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Abstract

In this Thesis we introduce several ways to incorporate contextual information in a popular

machine learning framework known as random decision forests. Traditionally, this type

of learning algorithm processes training samples in a completely independent way and

does not assume relations between them. While such an assumption greatly facilitates the

overall learning problem, it might be suboptimal in cases where the data to be learned

from exhibits certain structure as e.g. in images.

We focus on two core computer vision problems, object detection and semantic segmen-

tation where the underlying data is assumed to be structured. With structured we refer

to directed relations of spatially adjacent samples, which are typically mapped on a regu-

lar pixel/voxel grid and exhibit a large degree of correlation. From a more general point

of view, this type of data structure is also reflected in the semantics and is commonly

termed as contextual information. As machine learning plays a crucial role in modern

computer vision systems, we stress the importance of exploiting this additional informa-

tion about the data composition. Consequently, learning algorithms used for computer

vision problems should take the structure of the data into account and learn correlations

between samples not only from their representations but also from spatial and semantic

arrangements.

The two main parts of this Thesis describe how random forests can be extended to

integrate contextual information into the learning process in order to improve performance

for object detection and semantic image segmentation tasks, respectively. For object de-

tection, we investigate how the learner can be extended by using local shape information as

a novel feature cue or how instances of an object category can be detected by inferring mu-

tual compatibilities of individual data samples. Moreover, we introduce context-sensitive

forests which exploit contextual cues by learning from intermediate predictions of the data.

Such intermediate predictions can be considered as feedback loop into the training data

and model early stages of the predictor outputs.

The second part deals with semantic image segmentation and we show how output

predictions of random forests can be made interdependent in order to overcome the pre-

viously mentioned independence assumption of data samples. First, we present a way

to directly encode this information in the output by introducing structured-class labels,

which are local label patches respecting label semantics and their spatial distribution. In

vii



viii

another approach, we show how predictor outputs can be interrelated and fed back into

the training process by analyzing geodesic connectivity features, capturing semantic paths

in a contrast-sensitive manner.

In both parts, we provide comprehensive experimental evaluations for the respective

contributions, supporting our claims that context-awareness in the random forest machine

learning algorithm leads to significant improvements of the results. For object detection,

we evaluated on standard benchmark data bases like the TUD pedestrian data base, the

ETHZ shape data base and the INRIA horses data base. For semantic segmentation, we

evaluated data bases like the MSRCv2, CamVid driving videos, Labelled Faces in the Wild

or Kinect data bases. Finally, we provide a summary about the Thesis and conclude with

an outline for possible future work.

Keywords. Decision trees, ensemble methods, random forests, object detection, seman-

tic segmentation.



Kurzfassung

Die vorliegende Doktorarbeit behandelt maschinelles Lernen mittels Random Decision

Forests und führt mehrere neue Methoden vor, mit denen kontextuelle Informationen in

diesem Lernverfahren berücksichtigt werden können. Obwohl diese meist stark korrelieren,

behandelt dieses Lernverfahren Trainingsdaten gängiger Weise vollkommen unabhängig

voneinander, womit die Informationen aus wechselseitigen Beziehungen ungenutzt bleiben.

Eine unabhängige Betrachtung der Daten vereinfacht zwar im Allgemeinen das Lernprob-

lem, führt jedoch zu einer ineffizienten Verwendung der Trainingsdaten, im Speziellen

wenn diese eine charakteristische Struktur aufweisen, wie es etwa bei Bilddaten der Fall

ist.

Unter der Annahme, dass die ihnen zugrunde liegenden Daten strukturiert sind, wer-

den zwei zentrale Probleme der Bildverarbeitung neu bearbeitet: Objekterkennung und se-

mantische Segmentierung. Strukturiert bedeutet dabei, dass räumlich benachbarte Daten-

punkte, die auf ein reguläres Pixel-, bzw. Voxelraster abgebildet werden, ein hohes Maß

an orientierungsabhängiger Korrelation aufweisen. Allgemeiner verstanden bildet diese

Struktur auch die semantische Bedeutung in Bildern ab und wird als kontextuelle Infor-

mation bezeichnet. Lernalgorithmen spielen in modernen Bildverarbeitungssystemen eine

immer bedeutendere Rolle und sollten Korrelationen in den Daten sowohl auf Basis der

Repräsentation als auch der kontextuellen Beziehungen erlernen.

Die beiden Hauptteile dieser Arbeit, Objekterkennung und semantische Segmentierung

mit Random Decision Forests, beschreiben spezifische Erweiterungsmöglichkeiten zur In-

tegration von kontextuellen Informationen für die Verbesserung der jeweiligen Ergebnisse.

Zur Objekterkennung wird eine konturbasierte Datenrepräsentation eingeführt und gezeigt

wie Objekte als Summe von gelernten, lokalen Fragmenten erkannt werden können. Weit-

ers wird ein neues Verfahren zur Objekterkennung vorgestellt, welches Instanzen von

gesuchten Objekten durch gemeinsame Analyse von paarweisen Kompatibilitäten detek-

tiert, basierend auf Bestimmungen von Random Decision Forests. Ein weiteres entwick-

eltes Verfahren greift direkt in den Lernprozess ein, indem man dem Algorithmus während

des Lernens bereits den Zugriff auf eigene, vorläufige Ergebnisse zu den Trainingsdaten

ermöglicht, was wiederum den Zugriff auf kontextuelle Information für den restlichen Lern-

prozess erlaubt.

Im zweiten Teil dieser Forschungsarbeit werden Random Decision Forests erweitert,
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um verbesserte Resultate für semantische Segmentierung von Bilddaten zu erzielen. Als

erster Ansatz wird eine Modifikation beschrieben, die strukturierte anstelle von skalarer

Klassifikationsergebnisse bereitstellt. Somit können räumlich benachbarte Datenpunkte

auch in deren Ergebnisraum miteinander verschränkt werden. In einer weiters vorgestell-

ten Methode wird aufgezeigt, dass sich eine Rückführung von vorläufigen Ergebnissen

in die Trainingsdaten positiv auf die Segmentierungsergebnisse auswirkt. Die Zwischen-

ergebnisse werden einer kontrast-sensitiven Analyse und Glättung unterzogen, um eine

Verschränkung im Ergebnisraum zu erzielen.

In beiden Hauptteilen werden umfangreiche, experimentelle Evaluierungen

durchgeführt und die jeweiligen Ergebnisse mit bekannten Methoden aus der Literatur

verglichen und diskutiert. Quantitative Analysen wurden zur Objekterkennung auf

Datensätzen wie etwa TUD pedestrians, ETHZ shapes oder INRIA horses durchgeführt

während semantische Segmentierung auf Datensätzen wie MSRCv2, CamVid driving

videos, Labelled Faces in the Wild oder KINECT depth data evaluiert wurde. Generell

kann gesagt werden, dass die Verwendung von kontextueller Information zu einer

deutlichen Verbesserung der Resultate führt und das sowohl für Objekterkennung als

auch für semantische Segmentierung. Auf Basis der durchgeführten Forschung ergeben

sich zahlreiche Anknüpfungspunkte für zukünftige Untersuchungen, die am Schluss der

Arbeit aufgezeigt werden.

