
Dissertation

SIMOL - A Modeling Language for Simulation and

Reconfiguration

Iulia-Dana Nica

Graz, 2013

Institute for Software Technology

Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

Second reviewer: O.Univ.-Prof. Dipl.-Ing. Dr. Gerhard Friedrich

”The most expensive knowledge is less expensive than the lack of knowledge.”

- Grigore Constantin Moisil

i

ii

Abstract (English)

Simulation and configuration play an important role in industry, from the early development stages,
as well as after deployment, as part of system maintenance. The adaption of a system’s structure or
behavior over time becomes necessary because of changing requirements due to new customer needs,
faults in system parts, or changes of technology among others. To assist these needs, many tools are
nowadays available. Modeling languages like Matlab/Simulink or Modelica are often used to model
the dependencies between the components of physical systems. However these are less suitable for
the area of knowledge-based systems.

In our research, we are interested in providing a general methodology, where systems can be mod-
eled and where the models can be used in order to change the systems, such that the new systems
fulfill the desired functionality. Therefore, we have introduced SIMOL - an object-oriented language,
that can be used for (restricted) simulation and reconfiguration at the same time. The key concept of
SIMOL is the definition of basic and hierarchical components, which are used to represent the desired
system. The behavior of a component has to be provided as set of equations. Furthermore, in SIMOL,
it is possible to assign equations to specific behavior modes and also to model the systems behavior
over time. Besides the language, we present here our reconfiguration algorithms, which make use of
constraint solving and ideas from model-based diagnosis in order to compute system changes.

The implemented approach was intensively applied to the machine-to-machine communication do-
main. Machine-to-machine (M2M) communication is of increasing importance in industry due to
novel applications, i.e., smart metering or tracking devices in the logistics domain. These applica-
tions provoke new requirements for mobile phone networks, which have to be adapted in order to
meet these future requirements. Hence, reconfiguration of such networks depending on M2M appli-
cation scenarios is highly required. In particular, within the Simulation and Configuration of Mobile
Networks with M2M Applications (SIMOA) project, our objective was to develop a simulation and

iii

Abstract (English)

reconfiguration environment for smart metering applications in order (1) to ensure that current mobile
phone networks are capable of providing enough resources, and (2) to give advice for changing either
the smart metering solution or the communication network in case of lack of resources.

Although the presented approach has been developed with focus on smart metering applications,
it is not restricted to this domain. Any reconfiguration problem, that can be represented using the
underlying modeling language SIMOL, can also be solved using the proposed approach.

iv

Abstract (German)

Simulation und Konfiguration spielen eine wichtige Rolle in der Industrie, angefangen bei den frühen
Entwicklungsstadien, sowie nach der Bereitstellung, als Teil der Systemwartung. Die Anpassung der
Struktur oder des Verhaltens eines Systems wird im Laufe der Zeit notwendig, unter anderem auf-
grund der wechselnden Anforderungen durch neue Kundenbedürfnisse, Fehler in Systemsteilen oder
Änderungen der Technik. Um diese Anforderungen zu unterstützen, stehen heute viele Werkzeuge
zur Verfügung. Modellierungssprachen wie Matlab/Simulink oder Modelica werden häufig verwen-
det, um die Abhängigkeiten zwischen den Komponenten der physikalischen Systeme zu modellieren.
Diese sind jedoch für den Bereich der wissensbasierten Systeme weniger geeignet.

In unserer Forschung, sind wir daran interessiert, eine allgemeine Methodik zu bieten, mit der
Systeme modelliert werden können und wo man die Modelle verwenden kann, um die Systeme zu
ändern, so dass die neuen Systeme die gewünschte Funktionalität erfüllen.

Deshalb haben wir SIMOL eingeführt. SIMOL ist eine objektorientierte Sprache, die man zur
gleichen Zeit für (eingeschränkte) Simulation und Rekonfiguration verwenden kann. Der Schlüssel-
begriff der SIMOL Sprache ist die Definition der basis- und hierarchischen Komponenten, die man
verwenden kann, um das gewünschte System zu repräsentieren. Das Verhalten einer Komponente
muss als Satz von Gleichungen vorgesehen werden. Weiterhin ist es in SIMOL möglich, Gleichun-
gen bestimmte Verhaltensmodi zuzuweisen und auch das Verhalten der Systeme im Laufe der Zeit
zu modellieren. Neben der Sprache präsentieren wir hier unsere Rekonfiguration Algorithmen, die
Constraint Solving und Ideen der modellbasierten Diagnose verwenden, um Änderungen am System
zu berechnen.

Der implementierte Ansatz wurde intensiv in der Domäne der Machine-to-Machine(M2M) Kom-
munikation angewendet. M2M Kommunikation ist von zunehmender Bedeutung in der Industrie
aufgrund der neuartigen Anwendungen, d.h., Smart Metering oder Tracking-Systeme in der Logistik-

v

Abstract (German)

Domäne. Diese Anwendungen provozieren neue Anforderungen für Mobilfunknetze, die angepasst
werden müssen, um diese zukünftigen Anforderungen zu erfüllen. Daher wird die Netzrekonfigu-
ration, die von den M2M Anwendungsszenarien abhängig ist, dringend benötigt. Insbesondere im
Rahmen des ”Simulation and Configuration of Mobile Networks with M2M Applications” (SIMOA)
Projekts, war unser Ziel, eine Simulations- und Rekonfigurationsumgebung für Smart-Metering-
Anwendungen zu entwickeln, (1) um sicherzustellen, dass die aktuellen Mobilfunknetzen in der Lage
sind, genügend Ressourcen aufzubieten und (2) um Ratschläge für die Änderung der Smart-Metering-
Lösung oder des Kommunikationsnetzes im Falle des Mangels an Ressourcen zu geben.

Obwohl der Ansatz bis jetzt in Smart-Metering-Anwendungen verwendet wurde, ist er nicht auf
diese Domain beschränkt. Jedes Rekonfiguration Problem, das mit der zugrunde liegenden Model-
lierungssprache SIMOL dargestellt werden kann, kann auch mit dem vorgeschlagenen Ansatz gelöst
werden.

vi

Acknowledgments

First, I would like to thank my supervisor, Prof. Franz Wotawa, for all that he taught me during the
last three and a half years, for always encouraging me, for all his help and confidence. Without his
vision and without our intensive discussions, it would not have been possible for me to complete this
work. I also wish to thank the members of my defence committee, Prof. Gerhard Friedrich and Prof.
Helic Denis, for taking the time to review my thesis and to supervise the exam. Many thanks go to
my industrial collaborators at Kapsch Vienna, for initiating me in the domain of machine-to-machine
communication and for providing feedback on my work. I would also like to thank my colleagues at
the Institute for Software Technology, especially Prof. Alexander Felfernig, for giving me the chance
to write my first book chapter and for his valuable comments. I also express my gratitude to the
Austrian Research Promotion Agency (FFG), who funded the BRIDGE research project ”Simulation
and Configuration of Mobile Networks with M2M Applications” (SIMOA).

I wish to thank my parents, Cristina and Florin, for all their love, guidance, and support through-
out the years and for instilling in me the desire to travel the world. I would like to thank my dear
grandparents, for their endless affection and for the lovely childhood I had, together with my brother
Petrut,, whom I also thank for always being honest to me and for proofreading parts of this thesis. I
have to thank my sister-in-low Simona, for all her help and for the time she has invested in reading the
whole thesis. I would also like to thank Alina, for our long-lasting friendship, and Valentin, for always
answering my many questions. Further thanks go to Simona, Cătălin, and Ionela, for their encourage-
ments to finish the dissertation on time, and also to Regina, for her kindness and for proofreading my
abstracts.

Last but surely not least, I am truly grateful to my beloved husband Mihai, for his strong support
during my PhD, I thank him for being my ”supervisor at home”, for his patience and understanding.

Above all, I thank God for making all this possible.

vii

Acknowledgments

Iulia-Dana Nica.
-Graz 2013.

viii

Dedicated to my grandparents

ix

x

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

Graz,
Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die an-
gegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am
Ort, Datum Unterschrift

xi

xii

Contents

Abstract (English) iii

Abstract (German) v

Acknowledgments vii

List of Figures 5

List of Tables 7

1. Foreword 9

1.1. Motivation . 9
1.2. Problem Statement . 11
1.3. Contribution . 12

2. Preliminaries and Related Research 15

2.1. Terminology . 15
2.2. Modeling Languages for Simulation and (Re-)Configuration 18
2.3. Configuration Tools . 22
2.4. Simulation Tools . 27
2.5. Conclusions . 29

3. SIMOL Language 31

1

Contents

3.1. Tokens . 32
3.2. Syntax . 33
3.3. SIMOL Inheritance . 39
3.4. Semantics . 41
3.5. Implementation . 44

3.5.1. Basic MINION Constructs used in the SIMOL Implementation 45
3.5.2. SIMOL - MINION Mapping. Practical example 51

3.6. Analysis . 56

4. SIMOA Approach 59

4.1. SIMOA Architecture . 59
4.2. Reconfiguration Mechanism . 61

4.2.1. MCDiag Algorithm . 61
4.2.2. RECONFIG Algorithm . 66
4.2.3. Conclusion . 69

5. Case Study 71

5.1. Motivation . 71
5.2. Domain Requirements . 73
5.3. Applying the SIMOA Approach . 75

5.3.1. The Domain-specific Tools . 78
5.3.2. Running Example without Reconfiguration Mechanism 80

Experimental results . 83
5.3.3. Running Example with Reconfiguration Mechanism 84

Experimental results . 85
5.4. Business Cases . 87
5.5. Conclusions . 89

6. Extensions 91

6.1. Preliminaries and Related Work . 92
6.2. MCDiag Algorithm for Diagnosis . 94
6.3. ConDiag Algorithm . 96
6.4. Run-Time Performance Trends - A Comparison of Diagnosis Algorithms 104

6.4.1. Selected Diagnosis Algorithms . 104

2

Contents

6.4.2. Empirical Results . 105

7. Conclusions and Future Work 109

List of Theorems and Definitions 113

Bibliography 115

Appendices 129

.1. A Variant of EBNF Notation . 129

.2. SIMOL Syntax . 130

.3. SIMOL - MINION Mapping. Further Examples . 135

3

4

List of Figures

3.1. A SIMOL program. 35
3.2. The state machine model for a cell with four P2PMeters. The values inside the circles

represent the codeset values (p1.codeset, p2.codeset, p3.codeset, p4.codeset) and the
+ and - signs suggest the possibilities of increasing and decreasing the codeset in the
next state. 37

3.3. A small sensor system. 39
3.4. The c17 combinational circuit. 51

4.1. The SIMOA architecture. 60
4.2. Reconfiguration as a function changing the state of a system. 62
4.3. Partial SIMOL description of a cell with 51 SmartMeter components. 65

5.1. Schematic representation of a Smart Grid Cell containing a base transceiver station
(BTS), one P2P smart meter, 3 PLC smart meters, connected to one Data concentrator,
and a Mobile phone. The base station facilitates at cell level the data transfer from the
P2P meter and data concentrator to the central meter management office, called AMM
application. 74

5.2. The M2M SIMOA architecture. 77
5.3. (1) SIMOA M2M Web GUI. 79
5.4. (2) SIMOA M2M Map GUI. 80
5.5. Comparing running times for constraint solving for a specific maximum number of

solutions when the variable domain is fixed to [0..1,000]. 84

5

List of Figures

5.6. UML Diagram for the GPRS Cell Model. 86
5.7. Comparing running times for reconfiguration when the Integer variable domain is

fixed to [0..20,000] and the number of solutions is limited to 1. 88

6.1. The D74 circuit including observations and assuming all components to behave cor-
rectly. 96

6.2. Number of diagnosis samples solved over time. 107

6

List of Tables

3.1. The component instances for our small sensor system. 40

3.2. MINION representation for the basic SIMOL arithmetic and relational expressions. . 48

5.1. Input Parameters . 81

5.2. Channel Encoding . 82

5.3. Real Transfer Rate per Cell . 82

5.4. Simulation results obtained for different integer variable domains. The solution num-
ber is limited to 10, by making use of the MINION command-line switch−sollimit10
when running the MINION Solver. The given running time is a rounded average value
over 3 runs. 84

6.1. Diagnosis results obtained when using MINION for diagnosing ISCAS 85 circuits.
Single faults only. The experiments were carried out on a MacBook Pro 2.53 GHz
Intel Core 2 Duo, 4 GB DDR3 RAM, under the OS X 10.6.7 operating system. The
given running time is a rounded average value over 3 runs. 95

6.2. MINION models for various gate types. 102

6.3. Diagnosis results obtained when running ConDiag on ISCAS 85 constraint models
with the less efficient MINION coding . 103

6.4. Diagnosis results obtained when running ConDiag on ISCAS 85 constraint models
with more efficient MINION coding. 103

7

List of Tables

6.5. ISCAS85 circuit statistics plus the number of variables/literals (#V/#L) and con-
straints/clauses (#Co/#Cl) for each depicted algorithm’s models (excluding blocking
constrains/clauses). 106

6.6. Diagnosis samples solved (out of 100). 106
6.7. Run-time in seconds for computing single-, up to double-, and up to triple-fault diag-

noses for TS1, TS2 and TS3 respectively (top to bottom). 108

8

Chapter 1
Foreword

1.1. Motivation

From automotive and up to telecommunication industry, configuration and simulation are used for
solving complex problems connected to the ever growing number of components, which have to work
together. Generally, the purpose of simulating a system before deployment is to evaluate its design and
behavior quickly and cost effectively. Simulink and MathModelica simulation environments are often
used to model the dependencies between the components of physical systems and also their continuous
or discrete time evolution. Both tools provide powerful capabilities, that facilitate complex, multi-
domain simulations, based on the general modeling languages MATLAB and Modelica, respectively.
However, these languages are mainly optimized towards simulation and therefore can be hardly used
for reconfiguration.

Why would we need to reconfigure/adapt a given system? Reasons for adaptation could be, for in-
stance, necessary corrections due to faults in system parts, changes in user requirements, or changes of
technology among others. All activities necessary for increasing the lifetime of a system and retaining
its usefulness are summarized under the general term maintenance. When considering the overall cost
of systems during the whole lifetime, maintenance accounts for more than 50 percent. Any support
provided for maintenance potentially reduces costs or provides improved results while retaining costs
at the same level. Thus, the adaptation of technical systems after deployment to ensure the desired
system’s functionality over time is an important task, that can never be avoided. We will further focus

9

Chapter 1. Foreword

on system changes due to changes in requirements. For example, consider a cellular network where
the base stations are initially configured to ensure current and future needs to some extent. Due to
changes in the environment, i.e., new apartment buildings constructed in reach of the base station
or an increased use of cellular networks for data communication, the base station or even the local
topology of the network has to be adapted. A real life scenario in which reconfiguration is particularly
needed is the overloading of electricity mains resulting in a blackout. Although many of the most pow-
erful blackouts in history were caused by natural hazards, there were cases when the electrical grid
was blown due to the large number of people using electrical appliances (India Blackout, July 2012,
670 million people affected). Blackouts can last from a few hours to weeks, depending on the cause
and the infrastructure of the affected region, but regardless of how long they last, their consequences
can be severe especially for modern economy heavily depending on the continuous availability of
electricity. Therefore, emergency solutions to adapt the electricity network to the fluctuating needs
have to be provided.

This adaption can more or less be classified as a reconfiguration problem, where the current sys-
tem’s structure, behavior, and the new requirements are given as input. Changes in the structure and
behavior of the system in order to cope with the changes in the requirements are a solution of the
reconfiguration problem. In order to provide a method for computing solutions for a given reconfig-
uration problem, we need to state the problem in a formal way. Therefore, we require a modeling
language for stating systems comprising components and their relationships. In principle, formal lan-
guages like first order logic or constraint languages would be sufficient for this purpose, but using
such languages usually is not easy and prevents systems based on such languages to be used in prac-
tice. Hence, there is a strong need for easy to learn and use modeling languages, that are expressive
enough to state reconfiguration problems.

This thesis addresses some of the challenges from configuration and reconfiguration domains, con-
sidering also the requirements of a state-of-the-art simulation tool. The main contribution to the re-
search of model-based reconfiguration is represented by the implemented modeling language SIMOL
- a general, declarative, object-oriented language with discrete time modeling capabilities. To be more
accessible for non-AI experts, we decided to adopt for it a Java-like syntax. Furthermore, we present
our reconfiguration engine that makes use of constraint solving and ideas from model-based diagno-
sis in order to compute system changes. The approach has the following advantages: it is flexible
and adaptable to various systems and needs, it determines the system’s capabilities to handle certain
requirements, and suggests system adaptations in cases where the requirements cannot be satisfied.

10

1.2. Problem Statement

The work presented in this thesis was mostly conducted within the Simulation and Configuration of
Mobile Networks with M2M Applications (SIMOA) project, where the objective has been to develop
a simulation and reconfiguration environment for smart metering applications in order (1) to ensure
that current mobile phone networks are capable of providing enough resources, and (2) to give advice
for changing either the smart metering solution or the communication network in cases of lack of
resources. We will report on the results obtained within SIMOA project in a dedicated chapter. It is
also worth noting that only a flexible approach like model-based configuration is capable of handling
the needs and requirements coming from this application domain.

1.2. Problem Statement

Given a system’s structure, behavior, and new requirements on the system, we have to provide a
method to complete the following tasks:

1. state the problem in a formal way, by means of a language capable of :

• user-friendly modeling, based on constructs with widely accepted terminology,

• describing the dynamic behavior of the system over discrete time,

• defining physical units for a more realistic view of the running model,

• natural modeling of the system’s structure through partonomy and taxonomy relations and
through components arrays,

• defining alternative functional modes for the reconfigurable components/parameters of
the system,

• easy integration with various constraint-based solving engines;

2. simulate the constructed model in order to ensure that it can cope with the user’s requirements;

3. automatically deliver a system’s reconfiguration, if the default simulation fails. As already dis-
cussed, this function is of major importance as it ensures the system’s availability even in an
degraded mode. Here we make use of the functional modes, encoded in the components’s be-
havior, that were not explicitly modeled in the user configuration, but are part of the components
specification (in the knowledge base).

11

Chapter 1. Foreword

1.3. Contribution

The major contributions of our research include the idea of integrating simulation and configuration
specific features and solving techniques in order to cope with a wide variety of systems and needs.
Thereby, we have implemented a modeling language -SIMOL- that combines the two different di-
rections. Due to its generality and high-flexibility in modeling a system, we have easily managed to
apply SIMOL in different domains as sensor systems, combinational circuits, or mobile networks and
with different purposes, from that of systems’ simulation and reconfiguration to the one of diagnosing
system’s failures. Moreover, various optimality criteria can be specified in SIMOL and the integrated
solving engine searches for reconfigurations fulfilling the optimality criteria. Due to the combinatorial
nature of reconfiguration problems, a straightforward decision was to use a state-of-the-art constraint
solver as reconfiguration engine.

The research presented in this thesis is based on and extends the following list of publications:

• (Re-)configuration of Communication Networks in the Context of M2M Applications [94]

• Kapsch: Reconfiguration of Mobile Phone Networks [96]

• The Route to Success - A Performance Comparison of Diagnosis Algorithms [97]

• Model-based simulation and configuration of mobile phone networks- The SIMOA approach
[95]

• ConDiag - computing minimal diagnoses using a constraint solver [92]

• The SiMoL Modeling Language for Simulation and (Re-)Configuration [93]

• Diagnosis-based Reconfiguration using the MINION constraint solver [91]

• SiMoL - A Modeling Language for Simulation and (Re-)Configuration [98]

The remainder of this thesis is organized as follows. In Chapter 2 we provide an introduction in
knowledge-based configuration, reconfiguration, and simulation domains and discuss related work.
Afterwards, we introduce the SIMOL language (Chapter 3). In Chapter 4 we present our constraint-
based approach for model-based simulation and reconfiguration, including the SIMOA tool archi-
tecture and the implemented reconfiguration mechanisms. Thereafter, Chapter 5 shows the results
obtained when applying our techniques in the domain of mobile phone networks with machine-2-
machine communication capabilities. Extensions of the applicability of the introduced language in

12

1.3. Contribution

solving diagnosis problems are given in Chapter 6. Finally, with Chapter 7 we conclude the thesis,
discussing also the limitations of the current approach and the future research directions.

13

14

Chapter 2
Preliminaries and Related Research

As preamble to our approach, we introduce in this chapter the most important concepts from the do-
main of configuration and simulation, with focus on modeling languages requirements (Section 2.2),
configuration and simulation techniques (Section 2.3 and Section 2.4, respectively). Additionally, we
state the terminology used in the current work (Section 2.1).

2.1. Terminology

In order to be self-contained, we review in this section some brief (informal) definitions and character-
istics of the key terms encountered throughout this thesis and of those that our modeling and solving
techniques are based on.

Modeling language: A modeling language is an artificial language used to represent a real-world
or conceptual system/product, information, or knowledge in a structured way.

Simulation: ”Simulation is the imitation of the operation of a real-world process or system over
time.” ([9])

Basically, there are three types of simulation: discrete-event, continuous, and Monte Carlo. Never-
theless, according to [9], in practice, these types are becoming less distinct.

15

Chapter 2. Preliminaries and Related Research

Discrete time simulation: It is based on the notion of discrete-event∗ simulation (DES), where the
model (mathematical and logical) of a physical system has changes at precise points in simulated time
([88]).

Model-based simulation: The existence of a description for the system/product -the model- is
assumed. ”The purpose of model-based simulation is to evaluate a design quickly and cost effectively,
so to be effective, useful, and not a waste of time, the model must accurately represent the actual
system.” ([140])

Discrete-event simulation model: ”A discrete-event simulation model is defined as one in which
the state variables change only at those discrete points in time at which events occur.” [3]

State: The state of an object/component is the enumeration of all attribute values of that ob-
ject/component at a particular instant.(adapted from [3])

Constraint satisfaction problem (CSP): A constraint satisfaction problem (CSP) has a finite set of
variables, each with a finite domain, and a set of constraints, defining restrictions over those variables.
A solution to a given CSP is an assignment of values to variables such that no constraint is violated.

Constraint solver: Typically, constraint solvers get as input an instance of a CSP and search for
one ore more/all solutions to the problem. If no solution was found, the constraint solver may provide
an explanation why we do not have any solution. Among the new, highly efficient constraint solvers
on the market we can mention Gecode ([45, 122]) and JaCoP ([66]).

Knowledge-based configuration: Knowledge-based configuration is one of the most successful
applications of expert systems, where the main constituent parts of a configuration problem are: (1) a
predefined set of components, each component being described through a set of properties, ports (i.e.,
connection interfaces) and constraints, (2) the description of the desired configuration, and (3) optional
criteria for optimizing the solution (adapted from [146]). Informally, a configuration (i.e., solution to
the configuration problem) will be a set of components and a description of the connections between
those components.

Another currently used model-based definition was proposed by [86], where two restrictions on the
configuration task are introduced: the functional architecture(s) for the desired configuration and the
key components per function.

∗Although we do not use the term of event in our approach, we define it as ”an occurrence that changes the state of the
system”([9]).

16

2.1. Terminology

Throughout the years, miscellaneous methods for solving knowledge-based configuration problems
were developed. We further provide a short description of the basic concepts:

• rule-based configuration: Rules are used for the representation of both domain and problem
solving knowledge. This leads to maintenance problems, as no proper separation between the
two types of knowledge can be provided ([81, 126]).

• structure-based configuration: The compositional, hierarchical structure of the domain’s model
guides the configuration process, in which either a top-down method (through decomposition of
the artifact) or a bottom-up strategy (through aggregations between components) can be adopted
([50, 52, 18]).

• resource-based configuration: Each component in the domain is described by the set of re-
sources it supplies and the set of resources it consumes. ”Given a set of open resource require-
ments (specifying the needs of a customer), the configurator adds components to the configura-
tion until all requests of a resource are satisfied.” [29] ([58, 59])

• constraint-based configuration: Constraints are used to define restrictions on the system and
relationships between components, attributes or between a component and its attributes. Thus,
the configuration problem can be naturally mapped to a CSP - also called a static CSP, when
the number of components to be used in configuration is fix. Extensions to the classical CSP
have been implemented, such as dynamic, composite or generative CSP [85, 116, 129], for
improving the expressiveness of the knowledge representation and the solving mechanisms.

• case-based configuration: Computed configurations are stored for future usage. The reason
is that, generally, similar tasks lead to similar solutions. According to [52], case-based tech-
nologies have a few disadvantages, as, for instance, they provide only conservative solutions or
almost no causal explanations exist for the suggested solutions. Some examples of case-based
systems are [62, 112, 37].

Reconfiguration: Generally, the term reconfiguration is used to refer to the situation, when ”a
configuration problem solver is confronted with an incorrect configuration”. We can have two basic
hypotheses for this situation: either the configured system does not (longer) provide the original
desired function or some new desired requirements are not consistent with the originally configured
system([131]). In our work, we focus on the case when the reconfiguration of a system is requested
as a result of new requirements on the system. Hence, given the new requirements, the goal of the
reconfiguration process is to find a configuration, where the number of changes is minimal.

17

Chapter 2. Preliminaries and Related Research

Diagnosis-based reconfiguration: By exploring the analogy between diagnosis and reconfigu-
ration, we are able to define the reconfiguration problem similar to the diagnosis problem. While
diagnosis is the problem of identifying those components, which, when considered abnormal, jus-
tify the observed misbehavior, the reconfiguration can be seen as the problem of identifying those
components, which, when changed, restore the desired behavior.

2.2. Modeling Languages for Simulation and (Re-)Configuration

System or product modeling represents a significant part both in the simulation and configuration pro-
cess. Therefore, various languages have been developed over time, aiming at creating an expressive,
but also effective model for the given problem. In this section, we review first the general require-
ments for a modeling paradigm in the context of simulation, and afterwards the desired attributes of
languages, supporting the modeling of configuration problems. Moreover, the presented modeling
concepts will be briefly exemplified.

In the history of simulation, one of the pioneers was the Simula language, specially designed for
simulation [20] and considered to be the first object-oriented programming language, as the specific
simulation domain’s needs provided the framework for many of the features of nowadays object-
oriented languages. Among others, it used the concepts of object, class, subclasses, virtual methods,
coroutines, garbage collection and discrete event simulation. Bernard P. Zeigler introduced in the
1970’s the DEVS (Discrete Event System Specification) formalism - a formal approach for building
models, making use of a hierarchical and modular approach, that was lately integrated with object-
oriented programming techniques [150]. This method would allow to build a model base, permitting
easy reuse of models that have been validated. Later on, Sargent [118] outlined fourteen (14) require-
ments for a modeling paradigm, which will be reproduced bellow ([3]).

A modeling paradigm in the context of simulation should have the following key features:

1. general purpose: to allow modeling of a wide variety of problem types and domains.

2. theoretical foundation: ”to move the modeling process towards science”.

3. hierarchical capability: to facilitate modeling of complex systems.

4. computer architecture independence: sequential, parallel and distributed implementations
should be based on same model.

18

2.2. Modeling Languages for Simulation and (Re-)Configuration

5. structured : for guiding the user in model development.

6. model reuse: have a model database for component reuse.

7. separation of model and experimental frame: model should be separate from its inputs and
outputs.

8. visual modeling capabilities: for graphical model construction.

9. ease of modeling: ”world view(s)† should ease the modeling task.”

10. ease of communication : the conceptual model should easily communicate to other parties.

11. ease of model validation : both conceptual and operational validity should be provided.

12. animation: ”model animation provided without burden to the modeler.”

13. model development environment: to support the modeling process.

14. efficient translation to executable form: model automatically converted to computer code, or if
not automated, facilitate programmed model verification.

Major work on the development of ontologies for simulation and modeling has been done over the
years and for more information in this direction we refer the interested reader to [101, 138, 124, 13,
38, 75].

Nowadays, a widely used general-purpose language that implemented and extended most of the
afore mentioned modeling and simulation features is Modelica [42]. Modelica is an equation-based
object-oriented language with multi-domain modeling capability. In [42], the authors discuss the
advantage of acausal modeling over the causal block oriented modeling in languages like MAT-
LAB/Simulink. In the first case, the declarative modeling style based on equation instead of as-
signment statements specifies no cause-effect flow, making the Modelica classes more reusable. In
the second case, with fixed input-output flow, the model reusability is restricted and, moreover, the
physical topology of the real system might be lost.

In the area of configuration, we have also a quite long research history dedicated to the modeling
problem, from the early rule-based representation languages to the model-based approaches, where
the problem solving knowledge is clearly separated from the domain knowledge.

†In this context, world views are defined as conceptual frameworks. [7] introduced four world views : event scheduling,
activity scanning, three-phase approach and process interaction.

19

Chapter 2. Preliminaries and Related Research

Considering the visual modeling technique, we can have basically two kinds of modeling lan-
guages: graphical languages like UML, SysML, feature models (FM) graphical languages - the do-
main knowledge is represented by means of symbols and diagrams, and textual languages like Con-
Talk [39], ConBAConL [70], or EXPRESS - the domain knowledge is described through predefined
keywords. Although graphical languages provide a clear representation of the domain knowledge, the
interpretation of the model is not always a trivial task. The textual languages on the other side are
more flexible, but sometimes not so easy to learn and thus less suited for model designers with few
programming skills.

The Unified Modeling Language(UML) is a general-purpose object-oriented language, widely used
in industry, and therefore a good choice for configuration ([31, 35]). As presented in [110], there
are three relations in UML particularly interesting for configuration: the association(describes a se-
mantical relationship between two components), composition (establishes a parent-child relationship
between components), and generalization(models the inheritance). Furthermore, starting with UML
2.0, stereotypes can be also used in the modeling process for creating a model from an existing one.
SysML (Systems Modeling Language) [1] is a UML profile, aimed at representing systems and prod-
uct architectures. By limiting the number of available diagrams and simplifying the original UML
notations, SysML becomes easier to use. Furthermore, units, dimensions, optimization functions and
parametrized constraints can be defined. Both languages use the OCL (Object Constraint Language)
extension in order to express standardized constraints.

Feature models [12, 11, 19, 74, 63] have been developed with the goal of representing variability
properties in software product lines. A feature must have a unique name and can have two possible
states: included in a configuration, or excluded from a certain configuration. The idea here is to
represent all the possible variants of a configurable product in a single graphical model. A feature
model contains two parts: a structural part, that defines the hierarchical relationship between the
features and a constraint part, that adds constraints, defining cross-hierarchy restrictions.

From the category of textual languages, EXPRESS [2] is an object-oriented data modeling lan-
guage, which provides also a graphical variant EXPRESS-G. Models are organized here according to
schemas, that allow to group elements within a model. EXPRESS components are defined as entities
with specific attributes. Another features of the language are the usage of abstract classes, subtypes
and the possibility to declare units. Although the user can define his/her own functions in a procedural
manner, the lack of built-in functions and of configuration-specific keywords restrict the usage of the
language in the domain. The other two examples of textual languages, CanTalk and ConBaConL are

20

2.2. Modeling Languages for Simulation and (Re-)Configuration

presented in Section 2.3 within the description of the corresponding configuration systems.

When further considering the techniques to be used in solving the configuration problem, most of
the model-based approaches use the powerful mechanism of constraint solving and thus the constraint-
based knowledge representation ([86, 78, 39, 72]). As already mentioned, constraints can be used
to define restrictions on the system and relationships between components, attributes or between a
component and its attributes. Thus, the configuration problem can be naturally mapped to a CSP - also
called a static CSP, when the number of components to be used in configuration is fix. Extensions to
the classical CSP have been implemented, such as dynamic, composite or generative CSP [85, 116,
129], for improving the expressiveness of the knowledge representation and the solving mechanisms.

Except the constraint-based solution, logic-based techniques like Answer Set Programming (ASP)
and Description Logics (DL) have been also successfully applied to configuration. ASP is a logic-
based knowledge representation formalism, that proved to be well suited for compact descriptions of
configuration and reconfiguration problems (see, e.g., [125, 41, 137]). ASP programs are represented
as a finite set of rules, where each rule has a head and a body and, depending on the rule’s structure,
we differentiate between integrity constraints, facts, and weight constraints. A detailed presentation
of ASP can be found in [44, 77].

Descended from the so-called ”structured inheritance networks”, Description Logics is another
popular knowledge representation formalism in the context of Semantic Web. [34] have analyzed the
applicability of DL for configuration knowledge representation and the conclusion was that its usage
is limited by some factors: no aggregation functions are allowed, constraints on complex connection
structures are not supported and also some specific constraints types are supported in a restricted
manner. For further information on DL we refer the reader to [6]. Details about the configuration
systems, where DL has been used, can be found in [149, 82, 72, 61].

Based on the upper presented research and on the modeling techniques analysis from [110], we can
state the key features of a modeling paradigm in the context of industrial configuration:

1. be user-friendly, by means of using a widely accepted terminology.

2. be textual: unlike graphical languages, it will facilitate the interpretation and the optimization
of the implemented model and will enhance designers productivity. Working with a textual lan-
guage is often faster than through user interfaces, especially in an industrial environment, where
models are complex and contain a big amount of data. Moreover such a language can be in-
tegrated in a development environment (Eclipse, Microsoft Visual Studio etc.), which provides

21

Chapter 2. Preliminaries and Related Research

syntax-highlighting, code auto-completion, structured projects etc.

3. be object-oriented: this approach has been preferred by many researchers ([64], [114]). It is
indeed very suitable for systems modeling, as the analogy between components and objects is
obvious.

4. provide a graphical representation: this is important to the modeler for creating a clear view of
the real model.

5. be extensible: various applications can be integrated with a modeling environment.

6. allow easy structure modeling my means of partonomy and taxonomy relations.

7. definition of units: the modeling language must support the definition of specific units of mea-
surement.

8. default values and ranges: allow the user to get default configurations quickly.

9. built-in functions and constraints available to the modeler: will ease the work with large num-
bers of components in the model.

