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1 Abstract 

Creep deformation of modern materials such as 9-12% Cr steels is of major importance in 

terms of long-term behaviour and component stability. Thus, modelling and simulation of this 

phenomenon is an important topic in the area of materials science. The influence of the 

materials microstructure on creep is complex, thus, the objective of this work is to simulate 

creep behaviour on a microstructural basis.  

 

To do so, a model is set up which comprises the microstructure as distinct, spatially resolved 

elements which are described by different physical properties. The deformation process is 

implemented with a visco-plastic approach which is capable to describe both linear and non-

linear behaviour. Out of the different physical mechanism operating during creep loading, 

Nabarro Herring creep is studied in this work. 

 

As mathematical framework the Finite Element Method is used. For the numerical 

implementation of the presented model, the general-purpose, commercial software 

MATLAB® is utilized. The chosen numerical algorithm to analyse creep deformation is a 

robust and efficient method to calculate stress and strain response to given boundary 

conditions. A short overview on the mathematical framework and a description of the code 

implementation is given as well. 

 

The model approach is used to simulate several microstructural configurations. The results 

indicate that the microstructural elements have a distinct influence on local creep behaviour of 

a creep loaded material. 
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2 Introduction 

2.1 Motivation 

Long term behaviour of materials due to mechanical and thermal load is an important topic in 

the field of material science in terms of structural stability, strength and deformation. Time-

dependent deformation of a material under the influence of mechanical stress and elevated 

temperatures is defined as creep; creep is an essential topic concerning component safety and 

residual lifetime estimation.  

 

In the last decades considerable effort has been taken to describe, understand and predict this 

phenomenon. First attempts consisted of simple parametric extrapolation, which turned out to 

be insufficient. Phenomenological approaches do not take any physical background into 

account as well, thus, any change in the underlying deformation mechanisms will lead to a 

very limited predictability in terms of deformation and creep straining. To overcome this 

deficiency statistical models have been established. These methods incorporate 

microstructural processes on a mean, statistical approach. Furthermore, they mostly focus on 

one distinct mechanism, thus denying possible interactions.   

 

For a comprehensive approach for creep modelling, it is inevitable to improve and broaden 

these concepts. The heterogeneity of the affected microstructure has to be mapped explicitly, 

local effects have to be included and possible interactions have to be taken into account. To 

represent this complex long-term behaviour, a comprehensive model has to be set up on a 

spatially resolved basis. Different physical mechanisms and processes as diffusion of 

vacancies and the movement of dislocations have to be incorporated as well. Interactions of 

these mechanisms will be strongly dependent on this locally varying microstructure and its 

heterogeneous properties. Thus, a comprehensive understanding of these local microstructural 

processes and interactions in the dependence of this inhomogeneous microstructure is 

inevitable in order to give an accurate prediction of a materials’ behaviour under creep 

conditions.  
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2.2 Objective 

The objective of this work is to set up a spatially resolved microstructural model, which 

represents the materials microstructure by its heterogeneous components. These include the 

bulk material, grain boundaries and especially their connections in triple points, and the 

presence of particles and precipitates. The considered deformation mechanism for the 

presented studies is the diffusional flux of atoms through the bulk material (Nabarro-Herring 

creep). The model output is the local creep strain and the local internal stresses.  

2.3 Methodology  

To describe creep phenomena within crystalline structures, the Finite Elements Method is 

used within this project. With this methodology, it is possible to assess the physical 

parameters stress and strain in dependence of time and material parameters. The usage of a 

commercial Finite Element software package is disadvantageous in this case, because it is not 

possible to incorporate all mechanisms, especially some features of a spatially resolved 

microstructure, with locally differing characteristics. Therefore, the implementation of the 

model is realized in the multi-purpose mathematical software package MATLAB. This 

package is perfectly suitable for this type of modelling and it offers the additional advantage 

of ready-to-use graphical tools and other add-ons. 
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3 Creep in Poly-Crystalline Materials  

This chapter gives an overview on creep phenomena and their classification. In the first part, 

the physical basis of creep is outlined; the second part reviews the fundamentals and current 

advances of creep modelling; in the third part, basics of creep modelling using the Finite 

Element Method are described. 

3.1 Creep Phenomena in Materials 

3.1.1 Phenomenological Description of Creep 

A common definition is that creep is the plastic deformation proceeding at constant stress or 

constant load and constant temperature in time [1]. The experimentally observed time 

dependence of the creep strain can be graphically represented by a so-called creep curve. 

Usually, it consists of three stages in the most general form. A schematic example is shown in 

Fig. 1. 

 

     
Fig. 1: (a) Schematic representation of a creep curve with three creep regimes. (b) Creep curves for 

different applied loads. 

In the first stage, which is called primary or transient creep, the creep rate usually decreases in 

time, finally reaching a nearly constant value. The second stage is referred to as secondary or 

steady-state creep and it is characterized by a time-independent, constant creep rate. In the 

third stage, the creep rate increases with time. This stage finally terminates in fracture of the 

tested sample. Usually, the creep rate reaches its minimum in the steady state regime. 

A creep curve as shown in Fig. 1 (a), usually, is valid for a certain temperature and a certain 

stress. For higher stresses, the creep rate is higher, creep strain will accumulate faster and the 
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specimen will rupture earlier. This trend is shown in Fig. 1 (b). Considerable effort has been 

spent to describe the time-dependence of creep curves. These approaches include empirical, 

phenomenological and physical methods [1]. 

 

Creep deformation is caused by different creep mechanisms. These include dislocation glide, 

non-conservative motion of dislocations (climb), grain boundary sliding and diffusion of 

vacancies. Depending on given conditions, such as stress, temperature or grain size, one of the 

mentioned creep mechanisms will dominate. This behaviour can be summarized in 

deformation mechanism maps, which were introduced by Ashby [2].  

 

 
Fig. 2: Creep mechanism map for a stainless steel as originally published by Ashby [2]. The different fields 

and their dominating mechanism are outlined. Points, which are connected by thin, solid lines, have the 

same creep rate. 

In the strict sense, not all creep processes are operating independently of each other, as 

frequently assumed [1]. Still, the construction of these diagrams relies on the simplifying 

assumption that all considered deformation mechanisms are working independently, and 

therefore can work in a parallel way. Moreover, creep mechanism maps do not include all 
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possible creep phenomena. Harper-Dorn creep, grain boundary sliding and Nabarro creep 

(non-conservative motion of edge dislocations) are often not considered [1]. 

 

Creep mechanism maps are divided into different sections. For each area in Fig. 2, the 

dominating mechanism is inscribed. The region denoted with plasticity is characterized by 

dislocation glide. Power law creep is a synonym for dislocation creep. Diffusional flow 

consists of diffusion of vacancies and atoms, either through grain boundaries or through the 

lattice. The axes represent the normalized shear stress σ/G, where G is the shear modulus and 

T/Tm is the homologous temperature and Tm is the melting temperature. Usually, the grain 

diameter plays an important role as well. Deformation mechanism maps are valuable in the 

analysis, which of the creep mechanisms is dominant for given conditions [1]. 

3.1.2 Diffusional Creep 

3.1.2.1 The Phenomenological Laws of Diffusion 

Diffusion is a process by which matter or energy is transported from one part of a system to 

another part. Diffusional creep, as a part of the field of material science, is related to a 

diffusional flux of material. The physical basics are random motions of structural lattice 

vacancies. The phenomenological theory of diffusion deals with this process on a 

macroscopic scale and is based on the assumption that the resulting flux of matter is 

proportional to the corresponding concentration gradient 

 
x
cDJ

∂
∂

−=  (3.1)

where J is the diffusion flux, c the concentration, x the space coordinate measured normal to 

the section, and D is the diffusion coefficient. In general, D depends on temperature, pressure 

and concentration [3], but, in many cases, the diffusion coefficient can be taken as 

independent from the concentration. Eq. (3.1) is consistent only for an isotropic medium. It 

was first formulated by Fick (1855) and, therefore, is often referred to as Fick’s first law [4]. 

 

The thermodynamic driving force for a flux can be written to be proportional to a gradient of 

a potential. In alloys, the gradient of a chemical potential acts as a driving force [5, 6, 7]. The 

velocity of the migration of a vacancy due to this force is proportional to the mobility of the 

specific moving species. Keeping in mind the Nernst-Einstein relation [7], which links the 

diffusion coefficient D with this mobility, the diffusive flux is given by 
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 μ∇−=
kT
NDJ L  (3.2)

where NL is the number of lattice sites per unit volume, k is Boltzmann’s constant and T the 

temperature and μ∇  the gradient of the corresponding chemical potential [5]. 

 

In a more general form, Svoboda et al [8] show that the diffusional fluxes for a multi-

component crystalline system can be calculated using the thermodynamic extremal principle. 

These fluxes can be described using the chemical potentials of all system components linked 

by kinetic coefficients. These kinetic coefficients, in turn, depend on the diffusion coefficients 

of all species present in the system, the lattice site fraction of these species and their effective 

molar volumes. For a one-component system the diffusive flux can be expressed by 

 

 1
0

10 μ∇
Ω

−=
kT
D

fN
NN

J eq  (3.3)

where N0 is the lattice site fraction for vacancies and eqN0  the site fraction in equilibrium 

respectively, N1 the fraction of the component, Ω the volume corresponding to one mole of 

lattice sites and f a geometric correlation factor depending on the crystalline structure. 

3.1.2.2 Physical Basis of Diffusional Creep 

Defects in Crystals 

The physical basis of diffusional creep in crystalline materials is established by point defects 

within these materials. The two most common structural point defects in metallic solids are 

vacancies and self-interstitials. A vacancy is an atomic lattice position, which is not occupied 

[9]. A self interstitial is an atom of the crystal that occupies an interstitial site. They are 

causing a large structural distortion in their surrounding neighbourhood and, therefore, they 

are much less common than vacancies [9]. A schematic illustration of a vacancy in a crystal is 

presented in Fig. 3.  

 

 
Fig. 3: Vacancy within a crystal lattice. 
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Vacancies are thermodynamically necessary due to the second law of thermodynamics. It 

states that the entropy of a closed system strives to reach a maximum. By adding vacancies to 

a given system, the number of possibilities to arrange the atoms is increased enormously. This 

causes a positive change in the entropy of the whole structure. Therefore, it is advantageous 

for the system, to provide the energy for the creation of vacancies [10].  

 

Thermal vacancies are produced randomly, the activation energy for vacancy generation 

strongly depends on the type of source. Within undisturbed crystal lattices, a vacancy can 

only be produced together with an interstitial atom [11]. The generation of such vacancy-

interstitial pairs requires very high energies, thermal lattice vibrations usually do not provide 

such high energies. On grain boundaries, surfaces and on other imperfections, vacancies can 

be generated with much less effort. Therefore, they play a central role in diffusional creep 

processes [11]. At those favourable sources, which are in general of non-ideal nature [8], 

vacancies need an activation energy of about 1 eV to be formed. The mole fraction of 

vacancies in equilibrium NV is 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
kT
E

AN V
VV exp  (3.4)

where AV is a factor, which has the value of about 3, k is Boltzmann’s constant and T is the 

temperature [10]. The formation enthalpy EV for vacancy formation is dependent on the 

material. For iron with a body-centred cubic (bcc) structure, it has a value of about EV = 154 

kJ/mol, whereas for the face-centred cubic (fcc) form a value of about EV = 135 kJ/mol can be 

found in literature [12]. 

 

Non-Equilibrium 

The equilibrium concentration of vacancies is altered, if tensile or compressive stresses are 

present. This non-homogeneous distribution results in vacancy fluxes through the material, as 

outlined here following the argumentation of Nabarro [13]. Later, Herring conducted a more 

general analysis using chemical potentials and considering the fluxes within a polycrystal 

[1,5]. 

 

In Fig. 4, a schematic drawing of an idealized crystal is presented. It does not contain 

dislocations, the only source and sink for vacancies are the faces. This crystal is acted on by 

equal and opposite normal stresses σ as indicated in Fig. 4.  
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Fig. 4: Schematic single crystal with applied stresses and corresponding vacancy and mass fluxes. 

For the creation of a vacancy at a face, where compression takes place, an atom must be 

transferred from the inside of the crystal to its face. The work σΩ must be expended for this 

movement of the atom, where Ω is the atomic volume. The enthalpy of vacancy creation 

therefore increases, compared to the unstressed state. On faces where tensile stresses are 

acting, the enthalpy for vacancy creation is lowered by σΩ. Therefore, the equilibrium 

fraction of vacancy concentration is changed. A local imbalance in vacancy concentration 

occurs, where the fraction of vacancies in areas with tensile stress is  

 ⎟
⎠
⎞

⎜
⎝
⎛ Ω

=+

kT
NN σexpV0V , (3.5)

and, in areas with compressive stress, it is 

 ⎟
⎠
⎞

⎜
⎝
⎛ Ω
−=−

kT
NN σexpV0V  (3.6)

where NV0 is the equilibrium fraction of vacancies in the unstressed state. The difference in 

vacancy concentration is the driving force for a flux of vacancies from areas with high 

vacancy concentration to areas with low concentration [1]. This driving force corresponds to 

the chemical potential as stated in section 3.1.2.1. The resulting flux of vacancies is 

compensated by a diffusional flux of atoms from parts of the grain, where they are under 

compression, to parts of the grain, where they are under tension. In other words, the flux of 

vacancies into a specific direction causes a transport of mass in the opposite direction. A 

plastic deformation of the grain or the specimen in the tensile direction is the consequence 

[11]. 

 

Nabarro and Herring consider this mass flux to occur within the grains, therefore this creep 

regime is referred to as Nabarro-Herring creep. Coble [14], in contrast, regarded diffusional 

processes taking place along the grain boundaries, this kind of creep phenomenon therefore is 
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termed Coble creep. The main difference between Nabarro-Herring creep and Coble creep 

consists of the grain size dependence [15]. 

 

Diffusion Coefficient  

As already stated in section 3.1.2.1, the flux of vacancies can be calculated from Fick’s first 

law. The constant of proportionality between the concentration gradient and the resulting flux 

is the diffusion coefficient. Its value is different for different processes, such as diffusion of 

interstitials, self-diffusion or diffusion of vacancies. The self-diffusion coefficient DL can be 

calculated via the diffusion coefficient for vacancies DV by 

 Ω== 0V0VVL CDNDD  (3.7)

where C0 is the vacancy concentration in equilibrium Ω= 0V0 NC .  

The diffusional creep rate increases linearly with the applied stress [1]. Its temperature 

dependence is determined practically via the coefficient of lattice self-diffusion [1]. This 

dependence can be described as usual for a thermally activated process by [11] 

 ⎟
⎠
⎞

⎜
⎝
⎛−=

RT
QDD exp0L  (3.8)

where Q is an activation energy and D0 a pre-exponential factor. Values can be found in e.g. 

[11] and [2]. As an example, the diffusion coefficients for pure iron are shown in Fig. 5 [2]. 

Phase transformations are indicated in the diagram as well, because the value of DL is highly 

dependent on the phase of the material. When ferrite transforms to austenite, a sharp decrease 

of the diffusion coefficients is observed. 

 

For grain boundaries, the diffusion coefficient has to be evaluated separately. Diffusion along 

grain boundaries can be several orders of magnitude faster than in the matrix. Thus, the 

diffusion coefficient in grain-boundaries is different from that for lattice diffusion. 

Amorphous high angle grain boundaries in particular act as high diffusivity paths [16], 

because of their highly irregular atomic structure. In contrast to lattice diffusion, the grain 

boundary diffusion coefficient differs only slightly between α and γ iron. In Fig. 6, the 

experimentally found data published in [16] are reproduced. 
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Fig. 5: Diffusion coefficients for self diffusion within the lattice in iron in dependence of temperature a 

published in [2]. 

 
Fig. 6: Arrhenius plot of grain boundary diffusion coefficient as published in [16] in dependence of 

temperature. Data from other authors [17, 18, 19, 20, 21, 22] are indicated as well.  
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3.1.2.3 Stress Directed Diffusion 

Grain boundaries influence diffusional processes in several ways. Different grain boundaries 

have different orientations with respect to the direction of the applied stress, and, therefore, 

experience not the same normal stresses in a given stress field. The concentration of vacancies 

within the bulk material in the vicinity of a grain boundary is dependent on the normal 

stresses [11]. Hence, the thermal equilibrium concentration of vacancies is altered in the direct 

neighbourhood of a stressed grain boundary. This degree of change of concentration is 

dependent on the angle between the grain boundary and the existing stress within the material. 

The new concentration is calculated by equations (3.5) and (3.6) [23]. The resulting flux of 

vacancies is counterbalanced by a flux of atoms in the opposite direction. The plating of 

atoms on the grain boundaries is causing a displacement of the adjacent grains. 

 

For diffusion through the bulk material, the displacement rate nu& between adjacent grains can 

be expressed by  

 ( )−+ ∇−∇
Ω

= ccn
kT
D

u iiin
V&  (3.9)

where ni is the unit normal vector pointing into the upper grain, +∇ ci  is the concentration 

gradient above the boundary, and −∇ ci  is the concentration gradient from the grain below the 

grain boundary. For steady state situations, this relation can be transcribed to the known 

equation for Nabarro-Herring creep [11]. 

 

For diffusion along boundaries, a similar result can be derived. Considering grain boundaries 

where a normal stress is acting on, the grain boundary lowers this potential by a negative 

work. A flux of atoms in the grain boundary will occur. The resulting displacement rate can 

be calculated by  

 nn kT
D

u σ2gb ∇
Ω

=&  (3.10)

where Ω is the atomic volume, Dgb the grain boundary diffusion coefficient, σn is the normal 

component of the stress acting on the grain boundary, k is the Boltzmann constant and T the 

temperature. For steady state situations, this relation can be further simplified [11]. 

 

In surfaces, diffusion phenomena in general will take place as well. Surface diffusion controls 

the shape of growing cavities. The tendency to minimize the free surface energy acts as 

driving force. 
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3.1.2.4 Diffusional Creep and Grain Boundary Sliding 

Diffusional creep and grain boundary sliding are closely related to each other. The flux of 

atoms from boundaries acted on by compressive stress and to boundaries acted on by tensile 

stresses cause changes in grain shape. These changes must be accommodated, otherwise voids 

would form and material coherency would not be maintained. Accommodation can be 

established by grain boundary sliding. This interaction was analysed by many authors and it is 

generally accepted as a necessary accommodation process of diffusional creep [24]. The 

geometrically necessary grain boundary sliding is known as Lifshitz sliding. It can be 

observed by marking lines across the grains as shown in Fig. 7. After deformation by tensile 

stress a misfit in this marker line indicates that grain boundary sliding has occurred [24]. 

 

 
Fig. 7: Grain boundary sliding measured by marker lines. Part (a) shows the original configuration. (b) 

The new shape of the grains as a result of diffusional creep without grain boundary sliding. (c) Diffusional 

creep accompanied by grain boundary sliding as indicated by the offset of the marker line. Originally 

presented by Čadek [1]. 

Although, in the past, some authors tried to assign the creep strain to separate distributions of 

both mechanisms, in a general view, the strain rate cannot be divided into separate 

contributions of diffusion and grain boundary sliding. It is argued that plastic strain can take 

place only if both mechanisms operate simultaneously. In other words, diffusional creep can 

either be considered as a diffusion process accommodated by grain boundary sliding or as 

grain boundary sliding accommodated by diffusion. Material deformation cannot develop in 

the absence of either mechanism. The whole creep strain then either can be ascribed to grain 

boundary sliding or to diffusion [1,23,25,26,27].  

At small grain sizes, the sliding rate can be written as 

 
2

2gbsgbs ⎟
⎠
⎞

⎜
⎝
⎛=

EL
D

A L σε&  (3.11)

where E is the Young’s Modulus, L a mean linear intercept grain size and Agbs is a constant to 

be determined [28]. 
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3.1.2.5 Grain Boundaries and Threshold Stress 

At low stresses, there seems to be a threshold behaviour in diffusional creep as well. In creep 

deformation, the applied stress then can be replaced by the effective operating stress 

 theff σσσ −=  (3.12)

where σth is the threshold stress. In pure metals, the threshold stress in general is below 1 MPa 

when measured at around half the homologous temperature. In materials, which contain high 

melting particles on the grain boundaries, the threshold stress can be larger, but is not greater 

than a few MPa, even in commercial stainless steels [11]. 

