchangeable. Using pole/zero description has the advan-
tage of restricting the search space to stable systems (i.e.,
all poles reside inside the unit circle) by design. When
considering quantised coeicients, however, there is—due
to quantisation—not necessarily a one-to-one mapping
between pole/zero and parameters anymore. As DE is a direct
search method, the native approach appears to be using
quantised ilter coeicients as parameters. DE might, how-
ever, consider parameter combinations resulting in unstable
ilters. he objective function therefore needs to exclude
unstable solutions. From quantised coeicients �, poles can
be computed and the stability criterion be checked.We deine
a condition function �Stable(s,C) for the objective function�(s,C, ��,E�/�0). �Stable(s,C) is assigned the value 1 if the
ilter is stable, 0 otherwise.

For an unstable parameter set, we deine

�BER (s,C, ��, E��0) = max(�(s,C, ��, E��0)) = 1. (17)

7.4. Multiobjective Optimisation. he DE optimisation algo-
rithm proposed so far is able to ind optimised coeicients
with respect to the receiver performance as given by the
bit error rate (BER) measure. It already generates fully
quantised coeicients that can be plugged into a hardware
description. However, for FPGAs/ASICs, the hardware costs,
that is, area and power, are of very high relevance. In the
vicinity of the optimum found by the DE, there might be
several other solutions with the same BER but with less
amount of hardware requirements due to diferent sets of
coeicients. We therefore extend the existing framework to a

multiobjective optimisation approach that tries to minimise
these costs at system-level design. he cost function and
optimisation procedure is described later.

(b) Signal Range. In order to maximise the sensitivity of the
receiver, the ilters’ internal signal range is evaluated. he
quantisation noise is minimised if the available fractional bits
of the implemented registers are used in its whole width. We
deine

�SR =
{{{{{{{{{

0, if 2�−1 ≤ max (abs (�)) < 2�+1,
1 − max (abs (�))2� , if max (abs (�)) < 2�−1,
1, else,

(18)

where� is a vector of all the register values atermultiplication
in the biquadratic ilter stages and � is the number of
fractional bits. Below the acceptable value range, the cost
function is linearly increasing or directly forced to one if it
exceeds it.

(c) Hardware Cost.Amultiplier in digital hardware is, in gen-
eral, built fromadders. Still, an adder is only instantiated if the
corresponding bit in the multiplicand (i.e., the coeicient) is
set (1). As the optimisation algorithm tweaks the coeicients,
this can be reformulated as an optimisation criterion. he
amount of nonzero bits can be minimised by introducing a
dedicated cost function �HW.

For modeling the hardware costs, a full synthesis run for
each individual within the population could be investigated
to obtain the inal area and even power consumption for a
certain stimuli. However, this is impractical since the syn-
thesis and simulation would need enormous amount of time.
herefore, the hardware costs need to be approximated. For
ixed-point, several synthesis runs with diferent coeicient
sets were performed for the digital ilter. hey show that the
area is maximised if half of the bits are set alternating within
the coeicient number representation. It drops if more or less
of half of all the bits are set.hus, we deine a function Γ(�, �)
as

Γ (�, �) = {{{{{{{
�set, if �set ≤ �2 ,
� − �set, if �set > �2 ,

(19)

where � is the bitwidth of � and �set is the count of
nonzero bits within the number representation of �. hen,
the hardware costs are deined by summing all the set bits for
the scales and coeicients and normalizing them, which is

�HW (s,C) = ∑���=1 Γ (��, ��)���� + ∑5�=0∑���=1 Γ (���, ��)6���� , (20)

where �� and �� are the bitwidths of the scales and coei-
cients, respectively.

(d) Summation of Cost Functions. For themultiobjective opti-
misation, we sum the partial costs by weighting. Given that
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the ilter is stable, we wish to minimise the communication
system’s BER. For a given set of parameters resulting in a
stable ilter, we therefore evaluate the cost function � as
� (s,C, ��, E��0)=�BER�BER (s,C, ��,

E��0) + �HW�HW (s,C)
+ �SR�SR (s,C, ��, E��0) ,

(21)

where �BER, �HW, �CR are the partial cost functions and �BER,�HW, �CR are the weighting parameters, respectively.he cost
function is evaluated at step 3 of the algorithm proposed in
Section 5.

For an unstable parameter set, we deine

� (s,C, ��, E��0) = max(�(s,C, ��, E��0)) . (22)

In order to obtain the weighting parameters, we analyse
the cost functions itself. �BER is depending on the operation
point of the optimisation, that is, deined by E�/N0. �HW

is normalized by the total number of possible set bits and
is found to be approximately 0.33 for scale and coeicient
sets generated in the form of (10) and (11). In order to not
inluence the BER signiicantly, �HW is chosen to be in the
same number range as �BER. hus, for an expected BER of

10−3, �HW = 0.003 while �BER = 1. In order to minimise
the quantisation noise by fully using the fractional bits of the
implemented registers, we expect �CR to vanish. Hence, we set�CR = 1 as well.

Note that even with reprogrammable coeicients via
registers, the DE optimised solution is able to reduce the
power consumption by minimizing the number of nonzero
bits of the coeicients for ixed-point. In this case, the
hardware cost function is simply reformulated to

Γ (�, �) = �set (23)

as the power consumption will rise proportional with the
increasing number of nonzero bits.

7.5. Choice of DE Variant. Two DE schemes were presented
in Section 5. Here, we discuss identiication of the variant
most suitable for the design space at hand. Figure 7 shows
the objective’s function value over 2000 generations for 20
optimisation runs per DE variant (DE1 and DE2). DE1
provides a muchmore uniform behaviour and oten provides
better inal solutions than DE2. We therefore choose DE1
as the DE variant of choice in all experiments reported in
Section 8.

he control variable � in (12) and (13) was found by
performing 20 simulation runs for each value between 0.1
and 0.8 with step size 0.1. Comparing the average and best
itness over generations, we found � = 0.5 to be the best
choice delivering fast initial convergence with satisfying inal
solutions over multiple runs. his choice coincides with the
value suggested in [2]. For �, a value of 0.2 was found to be a
reasonable choice.
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Population size 100.

