
PhD Thesis

Foundations of Sum-Product Networks
for Probabilistic Modeling

Dipl.-Ing. Robert Peharz

DOCTORAL THESIS
to achieve the university degree of

Doktor der technischen Wissenschaften
submitted to

Graz University of Technology
Austria

Supervisor:
Assoc.Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

Signal Processing and Speech Communication Laboratory
Graz University of Technology

Examination Committee:
Assoc.Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

Signal Processing and Speech Communication Laboratory
Graz University of Technology

Assoc.Prof. Dr.habil. Manfred Jaeger
Department for Computer Science

Aalborg University

Graz, February 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources. The text document uploaded to
TUGRAZonline is identical to the present doctoral thesis.

date (signature)

To Benjamin and Elisabeth :)

Abstract

Sum-product networks (SPNs) are a promising and novel type of probabilistic model, which has
been receiving significant attention in recent years. There are, however, several open questions
regarding the foundations of SPNs and also some misconceptions in literature. In this thesis we
provide new theoretical insights and aim to establish a more coherent picture of the principles
of SPNs.

As a first main contribution we show that, without loss of generality, SPN parameters can be
assumed to be locally normalized, i.e. normalized for each individual sum node. Furthermore,
we provide an algorithm which transforms unnormalized SPN-weights into locally normalized
weights, without changing the represented distribution.

Our second main contribution is concerned with the two notions of consistency and decompos-
ability. Consistency, together with completeness, is required to enable efficient inference in SPNs
over random variables with finitely many states. Instead of consistency, usually the conceptually
easier and stronger condition of decomposability is used. As our second main contribution we
show that consistent SPNs can not represent distributions exponentially more compactly than
decomposable SPNs. Furthermore, we point out that consistent SPNs are not amenable for
Darwiche’s differential approach to inference.

SPNs were originally defined over random variables with finitely many states, but can be
easily generalized to SPNs over random variables with infinitely many states. As a third main
contribution, we formally derive two inference mechanisms for generalized SPNs, which so far
have been derived only for finite-state SPNs. These two inference scenarios are marginalization
and the so-called evaluation of modified evidence.

Our fourth main contribution is to make the latent variable interpretation of sum nodes in
SPNs more precise. We point out a weak point about this interpretation in literature and
propose a remedy for it. Furthermore, using the latent variable interpretation, we concretize
the inference task of finding the most probable explanation (MPE) in the corresponding latent
variable model. We show that the MPE inference algorithm proposed in literature suffers from
a phenomenon which we call low-depth bias. We propose a corrected algorithm and show that
it indeed delivers an MPE solution. While an MPE solution can be efficiently found in the
augmented latent variable model, we show that MPE inference in SPNs is generally NP-hard.

As another contribution, we point out that the EM algorithm for SPN-weights presented in
literature is incorrect, and propose a corrected version.

Furthermore, we discuss some learning approaches for SPNs and a rather powerful sub-class of
SPNs, called selective SPNs, for which maximum-likelihood parameters can be found in closed
form.

Acknowledgements

I would like to thank my advisor Franz Pernkopf for putting his trust in me and guiding my
academic development during the last 7 years. I would also like to thank my colleagues Sebastian
Tschiatschek, Michi Wohlmayr, Bernhard Geiger, Georg Kapeller, Pejman Mowlaee, Matthias
Zöhrer and Michael Stark for many nice discussions and the work we did together.

Many thanks to Pedro Domingos for giving an inspiring talk at the “Inferning” workshop
at ICML 2012 in Edinburgh, and for hosting me during my internship at the University of
Washington, Seattle. Also many thanks to my colleague Robert Gens for some nice and selective
work we did.

Furthermore many thanks to my office mates, Christina, Thomas, Barbara, Manfred, Andreas,
Martin, Yamilla, Elmar and Christian, and all other colleagues from SPSC, for having a nice
time during the last 5 years and for providing an inspiring and scientific atmosphere.

Foundations of Sum-Product Networks for Probabilistic Modeling

Contents

Nomenclature xi

1 Introduction 17
1.1 Motivation: Probability Theory for Reasoning under Uncertainty 17
1.2 Why Sum-Product Networks? . 20
1.3 Contributions and Organization of the Thesis . 21

2 Background and Notation 25
2.1 Probability Theory . 25

2.1.1 Probability Spaces . 25
2.1.2 Conditional Probability, Independence and Bayes’ Rule 29
2.1.3 Random Variables . 30
2.1.4 Expectations, Marginals and Conditionals 33

2.2 Graph Theory . 36

3 Classical Probabilistic Graphical Models 41
3.1 Bayesian Networks . 42

3.1.1 Definition via Factorization . 42
3.1.2 Conditional Independence Assertions . 44

3.2 Markov Networks . 46
3.2.1 Definition via Factorization . 47
3.2.2 Conditional Independence Assertions . 48

3.3 Learning PGMs . 50
3.4 Inference in PGMs . 56

4 Sum-Product Networks 59
4.1 Representing Evidence . 60
4.2 Network Polynomials . 61

4.2.1 Representation of Distributions as Network Polynomials 61
4.2.2 Derivatives of the Network Polynomial . 63
4.2.3 Arithmetic Circuits . 64

4.3 Finite-State Sum-Product Networks . 65
4.3.1 Valid Sum-Product Networks . 67
4.3.2 Differential Approach in Sum-Product Networks 68
4.3.3 Normalized Sum-Product Networks . 70
4.3.4 Consistency Versus Decomposability . 72

4.4 Generalized Sum-Product Networks . 77

5 Sum-Product Networks as Latent Variable Models 83
5.1 Augmentation of SPNs . 83
5.2 Independencies and Interpretation of Sum Weights 88
5.3 Most Probable Explanation and Maximum A-posterior Hypothesis 93

5.3.1 MPE Inference in Augmented SPNs . 94
5.3.2 MPE Inference in General SPNs . 99

– ix –

6 Learning Sum-Product Networks 101
6.1 Hall of Fame: Some Classical Probabilistic Models as SPNs 102
6.2 ML Parameter Learning using Gradient Methods 106
6.3 The EM Algorithm for Sum Weights . 106
6.4 Selective Sum-Product Networks . 109

6.4.1 Regular Selective SPNs . 110
6.4.2 Maximum Likelihood Parameters . 113

6.5 Structure Learning . 114

7 Experiments and Applications 117
7.1 EM Algorithm . 117
7.2 MPE Inference . 118
7.3 Face Image Completion . 120
7.4 Artificial Bandwidth Extension . 125

7.4.1 Reconstructing Time Signals . 126
7.4.2 Experiments . 127

8 Discussion and Future Work 129

A Appendix 131
A.1 Proofs for Chapter 4 . 131
A.2 Proofs for Chapter 5 . 135
A.3 Proofs for Chapter 6 . 138

References 139

List of Publications 145

Foundations of Sum-Product Networks for Probabilistic Modeling

Nomenclature

1(·) Indicator function, page 31

Ω Sample space, page 25

ω Elementary event, page 25

A, B Events, page 25

P Probability measure, probability distribution, page 26

P (A |B) Conditional probability, page 29

A Sigma algebra, page 27

(Ω,A, P) Probability space, page 27

(Ω,A) Measurable space, page 28

(Ω,A, µ) Measure space, page 28

FH Half-open hypercubes, page 28

σ(·) Generated sigma-algebra, page 28

B Borel sets, page 28

L Lebesque-Borel measure, page 29

X, Y , Z Random Variables (RVs), page 30

x, y, z Values of random variables X, Y and Z, respectively, page 30

val(X) Image of random variable X, i.e. set of assumed values, page 30

X, Y, Z Sets of random variables, page 32

x, y, z Elements from val(X), val(Y), val(Z), respectively, page 32

x[Y], x[Y] Projection of x ∈ val(X) onto Y ⊆ X and Y ∈ X, respectively, page 32

val(X) :=
Ś

X∈X val(X), page 32

PX Distribution (law) of random variable X, page 30

FX Cumulative distribution function of random variable X, page 30

pX Probability mass function (PMF) of discrete random variable X, page 31

also: Probability density function (PDF) of continuous random variable X,
page 31

PX Joint probability distribution of random variables X, page 32

– xi –

FX Joint cumulative distribution function of random variables X, page 32

pX Joint probability mass function of discrete random variables X, page 32

also: Joint probability density function of continuous random variables X,
page 33

also: Mixed distribution function of random variables X, page 35

p Shorthand for (joint) PMF, PDF or mixed distribution function, page 35

N (x |µ, σ) Gaussian PDF with mean µ and standard deviation σ, page 35

E[·] Expected value, page 34

pY |Z Conditional distribution for Y, Z, page 34

X ⊥⊥ Y |Z Conditional independence of X, Y given Z, page 35

G Graph, directed or undirected, page 36

V Vertices of a graph, page 36

E Edges of a graph, page 36

(Vi − Vj) Undirected edge between vertices Vi and Vj , page 36

(Vi → Vj) Directed edge from vertex Vi to vertex Vj , page 36

paG(V) Set of parents of vertex V in directed graph G; sub-script omitted when clear
from context, page 37

chG(V) Set of children of vertex V in directed graph G; sub-script omitted when clear
from context, page 37

nbG(V) Set of neighbors of vertex V in undirected graph G; sub-script omitted when
clear from context, page 37

Π Path, trail, page 37

ancG(V) Set of ancestors of vertex V in acyclic directed graph G; sub-script omitted when
clear from context, page 37

descG(V) Set of descendants of vertex V in acyclic directed graph G; sub-script omitted
when clear from context, page 37

ndescG(V) Set of nondescendants of vertex V in acyclic directed graph G; sub-script omitted
when clear from context, page 37

C Clique, page 38

B Bayesian network (BN), page 42

pB(X) Bayesian network distribution, page 42

θ, Θ Parameters of probabilistic graphical models, page 43

θXx|xpa
Parameter for Bayesian network over finite-state random variables, page 43

M Markov network, page 47

Ψ Clique factor/potential, page 47

pM Markov network distribution, page 47

ZM Normalization constant or partition function of Markov network M , page 47

D Collection of samples, page 51

C Model class, page 51

L Likelihood function, page 51

X , Y, Z Partial evidence for random variables X, Y , Z, respectively, page 60

AX := B(val(X)), i.e. Borel sets of val(X), page 60

HX Product sets of random variables X, page 61

X , Y , Z Partial evidence/elements of product sets for X, Y and Z, respectively, page 61

X [Y], X [Y] Projection of partial evidence onto Y ⊆ X and Y ∈ X, respectively, page 61

λX=x Indicator variable (IV) for state x of a finite-state random variable X, page 61

λ Vector collecting all indicator variables, page 61

fB Network polynomial of Bayesian network B, page 62

Φ Unnormalized distribution, page 62

fΦ Network polynomial of unnormalized distribution Φ, page 63

S Sum-product network (SPN), page 65

S Sum node, page 65

P Product node, page 65

N Generic node in an SPN, page 65

C Generic node in an SPN – child of other node, page 65

F Generic node in an SPN – parent of other node, page 65

wS,C Sum-weight associated with edge (S→ C) in an SPN, page 65

w Set of all sum-weights in an SPN, page 65

S(S) Set of all sum nodes in SPN S, page 65

P(S) Set of all product nodes in SPN S, page 65

λ(S) Set of all indicator variables in SPN S, page 65

λX(S) Set of all indicator variables related to X in SPN S, page 65

AS Number of addition operations in SPN S, page 66

MS Number of multiplication operations in SPN S, page 66

sc(N) Scope of node N, page 66

pS SPN distribution, page 66

ZS Normalization constant of SPN S, page 66

SN Sub-SPN rooted at node N, page 66

pN Distribution of sub-SPN SN, page 66

DY Distribution node, input distribution, page 77

fep Extended network polynomial, page 78

DX Set of distribution nodes having X in their scope, page 80

[D]X Index of D within DX , page 80

ZX Distribution selector of X, page 81

PX,[D]X Gate, page 81

Sg Gated SPN, page 81

CkS kth child of sum node S, page 85

KS Number of children of sum node S, page 85

ZS Latent random variable associated with S, page 85

ZS Latent random variables associated with set of sum nodes S, page 86

ancS(N) Sum ancestors of N, page 86

descS(N) Sum descendants of N, page 86

Sc(S) Conditioning sums of S, page 86

w̄ Set of twin weights, page 86

w̄S,C Twin weight of sum-weight wS,C, page 86

aug(S) Augmented SPN of S, page 86

PkS kth link of S, page 86

S̄ Twin sum node, page 86

Sy Configured SPN, page 88

YS Switching parent of ZS, page 92

Ŝ Max-product network of S, page 94

D̂ Maximizing distribution node, page 94

Ŝ Max node, page 94

P̂ Product node in a max-product network, page 94

sup(N) Support of N, page 109

isup(N) Inherent support of N, page 109

IX(N) Index set of distribution nodes with X in their scope and reachable by N,
page 109

S X S is regular selective with respect to X, page 110

Tx Calculation tree, page 113

Foundations of Sum-Product Networks for Probabilistic Modeling

1
Introduction

In this thesis, we investigate sum-product networks (SPNs), a type of probabilistic model re-
cently proposed in [79]. What is a probabilistic model and why is it useful? In a nutshell, a
probabilistic model is a mathematical description of a probability distribution, allowing us to
describe the behavior and interaction of random quantities, i.e. random variables (RVs). Using
probabilities, we are able to reason and make decisions in uncertain or random domains. Prob-
abilistic reasoning is sometimes treated with skepticism, so we present several arguments in the
next section that probability theory is indeed a suitable tool for reasoning under uncertainty. In
Section 1.2, we give a high-level motivation for using SPNs as probabilistic models, surpassing
certain disadvantages of classical models regarding inference. Section 1.3 provides an overview
of the contributions made in this thesis.

1.1 Motivation: Probability Theory for Reasoning under Uncertainty

In science and engineering, we strive for certainty, clarity and determinism. Deductive logic with
syllogisms like

All men are mortal

Socrates is a man

Socrates is mortal

(1.1)

is appealing for rational minds due to its convincing clarity and seemingly eternal validity. The
rules of deductive logic equip us with an inference machine which allows us to derive non-trivial
results from our knowledge base, collected as a set of evidently true or accepted propositions,
i.e. our axioms.

As another example, consider that we know the mass m and velocity v of a physical body.
Classical mechanics tells us that the kinetic energy is given as

E =
1

2
mv2. (1.2)

Equations like this are the classical “working horse” of science: given m and v, (1.2) allows
to infer E with certainty. It also allows to reason in multiple directions: given E and v, and
knowing that mass is nonnegative, we can infer m, or given v, we can infer the ratio E

m . The

– 17 –

1 Introduction

general theme in science is to express connections or dependencies of quantities of interest, and
to perform reasoning using a certain calculus, in order to derive new, not self-evident insights.

What if we are unable to find these clear, deterministic connections like in (1.1) or (1.2),
i.e. when our knowledge is afflicted with uncertainty? And what do we actually mean with
uncertainty? A philosophical treatment of this question is out of the scope of this thesis, but
we want to illustrate some possible sources of uncertainty:

1. The quantities of interest are truly random. According to the Copenhagen interpretation,
the only “true” source of randomness in universe stems from quantum mechanics, possibly
amplified by chaotic effects.

2. It is technically infeasible to consider all possible quantities which interact with the process
of interest. For example, the physical process of roulette is far too detailed to be predicted
with absolute accuracy.

3. It is technically possible to assess all quantities of interest with certainty, but we are not
allowed to gather all information we need. For example, we could always make optimal
decisions when playing Texas hold’em, would we know the cards of the other players.

4. We are confronted with objects whose properties are not clearly defined. For example a
fig tree can be grown to a tree, to a shrub, and somehow in between.

We see that the causes of uncertainty can be diverse. The first example refers to true randomness
(whether it exists or not is a subtle philosophical question), uncertainty in 2. and 3. stems from
a somehow incomplete information state of the observer, and uncertainty in 4. appears to be
somehow inherent to the object itself.

How can we deal with uncertainty? Humans can evidently deal with uncertain situations in an
intuitive way. But what is a formal way to represent uncertainty and to perform reasoning under
uncertainty? In other words and loosely speaking, how do we generalize deterministic modeling
tools like (1.1) or (1.2) to uncertain situations? Furthermore, arguing from the perspective of
machine learning and artificial intelligence, how do we perform reasoning under uncertainty in
an automated fashion?

In this thesis we follow the prevailing approach using probabilistic reasoning, advocated and
firmly established in the AI community by Pearl’s textbook Probabilistic Reasoning in Intelligent
Systems [70]. Pearl gives qualitative analogies between probability theory and the intuitive
notion of belief or plausibility, reinforcing the use of probabilities as a tool for reasoning under
uncertain knowledge, i.e. lack of information. It should be noted that uncertainty is not identical
to uncertain knowledge. In the example about the fig tree above, uncertainty does actually
not stem from an incomplete information state, but rather from the object itself, or from our
perception of the world, i.e. the way we think about trees, shrubs, etc. Pearl’s qualitative
analogies between probability theory and intuitive reasoning patterns are:

• Likelihood: Probabilities naturally reflect statements like “A is more likely as B”.

• Conditioning: Conditional probabilities of the form P (A |B) = P (A,B)
P (B) are a core concept

of probability theory. The conditional probability P (A |B) naturally reflects statements
like “how likely is A, given we know B (and nothing else)?”. Furthermore, as argued
by Pearl, conditional probabilities reflect non-monotonic reasoning : Say A denotes “Tim
flies” and B “Tim is a bird”. Since a bird is likely to fly, we would assess P (A |B) as high.
However, learning additionally C, “Tim is sick”, we can at the same time assess P (A |B,C)
as low, without contradicting the former statement. Some of the early proposed reasoning
systems are incapable of non-monotonic reasoning [70]. Conditional probabilities also obey
the rule of the hypothetical middle:

– 18 –

1.1 Motivation: Probability Theory for Reasoning under Uncertainty

If two diametrically opposed assumptions impart two different degrees of belief
onto a proposition Q, then the unconditional degree of belief merited by Q,
should be somewhere between the two.

In terms of probability theory, the rule of the hypothetical middle is naturally verified
by a special case of the law of total probability: Given P (A |B) < P (A | B̄) we have
P (A |B) ≤ P (A) = P (A |B)P (B) + P (A | B̄)P (B̄) ≤ P (A | B̄), since P (B) + P (B̄) = 1,
P (B), P (B̄) ≥ 0.

• Relevance: Probability theory reflect statements like “A and B are irrelevant to each other,
given context C” by the notion of conditional independence, i.e. P (A |B,C) = P (A |C)⇔
P (B |A,C) = P (B |C).

• Causation: Humans clearly rely on the concept of direct causation in their reasoning.
Causation is a highly controversial topic and hard to formalize [91]. Nevertheless, the
directional character of conditional probabilities is capable to represent causal semantics.
The factorization P (A,B,C) = P (A |B)P (B |C)P (C) can be interpreted such that B is
a direct cause of A, rendering C irrelevant when B is known. Furthermore, probabilities
reflect a common sense reasoning pattern called explaining away : When an effect C can
yield from two unlikely causes A and B, and we observe A, then B becomes less likely,
although A and B might a priori be unrelated.

Another qualitative argument for probability theory is the so-called Dutch book argument [29].
This argument states that for an agent not reasoning according to the laws of probability, one
always can find a set of bets yielding a long-term loss situation for this agent.

Furthermore, there have been efforts to show that probability theory is de facto inevitable
when constructing a theory which generalizes deductive logic to degrees of plausibility. Deductive
logic can be interpreted to have two degrees of plausibility, namely 1 (certainly true) and 0
(certainly false). To represent continuous degrees of plausibility, we want to use any value from
[0, 1], or more generally any real number. The seminal work in this area was delivered by Cox
[25] and is thus often called Cox’s theorem. The desiderata for a theory on degrees of plausibility,
as formulated by Jaynes [48], are:

1. Degrees of plausibility are represented by real numbers.

2. Qualitative correspondence with common sense: when B becomes more plausible when
updating C → C ′ and A remains equally plausible, A ∧B can not become less plausible.

3. If a conclusion can be reasoned out in more than one way, then every possible way must
lead to the same results (consistency).

It can be shown [3,25,48] that any theory fulfilling these desiderata must have an equivalent to
the Bayes rule (product rule):

P (A,B |C) = P (A |B,C)P (B |C) = P (B |A,C)P (A |C). (1.3)

Furthermore, such theory must fulfill the sum rule, stated without loss of generality that

P (A |C) = 1,when A is certain given C, and (1.4)

P (A |C) + P (Ā |C) = 1. (1.5)

Several point of criticism about Cox’s theorem should be mentioned. As noted in [5,43,67], the
work in [25, 48] is not completely rigorous in defining the underlying assumptions. Thus, the
refinement of Cox’s theorem seems to be an active process and is not commonly accepted.

Several authors argue that the first requirement, that degrees of plausibility are represented by
a single number, is a severe restriction. The two most notable examples using two-dimensional

– 19 –

1 Introduction

representation of belief are the belief-function theories [87] and the possibility theory [32]. One
might further ask if we need to require all real numbers to measure degrees of plausibility in our
theory. As argued by van Horn [98], this requirement can be relaxed, but we have to require
that the set of numbers used to represent plausibility must be a dense set. Using sets with holes
would produce counter-intuitive results.

A further criticism about Cox’s theorem is concerned about the second desiderata. The argu-
ment states that qualitative correspondence with common sense can finally be not captured in
satisfactory and universal manner. Common sense might include further reasonable desiderata,
which could possibly rule out any formal theory. For further reading, we refer to [98] which
gives an accessible overview of the discourse about Cox’s theorem and its refinements.

A general point of critique about probability theory as reasoning tool under uncertainty ad-
dresses the inherent Aristotelian view of logic: a proposition A can either be true or false, and
nothing else. Also probability theory, extending deductive logic with degrees of plausibility,
follows this principle: The quantity P (ω ∈ A) reflects our degree of plausibility for the event
that ω is contained in set A. Although we might not be certain about this event, we take for
sure that ω ∈ A∨ ω /∈ A, or in terms of probability P (ω ∈ A∪Ac) = 1. The theory about fuzzy
logic and fuzzy sets considers degrees of set-membership rather than taking set-membership for
granted. This leads to semantic and syntactic differences to probability theory. The example
about whether a fig tree is a shrub or a tree is a typical example where fuzziness is more appro-
priate than probability. Statements like “this plant is with probability 0.5 a tree” make little
sense when we are allowed to examine the plant and gather all information we desire. In this
case uncertainty is not caused by lack of information but deterministically inherent to the object
or to our world perception. Fuzziness on the other hand allows to make statements like “this
plant is a shrub and a tree to the same extend”. A comparison between probability theory and
fuzziness is provided in [53].

In summary, there are strong qualitative as well as theoretical arguments for probability theory
as suitable tool for reasoning under uncertainty, or more precisely under uncertain knowledge.
Additionally, since the establishment of probabilistic models in the AI community by Pearl [70],
we can observe increasing confidence in the theory and a bulk of positive results in practice.
After having pointed out to alternative theories and to points of criticism, we want to finish this
short motivation and cheerfully accept as a working hypothesis, that probability theory is an
adequate tool for our purposes, or as Laplace puts it:

“Probability theory is nothing but common sense reduced to calculation.”

1.2 Why Sum-Product Networks?

An interesting point of probabilistic reasoning is that it can be automated, i.e. used in arti-
ficial intelligence or machine learning. To this end, we need mathematical representations of
probability distributions, i.e. a probabilistic model, which can be interpreted by machines. The
prevailing probabilistic models are Bayesian networks (BNs), also called belief networks or di-
rected graphical models, and Markov networks (MNs), also called Markov random fields, or
undirected graphical models. Both types of model have in common that each RV correspond to
a node in a graph, where edges correspond to direct probabilistic dependencies. Due to their
graphical representation, they are called probabilistic graphical models (PGMs). In [52], it is
proposed to consider PGMs under the following three aspects:

1. Representation, i.e. which kind of distributions can a PGM represent?

2. Learning, i.e. how can a PGM be learned from data?

3. Inference, i.e. how can a PGM be applied to answer probabilistic queries?

– 20 –

1.3 Contributions and Organization of the Thesis

Both BNs and MNs are appealing due to their representational semantics and interpretability.
The underlying graph defines a set of conditional independence assertions, which characterizes
the represented distribution. Furthermore, these conditional independencies are key for effi-
ciently learning PGMs and performing inference within them. BNs and MNs, which we call
classical PGMs in this thesis, are reviewed in Chapter 3.

What is the problem of BNs and MNs, calling for another type of probabilistic model, like
SPNs? In fact, it is the aspect of inference: for classical PGMs there exist multi-purpose
inference tools, where the junction tree algorithm is a well-known example. The computational
effort of these inference tools scales unproportional to the apparent complexity of the underlying
graph of the model. In fact, a slight modification of the graph can render exact inference
intractable. A common remedy is to use approximate inference methods. However, this approach
renders probabilistic modeling into “kind of black art”, since approximate inference often behaves
unpredictable and sometimes lacks of theoretical guarantees. Problems about inference often
carry over to learning PGMs, when inference is used as a sub-routine of learning. A further
point of criticism about inference in PGMs is that coming up with an inference machine is
sometimes tedious work: we are not ready to go and use a specified PGM, i.e. immediately
perform inference.

SPNs follow a different approach: they represent probability distributions and a correspond-
ing exact inference machine for the represented distribution at the same time. An immediate
interpretation of SPNs is that of a potentially deep, feedforward neural network with two kinds
of neurons: sum neurons with weighted inputs and product neurons. The inputs are numeric
values which are functions of the states of the modeled RVs. A corresponding probability distri-
bution is defined by normalizing the SPN output over all possible states of the RVs. Therefore,
the representational semantics of SPNs are somewhat more concealed than in BNs and MNs
and harder to be interpreted by humans. However, if our main purpose is automated proba-
bilistic reasoning, this concern is secondary. When SPNs fulfill certain structural constraints
called completeness and decomposability (or consistency), then many inference scenarios in the
represented distribution can be stated as simple network evaluations, stated as feedforward/up-
wards passes and backpropagation/backwards passes as known from neural network literature.
Thus, the cost for these inference scenarios is linear in the network size, i.e. unlike as in BNs
and MNs their inference cost is directly related to their representation. In that way, SPNs
naturally incorporate a safeguard for inference: As long as we can represent an SPN, i.e. store
it on a computer, we will probably also be able to perform inference. In a more principled
approach this leads to inference-aware learning, i.e. incorporate inference cost already during
learning. Although SPNs are naturally restricted to models with tractable inference, they come
with considerable model power. SPNs naturally incorporate finer grained types of conditional
independencies, e.g. context-specific independencies [10,19] and other advanced concepts, cf. Sec-
tion 6.4.1. SPNs are thus a powerful modeling language for probability distributions and can
immediately be used for inference, since they readily provide us with a general-purpose and
conceptually simple inference machine.

1.3 Contributions and Organization of the Thesis

In recent years, SPNs have attracted much attention and several learning algorithms for SPNs
have been proposed [31,39,40,72,73,79,81,84]. Furthermore, SPNs have been applied to various
tasks like computer vision [4], classification [39] and speech/language modeling [14,73].

However, several theoretical and practical aspects of SPNs are not well understood. When
studying the current literature on SPNs, one becomes aware of several open questions. The
main contribution of this thesis is to deepen the theoretical understanding of SPNs and also to

– 21 –

1 Introduction

clear some irritating misconceptions. In particular, in this thesis we treat the following points:1

1. In [79], two conditions on the SPN structure were given to guarantee tractable inference:
completeness and consistency. As alternative to consistency, the stronger condition of
decomposability was given. Decomposability can be understood as an independence as-
sumption of a sub-SPN, while consistency is harder to grasp. In Section 4.3.1 we illustrate
the notion of consistency in an alternative and probably clearer way.

2. One inference scenario which can efficiently be performed in SPNs is to evaluate modified
evidence using the so-called differential approach [27]. So far, it has been tacitly assumed
that the differential approach can be applied in consistent SPNs. In Section 4.3.2 we point
out that this assumption is incorrect. However, we show that the differential approach can
be applied in decomposable SPNs.

3. It was several times remarked in literature that locally normalized SPNs, i.e. SPNs whose
weights are normalized for each sum node, have a normalization constant of 1. Further-
more, it was often stated that the sum-weights of locally normalized SPNs have immediate
probabilistic semantics, see also point 7. below. However, so far it has not been clear
whether this is a restriction of the model capabilities. We show in Section 4.3.3, Theo-
rem 4.2, that this is not the case: any complete and consistent (or decomposable) SPN can
be transformed into a locally normalized SPN with the same structure and representing
the same distribution.

4. As mentioned above, decomposability implies consistency, but not vice versa. Either of
the two conditions, together with completeness, enable efficient marginalization of the
SPN distribution. An interesting question is if we can model distributions significantly
(i.e. exponentially) more compact when using consistent SPNs instead of decomposable
SPNs. We show in Section 4.3.4, Theorem 4.3, that this is not the case and that any
complete and consistent SPN can be transformed into a complete and decomposable SPN
with a worst-case polynomial grow in network size and required arithmetic operations.

5. In [79], SPNs were defined over RVs with finitely many states. In the same paper, it was
mentioned that SPNs can be generalized to continuous RVs by using arbitrary distribu-
tions over the RVs as leaves of the SPN. This view was also adopted in follow-up work.
However, inference mechanisms corresponding to the finite-state case were never derived
for this generalized notion of SPNs. In Section 4.4 we derive these inference scenarios for
generalized SPNs.

6. In the seminal work [79], a latent RV interpretation of sum nodes was introduced, i.e. in-
terpreting each sum node as the result of a marginalized latent RVs. This was justified
by explicitly incorporating these latent RVs in the model, i.e. by augmenting the model
by the latent RVs. However, the proposed method to incorporate the latent RVs leads to
irritating results:

• The resulting model can be rendered in-complete, loosing its marginalization guaran-
tees and thus strictly speaking the latent RV interpretation of sum nodes.

• The resulting model fails to fully specify the joint distribution of model RVs and
latent RVs.

In Chapter 5, we give a remedy for these issues by proposing a modified augmentation
method.

1 This summary of contributions already requires some knowledge about classical PGMs and SPNs, and can be
skipped by readers using this thesis as a tutorial text.

– 22 –

1.3 Contributions and Organization of the Thesis

7. It was several times remarked in literature that the sum-weights have the interpretation
of conditional probabilities, cf. also point 3. above. It was never made precise what are
the events on which we condition here. Furthermore, given that a sum node corresponds
to a latent RV, it must be possible to define a classical PGM like a BN, representing the
dependency structure of the SPN, including the latent RVs. In Section 5.2 we find such a
BN and make the interpretation of sum-weights as conditional probabilities precise.

8. In [79], most-probable explanation (MPE) inference was applied to SPNs for the task of
face-image completion. To this end, a Viterbi-style algorithm was used. This algorithm
was never justified, besides the fact that the model with latent RV was not fully specified,
see point 6. above. We show in Section 5.3.1 that this is indeed a correct algorithm,
when applied to our proposed augmented SPN. When applied to non-augmented SPNs,
this algorithm has an unfortunate property, which we call low-depth bias.

9. For face-image completion, or more generally for data-completion, MPE inference in the
augmented SPN is sub-optimal, since we maximize the probability over the RVs whose
values are missing and artificially introduced RVs. We rather wish to find an MPE solution
in the original, non-augmented SPN. Equivalently, we can maximize over missing values
and marginalize the latent RV, i.e. finding maximum-a-posteriori (MAP) solution in the
augmented SPN. In [71] it was conjectured that this problem NP-hard. In Section 5.3.2,
Theorem 5.3, we show that this is indeed the case.

10. The (soft) EM-algorithm for learning sum-weights as sketched in [79] is mistaken. We
provide a corrected EM-algorithm in Section 6.3.

11. The data-likelihood with respect to sum-weights is generally non-convex. However, in
Section 6.4 (originally in [72]) we identify a sub-class of SPNs, which we call selective
SPNs, for which globally optimal maximum likelihood parameters can be obtained in
closed-form. This restricted model class, however, still has considerable model power.

The results presented in this thesis should give a clearer picture about the foundations of SPNs
and even de-mystify some aspects. The thesis is mostly self-contained, where Chapter 2 reviews
probability theory and graph theory to the extend as required here. Chapter 3 reviews classical
PGMs, i.e. BNs and MNs. The main contributions are developed in Chapters 4–6: In Chapter 4
we first discuss SPNs over RVs with finitely many states, discuss basic notions and provide
several insights. Furthermore, SPNs are generalized to RVs with infinitely many states. In
Chapter 5, we introduce the latent RV interpretation of sum nodes, investigate the dependency
structure of SPNs and establish the interpretation of sum-weights as conditional distributions.
Chapter 6 provides basic learning techniques for parameter learning in SPNs and reviews some
approaches for structure learning. Experiments and example application for SPNs are discussed
in Chapter 7. In Chapter 8 we conclude the thesis and give some possible future research
directions. For better readability, lengthy proofs of lemmas and propositions are shifted to the
appendix.

– 23 –

Foundations of Sum-Product Networks for Probabilistic Modeling

2
Background and Notation

In this chapter, we introduce the mathematical tools required throughout the thesis. In sec-
tion 2.1 we provide an accessible introduction and overview to probability theory in the measure
theoretic sense. A detailed treatment can be found in [6, 9, 48, 85]. In section 2.2 we introduce
the required notions from graph theory. This chapter uses adapted parts from [77].

2.1 Probability Theory

In this section we first discuss the basic mathematical formalism of probability theory – the
probability space, see section 2.1.1. Conditional probability and Bayes rule is discussed in sec-
tion 2.1.2. In section 2.1.3, we introduce the notion of random variables (RVs), which intuitively
represent random quantities or “functions of randomness”, and which are the central objects
of interest in probabilistic modeling, machine learning and artificial intelligence. Finally, we
discuss important tools to work with RVs – marginalization, conditional distributions, Bayes’
rule for RVs and expectations, see section 2.1.4. Let us start to define our probabilistic object,
the probability space.

2.1.1 Probability Spaces

The notion of randomness can be understood as a phenomenon with inherent lack of information
for the observer. Thereby, it does not matter if we are considering “true” randomness, or
randomness stemming from ignorance of facts. To model randomness, we first need a universe
or sample space where randomness can take place. Let us denote this sample space as Ω, which
can contain any elements and can be finite, countably infinite or uncountable. The elements ω
of Ω are called elementary events. The basic mechanism we consider is the random trial, picking
one element of ω ∈ Ω in random fashion, i.e. we lack of precise knowledge about the identity of
the picked ω. Since precisely one element is picked, the results ω = ω1 and ω = ω2, ω1 6= ω2,
are incompatible, i.e. the elementary events are mutually exclusive. In a basic approach to
probability theory, we would like to assign a probability to each ω ∈ Ω, i.e. a degree of certainty
that ω has been picked. As a convention, we agree that 0 is the degree corresponding to
’impossible’ and 1 is the degree corresponding to ’certain’. We might now complain that Ω is
too detailed or fine-grained for our purposes and that we are interested in assigning a probability
for A ⊆ Ω, where A is called an event. The probability of A shall represent the degree of belief

– 25 –

2 Background and Notation

that ω ∈ A in the random trial. Intuitively, since elementary events are mutually exclusive, we
would assess the probability of A as the sum of the probabilities of all ω ∈ A. When we require
that probabilities of the elementary events sum up to one, the probability of Ω is 1. This meets
our requirements, since we know with certainty that ω ∈ Ω. Since the sum over the empty set
yields zero, the probability ∅ is 0, which also meets our requirements, since we know ω /∈ ∅.
Furthermore, we note that the probability of any event A agrees with the sum of probabilities
of any partition of A, i.e. a collection of mutually exclusive sub-events A1, A2, . . . , whose union
is A. That is, we yield the same probabilities of A, no matter how we partition it, i.e. we get
consistency in our theory.

Does this approach work and are we done? Is this what probability theory tries to achieve?
In principle yes, but unfortunately this intuitive approach works only in the case when Ω is
countable, yielding discrete probability theory [6]. When Ω is uncountable we run into several
problems. First note that we cannot simply combine probabilities using sums over probabilities of
mutually exclusive sub-events. Sums over uncountable sets of nonnegative number are defined
as the supremum over countable subsets; however, these sums can only be finite when only
countably many numbers are strictly positive. This would in effect restrict us again to the
countable case.

So, we might hope that we still can assign probabilities to all subsets A ⊆ Ω, not via sums
but in some other way, such that we still get a similar behavior as in the countable case. Let us
formalize our requirements as a function P , which we call a probability measure or probability
distribution. This function should assign to each A ⊆ Ω a probability, i.e. a mapping 2Ω 7→ R,
where 2Ω denotes the power set of Ω. The requirements are:

P (A) ≥ 0. (2.1)

P (Ω) = 1. (2.2)

P (A) =
∑
n∈N

P (An), for A =
⋃
n∈N

An, An ∩Am = ∅, n 6= m. (2.3)

We require probabilities to be non-negative, and that Ω is certain. The requirement P (∅) = 0
follows from the third requirement: P (A) = P (A) + P (∅) ⇒ P (∅) = 0. The third require-
ment, countable additivity is what we are used to have in discrete probability theory: The sum
over probabilities of countably many sub-events, which partition an event A, should yield the
probability of A.

We refined our approach from the countable case and specified a probability measure P
without explicitly constructing it. When Ω is countable, it can be shown that the requirements
for P hold if and only if

P (ω) ≥ 0, ∀ω ∈ Ω∑
ω∈Ω

P (ω) = 1,

P (A) =
∑
ω∈A

P ({ω}).

(2.4)

Thus, our construction of probabilities in the countable case coincides with our requirements on
P . Now, is it reasonable to require such a function in the uncountable case? Measure theory
gives arguments that it is not reasonable. When we consider Ω = [0, 1] and when we want to
construct a uniform distribution, i.e. “spread” the probability measure uniformly over Ω, we
would define for any interval (a, b], 0 ≤ a ≤ b ≤ 1 that P ((a, b]) = b − a, i.e. the length of the
interval. Since P maps 2Ω 7→ R, we need to generalize the notion of length to arbitrary subsets
A ⊆ Ω. However, it can be shown that there exist sets [9, 85, 100] to which we can not assign a
length in a reasonable way, i.e. there exist non-measurable sets as a consequence of the axiom of

– 26 –

2.1 Probability Theory

choice. In our case, the existence of such sets contradicts at least one of our requirements on P ,
i.e. we can not define a uniform probability on the unit interval. As a remedy we want to exclude
these non-measurable sets. For this purpose, we need to revisit our convenient, but too naive
approach to define 2Ω as domain of P . To this end, we introduce the notion of sigma-algebra.

Definition 2.1 (Sigma-algebra). Let Ω be any set. A sigma-algebra A over Ω is a system
of subsets of Ω which contains Ω and which is closed under taking complements and countable
unions, i.e. A ⊆ 2Ω where

1. Ω ∈ A

2. A ∈ A ⇒ Ac = Ω \A ∈ A

3. An ∈ A,∀n ∈ N⇒
⋃
n∈NAn ∈ A

It is easily verified using De Morgan’s laws that from 2. and 3. it follows that a sigma-algebra is
also closed under countable intersections, i.e.

An ∈ A,∀n ∈ N⇒
⋂
n∈N

An ∈ A (2.5)

Let us consider some examples of sigma-algebras.

Example 2.1. Let Ω be any set. A = {∅,Ω} is a sigma-algebra over Ω. In particular, when
Ω = ∅, A = {∅} is a sigma-algebra over Ω (in fact the only one).

Example 2.2. Let Ω be any set. A = 2Ω is a sigma-algebra over Ω.

Example 2.3. Let Ω = {ω1, . . . , ω6} and let ωi represent the event “a fair die shows number
i”. A1 = {∅, {ω1, ω3, ω5}, {ω2, ω4, ω6},Ω} and A2 = {∅, {ω1, ω2, ω3}, {ω4, ω5, ω6},Ω} are sigma-
algebras over Ω.

As pointed out in Example 2.2, the powerset 2Ω is always a sigma-algebra, actually the
largest one, since any sigma-algebra is a subset of it. As already mentioned, the existence of
non-measurable sets disqualifies the use of 2Ω as domain of P when Ω is uncountable. We need
to exclude these sets and use smaller sigma-algebras which are strict sub-sets of 2Ω.