 

As a possible explanation for this threshold stress, the role of grain boundaries and their 

interactions with the bulk material is frequently debated in literature [29, 30, 31, 32, 33, 34, 

35]. Grain boundaries act as fast diffusion paths because of their, in general, highly disordered 

atomic structures. The grain boundary is assigned with a thickness of about one atomic layer 

up to 10 nm. The material diffusion through the boundary will partly leak into the surrounding 

grains by volume diffusion. The extent of this lateral leakage is determined by the kinetics of 

diffusion and the two different diffusion coefficients of the grain and the grain boundary [3]. 

The generation of these vacancies must be fast enough to compensate the drain of vacancies 

caused by stress directed diffusion. In general, it is assumed that this process is fast and 

efficient enough, and can easily provide enough vacancies to maintain the thermal equilibrium 

concentration. For many cases, this assumption is sufficient. The diffusion rate is then only 

determined by the transport through the grain itself [1,11]. Nevertheless, this assumption 

seems to be too simple to explain several observations in some alloys, such as lower creep 

rates than predicted, a threshold stress below which no creep occurs [35] and differing 

activation energies [1]. A possible explanation would be that the grain boundary does not act 

as a source and sink in the whole plane, but the emission and absorption of vacancies takes 

place at discrete positions in the boundary. Grain boundary dislocations, which are 

constrained to remain in the boundary when moving, provide an appropriate source and sink. 

While emitting or absorbing vacancies, these dislocations climb in the boundary plane [1]. 

The rate of diffusion along grain boundaries will be limited by this process [35]. 

 

Arzt et al [36] set up a two dimensional model of a crystal with grain boundaries, which are 

made out of straight, parallel grain boundary dislocations. A correction factor, which depends 

on the number of the dislocations, has to be introduced. For pure metals, this factor is close to 
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unity, and therefore gives a possible explanation for the good agreement of theoretical and 

experimental results in pure metals [1]. 

 

When the grain boundary dislocations climb, while they are emitting or absorbing vacancies, 

their line length and the associated energy are fluctuating. This leads to a threshold stress for 

diffusional creep, which can be modelled by [1]  

 
d

GbB
th 2

1
≅σ  (3.13)

where bB is the length of the Burgers vector of a boundary dislocation, d the grain diameter 

and G the shear modulus. 

Another explanation for the threshold stress is given by Burton [37]. It states that dislocations 

can be multiplied by spiral dislocation sources. In this case, the resulting dislocation density is 

not constant in the grain boundary. At stresses lower than the threshold stress, the critical 

radius for the nucleation of a dislocation loop is not reached. The dislocation source will not 

operate and thus creep will not occur. This assumptions lead to an equation identical to 

equation (3.13). 

 

Burton and Reynolds [23] focus on a theory, where a grain boundary can only act as a source 

for vacancies if the saturation of vacancies at the grain boundary exceeds a certain value, 

which is coupled with the threshold stress σth. This threshold stress is dependent on the 

number of foreign particles collected at the grain boundaries. During straining, this number is 

not constant. Especially at grain boundaries parallel to the applied stress, an increase in the 

density of those particles collected by the elongating grain boundary is expected. As a 

consequence, the threshold stress increases with increasing strain. This implicates that the 

strain and the strain rate decay exponentially with time.  

 

Experimental data, which confirm a threshold stress in diffusional creep within a 

polycrystalline material, are available for a number of pure, nanocrystalline metals 

[35,38,39,40]. The temperature dependence of the threshold stress was determined for alpha 

iron to slightly decrease with increasing temperature [40]. Creep testing on uranium dioxide 

indicates that the temperature dependence of a threshold stress for diffusional creep can be 

described by an Arrhenius law and that the stress decreases with increasing temperature [41]. 
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3.1.2.6 Inhibition of Diffusion Creep 

Inhibition of diffusion creep can occur [23] as a result of difficulties in accommodating atoms 

in grain boundaries or in the interface between hard grain boundary particles and the matrix. 

This inhibition can be bypassed by stresses exceeding the threshold stress [11]. Inhibition of 

diffusion creep plays an important role in nucleation and growth of creep cavities. 

 

Riedel [11] presents a simple model of inhibited diffusion creep with accommodation by 

power-law creep. He argues that, at very low stresses, all stress is concentrated on the 

particles. The deformation then is controlled by localized creep of the grains near the particle. 

The strain rate is dependent on some power n of the applied stress. Especially for very low 

stresses, this dependency causes a sharp decline in the strain rate with decreasing stresses. In 

fact, there is no real threshold stress in this model, but the steep decrease of the strain rate 

could be regarded as quasi-threshold for diffusional creep. 

3.1.2.7 Debating Diffusional Creep 

Especially for pure metals, the agreement of both theories with experimental data [35,45] is 

remarkable. In other cases, especially in solid solution alloys and alloys with a fine dispersion 

of the second phase, several observations cannot be fully explained by the Nabarro-Herring 

and the Coble theory [1].  

 

For identifying a creep process as diffusional creep, several requirements have to be fulfilled. 

First, the creep rate has to be linearly dependent on the stress, i.e. the stress exponent has to be 

unity. Second, the dependency of the creep rate on grain size has to match. And third, the 

activation energy has to correspond to that for self-diffusion and, finally, experimental 

observation and theoretical prediction must agree [42]. As an indication for diffusional creep, 

denuded zones are designated. Denuded zones are zones, which contain no precipitates after 

creep. They form on grain boundaries transverse to the applied tensile stress. Usually they are 

taken as evidence for diffusional creep phenomena [42]. 

 

The existence of diffusional creep, especially in polycrystalline, precipitate-containing 

materials, has been debated by some authors in the last years [23,28,43,44]. The disputes 

comprise experimentally measured creep rates, which do not agree with those predicted by 

theory, the grain boundary position within the denuded zone and a stress-dependence not 

consistent with theory [23,44]. 
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A diffusion-controlled dislocation creep mechanism at high stresses and Harper-Dorn creep at 

low stresses are proposed to explain the observed creep phenomena instead of diffusional 

creep [44]. On the other hand, it is argued that the role of grain boundaries as source and sink 

still is not clear in detail, and that the effects of this constraint may play a major role in 

diffusional creep phenomena [28]. The deposition of material at grain boundaries normal to 

the applied stress and depletion of material on grain boundaries parallel to the applied stress 

are interpreted as evidence for diffusional creep as well [43,45]. Furthermore, it is argued that 

the position of the grain boundary within the denuded zone is not necessarily located 

centrally, and therefore cannot be used as evidence against diffusional creep [43]. Therefore, 

modifications of the existing theories for diffusional creep seem to be superior to a complete 

rejection of the whole theory. Detailed discussions can be found in literature 

[23,28,42,43,44,45]. 

3.1.3 Harper-Dorn Creep 

Harper and Dorn [46] suggest a dislocation climb process as an additional operative 

mechanism for creep at high temperatures. The basic mechanism in Harper-Dorn (H-D) creep 

consist of vacancies diffusing from edge dislocations with Burgers vectors parallel to the 

tensile axis to edge dislocations with Burgers vector normal to the tensile axis. This process 

acts within the grain, and there is no depletion or accumulation of atoms on the grain 

boundaries. The diffusion of the vacancies can take place via the bulk or via the dislocation 

cores depending on temperature [25]. 

 

Harper-Dorn creep is a deformation mechanism, which operates at low stresses and high 

temperatures [47]. First, H-D creep has been assumed to take place at normalized stresses σ/G 

below 5×10-6 and homologous temperatures higher than about 0.95. But it has been shown 

that H-D creep can take place at lower homologous temperatures as well [1,48]. Since it 

occurs intragranularly, the creep rate is independent of the grain size. At high homologous 

temperatures, it is claimed to be the dominant creep mechanism [28]. The dislocation density 

in Harper-Dorn creep region is low and independent of the applied stress [28,49,50], though it 

is specific for the material used [49]. In some reports of experimental data, discrepancies 

between reported values and theoretical prediction for the dislocation density are observed. 

According to [28], this is due to a systematic error in the measurements.  
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To identify Harper-Dorn creep as the rate controlling process, three conditions have to be 

fulfilled. First, the stress dependence of the creep rate muss be linear, that is, the stress 

exponent has to equal n = 1. Second, the creep rate has to be much faster than for other 

possible concurring creep mechanisms, such as Nabarro-Herring creep or even Coble creep, if 

the testing is carried out at lower homologous temperatures. Third, it has to be shown that the 

grain size does not influence the creep rate, which is the case in Nabarro-Herring or Coble 

creep [28,51]. Čadek [1] and Kassner [48] state some additional characteristics of Harper-

Dorn creep, which include that the creep curve shows a distinct primary stage, the dislocation 

density has to be low and independent of stress, and that the activation energy is equal to the 

activation energy of lattice diffusion. 

 

The existence of Harper-Dorn Creep has been widely discussed by some authors. The 

experimental observations connected with Harper-Dorn creep cannot be fully explained by a 

single theory [49]. In experiments, especially the linear stress dependence with n = 1, could 

not always be observed in the questionable stress and temperature range [51]. Other data and 

their interpretation sometimes are ambiguous as well [48]. 

 

In [50,52], several creep tests with pure lead (pb) have been conducted. In contrast to other 

publications, it is found that, for very low stresses and large strains, Harper-Dorn creep has 

not a Newtonian character but the stress exponent is closer to n = 3. Nevertheless, Kumar [52] 

declares the testing results to be consistent with Harper-Dorn creep. The discrepancy is 

explained by re-evaluation of previous results and re-plotting the data versus the true stress 

instead of incorporating a threshold stress. When doing so, both data sets show good 

agreement. Similar results are obtained for aluminium by Kumar et al. [53]. 

3.1.4 Power Law Creep 

3.1.4.1 Dislocations 

Dislocations are line defects within a crystal. They are quantified by a Burgers vector. Due to 

their presence, the surrounding lattice will be distorted. The presence of dislocations in 

general strongly influences the strength, the plasticity and creep processes of a material [10]. 

The study of their generation and motion is an important field in creep modelling, and general 

materials science.  
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Two different types of dislocations can be distinguished; both are presented in Fig. 8. An edge 

dislocation is a line defect within the crystal at which an extra plane of atoms terminates. The 

Burgers vector is perpendicular to the dislocation core and lies within the distinct slip plane of 

the dislocation. The strain field initiated by this type of dislocation consists of compressive, 

tensile and shear strains. The strain drops radially with distance from the dislocation core. The 

second type of dislocations is a screw dislocation, which creates a spiral ramp of crystal 

planes [10]. The Burgers vector is parallel to the dislocation core, a screw dislocation has no 

distinct slip plane. The strain field initiated by this type of dislocations only consists of shear 

strains [54]. 

 

      
Fig. 8: Edge dislocation and screw dislocation. 

3.1.4.2 Movement of Dislocations 

The motion of dislocations is one of the most important causes of plastic deformation of 

crystals at stresses below the theoretical shear strength [55]. Two types of movements for 

dislocations exist. For the first, one has to keep in mind that the atomic bonding at the 

dislocation core is weaker than in a perfect crystal. Thus, at low stresses, the atoms can 

relatively easy be locally rearranged and the dislocation line can move through the crystal. 

This process is called slip or glide [1,10]. Edge dislocations have a distinct slip plane within 

which they can move. This plane is necessarily parallel to the core line and the Burgers vector 

of the concerned dislocation [56]. Screw dislocations can also be envisaged as to move in a 

slip plane, but in contrast to edge dislocations, the dislocation line and the Burgers vector are 

parallel and therefore do not define a unique plane. As a result, the glide of the dislocation is 

not restricted to a specific direction. In both cases, a shear stress must act on the slip plane in 

the direction of the Burgers vector, irrespective of the direction of the dislocation core line.  

 

The glide velocity of a dislocation is dependent on the type of dislocation, the material, the 

acting stress and the temperature. This velocity, additionally, is altered when a field of local 
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obstacles is present. Then, the glide velocity can be regarded as the maximum attainable 

velocity [1]. 

 

The second mechanism, by which dislocations can move, is climb. It is considered as a non-

conservative motion. Atoms are added to, or removed from, the bottom of the extra plane, 

therefore, this motion involves two processes. First, the emission or absorption of a vacancy at 

the dislocation core, and, second, long-range diffusion of the vacancy to or from the 

dislocation. If the dislocation represents a perfect source or sink for vacancies, the velocity of 

the climbing dislocation is controlled by this diffusional transport of vacancies. In most cases, 

the relaxation time for diffusion from source to sink is large, compared to the nucleation time 

for vacancies. Therefore, it is a good approximation to consider climb as a diffusional 

boundary problem. As for dislocation glide, several approaches to quantify the velocity for 

climbing can be found in literature [1]. 

 
Fig. 9: Dislocation climb accompanied by diffusion of vacancies. The vacancy diffuses to the dislocation 

core and replaces an atom. The dislocation climbs. 

3.1.4.3 Mobile Dislocation Density 

Not all dislocations within a crystal can move freely. Only a fraction of all free dislocations – 

dislocations, which are not associated with boundaries - is potentially mobile when stress is 

applied. Of these mobile dislocations, only a relatively small fraction is actually moving. 

Therefore, these terms should be carefully distinguished. 

 

The ratio of the mobile dislocation density can be estimated by some model ideas. One of 

these theories starts from the idea that the free dislocations are arranged into a network and 

may be linked to each other, and basically three processes can be distinguished: 

• The release of some links, 

• the glide of the released links, 

• and the capture by other links. 
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The time interval from a link release to its next capture is assumed to be negligible compared 

to the time necessary for a link to be released. Thus, at any instant in time nearly all free 

dislocations are part of the dislocation network and the density of moving dislocations 

represents only a very small fraction of the free dislocation density. The density can be 

calculated by using the distribution of the link lengths, where only links of lengths greater 

than a critical link length are considered. Further details of the theory can be found in [1,57]. 

 

The model of Gasca-Neri and Nix [1,58] to calculate the mobile dislocation density starts 

from the idea that a dislocation glides in a glide plane containing point obstacles. If the 

dislocation is arrested by these obstacles, the segments between these obstacles bow out in the 

positive direction. If the applied stress is high enough to bypass, immediately after passing, a 

dislocation segment bows out in the negative direction. The distribution of these dislocation 

segments with respect to their radius of curvature R is used in this model as the basic 

distribution function. Again, only dislocation segments having a minimum critical curvature 

are considered to calculate the mobile dislocation density. 

3.1.4.4 Dislocation Structure and Subgrain Formation 

Dislocations are mostly arranged into networks. The greater part is organized in three-

dimensional ones, fewer in two-dimensional ones, which form sub-boundaries. The formation 

of such networks and subgrain structures is the result of the tendency of homogeneously 

distributed dislocations to create modulated structures. This structure is dependent on the 

applied stress and tends to change when this stress is altered. But the configuration is 

influenced by grain size, misorientation and a number of conditions concerning the glide 

systems as well. At the nodes, where the dislocations are meeting, the sum of the Burgers 

vectors must equal zero. This structure is very heterogeneous and is strongly influenced by 

stacking fault energy, especially during primary creep [1]. 

 

Quantitative descriptions of dislocation structures can be found in numerous publications, a 

review is given in [59]. These include  

• the density of free dislocations, 

• the density of dislocations forming sub-boundaries, 

• and the mean subgrain diameter. 

The density ρu of remaining unbound, free dislocations is dependent on the applied stress and 

can be described by 
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where KG is a constant, p is a value derived from theories of deformation strengthening, G is 

the shear modulus and b the norm of the Burgers vector [1]. 

The density of dislocations, which form subboundaries, is dependent on the misorientation Θ 

between the adjacent grains and is given by 

 
Gb

K σρ 2Bb
Θ

= , (3.15)

where KB is a constant [1] given with 3.0B ≅K . The mean subgrain diameter ds is described 

using the total dislocation density but ρρρ += with 
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where Kt is a constant. 

3.1.4.5 Subgrain Structure and Internal Stresses 

Considering a subgrain structure composed of dislocations, the dislocation density is highly 

heterogeneous in the crystal. Dislocation walls contain a high dislocation density, whereas in 

the volume of the subgrain, the dislocation density is relatively low [1]. These different 

densities, together with the condition of continuous deformation, are causing different stresses 

in different areas. The local shear stresses within the walls are higher than in the cells 

themselves. Therefore, the walls can be considered as hard regions and the cell interiors as 

soft regions [60]. The mismatch in elastic strain is accommodated by dislocations at the 

interface between the two areas. As a result, the internal stresses will not be homogeneous; 

further influences are due to elastic bending of sub-boundaries and from sub-boundaries 

terminating within the crystal. Experiments support the concept of hard and soft regions [1].  

3.1.4.6  Interactions of Dislocations and Sub-Boundaries 

Sub-boundaries are, in general, obstacles for moving dislocations. First, their velocity is 

strongly reduced, then, the dislocation is absorbed by the sub-boundary. Occasionally, the 

dislocations may penetrate the boundary and continue to move in the adjacent subgrain. 

Dislocation annihilation by sub-boundaries is another type of possible interactions and plays 

an important role in recovery at high temperatures. Sub-boundaries can provide a source for 

dislocations as well, creep of copper single crystals and aluminium polycrystals has shown 

evidence for this [61]. 
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3.1.5 Creep and Superplasticity 

Superplastic materials exhibit a high tensile ductility [62]. In general, grain boundary sliding 

is accepted as the mechanism for creep deformation of superplastic materials [44]. Usually, a 

stress exponent with the value n = 2 is observed. The necessary accommodation process is 

modelled in different ways. Some theories [63] feature climb of dislocations as the 

accommodating mechanism. Dislocations are created in grain boundaries to overcome 

obstacles. They can then glide across the grain and pile up on the opposite side, which will 

lead to an additional stress term, i.e. the stress exponent in the creep equation will change 

from 1 to 2. Other models [64, 65] state that grain boundary sliding accommodated by slip 

recovery is the critical mechanism for accommodation. A short overview of existing theories 

is given by Ruano et al. [44]. 

3.1.6 Microstructure and Creep 

The term microstructure defines the totality of all thermodynamic non-equilibrium lattice 

defects and phases on a spatial scale that ranges from Angstrom to meters. Its evolution in 

time can range from picoseconds to years [66]. 

 

Creep is closely related to the microstructure of a material. The microstructure influences the 

creep behaviour, and creep changes the microstructure. The phases and defects of such a 

structure have to be defined by their type, structure, number, shape and topological 

arrangement [55]. The basic defects on the atomistic level have already been introduced in 

chap. 3.1.2.2 and 3.1.4.1. In this section, properties and features of crystal structures and 

phases are briefly reviewed.  

3.1.6.1 Grain Boundaries 

The interface between two crystalline grains is termed as a grain boundary. To describe such a 

grain boundary exhaustively, not only the position of the grain boundary itself, but also the 

relative misorientation of both adjacent, crystalline grains are necessary.  

The misorientation between the two grains can be illustrated by a rotation of the 

crystallographic system. Three parameters are necessary to describe such a rotation: the 

normalized axis (two parameters) and the angle of rotation (one parameter). This angle is used 

to separate grain boundaries in low-angle and high-angle types [67]. Both are outlined in the 

next sections. 
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High angle boundaries 

High angle grain boundaries can have equilibrium and non-equilibrium structures. Concerning 

equilibrium structures, various boundary models are based on the idea that a boundary 

consists of an array of dislocations. When doing so, one has to realize that grain boundary 

dislocations and lattice dislocations in general cannot be assumed to have the same structure 

and Burgers vector [55]. 

 

If the dislocations are uniformly spaced, a low-energy boundary is assumed to form. This 

spacing can only occur if the dislocation spacing matches the number of lattice planes 

terminating at the interface, as depicted in Fig. 10.  

 

 
Fig. 10: High-angle (53°) grain boundary of a simple cubic structure built up by dislocations [55]. 

Boundaries with other angels can be described by the superposition of a boundary with 

uniform dislocation spacing, and a small-angle tilt boundary. Any other deviation from the 

low-energy orientation can be accommodated by an additional network of dislocations. High 

angle boundaries of this type can be found in twinned crystals [55].  

 

In other types of grain boundary models, it is assumed that the boundary consists of groups of 

atoms, which are densely packed, e.g. in rings with a central atom, as depicted in Fig. 11. 

Such formations are similar to those existing in amorphous structures. Therefore, the 

properties of such a boundary can be compared to those of glassy structures, although 

differences exist. An interface has periodic boundary conditions, which are given by the 
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periodic structure of the adjacent crystals, whereas a group of atoms in a glassy structure is 

not exposed to such periodic conditions [55].  