Schlüsselwörter. Entscheidungsbäume, Ensemble-Methoden, Objekterkennung,

semantische Segmentierung.
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Chapter 1

Introduction
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1.1 Historical Development of Learning with Decision Trees . . . . 2

1.2 Random Forests for Computer Vision Problems . . . . . . . . . 4

1.3 Motivation and Contributions of this Thesis . . . . . . . . . . . 5

This Thesis investigates theoretical properties and provides practical insights for a

supervised machine learning algorithm denoted as random decision forest, with emphasis

on its customization for two classical computer vision problems, namely object detection

and semantic image segmentation (see illustrations in Figure 1.1). With object detection,

we refer to the task of category-specific object localization in a (previously unseen) test

image. For instance, we want to find all pedestrians present in a given image by labelling

them using an enclosing bounding box. Semantic image segmentation on the other hand

has the goal to assign a categorical label to each pixel of an image under test. As an

example, we might be given an image of a road scene where we want all pixels to be

properly labelled as street, building, car, pedestrian, and so on. In such a way, semantically

labelled images provide the basis for high-level reasoning about what is actually going on

an image and is a key component to artificial scene understanding.

Consequently, one might ask about the relevance of machine learning when it comes to

such computer vision problems. Reconsidering the previous examples we can immediately

see that they both perform a labelling task on the test images. However, both described

labelling tasks differ quite significantly in terms of their output domains. As for the

bounding box labelling example (i.e. object detection) of pedestrians in an image, we want

real-valued outputs that encode width and height dimensions as well as their positions in

the image domain. In contrast, all we care about in semantic image labelling is to assign

one out of possibly many categorical labels to each pixel in the image. Luckily, it turns out

that such labelling tasks are exactly what may be accomplished by off-the-shelf machine

learning algorithms such as support vector machines (SVM), boosting, or decision trees.

However, before we argue for the choice of selecting exactly random decision trees as

1
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(a) Pedestrian detection example. Left: Original image. Right: Image augmented with
bounding box annotations of pedestrians. (Image pair taken from TUD crossing Data
Base [Andriluka et al., 2008]).

(b) Semantic Image Labelling example. Left: Original image. Right: Corresponding, color-
coded label image (Image pair taken from CamVid Data Base [Brostow et al., 2008]).

Figure 1.1: Illustrations for computer vision problems: Top row shows object detection
task and bottom row shows semantic segmentation task.

learners, we conduct a trip to their historical evolution.

1.1 Historical Development of Learning with Decision Trees

”The ability to learn is a hallmark of intelligent behavior, so any attempt to under-

stand intelligence as a phenomenon must include an understanding of learning.” With

these words, Quinlan [Quinlan, 1986] gave reasons for the prominence of artificial intel-

ligence as a research field, ever-increasing since its emergence in the mid 1950’s. In his

seminal work, the focus was put on ”a family of machine learning systems that have
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been used to build knowledge-based systems of a simple kind”. However, early ideas

of top-down, inductive learning techniques like the Concept Learning System framework

(CLS) of [Hunt et al., 1966] were attempting to minimize rather complex compositions of

cost measures involving lookahead strategies (similar to minimax), requiring substantial

amounts of computation. Independently, research in [Friedman, 1977] presents a recursive

partitioning algorithm based on the Kolmogorov-Smirnov distance which is a measure for

the separability of two distribution functions.

As one of their direct successors, the famous ID3 [Quinlan, 1979, Quinlan, 1983] pro-

vided a concept for inductive tree construction, built upon information theory driven eval-

uation functions and therefore replaced the computationally expensive idea of cost-driven

lookaheads. Still, one of the remaining constraints was the restriction on the attributes

(also referred to as feature space) which was resolved in the Analogue Concept Learn-

ing System (ACLS) of [Patterson and Niblett, 1983], giving permission to use numerical

(integer-valued) and nonnumerical attributes. Reportedly, this extension allowed for the

first time to apply decision trees to computer vision problems - for the task of classifying

chocolate bars [Shepherd, 1983]:

The industrial vision problem described in [Shepherd, 1983] was posed as to correctly

identify 12 different types of Black Magic chocolate bars, where each one was in a stable

position but at arbitrary orientation. The feature space was designed from shape based

statistics (e.g. compactness, circularity, elongation of corresponding silhouettes) extracted

from boolean images with a resolution of 96 × 96 pixels. In the quantitative evaluation,

the tree based classifiers were found to be competitive with respect to k -nearest neigh-

bor (k -NN) or minimum distance classifiers (MDC), however with the advantages of low

computational costs and the intelligibility of the solution.

Another successor of ID3, denoted as ASSISTANT, was introduced

in [Kononenko et al., 1984]. It can be considered as generalization of ACLS as it extends

to real-valued, nominal and also missing (or unknown) values. Further developments

resulted in the well-known C4.5 [Quinlan, 1993] which is able to deal with multiple

classes and different types of attributes (binary, nominal, (ordered) integer- and

real-valued). As one of the most prominent works, Classification and Regression Trees

(CART) [Breiman et al., 1984] provided a statistical view on the problem of decision tree

training for both, classification and regression tasks, introducing the Gini-Index and

Twoing for the test selection process.

Although fundamental research on decision trees was conducted and proven useful for

some applications at that time, they were still restricted to quite low-dimensional data.

However, with the rise of ensemble methods in the 1990’s [Schapire, 1990, Freund, 1995]

multiple decision trees were turned to decision forests. Averaging the outputs of multiple

trees was introduced for the first time in [Amit and Geman, 1997] and showed significant

improvements in terms of prediction accuracy (output variance reduction) but also better

abilities to handle high-dimensional data.

In this line of research, the work in [Ho, 1998] investigated random partitioning of
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the input feature space and showed superior generalization properties. Another approach

denoted as ”bagging” (bootstrap aggregating) was introduced in [Breiman, 1996a] and

shows improvements when averaging results of decision trees that are trained on different

random subsets of the original training data. Later, Breiman introduced the terminology

of ”Random Forests” [Breiman, 1999, Breiman, 2001] which have been popularly used for

many machine learning tasks ever since.

1.2 Random Forests for Computer Vision Problems

Given the fact that there are many possible machine learning algorithms for handling

computer vision problems - What makes decision trees our favourite choice of learning

algorithm in this Thesis? In what follows, we discuss some of the prerequisites to our

previously defined detection and segmentation goals while simultaneously remembering

that there is no such thing as a universally optimal learning algorithm. Indeed, the No

free lunch theorem [Wolpert, 1996] basically states that we should not get our hopes up

for a single, consistently best learning algorithm. For example, it tells us that no matter

how ”good” or ”bad” two different learning algorithms are, none of them will consistently

outperform over the other when all target functions are equally likely. Ultimately, the no

free lunch theorem encourages us to best possibly assess the circumstances of the target

domain where the learning algorithm shall be applied. To this end, it is important to start

with a definition of some basic conditions we agree to stick to throughout the rest of this

Thesis.

We will only consider supervised learning problems, meaning that during the training

process of a predictor function1 we are given a set of training samples where each instance

is a pair holding the actual object data (i.e. the input signal) and an associated, desired

output signal (typically some label information obtained from ground truth data). This is

in contrast to unsupervised or semi-supervised learning techniques which have no or only

partially labelled data at their disposal. When it comes to decision forests, it is well known

that their learning process efficiently scales to large-scale (and possibly high-dimensional)

data sets while maintaining sustainable modelling capacities [Shotton et al., 2012]. This

is of particular interest when dealing with image data, e.g. videos and images with high

resolution are common and need to be processed in reasonable time.

Batch-based or offline learning is another constraint that we will restrict to, which

assumes that all training data is available when we start with the learning process. This is

opposed to active or online learning which allows additional, sequential arrival of training

samples once the training process has already started. However, decision trees have been

successfully introduced in the context of online learning [Saffari et al., 2009].

Random forests were termed as best off-the-shelf learning techniques in [Zhou, 2012]

and are considered to be close to an ideal learner according to [Hastie et al., 2009]. In ad-

1With predictor functions we introduce a general terminology including the more specific classification
or regression functions
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dition, the work in [Caruana et al., 2008] empirically demonstrated that they outperform

most state-of-the-art learners when it comes to handling high dimensional data problems.