8. Experiments

In the following, we report on experiments with a single
objective (BER) and multiple objectives.

8.1. Single-Objective Optimisation for Target Bit Error Rate.
In the irst experiment, DE is used to search for a solution
using double-precision loating point coeicients. Population
size is 100 and maximum simulation run-time is set to 1000
generations (i.e., optimisation is stopped, even if results do
not converge). he execution of a single generation takes 4.6
seconds on a Linux server (2x Intel XeonCPUX5677 running
at 3.47GHz. System memory: 47GB RAM), resulting in a
maximum run time of 1000 ⋅ 4.6 s = 1 h 17 min. Refer to
Table 4 for a detailed breakdown of execution times.

Figure 8(a) shows the BER of the best solution found
by DE in every iteration. It shows how the inal optimum
BER curve is obtained iteratively. Figure 8(b) depicts the
population’s best and average BER as well as the average BER
of the best 25% of all individuals within the population for
each generation. Note that the latter converges fast, providing
several potential candidate solutions close to the optimum
BER.

Figure 9 shows the BER of the individual with the lowest
BER in Generation 1000 and the BER curves for the standard
ilters (see Section 4). As can be seen, the ilter coeicients
identiied by DE result in a superior ilter (in terms of BER)
compared to all considered standard ilter design approaches.

To give an impression of the design space’s structure,
Figure 10 shows the cost function � in the �1/�2 planewhile all
other parameters are ixed at the optimum solution identiied
by DE.

8.1.1. Filter Magnitude Response. Because ilter speciication
and evaluation in the frequency domain is so ubiquitous, we
compare here theDE’s solutionsmagnitude response with the
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magnitude responses of standard reference ilters. Note that
the design methods are completely diferent. he reference
ilters are designed with a certain cut-of frequency which
deines the ilters frequency response characteristics. he
optimised DE ilter considers the overall system in which it is
embedded and iteratively identiies suitable ilter coeicients
relying on a time domain perspective.

Figure 11 shows the magnitude response of Butterworth,
elliptic, and Chebyshev ilters as detailed in Section 4.2
together with the magnitude response of the solution iden-
tiied by DE. Observe that the optimal solution’s gain is
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signiicantly higher than the ilter speciication derived from
the matched ilter assumption.

8.1.2. Choice of Number Format. A communication system’s
performance is signiicantly depending on the receiving’s
ilter number format and precision chosen. Quantifying this
dependency is the goal of the following experiment.

DE was used to search for the optimal solution given
a ixed-point receiver ilter implementation and given a
loating-point receiver implementation.

Figure 12(a) shows the BER over diferent ixed-point�� ⋅ � formats, where � is constantly set to 8 and � is
the number of fractional bits. Figure 12(b) shows the BER
over diferent loating-point precisions, where the exponent
is limited to the range of ±15. he red line shows the BER
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achieved with the sotware reference implementation using
double-precision loating point.

8.2. Multiobjective Optimisation for Hardware Eiciency. To
give an impression of the design space’s structure when
using a multiobjective cost function, Figure 13 shows the cost
function � in the �1/�2 plane while all other parameters are
ixed at the optimum solution identiied by DE.

he required chip area found by the DE with and
withoutmultiobjective optimisation in ixed-point arithmetic
is presented in Figure 14. he synthesis is performed for
predeined coeicients, which means that they are constants
at synthesis time. On average, around 4.4% can be saved
utilizing the multiobjective optimisation with hardware costs
(Table 5) while at the same time the BER from Figure 12(a) is
retained. It is clear that, for the DE algorithm without ded-
icated cost function, the hardware costs are purely random.
hus, also the saving in area compared to the multiobjective
optimisation is varying between 1% and 12%.

9. Discussion

Using the BER as optimisation objective, the DE algorithm
is able to identify coeicient sets which outperform systems
relying on conventional ilter design methods with specii-
cation in the frequency domain (matched ilter). Inspecting
the resulting ilter in the frequency domain reveals that the
magnitude response deviates signiicantly from the matched
ilter’s magnitude response. his result does not interfere
with the matched ilter theory. It reveals, though, that under
the presence of channel noise and nonlinearities (inite-
precision arithmetic), a ilter optimising the overall BER
can be implemented with a magnitude response signiicantly
diferent than the speciication of the matched ilter. his
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Figure 12: (a) BER over diferent ixed-point�� ⋅ � formats, where� is constantly set to 8 and � is the number of fractional bits. (b)
BER over diferent loating-point precisions, where the exponent is
limited to the range of ±15.
is a strong argument against direct speciication of ilters
approximating a matched ilter.

Employing a direct search algorithm has the advantage
that—given it works reliably on the original problem space—
new search criteria (i.e., extended cost functions) can be
added (almost) at will. Additional partial cost functions
will not break the search algorithms eiciency (i.e., reduce
the convergence rate). We have demonstrated this strategy
successfully by adding hardware measures. his results in
reliably cheaper implementations with identical BERs.

Using the DE algorithm with a single BER objective can
result in many solutions with almost identical cost (i.e., BER)
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Table 5: Chip area in �m2 for predeined coeicients (constant at synthesis time) with and withoutmulti-objective optimisation for hardware
eiciency (ixed-point). he mean is computed out of the best 25% solutions within the inal population. Populations size is 100.