 

 
Fig. 11: A grain boundary model considering densely packed groups of atoms [55]. 

If a boundary is in non-equilibrium, as it can occur during deformation etc., its structure may 

deviate from the structures discussed above, and structural defects can be included. One of 

these defects are vacancies. If the boundary has a rather structured configuration, the 

displacement field caused by the vacancy spreads primarily into the adjoining lattice sites. If 

the atomic matching is relatively poor, the vacancy causes large atomic displacements in its 

neighbouring region, but the extent of the field itself is much smaller, as can be seen in Fig. 

12 [55]. 

 

 
Fig. 12: Relative displacements of atoms caused by a vacancy after [55]. 
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In non-equilibrium, additional dislocations, which are not part of the equilibrium 

configuration, can enter a grain boundary and change the equilibrium configuration. They are 

designated as extrinsic dislocations. Several ideas to explain this process exist. These include 

dissociating the dislocation, spreading the cores of the boundary dislocations and reorganizing 

the existing boundary dislocations [55]. 

 

In ref. [67], the distribution of the angle and the axis of rotation of grain boundaries are 

extensively studied.  

 

 
Fig. 13: Distribution of misorientations of sub-boundaries in thermally aged CB8 measured by 

Sonderegger [67]. (a): angle, (b): distribution of orientation axes. 

As an example, a measurement of the grain structure of a specimen of the steel CB 8 (4000 h, 

thermally aged) is shown here. The statistical data of the misorientation angle can be found in 

Fig. 13 (a). The orientation axes of the high angle boundaries are shown in Fig. 13 (b). It can 

clearly be seen that the greater part of these axes do not exactly have an exact orientation of [1 

1 1], but show a distinct deviation of some degrees.  

 

Small Angle Boundaries 

Small-angle boundaries can be defined as interfaces between lattices that have only a slightly 

different orientation. Boundaries of this type can be viewed as periodic, two-dimensional 

networks of dislocations and can be quite complex. The structure, as depicted in Fig. 14, can 

be visualized as similar to those of high angle grain boundaries. Their formation is often due 

to the reduction and cancellation of long-range strain fields caused by randomly distributed 

dislocations. The movement and changes of such networks can be explained by different 
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mechanisms. These include glide of dislocations, climb accompanied by vacancy absorption 

and emission, and climb and glide motion along the boundary [55]. 

 

 
Fig. 14: A small angle grain boundary in a simple cubic structure, from [55]. 

 

Stress Concentrations on Triple Points 

In a polycrystal, several types of stress concentrations can occur, stemming from triple grain 

junctions, slip bands impinging on a boundary and particles on sliding grain boundaries [11]. 

Such elastic stress concentrations on grain boundaries and triple points are a result of the 

discontinuity of elastic properties across the grain boundaries. The stress singularities can be 

high enough to cause local plastic deformation and can finally lead to damage [68].  

Compared to a stress field of a crack tip, the singularity at triple junctions can be even higher 

at smaller angles, whereas at higher angles of the junction, the singularity will be weaker. The 

stress field near the junction of grain boundaries can be calculated starting from the Airy 

stress function, the solution of which can be found in ref. [11]. The maximum tensile stress 

occurs on the boundary normal to the applied stress. At elevated temperatures, diffusion and 

dislocation creep tend to relax such stress concentrations [11].  

 

During power-law creep, the stress distribution is a power function of the distance to the triple 

point and the exponent has to be determined numerically. The local stress concentration is 

moderate. In the presence of diffusion, these concentrations are further reduced. During Coble 

creep, the stress distribution has a parabolic form [11].  
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3.1.6.2 Subgrains 

Subgrains are grains, which are at least partly surrounded by small-angle grain boundaries. As 

already discussed in paragraph 3.1.4.4, their formation can be attributed to the fact that 

homogeneously distributed dislocations tend to form modulated structures, which, among 

others, result in the formation of sub-boundaries. The configuration is influenced by grain 

size, misorientation of the neighbouring grains and the activity of the glide systems. The 

equilibrium subgrain size depends on the dislocation density, which in turn is a function of the 

applied stress [1]. Fig. 15 shows a schematic former austenite grain with subgrains in its 

interior. Fig. 16 shows a former austenite grain boundary measured in the steel CB8 (15802h, 

80MPa) done with the EBSD method [67]. 

 

 
Fig. 15: Former austenite grain with martensitic substructure and precipitates. 

 
Fig. 16: Former austenite grain boundary. Different colours indicate different lattice orientations.  
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3.1.6.3 Precipitates  

Precipitates, in general, have a different chemical composition and different physical 

properties than the surrounding matrix. They can have a larger or smaller bulk modulus, 

different lattice spacing or different crystallographic orientation etc. as the surrounding 

matrix. 

 

Precipitates can be obstacles for conservatively moving dislocations. When such obstacles are 

impenetrable for dislocations, the moving dislocation has to bow out between the obstacles. If 

the stress acting on the dislocation loop is high enough, the dislocation can break free and 

successfully bypass the particle. The relevant parameter for this mechanism is the mean 

spacing L between the two obstacles. The minimum shear stress τ for the bypass condition is 

given by 

 
L

Gb
≈τ  (3.17)

where G is the shear modulus and b is the magnitude of the Burgers vector of the moving 

dislocation [36]. The smaller the spacing between the particles is, the higher is the shear 

stress. The mechanism is referred to as Orowan mechanism. 

 

 
Fig. 17: The Orowan mechanism. The different lines show the different positions of the dislocation at 

different times.  

From eq. (3.17), it is clear that a finer dispersion with a smaller mean particle spacing L will 

have a larger effect on hardening. The precipitation strengthening effect can be lowered, when 

the obstacle, e.g. a coherent precipitate, is weaker and can be cut by a dislocation, provided 

the acting stress is high enough. In this case, not only the particle spacing but also the 

maximum force, which can be sustained by the particle, plays a significant role as well [36]. 
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At high temperatures, additional mechanisms for dislocation movement can become 

operative. They can move non-conservatively, that means they can climb or cross-slip. These 

processes are thermally activated and include the emission and absorption of vacancies. These 

additional mechanisms allow the dislocations to surmount precipitates and other obstacles. To 

reduce this effect at high temperatures, the obstacles should feature two properties. First, they 

should be as large as possible; second, they should exert some attractive or repulsive force to 

the dislocations to pin them.  

 

The interactions between particles and dislocations can be incorporated in the so-called back-

stress concept. The externally applied force is counteracted by microstructural components, 

such as precipitates. This counteracting dragging force is regarded as internal stress or back 

stress. Consequently, not the entire external load σext acts as driving force for a deformation 

process; only the part, which exceeds the amount of inner stress σi, effectively contributes to 

creep and other phenomena. This effective creep stress can be expressed by  

 iσσσ −= exteff . (3.18)

The inner stress can be regarded as a superposition of the contribution of all microstructural 

constituents. The part resulting from precipitates is described using the Orowan stress as 

stated in eq. (3.17). The part stemming from dislocations is dependent of the density of the 

mobile dislocations. If the resulting effective stress is below the threshold stress for the 

Orowan mechanism, the dislocations are pinned to the particles and the effective creep rate is 

significantly lowered [69].  

 

Stress relaxation near precipitates 

During nucleation and growth of precipitates, significant stress fields can build up within the 

precipitate and its closest surroundings due to misfit strains. These stresses can be relaxed by 

different mechanisms of matrix plasticity. These mechanisms include dislocation nucleation 

and movement on the one hand, on the other hand the diffusion of vacancies, which are 

generated at the precipitate/matrix interface, have to be taken into account. The Gibbs energy 

of the system acts as a driving force, where the total Gibbs energy includes the chemical 

Gibbs energy and the Gibbs energy provided by the elastic strain energy and the interface 

energy. Precipitate growth is influenced by this stress relaxation [70,71]. 
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3.1.6.4 Evolution of the Microstructure  

The microstructure of a material may not remain constant in time. The evolution and the 

changes in a microstructure are the result of phase transformations and interaction processes 

between structural defects [55]. Both processes are dependent on time, temperature and stress. 

The relationships and interactions lead to a complex genesis of the texture of a material.  

The properties of modern structural materials rely on its particular microstructure. Thus, the 

evolution of a microstructure in time is of major importance in materials science.  

 

Grain growth and coarsening  

Grain growth is a coarsening mechanism, which is motivated by a reduction of the total 

interface energy through minimization of the interfacial area. Due to this process, the 

subgrains, in general, will coarsen during creep. Especially at higher temperatures, a 

pronounced polygonisation of the structure can occur. 

 

Two approaches for modelling the growth of subdomains can be distinguished. The first and 

widely used assumes that the wall velocity is proportional to the driving force. The 

proportionality constant is called the mobility. The driving force itself is a product of the 

curvature of the interface and its excess free energy. In this model, the growth law is of the 

type tD ⋅= σ2 , where D  is the average domain diameter and t is time. Several 

modifications of this approach exist. In one, the driving force is assumed to be dependent on 

the boundary energy of the moving interface, the dependency of domain diameter on stress 

and time remains unchanged.  

 

In other approaches diffusion phenomena are taken into account. Domain walls are assigned a 

width including variations of order-parameters and composition of the material. In other 

words, this structure is a non-uniform system. The resulting gradient concerning these 

different parameters represents the driving force for an atomic flux, hence for the motion of 

the interface [55].  

 

External potential fields influence the driving force as well and, therefore, may result in 

microstructural changes. Temperature has an effect on the chemical potential. As a 

consequence, the diffusional processes are temperature-dependent. Stress fields can modify 

the atomic order in solid solutions and the precipitate morphology. Sufficiently strong 

magnetic and electric fields can affect the material as well.  
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Experimental evidence for microstructural changes of alloys can be found in numerous 

experiments. As an example, the microstructure of a creep-loaded sample of G-X12 as 

measured by Hofer [72] is shown in Fig. 18. 

 

  
Fig. 18: Creep sample (shaft area) of G-X12 as measured by Hofer [72]. Left image: as received; right 

image: creep loaded at T = 650°C and σ = 80 MPa. Subgrain growth and grain coarsening is clearly 

observed. 

Precipitation 

Precipitation is a special case of phase transformation where, depending on temperature, 

elements, which are solute in the base metal, precipitate out of the solution. This process is 

driven by a reduction in Gibbs free energy [55]. The spatial dimensions of the emerging 

phase, referred to as precipitates, are relatively small compared to the embedding matrix 

phase.  

 

In modern steel, a number of different types of precipitates will commonly occur. Precipitates 

at subgrain boundaries will stabilize the structure against microstructure coarsening, whereas 

precipitates within the bulk will influence the deformation resistance of the grain itself. 

Changes in the precipitate structure have a pronounced effect on the microstructural 

behaviour of the material and, during long-term creep loading, generally decrease the creep 

strength [73]. 

 

During creep deformation, precipitates may nucleate, grow, coarsen and dissolve. They can 

form within a grain or on defects in the crystal, such as grain boundaries, dislocations, 

stacking faults etc. Especially at lower under-cooling, these heterogeneous nucleation sites are 

preferred due to the smaller increase in elastic strain energy during formation of the nucleus 

1.8 µm 
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[55]. The forming of nuclei on these sites is a stochastic process and is usually treated in 

terms of probabilities. The growth of those nuclei, which reach a stable size, can then be 

described by deterministic rules, and is governed by diffusional processes [74].  

 

The last stage of precipitation is coarsening. Many of the small precipitates will dissolve, 

whereas some larger ones remain stable and continue to grow until only a small number of 

large particles is remaining. This process is known as Ostwald ripening.  

The evolution of the size distributions and number densities can be modelled by various 

numerical approaches, see [74]. 

 

In experiment, precipitates can be made visible using modern technologies such as 

TEM/EFTEM. In Fig. 19 a recording of such an experiment from Bernhard Sonderegger is 

shown. The sample contains laves phase (red), M23C6 (green) and vanadium nitrides (blue). A 

detailed chemical analysis of these three phases was conducted by EDX, the results are 

presented in [67]. 

 

 
Fig. 19: Creep loaded sample (650°C, 110 MPa) of steel CB 8 with precipitates. The sample contains laves 

phase (red), M23C6 (green) and vanadium nitrides (blue) [67]. 
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3.2 Models Implementing Creep Phenomena 

To comprise creep phenomena, which have been introduced in section 3.1, and possible 

interactions in a quantitative sense, several models and mathematical frameworks have been 

developed. The range covers implementations solely describing the overall creep rate of a 

sample, mathematical frameworks including empirical or phenomenological descriptions, and 

spatially resolved models incorporating mutual interactions of different mechanisms. A 

selected overview is given in the next section. 

3.2.1 General Approach 

In high temperature creep, the creep rate ε&  for steady state creep is dependent on the applied 

stress σ, the temperature T and the shear modulus G through the relationship 
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where D is an appropriate diffusion coefficient, b the Burgers vector, k Boltzmann’s constant 

and d the grain size. The coefficients p and n and the dimensionless constant A have to be 

chosen in an appropriate way for each model [75]. When plotting ε&  versus σ with logarithmic 

axes, the slope of the curve reflects the value of n. Fig. 20 shows a typical result. 

 

 
Fig. 20: Schematic, logarithmic plot of the variation of the steady state creep rate with the applied stress 

from [75]. 

In the plot, three different regimes can be distinguished. At relatively low stresses, 

experimental data follow a creep curve with n being approximately 1. This is generally 
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attributed to diffusional creep, Harper-Dorn creep and grain boundary sliding. At medium 

stresses, n is in the range of 3 – 6. This region is dedicated to dislocation creep or power-law 

creep. Dislocation glide is the rate controlling process for n = 3, whereas dislocation climb as 

a rate controlling mechanisms causes slopes with n = 4.5 to 6, where the actual value depends 

on the stacking fault energy of the material. The third regime can be found at very high 

stresses, the slope does not follow linear behaviour any more. This region is referred to as 

power-law-breakdown (PLB) and has been treated extensively in creep literature [75]. In the 

following sections, a brief review of the models based on these processes is given. 

3.2.2 Models for Diffusional Creep  

Diffusional creep was first treated theoretically by Nabarro [13] in 1948 and Herring [5] in 

1950, and later by Coble [14] in 1963, where is the authors are considering different diffusion 

paths within the material: bulk (or volume) diffusion through the crystal lattice, diffusion in 

grain boundaries, diffusion over surfaces and diffusion along dislocations [3]. The rate at 

which atoms diffuse in the latter three is generally much higher than for bulk diffusion. The 

linear dependence on the applied stress is characteristic for all mentioned mechanisms.  

3.2.2.1 Nabarro-Herring Creep 

Nabarro and Herring independently derived expressions for diffusional creep [1,5,13]. 

Nabarro considered the change in concentration of defects near surfaces by acting on forces in 

a cubic crystal [13], whereas Herring used a gradient of a chemical potential to express the 

diffusional flux of atoms and vacancies in a polycrystal [5]. Both state that the diffusional flux 

of vacancies takes place via the grains of the polycrystal. This creep behaviour dominates at 

low stresses and high temperatures.  

The strain rate is linearly dependent on the acting stress and inversely proportional to the 

square of crystal dimension d2 [1] and it is expressed as 
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ε&  (3.20)

where ANH is a constant, which depends on the geometry of the grains, the grain size and load 

distribution. This constant usually has a value from 12 to 40, where these two values are 

considered to be the lower and upper theoretical limit for ANH. The temperature dependence is 

determined by the lattice self-diffusion coefficient DL. The atomic volume Ω can be estimated 

by  

 37.0 b=Ω  (3.21)

where b denotes the length of the Burgers vector [28].  
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3.2.2.2 Coble Creep 

Coble [14] argued that, at lower homologous temperatures, the main diffusion paths are the 

grain boundaries. Thus, in this temperature regime, grain boundary diffusion dominates over 

the lattice diffusion and the strain rate mainly depends on the grain boundary diffusion 

coefficient, as opposed to Nabarro-Herring creep [28]. 

Coble [14] derived the equation 
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for spherical grains, where DB is the grain boundary diffusion coefficient, δB is the effective 

grain boundary width and AC is a constant with the approximate value AC = 150/π [23,28]. 

Other analyses suggest a value of about 18 for AC [23]. The temperature dependence is 

determined by the grain boundary diffusion coefficient DB. The creep rate again is linearly 

dependent on the acting stress and inversely proportional to the cube of crystal dimension d3 

[1]. For very small-grained material, an extended formula for Coble creep has to be used [24].  

The diffusion coefficient for Coble creep is, strictly speaking, only valid for pure materials. 

For compounds, the grain boundary diffusivity has to be replaced by a more complex 

diffusivity, which includes the different single diffusivities, the composition and the grain 

boundary widths [3]. 

3.2.2.3 Expansion to Multi-Component Systems 

Svoboda et al. [8] derive a mathematical formulation describing viscous creep for multi-

component systems by diffusional processes, which includes non-ideal sources and sinks for 

vacancies. The system is assumed to contain n substitutional components and m interstitial 

components. A parameter α, which describes the rate, at which vacancies are generated, is 

derived from the thermodynamic extremal principle. A generalized creep equation is 

introduced as  
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where N0 is the fraction of lattice sites occupied by vacancies and 0Ω  and Ω  are, 

respectively, the effective partial molar volume of the vacancies and the overall effective 

molar volume of all considered lattice sites. kΩ  represents the molar volume occupied by the 

species k, whereas kj
r

is the representative diffusive flux. These fluxes are dependent on the 

chemical potential, the diffusion coefficient and the molar fraction of the respective 
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component, as well as temperature. Further details on this generalized expansion can be found 

in ref. [8]. 

3.2.3 Models for Harper-Dorn Creep 

Several theories exist to explain the features of Harper-Dorn Creep [49]. The starting point is 

usually given by the observation that the dislocation density in this creep regime is very low 

and independent of stress [50].  

 

Ardell [49] proposes a model based on a network of dislocations for this creep process. It 

consists of the interaction of free, mobile dislocations and more or less stationary ones. The 

stationary dislocations form a network, which is coarsening by restricted glide and climb. The 

extent, to which such a network structure can coarsen, is limited, because a dislocation node 

can only be formed, if the sum of the Burgers vector of the intersecting dislocations equals 

zero. This process represents the recovery mechanism. Work hardening occurs by refining the 

network by mobile gliding dislocations. Both processes compete; equilibrium and steady state 

creep take place when both processes achieve a dynamic balance. The plastic straining during 

Harper-Dorn creep is due to the recovery process of the dislocation network. The dependence 

of the dislocation density on the specific material itself is explained by the limited number of 

slip systems available for coarsening of the network, while the dislocation density is not 

depending on the applied stress because the network stops to coarsen, when dislocations with 

specific Burgers vectors have disappeared. This limit is not depending on the applied stress 

[49]. 

Experiments show that the creep rate for Harper-Dorn creep is given by  

 
GkT

GbDA σε L
HD=&  (3.24)

where AHD is a constant, DL the coefficient for lattice self diffusion, G the shear modulus, b 

the magnitude of the Burgers vector, k Boltzmann’s constant, T the temperature and σ the 

acting stress [28]. 

The values of AHD can be estimated from theoretical considerations. Nabarro [76] and other 

authors [77, 78,79] incorporate the Peierls stress into the calculation of AHD. Nabarro states 

that, in equilibrium, the stress exerted by each dislocation on its neighbour equals the Peierls 

stress. The motion of these dislocations is then controlled by climb and the activation energy 

is that for self-diffusion. 

Based on this hypothesis, Langdon et al. [28,80] model the constant AHD with 
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where τp is the Peierls stress and G is the shear modulus. 

 

Wang [81] models Harper-Dorn creep by using a concept of Weertman [82]. Dislocations are 

generated by sources in parallel planes with spacing h. Dislocations with opposite sign on 

neighbouring planes can annihilate each other by climb. Steady state creep is reached when 

the emission of new dislocations equals the annihilation of dislocations. The resulting 

dislocation density depends on the balance of internal stress, applied stress and the Peierls 

stress. When the applied stress σ is higher than the Peierls stress, the dislocation density will 

depend on σ ² and power-law creep will dominate. When the applied stress is lower than the 

Peierls stress, the dislocation density will only depend on the Peierls stress, which is a 

material parameter, and Harper-Dorn creep will dominate. For the resulting creep stress, 

Wang [81] again derives equation (3.24) with the constant AHD defined by 
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The value of τp/G is material dependent and can be modelled by 
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where ν is Poisson’s ratio and d is the spacing between slip planes. A list of observed and 

predicted values for AHD can be found in refs. [81] and [28]. 