The seminal work of [Breiman, 2001] reported their efficiency for classification tasks.

One of the most recent books on decision forests [Criminisi and Shotton, 2013] provides

comprehensive information on how to exploit the core framework for tasks like regression,

classification, semi-supervised learning, density estimation, manifold learning and active

learning. In fact, they have been increasingly used for computer vision problems in the

last couple of years [Marée et al., 2005, Lepetit and Fua, 2006, Criminisi et al., 2010,

Bosch et al., 2007, Gall et al., 2011, Montillo et al., 2011, Shotton et al., 2008b,

Glocker et al., 2012, Shotton et al., 2011, Shotton et al., 2012, Lim et al., 2013].

1.3 Motivation and Contributions of this Thesis

As shown earlier in this chapter, random decision forests are characterized by a series of

elegant properties making them an important machine learning algorithm. However, when

machine learning techniques are applied to computer vision problems, the available data

typically exhibits certain properties which are often neglected throughout the training

process. For instance, image data (2D-images, image sequences, volumetric image data)

often exhibits high correlation between data points that are in turn arranged at a regu-

lar grid/voxel space. We can also consider it as structured data that naturally captures

contextual information. In this sense, it seems desirable to include this contextual infor-

mation into the learning process, i.e. one would like to exploit relations defined by terms

of proximity, correlation and semantic context when learning from training data.

This Thesis is mainly concerned with how to integrate contextual information in the

random forest framework to provide improved predictors for (mixed) classification and

regression tasks in computer vision. Specifically, the Thesis is divided into three parts:

First, we provide a general description of the random decision forest concepts and prin-

ciples in Chapter 2, including a ”core” theory that allows to formalize both, regression

and classification problems. We provide specific instantiations of the general model to

accomplish classification, regression and mixed classification and regression tasks.

The main contributions where we show the benefits from integrating contextual infor-

mation in the learning process are divided into an object detection Part (I) and an object

segmentation Part (II). The detection part is structured in three chapters:

• Discriminative Learning of Contour Fragments for Object Detection. This

chapter introduces a way to efficiently learn shape fragments of fixed length together

with their relative positions to object centroids of interest. To this end, we intro-

duce a novel shape fragment descriptor which efficiently captures the local, contex-

tual shape information and can furthermore be effectively learned together with its

relative displacement to the object centroid within the random forest framework.

• Evolutionary Hough Games for Coherent Object Detection. Here, we pro-
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vide a novel, game-theoretic approach for finding multiple instances of an object

category, previously learned in a random forest. We exploit the information stored

in the trees to setup a payoff matrix, that relates mutual compatibilities of multiple

samples / patches of a test image to the previously learned object model. In such

a way, we identify objects by means of the parts it is composed by and therefore

jointly analyze their mutual, contextual relations.

• Context-Sensitive Decision Forests for Object Detection. In this chapter

we introduce a new way to exploit contextual information provided by intermediate

predictions of training/test samples, that are obtained from preceding nodes (or

levels) of the trees. These preliminary predictions can be used as features in the

subsequent training process, i.e. the learning process can be enhanced to learn about

context and the semantic, spatial label distribution in the training data. A crucial

problem is how to setup this contextual information which is tackled by introducing a

prioritized way of training. Moreover, we introduce a general, loss-based formulation

of the training process and provide a particular loss function which jointly optimizes

for classification and regression problems.

The benefits of using contextual information in random forests for the task of image

segmentation are described in the second part of this Thesis, which is structured in two

chapters:

• Structured Labels in Random Forests for Semantic Labelling and Object

Detection. In this chapter we investigate how to perform structured predictions

in the output space of random forests. Conventional classification forests typically

classify test samples with single (atomic) labels, resulting in noisy predictions when

e.g. entire images shall be classified. However, semantic segmentation algorithms

should ideally provide consistently and coherently labelled regions. For this task,

we introduce a simple way to augment the output label space of random forests by

analyzing and learning from structured class labels that implicitly encode the local

arrangement of (multiple) labels given from ground truth information. The key

benefits of our method are that we can learn semantically correct label transitions

and compositions (i.e. we will only predict label configurations that exist in ground

truth) and we can provide more robust segmentation results since also predictions

in a local neighborhood can be derived from structured class labels. Moreover, we

demonstrate that structured class labels also lead to significant improvements for

the task of object detection when integrated in the concept of Hough forests.

• Geodesic Forests for Learning Coupled Predictors. Here, we demonstrate

that an efficient, random forest based method is able to outperform a similar con-

ditional random field (CRF) based method which involves the use of computational

expensive inference algorithms. In our presented approach (and in contrast to CRF-

based models), the posterior distribution completely factorizes over individual pixels,
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making it computationally very efficient. In order to obtain coherently segmented

images for learned target categories, we present a novel way for coupling forest pre-

dictions back into the feature space of the classifiers where they learn from. The

coupling mechanism interrelates pixel-pairs by analyzing long-range, semantic con-

nectivity features derived from efficient, generalized geodesic distance transforms. In

addition the chapter explores how MRF-like spatial coherence can be incorporated

directly within the random forest training objective, yielding to superior segmenta-

tion quality as evinced in the experimental evaluation.
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2.1 Notation

In this Thesis we denote vectors using boldface lowercase (e.g. d, u, v) and sets by us-

ing uppercase calligraphic (e.g. X , Y, T ) symbols. The sets of real, natural and integer

numbers are denoted with R, N and Z, respectively. We denote by 2X the power set of X
and by 1 [P ] the indicator function returning 1 or 0 according to whether the proposition

P is true or false. Moreover, with P(Y) we denote the set of probability distributions

9
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having Y as sample space. We denote by δ(x) the Dirac delta function (or Delta distribu-

tion). Additionally, Ex∼Q [f(x)] denotes the expectation of f(x) with respect to x sampled

according to distribution Q.

Although we provide a general model of random forests that is not restricted to com-

puter vision applications, the parameterisation for computer vision tasks discussed in this

Thesis exploits the spatial arrangement of data, implicitly given by an image. To this end,

we define a multi-channel image as a 3-dimensional matrix I where I(u,c) denotes the value

at pixel position u = [u1 u2]T ) of channel c. Channels or features may e.g. include color

image raw channel intensities, gradients, filter bank information, etc.. The set of images

is denoted by I.

2.2 Definition of Random Trees and Forests

In general, decision trees can be considered as tree-structured, predictive models for map-

ping (input) observations to certain target domains (e.g. categorical domains like person

or car for classification tasks or continuous, real-valued domains for regression tasks). De-

cision trees are organized in a hierarchical way and may be interpreted as special instances

of directed, acyclic graphs, consisting of nodes and edges. Here, we revisit a general de-

scription of the random forest framework in order to jointly capture classification and

regression problems within a unified theoretic perspective. As we will demonstrate in the

remainder of this Thesis, many existing random forest variants can be expressed in terms

of the presented theory.

A binary decision tree is a tree-structured predictor1 which, starting from its root (i.e.

the origin of the tree), predicts about a sample that is routed until it reaches a leaf. At

each internal node of the tree a decision is taken whether the sample should be forwarded

to the left or right child, according to the outcome of a binary-valued function. In this

Thesis we will only consider binary decision trees, i.e. each internal node will have exactly

two child nodes and we will omit the binary attribute for brevity reasons.

In more formal terms, let X denote the input space, let Y denote the output space

and let T be the set of decision trees. In its simplest form, a decision tree consists of a

single node (a leaf ) and is parameterised by a probability distribution Q ∈ P(Y) which

represents the posterior probability of elements in Y given any data sample reaching the

leaf, i.e. P (y|x, t) = Q(y). We denote this tree as Lf (Q) ∈ T . In this sense, an admittedly

very rudimentary decision tree can consist of only a single leaf node, coinciding with the

root node.