Area predeined coefs Area predeined coefs

Fractional bits (�) without hardware opt. with hardware opt. Area savings

Mean best 25% Best Mean best 25% Best

7 40048 37738 39009 33183 12%

8 45441 42977 44736 42688 1%

9 51879 49506 50513 47065 5%

10 58855 54360 55379 49585 9%

11 67323 62873 66895 61007 3%

12 74079 68240 73835 64848 5%

13 82066 77486 80760 75403 3%

15 99119 91118 98238 90403 1%

19 145077 136627 142296 135049 1%
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Figure 13: Visualisation of the multiobjective cost function � over�1 and �2.

but signiicantly varying hardware costs due to the diferent
amounts of set bits in the coeicients. he uncertainty in
hardware cost lies between a factor of 2 and 10 depending
on the number format considered. Introducing an additional
hardware cost objective allows for signiicant reduction of
this uncertainty. Consequently, using a multiobjective cost
function taking the number of set bits into account allows for
a much more reliable design process guaranteeing identiica-
tion of hardware-eicient ilter implementations.

We have shown partial visualisations of the cost function.
While no general insights can be derived from these minimal
projections, it is interesting to observe the change in appear-
ance with modiications to the cost function �. Figure 10
shows the BER as a function of ilter coeicients �1 and �2
while all other scaling values and coeicients are kept ixed
at the values of the DE algorithm’s solution. he plot shows
that for the depicted partial design space, the constraints for
a good solution (low BER) are abs(�2) being close to zero and�1 being negative. he exact value of �1 is of little relevance.
Extending the objective function by additional criteria (see
(21)) changes the situation signiicantly. Figure 13 shows the
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Figure 14: Chip area for predeined coeicients with and without
multiobjective optimisation for hardware eiciency (ixed-point) as
presented in Table 5. Limit bars indicate the theoretical minimum
and maximum area requirements.

multiobjective cost function � over ilter coeicients �1 and �2
while all other scaling values and coeicients are kept ixed at
the values of the DE algorithm’s inal solution.he additional
criteria have further constrained the acceptable value of �1 to
the interval 0, . . . , −0.5.

Filter structures are expensive in terms of chip area, espe-
cially when implemented with high precision. It is of major
interest to identify the most suitable number format (ixed-
point, loating-point; precision) and to minimise the power
consumption by suitable choice of coeicients. Comparing
Figures 12(a) and 12(b) shows that the ixed-point ilter’s BER
deteriorates much faster with decreased precision than the
loating-point ilter’s BER (13 bit versus 9 bit precision). One
can also observe that the deviation from the red line is much
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more prominent in the ixed-point case. Typically, loating
point arithmetic is considered more costly than ixed-point.
Our experiments show that, from a system perspective, the
diference in chip area for otherwise comparable system is
not so clear. Floating-point arithmetic requires more area
per bit precision than ixed-point arithmetic. It requires,
however, less precision to achieve a speciic BER. Given that
our loating-point implementation is far from optimal, the
chip area per bit error can be considered roughly equivalent.

10. Conclusion

DE can sample the huge time domain design space of
a communication system with a 6th-order receiving ilter
including bit-true BER simulation using Matlab/Mex/MPFR
in 31.38 s ⋅ 1000 generations = 8 h 43 min using standard
hardware (single core). Given that this design space explo-
ration is performed oline, the time required is acceptable.
Each identiied ilter coeicient set is already quantised. he
cost function is therefore accurate and the ilter directly
implementable.

Using DE as an exploration tool for the huge discrete
design space of digital receiver ilters allows for interesting
insights. We have demonstrated two, namely, that (1) receiv-
ing ilters with magnitude responses deviating signiicantly
from thematched ilter’smagnitude response can outperform
standard ilter design techniques relying on speciication in
the frequency domain and that (2) from a system perspective,
ixed- and loating-point IIR implementations have roughly
comparable cost.

Both indings are in contrast to current practice in ilter
design for communication systems. We therefore mandate
further BER-guided exploration of communication system’s
discrete ilter design space.

11. Future Work

We have chosen to investigate communication systems with-
out intersymbol interference (ISI).his typically is the case in
low-rate communication systems. It would be interesting to
investigate how systems with intersymbol interference could
beneit from the implicit ilter speciication as described in
our work.

We have shown that implicit ilter speciication through
system BER speciication and system simulation can result in
ilter designs with signiicantly diferentmagnitude responses
than conventional ilter speciications typically used for
communication systems.his shows the importance of taking
into consideration nonlinear efects, rendering the matched-
ilter assumption void. We have only considered the most
basic nonlinear efects, namely, an AWGN channel, BER
calculation in time domain, and the inite-precision efects
of digital ilter implementations. Many more opportunities
for a more accurate system model exist [15]. It would be
worthwhile exploring further nonlinear efects and their
respective impact on ilter design. Furthermore, indoor as
well as multipath channel models wouldmake the simulation
results more relevant for practical applications.

Diferential Evolution has become a widely used tool
since its inception almost 20 years ago. We have chosen to
implement DE as originally described in [2] as its perfor-
mance was suicient for our purpose. It would be worth
exploring state-of-the-art DE implementations [19], espe-
cially integrating automatic/dynamic schemes for parameter
(population size, �, �) selection. Reducing optimisation time
through parallel DE would be another fruitful direction for
future work. Not all DE schemes, however, lend themselves
equally well to eicient parallelisation [35].
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Abstract—Analog multipliers are employed in many applica-
tions. In conventional RF front-ends, for example, they are widely
used for frequency conversion tasks. In noncoherent energy
detectors or transmitted-reference front-ends, they multiply the
(broadband) input signals by themselves to achieve a down-
conversion. Unfortunately, there exist no ideal hardware real-
izations of such devices, hence they inevitably create undesired
signal content at their output. To be able to deal with these
effects or correct for them, we need to be able to model and
identify realistic RF multipliers. This work proposes and validates
a multiple-input single-output Wiener-Hammerstein model for
ultra-wideband analog multipliers. The structure of the proposed
model gives insight in the distortions created and it provides the
possibility to study the realistic behavior of systems involving
those multipliers, e.g. the influence of undesired nonlinear signal
content. A comparison of the model performance is shown with
respect to measurements and Agilent ADS circuit simulations.