Furthermore, sigma-algebras are also useful when Ω is countable, since they represent a degree
of coarseness we use to “observe” the sample space. In Example 2.3 we have two examples for
sigma-algebras A1 and A2 which are smaller than 2Ω and are thus “coarser”. A1 contains the
impossible event, “die shows odd number”, “die shows even number” and the certain event. A2

contains the impossible event, “die shows number ≤ 3”, “die shows number > 3” and the certain
event. Both sigma-algebras are “blind” to the event {ω2, ω3, ω5}, “die shows a prime number”.
Thus, using a particular sigma-algebra specifies a collection of those events we are interested in.
The coarsest possible sigma-algebra is given in Example 2.1.

Before we succeed to exclude non-measurable sets, let us recapitulate our basic requirements
for our probability theory: we have found that we need a universe or sample space Ω where
randomness can take place. We specified randomness via the random trial, which picks an
element ω from Ω in random fashion. We required a probability measure P which assigns
probabilities to events A ⊆ Ω, i.e. to results of the random trial of the form ’ω ∈ A’. For
uncountable Ω, we have spotted difficulties from measure theory, and also found it convenient
to specify the events A we are interested in. For this purpose we introduced sigma-algebras. Are
we now done to describe the basic idea of probability theory? Yes, and we are now ready to
define the central object in probability theory, the probability space.

Definition 2.2 (Probability Space). A probability space is a triple (Ω,A, P), where

• The sample space Ω is any non-empty set,

– 27 –

2 Background and Notation

• A is a sigma-algebra over Ω,

• The probability measure P is a function mapping A 7→ R, satisfying (2.1), (2.2) and (2.3).

Which sigma-algebra should we use for uncountable Ω, avoiding problems about non-measurable
sets? From now on, we restrict ourselves to the real numbers as uncountable set. Let us recon-
sider the problem to define a uniform distribution on the unit interval, see above, i.e. we want to
assign P ((a, b]) = b− a to any interval (a, b] ⊆ (0, 1]. In a more general setting, we want assign
a volume to subsets of Ω ⊆ Rn. We introduce an important concept from measure theory [9],
the measure space.

Definition 2.3 (Measure space). Let Ω be any set and A a sigma-algebra over Ω. The tuple
(Ω,A) is called measurable space. A function µ : A 7→ [0,∞] with

• µ(∅) = 0

• µ
(⋃

i∈NAi
)

=
∑

i∈N µ (Ai), for Ai ∈ A, Ai ∩Aj = ∅, i 6= j.

is called a measure on (Ω,A). The triplet (Ω,A, µ) is called a measure space.

A probability measure is a measure P with P (Ω) = 1.
The sigma-algebra containing the sets for which the notion of volume can be defined, should

at least contain the empty set and all half-open hypercubes, i.e. we consider

FH = {×nk=1 (ak, bk] | ak ≤ bk, k = 1, . . . , n}. (2.6)

FH is clearly no sigma-algebra, since e.g. the union of two hypercubes which are separated by
some margin is not a hypercube. Being parsimonious, we want to add further sets and find the
smallest sigma-algebra containing FH . It is difficult to explicitly construct such sigma-algebra,
but we can describe it indirectly.

Definition 2.4 (Generated sigma-algebra). Let Ω be any set and F be a set of subsets of Ω,
i.e. F ⊆ 2Ω. The sigma-algebra generated by F is defined as

σ(F) =
⋂
F⊆A

A, (2.7)

where the intersection is taken over all sigma-algebras over Ω containing F .

It can be shown that σ(F) is indeed a sigma-algebra and uniquely determined by F [9]. It is also
the smallest sigma-algebra containing F , in that sense that it is a sub-set of any sigma-algebra
containing F . We can now apply σ(·) to the hypercubes FH and yield the Borel sets.

Definition 2.5 (Borel sets). The Borel sets in Rn are defined as B(Rn) := σ(FH). For any set
E ⊆ Rn, let B(E) := {B ∩ E |B ∈ B(Rn)}.

The Borel sets in Rn are also generated by various other families of sets, as for instance

• Closed hypercubes {×nk=1 [ak, bk] | ak < bk, k = 1, . . . , n}

• Open hypercubes {×nk=1 (ak, bk) | ak ≤ bk, k = 1, . . . , n}

• Hypercubes with rational corners {×nk=1 [ak, bk] | ak ≤ bk, ak, bk ∈ Q k = 1, . . . , n}

• Open sectors {×nk=1 (−∞, bk)}

• Closed sectors {×nk=1 (−∞, bk]}

• Set of all open sets in Rn

– 28 –

2.1 Probability Theory

• Set of all closed sets in Rn

Did we succeed and exclude all non-measurable sets, which caused problems for defining the
notion of volume, or for our purposes, the uniform distribution? Yes, since it can be shown [6,9]
that the volume function

L : FH 7→ R, L (×nk=1 (ak, bk]) =
n∏
k=1

(bk − ak) (2.8)

can be extended in a unique way to a measure on the Borel sets, yielding the measure space
(Rn,B(Rn),L). This generalization of volume to any set in B(Rn) is called Lebesque-Borel
measure. For completeness, we note that B(Rn) is not the largest sigma-algebra on which L can
be defined. B(Rn) does not contain all possible subsets B ⊂ A, where A ∈ B(Rn) : L (A) = 0.
The sigma-algebra completed by these null sets are the Lebesque-measurable sets. For our
purposes, however, we will consider Borel sets. We can now characterize the uniform distribution.

Example 2.4 (Uniform distribution). Let Ω = (0, 1]n and P := L . Then (Ω,B(Ω), P) is a
probability space and P is called the uniform distribution on the unit hypercube Ω.

So, we succeeded to define a uniform distribution on the unit hypercube. However, Borel sets
also allow us to consider more advanced distributions.

2.1.2 Conditional Probability, Independence and Bayes’ Rule

Conditioning is an important concept in probability theory and a central mechanism for rea-
soning under uncertainty. Recall that the basic mechanism in probability theory is the random
trial, which picks a ω from sample space Ω. Probabilities are the degrees of confidence we assign
to outcomes ω ∈ A. Intuitively, conditional probabilities represent an update of these beliefs,
once we gathered new information of the random trial, e.g. we learned that ω ∈ B:

Definition 2.6 (Conditional Probability). Let (Ω,A, P) be a probability space, and A,B ∈ A
be events. The conditional probability of A conditioned on B is defined as

P (A |B) :=
P (A ∩B)

P (B)
, (2.9)

whenever P (B) > 0.

Clearly, (2.9) holds with A and B interchanged, i.e.

P (B |A) :=
P (A ∩B)

P (A)
, (2.10)

leading to Bayes’ rule:

P (A |B) =
P (A ∩B)

P (B)
=
P (B |A)P (A)

P (B)
, (2.11)

whenever P (B) > 0. Bayes’ rule reverts the direction of conditioning and is one of the main
working horses in probabilistic reasoning.

Definition 2.7 (Independence of Events). Let (Ω,A, P) be a probability space, and A,B ∈ A.
A and B are independent when

P (A ∩B) = P (A)P (B). (2.12)

– 29 –

2 Background and Notation

Generally let Aθ ∈ A be a collection of events indexed by θ. Aθ are independent, when for all
finite sub-collections An of Aθ it holds that

P (∩nAn) =
∏
n

P (An). (2.13)

We now introduce the notion of random variables, which model random quantities as “a
function of randomness”.

2.1.3 Random Variables

We first need to introduce the notion of measurable functions:

Definition 2.8 (Measurable function). Let (Ω1,A1) and (Ω2,A2) be measurable spaces.. A
function f : Ω1 7→ Ω2 is called A1 −A2-measurable, when for all A ∈ Ω2 it holds that f−1(A) ∈
A1, i.e. when the preimage of any set in A2 under f is contained in A1.

Measurability of a function is always defined with respect to particular sigma-algebras on the
domain and co-domain of the functions. However, when clear from context, the sigma-algebras
are not explicitly mentioned. Random variables (RVs) are defined as follows.

Definition 2.9 (Random variable). Let (Ω,A, P) be a probability space. A random variable X
defined on (Ω,A, P) is a A− B(R)-measurable function X : Ω 7→ R. The image of Ω under X,
i.e. the set of values X assumes, is denoted as val(X).

Here, we define RVs as mappings to the real numbers. However, RVs can be defined as
mappings to any field, or more generally, as mappings to any measurable space. Throughout this
thesis, we use letters X, Y and Z to denote RVs, also using various subscripts and superscripts,
e.g. Xi, Y

′, etc. Elements from val(·) are denoted by corresponding lower case letters, e.g. x ∈
val(X), y′ ∈ val(Y ′), etc.

The distribution or law of an RVs is defined as follows.

Definition 2.10 (Distribution of a Random Variable). Let X be a RV defined on some proba-
bility space (Ω,A, P). The induced probability measure

PX(B) := P (X−1(B)), for B ∈ B(R) (2.14)

is called the distribution of X.

It can be shown that PX is indeed a valid probability measure on B and that (R,B(R), PX)
is a probability space. We can restrict PX to val(X) and consider the probability space
(val(X),B(val(X)), PX). Note that when val(X) is countable, B(val(X)) = 2val(X): For each
x ∈ val(X), B(val(X)) clearly contains {x} = [x, x]. Each X ⊆ val(X) is countable and can
be described as countable union X = ∪x∈X {x}, and therefore X ∈ B(val(X)). We denote RVs
with countably many values as discrete RVs.

The distribution of an RV is characterized by its cumulative distribution function.

Definition 2.11 (Cumulative Distribution Function). Let X be an RV defined on probability
space (Ω,A, P). The cumulative distribution function (CDF) of X is defined as

FX(x) := PX((−∞, x]) =: PX(X ≤ x). (2.15)

– 30 –

2.1 Probability Theory

The following properties hold for any CDF:

FX is non-decreasing (2.16)

FX is right-continuous (2.17)

lim
x→∞

FX(x) = 1 (2.18)

lim
x→−∞

FX(x) = 0 (2.19)

Conversely, it can be shown that for a given function FX with properties (2.16–2.19), there exists
a probability space and RV X having FX as CDF [6]. Therefore, a CDF completely describes
the distribution of X, but leaves open the used probability space.

For discrete RVs, it is often more convenient to work with probability mass functions.

Definition 2.12 (Probability Mass Function (PMF)). Let X be a discrete RV. The probability
mass function (PMF) of X is defined as

pX(x) := PX({x}) =: PX(X = x), x ∈ val(X). (2.20)

The CDF and the distribution of X are fully specified by the PMF:

FX(x) =
∑

x′∈val(X)

pX(x′)1(x′ ≤ x), (2.21)

PX(A) =
∑
x′∈A

pX(x′), (2.22)

where 1 is the indicator function. Thus, in the discrete case, any nonnegative function pX with∑
x∈val(X) pX(x) = 1 specifies a probability distribution over some RV X.

For RVs X with uncountable val(X) there might exist a probability density function.

Definition 2.13 (Probability density function (PDF)). Let FX(x) be the CDF of a continuous
RV X. If there exists a function pX with

FX(x) =

∫ x

−∞
pX(x′) dx′, (2.23)

then pX is called probability density function (PDF) of X.

When FX is differentiable, we obtain pX by the derivative of FX :

pX =
∂FX
∂x

. (2.24)

We overload notation and denote both PMFs and PDFs using pX , since the difference is clear
from context. Also the distribution of X is fully specified by the PDF:

PX(A) =

∫
A
pX dL , (2.25)

where
∫

dL denotes Lebesque-integral. Thus, any nonnegative integrable function pX with∫
val(X) pXdL = 1 is a PDF and specifies a probability distribution over some RV X.

So far, we only considered single RVs. Most of the time we are interested in multiple RVs de-
fined on the same probability space, distributed according to some joint probability distribution.

– 31 –

2 Background and Notation

Definition 2.14 (Joint probability distribution). Let (Ω,A, P) be a probability space, Xn be RVs
Xn : Ω 7→ R, n = 1, . . . , N and X(ω) = (X1(ω), . . . , XN (ω))T be the corresponding vector-valued
function Ω 7→ RN . The induced probability measure

PX(B) := P (X−1(B)), for B ∈ B(Rn) (2.26)

is called the joint probability distribution, or short joint distribution of X. We define val(X) :=
ŚN

n=1 val(Xn).

Throughout this thesis, we use boldface letters X, Y and Z for vectors of RVs, also using
various subscripts and superscripts, e.g. Xi, Y′. Note that in the literature on graphical models,
RV vectors are commonly referred to as sets of RVs, and set notation is used, e.g. writing
Y ⊆ X for indicating that X contains all RVs also contained in Y. This is somewhat a stretch of
mathematical notions, and common statements like “X = x” are actually hard to interpret when
X are sets, since sets are by definition not ordered. However, for consistency with literature,
and enjoying light-weight set notation, we also refer as sets of RVs to RV vectors.

Furthermore, note that while val(X) is the image under a single RV X, the set val(X) in
Definition 2.14 is not necessarily the image under vector-valued function X, but a superset of
it. Elements of val(·) are denoted by corresponding boldface lowercase letters, e.g. x ∈ val(X),
y′ ∈ val(Y′). For a particular x = (x1, . . . , xN) ∈ val(X) and subset Y = {Xi1 , . . . , XiK},
{i1, . . . , iK} ⊆ {1, . . . , N}, where ik < il when k < l, we define the projection x[Y] :=
(xi1 , . . . , xiK). For X ∈ X we define x[X] := x[{X}].

Similar as for single RVs, we define a joint CDF for X.

Definition 2.15 (Joint cumulative distribution function). Let X = {X1, . . . , XN} be a set of
RVs defined on the same probability space. The joint CDF of X is defined as

FX((x1, . . . , xN)) := PX((−∞, x1]× · · · × (−∞, xN])). (2.27)

The following properties hold for any CDF:

FX is non-decreasing in each xn (2.28)

FX is continuous from above (2.29)

∀k : lim
xk→∞

FX((x1, . . . , xk, . . . , xN)) = 1 (2.30)

∀k : lim
xk→−∞

FX((x1, . . . , xk, . . . , xN)) = 0 (2.31)

Similar as for single RVs we can construct a probability space and RVs X from any FX satisfying
(2.28–2.31), i.e. the joint CDF fully specifies the distribution of X [6]. Furthermore, we can define
the joint PMF for discrete RVs X.

Definition 2.16 (Joint PMF). Let X be a set of discrete RVs. The joint PMF is defined as

pX(x) = PX({x}) (2.32)

Similar as in the univariate case, the CDF and the distribution are determined by the PMF:

FX(x) =
∑

x′∈val(X)

pX(x′)1(∀X ∈ X : x′[X] ≤ x[X]), (2.33)

PX(A) =
∑
x′∈A

pX(x′). (2.34)

– 32 –

2.1 Probability Theory

Thus, any nonnegative pX with
∑

x∈val(X) pX(x) = 1 specifies a distribution over RVs X.

For continuous RVs we define the joint PDF.

Definition 2.17 (Joint PDF). Let X be a set of continuous RVs. If there exists a function pX

with

FX((x1, . . . , xN)) =

∫ x1

−∞
. . .

∫ xN

−∞
pX((x1, . . . , xN)) dx1 . . . dxN (2.35)

then pX is called joint PDF of X.

When FX is N -times differentiable, we obtain pX by the partial derivative of FX:

pX =
∂NFX

∂x1, . . . , ∂xN
. (2.36)

The distribution of X is specified by its PDF:

PX(A) =

∫
A
pX dL . (2.37)

As already mentioned, we refer to RVs with countable many values as discrete. To RVs with
finitely many values we refer as finite-state RVs. Non-discrete RVs, for which a PDF exists,
are called absolute continuous. By the Lebesque decomposition [85], the probability measure of
any RV can be decomposed into a discrete, an absolute continuous and a singular continuous
part. A probability measure P is called singular continuous if it is concentrated on a set with
Lebesque measure 0, i.e. there exists a set S ⊆ R with L (S) = 0 and P (R \ S) = 0. Singular
continuous probability measures are not an exotic extreme case, but of practical importance:
For example, consider two RVs X1 and X2 with X1 = X2, where X1 (or equivalently X2) is
uniformly distributed on some interval. Thus, all probability mass is assigned to a subset of a
line segment in R2, i.e. a set with Lebesque measure 0, meaning that this probability measure
is singular continuous. Equality constraints of RVs are often of practical relevance, naturally
requiring singular continuous RVs. However, for ease of discussion, we will assume that each RV
is either discrete or absolute continuous, or short continuous, i.e. that a PDF exists. We will also,
as commonly done in literature, refer as distributions to PMFs and PDFs. Thereby, we keep
in mind that a distribution is actually a set function, assigning each set in the sigma-algebra a
probability and is only represented by a PMF or PDF via (2.34) and (2.37), respectively. In that
way, we can conveniently work with PMFs and PDFs and do not require to explicitly construct
(and think about) a potentially abstract probability space. However, although we will mainly
use PMFs and PDFs, many results in this thesis can also be generalized to CDFs, which is a
general representation of probability distributions of RVs.

2.1.4 Expectations, Marginals and Conditionals

An important quantity of RVs is the expected value.

Definition 2.18 (Expected Value). Let X be an RV with distribution pX . The expected value
of X is defined as

E[X] =

{∑
x∈val(X) x pX(x) if X is discrete∫

x∈val(X) x pX(x) dx if X is continuous.
(2.38)

– 33 –

2 Background and Notation

More generally, the expected value of a function g : val(X) 7→ R is defined as

E[g(X)] =

{∑
x∈val(X) g(x) pX(x) if X is discrete∫

val(X) g(x) pX(x) dL if X is continuous.
(2.39)

Considering a set of RVs X, and when we are interested only in a subset Y ⊆ X of the RVs
we define marginal distribution:

Definition 2.19 (Marginal Distribution). Let X = {X1, . . . , XN} be a set of discrete RVs with
distribution pX, let Y ⊂ X and Z = X \Y = {Z1, . . . , ZK}. The marginal distribution pY of
Y is given as

pY(y) :=
∑
z1

· · ·
∑
zK

pX(y, z1, . . . , zK). (2.40)

Similarly, when X = {X1, . . . , XN} is a set of continuous RVs, the marginal distribution is given
as

pY(y) :=

∫
z1

. . .

∫
zK

pX(y, z1, . . . , zK) dz1 . . . dzK (2.41)

Note that we also allow the extreme case p∅ ≡ 1. In Definition 2.19 we introduced a frequently
used and convenient notation style: a PMF or PDF pX is actually a function val(X) 7→ R, i.e. it
takes a tuple x as argument and maps it to the real numbers. An expression like pX(y, z1, . . . , zK)
should interpreted as taking all arguments and arrange them in a tuple x using the original order,
yielding pX(x).

As noted in section 2.1.2, conditioning is an important tool in probability theory. In (2.9)
we defined the conditional probability of general events A,B. We make similar definitions for
distributions of RVs.

Definition 2.20. Let p be a distribution over RVs X, where all X ∈ X are either discrete or
continuous. Further let Y ⊆ X, and Z = X \Y. The conditional distribution pY|Z is given as

pY|Z(y | z) =
pX(y, z)

pZ(z)
, (2.42)

whenever pZ(z) > 0.

We generalize the interpretation of conditional distributions also to the case when pZ(z) = 0:
In this case also pX(y, z) = 0, allowing us to write

pX(y, z) = p̃Y;z(y; z) pZ(z) (2.43)

for arbitrary distributions p̃Y;z over Y, parametrized by z. We will interpret such p̃Y;z also
a conditional distribution pY|Z = p̃Y;z, for z with pZ(z) = 0. This is the approach taken by
several authors such as de Finetti [29], actually defining the joint distribution as pX(y, z) :=
pY|Z(y | z) pZ(z).

Bayes’ rule in terms of distributions is stated as

pY|Z(y | z) =
pZ|Y(z |y) pY(y)

pZ(z)
, when pZ(z) > 0, (2.44)

pZ|Y(z |y) =
pY|Z(y | z) pZ(z)

pY(y)
, when pY(y) > 0. (2.45)

Using conditional distributions, we can factorize any joint distribution pX over X = {X1, . . . , XN}

– 34 –

2.1 Probability Theory

using the chain rule of probability :

pX(x1, . . . , xN) = pXN |XN−1...X1
(xN |xN−1, . . . , x1) . . . pX2|X1

(x2 |x1) pX1(x1)

=
N∏
i=1

pXi|Xi−1,...,X1
(xi |xi−1, . . . , x1). (2.46)

The chain rule holds for any ordering of the RVs X.
We define the notion of conditional independence for RVs.

Definition 2.21 (Conditional Independence). Let X, Y and Z be mutually disjoint sets of RVs
with joint distribution pX,Y,Z. X and Y are conditionally independent given Z, annotated as
X ⊥⊥ Y |Z, if one of the following equivalent conditions hold:

• pZ(z) > 0⇒ pX|Y,Z(x |y, z) = pX|Z(x | z).

• pZ(z) > 0⇒ pY|X,Z(y |x, z) = pY|Z(y | z).

• pZ(z) > 0⇒ pX,Y|Z(x,y | z) = pX|Z(x | z) pY|Z(y | z).

For the corresponding condition with Z = ∅, we say that X and Y are independent, annotated
as X ⊥⊥ Y.

So far we only considered sets of RVs X which are either all discrete or all continuous, thus
either considering PMFs or PDFs. However, often we require a mixed case where X can contain
both. For example, consider a binary RV X with val(X) = {x1, x2} and a continuous RV Y
with val(Y) = R, and let us define the function

pX,Y (x, y) = 0.4× 1(x = x1)×N (y |µ1, σ1)

+ 0.6× 1(x = x2)×N (y |µ2, σ2),
(2.47)

where N is the Gaussian distribution:

N (x |µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (2.48)

Function pX,Y , which is in fact a Gaussian mixture, is a PMF with respect to X and a PDF
with respect to Y . Generally, mixed distributions can be defined using conditional distributions:

Definition 2.22 (Mixed Distribution Function). Let X be a set of RVs and Y, Z be a partition
of X, where Y 6= ∅, Z 6= ∅, and Y contains only discrete RVs and Z contains only continuous
RVs. Let pY be a PMF over Y and pZ|Y a conditional PDF over Z. The mixed distribution
function over X is defined as

pX(y, z) := pZ|Y(z |y) pY(y) (2.49)

Marginal and conditional distributions, Bayes’ rule, the chain rule and (conditional) indepen-
dence naturally carry over to mixed distributions.

To simplify notation, we will omit the sub-scripts of any joint, marginal and conditional
distribution, when the meaning is clear from context, and simply write p. Furthermore, we will
adopt a common notation style: any distribution p over X is either a PMF, a PDF or a mixed
distribution, and thus a function val(X) 7→ R, e.g. p(x) = 0.5. Often we write X as argument
of p when making a general statement, i.e. “statement about p(X)” shall be interpreted as
“statement about p(x)”, ∀x ∈ val(X). This notation is also used to signal the identity of the
distributions, i.e. writing p(X) when referring to a (marginal) distribution over X.

– 35 –

2 Background and Notation

2.2 Graph Theory

In this section we review the required notions from graph theory. In the context of probabilistic
graphical models, see Chapter 3, graphs are used to model joint distributions. In the context of
SPNs they generally represent networks of arithmetic operations.

A graph is defined as follows:

Definition 2.23 (Graph). A graph G = (V,E) is a tuple consisting of a set of nodes or
vertices Vand a set of edges E. The nodes can be any objects and an edge E ∈ E is a tuple
(Vi, Vj), Vi, Vj ∈ V.

The edges of the graph define direct relationships among the nodes. Edges can be interpreted
as directed or undirected, meaning that the order of Vi and Vj in an edge (Vi, Vj) matters, or
not. An undirected edge between Vi and Vj is denoted as (Vi − Vj) , and a directed edge as
(Vi → Vj). To make the representation of an undirected edge unique, we can require that for
(Vi − Vj) both (Vi, Vj) and (Vj , Vi) are contained in E.

Depending on the types of edges in a graph we define:

Definition 2.24 (Directed, Undirected Graphs). A graph G = (V,E) is directed (undirected)
if all edges E ∈ E are directed (undirected).

There are generalized notions of graphs, for instance allowing multiple edges (directed and
undirected) between nodes and hyper-edges, connecting more than two nodes. The graphs in
Definition 2.23 are denoted as simple graphs. For our purposes it suffices to consider simple
graphs, to which we simply refer as graphs. Furthermore, throughout the thesis we exclude
self-edges (Vi → Vi) and (Vi − Vi).

Graphs are visually represented using circles for nodes, line-segments representing undirected
edges, and arrows representing directed edges.

Example 2.5. Consider Figure 2.1, showing an undirected and a directed graph. For both
graphs G = (V,E) the set of nodes is V = {V1, . . . , V7}. The corresponding edges are

1. E = {(V1 − V2), (V2 − V3), (V2 − V4), (V3 − V5), (V4 − V6), (V4 − V7)},

2. E = {(V1 → V2), (V2 → V3), (V2 → V4), (V3 → V5), (V4 → V6), (V7 → V4)}.

V1 V2

V3 V4

V5 V6 V7

(a) Undirected graph.

V1 V2

V3 V4

V5 V6 V7

(b) Directed graph.

Figure 2.1: Visual representation of a directed and an undirected graph, having the same set of nodes V =
{V1, . . . , V7}.

In directed graphs we define a parent-child relationship:

– 36 –

2.2 Graph Theory

Definition 2.25 (Parents and Children). Let G = (V,E) be a directed graph and Vi, Vj ∈ V.
If (Vi → Vj) ∈ E, then Vi is a parent of Vj and Vj is a child of Vi. The set paG(Vj) consists of
all parents of Vj and the set chG(Vi) contains all children of Vi. The sub-script is omitted if the
graph is clear from context.

For undirected graphs we define the notion of neighborhood:

Definition 2.26 (Neighbor). Let G = (V,E) be an undirected graph and Vi, Vj ∈ V. If (Vi −
Vj) ∈ E, then Vi is a neighbor of Vj. The set of all neighbors of Vi is denoted as nbG(Vi). The
sub-script is omitted if the graph is clear from context.

While edges represent direct relationships between two nodes, paths and trails describe indirect
relationships across several nodes:

Definition 2.27 (Path, Trail). Let G = (V,E) be a graph (directed or undirected). A tuple of
nodes Π = (V1, . . . , Vn), n ≥ 1, with V1, . . . , Vn ∈ V is a path from V1 to Vn if

G is a directed graph and ∀ i ∈ {1, . . . , n− 1} : (Vi → Vi+1) ∈ E, or (2.50)

G is an undirected graph and ∀ i ∈ {1, . . . , n− 1} : (Vi − Vi+1) ∈ E. (2.51)

In a directed graph, a tuple of nodes Π = (V1, . . . , Vn), n ≥ 1, with V1, . . . , Vn ∈ V is called a
trail between V1 to Vn if

∀ i ∈ {1, . . . , n− 1} : (Vi → Vi+1) ∈ E ∨ (Vi+1 → Vi) ∈ E. (2.52)

In an undirected graph, every path is a trail and vice versa. The length n of a path or trail is
denoted as |Π|.

Note that (Vi) is always a path of length 1, i.e. there is always a path from Vi to itself. Cycles
are defined as follows:

Definition 2.28 (Cycle). Let G = (V,E) be a directed or undirected graph, and V ∈ V. A path
Π with |Π| ≥ 2 from V to V is denoted as a cycle.

We could also include cycles of length 1 if there is an self-edge present for the node under
consideration. However, as already mentioned, we do not consider self-edges in this thesis, thus
any cycle has at least a length of 2. For undirected graphs, chordal graphs are defined as follows:

Definition 2.29 (Chordal Graph). An undirected graph G is chordal or triangulated, if there
is no cycle of length ≥ 4 without an edge joining two non-neighboring nodes in the cycle.

For directed graphs, we define acyclic graphs:

Definition 2.30 (Directed Acyclic Graphs). A graph G = (V,E) is a directed acyclic graph2

(DAG) if it contains no cycles.

For example, the undirected graph shown Figure 2.1(b) is a DAG. In DAGs we can naturally
define ancestors and descendants.

Definition 2.31 (Ancestor, Descendant). Let G = (V,E) be a DAG and Vi, Vj ∈ V, i 6= j.
Node Vi is an ancestor of Vj if there exists a path from Vi to Vj. Vj a descendant of Vi if Vi
is an ancestor of Vj. In particular, node Vi is a descendant and an ancestor of itself. The set
of all ancestors and descendants of some node Vj ∈ V are denoted as ancG(Vj) and descG(Vi),
respectively. We further define the nondescendants of Vi as

ndescG(Vi) = V \ descG(Vi). (2.53)

The sub-scripts are omitted when the graph is clear from context.

2 Actually acyclic directed graph. However, we use the common acronym DAG.

– 37 –

2 Background and Notation

DAGs with a dedicated root are called rooted DAGs:

Definition 2.32 (Rooted DAG). A DAG G = (V,E) is rooted when it has a unique node V1

with pa(V1) = ∅ and for all other nodes Vi, i 6= 1, we have |pa(Vi)| ≥ 1. V1 is called the root of
G.

We further define trees:

Definition 2.33 (Directed/Undirected Tree). An undirected graph G is an undirected tree or
simply tree, if any two distinct nodes are connected by exactly one path.

A rooted DAG G is a directed tree if for all nodes Vi we have |pa(Vi)| ≤ 1.

For example, the undirected graph shown Figure 2.1(a) is a tree. The directed graph shown
Figure 2.1(b) is not a directed tree tree, because V4 has two parents; by replacing edge (V7 → V4)
by (V4 → V7), it would be transformed into a directed tree.

We will also consider graphs which are sub-graphs or super-graphs of other graphs:

Definition 2.34 (Sub-graph, Super-graph). A graph G = (V,E) is a sub-graph of G′ = (V′,E′),
if V ⊆ V′ and E ∈ E⇒ E ∈ E′. Further, G′ is a super-graph of G if G is a sub-graph of G′.

We further define induced graphs as follows:

Definition 2.35 (Induced Graph). Let G = (V,E) be a graph and V′ ⊆ V. The graph induced
by V′ is defined as G′ = (V′,E′), where E′ = {(Vi, Vj) ∈ E |Vi, Vj ∈ V′}

Cliques in undirected graphs are defined as follows.

Definition 2.36 (Clique, Maximal Clique). Let G = (V,E) be an undirected graph. A set of
nodes C ⊆ V is a clique if there exists an edge between all pairs of nodes in the subset C, i.e. if

∀Ci, Cj ∈ C, i 6= j : (Ci − Cj) ∈ E. (2.54)

The clique C is a maximal clique if adding any node V ∈ V \C makes it no longer a clique.

Cliques are related to complete graphs:

Definition 2.37 (Complete Graph). An undirected graph G = (V,E) is complete if every pair
of distinct nodes is connected by an edge, i.e. if

∀Vi, Vj ∈ V, i 6= j : (Vi − Vj) ∈ E. (2.55)

Thus, set C ⊆ V is a clique if the induced graph G′ = (C,E′) is complete.
Furthermore, we introduce the notion of a topological ordering for directed graphs:

Definition 2.38 (Topological Ordering). Let G = (V,E) be a directed graph. A list V1, . . . , VN
of the nodes in V is topologically ordered if i < j ⇒ (Vj → Vi) /∈ E.

A topological ordering does not need to be unique. We will sometimes also refer to V1, . . . , VN
with i > j ⇒ (Vj → Vi) /∈ E as (reversed) topological ordering.

Example 2.6. V1, V2, V3, V5, V7, V4, V6 and V1, V7, V2, V4, V3, V6, V5 are topological orderings of
the nodes in the graph in Figure 2.1(b).

A well-known and important connection between DAGs and topological orderings is:

Theorem 2.1. A directed graph G is acyclic (and thus a DAG) if and only if there exists a
topological ordering of its nodes.

Finally, we define fully connected DAGs.

– 38 –

2.2 Graph Theory

Definition 2.39 (Fully Connected DAG). Let G = (V,E) be a DAG and V1, . . . , VN be a
topological ordering of the nodes in V. Then G is called fully connected when

(Vn → Vm) ∈ E, ∀n = 1, . . . , N − 1, ∀m = n+ 1, . . . , N. (2.56)

A fully connected DAG has a unique topological ordering.

– 39 –

Foundations of Sum-Product Networks for Probabilistic Modeling

3
Classical Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are, so to say, a marriage of the two theories reviewed
in the last chapter: Probability theory and graph theory. In this chapter we review the two most
prominent types of classical graphical models – Bayesian networks (BNs), and Markov networks
(MNs). We refer to them as “classical” PGMs, since sum-product networks, the models of main
interest in this thesis, can be considered as “new-style” PGMs: similar as BNs and MNs they
form a graphical description of probability distributions; however, their syntax and semantics
largely differ from classical PGMs.

As motivated in Chapter 1, the central point of interest is to define models capable to represent
probabilities and to perform reasoning in automated fashion. Thus, we require probability
theory, but why do we require graphs? What are the problems, for which graphical models
should be helpful to solve them? The following example illustrates the issue.

Example 3.1 (Probability Distribution over 100 Coins). Consider an experiment where we
want to model the outcome of 100 parallel coin tosses, where the ith coins is modeled by a binary
RV Xi with val(Xi) = {0, 1}, 0 standing for ’heads’ and 1 for ’tails’. Our task is to model the
joint distribution p(X1, . . . , X100). Since we assume that coins usually are independent of each
other, we assume

p(X1, . . . , X100) =

100∏
i=1

p(Xi). (3.1)

The ith distribution p(Xi) is easily represented as a single parameter θi ∈ [0, 1], thus our model
uses 100 free parameters. Reasoning using this model is also computationally cheap, and de facto
trivial.

Now, assume that we live in a universe where coins do not behave independently, but in a
complicated and entangled manner and (3.1) does not hold. Thus we aim to model the joint
distribution pX, assigning each x ∈ val(X) a probability. However, there are 2100 elements in
val(X), so that a direct implementation storing pX in a table requires

2100 − 1 = 1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 375

free parameters. Even when using just a single byte for encoding each parameter, this number
of parameters can not be stored on any computer architecture today, besides the need to process
this huge table in order to perform reasoning.

– 41 –

3 Classical Probabilistic Graphical Models

Example 3.1 demonstrates two extreme cases which can occur when we want to model the
joint distribution of a set of RVs X, already as in a rather simple example as modeling 100 coins.
These cases are,

• that the RVs are fully independent, leading to a computationally easy and trivial model,
which is rarely useful in practice, or

• that the RVs are fully dependent, and that we can not find any structure or regularity in
the joint distribution we can exploit, so that we are forced to exhaustively model the joint
distribution.

PGMs aim at the domain in between these extreme cases – the important concept here is
conditional independence. That is, when using PGMs, we aim to identify suitable conditional
independence assumptions in our model domain and use these to reduce the potential huge
computational burden. These conditional independencies are encoded in graphs, where each
node corresponds to an RV and vice versa. Therefore, we use V := X as node set of graphs in
this chapter.

We review BNs and MNs in Sections 3.1 and 3.2, respectively. Learning and inference for
PGMs is reviewed in Sections 3.3 and 3.4, respectively.

3.1 Bayesian Networks

We introduce BNs by means of their factorization properties and then discuss their conditional
independence assertions in Section 3.1.2.

3.1.1 Definition via Factorization

Definition 3.1 (Bayesian Network). A Bayesian network B over RVs X is a tuple (G, {pX}X∈X),
where G = (X,E) is a DAG over RVs X, and pX are conditional probability distributions (CPDs)
pX(X |pa(X)), for each X ∈ X. To the graph G we also refer as BN structure. The BN B
defines a joint probability distribution pB(X) according to

pB(X) =
∏
X∈X

pX(X |pa(X)). (3.2)

As usual, we drop the index of pX(X |pa(X)) and write p(X |pa(X)) when the meaning is
clear from context. A BN always defines a valid probability distribution; (3.2) can be interpreted
as the chain rule of probability, were certain conditional independence assumptions dictated by
graph G are made. This is illustrated in the following example.

Example 3.2 (Bayesian Network). Let B be a BN having the DAG G in Figure 2.1(b) as
structure, where Xi = Vi. According to Example 2.6, we know that X1, X2, X3, X5, X7, X4, X6

is a topological order of G. Using the chain rule following this order, we get

p(X1, . . . , X7) = p(X1) p(X2 |X1) p(X3 |X2, X1) p(X5 |X3, X2, X1) p(X7 |X5, X3, X2, X1)

p(X4 |X7, X5, X3, X2, X1) p(X6 |X4, X7, X5, X3, X2, X1),
(3.3)

which holds for any distribution. The BN contains the conditional distribution p(X4 |X7, X2) for
X4, since pa(X4) = {X7, X2}. Thus, the graph G “dictates” that p(X4 |X7, X5, X3, X2, X1) shall
be assumed as p(X4 |X7, X2), i.e. that X4 ⊥⊥ X5, X3, X1 |X7, X2. Doing this for all conditional

– 42 –

3.1 Bayesian Networks

distributions in (3.3), we yield the joint probability distribution

pB(X1, . . . , X7) = p(X1) p(X2 |X1) p(X3 |X2) p(X4 |X3) p(X5) p(X6 |X2, X5) p(X7 |X6)

=
7∏
i=1

p(Xi |paG(Xi)),

i.e. the BN factorization (3.2).

Often the conditional probability distributions pX are specified by a parameter set θX , writing
p(X |pa(X);θX). In this case, we collect all parameters in a set Θ = {θX}X∈X and write
B = (G, {pX}X∈X) as B = (G,Θ). Let us consider two commonly used types of BNs, one with
finite-state RVs, the other over continuous RVs.

Example 3.3 (BN over Finite-State RVs). Assume a BN B with finite-state RVs X. In this
case, the conditional distributions p(X |pa(X), θX) are naturally represented by conditional
PMFs

p(x |xpa; θX) = θXx|xpa
, (3.4)

Clearly, for each X, the parameters θX = {θXx|xpa
} must satisfy

θXx|xpa
≥ 0 ∀x,xpa (3.5)∑

x∈val(X)

θXx|xpa
= 1 ∀xpa. (3.6)

The CPDs corresponding to X can be stored in a conditional probability table (CPT) with
(|val(X)| − 1) · |val(pa(X))| entries. The BN distribution in (3.2) becomes

pB(x) =
∏
X∈X

θXxX |xpa(X)
. (3.7)

Example 3.4 (Conditional Gaussian Variables). In this example we assume that the RVs X are
real-valued and that the CPDs are specified by Gaussian distributions, where the means depend
linearly on the value of the parents, and using a shared variance.

p(X |xpa,θ
X) = N

(
X
∣∣ (αX)T xpa + βX , σ

)
, (3.8)

Here, the parameter set θX = {αX , βX} contains the linear weights αX = (αX1 , . . . , α
X
|pa(X)|) and

the bias βX . In this case the BN distribution in (3.2) is a multivariate Gaussian distribution,
with mean vector µ and covariance matrix Σ, which are recursively given as [7]:

µX = E[X] = (αX)T µpa(X) + βX , (3.9)

ΣX,Y = E[(X − E[X])(Y − E[Y])]

=
∑

Z∈pa(Y)

αYZ ΣX,Z + 1(X = Y)σ2. (3.10)

Here µX and µpa(X) are the entries and the sub-vector of µ corresponding to X and pa(X),
respectively. ΣX,Y is the entry in Σ corresponding to X and Y and αYZ is the entry in αY

corresponding to parent Z of Y .

We now turn to the conditional independence assertions in the BN distribution.

– 43 –

3 Classical Probabilistic Graphical Models

3.1.2 Conditional Independence Assertions

As already illustrated in Example 3.2, the factorization properties in BNs are connected with
certain conditional independence assertions in the BN distribution. Exploiting these condi-
tional independencies is key for efficient representation, learning and inference in BNss. The
factorization properties dictated by the graph directly relate to the so-called local conditional
independencies [52]:

Theorem 3.1 (Local Conditional Independencies). Let B = (G, {pX}) be a BN and pB the
joint probability defined by B. Then, pB satisfies the local independencies

X ⊥⊥ (ndesc(X) \ pa(X)) |pa(X). (3.11)

In words, an RV X is conditional independent of its nondescendants given its parents.