10. soft constraints: constraints that may be violated if they are overridden by a user selection or
indirectly as a consequence of a constraint with higher priority.

11. structural and functional decomposition: large systems are usually designed with structural
decomposition in mind in order to get flexible and independent solutions for different subprob-
lems.

2.3. Configuration Tools

Over time, the AI community has developed a large variety of configuration tools that fitted the dif-
ferent necessities and goals in each practical area, thus creating a strong foundation for newcomers.

In the following, we will shortly recall a couple of configuration systems, which illustrate the main
approaches in the field of knowledge-based configuration, as presented in Section 2.1.

In the early 80s, Digital Equipment Corporation was already using the R1/XCON program in
the selling process, by automatically selecting the computer system components based on the cus-
tomer’s requirements. [81] implemented XCON as a production-rule-based system, based on the
OPS4 language [40]. OPS4’s memory was divided into a production memory, that stored the set of

22

2.3. Configuration Tools

rules(productions), where each rule was defined in the form if(condition/s)-then(action/s), a working
memory, which held the set of data elements, and a data base, containing the description of all the
components that can appear in a configuration. In the configuration process, when R1 receives the
customer’s order, first, it gets the corresponding component descriptions from the data base. Then,
in a recognize-act cycle, it determines, based on the defined rules, the particular type of extension to
be added to the current partial configuration. Thus, the actions corresponding to the rules with the
fulfilled conditions modify the content of the working memory in a repeated manner. From 772 rules
in 1980, R1’s production memory extended in 1989 to about 11.500 rules, specified in a new version
of OPS [115].

Another historical system is SICONFEX[76], which had a similar using purpose as R1, being
used for the configuration of SICOMP process computers[142]. The input data was represented by
hardware components, software specifications and intended functionality. In this case, the system
used many techniques in order to get a better structuring of the domain knowledge: rules, inheritance
mechanisms, domain procedures, concept hierarchies, schemes for describing objects and LISP Code.

Other configuration systems include ConBaCon (Constraint-Based Configuration) [70] and CAW-
ICOMS (Customer-Adaptive Web Interface for the Configuration Of products and services with Mul-
tiple Suppliers) [36]. ConBaCon treats the special case of reconfiguration, using the conditional prop-
agation of constraint networks and has its own input language - ConBaConL. In [70], the authors
present ConBAConL, a ”largely declarative specification language”, by means of which one can spec-
ify the object hierarchy, the context-independent constraints and the context constraints. Furthermore,
the constraints are divided into simple constraints, compositional constraints and conditional con-
straints. Although successfully integrated in industry, the performance problems were observed in
case of large products/systems, as a result of the large number of generated constraint variables and
associated CE (consistency-ensuring) constraints within the solution. In [69], the author tackles these
issues by clustering the ConBaCon model.

The goal of the CAWICOMS project was the development of a ”Customer-Adaptive Web Interface
for the Configuration of Products and Services with Multiple Suppliers”,i.e., an interface that enables
the communication between various configuration systems. In [36], an application scenario for se-
mantic Web services is presented, choosing as example the domain of telecommunication services.
In order to define a common language for representing the properties of configurable products and
services, the authors use ”a hierarchical approach of related ontologies[14, 49]”[36]. By means of
the DAML+OIL language, a flexible product ontology for complex, customizable products can be

23

Chapter 2. Preliminaries and Related Research

modeled, the domain knowledge being consistently represented in XML. For the configuration task,
ILOGs domain-independent and Java-based JConfigurator [72] was adopted. JConfigurator imple-
ments Generative Constraints Satisfaction for solving complex configuration problems. Actually, the
configuration task is executed on a distributed architecture, i.e., each involved configurator has only a
partial view on the product model. The communication between the configurators occurs by means of
XML-based SOAP messaging and Web Services.

LAVA is another successful automated configurator [39], used in the complex domain of telephone
switching systems. It makes use of generative constraints and is the successor of COCOS [130], a
knowledge-based, domain independent configuration tool. The modeling language is ConTalk, an en-
hanced version of LCON (the constraint-based representation language used in the COCOS project)
that follows the Smalltalk notation. A ConTalk constraint is a statement which describes a relation-
ship between components ports or between the attributes values. During configuration, the inheritance
hierarchy of component types is exploited and each time a component is generated, a new constraint
object is instantiated for that component and propagated to all its related components, ports and at-
tributes.

A powerful configuration system that combines constraint programming(CP) with a description
logic(DL) is the ILOG (J)Configurator [72]. The combined CP-DL language, in which the configura-
tion problem is formulated provides, on the one hand, the constraints, needed in the decision process,
and on the other hand, the constructs of the description logic, able to deal with unknown universes.
When solving the problem, the constructs of description logic, which are well-suited to model the
configuration specific taxonomic and partonomic relations, are mapped on constraints and thus the
wide range of constraint solving algorithms may be used.

Products like COSMOS ([58],[51]) and KIKon ([29]) used the resource-based configuration ap-
proach, by seeing the components as resources and splitting the system in sub-functionalities (COS-
MOS) or sealing the obtained configurations in order to store them for future usage (KIKon). In
the first case, the knowledge base is divided into resources definition and components description. As
mentioned in [51], a great advantage of the used modeling methodology is that, considering resources’
longer lifetime (when compared with components’ lifetime), the maintenance efforts are drastically
reduced. Complex, modular products may be successfully configured in COSMOS under the follow-
ing conditions: the components can be easily modeled as resources, the design of the system to be
configured allows functional decomposition, the most relations are summing relations ([51]).

Originally based on COSMOS, the interactive configuration system KIKon was thought to sup-

24

2.3. Configuration Tools

port the configuration of telecommunication systems, which ”differs from the configuration of other
technical systems like cars and airplanes”([29]). One of the reasons presented in [29] is that the com-
munication relation has to be considered in case of telecommunication systems. In terms of graphical
interface, the tool offers a domain-dependent GUI, which includes a dynamic table mechanism ([127])
used for comparing and selecting components.

Among currently available products on the market, we mention well-known systems like: Tacton
configurator, SAP’s configurators, camos configurator, Oracle configurator ∗.

Tacton configurator [103] is based on the research prototype OBELICS [5], that uses logic program-
ming, object-oriented principles, SICSTUS Prolog [108] and its object-oriented extension SICSTUS
Objects. In [5], the authors introduce ”a less complex and more interactive approach to configuration”,
named Interactive Configuration by Selection(ICS). The motivation for ICS was that, ”from the end
user’s perspective, the goal is not to have a maximally ”intelligent” system, but rather one that will
help him the most in his day-to-day work”, as also stated in [107] ([5]). Therefore, the authors prefer
a configuration system which can assist the task of configuration, rather than one that automatically
produces configurations from the given requirements, without any further user interaction. Further on,
in [103], three types of configuration engines are identified: the configuration engine which assists the
user in making a selection by using restriction tables and in the end checks only if the user selection is
valid, the constraint solver engine that can generate all the valid configurations or just the optimal one,
and the constructive search engine, capable of searching one suitable configuration that satisfies the
requirements. The last two types of engines are incorporated in the Tacton configurator: a dynamic
constraint solver for capturing the requirements and a constructive search engine for finding a suitable
configuration.

In 1998, SAP AG software company was already implementing its third generation of sales con-
figurators - the SCE (Sales Configuration Engine)([55]). Focusing on the sales configuration in busi-
ness processes, ”the SCE attempts a clear separation of interface and configurator engine, which
lets SAPS customers tune the interface to a particular configuration problem or completely redefine
it.”([55]) Thus, the SCE architecture comprises three main parts: the configurator user interface, the
knowledge base server (where the basic modeling entities - classes, dependencies, materials, etc.,-
are defined), and the configuration engine(designed also as a server, so that it can handle multiple
configuration requests simultaneously). Concerning the used AI technology, the approach is based on
previous AI research ([54, 18, 58, 90]) and makes use of: constraints (for expressing the dependen-

∗www.tacton.com/en, www.sap.com, www.camos.de, www.oracle.com

25

Chapter 2. Preliminaries and Related Research

cies in a declarative manner), defaults(defined by the author in [55] as ”a younger brother of a soft
constraint”(referring to a default value assignment)), and a Truth Maintenance System (TMS)[25] as
problem solving module. The TMS was later on replaced by an assumption-based TMS ([21]) capable
of handling specification relations - ATMS*, described in [54]. In [56], two successor configuration
systems are presented: the SAP ERP (Enterprise Resource Planning) Variant Configurator, which
appeared in 1994 and provides high-level configuration in SAP ERP systems, and SAP CRM IPC
(Customer Relationship Management Internet Pricing and Configuration), that is on the market since
2000, with a standalone configuration engine. More recently, the knowledge representation issues in
the SAP configuration environment were discussed in [57].

In case of camos Configurator [51, 115], the components are represented in a class tree and can
be used in both partonomy and taxonomy relations. Moreover, inheritance mechanisms were imple-
mented. During the configuration process, the user can detect the inconsistencies - if they appear
- and she/he can manually eliminate conflicts by selecting another adequate component. Heuristics
for the automation of the configuration process are not available ([115]). In order to define rela-
tions/dependencies between components, two possibilities are provided: one can use either predefined
keywords as ”can”, ”must”, ”cannot”, ”initialize” to define constraints or one can use procedural de-
pendencies. In the sales area, for increasing the level of acceptance, an unsatisfied constraint could be
ignored during the manually driven configuration process, and, eventually, the corresponding compo-
nents (implied in the unsatisfied constraints) will appear in a list with technical explanations.([51])

As presented in [102], the Oracle Configurator is a selling and configuration product, based on
state-of-the-art configuration technology. Using constraint-based reasoning, the system provides valid
configurations either automatically, if the user chooses to automatically complete configurations, or
stepwise, in an interactive guided session, when real-time feedback about the impact of each user’s
selection is given. Configurator Extensions offer the possibility to extend the Configurator using
Java†. In the integrated modeling environment, the user is able to create the desired model structure,
and afterwards, constraints can be applied to this structure. Advanced, personalized constraints can
be defined by means of Statement Rules: the user can add, delete or edit the text of a predefined rule.

†No further information in this direction was found in the documentation or related papers.

26

2.4. Simulation Tools

2.4. Simulation Tools

Beside modeling and reconfiguration features, which were the main targets of our research, we also
aimed at a tool capable of simulating the constructed model, in the sense of adding dynamic behavior
to the static configuration knowledge base. Therefore, in order to get an idea about general require-
ments and domain specific technologies, existing simulation systems had to be also investigated. The
selection briefly presented here is based on Internet searches, papers about state-of-the art mobile
networks applications, and the survey [3] (based on Swain’s survey [135]).

When referring to general dynamic systems’ modeling and simulation, MATLAB/Simulink [136]
and Modelica/Dymola [30] are the most famous names. In case of Simulink, the user is capable of
modeling the desired system in the graphical interface, based on a large library of standard compo-
nents, called blocks. As part of the standard library, the S-Function block allows users to implement
their own custom routines, which can include new algorithms not directly supported by Simulink or
existing code, written in C, Ada, Fortran or the proprietary MATLAB coding ([60]). (CITE projets)

In the second case, MathModelica problem solving environment [42, 79], currently called Wol-
fram SystemModeler, integrates Modelica-based modeling and a couple of software products such as
Mathematica - for providing features like traditional mathematical notations, numerical and symbolic
calculations, functional, procedural, rule-based and graphical programming [144]; Microsoft Visio as
diagramming software; and Dymola [26], that serves as simulation engine. (CITE projets)

Further on, if we restrict ourselves to the domain of mobile networks applications, ns-2[80] and
OPNET[15] are two of the most popular network simulation packages on the market. The ns-2 sim-
ulator uses OTcl - an object oriented version of Tcl(tool command language [104]) - as command
and configuration interface, while in OPNET the user creates networking models by using the drag
and drop approach. One drawback of using these tools in the domain of M2M applications is the
difficulty of simulating new platforms and protocols. In [67], the author mentions that implementing
new protocols in the existing tool packages is rather difficult and time consuming. Further more, both
ns-2 and OPNET operate at the packet level, which is not the case in our approach. For instance, in
case of smart metering requirements, all the meter profiles parameters are given per day and cell.

There is also a multitude of commercial software planning tools, which combine the environment
specific constraints with signal propagation. In [47], the implemented WLAN modeling tool defines
the environment by describing the floor plan structure and the wall types. This definition will further
serve as input for the electromagnetic propagation model, which eventually leads to an estimation of

27

Chapter 2. Preliminaries and Related Research

the maximum achievable throughput in specific sites within the considered building. The optimization
module is used to automatically optimize the number of access points and their position to meet site
specific demands.

Just like ns-2 and OPNET, many other network simulators use discrete event simulation, in which
a list of pending ”events” is stored and events are processed in a specific order.

In his ”Introduction to Discrete Event Simulation”, [3] presents a survey on 87 discrete event sim-
ulation and modeling tools (SMTs), that were available back in 2007. Of these, thirty-three (33)
provided support for academia or were open source, while forty-nine(49) were commercial tools. The
author chooses four of these commercial offerings: Arena [113], Extend [65], SIGMA [141] (all three
providing academic versions), and Ptolemy [16] for an in depth evaluation and comparison.

The Arena modeling environment is an integrated development environment (IDE), allowing the
use of visual, drag and drop modeling by connecting predefined and user defined blocks. Structured
to aid in model development, Arena has some animation ability and allows a varying level of model
description. Model components can be reused from a library, with a two level hierarchy. However,
there are minimal alternatives in model creation beyond the supplied IDE. Furthermore, debugging
and verification modes are possible and also tools to allow validation of results are available. Basic
statistical tools, such as standard distributions, seeding random numbers, sampling, and distribution
fitting are integrated in the IDE. Arena is easy to learn, well documented, and appropriate for experi-
mentation purposes and therefore nowadays hundreds of educational institutions worldwide are using
its simulation software. Rockwell Automation’s Educational [113] version of Arena provides a valu-
able teaching tool to universities and colleges by introducing students to the principles of simulation.

Extend [65] is an extensible program with add-ons from several sources, allowing validation of
results and also running simulations in debugging or verification mode. Like in Arena, we can visually
model a system, using predefined or user defined blocks. Also here the alternatives in creating a
model are minimal beyond the supplied IDE. Designed to support model development, Extend has
some animation ability and can model continuous, discrete event and discrete rate processes. On the
vendor’s Web page, different simulation packages are recommended to the user, depending on the
type of simulation to be conducted.

Presented by its developers as ”the world’s fastest and most flexible analytical discrete event sim-
ulation software”, SIGMA [141] has an internal text editor, where models can be created and edited.
Alternatively, the models can be visually constructed from predefined blocks (no user defined blocks
are supported). Based on event graphs, SIGMA features the the ability to translate its models into

28

2.5. Conclusions

more readable versions and also some animation ability. Also fairly easy to learn, Sigma is often used
as an introductory simulation teaching tool, being very well documented ([120, 73, 119]).

Ptolemy II [16] is a DES/Continuous simulation and modeling tool, with a graphical user interface
called Vergil. It is a Java-based component assembly framework, allowing the use of visual modeling
with predefined and user defined blocks. Models can be created from assembling previously devel-
oped components, or by direct programming them in Java. A text editor is also present as part of
the report module. The basic code is in Java and models can be created to operate as Java applets.
Common features like debugging, verification and validation of results are available to the user, as
well. However, because of its complexity, Ptolemy II is not so easy to learn as the previous simulation
tools. The main citation for the Ptolemy Project is [28].

2.5. Conclusions

Although simulation and configuration domains were, to our knowledge, never linked together in order
to take advantage of their individual benefits, we think that the idea of combining the two directions
in one language can be useful, especially in case of an industrial environment.

As stated in [8], the benefits of using simulation go beyond just providing a look into the future.
We will further recall a couple of them:

• choose correctly: through simulation, one can test every aspect of a proposed change without
committing resources to its acquisition.

• prepare for change: answering ”what-if” questions is useful for both designing new systems
and redesigning existing systems.

• explore possibilities: once a valid simulation model is obtained, one can explore new possi-
bilities (impose new requirements or add new features to the modeled system) without the any
expense.

• identify constraints: production bottlenecks or bottlenecks in the functionality of a system (e.g.,
communication network). By using simulation to perform bottleneck analysis, one can discover
for instance the cause of a blackout in an electrical grid, or the reason for a communication delay
in a phone network.

29

Chapter 2. Preliminaries and Related Research

On the other side, the application of configuration for solving problems in the engineering domain
has also a long tradition. As we have seen throughout this chapter, configuration of technical products
from various domains is a well researched field, especially in the direction of solving techniques for
the configuration task. The modeling problem was less covered and therefore the languages used to
express the configuration knowledge are mostly not ”user-oriented”, but rather ”solving-oriented”.
Hence, such languages are not easy and prevent systems based on them to be used in practice. Graph-
ical representations like UML and feature models have been often integrated in constraint- or de-
scription logics-based approaches, but there is still a strong need for easy to learn and use modeling
languages, that are expressive enough to state configuration problems.

30

Chapter 3
SIMOL Language

Parts of the content of this chapter have been published in [98, 93, 94].

Considering the desired attributes of a modeling language from Section 2.2 and the future mapping
of the model to a CSP, we implemented the SIMOL language as a declarative, object-oriented lan-
guage with multiple inheritance, which adopts a clear Java-like syntax. The key concept of SIMOL
is the definition of basic and hierarchical components, which are used to represent the given system.
Each component is designed to have a set of attributes and a specific behavior, provided as set of
equations. For defining the attributes, there can be used one of the two primitive data types with Java
like semantics: non-negative integer data type, depicted by int, and bool data type. In a classical
object oriented manner, if a component is a subclass of another component, then the equations of the
superclass are taken together with the equations of the component in order to specify the component’s
behavior. In SIMOL, it is also possible to assign equations to specific behavior modes in order to rep-
resent potential reconfigurations, as we will see in Chapter 4. Another feature of SIMOL is its ability
to model the systems behavior over time. In this case, SIMOL allows for specifying state transition
functions. Such a function itself is a set of equations, that connects values of variables between one
state and its successor state. SIMOL does not allow to deal with continuous time, i.e., only systems
which can be modeled using discrete time can be represented in SIMOL.

In the remainder of this chapter, we define the language starting from the idea discussed also in
[147], [53], i.e., separating constructs in a way that facilitates the language analysis. Hence, given a

31

Chapter 3. SIMOL Language

language specified as a sequence of characters, we are firstly interested in dividing this sequence into
basic lexical units, called tokens. Afterwards the syntax of this sequence of tokens has to be checked,
by following some production rules, and, finally, the semantics is added.

3.1. Tokens

For SIMOL, the following tokens are defined∗:

• identifiers for any type of component and attribute follow the convention: they start with a lower
or upper case letter followed by zero or more repetitions of digits or lower/ upper case letters
(the letters may contain diacritics);

id ::= ([a-z]|[A-Z])+([a-z]|[A-Z]|[0-9])*

• reserved words and literals: and, at least, at most, attribute, bool, component,

constraints, const, else, exist, extends, false, forall, if, import, int,

kbase, max, min, .next, or, package, private, product, transition, true;

• literals:

– integer literals can be 0 or start with any non-zero positive digit (from 1 to 9), which can
be followed by any repetition of digits from 0 to 9;

int lit ::=0 | ([1-9] ([0-9])*) 0|([1-9] ([0-9])*)

– boolean literals

bool lit ::= true | false

• separators: {, }, [,], ;, ,, .

• arithmetic and relational operators: =, >, <, :, <=, >=, !=, +, -, *

• units of measurement, for a more realistic description: KB, MB, GB, kbit V, Hz, A, %,

/2min, /sec, /day

• integer valued ranges, used for restricting the domain of the variables values:
in range ::= { (0|[1-9]([0-9])*) ((.. ([1-9]([0-9])*)) | (,

([1-9]([0-9])*))*) }
∗Note that the formal definition of the SIMOL tokens is based on the representation given in Annex .1.

32

3.2. Syntax

• special tokens - comments:

SINGLE LINE COMMENT ::= // (∼[\n,\r])* (\n|\r|\r\n)

FORMAL COMMENT ::= /** (∼[*])* * (* | (∼[*,/] (∼[*])* *))* /

MULTI LINE COMMENT ::= /* (∼[*])* * (* | (∼[*,/] (∼[*])* *))* /

All the upper described tokens can be found in the SIMOL programs provided as examples in
Section 3.2.

3.2. Syntax

The complete SIMOL syntax is formally described in Annex .2.

A program written in SIMOL contains basically three sections, as depicted in Figure 3.1:

• a knowledge base declaration section, which is optional. It is used to organize components
belonging to a specific domain or problem (similar to a Java package):

kbase GPRSCell;

• an import declaration section, where knowledge bases can be loaded †. It is also optional and
contains one or more import declaration statements:

import UMTSCell.*;

• a component definition section, that is the main constructing unit of a SIMOL program and it
is mandatory (Line 2 to 45). Each component definition starts with the keyword component
followed by the name of the component and with an optional extends followed by a comma-
separated list of component names. If extends is used, we know that the new component has
one or more super components from which constraints are inherited.

In every component definition, we firstly define the component’s attributes after the attribute
keyword. For example, in Line 3 the attributes midst, code set, and mRate are defined. All
these attributes are of type integer (int). Besides attributes, constraints can be defined. There
are two ways of doing this. Either we use the keyword constraints directly followed by a block

†not supported by the current version of the language

33

Chapter 3. SIMOL Language

in surrounding parentheses {}, or we use the same keyword constraints followed by an name
under parentheses () and again a block statement.

The first definition of constraints only allows for specifying a single component behavior. The
other definition makes use of modes that are needed later on for reconfiguration (see Section
4.2.2). For example, in Lines 11 to 19, three modes for the component FPC are defined. The
default mode sets the value of variable value to 1. The x1 mode restricts the domain of
value, where the constraint solver can select one value from the range {2..4} when computing
reconfigurations. The last mode (unknown) does not specify any value.

By convention, an empty component definition section is not allowed, i.e., if the constraints
block is missing, we have to declare at least one attribute for the current component. For
example, we accept the following definition:

component P2PMeter {
attribute int mdist,codeset,mRate;

}

In the case of derived components, the opposite holds: even with no attributes declared, we may
state constraints over the inherited attributes. For instance:

component P2PMeter {
attribute int mdist,codeset,mRate;

constraints {
mdist = {1..3};
codeset = {1..4};
}

}
component D145Meter extends P2PMeter{
constraints {
mdist = 2;

codeset = {2..4};
}

}

More details about the implemented inheritance mechanism will be given in Section 3.3.

In addition, models written in SIMOL might be described over discrete time. For this purpose
SIMOL makes use of the transition section. Within the transition section the new values of

34

3.2. Syntax

1. kbase GPRSCell;
2. component P2PMeter {
3. attribute int mdist, codeset, mRate, dataAmount;
4. constraints {
5. mdist = {1..3};
6. codeset = {1..4};
7. }
8. }
9. component FPC {
10. attribute int value;
11. constraints(default) {
12. value = 1;
13. }
14. constraints(x1) {
15. value = {2..4};
16. }
17. constraints(unknown) {
18.
19. }
20. }
21. component BTS {
22. attribute int fpc;
23. constraints {
24. FPC fpc1;
25. fpc = fpc1.value;
26. }
27. }
28. component Cell {
29. attribute int neededR, realR, P2PNo;
30. constraints {
31. BTS b1;
32. P2PMeter s[100], p1, p2;
33. realR=sum([s], mRate)/P2PNo;
34. realR>=neededR;
35. exist(at least(50), P2PMeter, mRate=12 kbit/sec);
36. }
37. transition {
38. forall (P2PMeter) {
39. if (mdist=1 and codeset=2) {
40. codeset.next = {2,3} }
41. if (mdist=3 and codeset=2){
42. codeset.next = {2,1}; }
43. }
44. }
45. }

Figure 3.1.: A SIMOL program.

some, but not necessarily all variables, have to be defined. In our example from Figure 3.1,
Lines 37 to 43 define the next values of the codeset variables for all P2PMeters. In order to
distinguish the new value of a variable in the successor state, we make use of the keyword next.

35

Chapter 3. SIMOL Language

It is worth noting that in the transition section we can use all statements from the constraints
section. For example, let us reduce the number of P2PMeters in our model to four and have the
following statements in the constraints section:

constraints {
BTS b1;

P2PMeter p1,p2,p3,p4;

p1.mdist=3;

p2.mdist=3;

p3.mdist=2;

p4.mdist=1;

We further assume that, initially, the codeset attribute for all the P2PMeters is set to value 2
and, according to the transition function defined for the codeset in Figure 3.1, we can state the
followings.

For each P2PMeter instance, we have the following possibilities:

– if the mdist attribute equals 1 and the codeset attribute is, in the current state, equal to
2, then, in the next state, the codeset can remain unchanged or it can be increased to 3;

– if the mdist attribute equals 3 and the codeset attribute is, in the current state, equal to
2, then, in the next state, the codeset can remain unchanged or it can be decreased to 1;

– otherwise, the codeset remains unchanged.

Note that, in this scenario, we assume that only the codesets are changeable; any other attribute
of the model is considered to be fix, i.e., it will not change from one state to another.

Hence, a possible representation for the obtained state machine model of the cell with four P2P
meters is given in Figure 3.2.

Note that the number of all possible states equals 2number of varying codesets, but we restricted the
number of states internally to a specific value, depending on the necessities of the conducted
experiments.

In the constraints section, we may have the following types of statements:

– an empty statement : ;,

– a component instance declaration, with the possibility of initializing its attributes in {..}:

36

3.2. Syntax

Figure 3.2.: The state machine model for a cell with four P2PMeters. The values inside the circles
represent the codeset values (p1.codeset, p2.codeset, p3.codeset, p4.codeset) and the +
and - signs suggest the possibilities of increasing and decreasing the codeset in the next
state.

P2PMeter p1; or P2PMeter p1{mdist=3};

Using this kind of statements, we define the subcomponent hierarchy in our model, i.e., the
partonomy relations. The cardinality of these relations (i.e., the number of subcomponents
which can be connected to a certain component) is always finite. Hence, we consider two
situations when declaring a variable: the case in which the variable has a primitive type
and the case the variable is a component (an instance). A variable can also hold an array
of a specified type.

– an inrange expression, as for instance mdist = {1..3}; of value = {2,4,5}; This
type of expression restricts the domain of variables values either by defining the permitted
range or the permitted set.

– an arithmetic or/and boolean expression:

p1.dataAmount>=p2.dataAmount+p3.dataAmount;

Here we treat arithmetic and boolean expression with any number of operands and any
number of operators. The implemented operator precedence is the traditional one: firstly,
multiplication and division are performed, then addition and subtraction and, lastly,

37

Chapter 3. SIMOL Language

boolean (relational) operations.

– a conditional block, starting with the keyword if and optionally followed by an else:

if(codeset=1){
mrate=80;

}

– a forall block :

forall (P2PMeter) {
if (codeset=1) {
mrate=80;

}
if (codeset=2){
mrate=120;

}
}

– an exist statement, for instance:

exist(at least(50), P2PMeter, mRate=12 kbit/sec);

with the meaning that at most 50 P2PMeter instances can have the mRate equal to 12
kbit/sec.

– special functions like sum, product, min, and max, that allow to state constraints over an
array of instances or values:

realR=sum([s], mRate)/P2PNo;

Hereby we sum the mRate attribute of all P2PMeter components stored in variable s.

total= product([s], dataAmount);

where the product of the dataAmount attribute of all P2PMeter components is computed.

p2.dataAmount>=min([s,p1], dataAmount);

with the meaning that the dataAmount attribute of p2 has to be greater or equal than the
minimum dataAmount’s value of any P2PMeter stored in s and p1. The max function
is used in the same manner. Note that the instances in [] do not necessarily have to have
the same type, the only requirement is that the components posses the given attribute. For

38

3.3. SIMOL Inheritance

instance, we can additionally define the component PLCMeter, declare an instance m1
inside the Cell component, and use the min function over s, p1,m1, as follows:

component PLCMeter {
attribute int mdist,dataAmount;

constraints {
mdist = {1..3};

}
}
component Cell {
..

constraints {
..

PLCMeter m1;

p2.dataAmount>=min([s,p1,m1], dataAmount);

3.3. SIMOL Inheritance

In this section, we make use of a very simple example to discuss SIMOL inheritance. Figure 3.3
depicts a small system comprising 4 components, i.e., a power supply (PS), an acceleration sensor
(AS), a GPS sensor (GPS), and a communication device (CD). The communication device is used for
sending the measured sensor information to a server. The power supply is for providing electricity to
the connected components. All these components have a behavior and provide functionality.

Figure 3.3.: A small sensor system.

For the purpose of specifying functionality, we introduce a
function f ct that maps a component to a set of attributes, which
indicate a certain functionality. For our example, we introduce
the attributes ad, gps, comm to state the acceleration sensor
functionality, the gps functionality, and the ability for commu-
nication, respectively.

f ct(AS) = {ad}
f ct(GPS) = {gps}

f ct(CD) = {comm}

39

Chapter 3. SIMOL Language

Table 3.1.: The component instances for our small sensor system.
Generic Instance 1 Instance 2
Component
PS PS1 : costs(PS1) = 10, power(PS1) = 10 PS2 : costs(PS2) = 20, power(PS2) = 15
AS AS1 : costs(AS1) = 2, power(AS1) = 4 AS2 : costs(AS2) = 20, power(AS2) = 1
GPS GPS1 : costs(GPS1) = 6, power(GPS1) = 5
CD CD1 : costs(CD1) = 10, power(CD1) = 10 CD2 : costs(CD2) = 20, power(CD2) = 4

We now specify the additional constraints of the system. The
following constraint formally represents the requirement that
the power provided by PS must be larger or at least equivalent
to the sum of the power consumption of the other components:

power(PS)≥ power(AS)+ power(GPS)+ power(CD)

Moreover, we state that the device has to provide at least ad, gps, comm functionality.

f ct(AS)∪ f ct(GPS)∪ f ct(CD)⊇ {ad,gps,comm}

Finally, we have the requirement that the sum of the cost of each part of the device is not allowed
to exceed a certain pre-defined maximum cost.

cost(PS)+ cost(AS)+ cost(GPS)+ cost(CD)≤ max cost

In configuration, we are interested in providing specific implementations of the components PS, AS,
GPS, and CD, such that all requirements are fulfilled and no constraint is violated. Hence, what we
do now for our running example, is to introduce specific implementations of the generic components
with different costs and power consumptions. Table 3.1 summarizes all the used concrete component
implementations.

A valid configuration is now a set of components that fulfills all constraints. For example,
when assuming maximum cost of 60, the set {PS1,AS2,GPS1,CD2} is a valid configuration but
{PS2,AS2,GPS1,CD2} is not because of violation of the cost constraint.

40

3.4. Semantics

The ability to extend the functionality and behavior of existing components is of great importance
for the taxonomic structure of a configuration domain. In any object-oriented languages, the taxon-
omy relations are represented through the inheritance mechanism. As we have already mentioned, we
designed SIMOL with multiple inheritance. In order to demonstrate the necessity of this feature, let
us consider the following scenario. For our afore described small system, we introduce a new require-
ment that refers to a specific signal modulation which can be accomplished by a new component - a
modem (M). The modem receives the measured sensor information and transmits the modified signal
to the communication device.

The function f ct will similarly depict for M the modulation-demodulation functionality:

f ct(M) = {mdm}

Now the additional constraints of the system become:

power(PS)≥ power(AS)+ power(GPS)+ power(CD)+ power(M)

f ct(AS)∪ f ct(GPS)∪ f ct(CD)∪ f ct(M)⊇ {ad,gps,comm,mdm}

cost(PS)+ cost(AS)+ cost(GPS)+ cost(CD)+ cost(M)≤ max cost

The problem appears, if the predefined maximum cost is always exceeded, because of the new
added component. In other words, we cannot afford both a modem and a communication device.
Therefore, a new component type - a communication device with integrated modem (MCD)- will
solve the case (under the assumption that cost(MCD) ≤ cost(CD)+ cost(M)). In SIMOL, the MCD
definition has the following syntax:

component MCD extends CD,M {
constraints{
power={4,6} W;

costs={2..30};
}

}

3.4. Semantics

We now specify the semantics of the SIMOL language, where we rely on mathematical equations.
In particular, we map every statement to a mathematical equation, and combine these equations for

41

Chapter 3. SIMOL Language

a component, taking care of component inheritance and component instances. In the first part of the
definition of the semantics we ignore discrete time. We discuss this issue later in this section.

For each component C, defined in SIMOL, we have a set of equations constr0, that is defined
within the constraints { . . . } block. Moreover, the component C also receives equations from its
super components and the instances used in the component definition. For example, when specifying
BTS b1; in the constraints section of Cell, a new instance of BTS is generated. All constraints of BTS
are added to the constraints of Cell. Because of the possibility of having more than one instance of a
component, we have to rename the variables used in the constraints of an instance. For this purpose
we assume a function replace that takes constraints M and a name N and changes all variables x in
M to N.x. Hence, the set of equations that corresponds to a particular component C is given by the
following definition:

constr(C) = constr0(C)∪ constrI(C)∪ constrV (C),

where constrI are the constraints inherited from the super components of C

constrI(C) =
⋃

C′∈super(C)

constr(C′),

constrV are the constraints coming from the components used in the definition of C (and requiring
variable renaming using the function replace, that adds a new prefix to the variables used in the
components, in order to make them unique)

constrV (C) =
⋃

(C′,N)∈vd inst(C)

replace(constr(C′),N),

where vd inst(C) are the variables used in the constraints of the instances defined in the component
C,

and finally, constr0 are the constraints defined in C directly.