Index Terms—MISO, mixers, model identification, multipliers,
nonlinear, UWB, Wiener-Hammerstein

I. INTRODUCTION

The multiplication of signals is a fundamental algebraic

concept that is extensively used in signal processing and

communications. Its mathematical properties are well studied

and understood. In fact almost all signal processing concepts

utilize this basic operator, no matter if analog or digital,

continuous- or discrete-time. The need for devices to perform

the multiplication operation is tremendous, e.g. for digital

filtering, Fourier transformation of signals, energy detection,

auto- and crosscorrelation. Therefore, a lot of work has been

put into studying analog and digital hardware realizations of

this mathematical operation.

An important example of analog multipliers are frequency

conversion mixers, which are extensively used in RF front-

ends [1]. Mixers are used to change the center frequency of

bandlimited signals by multiplying the input signal x(t) by a
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Fig. 1. Wiener-Hammerstein system model consisting of input filters
gx(t) and gy(t), an output filter h(t), and a bivariate polynomial as static
nonlinearity.

single-tone signal1, e.g.

z(t) = M{x(t), A cos(2πft+ φ)} , (1)

where f is the difference between the center frequencies of

the input signal x(t) and the desired output signal z(t), A is

an amplitude, φ is some phase offset, and M{·, ·} represents

the multiplication operator

M{x(t), y(t)} = x(t) · y(t). (2)

Hence, such devices are commonly designed for the purpose

of frequency shifting only. For analysis of this operation, the

mixer can be considered as a single-input single-output (SISO)

system, exploiting the fact that one mixer input signal is con-

sidered to be known, e.g. a single-tone signal A cos(2πft+φ).
This assumption leads to mixer characteristics which can be

obtained from single-tone and two-tone measurements of the

device, e.g. conversion gains and third-order intercept-points

(IP3) [1].

However, these narrowband characteristics cannot give a

reasonable description of the input-output behavior of a mixer

when used as a non-narrowband analog multiplier, e.g. for

multiplying two ultra-wideband (UWB) signals in UWB re-

ceiver systems. In particular energy detectors [2] and auto-

correlation receivers [3] are noncoherent receivers [4] that

are based on multipliers. Hence, multipliers play a crucial

role in their performance, e.g. in mitigation of narrowband

interference [5]–[7] or synchronization [8]. Multipliers are also

used in alternative UWB approaches as compressed sensing

[9], [10] or hybrid matched filter correlation receivers [11] for

which their influence on the receiver performance needs to

be analyzed. In [12], for example, it was shown that analog

1The authors want to note, that in real mixer applications x(t) gets
“switched” by the signal of a local oscillator, so the input signal gets
rather multiplied with a rectangular function y(t) = Asign (cos(2πft + φ))
instead of a single-tone. But for illustration of the concept of frequency
shifting, we prefer to consider the ideal case of multiplication of x(t) with a
single sinusoidal signal.
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Fig. 2. Circuit model of the UWB mixer designed by Ulm University consisting of two active single-ended-to-differential converter input stages (baluns),
biasing, a four-quadrant Gilbert cell multiplier, and an output buffer.

multipliers create undesired signal content, which have an

impact on the system performance of a noncoherent UWB

receiver [13]. These undesired signal components cause self-

interference due to nonlinearities of higher order, which results

in a degradation of the signal-to-interference-and-noise ratio

of the test statistic and hence in a degradation of the bit-error

rate. These effects can only be modeled using UWB models.

In general, Volterra system models [14], [15] are often used

to model nonlinear RF devices [16]. An example is shown in

[17], where a Volterra system model with a periodic kernel is

proposed. Such a kernel is suitable to model the frequency-

conversion behavior of a mixer. It was shown that the proposed

model can reconstruct metrics like transconductance or third-

order intermodulation (IM3). The big drawback of Volterra

systems is that they may consist of kernels of high dimen-

sionality, which are hard to identify and which do not give

insight into the operation of the devices per se.

Wiener-Hammerstein systems are a subclass of Volterra sys-

tem models [18] which give better intuition about the device

operation. In [19], [20] identification methods for Wiener-

Hammerstein systems [15] are proposed, with the drawback

that they cover SISO systems only. On the other hand, [21]

shows an approach to identify multiple-input multiple-output

(MIMO) Wiener and MIMO Hammerstein systems, but not

their concatenations: Wiener-Hammerstein or Hammerstein-

Wiener systems.

In [22] a multiple-input single-output (MISO) Wiener-

Hammerstein model and a dedicated recursive identification

method is presented. This model consists of parallel SISO

Wiener-Hammerstein models for each input signal, while the

MISO model output is the sum of the partial SISO model

outputs. Although this model gives good insight into the

system behavior, it cannot model multiplicative cross terms

of the input signals, which is crucial for modeling analog

multipliers.

This paper proposes a MISO Wiener-Hammerstein system

model consisting of input and output filters and a bivariate

polynomial kernel (cf. Fig. 1) that can model accurately

ultra-wideband analog multipliers. The model is flexible and,

due to its structure, it gives insight in the behavior of such

devices. E.g. in [12], the influence of undesired signal con-

tent on system performance metrics was shown. Performance

degradations have been explained using the proposed Wiener-

Hammerstein system model. A method is proposed which

facilitates easy and accurate identification of the model param-

eters. It is shown that the proposed model reaches the accuracy

of Agilent ADS circuit simulations but with less computational

effort. The model allows to study the nonideal behavior of

systems caused by analog multipliers, e.g. the influence of

undesired signal content.

In [12] the authors introduced another method to perform

identification of the model parameters on Agilent ADS simu-

lations. The Wiener-Hammerstein input filters were estimated

using intermediate signals of the circuit-level simulation,

which are normally not accessible in real hardware. In contrast,

the newly proposed approach is able to identify real hardware

multipliers based on measurements.

The paper is organized as follows. In Section II, the MISO

Wiener-Hammerstein model for ultra-wideband analog multi-

pliers is introduced. The theory of how to identify its param-

eters is addressed in Section III. Verification and performance

evaluation of the model are shown in Section IV, followed by

conclusions.