3.2.4 Models for Dislocation Creep 

Numerous models of dislocation creep exist. Two main approaches can be distinguished, 

where the creep strain is considered as a result of (i) dislocation glide or (ii) dislocation climb. 

The former models (i), which assume dislocation glide as the main source for creep strain, can 

be divided into two sub-groups. The first sub-group states that the creep rate is controlled by 

climb and annihilation of edge dislocations, the second sub-group is founded on dislocation 

glide as rate controlling process. The latter approach (ii), which states that creep strain is the 

result of dislocation climb, in general ignores the contribution of dislocation climb to the 

creep strain. In the following section some of these models are briefly outlined, following the 

discussion of Čadek [1]. 
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3.2.4.1 Earlier Weertman’s Model 

Weertman [83] assumes that the creep rate is controlled by climb, whereas the deformation 

itself is caused by dislocation glide. The dislocations are assumed to have a specific 

configuration; they are building dislocation pile ups as shown in Fig. 21.  

 

 
Fig. 21: Dislocation pile-up as suggested by Weertman [83]. The leading dislocations climb along the path 

hc and annihilate. 

The number of dislocations in each pile-up is dependent on the distance between Frank-Read 

sources. The leading dislocation is acted on by a force, which depends on the acting stress and 

the number of dislocations within the pile-up. Vacancies will flow between different pile-ups 

and will permit the leading dislocations to climb along the path hc. When they finally meet, 

they are annihilated. The climb velocity is dependent on the acting force on the dislocation, 

which finally leads to the conclusion that the creep rate can be expressed by 
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where b is the magnitude of the Burgers vector, M the volume density of dislocation sources 

and AD a constant to be determined. The activation energy is close to the activation energy of 

lattice diffusion [1]. Later, some objections where raised against this theory. They include that 

the dislocation configuration shown in Fig. 21 is unstable and that such pile-ups could not be 

observed in creep experiments. Furthermore, a fixed and stress-independent density of 

dislocation sources could not be supported by experiments. In a later version of this model, 

the assumption of dislocations climbing in groups but not forming pile-ups is incorporated, 

again leading to a stress exponent with the value 4.5 [1,84]. In the most recent version of the 

model, a stress-dependent density of Frank-Read sources was included, resulting in a creep 

rate proportional to σ ³ [1].  

3.2.4.2 Models Involving the Role of Subboundaries / Subgrain Models 

As already stated, dislocation have the tendency to form sub-boundaries. These sub-

boundaries can act as regions where dislocation annihilation can take place. Weertman [85] 

considers the formation of pile-ups of dislocations on sub-boundaries. The basic idea is 

depicted in Fig. 22. If the approaching dislocation and the sub-boundary have the same 

Burgers vector (dislocation 1), the dislocation is inserted into the sub-boundary. Dislocation 2 
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has a Burgers vector with an opposite sign than those of the sub-boundary. After entering the 

boundary, it will annihilate by climb with one of the existing sub-boundary dislocations. By 

this mechanism, the overall number of sub-boundary dislocations remains constant; the 

spacing between the dislocations is adjusted by climb.   

 

 
Fig. 22: Insertion and annihilation with dislocations of different signs in a sub-boundary. 

Considering the mean spacing of the sub-boundary dislocations, the climb velocity of a 

dislocation within a sub-boundary, the time required for annihilation and the number of 

annihilated dislocation segments, Ivanov et al [86] modelled the resulting creep rate with 
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where ASB is a constant to be determined. This model predicts a creep rate dependent on the 

third power of stress.  

 

Blum [87] modifies this model by assuming a finite sub-boundary thickness a in contrast to 

Ivanov et al. [86], who considered a zero thickness. Then, the number of annihilated 

dislocations in the sub-boundary is higher, and the creep rate is expressed by 
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Weertman [88] modifies a simple cell model, which consists of dislocation loops with edge 

and screw segments. The loop expands by glide and cross glide. The edge segments are 

stopped by other edge segments, the movement of screw segments is controlled by super-jogs. 
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Considering the lengths of the dislocation segments, the time required for dislocation 

annihilation by climb and the stacking fault energy of the material, the creep rate can be 

modelled by 
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where AW5 is a constant dependent, amongst others, on the density of the super-jogs and the 

stacking fault energy of the material. 

3.2.4.3 Dislocation Climb Creep 

Most models for power law creep assume that the creep strain is a consequence mainly of 

dislocation glide. In contrast to this, Nabarro [89] presents a model, where the creep strain is a 

result of climb of dislocations.  

The model is based on the assumption that the dislocations, which are arranged into a network 

and form sub-boundaries, are perfect sources and sinks for dislocations. The individual links 

of this network bow out while they absorb or emit vacancies. As a result, their length and, 

hence, the dislocation density increase. This mechanism can be regarded as a dislocation 

source. The decrease of the dislocation density takes place by annihilation of links with 

opposite signs, which meet during climb.  

To enable climb of the dislocation segments, a diffusive flux of vacancies is necessary. This 

flux and the mean link length lead to the creep rate 
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where AN is a constant and b the norm of the Burgers vector. Thus, Nabarro creep, which is 

controlled by lattice diffusion, is dependent on the third power of stress.  

3.2.4.4 Model of Jogged Screw Dislocations 

In models of this type, the creep rate is controlled by the glide of screw dislocations [1]. The 

mechanism is considered by many authors, including Mott [90], Raymond and Dorn [91] and 

Barrett and Nix [92].  

The climb of jogs on screw dislocation is a non-conservative motion, which is connected with 

the emission and absorption of vacancies. Since a jog can be regarded as a short segment of 

an edge dislocation, the dragging force can be calculated in dependence of the vacancy 

concentration in the adjacent area. Calculating the velocities of the dislocations and 

considering the Orowan equation, one obtains the equation 
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where a is the lattice parameter, β is the number of atoms in the unit cell and l is the distance 

between the jogs of the screw dislocations. 

3.2.4.5 Thermally Activated Glide and Diffusion Controlled Recovery 

Models of this type are based on the assumption that glide processes and annihilation of 

dislocations are influenced by the heterogeneous structure of a material. As already outlined, 

dislocations tend to form substructures. As a consequence, soft and hard regions are created. 

The acting stresses are influenced by this substructure. In soft regions, long-range internal 

stresses reduce the acting stress, whereas in hard regions the acting stresses are increased. In 

addition, the mechanisms of dislocation motion are different in both regions. In soft regions, 

thermally activated glide processes occur to bypass obstacles, whereas, in hard regions, 

annihilation and rearrangement of dislocations is favoured to enable the required flow. 

Although these processes do not work independently, as a simplification, the strain rate can be 

written as sum of strain rates due to thermally activated dislocation glide and diffusion-

controlled recovery. The thermally activated glide is dependent on the energy associated with 

the movement of the dislocation, the effective stress and the strength of the obstacles. The 

recovery-controlled strain rate is dependent on the time required for the climb and 

annihilation of two dislocations and the dislocation spacing. At low stresses, the creep rate is 

dominated by recovery. At high stresses, glide of dislocations will be the prevailing process. 

For recovery-controlled creep, the model again predicts the dependence of the strain rate on 

the third power of the acting stress [1,60]. 

 

3.2.4.6 Viscous Dislocation Glide in Solid Solution Alloys 

In solid solutions, various mechanisms additionally influence the creep behaviour at high 

temperatures. The solute atoms form atmospheres around dislocations. During dislocation 

movement, this atmosphere must either be dragged by the moving dislocation or the induced 

short-range order must be destroyed by the moving dislocation.  

 

Friedel [93] considers that the solute atoms near a dislocation are mostly situated in a 

minimum distance from the core. The dislocation core drag reduces the velocity of the 

dislocation. Taking into account the mean distance between the solute atoms and the density 

of the moving dislocations, Friedel derives the equation for the creep strain with 
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where DS is the diffusion coefficient of the solute.  

 

Takeuchi and Argon [94] assume that a dragging force caused by the solute atoms acts both 

on dislocation climb and glide. This force is dependent on the velocity of the dislocation and 

the concentration of the solute in the dragged atmosphere. If the velocity for climb is much 

lower than the velocity of glide, the dislocations will behave similarly as in pure metals. If the 

dislocation motion is controlled by atmosphere drag, the glide velocity will be lowered and 

will be equally small for all motions. As a consequence, the formation of a significant 

substructure is inhibited, because the motion of free dislocation is as slow as the recovery of 

the interacting dislocations. Furthermore, numerous jogs will be created on edge dislocations, 

because the dislocation movement is not restricted to a specific glide plane and the internal 

stresses have a random distribution. Taking the rates of generation and annihilation of 

dislocations into account, Takeuchi and Argon obtained for the resulting creep rate the 

equation  
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where α is a misfit parameter between the radii of the solute and the solvent atoms and C0 is 

the solute concentration at an infinite distance from the dislocation.  

The glide velocity of the edge dislocation will be the rate-controlling mechanism, because 

edge dislocations move slower then screw dislocations. The creep strain is the result of both 

mechanisms.  

3.2.4.7 Precipitation Strengthened Alloys and the Back Stress Concept 

If a microstructure subjected to creep conditions is acted on by an external force, this force 

can be counteracted by microstructural components as precipitates and interfaces. These 

components are causing a back stress (or inner stress) against the externally applied stress. 

Consequently, only a part of the external stress can act as a driving force for creep 

deformation. This concept is commonly denoted as the back stress concept. In this concept, 

the creep rate is dependent on the difference of the applied stress σ  and the back stress Bσ , 

( )Bσσ − , instead of the applied stress alone. To model this back stress, several approaches 

exist. 
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Several authors [95,96,97] perform an analysis accounting for passing obstacles by climb as 

the main process. The calculation of the effective spacing L of the dislocation line between 

the particles is a fundamental part of such models [1]. At zero applied stress, the dislocation 

line will be straight. When a stress is applied, the dislocation will bow out to a distinct radius 

of curvature. This radius depends on the acting stress and the dislocation line energy. 

Considering the total matrix area swept by the dislocation and the radii of the particles, the 

effective particle spacing can be calculated in dependence of the applied stress. The back 

stress then is dependent on the spacing of the particles and geometric relations between 

dislocation and particles.  

3.2.4.8 Crystal Plasticity Within the Framework of Finite Elements 

A number of models consider creep phenomena within the framework of finite elements. 

Mostly, the theory of crystal plasticity is utilized. In the theory of crystal plasticity, the 

concept of deformation by crystallographic slip is applied for calculating the accumulated 

creep strain [98,99]. The kinetics of dislocations is introduced by a flow rule, hardening 

effects are established using slip system hardening rules. Elastic anisotropy is considered as 

well [99].  

These models, which are time- and space-discretised [98], were developed for a number of 

different materials and alloys [56,100,101,102], a few of them are outlined in the next 

sections. 

 

McDowell 

McDowell et al. [56,100] present a model for a duplex Ti-6Al-4V alloy based on a 

microstructure-sensitive crystal plasticity framework. This material is a dual-phase alloy 

consisting of an hcp primary α-phase and secondary lamellar α + β phase, which is composed 

of alternating layers of secondary α laths and bcc structured β laths [100]. The dual-phase 

nature of the material is considered in the grain orientation, the anisotropic yield strengths of 

the different slip planes and the non-planar nature of the dislocation cores [54]. The primary α 

phase has 24 possible slip systems, the secondary α + β-phase is modelled implicitly by an 

effective grain orientation, which includes both hcp and bcc slip systems. Back stresses and 

dynamic recovery are considered in the chosen type of flow law. 
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All grains are assumed to be cubic and to have the same size [56], the phases of each grain are 

randomly distributed. The model is calibrated by a fitting procedure, using the stress–strain 

response of tests at different strain rates with strain hold periods. 

 

The results of the finite element simulations are given in effective plastic strains and feature a 

highly heterogeneous distribution of plastic strain. The authors claim the findings to be in 

reasonably good agreement with experiments. 

 

Raabe 

The conventional approach in crystal plasticity within the framework of finite elements deals 

with grain boundaries, which coincidence with the cell boundaries. One rare exception is the 

model introduced by Raabe and co-workers [101,102,103], which uses a special grain 

boundary element. 

The model is introduced in two adaptations, one for fcc and one for bcc metals. The 

dislocation structure is segmented into two groups of dislocations. First, a homogenous 

distribution of randomly distributed or, as frequently termed, statistically stored dislocations is 

considered, which can either be mobile or immobile. The immobile dislocations accommodate 

the external plastic deformation, whereas the mobile dislocations are responsible for 

hardening. Second, a fraction of geometrically necessary dislocations is added. The evolution 

of both densities is tracked separately. The evolution laws for the statistically stored 

dislocations include annihilation by climb. The Orowan equation is used to calculate the 

plastic shear rate of each slip system as a function of the mobile dislocation density. The 

interaction between different slip systems is modelled using an interaction strength, which 

includes, amongst others, cross slip and glissile junctions. The evolution of the density of 

geometrically necessary dislocations is calculated using the Burgers vector and the derivative 

of the plastic deformation gradient [103]. In the vicinity of grain boundaries, an additional 

activation enthalpy for mobile dislocation is introduced into the rate equations. This additional 

term quantifies the probability for a dislocation to penetrate the grain boundary. The grain 

boundary itself is introduced as a separate grain boundary element containing the interface 

itself [102]. Temperature dependencies are included in a generic fashion. 

 

To validate the model, simple shear experiments of Al single [103] and bi-crystals [102] are 

used. The constitutive parameters are obtained by fitting stress-strain curves. The local 

deformation is found to be in good accordance with experimental results. 
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Cheong and Busso 

Cheong and Busso [104] present a rate-dependent crystal plasticity model for single phase 

polycrystal configurations. Deformation is the result of crystallographic slip, where the 

overall slip is calculated as the sum of slip rates of activated slip systems.  

Forest dislocations (network of dislocations) are considered to act as an obstacle for moving 

dislocations. Deviations from the regular spatial arrangements of the dislocations are 

simulated by a statistical coefficient. The interactions between all dislocations are taken into 

account by a dislocation interaction matrix. Dislocation densities are accounted for screw and 

edge dislocations separately. 

 

The generation of dislocation is ascribed to Frank-Read sources. The expanding dislocation 

loops are assumed to be rectangular with edge and screw sides. The increase in the length of 

the dislocation segments causes a change in the respective dislocation density. As 

predominant annihilation mechanisms in this model, interactions between dislocations of the 

same character but opposite sign are introduced. The probability of an annihilation event 

during a distinct time interval is determined first, by the area the moving dislocation passes 

within this time interval and, second, by the critical distance for an annihilation between two 

dislocations to take place. For both screw and edge dislocations, different expressions are 

derived, due to the fact that edge dislocations cannot cross-slip. 

 

The calibration of the parameters is done by using data from a Cu single crystal experiment. 

Furthermore, the behaviour of a Cu multi-crystal during creep is simulated. Slip behaviour 

and influences on the misorientation of the grains are studied.  

3.3 Creep Modelling Using the Finite Element Method 

For a better comprehension and a possible future upgrading of the model introduced in 

chapter 4, the basic finite element equations are briefly outlined in the following sections. 

Knowledge of matrix algebra is assumed throughout this work. 

3.3.1 Time-Dependent Creep Modelling 

In general, the material response to a given load or stress can be divided into four different 

regimes depending on time dependency and reversibility. Creep is time-dependent and not 

reversible and, thus, belongs to the visco-plastic phenomena as stated in Table 1.  
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Table 1: Overview on material behaviour in terms of deformation theory. 

 
Because of the time-dependency of visco-plastic behaviour, the calculation of the stresses and 

strains has to be done step by step. The solution, in general, will be path dependent. For the 

description of the problem, some constitutive relations and assumptions have to be set up.  

The total strain ε can be separated into elastic εel and inelastic components εin by  

 inel εεε += . (3.36)

The inelastic components include plastic strain, viscoplastic strain and creep. The elastic part 

can be described by Hooke’s law.  

3.3.2  Finite Elements in Structural Mechanics 

Mesoscale methods, such as finite elements, are continuum approaches. They are not 

intrinsically calibrated and, thus, can span larger time and length scales [66]. 

Two types of formulations exist. Lagrangian elements follow the material deformation; free 

and moving boundaries can be treated automatically. Eulerian elements are not attached to the 

material, but have a fixed grid. This description is a valuable tool for large deformations and 

fluid dynamics. But for small deformation, the Lagrangian description is advantageous and is 

widely applied. Therefore, this concept is used in this work [105].  

3.3.2.1 Formulation of the Mathematical Framework and Basic Relationships 

The displacement-based finite element method consists of an idealization of the spatial 

structure (specimen, sample) into an assemblage of elements [105]. A typical finite element 

consists of nodes and straight line boundaries. The nodal displacements u  are summarized in 

a vector [106] 
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In a three dimensional analysis, each node consists of three displacements, whereas in two 

dimensions only two displacements are comprised in the vector. The displacements eû  at any 

point within the element can be calculated using the displacements ue at the nodes of the 

element by  

 ∑= ee Nuû  (3.38)

where N is the displacement interpolation matrix [105], which includes the so-called 

displacement shape functions [106]. The shape functions have to be chosen such as to give the 

appropriate nodal displacements when the coordinates of a corresponding node are inserted.  

3.3.2.2 Strains and Stresses 

The strains can be calculated at any point of the element provided that all the nodal 

displacements are known. This relationship can be written as 

 Buε =  (3.39)

where the matrix strain displacement matrix B is an operator, which contains all necessary 

geometrical information of the element. The size of B is dependent on the type of element, the 

number of nodes and the degree of freedom at each node. For a quadrilateral, four nodded 

element in two dimensions, B equals [106] 
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All strains are summarized in a so-called pseudovector, which consists of the normal and the 

shear components of the strain tensor, which contribute to the internal work [105,106]. In two 

dimensions, this vector consists of three components 
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where εx and εy are the normal components and γxy is the shear component. 

 

Stresses are caused by the change in the actual strains. Any initial strains ε0, which can be 

caused by e.g. temperature, don’t contribute to stresses have to be subtracted from the actual 

strains. Furthermore, any initial stresses σ0 due to material history have to be added on to the 

general definition. Assuming linear elastic behaviour, the stresses can be calculated by  
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 ( ) 00 σεεDσ +−=  (3.42)

where D is the well-known elasticity matrix, which contains the usual isotropic stress-strain 

relationships. For plane strain analysis, D takes the form [105]  
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where E is Young’s modulus and ν is Poisson’s ratio. 

3.3.2.3 Forces and Loads 

Each force and distributed load must contain the same number of components as the 

corresponding displacement vector u. Furthermore, each component has the appropriate, 

corresponding direction. 

The distributed loads b are defined as loads acting on a unit volume of material, the force Fb 

due to those loads can be calculated by [106] 

 ∫−=
V

b VdTbNF . (3.44)

The forces F0 due to initial strains ε0 and stresses σ0 can be calculated by 

 ∫ ∫+−=
V V

VV dd 0
T

0
T

0 σBDεBF . (3.45)

All forces mentioned above must be taken into account when establishing the equation system 

for the problem. If a boundary is subjected to an external load t per unit area, then the load 

term  

 ∫−=
A

t AdTtNF  (3.46)

has to be added. 

3.3.2.4 Stiffness Matrix and Resulting System 

In the framework of the Finite Element Method, the stiffness matrix describes geometrical 

and physical properties of the spatial structure to be modelled. The stiffness matrix has to be 

calculated for each finite element of the element assemblage separately. Each element has its 

own element number and a list of its nodal points. The stiffness matrix of an element will 

always be square. The coefficients of the element stiffness matrix Ke are calculated by 
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 ∫=
V

e VdT DBBK . (3.47)

The global stiffness matrix K is assembled of all element matrices by 

 ∑=
i

e
iKK  (3.48)

Every sub-matrix has to be inserted according to the coordinates of its nodal points. Each of 

these matrices contributes in an additional sense, which means that, for each coefficient, the 

attributions have to be summed up that is all numbers in the appropriate space of the global 

matrix have to be summed up. As all matrices are symmetric only the upper half above the 

diagonal has to be considered [105,106]. 

3.3.2.5 Boundary Conditions 

There are two types of boundary conditions. In structural analysis, these consist of prescribed 

displacements and prescribed acting forces. The displacement boundary conditions are also 

called essential or Dirichlet boundary conditions. The force boundary conditions are also 

called natural or Neumann boundary conditions.  