Conversely, any distribution satisfying (3.11) for some graph G factorizes according to the
BN distribution (3.2) with G as structure: We apply the chain rule (2.46) according to some
topological ordering and eliminate as many conditioning RVs from the CPDs as permitted by
(3.11), yielding (3.2).

Additionally to the local conditional independencies, several global conditional independencies
hold in BNs, which can be read off the DAG using the notion of d-separation.

Definition 3.2 (d-separation). Let B = ((X,E), {pX}) be a BN. Two RVs Y, Y ′ ∈ X, Y 6= Y ′

are d-separated by Z ⊂ X, Y, Y ′ /∈ Z if for all trails Π = (X1, . . . , Xn) between Y and Y ′ there
is an intermediate RV Xk, 1 < k < n, fulfilling one the following conditions:

• The connection is serial (head-to-tail), i.e.

◦ (Xk−1 → Xk), (Xk → Xk+1) ∈ E, or

◦ (Xk+1 → Xk), (Xk → Xk−1) ∈ E,

and Xk ∈ Z.

• The connection is diverging (tail-to-tail), i.e.

◦ (Xk → Xk−1), (Xk → Xk+1) ∈ E

and Xk ∈ Z.

• the connection is converging (head-to-head), i.e.

◦ (Xk−1 → Xk), (Xk+1 → Xk) ∈ E

and desc(Xk) ∩ Z = ∅, i.e. none of the descendants of Xk (in particular Xk) is in Z.

Two sets Y,Y′ ⊆ X, Y ∩ Y′ = ∅, are d-separated by Z ⊂ X, Y ∩ Z = ∅,Y′ ∩ Z = ∅, if all
Y ∈ Y, Y ′ ∈ Y′ are d-separated by Z.

Let us consider three canonical structures addressed in Definition 3.2: the serial, diverging
and converging connections:

• Serial connection. The BN B shown in Figure 3.1(a) is a minimal example of a serial
connection (head-to-tail). According to (3.2) its distribution factorizes as

pB(Xi, Xk, Xj) = p(Xi) p(Xk |Xi) p(Xj |Xk). (3.12)

When we condition on Xk, we get for p(Xk) > 0

pB(Xi, Xj |Xk) =

=pB(Xi,Xk)︷ ︸︸ ︷
p(Xi) p(Xk |Xi) p(Xj |Xk)

pB(Xk)
(3.13)

= pB(Xi |Xk) pB(Xj |Xk), (3.14)

– 44 –

3.1 Bayesian Networks

Xi Xk Xj

(a) Serial connection.

Xk

Xi Xj

(b) Diverging connection.

Xi Xj

Xk

(c) Converging connection.

Figure 3.1: Three canonical examples for d-separation: (a): serial connection Xi → Xk → Xj. (b): diverg-
ing connection Xk → Xi, Xk → Xj. (c): converging connection Xi → Xk, Xi → Xk.

i.e. Xi and Xj are conditionally independent given Xk: Xi ⊥⊥ Xj |Xk. This can be
interpreted as follows: when Xk is observed, Xi and Xj are rendered independent. On the
other hand, when Xk is not observed, the RVs Xi and Xj are dependent in general, since

pB(Xi, Xj) =
∑
xk

p(Xi) p(Xk |Xi) p(Xj |Xk), (3.15)

does in general not factorize into pB(Xi) pB(Xj).

• Diverging connection. The BN B shown in Figure 3.1(b) is a minimal example of a
diverging connection (tail-to-tail), factorizing as:

pB(Xi, Xk, Xj) = p(Xk) p(Xi |Xk) p(Xj |Xk). (3.16)

Again, conditioning on Xk yields

pB(Xi, Xj |Xk) =

=pB(Xi,Xk)︷ ︸︸ ︷
p(Xk) p(Xi |Xk) p(Xj |Xk)

pB(Xk)
(3.17)

= pB(Xi |Xk) pB(Xj |Xk), (3.18)

i.e. Xi ⊥⊥ Xj |Xk, similar as for the serial connection. Also, pB(Xi, Xj) does in general
not factorize into pB(Xi) pB(Xj).

• Converging connection. The BN B shown in Figure 3.1(c) is a minimal example of a
converging connection (head-to-head), factorizing as:

pB(Xi, Xk, Xj) = p(Xi) p(Xj) p(Xk |Xi, Xj). (3.19)

– 45 –

3 Classical Probabilistic Graphical Models

In contrast to the two cases before, the RVs Xi and Xj are a-priori independent since

pB(Xi, Xj) =
∑

xk∈val(Xk)

pB(xk, Xi, Xj) (3.20)

= p(Xi) p(Xj)

=1︷ ︸︸ ︷∑
xk∈val(Xk)

p(xk |Xi, Xj) (3.21)

= p(Xi) p(Xj), (3.22)

When we condition on Xk, we get

pB(Xi, Xj |Xk) =
p(Xi) p(Xj) p(Xk |Xi, Xj)

pB(Xk)
. (3.23)

In general, this does not factorize into pB(Xi |Xk) pB(Xj |Xk), i.e. Xi and Xj are inde-
pendent if Xk is not observed but become in general dependent when Xk is observed. This
known as explaining away phenomenon.

In the serial and diverging connection, the RVs Xi and Xj are rendered independent when Xk

is observed, and in the converging connection, Xi and Xj are rendered independent when Xk is
not observed. In these three examples, let Z be either ∅ or {Xk}. Then we see that in all three
examples Xi and Xj are conditional independent given Z, when they are d-separated by Z. Is
this coincidence? It is not, as the d-separation Theorem tells us [52,70]:

Theorem 3.2 (d-separation). Let B be a BN with structure G = (X,E) and let Y, Y′, and Z
be mutually disjoint subsets of X. If Y and Y′ are d-separated by Z, then in pB we have

Y ⊥⊥ Y′ |Z. (3.24)

In any distribution modeled by an BN with structure G the conditional independence assertions
(3.24) hold. An interesting observation here is that these assertions are solely by properties of G.
They hold, no matter if the RVs are discrete or continuous, and no matter which representation
the CPDs we use.

The converse of Theorem 3.2 is clearly not true, since the effective conditional independence
properties of the BN distribution is a joint effect of structure and CPDs. As an extreme example,
consider a BN over finite-state RVs, with a fully connected DAG G and uniform CPTs. The
resulting joint distribution pB is clearly uniform over all RVs. Moreover, all possible conditionals
and marginals are also uniform, i.e. all possible conditional independence statements hold, since
the uniform distribution can be factored according to all involved RVs. On the other hand, no
two sets Y and Y′ are d-separated by any set Z, since any two RVs are connected by an edge.
That is, d-separation does not encode a single conditional independence assertion. However, the
converse is often true in a somewhat weaker sense: An example is given in [52]: when the CPDs
for finite-state RVs are represented using general CPTs, then for almost all parametrizations Θ
the converse of Theorem 3.2 holds, i.e. a conditional independence property in pB implies the
corresponding d-separation.

3.2 Markov Networks

Similar as in BNs, an MN encodes certain factorization and conditional independence properties
of the represented probability distribution. We start with the factorization properties.

– 46 –

3.2 Markov Networks

3.2.1 Definition via Factorization

Definition 3.3 (Markov Network). A Markov network over RVs X = {X1, . . . , XN} is a
tuple M = (G, {ΨCl

}Ll=1), where G = (X,E) is an undirected graph with maximal cliques
C1, . . . ,CL ⊆ X. The factors or potentials ΨCi are nonnegative functions over the maxi-
mal cliques: ΨCl

: val(Cl) 7→ [0,∞). To the graph G we also refer as MN-structure. The MN
defines a probability distribution according to

pM (x) =
1

ZM
ΦM (x) =

1

ZM

L∏
l=1

ΨCl
(xCl

), (3.25)

where ZM is the normalization constant or partition function, given as

ZM =

∫
val(X1)

. . .

∫
val(XN)

ΦM (x1, . . . , xN) dx1 . . . dxN , (3.26)

where integrals are replaced by sums for discrete RVs. ΦM is called the unnormalized MN
distribution.

The definition is illustrated in following example.

Example 3.5 (Markov Network). Consider the undirected graph shown in Figure 3.2. The
maximal cliques are surrounded by dotted boxes and are given as

C1 = {X1, X2, X3}, (3.27)

C2 = {X3, X4}, and (3.28)

C3 = {X3, X5}. (3.29)

Hence, the joint probability distribution of an MN with this graph has the form

pM (X1, . . . , X5) =
1

ZM
ΨC1(X1, X2, X3)ΨC2(X3, X4)ΨC3(X3, X5). (3.30)

X1 X2

X3

X4 X5

C1

C2 C3

Figure 3.2: Example of an MN.

The assumption that the potentials are defined over the maximal cliques is arbitrary, but
does not restrict generality. We are free to define potentials over non-maximal cliques – these,
however, can be absorbed into the potential of any enclosing maximal clique. In contrast to BNs,
MNs give up the immediate probabilistic interpretation of the used factors. One advantage of
BNs over MNs is, that a BN distributions is readily normalized, while the partition function of
MNs is a-priori unknown. Determining the partition function is generally NP-hard [52]. Thus, if

– 47 –

3 Classical Probabilistic Graphical Models

we wish to evaluate the probability of a single sample is easy in BNs, assuming that evaluation
of CPDs is efficient and that the number of RVs is reasonable small. The same task can be
infeasible in MNs just by not knowing the partition function. Furthermore, as discussed in the
next section, BNs and MNs differ in the conditional independence assertions which can be read
off from their graph.

3.2.2 Conditional Independence Assertions

Similarly as in BNs, certain conditional independence assertions can be stated for MNs. To this
end, we make following definition.

Definition 3.4 (Separation). Let M be an MN over X with graph G. Two RVs Y, Y ′ ∈ X,
Y 6= Y ′ are separated by Z ⊂ X, Y, Y ′ /∈ Z, if for all paths Π = (X1, . . . , Xn) between Y and
Y ′ there is an intermediate RV Xk ∈ Z. Two sets Y,Y′ are separated by Z ⊂ X, Y ∩ Z = ∅,
Y′ ∩ Z = ∅, when all Y ∈ Y, Y ′ ∈ Y′ are separated by Z.

Theorem 3.3. Let M be an MN over X. The following conditional independence assertions
hold in pM :

1. Local Markov property. A RV X is conditionally independent from all other RVs given
its neighbors, i.e.

X ⊥⊥ X \ ({X} ∪ nb(X)) |nb(X), (3.31)

In this context, the neighbors X are also called the Markov blanket of X.

2. Pairwise Markov property. Any two non-adjacent RVs X,Y are conditionally inde-
pendent given all other RVs, i.e.

X ⊥⊥ Y |X \ {X,Y }, when (X − Y) /∈ E (3.32)

3. Global Markov property. Let Y,Y′,Z ⊂ X be mutually disjoint, where Y and Y′ are
separated by Z. Then

Y ⊥⊥ Y′ |Z (3.33)

These conditional independence statements are illustrated Figure 3.3. Two simple examples
demonstrate that the conditional independencies encoded in BNs and MNs differ from each
other:

Example 3.6 (Conditional Independencies in BNs and MNs). Consider the BN with RVs X1,
X2 and X3 in Figure 3.4(a). We want to represent this BN by an MN that captures all the
conditional independence properties of the BN:

• An appropriate MN must contain the edges (X1 − X3) and (X2 − X3). Otherwise, X3

would not depend on X2 and X3 as in the BN. Such an MN is shown in Figure 3.4(b). In
this MN it holds that X2 ⊥⊥ X3 |X1, but not in the BN.

• When we additionally need to add the edge (X1 − X2) resulting in the MN shown in
Figure 3.4(c). However, now the MN does in general not satisfy that X1 ⊥⊥ X2 while the
BN does.

Consequently, the conditional independencies of the BN in Figure 3.4(a) cannot be represented
by an MN.

– 48 –

3.2 Markov Networks

X1 X2

X3

X4 X5

(a)

X1 X2

X3

X4 X5

(b)

X1 X2

X3

X4 X5

(c)

Figure 3.3: Example for conditional independencies in MNs: (a): Local Markov property: X1 is independent
from X4 and X5, given its Markov blanket {X2, X3}. (b): Pairwise Markov property: X4 and
X5 are independent, given all other RVs. (c): Global Markov property: {X1, X2} and {X4, X5}
are independent given {X3}.

X1 X2

X3

(a)

X1 X2

X3

(b)

X1 X2

X3

(c)

Figure 3.4: Example for a BN, whose conditional independence assertions can not be represented by an MN.
(a): BN to be represented as an MN. (b), (c): Candidate MNs.

– 49 –

3 Classical Probabilistic Graphical Models

Example 3.7 (Conditional Independencies in BNs and MNs). Consider the MN in Figure 3.5.
We want to represent this MN by a BN capturing all the independence properties that hold in
the MN. By the pairwise Markov property we have

X1 ⊥⊥ X4 | {X2, X3}, and (3.34)

X2 ⊥⊥ X3 | {X1, X4}. (3.35)

However, these conditional independencies cannot be encoded in a BN, cf. [52].

X1 X2

X3 X4

Figure 3.5: Example for an MN, whose conditional independence assertions can not be represented by a BN.

We see that BNs and MNs do not represent the same independency assertions. Nevertheless,
there exist distributions which can be represented by both MNs and BNs, as for example chain
structured models. We can visualize this situation using the notion of perfect maps (PMAPS).
We call a PGM an independency map (IMAP) for a distribution p, when all conditional inde-
pendence assertions represented by the graph of the PGM hold in p [52]. Conversely, we call
such a structure a dependency map (DMAP), when when all conditional independencies of p
hold in the graph of the PGM. A PGM is a PMAP when it is both an IMAP and a DMAP for
p. Now, consider the distributions {p} over a fixed set of RVs, let {pB} be the distributions for
which some BN is a perfect map and {pM } be the distributions for which some MN is a perfect
map. The relation of {p}, {pB} and {pM } is symbolically illustrated by the Venn diagram in
Figure 3.6, cf. [7].

{p}

{pB} {pM }{pB} ∩ {pM}

Figure 3.6: Venn diagram depicting the set of all probability distributions {p} for a fixed set of RVs, and the
sets {pB} and {pM}, i.e. the distributions for which some BN or some MN is a perfect map,
respectively.

3.3 Learning PGMs

After having specified BNs and MNs as models for probability distributions, we discuss how to
come up with a model for the task under consideration. One possibility is to specify a PGM by
hand. Especially BNs are suited for this approach, since the directed edges can often be inter-
preted as causal directions by a human domain expert. Local probability tables can be elicited

– 50 –

3.3 Learning PGMs

relatively easily using various techniques [70]. However, from machine learning perspective, we
want to automatically determine a PGM from a set of training data..

Assume we want to find a PGM for a set of random variables X which are distributed ac-
cording to an unknown joint distribution p∗. Further, we have a collection of L independent
and identically distributed (i.i.d.) samples D = {x(1), . . . ,x(L)}, drawn from p∗. A natural goal
of learning a PGM can be described as follows: given D, return a PGM which approximates p∗

best. This type of learning is known as generative learning, since we aim to model the process
which generated the data. Generative learning can be seen as a “multi-purpose” tool, since
we directly strive for the universal object describing our data: the joint distribution p∗. Other
quantities, such as marginal and conditional distributions, and expectations can in principle be
derived from the joint distribution.

However, it is rarely possible to exactly retrieve p∗, especially when using a finite sample D.
This can be obstructive, when the final goal is not to retrieve p∗, but to use the PGM in a
specialized way, e.g. to use the PGM as classifier. In the classification context we are primarily
interested in minimizing the loss resulting from erroneous decisions, not in modeling the overall
generative process. It can be easily shown that knowledge of p∗ leads to optimal classification,
and therefore generative learning seems to be suitable to learn classifiers. However, a consistent
observation in machine learning is that discriminative learning methods, which refrain from
modeling p∗, but directly address the classification problem, often yield better classification
results than the generative approach.

Furthermore, there are two key aspects of learning a PGM: the structure G and the CPDs or
clique factors, which we assume to be represented by a parameter set Θ. Although G and Θ are
coupled, e.g. the number of parameters depends on G, an isolated consideration of G and Θ is
often reasonable. This leads to the two tasks of learning PGMs: parameter learning and struc-
ture learning. Thus, we can consider many kinds of learning approaches: generative/discrim-
inative parameter learning, generative/discriminative structure learning, combinations thereof,
e.g. learning structure discriminatively and learning parameters generatively. Furthermore, there
exist hybrid approaches, e.g. hybrid generative-discriminative learning objectives. More infor-
mation about discriminative/hybrid learning can be found in [52,71,77]. In this thesis, however,
we focus on the generative approach.

Let us assume a specific class of models C, e.g. the class of all BNs, or the class of all MNs.
Following a Bayesian approach to learning, we define a prior distribution p(C) over the model
class, which represents our preference for certain models. For example, if C is the class of all
BNs, we may prefer networks with fewer edges, and therefore define a prior which decreases with
the number of edges. We are interested in the posterior probability distribution over the model
class, conditioned on the given data. Using Bayes’ law, this distribution is

p(C |D) =
p(D | C) p(C)

p(D)
=

p(D | C) p(C)∫
C p(D |M ′) p(M ′) dM ′

∝ p(D | C) p(C). (3.36)

The data generation probability p(D | C) is known as likelihood L(C;D).

There exist two main approaches to use the posterior distribution:

1. Maximum a-posteriori (MAP) approach. This approach aims to find the most prob-
able model MMAP ∈ C for given data, i.e.

MMAP = arg max
M∈C

p(M | D) (3.37)

= arg max
M∈C

L(M ;D) p(M). (3.38)

In the MAP approach we accept the single model MMAP as best explanation for the data
and use it for further tasks.

– 51 –

3 Classical Probabilistic Graphical Models

2. Bayesian model averaging. In model averaging, we refrain to decide for a single model
out of C. Instead, we maintain the uncertainty about which model might be the “true”
one and keep the whole model class C, together with the posterior distribution p(C |D).

As an illustrating example, consider the probability of an unseen sample x′, after observing D.
The MAP approach dictates that

p(x′ | D) = p(x′ |MMAP), (3.39)

while the model averaging approach results in

p(x′ | D) =

∫
C
p(x′ |M) p(M | D) dM. (3.40)

Model averaging proceeds more carefully and treats the uncertainty by marginalizing over all
possible models. They often agree in the large sample limit, since for large L the mass of the
posterior p(C |D) is typically concentrated on a single model. For small sample sizes, model
averaging often outperforms the MAP approach.

Parameter Learning

For parameter learning, we assume that the network structure G is fixed, maybe because a
domain expert specified the independence relationships among the model variables, or because
a structure learning algorithm already provided an appropriate structure. Therefore, for pure
parameter learning, the model class C is represented by parameters Θ. In the special case
when the prior distribution p(Θ) is flat, i.e. no model is preferred over the other, the posterior
p(Θ | D) is proportional to the likelihood L(Θ;D), and the MAP solution coincides with the
classical maximum-likelihood (ML) solution, i.e.

MMAP = MML = arg max
M∈Θ

L(M ;D). (3.41)

When the data samples D are i.i.d., the likelihood is given as

L(Θ;D) = p(D |Θ) =
L∏
l=1

p(x(l) |Θ). (3.42)

It is usually more convenient to work with the log-likelihood

logL(Θ;D) =
L∑
l=1

log p(x(l) |Θ). (3.43)

Maximizing log-likelihood is equivalent to maximizing likelihood. Intuitively, the log-likelihood
is a measure of goodness of fit, i.e. a model with maximum likelihood is considered as best
explanation for the training data. Furthermore, maximizing likelihood yields under rather mild
assumptions a consistent estimator of the model parameters, i.e. if p∗ lies in our model class, its
parameters are recovered in the large sample limit.

Consider first the class of BNs. For parameter learning with fixed BN structure G and
i.i.d. samples D = {x(1), . . . ,x(L)}, the log-likelihood of a BN model is given as

logL(B;D) =
L∑
l=1

∑
X∈X

log p(x
(l)
X |x

(l)
pa(X);θ

X) =
∑
X∈X

`(θX ;D). (3.44)

We see that the log-likelihood decomposes into a sum over local terms, one for each RV X, given

– 52 –

3.3 Learning PGMs

as

`(θX ,D) =

L∑
l=1

log p(x
(l)
X |x

(l)
pa(X);θ

X). (3.45)

Therefore, the overall BN log-likelihood is maximized by maximizing the individual local terms
w.r.t. the local parameters θX .

This decomposition property simplifies generative learning in BNs and often leads to closed
form solutions. In the case of finite-state RVs, see Example 3.3, the ML parameters are given
by [77]:

θ̂Xx|xpa
=

∑L
l=1 1(x

(l)
X = x ∧ x

(l)
pa(X) = xpa)∑

x′∈val(X)

∑L
l=1 1(x

(l)
X = x′ ∧ x

(l)
pa(X) = xpa)

=
nXx|xpa∑

x′∈val(X) n
X
x′|xpa

, (3.46)

where the data counts nXx|xpa
=
∑L

l=1 1(x
(l)
X = x ∧ x

(l)
pa(X) = xpa) are the sufficient statistics for

this problem. When nXx′|xpa
= 0 for all x′, the solution in (3.46) is not defined. In this case,

however, any arbitrary CPT for the particular X and xpa is an optimal solution. In practice,
one often uses smoothed ML parameters, i.e. a small constant is added to each nXx′|xpa

.

Finding ML parameters for MNs is typically harder than for BNs, and usually no closed form
solution exists. When the clique factors are assumed to be log-linear, i.e.

ΨCl
= exp(θl fl(Cl)), (3.47)

where fl(Cl)) is an arbitrary feature function, then the log-likelihood is concave. In this case,
an ML solution can be found using convex optimization, e.g. gradient methods. However,
this requires computing the partition function in each iteration, which renders ML-parameter
learning in MNs generally NP-hard [52].

So far, we assumed complete data, i.e. all values in a sample x are available. However, missing
data scenarios are common in machine learning, where possible reasons for missing data are:

• We fail to record the values of all RVs, e.g. because of corrupted measurements.

• We have latent RVs in our model, because they are justified from our domain knowledge,
but they can not be directly observed.

• We introduce latent RVs in our model, as a modeling technique per se. For example, in a
Bayesian approach, we introduce the model parameters explicitly in the model as additional
RVs. As another example, mixture model are often interpreted as an augmented model
where a hypothetical latent RVs is marginalized.

Although reasons for missing data might be various, its treatment is consistent in the probabilis-
tic framework, using the expectation-maximization (EM) algorithm [30,65]. Let Y(l) be the set
of observed RVs in the lth sample, y(l) the corresponding observed value, and Z(l) = X \Y(l).
One step of the EM algorithm is given as

Θt+1 = arg max
Θ

Q(Θ,Θt), (3.48)

Q(Θ,Θt) =
L∑
l=1

∑
z(l)∈val(Z(l))

p(z(l) | y(l); Θt) log p(z(l),y(l); Θ). (3.49)

Q is the expected data likelihood of Θ, where the expectation is taken with respect to the current
parameters Θt, and has the natural interpretation of probabilistic data completion. In BNs over

– 53 –

3 Classical Probabilistic Graphical Models

finite-state RVs the EM algorithm takes a particular intuitive form [52]: In a first step, the
so-called E-step, we compute the expected sufficient statistics:

n̄Xx|xpa
=

L∑
1=l

pB(X,paX |y(l); Θt). (3.50)

In the so-called M-step we treat the expected sufficient statistics as if they were actual sufficient
statistic, yielding parameter updates as in (3.46), using n̄Xx|xpa

instead of nXx|xpa
. This approach

generally carries over to BNs with CPDs from the exponential family [52]. The EM algorithm
for MNs is generally less appealing, since we generally lack of closed form ML solutions for the
clique factors.

Structure Learning

There exist two main approaches to structure learning in PGMs:

1. Constraint-based approaches. In this approach, one aims to find a structure G which
represents the same conditional independencies as present in the underlying distribution of
data. Although theoretically sound, these methods rely on statistical independence tests
performed on the data, which are usually too inaccurate in practice. Further information
about this approach can be found in [52,91,99].

2. Scoring-based approach. Here one aims to find a graph which represents a suitable
distribution to represent the true distribution p∗, where suitability is measured by a scoring
function score(G). There are two key issues here: Defining an appropriate scoring function,
and developing a search algorithm which finds a score-maximizing structure G.

A first choice for the scoring function would be the log-likelihood, i.e. to find the structure G
which, when equipped with ML parameters, maximizes the log-likelihood. However, it easy to
see that a fully connected graph will always be a maximizer of the log-log-likelihood, leading to
overfitting. As a remedy, one modifies the pure likelihood-score in order to account for model
complexity. One approach is the minimum description length (MDL) principle [82], which aims
to find the shortest, most compact representation of the data D within the considered model
class. The MDL principle additionally accounts for the description length of the model, which
is measured by the number of parameters. For example, the MDL score for BNs with discrete
variables was derived as [55,94]:

MDL(G) = −
L∑
l=1

log p(x(l) | G,ΘML) +
logL

2
T (G), (3.51)

where T (G) is the number of free parameters Θ. We want to minimize MDL, thus it is actually
a negative score.

An alternative way to avoid overfitting is delivered by a Bayesian approach. The main problem
with the likelihood as score is that it is not aware of model complexity, i.e. the number of free
parameters. While with more densely connected graphs G the dimensionality of the parameter
space Θ increases exponentially, nevertheless only a single point estimate is used from this space,
i.e. the ML parameters ΘML. Therefore, the ML approach can be described as overly optimistic,
trusting in the single “true” parameters ΘML. In contrast to the ML approach, the Bayesian
approach uses the parameter space in its entirety. Introducing a prior distribution p(Θ) and

– 54 –

3.3 Learning PGMs

marginalizing over Θ, leads to the Bayesian score (cf. [77]):

Bayes(G) = p(D|G) =

∫
Θ
p(D|Θ,G) p(Θ) dΘ (3.52)

=

∫
Θ

L∏
l=1

p(x(l)|Θ,G) p(Θ) dΘ. (3.53)

For BNs over finite-state RVs, using Dirichlet priors for the local parameters leads under rather
mild assumptions to the closed form Bayesian-Dirichlet score (BD) [11, 22, 44]. For undirected
models, the Bayesian score is usually not feasible. The large sample limit of the BD score is
known as Bayesian information criterion (BIC) and is equivalent to MDL. BIC can also defined
for MNs and takes the same form as (3.51).

A common approach for MNs is to formulate structure learning as parameter learning problem.
The most prominent score is `1-penalized likelihood:

L1(Θ) =
L∑
l=1

log p(x(l) | G,ΘML)− λ ‖Θ‖1. (3.54)

This approach is actually a hybrid of parameter and structure learning: a general structure
G is hold fixed, where minimization of ‖Θ‖1 leads to an effective sparsification of the graph,
determining the effective structure.

In BNs, pure structure learning is often considered, especially when closed form parameters
are available. Having chosen an appropriate scoring function, how do we find a graph G which
maximizing it? Explicit enumeration of all DAGs is clearly infeasible, since the number of DAGs
grows super-exponentially with the number of nodes [83]. All the scores discussed so far, namely
log-likelihood, MDL and BIC, and (the logarithm of) the BD/BDe score can be written in the
form

score(G;D) =
∑
X∈X

scoreX(pa(X);D), (3.55)

which means that the global network score decomposes into a sum of local scores, depending
only on the set of parents for each RV. This property helps to improve the efficiency structure
learning algorithms. Nevertheless, the problem of finding a score-maximizing BN structure G
is NP-hard in general, even when using decomposable scores and even when the maximum
number of parents is restricted to K ≥ 2 [15, 17]. For K = 1, i.e. when the BN is restricted to
a directed tree (or actually a directed forest), the Chow-Liu algorithm [20] learns an optimal
network structure in polynomial time, maximizing the log-likelihood over the class of BNs with
a directed tree structure. The class of directed trees is typically restrictive enough to avoid
overfitting, i.e. the likelihood score is an appropriate choice in this case.

For learning more complicated structures, there exist a variety of approximative techniques.
One of the first general search algorithms was the K2 algorithm [22] which relies on an initial
variable ordering, and greedily adds parents for each node, in order to increase the BD score.
A more general scheme is greedy hill-climbing (GHC) [18,44], which does not rely on an initial
variable ordering. In each GHC iteration, the current graph candidate G is replaced with a
neighboring graph G′ when score(G′) > score(G), where neighboring graphs are resulting from
the current graph when applying certain graph transformations, e.g. single edge-insertions, edge-
deletions and edge-reversals. GHC can be combined with tabu-search [41] in order to escape
local maxima in the search space. A further method is simulated annealing (SA) which randomly
generates a neighbor solution in each step; If the new solution has higher score than the current
one, it is immediately accepted, while a solution with lower score is accepted with a certain
probability. While this probability is high in the beginning, leading to a large exploration over

– 55 –

3 Classical Probabilistic Graphical Models

the search space, it is successively reduced according to a cooling schedule. Other approaches
consider other search spaces than the space of all DAGs: In [16] it is proposed to search over the
space of equivalence classes, i.e. classes of BN structures which represent the same independence
assertions. In [96], a search over possible variable orderings is proposed. This approach uses the
fact, as already mentioned in [22], that for a given variable ordering the optimal structure can
be found in polynomial time.

There exist also exact approaches, globally optimizing the BN structure. Methods based
on dynamic programming [51, 88, 89] have exponential time and memory requirements, which
restricts their application to approximately 30 variables. Furthermore, there are branch-and-
bound methods [28,45,95] which cast the combinatorial structure learning problem to a relaxed
continuous problem. Although branch-and-bound methods also have exponential run-time, they
provide two key advantages: (i) They maintain (after some initial time) a feasible solution,
i.e. they can be prematurely terminated, returning the currently best solution. (ii) They provide
upper and lower bounds on the maximal score, which represents a worst-case certificate of sub-
optimality. Exact methods can also be applied in the discriminative case [76].

3.4 Inference in PGMs

In the last sections we introduced the BNs and MNs as probabilistic models and discussed
learning approaches to fit a PGM to given data. To process of performing reasoning with a
PGM, i.e. to answer queries using our model, is generally called inference. Assume that p is our
model distribution over RVs X. Common inference scenarios are:

1. Marginalization. We wish to obtain the marginal distribution p(Xq) for some subset of
query RVs Xq ⊂ X, marginalizing X \Xq = Xm = {Xm

1 , . . . , X
m
K }, i.e. compute

p(Xq) =

∫
val(Xm

1)
. . .

∫
val(Xm

K)
p(Xq, xm1 , . . . , x

m
K) dxm1 . . . dxmK . (3.56)

In the case of discrete RVs, the integrals are replaced by sums.

2. Conditionals. Here X is split into disjoint query RVs Xq, observed RVs Xo and marginal-
ized RVs Xm. The goal is to find the posterior distribution of the query variables Xq

conditioned on the observation xo, i.e. compute

p(Xq |xo) =
p(Xq,xo)

p(xo)
(3.57)

The terms p(Xq,xo) and p(xo) are determined by marginalization over Xm and Xm ∪Xq.

3. Most probable explanation. (MPE) Here X is split into query RVs Xq and observed
RVs Xo. The goal is to find the most probable explanation (MPE) for Xq, i.e. find

xq∗ = arg max
xq∈val(Xq)

p(xq |xo) = arg max
xq∈val(Xq)

p(xq,xo) (3.58)

4. Maximum a-posteriori. (MAP) Here X is split into query RVs Xq, observed RVs Xo

and marginalized RVs Xm = {Xm
1 , . . . , X

m
K }. Similar as MPE we aim to find the most

– 56 –

3.4 Inference in PGMs

probable explanation for Xq given Xo, but additionally ignore Xm, i.e. compute

xq∗ = arg max
xq∈val(Xq)

p(xq |xo) (3.59)

= arg max
xq∈val(Xq)

p(xq,xo) (3.60)

= arg max
xq∈val(Xq)

∫
val(Xm

1)
. . .

∫
val(Xm

K)
p(xq,xo, xm1 , . . . , x

m
K) dxm1 . . . dxmK . (3.61)

Unfortunately, all these inference scenarios are NP-hard in general [52]. Furthermore, MAP is
inherently harder than MPE [8, 68, 69]. However, the essential aim of PGMs is to target at
models which allow tractable inference. To this end one aims to design inference algorithms
whose computational cost adapts to the complexity of the PGMs. An alternative approach is
to give up the aim to solve an inference scenario exactly, and to resort to approximate inference
methods.

Exact inference methods aim to use the factorization properties of the PGM at hand. In
the case of BNs, common practice is to first transform the BN into a MN by a process called
moralization: Any two parent of an RV are connected by an undirected edge, any directed edge
is replaced by an undirected one and the CPDs of BNs are interpreted as clique potentials. The
resulting MN then represents the same distribution as the BN, i.e. it is an IMAP for the BN,
but obscures the typical ’explaining away’ independence assertion in BNs, see also Example 3.6.
An example of the moralization process is shown in Figure 3.7 (b). In this way, one can treat
general purpose inference for BNs and MNs in a common framework. The basic observation
is that marginalization and maximization in tree-shaped MNs can be solved efficiently, leading
to a message passing scheme called belief-propagation [7, 62, 70]. The main idea is now to
generalize this positive result to more general graphs, by transforming them into tree shaped
models by clustering together RVs. The way this is achieved is by finding a so-called junction
tree or clique tree, where each node in the tree corresponds to a clique in the original model
[23, 24, 49, 58]. In order to yield consistent results, a junction tree has to fulfill the so-called
running intersection property, meaning that when an RV is contained in two different cliques Ci

and Cj , then it must also be contained in each clique on the path connecting these two cliques.
Such a clique tree does not necessarily exist for arbitrary graphs. However, it always exist
for chordal graphs. So we can introduce additional edges until the graph is chordal, a process
called triangulation. This effectively removes independence assertions from the model. A simple
way to find a triangulation found is by the elimination algorithm [52]. Inference cost in the
resulting junction tree is exponential in the size of the largest clique in the used chordal graph,
thus we wish to find a triangulation which minimizes the maximal clique size. This problem,
unfortunately, is NP hard, requiring heuristics to find triangulated graphs with reasonable small
cliques. Finally, a junction tree can be generated from the triangulated graph, by finding the
maximal cliques and the connections [52]. A junction tree of the example in Figure 3.7 is shown
in Figure 3.8.

Exact inference using belief propagation on junction trees is feasible only for PGM whose
graphs are not too densely connected. There are various approximate inference methods, such
as variational methods, loopy belief propagation and sampling methods [52, 77].

– 57 –

3 Classical Probabilistic Graphical Models

X1

X2 X3

X4 X5

X6

(a)

X1

X2 X3

X4 X5

X6

(b)

X1

X2 X3

X4 X5

X6

(c)

Figure 3.7: Example of moralization and triangulation. (a): BN to be moralized. (b): Moralized graph,
yielding a MN; directed edge are replaced by undirected ones and an undirected edge is inserted
between X4 and X5, which are co-parents of X6. (c): Triangulated graph.

X1, X2, X3 X2, X3 X2, X3, X4

X3, X4

X4, X5, X6 X4, X5 X3, X4, X5

Figure 3.8: Example junction tree for the example in Figure 3.7.

– 58 –

Foundations of Sum-Product Networks for Probabilistic Modeling

4
Sum-Product Networks

Parts of this chapter are published in [75]. Similar as classic PGMs, SPNs are a graphical
description of probability distributions – their syntax and semantics, however, differ largely
from BNs and MNs. Before we introduce SPNs, let us point out to some weak points of classic
PGMs which call for an alternative model type.

In classic PGMs, the process of learning and inference is traditionally treated in a decoupled
way. This separation is somewhat artificial and myopic, since inference is often a sub-process
of learning. Thus, models in which exact inference is intractable can often also not be properly
learned. Sometimes one seeks to solve these issues using approximate inference for learning.
This approach has several drawbacks:

• We do not know which approximate inference method will work for our task at hand.
Trying out and cross-tuning several approximate inference methods is tedious work.

• Using an approximate inference method in a correct learning algorithm can yield unpre-
dictable results. Correctness of learning is sometimes not guaranteed, when approximate
inference is used.

• Approximate inference, such as sampling methods, often trade off computation time and
accuracy. Finding a good trade-off for a problem at hand is usually difficult. This is also
a problem in the actual inference stage.

Thus, if we want to avoid these difficulties about approximate inference, we are forced to use
models in which exact inference is tractable. However, this approach will generally restrict us to
sparsely connected and usually overly simplistic PGMs. In this context, PGMs appear somewhat
bulky and counterintuitive from a modeler’s perspective, since a model might be easily rendered
intractable, just by adding a single, seemingly harmless edge.

This suggest that the conditional independence assertions in BNs and MNs are too coarse in
practice, meaning that in many cases we do not want to consider conditional independencies
like

Y ⊥⊥ Y′ |X (4.1)

but also context-specific independencies (CSI) like

Y ⊥⊥ Y′ |X = x, (4.2)

– 59 –

4 Sum-Product Networks

i.e. when independence between Y and Y′ hold just for certain values of X, but not for all
values. This approach is not new and several learning algorithms exploiting CSI were proposed,
see for instance [10, 19]. However, CSI can not be captured in the overall DAG, but has to be
encoded in the CPDs. For instance, this can done using default tables or decision trees, leading
to a intransparent, nested model. These models also need specialized inference algorithms.

A simple and often used technique to design models which exhibit little or no conditional in-
dependencies among the modeled RVs X, is to use mixtures of distributions. Mixtures of distri-
butions can be interpreted as augmenting the set of RVs by a latent RV Z which is marginalized.
This principle can be extended to multiple, hierarchically organized latent RVs, see for instance
the work in [34–37,56,57,102,103].

SPNs, are a type of probabilistic model which addresses these points. In their basic description,
SPNs are simply networks of sum and product operations with certain numeric inputs. Thus,
they can be interpreted as a potentially deep neural network with two types of neurons: sums
and products. SPNs in the form as discussed in this thesis admit following features:

• SPNs represent probability distributions over RVs X.

• Many inference scenarios are stated as conceptional simple and easily implementable net-
work evaluations.

• The computational cost of these inference scenarios scales linearly with the network size.

• SPNs can be interpreted as potentially deep and hierarchical structured latent RV model.

Although SPNs have been discussed in literature for some while, some aspects are not yet well
understood. The main goal of this thesis is to revisit the theoretic foundations and to gain a
deeper understanding about SPNs. In Section 4.2 we review an important tool related to SPNs:
the network polynomial. We introduce SPNs over finite-state RVs in Section 4.3 and generalize
them to discrete RVs with infinitely many states and to continuous RVs in Section 4.4. Before
we start, it will be helpful to introduce some notation about representing evidence.

4.1 Representing Evidence

For a given set of RVs X, the elements of x ∈ val(X) can be interpreted as complete evidence,
assigning each RV in X a value. Given a distribution p over X, a typical task is to evaluate the
distribution for this evidence, i.e. compute p(x).

Now assume that for a subset Y ⊂ X we have complete evidence y available. For evaluating
the probability of this evidence, we need to marginalize Z = X \ Y. This can be interpreted
that we have partial evidence for each Z ∈ Z, namely that

Z(ω) ∈ val(Z) (4.3)

This is of course an extreme case of “evidence”, stating that Z assumes a value in val(Z), i.e. that
we have no evidence about Z at all. However, this can be generalized to partial evidence that

Z(ω) ∈ Z, where Z ⊆ val(Z). (4.4)

To avoid problems with non-measurable sets we require Z ∈ AZ := B(val(Z)), i.e. the Borel
sets over val(Z), cf. Section 2.1. Recall that for countable val(Z), we have AZ = 2val(Z). We
use calligraphic letters to denote partial evidence, i.e. X ,Y,Z is partial evidence for X,Y, Z,
respectively. To represent partial evidence about sets of RVs X = {X1, . . . , XN}, we use the

– 60 –

4.2 Network Polynomials

product sets

HX :=

{
N

ą

n=1

Xn | Xn ∈ AXn

}
. (4.5)

Elements of HX,HY,HZ are denoted as X , Y , Z, respectively. When Y ⊆ X, Y ∈ X and
X ∈ HX, we define X [Y] := {x[Y] | x ∈ X} and X [Y] = {x[Y] | x ∈ X}.