Otherwise, a decision tree consists of a node with a left and a right sub-tree. This

node is parameterised by a split function φ : X → {0, 1}, which determines whether to

route an arriving data sample x ∈ X to the left decision sub-tree tl ∈ T (if φ(x) = 0) or

to the right one tr ∈ T (if φ(x) = 1). We denote such a tree as Nd (φ, tl, tr) ∈ T .

1We use the term predictor because we jointly consider classification and regression.



2.3. Learning/Training Process 11

Nd (·)

Nd (·)

Nd (·)

Lf (·) Lf (·)

Nd (·)

Lf (·) Lf (·)

Nd (·)

Nd (·)

Lf (·) Lf (·)

Lf (·)

Figure 2.1: A single, binary decision tree t ∈ T with internal nodes Nd (·) in blue and leaf
nodes Lf (·) in red.

Consequently, the set of decision trees can be compactly written as union of leaves and

internal nodes

T = {Lf (Q) : Q ∈ P(Y)} ∪
{
Nd (φ, tl, tr) : φ ∈ X → {0, 1}, tl/r ∈ T

}
. (2.1)

A decision forest is an ensemble F ⊆ T of decision trees, which makes a prediction

about a data sample by combining the single predictions gathered from the trees in the

ensemble. The reasons for using multiple trees will be clarified later in this chapter, once

the training and testing processes are described.

2.3 Learning/Training Process

Now that we know about the general structure of decision trees we describe the randomized

training algorithm as presented in [Breiman, 2001]. The training procedure for a decision

tree is devoted to determine the structure of the tree by proper selection of the split

functions at the internal nodes and determination of the posterior probabilities to be

stored in the leaves.

A random forest is created by independently training a set of random decision

trees on random subsets of the training data D ⊆ X × Y. The training procedure for

finding the most compact (or smallest) decision trees for a given training set is known

to be NP-complete [Hyafil and Rivest, 1976]. However, it has been empirically shown

in [Murthy and Salzberg, 1995], that the expected classification costs for greedily induced

trees as used in C4.5 and CART are consistently very close to those of optimal trees.

The set of parameters to be optimized can e.g. determine the tree structure, the split

functions at the internal nodes and the final predictions stored at the leaves. The goal

of the training process is therefore to optimize the aforementioned parameters such

that the prediction error on the training data is reduced and simultaneously achieve
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proper generalization such that non-seen test samples can be predicted with sufficient

accuracy. In order to prevent overfitting problems, the search space of possible split

functions is typically limited to a random set and a minimum number of training

samples is required to grow a leaf node. Moreover, there exist a number of tree pruning

strategies [Hastie et al., 2009], i.e. techniques applied after the growing phase that may

alter the leaf parameterisation or truncate the trees by removing sub-trees. The main

goal of these strategies is to decrease the generalization error by reducing the size of the

trees while maintaining the prediction accuracy.

During the training procedure, each new node is fed with a set of training samples

Z ⊆ D. If some stopping condition depending on Z holds, the node becomes a leaf and a

density on Y is estimated based on Z. Otherwise, an internal node is grown and a split

function is selected from a pool of random ones in a way to minimize some pre-defined

training error function on Z. The selected split function induces a partition of Z into two

disjoint sets, which in turn become the left and right childs of the current node where the

training procedure is continued.

We will now write this training procedure in more formal terms. To this end we

assume the existence of a function π(Z) ∈ P(Y) providing a density on Y estimated from

the training data Z.

Loss function We define a loss function L(Z |Q) ∈ R that penalizes wrong predictions

on the independent and identically distributed (i.i.d.) training samples in Z, when pre-

dictions are given according to a distribution Q ∈ P(Y) obtained from π(Z). The loss

function L can be further decomposed in terms of a loss function `(·|Q) : Y → R acting

on each sample of the training set in an (additive) way:

L(Z |Q) =
∑

(x,y)∈Z

`(y |Q) . (2.2)

We keep the definitions of both these functions general because they depend on the nature

of the input and output spaces and on the specific application.

Split function Let Φ(Z) be a set of split functions randomly generated for a training

set Z and given a split function φ ∈ Φ(Z), we denote by Zφl and Zφr the sets obtained by

splitting Z according to φ, i.e.

Zφl = {(x, y) ∈ Z : φ(x) = 0} (2.3)

and

Zφr = {(x, y) ∈ Z : φ(x) = 1} . (2.4)

In other words, given a split function φ ∈ Φ(Z), we can obtain the parent training set with

the union operator Z = Zφl ∪Z
φ
r and Zφl ∩Z

φ
r = ∅. The set of split functions Φ(Z) consists
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of models to separate the data in the input space X and is additionally parameterised with

a set of parameters which however, in the general model description can be neglected but

will be discussed later in this chapter.

Inductive training procedure Given the previously described components, we can

now formalize the training procedure in terms of a recursive function g : 2X×Y → T ,

which generates a random decision tree from a given training set Z as argument:

g(Z) =

Lf (π(Z)) if some stopping condition holds

Nd
(
φ, g(Zφl ), g(Zφr )

)
otherwise .

(2.5)

The optimal split function φ in the pool Φ(Z) is identified as the one minimizing the loss

we incur given the node split

φ ∈ arg min
{
L(Zφ

′

l ) + L(Zφ′r ) : φ′ ∈ Φ(Z)
}

(2.6)

where we compactly write L(Z) instead of L(Z|π(Z)), i.e. the loss on Z obtained with

predictions driven by the probability density estimate obtained from π(Z).

Finally, the stopping condition that is used in (2.5) to determine whether to create a

leaf or to continue branching the tree typically consists in checking if |Z|, i.e. the number

of training samples at the node, or the loss L(Z) are below some given thresholds, or if

a maximum depth of the tree is reached. The corresponding pseudo-code of the training

procedure can be found in Algorithm TrainDT.

2.4 Inference/Testing Process

Given a decision tree t ∈ T , the associated posterior probability of each element in Y given

a sample x ∈ X is determined by finding the probability distribution Q, parameterising

the leaf that is reached by x when routed along the tree. This is compactly presented with

the following definition of P (y|x, t), which is inductive in the structure of t:

P (y |x, t ) =


P (y |x, tl) if t = Nd (φ, tl, tr) and φ(x) = 0

P (y |x, tr) if t = Nd (φ, tl, tr) and φ(x) = 1

Q(y) if t = Lf (Q) .

(2.7)

As can be seen, Equation (2.7) corresponds to routing a sample x through a tree t, by

taking directions to the left and right subtrees tl, tr according to the binary results of the

respective, internal node split functions φ(x) until it reaches a leaf node. Once the leaf

node is reached, the prediction takes place according to its stored probability distribution

P (y |x, t = Lf (Q) ) = Q(y).