The force boundary conditions are calculated by the external nodal point force vector. They 

include all the external forces loaded on the specimen. Such a boundary loading is represented 

by concentrated forces acting on the boundary nodes. 

The displacement boundary conditions simply specify the value that the nodal displacement at 

a specific point needs to adopt. A minimum number of displacements has to be prescribed 

because the displacements cannot be only determined by the acting forces. Physically, this is 

obvious because the structure should be prevented from rigid body movements. 

Mathematically, the matrix K would become singular. It should be noted that, if, at a node, 

the displacement is prescribed, the external forces at this node cannot be prescribed and must 

remain unknown [105,106].  

3.3.2.6 System of Equations 

The stiffness matrix K, the nodal displacements u and the force vector F finally add up to 

 FKu = . (3.49)

The solution of this system of equations involves of the calculation of the unknown resulting 

displacements u at all nodes of each element. The stresses and internal forces are then 

obtained from these calculated displacements [105,106]. 
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4 Numerical Implementation 

In this chapter, the creep model launched in this work is introduced in detail. The individual 

sections discuss the general methodology of the approach, as well as the individual physical 

mechanism operating during creep loading of a poly-crystalline structure. The chapter is 

concluded with a description of the code implementation and a discussion of the problems and 

difficulties observed when treating a complex structural problem numerically using the Finite 

Element Method. 

4.1 Design of the Spatially Resolved Creep Model 

As a first step, the spatial range covered by the presented model is specified, the physical 

mechanisms representing the basic model ingredients are introduced and potential interactions 

are described. 

4.1.1  Multi-Scale / Multi-Phase Approach  

The presented model introduces different microstructural features and their interactions. 

These ingredients span different length and time scales. To give an overview on the scale 

used, as a typical example, the behaviour of solids on different spatial levels is examined as 

shown in Fig. 23.  

The first level is the engineering level, where structures and assemblages are analysed on a 

macroscopic scale. The material is considered to be homogeneous in sufficiently large 

volumes. The evolution of material parameters, such as deformation, is described without 

explicitly taking into account the underlying physical mechanisms. The length scale ranges 

down to millimetres. The scope of this work is far below this level and, therefore, 

macroscopic interactions are omitted in the model. 

The second level is the mesoscopic level. This length scale takes into account the internal 

structure of the material. In our case, the arrangement consists of grains, their martensitic 

substructure, grain boundaries and precipitates. In modelling, the local properties are taken 

into account by assigning a set of different properties to each of these microstructural 

components. The length scale ranges from micro- to nanometers. The model introduced in this 

work includes the microstructure, its properties and interactions within this length scale.  
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Fig. 23: Macroscopic, mesoscopic and microscopic length scales with examples. 

The microscopic level consists of atomic structures and their interactions. In creep modelling, 

this concerns microstructure constituents such as vacancies and dislocations. Their reactions 

and interactions within the material comprise e.g. vacancy migration, dislocation movement 

and pinning of dislocations at obstacles. These interactions determine the response of a 

material to prescribed conditions, such as mechanical stress or elevated temperature. 

Diffusional processes and, thus, mass transport, are occurring. The resulting mass flux caused 

by migration of structural vacancies is incorporated into the presented model and determines 

the deformation of the material, whereas the resulting creep strains and stresses are calculated 

at the mesoscopic level. 

4.1.2  Spatially Resolved Microstructure 

To reflect the impact of a microstructure on creep behaviour, the presented model represents a 

particular microstructure and its reactions in terms of stresses and strains on external 

influences. The microstructure of metallic materials and its influence on creep is complex. 

Therefore, the model consists of several elements, including grains, their substructures, high 

angle and low angle grain boundaries, precipitates, dislocations and vacancies. The 

characteristics of the material are, in addition to its chemical composition, controlled by the 

properties of these microstructural components and their particular arrangement. This local 

arrangement of different constituents and their interactions lead to a highly heterogeneous 
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response to externally applied loads of the affected material in terms of internal stresses and 

creep strains. 

 

The intention of the implemented work is to reflect the influence of this locally differing 

microstructure on the overall material behaviour during creep. The microstructure is 

represented by a spatially resolved section of a creep-loaded sample as represented in Fig. 24. 

On the chosen length scales, the incorporated microstructural elements consist of  

• the matrix of the grains, 

• grain boundaries, 

• precipitates, both on grain boundaries and within the matrix, 

• the mass flux caused by vacancy migration. 

As already stated, the main focus in the presented work lies on creep deformation caused by 

diffusion. For the benefit of generality, the deformation caused by moving dislocations is 

already implemented indirectly into the model by a simple power-law constitutive 

formulation, though. Explicit treatment by, e.g., dislocation dynamics, is beyond the scope of 

this work. However, the inherent option to do so, provided by the model architecture, adds a 

valuable possibility to upgrade and expand the model in the future.  

Each of the mentioned microstructural elements (grain boundary, bulk, precipitate etc.) is 

characterized by a number of properties, including 

• grain orientation, 

• grain structure (fcc, bcc or hcp structure), 

• Young’s modulus, 

• Poisson’s ratio, 

• yield and threshold stresses, 

• diffusion coefficients, 

• and activation energies. 

 

In this work, the main focus lies on the elastic modulus, Poisson’s ratio and diffusion 

coefficients. An overview on the basic features of the model is given in Fig. 24 and the 

following paragraphs. A detailed discussion of the properties of these elements and of their 

actual implementation is given in the subsequent sections. 
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Fig. 24: The spatially resolved microstructure, represented by a grain with vacancies, dislocations, fine 

and coarse precipitates. The mathematical discretisation is indicated as well. 

In this model, the matrix is assumed to have a homogeneous, crystalline structure. In general, 

the different grains have different crystallographic orientations. Adjacent grains are separated 

by high angle grain boundaries. Grain boundaries are considered as a separated, distinct 

element in the calculations. Due to their amorphous structure, the properties of grain 

boundaries are different from that of the grain itself, in particular, the elastic modulus and the 

diffusion coefficient. Precipitates are either introduced as a fine dispersion within the matrix, 

which will alter the properties of the respective region, or they form relatively coarse, hard 

particles. In this case, the precipitate is regarded as a discrete region within the bulk material, 

either within the grain directly or on grain boundaries. 

 

The structure, as given by Fig. 24, is then discretised into cells. Each cell is described by a set 

of parameters depending on the microstructural element it represents. Again, the details of the 

incorporation into the model will be given in the following sections. 

 

The basic mechanisms for creep deformation (Fig. 24) consist of material transport by 

vacancies and plastic deformation by dislocation movement. The local vacancy concentration 

is determined by the given stress distribution. The resulting flux of vacancies JVA is described 
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by Fick’s first law, as introduced in section 3.1.2.1. This flux is connected to a flux of lattice 

atoms JLA in the opposite direction, which again is depicted in Fig. 24. The basics of these 

diffusional processes have been introduced in chapter 3.1.2. As already outlined, these fluxes 

are linearly dependent on the acting forces. The associated deformation rate ε&  of the material, 

therefore, is linearly dependent on the acting stress as well, expressed by  

 σε ≅≅ LANH J& . (4.1)
 

For the material fluxes due to dislocation movement, the situation is different. The material 

deformation caused by dislocation movement has a non-linear dependency on the acting 

stresses σ given by 

 nJ σε ≅≅ DD&  (4.2)
 

where n is the so-called stress exponent. The value of n depends on the type of dislocation 

movement, an introduction is given in chapter 3.1.4. 

 

For both kinds of fluxes, this relationship has to be specified and a distinct relation between 

acting stresses and the resulting fluxes has to be introduced into the model. In this work, the 

main focus lies on Nabarro-Herring creep, which can be expressed by  

 
kTd

DA 2
L

NH
Ω

=
σ

ε&  (3.19)

with ANH being a constant, DL being the self-diffusion coefficient, Ω the atomic volume, d the 

grain size, k Boltzmann’s constant and T the temperature. 

4.1.3 Interactions 

All microstructural elements and processes to be incorporated into this model interact with 

each other. A basic overview of all possible interactions is given in Fig. 25 and briefly 

discussed in the following. Part of these are already implemented and applied in the actual 

implementation, others can be introduced in the future to extend the capabilities of the model. 

The implementation of these interactions can be carried out in several ways, depending on the 

particular mechanism as discussed subsequently.  

 

High angle grain boundaries are strongly interacting with all other microstructural 

constituents. They act as sources and sinks for vacancies, their major role in threshold 

behaviour of diffusional creep already having been discussed in chapter 3.1.2. Furthermore, 

they act as fast diffusion paths in the Coble creep regime due to their unordered atomic 
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structure. For dislocation movement, grain boundaries can, on the one hand, act as obstacles. 

On the other hand, they can provide dislocation sinks and sources, although Frank-Read 

sources are commonly stronger sources.  

 

 
Fig. 25: Possible interactions of different microstructural elements. 

For precipitates, grain boundaries represent a favourable nucleation site, here again the causes 

lie within the amorphous arrangement of atoms, which strongly facilitates precipitate 

nucleation.  

 

A major role, although not indicated in this diagram, is the one that grain boundaries play in 

altering the stress distribution in the adjacent grains and forming stress concentrations near 

triple points. Details can be found in chapter 3.1.6.1.  

Vacancies and dislocations are interacting as well. Dislocations emit and absorb vacancies 

when they move non-conservatively, i.e. during climb. Depending on the availability of 

vacancies, this mechanism can be the rate limiting process of creep deformation controlled by 

climb. Concerning dislocations and particles, climb and glide play an important role as well. 

On one hand, fine dispersed particles can be obstacles for dislocation glide. To bypass them, a 

dislocation has to climb, a process, which requires extra work and long-range diffusion. On 

the other hand, small particles can be a source for dislocation production (Frank-Read source), 

provided that the local stress exceeds a given threshold. 

 

Diffusion of  
Vacancies 

Movement of  
Dislocations 

Grain Boundaries Precipitates 
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4.2 Physical Modelling 

4.2.1 Modelling Creep Strain and Stress 

The heterogeneity of creep strains and stresses is a consequence of the locally differing 

properties of the microstructure. These properties influence stresses or creep strains directly. 

Because of the mutual reactions within the physical system of the structure, the results and 

effects in terms of strains and stresses are coupled. In terms of creep modelling, their 

implementation takes place at different places within the setup of the model, depending on the 

particular mechanism, as outlined in the next section. 

 

On the one hand, the creep strain is dependent on the locally acting stress. This stress is the 

response of the mesoscopic system to specific boundary conditions. If the properties of the 

system are homogeneous, the reacting internal stresses are homogenous as well. Since the 

microstructure of a polycrystalline material is far from being homogeneous, the reacting 

stresses will also have a non-homogeneous distribution within the material. 

In the presented model, two specific properties of the microstructure are responsible for this 

observation: the Young’s modulus E and Poissons ratio ν. Both properties are implemented 

into the model by introducing them directly into those equations of the model, which describe 

the interactions between applied forces, resulting displacements and internal reacting stresses. 

This is done by using the so-called elasticity matrix D [106] 
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to calculate the reacting stresses σ with 

 elDεσ = . (4.3)

That is, the reaction itself of the structure on given conditions is altered directly. The resulting 

plastic strain is calculated in subsequent parts of the code. 

 

The second possibility to influence the creep strain in the simulations is to change the 

proportionality constants, which link a given stress and the resulting mass flux and creep 

strain, respectively. In other words, not the driving force itself is changed, but the reaction of 

the system on this specific, given force is altered. For instance, the same stress distribution 
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leads to different mass fluxes, if the diffusivities of atoms are different. An increasing 

temperature initiates faster movement of particles, even when the stress level remains 

unchanged. The same holds true for other factors as well, which include  

• diffusion coefficients,  

• vacancy densities, 

• temperature,  

• shear modulus and  

• dislocation densities, 

where the former two are the most relevant ones in this model. These quantities, here for 

generality termed A, are introduced directly into the calculation of the creep deformation with 

 tA nΔ≅Δ σε  (4.4)

where εΔ  is the strain increment, σ  is the effective stress, n is the stress exponent and Δt is 

the time increment. The stresses are not influenced by the parameters A. Each phase 

implemented into the model can have parameters of both kinds. In the next section, a detailed 

description is provided. 

 

Strain and Time Hardening 

Time and strain hardening models provide simple empirical descriptions of creep phenomena 

[107]. In strain hardening models, the strain rate depends on the actual stress and the 

accumulated creep strain, which can be expressed by 

 lkA εσε =&  (4.5)

where A, k and l are constants to be chosen properly. Time hardening models postulate a 

relationship between the equivalent creep strain, the equivalent stress and the time at a fixed 

temperature with 

 mntAσε =  (4.6)

with the parameters A, m and n, which, again, have to be chosen properly. 

In the actual framework, time hardening is already implemented, though not used in the 

presented simulations. 

 

Threshold behaviour 

Some mechanisms, which are acting as driving force for material transport, must overcome a 

certain activation energy or an activation barrier Qbarrier before they start to be operative. This 

condition can be expressed by 
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where Q is the actual value and Qbarrier  is the minimum energy, which has to be reached to 

initiate the process. 

In this model, the threshold stress for creep deformation is regarded as such a barrier. It 

controls the onset of creep deformation, but its magnitude does not influence the material 

fluxes or the strain rate itself. The implementation in the model is rather simple. If a 

condition, as stated in equation (4.7), is met, the creep calculation is performed for the 

concerned phase. Otherwise, the change in creep strain is set to zero and only elastic response 

is calculated. 

For diffusional creep, the threshold stress, albeit existent, does not play an important role 

because creep loading commonly occurs on levels clearly beyond its level. Therefore, its 

threshold value is set to zero for all simulations. 

4.2.2 Modelling Phases  

4.2.2.1 Bulk Grain 

In this model, the grain interior is presumed to be homogeneous and to have the same lattice 

orientation over the entire subgrain. The main parameters related to the grain bulk volume are 

the elastic modulus E, Poissons ratio ν and the vacancy or mean lattice diffusion coefficient 

DL.  

 

The elastic modulus is grain size dependent for small grains. For grains larger than 20 nm, the 

elastic modulus can be taken as constant [108]. Thus, Young’s modulus is chosen to have the 

same value for the entire matrix, with the actual values taken from literature [66]. Poisson’s 

ratio is assumed to be constant as well. 

The incorporation of both parameters into the model takes place in equations (3.41 and (4.3). 

4.2.2.2 Grain Boundaries 

High Angle grain boundaries, although assumed to have the same chemical composition, 

because we are neglecting segregation effects presently, have different properties than the 

bulk material. In contrast to the ordered, crystalline phase of the matrix, their structure is 

highly disordered. Therefore, grain boundaries can be regarded as an amorphous phase. 

In the present model, grain boundaries are implemented as a homogeneous material without 

any specific crystal lattice orientation. Furthermore, the stress-strain response of a grain 
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boundary is not the same as in the surrounding lattice. The reason lies in the different strength 

of the disordered phase. Therefore, for grain boundaries, an elastic modulus different from 

that of the bulk material is utilized in the model.  

Because there is no data available for amorphous pure metals, the properties of a grain 

boundary can be approximated by the values of the metallic glass in glass-forming systems 

and some theoretical considerations. Carsley et al. [109] approximate the shear modulus of the 

amorphous metal Gallium to be half that of the crystalline one. Schuh et al. [110] state that 

both, shear modulus and Young’s Modulus, are about 30% smaller than that of the crystalline 

phase. The density of the material and the interatomic spacing differ only slightly (0.5-2.0%), 

so this cannot be an adequate, single reason to explain the decrease in those two moduli. 

Weaire et al. [111] assume that the local atomic displacements on straining are different 

because of the slightly different atomic spacing. This gives way to internal rearrangements 

that reduce Young’s modulus and the shear modulus considerably. 

For this reasons, the Young’s modulus for grain boundaries EGB is modelled with 

 
2

c
G

E
E B =  (4.8)

where Ec is the modulus for the crystalline phase. Poisson’s ratio is assumed to have the same 

value as the bulk. The width of the grain boundary is assumed to be 1 nm [112].  

The implementation takes place in the same way as for the matrix phase. The elastic modulus 

is incorporated into the stiffness matrix of the element, and affects the stress response of the 

material to an existing strain as stated in equations (3.41) and (4.3). 

4.2.2.3 Precipitates 

To incorporate precipitates into the model, two different length scales are distinguished. Small 

precipitates within the bulk material are included into the model as a fine dispersion of 

particles. They are not introduced as separate cells, but alter the properties of a matrix cell. 

These precipitates have two effects on the creep determining stress distribution. First, the 

mean elastic modulus E of the lattice is higher than in unaffected material. The extent is 

dependent on the fraction fP of the small precipitates on the overall composition and their 

elastic modulus EP by  

 ( ) LPPP 1 EfEfE −+= . (4.9)

The density of these precipitates can be calculated with suitable simulation techniques. Again, 

the altered elastic modulus is incorporated into the model by changes in the element stiffness 

matrix of the affected phase. 
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Second, small precipitates are causing a so-called back stress. This back stress lowers the 

effective stress distribution, which is the driving force for dislocation creep, as outlined in 

section 3.1.6.3. It is incorporated into the model by lowering the effective stress, which is 

responsible for the evolution of the creep strain by 

 ( )bσσσ −→  (4.10)

where σb is the back stress. 

In contrast to the fine dispersed particles, large precipitates are introduced into the model as a 

distinct, separate phase. Their elastic modulus is generally higher than that of the surrounding 

matrix, which causes different stress-strain responses. Poisson’s ratio is assumed to have the 

same value as the bulk material. The implementation of both parameters into the system of 

equations again takes place through equations (3.41 and (4.3). 

4.2.3 Modelling Mass Fluxes 

Atomic diffusion is modelled according to the Nabarro-Herring creep law. The resulting mass 

fluxes, which are dependent on the acting stresses, are incorporated into the model using a 

creep law, which links these stresses with the resulting creep strain. Assuming constant 

density, the mass flux leads to a shape change of the overall volume of the material. The 

resulting strain can be linked to this mass flux as follows. 

 

The flux J of atoms per time and unit area is given by Fick’s law with 

 
x
cDJ

∂
∂

−=  (4.11)

where D is the diffusion coefficient and c is the concentration of the considered atoms. 

Integrating this flux J in time t and space dΩ gives the total number of particles Np, which 

flow out of the considered integration volume dΩ. Multiplying this number Np with the mass 

per particle mp gives the total change in mass dm by  

 mtJmNm ppp ddd =Ω= ∫∫ . (4.12)

On the other hand, any change in mass in linked to a change in volume via the mass density ρ 

by 

 Vm dd ρ= . (4.13)

Keeping in mind the definition of strain ε  

 x
x

x
∂

=ε ,  
y
y

y
∂

=ε ,  
z
z

z
∂

=ε , (4.14)
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the volume change dV can be calculated in terms of change in strain and, therefore, can be 

linked to the effective creep strain with 

 
m
m

V
V dd

==ε ∫∫ Ω= tJm
m p dd1 . (4.15)

This effective creep strain, which is caused by mass transport by the flux J, is then directly 

incorporated into the code. For modelling the resulting effective creep strain, the expression  

 mntAσε =  (4.16)

is selected, whereσ is the effective stress, t  is the effective time and A, n and m are 

constants. This choice is motivated by generality, because with this expression it is possible to 

describe different creep regimes with different sets of material constants and to incorporate 

different mechanisms. All parameters, which influence these fluxes, such as the diffusion 

coefficient, temperature, dislocation densities and so forth, are included in the parameter A of 

equation (4.16). 

 

As already mentioned, due to the generality of expression (4.16), it is possible to include 

empirical descriptions for strain hardening and time hardening as well. Strain hardening can 

be incorporated by giving A a dependency on the accumulated plastic strain. Time hardening 

is already incorporated and can be modified by choosing the constant m properly. For future 

work, this provides additional possibilities to expand and to upgrade the model. 

4.2.4 Selection of Material Parameters 

A characteristic set of parameters for the creep regime to be modelled has to be chosen. These 

parameters depend on the microstructure, the temperature and the stress range. For 

comparison, parameters corresponding to those of experimental boundary conditions have 

been chosen [113]. The implementation into the model is described in sections 4.2.2 and 4.2.3 

 

With the implemented algorithm, it is possible to model time hardening as well; however, it is 

not considered in this work due to its minor relevance in the context of diffusional creep. 

Thus, the time-dependence of the creep rate is linear and the constant m is chosen to equal 1 

for all calculations. 