II. SIGNAL MODEL OF NONIDEAL MULTIPLIERS

To study the UWB behavior of multipliers, exemplarily a

UWB mixer (see Fig. 2) designed by Ulm University was

investigated [23], [24]. This mixer was designed to perform a

multiplication operation for a UWB correlation receiver [25]

that supports the full UWB frequency range from 3.1 GHz
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to 10.6 GHz defined by the FCC [26]. It has been man-

ufactured using Telefunken Semiconductor’s Si/SiGe2 HBT

technology [27] and consists of two active single-ended-to-

differential converter input stages (baluns), biasing circuitry,

a four-quadrant Gilbert cell multiplier, and an output buffer

stage with a lowpass filter.

Gilbert cell multipliers do have, for the bipolar case, an

input-output relationship given as [23]

z(t) = ITtanh

(

x(t)

2VT

)

tanh

(

y(t)

2VT

)

, (3)

where IT is the total emitter bias current, VT is the thermal

voltage, x(t) and y(t) are two input voltage signals, and

z(t) is an output current signal. This topology is known to

approximate the ideal multiplication operation sufficiently well

for low input levels, due to the approximately linear working

points of the tanh functions [28].

Unfortunately, typical Gilbert cell mixers consist of ad-

ditional circuitry as the aforementioned single-ended-to-

differential converters, the output buffer stage, and some

biasing circuitry. These auxiliaries introduce distortions to the

output signal. These are are not modeled by (3), neither are

parasitic effects as e.g. memory effects due to parasitic capac-

itors or current leakage. Therefore, a more generic approach

is proposed.

A possible way is to express the tanh function using Taylor-

expansion [29], which is given as

tanh(x) =

∞
∑

n=1

22n
(

22n − 1
)

(2n)!
B2nx

2n−1, (4)

with B2n being the 2n-th Bernoulli number. Comparing (4)

with (3) and having the auxiliaries in mind, it seems possible to

describe the static nonlinearity of the system using a bivariate

polynomial.

In addition, linear time-invariant filters need to be consid-

ered at the input and the output stages, which do not exist in an

ideal multiplier. A nonideal multiplication of two independent

signals x(t) and y(t) can hence be modeled as

M{x(t), y(t)} = h(t)∗
[

U
∑

u=0

u
∑

v=0

cu−v,v (gx(t) ∗ x(t))
u−v

(gy(t) ∗ y(t))
v

]

, (5)

which represents a Wiener-Hammerstein system with U being

the maximum order of a static bivariate polynomial nonlinear-

ity, ∗ representing the convolution operator, gx(t) and gy(t)
being impulse responses of linear time-invariant input filters,

respectively, h(t) being the impulse response of a linear time-

invariant output filter, and {cu−v,v} being the coefficients of

the polynomial. These coefficients can be used to derive signal

metrics and to investigate the influence of output distortions on

a considered application [12]. The coefficient c1,1 represents

a constant gain of the desired ideal multiplication term, c0,0
gives the constant DC bias, and c2,0, c0,2 represent the gains

of the squared filtered input signals. In Fig. 3, a multiplier

model of order U = 3 is illustrated.

gx(t)

gy(t)

b

b

1

b

b

b

b

b

b

b

b

b

b

b b

h(t)

c0,0

c1,0

c0,1

c2,0

c1,1

c0,2

c3,0

c2,1

c1,2

c0,3

x(t)

y(t)

z(t)

Fig. 3. A nonideal multiplier system z(t) = M{x(t), y(t)} of order U = 3
consists of two input and one output filters, and seven ideal multipliers and
gains, which model the static bivariate nonlinearity.

III. MODEL IDENTIFICATION

To identify the system model of the analog multiplier given

in (5), an approach with two steps is proposed. The first step is

to identify the filters gx(t), gy(t), and h(t), respectively. The

second step is to estimate the polynomial coefficients {cu−v,v}
using these identified filters.

A. Filter Identification

A way to identify the input and output filters of a given

analog multiplier is to excite the device with two different

single-tones, e.g. x(t) = Ax cos (2πfxt+ φx) and y(t) =
Ay cos (2πfyt+ φy). It is assumed that the multiplier has

negligible undesired output components for small input sig-

nals, hence the signal term which is represented by c1,1 is

predominant. The output z(t) of the device is thus given as

z(t) ≈ ℜ

{

1

2
c1,1AxAye

j2π(fx+fy)tej(φx+φy)

×Gx(fx)Gy(fy)H(fx + fy)}

+ℜ

{

1

2
c1,1AxAye

j2π(fx−fy)tej(φx−φy)

×Gx(fx)G
∗
y(fy)H(fx − fy)

}

, (6)

which represents two single-tones at frequencies |fx+fy| and

|fx − fy|, respectively, where Gx(f), Gy(f), H(f) are the

frequency responses of the input and output filters, G∗
y(f)

represents the complex conjugate of Gy(f), and ℜ{a} denotes

to the real part of a ∈ C. It can be seen that both tones exhibit

complex gains which contain those frequency responses at

certain frequencies. The complex amplitude of the signal with

the difference frequency2 |fx − fy| is given as

α (fx, fy) =
1

2
c1,1AxAye

j(φx−φy)

×Gx(fx)G
∗
y(fy)H(fx − fy), (7)

2For simplicity, the method is shown using the difference frequency |fx −
fy| only. The method can easily be expanded to support the sum frequency
|fx + fy| too.
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which can be easily measured, e.g. by sampling the input and

output signals and performing a discrete Fourier transform

(DFT) to get the complex amplitudes of these tones.