Finally, the combination of the posterior probabilities derived from
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Procedure TrainDT(Z, d)

Input: Training sample set Z ⊆ X × Y
Input: Current tree depth d
Input: Stopping condition: Max depth dmax or minimum number of samples m

required for a leaf
Output: An inductively grown decision tree t

1 if |Z| < m or d ≥ dmax then
2 return t← Lf (π(Z))

3 else
4 s←∞;
5 Φ ∼ U ; // randomly sample split functions Ψ according to uniform

distribution U
6 for φ′ ∈ Φ do

7 {Zφ
′

l ,Z
φ′
r } ← Z ; // partition Z according to split φ′

8 s′ = L(Zφ
′

l ) + L(Zφ
′

r );
9 if s′ < s then

10 s = s′;
11 φ = φ′ ; // store best split parameterising

12 TrainDT(Zφl , d+ 1);

13 TrainDT(Zφr , d+ 1);

// trains left and right decision trees Nd
(
φ, g(Zφl ), g(Zφr )

)

all the trees in a forest F ⊆ T can be done by an averaging operation

[Amit and Geman, 1997, Breiman, 2001], yielding a single posterior probability for the

whole forest:

P (y|x,F) =
1

|F|
∑
t∈F

P (y|x, t) . (2.8)

Alternatively, combining the output of the individual trees in the ensemble can be done

in a multiplicative way

P (y|x,F) =
1

Z

∏
t∈F

P (y|x, t) , (2.9)

where Z is a partition function that assures proper normalization. While simple averaging

as in Equation (2.8) produces ’soft’ decisions, the multiplicative combination enforces

’harder’ ones. In both settings however, each input sample x ∈ X is assigned an element

of the output space Y independently from all other samples.
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2.5 Bagging, Multiple Trees and the Effect of Randomness

A general problem faced in machine learning is the so-called bias-variance trade off, typi-

cally arising from the inability of given predictor models to simultaneously minimize two

specific types of prediction errors. To this end, prediction errors can be decomposed into

additive error terms that are denoted as bias and variance errors, respectively (plus a

data-dependent noise term). The bias term describes the difference between the desired,

true output and the expected prediction of a model. The error conducted due to variance

can be considered as the variation in the output of multiple predictors for a data sample.

The idea behind bagging is to average results from many high-variance but rather

low-biased predictors, by training each predictor on individually sampled training data

sets. To this end we remark that a decision tree can largely reduce bias, only by growing

it to sufficient depth. Also, with bagging the trees are identically distributed (i.d.) so

the expectation for the bias over the forest is the same as the expectation for the bias

of individual trees. For random forests [Breiman, 2001], the idea of bagging has been

extended by building ensembles of de-correlated decision trees, yielding to a reduction

of the variance of prediction results. To illustrate the importance of the de-correlation

between trees and its interplay with the reduction in error due to variance, we consider a

tree in the forest T as identically but not necessarily independently distributed random

variable wi ∼ N (µ, σ2), wi ∈ W and i = 1, . . . , |T |. Here, µ is the mean and σ2 is the

variance, defining a Gaussian. As shown in [Hastie et al., 2009], we can now analyze the

variance of the expected mean for correlated samples using

E [W] = Var(W) + (E [W])2 (2.10)

and the positive, pairwise correlation

ρ =
E [(wi − µ)(wj − µ)]

σ2
with ρ > 0 . (2.11)

After some algebraic manipulation we obtain

Var

(
1

|T |
∑

wi

)
= ρσ2 +

1− ρ
|T |

σ2 , (2.12)

establishing a connection between the correlation ρ, the variance σ2 and the number of

trees in the forest |T |. As the latter increases, i.e. the more trees are grown, the second

term in (2.12) will vanish and therefore the limiting term is the correlation between trees

for a given σ2.

In addition to bagging, variance reduction of decision trees is obtained by employing

randomization in the learning process. This causes de-correlation between the trees and is

achieved by random selection of features used in the split nodes. In the following section,

the selection mechanism is described in more detail for specific parameterizations of the
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random forest model.

2.6 Specific Parameterisations

Given the general definition of decision trees as well as the training and inference processes

from the previous sections, we now focus on specific instantiations. In particular, we start

by describing two of the most widely used instances, namely classification and regres-

sion trees. Moreover, we will present a recently developed type of random forest denoted

as Hough Forest [Gall and Lempitsky, 2009], which is a joint classification and regres-

sion forest customized to the task of object detection. For all types, we will discuss the

parametrization of the general models by providing a detailed description of their respec-

tive splitting and selection criterion functions (expressed in terms of loss functions above).

A typical split function selection criterion commonly adopted for classification and regres-

sion is information gain or the Gini impurity. Since this interpretation is predominant in

the literature [Criminisi et al., 2012], we will adopt to this setting. However, the equivalent

counterpart in terms of loss can be obtained by using a log-loss, i.e. `(y|Q) = − log(Q(y))

for the information gain or `(y|Q) = 1−Q(y) for the Gini impurity.

2.6.1 Classification Trees

The classification task is probably the most common application of random decision trees.

Here, the goal is to associate each test sample to a discrete, categorical, unordered class

label. Classification trees exhibit many desired properties like inherent multi-class capa-

bility, they generalize well to new test samples, tend not to overfit and are robust to label

noise [Breiman, 2001]. Another interesting property is that they provide a probabilistic

output as opposed to standard SVM. Many computer vision problems have been formu-

lated as classification tasks, e.g. semantic image labelling seeks for a per-pixel, categorical

classification of an image, or image categorization aims for recognizing the category of a

scene captured in the image (see illustrations in Figure 1.1 and Figure 2.2).

According to the problem statement in [Criminisi et al., 2012], the classification task

within the random decision tree model may be summarized as

Given a labelled training set, learn a general mapping which associates

previously unseen test data with their correct classes.

Consequently, after accomplishing the training process and applying the inference rules

of (2.7) for a given test sample x ∈ X and a single tree t ∈ T results in an (empirical)

posterior probability distribution P (y|x, t) from where the discrete class label

y∗ = arg max
y∈Y

P (y|x, t) (2.13)

is selected as the most represented element in the sample space of Y = {1, . . . , k}.
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Figure 2.2: Image categorization as classification task. Two examples for category ’Moun-
tain scene’.

In a straightforward manner, given an ensemble of trees F ⊆ T and their combination

P (y|x,F) using (2.8) or (2.9), the final class label is selected as

y∗ = arg max
y∈Y

P (y|x,F) . (2.14)

Split functions The split functions are responsible for separating training data during

the tree growing phase and deciding where to route a sample during the testing phase. In

such a way, each internal node has to store its own parameters θ = {ψ, τ, ϑ} for the split

function φ(·|θ) ∈ Φ(Z). Here, ψ defines a geometric data separation model (a hyperplane,

general surface, etc.) to partition the data in the input domain. The second parameter

τ ∈ R defines a threshold quantity for the inequalities that are typically used as separation

functions. Finally, ϑ(v) can be termed as feature selection function (a feature sub-space

selection as introduced in [Ho, 1998]) that (randomly) selects a subset of dimensions of

the input data vector v such that

ϑ : Rd → Rd
′

with d′ << d . (2.15)

As an example, let the input space X be a collection of data samples {vi}Ni=1 ,∀i : vi ∈ Rd.
Then, a split function with a linear separation model can be simply defined by

φ(v, θ) = 1
[
ϑ(v)T · ψ > τ

]
, (2.16)

where ψ ∈ Rd′ is a vector of length d′, that parametrizes a general, oriented hyperplane.

Moreover, τ can be interpreted as margin to this hyperplane, allowing to study max-margin

properties of the random forest model, as recently conducted in [Leistner et al., 2009,

Criminisi et al., 2012].