Given a distribution p over X = {X1, . . . , XN}, a typical task is to compute the probability
of partial evidence X , i.e. compute

P (X) =

∫
X [X1]

. . .

∫
X [XN]

p(x1, . . . , xN) dx1 . . . dxN =:

∫
X
p(x) dx, (4.6)

where the vector-style integral on the right-hand side of (4.6) is a shorthand. For discrete RVs,
these integrals are replaced by sums. When working with both discrete and continuous RVs, we
will always use integrals as in (4.6) for notational simplicity, without explicitly mentioning that
they have to be replaced by sums for discrete RVs.

The most general representation of evidence used in this thesis is that X is split into disjoint
Y,Y′, where for Y′ we have complete evidence y′ and for Y we have partial evidence Y . This
covers several types of evidence and inference scenarios:

• Y = ∅: Evaluate complete evidence p(x) = p(y′).

• Y′ = ∅: Evaluate partial evidence P (X) =
∫
X p(x) dx =

∫
Y p(y) dy.

• Y 6= ∅, Y′ 6= ∅: Evaluate evidence
∫
Y p(y,y

′) dy = p(y′ |Y)P (Y ∈ Y).

These types of evidence and inference scenarios also cover cases when Y ∪Y′ ⊂ X, i.e. when
evidence does not include all RVs in X and we marginalize X \ Y ∪ Y′. As already pointed
out in (4.3), this is just a special case of partial evidence and we simply add Z = X \ (Y ∪Y′)
to Y with partial evidence Y [Z] = val(Z). Note that for discrete RVs it suffices to consider
partial evidence only, since when all X [X] = {x} are singletons, then P (X) = p(x), where x
is composed of the singletons. When working with continuous RVs, we need to consider both
complete and partial evidence: complete evidence corresponds to evaluating a PDF, while partial
evidence corresponds to integration.

4.2 Network Polynomials

In this section we review the notion of network polynomials, a description of distributions over
finite-state RVs. Network polynomials were introduced in [27] for BNs, and generalized to
arbitrary unnormalized distributions in [79]. Marginalization using network polynomials can
be compactly expressed by setting indicator variables corresponding to the RVs states. The
derivatives of the network polynomial deliver certain probabilistic interpretations, which is called
the differential approach to inference.

4.2.1 Representation of Distributions as Network Polynomials

Let X be a set of finite-state RVs. For each RV X and each state x ∈ val(X), we introduce an
indicator variable (IV) λX=x ∈ R. The vector containing all IVs is denoted as λ. Darwiche [27]
defines the network polynomial as a function corresponding to a BN B over X. Recall that B

– 61 –

4 Sum-Product Networks

defines the probability distribution (cf. Example 3.3)

pB(x) =
∏
X∈X

θXx[X],x[pa(X)]. (4.7)

The network polynomial of a BN is a multi-linear function of λ defined as follows.

Definition 4.1 (Network polynomial of a Bayesian network). Let B be a BN over finite-state
RVs X. The network polynomial fB of B is defined as

fB(λ) =
∑

x∈val(X)

∏
X∈X

λX=x[X] θ
X
x[X],x[pa(X)]. (4.8)

As shown in [27], the network polynomial represents the BN distribution in the following
sense. Let us restrict λX=x to values {0, 1} and define them as function of x ∈ val(X):

λX=x(x) =

{
1 if x[X] = x

0 otherwise.
(4.9)

Let λ(x) be the corresponding vector-valued function, containing all λX=x(x). This λ(x) rep-
resents a 1-of-K coding of x. Clearly, the image of function λ(x) is not the set of all binary
vectors, i.e. there are “invalid” binary vectors not representing some x. When we input λ(x) to
the network polynomial, all but one of the exponentially many terms in the sum in (4.8) vanish
and we have

fB(λ(x)) =
∏
X∈X

θXx[X],x[pa(X)] = pB(x), (4.10)

At a first view, the representation of the BN distribution as network polynomial seems cumber-
some and not very useful. However, the network polynomial allows us to perform marginalization
over partial evidence in a compact way. To this end, let us generalize function (4.9) to the domain
HX. For any X ∈ HX, let

λX=x(X) =

{
1 if x ∈ X [X]

0 otherwise.
(4.11)

Let λ(X) be the corresponding vector-valued function, containing all λX=x(X). In contrast to
λ(x), the function λ(X) maps to all binary vectors and is invertible. That is, λ(X) uniquely
encodes the elements of HX. When we input λ(X) to the network polynomial, it evaluates to

fB(λ(X)) =
∑
x∈X

∏
X∈X

θXx[X],x[pa(X)] =
∑
x∈X

pB(x) = PB (X) . (4.12)

The network polynomial marginalizes over partial evidence, by simply setting the corresponding
IVs to 1. In other words, when plugging in (4.11), the network polynomial evaluates the prob-
ability measure on HX. We use the shorthands fB(x) and fB(X) for fB(λ(x)) and fB(λ(X)),
respectively. The notion of the network polynomial can be easily generalized to arbitrary un-
normalized distributions, as done in [79]:

Definition 4.2 (Network Polynomial of Unnormalized Distributions). Let Φ be an unnormalized
probability distribution over discrete RVs X, i.e. ∀x ∈ val(X) : Φ(x) ≥ 0, ∃x ∈ val(X) : Φ(x) >
0. The network polynomial fΦ of Φ is defined as

fΦ(λ) =
∑

x∈val(X)

Φ(x)
∏
X∈X

λX=x[X]. (4.13)

– 62 –

4.2 Network Polynomials

The network polynomial according to Definition 4.2 subsumes the one according to Defini-
tion 4.1, by setting Φ ≡ pB. Similar as for fB, we have for x ∈ val(X)

fΦ(λ(x)) = Φ(x), (4.14)

and for X ∈ HX

fΦ(λ(X)) =
∑
x∈X

Φ(x). (4.15)

Note that when λ ≡ 1, fΦ(λ) returns the normalization constant of Φ. We define fΦ(x) :=
fΦ(λ(x)) and fΦ(X) := fΦ(λ(X)).

Besides compactly describing marginalization, the network polynomial can be used in the
so-called differential approach to inference, described in the next section.

4.2.2 Derivatives of the Network Polynomial

First let us consider the derivatives with respect to some IV. The network polynomial (4.13) is
an exponential sum over terms

tx(λ) = Φ(x)
∏
X∈X

λX=x[X]. (4.16)

The derivative of tx(λ) is

∂tx(λ)

∂λX=x
=

{
Φ(x)

∏
X′∈X\{X} λX′=x[X′] if x[X] = x

0 otherwise.
(4.17)

The derivative of the network polynomial is the sum over the derivatives of the form (4.17),
which equals the evaluation of fΦ at a modified IV vector λ′:

∂fΦ

∂λX=x
(λ) = fΦ(λ′), where (4.18)

λ′Y=y =

λY=y if Y 6= X

1 if Y = X, y = x

0 if Y = X, y 6= x

(4.19)

For X ∈ HX, the derivative of the network polynomial equals

∂fΦ

∂λX=x
(λ(X)) =

∑
x′∈X [X\{X}]

Φ(x,x′). (4.20)

i.e. the derivatives with respect to the IVs yield evaluations for modified evidence, replacing
X [X] by {x}. In particular, for any x ∈ val(X), we have

∂fΦ

∂λX=x
(λ(x)) = Φ(x,x[X \ {X}]), (4.21)

Using these derivatives, we obtain the conditional probabilities of the form

Φ(x |X [X \ {X}]) ∝ ∂fΦ

∂λX=x
(λ(X)). (4.22)

– 63 –

4 Sum-Product Networks

These conditional distributions, to which we refer as marginal posteriors, are for instance useful
for approximate MAP solvers [68, 69]. Higher order derivatives with respect to the IVs have
similar semantics, e.g. for the second order derivative we have

∂2fΦ

∂λX=x∂λY=y
(λ(X)) =

{∑
x′∈X [X\{X,Y }] Φ (x, y,x′) if X 6= Y

0 otherwise.
(4.23)

For network polynomials of BNs (Definition 4.1), the derivatives with respect to the network
parameters also have a probabilistic interpretation [27]. Derivatives with respect to the network
parameters can further be used for learning BN parameters, using gradient techniques. Fur-
thermore, they are important for sensitivity analysis [12, 13] and for learning BNs with certain
parameter constraints, such as reduced numeric precision [97].

4.2.3 Arithmetic Circuits

A direct implementation of network polynomials in the form (4.13) is not practical, due to its
exponentially many summation terms, and one strives for a more compact representation. One
approach uses arithmetic circuits [26, 27].

Definition 4.3 (Arithmetic circuit). An arithmetic circuit (AC) is a rooted acyclic directed
graph, whose leaves are numeric inputs and whose internal nodes are arithmetic operations (+,
−, ×, ÷) of its children. The output of the AC is the value computed by its root. The size of
the AC is the number of its edges.

The size of the AC reflects the computational cost of evaluation, since each edge corresponds
to exactly one arithmetic operation. While in general ACs can represent arbitrary arithmetic
functions, the focus in [26, 27] lies on representing the network polynomial fB of some BN as
a compact AC. The leaves of the AC are used to represent parameters and IVs of the network
polynomial, and the arithmetic operations are restricted to additions and multiplications. It
is pointed out that the junction tree algorithm can be interpreted as one particular choice for
compiling a BN to an AC. This work further proposes to represent BNs via logical theories which
in turn can be compiled to ACs. The approach in [64] goes one step further and directly learns
an AC optimizing a scoring function, trading off the training likelihood, number of parameters,
and inference complexity in terms of AC size. Basically, this algorithm learns a BN with context-
specific independencies [19], where CPTs are organized as decision trees [19]. In [63], an AC
is learned by optimizing a trade-off of likelihood and number of parameters, where the AC
represents a Markov network over discrete variables. This method starts with an AC consisting of
a product over all single variable features and iteratively introduces new features by conditioning
an existing feature on all values of a “splitting” variable. For both methods [63, 64] the log-
likelihood is concave in the model parameters, i.e. a global maximum likelihood solution is
obtained.

Since these ACs represent a network polynomial, they can be used for efficient evaluation of
any X ∈ HX using a single upwards-pass in the network. Therefore, inference cost is directly
related with the size of the AC. Furthermore, following the differential approach, one can obtain
the first-order derivatives of IVs and network parameters. Differentiating a given AC can be done
by back-propagation, where a single back-propagation pass delivers simultaneously all derivatives
with respect to IVs and parameter nodes [27].

SPNs, introduced in the next section, are actually a special type of ACs, restricted to weighted
sum and product operations. The weighted sums can actually be implemented by a product
operation and an additional numeric input. Therefore, SPNs are not a “more powerful” com-
putation architecture than ACs – in fact they can be seen as a subset of ACs – however, the
probabilistic interpretation of SPNs are defined in a more direct manner.

– 64 –

4.3 Finite-State Sum-Product Networks

4.3 Finite-State Sum-Product Networks

We start with the definition of SPNs as presented in [79], which represent probability distribu-
tions over finite-state RVs. We generalize SPNs to RVs with countably infinitely many states
and continuous RVs in Section 4.4.

Definition 4.4 (Finite-State Sum-Product Network). A sum-product network S = (G,w)
over finite-state RVs X = {X1, . . . , XN} is a rooted acyclic directed graph G = (V,E) and a set
of nonnegative parameters w. The nodes V ∈ V are functions mapping λ to R. There are three
types of nodes:

1. Indicators: λX=x

2. Sums:

S(λ) =
∑

C∈ch(S)

wS,C C(λ), (4.24)

where the weight wS,C ∈ w is associated with edge (S→ C) ∈ E.

3. Products:

P(λ) =
∏

C∈ch(P)

C(λ). (4.25)

All leaves of G are IVs and all internal nodes are either sums or products. w is the set of all
weights associated with sum nodes. The function computed by S is the function computed by the
root and denoted as S(λ).

We denote nodes of SPNs with λ, S, P, N, C, F where we use the following rules to ease
discussion. N denotes a general SPN node without specifying its type, i.e. whether it is an IVs,
a sum or a product. C and F are also general nodes, but are used to highlight their role as
as children and parents of other nodes, respectively. For IVs, sums and products, we use the
symbols λ, S and P, respectively. The set of all sum nodes and product nodes of an SPN S are
denoted as S(S) and P(S), respectively. Similarly, λ(S), λX(S) denote the set of all IVs and
the set of all IVs related to X, respectively.

The functions which can be computed or represented by SPNs are the polynomials in λ, with
nonnegative coefficients and without constant term, i.e. any SPN S computes a polynomial of
the form ∑

i

αi
∏

λ∈λ(S)

λkλ,i , where

∀i :
∑

λ∈λ(S)

kλ,i ≥ 1, kλ,i ∈ N0, αi ≥ 0.
(4.26)

Conversely, for any function of this form we can easily find an SPN computing it. In particular,
any network polynomial (4.13) has this form, i.e. any network polynomial can be represented by
some SPN. For a trivial representation of a network polynomial we can use a single sum with
|val(X)| products (monomials)

∏
X∈X λX=x[X] as children and having Φ(x) as weights. This

representation is a shallow SPN. A point of major interest is to represent network polynomials
more compactly, using deep architectures. Similar as for network polynomials, we can plug in

– 65 –

4 Sum-Product Networks

the functions λ(x) and λ(X) from (4.9) and (4.11) and define

N(x) := N(λ(x)) (4.27)

N(X) := N(λ(X) (4.28)

S(x) := S(λ(x)) (4.29)

S(X) := S(λ(X)). (4.30)

The number of addition operations of an SPN S is AS :=
∑

S∈S(S) |ch(S)| = |w| and the
number of multiplication operations is MS :=

∑
P∈P(S)(|ch(P)| − 1) + |w|. AS and MS are the

worst-case number of required arithmetic operations to evaluate S(λ); when some wS,C or some
λX=x equal zero, evaluation of S(λ) can be cheaper.

We introduce the notion of the scope of SPN nodes.

Definition 4.5 (Scope of SPN Node). Let S be an SPN over RVs X and N be some node in S.
The scope of N, denoted as sc(N), is defined as

sc(N) =

{
{X} if N is some IV λX=x⋃

C∈ch(N) sc(C) otherwise
(4.31)

To avoid pathological cases, we assume that for each N there exists x ∈ val(X) such that
N(x) > 0. It is easily shown that this is equivalent to the condition that each sum node has at
least one strictly positive weight. We now define the distribution of an SPN.

Definition 4.6 (Distribution of an SPN). Let S be an SPN over discrete RVs X. The distri-
bution represented by S is defined as

pS(x) =
S(x)

ZS
, (4.32)

where

ZS =
∑

x∈val(X)

S(x), (4.33)

is the normalization constant of the SPN.

From Definition 4.6 we see that, in contrast to prior work, the distribution of an SPN is
defined in a direct manner, by specifying a PMF.

We further define sub-SPNs.

Definition 4.7 (Sub-SPN). Let S = (G,w) be an SPN and N be some node in S. The sub-SPN
rooted at N, denoted as SN = (GN,wN), is the graph GN induced by desc(N), together with the
set of nonnegative weights wN associated with outgoing sum edges in GN.

Clearly, every SN is an SPN over sc(N), so we define the distributions

pN := pSN , (4.34)

i.e. every node in an SPN represents a distribution over sc(N).
At a first glance, SPNs and the modeled distribution do not seem very useful. Definition 4.6

can be made for arbitrary models with nonnegative output, e.g. for multi-layer perceptrons
with a nonnegative activation function for the output neuron. Besides defining a distribution, a
probabilistic model should also allow to perform efficient inference tasks. To this end, we require
valid SPNs, which enables efficient marginalization of the SPN distribution.

– 66 –

4.3 Finite-State Sum-Product Networks

4.3.1 Valid Sum-Product Networks

Validity of SPNs [79] is defined as follows.

Definition 4.8 (Validity of SPNs). Let S be an SPN over X. S is valid if for each X ∈ HX∑
x∈X

pS(x) =
S(X)

ZS
(4.35)

A valid SPN performs marginalization in the same manner as a network polynomial (4.13).
However, as we will see, a valid SPN does not necessarily compute a network polynomial. In
[79], two conditions are given for guaranteeing validity of an SPN, completeness and consistency,
which are defined as follows.

Definition 4.9 (Completeness). A sum node S in SPN S is complete if sc(C′) = sc(C′′), ∀C′,C′′ ∈
ch(S). S is complete if every sum node in S is complete.

Definition 4.10 (Consistency). A product node P in SPN S is consistent if for every two of its
children C′,C′′ ∈ ch(P),C′ 6= C′′, it holds that λX=x ∈ desc(C′)⇒ ∀x′ 6= x : λX=x′ /∈ desc(C′′).
S is consistent if every product node in S is consistent.

When completeness holds for a sum node, it has the same scope as each of its children. An
alternative condition to consistency is decomposability [79], which implies consistency.

Definition 4.11 (Decomposability). A product node P in SPN S is decomposable if for every
two of its children C′,C′′ ∈ ch(P),C′ 6= C′′ it holds that sc(C′) ∩ sc(C′′) = ∅. S is decomposable
if every product node in S is decomposable.

Decomposability requires that the scopes of the product’s children do not overlap, while the
notion of consistency is somewhat harder to grasp. The following definition and proposition
provide an equivalent condition to consistency.

Definition 4.12 (Shared RVs). Let P be a consistent product node. The shared RVs of P are
defined as

Y =
⋃

C′,C′′∈ch(P)
C′ 6=C′′

sc(C′) ∩ sc(C′′), (4.36)

i.e. the subset of sc(P) which shared by at least two children.

Proposition 4.1. Let P be a product node and Y be its shared RVs. P is consistent if and only
if for each Y ∈ Y there exists a unique y∗ ∈ val(Y) with λY=y∗ ∈ desc(P).

Definition 4.13 (Consistent State of Shared RVs). Let P be a non-decomposable product node in
some complete and consistent SPN, and let Y be the shared RVs of P. The unique y∗ ∈ val(Y)
with λY=y∗[Y] ∈ desc(P), ∀Y ∈ Y, is called the consistent state of shared RVs Y.

The following theorem shows that the distribution represented by a consistent product is
deterministic with respect to the shared RVs. Furthermore, the distribution of any descendant
of this product is deterministic with respect to the RVs which overlap with Y. To prove the
theorem, we need two lemmas.

Lemma 4.1. Let N be a node in some complete and consistent SPN, X ∈ sc(N) and x ∈ val(X).
When λX=x /∈ desc(N), then ∀x ∈ val(X) with x[X] = x we have N(x) = 0.

Lemma 4.2. Let p be a PMF over X and Y ⊆ X, Z = X\Y such that there exists a y∗ ∈ val(Y)
with p(z,y) = 0 when y 6= y∗. Then we have p(z,y) = 1(y = y∗) p(z).

– 67 –

4 Sum-Product Networks

Theorem 4.1. Let S be a complete and consistent SPN and P be a non-decomposable product
in S, Y be the shared RVs of P and y∗ the consistent state of Y. For N ∈ desc(P) define
YN := Y ∩ sc(N) and XN := sc(N) \YN. Then for all N ∈ desc(P) it holds

pN = 1(YN = y∗[YN]) pN(XN). (4.37)

Proof. For any N ∈ desc(P) with YN = ∅, (4.37) clearly holds, so assume YN 6= ∅. From
Proposition 4.1 we know that ∀Y ∈ Y : λY=y∗[Y] ∈ desc(P) and ∀y 6= y∗[Y] : λY=y /∈ desc(P).

Consequently, we have for all Y ∈ YN that λY=y∗[Y] ∈ desc(N) and ∀y 6= y∗[Y] : λY=y /∈
desc(N). With Lemma 4.1 it follows that for all x ∈ val(sc(N)), where x[YN] 6= y∗[YN], we
have N(x) = 0 and consequently pN(x) = 0. (4.37) follows with Lemma 4.2.

Corollary 4.1. Let S be a complete and consistent SPN, P be a non-decomposable product in S,
Y be the shared RVs of P and y∗ the consistent state of Y. For C ∈ ch(P), let XC := sc(C)\Y,
i.e. the part of sc(C) which is exclusive to C. Then it holds that

pP = 1(Y = y∗)
∏

C∈ch(P)

C(XC). (4.38)

A decomposable product has the intuitive interpretation of a distribution assuming indepen-
dence among the scopes of its children. Corollary 4.1 shows that a consistent product assumes
independence among the shared RVs Y and the RVs XC which are exclusive to P’s children.
Independence of Y stems from the fact that Y is deterministically set to the consistent state
y∗. Theorem 4.1 shows more generally that all descendants of P, which have some RVs from Y
in their scope, are deterministically with respect to y∗.

4.3.2 Differential Approach in Sum-Product Networks

Valid SPNs perform marginalization similar as network polynomials, which is essential for
tractable inference. However, a simple example shows that complete and consistent SPNs in
general do not compute network polynomials. The SPN depicted in Figure 4.13 is complete and
consistent, but not decomposable, since P1 is not decomposable. It computes the function

S(λ) = wS1,P1 wS2,P2 λ2
X=x1

λY=y1

+wS1,P1 wS2,P3 λ2
X=x1

λY=y2

+wS1,P3 λX=x1 λY=y2

+wS1,P4 λX=x2 λY=y1 ,

(4.39)

which is clearly no network polynomial since λX=x1 is raised to the power of 2 in two terms.
This generally happens in non-decomposable SPNs and as a consequence, Darwiche’s differential
approach is not applicable to consistent, non-decomposable SPNs. For example, consider the
derivative

∂S
∂λX=x1

(λ) = 2wS1,P1 wS2,P2 λX=x1 λY=y1 + 2wS1,P1 wS2,P3 λX=x1 λY=y2 + wS1,P3 λY=y2 , (4.40)

which does not have the probabilistic interpretation of evaluating modified evidence, such as the
derivatives of a network polynomial, cf. (4.20). However, complete and decomposable SPNs do
compute network polynomials as stated in the following proposition.

Proposition 4.2. A complete and decomposable SPN computes the network polynomial of some
unnormalized distribution.

3 We use nodes with symbol ◦ to denote IVs.

– 68 –

4.3 Finite-State Sum-Product Networks

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY=y1

λY=y2

S1

P1

S2

P2 P3 P4

Figure 4.1: Example of a complete and consistent SPN over two binary RVs {X,Y }. The SPN is not
decomposable, since P1 has children S2 and λX=x1 , and λX=x1 ∈ desc(S2).

Therefore, since complete and decomposable SPNs compute network polynomials, they are
amenable for the differential approach, discussed in Section 4.2.2. As in ACs, we can use back-
propagation, i.e. to find all derivatives with respect to the IVs with a single back-wards pass.

When N is the root, we clearly have

∂S
∂N

(λ) = 1, (4.41)

since S ≡ N per definition.

For non-roots N the derivative is given as

∂S
∂N

(λ) =
∑

F∈pa(N)

∂S
∂F

∂F

∂N
(λ). (4.42)

The factors ∂S
∂F are recursively given by back-propagation The local derivatives ∂F

∂N are given as
follows. When F is a sum node then

F(λ) =
∑

C∈ch(F)

wF,C C(λ) (4.43)

and therefore

∂F

∂N
(λ) = wF,N. (4.44)

– 69 –

4 Sum-Product Networks

When F is a product node then

F(λ) =
∏

C∈ch(F)

C(λ) (4.45)

and therefore

∂F

∂N
(λ) =

∏
C∈ch(F)\{N}

C(λ). (4.46)

Using a trick described in [27], some computational effort can be saved in the evaluation of
(4.46). In a practical implementation of SPNs, for fixed input λ, we evaluate the nodes from
bottom to top, storing the values N(λ) for each node N. We denote these stored values as VN.
Now, to compute (4.46) more efficiently, we store for each product node P the product over
non-zero children in VP instead of the product over all children. Additionally, we store the
number of children of a product node which evaluate to 0, denoted as OP. If OP > 0, we know
that P(λ) = 0, and otherwise P(λ) = VP. The derivative (4.46) is given as

∂P

∂N
(λ) =

VP
VN

if OP = 0

VP if OP = 1 ∧ VN = 0

0 otherwise.

(4.47)

This trick avoids to re-compute many similar products (4.46) for the same product node during
backpropagation.

The derivative with respect to some weight wS,C is given as

∂S
∂wS,C

(λ) =
∂S
∂S

C(λ). (4.48)

These derivatives can be used for learning SPNs using gradient ascend.

For complete and decomposable SPNs, the derivatives with respect to the IVs represent eval-
uations of modified evidence and can be used to infer the marginal posteriors of all RVs, cf. sec-
tion 4.2.2. This is an advantage to consistency, which is in general not amenable to the differ-
ential approach. On the other hand, consistency and completeness still guarantee validity and
consistency is less restricting than decomposability, i.e. for a fixed number of nodes there are
more consistent SPNs than decomposable SPNs. In Section 4.3.4, we compare the notions of
consistency and decomposability in more detail and investigate “how much we loose” in model-
ing power, when using decomposable SPNs. In the following section, we investigate normalized
SPNs, i.e. SPNs whose normalization constant equals 1.

4.3.3 Normalized Sum-Product Networks

For valid SPNs, the normalization constant ZS =
∑

x S(x) can be determined efficiently by a
single upwards pass, setting λ ≡ 1. We call SPNs with ZS = 1 normalized SPNs, for which we
have pS(x) = S(x). A trivial way to normalize SPNs, is to introduce an additional sum node
on top of the root node, whose single weight performs the normalization.

We call SPNs locally normalized, when for each sum node S we have
∑

C∈ch(S)wS,C = 1. As
pointed out in [79], complete, consistent and locally normalized SPNs are readily normalized.
This is easy to see, since

• IVs are normalized, when interpreting them as distributions defined as in (4.9).

• Complete sum nodes with normalized weights are normalized when their children are

– 70 –

4.3 Finite-State Sum-Product Networks

normalized, since these sum nodes represent mixture distributions.

• Consistent product nodes are normalized when their children are normalized, following
from Corollary 4.1.

Clearly, any sub-SPN of a locally normalized SPNs is also locally normalized. Thus, for a
complete, consistent and locally normalized SPN S and any N in S, we have

pN ≡ SN (4.49)

The question rises, if locally normalized SPNs are a weaker class of models than non-normalized
SPNs, i.e. are there distributions which can be represented by an SPN with structure G, but not
by a locally normalized SPN having the same structure? The answer to this question is no, as
stated in the following theorem.

Algorithm 1 Normalize SPN

1: w ← w′

2: Find some topological ordering N1, . . . ,NK of nodes in G
3: For all product nodes P initialize αP ← 1
4: for k = 1 : K do
5: if Nk is an IV then
6: skip
7: end if
8: if Nk is a sum node then
9: α←

∑
C∈ch(Nk)wNk,C

10: ∀C ∈ ch(Nk) : wNk,C ←
wNk,C

α
11: end if
12: if Nk is a product node then
13: α← αNk

14: αNk ← 1
15: end if
16: for F ∈ pa(Nk) do
17: if F is a sum node then
18: wF,Nk ← αwF,Nk

19: end if
20: if F is a product node then
21: αF ← ααF

22: end if
23: end for
24: end for

Theorem 4.2. For each complete and consistent SPN S ′ = (G′,w′), there exists a locally
normalized SPN S = (G,w) with G′ = G, such that we have ∀N ∈ G : pS′N = SN(x).

Proof. Algorithm 1 constructs locally normalized parameters w without changing the distribu-
tion of any node.4 For deriving the algorithm, we introduce a correction factor αP for each
product node P, initialized to αP = 1, and redefine the product node P as P(λ) := αPP(λ). At
the end of the algorithm, all αP will be 1 again.

Let N′1, . . . ,N
′
K be a (reversed) topologically ordered list of all nodes in S ′, i.e. k > l⇒ N′k /∈

desc(N′l). Let N1, . . . ,NK be the corresponding list of nodes in S, which will be the locally
normalized version after the algorithm has terminated. We show that we have the following
loop invariant in the main loop. Given that at the kth entrance of the main loop

4 This algorithm is similar in spirit as the renormalization algorithm for discriminative BNs by Wettig et al. [101].

– 71 –

4 Sum-Product Networks

1. pN′l = SNl , for 1 ≤ l < k

2. SN′m = SNm , for k ≤ m ≤ K

the same will hold for k + 1 at the end of the loop.

The first point holds since we normalize Nk during the main loop: All nodes prior in the
topological order, and therefore all children of Nk are normalized by assumption. If Nk is a sum
node, then it represents a mixture distribution after step 10. If Nk is a product node, then it
will be normalized after step 14, since we simply set αNk ← 1.

The second point holds since we only modify Nk, which can change any Nm, m > k, only via
pa(Nk). The change of Nk is compensated for all its parents either in step 18 or 21, depending
on whether the parent is a sum or product node.

Points 1 and 2 clearly also hold at the first entrance (k = 1), since there are no nodes Nk
with k < 1 and all higher nodes compute the unnormalized distributions, since w = w′ and all
αP = 1. Therefore, by induction, all nodes will compute the correctly normalized distribution
after the Kth iteration.

Algorithm 1 provides a way to find locally normalized parameters for any complete and con-
sistent SPN without changing the distribution of any sub-SPN. Thus, from a representational
point of view, we will assume from now on, without loss of generality, that all SPNs are locally
normalized. Therefore, we also drop the distinction of pN and SN, and simply use the latter, in
particular pS ≡ S. Note that it might be an advantage to consider the parameter space of non-
normalized parameters during learning. However, after learning is completed, or as a sub-routine
of learning algorithms, we can use Algorithm 1 to find a set of locally normalized parameters.
Locally normalized SPNs can be naturally interpreted as latent variable models, where sum
weights correspond to certain conditional probabilities. This is discussed in Chapter 5.

4.3.4 Consistency Versus Decomposability

As already discussed, consistent but non-decomposable SPNs are valid, but are not amenable to
the differential approach, i.e. for evaluating modified evidence for all X simultaneously, cf. (4.21).
When these evaluations are not required, we might want to use the more general condition of
consistency instead of decomposability, since we could possibly represent distributions more
compactly, i.e. using smaller networks. An interesting question is, if there is a significant ad-
vantage of consistency over decomposability. The following theorem shows that this saving in
network size is relatively modest.

Theorem 4.3. Every complete and consistent SPN S = ((V,E),w) over X can be transformed
into a complete and decomposable SPN S ′ = ((V′,E′),w′) over X such that S ≡ S ′, and where
|V′| ∈ O(|V|2), AS′ = AS and MS′ ∈ O(MS |X|).

Proof. Without loss of generality we assume that S not contain products with just a single child
– if it does, we repeatedly connect the parents of such product with its single child and remove
the product, yielding a smaller SPN computing the same function. Algorithm 2 transforms S
into a complete and decomposable SPN, representing the same distribution. First it finds a
topologically ordered list N1, . . . ,NK of all sum and product nodes, i.e. k > l⇒ Nk /∈ desc(Nl).
Then, in steps 2–7, it considers all sum nodes S and all children C ∈ ch(S); if the child C has
further parents except S, a newly generated product node PC

S is interconnected between S and
C, i.e. PC

S is connected as child of S with weight wS,C, C is disconnected from S and connected
as child of PC

S . To PC
S we refer as link between S and C. Note that the link has only S as parent,

i.e. the link represents a private copy of child C for sum node S. Clearly, after step 7, the SPN
still computes the same function.

– 72 –

4.3 Finite-State Sum-Product Networks

Algorithm 2 Transform to decomposable SPN

1: Let N = N1, . . . ,NK be a topologically ordered list of all sums and products

Introduce links:
2: for all sum nodes S and all C ∈ ch(S) do
3: if pa(C) > 1 then
4: Generate a new product node PC

S

5: Interconnect PC
S between S and C

6: end if
7: end for

Render products decomposable:
8: while exist non-decomposable products in N do
9: P← Nmin{k′ | Nk′ is a non-decomposable product}

10: Y ← shared RVs of P
11: y∗ ← consistent state of Y
12: if sc(P) = Y then
13: Replace P by

∏
Y ∈Y λY=y∗[Y]

14: else
15: Nd ← sums and products in desc(P)
16: No ← {N ∈ Nd : sc(N) 6⊆ Y, sc(N) ∩Y 6= ∅}
17: for N ∈ No \ {P} do
18: F← pa(N) \Nd

19: ∀Y ∈ Y ∩ sc(N) : connect λY=y∗[Y] as child of all F
20: end for
21: for Po ∈ No do
22: Disconnect C ∈ ch(Po) if sc(C) ⊆ Y
23: end for
24: ∀Y ∈ Y : connect λY=y∗[Y] as child of P
25: end if
26: end while

27: Delete all unreachable sums and products

In each iteration of the main loop 8–26, the algorithm finds the lowest non-decomposable
product node Nk = P with respect to the topological ordering. We distinguish two cases:
sc(P) = Y and sc(P) 6= Y ⇔ Y ⊂ sc(P).

In the first case, we know from Corollary 4.1 that P(y) = 1(y = y∗), which is equivalent to the
decomposable product

∏
Y ∈Y λY=y∗[Y] replacing P, i.e. this new product is connected as child

of all parents of P, and P itself is deleted. Deletion of P might render some nodes unreachable.
However, these unreachable nodes do not “influence” the root node and will be safely deleted
in step 27.

In the second case, when Y ⊂ sc(P), the algorithm first finds the set Nd of all sum and
product descendants of P. It also finds the subset No of Nd, containing all nodes whose scope
overlaps with Y, but is no subset of Y. Clearly, P is contained in No. The basic strategy is to
“cut” Y from the scope of P, i.e. that Y is marginalized, rendering P decomposable. Then, by
re-connecting all indicators λY=y∗[Y] to P in step 24, P computes the same distribution as before
due to Corollary 4.1, but is rendered decomposable now. Steps 21–23 cut Y from all nodes in
No, in particular from P, but leave all sub-SPNs rooted at any node in Nd \No unchanged.

To see this, note that Nd \No contains two types of nodes:

– 73 –

4 Sum-Product Networks

• nodes Ns whose scope is a subset of Y, i.e. Ns = {N ∈ Nd | sc(N) ⊆ Y}, and

• nodes Nn whose scope does not contain any Y, i.e. Nn = {N ∈ Nd | sc(N) ∩Y = ∅}.

Clearly, sub-SPNs rooted at any node in Ns or Nn do not contain any No. Steps 21–23 only delete
some outgoing edges of some Po ∈ No; thus all sub-SPNs rooted at nodes in Ns or Nn remain
unchanged, and do not change the output of the overall SPN via nodes outside of Nd. Now
consider a topologically ordered list No1, . . . ,N

o
L of the nodes in No, i.e. k > l⇒ Nok /∈ desc(Nol).

No1 must be a product. If it was a sum, all its children would have the same scope as No1, due to
completeness. Therefore, all its children would be contained in No, contradicting that No1 is the
first node in the topological order. Thus No1 is a product. No1 can have three types of children:
nodes in Ns, nodes in Nn and IVs. Nodes in Ns and IVs corresponding to some Y ∈ Y are
disconnected from product No1 in steps 21–23. These children make up the deterministic term
1(·) in Theorem 4.1. By disconnecting them, sc(No1)∩Y is “cut” from No1, which now computes
the marginal distribution over sc(No1) \Y. This is the induction basis. Now assume that after
steps 21–23 all No1, . . . ,N

o
l , l < L, compute the marginal, Y being marginalized. Then also Nol+1

computes such a marginal. If Nol+1 is a sum and thus a mixture distribution, this clearly holds,
since mixture sums and marginalization sums can be swapped, i.e. “the mixture of marginals is
the marginal of the mixture”. If Nol+1 is a product, it can have four types of children: nodes in No,
nodes in Ns, nodes in Nn and IVs. By induction hypothesis Y is already cut from all children
in No. Nodes in Ns and IVs corresponding to some Y ∈ Y are disconnected from product
Nol+1. These nodes make up the deterministic term 1(·) in Theorem 4.1. A subset of Y might
already have been removed, since Y has been removed from all children in No. By disconnecting
children in Ns and IVs corresponding to Y, this deterministic term is fully removed, and Nol+1

now computes the marginal distribution over sc(Nol+1)\Y. Thus, by induction, after steps 21–23
all nodes in No compute the marginal distribution, Y being marginalized.

Although we achieve our primary goal to render P decomposable, steps 21–23 also cut Y from
any other node in N ∈ No, which would modify the SPN output via N’s parents outside of Nd,
i.e. via F = pa(N) \ Nd. Note that all nodes in F must be products. To see this, assume that
F contains a sum S. This would imply that N is a link, which can reached from P only via
its single parent S. This implies S ∈ Nd, a contradiction. By Theorem 4.1, the distribution of
N is deterministic with respect to Y ∩ sc(N). Steps 21–23 cut Y from N, which could change
the distribution of the nodes in F. Thus, in step 19 the IVs corresponding to Y ∩ sc(N) are
connected to all F, such that they still “see” the same distribution after steps 21–23. It is easy
to see that if some F ∈ F was decomposable beforehand, it will also be decomposable after step
23, i.e. steps 15–24 do not render other products non-decomposable. Thus, in each iteration, one
non-decomposable product is rendered decomposable, without changing the SPN distribution.

Since the only newly introduced nodes are the links between sum nodes and their children, and
the number of sum-edges is in O(|V|2), we have |V′| ∈ O(|V|2). The number of summations is
the same in S and S ′, i.e. AS′ = AS , since both have the same sum nodes with the same number
of children. Introducing the links in steps 2–7 does not introduce further multiplications, since
the number of multiplications required by link PC

S is ch(PC
S) − 1 = 0 after step 7. FNote that

after step 7, the SPN does not contain more than MS product nodes, since

1. Every product already present in S has at least 2 children and requires at least one
multiplication.

2. We introduce at most as many links as sum-edges and each sum edge requires one multi-
plication for the sum-weights.

The while-loop in Algorithm 2, besides sometimes disconnecting nodes, only connects IVs as
children of product nodes. Since every product is decomposable after Algorithm 2, and therefore
consistent, the while-loop cannot more than one IV per X ∈ X to each product node. Since the

– 74 –

4.3 Finite-State Sum-Product Networks

number of product nodes in S ′ is smaller than MS and at most one IV per X can be connected
as additional child of each product, we have MS′ ∈ O(MS |X|).

A graphical example of Algorithm 2 is given in Figure 4.2 – see caption text for details. We see
that any complete and consistent SPN S can be transformed into a complete and decomposable
SPN S ′ with the same number of addition operations, and whose number of multiplication
operations grows at most linearly with MS |X|. Any distribution which can be encoded by a
consistent SPN using polynomially many arithmetic operations in |X|, can also be polynomially
encoded by a decomposable SPN. Consequently, the class of consistent SPNs is not exponentially
more compact than the class of decomposable SPNs.

Furthermore, Algorithm 2 shows that using consistent but non-decomposable products is
actually wasteful for a particular sub-class of SPNs we denote as sum-product trees:

Definition 4.14 (Sum-Product Tree). A sum-product tree (SPT) is an SPN where each sum
and product has at most one parent.

Proposition 4.3. Every complete and consistent, but non-decomposable SPT S = ((V,E),w)
over X can be transformed into a complete and decomposable SPT S ′ = ((V′,E′),w′) over X
such that S ≡ S ′, and where |V′| ≤ |V|, AS′ ≤ AS and MS′ < MS .

An example of applying Algorithm 2 to a consistent but non-decomposable SPT is given in
Figure 4.3.

– 75 –

4 Sum-Product Networks

︸ ︷︷ ︸
λY=y1

λY=y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(a)

︸ ︷︷ ︸
λY=y1

λY=y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(b)

︸ ︷︷ ︸
λY=y1

λY=y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(c)

︸ ︷︷ ︸
λY=y1

λY=y2

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Z

P

Po1 Po2

Pr

(d)

Figure 4.2: Illustration of Algorithm 2, transforming a complete and consistent SPN into a complete and
decomposable one. (a): Excerpt of an SPN containing a single consistent, non-decomposable
product P with shared RVs Y = {Y }, since λY=y1 is reached via both Po1 and Po2. Dotted edges
denote a continuation of the SPN outside this excerpt. The blank circles at the bottom symbolize
sub-SPNs over RV sets X and Z, where we assume that X∩Z = ∅. P’s children Po1 and Po2 have
both a sum node as co-parent. Po1 has additionally a product Pr as co-parent in some remote
part of the SPN. (b): Introducing links, depicted as gray product nodes, according to steps 2–7
of Algorithm 2. (c): Steps 15–20. Here, the set No is given as No = {P,Po1,Po2}. All parents of
No \ {P} which are not descendants of P, i.e. the two links and Pr, are connected with the IVs
of the respective part of the shared RVs Y, here always λY=y1 . (d): Rendering P decomposable,
steps 21–24. IV λY=y1 is disconnected from Po1,P

o
2 in steps 21–23, cutting Y from Po1, Po2 and

P. Step 24: IV λY=y1 is re-connected to P, which computes the same distribution as before, but
is decomposable now. Po1 and Po2 could be short-wired and removed, since they are left with only
one child. However, this does not necessarily happen and does not improve the theoretical bound
of additionally required multiplications.