If these measurements are done in an equidistant two-

dimensional input frequency sweep, equidistant samples of

the frequency responses of the filters can be obtained. N2

measurements are taken, where N =
fup−flow

∆f
+ 1 ∈ Z is the

number of the frequencies within the desired input frequency

range [flow, fup] at a spacing of ∆f . We define the vector

σ = [flow, flow +∆f, flow + 2∆f, . . . , fup]
T

(8)

of input frequencies3. The vector ρ of output frequencies is

then given as

ρ = [0,∆f, 2∆f, . . . , (N − 1)∆f ]
T
. (9)

1) Magnitude Responses: The magnitude responses can be

obtained by taking the absolute value and the logarithm of (7)

to get a linear relation,

log|α (fx, fy) | = log |
1

2
c1,1|+ log |AxAy|

+ log |Gx(fx)|+ log |Gy(fy)|+ log |H(|fx − fy|)|. (10)

We formulate the linear system of equations

α =Pm+ ξ + ν, (11)

where α is the measurement vector with elements

[α]k+(l−1)N = log |α ([σ]k , [σ]l) |, (12)

k, l = 1, 2, . . . , N , and ν represents any errors in the mea-

surements or model, e.g. nonlinear terms of higher order or

nonlinear memory which are not modeled, and measurement

noise. The vector ξ corrects for the measured input amplitudes.

Its elements are given as

[ξ]k+(l−1)N = log |Ax ([σ]k , [σ]l)Ay ([σ]k , [σ]l) |, (13)

where the possible dependency of the input signal amplitude

on measurement point (k, l) is explicitly shown. The vector

m is the concatenation of the sampled logarithmic magnitude

responses given as

m =

[

log |gx|
T , log |gy|

T , log |h|T , log |
1

2
c1,1|

]T

, (14)

whose elements are [gx]i = Gx([σ]i), [gy]i = Gy([σ]i), and

[h]i = H([ρ]i), i = 1, . . . , N . The matrix P is an indicator

matrix, which is defined as

P = [P1 P2 P3 1N2 ] , (15)

3Note that the input frequencies can be chosen differently, e.g. variable
frequency spacings or frequency regions can be covered. The output frequency
vector depends on the input frequency vectors. The choice by the authors was
to show a simple example.

where 1N2 is an all-ones vector with N2 elements, and

[P1]k+(l−1)N,i =

{

1 , for [σ]k = [σ]i
0 , otherwise

(16)

[P2]k+(l−1)N,i =

{

1 , for [σ]l = [σ]i
0 , otherwise

(17)

[P3]k+(l−1)N,i =











1 , for | [σ]k − [σ]l | = [ρ]i 6= 0

2 , for | [σ]k − [σ]l | = 0

0 , otherwise

(18)

where k, l, i = 1, 2, . . . , N . Note that P needs to have a full

rank, hence N ≥ 4.

Using this data model, the magnitude response can be

estimated in a least-squares sense using

m̂ = P† (α− ξ) , (19)

where P† represents the Moore-Penrose pseudo inverse of P.

For a valid least-squares solution, the matrix P needs to be

full rank and uncorrelated with the error ν [30]. Measurements

have shown (see Section IV), that these assumptions are

fulfilled4.

2) Phase Responses: The phase responses can be estimated

in a similar way. The phase of the output signal z(t) is given

(cf. (7)) as

∠α (fx, fy) = (φx − φy)

+ ∠Gx(fx)− ∠Gy(fy) + ∠H(|fx − fy|). (20)

The elements of the measured phase vector β are defined as

[β]k+(l−1)N = ∠α([σ]k , [σ]l), (21)

hence

β =Qψ + ζ + ν, (22)

where ν represents any errors in the measurements or model

which have the same causes as in (11). The vector ζ, with

elements

[ζ]k+(l−1)N =(φx ([σ]k , [σ]l)− φy ([σ]k , [σ]l)), (23)

corrects for the measured input phases. The indicator matrix

Q, which is full rank for N ≥ 4, is

Q = [P1 P2 P3] . (24)

Finally the estimate of the phase response vectors

ψ =
[

∠gT
x ,−∠gT

y ,∠h
T
]T

(25)

is obtained in a least-square sense as

ψ̂ = Q† (β − ζ) . (26)

The matrix Q needs to be full rank and uncorrelated with the

error ν to obtain a valid least-squares solution [30].

4For the identification using measurements, the power of the error ν
was found to be −30.7 dB below the power of the dependent variable
vector α − ξ. For the identification using ADS, the power of ν was found
to be −28.5 dB below the power of the dependent variable vector. The
corresponding correlation coefficients are 0.1452 for the identification using
measurements and 0.1382 for the identification using ADS. These numbers
suggest, that ν is uncorrelated to P
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PC PC

Fig. 4. Measurement setup for mixer identification.

3) Equivalent IIR Filter Modeling: To model the input and

output filters, the estimated magnitude and phase responses

can be used to find equivalent discrete-time IIR filters, e.g.

utilizing metaheuristic algorithms [31]–[33]. The used cost

function can be chosen, e.g. as the weighted sum of squared

differences from the given sampled target frequency responses.

To avoid ambiguities due to gain exchange between the filters

and the bivariate polynomial coefficients, the filters should be

normalized to a passband gain of one. Effects like exchange of

group delay between the input and output filters do not play a

crucial role due to the fact that the identification method does

identify the phase response of the input and output filters.

Phase ambiguities are resolved by fitting the IIR filter models.

Note that the measurement setup needs to be calibrated to

ensure that any delays induced by the measurement setup are

removed.

B. Polynomial Coefficients Identification

To estimate the coefficients {cu−v,v} of the bivariate poly-

nomial kernel of the system model, the device has to be excited

with signals which fit into its input frequency region and have

a given amplitude distribution. The amplitude distribution can

be seen as a weighting of the estimation: an amplitude interval

with a higher probability mass is modeled more accurately

than an amplitude interval with a lower probability mass. The

amplitude distribution should hence depend on the signals

of the application under consideration, just like the input

frequency range5.