Each constraint within the constraints { . . . } block contributes to constr0(C) as follows:

• Cattr val : attribute-equals-value/s constraints, formulated with = operator and applied on com-
ponent attributes together with one single integer/boolean value or with a set of values;

42

3.4. Semantics

• Cattr attr : attribute-equals-attr constraints, formulated with = operator and applied on compo-
nent attributes;

• Cnum : numeric constraints, formulated with basic relational operators over numeric expres-
sions. Note the usage of the special array functions sum,product, max, min within the numeric
expressions;

• Ccond : conditional constraints,

i f (Cx is satis f ied) Cy must be satis f ied else Cz must be satis f ied;

• Cexist : existence constraints,

exist(at least(NR) |at most(NR)|NR,C,AT T R = VALUE), with the meaning that at most, at
least or exactly NR components of a given type C have AT T R =VALUE.

• C f orall : forall constraints,

f orall(C) C t must be satis f ied , with the meaning that for all components of a given type C,
the constraints C t have to be satisfied.

Further on, if we consider also the definition of constraints, which makes use of modes, then each
constraint Cmode within the constraints(mode) { . . . } block contributes to constr0(C), only if mode
is active. Hence, we can define this as a conditional mode constraint Ccondmode : i f (mode is active)
Cmode must be satis f ied.

constr0(C) =
⋃

mode∈MODES(C)

constrmode(C),

where MODES(C) is the set of functional modes, defined for component C, and constrmode(C) is
the set of conditional mode constraints.

How to handle time?

Within the transition section we have constraints that define a relationship between the variables
of a state and its successor state. In order to represent states, we introduce an index that is assigned
to each variable used in constr(C). This variable represents the state. Hence, what we do is to define
constraints that hold in each state i ∈ {0, . . . ,s}, where s represents the maximum considered number
of states within a reconfiguration model. These constraints are obtained from constr(C), by adding an
index i to the variables. We represent these constraints using the function constri(C). For example,

43

Chapter 3. SIMOL Language

if value = 1 is element of constr(C), then value 4 = 1 is element of constr4(C). Such constraints
are valid within a state and therefore called state constraints.

In addition to state constraints, we require transition constraints. The transition constraints can be
easily computed from the transition section. In principle we make use of the same translation as in
the constraints block, but also take care of the next attribute assigned to variables. If a variable v
has such an attribute and we consider state i, we replace v.next with v i+1. Variables v without the
next attribute are changed to v i. Hence, we obtain all transition constraints transi(C) for state i and
component C.

In summary, the constraints for the whole SIMOL program can now be obtained as follows:

constr =
⋃

i∈{0,...,s}

⋃
C

(constri(C)∪ transi(C))

Hence, the set of the obtained equations represents the behavior of the SIMOL program. It is worth
noting that we took the semantic definition based on equations from the semantics of Modelica [42].
In contrast to Modelica, the handling of time is different as well as some of the functions that can be
used within SIMOL.

3.5. Implementation

For the SIMOL language, we implemented a compiler in Java, which translates SIMOL programs
into MINION input files [68]. MINION is an open source constraint solver, that has been optimized
for solving large and hard problems. Coming with its own constraint language, MINION outperforms
many other constraints toolkits due to its implementation design. The syntax of the input language was
thought to map exactly to MINION’s internals and therefore no extra variables are internally added
and complex constraints are not decomposed into simple ones. This provides complete control over
the way problems are implemented in MINION, but, at the same time, requires a deep understanding
on how MINION works.

The reason for choosing MINION was thus the very good reasoning performance, but also the easy
integration into programs written in Java played a role. Our prior experience with MINION (applied
in the automatic debugging) can be found in [148, 100]. For further details in this direction we refer
the reader to [99].

44

3.5. Implementation

In order to obtain the MINION constraints specification, we applied a translation function from
the SIMOL program to MINION specific input. The systems modeled in SIMOL are always finite.
Hence, the complexity of the SIMOL2MINION mapping algorithm is polynomial (O(N)), where N is
the size of the SIMOL program. The SIMOL LOC/ MINION constraints ratio depends mainly on the
type of declared instances - simple instances or vectors of components - and on the complexity of the
arithmetic operations. If we consider also the case of SIMOL models defined over discrete time, then
the number of MINION constraints increases with every new state, i.e., it will be multiplied with the
number of states. In what follows, we first present the MINION data types and constraints, which
we used in implementing the semantics of SIMOL. Afterwards, we give some concrete examples of
systems modeled in SIMOL and further converted into the corresponding MINION specification.

3.5.1. Basic MINION Constructs used in the SIMOL Implementation

In the followings, we discuss the MINION data types and constraints, which were used to map the
SIMOL constructs.

Regarding data types, SIMOL provides two primitive ones: int and bool, and the possibility of
declaring instances of already defined components. As previously presented in Section 3.1, int vari-
ables take non negative integer values, whereas bool variables have two values, denoted by true and
f alse. From the available MINION variable types, we choose the DISCRET E and the BOOL type,
respectively. The DISCRET E data type allows a (any) range of integers, which has to be specified in
{} when declaring a DISCRET E variable, whereas BOOL variables are defined over domain {0,1}.
For more details on the MINION variable types, we refer the interested reader to [68]. In our imple-
mentation, the lower bound of the range for DISCRET E variables is always 0, while the upper bound
can be internally determined from the variable’s type, e.g., variable describing academic grading can
take only a few values, so, {0..20} would be sufficient, whereas a variable describing the number of
students attending a course may need hundreds of values ({0..500}). However, such a strict internal
limitation is not preferred, as it may happen that a result of a computation, specified in form of a
SIMOL arithmetic expression, to exceed the defined upper limit and, in this case, the MINION solver
will not report on the error, but will just print out that we have no solution to the problem.

Considering the SIMOL program given in Figure 3.1, we further describe how SIMOL statements
can be mapped to MINION encodings:

• empty statements, depicted by ;, and comments will not be taken into consideration in the

45

Chapter 3. SIMOL Language

mapping process.

• a component instance declaration:

P2PMeter p1;

will be translated to the following MINION variables declarations:

DISCRETE Cell_p1_P2PMeter_mdist {0..1000}

DISCRETE Cell_p1_P2PMeter_codeset {0..1000}

DISCRETE Cell_p1_P2PMeter_mRate {0..1000}

DISCRETE Cell_p1_P2PMeter_dataAmount {0..1000}

by linking the name of the instance p1 to its attributes and the component Cell, inside which
the instance was declared:

component P2PMeter {
attribute int mdist, codeset, mRate, dataAmount;

constraints {
mdist=1..3;

codeset= 1..4;

}
}
component Cell{

constraints {
..

}
}

The reason why the SIMOL components are mapped to their attributes, i.e., in our example, to
DISCRETE variables, is that there is no support for any object-oriented constructs in MINION.

• an inrange expression, as for instance mdist = {1..3}; or value = {2,4,5};

• an arithmetic or/and boolean expression:

p1.dataAmount>=p2.dataAmount+p3.dataAmount;

has the following MINION representation in our implementation:

weightedsumgeq([1, 1], [Cell_p2_P2PMeter_dataAmount,

Cell_p3_P2PMeter_dataAmount], aux1)

46

3.5. Implementation

weightedsumleq([1, 1], [Cell_p2_P2PMeter_dataAmount,

Cell_p3_P2PMeter_dataAmount], aux1)

ineq(aux1,Cell_p1_P2PMeter_dataAmount, 0)

where the weightedsumgeq(constantVector, varVector, result) and the weightedsum-
leq(constantVec, varVector, result) constraints state that constantVector*varVector >= result
and constantVector*varVector <= result, respectively, where constantVector*varVector is the
scalar product of constantVector and varVector, as presented in [68]. The ineq constraint ensures
that aux1 <= Cell p1 P2PMeter dataAmount.

Note that in our compiler we treat arithmetic and boolean expressions with any number of
operands and any number of operators, and therefore sometimes we have to internally divide an
expression into two ore more expressions, so that we are able to automate the mapping process.
Manually, the upper SIMOL expression could be translated to MINION in a more natural way:

weightedsumleq([1, 1], [Cell_p2_P2PMeter_dataAmount,

Cell_p3_P2PMeter_dataAmount], Cell_p1_P2PMeter_dataAmount)

In the automated implementation, we have to add an auxiliary variable aux1 and divide the
expression into:

aux1=p2.dataAmount+p3.dataAmount

p1.dataAmount>=aux1

Given that in MINION we do not have any sum equals constraint, we combine the defined
MINION scalar product constraints to obtain the equality and, afterwards, we bind the auxiliary
variable to the original left operand in an ineq constraint.

The MINION representation for the basic SIMOL arithmetic and boolean expressions can be
found in Table 3.2.

• a conditional block :

if(codeset=1){
mrate=80;

}

will become in MINION, for a P2PMeter instance p1 defined in the Cell:

reify(eq(Cell_p1_P2PMeter_codeset,1), ifCond0)

reifyimply(eq(Cell_p1_P2PMeter_mRate,80), ifCond0)

47

Chapter 3. SIMOL Language

Table 3.2.: MINION representation for the basic SIMOL arithmetic and relational expressions.

SIMOL Expression MINION Encoding
a < b,a > b,a <= b,a >= b ineq(a,b,−1), ineq(b,a,−1), ineq(a,b,0), ineq(b,a,0)
a = b,a! = b eq(a,b),diseq(a,b)
a1 +a2 + ..+an weightedsumgeq([1,1, ..1], [a1,a2, ..,an],aux)

weightedsumleq([1,1, ..1], [a1,a2, ..,an],aux)
a−b weightedsumgeq([1,−1], [a,b],aux)

weightedsumleq([1,−1], [a,b],aux)
a∗b product(a,b,aux)
a/b div(a,b,aux)

where rei f y(constr,cond) ensures that cond is set to 1 if and only if constr is satisfied, whereas
rei f yimply(constr,cond) states that constr has to be satisfied if cond is set to 1 [68].

The optional else branch will be similarly mapped to:

reifyimply(eq(Cell_p1_P2PMeter_mRate,120), !ifCond0)

• a forall block :

component Cell {
constraints {
..

P2PMeter s[3];

forall(P2PMeter) {
mdist=1;

if(codeset=1) {
mRate=8;

}
}

}
}

becomes in MINION:

eq(Cell_s_P2PMeter_mdist[0],1)

reify(eq(Cell_s_P2PMeter_codeset[0],1), ifCond0)

48

3.5. Implementation

reifyimply(eq(Cell_s_P2PMeter_mRate[0],8), ifCond0)

eq(Cell_s_P2PMeter_mdist[1],1)

reify(eq(Cell_s_P2PMeter_codeset[1],1), ifCond1)

reifyimply(eq(Cell_s_P2PMeter_mRate[1],8), ifCond1)

eq(Cell_s_P2PMeter_mdist[2],1)

reify(eq(Cell_s_P2PMeter_codeset[2],1), ifCond2)

reifyimply(eq(Cell_s_P2PMeter_mRate[2],8), ifCond2)

Thus, for each component of type P2PMeter, the statements inside the forall block have to be
mapped to MINION constraints.

• an exist statement :

exist(at least(2), P2PMeter, mRate=12 kbit/sec);

is translated to:

occurrencegeq([Cell_s_P2PMeter_mRate,], 12,2)

where the MINION constraint occurrencegeq([Cell s P2PMeter mRate,],12,2) states that
there are at least 2 occurrences of the value 12 in the vector [Cell s P2PMeter mRate,] [68].
For the other 2 SIMOL variants of the exist statement, we find in MINION the corresponding
constraints as follows:

exist(2, P2PMeter, mRate=12 kbit/sec);

is translated to:

occurrence([Cell_s_P2PMeter_mRate,], 12,2)

exist(at most(2), P2PMeter, mRate=12 kbit/sec);

is translated to:

occurrenceleq([Cell_s_P2PMeter_mRate,], 12,2)

• special functions like sum, product, min, and max:

– realR=sum([s], mRate)/3;

becomes in MINION:

49

Chapter 3. SIMOL Language

sumleq([Cell_s_P2PMeter_mRate], aux1)

sumgeq([Cell_s_P2PMeter_mRate], aux1)

div(aux1, 3, aux2)

eq(Cell_realR, aux2)

where sumleq, together with sumgeq constraint, ensures that the sum of all elements of
vector Cell s P2PMeter mRate equals aux1.

– total= product([s], dataAmount);

will be in MINION, for a five elements vector s:

..

VARIABLES

DISCRETE Cell_s_P2PMeter_mdist[5] {0..1000}

DISCRETE Cell_s_P2PMeter_codeset[5] {0..1000}

DISCRETE Cell_s_P2PMeter_mRate[5] {0..1000}

DISCRETE Cell_s_P2PMeter_dataAmount[5] {0..1000}

DISCRETE aux1 {0..20000}

DISCRETE aux2 {0..20000}

DISCRETE aux3 {0..20000}

DISCRETE aux4 {0..20000}

..

CONSTRAINTS

..

product(Cell_s_P2PMeter_dataAmount[0],Cell_s_P2PMeter_dataAmount[1], aux1)

product(aux1,Cell_s_P2PMeter_dataAmount[2], aux2)

product(aux2,Cell_s_P2PMeter_dataAmount[3], aux3)

product(aux3,Cell_s_P2PMeter_dataAmount[4], aux4)

eq(Cell_total,aux4)

..

– p2.dataAmount>=min([s,p1], dataAmount);

where s is a vector instance and p1 and p2 are simple instances of type P2PMeter, is
mapped to:

min([Cell_s_P2PMeter_dataAmount,Cell_p1_P2PMeter_dataAmount], aux1)

ineq(aux1,Cell_p2_P2PMeter_dataAmount, 0)

– maxim=max([s,p1], dataAmount);

is converted to:

50

3.5. Implementation

max([Cell_s_P2PMeter_dataAmount,Cell_p1_P2PMeter_dataAmount], aux1)

eq(Cell_maxim,aux1)

3.5.2. SIMOL - MINION Mapping. Practical example

In the followings, we present an example of using SIMOL for modeling the c17 combinational circuit
from the ISCAS-85 benchmark suite, graphically depicted in Figure 3.4.

gat10

gat16

gat11

gat19

gat23

gat22

var1_gat

var2_gat

var3_gat

var6_gat

var7_gat

var11_gat

var16_gat

var19_gat

var22_gat

var23_gat

Figure 3.4.: The c17 combinational circuit.

The corresponding SIMOL model is as follows:

component Nand Gate 2 {
attribute bool out, in1, in2;

constraints (nab) {
if (in1 = true and in2 = true)

{
out = false;

}
else {
out = true;

51

Chapter 3. SIMOL Language

}
if (out = false) {
in1 = true;

in2 = true;

}
}
constraints (ab) {; }

}

component ISCAS {
attribute bool var 1gat, var 2gat, var 3gat, var 6gat, var 7gat,

var 10gat, var 11gat, var 16gat, var 19gat, var 22gat, var 23gat;

constraints {
Nand Gate 2 gat10;

Nand Gate 2 gat11;

Nand Gate 2 gat16;

Nand Gate 2 gat19;

Nand Gate 2 gat22;

Nand Gate 2 gat23;

gat10.in1 = var 1gat;

gat10.in2 = var 3gat;

gat10.out = var 10gat;

gat11.in1 = var 3gat;

gat11.in2 = var 6gat;

gat11.out = var 11gat;

gat16.in1 = var 2gat;

gat16.in2 = var 11gat;

gat16.out = var 16gat;

gat19.in1 = var 11gat;

gat19.in2 = var 7gat;

gat19.out = var 19gat;

gat22.in1 = var 10gat;

gat22.in2 = var 16gat;

gat22.out = var 22gat;

gat23.in1 = var 16gat;

gat23.in2 = var 19gat;

52

3.5. Implementation

gat23.out = var 23gat;

}
}

In order to present the MINION mapping of the upper SIMOL model in a compact manner, we
will resume here the MINION variables declarations section. The complete MINION program can be
found in Annex .3.

MINION 3

VARIABLES

BOOL ISCAS_var_1gat

..

BOOL nab_ISCAS_gat10_Nand_Gate_2

..

BOOL ab_ISCAS_gat10_Nand_Gate_2

..

SEARCH

..

CONSTRAINTS

reifyimply(reify(eq(ISCAS_gat10_Nand_Gate_2_in1,1), ifCond0),

nab_ISCAS_gat10_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat10_Nand_Gate_2_in2,1), ifCond1),

nab_ISCAS_gat10_Nand_Gate_2)

reify(watched-and({eq(ifCond0,1),eq(ifCond1,1)}), ifCond2)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_out,0), ifCond2)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_out,1), !ifCond2)

reifyimply(reify(eq(ISCAS_gat10_Nand_Gate_2_out,0), ifCond3),

nab_ISCAS_gat10_Nand_Gate_2)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_in1,1), ifCond3)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_in2,1), ifCond3)

reifyimply(reify(eq(ISCAS_gat11_Nand_Gate_2_in1,1), ifCond4),

nab_ISCAS_gat11_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat11_Nand_Gate_2_in2,1), ifCond5),

nab_ISCAS_gat11_Nand_Gate_2)

reify(watched-and({eq(ifCond4,1),eq(ifCond5,1)}), ifCond6)

53

Chapter 3. SIMOL Language

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_out,0), ifCond6)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_out,1), !ifCond6)

reifyimply(reify(eq(ISCAS_gat11_Nand_Gate_2_out,0), ifCond7),

nab_ISCAS_gat11_Nand_Gate_2)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_in1,1), ifCond7)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_in2,1), ifCond7)

reifyimply(reify(eq(ISCAS_gat16_Nand_Gate_2_in1,1), ifCond8),

nab_ISCAS_gat16_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat16_Nand_Gate_2_in2,1), ifCond9),

nab_ISCAS_gat16_Nand_Gate_2)

reify(watched-and({eq(ifCond8,1),eq(ifCond9,1)}), ifCond10)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_out,0), ifCond10)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_out,1), !ifCond10)

reifyimply(reify(eq(ISCAS_gat16_Nand_Gate_2_out,0), ifCond11),

nab_ISCAS_gat16_Nand_Gate_2)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_in1,1), ifCond11)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_in2,1), ifCond11)

reifyimply(reify(eq(ISCAS_gat19_Nand_Gate_2_in1,1), ifCond12),

nab_ISCAS_gat19_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat19_Nand_Gate_2_in2,1), ifCond13),

nab_ISCAS_gat19_Nand_Gate_2)

reify(watched-and({eq(ifCond12,1),eq(ifCond13,1)}), ifCond14)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_out,0), ifCond14)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_out,1), !ifCond14)

reifyimply(reify(eq(ISCAS_gat19_Nand_Gate_2_out,0), ifCond15),

nab_ISCAS_gat19_Nand_Gate_2)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_in1,1), ifCond15)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_in2,1), ifCond15)

reifyimply(reify(eq(ISCAS_gat22_Nand_Gate_2_in1,1), ifCond16),

nab_ISCAS_gat22_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat22_Nand_Gate_2_in2,1), ifCond17),

nab_ISCAS_gat22_Nand_Gate_2)

reify(watched-and({eq(ifCond16,1),eq(ifCond17,1)}), ifCond18)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_out,0), ifCond18)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_out,1), !ifCond18)

reifyimply(reify(eq(ISCAS_gat22_Nand_Gate_2_out,0), ifCond19),

nab_ISCAS_gat22_Nand_Gate_2)

54

3.5. Implementation

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_in1,1), ifCond19)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_in2,1), ifCond19)

reifyimply(reify(eq(ISCAS_gat23_Nand_Gate_2_in1,1), ifCond20),

nab_ISCAS_gat23_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat23_Nand_Gate_2_in2,1), ifCond21),

nab_ISCAS_gat23_Nand_Gate_2)

reify(watched-and({eq(ifCond20,1),eq(ifCond21,1)}), ifCond22)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_out,0), ifCond22)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_out,1), !ifCond22)

reifyimply(reify(eq(ISCAS_gat23_Nand_Gate_2_out,0), ifCond23),

nab_ISCAS_gat23_Nand_Gate_2)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_in1,1), ifCond23)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_in2,1), ifCond23)

eq(ISCAS_gat10_Nand_Gate_2_in1,ISCAS_var_1gat)

eq(ISCAS_gat10_Nand_Gate_2_in2,ISCAS_var_3gat)

eq(ISCAS_gat10_Nand_Gate_2_out,ISCAS_var_10gat)

eq(ISCAS_gat11_Nand_Gate_2_in1,ISCAS_var_3gat)

eq(ISCAS_gat11_Nand_Gate_2_in2,ISCAS_var_6gat)

eq(ISCAS_gat11_Nand_Gate_2_out,ISCAS_var_11gat)

eq(ISCAS_gat16_Nand_Gate_2_in1,ISCAS_var_2gat)

eq(ISCAS_gat16_Nand_Gate_2_in2,ISCAS_var_11gat)

eq(ISCAS_gat16_Nand_Gate_2_out,ISCAS_var_16gat)

eq(ISCAS_gat19_Nand_Gate_2_in1,ISCAS_var_11gat)

eq(ISCAS_gat19_Nand_Gate_2_in2,ISCAS_var_7gat)

eq(ISCAS_gat19_Nand_Gate_2_out,ISCAS_var_19gat)

eq(ISCAS_gat22_Nand_Gate_2_in1,ISCAS_var_10gat)

eq(ISCAS_gat22_Nand_Gate_2_in2,ISCAS_var_16gat)

eq(ISCAS_gat22_Nand_Gate_2_out,ISCAS_var_22gat)

eq(ISCAS_gat23_Nand_Gate_2_in1,ISCAS_var_16gat)

eq(ISCAS_gat23_Nand_Gate_2_in2,ISCAS_var_19gat)

eq(ISCAS_gat23_Nand_Gate_2_out,ISCAS_var_23gat)

watchsumleq([nab_ISCAS_gat10_Nand_Gate_2,ab_ISCAS_gat10_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat11_Nand_Gate_2,ab_ISCAS_gat11_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat16_Nand_Gate_2,ab_ISCAS_gat16_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat19_Nand_Gate_2,ab_ISCAS_gat19_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat22_Nand_Gate_2,ab_ISCAS_gat22_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat23_Nand_Gate_2,ab_ISCAS_gat23_Nand_Gate_2,], 1)

55

Chapter 3. SIMOL Language

watchsumgeq([nab_ISCAS_gat10_Nand_Gate_2,ab_ISCAS_gat10_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat11_Nand_Gate_2,ab_ISCAS_gat11_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat16_Nand_Gate_2,ab_ISCAS_gat16_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat19_Nand_Gate_2,ab_ISCAS_gat19_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat22_Nand_Gate_2,ab_ISCAS_gat22_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat23_Nand_Gate_2,ab_ISCAS_gat23_Nand_Gate_2,], 1)

EOF

3.6. Analysis

We now discuss the expressiveness of the language by classifying its capabilities with respect to
the framework offered in the chapter on configuration from [114]. In the context of the successful
integration of constraint programming in solving a large variety of configuration problems, the author
defines several distinguishing constraint models, each corresponding to a specific type of configuration
problem. To set up the constraint model, the appropriate variables and constraints are deduced from
the given configuration knowledge. The author states that this knowledge may have three different
forms: the component catalogs, the component structure and the component constraints.

The catalog knowledge, as defined in [114], is modeled in SIMOL by means of:

• generic components: correspondent to the term of technical types in [114]),

• concrete components: derived (extended) from generic component/s or from other concrete
component/s, in our case, and correspondent to the term of concrete or functional types in
[114]).

Both generic and concrete components have a set of attributes, mapped to variables in the constraint
model. Based on this kind of knowledge, we build the catalog constraints ([114]), which are stated
over the set of variables and formulated by means of Cattr val and Cattr attr constraints.

The structural knowledge of a SIMOL model is determined by the component instances declared in
the current model. In this manner, we generate for our system the set of subcomponents, that are either
generic or extended components. The logic behind this mechanism has been previously detailed, when
presenting the semantics of the language. The connection ports defined in [114] have no correspondent
term in SIMOL yet, but the connection between component instances is possible through Cattr attr

56

3.6. Analysis

constraints. Also the statement in [114] according to which ”the sets of direct subtypes of two types
are mutually disjoint” does not hold in our approach, because we accept multiple inheritance.

Finally, the configuration constraints are divided into compatibility constraints, requirement con-
straints and resource constraint. The first ones specify which value combinations are legal for the at-
tributes given in the model and they are modeled in SIMOL through Cattr val and Cattr attr constraints.
The requirement constraints describe a relation between two component attributes ([114]), which is
best depicted by combining Ccond with Cattr val or Cattr attr. Moreover, the resource constraints on
numerical attributes were intensively addressed throughout this paper.

Consequently, we find the expressive power of the language sufficient for modeling the discussed
configuration knowledge forms. As also stated in [114], the configuration problem complexity may
vary from very simple option selection problems to complex cases, but they all appear as combinations
of the specified knowledge forms.

57

58

Chapter 4
SIMOA Approach

Parts of the content of this chapter have been published in [95, 91, 96, 94].

Integrating simulation and configuration specific features and solving techniques, in order to cope
with a wide variety of systems and needs, was the main idea that led us to SIMOL - a language able
to formalize the behavior for simulating a dynamic system and the knowledge necessary for carrying
out configuration and, later on, optimization. In order to save investments, we decided not only to
come up with the general modeling language SIMOL, but also to develop a tool and its underlying
framework that is as general, and thus flexible, as possible.

In the following, we detail our approach. In Section 4.1, we present the basic SIMOA system
architecture. Afterwards, in Section 4.2, we discuss the analogy between the reconfiguration and the
diagnosis problem and, based on this, we present the SIMOA approach to reconfiguration.

4.1. SIMOA Architecture

The suggested SIMOA system architecture comprises three modules that are connected and inter-
change information, as depicted in Figure 4.1.

The central input to the tool is, besides observations, i.e., case specific knowledge, the domain
knowledge. Both case specific knowledge and domain knowledge can be formalized using the SIMOL

59

Chapter 4. SIMOA Approach

b1.fpc Cell_b1_BTS_fpc
s[0].mRate Cell_s_P2P_mRate[0]
s[1].mRate Cell_s_P2P_mRate[1]

… …

SIMOL program

 Cell_b1_BTS_fpc = 1
 Cell_s_P2P_mRate[0] = 120
 Cell_s_P2P_mRate[1] = 144
 … …

 b1.fpc = 1
 s[0].mRate = 12 kbit/s
 s[1].mRate = 14,4 bbit/s
 … …

SIMOL

compiler

MINION program

CSP

solver

CSP solutions

Mapping

Symbol table/ mapping function

Solutions

SIMOA Tool

Reconfiguration core

Figure 4.1.: The SIMOA architecture.

language. We have already discussed SIMOL in Chapter 3 of this thesis and therefore omit any
information regarding the language. The program written in SIMOL is taken as input of the first
module, i.e., the SIMOL compiler, which maps the program to a set of constraints. Moreover, the
compiler generates a symbol table, that allows for mapping the variables used in the SIMOL program
to the variables used in the constraint representation. This is necessary later on to map back the
computed solutions.

The second module is the CSP solver. For more information on constraints and constraint solving
we refer the interested reader to Rina Dechter’s book [24]. As we have already mentioned, in our
work we are using the MINION constraint solver [68]. Therefore, the SIMOL compiler generates
a MINION program, which is used by the CSP solver for computing solutions. A solution to a

60

4.2. Reconfiguration Mechanism

CSP problem is an assignment of values to variables, such that no constraint is violated. Hence, the
result of the second module is basically nothing else than a list of variable assignments. This list
of variable assignments is taken by the third module - the Mapping module. This module takes the
solutions coming from the constraint solver and changes the variable names to the names used in the
original SIMOL program. For this purpose, the generated symbol table is used. In this context, the
reconfiguration core is represented by the CSP representation (MINION program) and the constraint
solver, i.e., the constraint solver is responsible for determining reconfigurations. The CSP solutions
in Figure 4.1 are mapped to the actual reconfigurations, depicted by Solutions in Figure 4.1.

Due to this architecture, the obtained tool is general and can be used to solve various tasks. The only
requirement is that the domain and the case specific knowledge are specified using SIMOL. Chapter 5
presents in more detail the domain of mobile networks with machine to machine (M2M) communica-
tion, for which smart metering applications based on the SIMOA approach were implemented. In the
remainder of this chapter, we present the reconfiguration mechanism used in the SIMOA approach.

4.2. Reconfiguration Mechanism

Regarding the underlying reconfiguration mechanism, two algorithms have been implemented up to
now: one which considers the possibility to dynamically activate or inactivate specific components,
and another algorithm that makes use of components’ non-default functional modes.

4.2.1. MCDiag Algorithm

In this section, we discuss a simple diagnosis algorithm that allows for computing minimal cardinality
diagnoses using a constraint solver. In our case, we use the MINION constraint solver [68]. The
reason for relying on a constraint solver rather than a more sophisticated diagnosis engine, like Reiter’s
hitting set approach [111], or De Kleer and William’s GDE [23], is the required expressiveness of the
modeling language, where at least boolean and integer domains have to be handled appropriately. Of
course, it is also possible to combine a horn-clause based reasoning system, like the ATMS [21], with
a general problem solver, that has been tailored for an application domain. Moreover, in this scenario
we obtain conflicts, which are used to compute the diagnoses. However, we are more interested in
computing diagnoses directly from the model without the need of additional hitting-set computations.

61

Chapter 4. SIMOA Approach

State S −→ State S′

¬Ab1 . . .¬Abk ¬Ab1 . . .Abi . . .¬Abk

Figure 4.2.: Reconfiguration as a function changing the state of a system.

By exploring the analogy between diagnosis and reconfiguration, we are able to define the recon-
figuration problem similar to the diagnosis problem, and therefore apply diagnosis algorithms for
reconfiguration purposes.

Note that we restrict ourself to reconfigurations not changing the structure of the system, but param-
eters and other changeable functions that can be assigned to parts of the system. With this restriction,
reconfiguration can be seen as a method for identifying changeable parts that enable a system transi-
tion, such that the resulting system fulfills the stated requirements. Moreover, the restriction ensures
that all information needed is available and formalized. Figure 4.2 shows reconfiguration in a graphi-
cal way, where system states are represented using Ab predicates, stating whether a component (part)
i of a system behaves as originally designed (¬Abi), or it should be changed (Abi).

Formally, the reconfiguration problem can be stated as follows:

Definition 1 (Reconfiguration problem 1) A tuple (SD,REQ,COMP) represents a reconfiguration
problem where SD denotes the configuration knowledge, i.e., the system structure and the provided
functionality as well as general system constraints, REQ denotes the desired new system requirements,
and COMP is a set of system parts that can be changed.

This definition is almost equivalent to the definition of the diagnosis problem accordingly to Reiter
[111] and indeed the relationship between diagnosis and (re-)configuration has been already pointed
out (e.g., [131, 132]). The slight difference is that in this work we purely rely on consistency-based
reasoning, ignoring fault models, which seems to be sufficient for our purpose.

A solution to the reconfiguration problem can be easily formalized using the definition of diagnosis
from Reiter [111].

Definition 2 (Reconfiguration 1) Given a reconfiguration problem (SD,REQ,COMP). A subset

62

4.2. Reconfiguration Mechanism

Γ ⊆ COMP is a valid reconfiguration iff SD∪REQ∪{¬AbC|C ∈ COMP \Γ}∪ {AbC|C ∈ COMP}
is satisfiable.

A valid reconfiguration Γ is minimal iff no valid reconfiguration Γ′ ⊂ Γ exist. A valid reconfig-
uration Γ is minimal with respect to cardinality iff no valid reconfiguration Γ′ with |Γ′| < |Γ| exist.
In practice we are more interested in smaller reconfigurations, i.e., reconfiguration where we have to
change only small parts of the original system. Therefore, throughout this section, we assume minimal
cardinality reconfiguration when using the term minimal reconfiguration.

Due to the similarities of the definition of reconfiguration and diagnosis, we are able to use diagnosis
algorithms directly for computing valid reconfigurations.

The MCDiag(SD,OBS,COMP) diagnosis algorithm (Alg. 1) comprises basically two steps. In
the first step, the MINION model is derived using the model SD and observations OBS, written in
another formal language like SIMOL. The second step comprises the computation of all the diagnoses
of cardinality i, where i ranges from 0 to the maximum number of available components |COMP|.
The MINION solver is called restricting the solutions to a specific cardinality, which is performed
by adding constraints regarding the total number of abnormal components. We use for this purpose
the MINION constraints sumleq(Ab,i) and sumgeq(Ab,i), which together specify that the sum of
abnormal components should be equal to i. If a non-empty set of diagnoses is found for a specific
i, the algorithm terminates and returns the diagnoses as solutions. Because of this construction, the
algorithm guarantees to terminate and always computes minimal cardinality diagnoses.

Regarding the practical results of the upper presented diagnosis algorithm on solving reconfigura-
tion problems, we present two scenarios from the domain described in Chapter 5. Note that further
empirical results, showing that the algorithm can also be used for solving the diagnosis problem within
a reasonable amount of time, are given in Chapter 6.

For the sake of clarity, we will restrict our modeling to a single cell of the network. Also the types
and the number of components, that we may have in a cell are reduced, so that the reader could follow
the process of reconfiguration. Let us assume that the cell serves a given number of smart meters,
which communicate via a given number of channels and there are new desired requirements, that
must be fulfilled.

In the first scenario, we consider the possibility to inactivate specific smart meters, if the constraints
stated over their attributes are no longer satisfied. Consequently, the Ab predicate states whether the
meter i is active, i.e., it behaves as originally designed (¬Abi), or should be changed/ inactivated (Abi).

63

Chapter 4. SIMOA Approach

Algorithm 1 MCDiag(SD,OBS,COMP)

Input:A model SD, observations OBS, and a set of components COMP
Output: Minimal cardinality diagnoses

1: Generate the MINION model MM from SD and OBS
2: for i = 0 to |COMP| do

3: Call MINION

(
MM∪

{
sumleq(Ab,i)

sumgeq(Ab,i)

})
and store the result in ∆S.