– 76 –

4.4 Generalized Sum-Product Networks

P

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY=y1

λY=y2

(a)

P

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY=y1

λY=y2

(b)

P

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY=y1

λY=y2

(c)

Figure 4.3: Illustration of Algorithm 2, transforming a complete and consistent, but not decomposable SPT
into a complete and decomposable one. This demonstrates that using non-decomposable products
is wasteful in SPTs (cf. Proposition 4.3), since after performing Algorithm 2, the SPT computes
the same distribution, but requires fewer multiplications. (a): Complete and consistent SPT
over two binary RVs X,Y , containing a non-decomposable product P. (b): Effect of steps 21–23
of Algorithm 2, saving 3 multiplications. (c): Effect of steps 24 of Algorithm 2, reconnecting
λX=x1 to P, re-introducing 1 multiplication.

4.4 Generalized Sum-Product Networks

So far, we considered SPNs defined as in [79], using IVs to represent the states of discrete RVs.
In [40, 71], a recursive definition of SPNs was introduced, generalizing SPNs to continuous RVs
and discrete RVs with infinitely many states. The basic insight is that IVs can be interpreted
as discrete distribution assigning all probability mass to a single state [79]. To generalize SPNs,
we replace IVs λX=x by distributions DY, where DY is either a PMF, a PDF or a mixed
distribution over any set of RVs Y, cf. Section 2.1. To these DY we refer as distribution nodes,
input distributions or simply as distributions. We define generalized SPNs as follows:

Definition 4.15 (Generalized Sum-Product Network). A sum-product network S = (G,w) over
RVs X is a rooted acyclic directed graph G = (V,E) and a set of nonnegative parameters w. V
contains three types of nodes: distribution nodes, sum nodes and product nodes. All leaves of G
are distributions and all internal nodes are either sums or products, defined as follows:

1. Input distributions DY for some Y ⊆ X. The scope of DY is sc(DY) := Y.

2. Sums over nodes with identical scopes, i.e. sc(C′) = sc(C′′), ∀C′,C′′ ∈ ch(S):

S =
∑

C∈ch(S)

wS,C C, (4.50)

where the weight wS,C ∈ w is associated with the edge (S → C) ∈ E. The scope of a sum
node is sc(S) =

⋃
C∈ch(S) sc(C).

3. Products over nodes with non-overlapping scopes, i.e. sc(C′) ∩ sc(C′′) = ∅, ∀C′,C′′ ∈
ch(P), C′ 6= C′′:

P =
∏

C∈ch(P)

C. (4.51)

The scope of a product node is sc(P) =
⋃

C∈ch(P) sc(C).

– 77 –

4 Sum-Product Networks

w is the set of all weights associated with sum nodes. The distribution computed by S is the
distribution computed by the root node.

In Definition 4.15 we already require that sums are complete and products are decomposable,
see Definitions 4.9 and 4.11. Theorem 4.2 also clearly holds here, so without loss of generality
we assume generalized SPNs to be locally normalized, cf. Section 4.3.3. Thus, in generalized
SPNs, each node readily represents a distribution over its scope:

• Leaves are distributions per definition.

• Products are distributions assuming independence of its child distributions.

• Sums are mixture distributions.

That is, generalized SPNs represent PMFs, PDFs or mixed distributions over X. Note that we
do allow heterogeneous scopes of the input distributions, i.e. when we have a DY with Y ∈ Y,
we can have another DY′ with Y ∈ Y′ and Y 6= Y′. In the most extreme case, we can have
distributions DY for all possible nonempty subsets of Y ⊆ X, as long as completeness and
decomposability hold. However, we require that for discrete RVs X, every DY with X ∈ Y
is a PMF with respect to X. Likewise, we require that for continuous RVs X, every DY with
X ∈ Y is a PDF with respect to X. From now on, we refer to generalized SPNs simply as SPNs.
To distinguish them from SPNs according to Definition 4.4, we denote the latter as finite-state
SPNs.

Although SPNs generalize finite-state SPNs by replacing IVs with general distributions, it
will be helpful in many cases to use IVs as input distributions for finite-state RVs. This allows
us to define an extended network polynomial and a corresponding differential approach:

Definition 4.16 (Extended network polynomial). Let p(X,Z) be a probability distribution over
RVs X, Z, where Z have finitely many states. The extended network polynomial fep is defined
as

fep (X,λ) =
∑

z∈val(Z)

p(X, z)
∏
Z∈Z

λZ=z[Z]. (4.52)

Similar as the network polynomial in (4.13), the extended network polynomial allows us to
marginalize over any Z ∈ HZ and to apply the differential approach with respect to Z. To see
this, let us split X into disjoint Y and Y′, where for Y we have partial evidence Y , for Y′ we
have complete evidence y′, and evidence Z for Z, cf. Section 4.1. To evaluate this evidence for
p(X,Z), we compute∑

z∈Z

∫
Y
p(y,y′, z) dy =

∫
Y
fep (y,y′,λ(Z)) dy, (4.53)

i.e. similar as the network polynomial, the extended network polynomial “takes care” about
marginalization over Z by simply setting the corresponding IVs. We can also apply the differ-
ential approach, e.g.

∂
∫
Y f

e
p (y,y′,λ(Z)) dy

∂λZ=z
=

∑
z′∈Z[Z\{Z}]

∫
Y
p(y,y′, z, z′) dy. (4.54)

Not surprising, when using exclusively IVs as input distributions for some set Z of finite-state
RVs, an SPN computes an extended network polynomial:

– 78 –

4.4 Generalized Sum-Product Networks

Proposition 4.4. Let X be a set of RVs and Z a set of finite-state RVs. An SPN S over
{X ∪ Z}, where for all Z ∈ Z, z ∈ val(Z) the IVs λZ=z are used as input distributions. Then
S computes the extended network polynomial feS .

Proof. The proof works similar as for Proposition 4.2, showing by induction that every node in S
computes the extended network polynomial over the distribution represented by this node.

We now aim to derive the same inference scenarios for SPNs as for finite-state SPNs. Inherited
from the theory on network polynomials and the differential approach, there are three inference
scenarios for complete and decomposable finite-state SPNs, which can be exactly solved with
simple upward and/or downward passes:

1. Evaluation of distribution S(x) for sample x ∈ val(X).

2. Partial marginalization, i.e. for Y ⊆ X, Y′ = X \Y, evaluation of∫
Y
S(y,y′) dy, (4.55)

for partial evidence Y ∈ HY and complete evidence y′ ∈ val(Y′).

3. Evaluation of modified evidence/marginal posteriors for all X ∈ X simultaneously, i.e. for
Y ⊆ X, Y′ = X \Y, compute∫

Y[Y\{X}]
S(X,y,y′[Y′ \ {X}]) dy ∝ S(X |Y [Y \ {X}],y′[Y′ \ {X}]), (4.56)

for Y ∈ HY, y′ ∈ val(Y′).

(1.): Evaluation of S(x) works exactly the same for generalized SPNs, by simply evaluating
all nodes from the leaves to the root, i.e. by one upwards pass. Note that inference scenario (2.)
subsumes (1.).

(2.): Partial marginalization also works by a single upwards pass, since we can “pull” the
integrals in (4.55) over all sum and product nodes, down to the input distributions. To see this,
consider an arbitrary sum S for which, due to completeness, (4.55) can be written as∫

Y
S(y,y′) dy =

∫
Y

∑
C∈ch(S)

wS,C C(y,y′) dy (4.57)

=
∑

C∈ch(S)

wS,C

∫
Y
C(y,y′) dy, (4.58)

i.e. the integrals of a sum node equals the weighted sum of the integrals of the child nodes.

Now consider an arbitrary product node P. Due to decomposability we are allowed to swap
integrals and the product, i.e. we have∫

Y
P(y,y′) dy =

∫
Y

K∏
k=1

Ck(y[sc(Ck)],y
′[sc(Ck)]) dy (4.59)

=

K∏
k=1

[∫
Y[sc(Ck)]

Ck(y
k,y′[sc(Ck)]) dy

k

]
(4.60)

We see that the integral of a product node equals the product of integrals of the child nodes,
over their respective scopes. Furthermore, the same integrals are required for any co-parents
of the children of S or P. Therefore, we can perform integration (4.55) by performing the

– 79 –

4 Sum-Product Networks

corresponding integrations at the input distributions over their respective scopes, and evaluating
sum and product nodes in the usual way.

As a sanity check, let us see if this agrees with finite-state SPNs.

Example 4.1 (Finite-state RVs). Let X be a set of finite-state RVs and introduce for each X,
x ∈ val(X) the input distributions

DX,x(x′) = 1(x = x′). (4.61)

To evaluate evidence Y, y′, we simply perform the marginalization at the input distributions
and evaluate sums and products the usual way. When X ∈ Y, and X = Y [X], this yields

∑
x′∈X

DX,x(x′) =

{
1 if x ∈ X
0 otherwise,

(4.62)

which reproduces the mapping for IVs (4.11). When X ∈ Y′, and y′[X] = x′ we get

DX,x(x′) =

{
1 if x = x′

0 otherwise
(4.63)

which reproduces (4.9).

For finite-state RVs, we yield the same result for marginalization as dictated by the theory over
network polynomials. Now, let us consider continuous RVs, using single-dimensional Gaussians
as input distributions.

Example 4.2 (Continuous RVs, single-dimensional Gaussians). Assume X are continuous RVs
and for each X ∈ X we have K Gaussian input distributions DX,1, . . . ,DX,K , all with their
individual mean and standard deviation. Let Y ⊂ X and Y′ = X \Y. To evaluate the marginal
distribution of Y′ for some y′, we need to marginalize Y, i.e. for all Y ∈ Y, Y [Y] = R. For
each Y we get

∫
Y[Y] DY,k = 1 and each Gaussian DY ′,k is evaluated at y′[Y ′]. These values serve

as input to the SPN and are propagate though all sum and product nodes, yielding the desired
evaluation of the marginal distribution of Y′.

Now assume more generally that we have evidence that each Y ∈ Y takes a value in some
“simple” set Y [Y], say an interval, or the union of a few intervals. In this case we still can
easily compute

∫
Y[Y] DY,k ≤ 1 using the Gaussian CDF. Again evaluating DY ′,k for y′[Y ′], and

propagating these values through the SPN, we get∫
y∈Y
S(y′,y) dy = S(y′ |y ∈ Y)PS(y ∈ Y), (4.64)

where PS denotes the probability measure defined by PDF S, cf. Section 2.1. In particular, when
Y′ = ∅, the SPN evaluates PS(y ∈ Y).

These two examples used only distributions over single RVs. We want to stress again, that
this is not necessary: as long as marginalizations according to 4.55 can computed at the input
distributions, the overall marginalization results from normal evaluation of the sum and product
nodes. We can also be agnostic how these input distributions are represented. They might be
represented as BNs, MNs, ACs [84], or again as SPNs. The latter suggests a recursive way to
construct SPNs, a view which is followed in [40,71].

(3.): Simultaneous evaluation of modified evidence/marginal posteriors for all X can be tack-
led using the differential approach in extended network polynomials. Let X be the scope of
the SPN and DX be the set of input distributions which have X in their scope. We define an
arbitrary but fixed ordering of DX = {DX,1, . . . ,DX,|DX |} and define [D]X = k if D is the kth

– 80 –

4.4 Generalized Sum-Product Networks

distribution in DX . For each X, we introduce a latent RV ZX with val(ZX) = {1, . . . , |DX |}.
We denote these RVs as distribution selectors (DS) and let Z = {ZX |X ∈ X} be the set of all
DS. Now we replace each distribution node D in the SPN by

D→ D×
∏

X∈sc(D)

λZX=[D]X , (4.65)

and denote the result as gated SPN. To the product introduced in (4.65) we refer as gate PX,[D]X .
An example of constructing a gated SPN is shown in Figure 4.4.5 In the following proposition

D1 D2 D3 D4

(a)

︸ ︷︷ ︸
λZX=1 λZX=2 λZX=3

︸ ︷︷ ︸
λZY =1 λZY =2 λZY =3

D1 D2 D3 D4

(b)

Figure 4.4: Constructing a gated SPN by introducing distribution selectors. Here we assume that sc(D1) =
{X}, sc(D2) = sc(D3) = {X,Y } and sc(D4) = {Y }, and that they are the only distributions
with X or Y in their scope. (a): Excerpt of an SPN showing the input distributions over X and
Y . (b): Same excerpt with introduced DSs λZX=1, λZX=2, λZX=3, λZY =1, λZY =2, λZY =3. The
single parents of D1, D2, D3, D4 are the gates PX,1, PX,2 = PY,1, PX,3 = PY,2, PY,3, respectively.

we note some properties about gated SPNs.

Proposition 4.5. Let S be an SPN and Sg be its gated SPN. Then

1. Sg is an SPN over X ∪ Z.

2. S(X) = Sg(X) =
∑

z∈val(Z) Sg(X, z).

3. For any X ∈ X and k ∈ {1, . . . , |DX |}, let XD = sc(DX,k) and XR = X \XD. It holds
that

Sg(X, ZX = k,Z \ {ZX}) = DX,k(XD)Sg(XR, ZX = k,Z \ {ZX}), (4.66)

i.e.

XD ⊥⊥ XR ∪ Z \ {ZX} |ZX (4.67)

In particular

Sg(X, ZX = k) = DX,k(XD)Sg(XR, ZX = k), (4.68)

For a fixed X, we split the sets Y and Y′ from (4.56) according to the distribution DX,k:

Yk = Y ∩ sc(DX,k), Y′k = Y′ ∩ sc(DX,k)

Ȳk = Y \ sc(DX,k), Ȳ′k = Y′ \ sc(DX,k)
(4.69)

5 For representing distribution nodes, we use symbol .

– 81 –

4 Sum-Product Networks

Then, using Proposition 4.5, we get

∫
Y
S(y,y′) dy =

|DX |∑
k=1

∫
Y
Sg(y,y′, ZX = k) dy (4.70)

=

|DX |∑
k=1

(∫
Y[Yk]

DX,k(yk,y′[Y′k]) dyk

) (∫
Y[Ȳk]

Sg(ȳk,y′[Ȳ′k], ZX = k) dȳk

)
︸ ︷︷ ︸

gX,k

(4.71)

To find the factors gX,k, note that the kth term in (4.70) can also be computed by the differential
approach, setting all λZX=k = 1 and computing∫

Y
Sg(y,y′, ZX = k) dy =

∂
∫
Y S

g(y,y′) dy

∂λZX=k
. (4.72)

This derivative is given according to (4.42) and (4.46) as

∂
∫
Y S

g(y,y′) dy

∂λZX=k
=
∂
∫
Y S

g(y,y′) dy

∂PX,k

∫
Y[Yk]

DX,k(yk,y′[Y′k]) dyk (4.73)

Comparing (4.71) and (4.73), we find that

gX,k =
∂
∫
Y S

g(y,y′) dy

∂PX,k
=
∂
∫
Y S(y,y′) dy

∂DX,k
(4.74)

The right hand side in (4.74) holds since all λZX=k = 1 and the structure above all DX,k in S
and above all PX,k in Sg is identical. Since for all k, X is contained either in Yk or in Ȳk, we
find the distribution over X with modified evidence by∫

Y[Y\{X}]
S(X,y,y′[Y′ \ {X}]) dy = (4.75)

|DX |∑
k=1

∫
Y[Yk\{X}]

DX,k(X,yk,y′[Y′k \ {X}]) dyk
∂
∫
Y S(y,y′) dy

∂DX,k
, (4.76)

i.e. we input evidence as in inference scenario (2.), and find the derivatives ∂S
∂DX,k

at each input
distribution using backpropagation. These derivatives are used as weights of a linear combina-
tion of distributions DX , evaluated anew for evidence in sc(DX,k) \ {X}. Similar as inference
scenario (2.), inference scenario (3.) reduces to the corresponding inference scenario at the in-
put distributions. Note, that although we used gated SPNs and extended network polynomials
for deriving this result, all required terms can be computed in the original SPN S. However,
introducing the DS, which are artificially latent RVs, helped us in our approach. In the next
chapter, we go one step further and introduce a latent RV for each sum node in the SPN.

– 82 –

Foundations of Sum-Product Networks for Probabilistic Modeling

5
Sum-Product Networks as Latent Variable

Models

In [79] a latent RV interpretation for SPNs was introduced, associating a latent RV with each
sum node, where each child of the sum corresponds to a state of the RV. In that way, the sum
operation can be interpreted as marginalization of this latent RV. This technique is often applied
to mixture distributions, as illustrated in the following example.

Example 5.1. Consider a mixture of Gaussians over RV X, whose PDF p is defined as:

p(X) =
K∑
k=1

wkN (X |µk, σk), (5.1)

where K is the number of components, µk and σk are the mean and the standard deviation of
the kth component, and wk are the mixture weights, satisfying

wk ≥ 0,
∑
k

wk = 1. (5.2)

Eq. (5.1) has two interpretations:

1. It is a convex combination of K PDFs N (· |µk, σk) and thus a PDF.

2. It is the marginal distribution of a joint distribution over X,Z, defined as

p(X,Z) = p(Z) p(X |Z), (5.3)

where |val(Z)| = K, p(Z = zk) = wk and p(X |Z = zk) = N (X |µk, σk).

The second interpretation in this example has several advantages, e.g. that the EM algo-
rithm can be applied for ML learning. In this chapter, we investigate in detail the latent RV
interpretation of sum nodes in SPNs.

5.1 Augmentation of SPNs

In [79], it was proposed to make the latent RVs explicit as depicted in Figure 5.1. For each sum

– 83 –

5 Sum-Product Networks as Latent Variable Models

S

(a)

S , Z

︸ ︷︷ ︸
λZ=1 λZ=2 λZ=3

(b)

Figure 5.1: Augmenting SPN structure to explicitly introduce IVs representing states of a latent RV associ-
ated with sum node S. (a): Part of an SPN containing a sum node S with three children. (b):
Augmented structure explicitly containing IVs for each sum child.

node S, one introduces a latent RV Z whose states correspond with the children of S. The SPN
structure is augmented by introducing one product and one IV for each child, such that the sub-
SPN rooted at this child is turned on/off by setting/unsetting its corresponding IV, as shown in
Figure 5.1 (b). When all IVs are set to 1 the sum node S in Figure 5.1 (b) computes the same
value as in Figure 5.1 (a). Since setting all IVs of Z to 1 corresponds to marginalizing Z, each
sum node can be interpreted as a latent, marginalized RV. Furthermore, the weights associated
to S should be interpretable as CPT of Z, conditioned on a certain context represented by the
ancestor sum nodes of S.

However, taking a closer look, we recognize that augmenting the SPN in this way is too
simplistic. Consider the augmentation of the SPN structure from Figure 5.1(a) within a larger
structural context, shown in Figure 5.2(a). Explicitly introducing the IVs corresponding to Z
in Figure 5.2 (b) renders node S′ incomplete, since S is no descendant of N and therefore Z is
not in the scope of N. Since we require completeness of the SPN in order that setting all IVs of
Z corresponds the marginalization, this approach for augmenting the SPN is flawed.

Furthermore, note that S′ also corresponds to a latent RV Z ′. Although we know the proba-
bility distribution of Z if Z ′ is in the state corresponding to P, namely the weights associated
to S, we do not know this distribution when Z ′ is in the state corresponding to N. Intuitively,
we recognize that the state of Z is “irrelevant” when Z ′ is in the state corresponding to N,
since it does not influence the resulting distribution over the model RVs X. Nevertheless, the
probabilistic model is not completely specified, which is unsatisfying.

A remedy for these problems is shown in Figure 5.2 (c), by augmenting the SPN structure
further. We introduce the twin sum node S̄ of S whose children are the IVs corresponding to Z.
The twin S̄ is connected as child of an additional product node which is interconnected between
S′ and N. Since this new product node has scope sc(N) ∪ {Z}, S′ is rendered complete now. If
Z ′ takes the state corresponding to N (or actually the state corresponding to the new product
node), we now have a specified conditional distribution of Z, namely the weights of the twin sum
node S̄. Furthermore, given that all IVs of Z are set to 1, the network depicted in Figure 5.2 (c)
still computes the same function as the network in Figure 5.2 (a), since S̄ constantly outputs 1.

The question raises, which weights should be used for the twin sum node S̄. Basically, we
can assume arbitrary normalized weights, which will cause S̄ to constantly output 1. Following
an esthetic and maximum entropy argument, however, we would assume uniform weights for S̄.
While the choice of weights is not crucial for evaluating evidence in the SPN, it will however

– 84 –

5.1 Augmentation of SPNs

S

S′

P N

(a)

S , Z

S′

P N

︸ ︷︷ ︸
λZ=1 λZ=2 λZ=3

(b)

S , ZS̄

S′

P N

︸ ︷︷ ︸
λZ=1 λZ=2 λZ=3

(c)

Figure 5.2: Problems occurring when IVs of latent variables are introduced. (a): Larger part of the SPN
depicted in Figure 5.1 (a). In this example we assume that S /∈ desc(N). (b): Introducing IVs
for Z renders S′ incomplete. (c): Remedy by extending SPN structure further, introducing twin
sum node S̄.

play a role when we discuss MPE inference in Section 5.3. For now, let us formally introduce
the latent RV interpretation of sum nodes.

Definition 5.1 (Associated Latent RVs). Let S be an SPN over X. For each S ∈ S(S) we
assume an arbitrary but fixed ordering of its children ch(S) = {C1

S, . . . ,C
KS
S }, where KS =

|ch(S)|. Let ZS be an RV on the same probability space as X, with val(ZS) = {1, . . . ,KS},6

6 For ease of discussion, we use the first KS integers as states of ZS.

– 85 –

5 Sum-Product Networks as Latent Variable Models

where state k corresponds to child CkS. We call ZS the latent RV associated with S. For sets of
sum nodes S we define ZS = {ZS | S ∈ S}.

To distinguish X from the latent RVs we will refer to the former as model RVs. Definition 5.1
postulates latent RVs associated with sum nodes, defined on the same probability space as X,
and where each state corresponds to a sum child. We will complete this definition by specifying
the augmented SPN, defining the joint distribution of X and the associated RVs. First we need
some more definitions.

Definition 5.2 (Sum Ancestors/Descendants). Let S be an SPN and N a node in S. We define
sum ancestors/descendants as

ancS(N) := anc(N) ∩ S(S) (5.4)

descS(N) := desc(N) ∩ S(S) (5.5)

Definition 5.3 (Conditioning sums). Let S be an SPN over X. For each sum node S we define
the conditioning sums of S as

Sc(S) := {Sc ∈ ancS(S) \ {S} | ∃C ∈ ch(Sc) : S /∈ desc(C)}. (5.6)

Definition 5.4 (Twin weights). Let S be an SPN over X. Let w̄ be a set of nonnegative weights
containing a weight w̄S,C for each wS,C, where w̄S,C ≥ 0,

∑
C∈ch(S) w̄S,C = 1. We call w̄ a set of

twin weights and w̄S,C is the twin weight of wS,C.

We now define augmented SPNs, explicitly introducing the associated RVs in the SPN and
specifying the completed probabilistic model.

Definition 5.5 (Augmentation of SPN). Let S be an SPN over X, w̄ be a set of twin weights
and S ′ be the result of Algorithm 3. S ′ is called the augmented SPN, denoted as S ′ =: aug(S).
Within the context of S ′, is CkS is called the kth former child of S. The introduced product node
PkS is called link of S, CkS and λZS=k, respectively. The sum node S̄, if introduced, is called the
twin sum node of S.

In the first part of Algorithm 3 (1–8) we introduce the links PkS which are interconnected
between the sum node S and its kth child. Each link PkS has a single parent, namely S, and
simply copies the former child CkS, which might have more than one parent. Note that we
already used links in Algorithm 2 for the proof for Theorem 4.3. In steps 10–12, we introduce
IVs corresponding to the associated RV ZS, which is the augmentation according to [79]. As
illustrated in Figure 5.2, this can render other sum nodes incomplete. Thus, when necessary,
we introduce a twin sum node in steps 14–20, to treat this problem. Note that we assume a full
set of twin weights, even when for some sum nodes no twin node is introduced. This will ease
discussion in Section 5.2. The following proposition states the soundness of augmentation.

Proposition 5.1. Let S be an SPN over X, S ′ = aug(S) and Z := ZS(S). Then S ′ is a
complete and decomposable SPN over X ∪ Z with S ′(X) ≡ S(X).

Proposition 5.1 states that the augmented SPN represents the same distribution over X as
the original SPN when the latent RVs Z are marginalized, while being a completely specified
probabilistic model over X and Z. Clearly, the augmented SPN will usually not be generated for
practical purposes, but we will mainly consider it as a theoretical tool. The following example
illustrates the process of augmentation.

– 86 –

5.1 Augmentation of SPNs

Algorithm 3 Augment SPN S
∀S ∈ S(S), ∀k ∈ {1, . . . ,KS} let wS,k = wS,CkS

, w̄S,k = w̄S,CkS

Introduce links:
1: for S ∈ S(S) do
2: for k = 1 . . .KS do
3: Introduce a new product node PkS in S
4: Disconnect CkS from S
5: Connect CkS as child of PkS
6: Connect PkS as child of S with weight wS,k

7: end for
8: end for

Introduce IVs and twins:
9: for S ∈ S(S) do

10: for k ∈ {1, . . . ,KS} do
11: Connect new IV λZS=k as child of PkS
12: end for
13: if Sc(S) 6= ∅ then
14: Introduce a twin sum node S̄ in S
15: ∀k ∈ {1, . . . ,KS}: connect λZS=k as child of S̄, and let wS̄,λZS=k

= w̄S,k

16: for Sc ∈ Sc(S) do
17: for k ∈ {k | S 6∈ desc(PkSc)} do
18: Connect S̄ as child of PkSc
19: end for
20: end for
21: end if
22: end for

Example 5.2 (Augmentation of SPN). Figure 5.3(a) shows an example SPN over three RVs
X1, X2, X3. Figure 5.3(b) shows the corresponding augmented SPN.

It should be noted that augmentation presented here is not necessarily the only way to in-
troduce latent RVs, and, that sum nodes have sometimes a more natural interpretation. For
some examples see Section 6.1, where sum nodes, or more precisely sum-weights, have a natural
interpretation of CPTs of model RVs. However, due to Proposition 5.1 we have nevertheless
always the option to perform augmentation and interpret sum nodes as latent RVs. We could
also construct augmented SPNs of augmented SPNs, i.e. consider aug(aug(S)), since aug(S)
is simply a complete and decomposable SPN over X, Z. This would blow up the RV set further
and introduce redundant copies of the latent RVs introduced in the first augmentation.

– 87 –

5 Sum-Product Networks as Latent Variable Models

S1

S2 S3

S4

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

(a)

S1

S2 S3

S4

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

S̄2 S̄3

S̄4

︸ ︷︷ ︸
λZ

S1=1...3

︸ ︷︷ ︸
λZ

S2=1...3

︸ ︷︷ ︸
λZ

S3=1...3

︸ ︷︷ ︸
λZ

S4=1...2

(b)

Figure 5.3: Augmentation of an SPN. (a): Example SPN over X = {X1, X2, X3}, containing sum nodes S1,
S2, S3 and S4. (b): Augmented SPN, containing IVs corresponding to ZS1 , ZS2 , ZS3 , ZS4 , links
and twin sum nodes S̄2, S̄3, S̄4. For nodes introduced by augmentation smaller circles are used.

5.2 Independencies and Interpretation of Sum Weights

We now investigate certain conditional independencies which hold in the augmented SPN, allow-
ing us to interpret the augmented SPN as BN. Furthermore, we also formalize the interpretation
of sum weights as CPTs in the corresponding BN. To this end, we introduce the notion of con-
figured SPNs.

Definition 5.6 (Configured SPN). Let S be an SPN over X, and let Y ⊆ ZS(S) and y ∈ val(Y).
The configured SPN Sy is obtained by Algorithm 4.

Algorithm 4 Configure SPN

1: Sy ← aug(S)
2: for Y ∈ Y do
3: for y ∈ val(Y), y 6= y[Y] do
4: Delete λY=y and its corresponding link
5: end for
6: end for
7: Delete all nodes in Sy which are not reachable from the root

Example 5.3 (Configured SPN). Two examples of configured SPNs of the SPN in Example 5.2,
using two different y, are shown in Figure 5.4.

Intuitively, the configured SPN isolates the computational structure selected by y. All sum
edges which “survive” Algorithm 4 are equipped with the same weights as in the augmented
SPN. Therefore, a configured SPN is in general not locally normalized. We note the following
properties of configured SPNs.

Proposition 5.2. Let S be an SPN over X, Y ⊆ ZS(S) and Z = ZS(S) \Y. Let y ∈ val(Y)
and let S ′ = aug(S). It holds that

– 88 –

5.2 Independencies and Interpretation of Sum Weights

S1

S2 S3

S4

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

S̄2 S̄3

S̄4

λZ
S1=1

λZ
S2=2

︸ ︷︷ ︸
λZ

S3=1...3

︸ ︷︷ ︸
λZ

S4=1...2

(a)

S1

S2

S4

︸︷︷︸
X1

︸︷︷︸
X2

︸ ︷︷ ︸
X3

S̄3

λZ
S1=1

λZ
S2=2

︸ ︷︷ ︸
λZ

S3=1...3

︸ ︷︷ ︸
λZ

S4=1...2

(b)

S1

S2 S3

S4

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

S̄2 S̄3

S̄4

︸ ︷︷ ︸
λZ

S1=1...3

λZ
S2=3 λZ

S3=1

︸ ︷︷ ︸
λZ

S4=1...2

(c)

S1

S2 S3

S4

︸ ︷︷ ︸
X1

︸︷︷︸
X2

︸ ︷︷ ︸
X3

S̄2 S̄3

S̄4

︸ ︷︷ ︸
λZ

S1=1...3

λZ
S2=3 λZ

S3=1

︸ ︷︷ ︸
λZ

S4=1...2

(d)

Figure 5.4: Configured SPNs of SPN shown in Figure 5.3. (a): Augmented SPN before performing step 7
of Algorithm 4 for Y = {ZS1 , ZS2} and configuration y = (1, 2). (b): Configured SPN resulting
from removing unreachable nodes from (a). (c), (d): Similar to (a), (b), for for Y = {ZS2 , ZS3}
and configuration y = (3, 1).

1. Each node in Sy has the same scope as its corresponding node in S ′.

2. Sy is a complete and decomposable SPN over X ∪Y ∪ Z.

3. For any node N in Sy with sc(N) ∩Y = ∅, we have that Sy
N = S ′N.

4. For y′ ∈ val(Y) it holds that

Sy(X,Z,y′) =

{
S ′(X,Z,y′) if y′ = y

0 otherwise
(5.7)

The following theorem shows certain conditional independencies which hold in the augmented

– 89 –

5 Sum-Product Networks as Latent Variable Models

SPN. For the proof, we need the following lemma.

Lemma 5.1. Let S be an SPN over X, let S be a sum node in S and Z = ZancS(S)\{S}. For
any z ∈ val(Z), the configured SPN Sz contains either S or its twin S̄, but not both.

Theorem 5.1. Let S be an SPN over X, S be an arbitrary sum in S and wk = wS,CkS
, w̄k = w̄S,CkS

,

k = 1, . . . , |ch(S)|. Let

Z := ZS, (5.8)

Z := ZancS(S) \ {Z}, (5.9)

Yd := sc(S) ∪ ZdescS(S) \ {Z}, (5.10)

Yn := (X ∪ ZS(S)) \ (Yd ∪ Z ∪ {Z}). (5.11)

Furthermore, let S ′ = aug(S). There exists a two-partition of val(Z), i.e. Z, Z̄: Z ∪ Z̄ =
val(Z), Z ∩ Z̄ = ∅,7 such that

∀z ∈ Z : S ′(Z = k,Yn, z) = wk S ′(Yn, z), and (5.12)

∀z ∈ Z̄ : S ′(Z = k,Yn, z) = w̄k S ′(Yn, z). (5.13)

Proof.
By Lemma 5.1, for each z ∈ val(Z) the configured SPN Sz contains either S or S̄, but not

both. Let Z be the subset of val(Z) such that S is in Sz and Z̄ be the subset of val(Z) such
that S̄ is in Sz.

Fix Z = k and z ∈ Z. We want to compute S ′(Z = k,Yn, z), i.e. we marginalize Yd.
According to Proposition 5.2 (4.), this equals Sz(Z = k,Yn, z). According to Proposition 5.2
(3.), the sub-SPN rooted at former child CkS is the same in S ′ and Sz. Since S ′ is locally
normalized, this sub-SPNs is also locally normalized in Sz. Since the scope of the former child
CkS is a sub-set of Yd and λZ=k = 1, the link PkS outputs 1. Since λZ=k′ = 0 for k′ 6= k, the sum
S outputs wk.

Now consider the set of nodes in Sz which have Z in their scope, not including λZ=k and PkS.
Clearly, since S̄ is not in Sz, this set must be anc(S). Let N1, . . . ,NL be a topologically ordered
list of anc(S), where S is N1 and NL is the root. Let Yn

l := sc(Nl) ∩Yn and Zl := sc(Nl) ∩ Z.
We show by induction that for l = 1, . . . , L, we have

Nl(Z = k,Yn
l , z[Zl]) = wk Nl(Y

n
l , z[Zl]). (5.14)

Since Yn
1 = ∅ and Z1 = ∅, and N1(Z = k) = wk, the induction basis holds. Assume that (5.14)

holds for all N1, . . . ,Nl−1. If Nl is a sum, we have due to completeness

Nl(Z = k,Yn
l , z[Zl]) =

∑
C∈ch(Nl)

wNl,C C(Z = k,Yn
l , z[Zl]) (5.15)

=
∑

C∈ch(Nl)

wNl,Cwk C(Yn
l , z[Zl]) (5.16)

= wk Nl(Y
n
l , z[Zl]), (5.17)

i.e. the induction step holds for sums. When Nl is a product, due to decomposability, it must

7 Here, Z and Z̄ are not necessarily elements from HZ.

– 90 –

5.2 Independencies and Interpretation of Sum Weights

have a single child C′ with Z ∈ sc(C′). We have

Nl(Z = k,Yn
l , z[Zl]) = C′(Z = k, sc(C′) ∩Yn

l , z[sc(C′) ∩ Z])
∏

C∈ch(Nl)\{C′}

C(·) (5.18)

= wk C
′(sc(C′) ∩Yn, z[sc(C′) ∩ Z])

∏
C∈ch(Nl)\{C′}

C(·) (5.19)

= wk Nl(Y
n
l , z[Zl]), (5.20)

i.e. the induction step holds for products. Therefore, by induction, (5.14) also holds for the root,
and (5.12) follows.

Now fix the input to arbitrary Z = k and z ∈ Z̄. Clearly, S̄ outputs w̄k and (5.13) can be
shown in similar way as (5.12).

Corollary 5.1. Make the same assumptions as in Theorem 5.1. In S ′, we have

Z ⊥⊥ Yn |Z. (5.21)

Furthermore we have

S ′(Z = k |yn, z) = S ′(Z = k | z) =

{
wk if z ∈ Z
w̄k if z ∈ Z̄

(5.22)

Theorem 5.1 and Corollary 5.1 show that the weights and twin weights of a sum node S can
be interpreted as a conditional probability table (CPT) of the associated RV ZS. More precisely,
given that the sum node ancestors “select a path” to S, i.e. z ∈ Z, then wS,CkS

is the probability

that ZS is in its kth state. Given the complementary event z ∈ Z̄, the corresponding twin weight
w̄S,CkS

is the corresponding conditional probability.

We now also see an independency structure in augmented SPNs: a latent RV corresponding
to S is conditional independent of all model RVs which are not in the scope of S, when the RVs
corresponding to its sum ancestors are observed. It is also independent from all other latent
RVs corresponding to sum nodes which are neither ancestors nor descendants of S. This is the
correspondent to the local conditional independence statements BNs, cf. Theorem 3.1:

An RV is independent from its non-descendants, given its parents.

Given an SPN S, we can now construct an IMAP of aug(S) expressed via a BN. In the IMAP,
we connect ZS as child of all ZancS(S) \ {ZS} and connect all model RVs which are in the scope
of S as child of ZS. As an example, Figure 5.5 (a) shows the augmented SPN from Figure 5.3
and Figure 5.5 (b) its corresponding IMAP.

Furthermore, when all input distributions of the SPN are over single RVs, we can conclude
that all model RVs are independent given all the latent RVs. In this case, we can interpret
the augmented SPN as a naive Bayes mixture model with a structured latent RV ZS(S), whose
state-space grows exponentially in the number of sum nodes in the SPN. This is illustrated
in Figure 5.5 (c). In the naive Bayes interpretation, the input distributions take the role of
conditional distributions over the model RVs, which are shared among the exponentially many
latent states of ZS(S).

The IMAP representation shows that an SPN can be interpreted as hierarchical mixture model.
However, the representation of an SPN as BN obscures the highly constrained structure of the
CPTs of the augmented SPN. Consider an arbitrary sum node S and let Za = ZancS(S)\{S} in
some SPN. In general, the associated RV ZS can depend on the state of all RVs Za. Thus,
in a general BN the CPT for ZS would require |val(Za)| (|val(ZS)| − 1) parameters. This
parameterization grows exponentially in |Za|.

– 91 –

5 Sum-Product Networks as Latent Variable Models

S1

S2 S3

S4

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

S̄2 S̄3

S̄4

︸ ︷︷ ︸
ZS1

︸ ︷︷ ︸
ZS2

︸ ︷︷ ︸
ZS3

︸ ︷︷ ︸
ZS4

(a)

ZS1

ZS2 ZS3 ZS4

X1 X2 X3

(b)

ZS(S)

X1 X2 X3

(c)

Figure 5.5: Dependency structure of an augmented SPN. (a): Augmented SPN from Figure 5.3. (b): Cor-
responding IMAP represented as BN. (c): Naive Bayes interpretation of augmented SPN.

However, the state space of Za is two-partitioned into Z and Z̄. For all states in Z, the
conditional distribution of ZS is constant and given by the weights of S, and for Z̄ the conditional
distribution is given by the twin weights, which are the same as the weights of the twin sum
node S̄, if it exists. Thus, the CPT of ZS is highly constrained and can be represented by
2 (|val(ZS)|−1) parameters in the augmented SPN. Furthermore, the twin weights will typically
be set to the uniform distribution, so that we actually have |val(ZS)|−1 free parameters for ZS,
i.e. the original SPN parameters.

The two-partition of val(Za) can be made explicit by further introducing a binary RV YS
with val(YS) = {yS, yS̄} where YS = yS ⇔ Za ∈ Z and YS = yS̄ ⇔ Za ∈ Z̄. YS can be seen as
switching parent of ZS which, when observed, renders ZS independent from Za. This switching
parent can also be explicitly introduced in the augmented SPN as depicted in Figure 5.6. Here
we simply introduce two new IVs λYS=yS and λYS=yS̄ , which switch on/off the output of S and
S̄, respectively. It is easy to see that when these IV are constantly set to 1, i.e. when YS is
marginalized, the augmented SPN performs exactly the same computations as before. It is
furthermore easy to show that completeness and decomposability of the augmented SPN are
maintained when the switching parent is introduced. Introducing the switching parent allows
to derive the EM algorithm for SPN-weights, cf. Section 6.3.