4.2.4.1 Modelling Nabarro-Herring Creep 

In the diffusional creep regime, the stress dependence on the applied stress is linear. 

Therefore, the constant n in equation (4.16) has to be chosen with n = 1. The other quantities, 
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such as the mean lattice diffusion coefficient DL, the general constant for diffusional creep 

ANH, the atomic volume Ω and grain size d are included in the parameter A with 

 
kTd

DAAA L
2NH

Ω′=  (4.17)

where A’ is a constant, which equals 1 in all presented simulations. 

The temperature T for all simulations is chosen with T = 600°C. The grain size varies between 

2 and 100 μm. The diffusion coefficient DL is dependent on temperature through an 

exponential law [11] 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
RT

QDD exp0  (3.7)

where D0 is the pre-exponential factor, Q is the activation energy and R is the ideal gas 

constant. Using the material parameters given in [113], the mean lattice diffusion coefficient 

is calculated with DL = 2.85·10-19 m2/s. The atomic volume Ω can be calculated by using the 

lattice parameter a with 

 
atom

3

n
a

=Ω  (4.18)

where natom is the number of atoms within the unit cell. Using lattice constants for ferritic steel 

[11], the atomic volume is given with Ω = 1.17·10-29 m3. The general constant for Nabarro-

Herring creep ANH lies within the range of 12 – 40 [28] and is chosen with ANH = 13.3 for 

polycrystals [5]. 

4.2.4.2 Modelling Dislocation Creep 

Even though the main task of this thesis is to model diffusional creep, some very simple 

examples of dislocation creep are simulated as well to demonstrate the potential that the 

present model offers.  

Dislocation creep is generally dependent on some nth power of stress. In this work, a creep 

law for diffusion-controlled dislocation climb creep by Nabarro [1] is modelled with  

 
3

2N ⎟
⎠
⎞

⎜
⎝
⎛Ω

=
GkTb

GD
A L σε&  (4.19)

where DL is the mean lattice diffusion coefficient, G the shear modulus, Ω  the atomic 

volume, b the Burgers vector, k Boltzmann’s constant and T the temperature. The stress 

exponent for the dislocation creep examples is chosen to be n = 3. All other quantities are 

integrated within the general parameter A with 
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kTb
GDAAA L

2N
Ω′=  (4.20)

where A’ is a constant. Other variables, such as dislocation densities, dislocation mobilities, 

dislocation lengths and activation energies, are included in this model as intrinsic variables. 

DL and Ω are calculated according to the previous section. 

The magnitude of the Burgers vector depends on the atomic plane of dislocation movement 

and the lattice parameter a with 

 222

2
lkha

++=b  (4.21)

where h, k and l are the components of the Burgers vector. Assuming an offset of one crystal 

layer, which is common for metallic materials, and a dislocation plane corresponding to the [1 

1 1] direction, the magnitude of the Burgers vector equals b = 2.46·10 -10 m. 

Again, due to the generality of the chosen expression (4.16), this model can be replaced by 

other models in a simple way, if desired. 

4.2.5 Temperature Dependence 

Temperature dependence can easily be taken into account by letting the materials constants be 

a function of temperature. The diffusion coefficient has an Arrhenius type of dependence on 

temperature T given by 

 ⎟
⎠
⎞

⎜
⎝
⎛−=

RT
QDD exp0L  (3.7)

where Q is an activation energy and R is the gas constant. 

Due to the linear expansion of rigid bodies, the elastic modulus E decreases with decreasing 

temperature. Still, due to possible anomalies in Young’s modulus [114,115], it is 

recommendable to take precise, experimental values for the desired temperature range from 

literature. An interpolation for intermediate temperatures can be done using quadratic 

functions [116]. In this work, Young’s modulus is assumed to have a value of E = 143 000 

MPa at the elevated temperatures used in the simulations. 

Other material constants, such as Poisson’s ratio and Burgers vector, slightly differ with 

temperature as well, again an interpolation can be done using polynomial functions [116]. 

All examples presented in this work are simulated at a fixed temperature. An adjustment for 

other temperatures can easily be done by adjusting these parameters where necessary. 
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4.3 Code Implementation 

4.3.1 Own Code 

Numerous commercial finite element software packages are available nowadays for structural 

analysis in solid-state problems. General-purpose FEM codes normally include some 

conventional creep models. The parameters of the chosen creep law are specified by the user, 

but further intervention into the model and the code is not easily possible. As an addition, in 

some FE software packages, it is possible to define user specified subroutines for creep 

calculations. Even with this device it is not possible to incorporate all ideas, especially some 

features of a spatially resolved microstructure with locally differing characteristics. In 

addition, any linking with other software should be possible without restrictions. 

For these reasons, it is worthwhile to set up an own independent finite element model to 

calculate creep behaviour. 

4.3.2 Technical Details 

For the numerical implementation of the presented model, the general-purpose, commercial 

software MATLAB® is utilized. MATLAB is a software package, which provides an 

interactive environment and high-level programming language for numerical computations. 

Its main focus lies on numerical analysis, although add-on toolboxes allow access to computer 

algebra capabilities. 

 

In the implemented code, all basic equations and expressions are programmed directly. 

Therefore, a transfer to any other programming language can easily be done. Only for solving 

the systems of equations, basic MATLAB routines for matrix calculation are used. 

Furthermore, all graphical output is handled with tools provided by MATLAB. 

The finite element method is encoded applying a standard Lagrangian approach using 

Hooke’s law. As element type, a quadrilateral element with four nodes is used. 

For the necessary integrations, the concept of Gaussian quadrature is adopted. The analytic 

solution of the integral is approximated by summing up the values of the function to be 

integrated on the four specific points specified in Table 2.  

 

A standard patch test [106] for elastic behaviour has been conducted successfully to show that 

the implementation works correctly. For this test, a grid containing 5 elements with altogether 

8 nodes is set up as shown in Fig. 26. A plane stress analysis is performed. Node 1 is fully 
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restrained and node 4 is restrained only in the x direction. Then the forces F specified in Table 

3 for nodes 2 and 3 are applied to the system.  

 
Table 2: Coordinates of the four Gauß points used to calculate the weighted values of all integrated 

functions. 
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Fig. 26: Patch test with a five element grid, restrained nodes and applied forces. 
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Table 3: Node numbers i, coordinates xi and yi off all nodes, displacements ui and vi and forces Fxi and Fyi 

for the applied patch test. 

 Coordinates Displacements Forces 

Node i xi yi  ui  vi  Fxi Fxi  

1 0.0 0.0 0.0 0.0 -2 0 

2 2.0 0.0 0.0040 0.0 3 0 

3 2.0 3.0 0.0040 -0.00186 2 0 

4 0.0 2.0 0.0 -0.00120 -3 0 

5 0.4 0.4 0.0008 -0.00024 0 0 

6 1.4 0.6 0.0028 -0.00036 0 0 

7 1.5 2.0 0.0030 -0.00120 0 0 

8 0.3 1.6 0.0006 -0.00096 0 0 

 

The simulation produces exact solutions for all nodal quantities listed in Table 3. Thus, the 

basic implementation can be considered as to work correctly. 

4.3.2.1 Layout of the Code 

As is illustrated in Fig. 27, the code is divided into three main modules: the input and set up 

of all necessary data, evaluation of the system equations and their solution and, finally, the 

output of the results. Each of these modules is divided into sub-modules, the details of which 

are outlined in the next chapters. 

 

 
Fig. 27: Modules and sub-modules of the implemented code. 

Input 

At the beginning, all necessary input data have to be handled. As a first step, the finite 

element grid itself is set up. All nodes have to be specified by their coordinates in x and y 

direction, each node has to be identified with a positive integer number. Then, all nodal 
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connections have to be specified. That is, for each element, the four attached nodes have to be 

named in a list. Furthermore, all elements of the grid have to be indexed as well. 

For simple, rectangular meshes, these specifications are done by a simple sub-routine. Only 

the length of an element and the number of elements per boundary have to be specified. The 

mesh and the table for the elements and nodes are calculated automatically. Shapes other than 

rectangular can be defined as well, but node numbering and all mesh-defining tables must 

then be inserted manually. 

All boundary conditions have to be specified at the corresponding node numbers. Two 

different types can be distinguished. The Dirichlet boundary condition specifies a value that 

the solution of the problem must adopt at the boundary. In this model, as usual in structural 

mechanics, this corresponds to specification of a displacement for a node. In the input file, 

this is done by a list of node numbers and the corresponding displacements in both x and y-

direction. 

Neumann boundary conditions specify the value that the derivative of the solution has to 

adopt on the boundary. In other words, the force acting on the chosen node has to be given. In 

this model, again, this results in the specification of the node numbers and the corresponding 

forces in x and y-direction. 

Parameters concerning physical properties of the structure, such as Young’s modulus, 

diffusion coefficients, threshold hold stresses etc. have to be specified for each element. For 

each of these parameters, again, this is done by tabulating the element numbers and the 

corresponding values. In principle, they can be specified per Gauß point as well, but in the 

actual examples calculated with the model, this is not done. 

For handling of the iteration process, some additional parameters have to be established. 

These include the maximum number of iterations, the maximum number of increments, the 

time interval for each increment and error parameters.  

 

Setup of the Stiffness Matrix 

The first step when setting up the mathematical model is the specification of the system of 

equations, which describe the system. To do so, the stiffness matrix for each element has to be 

established by a summation with  

 ∑=
i

e BDBBK detT  (4.22)

over all four Gauß points i of the element. The strain displacement Matrix B in this 

implementation is not constant and has to be calculated for each of these Gauß points. The 

determinant of B reflects the size of the single finite element and equals one if the actual cell 
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has the same size as the finite element unit cell. The matrix D is dependent on some physical 

parameters and, therefore, has to be set up for each Gauß point as well. 

The stiffness matrix of the overall element assemblage is calculated using the direct stiffness 

method. In this procedure, each element matrix Ke is inserted into the overall matrix by 

adding the entries at the corresponding node numbers, as is indicated in Fig. 28. Other 

methods have been proven to be too time-expensive for an implementation with MATLAB. 

 
Fig. 28: Assemblage of the overall stiffness matrix using the single element stiffness matrices. 

Once the stiffness matrix is set up, the boundary conditions for the individual nodes are 

implemented into the matrix K and the external force vector F, both forming the system of 

equations  

 FKu =  (4.23)

where u contains the unknown displacements.  

As already discussed in chapter 3.3.2.5, Dirichlet boundary conditions control the value of the 

solution for the selected node, in other words, the displacement is prescribed. In this work, a 

simplified method (containing two solution steps) is used. For the selected node i, the entry Kii 

in the stiffness matrix is set to one. Then, all other entries in the corresponding row and 

column are set to zero. The matching entry in the load vector F adopts the selected value for 

the displacement. One has to keep in mind that, in this case, for the resulting displacements of 

all other nodes, a second purely elastic step of the calculation must be carried out. Fixing a 

node is handled as a special type of a Dirichlet boundary condition with zero displacement, 

albeit, in this case, a second elastic iteration of the calculation is not necessary. 

The implementation of Neumann boundary conditions is much simpler. This kind of boundary 

conditions reflects the applied external force. For the selected node i, the selected value is 

prescribed in the entry Fi of the force vector.  
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For solution of the system of equations, the modified Newton-Rhapson method is used. That 

is, the stiffness matrix is only setup once and then remains constant throughout all simulation 

processes. This completes the setup of the problem before the iteration scheme can start. 

 

Incremental Process to Calculate Stresses and Strains 

The calculation of stresses and strains for non-elastic problems, as in the visco-plastic regime, 

has to be done stepwise, and the overall time has to be divided into time steps, i.e. into 

increments. Within each of these increments, several iterations are computed to reach the 

equilibrium solution for the actual increment, i.e. time step. Fig. 29 gives an overview. 

Furthermore, in this kind of problem, the application of all external loads is done stepwise to 

ensure stability of the following calculations, i.e. the load is not applied all at once, but over a 

relatively short, but defined time interval. Therefore, the external force vector Fext, which 

includes all prescribed displacements and applied forces, has to be updated at the beginning of 

each increment. The time step Δt is specified and the overall time t is updated as well. 

At this point, the iteration process for the calculation of the equilibrium solution for the actual 

increment starts. In a first step, the residual force vector Ψ, which denotes the difference 

between the internal reacting forces Fint and the external load Fext, is set up.  

 

The internal forces can be regarded as the reaction of the system to balance the applied 

external load on the nodes. Any deviation of this balance is calculated by the vector Ψ with 

 extint FFΨ −= . (4.24)

The internal forces are calculated from the existing displacements and equal zero for the very 

first step of the computation. 

 

Then, all additional boundary conditions are implemented into the residual force vector. In the 

present model, these include all chosen fixations with prescribed zero displacement. The 

implementation is simply done by setting the entries in the residual force vector to zero for the 

selected nodes.  
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Fig. 29: The iteration scheme of the implemented routine to calculate the stresses and creep strains. 
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The displacements u are calculated in increments Δu by  

 ΨuK −=Δ . (4.25)

These displacements can be regarded as an adjustment of the structure to the imbalance 

described by the residual force. 

To solve this system of equations, an internal routine of the MATLAB software is used based 

on matrix triangulation. The output is stored into a vector. With this result, the overall 

displacements for the actual step un+1 are updated. 

The next step is the central part of the model and consists of calculating the stresses and creep 

strains. A more detailed outline for this segment is given in section 4.3.2.2 below. 

Once the stresses and strains are calculated, the internal response to the external loads can be 

updated. To do so, in a first step, these forces are computed for each node of each single 

element with  

 ∑ +=
i

n BσBF det1
Tel

int  (4.26)

using the actual stresses σn+1 and the strain-displacement matrix B. In Fig. 30, this procedure 

is indicated for four adjacent elements, for each node, the reacting force in terms of x and y 

component for all four elements is calculated. In a second step, the total force acting on a 

node can be calculated by summing up the nodal forces of the four neighbouring elements. In 

Fig. 30, this is shown for the marked node in the middle.  

 

 
Fig. 30: Summing up the forces for each node, using the adjacent four elements. 

 

The calculated overall forces are stored into the vector forces Fint and are used in the next 

iteration step to calculate the next residual force vector as stated in equation (4.24). 
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The final step of the actual iteration is to evaluate whether the system is near equilibrium. 

Various methods for doing this exist. In this present model, the method chosen is a check for 

the unbalanced energy Eunb. This energy is calculated by 

 uΨΔ−=unbE  (4.27)

and gives an estimate of the error of the calculation. If this error is below a given threshold, 

the iteration loop can stop. Otherwise, the calculation of displacements and the resulting 

strains and stresses is repeated.  

After a successful end of the iteration loops, the stresses and strains are stored as the new 

equilibrium solution n and the output of all desired data for the actual increment done.  

When finished, the next time step can be calculated by starting the next increment. When the 

overall time limit is reached, which means that the desired number of increments has been 

calculated, the procedure stops. 

 

Output 

The main results of the simulations are the computed stresses and strains. Additional 

information, such as time steps and error parameters, provide valuable information as well. 

The output of these results is handled in two different ways. On the one hand, the results are 

stored into fields and can be used for different kinds of post-processing, data analysis and 

evaluation. On the other hand, the results can be represented graphically using routines 

provided by MATLAB. This provides some limitations, but the programming of own graphic 

tools would have been too time-expensive in the present project.  

The routines used in this model to plot distribution for stresses, strains and other variables can 

only handle one value per element. This results in a relatively coarse representation of these 

distributions, albeit the exact solution of the system of equations is calculated at more than 

one point per element. Furthermore, an interpolation can be done for every point of the 

element with any length scaling desired. An example is shown in Fig. 31. In the left part of 

the figure, the overall solution is displayed. In the right part the interpolation results for the 

indicated element are shown. 
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Fig. 31: Coarse graphical representation of the results versus the more detailed interpolation that can be 

calculated. 

A second limitation, when displaying the results graphically, consists of the fact that the 

actual deformation and offsets of the nodes cannot be displayed simultaneously with the 

resulting stresses. Either stresses or strains in terms of coloured meshes can be shown, or the 

strains itself in terms of a deformed mesh can be displayed. 

All these mentioned limitations only affect the graphical representation of the output, but do 

not bring any limitation on the quality of the results that the model produces. The underlying 

data itself is not affected by these limitations. 

4.3.2.2 Details on the Calculation of Creep Strain and Stresses 

The calculation of the stresses and the resulting creep strain is the central part in modelling of 

creep and other visco-plastic phenomena. In the presented model, a formulation following 

Whirley and Henshall [117] was implemented. Its basic steps are outlined in the following 

paragraphs. 

The scheme is a fully implicit method, which makes the algorithm unconditionally stable. The 

creep strains and stresses for the step n+1 have to be calculated for each element and for each 

Gauß point separately. Within this double loop, several steps to get the desired result are 

necessary. Fig. 32 gives an overview. All necessary constants, the time step Δt and the overall 

displacements of the element have to be given to start. These overall displacements are 

evaluated by the solution of the system of equations (4.25). Furthermore, the values for the 

creep strain and the stresses of the equilibrium solution n of the last time step are assumed to 

be given. For the very first increment within this procedure, they equal zero. 

 



 Microstructural Modelling of Diffusional Creep in Polycrystals 

 75

 
Fig. 32: Necessary steps to calculate the updated stresses and creep strains within each iteration. 

 

The first step, as can be seen in Fig. 32, is to calculate the strain-displacement matrix B, 

which contains geometrical information on the element and the Gauß point, for which the 

calculation is done. Using this matrix and the given displacements, the overall strain ε and the 

deviatoric part e of the strain are calculated. The deviatoric strain and the resulting stresses are 

linked to each other. In this model, the relationship is given by  
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where A is a constant, 1+nσ  is the effective stress of the actual increment n+1, c
nε  the effective 

creep strain from the last equilibrium solution n and en+1 the overall strain of the actual 

iteration. The effective stress is calculated by finding the root of this non-linear equation. The 

procedure to do so is outlined separately in a paragraph at the end of this section. 

With each subsequent iteration, the stress found from equation (4.28) will converge to the 

equilibrium final stress. An example is demonstrated in Fig. 33, where the development of the 

effective stress in one Gauß point within one increment, i.e.time step, is shown. On the x-axis, 

the number of iterations is given, on the y-axis, the actual stress found from equation (4.28) is 

plotted. Within the first iterations, the estimated stresses are too small, but then the stress 

converges and stays constant. 
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Fig. 33: The convergence of the calculated effective stress on one Gauß point within one increment.  

This is an indicator for the importance of ensuring that the obtained solution is as close as 

possible to the stable solution. Only when enough iterations are done, the stresses and the 

creep strains will equal equilibrium values, the model will produce correct results and the next 

time step can be calculated. 

Once the effective stresses for the actual iteration are found, the resulting creep strain can be 

calculated. The creep behaviour is described by equation (4.16). Within the implementation of 

the model as an incremental form, the expression  

 mn
n tA 1

c
+=Δ σε  (4.29)

is used to calculate the increment in effective creep strain. The effective time is found with 

 ( ) m
n

m
n

m tttt Δ−Δ+=Δ . (4.30)

To find the normal stresses, a predictor-corrector procedure is implemented. As the predictor 

step, the stress, which would occur if the calculation would be purely elastic, is calculated. 

This stress is the so-called trial stress sTr , given with 

 ess Δ+= Gn 2Tr . (4.31)

In a second step, the deviatoric stresses sn+1 are then updated with 

 
1

c
Tr

1

31

1
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+ Δ
+

=
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G
σ

ε
ss  

(4.32)

In contrast to the procedure by Whirley et al., this formula includes a Δε instead of ε. This is 

motivated by using the relationship 

 cc d
2
3d ε

σ
se =  (4.33)

to connect the increments in creep strain dec to the components of the deviatoric stress tensor 

s. 
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In a third step, the total normal stresses have to be sought. To do so, a volumetric pressure 

term is added to the deviatoric stresses, which delivers 

 ( )εsσ Tr11 Knn += ++  (4.34)

Finally, the resulting deviatoric creep strains ec are calculated by using equation (4.33). The 

normal creep strain c
nε  equals the deviatoric creep strain, because viscoplastic phenomena are 

not influenced by hydrostatic stresses.  

This completes the algorithm used for calculating the stresses and creep strains in the model. 

All necessary quantities are updated and the next iteration step of the model can start. 

 

Finding the effective stresses 

An important point in the simulations is to find the effective stresses from equation (4.28). To 

do so, a Newton iteration scheme as described in chapter 3.3 is implemented into the code.  