Segments of length L of the sampled input signals are stored

in vectors x and y, respectively. These signals need to be

filtered with discrete-time equivalents of the identified input

filters ĝx(t) and ĝy(t), respectively. The filtered input signals

x̂ and ŷ are thus given as

x̂ = Ĝxx (27)

ŷ = Ĝyy, (28)

with Ĝx and Ĝy being the Toeplitz matrices of the discrete-

time equivalents of ĝx(t) and ĝy(t).
The sampled device output vector z is then

z = X̂c+ ν, (29)

where

c = [c0,0, c1,0, c0,1, c2,0, c1,1, c0,2, . . . ]
T

(30)

5It is possible to use other signals than the desired signals of the application
under consideration. However, only an estimation with the desired signal
amplitude distribution will lead to minimal modeling errors.

represents the vector of polynomial coefficients. The vector ν

represents the measurement noise, and X̂ is given as

X̂ = Ĥ
[

1M , x̂, ŷ, x̂2, (x̂⊙ ŷ) , ŷ2, . . .
]

(31)

where Ĥ is the Toeplitz matrix of the discrete-time equivalent

of ĥ(t), ⊙ represents the element-wise multiplication and the

exponentiation represents an element-wise exponentiation of

the vector elements6. Note that L needs to be chosen to ensure

that X̂ has full rank.

The polynomial coefficient vector can finally be estimated

in a least-square sense using

ĉ = X̂†z. (32)

IV. MODEL VERIFICATION

The verification of the model is performed using the afore-

mentioned UWB mixer designed by Ulm University. The

device consists of a bare mixer die which has been bonded

onto a printed circuit board (PCB). The signal inputs and

the output are AC coupled with a capacitors of 100 pF.

For comparison, the proposed identification methods are also

evaluated using an Agilent ADS circuit-level model of that

UWB mixer circuit.

A. Model Performance

A metric to evaluate the performance of the system identi-

fication is the normalized mean square error (NMSE) of the

system model output z passed through an application-specific

target filter T (f) represented by its discrete-time equivalent

Toeplitz matrix T. This filter extracts the frequency range of

interest. The NMSE is thus defined as

NMSE = E











(

Tz−TX̂ĉ
)T (

Tz−TX̂ĉ
)

zTTTTz











, (33)

where E {·} represents the expectation operator.

In this work, T (f) was chosen to be a Bessel filter of

order 6 with cut-off frequency of 91.9 MHz. It approximates a

sliding window integrator [34] for a noncoherent multichannel

autocorrelation UWB receiver [13], [35].

6We assume that the Toeplitz matrices Ĝx, Ĝy , and Ĥ are designed such
that transient effects at the signal boundaries are avoided.
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Fig. 5. Magnitude response of two dimensional frequency sweep measure-
ments. Each grid point represents the output power of the output single-tone
at a frequency of |fx − fy|, where fx and fy are frequencies of the input
single-tones.

B. Measurement Setup

The measurement setup is depicted in Fig. 4. To estimate

the frequency responses, a two dimensional frequency sweep

from 100 MHz to 6 GHz with a ∆f of 100 MHz was

performed using an Agilent E8267C signal generator and a

Rohde&Schwarz ZVA24 network analyzer. The single-tones

x(t) = Ax cos(2πfxt + φx) and y(t) = Ay cos(2πfyt + φy)
generated by the signal generators got amplified, and after

power splitting had a power of −20 dBm at the input ports

of the mixer. The input and output signals were sampled

at a rate of 20 GHz using an Agilent Infiniium 54855A

scope. To obtain the magnitude and phase of the input tones

and of the desired output tone Az cos(2π|fx − fy|t + φz),
a DFT was performed7. The DFT has the advantage, that it

mitigates all undesired frequencies. It was observed from those

measurements that such components have negligible power,

which validates the assumption from Section III-A that an

ideal multiplier can be assumed for the filter identification

step. The signal powers of the desired output single-tones of

the two-dimensional frequency sweep measurements, hence

|Az (fx, fy)|
2
, are shown in Fig. 5. Each grid point represents

the signal power of the output tone at a frequency of |fx−fy|,
where fx and fy are frequencies of the input single-tones.

To estimate the polynomial coefficients the two input ports

of the device were excited with application-specific, uncorre-

lated signals. For this measurement, multicarrier UWB pulses

[13], [34] were used. These pulses are root-raised-cosine

pulses with β = 0.5, which are truncated at the first zero-

crossings. The length of these pulses is 10.6 ns. An addi-

tional zero-guard interval of 5 ns—to minimize inter-symbol-

interference—results in a symbol period of 16 ns. The band-

width of this signal is 1.75 GHz with a center frequency of

4 GHz, comprising seven non-overlapping subcarriers spaced

by 250 MHz. The pulses were generated using the Tektronix

7Sample rate, signal frequencies and sample lengths need to be chosen
properly to avoid leakage effects of the DFT.
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Ĝx,ADS(f )
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Fig. 6. Input and output filter magnitude responses of the system model
fitted to the measurement and to the ADS circuit model simulation.

AWG7102 arbitrary waveform generator with a sampling rate

of 10 GHz. Due to the fact that the Tektronix AWG7102 does

not have a sufficient output lowpass filter to avoid an image

signal of the desired one, the excitation signal shows additional

frequency components from 5.125 GHz to 6.875 GHz. These

image signals are accounted for in the coefficient estimation

procedure. The input power to the mixer ports was −20 dBm,

which is sufficient to drive the mixer at times into saturation

due to a peak-to-average-power ration (PAPR) of the UWB

signals of 18 dB. The input and output signals were again

sampled using the Agilent Infiniium 54855A scope at a

sampling rate of 20 GHz.

C. Model Parameter Estimation

Fig. 6 shows the magnitude responses of the estimated

filters (cf. Section III-A1) obtained from the measurement.

For comparison, the estimated filter magnitude responses are

also shown for the ADS circuit model.