– 92 –

5.3 Most Probable Explanation and Maximum A-posterior Hypothesis

SS̄

︸ ︷︷ ︸
λZS=1 λZS=2 λZS=3

(a)

SS̄

︸ ︷︷ ︸
λZS=1 λZS=2 λZS=3

λYS=ySλYS=yS̄

P

(b)

Figure 5.6: Explicitly introducing a switching parent YS in an augmented SPN. (a): Part of an augmented
SPN containing a sum node with three children and its twin. (b): Explicitly introduced switching
parent YS using IVs λYS=yS and λYS=yS̄

.

5.3 Most Probable Explanation and Maximum A-posterior
Hypothesis

As discussed in Section 4.4, SPNs allow to perform several inference scenarios efficiently, like
evaluating the SPN distribution for complete evidence, partial marginalization and computing
the marginal posteriors given some evidence. In [79], SPNs were applied for reconstructing data
using MPE inference. Given some distribution p over X and partial evidence X ∈ HX, X 6= ∅,
MPE can be formalized as finding

x∗ = arg max
x∈X

p(x). (5.23)

We assume here that p has a maximum in X , which, unless X is closed, does not necessarily exist
in the case of continuous RVs. MPE inference according to (5.23) generalizes MPE inference as
defined in Section 3.4, i.e. finding

arg max
xq∈val(Xq)

p(xq,xo). (5.24)

This scenario is a special case of (5.23), where ∀X ∈ Xq : X [X] = val(X) and ∀X ∈ Xo : X [X] =
{xo[X]}. MPE defined as in (5.23) allows more generally to incorporate constraints on the
domain of the RVs, as illustrated in the following example.

Example 5.4. Let p be a distribution over X1, X2, X3 and we have evidence that X1 = x1 and
that X2 ≤ 42. Using X = {x1} × [−∞, 42] × R and solving (5.23), we find the most probable
solution x∗ consistent with our evidence.

MPE is a special case of MAP, defined as finding

arg max
y∈Y

∫
Z
p(y, z) dz, (5.25)

for some two-partition of X, i.e. X = Y∪Z. Similar as for MPE, this generalizes MAP inference
as defined in Section 3.4. MAP reduces to MPE when Y = X. Both MPE and MAP are NP-hard
in general BNs [8, 54, 68, 69], and MAP is inherently harder than MPE [54, 69]. Theoretically,

– 93 –

5 Sum-Product Networks as Latent Variable Models

this is reflected that the decision versions of MPE is NP-complete, while the decision version
of MAP is NPPP-complete [54, 69]. In practice this means that in model classes which allow to
solve MPE efficiently, the MAP problem typically remains hard to solve.

In [79] it is stated that the MPE solution can be found efficiently in SPNs, where maximization
is over the model RVs X and the latent RVs Z represented by the sum nodes. For this purpose,
a Viterbi-style algorithm is used: each sum node is replaced by a max node, i.e. a node which
outputs the maximum of its child nodes. To find the MPE solution, back-tracking from the
root to the leave nodes is performed, where each sum node selects a maximizing child and
each product nodes selects all of its children. However, as discussed at the beginning of this
chapter, the latent RV interpretation in [79] is incomplete, since the latent RV model in [79]
does not specify the distribution of “irrelevant” latent RVs. We proposed the augmented SPN
as a remedy for this issue. In this section we show that the algorithm proposed in [79] indeed
finds an MPE solution when applied to the augmented SPN. However, applying this algorithm
to the non-augmented SPN corresponds to an unfortunate implicit parameter selection for the
twin sum nodes and leads to a phenomenon we call low-depth bias.

5.3.1 MPE Inference in Augmented SPNs

We formally investigate MPE using max-product networks.

Definition 5.7 (Max-Product Network). Let S be an SPN over X. The max-product network
(MPN) Ŝ of S is a network obtained as follows:

• Replace each distribution node D by a maximizing distribution node D̂ : Hsc(D) 7→ [0,∞],
defined as

D̂(Y) := max
y∈Y

D(y) (5.26)

• Replace each sum node S in S by a max node Ŝ. The outgoing edges of a max node are
equipped with the same weights as for its corresponding sum node. A max node is defined
as

Ŝ := max
C∈ch(Ŝ)

wŜ,C C. (5.27)

• Each product P in S corresponds to a product P̂ in Ŝ.

The scope in MPNs is defined as in SPNs.

The following theorem shows that for augmented SPNs the MPN computes the MPE proba-
bility.

Theorem 5.2. Let S be an augmented SPN over X, where X already comprises the model RVs
of the original SPN and the latent RVs introduced by augmentation, and let Ŝ the corresponding
MPN. Let N be some node in S and N̂ its corresponding node in Ŝ. For every X ∈ Hsc(N) we
have

N̂(X) = max
x∈X

N(x). (5.28)

Proof. We proof the theorem using an inductive argument. The theorem clearly holds for any
D̂ by definition. Consider a product P̂ and assume the theorem holds for all ch(P̂). Then the

– 94 –

5.3 Most Probable Explanation and Maximum A-posterior Hypothesis

theorem also holds for P̂, since

P̂(X) =
∏

Ĉ∈ch(P̂)

Ĉ(X) (5.29)

=
∏

C∈ch(P)

max
x∈X

C(x) (5.30)

= max
x∈X

∏
C∈ch(P)

C(x) (5.31)

= max
x∈X

P(x), (5.32)

where (5.31) holds due to decomposability. Now consider a max node Ŝ. Since S is an augmented
SPN, Ŝ corresponds to either a sum node S or to a twin sum node S̄. In either case we have an
associated RV ZS with IVs λZS=1, . . . , λZS=K , which are connected directly or via the links to
the sum node. In the MPN, the IVs are replaced by maximizing distributions λ̂ZS=1, . . . , λ̂ZS=K ,
where

λ̂ZS=k(Z) = max
zS∈Z

λ̂ZS=k(zS) =

{
1 if k ∈ Z
0 otherwise.

(5.33)

Assume first that Ŝ corresponds to a twin S̄, having λZS=k as children. Let w̄k = wS̄,λZS=k
. We

have

Ŝ(Z) = max
k∈val(ZS)

w̄k λ̂ZS=k(Z) (5.34)

= max
k∈val(ZS)

w̄k max
zS∈Z

λZS=k(zS)︸ ︷︷ ︸
=0, for k/∈Z, (5.33)

(5.35)

= max
zS∈Z

S̄(zS) (5.36)

i.e. the theorem holds for twin sum nodes. Now assume that Ŝ corresponds to a (non-twin) sum
node S. The children of S are the links PkS = λZS=k ×CkS, k ∈ val(ZS). PkS and CkS correspond to

P̂k
Ŝ

and Ĉk
Ŝ

in Ŝ, respectively. Let wk := wS,PkS
. When we assume that the theorem holds for all

Ĉk
Ŝ
, then it follows that

Ŝ(X) = max
k∈val(ZS)

wk P̂
k
Ŝ
(X) (5.37)

= max
k∈val(ZS)

wk max
x∈X

PkS(x) (5.38)

= max
k∈val(ZS)

wk

(
max

zS∈X [ZS]
λZS=k(zS)

)
︸ ︷︷ ︸

=0, for k/∈X [ZS], (5.33)

(
max

y∈X [sc(CkS)]
CkS(y)

)
(5.39)

= max
k∈X [ZS]

max
y∈X [sc(CkS)]

wk C
k
S(y) (5.40)

= max
x∈X

S(x), (5.41)

i.e. the theorem also holds for S. By induction, the theorem holds for all nodes.

Theorem 5.2 shows that the MPN maximizes the probability of the augmented SPN over X .
The proof also shows how to actually find a maximizing assignment in an augmented SPN,

– 95 –

5 Sum-Product Networks as Latent Variable Models

Algorithm 5 MPE inference in augmented SPNs

1: For all sums S, let ch′(S) := {CkS | k ∈ X [ZS]}
2: Evaluate X in corresponding MPN Ŝ (upwards pass)
3: Initialize Q as empty queue
4: Q ^ root node
5: while Q not empty do
6: N ^ Q
7: if N is a sum node then
8: Q ^ arg max

C∈ch′(N)

{
wN̂,Ĉ Ĉ(X [sc(Ĉ)])

}
9: else if N is a product node then

10: ∀C ∈ ch(N) : Q ^ C
11: else if N is a distribution node then
12: x∗[sc(N)] = arg max

x∈X [sc(N)]
N(x)

13: end if
14: end while
15: return x∗

i.e. how to solve the MPE problem: In (5.30) we see that a product node is maximized by
independently maximizing each of its children. Therefore, finding a maximizing assignment for
the product is reduced to independently finding maximizing assignments for its children. In
(5.35) and (5.38), we see that a (twin) sum node is maximized by maximizing the weighted
maxima of its children. Therefore, finding a maximizing assignment for a (twin) sum node is
reduced to find a child with maximal weighted output and find a maximizing assignment for this
child. Algorithm 5 finds a maximizing state of the augmented SPN using back-tracking. In this
implementation we use a queue Q, where Q ^ N and N ^ Q denote the enqueue and dequeue
operations, respectively. This is the same algorithm as proposed in [79], which was, however,
applied to general SPNs, i.e. SPNs which are not augmented SPNs. Does this still correspond
to an MPE solution? The answer is yes, but we implicitly use deterministic (zero-one) weights
for the twin sum nodes.

To show this, let us modify Algorithm 5, such that it can be applied to an arbitrary (not
augmented) SPN, but returning the MPE solution of the corresponding augmented SPN. Such
an algorithm is also required for practical applications, since we usually do not want to explicitly
generate the augmented SPN. Algorithm 6 is such a modification of Algorithm 5, simulating
the additional structure introduced by augmentation. In steps 2–9 we construct the weights
w̃S,C which are used to compensate the twin max nodes. For a particular S and C, w̃S,C is the
product over the maxima of all twin max nodes which would be connected to the link of C in
the augmented SPN. Thus, w̃S,C is the result of “simulating” the SPN structure corresponding
to the twin sums. By equipping the corresponding MPN with weights wŜ,Ĉ ← w̃S,C×wS,C, every
max node in the MPN gets the same inputs as in the augmented version.

Since the latent RVs corresponding to the sum nodes are not explicitly introduced, we need
to assign their MPE state “by hand”. In step 20, the maximizing state of the latent RV ZS is
assigned. In steps 28–30, the maximizing states of those latent RVs are assigned, which were
not visited during back-tracking.

Algorithm 6 is essentially equivalent to the back-tracking algorithm in [79] when

1. ∀S ∈ S(S) : X [ZS] = val(ZS), i.e. ZS is maximized over all its possible states.

2. The states of the RV corresponding to not visited sum nodes are not assigned, i.e. steps
28–30 are not performed.

3. All w̃S,C ≡ 1, which is the case when all twin weights are deterministic, i.e. for each sum

– 96 –

5.3 Most Probable Explanation and Maximum A-posterior Hypothesis

Algorithm 6 MPE inference

1: For all sums S, let ch′(S) := {CkS | k ∈ X [ZS]}

2: ∀S ∈ S(S) : ∀C ∈ ch(S) : w̃S,C ← 1
3: for all sum nodes S ∈ S(S) do
4: for Sc ∈ Sc(S) do
5: for C ∈ {C ∈ ch(Sc) |S 6∈ desc(C)} do
6: w̃Sc,C ← w̃Sc,C × max

k∈X [ZS]
w̄S,CkS

7: end for
8: end for
9: end for

10: Equip corresponding MPN Ŝ with weights wŜ,Ĉ ← w̃S,C × wS,C

11: Evaluate X in MPN Ŝ (upwards pass)

12: S← S(S)
13: Initialize Q as empty queue
14: Q ^ root node
15: while Q not empty do
16: N ^ Q
17: if N is a sum node then
18: k∗ ← arg max

k : CkN∈ch′(N)

{
wN̂,ĈkS

ĈkS(X [sc(ĈkS)])
}

19: Q← Ck
∗

N

20: z∗S = k∗

21: S← S \ {S}
22: else if N is a product node then
23: ∀C ∈ ch(N) : Q ^ C
24: else if N is a distribution node then
25: x∗[sc(N)] = arg max

x∈X [sc(N)]
N(x)

26: end if
27: end while

28: for S ∈ S do
29: z∗S = arg max

k∈X [ZS]
w̄S,CkS

30: end for

31: return x∗, z∗

node, one twin weight is 1 and all others are 0.

In practice we will rarely care about point 1., since maximizing over all possible states of the
latent RVs is the typical scenario. Also point 2. can typically be neglected, since we are usually
not interested in these “irrelevant” latent RVs. However, point 3. deserves more attention:
First, it is an unnatural choice to use 0-1 weights, i.e. to prefer one state of a latent RV over the
others, even when this latent RV is rendered irrelevant. The maximum entropy principle would
dictate to use uniform parameters for the twin nodes. Second, using 0-1 weights introduces a
bias in MPE inference towards less structured models, which we call the low-depth bias. This is
illustrated in Figure 5.7, which shows an SPN over three RVs X1, X2, X3. The augmented SPN
has two twin sum nodes, corresponding to S2 and S3. When their twin weights are 0-1 weights,

– 97 –

5 Sum-Product Networks as Latent Variable Models

P1 P2 P3

S1

S2 S3

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

Figure 5.7: Low-depth bias using a simple SPN over {X1, X2, X3}. The structure introduced by augmenta-
tion is depicted by small nodes and edges. When 0-1 weights are used as twin weights, the state
of ZS1 corresponding to P1 is preferred over P2 and P3, since their probabilities are “dampened”
by the weights of S2 and S3.

the selection of the state of ZS1 is biased towards the state corresponding to P1, which is a
distribution assuming independence among X1, X2 and X3. This comes from the fact, that the
distributions P2 and P3 are dampened by the weights of S2 and S3, respectively. Therefore, when
using 0-1 weights for twin sum nodes, we introduce a bias in MPE selection towards children
whose sub-SPNs are less deep and less structured. The example in Figure 5.7 can be made
arbitrarily extreme, using more than three RVs: when using 0-1 weights, MPE inference will
prefer distributions assuming independence over finely structured SPNs. Clearly, this behavior
is in general not desired. Using uniform weights for twin sum nodes is much “fairer”, since in this
case P1 gets dampened by S̄2 and S̄3, P2 by S2 and S̄3, and P3 by S̄2 and S3. Uniform weights are
actually the opposite choice to 0-1 weights: the former represent the strongest dampening via
twin weights and therefore actually penalize less structured distributions. Note that regarding
MPE inference, in [79], Section 5, it is noted that:

The best results were obtained using sums on the upward pass and maxes on the
downward pass (i.e., the MPE value of each hidden variable is computed conditioning
on the MPE values of the hidden variables above it and summing out the ones below).

Presumably, the mentioned good results of this method stem from the fact that it does not suffer
from the low-depth bias, since in this case the damping factor of each sum node is 1. However,
this method does in general not deliver an MPE solution of the augmented SPN. We call this
method the sum approximation of MPE. In Section 7.2, we test our results about MPE inference
using toy examples and on the task of face image reconstruction [79].

– 98 –

5.3 Most Probable Explanation and Maximum A-posterior Hypothesis

5.3.2 MPE Inference in General SPNs

We see that MPE inference is accomplished efficiently in augmented SPNs, given that the maxi-
mization of the input distributions is efficient. The question rises if we can also efficiently perform
MPE inference in general SPNs, i.e. SPNs which are not augmented SPNs. This scenario is de-
sired in the task of data completion, where SPNs showed convincing results [31,71,73,79]. Data
completion is essentially the MPE inference scenario described in Section 3.4: We aim to predict
the values of query RVs Xq given the values of observed RVs Xo using the joint distribution
S(Xo,Xq).

However, in [31,71,73,79] (the sum approximation of) MPE inference in augmented SPNs was
used, i.e.

arg max
xq ,z

pS′(x
o,xq, z), (5.42)

and the values of the latent RVs Z discarded. That is, MPE inference

arg max
xq

pS(xo,xq), (5.43)

or equivalently MAP inference

arg max
xq

∑
z

pS′(x
o,xq, z), (5.44)

in the augmented SPN is approximated using MPE inference in the augmented SPN. However,
MPE can be a poor approximation of MAP [68]. Thus we are interested in an MPE solution for
general SPNs.

Unfortunately, this problem is generally NP-hard, even when restricted to binary RVs. This
is shown in following theorem.

Theorem 5.3 (NP-completeness of MPE in SPNs). Consider SPNs over binary RVs X, where
∀X ∈ X : val(X) = {x, x̄}, using λX=x, λX=x̄ as leaves and rational sum weights. The decision
problem

SPN-MPE: Given q ∈ Q, is there an x ∈ val(X) such that S(x) ≥ q?

is NP-complete.

Proof. Membership in NP is immediate. Given an assignment x ∈ val(X), we can decide
S(x) ≥ q in polynomial time, assuming that the SPN is coded adequately, for instance as
topologically sorted list of nodes.

To proof hardness, we reduce MAX-SAT to SPN-MPE. The NP-complete MAX-SAT
problem is defined as [66]:

MAX-SAT: Given a Boolean formula in conjunctive normal form (CNF), is there
a truth assignment which make at least K clauses true?

For ease of discussion, we denote also the Boolean variables as X = {X1, . . . , XN}, with x and x̄
denoting true and false, respectively. Assume M clauses and let Lm be the number of literals
in the the mth clause. We construct an SPN solving MAX-SAT as follows: For each X we
introduce a sum node SX with λX=x and λX=x̄ as children, and wSX ,λX=x

= wSX ,λX=x̄
= 0.5,

i.e. SX represents the uniform distribution over X. For the mth clause we introduce a product
node Pm. For all X which have a positive literal in Cm, we connect λX=x, and for all X which
have a negative literal in Cm, we connect λX=x̄ as child of Pm. For all X which do not have a
literal in Cm, we connect SX as child of Pm. Therefore, Pm(x) = 0.5(N−Lm) for assignments x
which make Cm true, and Pm(x) = 0, otherwise. Furthermore, we introduce a root sum node

– 99 –

5 Sum-Product Networks as Latent Variable Models

S, with all Pm as children and wS,Pm = 2(N−Lm)

Z , with Z =
∑M

m′=1 2(N−Lm′). Therefore, for
assignment x, the mth input to S is

wS,Pm Pm(x) =

{
1
Z when x makes Cm true

0 otherwise.
(5.45)

Therefore, since S sums over (5.45), there exist an assignment x which make at least K clauses
true, if and only if for such an assignment S(x) ≥ K

Z , i.e. our SPN solves the MAX-SAT
problem.

Finally, we have to show that the reduction works in polynomial time. Without loss of
generality, we assume that each variable appears in at least one clause. Therefore, generating
λX=x, λX=x̄ and SX for all X works in linear time. For the mth clause, we generate a Pm. Since
each clause has to be mentioned in the input, this also works in linear time. S is generated in

constant time. The weights wS,Pm = 2(N−Lm)

Z , with Z =
∑M

m′=1 2(N−Lm′) grow exponentially
with N , i.e. their numeric representation grows linearly with N and can be easily generated
using bit-shifts. Therefore, the reduction works in polynomial time.

– 100 –

Foundations of Sum-Product Networks for Probabilistic Modeling

6
Learning Sum-Product Networks

As discussed in the last chapters, SPNs are a promising avenue for probabilistic modeling. Their
main advantage is that many inference scenarios are stated as simple network passes. Under this
perspective, SPNs readily represent a probabilistic model and a corresponding inference machine
of this model. Using the latent RV interpretation of Chapter 5, we can always think of an SPN
as a BN with a rich and potentially deep latent RV structure, which exhibits a high degree of
structure in its CPDs. This structure can in principle capture complex dependencies among the
model RVs.

The model power of SPNs and their conceptually simple and usually feasible inference mech-
anisms are the most appealing advantages of SPNs. Moreover, the fact that inference cost is
directly related with the network size introduces inference-aware learning. On the one hand, it
is easy to explicitly incorporate the inference cost during learning, as in [64, 72]. On the other
hand, SPNs also naturally enforce inference-aware learning, by the mere fact that we have to
hold some representation of SPNs in computer memory. Furthermore, a learning algorithm has
to manipulate this representation typically many times, so that, informally stated, the “effort
of learning” usually upper-bounds the “effort of inference” in SPNs. Thus, when the cost of
learning an SPN is reasonable to us, we will probably also get a model with reasonable inference
cost. On the other hand, one can easily design and represent a classical PGM where inference
is intractable.

Their flexible definition leaves open how to learn SPNs. There have been proposed several
general-purpose approaches to learn SPNs [31, 40, 71, 84], as well as domain-specific approaches
[4, 40, 73, 79]. In this chapter, we collect and discuss some available approaches to learning.
Similar as in classical PGMs it sometimes make sense to distinguish between structure and
parameter learning. For instance, the algorithm used in [79] predefines a general structure
based on locality in images; the final structure results from parameter learning with enforced
sparseness. Furthermore, many classical PGMs can be readily represented as SPNs. We discuss
some well-known examples in Section 6.1. Using these examples as building templates, one can
sometimes design certain SPNs by hand, or in a semi-automatic manner.

For a given SPN structure, we need to learn the SPN parameters, i.e. the sum weights and pos-
sibly the parameters of the input distributions. As discussed in Section 3.3, the basic generative
approach is to maximize the data likelihood. A basic approach using projected gradient ascend
is discussed in Section 6.2. On the other hand, the latent RV interpretation of sum nodes opens
the door for the EM algorithm. This was already considered in [79], where the provided EM
update, however, is incorrect. A corrected EM-algorithm for SPNs is presented in Section 6.3.
Both, gradient ascend and the EM-algorithm can be applied for maximizing likelihood. Since

– 101 –

6 Learning Sum-Product Networks

SPNs can be seen as potentially deep hierarchical mixture models, they will generally yield local
optima only. An interesting question is, if there is a sub-class of SPNs where ML parameter
learning is easy. In Section 6.4 we discuss such a class, which we call selective SPNs. Section 6.5
shortly review some approaches to SPN structure learning.

6.1 Hall of Fame: Some Classical Probabilistic Models as SPNs

The simplest probabilistic model assumes independence among a set of RVs X. An example of
this distribution over three binary RVs X,Y, Z, together with the corresponding BN, is shown in
Figure 6.1. Here the marginal distributions are computed by sums over the IVs of the respective
RV. The marginals are further the children of a single product, yielding the product of marginals.

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

(a)

X

Y Z

(b)

Figure 6.1: Independence among RVs. (a): SPN over three independent binary RVs X,Y, Z, where the joint
distribution factorizes into product of marginals. (b): corresponding BN with no edges.

For finite-state RVs, it is also rather easy to derive SPNs for the three canonical examples of
BNs discussed for d-separation, cf. Section 3.1.2. For the diverging connection, where two RV Y
and Z have a common parent X, we use the insight that Y and Z are conditionally independent
when X is set to a particular value. We can use a sum node whose weights represent the
marginal distribution over X, having one child per state of X. For a particular state, we can
re-use the pattern of Figure 6.1 designing two sub-SPNs assuming independence among Y and
Z. These sub-SPNs are switched on/off by the corresponding IV of X. An example of an SPN
representing a diverging connection is shown in Figure 6.2.

Similarly, we can derive an SPN representing a serial connection, as shown in Figure 6.3. As
in Figure 6.2 we use a sum node to represent the marginal distribution over X and use the IVs
corresponding to X to switch on/off sub-SPNs rooted at S1 and S2, representing conditional
distributions over Y and Z, depending on X’s states. Note that since S1 and S2 share their
children, the distribution over Z depends merely on the state of Y , when set to a particular value,
yielding the conditional independence assertion X ⊥⊥ Z |Y . By duplicating the shared sub-
SPNs in Figure 6.3, we yield a SPN representing a fully connected BN, i.e. having no conditional
independencies, in Figure 6.4.

However, it is not possible to directly reflect a converging connection in the SPN structure. It
can be implemented in the SPN in Figure 6.4(a) by imposing equality constraints on the weights
associated with edges which are connected by dashed lines: In this case the distribution of Y
does not depend on the state of X. It is not surprising that a converging connection can not be
reflected in the SPN structure, since an SPN is a general purpose inference machine, similar as
the junction tree algorithm, cf. Section 3.4, which also moralizes converging connections in BNs
as a first step. To exploit a-priori independence of X and Y , one would have to use specialized
inference methods assuming that Z, or any of its descendant, is never observed.

– 102 –

6.1 Hall of Fame: Some Classical Probabilistic Models as SPNs

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

(a)

X

Z Y

(b)

Figure 6.2: Diverging connection. (a): SPN over three binary RVs X,Y, Z, where Y and Z depend directly
on X. (b): corresponding BN.

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

S1 S2

(a)

X

Z Y

(b)

Figure 6.3: Serial connection. (a): SPN over three binary RVs X,Y, Z, where Y depends directly on X and
Z depends directly on Y . (b): corresponding BN.

Using these canonical BN structures as templates, it is easy to find SPNs for further classical
models. By extending the serial connection in Figure 6.3 to a Markov chain over state RVs
Y t for time t, and attaching state-dependent SPNs over Xt, we yield a hidden Markov model
(HMM), shown in Figure 6.5.

Similarly, we can design a Bayes classifier whose class conditional models over features X are
represented by SPNs, as shown in Figure 6.6. Naive Bayes, a special case of the Bayes classifier
assuming independence among the features when the class is observed, is shown in Figure 6.7.
Furthermore, as already mentioned, a single sum node represents a mixture distribution, shown
in Figure 6.8(a). When the input distributions are Gaussian, and assuming independence for
each component, Figure 6.8(b) shows a Gaussian mixture model over 4 RVs and having three
components, using diagonal covariance matrices.

– 103 –

6 Learning Sum-Product Networks

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

(a)

X

X

Z

Z

Y

Y

(b)

Figure 6.4: Fully connected network. (a): SPN over three binary RVs X,Y, Z, representing the fully con-
nected BN shown in (b), top. When sum-weights associated with edges connected by dashed lines
are constrained to be equal, the SPN represents the converging connection shown in (b), bottom.

︸ ︷︷ ︸
λY 1=1 λY 1=2

S1,2 S1,1

︸ ︷︷ ︸
λY 2=1 λY 2=2

S2,2 S2,1

︸ ︷︷ ︸
λY 3=1 λY 3=2

S3,2 S3,1

(a)

Y 1 Y 2 Y 3

X1 X2 X3

(b)

Figure 6.5: HMM with hidden states Y t and observables Xt for time t. The SPN shown in (a) represents the
HMM shown in (b), here assuming |val(Yt)| = 2. St,k is the SPN representing the conditional
distribution over observables Xt, where according to the definition of HMMs, for all t, St,k
represent the same distribution.

– 104 –

6.1 Hall of Fame: Some Classical Probabilistic Models as SPNs

︸ ︷︷ ︸
λY=1 λY=2 λY=3

S1 S2 S3

(a)

Y

X

(b)

Figure 6.6: Bayes classifier with class RV Y and features X. The SPN shown in (a) represents the Bayes
classifier shown in (b), where the number of classes is |val(Y)| = 3. Sk is the SPN representing
the conditional distribution over X for class k.

︸ ︷︷ ︸
λY=1 λY=2 λY=3

︸ ︷︷ ︸
DX1,1 DX2,1 DX3,1

︸ ︷︷ ︸
DX1,2 DX2,2 DX3,2

︸ ︷︷ ︸
DX1,3 DX2,3 DX3,3

(a)

Y

X1 X2 X3

(b)

Figure 6.7: Naive Bayes classifier with class RV Y and features X. The SPN shown in (a) represents
the Naive Bayes classifier shown in (b), where the number of classes is |val(Y)| = 3 and the
observables are X1, X2, X3.

DX,1 DX,2 DX,3

(a)

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

︸ ︷︷ ︸
X4

(b)

Figure 6.8: Mixture model. (a): SPN with a single sum node, representing a mixture of distributions
DX,1,DX,2,DX,3 over X. (b): Mixture model, for each component assuming independence among
X = {X1, X2, X3, X3}.

– 105 –

6 Learning Sum-Product Networks

6.2 ML Parameter Learning using Gradient Methods

As discussed in Section 4.3.2, finding derivatives in SPNs is easily accomplished using backprop-
agation. Assume a fixed structure G for an SPN over X and a data set D = {x(1), . . . ,x(L)} of
L i.i.d. samples. The task is to maximize the log-likelihood

max logL =
L∑
l=1

logS(x(l)) (6.1)

s.t.
∑

C∈ch(S)

wS,C = 1, ∀S (6.2)

wS,C ≥ 0, ∀S,C ∈ ch(S) (6.3)

For any node N, the derivative of the log-likelihood of the lth sample is

∂ logS
∂N

(x(l)) =
1

S(x(l))

∂S
∂N

(x(l)). (6.4)

The derivative ∂S
∂N of the log-likelihood of the lth sample can be found by backpropagation,

cf. Section 4.3.2. The derivative with respect to the sum weights is given as

∂ logS
∂wS,C

(x(l)) =
∂ logS
∂S

(x(l))C(x(l)) =
1

S(x(l))

∂S
∂S

(x(l))C(x(l)), (6.5)

and the derivative of the log-likelihood (6.1) is given by

∂ logL
∂wS,C

=
L∑
l=1

∂ logS
∂wS,C

(x(l)). (6.6)

Steepest ascend updates are given as

w ← w + η∇ logL, (6.7)

where η is a suitable step-size.

An application of (6.7) will generally not yield locally normalized parameters, i.e. violate
constraints (6.2), (6.3). A common way to treat this, is to use projected gradient methods, i.e. to
project the parameters w back to the feasible set after each gradient step. An efficient algorithm
for projecting on the feasible set (6.2), (6.3) is given in [33].

6.3 The EM Algorithm for Sum Weights

The latent RV interpretation of SPNs allows us to use the EM algorithm [30,65] for learning the
SPN parameters. Consider an SPN S over RVs X with fixed structure and its augmented SPN
S ′. The augmented SPN represents the same distribution over X when all latent RVs, i.e. the
RV associated with sum nodes, are marginalized. The twin weights are fixed and not optimized.
Therefore, in both the original and the augmented SPN the same parameters w are subject to
optimization. Since EM is a general method of learning ML parameters when some RVs are
unobserved, the augmented SPN is amenable for EM.

This approach was already pointed out in [79], where it was suggested that for RV associated

– 106 –

6.3 The EM Algorithm for Sum Weights

with S, the marginal posteriors is given as8

p(ZS = k | e) ∝ wS,CkS

∂S(e)

∂S(e)
, (6.8)

which should be used for EM updates. However, note (6.8) can not be the claimed marginal

posterior, since ∂S(e)
∂S(e) is constant for all k, yielding

p(ZS = k | e) ∝ wS,CkS
, (6.9)

i.e. “prior wS,CkS
equals posterior after observing evidence e”. Furthermore, for EM we do not

need posteriors p(ZS = k | e), but rather posteriors of ZS and its parents. Therefore, the EM
method illustrated in [79] will not work; we derive EM for the SPN sum weights in the following.

Assume a data set D = {x(1), . . . ,x(L)} of L i.i.d. samples, i.e. we have complete evidence
about all model RVs X. Let Z = ZS(S) be the latent RVs, for which we have no evidence. In
this case, an EM update is given as, cf. Section 3.3,

wt+1 = arg max
w

Q(w,wt) (6.10)

Q(w,wt) =

L∑
l=1

∑
z∈val(Z)

S(z |x(l);wt) logS(z,x(l);w). (6.11)

To solve the EM iteration, we can use the BN interpretation of augmented SPNs introduced
in Section 5.2: Consider a certain sum node S and recall that the latent RV ZS has Za :=
ZancS(S)\{S} as parents in the corresponding BN. Furthermore, recall that the state space val(Za)
is two-partitioned into Z and Z̄ and the CPT of ZS is

p(ZS = k |Za) =

{
wS,CkS

if Za ∈ Z
w̄S,CkS

if Za ∈ Z̄
(6.12)

As pointed out, explicitly storing this extremely redundant CPT would be wasteful, so we
introduced the binary switching parents YS which render ZS independent from Za, yielding the
CPT

p(ZS = k |YS) =

{
wS,CkS

if YS = yS

w̄S,CkS
if YS = yS̄

(6.13)

In the BN interpretation, since Y is deterministic with respect to Za, the CPT of Y is given as

p(YS = yS |Za) =

{
1 if Za ∈ Z
0 if Za ∈ Z̄

p(YS = yS̄ |Za) =

{
0 if Za ∈ Z
1 if Za ∈ Z̄

(6.14)

and is not subject to learning.
As pointed out in Section 3.3, for BNs over finite-state RVs, the EM algorithm takes a simple

form: In the E-step, we compute the expected sufficient statistics

n̄Xx|xpa
=

L∑
1=l

pB(X,paX |x(l); Θt). (6.15)

8 In (6.8) we use the symbol e to symbolize evidence as in [79].

– 107 –

6 Learning Sum-Product Networks

In the M-step we use the expected sufficient statistics for parameter updates as in (3.46). Thus,
all we require for updating the weights of S are the posteriors

S ′(ZS, YS |x(l)), (6.16)

where S ′ = aug(S). Moreover, since we keep the twin weights fixed, we just need the posteriors
S ′(ZS, YS = yS |x(l);w).

To compute these we apply the differential approach. First, we evaluate the network for
sample x(l). Using back-propagation, we find the derivative

∂S ′

∂λYS=yS

=
∂S ′

∂P
S, (6.17)

where P is the common product parent of S and λYS=yS in the augmented SPN (see Figure 5.6(b)).

Note that ∂S′
∂P equals ∂S

∂S in the original SPN and therefore

S(YS = yS,x
(l)) =

∂S
∂S

(x(l))S(x(l)) (6.18)

=
∂S
∂S

(x(l))
K∑
k=1

λZS=k wS,CkS
CkS(x(l)) (6.19)

Equation (6.19) is an extended network polynomial evaluated for x(l) and differentiated after
λYS=yS . Differentiating it a second time after λZS=k yields

S(ZS = k, YS = yS,x
(l)) =

∂S
∂S

(x(l))CkS(x(l))wS,CkS
, (6.20)

delivering the required posteriors

S(ZS = k, YS = yS |x(l)) =
1

S(x(l))

∂S
∂S

(x(l))CkS(x(l))wS,CkS
. (6.21)

Although we derived (6.21) using the augmented SPN, the necessary quantities can be obtained
in the original SPN. The EM algorithm for SPN weights is shown in Algorithm 7. Here nS,C
are accumulator variables for the expected counts for sum-weights wS,C. An important property
of the EM algorithm is monotonicity, i.e. that log-likelihood is non-decreasing in each iteration.
In Section 7.1 we apply Algorithm 7 to toy data, demonstrating its monotonicity.

Algorithm 7 EM for SPN Weights

1: Initialize w
2: while not converged do
3: ∀S ∈ S, ∀C ∈ ch(S) : nS,C ← 0
4: for l = 1 . . . L do
5: Input x(l) to S
6: Evaluate S (upward-pass)
7: Backprop S (backward-pass)
8: ∀S ∈ S,∀C ∈ ch(S) : nS,C ← nS,C + 1

S
∂S
∂S CwS,C

9: end for
10: ∀S ∈ S, ∀C ∈ ch(S) : wS,C ←

nS,C∑
C′∈ch(S) nS,C′

11: end while

So far we considered complete evidence, i.e. complete data cases x(l). Algorithm 7 is easily
adapted to partial evidence, e.g. when we have samples with missing values. To this end split X

– 108 –

6.4 Selective Sum-Product Networks

according the lth data case into Y(l), Y(l)′ , where for Y(l)′ we have complete evidence y(l)′ and
for Y(l) we have partial evidence Y(l). In step 5, we simply input the evidence y(l)′ ,Y(l) to the
SPN, as illustrated in Section 4.4, using inference scenario (2.). The other steps of Algorithm 7
remain the same.

Both projected gradient and EM aim to maximize the data-likelihood. Since SPNs can be
seen as deep hierarchical latent RV models, the log-likelihood is generally non-convex, i.e. we can
only expect to find a local maximum. As discussed in Section 3.3, for finite-state BNs we can
obtain globally optimal ML parameters in closed form. Furthermore, as discussed in Section 6.1,
SPNs can represent many classical models, as for instance finite-state BNs. Since the weights
of these SPNs directly correspond to the BN parameters, there must exist a class of SPNs for
which ML parameter learning is easy. In the following section, we discuss such a class.

6.4 Selective Sum-Product Networks

Since all nodes in an SPN represent distributions, it is natural to define the support sup(N),
i.e. the largest subset of val(sc(N)) such that SN has positive output for each element in this set.
The support of a node depends on the structure and the parameters of the SPN. We want to
introduce a modified notion of support in SPNs which does not depend on its parametrization.
It is easy to see that if y ∈ sup(N) for some parametrization w, then also y ∈ sup(N) for some
other parametrization w′ with strictly positive parameters, e.g. uniform parameters for all sum
nodes. Therefore, we define the inherent support of N, denoted as isup(N), as the support when
uniform parameters are used for all sum nodes. The inherent support depends only on the used
input distributions and the SPN structure.

We define selective sum nodes and selective SPNs as follows.

Definition 6.1. A sum node S is selective if

isup(C′) ∩ isup(C′′) = ∅, ∀C′,C′′ ∈ ch(S),C′ 6= C′′. (6.22)

An SPN is selective if every sum node in the SPN is selective.

This notion was actually introduced in the context of arithmetic circuits [27, 64] under the
term determinism. However, the term “deterministic SPN” is somewhat misleading, since it
suggests that these SPNs partly model deterministic relations among the model RVs. This
is in general not the case, so we deliberately use the term selective SPN here. In words, an
SPN is selective when for each possible input and each possible parametrization, each sum node
has at most one child with positive output. When using the latent RV interpretation of sum
nodes (cf. Chapter 5), we already see that selective SPNs allow us to obtain closed form ML
parameters: Since for an arbitrary sample and for each sum node at most one child is non-zero,
the state of the corresponding latent RVs is deterministic with respect to the model RVs. Thus,
in selective SPNs, the latent RVs are actually observed, which allows us to obtain closed form
ML parameters.

In [64], a less general notion of selectivity (actually determinism) was used, which we call
regular selectivity. To define this notion, recall that DX is the set of distributions DY with
X ∈ Y, cf. Section 4.4. Let IX(N) ⊆ {1, . . . , |DX |} denote the indices of distribution nodes
reachable by N, i.e. DX,k ∈ desc(N)⇔ k ∈ IX(N).

Definition 6.2. An SPN S is regular selective if the following two conditions are fulfilled:

1. The distribution nodes have non-overlapping support, i.e. ∀X ∈ X : ∀i 6= j : sup(DX,i) ∩
sup(DX,j) = ∅.

– 109 –

6 Learning Sum-Product Networks

2. Each sum node S is regular selective with respect to some X ∈ sc(S), denoted as S X
and defined as ∀C′,C′′ ∈ ch(S),C′ 6= C′′:

a) IX(C′) ∩ IX(C′′) = ∅

b) ∀Y ∈ sc(S), Y 6= X : IY (C′) = IY (C′′)

Regular selectivity implies selectivity but not vice versa. Selectivity or regular selectivity is,
besides completeness and decomposability, a further constraint on the SPN structure. This raises
the question which distributions can be modeled with selective SPNs. In the next section, we
discuss several examples of regular selective SPNs and show that they are a rather flexible model
class. Selectivity allows us to find globally optimal ML parameters in closed form, as discussed
in Section 6.4.2. Furthermore, the log-likelihood function can be evaluated efficiently, since it
decomposes into a sum of terms associated with sum nodes. This is useful when considering
structure learning of selective SPNs [72].

6.4.1 Regular Selective SPNs

The SPN representations of the canonical examples of BNs over three binary RVs, shown in
Figures 6.1, 6.2, 6.3 and 6.4, are example of regular selective SPNs. Therefore, regular selec-
tive SPNs can represent any distribution over finite-state RVs, since BNs can represent any
distributions over finite-state RVs.

However, regular selective SPNs are capable to represent more advanced models than BNs. In
Figure 6.9 we see a regular selective SPN representing a BN with context-specific independence
(CSI): When X = x the conditional distribution is a BN Y → Z; for X = x̄, the conditional
distribution is a product of marginals. Therefore, Y and Z are independent in the context
X = x̄. BNs with CSI are not new and discussed e.g. in [10, 19]. What is remarkable, however,
is that when represented as regular selective SPNs, inference for BNs with CSI is treated exactly
the same way as for classic BNs. Typically, classic inference methods for BNs, like the junction
tree algorithm, can not be automatically used for BNs with CSI.