To get good results from this procedure, the starting value for σ at the beginning of the 

stepwise process has to be chosen carefully. For the implemented algorithm, two different 

values are adopted. 

If the creep strain has dominated the total strain increment in the previous time step, the 

effective stress 1+nσ  at the end of the current time step will be close to the stress nσ  from the 

last step. The initial guess for 1+nσ , therefore, is simply the updated nσ  from the previous 

step with 

 nn σσ =+
(start)

1 . (4.35)

If the elastic strain has dominated the total strain increment, the updated stress σ (at the end of 

the current time step) will be closer to the purely elastic solution of the problem. This solution 

is called the elastic trial state str and it is calculated using equation (4.31), as stated in the next 

section of this chapter. In this case, as a starting value, the effective elastic trial stress with 

 trtr)(start
1 2

3
ijijn ss=+σ  (4.36)

is chosen.  

The convergence criterion for termination of this iterative calculation of the updated stress 

1+nσ  is written as 

 tol)1(
1

)(
1

)1(
1 ≤

−
+

+

+
+

+
k

n

k
n

k
n

σ
σσ  (4.37)

where k is the local iteration number within the Newtonian iteration scheme, and tol is an 

error tolerance to be specified. A value of 10-5 usually ensures accurate results. 
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4.3.3 Suggested Future Work 

4.3.3.1 Modifications of the Model 

To adapt and further improve the model on a physical basis, different paths can be followed.  

The physical basis of the implemented model can be adapted by e.g.  

• the implementation of other creep laws, 

• the usage of shear stresses instead of normal ones, 

• incorporation of anisotropy, 

• and the integration of strain hardening. 

The feature of time hardening is already implemented. 

Another subject is the usage of other types of finite elements. For an improvement in terms of 

accuracy, elements with more than four nodes can be introduced, albeit one has to keep in 

mind that, especially for such implementations with MATLAB, the computing time will 

increase significantly. To handle other phenomena, such as boundary sliding, other elements 

with different characteristics and properties, such as contact features, can be implemented. 

Improvements in the area of mesh refining are also possible. In the actual implementation, 

only regular meshes with equal sized elements can be generated automatically. All other 

meshes have to be calculated and numbered by the user himself. Some automatic refinement 

with differing element sizes would be helpful if the user wants to take a closer look on 

selected areas of the specimen. 

4.3.3.2 Changes Concerning the Computational Performance 

To improve computational efficiency, the handling and the representation of the results, also 

some upgrading can be done. 

In the actual code, boundary conditions have to be specified always for each point manually. 

For a simpler handling, it would be helpful, if the forces and fixations could be indicated per 

element or per boundary. The further segmentation to calculate the nodal forces must then be 

done automatically.  

When a certain force is assumed to act on an element on the boundary, as indicated in Fig. 34 

(a), the nodal components Fi for all points i of the specified element are calculated by  

 ∫=
Vi VdTσBF . (4.38)

Once these forces (see Fig. 34 (b)) are calculated for all concerned elements, they all have to 

be assembled together to give the overall force vector F on the boundary. This is done by 
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summing up the components of each node, a procedure similar to the assemblage of the 

stiffness matrix K.  

 
Fig. 34: Calculation and assemblage of the nodal force vector. 

When visualizing this assemblage, as in Fig. 34, it becomes clear that, although the stress 

distribution is homogeneous, the distribution of the nodal forces is not. The forces on the 

nodes, which are directly situated at the edges of the concerned boundary, are smaller. This is 

an important point one has to keep in mind when calculating the applied nodal forces 

manually. To avoid errors, an introduction of an automatic routine could be helpful. 

 

To setup the system of equations, which is necessary for determining the nodal displacements, 

in the implemented code the modified Newton-Rhapson method is utilised. In this method the 

stiffness matrix is determined once at the very beginning of the simulation, and then remains 

unchanged for all iteration and incremental processes.  

To reduce computational time, the Newton-Rhapson method can be introduced instead. In this 

method, the constant stiffness matrix is replaced by a stiffness matrix, which is recalculated 

for each iteration loop. The advantage is that within each time increment, the displacements 

converge much faster to their equilibrium solution. In other words, less iterations are needed 

to reach equilibrium and the calculation time can be reduced considerably.  

The stiffness matrix K within this procedure is calculated with 

 ∫=
V

Vd
d
dT B
ε
σBK  (4.39)

where σ are the actual stresses and ε are the actual strains. The detailed deduction of this 

modified matrix can be complex and is dependent on the algorithm. However, it can increase 

the speed of the simulations significantly. 

To increase the speed of the calculations in general, and for an expansion to bigger meshes, a 

porting to a low-level programming language such as C++ would be valuable. At the moment, 

the size of the grid is limited to 50x50 elements and simulations are relatively slow. 
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All these possible changes do not influence the results of the simulations, but only represent 

improvements in handling and calculation time. The mathematical accuracy of the results is 

already good and will not be improved by the suggested changes. 

4.4 Conclusion 

In this chapter, a spatially resolved model to simulate creep behaviour within a polycrystalline 

microstructure is presented. Diffusional creep processes are introduced and implemented into 

the model. The microstructure can represent different components, such as grains, grain 

boundaries and precipitates.  

The numerical algorithm used in this model, is a robust and efficient method to calculate 

stress and strain response to given boundary conditions. To compute all quantities, an iterative 

process is used. The general form of the constitutive equation used in the present analysis 

makes the model flexible and adaptable. Details on the implementation of the algorithm into 

the code were given.  

The model is capable of simulating the creep behaviour of a microstructure caused by 

diffusional processes. In this work, the creep behaviour following the ideas of Nabarro and 

Herring was set up. The inhomogeneous distribution of stresses and creep strains caused by 

the underlying microstructure is calculated. Numerical examples are shown in the next 

chapter. 
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5 Results 

With the model implementation presented in the preceding section, various simulations are 

conducted to simulate the stress-strain response of microstructural elements and 

configurations. In the following section, the results of these calculations are presented in 

mainly three parts.  

As a first step, some basic examples are calculated to test the model. In the second part, the 

purely elastic response of several microstructure configurations is shown. In the third part, the 

inelastic reactions due to the elastic, internal stresses, which act as a driving force, in terms of 

creep deformation and stresses are presented.  

5.1 Overview on Modelling Parameters 

As already outlined in the previous chapter, the physical parameters used in the calculations 

are taken from experimental values reported in literature. Numerical parameters are chosen 

such as to reach the requested accuracy. The applied boundary conditions are typical for 

diffusional creep experiments conducted on the 9-12% chromium steel P91, as published in 

literature [113]. 

In summary, the main parameters are listed in Table 4. Some parameters, such as the grain 

size d, the spatial resolution and the calculation time t, are different for each example and, 

therefore, are listed separately in the specific sections. 

 
Table 4: Physical and numerical parameters used for the calculations. ANH denotes the Nabarro-Herring 

creep parameter, DL is the diffusion coefficient, Ω the atomic volume, T the temperature, E Young’s 

modulus for the bulk material (b), the grain boundaries (gb) and hard particles (p), ν is Poisson’s ratio, 

σap is the applied von Mises stress, and Niter the number of iterations used per increment. 

ANH 

[-] 

DL 

[m2s-1] 

Ω  

[m3] 

k 

[JK-1] 

T 

[°C] 

ν  

[-] 

13.3 2.85 10-19 1.17 10-29 1.38 10-23 600 0.3 

 

Eb  

[Nm-2] 

Egb  

[Nm-2] 

Ep  

[Nm-2] 

σvm 

[N] 

Niter 

[-] 
 

143 109 71.5 109 286 109 50 20  
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5.2 Simple Examples for a Homogeneous Material 

To evaluate the model and to show that the code has been implemented correctly, a first, basic 

example with only one single finite element is calculated. Diffusional Nabarro Herring creep, 

which is linearly dependent on the applied stress, is modelled. The material is considered to 

be homogeneous with only one single, cubic grain with a diameter of d = 2000 nm. An 

effective stress of 50 MPa is applied along the y-axis, the tensile direction is shown in Fig. 36, 

as well as the fixations. The overall simulation time is t = 100 h. All other parameters are 

listed in Table 4 in section 5.1. 

 

 
Fig. 36: Boundary conditions for a single cubic grain. The fixations are marked with green triangles, 

whereas the applied nodal forces are indicated by red arrows. 

 

The numerical stability of the algorithm has shown to be good. The creep strain versus the 

time and the overall effective strain versus the time are shown in Fig. 37, the strains are 

linearly dependent on the stress. The difference between both denotes the purely elastic strain, 

which acts instantaneously upon the application of stress. This elastic strain is time 

independent and remains constant throughout the entire calculation, as expected. The slope of 

the effective creep strain curve corresponds to a stress exponent of n = 1, as typically is 

observed in diffusional creep. 

 

The stress distribution inside the element is calculated at the Gauß points and is constant 

throughout the specimen. The results are in perfect agreement with the expectations and prove 

that the basic strain-stress behaviour is implemented correctly into the model. 
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Fig. 37: Effective overall strain (green) and creep strain (red) for a single cubic grain subjected to 

diffusional creep for a period of 100 h. 

As a next step, the mesh is refined. Instead of only one single finite element, the cubic crystal 

is represented by a 21x21 grid of finite elements with the same characteristics as in the 

previous example. The lateral length of each element is 95.24 nm, resulting in a grain 

diameter of d = 2000 nm, as in the previous example. 

As expected, the results, which are shown in Fig. 38, are the same, the stress distribution is 

homogeneous. Therefore, for homogeneous, isotropic specimens, the mesh refinement has no 

relevant consequences. 

 
Fig. 38: Effective stress distribution for a single cubic grain calculated with a refined mesh. 
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The implemented algorithm is not restricted to only linear stress and linear time dependent 

creep laws. It is possible to model power law creep as well, the stress exponent can be chosen 

freely, albeit it has to be kept in mind that, especially for higher stress exponents, the 

convergence in the updated stress calculation is less stable. Therefore, the parameters have to 

be chosen carefully. The higher the stresses and the faster the creep rate, the more sensitive is 

the calculation of the effective stress in general. 

An example is shown in Fig. 39. The stress exponent n = 5 is chosen to mimic power law 

creep. For all other parameters, the same values as listed in Table 4 in section 5.1 are chosen. 

For reasons of stability, the stress application has to be done stepwise within the first 100 

increments. The slope of the creep curve in Fig. 39 shows the desired dependency on n = 5. 
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Fig. 39: Effective overall strain (green) and creep strain (red) for a single cubic grain subjected to power 

law creep with a stress exponent of n = 5 for a period of 100 h. 
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5.3 Results of Elastic Calculations 

In general, a microstructure cannot be considered as a homogeneous configuration and the 

stress-strain response will show a distinct pattern depending on this microstructure. In this 

section, the elastic stress response of several microstructural configurations is presented. 

5.3.1 Implementing Grain Boundaries  

As a first item of the multiphase model, grain boundaries are implemented. To show the effect 

that an amorphous boundary produces within a crystalline phase, a purely elastic calculation 

is executed. Different stresses can be calculated, some samples are presented in the following 

figures. 

 

For the calculation, a grid of 21x21 elements is used with an element length of 2000 nm. The 

boundary conditions are specified in Fig. 40 and consist of a fixation on the bottom x-line of 

the grid and an applied force on the top x-line with only a component in y-direction. The 

displayed internal stress for each element is the mean value of the stresses calculated at the 

four Gauß points. 
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Fig. 40: Boundary conditions for the examples in section 5.2. The fixations are marked with green 

triangles, whereas the applied nodal forces are indicated by red arrows. 

In the next examples, different configurations of grain boundaries are shown. Especially their 

orientation to the applied stress plays an important role for the resulting stress distribution. 
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5.3.1.1 Single Grain Boundary Configurations 

Grain Boundaries Parallel to the Applied Stress 

In the first example, two parallel grain boundaries are implemented with an orientation 

parallel to the applied stress, i.e. they run from the bottom x line to the top x line as can be 

seen in Fig. 41. The boundary conditions as specified in Fig. 40 are applied.  

 

The reacting stresses are depicted in Fig. 42. The x-component can be seen in part (a), the y-

component in part (b). One can clearly see that the y-stress in the grain boundary is 

considerably lowered in contrast to the surrounding bulk material. The x-stresses are not 

influenced by the grain boundary. Grain boundaries with this orientation in comparison with 

the applied stress will act as a sink for vacancies. 

 

 
Fig. 41: Configuration of the two grain boundaries (blue) within a homogeneous bulk material (red) 

oriented parallel to the applied stress. 

  

Fig. 42: (a) X-stresses and (b) y-stresses for grain boundaries in a homogeneous matrix oriented parallel 

to the applied stress. 
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Grain Boundaries Normal to the Applied Stress 

In the next example, two parallel grain boundaries with orientation normal to the applied 

stress are implemented. In this case, for the x-component, an alteration in the stress 

distribution within the material is clearly calculated as depicted in Fig. 44 (a). In fact, within 

the matrix, the resulting x-stresses are of slightly compressive nature.  

For the y-stresses, no alteration of the reacting internal stresses regarding the grain boundary-

matrix interface can be observed. Thus, it clearly can be seen that the orientation of a grain 

boundary with respect to the applied stresses has a distinct influence on the reacting stress 

distribution within the material. Grain boundaries with this orientation in comparison with the 

applied stress can act as a source for vacancies. 

 

 
Fig. 43: Configuration of the two grain boundaries (blue) within a homogeneous bulk material (red) 

oriented normal to the applied stress. 

  

Fig. 44: (a) X-stresses and (b) y-stresses for grain boundaries in a homogeneous matrix oriented normal to 

the applied stress. 
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Diagonal Grain Boundaries 

In this example, a diagonal grain boundary is implemented as can be seen in the configuration 

in Fig. 45. The y-component of the stress (Fig. 46 (a)) and the x-component (Fig. 46 (b)) are 

shown in the following graphs as well. 

 
Fig. 45: Configuration of a grain boundary (blue) within a homogeneous bulk material (red) oriented 

diagonally to the applied stress. 

  

Fig. 46: (a) X-stresses and (b) y-stresses for a grain boundary in a homogeneous matrix oriented 

diagonally to the applied stress. 

Again, the stress distribution within and in the vicinity of the grain boundary is affected. The 

y-stresses are lowered within the grain boundary, whereas, in the nearby area, the stresses are 

decreased. The x-components within the grain boundary are showing a slight compression 

compared to the matrix. 

5.3.1.2 Combining Different Grain Boundaries. 

Quadrilateral Grain 

In this example, two parallel grain boundaries normal to the applied stress and two grain 

boundaries parallel to the applied stress are combined to a quadratic grain within in a bigger 
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homogeneous matrix. The whole grain has a dimension of about 20000 nm, as can be seen in 

the configuration in Fig. 47.  

The internal x-stresses are depicted in Fig. 48. The boundaries, which are aligned normally to 

the applied stress, are not influencing the displayed stresses, their distribution remains 

homogeneous. In contrast, the two boundaries, which are oriented normally to the applied 

stress and are in line with the x-axis, are causing an increase of the x-component of the 

internal stress. These boundaries are assumed to act as a source for a vacancy flux. 

 

The resulting stress distribution for the y-component of the internal stresses is shown in Fig. 

49. It can clearly be seen that the two boundaries, which are oriented normally to the applied 

stress, do not influence the distribution of the displayed stresses. The situation is different for 

the grain boundaries, which are aligned parallel to the applied stress. In this case, the y-

component of the resulting stresses is lowered clearly. These boundaries can act as a sink for 

the flux of vacancies. 

  

Fig. 47: Configuration of a quadrilateral grain 

(blue) within a homogeneous bulk material (red). 
Fig. 48: X-stresses for a quadrilateral grain. 

 

  

Fig. 49: Y-stresses for a quadrilateral grain. 

 

Fig. 50: Von Mises stresses for a quadrilateral 

grain. 
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To combine both stress components, the von-Mises stress is displayed in Fig. 50 for the 

quadratic grain within the homogenous matrix. 

 

Triple Points 

In the following examples, the resulting inner stresses caused by a triple point with a 

configuration as can be seen in Fig. 51 are discussed. The grain boundaries and the triple 

point again are embedded in a homogeneous matrix. The triple point is simulated for different 

values of the angle α as indicated in Fig. 51. Each specific configuration is presented in a 

separate graph, the grain boundaries are marked in blue, whereas the bulk material is 

displayed in red colour. The stress distributions are shown in the subsequent figures. 

 
Fig. 51: Specifications for triple point simulations. 

In Fig. 52 the configuration for the first example is presented. This configuration matches an 

angle α of 37.5°. 

  

Fig. 52: Configuration of a triple point (blue) with 

an angle of 37.5° within a homogeneous bulk 

material (red). 

Fig. 53: X-stresses for the triple point. 
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Fig. 54: Y-stresses for the triple point. Fig. 55: Von Mises stresses for the triple point. 

 

In Fig. 54, the y-component of the stress is depicted. The grain boundary normal to the 

applied stress shows no significant change in the stress distribution as is to be expected. The 

grain boundaries which run under the angle of 37.5° are causing an alteration in the displayed 

stress distribution in the similar way as was simulated in Fig. 45 to Fig. 46 for diagonal grain 

boundaries. The main focus of interest in this calculation is the triple point itself. As already 

outlined in section 3.1.6.1, Riedel [11] discusses stress distributions near triple junctions and 

claims that, in such configurations, the maximum tensile stress occurs on the boundary normal 

to the applied stress. The calculated stress distributions are in perfect agreement with this 

statement. 

In Fig. 53, the x-component of the reacting stresses is shown. For this case, compressive 

stresses in the vicinity of the triple point within the angle α can be seen. 

The effective stresses of this sample are calculated in Fig. 55. Again, the influence of the 

triple point is obvious. 
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For a comparison, in the next example, a triple point with an angle of α = 45° is simulated. 

The arrangement of the triple point is shown in Fig. 51. The boundary conditions are the same 

as in the previous examples. 

 

  

Fig. 56: Configuration of a triple point (blue) with 

an angle of 45° within a homogeneous bulk 

material (red). 

Fig. 57: X-stresses for the triple point. 

  

Fig. 58: Y-stresses for the triple point. Fig. 59: Von Mises stresses for the triple point. 

The x-component of the stress distribution is shown in Fig. 57, the y-stresses in Fig. 58 and 

the effective stress in Fig. 59. The findings are similar to those of the triple point with an 

angle of 37.5°, but the stress inhomogeneities are bigger and the tensile stress near the triple 

point is higher. 
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As a third example for triple point configuration under different angles, a triple point with α = 

60° is modelled. Fig. 60 shows the configuration, Fig. 61 is depicting the y-and Fig. 62 the x-

component of the internal stress distribution. Fig. 63 shows the effective internal stresses.  

 

  

Fig. 60: Configuration of a triple point (blue) with 

an angle of 60° within a homogeneous bulk 

material (red). 

Fig. 61: X-stresses for the triple point. 

  

Fig. 62: Y-stresses for the triple point. Fig. 63: Von Mises stresses for the triple point. 

When comparing all three triple point configurations, the results show that the 

inhomogeneities are biggest for an angle of 45°. 
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As a final example for triple point configurations, a triple point with alpha = 45° but with a 

different orientation with respect to the applied stress is modelled. Fig. 64 shows the 

configuration. Fig. 65 and Fig. 66 are showing the y- and the x-component of the internal 

stress distribution Fig. 67 depicts the effective internal stresses The tensile stresses in the 

element next to the triple point once again are increased. 

 

  

Fig. 64: Configuration of a triple point (blue) with 

an angle of 45° within a homogeneous bulk 

material (red). 

Fig. 65: X-stresses for the triple point. 

  

Fig. 66: Y-stresses for the triple point. Fig. 67: Von Mises stresses for the triple point. 

 

Hexagonal Grain 

A grain is usually surrounded by several grain boundaries. In 2D, an equilibrium 

configuration consists of 6 boundaries forming a hexagonal grain. The boundary conditions 

for this example again are the same as in the previous calculations. In this example, and as 

well in the following ones, the grain boundaries are marked in dark blue colour to highlight 

the stress distributions within the bulk material itself. In Fig. 68, the configuration of the grain 
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itself is shown. In Fig. 69 and Fig. 70, the x-and the y-component of the internal stresses are 

depicted and Fig. 71 presents the effective stresses in the grain. 