4: if ∆S 6= /0 then
5: return ∆S

6: end if
7: end for
8: return /0

That means, each constraint which contains the meter i will be connected with the (¬Abi) predicate.
For instance:

eq(smSet1 SmartMeter dataAmount[0],20)

becomes the disjunction:

watched−or({eq(ab[0],1),eq(smSet1 SmartMeter dataAmount[0],20)})

where watched-or({c1, ...,cn}) ensures that at least one of the constraints c1, ...,cn is satisfied.

The new watched-or constraint states that, if the original MINION constraint cannot be satisfied,
i.e., in this particular case, the dataAmount transmitted by smSet1[0] is not equal to 20, then the meter
smSet1[0] must be inactive, i.e., the eq(ab[0],1) must be satisfied.

The MINION model, generated from the SIMOL description (depicted in Figure 4.3), - for the case
with 51 smart meters - contains 270 constraints, stated over 14 variables, from which 3 are vectors
with 20, 30 and 51 elements respectively and taking BOOL or DISCRETE values. The running time
for computing the minimal cardinality reconfiguration (3, in our case) is 234 ms, but the obtained
time strongly depends on the constrains types and may be improved by restricting the attributes of

64

4.2. Reconfiguration Mechanism

component MyCell extends Cell {
attribute int total;

constraints {
P2PNo=21;

SmartMeter smSet1[20];

SmartMeter smSet2[30];

SmartMeter s1;

forall(SmartMeter) {
dataAmount=20 KB/day ;

}
}

}
Figure 4.3.: Partial SIMOL description of a cell with 51 SmartMeter components.

the inactive meters to default ”non-influencing” values, instead of identifying them as inactive and
ignoring them afterwards (as if the meters would not exist).

In the second scenario, we assume the meters should be all active (not changeable), but the channels
may be active, permitting data communication, or inactive (blocked for transmission). We also make
the assumption that at least one channel is available for transmitting data, whereas the rest of the
channels must be activated, if a constraint in the MINION model is violated. For instance, we will
have:

sumleq([smSet1 SmartMeter dataAmount, smSet2 SmartMeter dataAmount,

s1 SmartMeter dataAmount], aux1)

replaced by:
watched-or({eq(ab[0],1), eq(ab[1],1),

sumleq([smSet1 SmartMeter dataAmount, smSet2 SmartMeter dataAmount,

s1 SmartMeter dataAmount], aux1)})

and the following constraints are to be added in the constraint section of the MINION input file:

reifyimply(eq(ab[0],1),ab[1])

reify(ineq(BaseCapacity2, current dataAmount,-1),ab[0])

65

Chapter 4. SIMOA Approach

reify(ineq(BaseCapacity3, current dataAmount,-1),ab[1])

The disjunction watched-or({eq(ab[0],1), eq(ab[1],1),Ci}) states that if the constraint Ci

is not satisfied, then at least one of the two elements in the ab vector should be true, meaning that
either one or two more channels should be activated.

The MINION model, generated for the case with 300 smart meters - contains 690 constraints and
the running time for computing the minimal cardinality reconfiguration (1, in this case) is 218 ms. For
51 meters, the solution is computed in less than 30 ms.

4.2.2. RECONFIG Algorithm

While the afore described reconfiguration approach does only consider the possibility to acti-
vate/inactivate components, now, we assume that, for each component of the system, we know how to
reconfigure the component. Here we borrow the idea coming from Model-Based Diagnosis (MBD)
[111, 23] and introduce modes for components. Hence, every component has at least one mode. We
assume the de f ault mode to be the standard mode of a component, and all other modes to be potential
reconfiguration of this component. For simplicity, we introduce a function modes : COMP 7→MODES
mapping components from COMP to their MODES. At least de f ault has to be element of modes(c)
for all components c ∈COMP.

As discussed in Chapter 3, SIMOL allows for specifying models of systems comprising components
and their modes. For example, in Lines 2–27 of our SIMOL program from Figure 3.1, the components
P2PMeter, FPC and BTS were defined. P2PMeter and BTS have only one mode (i.e., the de f ault
mode), whereas for FPC, 3 modes (de f ault, x1, and unknown) are defined. Besides the structure and
behavior of the system, the new system requirements were also defined in Lines 28–45 of the program
from Figure 3.1.

Definition 3 (Reconfiguration problem 2) A reconfiguration problem is a tuple
(KB,COMP,MODES) where KB = SD ∪ REQ is the knowledge base comprising the model of
the system SD and the requirements REQ, COMP is a set of system components, and MODES is the
set of functional modes for the elements of COMP.

As we have already seen, all the information regarding the reconfiguration problem can be obtained
from SIMOL programs. The program from Figure 3.1 allows us to derive the knowledge base KB,

66

4.2. Reconfiguration Mechanism

which is the set of equations constr representing the semantics of the SIMOL program (for more
details, see Section 3.4), the set of components COMP = {P2PMeter,FPC,BTS,Cell}, and the set of
modes MODES = {de f ault,x1,unknown}.

A solution of the reconfiguration problem is an assignment of modes to each component, such that
the knowledge base, together with this assignments, is satisfiable.

Definition 4 (Mode assignment) Given a set of components COMP and a set of functional modes
MODES. A mode assignment M is a function M : COMP 7→ MODES mapping each component to
one of its modes, i.e., for all c ∈COMP : M(c) ∈ modes(c).

Having now all ingredients, we are able to formally state a valid reconfiguration as follows:

Definition 5 (Reconfiguration 2) Given a reconfiguration problem (KB,COMP,MODES). A mode
assignment M is a valid reconfiguration iff KB∪{M(c)|c ∈COMP} is satisfiable.

In reconfiguration, we are interested in finding mode assignments that do not imply too many
changes. Hence, we can use the number of required system changes to indicate the optimality of a
reconfiguration. The number of changes necessary in a mode assignment is the number of used modes
that are not equivalent to the de f ault mode.

Definition 6 (Number of changes) Given a reconfiguration M for a reconfiguration problem
(KB,COMP,MODES). The number of changes (NOC) of M is equivalent to the number of modes
in M deviating from the de f ault modes, i.e., NOC(M) = |{M(c)|c ∈COMP∧M 6= de f ault}|.

We say that a reconfiguration M is optimal with respect to its NOC, if it is minimal, i.e., there exists
no other reconfiguration M′ with NOC(M′)< NOC(M).

After stating the underlying definitions, we introduce an algorithm for reconfiguration, that is based
on ConDiag, a diagnosis algorithm, presented in Section 6.3. Computing reconfigurations in our
context is nothing else than searching for minimal mode assignments, i.e., mode assignments that
are as close to the original assignments as possible. When assuming that small changes lead to a
satisfiable knowledge base, it would be good to start search considering small deviations of mode
assignments from the de f ault mode first. The number of changes can be increased, if no solution is
found. Therefore, an iterative algorithm seems to be sufficient.

67

Chapter 4. SIMOA Approach

Algorithm 2 RECONFIG(KB,COMP,MODES,n)

Input: A reconfiguration problem (KB,COMP,MODES) and the maximum NOC n
Output: All minimal reconfigurations (up to the predefined cardinality n)

1: for i = 0 to n do
2: CM = {|{M(c)|c ∈COMP∧M 6= de f ault}|= i}∪KB
3: S = P (CSolver(CM))

4: if S 6= /0 then
5: return S
6: end if
7: end for
8: return /0

Algorithm 2 RECONFIG takes a reconfiguration problem and a maximum number of changes
and computes all minimal reconfigurations. Algorithm 2 is an iterative algorithm that starts with no
changes of modes and continues to search, if necessary, up to the predefined value n. The termination
criteria before reaching n is given in Line 4, where a non-empty solution obtained from the satisfia-
bility check is returned as result. In case no solution is found, the empty set is returned (Line 8). The
CSolver is a constraint solver taking a set of constraints CM and is expected to return a set of mode
assignments, if a satisfiable solution can be found. Otherwise, the empty set is returned, indicating
that no reconfiguration of the given size is possible. The function P is assumed to map the output of
the solver to a set of solutions.

In the SIMOA prototype implementation, we use MINION for this purpose, but every other con-
straint solver would also be sufficient, providing that it is capable of handling the constraints stored
in CM. Line 2 of Algorithm 2 adds a new constraint to the model, stating that we are interested in
finding solutions, that comprise exactly i modes that are not equivalent to de f ault.

Algorithm 2 obviously terminates, assuming that CSolver terminates. The complexity is of O(n ·
k), where k is the complexity of CSolver. In the worst case, searching for solutions for a finite
constraint satisfaction problem is exponential in the size of the problem. Therefore, RECONFIG is
also exponential in the worst case.

However, in practice solutions can be found in a much faster way. See, for example, the results

68

4.2. Reconfiguration Mechanism

reported in Section 6.3 and Section 6.4, where search for solutions up to a size of 3 is within seconds
even for constraint satisfaction problems comprising up to 3,800 constraints. Although these results
are for diagnosis (ConDiag), they also can be applied to reconfiguration, because of the similarity of
the algorithms.

Further empirical results will be provided in Section 5.3.3, together with an analysis of possible
MINION encodings for the functional modes defined in SIMOL.

4.2.3. Conclusion

As already mentioned, the relationship between diagnosis and reconfiguration has been pointed out
by many authors (e.g., [17, 131, 132, 109]). However, unlike [17, 109], we do not interleave diagnosis
and reconfiguration in our approach (the constraint solver determines reconfigurations directly, i.e.,
without using any previously computed diagnoses). In [131, 132], the authors introduce the use of
model-based diagnosis for parameter reconfiguration, that is based on consistency-based diagnosis
together with fault models. Note that there is a strong relationship between our approach to recon-
figuration and the work done by Stumptner and Wotawa. The slight difference to their work is that
our diagnosis algorithms for reconfiguration compute potential reconfiguration directly, instead of
computing hitting sets of conflicts.

Regarding the published paper on model-based diagnosis, we refer the reader to Chapter 5, where
we briefly introduce other algorithms for diagnosis and describe how our approach deviates.

69

70

Chapter 5
Case Study

Parts of the content of this chapter have been published in [96, 95, 94].

5.1. Motivation

The machine-to-machine (M2M) communication market is expected to grow in the coming years and
to become the largest customer of mobile phone network operators. The application scenarios of M2M
communication are many-faceted. Currently, the field of main application of M2M communication is
smart metering, i.e., providing a direct link between power suppliers and electricity meters at home,
and on tracking of vehicles and goods in the transportation industry. In this chapter, we focus on the
first scenario (linking electricity meters at home).

These smart metering application scenarios do not only provide advantages for companies, but
also additional benefits for the customers. For example, smart metering solutions have the potential to
avoid blackouts by limiting power consumption far before a blackout might occur. Another example is
CO2 emission reduction in the electricity sector. More and more people produce and consume energy
independently and feed unspent energy into the network. One hope in this context is to reach greater
energy efficiency through short meter-reading intervals, as these allow the customers to control their
energy consumption throughout the day. Energy network operators are then able to collect consump-
tion data more frequently and to provide this data to end consumers in a transparent way. To complete
all these tasks, intelligent communication solutions are needed, which are able to handle increased

71

Chapter 5. Case Study

data volumes over the wireless networks and especially over mobile GPRS/UMTS networks. Orig-
inally, communication infrastructures were not designed to fulfill the requirements of the mentioned
M2M communication scenarios.

The Kapsch Smart Energy Management System for metering and building automation offers a
future-proof, open, and manufacturer-independent solution, which fits the needs of all the groups
involved: from end consumers, building owners and facility managers to network operators and en-
ergy suppliers. In this context, functionalities that support a detailed analysis of alternative smart
metering scenarios are highly requested. In order to support such functionalities, simulations of var-
ious parts of a mobile network such as cell, backbone, and data storage have to be conducted. The
major purpose of such a simulation is to check whether a network configuration can support a set of
given user requirements. In order to simulate the dynamics of a mobile network, we treat each part of
the mobile network, which is to be simulated, as a state machine with a predefined number of states.
For example, in one particular state a component might be active whereas in another one this is not
the case. Another example is a network configuration that may change from state to state in order to
handle different communication requirements.

If a simulation fails (the requirements can not be fulfilled by the mobile network), a working re-
configuration of the given system has to be delivered. In particular, adding too many M2M devices
to a cell configuration might lead to an unacceptable reduction of service availability, which can only
be handled by changing the default value of the parameters in the cell (for instance, by increasing the
number of serving frequencies) or by extending the communication network via adding new mobile
phone cells . Note that when adding a new mobile phone cell to a network, in fact, a new base station
is added to the system and the transfer data is redistributed to the cells. A cell configuration contains
one base station, a number of metering devices, and a base load value.

The major contributions of this chapter are the following: (1) we provide important insights into the
principles of knowledge-based reconfiguration in the domain of M2M communication networks. (2)
we discuss major business cases that are related to the application of (re-)configuration technologies
in the context of mobile phone networks and M2M applications.

This chapter is divided as follows. In Section 5.2 we discuss in more detail the major requirements
regarding the support of M2M communication scenarios. Afterwards, we introduce two application
scenarios of the SIMOA approach (Section 5.3). In Section 5.4 we discuss relevant business cases
that are related to the application of M2M SIMOA technologies. With Section 5.5 we conclude this
chapter.

72

5.2. Domain Requirements

5.2. Domain Requirements

Unlike today’s mobile networks, the future GPRS (General Packet Radio Service) networks used in
Automatic Meter Management (AMM) communication have to support the following requirements:

• The GPRS networks have to be highly reliable and extensible

• There must be a large IP address pool available

• There is a required data amount specified for AMM communication

• The amount of data communicated via a GPRS network varies depending on the AMM readout
frequency and the used communication protocols, such as the DLMS/COSEM or the IEC61107
protocol. Note that the AMM readout frequency refers to the meter reading interval, i.e., for
instance, an electricity meter can record the power consumption every 15 minutes.

These requirements are of great importance for the configuration process. The user should be able
to add a large number of devices in the network and the device type is either already defined in the
knowledge base or a new type can be additionally defined. The last two requirements limit the space
of possible reconfigurations by means of constraints stated over the data amount transferred in the
network.

Figure 5.1 illustrates a simplified cell from a smart grid, taking into consideration the GPRS data
communication on the one side and the electric power transmission from the power generation station
to smart meters, on the other side (depicted in gray). A smart grid is a power transmission network,
which makes use of supplier and consumer information and communication infrastructure to improve
the overall network performance in terms of efficiency, reliability, and sustainability in an automated
way. Note that SIMOA simulation and (re-)configuration focuses on GPRS data communication set-
tings.

As depicted in Figure 5.1, IP-enabled meters (Point-to-Point (P2P) individually addressable smart
meters), that are connected directly to the WAN (Wide Area Network) using GPRS, communicate
with the AMM application, without requiring data concentrators in the field. A data concentrator is a
device that is connected with several smart meters via a wire. In this case all connected smart meters
communicate to the AMM application over the data concentrator. Data concentrators are used, for
example, in buildings with a large number of apartments where the costs for the additional wiring
are low. The meters connected to data concentrators are called PLC (Power Line Carrier) meters.

73

Chapter 5. Case Study

Substation
Transformer

P2P smart meter

PLC smart meters

Data concentrator

BTS

GPRS Internet

AMM application

Power generation source

High-voltage transmission towers

Consumer

Consumers

PLC

PLC

PLC

Mobile phone

Figure 5.1.: Schematic representation of a Smart Grid Cell containing a base transceiver station
(BTS), one P2P smart meter, 3 PLC smart meters, connected to one Data concentrator,
and a Mobile phone. The base station facilitates at cell level the data transfer from the
P2P meter and data concentrator to the central meter management office, called AMM
application.

The usage of P2P meters becomes inevitable when the connection distance between a meter and a
data concentrator is too large (more than 300 meters). In the simulation process we have to take into
account the following variants of M2M terminals in a specific cell: (1) only P2P meters (2) only data
concentrators with PLC meters, and (3) both P2P meters and data concentrators with PLC meters.

In Figure 5.1, the Smart Grid (GPRS) cell comprises the following parts:

• Base Transceiver Station (BTS): facilitates the wireless communication between user equipment
(mobile phones, smart meters, etc.) and the network. The BTS has the equipment for encrypting
and decrypting communications, spectrum filtering tools, antennas, etc. Typically a BTS has
several transceivers (TRXs) which allow it to serve several different frequencies and allocates a

74

5.3. Applying the SIMOA Approach

number of time slots for the M2M communication in the cell.

• P2P meters and Data Concentrators: these are described by configurable attributes that represent
fixed or variable data amounts (derived from the chosen transfer protocols), network topology
(determined by the distance between BTS and data concentrators/P2P meters), and - in the case
of data concentrators - the number of PCL meters connected to them.

• GPRS base load represented by the Mobile phone in Figure 5.1 and which represents all the
non-smart-metering traffic in the cell.

It is worth noting that the structure of mobile phone networks varies and that communication re-
quirements depend on the M2M application scenario. A typical AMM scenario is, for instance, the
transfer of the daily load profiles from the meters to the AMM application within a defined time pe-
riod. This profile contains the amounts of power consumption recorded every 15 minutes. In this
case, the traffic from the cell to the AMM application is investigated. Given, for instance, a GPRS cell
with M2M communication capabilities comprising, among others, P2P meters, data concentrators,
and mobile phones, we are interested in checking if the defined cell can handle the transfer of the load
profiles or not. If the transfer is not possible (because there are insufficient time slots allocated for
M2M communication in the cell or the transfer rate is too low due to the given channels encodings),
a reconfiguration of the cell is required. This task comprises the identification of the inconsistent re-
quirement/s in the default configuration as, for instance, the assignment of an insufficient number of
time slots for M2M communication, and changing the values of the corresponding attributes such that
the new configuration is consistent. In another scenario, a large number of smart metering devices has
to be simultaneously shut down by the power supply company in order to avoid a blackout. In this
case a pre-specified maximum delay (e.g., 2 minutes) between issuing the command and receiving it
on side of the smart metering device must not be exceeded.

Hence, a solution for showing that a communication network fulfills the requirements of M2M
application scenarios and taking counter measures in case of detected shortcomings has to be flexible
and adaptable.

5.3. Applying the SIMOA Approach

From the application domain we are able to derive the requirements for a tool that provides the possi-
bility of executing changes to the given mobile network, by taking into account future usage scenarios.

75

Chapter 5. Case Study

The future usage scenarios are determined by the communication needs of M2M applications (see,
for example, the two scenarios discussed in the previous section). In the following, we discuss tool
requirements with regard to the knowledge representation language, simulation features, reconfigura-
tion, and optimization functionalities.

• Language. The application domain requires information on the structure and behavior of the
network as well as on usage scenarios. Because of the huge variety of networks and usage sce-
narios, a modeling language has to be provided for formalizing the information. This language
has to allow for stating the structure of a system and the behavior of its components. Temporal
aspects, like changes in network access over time, have to be captured as well. Moreover, in
case of optimization, the language has to provide means for stating optimality criteria.

• Simulation. The first step to evaluate whether an available mobile network is capable of han-
dling all requests imposed by a future M2M application is to simulate the network behavior
using the communication requirements of the M2M application. Communication requirements
might be maximum delays of replies of remote machines on messages send or the required
amount of data to be send at the same time. If the simulation returns that the network can-
not handle certain requirements of the M2M application, someone is interested in finding a
reconfiguration of the network, that allows for fulfilling the requirements. The simulation itself
should be based on the introduced modeling language. Although there are a lot of languages for
simulation used in industry, they are less appropriate for (re-)configuration purposes, because
they cannot handle under-constrained problems, where a variety of solutions is possible.

• Reconfiguration. Changing an existing network for fulfilling communication scenarios imposed
by M2M applications can be done on several levels. Certain parameters of mobile phone cells
can be changed in order to provide more channels. New cells can be added to the network,
thus changing the network topology. In our application all such possible changes should be
reported. The same modeling language that is used for simulation should also be used for
providing configuration information.

• Optimization. Since there is very likely more than one reconfiguration for handling future
communication requirements, an optimal solution would be of great interest. Depending on
who the user is, different optimality criteria are to be fulfilled. For instance, a mobile operator
would prefer the reconfiguration which offers the best quality of service, whereas a customer
would pick the solution with least costs for communication. Therefore, a requirement is that
various optimality criteria can be specified and that it is possible to search for reconfigurations

76

5.3. Applying the SIMOA Approach

 ConfigCore

SIMOA M2M GUI

SIMOL Compiler

MINIONResults
ReConf

Figure 5.2.: The M2M SIMOA architecture.

fulfilling the optimality criteria.

The SIMOA approach, presented in Chapter 4, is capable of fulfilling all the mentioned require-
ments. In particular, SIMOL allows for specifying the structure and behavior of the mobile networks,
as well as configuration information and requirements. Furthermore, the language can be used by
non-AI experts, as it has a simple, Java-like syntax.

Based on the architecture presented in Section 4.1, the resulting M2M SIMOA system architecture,
depicted in Figure 5.2, comprises at the highest level two parts: a graphical user interface (SIMOA
M2M GUI) and the configuration core (ConfigCore). The latter is general and can be used in various
applications, whereas the other is application specific and has to be tailored accordingly to the require-
ments. The configuration core itself comprises a compiler that translates models written in SIMOL
into MINION constraints. The MINION program is used in the reconfiguration engine ReConf to-
gether with the MINION constraint solver to compute valid reconfigurations, which are given back as
Results.

The interface between the graphical user interface and the configuration core (ConfigCore) is repre-
sented by the SIMOL program and the results obtained from ReConf. The SIMOL program comprises

77

Chapter 5. Case Study

the information necessary to specify the system to be reconfigured and the given pre-specified require-
ments. The reconfiguration result is basically a set of possible component modes, that are necessary to
fulfill the requirements together with the computed variables values. The presentation of these results
to the user has to be implemented in the user interface and is application specific.

5.3.1. The Domain-specific Tools

This section briefly describes two of the implemented smart metering applications, together with their
specially tailored M2M user interfaces, that hide the domain knowledge from the user. The purpose
of these applications is to show that a given set of smart meters can be used in a region, while still
fulfilling all requirements.

The first SIMOA M2M GUI is depicted in Figure 5.3 and has been implemented in Java using the
Google Web Toolkit∗. The tool is available for all partners of the project via the web interface. Here,
in order to simulate a specific configuration of a network’s cell, the following steps will be conducted:

1. the user introduces the desired values for the meter profiles and cell parameters,

2. a SIMOL model is generated, based on the user’s values and on a specific pattern file,

3. the SIMOL model is mapped to the MINION representation, and afterwards the solver checks,
if the resulting CSP has any solution,

4. finally, the user gets two possible results, depending on the MINION outcome: the simulation
failed (CSP with no solution found) or the simulation was successful (the user gets the transfer
rate distribution over time (i.e., over the states) and the parameters of the simulation, as depicted
in the lower part of Figure 5.3)

Note that, in this case, the simulation is limited to one cell with any number of P2P meters.

In Figure 5.4, the current user interface of the SIMOA M2M application is given. This graphical
user interface enables the user to specify a smart metering application by placing the meters as well
as the cells. These provide access to the mobile phone network, among other components at the
appropriate positions. Moreover, the user might specify additional parameters for components. In case
of a reconfiguration, the GUI generates a SIMOL program that makes use of the components, their
behavior and additional parameters. It is also worth noting that also the positions of the components

∗see code.google.com/webtoolkit/

78

5.3. Applying the SIMOA Approach

Figure 5.3.: (1) SIMOA M2M Web GUI.

in the map are used. For example, when specifying a base load for the mobile phone network, the
concrete assignment to cells is done considering the distance between the base load and the cell. If
a base load is not within reach, there is no effect. If a base load might influence two or more cells,
the load is assigned to each cell accordingly to their distance, e.g., closer cells will have a larger
percentage of the communication base load than cells that are more far away. Besides the map view
capture, in the middle and lower part of Figure 5.4, we can find the integrated editor containing the
generated SIMOL file and the provided Explanations for the obtained configuration.

79

Chapter 5. Case Study

Figure 5.4.: (2) SIMOA M2M Map GUI.

5.3.2. Running Example without Reconfiguration Mechanism

In this section, we present in more detail the simulation process for a simplified cell with M2M
communication capability, comprising one base transceiver station and five P2P meters meters. As
illustrated in the web interface in Figure 5.3), both P2P meters and BTS present specific configurable
parameters, based on which the simulator must generate the appropriate output, corresponding to the
desired use case. In the following, we present one of the simulated use cases.

A typical scenario is the transfer of the daily load profiles from the meters to the central meter-
management office. It means that only the up-link traffic of the cell is investigated. Assuming that the
meters can only send this information from 12 a.m. to 7 a.m., the required transfer time is seven hours,
that is 25,200 seconds. We also assume that, during this time period, the data transfer is uniformly
distributed.

Consider the input parameters depicted in Table 5.1. The SIMOA simulator computes as outcome
the resource utilization, i.e., the number of the used time slots, and the average, minimum and maxi-
mum data transfer speed in kbit/s per cell (see Table 5.3).

The M2M SIMOA tool simulates the cell over a number of states. Each state corresponds to a

80

5.3. Applying the SIMOA Approach

Table 5.1.: Input Parameters

Parameter Name Variable/Value
Total number of P2P meters z = 5
Number of P2P meters with CS1 v
Number of P2P meters with CS2 w
Number of P2P meters with CS3 x
Number of P2P meters with CS4 y
Data Amount per P2P Meter DMeter = 20kB
Required Transfer Time T 00 : 00−07 : 00

different code set distribution, where a code set is the channel encoding that influences the amount
of data to be transferred within a second. See Table 5.2 for possible channel encodings. In order to
simulate the dynamics of a real mobile network, we allow the cell passing from one state to another.
Note that the model and the transition function between the states are defined in the SIMOL program,
representing the system.

For every state, the tool computes the real transfer rate per cell Rreal according to the following
formula

Rreal = (v∗CS1+w∗CS2+ x∗CS3+ y∗CS4)/z,

where CS1..CS4 refer to the channel encodings, given in Table 5.2. Consequently, we obtain the
maximum data transfer speed in state S0 and the minimum data transfer speed in state S1 (see Ta-
ble 5.3) .

Note that the needed data transfer speed Rneeded differs from the upper mentioned real transfer rate
and is computed using the following formula:

Rneeded = z∗DMeter/T

In our example, the average (needed) data transfer speed Rneeded becomes:

Rneeded = 5∗163840Bit/25200s = 32,51Bit/s

81

Chapter 5. Case Study

Table 5.2.: Channel Encoding

GPRS Coding Scheme kbit/s
CS1 8 kbit/s
CS2 12 kbit/s
CS3 14,4 kbit/s
CS4 20 kbit/s

Table 5.3.: Real Transfer Rate per Cell

State: (v,w,x,y) Real Transfer Rate per Cell Rreal

S0:(0,5,0,0) 12 kbit/s
S1:(2,3,0,0) 10,44 kbit/s
S2:(2,2,1,0) 10,88 kbit/s
S3:(2,1,2,0) 11,36 kbit/s

It is easy to observe that, in each of the generated states from Table 5.3, Rreal is much greater than
the upper computed Rneeded , which means that the requested data transfer is possible for all the codeset
distributions.

But let us consider now a scenario in which the transfer would not be possible.

If we assume that the time duration is T=1 minute, then the needed data transfer speed Rneeded

becomes:

Rneeded = 5∗163840Bit/60s = 13,33kBit/s

Another important parameter that one must take into consideration at this point is the number of
available GPRS time slots in the cell T Savailable.

We should also mention that the number of the used time slots, depicted by T Sneeded , is derived
from the needed data transfer speed Rneeded divided by the real transfer rate Rreal , i.e.:

T Sneeded = Rneeded/Rreal

82

5.3. Applying the SIMOA Approach

Assuming that our BTS allocates T Savailable=1 time slots for the M2M communication in the cell,
the constraint that must be satisfied is:

T Sneeded <= T Savailable

In other words, if Rneeded > Rreal and we have just one time slot allocated for the data transfer, the
simulation will fail.

Experimental results

In order to prove the feasibility of the proposed approach, we conducted some experiments in the ap-
plication domain using the model of a mobile network cell that communicates with a varying number
of P2P meters. The number of P2P meters varied from 5 to 1,000, leading to quite large constraint
systems, comprising up to 36,000 constraints and 16,000 variables. Table 5.4 shows the obtained
running times when restricting to searching for 10 solutions at maximum and 4 temporal states. For
the experiments we made use of a notebook with Intel(R) Core(TM) i7 CPU 1.73 GHz and 4 GB of
RAM running under Windows 7.

The obtained results indicate that the approach is feasible for the application domain. Especially
when considering that in most cases no more than 1000 P2P meters should be connected to one
cell. Moreover, usually the simulation should only clarify whether there is a result for the intended
configuration. Hence, finding a small number of solutions is acceptable in the M2M domain. In order
to give an estimation on the impact of searching for more solutions, we also conducted an experiment
where we restricted the variable domain to [0..1,000] and used Minion to search for a maximum of 60
solutions. Figure 5.5 shows the measured running times in comparison to searching for 10 solutions.
From this figure, we see an increase of the running time. However, the results are still in an acceptable
range and we are able to proof feasibility with respect to our application domain.

In future experiments we will use more sophisticated models from other domains in order to explore
the influence of the models for solving constraints using SIMOL as modeling language. Moreover,
there are many ways of representing SIMOL as a set of constraints, which might also influence the
overall running time. Exploring different mappings from SIMOL to Minion has to be done in future
research.

83

Chapter 5. Case Study

Table 5.4.: Simulation results obtained for different integer variable domains. The solution number
is limited to 10, by making use of the MINION command-line switch −sollimit10 when
running the MINION Solver. The given running time is a rounded average value over 3
runs.

SIMOL Program MINION File Simulation Time [sec] for different domains
P2P Meters No. LOC Constraints No. Variables No. [0..100] [0..200] [0..500] [0..1,000] [0..10,000]

5 46 215 97 0.015 0.031 0.046 0.047 0.078

10 46 406 178 0.031 0.046 0.046 0.062 0.078

100 46 3,507 1,620 0.320 0.320 0.350 0.420 0.700

500 46 19,015 8,020 1.960 2.070 2.260 2.400 na

1,000 46 36,010 16,011 4.570 4.630 4.800 5.780 na

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

0

2,5

5

7,5

10

12,5

15

max. solutions = 60

max. solutions = 10

No. P2P meter

Time
[sec]

max. solutions = 1

Figure 5.5.: Comparing running times for constraint solving for a specific maximum number of solu-
tions when the variable domain is fixed to [0..1,000].

5.3.3. Running Example with Reconfiguration Mechanism

In this section, we discuss first the implemented GPRS Cell Model in more detail, starting from its
UML Diagram and analyzing it. Afterwards, in Section 5.3.3, we report on first empirical results
obtained for the reconfiguration algorithm introduced in Section 4.2.2 , when using a SIMOL model

84

5.3. Applying the SIMOA Approach

of our M2M application domain.

Figure 5.6 presents the UML diagram for a GPRS cell used in the SIMOL model and thus within
our current implementation. As one can see, a cell owns one BTS component, a limited number of
P2P Meter - and Data Concentrator components, and a Base Load component. Moreover, the
GPRS Cell has one attribute that refers to the possible GPRS/UMTS base load (gbase), i.e., the non
smart metering related data transfer, which is in fact defined in the value attribute of the Base Load

component. A P2P Meter component type is described by the distance between the P2P meter and
the BTS (mdist), the used codeset (codeset), i.e., the channel encoding that influences the amount of
data to be transferred within one second, and by the various parameters corresponding to the protocol
suites used to retrieve data from a smart device (dbr billing reads, iptlogin M2M gateway logins,
etc.). Many of these attributes are to be found in the definition of the Data Concentrator type, but
mostly with values depending on the number of PLC meters connected to the concentrator. Both PLC

Meter and P2P Meter types are derived from the generic type Smart Meter. A BTS component has
two attributes: the number of frequencies (fpc) and the number of time slots (availableTimeSlots),
which the BTS allocates for M2M communication in a cell. Note that, unlike the other attributes
depicted in Figure 5.6, these two can be automatically reconfigured in case of a failed simulation. In
order to do that, two ”fake” component types FPC (Frequencies Per Cell) and ATS (Available Time
Slots) are introduced in the model (see Figure 5.6). They are ”attributes-seen-as-components” types
and, when linked to the actual attributes fpc and availableTimeSlots they are able to reconfigure
the given system. Note that in the SIMOL program from Figure 3.1 (used to discuss the syntax
in Chapter 3), we can find the component FPC (Lines 9–20), where the value attribute of the FPC

component has to be equal to 1 by default or in the set {2..4} - in mode x1. In the unknown mode,
no constraint is defined as the behavior of some FPC instances may become unimportant in a certain
reconfiguration. For instance, when thinking of the possibility to deactivate smart metering devices,
there is no contribution of inactive devices to the overall system behavior. Hence, in this case no
constraints can be defined for the mode representing an inactive component.

The complete SIMOL program corresponding to the model defined in Figure 5.6 can be found in
Annex .3.

Experimental results

In this section we report on first empirical results obtained using a SIMOL model of our application
domain, i.e., smart metering. The SIMOL source code has 95 lines of code. When compiling the

85

Chapter 5. Case Study

Figure 5.6.: UML Diagram for the GPRS Cell Model.

SIMOL program to its MINION representation, considering at the maximum 5 states, we obtain up
to 2,387 variables and 7,320 constraints depending on the the number of smart meters considered.
In principle, there are many possibilities of mapping SIMOL to MINION and also for computing
solutions for a given maximum number of changes NOC. In the following we discuss the encoding of
SIMOL modes within MINION and show that the choice of certain MINION parameters influences
the computation of reconfigurations substantially.