Furthermore, regular selective SPNs can represent nested multi-nets. Figure 6.10 shows a
regular selective SPN which uses a BN Y → Z for the context X = x and a BN Y ← Z for the
context X = x̄. Since the network structure of Y and Z depend on the state of X, this SPN
represents a multi-net. When considering more than 3 variables, the context-specific models are
not restricted to be BNs but can themselves be multi-nets. In that way one can build more or
less arbitrarily nested multi-nets. Note that BNs with CSI are actually a special case of nested
multi-nets. The concept of nested multi-nets is potentially powerful and can be advantageous
to condition on different variables in different contexts.

As discussed in Chapter 5, we can associate a latent RV ZS with each sum node S. In
the context of selective SPNs, the states of ZS represent events of the form sc(S) ∈ isup(C).
Therefore, the latent RVs are functions of model RVs and thus observed, when all model RVs
are observed. In particular for regular selective SPNs, they represent a partition of (a subset of)
the state space of a single model RV. For binary RVs, as in the examples considered so far, there
is only one partition of the state space and the RVs associated with sum nodes simply ’imitate’
the binary RVs. In Figure 6.11 we see an example of a regular selective SPN containing an RV
X with three states. The topmost sum node is regular selective with respect to X and its two
children represent the events X ∈ {x1} and X ∈ {x2, x3}. The next sum node represents a
partition of the two states of RV Y . Finally, in the branch X ∈ {x2, x3}, Y = y2 we find a sum
node which is again regular selective with respect to X and further splits the two states x2 and
x3. This example shows that regular selective SPNs can be interpreted like a CPT organized as
decision graph [10,19]. However, in the classical work on CPTs represented as decision graphs,
each RV is allowed to appear only once in the diagram.

– 110 –

6.4 Selective Sum-Product Networks

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

(a)

X

Y

Z

Y

Z

X
=
x̄

X
=
x

(b)

Figure 6.9: Regular selective SPN with CSI. (a): Regular selective SPN over RVs X, Y , Z, representing
the BN with CSI in (b). When X = x̄, the conditional distribution of Y , Z is a product of
marginals, i.e. Y and Z are independent in the context X = x̄. When X = x, the conditional
distribution of Y , Z corresponds to a BN Y → Z.

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

(a)

X

Y

Z

Y

Z

X
=
x̄

X
=
x

(b)

Figure 6.10: Regular selective SPN representing a multi-net. (a): Regular selective SPN over RVs X, Y ,
Z, representing the multi-net in (b). When X = x, the conditional distribution over Y , Z is a
BN Y → Z. When X = x̄, the conditional distribution over Y , Z is a BN Z → Y .

– 111 –

6 Learning Sum-Product Networks

︸ ︷︷ ︸
λX=x1

λX=x2
λX=x3

︸ ︷︷ ︸
λY=y1

λY=y2

︸ ︷︷ ︸
λZ=z1

λZ=z2

 X
x1 {x2, x3}

 Y
y1 y2

 X
x2 x3

Figure 6.11: Regular selective SPN whose sum nodes represent a partition of the state space of the model
RVs. The top-most sum node is regular selective with respect to X, and its children represent
the partition {x1} and {x2, x3} of the state space of X. Further below we see another sum
node, splitting {x2, x3} further into {x2} and {x3}.

Furthermore, regular selective SPNs naturally allow to share components among different
parts of the network. In Figure 6.12 we see a simple example adapted from Figure 6.9 where the
two conditional models over {Y,Z} share a sum representing a marginal over Z. This model uses
one marginal over Z for the context X = x, Y = y and another marginal for all other contexts.
This implements a form of parameter tying, a technique which is widely used in classical PGMs,
e.g. for HMM in automatic speech recognition.

Selective SPNs are highly related to probabilistic decision graphs (PDGs) [46]. The main
difference is that PDGs, similar as BNs, are restricted to a fixed variable order. Probabilistic
Sentential Decision Diagrams (PSDD) [50] are another concept related to selective SPNs.

We see that regular selective SPNs, although being a restricted class of SPNs, still generalize
BNs over finite-state RVs. We want to point out again to the fact that the concepts presented
here – CSI, nested multi-nets, decision diagrams with multiple RV appearance, and component
sharing – do not need any extra treatment in the inference phase, but are naturally treated
within the SPN framework. The examples discussed in this section are all SPNs over finite-state
SPNs and used IVs as input distributions. Similarly, for continuous RVs we can use any in-
put distributions with non-overlapping support, e.g. uniform distributions over non-overlapping
intervals.

– 112 –

6.4 Selective Sum-Product Networks

︸ ︷︷ ︸
λX=x λX=x̄

︸ ︷︷ ︸
λY=y λY=ȳ

︸ ︷︷ ︸
λZ=z λZ=z̄

Figure 6.12: Regular selective SPN with shared parts. This SPN is an adapted version from Figure 6.9,
where the conditional models for x and x̄ share a sum node representing a marginal over Z.

6.4.2 Maximum Likelihood Parameters

We saw that regular selective SPNs can represent BNs over finite-state RVs. In this case, we
can easily obtain closed form ML parameters, cf. Section 3.3. However, as discussed in the last
section, regular selective SPNs can represent more advanced models than BNs. In these cases,
it is not clear how to obtain ML parameters. In this section we derive a closed form solution for
the ML parameters of the more general class of selective SPNs. It turns out that ML parameters
are obtained in very similar way as for BNs over finite-state RVs.

Assume that we have a given selective SPN structure G and a set of completely observed
i.i.d. samples D = {x(1), . . . ,x(L)}. We wish to maximize the likelihood:

L(D;w) =
L∏
l=1

S(x(l)). (6.23)

We assume that there exists a set of SPN parameters w such that S(x(l)) > 0, l = 1, . . . , L.
Otherwise, the likelihood would be zero for all parameter sets, i.e. every parameter set would
be optimal. The following definitions will help us to derive the ML parameters.

Definition 6.3. Let S be an SPN and N be a node in S. A calculation path Πx(N) for node
N and sample x is a path Πx(N) = (N1, . . . ,NJ), where N1 is the root node and NJ = N, with
Nj(x) > 0, j = 1, . . . , J .

Definition 6.4. Let S be a complete, decomposable and selective SPN. The calculation tree Tx
for sample x is the SPN induced by all nodes for which there exists a calculation path.

It is easy to see that for each sample x we have S(x) = Tx(x). The following lemma will help
us in our discussion.

Lemma 6.1. For each complete, decomposable and selective SPN S and each sample x, Tx is a
tree.

– 113 –

6 Learning Sum-Product Networks

Calculation trees allow us to write the probability of the lth sample as

S(x(l)) =

 ∏
S∈S(S)

∏
C∈ch(S)

w
u(l,S,C)
S,C

∏
X∈X

|DX |∏
k=1

D
u(l,X,k)
X,k

 , (6.24)

where u(l,S,C) := 1(S ∈ Tx(l) ∧ C ∈ Tx(l)) and u(l,X, k) := 1(DX,k ∈ Tx(l)). Since the sample
probability factorizes over sum nodes, sum children and distribution nodes, the likelihood (6.23)
can be written as

L(D;w) =

 ∏
S∈S(S)

∏
C∈ch(S)

w
n(S,C)
S,C

∏
X∈X

|DX |∏
k=1

D
n(X,k)
X,k

 , (6.25)

where n(S,C) =
∑L

l=1 u(l,S,C) and n(X, k) =
∑L

l=1 u(l,X, k). Using the results for ML param-
eter estimation in BNs (cf. (3.46)) [52,77], the ML parameters are given as

wS,C =

n(S,C)
n(S) if n(S) 6= 0

1
|ch(S)| otherwise,

(6.26)

where n(S) =
∑

C′∈ch(S) n(S,C′). Furthermore, one can apply Laplace smoothing to the ML
solution and also incorporate a Dirichlet prior on the parameters.

6.5 Structure Learning

As discussed, for a fixed SPN structure we can use gradient methods and the EM-algorithm for
ML parameters learning. Furthermore, in the case of selective SPNs, we can obtain closed form
ML parameters. Obtaining a suitable SPN structure is more delicate. Here we summarize some
approaches proposed in literature so far.

In [79] it was proposed to define a general SPN structure exploiting domain knowledge and to
cast effective structure learning as sparse parameter learning. In particular, an architecture for
image data was proposed, or more generally a structure for data arranged in rectangles. This
architecture uses explicit knowledge about locality or neighborhood of RVs.

First, it assigns a single sum node to the overall image, which is the root of the SPN and
represents a distribution over images. Then the overall image is split into all possible partitions of
two sub-rectangles along the two dimensions. Every sub-rectangle is equipped with several sum
nodes, representing distributions over the sub-rectangle. This process is recursively repeated,
splitting each (sub-)rectangle into two sub-rectangles in all possible ways. All pairs of sum nodes
from two sub-rectangles are connected as children of a product node, which in turn is connected
as child of all sum nodes of the parent rectangle. Since this structure grows quickly with the
size of the image – for square-shaped images of length l the number of sub-rectangles is

∑
l l

3

[1] – it was proposed to split rectangles in a coarser way, i.e. iterate along each dimension with
a larger step size. We denote this SPN architecture as Poon-Domingos (PD) architecture.

Dennis and Ventura [31] proposed to generalize the PD architecture to be applicable to sets
of RVs which are not naturally arranged in rectangles and which do not have a natural notion
of locality. To this end, they organized sets of RVs, called regions in this context, into pairwise
splits of sub-regions. This regions are not necessarily arranged as rectangles and are found in
a data driven way by finding a k-means clustering of regions, i.e. applying k-means on “the
transposed data-matrix”. We call this approach the Dennis-Venture (DV) architecture.

In [71] it was noted that the DV architecture, although not requiring locality of RVs, still
implicitly assumes that RVs are dependent by positive correlation. A greedy learning approach

– 114 –

6.5 Structure Learning

was proposed, merging regions of RVs from bottom-up instead of splitting regions from top-down
as proposed in [31, 79]. Here the merging process is guided by independence tests and thus not
relying on positive correlation of the RVs.

In [40] a top-down scheme for learning SPN structures was proposed. They applied prob-
abilistic clustering on data samples corresponding to sum nodes and clustering on RVs using
independence tests, corresponding to product nodes. Thus, this approach also does not rely on
positive correlation of RVs.

In [84], the approach in [40] was refined in order to use input distributions over larger scopes.
These input distributions are MNs represented as ACs [63].

In [72], a greedy hill-climbing algorithm was proposed to learn tree-shaped regular selective
SPNs.

– 115 –

Foundations of Sum-Product Networks for Probabilistic Modeling

7
Experiments and Applications

7.1 EM Algorithm

In Section 6.3 we derived the EM algorithm for sum-weights in SPNs (Algorithm 7). A correctly
derived EM algorithm must exhibit monotonicity, i.e. the log-likelihood must be non-decreasing
in each iteration. To demonstrate monotonicity, we applied Algorithm 7 in a toy example. We
consider sets of 9, 16 and 25 RVs, and construct SPNs using the PD architecture (cf. Section 6.5)
by arranging the RVs in a 3×3, 4×4 and 5×5 array, respectively. We use K = 5 sum nodes per
rectangle and G = 10 Gaussian PDFs as input distributions, whose means are set by histogram
quantiles and whose standard deviations are uniformly set to 1 [31,71,79]. For each of the used
SPN structures, the number of sum nodes, sum-weights and product nodes, and the length of
the longest path from the root node to some input distribution is shown in Table 7.1. As data we

Table 7.1: Statistics of toy SPN structures.

structure # sums #sum-weights #products longest path

3× 3 131 11600 2400 9
4× 4 416 39400 8000 10
5× 5 996 104200 21000 10

used 9, 16 and 25 randomly selected PCA features (among the first 100 features) of 1000 samples
from the MNIST data set, normalized to zero mean and unit variance. Furthermore, we added
white Gaussian noise with standard deviation 0.1. We initialized the sum-weights randomly
using a Dirichlet distributions with uniform parameters α = 1, i.e. the uniform distribution on
the standard simplex. For each structure, we executed the EM algorithm for 100 iterations and
performed 10 random restarts, i.e. in total we ran the EM algorithm 30 times. Figure 7.1 shows
the log-likelihood of these runs, normalized by the number of RVs. We see that Algorithm 7
indeed monotonously increases the training likelihood – in this experiment, the minimal increase
of log-likelihood within one iteration was 0.2.

– 117 –

7 Experiments and Applications

0 10 20 30 40 50 60 70 80 90 100
−1520

−1510

−1500

−1490

−1480

−1470

−1460

−1450

−1440

−1430

−1420

3 × 3

4 × 4

5 × 5

Figure 7.1: Log-likelihood as a function of the EM iteration number.

7.2 MPE Inference

In Section 5.3, we discussed MPE inference and showed that Algorithm 5 delivers an MPE
solution for augmented SPNs. We further proposed Algorithm 6 which can be applied to the
original SPN but delivers an MPE solution for the augmented SPN. As a sanity check, we
constructed a toy SPN over 4 binary RVs and the corresponding augmented SPN, where MPE
inference by exhaustive enumeration is tractable. To define the structure of our toy SPN, we
arranged the 4 RVs as a 2×2 grid and used the PD architecture using 2 sum nodes per rectangle
(cf. Section 6.5). This structure is shown in Figure 7.2(a). However, since this SPN regularly
structured, it does not fall prey to the low-depth bias and standard max-backtracking yields the
same solution as Algorithm 6. In order to demonstrate the low-depth bias, we add an additional
product node as child of the sum root node, whose children are IVs for each of the 4 RVs. The
resulting structure is shown in Figure 7.2(b).

We equipped this toy SPN with random sum-weights, drawn from a Dirichlet distribution
with uniform α-parameter, where α ∈ {0.5, 1, 2}. Then we explicitly constructed the augmented
SPN using Algorithm 3, where we used uniform weights for the twin sums. The augmented SPN
contains 9 additional latent RVs, 8 with 4 states and 1 with 9 states.

We performed MPE inference by exhaustive enumeration in the augmented SPN, i.e. comput-
ing the SPN distribution for all 9437184 possible inputs and selecting the max. We applied the
back-tracking Algorithm 5 in the augmented SPN (denoted as BACK-AUG) and Algorithm 6
in the original SPN (denoted as BACK-MPE). We also executed Algorithm 6 in the original
SPN, but with correction weights constantly set to 1, which corresponds to the back-tracking
algorithm in [79] (denoted as BACK-ORIG). Furthermore, we performed the sum approxima-
tion of MPE (denoted as SUM, cf. Section 5.3). For each α, we repeated this experiment 100
times. Table 7.2 shows the average/maximal deviation in log-probability from the exhaustive
MPE solution. A deviation of 0 means that the algorithm delivered an optimal solution, while
a negative value indicates a sub-optimal solution. We see that BACK-AUG and BACK-MPE
always delivered a correct MPE solution in this toy example, while BACK-ORIG and SUM do
not guarantee an optimal solution. The minimum deviation was 0 for all algorithms in this
example, i.e. all algorithms delivered a correct MPE solutions in some of the 100 runs.

Table 7.2: Results for MPE inference in toy SPN, comparing to exhaustive MPE solution.

BACK-AUG BACK-MPE BACK-ORIG SUM

α = 0.5 0.000/0.000 0.000/0.000 -0.533/-2.763 -0.183/-2.072

α = 1 0.000/0.000 0.000/0.000 -0.951/-2.680 -0.197/-1.675

α = 2 0.000/0.000 0.000/0.000 -1.415/-2.755 -0.168/-1.303

– 118 –

7.2 MPE Inference

(a)

(b)

Figure 7.2: Toy SPN for MPE inference. (a): SPN structure defined by PD architecture for 4 binary RVs
arranged as 2 × 2 grid. (b): Same structure as in (a), with additional product node as child of
root node. (Graphs visualized using Graphviz [38]).

We furthermore constructed a larger toy SPN, again using the PD architecture on 16 RVs
with 4 states, organized in a 4 × 4 grid, and using 4 sums per rectangle. We again added an
additional product node as child of the sum root. In this network, exhaustive enumeration is not
tractable anymore. Therefore, we compare the solutions to BACK-AUG. Table 7.3 shows the
minimal/average/maximal deviation in terms of log-likelihood. We see that BACK-AUG and
BACK-MPE always return a solution with equal probability, while BACK-ORGIG and SUM
are evidently suboptimal. Furthermore, we see that SUM seems to be the better approximation
than BACK-ORIG, since it delivers an equivalent solution to BACK-AUG in some cases. Also
its average/maximal deviation is smaller than in BACK-ORIG.

Table 7.3: Results for MPE inference in larger toy SPN, comparing to BACK-AUG.

BACK-MPE BACK-ORIG SUM

α = 0.5 0.000/0.000/0.000 -24.680/-28.498/-34.760 0.000/-2.674/-24.890

α = 1 0.000/0.000/0.000 -19.920/-22.782/-26.230 0.000/-2.055/-19.920

α = 2 0.000/0.000/0.000 -15.930/-17.795/-22.040 0.000/-1.976/-16.180

– 119 –

7 Experiments and Applications

7.3 Face Image Completion

In [79], it was demonstrated that MPE inference in SPNs achieves convincing results on the
ill-posed problem of image completion, i.e. reconstructing occluded parts of face images. To this
end, SPNs are trained on the ORL face image data set [86]. This data set consists of 400 face
images, taken from 40 different persons, each with 10 images. The center 64× 64 region of the
original images was extracted9 and split into a training set of 35 persons (total 350 images) and
a test set of 5 persons (total 50 images). We transformed the training images to zero mean and
unit variance and applied the same transformation to the test images. We trained SPNs with
the method of Poon and Domingos (PD) [79], the method of Dennis and Ventura (DV) [31],
and greedy-part-wise learning (Merge) [71]. We model single pixels with G Gaussian PDFs,
where the means are set by the averages of histogram quantiles, and the standard deviation is
uniformly set to 1. We set the number of Gaussians G = 10 for all three algorithms. All three
algorithms find a recursive decomposition of the overall image into sub-regions and each region
is equipped with K sum nodes, representing a dictionary of distributions over the respective
region. As in [31,79] we use K = 20 for all three algorithms.

In [31, 71, 79], SUM was used for reconstructing the missing image parts. As discussed in
Section 5.3 and shown in the last section, this does not correspond to MPE-inference in the
augmented SPN. However, it is an arguable approximation for MPE inference in the original
SPN. Here, additionally to SUM we use BACK-MPE and BACK-ORIG, where the latter was
proposed in [79] for MPE inference. As discussed in Section 5.3, this corresponds to MPE-
inference in the augmented SPN when using deterministic twin weights, which suffers from the
low-depth bias. As a base-line we replace missing pixel by the pixel values of the mean image
over all training images (MEAN).

Figures 7.3, 7.4, 7.5 and 7.6 show results for face image completion, when the left, top, right
and bottom halves of the images are missing, respectively. All models (PD, DV, Merge) and all
inference methods (BACK-ORIG, SUM, BACK-MPE) perform reasonable for reconstructing
missing image parts. The artifacts introduced by BACK-ORIG seem to be often somewhat
stronger than the artifacts introduced by SUM and BACK-MPE. Table 7.5 shows reconstruction
SNRs for all models and all inference methods. BACK-ORIG consistently performs worse (or
as well as) the other two methods. BACK-MPE and SUM are roughly on par. This observation
is consistent with the remark in [79], that SUM performed better than BACK-ORIG in the
experiments. Note that MEAN consistently has the highest SNR. This probably comes from
the artifacts with high energy produced by the SPN reconstructions.

Table 7.4 shows training and test log-likelihoods for models PD, DV and Merge. While Merge
achieves the lowest training likelihood, it achieves the highest likelihood on the test set, stating
that Merge generalized best in this task.

Table 7.4: Log-likelihoods on training and test set, normalized by number of samples.

Train Test

PD -4287.82 -5068.97
DV -4356.41 -4673.73
Merge -4493.46 -4667.04

9 Obtained from [78].

– 120 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

D
V

︸
︷︷

︸
BACK-ORIG

SUM

BACK-MPE

M
er

ge

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

7 Experiments and Applications

Original

Covered

MEAN

P
D

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

D
V

︸
︷︷

︸
BACK-ORIG

SUM

BACK-MPE

M
er

ge

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

Figure 7.4: Examples of face image reconstructions, top half is covered.

– 122 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

D
V

︸
︷︷

︸
BACK-ORIG

SUM

BACK-MPE

M
er

ge

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

Figure 7.5: Examples of face image reconstructions, right half is covered.

– 123 –

7 Experiments and Applications

Original

Covered

MEAN

P
D

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

D
V

︸
︷︷

︸
BACK-ORIG

SUM

BACK-MPE

M
er

ge

︸
︷︷

︸

BACK-ORIG

SUM

BACK-MPE

Figure 7.6: Examples of face image reconstructions, bottom half is covered.

– 124 –

7.4 Artificial Bandwidth Extension

Table 7.5: Reconstruction SNRs for the top, bottom, left, and right halves of face images covered.

top bottom left right

MEAN – 13.16 11.25 12.72 11.83

PD
BACK-ORIG 10.45 9.29 9.83 10.49

SUM 12.34 10.19 11.58 11.72
BACK-MPE 12.61 10.20 11.56 11.77

DV
BACK-ORIG 11.33 8.36 9.36 10.47

SUM 11.75 9.42 10.62 11.08
BACK-MPE 11.33 9.58 11.29 10.70

Merge
BACK-ORIG 10.64 8.88 9.40 9.83

SUM 12.43 9.83 10.96 11.78
BACK-MPE 12.10 9.73 10.46 11.32

7.4 Artificial Bandwidth Extension

We can transfer their reconstruction abilities of SPNs to the audio domain, by considering an
image-like representation of audio signal, e.g. the log-spectrogram. One problem which can
tackled within this framework, is artificial bandwidth extension (ABE), i.e. to recover high
frequencies which are lost in telephone transmission. In [73], the HMM-based framework for
ABE [47,90] was modified to incorporate SPNs for modeling the observations.

In the HMM-based system [47], time signals are processed in frames with some overlap,
yielding a total number of T frames. For each frame, the spectral envelope of the high-band is
modeled using cepstral coefficients obtained from linear prediction (LP). On a training set, these
coefficients are clustered using the LBG algorithm [61]. The temporally ordered cluster indices
are used as hidden state sequence of an HMM, whose prior and transition probabilities can be
estimated using the observed frequency estimates. For each hidden state, an observation GMM
is trained on features taken from the low-band (see [47] for details about these features). In
the test phase, the high frequency components and therefore the hidden states of the HMM are
missing. For each time frame, the marginal probability of the hidden state is inferred using the
forward-backward algorithm [80]. For real-time capable systems, the backward-messages have to
be obtained from a limited number of Λ ≥ 0 look-ahead frames. Using the hidden state posterior,
an MMSE estimate of the high-band cepstral coefficients is obtained [47], which together with
the periodogram of the low-band yield estimates of the wide-band cepstral coefficients. To
extend the excitation signal to the high-band, the low-band excitation is modulated either with
a fixed frequency carrier, or with a pitch-dependent carrier. According to [47] and related ABE
literature, the results are quite insensitive to the method of extending the excitation.

To incorporate SPNs in HMM-based ABE, we use the log-spectra of the time frames as
observations, where redundant frequency bins are discarded. Let S(t, f) be the f th frequency
bin of the tth time-frame of the full-band signal, t ∈ {1, . . . , T}, f ∈ {1, . . . , F}, where F is the
number of frequency bins and St = (S(t, 1), . . . , S(t, F))T . We cluster the log-spectra {S1:T }
of training speech using the LBG algorithm, and use the cluster indices as hidden states of
an HMM. On each cluster, we train an SPN, yielding state-dependent models over the log-
spectra. For training SPNs, we use the PD algorithm [79], requiring that the data is organized
as rectangular array; here the data is a 1 × F rectangular array. We used ρ = 20 sum nodes
per rectangle and γ = 20 Gaussian PDF nodes per variable. This values were chosen as an
“educated guess” and not cross-validated. Similar as in [79], we use a coarse resolution of 4,
i.e. rectangles of height larger than 4 are split with a stepsize of 4.

For ABE we simulate narrow-band telephone speech [2] by applying a bandpass filter with
stop frequencies 50 Hz and 4000 Hz. Let S̄(t, f) be the time-frequency bins of the telephone
filtered signal, and S̄t = (S̄(t, 1), . . . , S̄(t, F))T . Within the telephone band, we can assume that

– 125 –

7 Experiments and Applications

S(t, f) ≈ S̄(t, f), while some of the lowest and the upper half of the frequency bins in S̄t are lost.
To perform inference in the HMM, we marginalize missing data in the state-dependent SPNs,
which can be done efficiently in SPNs, i.e. Gaussian distributions corresponding to unobserved
frequency bins, constantly return value 1, cf. Section 4.4. The output probabilities serve as
observation likelihoods and are processed by the forward-backward algorithm [80]. This delivers
the marginals p(Yt | et), where Yt is the hidden HMM variable in the the tth time frame, and et
is denotes the observed data up to time frame t, i.e. all frequency bins in the telephone band,
for all time frames 1, . . . , (t + Λ). An illustration of the modified HMM used in this paper is
given in Figure 7.7, cf. also Figure 6.5.

?
?

?

?

YtYt 1- Yt 1+Yt 2- Yt 2+

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

St 2-

_

St 1-

_

St

_

St 1+

_

St 2+

_

Figure 7.7: Illustration of the HMM with SPN observation models. State-dependent SPNs are symbolized by
triangles with a circle on top. For the forward-backward algorithm, frequency bins marked with
“?” (missing) are marginalized out by the SPNs.

We use the sum-approximation for MPE inference for recovering the missing spectrogram
content, where we reconstruct the high-band only. Let Ŝt,k = (Ŝt,k(1), . . . Ŝt,k(F))T be the
MPE-reconstruction of the tth time frame, using the SPN depending on the kth HMM-state.
Then we use the following bandwidth-extended log-spectrogram

Ŝ(t, f) =

{
S̄(t, f) if f < f ′∑K

k=1 p(Yt = k|et)Ŝt,k(f) o.w.
(7.1)

where f ′ corresponds to 4000 Hz.

7.4.1 Reconstructing Time Signals

To synthesize a time-signal from the bandwidth extended log-spectrogram, we need to associate

a phase spectrum to the estimated magnitude spectrum eŜ(t,f). The problem of recovering
a time-domain signal given a modified magnitude appears in many speech applications, such
as single-channel speech enhancement [60], single-channel source separation [74, 92] and speech
signal modification [59,93]. These signal modifications are solely employed in spectral amplitude
domain while the phase information of the desired signal is not available. A typical approach is
to use the observed (noisy) phase spectrum or to replace it with an enhanced/estimated phase.

In order to recover phase information for ABE, we use the iterative algorithm proposed by
Griffin and Lim (GL) [42]. Let j ∈ {0, . . . , J} be an iteration index, and Ĉ(j) be a complex

valued matrix generated in the jth iteration. Let |Ĉ(0)(t, f)| = eŜ(t,f) and

∠Ĉ(0)(t, f) =

{
∠C̄(f, t) 1 ≤ f ≤ f ′

0 o.w.,
(7.2)

where C̄ is the complex spectrogram of the bandpass filtered input signal. Within the telephone
band, phase information is considered reliable and copied from the input. Outside the narrow-
band phase is initialized with zero. Note that in general Ĉ(0) is not a valid spectrogram since a
time signal whose STFT equals Ĉ(0) might not exist. The jth iteration of the GL algorithm is

– 126 –

7.4 Artificial Bandwidth Extension

given by

Ĉ(j) = |Ĉ(0)| ⊗ ei∠G(Ĉ(j−1)), (7.3)

G(C) = STFT(STFT−1(C)), (7.4)

where ⊗ denotes the Hadamard product. At each iteration, the magnitude of the approximate
STFT Ĉ(j) is set to the magnitude |Ĉ(0)| estimated by the SPN while temporal coherence of the
signal is enforced by the operator G(·) (see e.g. [59] for more details). The estimated time signal

sj at the jth iteration is given by sj = STFT−1
(
Ĉ(j)

)
. At each iteration, the mean square

error between |STFT(sj)| and |Ĉ(0)| is reduced [42]. In our experiments, we set the number of
iterations J = 100, which appeared to be sufficient for convergence.

7.4.2 Experiments

We used 2 baselines in our experiments. The first baseline is the method proposed in [47],
based on the vocal tract filter model using linear prediction. We used 64 HMM states and 16
components per state-dependent GMM, which performed best in [47]. We refer as HMM-LP
to this baseline. The second baseline is almost identical to our method, where we replaced the
SPN with a Gaussian mixture model with 256 components with diagonal covariance matrices.
For training GMMs, we ran the EM algorithm for maximal 100 iterations and using 3 random
restarts. Since a GMM can be represented as an SPN with a single sum node, see Figure 6.8(b),
inference using the GMM model works the same way as for SPNs. We refer as HMM-GMM to
this baseline. To the HMM incorporating SPNs as observation models, we refer as HMM-SPN.
For HMM-GMM and HMM-SPN, we used the same clustering of log-spectra using a codebook
size of 64.

We used time-frames of 512 samples length, with 75% overlap, which using a sampling fre-
quency of 16 kHz corresponds to a frame length of 32 ms and a frame rate of 8 ms. Before applying
the FFT, the frames were weighted with a Hamming window. For the forward-backward algo-
rithm we used a look-ahead of Λ = 3 frames, which corresponds to the minimal delay introduced
by the 75% frame-overlap. We performed our experiments on the GRID corpus [21], where we
used the test speakers with numbers 1, 2, 18, and 20, referred to as s1, s2, s18, and s20, respec-
tively. Speakers s1 and s2 are male, and s18 and s20 are female. We trained speaker dependent
and speaker independent models. For speaker dependent models we used 10 minutes of speech of
the respective speaker. For speaker independent models we used 10 minutes of speech obtained
from the remaining 30 speakers of the corpus, each speaker providing approximately 20 seconds
of speech. For testing we used 50 utterances per test speaker, not included in the training set.

(a) Original (b) HMM-LP (c) HMM-GMM (d) HMM-SPN

Figure 7.8: Log-spectrogram of the utterance “Bin green at zed 5 now”, spoken by s18. (a): original full
bandwidth signal. (b): ABE result of HMM-LP [47]. (c): ABE result of HMM-GMM. (d): ABE
results of HMM-SPN.

Figure 7.8 shows log-spectrograms of a test utterance of speaker s18 and the bandwidth ex-
tended signals by HMM-LP, HMM-GMM and HMM-SPN, using speaker dependent models. We

– 127 –

7 Experiments and Applications

see that HMM-LP succeeds in reconstructing a harmonic structure for voiced sounds. However,
we see that fricative and plosive sounds are not well captured. The reconstruction by HMM-
GMM is blurry and does not recover the harmonic structure of the original signal well, but
partly recovers high-frequency content related to consonants. The HMM-SPN method recovers
a natural high frequency structure, which largely resembles the original full-band signal: the
harmonic structure appears more natural than the one delivered by HMM-LP and consonant
sounds seem to be better detected and reconstructed than by HMM-GMM.

For an objective evaluation, we use the log-spectral distortion (LSD) in the high-band [47].
Given an original signal and an ABE reconstruction, we perform Lth-order LPC analysis for
each frame, where L = 9. This yields (L + 1)-dimensional coefficient vectors at and ât of the
original and the reconstructed signals, respectively. The spectral envelope modeled by a generic
LPC coefficient vector a = (a0, . . . , aL)t is given as

Ea(ejΩ) =
σ

|
∑L

k=0 ake
−jkΩ|

, (7.5)

where σ is the square-root of the variance of the LPC-analyzed signal. The LSD for the τ th

frame, in high-band is calculated as

LSDτ =

√∫ π
ν (20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))2 dΩ

π − ν
, (7.6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at utterance level is given as the

average of LSDτ over all frames. Tables 7.6 and 7.7 show the LSD of all three methods for the
speaker dependent and speaker independent scenarios, respectively, averaged over the 50 test
sentences. We see a clear ranking of the three methods, and that the HMM-SPN method always
performs best. All differences are significant at a 0.95 confidence level, according to a paired
one-sided t-test.

Table 7.6: Average LSD using speaker-dependent models.

s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

Table 7.7: Average LSD using speaker-independent models.

s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

– 128 –

Foundations of Sum-Product Networks for Probabilistic Modeling

8
Discussion and Future Work

The core part of this thesis is dedicated to investigate the foundations of SPNs and to strengthen
our theoretic understanding about them. We want to summarize the most important insights
and draw a conceptional picture of SPNs, yielding from the results developed in this thesis.

In the most basic definition, SPNs are feedforward neural networks containing sum and prod-
uct neurons. We define a distribution by simply normalizing the output of the SPN. Although
this approach is mathematically sound, we will not be able to perform inference in such a model,
except in the simplest cases. This calls for considering a restricted class of SPNs, which allows
at least to compute the normalization constant of the SPN. In [79], this class was called valid
SPNs, and two sufficient conditions were given to guarantee validity: completeness and consis-
tency. At the same time, an alternative condition to consistency, decomposability, was given;
decomposability implies consistency, but not vice versa, i.e. consistency is the weaker condition.
However, in literature mostly decomposability is used, since decomposability is conceptually
easier and also easier to establish. This raises the question: Do we loose much when using de-
composability? The answer we give here is no, since consistent SPNs can not model distributions
significantly more concise than decomposable SPNs (Theorem 4.3). Furthermore, consistency
rules out a class of inference scenarios defined via the differential approach [27], which can be
applied in decomposable SPNs. These arguments give us license to consider only complete and
decomposable SPNs, simplifying our conceptual image of SPNs.

SPNs with locally normalized weights are readily normalized, and in literature often locally
normalized SPNs were used due to convenience. Again, this raises the question: Do we loose
much by this restriction? Here the answer is an even clearer no; we can without loss of generality
assume locally normalized SPN weights (Theorem 4.2), which again simplifies our conceptual
image of SPNs.

Complete and decomposable SPNs can be easily generalized be replacing IVs by more general
input distributions, also over larger scopes. It is immediate that generalized SPNs represent
some distribution and it is clear how to evaluate this distribution for some sample. However,
it was missed in literature to carry over other inference mechanism from finite-state SPNs,
i.e. marginalization and the differential approach. In this thesis we derived these inference
scenarios for generalized SPNs, cf. Section 4.4. When we neglect consistency, we see that finite-
state SPNs are indeed just a special case of generalized SPNs. Furthermore, since we can
always assume locally normalized weights, we see that SPNs can be understood as nothing
but a nested arrangement of mixtures of distributions (sum nodes) and factorized distributions
(product nodes). Although this description of SPNs sounds simple, one must not underestimate
their model power. We saw in Section 6.4, that even a quite restricted class of SPNs, i.e. regular

– 129 –

8 Discussion and Future Work

selective SPNs, generalizes BNs over finite-state RVs and incorporates advanced concepts such
as context-specific independence, nested multi-nets and sub-component sharing, without need
for any specialized inference mechanism.

A central theme of SPNs is their interpretation as hierarchical structured latent RV model.
As pointed out in Chapter 5, the original augmentation of SPNs explicitly incorporating these
latent RVs is too simplistic, leading to irritating results. We completed this augmentation, by
introducing the so-called twin sum nodes. Furthermore, we introduced an IMAP of the aug-
mented model, represented as BN, linking SPNs back to classical PGMs. The BN interpretation
of augmented SPNs helped us to derive a sound EM-algorithm for SPN weights.

The latent RV interpretation was already used in the seminal paper [79] for data reconstruction
using MPE inference. The used algorithm for MPE inference was never shown to be correct,
besides the fact that the latent model was not completely specified. We showed that it is indeed
a correct algorithm for augmented SPNs, but that it needs a modification when applied to
non-augmented SPNs.

Furthermore, so far it was not clear if the more desirable MAP inference for data reconstruc-
tion can be performed efficiently in SPNs. We gave a negative result, showing that this problem
is generally NP-hard.

This thesis tries to shed some light on the foundations of SPNs. However, it is certainly not
an exhaustive or completely rigorous treatment of the subject of SPNs. Many questions are
open and we want to conclude the thesis with possible future research topics.

• What is the complexity of MAP inference in SPNs?

• Is there a class of SPNs for which MAP inference can efficiently be solved, i.e. its decision
version is in P?

• If yes, how does it look like?

• Design an algorithm which returns a MAP solution given enough time and memory and
which delivers a solution with sub-optimality bounds, i.e. an any-time solution. A possible
technique could be branch-and-bound.

• What are suitable cost functions for learning SPNs?

• Given such cost function, is learning SPNs NP-hard? (Presumably yes)

• Given a budget of arithmetic operations and a cost function, design an algorithm returning
a globally optimal SPN.

– 130 –

Foundations of Sum-Product Networks for Probabilistic Modeling

A
Appendix

A.1 Proofs for Chapter 4

Proposition 4.1. Let P be a product node and Y be its shared RVs. P is consistent if and only
if for each Y ∈ Y there exists a unique y∗ ∈ val(Y) with λY=y∗ ∈ desc(P).

Proof of Proposition (4.1).

Direction “⇐”, i.e. suppose for each Y ∈ Y there exists a unique y∗ ∈ val(Y) with λY=y∗ ∈
desc(P). Consider arbitrary two distinct children C′,C′′ ∈ ch(P) and let Y′ = sc(C′) ∩ sc(C′′),
where from Definition 4.12 (shared RVs) it follows that Y′ ⊆ Y. First, let X ∈ sc(C′) \ Y′

arbitrary. Since X /∈ sc(C′′), we have

λX=x ∈ desc(C′)⇒ ∀x′ : λX=x′ /∈ desc(C′′), (A.1)

and in particular

λX=x ∈ desc(C′)⇒ ∀x′ 6= x : λX=x′ /∈ desc(C′′). (A.2)

Now let X ∈ Y′ arbitrary. Since X ∈ Y, there is a unique x∗ ∈ val(X) with λX=x∗ ∈ desc(C′)
and λX=x∗ ∈ desc(C′′), and again (A.2) holds. Since C′, C′′ and X are arbitrary, P is consistent.

Direction “⇒”, i.e. suppose P is consistent. If Y is empty, i.e. P is decomposable, then the
claimed property holds trivially for all Y. Otherwise let Y ∈ Y arbitrary and let C′ and C′′

be arbitrary two children having Y in their scope. There are at least two such children by
Definition 4.12 (shared RVs). There must be a unique y∗ with λY=y∗ ∈ desc(C′) and λY=y∗ ∈
desc(C′′). To see this, note that there must be at least one y′ ∈ val(Y) with λY=y′ ∈ desc(C′)
and at least one y′′ ∈ val(Y) with λY=y′′ ∈ desc(C′′), since Y is in the scope of both C′ and C′′.
However, there can be at most one such y′ and y′′. Assume there were y′1 and y′2, y′1 6= y′2. Then
either for y′ = y′1 or for y′ = y′2 we had a contradiction to

λY=y′ ∈ desc(C′)⇒ ∀y′′ 6= y′ : λY=y′ /∈ desc(C′′). (A.3)

i.e. P would not be consistent. By symmetry, there is also at most one y′′, and (A.3) can only
hold when y′ = y′′ =: y∗. Therefore, since Y , C′ and C′′ are arbitrary, there must be a unique
y∗ with y∗ ∈ desc(C), ∀C ∈ ch(P) : Y ∈ sc(C). Therefore, this y∗ is also the unique value with
λY=y∗ ∈ desc(P).

– 131 –

A Appendix

Lemma 4.1. Let N be a node in some complete and consistent SPN, X ∈ sc(N) and x ∈ val(X).
When λX=x /∈ desc(N), then ∀x ∈ val(X) with x[X] = x we have N(x) = 0.

Proof of Lemma 4.1.

When N = λX=x′ , for some x′ ∈ val(X), the lemma clearly holds, since x′ 6= x.

When N is a product or a sum, let N = {N′ ∈ desc(N) : X ∈ sc(N′)}. Let K = |N| and let
N1, . . . ,NK be a topologically order list of N, i.e. Nk /∈ desc(Nl) when k > l. We can assume
that for some I, N1, . . . ,NI are IVs of X, NI+1, . . . ,NK are sum and product nodes, where
NK = N. For any x ∈ val(X) with x[X] = x, we have N1(x) = N2(x) = · · · = NI(x) = 0, since
λX=x /∈ desc(N).