As mentioned earlier in this chapter, computer vision applications may benefit from

the spatial arrangement of data inherently available to images, i.e. individual pixels of
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an image are anchored to a grid structure. To this end, we assume the input domain

X to be a set of image patches. Each patch x is defined by a pair x = (u, I) ∈ X , i.e.

the patch center position u in a multi-channel image I ∈ I. Moreover, the separation

model is often reduced to very simple types like axis aligned hyperplanes, also known as

decision stumps. As a consequence, ψ vanishes and the feature selection function ϑ(x)

reduces to selecting a single feature channel c in the multi-channel images. Therefore,

we can introduce a more compact parameter set θ′i = {∆vi, ci}, i = 1, 2 where ∆vi is a

displacement vector relative to the patch center, resulting in the following split functions

as used in [Shotton et al., 2008b, Kontschieder et al., 2011]:

φ(1)(x|θ′, τ) = 1
[
I(u,0)+(∆v1,c1) > τ

]
, (2.17)

φ(2)(x|θ′1, θ′2, τ) = 1
[
I(u,0)+(∆v1,c1) − I(u,0)+(∆v2,c2) > τ

]
, (2.18)

φ(3)(x|θ′1, θ′2, τ) = 1
[
I(u,0)+(∆v1,c1) + I(u,0)+(∆v2,c2) > τ

]
, (2.19)

φ(4)(x|θ′1, θ′2, τ) = 1
[∣∣I(u,0)+(∆v1,c1) − I(u,0)+(∆v2,c2)

∣∣ > τ
]
. (2.20)

Training objective functions From the general definition of the training procedure

in Section 2.3 we can see, that the goal of the training process is to find the optimal split

function parametrization such that the loss computed on the resulting child training sets is

minimized (see Equation (2.6)). Here, we provide a reformulation in terms of an objective

function

φ = arg max
φ′∈Ψ(Z)

G(Z|φ′) (2.21)

which seeks to maximize the information gain G

G(Z|φ) = H(Z)−H(Z|φ) , (2.22)

using the Shannon entropy defined over probability mass functions for discrete random

variables W with alphabet W, where P (w) = Pr(W = w), w ∈ W

H(W ) = −
∑
w∈W

P (w) log (P (w)) . (2.23)

Information gain is a commonly agreed objective used for classification tree

learning [Quinlan, 1983, Quinlan, 1993, Criminisi et al., 2012]. The reason why it suits

well is that each branch in a tree, i.e. each newly added internal node seeks to reduce the

uncertainty about the class label prediction, measured in an information-theoretic sense.

In such a way, the prediction confidence increases as the hierarchical structure of the tree

approaches the leaves where the final per-tree prediction takes place.

Easy to see, for our task the alphabet is defined by the output space Y and the

probability mass function is obtained from π(Z) estimated over the training data labels

of Z. Due to reasons of simplicity and speed, normalized histograms over the class labels

contained in the training set are typically used as estimator function.
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Then, the information gain about the label distributions
{
Zφl ,Z

φ
r

}
obtained from a

split φ ∈ Φ(Z) is defined as

G(Z|φ) = H(Z)−
∑
i∈{l,r}

|Zφi |
|Z|

H(Zφi ) . (2.24)

The first part of Equation (2.24) does not depend on the split function which is why we

can simplify (2.21) to

φ = arg max
φ′∈Ψ(Z)

H(Z)−
∑
i∈{l,r}

|Zφ
′

i |
|Z|

H(Zφ
′

i )

 (2.25)

= arg min
φ′∈Ψ(Z)

 ∑
i∈{l,r}

|Zφ
′

i |
|Z|

H(Zφ
′

i )

 . (2.26)

A closer look at Equation (2.26) reveals that it all boils down to a sum of weighted entropies

computed on the posterior distributions induced by the split function parametrization. In

fact, lower entropy means that the uncertainty about the outcome of an experiment for a

certain event decreases, i.e. its associated probability increases. In case of classification

tree learning, we observe the effect of narrowing down the choices for particular class

labels while passing the hierarchy of the tree. The weights
|Zφ
′

i |
|Z| , i ∈ {l, r} combined with

the respective entropies control the balance for the induced splits. For example, a split

that trivially removes a single element from Z such that |Zφ
′

l | = 1 and |Zφ
′

r | = |Z| − 1

would result in H(Zφ
′

l ) = 0 for the left subtree but high weights for H(Zφ
′

r ). Additionally,

and as already mentioned in context of the stopping conditions for the growing process, a

minimum cardinality for the resulting child sets can be enforced.

The recent work in [Nowozin, 2012] investigates the quality of information gain es-

timation under the light of finite training sample sets. In particular, the problems of

conventionally used plug-in estimators are addressed and properties like bias and system-

atic underestimation of true entropy is reported. To this end, [Nowozin, 2012] introduces

several alternatives of which the Grassberger entropy estimators are investigated in more

detail for classification and regression tasks.

Another way to formulate the split function criterion exploits the so-called Gini-

impurity, which was originally introduced in [Breiman et al., 1984]. The objective of this

criterion is to measure how often an element in the data is misclassified, given the current

probability density estimation Q = π(Z) over the labels reaching a node. Then, the Gini

impurity is defined as

Ĥ(Z) =

|Y|∑
i=1

qi(1− qi) = . . . = 1−
|Y|∑
i=1

q2
i (2.27)
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and can be simply plugged into (2.26) instead of the entropy term.

The optimization task in the training process is typically conducted in a greedy way

by evaluating all split functions in Φ(Z) and keeping the one that induces the lowest

loss. This is mainly due to the following reasons. For example, the popularly used in-

formation gain is not differentiable with respect to the binary split function parameters

φ so standard optimization cannot be directly applied (alternatively, a differentiable sig-

moidal function was used in [Montillo et al., 2013] to represent the boundary partitioning

function). Another problem relates to overfitting and therefore reduce the desired gener-

alization properties of the trees. Moreover, exhaustive search over the entire parameter

space may become prohibitively expensive, which is why the training process is driven by

a random component that generates ad-hoc parameterisations φ′ ∈ Φ(Z) by uniformly

sampling over all possible parameters. Therefore, it is not necessary to pre-compute all

possible parameterisations, making the optimization process very fast and efficient.

2.6.2 Regression Trees

With different parametrization of the general model, random decision trees can be used

to predict continuous, real-valued variables. Termed as regression trees, they are typi-

cally used as non-linear regressors with the goal to discriminatively learn the relations be-

tween independent, continuous, multi-variate inputs and dependent, continuous and multi-

variate outputs. In the sequel we will demonstrate that regression trees not only share

advantageous properties with classification trees in terms of efficiency but also that some of

the parametrization concepts can be adapted in a straightforward manner. To this end, we

start with a motivation by showing some exemplary computer vision applications like med-

ical image analysis [Criminisi et al., 2010] and head-pose estimation [Fanelli et al., 2011a]

in Figure 2.3.

Again, we start by providing an informal problem definition for the regression task

within the random decision tree model from [Criminisi et al., 2012]:

Given a labelled training set, learn a general mapping which associates

previously unseen independent test data with their correct continuous

prediction.

For the moment, let us assume we are given a set of regression trees T , learned from

random subsets of the training data D ⊆ X × Y. Then, for an unseen test sample x ∈ X
we want to obtain a prediction in form of a general probability density estimation over

the (continuous) output variable y ∈ Y ⊆ Rn such that

P (y|x, T ) =
1

|T |
∑
t∈T

P (y|x, t) . (2.28)

Obviously, if the sought prediction is a continuous-valued, multi-variate label y ∈ Y, also

the training data must be in a form Z ⊆ Rd × Rn, i.e. ∀ (x,y) ∈ Z : x ∈ Rd,y ∈ Rn.
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(a) Detection and localization of anatomical structures in CT images. Regression trees are used to
perform bounding box location and dimensions estimation (Images taken from [Criminisi et al., 2010]).

(b) Real-time head-pose estimation from (2 1
2
D) range images. Regression trees are used to

learn a mapping from training data (left) to predict head pose illustrated by green cylinder
(right). (Images taken from [Fanelli et al., 2011a]).

Figure 2.3: Illustrations for computer vision applications possibly using regression trees.