The mode encoding in MINION is rather straightforward. In principle a mode of a component can
be either active or inactive. Therefore, we map each mode modex to a Boolean variable in MINION,
which is 1 (true) if the corresponding component is in mode modex, or 0 (false) otherwise. In order
to compute a solution for a particular NOC we have somehow to maximize the number of de f ault
modes in the solution. In the first version of our implementation we used the MAXIMISING option
of MINION for this purpose. In addition, we decided to control the way the solver searches for a
solution also by directly specifying the instantiation order for the MINION variables representing a
mode. Hence we used the MINION variable ordering (VARORDER) as well as the corresponding
value ordering (VALORDER) with the following settings: for all the de f ault mode variables their
values should be searched in descending order, whereas for the other mode variables the searching

86

5.4. Business Cases

should be done in ascending order. The intuition behind is to prefer solutions with more de f ault
modes to be true over the other solutions.

For the experiments we made use of a notebook with Intel(R) Core(TM) i7 CPU 1.73 GHz and 4
GB of RAM running under Windows 7. We obtained the results presented in the upper diagram of
Figure 5.7 for models containing a rather small number of P2PMeters ranging from 7 to 50. It is worth
noting that when using the MAXIMISING function the measured running times exceeded 300 seconds
for more than 100 meters (which is unacceptable in some situations). Hence, we decided to use only
the VARORDER and VALORDER and ignore the MAXIMISING function. From the results depicted
in the bottom diagram of Figure 5.7 we see a substantial improvement in the measured running time.
Note that the obtained results without MAXIMISING were always correct.

From the diagram at the bottom of Figure 5.7 we can extract two observations. First, when checking
only that a given system fulfills the requirements, the running time, even in case of 100 P2PMeters, is
within seconds. Second, even for a NOC of size 6 the reconfiguration time never exceeds 25 seconds.
Since, for the application domain these running time results are sufficient and the proposed approach
is feasible.

5.4. Business Cases

For (re-)configuration in the context of M2M applications there are many business opportunities sup-
ported using the presented SIMOA approach. We discuss three of the business cases where con-
figuration technology can be effectively used in the context of mobile phone networks and M2M
applications.

• For M2M application providers there is the opportunity to clarify whether their requirements
regarding the mobile phone network capabilities (e.g., bandwidth or available communication
slots) can be fulfilled. Moreover, they are able to specify certain future scenarios to predict and
ensure availability of their services. Hence, M2M application providers gain the advantage of
being able to show their customers that the services they offer can be carried out (also in the
future) and this is the key differentiator to the competitors.

• Mobile network providers can exploit (re-)configuration technologies to adapt and change net-
work parameters and the topology to fit the need of M2M application providers. Via optimiza-
tion, the least expensive solution or the one that maximizes revenue can be computed. Hence,

87

Chapter 5. Case Study

Figure 5.7.: Comparing running times for reconfiguration when the Integer variable domain is fixed
to [0..20,000] and the number of solutions is limited to 1.

mobile operators gain the advantage of being able to react almost immediately to requirements
demanded by their customers when using reconfiguration technology based on models. More-
over, when using model-based approaches, adaptations caused by topological changes or tech-
nology changes are rather straightforward. Costs of adaptations for parts of the models are
lower compared to developing a new configurator from scratch for each configuration problem.

• There is also a business opportunity for network equipment vendors. The SIMOA tools allow
for computing reconfigurations of networks in order to meet future requirements. Hence, they
can actively promote products and services to network service providers, which are based on

88

5.5. Conclusions

well founded results obtained using system models and requirements. Because of the flexibility
of modeling, SIMOA is not restricted to one customer and can be easily adapted to handle
different networks, network components, and services.

In addition to these business cases there are two advantages of model-based configuration worth
mentioning. One is the fact that the obtained results (used either to verify whether a system meets
given requirements or to compute reconfigurations) are well founded because they are based on system
models. Another advantage is that system changes can be easily incorporated into the system models.
Hence, there is no need to change the underlying simulation and configuration engine. Moreover,
changes are typically local at the level of components and do not influence larger parts of the model.
Although the initial modeling of an application might be demanding and more expensive, the overall
costs of model-based systems considering the costs of necessary maintenance activities are usually
smaller compared to very specific solutions, e.g., using rule-based systems methodologies.

5.5. Conclusions

Because of the still increasing amount of data that is transported using the currently available mobile
networks’ infrastructure, there is a growing need for actively controlling the infrastructure in order
to prevent delays or breakdowns in the worst case. The requirements of the application domain in-
dicate a general language that allows for modeling technical systems comprising components which
are interconnected. Moreover, the language should be able to formalize the behavior for simulating
the system and the knowledge necessary for carrying out configuration and later on optimization. A
language that is restricted to one M2M scenario is likely not capable of handling different new sce-
narios at the same time. In order to save investments we decided not only to come up with the general
modeling language SIMOL, but also to develop a tool and its underlying framework that is as general
as possible.

Our focus was to investigate and solve problems in wireless networks under the assumption of a
future user behavior and growing M2M applications. In particular, we are interested in reconfiguring
a mobile network in case of bottlenecks caused by requirements coming from future M2M applica-
tions. The result of the suggestions for reconfiguration coming from the tool might be changes in the
structure or the parameters of the mobile network. It is worth noting that only a flexible approach,
like model-based configuration, is capable of handling the needs and requirements coming from the
application domain.

89

Chapter 5. Case Study

In summary, today’s configuration technology offers a lot o benefits for the M2M application do-
main, i.e.: (1) providing evidence that a certain application scenario can be carried out in a current
mobile phone network given the system model and the requirements, (2) suggesting recommendations
for changing the system’s parameters or structure in order to meet requirements, and (3) being flexible
enough for adaptation to different usage scenarios. The latter is of particular interest in order to save
investments and to cope with the fast-paced M2M application domain.

90

Chapter 6
Extensions

Parts of the content of this chapter have been published in [91, 92, 97].

Explanations for unexpected or even faulty system behavior are a most welcome asset when faced
with such behavior during system development or maintenance. The task of diagnosing a system, that
is, identifying root causes for encountered errors, got a lot of attention in the AI community, so that
in the last three decades many different AI-based approaches tackling this issue have been emerging.
Therefore, as extension to our work on reconfiguration, we discuss here the implemented diagnosis
algorithms and also address the questions: (1) which algorithm to prefer in a certain situation and (2)
whether publicly available general reasoning engines can be used for an efficient diagnosis.

First we introduce in Section 6.1 several general definitions and discuss related work, including
available algorithms. Afterwards, we refer to our diagnosis algorithm, introduced in Section 4.2.1,
by presenting some empirical results obtained from experiments using the well-known ISCAS-85
benchmark suite (Section 6.2).

Another algorithm, meant to compute this time all minimal diagnoses up to a given size, is Con-
Diag. Described in Section 6.3, ConDiag tightly couples constraint solving with diagnosis in order
to compute minimal diagnosis up to a predefined cardinality. The basic idea behind ConDiag is to
use the constraint solver directly to compute diagnoses of a given size. In order to do so we represent
the predicate stating the correct behavior of a component as variables nab and let the constraint solver
search for a valid setting of the nabs. Moreover, we are able to compute minimal diagnoses up to a

91

Chapter 6. Extensions

given size by searching from smaller diagnoses to larger ones and adding information about the previ-
ously smaller computed diagnoses during the process. Hence, there is no further need for minimizing
results and computing conflicts. First empirical results indicate that the running time of ConDiag is
comparable to specialized diagnosis algorithms that makes it a valuable alternative.

Finally, in Section 6.4, we compare two classes of diagnosis algorithms. One class exploits conflicts
in their search, i.e., sets of system components whose correct behavior contradicts given observations.
The other class ignores conflicts and derives diagnoses from observations and the underlying model
directly. In our study we used different reasoning engines ranging from an optimized horn-clause
theorem prover to general SAT and constraint solvers.

6.1. Preliminaries and Related Work

[111] formalizes a model-based diagnosis approach based on a system description’s consistency with
actually observed behavior: A system description SD defines the nominal behavior of a set of in-
teracting components c ∈ COMP via sentences ¬AB(c)⇒ NominalBehavior(ci), where AB(c) is an
assumption whether a component c’s status is abnormal or not and NominalBehavior defines the sys-
tem’s correct behavior (Reiter uses first order logic). As Reiter includes no knowledge about faulty
behavior, his approach is considered to implement a weak fault model. Given some actual observa-
tions OBS, a system is considered to be at fault iff SD∪OBS∪{¬AB(c)|c ∈ COMP} is inconsistent.

Definition 7 (Diagnosis 1) A diagnosis ∆ ⊆ COMP is a subset-minimal set such that SD∪OBS∪
{¬AB(c)|c ∈ COMP\∆} is consistent.

Reiter proposed to derive diagnoses explaining the inconsistent observations via conflicts. His
reasoning is based on the fact that for his definitions, the set of diagnoses is equal to the the set of
minimal hitting sets of the set of (not necessarily minimal) conflicts, i.e., if such a set includes at least
all minimal conflicts.

Definition 8 (Conflict) A set C ⊆ COMP is a conflict if and only if SD∪OBS∪{¬AB(c)|c ∈ C} is
inconsistent. If no proper subset of C is a conflict, C is a minimal conflict.

Reiter’s complete algorithm maintains and prunes a tree that encodes the search pattern and in-
termediate results in order to achieve a structured and complete exploration of the diagnosis search

92

6.1. Preliminaries and Related Work

space that is exponential in the number of components. [48] proposed an improved version, HS-DAG,
using a directed acyclic graph and addressing minor but serious flaws in Reiter’s formulations. [145]
suggests with HST a variant of Reiter’s idea that tries to avoid building nodes that would be pruned
anyway.

[23] used an assumption-based truth maintenance system (ATMS) [21] to deduce the set of con-
flicts for an observation, where their General Diagnosis Engine (GDE) then derives via hitting set
computations the desired diagnoses. If re-framing the diagnosis problem into an optimal constraint
satisfaction problem, the conflict-directed A* algorithm [143] generates the diagnoses incrementally
in best-first order and, additionally, uses conflicts to focus the search.

[128] introduced the switching diagnostic engine SDE that interleaves the search for diagnoses and
conflicts, exploiting the dual relation between diagnoses and conflicts via minimal hitting sets also
in the reverse direction. Also interested in minimal conflicts, [71] introduces a preference-controlled
algorithm, based on a divide-and-conquer search strategy. Starting from the idea that previous conflict
detection algorithms have not exploited the basic structural properties of constraint-based recom-
mendation problems, [121] came up with another algorithm for an efficient identification of minimal
conflict sets, based on a table representation of the input and inspired by HS-DAG. While [87] aims
at computing the minimal diagnoses directly via non-minimal ones, conflicts are still computed and
used to prune the search space.

[43] proposed to directly manipulate logic models when searching for a diagnosis, without com-
puting conflicts. Via the notion of satisfiability, one can easily encode an MBD problem. That is,
introducing the corresponding variables AB(c) and connecting them to nominal behavior as above,
one searches in a single query for a solution (or all, depending on the engine) up to some problem
bound k limiting the diagnosis cardinality. Starting with 1, k is incrementally increased when no solu-
tion is found (anymore). As we search for all solutions in our scope (to be complete), we have to add
each diagnosis ∆ found as a blocking clause (in the form of ¬∆ when considering ∆ as conjunction of
its elements) to the problem, in order to exclude itself and its supersets from further search. This way,
the subset-minimality of derived diagnoses is ensured, and incrementally raising bound k enables us
to derive all diagnoses up to some desired cardinality. Essential, however, are a reasoning model and
an engine that allow us to limit k in the search.

[33] proposed to use MaxSAT in this respect, and implemented with MERIDIAN a corresponding
approach. Via Odd-Even Mergesort (OEMS) networks [10], or Cardinality Networks [4] this require-
ment can be easily encoded in the Boolean domain to be directly attached to a model (obviously one

93

Chapter 6. Extensions

could describe these networks also with constraints). An example approach in this direction is [83],
which uses constraints as intermediate format that are compiled into a Boolean satisfaction problem.
In this category we can place also [92] ConDiag (see Section 6.3), our algorithm capable of obtaining
diagnoses directly from a constraint description, using a general purpose constraint solver as reasoning
engine.

There is yet another category of diagnosis algorithms computing diagnoses directly from the model
without deriving hitting sets of conflicts. All these algorithms have in common that they are based on
tree-structured models. [32] and later [133] described algorithms that exploit tree-structured constraint
systems. [117] generalized these algorithms. [134] discuss the coupling of decomposition methods
for constraint satisfaction problems with tree-structured diagnosis algorithms, in order to make those
compatible with non-tree-structured models.

6.2. MCDiag Algorithm for Diagnosis

It is worth noting that the algorithm presented in Section 4.2.1 cannot only be used for reconfiguration
purposes. Moreover, someone might be interested in comparing the performance of such an algorithm
with more traditional diagnosis algorithms. Although, an in-depth comparison has been left for future
research, we have performed some initial experiments using the well-known ISCAS 85 benchmark
suite∗. We converted all circuits to the MINION input format and computed minimal cardinality
diagnoses for one test case. Note that in the experiments all minimal cardinality diagnoses are single
fault diagnoses. The results have been obtained, using a certain input for the circuit and changing one
output. The initial results are depicted in Figure 6.1.

When comparing the obtained results with other published diagnosis results, e.g., [106], we see that
the diagnosis time for the smaller circuits is similar. But for larger circuits MCDiag requires more
time. This comparison is of course not significant and further experiments are needed. However,
the results indicate that the direct computation of diagnosis using a constraint solver handling a more
expressive input language is feasible especially when the number of involved constraints is small
enough. It is worth noting that in our application domain the number of constraints is limited and
does not exceed several hundreds.

∗Available at http://www.cbl.ncsu.edu/benchmarks/

94

6.2. MCDiag Algorithm for Diagnosis

Table 6.1.: Diagnosis results obtained when using MINION for diagnosing ISCAS 85 circuits. Single
faults only. The experiments were carried out on a MacBook Pro 2.53 GHz Intel Core 2
Duo, 4 GB DDR3 RAM, under the OS X 10.6.7 operating system. The given running time
is a rounded average value over 3 runs.

Circuit Gates No. inputs No. outputs Constraints No. Diagnoses Running
without observations time [ms]

c17 6 5 2 12 1 <1
c432 160 36 7 320 38 45
c499 202 41 32 404 2 90
c880 383 60 26 766 19 490

c1355 546 41 32 1,092 5 2,400
c1908 880 33 25 1,760 5 9,065
c2670 1,193 233 140 2,386 1 23,390
c3540 1,559 50 22 3,118 15 60,700
c5315 2,307 178 123 4,614 1 150,670
c6288 2,406 32 32 4,812 109 211,840
c7552 3,512 207 108 7,024 117 189,495

95

Chapter 6. Extensions

6.3. ConDiag Algorithm

In order to be self-contained we briefly recall the basic definitions of model-based diagnosis [111]
and adapt them whenever necessary to fit our purpose. We start with the definition of a model based
on constraints. A constraint model comprises a set of variables, each associated with a domain, and
a set of constraints. Each constraint has a corresponding set of used variables, i.e., its scope, and
a definition of a relation between the variables from the scope. In the case of diagnosis, we are
interested in locating components that are responsible for a deviation between the observed and the
derived values for variables. Hence, we have to have means for representing correctness assumptions.
For each component j we introduce a variable nab j from the boolean domain IB = {0,1} (where 0
represent false, and 1 true) and assume that the constraints representing the behavior B j of j are of the
form nab j = 1→ B j. For describing the constraints, we further assume a language allowing to state
mathematical equations over certain domains comprising at least the Boolean domain , with operators
∧ (And), ∨ (Or), ¬ (Not),→ (Implies).

+

+
*

* A1

M1

M3

M2

A2

a

b

c

d

e

f

g

in1

in2
out

in1

in1

in1

in1

in2

in2

in2

in2

out

out

out

out

*

10

12

3

3

3

2

2

6

6

6

12

12

Figure 6.1.: The D74 circuit including observations and assuming all components to behave correctly.

We formalize the constraint model similar to a constraint satisfaction problem [24].

Definition 9 (Constraint model) A constraint model is a tuple (VAR,DOM,CON,COMP) where
VAR is a set of variables, DOM is a set of domains, CON is a set of constraints, and COMP is a

96

6.3. ConDiag Algorithm

set of components. The boolean domain IB has to be element of DOM. VAR comprises at least a
variable nab j with domain IB for each j ∈COMP.

For the (well-known) D74 circuit from Figure 6.1 the constraint model comprises the variables
VAR = {a,b,c,d,e, f ,g,x,y,z,nabM1,nabM2, nabM3,nabA1,nabA2} where x,y,z represent the internal
variables, i.e., the outputs of components M1 to M3. The domain of a,b, . . . ,y,z would be IN, hence
DOM = {IB, IN}. The behavior of the multiplication component M1 can be described using the con-
straint nabM1 = 1→ (a · c = x). The behavior of the other components can be described in a similar
way. For D74 we have the set COMP = {M1,M2,M3,A1,A2}.

Given a constraint model we are interested in finding a solution. For this purpose we first define an
instantiation, which is an assignment of a value from the respective domain to each variable defined
in the constraint model. A solution of a constraint model is an instantiation that does not contradict
any constraint. For example, assuming a = 2,c = 3,x = 5,nabM1 = 1 violates (or is in contradiction
to) the constraint nabM1 = 1→ (a · c = x).

Definition 10 (Constraint solution) Given a constraint model (VAR,DOM,CON,COMP). An in-
stantiation is a solution for the given constraint model, if no constraint is violated.

For example, the instantiation a = 2,b = 2,c = 3,d = 3,e = 2,x = 6,y = 6,z = 6, f = 12,g =

12,nabM1 = 1,nabM2 = 1, nabM3 = 1,nabA1 = 1,nabA2 = 1 is a solution of the D74 constraint model.

Because of the definition of constraint solutions a simple algorithm would only set variable values
and check whether each constraint does not violate the instantiation. There are of course better algo-
rithms for computing all solutions. We refer the interested reader to [24] for more details on constraint
solving and algorithms. From here on we assume an algorithm CSolver that given a set of constraints
returns ⊥ if no solution exists, or a set of solutions, otherwise.

The next step before defining diagnosis is to state the diagnosis problem. For this purpose we need
a constraint model and observations. Observations themselves are constraints over some variables
stating observed values or relationships. For the D74 example from Fig. 6.1, a = 2,b = 2,c = 3,d =

3,e = 2, f = 10,g = 12 are the constraints representing the observed values.

Definition 11 (Diagnosis problem) Given a constraint model M = (VAR,DOM,CON,COMP) and
a set of observations OBS. The tuple (M,OBS) states a diagnosis problem where the goal is to identify
those components of M that are the root cause for obtaining OBS.

97

Chapter 6. Extensions

In the vein of [111], we define diagnoses to be components that when assumed to behave faulty,
lead to a valid solution. What we have to do is to generate a set of constraints that represent the
model of the system, the observations, and the underlying assumptions, and to call a constraint solver
CSolver to check whether there are any solutions.

Definition 12 (Diagnosis 2) Given a diagnosis problem (M,OBS) with M =

(VAR,DOM,CON,COMP). A subset ∆ of COMP is a diagnosis if and only if
CSolver(SD∪OBS∪{nab j = 1| j ∈COMP\∆})∪{nab j = 0| j ∈ ∆}) 6=⊥

A diagnosis ∆ is minimal if there is no set ∆′ ⊂ ∆ that is itself a diagnosis for the same diagno-
sis problem. For the D74 example {M1} is a minimal diagnosis but {M2,M3,A2} is not because
{M2,M3} is already a diagnosis.

Before introducing the algorithm, we briefly describe ConDiag using the D74 circuit depicted in
Figure 6.1. When assuming all components to behave correctly, we see that a value of 10 is computed
for output f , which is in contradiction to the expected value of 12. Hence, we are interested in finding
a root cause, i.e., a set of components that when assumed to be faulty explains the observed behavior.
What we can do in the first place is to provide a diagnosis problem which comprises the constraint
model and the constraint representation of the observations. For the D74 we have the following
constraints MD74:



nabM1 = 1→ (a · c = x),
nabM2 = 1→ (b ·d = y),
nabM3 = 1→ (c · e = z),
nabA1 = 1→ (x+ y = f),
nabA2 = 1→ (y+ z = g),


∪



a = 2,
b = 2,
c = 3,
d = 3,
e = 2,
f = 10,
g = 12


A classical model-based diagnosis algorithm takes these constraints and tries to find a subset of

the set of components that when assumed to be incorrect, eliminates the contradiction. In case of a
constraint model we would set nab j to 1 if a component works as expected, and to 0, otherwise. This
can be done again by representing these value assignments as constraints. The consistency check can
be performed using a constraint solver. Such a procedure seems not to utilize the constraint solver

98

6.3. ConDiag Algorithm

as much as possible. Instead of only calling the constraint solver for checking consistency, we use it
directly for computing diagnoses of a particular size.

What we want to do is to call CSolver(MD74), which tries to find a solution for the given constraint
model. A solution in constraint solving is a variable assignment, i.e., an instantiation, where all
constraints are fulfilled. If there is a solution, we know that it also assigns a value for each variable
nab j. Since a diagnosis is also such an assignment, the constraint solver returns directly diagnoses. In
order to compute single or double faults, the only thing to do is to state this again using constraints.
For single faults we only have to say that the sum of all nab j should be the number of all components
minus 1. For double faults it is minus 2, and so on.

Let us assume that for the D74 we are interested in single faults. Hence, we call the constraint
solver again but this time using MD74∪{nabM1 +nabM2 +nabM3 +nabA1 +nabA2 = 4}. The CSolver

call would return either nabM1 or nabA1 to be 0 and the other nab variables to be set to 1. If after
computing single faults we are interested in double faults, we are able to call again CSolver, but
this time adding nabM1 + nabM2 + nabM3 + nabA1 + nabA2 = 3. In this case we would obtain all
double diagnoses but unfortunately also all supersets of single diagnoses, which are obviously per
definition also diagnoses. The reason here is that the constraint solver would not have any information
regarding minimality. Consequently, we have to provide this information and again we can use this
by stating that we are not interested in diagnoses that we already calculated. For our example we add
the constraint ¬(nabM1 = 0∨nabA1 = 0), which formalizes that we are not interested in solutions that
either include M1 or A1 anymore.

We are able to generalize this principle. Let DS = {∆1, . . . ,∆k} be all diagnoses already ob-
tained. Each diagnosis ∆i is a subset of COMP but can be interpreted as stating all components
to be faulty. Let us assume a function C that maps a diagnosis to its constraint interpretation,
i.e., C (∆) =

∧
c∈∆(nabc = 0). Then we are able to define also a constraint interpretation C for

DS, which is nothing else than a disjunction of the constraint interpretation of every diagnosis, i.e.,
C (DS) = C (∆1)∨ . . . ∨C (∆k). Finally, we only have to negate C (DS) and add this constraint to the
constrain model in order to prevent CSolver from computing supersets of already computed diagnoses.

We have discussed all ingredients of ConDiag, i.e., restricting the computation of diagnoses to a
particular size, and avoiding supersets of already computed diagnoses. Algorithm 3 gives the algo-
rithmic description of ConDiag. The constrain model M and the maximum size of diagnoses n to be
computed have to be provided as input. ConDiag computes a set of minimal diagnoses of size less
equal to n. In the algorithm we use a function P that extracts the components j where nab j is 0 from

99

Chapter 6. Extensions

Algorithm 3 ConDiag(M,n)

Input:A constraint model M and the desired diagnosis cardinality n
Output: All minimal diagnoses up to the predefined cardinality n

1: Let DS be {}
2: for i = 0 to n do

3: CM = M∪

{
|COMP|

∑
j=0

nab j = |COMP|− i

}
4: S = P (CSolver(CM))

5: if i is 0 and S is {{}} then
6: return S
7: end if
8: Let DS be DS∪S.
9: M = M∪{¬(C (S))}

10: end for
11: return DS

each solution. Hence, after applying P only the diagnoses remain.

The algorithm starts by setting the already found diagnoses to the empty set. Afterwards, there is
a loop starting from 0 to the maximum given size of diagnoses. Within the loop we first construct
the constraint model to be used when calling the constraint solver CSolver. The result of this call is
mapped to the diagnoses. In case there is no fault, i.e., when there is no contradiction occurring when
setting all nab variables to 1, we are ready and return the empty set as the only diagnosis. Otherwise,
we add the diagnoses to the set of diagnoses (Step 8). In Step 9 the algorithm adds information of the
already computed diagnoses for the next iteration. Obviously, ConDiag terminates and computes all
minimal diagnoses.

In order to evaluate the performance of ConDiag, we performed some initial experiments using the
well-known ISCAS 85 benchmark suite.

Our evaluation is based on a Java implementation of ConDiag. For the implementation we chose
a state of the art constraint solver - the MINION solver [46]. Because the currently interface be-
tween ConDiag and the MINION solver works via calling MINION using a Shell and extracting the
solutions again from the MINION printouts at the Shell, there is an extra running time overhead.

100

6.3. ConDiag Algorithm

Unfortunately, MINION does currently not offer a direct interface to Java.

The input language of the solver provides many alternatives for modeling the circuit. This can
lead to significant differences in terms of solving times. Implicitly, the time needed by the solver
to compute the solution for the constraint problem has a great impact on the performance of the
introduced algorithm. Hence the solving time depends not only on the execution time of the algorithm,
but also on how the constraints propagate.

We consider circuits containing AND, OR, NAND, NOR, XOR, XNOR, NOT and BUFFER
gates, and define the model via the following MINION constraints: the minimality and maximal-
ity constraints min(vector,value) and max(vector,value), the equality and dis-equality constraints
eq(var1,var2) and diseq(var1,var2) and the two forms of reification provided by the language, i.e.,
reify(constraint,valuebool) and reifyimply(constraint,valuebool). For details on the solver specific
constraints please refer to MINION’s documentation†.

Considering Reiter’s diagnosis formulations and the various gate types, with Table 6.2
offering the nominal behavior for Boolean gates, we add for each gate j a constraint
reifyimply(NominalBehavior, !AB[j]) with AB a vector defining each gate j’s status abnor-
mal (AB[j] = 1) or not (AB[j] = 0). While observations are encoded straightforward via
eq(variable,value), the desired diagnosis cardinality is defined via sumleq(AB, i) and sumgeq(AB, i),
requiring the sum of abnormal components to be equal to i. Furthermore, at the end of each loop iter-
ation, the constraint model is extended with blocking constraints for diagnoses obtained in the current
iteration:

watched-or(({eq(AB[x],0), ..,eq(AB[z],0)})︸ ︷︷ ︸
i equality constraints

,

if the current size of diagnosis is i > 1, or with eq(AB[x],0)), otherwise.

Table 6.3 and Table 6.4 show the obtained solutions for the ISCAS 85 circuits where we used three
different input-output vectors for the experiments. We measured the running times when computing
all minimal diagnoses up to cardinality 3. The given running time Tavg is the average value over the
3 runs. In addition the tables also give the minimum and maximum number of obtained diagnosis
solutions NoSmin and NoSmax respectively again for the 3 runs. All the experiments were performed
on a notebook with Intel(R) Core(TM) i7 CPU 1.73 GHz and 4 GB of RAM running under Windows
7. Note also that we do not provide any solutions in the tables if the solving time exceeded 600

† http://minion.sourceforge.net/htmlhelp/index.html

101

Chapter 6. Extensions

Table 6.2.: MINION models for various gate types.
Gate Model MINION encoding
AND out = min(in1, in2) min([in1,in2],out)

OR out = max(in1, in2) max([in1,in2],out)

NAND ¬out = min(in1, in2) min([in1,in2],!out)

NOR ¬out = max(in1, in2) max([in1,in2],!out)

XOR out = 1⇔ in1 6= in2 reify(diseq(in1,in2), out)

XNOR ¬out = 1⇔ in1 6= in2 reify(diseq(in1,in2), !out)

NOT out 6= in diseq(in,out)

BUF out = in eq(in,out)

seconds at least for one test case. In this case even successful remaining test cases are not considered
in the table. Such cases where the running time is exceeded are marked with n.a. in the table.

We highlight the importance of the coding by presenting two sets of results, which were obtained
for the same circuits and the same set of observations, but with two different implementations of the
constraint model. Note that the number of constraints used to model the system is the same in both
situations. In this case, the minimality constraints

min(vector,value)

for instance coupled with the reification constraints

rei f yimply(constraint,valuebool)

get a much better propagation than

watched−or(constraint1, ...,constraintn)

and

table(vector,constraintsextension)

constraints. Hence, it seems that using tables for representing the behavior of gates slows down the
whole constraint solving process at least for MINION. For more details about the MINION constraints
we refer the interested reader to the MINION manual‡. In order to show the time differences, have for
instance a look at the running time for gate c6288. When computing the double fault diagnosis, the

‡http://minion.sourceforge.net/manual.html

102

6.3. ConDiag Algorithm

Table 6.3.: Diagnosis results obtained when running ConDiag on ISCAS 85 constraint models with the less efficient MINION coding.
We are interested in the running times for computing all minimal diagnoses of size 1, 2, and 3. For each circuit and
diagnosis cardinality, we present the average solving time over 3 runs Tavg and the minimum and maximum number of
solutions NoSmin, NoSmax.

Circuit
Single faults Double faults Triple faults

Tavg NoSmin NoSmax Tavg NoSmin NoSmax Tavg NoSmin NoSmax

[s] [s] [s]

c17 0.0052 2 2 0.0104 1 1 0.0052 0 0
c432 0.2340 11 38 0.3432 0 72 0.5668 0 18
c499 0.3328 2 2 1.1856 28 28 15.8527 523 523
c880 0.7020 0 0 2.4284 0 0 26.4159 0 0
c1355 2.7612 0 5 86.5129 190 190 n.a. n.a. n.a.
c1908 9.2352 5 5 109.2785 0 0 n.a. n.a. n.a.
c2670 20.8417 1 1 21.1745 1 3 n.a. n.a. n.a.
c3540 37.2582 15 2 n.a. 0 n.a. n.a. 0 n.a.
c5315 138.3620 1 68 n.a. n.a. n.a. n.a. n.a. n.a.
c6288 38.2825 0 1 109.5279 0 109 n.a. 0 n.a.
c7752 184.6576 10 117 n.a. 0 n.a. n.a. n.a. n.a.

solver needs 109 seconds to execute using the model with the table constraints, whereas the improved
model needs a hundred times less, which means in this case that the solution can be computed in 1
second (see Tables 6.3 and 6.4).

Table 6.4.: Diagnosis results obtained when running ConDiag on ISCAS 85 constraint models with more efficient MINION coding. We
are interested in the running times for computing all minimal diagnoses of size 1, 2, and 3. For each circuit and diagnosis
cardinality, we present the average solving time over 3 runs Tavg and the minimum and maximum number of solutions
NoSmin, NoSmax.

Circuit
Single faults Double faults Triple faults

Tavg NoSmin NoSmax Tavg NoSmin NoSmax Tavg NoSmin NoSmax

[s] [s] [s]

c17 0.0104 2 2 0.0000 1 1 0.0052 0 0
c432 0.0364 11 38 0.0468 0 72 0.1404 0 18
c499 0.0468 2 2 0.1508 28 28 2.3088 523 523
c880 0.0624 0 0 0.1352 0 0 1.4352 0 0
c1355 0.1352 0 5 7.2800 25 190 n.a. n.a. n.a.
c1908 0.3172 5 5 5.1480 0 0 534.4276 0 0
c2670 0.5252 1 1 0.5304 1 3 47.9858 1 18
c3540 0.4472 2 15 108.7845 0 274 0.234 0 n.a.
c5315 1.7628 1 68 n.a. n.a. n.a. n.a. n.a. n.a.
c6288 0.2808 0 1 1.0348 0 109 n.a. 0 n.a.
c7552 2.2152 10 117 n.a. n.a. n.a. n.a. n.a. n.a.

103

Chapter 6. Extensions

6.4. Run-Time Performance Trends - A Comparison of Diagnosis

Algorithms

With available computation resources growing continuously, AI-based diagnosis approaches are gain-
ing in attraction for more and more practical purposes. This leaves us with the question of which
approach to implement for a certain project. Some approaches, e.g. [111, 48, 23, 128], exploit the fact
that diagnoses are related to conflicts in the assumption that the system components operate correctly,
as deduced from actually observed system behavior and a system model. Others, e.g. [43, 33, 83, 92],
derive a consistent assumption on the system’s components’ status directly, without considering con-
flicts. Common to all is the use of some reasoning engine/ theorem prover to derive hypotheses or
verify their validity (and optionally to derive corresponding conflicts).

In this section, we are going to investigate run-time performance trends for various instances of
these two general approaches. For our tests, we used a publicly available diagnosis engine, and
implemented selected algorithms for both variants on top of different reasoning engines utilized for
the verification of hypotheses deduced during computation. That is, our different setups use a horn-
clause theorem prover developed specifically for diagnosis purposes, two general purpose satisfiability
solvers, as well as a general purpose constraint solver. The details of the individual setups and their
engines are discussed in Section 6.4.1.

6.4.1. Selected Diagnosis Algorithms

Our six setups compare several conflict-driven search algorithms with approaches based on a more
direct reasoning, varying the underlying reasoning engines. As we are interested in the performance
one can achieve with off-the-shelf tools, we use corresponding publicly available reasoning engines.
Also note that, on purpose, we do not apply any pre- or post-processing steps as used in other publi-
cations for speedups, e.g. [22, 83]. To be fair, these pre-processing steps would have to be included
in every setup, so the effects should be comparable, and our aim is not on the efficiency of such
optimizations but the efficiency of the two general concepts. In practice, one certainly will explore
model-optimizations suitable for a specific project and the corresponding problem domain, our scope
is, however, the general diagnosis approach performance behind search concepts.

Besides ConDiag, we selected two other algorithms for computing diagnosis directly:(1) using
a MaxSAT problem and (2) by introducing cardinality constraints in a pure SAT search approach.