When all N1(x) = N2(x) = · · · = Nk(x) = 0 for some k ≥ I, then also Nk+1(x) = 0. When
Nk+1 is a sum node, due to completeness, all children of Nk+1 must have X in their scope. This
means that all children are in {N1, . . . ,Nk}. Therefore Nk+1(x) = 0. When Nk+1 is a product,
at least on child has to be in {N1, . . . ,Nk}. Therefore Nk+1(x) = 0. Thus, by induction, for all
N′ ∈ N we have N′(x) = 0. In particular this is true for NK = N.

Lemma 4.2. Let P be a PMF over X and Y ⊆ X, Z = X \ Y such that there exists a
y∗ ∈ val(Y) with P (z,y) = 0 when y 6= y∗. Then we have P (z,y) = 1(y = y∗)P (z).

Proof of Lemma 4.2.

Since P (z,y) = 0 when y 6= y∗, P (z) =
∑

y∈val(Y) P (z,y) = P (z,y∗). Thus

P (z,y) =

{
0 if y 6= y∗

P (z) if y = y∗
= 1(y = y∗)P (z). (A.4)

Proposition 4.2. A complete and decomposable SPN computes the network polynomial of some
unnormalized distribution.

Proof of Proposition 4.2.

Recall that a network polynomial for unnormalized distribution Φ is defined as (cf. (4.13)):

fΦ(λ) =
∑

x∈val(X)

Φ(x)
∏
X∈X

λX=x[X]. (A.5)

Assume some topological order of the SPN nodes. We show by induction over this order, from
bottom to top, that each sub-SPN SN computes a network polynomial over sc(N). The basis
are the IVs λX=x which compute

λX=x =
∑

x′∈val(X)

1(x′ = x)λX=x′ , (A.6)

which has the form (A.5), i.e. IVs compute network polynomials.

– 132 –

A.1 Proofs for Chapter 4

A complete sum node S computes

S(λ) =
∑

C∈ch(S)

wS,C C(λ) (A.7)

=
∑

C∈ch(S)

wS,C

∑
x∈val(sc(S))

ΦC(x)
∏

X∈sc(S)

λX=x[X] (A.8)

=
∑

x∈val(sc(S))

 ∑
C∈ch(S)

wS,C ΦC(x)

 ∏
X∈sc(S)

λX=x[X] (A.9)

=
∑

x∈val(sc(S))

ΦS(x)
∏

X∈sc(S)

λX=x[X], (A.10)

where ΦC is the unnormalized distributions of the network polynomial of C, and ΦS(x) :=∑
C∈ch(S)wS,C ΦC(x). In (A.8) we apply the induction hypothesis and the fact that for complete

sum nodes the scopes of the node and all its children are the same. We see that (A.10) has the
form (A.5), i.e. the induction step holds for complete sum nodes.

Now consider some decomposable product node P with children ch(P) = {C1, . . . ,CK}. The
product node P computes

P(λ) =
K∏
k=1

Ck(λ) (A.11)

=

K∏
k=1

∑
xk∈val(sc(Ck))

ΦCk(xk)
∏

X∈sc(Ck)

λX=xk[X] (A.12)

=
∑

x1∈val(sc(C1))

· · ·
∑

xK∈val(sc(CK))

K∏
k=1

ΦCk(xk)
∏

X∈sc(Ck)

λX=xk[X]

 (A.13)

=
∑

x∈val(sc(P))

(
K∏
k=1

ΦCk(x[sc(Ck)])

) ∏
X∈sc(P)

λX=x[X]

 (A.14)

=
∑

x∈val(sc(P))

ΦP(x)
∏

X∈sc(P)

λX=x[X], (A.15)

where ΦCk is the distributions of the network polynomial of Ck, and ΦP(x) :=
∏K
k=1 ΦCk(x[sc(Ck)]).

In (A.12) we use the induction hypothesis, in (A.13) we apply the distributive law, and in (A.14)
we use the fact that the scope of a decomposable product node is partitioned by the scopes of
its children. We see that (A.15) has the same form as (A.5), i.e. the induction step holds for
complete product nodes.

Consequently, each sub-SPN and therefore also the overall SPN computes a network polyno-
mial of some unnormalized distribution.

Proposition 4.3. Every complete and consistent, but non-decomposable SPT S = ((V,E),w)
over X can be transformed into a complete and decomposable SPT S ′ = ((V′,E′),w′) over X
such that S ≡ S ′, and where |V′| ≤ |V|, AS′ ≤ AS and MS′ < MS .

Proof. For SPTs, no links are introduced in steps 2–7 of Algorithm 2. Consider a non-decomposable
product P in the SPT, and let Y be the shared RVs. If sc(P) = Y, the whole sub-SPN
rooted at P will be replaced by

∏
Y ∈Y λY=y∗[Y] in step 13. The deleted sub-SPN computes∏

Y ∈Y(λY=y∗[Y])
kY , where kY are integers with kY ≥ 1, and at least one kY > 1, since other-

wise P would be decomposable. Thus, replacing this sub-SPN by the decomposable product in
step 13 saves at least one multiplication.

– 133 –

A Appendix

Similarly, when sc(P) 6= Y, steps 21–23 prune nodes from the sub-SPN rooted at P, cor-
responding to the computation of

∏
Y ∈Y(λY=y∗[Y])

kY with kY ≥ 1, and at least one kY > 1.
This requires at least one multiplication more than directly connecting λY=y∗[Y] to P in step
24. Clearly, steps 17–20 are never performed in SPTs, since no N ∈ desc(P) \ {P} can have a
parent outside the descendants of P.

Thus, for every non-decomposable product, Algorithm 2 saves at least one multiplication.

Proposition 4.5. Let S be an SPN and Sg be its gated SPN. Then

1. Sg is an SPN over X ∪ Z.

2. S(X) = Sg(X) =
∑

z∈val(Z) Sg(X, z).

3. For any X ∈ X and k ∈ {1, . . . , |DX |}, let XD = sc(DX,k) and XR = X \XD. It holds
that

Sg(X, ZX = k,Z \ {ZX}) = DX,k(XD)Sg(XR, ZX = k,Z \ {ZX}), (A.16)

i.e.

XD ⊥⊥ XR ∪ Z \ {ZX} |ZX (A.17)

In particular

Sg(X, ZX = k) = DX,k(XD)Sg(XR, ZX = k), (A.18)

Proof of Proposition 4.5.

ad 1) In the gated SPN, each distribution node D is replaced by a product node with scope
sc(D) ∪ {ZX | X ∈ sc(D)}. That is, in the scope of each ancestor of D, an RV X is
replaced by a compound RV {X,ZX}. This leaves completeness and decomposability
intact. The products introduced in (4.65) are also clearly decomposable and the IVs
are input distributions over the DSs. Therefore Sg fulfills Definition 4.15, i.e. it is an
generalized SPN, and the scope of the root is X ∪ Z.

ad 2) Since Sg is a generalized SPN over X∪Z, marginalization over Z is performed by setting
all λZX=k = 1. In this case, the introduced product nodes simply copy the corresponding
input distribution, i.e. all remaining nodes in Sg perform the same computations as in S,
so their outputs agree.

ad 3) Consider all internal nodes N in Sg which have X in their scope. Since they have X in their
scope, they also have ZX in their scope. Consider a fixed k and assume ZX = k. We split N
into two sets N′ and N′′, where ∀N ∈ N′ : DX,k ∈ desc(N) and ∀N ∈ N′′ : DX,k 6∈ desc(N).

We first show by induction that all N ∈ N′′ output 0. Let N1, . . . ,NK be a topologi-
cal ordered list of nodes in N′′, i.e. k > l ⇒ Nk /∈ desc(Nl). We assume w.l.o.g. that
N1, . . . ,N|DX |−1, are the gates PX,l, l 6= k. These nodes output 0, since λZX=l = 0 for
ZX = k. This is the induction basis. For the induction step, assume that N1, . . . ,NM out-
put 0, for |DX | − 1 ≤M < K. We show that then also NM+1 outputs 0. If NM+1 is a sum
S, all its children must also be in N′′: they must be in N, i.e. have X in their scope, since
S has X in its scope. They also can not be N′, since otherwise S would be in N′. Thus
they are in N′′, and furthermore they must be in {N1, . . . ,NM}, due to the topological
ordering. Since they output 0, also S outputs 0. Similarly, when NM+1 is a product P, it
must have exactly one child with X in its scope, which must be in {N1, . . . ,NM}. Since
this child outputs 0 also P outputs 0. Therefore all N′′ output 0.

– 134 –

A.2 Proofs for Chapter 5

We now show by induction that all N ∈ N′ have the form

DX,k(XD)N(XR′ , ZX = k,Z′ \ {ZX}), (A.19)

where XR′ = XR ∩ sc(N) and Z′ = Z ∩ sc(N). Let N1, . . . ,NK be a topological ordered
list of nodes in N′, i.e. k > l ⇒ Nk /∈ desc(Nl). N1 must be the gate PX,k which has the
form DX,k

∏
Y ∈sc(DX,k) λZY =[DX,k]Y , which has the form (A.19) with XR′ = ∅. This is the

induction basis. For the induction step, assume that all N1, . . . ,NM have the form (A.19),
for M ≥ 1. We show that then also NM+1 has the form (A.19). When NM+1 is a sum node
S, all its children must be contained in N due to completeness and since X is in sc(S).
Partition ch(S) into C′ = ch(S) ∩N′ and C′′ = ch(S) ∩N′′. C′ must contain at least one
node, since S is contained in N′. Furthermore, C′ must be a subset of {N1, . . . ,NM}, due
to the topological ordering. S computes

S(X, ZX = k,Z′) =
∑
C∈C′

wS,CD
X,k(XD)C(XR′ , ZX = k,Z′ \ {ZX}) +

∑
C∈C′′

wS,C 0

(A.20)

= DX,k(XD)
∑
C∈C′

wS,C C(XR′ , ZX = k,Z′ {ZX}), (A.21)

which has the form (A.19). When NM+1 is a product node P it must have exactly one child
C in N′, due to decomposability and since P is in N′. This C also must be in {N1, . . . ,NM},
due to the topological ordering. The product node computes

P(X, ZX = k,Z′) = DX,k(XD)C(·, ZX = k,Z′ ∩ sc(C) \ {ZX})
∏

C′∈ch(P)\{C}

C′(·),

(A.22)

which has the form (A.19). Therefore all N′ have this form. Since the root is contained in
N′, the claimed property (4.66) follows. Eq. (4.68) follows by marginalizing Z \ {ZX}.

A.2 Proofs for Chapter 5

Proposition 5.1. Let S be an SPN over X, S ′ = aug(S) and Z := ZS(S). Then S ′ is a
complete and decomposable SPN over X ∪ Z with S ′(X) ≡ S(X).

Proof of Proposition 5.1. We restate Algorithm 3 in Algorithm 8. If S ′ is a complete and de-
composable SPN over X ∪ Z, then S ′(X) ≡ S(X) is immediate: In this case, computing S ′(x)
for any x ∈ val(X) is done by marginalizing Z, i.e. setting all λZS=k = 1. Introducing the links
clearly does not change the function computed by the SPN. Also connecting λZS=k to PkS does
not change the function, when λZS=k is set constantly to 1. The twin sum S̄ also constantly
outputs 1, and therefore does not change the computed function when connected to the links of
its conditioning sums Sc. Therefore, the outputs of S and S ′ agree for each x ∈ val(X) when Z
is marginalized in S ′, i.e. S ′(X) ≡ S(X).

It remains to show that S ′ is complete, decomposable and totally normalized, and that its
root has X ∪ Z in its scope. After the first part of Algorithm 3 the SPN is clearly complete
and decomposable, but does not have any ZS in its scope. We show that after each execution
of the for-loop body (10 − 21), the SPN remains complete, decomposable and contains ZS in
its root’s scope. After step 12, the links PkS are clearly decomposable, because no λZS=k has

– 135 –

A Appendix

Algorithm 8 Augment SPN S
∀S ∈ S(S), ∀k ∈ {1, . . . ,KS} let wS,k = wS,CkS

, w̄S,k = w̄S,CkS

Introduce links:
1: for S ∈ S(S) do
2: for k = 1 . . .KS do
3: Introduce a new product node PkS in S
4: Disconnect CkS from S
5: Connect CkS as child of PkS
6: Connect PkS as child of S with weight wS,k

7: end for
8: end for

Introduce IVs and twins:
9: for S ∈ S(S) do

10: for k ∈ {1, . . . ,KS} do
11: Connect new IV λZS=k as child of PkS
12: end for
13: if Sc(S) 6= ∅ then
14: Introduce a twin sum node S̄ in S
15: ∀k ∈ {1, . . . ,KS}: connect λZS=k as child of S̄, and let wS̄,λZS=k

= w̄S,k

16: for Sc ∈ Sc(S) do
17: for k ∈ {k | S 6∈ desc(PkSc)} do
18: Connect S̄ as child of PkSc
19: end for
20: end for
21: end if
22: end for

been connected to any other node in the SPN before. Since PkS are reachable from the root,
also λZS=k are reachable, i.e. ZS is now in the scope of the root. Since S was complete before
step 12, i.e. all links had the same scope, it remains complete after step 12. The scopes of all
ancestors of S are now augmented by Z, which could corrupt decomposability and complete-
ness of the ancestors. However, there can be no non-decomposable ancestors: if there was a
non-decomposable product node it must have Z in the scope of at least two children. This
would imply that S is reachable from both children, contradicting that the product node was
decomposable beforehand. However, in general there can be incomplete sum nodes as illustrated
in Figure 5.2. These are treated in steps 13− 21:

The twin sum S̄, if introduced, is clearly complete and has scope {Z}. Furthermore, incom-
pleteness of any conditioning sum Sc can only be caused by links not having ZS in their scope.
The scope of these links is augmented by ZS in step 18. These links remain decomposable and
moreover, Sc is rendered complete now. These operations do not affect the scope of any further
ancestor of Sc, since their scope already contains Z. Therefore, the SPN remains complete and
decomposable, and adds ZS into the root’s scope. Finally, it is easy to see that all sum nodes
have normalized weights, i.e. S ′ is a complete, decomposable and locally normalized SPN over
X ∪ Z.

Proposition 5.2. Let S be an SPN over X, Y ⊆ ZS(S) and Z = ZS(S) \Y. Let y ∈ val(Y)
and let S ′ = aug(S). It holds that

1. Each node in Sy has the same scope as its corresponding node in S ′.

– 136 –

A.2 Proofs for Chapter 5

Algorithm 9 Configure SPN

1: Sy ← aug(S)
2: for Y ∈ Y do
3: for y ∈ val(Y), y 6= y[Y] do
4: Delete λY=y and link PySY
5: end for
6: end for
7: Delete all nodes in Sy which are not reachable from the root

2. Sy is a complete and decomposable SPN over X ∪Y ∪ Z.

3. For any node N in Sy with sc(N) ∩Y = ∅, we have that Sy
N = S ′N.

4. For y′ ∈ val(Y) it holds that

Sy(X,Z,y′) =

{
S ′(X,Z,y′) if y′ = y

0 otherwise
(A.23)

Proof of Proposition 5.2. We restate Algorithm 4 in Algorithm 9.

ad 1.) We show that 1. holds after each iteration of the main for-loop (steps 3–6) of Algorithm 9.
In each iteration, IVs λY=y are disconnected and links PySY are deleted for y 6= y[Y].
Clearly, this can only change the scopes of their ancestors. The direct ancestors SY and

S̄Y still have the same scope, since they are left with one child, either P
y[Y]
SY

or λY=y[Y].

Any further ancestor is an ancestor of SY or S̄Y . Since the scopes of SY or S̄Y remain the
same, also the scopes of these ancestors remain the same.

ad 2.) The graph of Sy is rooted and acyclic, since the root can not be a link and deleting
nodes and edges can not introduce cycles. When an IV λY=y is deleted, also the link PySY
is deleted, so no internal nodes are left as leaves. The roots in Sy and aug(S) are the same,
and by point 1., X∪Y∪Z is the scope of the root. Sy is also complete and decomposable:
After each iteration of the main for-loop (steps 3–6), SY and S̄Y are trivially complete,

since they are left with a single child. P
y[Y]
SY

is also clearly decomposable. Completeness or

decomposability of any ancestor of SY or S̄Y is left intact, since SY or S̄Y do not change
their scopes.

ad 3.) According to 1., the scope of N in S ′ and Sy is the same. Since sc(N) ∩ Y = ∅, the
disconnected IVs and deleted links are no descendants of N, i.e. no descendants of N are
disconnected in the for-loop (steps 3–6) in Algorithm 9. Since N is present in Sy, it must
be still reachable from the root after Algorithm 9. Therefore also all descendants of N are
reachable, i.e. Sy

N = S ′N.

ad 4.) When the input for S ′ is fixed to x, z,y, all disconnected IVs λY=y and deleted links PySY
would evaluate to zero. The outputs of SY and S̄Y are therefore the same in S ′ and Sy.
All other ancestors of λY=y and PySY are ancestors of SY or S̄Y , i.e. their outputs also are
the same. This includes the root and therefore Sy(x, z,y) = S ′(x, z,y), for any x, z.

When y′ 6= y, then there must be a Y ∈ Y such that the IV λY=y′[Y] can not be reached
from the root. Thus, with Lemma 4.1 it follows that if y′ 6= y, then Sy(x, z,y′) = 0.

Lemma 5.1. Let S be an SPN over X, let S be a sum node in S and Z = ZancS(S)\{S}. For
any z ∈ val(Z), the configured SPN Sz contains either S or its twin S̄, but not both.

– 137 –

A Appendix

Proof of Lemma 5.1. Sz must contain either S or S̄, since ZS is in the scope of the root by
Proposition 5.2 and any IV related to ZS can be reached only via S or S̄. To show that not
both are in Sz, let Πk denote the set of paths of length k from the root to any node N with
ZS ∈ sc(N). A path in Πk is denoted as (N1, . . . ,Nk), cf. Section 2.2. For k > 1, all paths in
Πk can be constructed by extending all paths in Πk−1, i.e. each path in Πk−1 is extended by
all children of the path’s last node. Let K be the smallest number such that there is a path in
Πk containing S or S̄.

We show by induction, that |Πk| = 1, k = 1, . . . ,K. Note that Π1 contains a single path (N),
where N is the root, therefore the induction basis holds.

For the induction step, we show that given |Πk−1| = 1, then also |Πk| = 1. Let (N1, . . . ,Nk−1)
be the single path in Πk−1. If Nk−1 is a product node, then it has a single child C with ZS ∈ sc(C),
due to decomposability. If Nk−1 is a sum node, then it must be in ancS(S) \ {S}, and therefore
has a single child in the configured SPN. Therefore, there is a single way to extend the path and
therefore |Πk| = 1, k = 1, . . . ,K. This single path does either lead to S or S̄. Since S /∈ desc(S̄)
and S̄ /∈ desc(S), Sz contains a single path to one of them, but not to both.

A.3 Proofs for Chapter 6

Lemma 6.1. For each complete, decomposable and selective SPN S and each sample x, Tx is a
tree.

Proof of Lemma 6.1. For each node N in Tx there exists a calculation path Πx(N) in S by
definition. We have to show that this path is unique. Suppose there were two distinct calculation
paths Πx(N) = (N1, . . . ,NJ) and Π′x(N) = (N′1, . . . ,N

′
J ′). Since all calculation paths start at the

root, there must be a smallest j such that Nj = N′j , Nj+1 6= N′j+1 and N ∈ desc(Nj+1) ∧ N ∈
desc(N′j+1). Such Nj does not exist: if Nj is a product node, N ∈ desc(Nj+1)∧N ∈ desc(N′j+1)
contradicts decomposability. If Nj is a sum node, it would contradict selectivity, since Nj+1(x) >
0 and N′j+1(x) > 0. Therefore each calculation path is unique, i.e. Tx is a tree.

– 138 –

Foundations of Sum-Product Networks for Probabilistic Modeling

References

[1] “OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences,
http://oeis.org/A000537.”

[2] “ETSI: Digital cellular telecommunications system (phase 2+); Enhanced full rate (EFR)
speech transcoding, ETSI EN 300 726 V8.0.1,” Nov. 2000.

[3] J. Aczél, Lectures on Functional Equations and their Applications. Academic Press, 1966.

[4] M. R. Amer and S. Todorovic, “Sum-Product Networks for Modeling Activities with
Stochastic Structure,” in Proceedings of CVPR, 2012, pp. 1314–1321.

[5] S. Arnborg and Sjördin, “On the foundations of Bayesianism,” in Bayesian Inference and
Maximum Entropy Methods in Science and Engineering, 20th International Workshop,
A. Mohammad-Djarafi, Ed., 2001, pp. 61–71.

[6] P. Billingsley, Probability and Measure. Wiley-Interscience, 1995.

[7] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. Springer, Oct. 2007.

[8] H. L. Bodlaender, F. van den Eijkhof, and L. C. van der Gaag, “On the complexity of the
MPA problem in probabilistic networks,” in Proceedings of the 15th European Conference
on Artificial Intelligence, 2002, pp. 675–679.

[9] V. I. Bogachev, Measure Theory. Springer Berlin Heidelberg New York, 2007, vol. I and
II.

[10] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, “Context-Specific Independence
in Bayesian Networks,” in UAI, 1996.

[11] W. Buntine, “Theory Refinement on Bayesian Networks,” in Uncertainty in Artificial
Intelligence (UAI), 1991, pp. 52–60.

[12] H. Chan and A. Darwiche, “When do numbers really matter?” JAIR, vol. 17, pp. 265–287,
2002.

[13] ——, “Sensitivity analysis in Bayesian networks: From single to multiple parameters.” in
UAI, 2004, pp. 67–75.

[14] W. C. Cheng, S. Kok, H. V. Pham, H. L. Chieu, and K. M. A. Chai, “Language Modeling
with Sum-Product Networks,” in Proceedings of Interspeech, 2014.

[15] D. M. Chickering, “Learning Bayesian Networks is NP-Complete,” in Learning from Data:
Artificial Intelligence and Statistics V. Springer-Verlag, New York, 1996, pp. 121–130.

[16] ——, “Learning Equivalence Classes of Bayesian-Network Structures,” Journal of Machine
Learning Research, vol. 2, pp. 445–498, 2002.

[17] D. M. Chickering, D. Geiger, and D. Heckerman, “Learning Bayesian Networks is NP-
hard,” Technical Report No. MSR-TR-94-17, Microsoft Research, Redmond, Washington,
Tech. Rep., 1994.

– 139 –

References

[18] ——, “Learning Bayesian networks: Search methods and experimental results,” in Proc.
of Fifth Conference on Artificial Intelligence and Statistics, 1995, pp. 112–128.

[19] D. M. Chickering and D. Heckerman, “A Bayesian approach to learning Bayesian networks
with local structure,” in UAI, 1997, pp. 80–89.

[20] C. K. Chow and C. N. Liu, “Approximating Discrete Probability Distributions with De-
pendence Trees,” in IEEE Transactions on Information Theory, vol. 14, no. 3, 1968, pp.
462–467.

[21] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-visual corpus for speech
perception and automatic speech recognition,” J. Acoust. Soc. Amer., vol. 120, pp. 2421–
2424, Nov 2005.

[22] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Probabilistic
Networks from Data,” Machine Learning, vol. 9, pp. 309–347, 1992.

[23] R. Cowell, Introduction to inference for Bayesian networks. in Learning in Graphical
Models, (M.I. Jordan, editor), MIT Press, 1999.

[24] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter, Probabilistic networks and expert
systems. Springer, 1999.

[25] R. Cox, “Probability, frequency, and reasonable expectation,” American Journal of
Physics, vol. 14, pp. 1–13, 1946.

[26] A. Darwiche, “A logical approach to factoring belief networks,” in Proceedings of KR,
2002, pp. 409–420.

[27] ——, “A Differential Approach to Inference in Bayesian Networks,” ACM, vol. 50, no. 3,
pp. 280–305, 2003.

[28] C. de Campos, Z. Zeng, and Q. Ji, “Structure learning of Bayesian networks using con-
straints,” in International Conference on Machine Learning (ICML), 2009, pp. 113–120.

[29] B. de Finetti, Foresight: Its Logical Laws, Its Subjective Sources, H. E. Kyburg and H. E. K.
Smokler, Eds. Robert E. Kreiger Publishing Co, 1937.

[30] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the
EM algorithm,” J. Royal Statistical Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.

[31] A. Dennis and D. Ventura, “Learning the Architecture of Sum-Product Networks Using
Clustering on Variables,” in Advances in Neural Information Processing Systems 25, 2012,
pp. 2042–2050.

[32] D. Dubois and H. Prade, Possibility Theory: an Approach to Computerized Processing of
Uncertainty, 1988.

[33] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “ Efficient Projections onto the
L1-Ball for Learning in High Dimensions,” in ICML, 2008.

[34] G. Elidan and N. Friedman, “Learning the dimensionality of hidden variables,” in Proc.
17th Conference on Uncertainty in Artificial Intelligence, 2001.

[35] ——, “Learning Hidden Variable Networks: The Information Bottleneck Approach,” Jour-
nal of Machine Learning Research, vol. 6, pp. 81–127, 2005.

– 140 –

References

[36] G. Elidan, N. Lotner, N. Friedman, and D. Koller, “Discovering Hidden Variables: A
Structure-Based Approach,” in Neural Information Processing Systems. MIT Press, 2001,
pp. 479–485.

[37] N. Friedman, “The Bayesian structural EM algorithm,” in Proc. 14th Conference on Un-
certainty in Artificial Intelligence, 1998, pp. 129–138.

[38] E. R. Gansner and S. C. North, “An open graph visualization system and its applications to
software engineering,” SOFTWARE - PRACTICE AND EXPERIENCE, vol. 30, no. 11,
pp. 1203–1233, 2000.

[39] R. Gens and P. Domingos, “Discriminative Learning of Sum-Product Networks,” in Ad-
vances in Neural Information Processing Systems 25, 2012, pp. 3248–3256.

[40] ——, “Learning the Structure of Sum-Product Networks,” Proceedings of ICML, pp. 873–
880, 2013.

[41] F. Glover, “Heuristics for Integer Programming using Surrogate Constraints,” Decision
Sciences, vol. 8, no. 1, pp. 156–166, 1977.

[42] D. Griffin and J. Lim, “Signal estimation from modified short-time Fourier transform,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 32, no. 2, pp. 236–243,
1984.

[43] J. Halpern, “A counterexample to theorems of Cox and Fine,” Journal of Artificial Intel-
ligence Research, vol. 10, pp. 67–85, 1999.

[44] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data,” Machine Learning, vol. 20, pp. 197–
243, 1995.

[45] T. Jaakkola, D. Sontag, A. Globerson, and M. Meila, “Learning Bayesian Network Struc-
ture using LP Relaxations,” in AI Statistics, 2010, pp. 358–365.

[46] M. Jaeger, J. Nielsen, and T. Silander, “Learning probabilistic decision graphs ,” Interna-
tional Journal of Approximate Reasoning, vol. 42, pp. 84–100, 2006.

[47] P. Jax and P. Vary, “On artificial bandwidth extension of telephone speech,” Signal Pro-
cessing, vol. 83, pp. 1707–1719, 2003.

[48] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge University Press,
2003.

[49] F. Jensen, An introduction to Bayesian networks. UCL Press Limited, 1996.

[50] D. Kisa, G. V. den Broeck, A. Choi, and A. Darwiche, “Probabilistic Sentential Decision
Diagrams,” in KR, 2014.

[51] M. Koivisto and K. Sood, “Exact Bayesian Structure Discovery in Bayesian Networks,”
Journal of Machine Learning Research, vol. 5, pp. 549–573, 2004.

[52] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[53] B. Kosko, “Fuzziness vs. Probability,” International Journal of General Systems, vol. 17,
pp. 211–240, 1990.

– 141 –

References

[54] J. Kwisthout, “Most Probable Explanations In Bayesian Networks: Complexity And
Tractability ,” International Journal of Approximate Reasoning, vol. 52, pp. 1452–1469,
2011.

[55] W. Lam and F. Bacchus, “Learning Bayesian belief networks: an approach based on the
MDL principle,” Computational Intelligence, vol. 10, no. 3, pp. 269–293, 1994.

[56] H. Langseth and T. Nielsen, “Latent Classification Models,” Machine Learning, vol. 59,
pp. 237–265, 2005.

[57] ——, “Classification using Hierarchical Näıve Bayes models,” Machine Learning, vol. 63,
pp. 135–159, 2006.

[58] S. Lauritzen and D. Spiegelhalter, “Local computations with probabilities on graphical
structures and their application to expert systems,” J. Royal Statistical Society B, vol. 50,
pp. 157–224, 1988.

[59] J. Le Roux, “Exploiting Regularities in Natural Acoustical Scenes for Monaural Audio
Signal Estimation, Decomposition, Restoration and Modification,” Ph.D. dissertation, The
University of Tokyo & Université Paris, 2009.

[60] C. Leitner and F. Pernkopf, “Speech Enhancement Using Pre-Image Iterations,” in
ICASSP, 2012, pp. 4665–4668.

[61] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE Trans-
action on Communication, vol. 28, no. 1, pp. 84–95, 1980.

[62] H.-A. Loeliger, “An Introduction to Factor Graphs,” IEEE Signal Processing Magazine,
vol. 21, no. 1, pp. 28–41, 2004.

[63] D. Lowd and A. Rooshenas, “Learning Markov Networks with Arithmetic Circuits,” Pro-
ceedings of AISTATS, pp. 406–414, 2013.

[64] D. Lowd and P. Domingos, “Learning Arithmetic Circuits,” in Twenty Fourth Conference
on Uncertainty in Artificial Intelligence, 2008, pp. 383–392.

[65] R. Neal and G. Hinton, “A view of the EM algorithm that justifies incremental, sparse,
and other variants,” in Learning in Graphical Models. Cambridge, MA: MIT Press, 1999,
pp. 355–368.

[66] C. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[67] J. Paris, The Uncertain Reasoner’s Companion. Cambridge University Press, 1994.

[68] J. D. Park, “MAP Complexity Results and Approximation Methods,” in Proceedings of
the Conference on Uncertainty in Artificial Intelligence, 2002, pp. 338–396.

[69] J. D. Park and A. Darwiche, “Complexity Results and Approximation Strategies for MAP
Explanations ,” Journal of Artificial Intelligence Research, vol. 21, pp. 101–133, 2004.

[70] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.

[71] R. Peharz, B. Geiger, and F. Pernkopf, “Greedy Part-Wise Learning of Sum-Product
Networks,” in ECML/PKDD, vol. 8189. Springer Berlin, 2013, pp. 612–627.

[72] R. Peharz, R. Gens, and P. Domingos, “Learning Selective Sum-Product Networks,” in
ICML-LTPM Workshop, 2014.

– 142 –

References

[73] R. Peharz, G. Kapeller, P. Mowlaee, and F. Pernkopf, “Modeling Speech with Sum-
Product Networks: Application to Bandwidth Extension,” in Proceedings of ICASSP,
2014.

[74] R. Peharz, M. Stark, and F. Pernkopf, “A Factorial Sparse Coder Model for Single Channel
Source Separation,” in Interspeech, 2010, pp. 386–389.

[75] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos, “On Theoretical Properties of
Sum-Product Networks,” in Proceedings of AISTATS, 2015.

[76] R. Peharz and F. Pernkopf, “Exact Maximum Margin Structure Learning of Bayesian
Networks,” in ICML, 2012.

[77] F. Pernkopf, R. Peharz, and S. Tschiatschek, Introduction to Probabilistic Graphical Mod-
els, ser. Academic Press Library in Signal Processing. Elsevier, 2013, vol. 1, ch. 18.

[78] H. Poon and P. Domingos, “http://alchemy.cs.washington.edu/spn/,” 2011, (online).

[79] ——, “Sum-Product Networks: A New Deep Architecture,” in Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, 2011, pp. 337–346.

[80] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech
recognition,” in Proceedings of the IEEE, vol. 77, no. 2, 1989, pp. 257–286.

[81] M. Ratajczak, S. Tschiatschek, and F. Pernkopf, “Sum-Product Networks for Structured
Prediction: Context-Specific Deep Conditional Random Fields.” in ICML-LTPM Work-
shop, 2014.

[82] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465–471,
1978.

[83] R. W. Robinson, “Counting labeled acyclic digraphs,” in New Directions in the Theory of
Graphs, F. Harary, Ed. Academic Press, NY, 1973, pp. 239–273.

[84] A. Rooshenas and D. Lowd, “Learning Sum-Product Networks with Direct and Indirect
Variable Interactions,” ICML – JMLR W&CP, vol. 32, pp. 710–718, 2014.

[85] J. S. Rosenthal, A first look at rigorous probability theory, 2nd ed. World Scientific, 2006.

[86] F. Samaria and A. Harter, “Parameterisation of a Stochastic Model for Human Face
Identification,” in Proceedings of the 2nd IEEE Workshop on Applications of Computer
Vision, 1994, pp. 138–142.

[87] G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, 1976.

[88] T. Silander and P. Myllymäki, “A simple approach for finding the globally optimal
Bayesian network structure,” in UAI, 2006, pp. 445–452.

[89] A. P. Singh and A. W. Moore, “Finding optimal Bayesian networks by dynamic program-
ming,” Carnegie Mellon University, Tech. Rep., 2005.

[90] G.-B. Song and P. Martynovich, “A study of HMM-based bandwidth extension of speech
signals,” Signal Processing, vol. 89, pp. 2036–2044, 2009.

[91] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search. MIT Press,
2000.

– 143 –

References

[92] M. Stark, M. Wohlmayr, and F. Pernkopf, “Source-Filter based Single Channel Speech
Separation using Pitch Information,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 19, no. 2, pp. 242–255, 2011.

[93] N. Sturmel and L. Daudet, “Signal reconstruction from STFT magnitude: a state of the
art,” pp. 375–386, 2011.

[94] J. Suzuki, “A construction of Bayesian networks from databases based on an MDL prin-
ciple,” in UAI, 1993, pp. 266–273.

[95] ——, “Learning Bayesian Belief Networks based on the minimum description length prin-
ciple: An efficient algorithm using the B&B technique,” in Int. Conference on Machine
Learning, 1996, pp. 462–470.

[96] M. Teyssier and D. Koller, “Ordering-Based Search : A Simple and Effective Algorithm
for Learning Bayesian Networks,” in Proc. 21st Conference on Uncertainty in Artificial
Intelligence, vol. 51, 2005, pp. 584–590.

[97] S. Tschiatschek, P. Reinprecht, M. Muecke, and F. Pernkopf, “Bayesian Network Classifiers
with Reduced Precision Parameters,” in ECML PKDD, 2012.

[98] K. S. Van Horn, “Constructing a logic of plausible inference: a guide to Cox’s theorem,”
International Journal of Approximate Reasoning, pp. 3–24, 2003.

[99] T. Verma and J. Pearl, “An algorithm for deciding if a set of observed independencies has
a causal explanation, ,” in UAI, 1992.

[100] G. Vitali, Sul problema della misura dei gruppi di punti di una retta. Tip. Gamberini e
Parmeggiani, 1905.

[101] H. Wettig, P. Grünwald, T. Roos, P. Myllymaki, and H. Tirri, “When discriminative
learning of Bayesian network parameters is easy,” in International Joint Conferences on
Artificial Intelligence (IJCAI), 2003, pp. 491–496.

[102] N. Zhang, “Hierarchical Latent Class Models for Cluster Analysis,” Journal of Machine
Learning Research, vol. 5, pp. 697–723, 2004.

[103] N. Zhang, T. Nielsen, and F. Jensen, “Latent variable discovery in classification models,”
Artificial Intelligence in Medicine, vol. 30, pp. 283–299, 2004.

– 144 –

Foundations of Sum-Product Networks for Probabilistic Modeling

List of Publications

[1] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf and Pedro Domingos. On Theo-
retical Properties of Sum-Product Networks. In Proceedings of AISTATS, 2015.

[2] Robert Peharz, Robert Gens, and Pedro Domingos. Learning Selective Sum-Product Net-
works. In ICML Workshop on Learning Tractable Probabilistic Models, 2014.

[3] Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz Pernkopf. Modeling Speech
with Sum-Product Networks: Application to Bandwidth Extension. In Proceedings of
ICASSP, pages 3699–3703, 2014.

[4] Robert Peharz, Bernhard Geiger, and Franz Pernkopf. Greedy part-wise learning of sum-
product networks. In Proceedings of ECML/PKDD, 2013.

[5] Franz Pernkopf, Robert Peharz, and Sebastian Tschiatschek. Introduction to Probabilistic
Graphical Models. Chapter 18 in E-Reference Signal Processing. Elsevier, 2013.

[6] Robert Peharz, Sebastian Tschiatschek, and Franz Pernkopf. The most generative maxi-
mum margin Bayesian networks. In Proceedings of ICML, pages 235–243, 2013.

[7] Robert Peharz and Franz Pernkopf. Exact maximum margin structure learning of Bayesian
networks. In Proceedings of ICML, 2012.

[8] Robert Peharz and Franz Pernkopf. On linear and mixmax interaction models for single
channel source separation. In Proceedings of ICASSP, pages 249–252, 2012.

[9] Robert Peharz and Franz Pernkopf. Sparse nonnegative matrix factorization with `0-
constraints. Neurocomputing, 80:38–46, 2012.

[10] Robert Peharz, Michael Wohlmayr, and Franz Pernkopf. Gain-robust multi-pitch tracking
using sparse nonnegative matrix factorization. In Proceedings of ICASSP, pages 5416–5419,
2011.

[11] Michael Wohlmayr, Robert Peharz, and Franz Pernkopf. Efficient implementation of prob-
abilistic multi-pitch tracking. In Proceedings of ICASSP, pages 5412–5415, 2011.

[12] Robert Peharz, Michael Stark, and Franz Pernkopf. A factorial sparse coder model for
single channel source separation. In Proceedings of Interspeech, 386–389, 2010.

[13] Robert Peharz, Michael Stark, and Franz Pernkopf. Sparse nonnegative matrix factorization
using `0-constraints. In Proceedings of MLSP, 83–88, 2010.

– 145 –

	Nomenclature
	Introduction
	Motivation: Probability Theory for Reasoning under Uncertainty
	Why Sum-Product Networks?
	Contributions and Organization of the Thesis

	Background and Notation
	Probability Theory
	Probability Spaces
	Conditional Probability, Independence and Bayes' Rule
	Random Variables
	Expectations, Marginals and Conditionals

	Graph Theory

	Classical Probabilistic Graphical Models
	Bayesian Networks
	Definition via Factorization
	Conditional Independence Assertions

	Markov Networks
	Definition via Factorization
	Conditional Independence Assertions

	Learning PGMs
	Inference in PGMs

	Sum-Product Networks
	Representing Evidence
	Network Polynomials
	Representation of Distributions as Network Polynomials
	Derivatives of the Network Polynomial
	Arithmetic Circuits

	Finite-State Sum-Product Networks
	Valid Sum-Product Networks
	Differential Approach in Sum-Product Networks
	Normalized Sum-Product Networks
	Consistency Versus Decomposability

	Generalized Sum-Product Networks

	Sum-Product Networks as Latent Variable Models
	Augmentation of SPNs
	Independencies and Interpretation of Sum Weights
	Most Probable Explanation and Maximum A-posterior Hypothesis
	MPE Inference in Augmented SPNs
	MPE Inference in General SPNs

	Learning Sum-Product Networks
	Hall of Fame: Some Classical Probabilistic Models as SPNs
	ML Parameter Learning using Gradient Methods
	The EM Algorithm for Sum Weights
	Selective Sum-Product Networks
	Regular Selective SPNs
	Maximum Likelihood Parameters

	Structure Learning

	Experiments and Applications
	EM Algorithm
	MPE Inference
	Face Image Completion
	Artificial Bandwidth Extension
	Reconstructing Time Signals
	Experiments

	Discussion and Future Work
	Appendix
	Proofs for Chapter 4
	Proofs for Chapter 5
	Proofs for Chapter 6

	References
	List of Publications