 

  

Fig. 68: Configuration of a hexagonal grain with 

grain boundaries in blue colour consisting of a 

homogeneous bulk material (red). 

Fig. 69: X-stresses for the hexagonal grain. 

  

Fig. 70: Y-stresses for the hexagonal grain. Fig. 71: Von Mises stresses for the hexagonal grain. 

 

Once again, the orientation of the grain boundaries versus the applied stress plays an 

important role in the stress distribution within the material. All triple points of the depicted 

hexagonal grain are causing a distinct increase in the local stress distribution nearby. The 

grain boundaries themselves play an important role as well resulting in a clearly 

inhomogeneous stress distribution, where especially the grain interior is subjected to lower 

reacting stresses compared to the vicinity of grain boundaries oriented normally to the applied 

stress.  

5.3.2 Implementing Hard Particles 

In a multi-phase environment, hard particles can lead to stress concentrations as well. Again, 

for the simulation, a grid of 21x21 elements is used. The boundary conditions are the same as 
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specified in Fig. 40 and consist of a fixation on the bottom x-line of the grid and an applied 

stress on the upper border of the specimen. The internal stresses for each element are 

calculated at the four Gauß points. In each element, a mean value is displayed.  

5.3.2.1 One Hard Particle 

In the following example, the stress distribution caused by a hard carbide precipitate in a 

softer matrix is modelled. The precipitate is embedded in the softer matrix. In each of the 

following figures, it is coloured in dark blue. Its elastic modulus is assumed to be twice the 

modulus of the bulk material. 

  

Fig. 72: Configuration for a particle (blue) 

embedded in a homogeneous bulk material (red). 

Fig. 73: X-stresses for the particle. 

  

Fig. 74: Y-stresses for the particle. Fig. 75: Effective stresses for the particle. 

 

In Fig. 73, the x-component of the reacting internal stress distribution is shown. Near the 

normal oriented faces, the tensile stress is increased, whereas, near the parallel oriented faces, 

compressive stress occurs. In Fig. 74, the y-component of the reacting stresses is displayed. In 

the regions near the faces oriented normal to the y-axis, the stress is clearly increased 

compared to the regions near the faces oriented parallel to the applied stress. In Fig. 75, the 

effective stress distribution is depicted. 
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5.3.2.2 Two Smaller Particles  

As a further example, the stress inhomogeneity caused by two smaller particles is calculated. 

All parameters and boundary conditions are the same as in the previous simulation Again, the 

elastic modulus of the precipitate is assumed to be twice the modulus of the surrounding 

matrix. Each particle is coloured in dark blue in all graphs.  

  

Fig. 76: Configuration for two small particles 

(blue) embedded in a homogeneous bulk material 

(red). 

Fig. 77: X-stresses for the particles. 

  

Fig. 78: Y-stresses for the particles. Fig. 79: Effective stresses for the particles. 

 

In Fig. 78, the y-component of the reacting stresses is depicted. The results are similar to 

those calculations for one hard particle in the previous example. On the boundaries oriented 

normal to the applied stress, the stresses are increased significantly. Near all faces parallel to 

the applied stresses, the y-component is decreased. In the area between these two particles 

stresses are lowered as well. In Fig. 77, the x-component is shown. Near the normal oriented 

faces, the tensile stress is increased, whereas, near the parallel oriented faces, compressive 
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stress occurs. In Fig. 79 the effective stress distribution can be seen. The stress pattern is 

about the same as for the y-component of the reacting stresses. 

5.4 Creep Behaviour of the Microstructure 

As already outlined in chapter 3, the creep strains within a microstructure show a distinct 

pattern due to the inhomogeneities of this particular microstructure. In this section, the results 

of the simulations in terms of creep stresses and strains are presented. All parameters are 

chosen according to Table 4 in section 5.1. 

5.4.1 Stress Relaxation on Triple Points 

Triple Points in an otherwise homogeneous matrix are causing elastic stress concentrations as 

shown in the previous section and as stated by Riedel [11]. These stress concentrations are 

reduced by creep, resulting in a heterogeneous creep strain distribution. The transition from an 

elastic situation to creep loading can be described by the growth of a creep zone nearby the 

triple points (see section 3.1.6.1). 

In all simulations presented in the following sections, stress versus time diagrams for a 

particular point within the microstructure are shown. To clarify for which specific element 

these curves are calculated, this particular element is always highlighted in green colour in the 

configuration overview.  

 

To illustrate the stress-relaxing effect of creep, a simulation of a triple point within in a 

crystalline matrix is conducted. The grid contains 21x21 elements, the triple point has an 

opening angle of 90°. Again, a load resulting in an effective stress of 50 MPa is applied. The 

configuration is depicted in Fig. 80. Fig. 81 shows the initial, purely elastic situation 

containing a maximum stress concentration on the grain boundary oriented normally to the 

applied stress. Then, the sample is subjected to a creep load for an overall time of 10000 

hours. The evolution of the von Mises stress distribution can be seen in Fig. 81 to Fig. 84. Fig. 

82 shows the situation after t = 1000 hours, Fig. 83 after t = 4000 hours and Fig. 84 at the end 

of the interval. The relaxation of the initial stress concentration due to creep can be clearly 

seen. 
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Fig. 80: Configuration for a triple point (blue) embedded in a homogeneous bulk material (red); the bulk 

material element for which particular stress graphs are presented in the following figures is highlighted in 

green. 

  

Fig. 81: Effective stress distribution in the vicinity 

of a triple point exposed to a creep load – initial 

stress distribution. 

Fig. 82: Effective stress distribution after t = 1000h. 

  

Fig. 83: Effective stress distribution after t = 4000h. Fig. 84: Effective stress distribution after  

t = 10000h. 

 

In Fig. 85, the evolution of the von Mises stress in the bulk element directly located at the 

triple point, as highlighted in Fig. 80 in green colour, is shown. The stress clearly decreases in 
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time during creep. The growth of the creep zone in the vicinity of the triple point and the grain 

boundaries, which again are marked in dark blue colour, can be seen in Fig. 86. 
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Fig. 85: Evolution of the effective stress vs. time in 

the bulk material located directly near the triple 

point for t = 10000h. 

Fig. 86: Effective creep strain distribution after  

t = 10000h. 

 

For comparison, the same sample with a diffusion coefficient ten times smaller then the 

previous one has been calculated. In Fig. 87 the stress decrease of the same element as in Fig. 

85 is depicted. It can clearly be seen, that the relaxation takes longer, but has the same 

characteristics.  
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Fig. 87: Development of the effective stress vs. time in the bulk material located directly near the triple 

point for a diffusion coefficient ten time smaller than in all other calculations.  

5.4.2 Creep of a Hexagonal Grain 

In this example, the creep behaviour of a hexagonal grain exposed to creep is evaluated. The 

grid contains 21x21 elements. Again, a load of 50 MPa is applied. Fig. 88 depicts the initial, 

purely elastic situation with the maximum stress concentration near the grain boundaries 

oriented normally to the applied stress. The evolution of the von Mises stress distribution can 

be seen in Fig. 89 to Fig. 91 Fig. 89 shows the situation after t = 1000 hours, Fig. 90 after t = 
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4000 hours and Fig. 91 at t = 10000 hours. Again, the relaxation of the initial stress 

concentrations to long term behaviour can clearly be seen. 

  

Fig. 88: Effective stress distribution for a 

hexagonal grain exposed to a creep load – initial 

stress distribution. 

Fig. 89: Effective stress distribution after t = 1000h. 

  

Fig. 90: Effective stress distribution after t = 4000h. Fig. 91: Effective stress distribution after  

t = 10000h. 

 

In Fig. 92, the creep strain of the specimen is shown. The creep strain again shows a locally 

differing distribution. Especially, the bulk material adjacent to the grain boundaries oriented 

normally to the applied stress is exposed to pronounced creep straining.  
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Fig. 92: Effective creep stain distribution for a hexagonal grain exposed to a creep load after t = 10 000 h. 

5.4.3 Creep in the Presence of Hard Particles  

Precipitates play an important role in microstructure evolution. One of these effects is their 

manifold influences in local creep behaviour. Thus, the creep behaviour of a matrix with two 

embedded hard particles is calculated. The parameters are the same as in the previous 

calculations. The hard particles clearly influence the straining behaviour of the sample. The 

creep deformation of the bulk material surrounding the particles clearly reduces the internal 

stresses, as is depicted in Fig. 94 to Fig. 97 for the effective stress distribution.  

 
Fig. 93: Configuration for two particles (blue) embedded in a homogeneous bulk material (red); the bulk 

material element for which particular stress graphs are presented in the following figures is highlighted in 

green colour. 
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Fig. 94: Effective stress distribution in the vicinity 

of two hard particles – initial stress distribution. 

Fig. 95: Effective stress distribution after t = 1000h. 

  

Fig. 96: Effective stress distribution after t = 2000h. Fig. 97: Effective stress distribution after t = 6000h. 

The evolution in time of the von Mises stresses in the vicinity of such a hard particle is 

depicted in Fig. 98. Again, creep straining decreases the initial elastic stresses in time. 

Furthermore, an inhomogeneous distribution of the actual creep strain evolves, as is shown in 

Fig. 99. Especially, at particle faces oriented normally to the applied stress, a significant 

accumulation of creep strain is calculated, whereas in areas between the particles, a smaller 

effective creep strain is predicted. 
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Fig. 98: Evolution of the effective stress vs. time in 

the bulk material located directly near one 

precipitate for t = 6000h. 

Fig. 99: Effective creep strain distribution after  

t = 6000h. 



 Microstructural Modelling of Diffusional Creep in Polycrystals 

 104

5.4.4 Hard Particles and Grain Boundaries 

Triple points are causing stress singularities within the internal stress distribution. The same 

holds true for hard particles. To study possible interactions some examples for different 

configurations of both are calculated and presented in the next section. 

5.4.4.1 Hard Particle on a Triple Point of a Grain Boundary 

As first example, a hard particle, which is located directly on a triple point, is calculated. In 

Fig. 100, the configuration is depicted. In Fig. 101, the initial distribution of the effective 

stress is shown. The hard particle increases the stress singularity in the vicinity of the triple 

point. As in the previous examples, creep deformation leads to stress relaxation and the 

internal stresses are levelled out, as can be seen in Fig. 102 for t = 1000 hours and in Fig. 103 

for t = 10000 hours.  

  

Fig. 100: Configuration for a triple point (dark 

blue) containing a hard particle (light blue) 

embedded in a homogeneous bulk material (red); 

one bulk material element is highlighted in green 

colour. 

Fig. 101: Effective stress distribution in the vicinity 

of the triple point – initial stress distribution. 

  

Fig. 102: Effective stress distribution after  

t = 1000h. 

Fig. 103: Effective stress distribution after  

t = 10000h. 
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In Fig. 104, the stress relaxation for the element near the triple point (marked in green in Fig. 

100) is depicted by the evolution of the effective stress versus time. The resulting creep strain 

can be seen in Fig. 105. Compared to the stress relaxation for a triple point containing no 

particles (see section 5.4.1), the effective stress right upon loading is increased by about 3%, 

whereas the stresses after relaxation reach the same equilibrium values.  
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Fig. 104: Evolution of the effective stress vs. time in 

the bulk material located directly at the triple point 

for t = 10000h. 

Fig. 105: Effective creep strain distribution after    

t = 10000h. 

5.4.4.2 Hard Particle Near a Triple Point of a Grain Boundary 

In contrast to the previous example, in this case, a hard particle is not located directly at the 

triple point, but in its nearby vicinity. In Fig. 106, the configuration is depicted. In Fig. 107, 

the initial distribution of the effective stress is shown. As in the previous examples, these 

stresses are relaxing in the same manner, leading to a homogeneous stress distribution as in 

the previous simulations and thus is not shown separately here. Again, the stress concentration 

in the nearby area is increased after load application, but the amount is smaller than in the 

case of a particle directly located at the triple point. The relaxation of this concentration 

versus time can be seen in Fig. 108. The resulting creep strain can be seen in Fig. 109. 

Remarkably, the creep strain in the vicinity of the particle is more pronounced than in the 

nearby vicinity of the triple point. In this case, especially the combination of a hard particle 

and the softer grain boundary can be held responsible for this effect.  
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Fig. 106: Configuration for a triple point (dark 

blue) with a hard particle nearby (light blue) 

embedded in a homogeneous bulk material (red); 

one bulk material element is highlighted in green 

colour. 

Fig. 107: Effective stress distribution in the vicinity 

of the triple point – initial stress distribution. 
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Fig. 108: Evolution of the effective stress vs. time in 

the bulk material located directly near the triple 

point for t = 10000h. 

Fig. 109: Effective creep strain distribution after    

t = 10000h. 

5.4.4.3 Hard Particle Near a Triple Point Within Larger Distance 

As a third example, again, a triple point with a particle in its nearby area is considered, 

however, the distance between the particle and the triple point is increased. In Fig. 110, the 

configuration is depicted. In Fig. 111, the initial distribution of the effective stress is shown. 

As in the previous example, the evolution of stress distribution is not shown separately. In 

Fig. 112, the stress relaxation near the triple point is depicted by the evolution of the effective 

stress versus time. In this case, the hard particle does not increase the stress singularity. The 

influence is smaller due to the larger distance between the triple point and the particle. The 

behaviour of both microstructural elements can be regard as being independent. The resulting 

creep strain is shown in Fig. 113. 



 Microstructural Modelling of Diffusional Creep in Polycrystals 

 107

  

Fig. 110: Configuration for a triple point (dark 

blue) with a hard particle nearby (light blue) 

embedded in a homogeneous bulk material (red); 

one bulk material element is highlighted in green 

colour. 

Fig. 111: Effective stress distribution in the vicinity 

of the triple point – initial stress distribution. 
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Fig. 112: Evolution of the effective stress vs. time in 

the bulk material located directly near the triple 

point for t = 10000h. 

Fig. 113: Effective creep strain distribution after    

t = 10000h. 

5.4.4.4 A Large Particle Near a Triple Point of a Grain Boundary 

As another example, the influence of a triple point of a grain boundary and a large precipitate 

in its vicinity is studied. In Fig. 114, the configuration is shown. In Fig. 115, the initial 

distribution of the stresses is depicted.  

 

In Fig. 116, the stress relaxation near the triple point is depicted by the evolution of the 

effective stress versus time. In this case, the hard particle even decreases the stress singularity 

near the triple point by a minor amount compared due to the same triple junction without any 

precipitates. The resulting creep strain is depicted in Fig. 117.  
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Fig. 114: Configuration for a triple point (dark 

blue) and a large hard particle (light blue) 

embedded in a homogeneous bulk material (red); 

one bulk material element is highlighted in green 

colour. 

Fig. 115: Effective stress distribution in the vicinity 

of the triple point and the particle – initial stress 

distribution. 
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Fig. 116: Evolution of the effective stress vs. time in 

the bulk material located directly near the triple 

point for t = 10000h. 

Fig. 117: Effective creep strain distribution after    

t = 10000h. 

 

5.4.4.5 Creep of a Complex Microstructure 

As a final example, the creep strains in a larger part of a microstructure are simulated. The 

structure contains several hexagonal grains separated by grain boundaries, as shown in Fig. 

118. Additionally, hard particles of two different sizes are implanted. To show the various 

influences of all components, the grid is divided into different areas containing different 

elements of the above mentioned microstructural components. In the lower right part, only 

grain boundaries forming hexagonal grains are calculated. In the lower left part, some large 

particles are added. In the upper part of the figure, small particles can be seen, where, in the 
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upper left part, the particles are located at the grain boundaries, and, in the upper right part, 

they are embedded in the bulk material.  

 

 
Fig. 118: Configuration for a structure consisting of hexagonal grains surrounded by grain boundaries 

(dark blue), small and large precipitates (light blue) and a homogeneous bulk material (red). 

 

The result of the simulation in terms of creep strain is shown in Fig. 119. The different 

influences on creep behaviour can clearly be seen. Within the grains, the creep strain is 

pronounced at the grain boundaries oriented normally to the applied stress for all parts of the 

depicted microstructure. Thus, as expected for Nabarro Herring creep, these regions are the 

most important to be considered in analysing creep straining. Grain boundaries with other 

orientations versus the applied stress only are of minor importance during plastic straining. 

The influence of precipitates is determined by their size and exact position within the grain 

structure.  

 

Large, extended precipitates clearly increase the inhomogeneities within a grain. Both, an 

increase and a decrease in the resulting creep strain can be observed. This effect is dependent 

on the orientation. Especially near precipitate-bulk transitions, which are oriented parallel to 
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the applied stress, a decrease in creep strain can be observed, whereas the creep zones near 

boundaries and triple points are enlarged clearly. 

 

The small precipitates within the bulk material have a distinct, but small influence on creep 

straining. They increase the local stress concentrations in the local neighbourhood is only of 

minor extent compared to the stress increase caused by grain boundaries. In contrast, small 

precipitates located on the grain boundaries can increase existing concentrations significantly. 

This especially holds true for precipitates located in the vicinity of triple junctions. With this 

combination of two microstructural elements, the most pronounced local creep straining in the 

presented results have been calculated. 

 

 
Fig. 119: Effective creep stain distribution for a structure consisting of hexagonal grain and precipitates 

exposed to a creep load after t = 6 000 h. 

This simulation shows that the microstructural components and their actual configuration 

have major influence in diffusional creep and have to be studied extensively to model creep 

behaviour on a sound basis. 



 Microstructural Modelling of Diffusional Creep in Polycrystals 

 111

5.5 Conclusion 

The results of the calculations presented in this chapter demonstrate that microstructural 

elements, such as grain boundaries, triple points and precipitates, are causing a spatially 

inhomogeneous internal stress distribution. These stress distributions, including stress 

singularities etc., can be further influenced by specific arrangements of some of these 

elements, e.g. as combination of hard particles, grain boundaries or triple points. Especially 

triple junctions of grain boundaries play an important role concerning stress inhomogeneities. 

These stress singularities within an otherwise homogeneous bulk material are further 

influenced by particles. The inhomogeneous stress distribution is levelled out by creep in the 

further evolution of the microstructure, which leads to a distinct, heterogeneous pattern of 

creep strain. Especially, on distinct sites of such a microstructure, this mechanism can lead to 

a pronounced local accumulation of creep strain. 
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6 Summary 

In this work the local creep behaviour of a polycrystalline material is investigated. To do so, a 

spatially resolved model to simulate local creep deformation within a microstructure is 

presented.  

 

This model is realized using the Finite Element Method as mathematical framework. The 

structure is discretisized in space using 2D quadrilateral elements, all necessary integrations 

are done by Gaussian quadrature, the solution of the system of equations is performed 

numerically by MATLAB routines. 

 

The numerical algorithm to calculate creep deformation and stresses is implemented directly 

into the Finite Element framework. It is performed in discrete time steps and proves to be 

robust and efficient. The general form of the constitutive equation used here makes the model 

flexible and adaptable. A description of the code implementation is given as well. 

 

The microstructure is introduced in terms of a spatially resolved structure where the 

microstructural components are comprised as distinct, separated elements that include bulk 

material, grain boundaries, triple points and small and large precipitates. All these constituents 

are described by different properties such as elastic modulus, poisons ratio and diffusion 

coefficients. Of the different physical mechanism operating during creep loading, Nabarro 

Herring creep, which is a creep mechanism operated by diffusion of vacancies, has been 

chosen to be studied in this work. 

 

The results of the calculations demonstrate that the microstructural elements are causing a 

spatially inhomogeneous internal stress distribution. These stress distributions can be further 

influenced by specific arrangements of some of these components, e.g. as combination of hard 

particles, grain boundaries or triple points.  

 

Due to the presence of grain boundaries, the internal stress distribution in an otherwise 

homogeneous grain will show a distinct, non-homogeneous pattern. Especially triple junctions 

of grain boundaries are a pronounced source for stress inhomogeneities, as is shown with the 

presented calculations. Thus, triple points play an important role for creep phenomena. The 
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resulting stress singularities are further influenced by hard particles. Depending on their 

position, these particles can further influence the maximum stress concentrations.  

 

The inhomogeneous internal stress distribution, which acts as driving force for creep 

deformation, results in an inhomogeneous local creep deformation. The initial stress 

distribution is levelled out by creep straining, resulting in a local stress relaxation. This trend 

leads to a pronounced local accumulation of creep strain. These results show that creep can 

not be regarded solely as a macroscopic phenomenon, which can be comprised by mean 

values and statistical approaches, but has to be handled on a local resolved basis as is done in 

the present work. 
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