Split functions Similar to the classification tree case, the split functions serve the task

to separate the training data during training and define the routing through the trees

at test time. In such a way, predictions obtained from regression trees may be seen as

results of a sequence of hierarchically executed, (non-)linear regressors. A very simple way

to perform the per-node regression for one-dimensional input and output values (e.g. to

predict house prices as a function of living space) would be to use a generic polynomial of

order k

f(x) =

k∑
i=0

wi x
i with w = [w0 . . . wk]

T (2.29)
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Using this model, an internal tree node has to store the parameters θ = {w, τ}, i.e. the

parameters w for the polynomial and a threshold vector τ used in a split function

φ(x, τ) = 1 [f(x) > τ ] . (2.30)

Similar to the classification tree case where we provided a split function

parametrization tailored to using images with pixels anchored to a grid structure, the

works of [Criminisi et al., 2012, Fanelli et al., 2011a] used patch-based test functions

computed over regions (or volumes) F1, F2 centered at positions u1,u2, respectively.

Consequently, the split function can be defined as

φ(x1,x2|θ′1, θ′2, τ) = 1

 1

|F1|
∑

v1∈F1

I(u1,0)+(v1,c1) −
1

|F2|
∑

v2∈F2

I(u2,0)+(v2,c2)

 > τ

 ,
(2.31)

such that the parameters θ′i = {Fi, ci} to be stored for the split function contain the

locations/dimensions of the rectangular regions to be evaluated and the feature channel

c where the evaluation shall take place. As can be seen, Equation (2.31) computes the

difference between the average intensities in the regions of selected feature channels. Using

regions instead of pixel-based differences makes the decision process more robust against

noise. The computation of the average intensities can be done very efficiently using integral

images [Viola and Jones, 2002]. Additionally, the feature channels for both regions are

often select as c1 = c2, i.e. evaluation takes place on the same feature.

Posterior estimation Since we are interested in a regression model with probabilis-

tic ouput, i.e. we want to know the confidence about the prediction, we need to pro-

vide a way for estimating the conditional probability P (y|x). For example, the work

in [Criminisi et al., 2012, Appendix A] shows how parameters and the conditional density

can be estimated when using a simple line regression model.

Here we focus on the multi-variate case, assuming that the output data follows a

multi-variate Gaussian distribution, i.e.

y ∈ Y ∝ N (µ,Σ) (2.32)

that is parametrized with mean µ and covariance Σ. Indeed, this assumption is not

too restrictive since the tree hierarchy allows to capture multi-modality as piece-wise

Gaussians [Criminisi et al., 2010]. Moreover, using a parametric, Gaussian representation

the information gain can be derived in a closed, analytic form.

Training objective functions Again, the goal of the training process is to find a

parametrization φ′ ∈ Ψ for each non-leaf node that minimizes the loss. Alternatively, we
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will again provide a formulation that maximizes the information gain G seeking for

φ = arg max
φ′∈Ψ(Z)

G(Z|φ′) (2.33)

using

G(Z|φ) = h(Z)− h(Z|φ) . (2.34)

Now, we can employ the differential entropy h(W ) over the continuous random variable

W with probability density f(w) according to the definition in [Cover and Thomas, 2006]

h(W ) = h(f) = −
∫

Ω
f(w) log f(w)dw , (2.35)

where Ω is the support set of the random variable. Plugging (2.34) into Equation (2.33),

we get

φ = arg max
φ′∈Ψ(Z)

h(Z)−
∑
i∈{l,r}

|Zφ
′

i |
|Z|

h(Zφ
′

i )

 (2.36)

= arg min
φ′∈Ψ(Z)

 ∑
i∈{l,r}

|Zφ
′

i |
|Z|

h(Zφ
′

i )

 . (2.37)

Moreover, since we assume W1,W2, . . . ,Wn to be a multi-variate normal distribution, we

can write

h(W1,W2, . . . ,Wn) = h(Nn(µ,Σ)) . (2.38)

With the definition of the probability density function for the normal distribution

f(w) =
1(√

2π
)n |Σ| 12 e− 1

2
(w−µ)TΣ−1(w−µ) (2.39)

where |Σ| is the determinant of Σ, it can be shown that the differential entropy reduces to

h(Nn(µ,Σ)) =
1

2
log ((2πe)n |Σ|) (2.40)

=
1

2
log (2πe)n︸ ︷︷ ︸

constant expression

+
1

2
log (|Σ|) (2.41)

≈ log (|Σ|) , (2.42)

i.e. the differential entropy is determined by the determinant of the covariance matrix (up

to a constant factor).
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When we combine (2.42) with (2.37) we get

φ = arg min
φ′∈Ψ(Z)

 ∑
i∈{l,r}

|Zφ
′

i |
|Z|

log(|Σ(Zφ
′

i )|)

 . (2.43)

and it follows that the best parametrization for a node split tries to minimize the sum

of weighted, logarithmic determinants, induced by the partition. Finally, the leaf nodes

store the parameters used in the regression task.

2.6.3 Hough Trees

Hough trees [Gall and Lempitsky, 2009, Gall et al., 2011] are a recently presented vari-

ant of random decision trees that can be used to perform a generalized Hough trans-

form [Ballard, 1981] together with per-sample classification. In this sense, they com-

bine some properties of classification and regression trees and are able to perform mixed,

discrete- and continuous-valued predictions. In the sequel we will introduce the con-

cept of Hough trees (and Hough forests) and explain how they can be used for class-

specific object detection. Please note that there exist several extensions for action recog-

nition [Yao et al., 2010], human pose estimation [Girshick et al., 2011] or multi-class ob-

ject detection [Razavi et al., 2011], demonstrating their potential for the computer vision

domain. The basic concept how Hough trees are used for object detection is illustrated in

Figure 2.4.

Figure 2.4: Illustration of Hough Forest concept for object localization. Leftmost im-
age: Input image with example test patch locations (color-coded in red, green and blue).
Second image: Voting (regression) information for object centroid corresponding to color-
coded boxes from first image, cast into accumulative Hough voting space. Third image:
Hough image containing accumulated votes from all evaluated patches. Rightmost image:
Detection hypothesis as a result of maxima analysis performed in Hough image. (Images
taken from [Gall and Lempitsky, 2009]).

In the line of the previous parameterisations discussed for decision trees, we give an

informal definition as follows:

Given a labelled set of training images, learn a general mapping which
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associates previously unseen test data with both, correct categorical and

continuous predictions.

Before we explain how Hough trees can be used for object detection, we briefly in-

troduce the idea of the generalized Hough transform [Ballard, 1981] for object detection,

which is a generalization of the original work in [Hough, 1959]. The basic idea behind

the Hough concept is to abstract the input image into voting elements and transfer the

detection process in a voting space, the so-called Hough space. Each voting element is

allowed to cast a directional vote for a specific location in the Hough space. The entries

in these locations are grouped in a point-wise, accumulative style and are associated to

certain hypotheses, indicating the confidences for object presence. The quality of a hy-

pothesis, i.e. its certainty about object presence, depends on the associated peak in the

Hough domain.

Hough trees learn a mapping between the appearance of an image patch and its relative

position to the object category centroid (i.e. center voting information). During inference,

the predictors not only perform classification on test samples but also cast probabilistic

votes in a generalized Hough-voting space that is subsequently used to obtain object center

hypotheses.

More formally, the input space X for Hough trees is a set of patches and each of them

is represented as a pair (u, I) ∈ Z2 × I where u is the center pixel position of the patch

in image I. The output space Y is a set of pairs (cl,d) where cl ∈ {0, 1} is a binary

class label indicating the presence of an object and d ∈ Z2 is a displacement vector to the

object’s centroid. In such a way, each training sample (u, I) ∈ X is equipped with ground

truth information (cl,d) ∈ Y, and can describe either a background sample (cl = 0) or a

foreground sample (cl = 1). While the displacement vector is ignored for the background

case, it indicates the object centroid corresponding to a foreground sample at location

u + d in image I. Please note that the output space Y encodes both, classification and

regression information. Next, we will derive how the tree predicts the output for a given

test sample x ∈ X at a leaf node.