104

6.4. Run-Time Performance Trends - A Comparison of Diagnosis Algorithms

The setup based on the ConDiag algorithm will be further depicted as Direct-MSCS. MERIDIAN’s
approach [33] was implemented for our setup Direct-MSSAT, while our second direct SAT setup
Direct-CNSAT is based on cardinality constraints (networks) as proposed in, for example, [27, 83]. For
more details regarding the direct SAT setups we refer the reader to [97].

The conflict-based setups peruse diagnosis algorithms that compute the subset of conflicts needed
on-the-fly, which is an attractive feature for practical applications. There, one often restricts the
maximum cardinality in order to keep the search space (and in turn the set of required conflicts)
as small as possible. In our analysis, we included two conflict-driven setups using a SAT solver
and HS-DAGHC using the publicly available diagnosis engine JDiagengine §. The first SAT based
setup, HS-DAGSAT, is based on Greiner et al’s improved version of Reiter’s idea, whereas the second,
HSTSAT, implements the Wotawa’s variant HST of Reiter’s idea that tries to avoid constructing nodes
that would be pruned by HS-DAG. In case of HS-DAGHC, JDiagengine engine implements a conflict-
driven search via HS-DAG. In contrast to the corresponding setup HS-DAGSAT, it however exploits
a Horn-clause reasoning engine [84] instead of a general SAT-solver. [106] described the diagnosis
engine and initial results in more detail. It is worth noting that their approach is similar to the one in
[89]. For more details regarding the direct conflict-driven setups we refer the reader to [97].

6.4.2. Empirical Results

Like [123], we used ten combinational circuits from the well-known ISCAS85 benchmark suite¶ for
our tests, run on an Apple MacPro4,1 (early 2009) computer featuring an Intel Xeon W3520 quad-
core processor, 16 GiB of RAM and running an up-to-date version of OS X 10.8. The algorithms were
implemented in Java 1.6 (HS-DAGHC and Direct-MSCS) and CPython 2.7 (HSTSAT, Direct-MSSAT and
Direct-CNSAT), while for the theorem provers we used MINION 0.15, Yices 1.0.29 and SCryptoMin-
isat (29/01/2012) based on CryptoMiniSat 2.5.1.

It is worth noting that, due to the underlying complexity, the ISCAS85 circuits provide a profound
base for experiments, so that, e.g., [139] perused the ISCAS85 structure to develop a more general
benchmark suite for diagnosis. In Table 6.5, we list circuit details, including their function ranging
from Arithmetic Logic Units (ALU)s, via interrupt controllers, adders/comparators and multipliers to
single-error correction/double-error detection (SEC/DED) circuits.

§http://www.ist.tugraz.at/modremas/downloads.html
¶http://www.cbl.ncsu.edu:16080/benchmarks/ISCAS85/

105

Chapter 6. Extensions

Table 6.5.: ISCAS85 circuit statistics plus the number of variables/literals (#V/#L) and con-
straints/clauses (#Co/#Cl) for each depicted algorithm’s models (excluding blocking con-
strains/clauses).

HS-DAGHC HS-DAGSAT HSTSAT Direct-CNSAT Direct-MSSAT Direct-MSCS

Circuit Function #L #Cl #V #Co #V #Co #V #Cl #V #Co #V #Co
c432 27-ch. interrupt controller 5391 1497 356 321 356 321 990 1509 356 321 197 205
c499 32-bit SEC circuit 8350 2262 445 405 445 405 1247 1991 445 488 244 277
c880 8-bit ALU 10293 3099 826 767 826 767 2358 3495 826 797 444 471

c1355 32-bit SEC circuit 14758 4398 1133 1093 1133 1093 3311 4951 1133 1097 588 621
c1908 16-bit SEC/DED circuit 21555 6345 1793 1761 1793 1761 5307 7708 1793 1765 914 940
c2670 12-bit ALU and controller 30021 9144 2619 2387 2619 2387 7391 10723 2619 2388 1427 1492
c3540 8-bit ALU 41653 12277 3388 3339 3388 3339 10064 14693 3388 3369 1720 1743
c5315 9-bit ALU 62098 18251 4792 4615 4792 4615 14020 20835 4792 4615 2486 2610
c6288 16-bit multiplier 65008 19328 4864 4833 4864 4833 14522 21768 4864 4917 2449 2482
c7752 32-bit adder/comparator 86791 25977 7231 7025 7231 7025 21273 31034 7231 7031 3720 3828

Table 6.6.: Diagnosis samples solved (out of 100).

Direct-MSCS 100 68 27
Direct-CNSAT 100 89 64
Direct-MSSAT 100 65 35
HS-DAGHC 87 0 0
HS-DAGSAT 100 86 57

HSTSAT 100 85 54

Into each circuit, we randomly injected ten single-, double- and triple-faults, aggregating test suites
TS1, TS2 and TS3 respectively. We injected faults by changing a gate’s Boolean function such that
at least one circuit output flipped. When modifying the second and third gate, we allowed only
previously unaffected outputs to flip, in order to prevent faults from masking each other. Injected
faults were verified to be indeed a minimal diagnosis.

The measured run-time represents the total, user-experienced diagnosis time, including commu-
nication with the solvers. For all algorithms we established a run-time limit of 200 seconds. For
HS-DAGHC we further set a limit of 100 diagnoses (whose computation always exceeded 200 sec-
onds) as a precaution. In our tables and figures, we do not include any results for timed-out samples,

106

6.4. Run-Time Performance Trends - A Comparison of Diagnosis Algorithms

0

50

100

150

200

250

300

-2 -1 0 1 2 3 4

nu
m

be
ro

fs
am

pl
es

so
lv

ed

cumulative run-time (10y sec.)
HS-DAGHC
Direct-CNSAT

HS-DAGSAT
Direct-MSSAT

HSTSAT
Direct-MSCS

Figure 6.2.: Number of diagnosis samples solved over time.

so that accordingly, for example, in Table 6.7 reporting statistical data, average values are missing.
Whenever available we report, however, the minimal and median values.

In Table 6.7 we present from top to bottom the run-times for computing single-fault diagnoses for
TS1, up to double-fault ones for TS2 and diagnoses up to a size of three for TS3. For clarity, we put
the best values per category and circuit in bold face. For Figure 6.2, we ordered all samples from TS1

to TS3 according to their run-time, and report the amount of samples solved for growing cumulative
time. The amount of completed samples per test suite and setup is given in Table 6.6.

Specifically in the context that we did not exploit model-optimization concepts, like cones of influ-
ence, Table 6.7 suggests that any algorithm offers attractive performance, when taking into account
single-fault diagnoses for these circuits. HS-DAGHC and Direct-MSCS match each other for the crown,
where like all other approaches, the latter has the disadvantage of relying on an external reasoning
engine. The first could also, even for TS1 only, complete fewer samples (see Table 6.6), so that
Direct-MSCS becomes even more interesting despite HS-DAGHC’s advantage for small samples, as
evident also in Figure 6.2.

The other conflict driven setups HS-DAGSAT and HSTSAT performed similarly for all test suites
(see Table 6.7) with a slight advantage for the first (see Figure 6.2), which could also solve slightly
more samples (see Table 6.6). It is beaten, however, specifically in the completion rate, by the best
performing direct SAT setup.

Between the two direct SAT setups Direct-CNSAT and Direct-MSSAT, the latter is superior (best seen

107

Chapter 6. Extensions

Table 6.7.: Run-time in seconds for computing single-, up to double-, and up to triple-fault diagnoses
for TS1, TS2 and TS3 respectively (top to bottom).

HS-DAGHC HS-DAGSAT HSTSAT Direct-CNSAT Direct-MSSAT Direct-MSCS

Circuit MIN MAX AVG MED MIN MAX AVG MED MIN MAX AVG MED MIN MAX AVG MED MIN MAX AVG MED MIN MAX AVG MED
c432 0.003 0.212 0.049 0.016 0.047 0.543 0.213 0.130 0.059 0.631 0.254 0.149 0.045 0.100 0.062 0.050 0.062 1.202 0.402 0.194 0.042 0.086 0.051 0.047
c499 0.005 0.031 0.015 0.007 0.057 1.172 0.501 0.071 0.079 1.381 0.603 0.105 0.059 0.662 0.285 0.151 0.122 3.533 1.410 0.165 0.047 0.098 0.066 0.054
c880 0.005 0.053 0.022 0.013 0.099 1.911 0.673 0.584 0.140 2.169 0.791 0.677 0.081 0.403 0.208 0.200 0.201 4.540 1.591 1.405 0.049 0.099 0.072 0.075

c1355 0.053 0.341 0.121 0.067 0.269 9.631 1.266 0.302 0.324 10.60 1.421 0.354 0.232 1.905 0.415 0.245 0.587 24.24 8.087 1.931 0.103 0.677 0.218 0.106
c1908 0.018 86.42 9.007 0.557 0.236 4.326 2.068 2.471 0.310 4.795 2.369 2.862 0.424 2.050 1.015 0.989 0.459 68.48 12.37 6.724 0.187 0.227 0.209 0.211
c2670 0.013 2.663 0.380 0.063 0.340 6.000 3.105 3.251 0.415 6.329 3.384 3.678 0.298 3.225 1.609 1.683 0.544 13.19 6.990 7.689 0.081 0.345 0.237 0.231
c3540 0.047 0.255 1.331 6.473 4.105 4.308 1.650 7.306 4.728 4.878 1.651 5.081 2.883 2.728 2.789 14.91 9.021 9.409 0.230 0.604 0.475 0.495
c5315 0.040 5.613 0.905 0.204 0.484 21.80 5.821 2.549 0.668 24.98 7.038 3.086 0.767 12.01 4.526 3.135 0.813 51.77 12.82 4.717 0.138 1.341 0.843 0.860
c6288 0.151 47.82 3.561 25.14 15.22 15.38 4.257 29.90 17.73 17.53 3.725 12.32 8.084 7.961 6.829 164.8 85.64 97.75 0.294 1.260 0.953 1.166
c7752 0.177 17.06 3.465 0.702 1.897 42.34 11.07 3.782 2.256 47.50 12.68 4.439 5.310 31.34 11.32 6.652 2.518 102.8 24.40 6.043 1.735 3.081 2.116 1.906

c432 0.077 1.253 0.434 0.346 0.108 1.463 0.503 0.397 0.071 0.250 0.123 0.111 0.089 3.778 1.185 0.937 0.064 0.297 0.197 0.215
c499 0.088 2.359 0.380 0.130 0.119 2.754 0.459 0.179 0.094 0.499 0.145 0.103 0.147 9.802 1.319 0.302 0.326 0.367 0.344 0.340
c880 0.536 16.68 5.060 2.537 0.605 18.92 5.837 2.981 0.278 3.518 1.182 0.672 1.220 55.33 16.39 8.300 0.179 3.539 2.016 2.687

c1355 1.128 5.541 2.496 1.189 1.322 6.285 2.878 1.454 0.583 1.584 0.901 0.620 6.229 45.13 21.14 18.39 10.27 12.10 10.57 10.39
c1908 0.600 110.4 25.86 15.18 0.744 135.0 30.80 17.25 0.827 42.00 9.483 5.215 2.004 73.59 0.884 131.5 44.07 42.42
c2670 0.498 171.0 54.08 24.75 0.581 28.25 0.918 78.49 24.68 10.76 0.874 149.2 0.277 52.22
c3540 8.370 151.1 61.84 38.60 9.531 178.9 72.07 43.10 5.678 81.42 33.21 19.91 29.93 37.94
c5315 0.618 21.31 0.782 23.32 2.782 169.0 34.50 16.39 0.704 53.21 0.335
c6288 47.65 52.59 32.42 16.50
c7752 18.72 21.16 20.83 0.176

c432 0.181 9.056 2.068 1.218 0.236 11.97 2.636 1.492 0.102 1.404 0.356 0.243 0.355 84.16 11.68 4.621 0.320 6.315 1.553 0.710
c499 0.131 6.145 1.085 0.262 0.221 7.708 1.377 0.387 0.120 1.130 0.275 0.139 0.202 67.47 8.884 0.822 12.19 14.56 13.13 12.88
c880 0.581 15.89 0.705 18.77 0.355 103.7 19.53 3.429 1.127 76.68 0.365 8.907

c1355 5.314 16.16 7.035 19.15 1.834 71.54 11.37 4.810 105.8
c1908 7.677 9.041 3.185 67.78 90.96
c2670 1.372 1.596 1.610 83.13 3.640
c3540 41.36 46.70 21.28
c5315 12.81 13.92 10.45 25.96
c6288
c7752 5.165 5.898 10.05 7.247 2.062

in Figure 6.2 and Table 6.6). Due to internal tests with a Direct-CNSAT version computing a single
solution per query, we can state that a large (but varying) part of the advantage comes from the fewer
amount of theorem prover calls, besides the use of cardinality networks.

In the comparison between Direct-MSCS using constraints and the best direct SAT setup
Direct-CNSAT, we see some advantages for the first in TS1, which changes with higher maximum
cardinalities for TS2 and TS3. Presumably due to better performance for larger samples, Direct-CNSAT

completes more samples within the given time limit (see Figure 6.2 and Table 6.6). While this might
suggest better scalability for the SAT-based setup, we do assume this to be very domain-dependent.
That is, for models with larger domains, this might actually be different.

108

Chapter 7
Conclusions and Future Work

In this thesis, we have presented our research work, conducted within an industrial project, where
the main objective was to develop a simulation and reconfiguration environment for smart metering
applications. In particular, we were interested in reconfiguring a mobile network in case of bottle-
necks caused by requirements coming from future M2M applications. In order to handle simulation
and reconfiguration based on the same underlying information and to cope with the fast-paced M2M
application domain, we have adopted a flexible, model-based approach - the SIMOA approach.

For this purpose, we have designed SIMOL - a general, object-oriented modeling language, capable
of specifying the structure and dynamic behavior of systems, as well as the (re-)configuration infor-
mation and requirements. Currently, the language allows to state constraints dealing with Boolean
and Integer values and also arrays can be used for modeling. The limitation regarding the mapping
of SIMOL Integer attributes to DISCRET E variables in MINION was discussed in Section 3.5.1. In
our current implementation, the lower bound of the range for DISCRET E variables is always 0, while
the upper bound can be internally determined from the variable’s type. However, such a strict internal
limitation is not preferred, as it may happen that a result of a computation, specified in form of a
SIMOL arithmetic expression, will exceed the defined upper limit and, in this case, MINION will not
report on the error. Extensions in the direction of handling floats or strings can be implemented, but
require to change the underlying reasoning engine. In addition, models written in SIMOL might be
described over discrete time.

As we have already seen, there are many languages and packages used for simulation in industry.

109

Chapter 7. Conclusions and Future Work

However, these languages are mainly optimized towards simulation and therefore can be hardly used
for reconfiguration. In particular, such languages do not allow under-constrained models, which are
necessary for our reconfiguration purpose, when searching for appropriate modes that do not contra-
dict the given requirements, while ensuring that the desired functionality can be fulfilled.

Note that we can find some similarities between Modelica and SIMOL, as both languages try to
unify object-oriented modeling concepts, but there are also many differences including the tight inte-
gration of component modes in case of SIMOL and the handling of discrete time. While in Modelica
both continuous and discrete-event modeling of physical systems is possible, in SIMOL, we have
decided to model only discrete time via states. As a limitation of our approach we mention here the
predefined number of states, over which the SIMOL model is simulated. In our experiments, we have
mostly used from five up to ten states, irrespective of the number of varying attributes . However, the
maximum number of states within a reconfiguration model depends on the number of varying com-
ponents’ attributes in the model and for complex systems this could go up to several hundreds or even
more.

The general need of easy to learn and use modeling languages that are expressive enough to state
configuration problems was detected by many researchers and also tackled in the present thesis. There-
fore, the general expressiveness of SIMOL was analyzed and demonstrated by means of modeling
different systems, like, for instance, the combinational circuits from the well-known ISCAS85 bench-
mark suite.

Besides SIMOL, we have discussed the implemented reconfiguration mechanism, based on two
diagnosis algorithms, the first - MCDiag - aimed at computing minimal cardinality diagnosis and
a second one - ConDiag - which guarantees to compute minimal diagnosis up to a predefined car-
dinality. Note that the reconfiguration algorithms derive solutions directly from the constraints, i.e.,
equations coming from SIMOL. This distinguishes our approach from other similar approaches where
search for valid configurations is often based on conflicts and conflict resolution. First empirical re-
sults indicated that computation is sufficiently fast and that the results are within expectations. In the
future we plan to further evaluate this approach.

Moreover, although, up to now, the SIMOA approach to reconfiguration has been applied to the
M2M communication domain, it is not restricted to this domain. Any reconfiguration problem that
can be represented using the underlying modeling language SIMOL can also be solved using the pro-
posed SIMOA approach. Within the developed SIMOA prototype, SIMOL is converted in MINION
constraints, but this does not restrict the approach since changing constraint solvers is still possible,

110

only the conversion of SIMOL has to be adapted.

Another important aspect is the novelty of applying AI configuration techniques to the machine-to-
machine communication domain. Although configuration of technical products from various domains
is a well researched field, its application to the M2M domain that requires M2M specific compo-
nents and the used communication infrastructure is, to our knowledge, new. Moreover, in contrast to
previous work in configuration, we have models that capture the temporal aspects of a real system.

As extension to our work on simulation and reconfiguration, we provided an in depth run-time
comparison of ConDiag (using the MINION constraint solver as underlying engine) against other
five setups using publicly available reasoning engines. Although the setup based on ConDiag was,
on average, slightly outperformed by the SAT setup based on cardinality constraints networks, we
expect a comparison to be domain-dependent. That is, for model domains more complex than the
Boolean one of our circuits, future research will have to identify corresponding trends. Note that no
further simplifications and optimizations has been used for speeding up the constraint solver. Hence,
future research includes optimizing the used MINION models. Of course, also the evolvement of SAT
and constraint solvers will influence this choice. In this sense, another interesting task would be the
implementation of ConDiag with the currently top-performing constraint solver Gecode [45, 122].

111

112

List of Theorems
and Definitions

List of Definitions

1. Reconfiguration problem 1 . 62

2. Reconfiguration 1 . 62

3. Reconfiguration problem 2 . 66

4. Mode assignment . 67

5. Reconfiguration 2 . 67

6. Number of changes . 67

7. Diagnosis 1 . 92

8. Conflict . 92

9. Constraint model . 96

10. Constraint solution . 97

11. Diagnosis problem . 97

12. Diagnosis 2 . 98

113

114

Bibliography

[1] 2001. SysML. OMG Systems Modeling Language (OMG SysML) v1.0 Specification. (Cited on
page 20.)

[2] 2004. EXPRESS. 10303-11 ISO - Part 11: The EXPRESS language reference manual. (Cited on
page 20.)

[3] ALBRECHT, M. C. 2010. Introduction to Discrete Event Simulation. [online; accessed June
2013]. (Cited on pages 16, 18, 27, and 28.)

[4] ASÍN, R., NIEUWENHUIS, R., OLIVERAS, A., AND RODRÍGUEZ-CARBONELL, E. 2009. Car-
dinality Networks and Their Applications. Theory and Applications of Satisfiability Testing – SAT
2009 5584, 167–180. (Cited on page 93.)

[5] AXLING, T. AND HARIDI, S. 1994. A Tool For Developing Interactive Configuration Applica-
tions. (Cited on page 25.)

[6] BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-SCHNEIDER,
P. F., Eds. 2003. The description logic handbook: theory, implementation, and applications. Cam-
bridge University Press, New York, NY, USA. (Cited on page 21.)

[7] BALCI, O. 1988. The implementation of four conceptual frameworks for simulation modeling
in high-level languages. In Proceedings of the 20th conference on Winter simulation. WSC ’88.
ACM, New York, NY, USA, 287–295. (Cited on page 19.)

[8] BANKS, J. 1999. Introduction to simulation. In Proceedings of the 31st conference on Winter
simulation: Simulation—a bridge to the future - Volume 1. WSC ’99. ACM, New York, NY, USA,
7–13. (Cited on page 29.)

115

Bibliography

[9] BANKS, J. AND CARSON, II, J. S. 1986. Introduction to discrete-event simulation. In Proceed-
ings of the 18th conference on Winter simulation. WSC ’86. ACM, New York, NY, USA, 17–23.
(Cited on pages 15 and 16.)

[10] BATCHER, K. 1968. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, spring joint computer conference. 307–314. (Cited on page 93.)

[11] BATORY, D. 2005. Feature models, grammars, and propositional formulas. In Proceedings
of the 9th international conference on Software Product Lines. SPLC’05. Springer-Verlag, Berlin,
Heidelberg, 7–20. (Cited on page 20.)

[12] BENAVIDES, D., SEGURA, S., AND RUIZ-CORTÉS, A. 2010. Automated analysis of feature
models 20 years later: A literature review. Inf. Syst. 35, 6 (Sept.), 615–636. (Cited on page 20.)

[13] BENJAMIN, P., PATKI, M., AND MAYER, R. 2006. Using ontologies for simulation model-
ing. In Proceedings of the 38th conference on Winter simulation. WSC ’06. Winter Simulation
Conference, 1151–1159. (Cited on page 19.)

[14] CHANDRASEKARAN, B., JOSEPHSON, J. R., AND BENJAMINS, V. R. 1999. What Are On-
tologies, and Why Do We Need Them? IEEE Intelligent Systems 14, 1 (Jan.), 20–26. (Cited on
page 23.)

[15] CHEN, M. 2004. OPNET Network Simulation. Press of Tsinghua University. (Cited on
page 27.)

[16] CHESS. 2002-2013. Ptolemy. [online; accessed June 2013]. (Cited on pages 28 and 29.)

[17] CROW, J. AND RUSHBY, J. 1991. Model-based reconfiguration: Toward an integration with
diagnosis. In Proceedings of the National Conference on Artificial Intelligence (AAAI). The MIT
Press, 836–841. (Cited on page 69.)

[18] CUNIS, R., GÜNTER, A., SYSKA, I., PETERS, H., AND BODE, H. 1989. Plakon - an approach
to domain-independent construction. In IEA/AIE (2). 866–874. (Cited on pages 17 and 25.)

[19] CZARNECKI, K., HELSEN, S., AND EISENECKER, U. 2005. Formalizing cardinality-based
feature models and their specialization. In Software Process: Improvement and Practice. 2005.
(Cited on page 20.)

[20] DAHL, O.-J. AND NYGAARD, K. 1966. SIMULA: an ALGOL-based simulation language.
Commun. ACM 9, 9 (Sept.), 671–678. (Cited on page 18.)

116

Bibliography

[21] DE KLEER, J. 1986. An assumption-based TMS. Artificial Intelligence 28, 127–162. (Cited on
pages 26, 61, and 93.)

[22] DE KLEER, J. 2011. Hitting set algorithms for model-based diagnosis. In 22nd Int. Workshop
on the Principles of Diagnosis. 100–105. (Cited on page 104.)

[23] DE KLEER, J. AND WILLIAMS, B. C. 1987. Diagnosing multiple faults. Artificial Intelli-
gence 32, 1, 97–130. (Cited on pages 61, 66, 93, and 104.)

[24] DECHTER, R. 2003. Constraint Processing. Morgan Kaufmann. (Cited on pages 60, 96,
and 97.)

[25] DOYLE, J. 1979. A Truth Maintenance System. Artif. Intell. 12, 3, 231–272. (Cited on page 26.)

[26] DYNASIM. Dymola. [online; accessed June 2013]. (Cited on page 27.)

[27] EÉN, N. AND SÖRENSSON, N. 2006. Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 3-4, 1–25. (Cited on page 105.)

[28] EKER, J., JANNECK, J., LEE, E. A., LIU, J., LIU, X., LUDVIG, J., SACHS, S., XIONG, Y.,
AND NEUENDORFFER, S. 2003. Taming heterogeneity - the Ptolemy approach. Proceedings of
the IEEE 91, 1, 127–144. (Cited on page 29.)

[29] EMDE, W., BEILKEN, C., BORDING, J., ORTH, W., PETERSEN, U., RAHMER, J., SPENKE,
M., VOSS, A., WROBEL, S., AND BIRLINGHOVEN, S. 1996. Configuration of Telecommunica-
tion Systems in KIKon. (Cited on pages 17, 24, and 25.)

[30] ET AL., M. A. Modelica. [online; accessed June 2010]. (Cited on page 27.)

[31] FALKNER, A., FEINERER, I., SALZER, G., AND SCHENNER, G. 2008. Solving practical con-
figuration problems using UML. In Proceedings of ECAI Workshop on Configuration Systems.
(Cited on page 20.)

[32] FATTAH, Y. E. AND DECHTER, R. 1995. Diagnosing tree-decomposable circuits. In Proceed-
ings 14th International Joint Conf. on Artificial Intelligence. 1742 – 1748. (Cited on page 94.)

[33] FELDMAN, A., PROVAN, G., DE KLEER, J., ROBERT, S., AND VAN GEMUND, A. 2010. Solv-
ing model-based diagnosis problems with Max-SAT solvers and vice versa. In Proceedings of
the 21th International Workshop on Principles of Diagnosis (DX-10). (Cited on pages 93, 104,
and 105.)

117

Bibliography

[34] FELFERNIG, A., FRIEDRICH, G., JANNACH, D., STUMPTNER, M., AND ZANKER, M. 2003.
Configuration knowledge representations for Semantic Web applications. Artif. Intell. Eng. Des.
Anal. Manuf. 17, 1 (Jan.), 31–50. (Cited on page 21.)

[35] FELFERNIG, A., FRIEDRICH, G., JANNACH, D., AND ZANKER, M. 2002a. Configuration
knowledge representation using UML/OCL. In LNCS. (Cited on page 20.)

[36] FELFERNIG, A., FRIEDRICH, G., JANNACH, D., AND ZANKER, M. 2002b. Semantic Config-
uration Web Services in the CAWICOMS Project. In ISWC ’02 Proceedings of the First Interna-
tional Semantic Web Conference on The Semantic Web. 192–205. (Cited on page 23.)

[37] FENG-JUN, H., SHUI-YING, C., ZHEN, X., AND PING, S. 2010. Extended case-based reason-
ing for intelligent system configuration. In Proceedings of the 2010 Second International Confer-
ence on Computer Modeling and Simulation - Volume 03. ICCMS ’10. IEEE Computer Society,
Washington, DC, USA, 307–309. (Cited on page 17.)

[38] FISHWICK, P. A. AND MILLER, J. A. 2004. Ontologies for modeling and simulation: issues
and approaches. In Proceedings of the 36th conference on Winter simulation. WSC ’04. Winter
Simulation Conference, 259–264. (Cited on page 19.)

[39] FLEISCHANDERL, G., FRIEDRICH, G. E., HASELBÖCK, A., SCHREINER, H., AND STUMPT-
NER, M. 1998. Configuring large systems using generative constraint satisfaction. IEEE Intelligent
Systems 13, 4, 59–68. (Cited on pages 20, 21, and 24.)

[40] FORGY, C. L. AND MCDERMOTT, J. 1977. OPS, A Domain-Independent Production System
Language. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence.
MIT, 933–939. (Cited on page 22.)

[41] FRIEDRICH, G., RYABOKON, A., FALKNER, A. A., HASELBCK, A., SCHENNER, G., AND

SCHREINER, H. 2011. (Re)configuration based on model generation. In LoCoCo, C. Drescher,
I. Lynce, and R. Treinen, Eds. EPTCS, vol. 65. 26–35. (Cited on page 21.)

[42] FRITZSON, P. AND BUNUS, P. 2002. Modelica - a general object-oriented language for contin-
uous and discrete-event system modeling and simulation. In Proceedings 35th Annual Simulation
Symposium. 365–380. (Cited on pages 19, 27, and 44.)

[43] FRÖHLICH, P. AND NEJDL, W. 1997. A Static Model-Based Engine for Model-Based Reason-
ing. In Proceedings 15th International Joint Conf. on Artificial Intelligence. Nagoya, Japan. (Cited
on pages 93 and 104.)

118

Bibliography

[44] GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND THIELE,
S. A User’s Guide to gringo, clasp, clingo, and iclingo. (Cited on page 21.)

[45] GECODE. 2005. Gecode toolkit. [online; accessed June 2013]. (Cited on pages 16 and 111.)

[46] GENT, I. P., JEFFERSON, C., AND MIGUEL, I. 2006. Minion: A fast, scalable, constraint solver.
17th European Conference on Artificial Intelligence ECAI-06. (Cited on page 100.)

[47] GIBNEY, A. M., KLEPAL, M., AND PESCH, D. 2010. A wireless local area network modeling
tool for scalable indoor access point placement optimization. In Proceedings of the 2010 Spring
Simulation Multiconference. SpringSim ’10. Society for Computer Simulation International, San
Diego, CA, USA, 163:1–163:8. (Cited on page 27.)

[48] GREINER, R., SMITH, B. A., AND WILKERSON, R. W. 1989. A correction to the algorithm in
Reiter’s theory of diagnosis. Artificial Intelligence 41, 1, 79–88. (Cited on pages 93 and 104.)

[49] GRUBER, T. R. 1993. A translation approach to portable ontology specifications. KNOWL-
EDGE ACQUISITION 5, 199–220. (Cited on page 23.)

[50] GÜNTER, A. 1992. Flexible Kontrolle in Expertensystemen zur Planung und Konfigurierung in
technischen Domänen. DISKI, vol. 3. Infix Verlag, St. Augustin, Germany. (Cited on page 17.)

[51] GÜNTER, A., KREUZ, I., AND KÜHN, C. 1999. Kommerzielle Software-Werkzeuge für die
Konfigurierung von technischen Systemen. In Proceedings of KI. 61–65. (Cited on pages 24
and 26.)

[52] GÜNTER, A. AND KÜHN, C. 1999. Knowledge-based configuration: Survey and future direc-
tions. In XPS. 47–66. (Cited on page 17.)

[53] GUNTER, C. A. 1992. Semantics of programming languages: structures and techniques. MIT
Press, Cambridge, MA, USA. (Cited on page 31.)

[54] HAAG, A. 1995. The ATMS* - an assumption based problem solving architecture utilizing
specialization relations. Ph.D. thesis. (Cited on pages 25 and 26.)

[55] HAAG, A. 1998. Sales configuration in business processes. Intelligent Systems and their Appli-
cations, IEEE 13, 4, 78–85. (Cited on pages 25 and 26.)

[56] HAAG, A. 2010. Experiences with Product Configuration? http://www.minet.uni-
jena.de/dbis/lehre/ss2010/konfsem/. (Cited on page 26.)

119

Bibliography

[57] HAAG, A. AND RIEMANN, S. 2011. Product configuration as decision support: The declarative
paradigm in practice. AI EDAM 25, 131–142. (Cited on page 26.)

[58] HEINRICH, M. AND JUNGST, E. 1991. A resource-based paradigm for the configuring of techni-
cal systems from modular components. In Artificial Intelligence Applications, 1991. Proceedings.,
Seventh IEEE Conference on. Vol. i. 257–264. (Cited on pages 17, 24, and 25.)

[59] HEINRICH, M. AND JÜNGST, E. W. 1991. Ressourcen-getriebene Konfigurierung modularer
Technischer Systeme. In Prozeßrechnersysteme. 59–68. (Cited on page 17.)

[60] HENSON, W. 2005. Real time Control and Custom Components in the Matlab Environment.
Tech. rep. (Cited on page 27.)

[61] HOTZ, L., WOLTER, K., AND KREBS, T. 2006. Configuration in Industrial Product Families:
The ConIPF Methodology. IOS Press, Inc. (Cited on page 21.)

[62] HUA, K., SMITH, I., AND FALTINGS, B. 1994. Integrated case-based building design. In
Selected papers from the First European Workshop on Topics in Case-Based Reasoning. EWCBR
’93. Springer-Verlag, London, UK, UK, 436–445. (Cited on page 17.)

[63] HUBAUX, A. 2012. Feature-based Configuration: Collaborative, Dependable, and Controlled.
Ph.D. thesis, University of Namur, Belgium. (Cited on page 20.)

[64] HVAM, L., MORTENSEN, N. H., AND RIIS, J. 2008. Product customization, volume xii. In
volume XII. (Cited on page 22.)

[65] IMAGINE THAT, I. 2002-2013. Extend. [online; accessed June 2013]. (Cited on page 28.)

[66] JACOP. 2001. JaCoP constraint solver. [online; accessed June 2013]. (Cited on page 16.)

[67] JAWHAR, I. 2009. A flexible object-oriented design of an event-driven wireless network simula-
tor. In Proceedings of the 2009 conference on Wireless Telecommunications Symposium. WTS’09.
IEEE Press, Piscataway, NJ, USA, 80–86. (Cited on page 27.)

[68] JEFFERSON, C., KOTTHOFF, L., MOORE, N., NIGHTINGALE, P., PETRIE, K. E., AND RENDL,
A. 2012. The Minion Manual, Minion Version 0.15. http://minion.sourceforge.net/. (Cited on
pages 44, 45, 47, 48, 49, 60, and 61.)

[69] JOHN, U. 2000. Solving large configuration problems efficiently by clustering the ConBaCon
model. In Proceedings of the 13th international conference on Industrial and engineering applica-
tions of artificial intelligence and expert systems: Intelligent problem solving: methodologies and
approaches. Springer-Verlag New York, Inc. (Cited on page 23.)

120

Bibliography

[70] JOHN, U. AND GESKE, U. 1999. Reconfiguration of Technical Products Using ConBaCon. In
Proceedings of WS on Configuration at AAAI99. Orlando. (Cited on pages 20 and 23.)

[71] JUNKER, U. 2004. Quickxplain: preferred explanations and relaxations for over-constrained
problems. In Proceedings of the 19th national conference on Artifical intelligence. AAAI’04.
AAAI Press, 167–172. (Cited on page 93.)

[72] JUNKER, U. AND MAILHARRO, D. 2003. The logic of ILOG (J)Configurator: Combining
Constraint Programming with a Description Logic. In Proceedings of IJCAI-03 Configuration WS.
13–20. (Cited on pages 21 and 24.)