It can be seen that the estimated output filters Ĥmeas.(f),
ĤADS(f) and the input filters Ĝx,meas.(f), Ĝx,ADS(f) are

very similar to one another. They differ in the region of

interest (from DC to 2 GHz for Ĥmeas.(f) and ĤADS(f)
and from 3.125 GHz to 4.875 GHz for Ĝx,ADS(f) and

Ĝx,meas.(f)) up to 1.3 dB and 1.6 dB, respectively. The input

filters Ĝy,meas.(f) and Ĝy,ADS(f) do differ up to 18.9 dB

on the shown frequency range, but 0.6 dB in the region of

interest. The differences between the ADS system model and

the measurement system model might be caused by parasitic

effects that are not modeled by the ADS circuit-model, but

which certainly exist in the hardware mixer.

To model the input and output filters, the magnitude re-

sponses of the estimated filters (cf. Section III-A1) were used

to find equivalent discrete-time minimum-phase IIR filters,

utilizing a differential evolution algorithm [36]. The used

cost function was chosen as the weighted sum of squared

differences from the given sampled target magnitude response.

The filter order of Gx(f), Gy(f), and H(f) was set to two.
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The obtained filters were taken to identify the polynomial

coefficients. The order of the bivariate polynomial was chosen

to minimize the NMSE. For the given application it was found

to be six. In Fig. 7, the estimated polynomial coefficients

{cu−v,v} are depicted for the measurement system model

and the ADS system model. It can be seen that both sets of

coefficients are similar, however, some coefficients differ.The

maximal difference is 52.9 dB for c0,0, but at very low magni-

tude. The average difference is 6.6 dB. Also these differences

between the ADS system model and the measurement system

model might be caused by parasitic effects.

The time and frequency domain representations of the

output signal are shown in Figs. 8 - 10. The model output

signal is compared with the measured output signal, the ADS

simulation output, and the system model output matched to

the ADS simulation.
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Fig. 9. Frequency domain output signals of the measurement-fitted system
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Fig. 10. Frequency domain output signals of the ADS-simulation-fitted
system model in comparison to the ADS circuit model and the model error.

In the time domain, it can be seen that the output waveforms

are similar. In the frequency domain it can be seen that all

signals have a similar power-spectral-density (PSD) in the

range from DC up to about 3 GHz. In Fig. 9 and Fig. 10 also

the PSDs of the model errors are depicted. The power of the

measurement-fitted model error is −30.5 dBm and −38.5 dBm

for the ADS-simulation-fitted model, respectively. (For com-

parison, the output power of the measurement and the ADS

simulation is −24.3 dBm and −26.0 dBm, respectively.) For

frequencies higher than 3 GHz, the PSDs deviate but are rather

small compared to the lower frequency region. The strong

attenuation of the measured output signal at frequencies higher

than 6 GHz is due to the strong lowpass filter of the scope. The

signal content within the frequency band from 3.125 GHz to

6.875 GHz in the measured output signal resembles the signal

which is fed into the mixer and may hence be crosstalk from

the inputs, e.g. it may be induced by the PCB or may be current
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Fig. 11. Power of the nonlinear signal with the respective coefficients
{cu−v,v} of the system model fitted to the measurement and the system
model fitted to the ADS simulation. The pair (a,b) represents its respective
nonlinear coefficient ca,b.

leakage through the mixer. This crosstalk is not modeled in

the proposed multiplier model and can thus not be identified

and reconstructed using that particular model. However, the

crosstalk and current leakage might be identified separately

after subtracting the measurement-fitted model output from the

sampled measurement output. Alternatively, the model could

be extended to support nonlinear memory as in [18], thus

representing a Volterra system model instead of a Wiener-

Hammerstein system model.

The NMSE of the measurement-fitted model compared

to the measurement is −11.5 dB, the NMSE of the ADS

simulation compared to the measurement is −5.1 dB, and

the NMSE of the ADS-simulation-fitted model compared to

the ADS simulation output is −21.1 dB. These values are

obtained using a training set of 750 pulses to estimate the

polynomial coefficients and a validation set of 750 pulses

to perform the NMSE computation. The noise level of the

measurement is about −47.6 dBm, hence 17.1 dB less than

the measurement-fitted model error. These values confirm that

the fit of the proposed system model works very well. They

show that the proposed system model is more accurate than the

ADS circuit model simulation for the given application, due to

the fact that the ADS circuit model does not model parasitic

effects. Nonlinear memory effects, which are not considered

in the system model, might cause the increased NMSE of the

measurement-fitted model with respect to the ADS-fitted one.

In Fig. 11, the output power of the individual nonlinear

signal parts is depicted. This representation gives intuition

about the structure of the output signal and which terms are

dominant or which can be neglected for further analysis. It can

be seen that the desired signal with c1,1 has the highest power

of about −24 dBm. Also the signal parts of fourth order with

coefficients c3,1 and c1,3 show significant powers. It also can

be seen, although the coefficients seem to be very similar for

the ADS model and the measurement model, that the power

of some nonlinear signal parts differ more than 30 dB, on

average 5.6 dB.

V. CONCLUSION

This paper proposes a Wiener-Hammerstein system model

for ultra-wideband analog multipliers. The model consists

of input and output filters and a static bivariate polynomial

nonlinearity. Due to its structure, it gives insight into distor-

tions created by analog multipliers. Methods to identify the

input and output filters and the polynomial coefficients were

derived. It has been shown that these methods yield a system

model which can reconstruct the measured output signal of a

UWB mixer with an NMSE of −11.5 dB. A respective ADS

circuit simulation showed an NMSE of just −5.1 dB. The

proposed system can model the realistic behavior of an ultra-

wideband analog multiplier and gives the possibility to study

the degradation of the performance of a considered application

caused by undesired signal content. For system simulations,

the model gives the possibility to change the polynomial

coefficients or the filters for studying the impact on system

performance metrics. Typical values of these parameters can

be determined from existing multiplier devices. Finally, the

model can replace extensive and time-consuming ADS circuit

simulations for system validations.
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