[73] JURAN, D. C. AND SCHRUBEN, L. W. 2004. Using worker personality and demographic
information to improve system performance prediction. Journal of Operations Management 22, 4,
355 – 367. (Cited on page 29.)

[74] KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E., AND PETERSON, A. S. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon Uni-
versity Software Engineering Institute. November. (Cited on page 20.)

[75] LACY, L. AND GERBER, W. 2004. Potential modeling and simulation applications of the web
ontology language - OWL. In Proceedings of the 36th conference on Winter simulation. WSC ’04.
Winter Simulation Conference, 265–270. (Cited on page 19.)

[76] LEHMANN, E., ENDERS, R., HAUGENEDER, H., HUNZE, R., JOHNSON, C., SCHMID, L.,
AND STRUSS, P. 1985. SICONFEX - ein Expertensystem für die Konfigurierung eines Betrieb-
ssystems. In Proceedings of GI Jahrestagung’1985. 792–805. (Cited on page 23.)

[77] LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCAR-
CELLO, F. 2006. The DLV system for knowledge representation and reasoning. ACM Trans.
Comput. Logic 7, 3 (July), 499–562. (Cited on page 21.)

[78] MAILHARRO, D. 1998. A classification and constraint-based framework for configuration. Artif.
Intell. Eng. Des. Anal. Manuf. 12, 4 (Sept.), 383–397. (Cited on page 21.)

[79] MATHCORE. 2009. MathModelica/Wolfram SystemModeler. [online; accessed June 2013].
(Cited on page 27.)

[80] MCCANNE, S. AND FLOYD, S. ns Network Simulator. http://www.isi.edu/nsnam/ns/. (Cited
on page 27.)

121

Bibliography

[81] MCDERMOTT, J. 1980. R1: An Expert in the Computer Systems Domain. In Proceedings
of First National Conference on Artificial Intelligence (AAAI-80). Stanford University, Stanford,
California. (Cited on pages 17 and 22.)

[82] MCGUINNESS, D. L. AND WRIGHT, J. R. 1998. An industrial strength description logics-based
configurator platform. IEEE Intelligent Systems 13, 4 (July), 69–77. (Cited on page 21.)

[83] METODI, A., STERN, R., KALECH, M., AND CODISH, M. 2012. Compiling model-based
diagnosis to boolean satisfaction. In 26th AAAI Conference on Artificial Intelligence. (Cited on
pages 94, 104, and 105.)

[84] MINOUX, M. 1988. LTUR: A Simplified Linear-time Unit Resolution Algorithm for Horn
Formulae and Computer Implementation. Information Processing Letters 29, 1–12. (Cited on
page 105.)

[85] MITTAL, S. AND FALKENHAINER, B. 1990. Dynamic constraint satisfaction problems. In
AAAI. 25–32. (Cited on pages 17 and 21.)

[86] MITTAL, S. AND FRAYMAN, F. 1989. Towards a generic model of configuraton tasks. In IJCAI.
1395–1401. (Cited on pages 16 and 21.)

[87] MOZETIC, I. 1992. A polynomial-time algorithm for model-based diagnosis. In European
Conference on Artificial Intelligence (ECAI). 729–733. (Cited on page 93.)

[88] NANCE, R. E. 1993. A history of discrete event simulation programming languages. In The
second ACM SIGPLAN conference on History of programming languages. HOPL-II. ACM, New
York, NY, USA, 149–175. (Cited on page 16.)

[89] NAYAK, P. P. AND WILLIAMS, B. C. 1997. Fast context switching in real-time propositional
reasoning. In Proceedings of the National Conference on Artificial Intelligence (AAAI). AAAI
Press. (Cited on page 105.)

[90] NEUMANN, B. 1990. Ein Ansatz zur wissensbasierten Auftragsprüfung für technische Anlagen
des Breitengeschäfts. (Cited on page 25.)

[91] NICA, I. AND WOTAWA, F. 2011a. Diagnosis-based reconfiguration using the MINION con-
straint solver. In Proceedings of the 22nd International Workshop on Principles of Diagnosis (DX
2011). 225–232. (Cited on pages 12, 59, and 91.)

[92] NICA, I. AND WOTAWA, F. 2012a. ConDiag – computing minimal diagnoses using a constraint

122

Bibliography

solver. In Proceedings of the 23rd International Workshop on Principles of Diagnosis. (Cited on
pages 12, 91, 94, and 104.)

[93] NICA, I. AND WOTAWA, F. 2012b. The SIMOL modeling language for Simulation and (Re-
)configuration. In Proceedings of the 38th International Conference on Current Trends in Theory
and Practice of Computer Science. SOFSEM’12. Springer-Verlag, Berlin, Heidelberg, 661–672.
(Cited on pages 12 and 31.)

[94] NICA, I. AND WOTAWA, F. 2013. (Re-)configuration of Communication Networks in the Con-
text of M2M Applications. Tech. rep., Institute of Software Technology, Graz University of Tech-
nology. Submitted for Publication. (Cited on pages 12, 31, 59, and 71.)

[95] NICA, I., WOTAWA, F., OCHENBAUER, R., SCHOBER, C., HOFBAUER, H., AND BOLTEK,
S. 2012. Model-based simulation and configuration of mobile phone networks – the SIMOA ap-
proach. In Proceedings of the ECAI 2012 Workshop on Artificial Intelligence for Telecommunica-
tions and Sensor Networks. 12–17. (Cited on pages 12, 59, and 71.)

[96] NICA, I., WOTAWA, F., OCHENBAUER, R., SCHOBER, C., HOFBAUER, H., AND BOLTEK, S.
2013. Kapsch: Reconfiguration of mobile phone networks. In Configuration systems: Technologies
and Business Cases. Elsevier ConfSys12. Submitted for Publication. (Cited on pages 12, 59,
and 71.)

[97] NICA, I. D., PILL, I., QUARITSCH, T., AND WOTAWA, F. 2013. The Route to Success – A
Performance Comparison of Diagnosis Algorithms. In Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI). (Cited on pages 12, 91, and 105.)

[98] NICA, I. D. AND WOTAWA, F. 2011b. SiMoL - A Modeling Language for Simulation and
(Re-)Configuration. In Workshop on Configuration. 40–43. (Cited on pages 12 and 31.)

[99] NICA, M. 2010. On the Use of Constraints in Automated Program Debugging - From Foun-
dations to Empirical Results. Ph.D. thesis, Graz University of Technology, Institute for Software
Technology, Graz, Austria. (Cited on page 44.)

[100] NICA, M., MORARU, I., AND WOTAWA, F. 2009. Representing Program Debugging as
Constraint Satisfaction Problem. In 21st Nordic Workshop on Programming Theory. (Cited on
page 44.)

[101] OKHMATOVSKAIA, A., BUCKERIDGE, D. L., SHABAN-NEJAD, A., SUTCLIFFE, A., FINÈS,
P., KOPEC, J. A., AND WOLFSON, M. C. 2012. SimPHO: an ontology for simulation model-

123

Bibliography

ing of population health. In Proceedings of the Winter Simulation Conference. WSC ’12. Winter
Simulation Conference, 79:1–79:12. (Cited on page 19.)

[102] ORACLE. 2010. ORACLE CONFIGURATOR. [online; accessed June 2013; ORACLE Data
Sheet]. (Cited on page 26.)

[103] ORSVÄRN, K. AND AXLING, T. 1999. The Tacton View of Configuration Tasks and Engines.
In AAAI99 Workshop on Configuration, the 16th National Conference on Artificial Intelligence.
127–130. (Cited on page 25.)

[104] OUSTERHOUT, J. K. 1989. Tcl: An Embeddable Command Language. Tech. rep., Berkeley,
CA, USA. (Cited on page 27.)

[105] PATTIS, R. E. 1994. Teaching EBNF first in CS 1. In Proceedings of the twenty-fifth SIGCSE
symposium on Computer science education. SIGCSE ’94. ACM, New York, NY, USA, 300–303.
(Cited on page 129.)

[106] PEISCHL, B. AND WOTAWA, F. 2003. Computing Diagnoses Efficiently: A Fast Theorem
Prover For Propositional Horn Clause Theories. In Proceedings of the 14th International Workshop
on Principles of Diagnosis. 175–180. (Cited on pages 94 and 105.)

[107] PFEIFER, R. AND RADEMAKERS, P. 1991. Situated Adaptive Design: Toward a New Method-
ology for Knowledge Systems Development. In Verteilte Künstliche Intelligenz und kooperatives
Arbeiten, W. Brauer and D. Hernández, Eds. Informatik-Fachberichte, vol. 291. Springer Berlin
Heidelberg, 53–64. (Cited on page 25.)

[108] PROLOG, S. 2005. SICStus Prolog 3.12.2. https://www.sics.se/sicstus/docs/3.12.2/html/sicstus/.
(Cited on page 25.)

[109] PROVAN, G. AND CHEN, Y.-L. 1999. Model-based diagnosis and control reconfiguration for
discrete event systems: an integrated approach. In Proceedings of the 38th IEEE Conference on
Decision and Control. Vol. 2. 1762–1768. (Cited on page 69.)

[110] QUÉVA, M., PROBST, C., AND VIKKELSØE, P. 2009. Industrial requirements for interactive
product configurators. In Proceedings of the IJCAI. Vol. 9. (Cited on pages 20 and 21.)

[111] REITER, R. 1987. A Theory of Diagnosis from First Principles. Artificial Intelligence 32, 1,
57–95. (Cited on pages 61, 62, 66, 92, 96, 98, and 104.)

[112] RIVARD, H. AND FENVES, S. J. 2000. SEED-Config: A case-based reasoning system for

124

Bibliography

conceptual building design. Artif. Intell. Eng. Des. Anal. Manuf. 14, 5 (Nov.), 415–430. (Cited on
page 17.)

[113] ROCKWELL AUTOMATION, I. 2013. Arena. [online; accessed June 2013]. (Cited on page 28.)

[114] ROSSI, F., VAN BEEK, P., AND WALSH, T. 2006. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA. (Cited on
pages 22, 56, and 57.)

[115] RUNTE, W. 2006. YACS: Ein hybrides Framework für Constraint-Solver zur Unterstützung
wissensbasierter Konfigurierung. M.S. thesis, Universtät Bremen, Germany. (Cited on pages 23
and 26.)

[116] SABIN, D. AND FREUDER, E. C. 1996. Configuration as composite constraint satisfaction.
In in Proc. Artificial Intelligence and Manufacturing. Research Planning Workshop. AAAI Press,
153–161. (Cited on pages 17 and 21.)

[117] SACHENBACHER, M. AND WILLIAMS, B. C. 2004. Diagnosis as semiring-based constraint
optimization. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI).
Valencia, Spain, 873–877. (Cited on page 94.)

[118] SARGENT, R. G., KANG, K., AND GOLDSMAN, D. 1992. An investigation of finite-sample
behavior of confidence interval estimators. Oper. Res. 40, 5 (Sept.), 898–913. (Cited on page 18.)

[119] SAVAGE, E. L., SCHRUBEN, L. W., AND YÜCESAN, E. 2005. On the generality of event-
graph models. INFORMS J. on Computing 17, 1 (Jan.), 3–9. (Cited on page 29.)

[120] SCHRUBEN, L. W. 1995. Graphical Simulation Modeling and Analysis: Using SIGMA for
Windows, 1st ed. Course Technology Press, Boston, MA, United States. (Cited on page 29.)

[121] SCHUBERT, M., FELFERNIG, A., AND MANDL, M. 2010. Fastxplain: Conflict detection
for constraint-based recommendation problems. In Trends in Applied Intelligent Systems. Lecture
Notes in Computer Science, vol. 6096. Springer Berlin Heidelberg, 621–630. (Cited on page 93.)

[122] SCHULTE, C. AND TACK, G. 2013. View-based propagator derivation. Constraints 18, 1,
75–107. (Cited on pages 16 and 111.)

[123] SIDDIQI, S. 2011. Computing minimum-cardinality diagnoses by model relaxation. In Pro-
ceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume
Volume Two. IJCAI’11. AAAI Press, 1087–1092. (Cited on page 105.)

125

Bibliography

[124] SILVER, G. A., HASSAN, O. A.-H., AND MILLER, J. A. 2007. From domain ontologies to
modeling ontologies to executable simulation models. In Proceedings of the 39th conference on
Winter simulation: 40 years! The best is yet to come. WSC ’07. IEEE Press, Piscataway, NJ, USA,
1108–1117. (Cited on page 19.)

[125] SOININEN, T., NIEMEL, I., TIIHONEN, J., AND SULONEN, R. 2001. Representing configura-
tion knowledge with weight constraint rules. (Cited on page 21.)

[126] SOLOWAY, E., BACHANT, J., AND JENSEN, K. 1987. Assessing the Maintainability of XCON-
in-RIME: Coping with the Problems of a VERY Large Rule-Base. In AAAI. 824–829. (Cited on
page 17.)

[127] SPENKE, M., BEILKEN, C., AND BERLAGE, T. 1996. FOCUS: The Interactive Table for
Product Comparison and Selection. In Proceedings of the UIST 96 Ninth Annual Symposium on
User Interface Software and Technology. Press, 41–50. (Cited on page 25.)

[128] STERN, R., KALECH, M., FELDMAN, A., AND PROVAN, G. 2012. Exploring the duality
in conflict-directed model-based diagnosis. In 26th AAAI Conference on Artificial Intelligence.
(Cited on pages 93 and 104.)

[129] STUMPTNER, M., FRIEDRICH, G., AND HASELBÖCK, A. 1998. Generative constraint-based
configuration of large technical systems. AI EDAM 12, 4, 307–320. (Cited on pages 17 and 21.)

[130] STUMPTNER, M., HASELBÖCK, A., AND FRIEDRICH, G. 1994. COCOS - a tool for
constraint-based, dynamic configuration. In Proceedings of the 10th IEEE Conference on AI Ap-
plications (CAIA). San Antonio. (Cited on page 24.)

[131] STUMPTNER, M. AND WOTAWA, F. 1998. Model-based reconfiguration. In Proceedings
Artificial Intelligence in Design. Lisbon, Portugal. (Cited on pages 17, 62, 69, and 126.)

[132] STUMPTNER, M. AND WOTAWA, F. 1999. Reconfiguration using model-based diagnosis. In
Proceedings of the Tenth International Workshop on Principles of Diagnosis. Loch Awe, Scotland.
Newer version of [131]. (Cited on pages 62 and 69.)

[133] STUMPTNER, M. AND WOTAWA, F. 2001. Diagnosing tree-structured systems. Artificial
Intelligence 127, 1, 1–29. (Cited on page 94.)

[134] STUMPTNER, M. AND WOTAWA, F. 2003. Coupling CSP decomposition methods and diag-
nosis algorithms for tree-structured systems. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03). Acapulco, Mexico, 388–393. (Cited on page 94.)

126

Bibliography

[135] SWAIN, J. J. 2003. Simulation reloaded: Simulation software survey. (Cited on page 27.)

[136] THE MATHWORKS, I. SIMULINK. [online; accessed June 2010]. (Cited on page 27.)

[137] TIIHONEN, J., HEISKALA, M., ANDERSON, A., AND SOININEN, T. 2013. Wecotin - a prac-
tical logic-based sales configurator. AI Commun. 26, 1, 99–131. (Cited on page 21.)

[138] TURNITSA, C., PADILLA, J. J., AND TOLK, A. 2010. Ontology for modeling and simulation.
In Proceedings of the Winter Simulation Conference. WSC ’10. Winter Simulation Conference,
643–651. (Cited on page 19.)

[139] WANG, J. AND PROVAN, G. 2008. A benchmark diagnostic model generation system. IEEE
Transactions on Systems, Man, and Cybernetics A. (Cited on page 105.)

[140] WEST, B. 2010. Model-based motion system simulation and design. [online; accessed June
2013]. (Cited on page 16.)

[141] WIKI, S. 2010. Sigma. [online; accessed June 2013]. (Cited on page 28.)

[142] WIKIPEDIA. 2013. SICOMP. [online; accessed June 2013]. (Cited on page 23.)

[143] WILLIAMS, B. C. AND RAGNO, R. J. 2007. Conflict-directed A* and its role in model-based
embedded systems. Discrete Appl. Math.. (Cited on page 93.)

[144] WOLFRAM, S. 2003. The Mathematica Book, Fifth Edition. Wolfram Media/Cambridge Uni-
versity Press. (Cited on page 27.)

[145] WOTAWA, F. 2001. A Variant of Reiter’s Hitting-Set Algorithm. Information Processing
Letters 79, 1, 45–51. (Cited on page 93.)

[146] WOTAWA, F. 2003. Skriptum zur Lehrveranstaltung ’WISSENSVERARBEITUNG’. Tech.
rep., Technische Universität Graz. (Cited on page 16.)

[147] WOTAWA, F. 2007. Software-Paradigmen 2007. Skriptum zur Lehrveranstaltung. (Cited on
page 31.)

[148] WOTAWA, F., NICA, M., AND MORARU, I. 2012. Automated debugging based on a constraint
model of the program and a test case. Journal of Logic and Algebraic Programming. (Cited on
page 44.)

[149] WRIGHT, J. R., WEIXELBAUM, E. S., VESONDER, G. T., BROWN, K. E., PALMER, S. R.,
BERMAN, J. I., AND MOORE, H. H. 1993. A Knowledge-Based Configurator that Supports Sales,

127

Bibliography

Engineering, and Manufacturing at AT&T Network Systems. In AI Magazine. 183–193. (Cited on
page 21.)

[150] ZEIGLER, B. P. 1968. On the feedback complexity of automata. Ph.D. thesis, University of
Michigan, Ann Arbor, MI, USA. AAI6912283. (Cited on page 18.)

128

.1. A Variant of EBNF Notation

For the sake of completeness, first, we briefly introduce some notions related to the EBNF represen-
tation and, afterwards, mention the particularities of the EBNF variant, chosen to describe the syntax
of SIMOL in this thesis. The general terminology on EBNF is further adapted from [105].

The Extended Backus-Nauer Form (EBNF) is a formal notation, that can be used to describe the
syntax of a programming language. The EBNF consists of an unordered set of production rules,
where a production rule shall consist of three parts: a left-hand side, a right-hand side, and a symbol
separating the two sides, depicted mostly by ::= and read as ”is defined as”. The left-hand side
represents the non-terminal node for which the production rule associates a sequence of terminal
or/and nonterminal nodes, that is the right-hand side. Thus, for each nonterminal node, an EBNF rule
is defined. Note that, besides the sequence of terminals and nonterminals, the right-hand may contain
combinations of the following control forms:

• choice: depicted by |(stroke) and meaning that one item is chosen from a list of alternatives
separated by |,

• option: depicted by [] (brackets), which enclose optional items,

• repetition: depicted by {} (braces), which enclose items that can be repeated zero or more times.

Note that the upper defined convention for specifying repetitions is not used in our EBNF variant.
Instead, we use the following two forms:

• (...)*: the enclosed items can be repeated zero or more times.

• (...)+: the enclosed items can be repeated one or more times.

For instance, in our EBNF variant, the propagation rule defining a nonterminal A can be written as:

A ::= B|(C)∗ |((D)+ [E]),

where B, C, D, E denote sequences of nonterminals and terminals.

The meaning of the upper defined rule is: the nonterminal A is extended by any one of the sequences
B, (C)∗, or (D)+ [E], where (C)∗ means we can have zero or more occurrences of C in A, whereas
(D)+ [E] means that we can have one or more occurrences of D, followed by an optional occurrence
of E. Note that the expansion choice ((D)+ [E]) appears parenthesized in the rule, in order to group
the contained expansions.

129

Bibliography

.2. SIMOL Syntax

This section contains the complete set of propagation rules used to specify the grammar for SIMOL.
In the followings, terminals are written in underlined text style, whereas nonterminals begin with
capitals.

SIMOLProgram ::=

[KBDeclaration](ImportDeclaration)* (ComponentDeclaration)* eof

KBDeclaration ::=

kbase id ;

ImportDeclaration ::=

import id [. *] ;

ComponentDeclaration ::=

component id [extends id (, id)*] { ComponentBodyDeclaration }

ComponentBodyDeclaration ::=

AttributeDeclaration [ConstraintsDefinition] [TransitionBlock]

| ConstraintsDefinition [TransitionBlock]

AttributeDeclaration ::=

attribute (Type id (, id)* ;)+

Type ::=

PrimitiveType | ComponentType ([int lit])*

PrimitiveType ::=

bool|int

ComponentType ::=

id

130

.2. SIMOL Syntax

ConstraintsDefinition ::=

constraints

(

((id) { ConstraintsBodyDefinition }
(constraints (id) { ConstraintsBodyDefinition })*)

| { ConstraintsBodyDefinition }
)

ConstraintsBodyDefinition ::=

(Statement)+

TransitionBlock ::=

transition

{
(Statement)*

}

Statement ::=

EmptyStatement

| Block

| VariableDeclarationOrExpressionStatement ;

| IfStatement

| ForAllBlock

| ExistStatement

EmptyStatement ::=

;

Block ::=

{ (BlockStatement)* }

BlockStatement ::=

Statement

131

Bibliography

VariableDeclarationOrExpressionStatement ::=

ComponentTypeVariableDeclarationOrIdExpressionStatement

| NonIdExpressionStatament

ComponentTypeVariableDeclarationOrIdExpressionStatement ::=

id

(

ComponentTypeVariableDeclaration

| ([[(int lit | id)]] [. id] [.next] IdExpressionStatement)

)

ComponentTypeVariableDeclaration ::=

VariableDeclarator (, VariableDeclarator)*

IdExpressionStatement ::=

(

(* | /) (AccessAttName | (int lit [Unit][Time]))

(

((* | / | + | -) ExpOperand (RelExpOperator ExpOperand)

(RelExpOperator ExpOperand)*)

| ((= | < |> | <= | >= | !=) ArithmeticBoolExp)

)

)

| (((+ |-) ExpOperand)(RelExpOperator ExpOperand)*)

| (= ((ArithmeticBoolExp) | AttributeDomain))

| ((< | > | <= |>= |!=) ArithmeticBoolExp)

NonIdExpressionStatament ::=

((int lit [Unit][Time])| bool lit)

(

(

(* | /) (AccessAttName | (int lit [Unit][Time]))

132

.2. SIMOL Syntax

(

((* | / | + | -) ExpOperand (RelExpOperator ExpOperand)

(RelExpOperator ExpOperand)*)

| ((= | < | > | <= | >= | !=) ArithmeticBoolExp))

)

| (((+ |-) ExpOperand)(RelExpOperator ExpOperand)*)

| (= ArithmeticBoolExp)

| ((< | > | <= | >= | !=) ArithmeticBoolExp)

)

IfStatement ::=

if (IFConditionExtended)

{ Statement }
[else

{ Statement }]

IFConditionExtended ::=

Expression ((or | and) Expression)*

ForAllBlock ::=

forall (ComponentType) Statement

ExistStatement ::=

exist (

((at least(int lit))

| (at most(int lit))

| (int lit)

), int lit , int lit = int lit)

VariableDeclarator ::=

id ([int lit])*

[{ id =

(

133

Bibliography

(int lit)

| (true)

| (false)

)

(,id = ((int lit)

| (true)

| (false)))*

}]

AccessAttName ::=

(id [[((int lit) | (id))]] [. id][.next])

| (sum ([id (, id)*], id))

| (min ([id (, id)*], id))

| (max ([id (, id)*], id))

| (product ([id (, id)*], id))

ExpOperand ::=

ArithmeticExp

| bool lit

RelExpOperator ::=

=

| <

| >

| <=

| >=

| !=

ArithmeticBoolExp ::=

ExpOperand(RelExpOperator ExpOperand)*

AttributeDomain ::=

in range [Unit][Time]

134

.3. SIMOL - MINION Mapping. Further Examples

Unit ::=

KB | MB | GB | kbit

| V| Hz | A | %

Time ::=

/sec | /2min | /day

.3. SIMOL - MINION Mapping. Further Examples

1. The c17 combinational circuit from the ISCAS-85 benchmark suite, depicted in Figure 3.4, from
Section 3.5.2.

component Nand_Gate_2 {

attribute bool out, in1, in2;

constraints (nab) {

if (in1 = true and in2 = true)

{

out = false;

}

else {

out = true;

}

if (out = false) {

in1 = true;

in2 = true;

}

}

constraints (ab) {; }

}

135

Bibliography

component ISCAS {

attribute bool var_1gat, var_2gat, var_3gat, var_6gat, var_7gat,

var_10gat, var_11gat, var_16gat, var_19gat, var_22gat, var_23gat;

constraints {

Nand_Gate_2 gat10;

Nand_Gate_2 gat11;

Nand_Gate_2 gat16;

Nand_Gate_2 gat19;

Nand_Gate_2 gat22;

Nand_Gate_2 gat23;

gat10.in1 = var_1gat;

gat10.in2 = var_3gat;

gat10.out = var_10gat;

gat11.in1 = var_3gat;

gat11.in2 = var_6gat;

gat11.out = var_11gat;

gat16.in1 = var_2gat;

gat16.in2 = var_11gat;

gat16.out = var_16gat;

gat19.in1 = var_11gat;

gat19.in2 = var_7gat;

gat19.out = var_19gat;

gat22.in1 = var_10gat;

gat22.in2 = var_16gat;

gat22.out = var_22gat;

gat23.in1 = var_16gat;

gat23.in2 = var_19gat;

gat23.out = var_23gat;

136

.3. SIMOL - MINION Mapping. Further Examples

}

}

The MINION mapping will be:

MINION 3

VARIABLES

BOOL ISCAS_var_1gat

BOOL ISCAS_var_2gat

BOOL ISCAS_var_3gat

BOOL ISCAS_var_6gat

BOOL ISCAS_var_7gat

BOOL ISCAS_var_10gat

BOOL ISCAS_var_11gat

BOOL ISCAS_var_16gat

BOOL ISCAS_var_19gat

BOOL ISCAS_var_22gat

BOOL ISCAS_var_23gat

BOOL ISCAS_gat10_Nand_Gate_2_out

BOOL ISCAS_gat10_Nand_Gate_2_in1

BOOL ISCAS_gat10_Nand_Gate_2_in2

BOOL ifCond0

BOOL ifCond1

BOOL ifCond2

BOOL ifCond3

BOOL ISCAS_gat11_Nand_Gate_2_out

BOOL ISCAS_gat11_Nand_Gate_2_in1

BOOL ISCAS_gat11_Nand_Gate_2_in2

BOOL ifCond4

BOOL ifCond5

BOOL ifCond6

137

Bibliography

BOOL ifCond7

BOOL ISCAS_gat16_Nand_Gate_2_out

BOOL ISCAS_gat16_Nand_Gate_2_in1

BOOL ISCAS_gat16_Nand_Gate_2_in2

BOOL ifCond8

BOOL ifCond9

BOOL ifCond10

BOOL ifCond11

BOOL ISCAS_gat19_Nand_Gate_2_out

BOOL ISCAS_gat19_Nand_Gate_2_in1

BOOL ISCAS_gat19_Nand_Gate_2_in2

BOOL ifCond12

BOOL ifCond13

BOOL ifCond14

BOOL ifCond15

BOOL ISCAS_gat22_Nand_Gate_2_out

BOOL ISCAS_gat22_Nand_Gate_2_in1

BOOL ISCAS_gat22_Nand_Gate_2_in2

BOOL ifCond16

BOOL ifCond17

BOOL ifCond18

BOOL ifCond19

BOOL ISCAS_gat23_Nand_Gate_2_out

BOOL ISCAS_gat23_Nand_Gate_2_in1

BOOL ISCAS_gat23_Nand_Gate_2_in2

BOOL ifCond20

BOOL ifCond21

BOOL ifCond22

BOOL ifCond23

BOOL nab_ISCAS_gat10_Nand_Gate_2

BOOL nab_ISCAS_gat11_Nand_Gate_2

BOOL nab_ISCAS_gat16_Nand_Gate_2

BOOL nab_ISCAS_gat19_Nand_Gate_2

138

.3. SIMOL - MINION Mapping. Further Examples

BOOL nab_ISCAS_gat22_Nand_Gate_2

BOOL nab_ISCAS_gat23_Nand_Gate_2

BOOL ab_ISCAS_gat10_Nand_Gate_2

BOOL ab_ISCAS_gat11_Nand_Gate_2

BOOL ab_ISCAS_gat16_Nand_Gate_2

BOOL ab_ISCAS_gat19_Nand_Gate_2

BOOL ab_ISCAS_gat22_Nand_Gate_2

BOOL ab_ISCAS_gat23_Nand_Gate_2

SEARCH

VARORDER [nab_ISCAS_gat10_Nand_Gate_2,nab_ISCAS_gat11_Nand_Gate_2,

nab_ISCAS_gat16_Nand_Gate_2,nab_ISCAS_gat19_Nand_Gate_2,

nab_ISCAS_gat22_Nand_Gate_2,nab_ISCAS_gat23_Nand_Gate_2,

ab_ISCAS_gat10_Nand_Gate_2,ab_ISCAS_gat11_Nand_Gate_2,

ab_ISCAS_gat16_Nand_Gate_2,ab_ISCAS_gat19_Nand_Gate_2,

ab_ISCAS_gat22_Nand_Gate_2,ab_ISCAS_gat23_Nand_Gate_2,]

VALORDER [a, a, a, a, a, a, a, a, a, a, a, a]

PRINT ALL

CONSTRAINTS

reifyimply(reify(eq(ISCAS_gat10_Nand_Gate_2_in1,1), ifCond0),

nab_ISCAS_gat10_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat10_Nand_Gate_2_in2,1), ifCond1),

nab_ISCAS_gat10_Nand_Gate_2)

reify(watched-and({eq(ifCond0,1),eq(ifCond1,1)}), ifCond2)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_out,0), ifCond2)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_out,1), !ifCond2)

reifyimply(reify(eq(ISCAS_gat10_Nand_Gate_2_out,0), ifCond3),

nab_ISCAS_gat10_Nand_Gate_2)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_in1,1), ifCond3)

reifyimply(eq(ISCAS_gat10_Nand_Gate_2_in2,1), ifCond3)

139

Bibliography

reifyimply(reify(eq(ISCAS_gat11_Nand_Gate_2_in1,1), ifCond4),

nab_ISCAS_gat11_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat11_Nand_Gate_2_in2,1), ifCond5),

nab_ISCAS_gat11_Nand_Gate_2)

reify(watched-and({eq(ifCond4,1),eq(ifCond5,1)}), ifCond6)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_out,0), ifCond6)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_out,1), !ifCond6)

reifyimply(reify(eq(ISCAS_gat11_Nand_Gate_2_out,0), ifCond7),

nab_ISCAS_gat11_Nand_Gate_2)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_in1,1), ifCond7)

reifyimply(eq(ISCAS_gat11_Nand_Gate_2_in2,1), ifCond7)

reifyimply(reify(eq(ISCAS_gat16_Nand_Gate_2_in1,1), ifCond8),

nab_ISCAS_gat16_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat16_Nand_Gate_2_in2,1), ifCond9),

nab_ISCAS_gat16_Nand_Gate_2)

reify(watched-and({eq(ifCond8,1),eq(ifCond9,1)}), ifCond10)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_out,0), ifCond10)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_out,1), !ifCond10)

reifyimply(reify(eq(ISCAS_gat16_Nand_Gate_2_out,0), ifCond11),

nab_ISCAS_gat16_Nand_Gate_2)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_in1,1), ifCond11)

reifyimply(eq(ISCAS_gat16_Nand_Gate_2_in2,1), ifCond11)

reifyimply(reify(eq(ISCAS_gat19_Nand_Gate_2_in1,1), ifCond12),

nab_ISCAS_gat19_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat19_Nand_Gate_2_in2,1), ifCond13),

nab_ISCAS_gat19_Nand_Gate_2)

reify(watched-and({eq(ifCond12,1),eq(ifCond13,1)}), ifCond14)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_out,0), ifCond14)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_out,1), !ifCond14)

reifyimply(reify(eq(ISCAS_gat19_Nand_Gate_2_out,0), ifCond15),

nab_ISCAS_gat19_Nand_Gate_2)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_in1,1), ifCond15)

reifyimply(eq(ISCAS_gat19_Nand_Gate_2_in2,1), ifCond15)

140

.3. SIMOL - MINION Mapping. Further Examples

reifyimply(reify(eq(ISCAS_gat22_Nand_Gate_2_in1,1), ifCond16),

nab_ISCAS_gat22_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat22_Nand_Gate_2_in2,1), ifCond17),

nab_ISCAS_gat22_Nand_Gate_2)

reify(watched-and({eq(ifCond16,1),eq(ifCond17,1)}), ifCond18)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_out,0), ifCond18)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_out,1), !ifCond18)

reifyimply(reify(eq(ISCAS_gat22_Nand_Gate_2_out,0), ifCond19),

nab_ISCAS_gat22_Nand_Gate_2)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_in1,1), ifCond19)

reifyimply(eq(ISCAS_gat22_Nand_Gate_2_in2,1), ifCond19)

reifyimply(reify(eq(ISCAS_gat23_Nand_Gate_2_in1,1), ifCond20),

nab_ISCAS_gat23_Nand_Gate_2)

reifyimply(reify(eq(ISCAS_gat23_Nand_Gate_2_in2,1), ifCond21),

nab_ISCAS_gat23_Nand_Gate_2)

reify(watched-and({eq(ifCond20,1),eq(ifCond21,1)}), ifCond22)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_out,0), ifCond22)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_out,1), !ifCond22)

reifyimply(reify(eq(ISCAS_gat23_Nand_Gate_2_out,0), ifCond23),

nab_ISCAS_gat23_Nand_Gate_2)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_in1,1), ifCond23)

reifyimply(eq(ISCAS_gat23_Nand_Gate_2_in2,1), ifCond23)

eq(ISCAS_gat10_Nand_Gate_2_in1,ISCAS_var_1gat)

eq(ISCAS_gat10_Nand_Gate_2_in2,ISCAS_var_3gat)

eq(ISCAS_gat10_Nand_Gate_2_out,ISCAS_var_10gat)

eq(ISCAS_gat11_Nand_Gate_2_in1,ISCAS_var_3gat)

eq(ISCAS_gat11_Nand_Gate_2_in2,ISCAS_var_6gat)

eq(ISCAS_gat11_Nand_Gate_2_out,ISCAS_var_11gat)

eq(ISCAS_gat16_Nand_Gate_2_in1,ISCAS_var_2gat)

eq(ISCAS_gat16_Nand_Gate_2_in2,ISCAS_var_11gat)

eq(ISCAS_gat16_Nand_Gate_2_out,ISCAS_var_16gat)

eq(ISCAS_gat19_Nand_Gate_2_in1,ISCAS_var_11gat)

eq(ISCAS_gat19_Nand_Gate_2_in2,ISCAS_var_7gat)

141

Bibliography

eq(ISCAS_gat19_Nand_Gate_2_out,ISCAS_var_19gat)

eq(ISCAS_gat22_Nand_Gate_2_in1,ISCAS_var_10gat)

eq(ISCAS_gat22_Nand_Gate_2_in2,ISCAS_var_16gat)

eq(ISCAS_gat22_Nand_Gate_2_out,ISCAS_var_22gat)

eq(ISCAS_gat23_Nand_Gate_2_in1,ISCAS_var_16gat)

eq(ISCAS_gat23_Nand_Gate_2_in2,ISCAS_var_19gat)

eq(ISCAS_gat23_Nand_Gate_2_out,ISCAS_var_23gat)

watchsumleq([nab_ISCAS_gat10_Nand_Gate_2,ab_ISCAS_gat10_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat11_Nand_Gate_2,ab_ISCAS_gat11_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat16_Nand_Gate_2,ab_ISCAS_gat16_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat19_Nand_Gate_2,ab_ISCAS_gat19_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat22_Nand_Gate_2,ab_ISCAS_gat22_Nand_Gate_2,], 1)

watchsumleq([nab_ISCAS_gat23_Nand_Gate_2,ab_ISCAS_gat23_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat10_Nand_Gate_2,ab_ISCAS_gat10_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat11_Nand_Gate_2,ab_ISCAS_gat11_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat16_Nand_Gate_2,ab_ISCAS_gat16_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat19_Nand_Gate_2,ab_ISCAS_gat19_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat22_Nand_Gate_2,ab_ISCAS_gat22_Nand_Gate_2,], 1)

watchsumgeq([nab_ISCAS_gat23_Nand_Gate_2,ab_ISCAS_gat23_Nand_Gate_2,], 1)

EOF

2. The well-known D74 circuit, discussed in Section 6.3.

kbase circuits;

component Gate {

attribute int in1, in2, out;

}

component Multiplier extends Gate{

constraints (nab){

142

.3. SIMOL - MINION Mapping. Further Examples

out=in1*in2;

}

}

component Adder extends Gate{

constraints (nab){

out=in1+in2;

}

constraints (s10){

out =10;

}

}

component D74{

attribute int a, b, c, d, e, f, g; // given in OBS

constraints{

Multiplier m1, m2, m3;

Adder a1, a2;

m1.in1=a;

m1.in2=c;

m1.out=a1.in1;

m2.in1=b;

m2.in2=d;

m2.out=a1.in2;

m3.in1=c;

m3.in2=e;

m3.out= a2.in2;

143

Bibliography

a1.out=f;

a2.in1=m2.out;

a2.out=g;

// OBS

a=3;

b=2;

c=2;

d=3;

e=3;

f=10;

g=12;

}

}

The MINION mapping will be:

MINION 3

VARIABLES

DISCRETE D74_a {0..1000}

DISCRETE D74_b {0..1000}

DISCRETE D74_c {0..1000}

DISCRETE D74_d {0..1000}

DISCRETE D74_e {0..1000}

DISCRETE D74_f {0..1000}

DISCRETE D74_g {0..1000}

DISCRETE D74_m1_Multiplier_in1 {0..1000}

DISCRETE D74_m1_Multiplier_in2 {0..1000}

DISCRETE D74_m1_Multiplier_out {0..1000}

144

.3. SIMOL - MINION Mapping. Further Examples

DISCRETE aux1 {0..20000}

DISCRETE D74_m2_Multiplier_in1 {0..1000}

DISCRETE D74_m2_Multiplier_in2 {0..1000}

DISCRETE D74_m2_Multiplier_out {0..1000}

DISCRETE aux3 {0..20000}

DISCRETE D74_m3_Multiplier_in1 {0..1000}

DISCRETE D74_m3_Multiplier_in2 {0..1000}

DISCRETE D74_m3_Multiplier_out {0..1000}

DISCRETE aux4 {0..20000}

DISCRETE D74_a1_Adder_in1 {0..1000}

DISCRETE D74_a1_Adder_in2 {0..1000}

DISCRETE D74_a1_Adder_out {0..1000}

DISCRETE aux2 {0..20000}

DISCRETE D74_a2_Adder_in1 {0..1000}

DISCRETE D74_a2_Adder_in2 {0..1000}

DISCRETE D74_a2_Adder_out {0..1000}

DISCRETE aux5 {0..20000}

BOOL nab_D74_m1_Multiplier

BOOL nab_D74_m2_Multiplier

BOOL nab_D74_m3_Multiplier

BOOL nab_D74_a1_Adder

BOOL nab_D74_a2_Adder

BOOL s10_D74_a1_Adder

BOOL s10_D74_a2_Adder

SEARCH

VARORDER [nab_D74_m1_Multiplier,nab_D74_m2_Multiplier,nab_D74_m3_Multiplier,

nab_D74_a1_Adder,nab_D74_a2_Adder,s10_D74_a1_Adder,s10_D74_a2_Adder,]

VALORDER [a, a, a, a, a, a, a]

PRINT ALL

CONSTRAINTS

product(D74_m1_Multiplier_in1, D74_m1_Multiplier_in2, aux1)

reifyimply(eq(D74_m1_Multiplier_out,aux1), nab_D74_m1_Multiplier)

145

Bibliography

product(D74_m2_Multiplier_in1, D74_m2_Multiplier_in2, aux3)

reifyimply(eq(D74_m2_Multiplier_out,aux3), nab_D74_m2_Multiplier)

product(D74_m3_Multiplier_in1, D74_m3_Multiplier_in2, aux4)

reifyimply(eq(D74_m3_Multiplier_out,aux4), nab_D74_m3_Multiplier)

weightedsumgeq([1, 1], [D74_a1_Adder_in1, D74_a1_Adder_in2], aux2)

weightedsumleq([1, 1], [D74_a1_Adder_in1, D74_a1_Adder_in2], aux2)

reifyimply(eq(D74_a1_Adder_out,aux2), nab_D74_a1_Adder)

reifyimply(eq(D74_a1_Adder_out,10), s10_D74_a1_Adder)

weightedsumgeq([1, 1], [D74_a2_Adder_in1, D74_a2_Adder_in2], aux5)

weightedsumleq([1, 1], [D74_a2_Adder_in1, D74_a2_Adder_in2], aux5)

reifyimply(eq(D74_a2_Adder_out,aux5), nab_D74_a2_Adder)

reifyimply(eq(D74_a2_Adder_out,10), s10_D74_a2_Adder)

eq(D74_m1_Multiplier_in1,D74_a)

eq(D74_m1_Multiplier_in2,D74_c)

eq(D74_m1_Multiplier_out,D74_a1_Adder_in1)

eq(D74_m2_Multiplier_in1,D74_b)

eq(D74_m2_Multiplier_in2,D74_d)

eq(D74_m2_Multiplier_out,D74_a1_Adder_in2)

eq(D74_m3_Multiplier_in1,D74_c)

eq(D74_m3_Multiplier_in2,D74_e)

eq(D74_m3_Multiplier_out,D74_a2_Adder_in2)

eq(D74_a1_Adder_out,D74_f)

eq(D74_a2_Adder_in1,D74_m2_Multiplier_out)

eq(D74_a2_Adder_out,D74_g)

eq(D74_a,3)

eq(D74_b,2)

eq(D74_c,2)

eq(D74_d,3)

eq(D74_e,3)

eq(D74_f,10)

eq(D74_g,12)

watchsumleq([nab_D74_m1_Multiplier,], 1)

watchsumleq([nab_D74_m2_Multiplier,], 1)

146

.3. SIMOL - MINION Mapping. Further Examples

watchsumleq([nab_D74_m3_Multiplier,], 1)

watchsumleq([nab_D74_a1_Adder,s10_D74_a1_Adder,], 1)

watchsumleq([nab_D74_a2_Adder,s10_D74_a2_Adder,], 1)

watchsumgeq([nab_D74_m1_Multiplier,], 1)

watchsumgeq([nab_D74_m2_Multiplier,], 1)

watchsumgeq([nab_D74_m3_Multiplier,], 1)

watchsumgeq([nab_D74_a1_Adder,s10_D74_a1_Adder,], 1)

watchsumgeq([nab_D74_a2_Adder,s10_D74_a2_Adder,], 1)

EOF

3. The SIMOL program from Figure 3.1. For further information on the components defined within
the program, we refer the reader to Chapter 5.

kbase GPRSCell;

component P2PMeter{

attribute int mdist, codeset, mRate, dataAmount;

constraints{

mdist={1..3};

codeset= {1..4};

}

}

component FPC {

attribute int value;

constraints(default){

value= 1;

}

constraints(x1){

value= {2..4};

}

147

Bibliography

constraints(unknown) {

;

}

}

component ATS{

attribute int value;

constraints(default){

value= 1;

}

constraints(a1){

value= 2;

}

constraints(a2){

value= 4;

}

}

component BTS{

attribute int fpc, availableTimeSlots;

constraints{

FPC fpc1;

ATS ats1;

availableTimeSlots= ats1.value;

fpc= fpc1.value;

}

}

component Cell{

attribute int neededR, P2PNo, realR, usedTimeSlots;

constraints{

P2PNo=3;

P2PMeter s[3];

148

.3. SIMOL - MINION Mapping. Further Examples

BTS b;

forall(P2PMeter){

mdist=1;

if(codeset=1){

mRate=8;

}

if(codeset=2){

mRate=12;

}

if(codeset=3){

mRate=14;

}

if(codeset=4){

mRate=20 ;

}

}

neededR=16;

realR=sum([s], mRate)/P2PNo;

realR>=neededR;

usedTimeSlots=neededR/realR;

}

transition{

forall(P2PMeter){

if(mdist=1 and codeset=2){

codeset.next={2,3};

}

if(mdist=3 and codeset=2){

codeset.next={2,1};

}

}

}

}

149

Bibliography

The MINION mapping will be:

MINION 3

VARIABLES

DISCRETE Cell_neededR_S0 {0..20000}

DISCRETE Cell_P2PNo_S0 {0..1000}

DISCRETE Cell_realR_S0 {0..20000}

DISCRETE Cell_usedTimeSlots_S0 {0..1000}

DISCRETE Cell_s_P2PMeter_mdist_S0[3] {0..1000}

DISCRETE Cell_s_P2PMeter_codeset_S0[3] {0..1000}

DISCRETE Cell_s_P2PMeter_mRate_S0[3] {0..1000}

DISCRETE Cell_s_P2PMeter_dataAmount_S0[3] {0..1000}

DISCRETE Cell_b_BTS_fpc_S0 {0..1000}

DISCRETE Cell_b_BTS_availableTimeSlots_S0 {0..1000}

DISCRETE Cell_b_BTS_fpc1_FPC_value_S0 {0..1000}

DISCRETE Cell_b_BTS_ats1_ATS_value_S0 {0..1000}

BOOL ifCond0_S0

BOOL ifCond1_S0

BOOL ifCond2_S0

BOOL ifCond3_S0

BOOL ifCond4_S0

BOOL ifCond5_S0

BOOL ifCond6_S0

BOOL ifCond7_S0

BOOL ifCond8_S0

BOOL ifCond9_S0

BOOL ifCond10_S0

BOOL ifCond11_S0

DISCRETE aux1_S0 {0..20000}

DISCRETE aux2_S0 {0..20000}

DISCRETE aux3_S0 {0..20000}

150

.3. SIMOL - MINION Mapping. Further Examples

BOOL ifCond12_S0

BOOL ifCond13_S0

BOOL ifCond14_S0

BOOL ifCond15_S0

BOOL ifCond16_S0

BOOL ifCond17_S0

BOOL ifCond18_S0

BOOL ifCond19_S0

BOOL ifCond20_S0

BOOL ifCond21_S0

BOOL ifCond22_S0

BOOL ifCond23_S0

BOOL ifCond24_S0

BOOL ifCond25_S0

BOOL ifCond26_S0

BOOL ifCond27_S0

BOOL ifCond28_S0

BOOL ifCond29_S0

BOOL ifCond30_S0

BOOL ifCond31_S0

BOOL ifCond32_S0

BOOL ifCond33_S0

BOOL ifCond34_S0

BOOL ifCond35_S0

DISCRETE Cell_neededR_S1 {0..20000}

DISCRETE Cell_P2PNo_S1 {0..1000}

DISCRETE Cell_realR_S1 {0..20000}

DISCRETE Cell_usedTimeSlots_S1 {0..1000}

DISCRETE Cell_s_P2PMeter_mdist_S1[3] {0..1000}

DISCRETE Cell_s_P2PMeter_codeset_S1[3] {0..1000}

DISCRETE Cell_s_P2PMeter_mRate_S1[3] {0..1000}

DISCRETE Cell_s_P2PMeter_dataAmount_S1[3] {0..1000}

DISCRETE Cell_b_BTS_fpc_S1 {0..1000}

151

Bibliography

DISCRETE Cell_b_BTS_availableTimeSlots_S1 {0..1000}

DISCRETE Cell_b_BTS_fpc1_FPC_value_S1 {0..1000}

DISCRETE Cell_b_BTS_ats1_ATS_value_S1 {0..1000}

BOOL ifCond0_S1

BOOL ifCond1_S1

BOOL ifCond2_S1

BOOL ifCond3_S1

BOOL ifCond4_S1

BOOL ifCond5_S1

BOOL ifCond6_S1

BOOL ifCond7_S1

BOOL ifCond8_S1

BOOL ifCond9_S1

BOOL ifCond10_S1

BOOL ifCond11_S1

DISCRETE aux1_S1 {0..20000}

DISCRETE aux2_S1 {0..20000}

DISCRETE aux3_S1 {0..20000}

BOOL ifCond12_S1

BOOL ifCond13_S1

BOOL ifCond14_S1

BOOL ifCond15_S1

BOOL ifCond16_S1

BOOL ifCond17_S1

BOOL ifCond18_S1

BOOL ifCond19_S1

BOOL ifCond20_S1

BOOL ifCond21_S1

BOOL ifCond22_S1

BOOL ifCond23_S1

BOOL ifCond24_S1

BOOL ifCond25_S1

BOOL ifCond26_S1

152

.3. SIMOL - MINION Mapping. Further Examples

BOOL ifCond27_S1

BOOL ifCond28_S1

BOOL ifCond29_S1

BOOL ifCond30_S1

BOOL ifCond31_S1

BOOL ifCond32_S1

BOOL ifCond33_S1

BOOL ifCond34_S1

BOOL ifCond35_S1

DISCRETE Cell_neededR_S2 {0..20000}

DISCRETE Cell_P2PNo_S2 {0..1000}

DISCRETE Cell_realR_S2 {0..20000}

DISCRETE Cell_usedTimeSlots_S2 {0..1000}

DISCRETE Cell_s_P2PMeter_mdist_S2[3] {0..1000}

DISCRETE Cell_s_P2PMeter_codeset_S2[3] {0..1000}

DISCRETE Cell_s_P2PMeter_mRate_S2[3] {0..1000}

DISCRETE Cell_s_P2PMeter_dataAmount_S2[3] {0..1000}

DISCRETE Cell_b_BTS_fpc_S2 {0..1000}

DISCRETE Cell_b_BTS_availableTimeSlots_S2 {0..1000}

DISCRETE Cell_b_BTS_fpc1_FPC_value_S2 {0..1000}

DISCRETE Cell_b_BTS_ats1_ATS_value_S2 {0..1000}

BOOL ifCond0_S2

BOOL ifCond1_S2

BOOL ifCond2_S2

BOOL ifCond3_S2

BOOL ifCond4_S2

BOOL ifCond5_S2

BOOL ifCond6_S2

BOOL ifCond7_S2

BOOL ifCond8_S2

BOOL ifCond9_S2

BOOL ifCond10_S2

BOOL ifCond11_S2

153

Bibliography

DISCRETE aux1_S2 {0..20000}

DISCRETE aux2_S2 {0..20000}

DISCRETE aux3_S2 {0..20000}

BOOL ifCond12_S2

BOOL ifCond13_S2

BOOL ifCond14_S2

BOOL ifCond15_S2

BOOL ifCond16_S2

BOOL ifCond17_S2

BOOL ifCond18_S2

BOOL ifCond19_S2

BOOL ifCond20_S2

BOOL ifCond21_S2

BOOL ifCond22_S2

BOOL ifCond23_S2

BOOL ifCond24_S2

BOOL ifCond25_S2

BOOL ifCond26_S2

BOOL ifCond27_S2

BOOL ifCond28_S2

BOOL ifCond29_S2

BOOL ifCond30_S2

BOOL ifCond31_S2

BOOL ifCond32_S2

BOOL ifCond33_S2

BOOL ifCond34_S2

BOOL ifCond35_S2

BOOL default_Cell_b_BTS_fpc1_FPC

BOOL default_Cell_b_BTS_ats1_ATS

BOOL x1_Cell_b_BTS_fpc1_FPC

BOOL a1_Cell_b_BTS_ats1_ATS

BOOL a2_Cell_b_BTS_ats1_ATS

154

.3. SIMOL - MINION Mapping. Further Examples

SEARCH

VARORDER [default_Cell_b_BTS_fpc1_FPC,default_Cell_b_BTS_ats1_ATS,

x1_Cell_b_BTS_fpc1_FPC,a1_Cell_b_BTS_ats1_ATS,a2_Cell_b_BTS_ats1_ATS,]

VALORDER [d, d, a, a, a]

PRINT ALL

CONSTRAINTS

eq(Cell_P2PNo_S0,3)

w-inrange(Cell_s_P2PMeter_mdist_S0[0], [1,3])

w-inrange(Cell_s_P2PMeter_mdist_S0[1], [1,3])

w-inrange(Cell_s_P2PMeter_mdist_S0[2], [1,3])

w-inrange(Cell_s_P2PMeter_codeset_S0[0], [1,4])

w-inrange(Cell_s_P2PMeter_codeset_S0[1], [1,4])

w-inrange(Cell_s_P2PMeter_codeset_S0[2], [1,4])

reifyimply(eq(Cell_b_BTS_fpc1_FPC_value_S0,1), default_Cell_b_BTS_fpc1_FPC)

reifyimply(w-inrange(Cell_b_BTS_fpc1_FPC_value_S0, [2,4]),

x1_Cell_b_BTS_fpc1_FPC)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S0,1), default_Cell_b_BTS_ats1_ATS)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S0,2), a1_Cell_b_BTS_ats1_ATS)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S0,4), a2_Cell_b_BTS_ats1_ATS)

eq(Cell_b_BTS_availableTimeSlots_S0,Cell_b_BTS_ats1_ATS_value_S0)

eq(Cell_b_BTS_fpc_S0,Cell_b_BTS_fpc1_FPC_value_S0)

eq(Cell_s_P2PMeter_mdist_S0[0],1)

reify(eq(Cell_s_P2PMeter_codeset_S0[0],1), ifCond0_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[0],8), ifCond0_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[0],2), ifCond1_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[0],12), ifCond1_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[0],3), ifCond2_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[0],14), ifCond2_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[0],4), ifCond3_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[0],20), ifCond3_S0)

eq(Cell_s_P2PMeter_mdist_S0[1],1)

reify(eq(Cell_s_P2PMeter_codeset_S0[1],1), ifCond4_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[1],8), ifCond4_S0)

155

Bibliography

reify(eq(Cell_s_P2PMeter_codeset_S0[1],2), ifCond5_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[1],12), ifCond5_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[1],3), ifCond6_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[1],14), ifCond6_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[1],4), ifCond7_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[1],20), ifCond7_S0)

eq(Cell_s_P2PMeter_mdist_S0[2],1)

reify(eq(Cell_s_P2PMeter_codeset_S0[2],1), ifCond8_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[2],8), ifCond8_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[2],2), ifCond9_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[2],12), ifCond9_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[2],3), ifCond10_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[2],14), ifCond10_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[2],4), ifCond11_S0)

reifyimply(eq(Cell_s_P2PMeter_mRate_S0[2],20), ifCond11_S0)

eq(Cell_neededR_S0,16)

sumleq([Cell_s_P2PMeter_mRate_S0], aux1_S0)

sumgeq([Cell_s_P2PMeter_mRate_S0], aux1_S0)

div(aux1_S0, Cell_P2PNo_S0, aux2_S0)

eq(Cell_realR_S0,aux2_S0)

ineq(Cell_neededR_S0,Cell_realR_S0, 0)

div(Cell_neededR_S0, Cell_realR_S0, aux3_S0)

eq(Cell_usedTimeSlots_S0,aux3_S0)

eq(Cell_P2PNo_S1,3)

w-inrange(Cell_s_P2PMeter_mdist_S1[0], [1,3])

w-inrange(Cell_s_P2PMeter_mdist_S1[1], [1,3])

w-inrange(Cell_s_P2PMeter_mdist_S1[2], [1,3])

w-inrange(Cell_s_P2PMeter_codeset_S1[0], [1,4])

w-inrange(Cell_s_P2PMeter_codeset_S1[1], [1,4])

w-inrange(Cell_s_P2PMeter_codeset_S1[2], [1,4])

reifyimply(eq(Cell_b_BTS_fpc1_FPC_value_S1,1), default_Cell_b_BTS_fpc1_FPC)

reifyimply(w-inrange(Cell_b_BTS_fpc1_FPC_value_S1, [2,4]),

x1_Cell_b_BTS_fpc1_FPC)

156

.3. SIMOL - MINION Mapping. Further Examples

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S1,1), default_Cell_b_BTS_ats1_ATS)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S1,2), a1_Cell_b_BTS_ats1_ATS)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S1,4), a2_Cell_b_BTS_ats1_ATS)

eq(Cell_b_BTS_availableTimeSlots_S1,Cell_b_BTS_ats1_ATS_value_S1)

eq(Cell_b_BTS_fpc_S1,Cell_b_BTS_fpc1_FPC_value_S1)

eq(Cell_s_P2PMeter_mdist_S1[0],1)

reify(eq(Cell_s_P2PMeter_codeset_S1[0],1), ifCond0_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[0],8), ifCond0_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[0],2), ifCond1_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[0],12), ifCond1_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[0],3), ifCond2_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[0],14), ifCond2_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[0],4), ifCond3_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[0],20), ifCond3_S1)

eq(Cell_s_P2PMeter_mdist_S1[1],1)

reify(eq(Cell_s_P2PMeter_codeset_S1[1],1), ifCond4_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[1],8), ifCond4_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[1],2), ifCond5_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[1],12), ifCond5_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[1],3), ifCond6_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[1],14), ifCond6_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[1],4), ifCond7_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[1],20), ifCond7_S1)

eq(Cell_s_P2PMeter_mdist_S1[2],1)

reify(eq(Cell_s_P2PMeter_codeset_S1[2],1), ifCond8_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[2],8), ifCond8_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[2],2), ifCond9_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[2],12), ifCond9_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[2],3), ifCond10_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[2],14), ifCond10_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[2],4), ifCond11_S1)

reifyimply(eq(Cell_s_P2PMeter_mRate_S1[2],20), ifCond11_S1)

eq(Cell_neededR_S1,16)

157

Bibliography

sumleq([Cell_s_P2PMeter_mRate_S1], aux1_S1)

sumgeq([Cell_s_P2PMeter_mRate_S1], aux1_S1)

div(aux1_S1, Cell_P2PNo_S1, aux2_S1)

eq(Cell_realR_S1,aux2_S1)

ineq(Cell_neededR_S1,Cell_realR_S1, 0)

div(Cell_neededR_S1, Cell_realR_S1, aux3_S1)

eq(Cell_usedTimeSlots_S1,aux3_S1)

eq(Cell_P2PNo_S2,3)

w-inrange(Cell_s_P2PMeter_mdist_S2[0], [1,3])

w-inrange(Cell_s_P2PMeter_mdist_S2[1], [1,3])

w-inrange(Cell_s_P2PMeter_mdist_S2[2], [1,3])

w-inrange(Cell_s_P2PMeter_codeset_S2[0], [1,4])

w-inrange(Cell_s_P2PMeter_codeset_S2[1], [1,4])

w-inrange(Cell_s_P2PMeter_codeset_S2[2], [1,4])

reifyimply(eq(Cell_b_BTS_fpc1_FPC_value_S2,1), default_Cell_b_BTS_fpc1_FPC)

reifyimply(w-inrange(Cell_b_BTS_fpc1_FPC_value_S2, [2,4]),

x1_Cell_b_BTS_fpc1_FPC)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S2,1), default_Cell_b_BTS_ats1_ATS)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S2,2), a1_Cell_b_BTS_ats1_ATS)

reifyimply(eq(Cell_b_BTS_ats1_ATS_value_S2,4), a2_Cell_b_BTS_ats1_ATS)

eq(Cell_b_BTS_availableTimeSlots_S2,Cell_b_BTS_ats1_ATS_value_S2)

eq(Cell_b_BTS_fpc_S2,Cell_b_BTS_fpc1_FPC_value_S2)

eq(Cell_s_P2PMeter_mdist_S2[0],1)

reify(eq(Cell_s_P2PMeter_codeset_S2[0],1), ifCond0_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[0],8), ifCond0_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[0],2), ifCond1_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[0],12), ifCond1_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[0],3), ifCond2_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[0],14), ifCond2_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[0],4), ifCond3_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[0],20), ifCond3_S2)

eq(Cell_s_P2PMeter_mdist_S2[1],1)

reify(eq(Cell_s_P2PMeter_codeset_S2[1],1), ifCond4_S2)

158

.3. SIMOL - MINION Mapping. Further Examples

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[1],8), ifCond4_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[1],2), ifCond5_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[1],12), ifCond5_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[1],3), ifCond6_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[1],14), ifCond6_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[1],4), ifCond7_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[1],20), ifCond7_S2)

eq(Cell_s_P2PMeter_mdist_S2[2],1)

reify(eq(Cell_s_P2PMeter_codeset_S2[2],1), ifCond8_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[2],8), ifCond8_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[2],2), ifCond9_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[2],12), ifCond9_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[2],3), ifCond10_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[2],14), ifCond10_S2)

reify(eq(Cell_s_P2PMeter_codeset_S2[2],4), ifCond11_S2)

reifyimply(eq(Cell_s_P2PMeter_mRate_S2[2],20), ifCond11_S2)

eq(Cell_neededR_S2,16)

sumleq([Cell_s_P2PMeter_mRate_S2], aux1_S2)

sumgeq([Cell_s_P2PMeter_mRate_S2], aux1_S2)

div(aux1_S2, Cell_P2PNo_S2, aux2_S2)

eq(Cell_realR_S2,aux2_S2)

ineq(Cell_neededR_S2,Cell_realR_S2, 0)

div(Cell_neededR_S2, Cell_realR_S2, aux3_S2)

eq(Cell_usedTimeSlots_S2,aux3_S2)

watchsumleq([default_Cell_b_BTS_fpc1_FPC,x1_Cell_b_BTS_fpc1_FPC,], 1)

watchsumleq([default_Cell_b_BTS_ats1_ATS,a1_Cell_b_BTS_ats1_ATS,

a2_Cell_b_BTS_ats1_ATS,], 1)

watchsumgeq([default_Cell_b_BTS_fpc1_FPC,x1_Cell_b_BTS_fpc1_FPC,], 1)

watchsumgeq([default_Cell_b_BTS_ats1_ATS,a1_Cell_b_BTS_ats1_ATS,

a2_Cell_b_BTS_ats1_ATS,], 1)

reify(eq(Cell_s_P2PMeter_mdist_S0[0],1), ifCond18_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[0],2), ifCond19_S0)

reify(watched-and({eq(ifCond18_S0,1),eq(ifCond19_S0,1)}), ifCond20_S0)

159

Bibliography

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S1[0], [2,3]), ifCond20_S0)

reify(eq(Cell_s_P2PMeter_mdist_S0[0],3), ifCond21_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[0],2), ifCond22_S0)

reify(watched-and({eq(ifCond21_S0,1),eq(ifCond22_S0,1)}), ifCond23_S0)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S1[0], [2,1]), ifCond23_S0)

reify(eq(Cell_s_P2PMeter_mdist_S0[1],1), ifCond24_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[1],2), ifCond25_S0)

reify(watched-and({eq(ifCond24_S0,1),eq(ifCond25_S0,1)}), ifCond26_S0)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S1[1], [2,3]), ifCond26_S0)

reify(eq(Cell_s_P2PMeter_mdist_S0[1],3), ifCond27_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[1],2), ifCond28_S0)

reify(watched-and({eq(ifCond27_S0,1),eq(ifCond28_S0,1)}), ifCond29_S0)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S1[1], [2,1]), ifCond29_S0)

reify(eq(Cell_s_P2PMeter_mdist_S0[2],1), ifCond30_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[2],2), ifCond31_S0)

reify(watched-and({eq(ifCond30_S0,1),eq(ifCond31_S0,1)}), ifCond32_S0)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S1[2], [2,3]), ifCond32_S0)

reify(eq(Cell_s_P2PMeter_mdist_S0[2],3), ifCond33_S0)

reify(eq(Cell_s_P2PMeter_codeset_S0[2],2), ifCond34_S0)

reify(watched-and({eq(ifCond33_S0,1),eq(ifCond34_S0,1)}), ifCond35_S0)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S1[2], [2,1]), ifCond35_S0)

reify(eq(Cell_s_P2PMeter_mdist_S1[0],1), ifCond18_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[0],2), ifCond19_S1)

reify(watched-and({eq(ifCond18_S1,1),eq(ifCond19_S1,1)}), ifCond20_S1)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S2[0], [2,3]), ifCond20_S1)

reify(eq(Cell_s_P2PMeter_mdist_S1[0],3), ifCond21_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[0],2), ifCond22_S1)

reify(watched-and({eq(ifCond21_S1,1),eq(ifCond22_S1,1)}), ifCond23_S1)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S2[0], [2,1]), ifCond23_S1)

reify(eq(Cell_s_P2PMeter_mdist_S1[1],1), ifCond24_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[1],2), ifCond25_S1)

reify(watched-and({eq(ifCond24_S1,1),eq(ifCond25_S1,1)}), ifCond26_S1)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S2[1], [2,3]), ifCond26_S1)

160

.3. SIMOL - MINION Mapping. Further Examples

reify(eq(Cell_s_P2PMeter_mdist_S1[1],3), ifCond27_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[1],2), ifCond28_S1)

reify(watched-and({eq(ifCond27_S1,1),eq(ifCond28_S1,1)}), ifCond29_S1)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S2[1], [2,1]), ifCond29_S1)

reify(eq(Cell_s_P2PMeter_mdist_S1[2],1), ifCond30_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[2],2), ifCond31_S1)

reify(watched-and({eq(ifCond30_S1,1),eq(ifCond31_S1,1)}), ifCond32_S1)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S2[2], [2,3]), ifCond32_S1)

reify(eq(Cell_s_P2PMeter_mdist_S1[2],3), ifCond33_S1)

reify(eq(Cell_s_P2PMeter_codeset_S1[2],2), ifCond34_S1)

reify(watched-and({eq(ifCond33_S1,1),eq(ifCond34_S1,1)}), ifCond35_S1)

reifyimply(w-inset(Cell_s_P2PMeter_codeset_S2[2], [2,1]), ifCond35_S1)

EOF

161

	Abstract (English)
	Abstract (German)
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Foreword
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution

	2 Preliminaries and Related Research
	2.1 Terminology
	2.2 Modeling Languages for Simulation and (Re-)Configuration
	2.3 Configuration Tools
	2.4 Simulation Tools
	2.5 Conclusions

	3 SIMOL Language
	3.1 Tokens
	3.2 Syntax
	3.3 SIMOL Inheritance
	3.4 Semantics
	3.5 Implementation
	3.5.1 Basic MINION Constructs used in the SIMOL Implementation
	3.5.2 SIMOL - MINION Mapping. Practical example

	3.6 Analysis

	4 SIMOA Approach
	4.1 SIMOA Architecture
	4.2 Reconfiguration Mechanism
	4.2.1 MCDiag Algorithm
	4.2.2 RECONFIG Algorithm
	4.2.3 Conclusion

	5 Case Study
	5.1 Motivation
	5.2 Domain Requirements
	5.3 Applying the SIMOA Approach
	5.3.1 The Domain-specific Tools
	5.3.2 Running Example without Reconfiguration Mechanism
	Experimental results

	5.3.3 Running Example with Reconfiguration Mechanism
	Experimental results

	5.4 Business Cases
	5.5 Conclusions

	6 Extensions
	6.1 Preliminaries and Related Work
	6.2 MCDiag Algorithm for Diagnosis
	6.3 ConDiag Algorithm
	6.4 Run-Time Performance Trends - A Comparison of Diagnosis Algorithms
	6.4.1 Selected Diagnosis Algorithms
	6.4.2 Empirical Results

	7 Conclusions and Future Work
	List of Theorems and Definitions
	Bibliography
	Appendices
	.1 A Variant of EBNF Notation
	.2 SIMOL Syntax
	.3 SIMOL - MINION Mapping. Further Examples