At a leaf node, the prediction is obtained from a density estimation function π(Z),

which generates the posterior distributions stored in the tree leaves. The provided distri-

butions factorize in two marginal distributions, for the class labels and the displacement

vectors, respectively. The marginal over the class labels is a discrete distribution, providing

the probability of drawing a sample of a given class from Z. To this end, let q ∈ P({0, 1})
be the marginal distribution over the class labels defined as

qClass(cl) =
|Zcl |
|Z|

(2.44)

where Z0 and Z1 are the set of background and foreground samples in Z reaching a leaf,

respectively.

At the same time, we are interested in the probability density marginal qVote(v), esti-
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mated for location v over the voting information of the foreground samples using a Parzen

window with a Gaussian kernel function

qVote(v) =
1

|Z1|
∑

(cl,d)∈Z1

1√
2πσ

e−
||v−d||2

2σ2 , (2.45)

where σ is the standard deviation of the Gaussian.

Consequently, a Hough tree stores a probability distribution Q(y) = qClass(cl) ·qVote(v)

in each leaf which is then used for prediction as defined in Equation (2.7). For example,

given a new test sample x ∈ X , i.e. a patch centered at position u in image I, a Hough

tree t ∈ T performs a probability estimate for a possible object center hypothesis E(l)

located at position l in the associated Hough image by evaluating

P (E(l)|x, t) = qClass(cl = 1) · qVote(l− u) . (2.46)

As already known from the pure classification and regression trees, the Hough forest

ensemble T estimates

P (E(l)|x, T ) =
1

|T |
∑
t∈T

P (E(l)|x, t) . (2.47)

Split function The split function originally used in [Gall and Lempitsky, 2009] is sim-

ilar to those described for the classification trees and separates/routes samples based on

the binary outcome of pixel-pair tests according to

φ(x|∆v1,∆v2, c, τ) = 1
[
I(u,0)+(∆v1,c) − I(u,0)+(∆v2,c) > τ

]
, (2.48)

where ∆vi are offset vectors relative to the patch center u and τ is a threshold parameter.

Differently from the split functions described for classifcation trees, the selected feature

channel c does not change for the respective pixel positions.

Training objective functions Obviously, the training procedure of Hough trees also

aims for reducing the prediction error on the training set and generalizing to unseen test

data. The key difference to the training procedures of standard decision trees as used for

classification or regression is that the training objective minimizes either the class-label

uncertainty or the offset uncertainty based on a randomized decision. In what follows we

will describe both criteria, starting with the class-label uncertainty.

The class-label uncertainty, which we denote with UClass(·), is essentially the weighted

entropy measure over the class label distributions as already described in Equation (2.26).

Since Hough trees are originally designed to handle only binary classification problems, it

can be unrolled to

UClass(Z) = |Z0|H(Z0) + |Z1|H(Z1) . (2.49)

For the regression tree case, we have provided a parametric way to estimate the prob-
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ability density of continuous valued variables and moreover, showed how the training

objective can be formulated in an information-theoretic sense. In Hough trees, the train-

ing objective when minimizing the offset uncertainty UVote(·) is not explicitly formulated

in an information theoretic sense but is instead optimized by minimizing the variance in

the set of centroid voting vectors reaching a node (which is the optimal estimator for a

zero-mean Gaussian). This can be formalized as

UVote(Z) =
1

|Z1|
∑

(cl,d)∈Z1

∣∣∣∣d− d
∣∣∣∣2 (2.50)

where

d =
1

|Z1|
∑

(cl,d)∈Z1

d (2.51)

is the mean voting vector of the foreground samples. Please note that UVote(·) considers

only foreground training samples and all background samples are ignored.

As a result, the training objective function seeks for the optimal parameters

φ = arg min
φ′∈Ψ(Z)

 ∑
i∈{l,r}

U?(Zφ
′

i )

 . (2.52)

where ? = {Class,Vote} randomly selects (according to a uniform distribution) either the

class-label uncertainty of (2.49) or the offset uncertainty of (2.50).

Another way to formulate the objective function was presented in [Okada, 2009]. In-

stead of selecting between the respective uncertainties a combined score is suggested as

follows

φ = arg min
φ′∈Ψ(Z)

 ∑
i∈{l,r}

[
UClass(Zφ

′

i )
]

+ αmax
(
qClass
Z (cl = 1)− γ, 0

) ∑
i∈{l,r}

[
UVote(Zφ

′

i )
] ,

(2.53)

where α is a weight parameter and γ is an activation threshold for the regression score.

As can be seen, the objective function in (2.53) will only include the regression part when

the foreground probability exceeds γ. Moreover, the regression term additionally becomes

more important according to the weight parameter α as the foreground probability in-

creases.

While the objective function presented in (2.53) incorporates the offset uncertainty

based on the foreground probabilities induced by a split function parametrization, the

work in [Fanelli et al., 2011b] proposes to include the regression term as a function of the
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tree depth d with

φ = arg min
φ′∈Ψ(Z)

 ∑
i∈{l,r}

[
UClass(Zφ

′

i )
]

+
(

1.0− e−
d
λ

) ∑
i∈{l,r}

[
UVote(Zφ

′

i )
] . (2.54)

Here, λ is a parameter that controls the steepness of the exponential function weighting

the contribution of the voting uncertainty.

2.7 Extensions / Different Variants of Decision Trees

2.7.1 Extremely Randomized Trees

The extremely randomized trees (Extra-Trees) algorithm was introduced

by [Geurts et al., 2006] and focuses on the reduction of optimization load in the

parameter selection process for the split functions and minimizes the correlation between

pairs of trees (see Section 2.5). Instead of performing a (greedy) optimization over the

possible parameters of the split function pool Ψ(Z), Extra-Trees provide an extremely

randomized setting where most parameters for the split function are selected in a

completely randomized way. In the extreme case where all parameters are selected

randomly, this has the effect that no node optimization has to be performed. However,

typically the loss on the training data is much higher and the prediction confidence is

lower [Criminisi et al., 2012].

2.7.2 Entangled Decision Trees

Entangled decision trees were recently introduced in [Montillo et al., 2011] and are a spe-

cial instance of classification trees that are allowed to use intermediate node classification

results within the split functions (in addition to standard image features). The basic idea

is to exploit the steadily increasing prediction confidence induced by the tree hierarchy

already within the training process and therefore learn the semantic relations of class la-

bels in their geometric context. In such a way, the resulting entanglement random forest

augments the possible feature channels with a classification feature, that is consequently

refined by the class posterior distributions according to the progress of the trained sub-

tree. In their experiments on semantic segmentation of medical images the authors report

significant improvements of the segmentation results.

2.7.3 Random Ferns

So far we have introduced random trees which impose a sequence of hierarchically arranged

tests on a sample, where the reachability of each node depends on the outcome of the

respective parent node. Random ferns are in contrast to this hierarchy and instead perform

a sequence of tests on each sample, independent on the result of the split function in the



2.8. Summary 29

previous node. In such a way, a random fern could be considered as a random decision

tree using the same parameters for all split functions at the same tree level.

In the original work of [Özuysal et al., 2007], the authors introduce ferns as a fast

alternative to decision trees and motivate them from a naive Bayesian point of view.

In particular, each fern is regarded as a semi-naive Bayesian combination of a series of

binary tests (cf. split functions as used for classification trees). This has the effect to

bypass a complete independence assumption between the simple binary tests and can

instead model available correlation in the training data using a compact representation.

Random ferns were initially used for classification (keypoint recognition was treated as

classification task) but there exist extensions for regression [Dollár et al., 2010] and also

online-learning [Villamizar et al., 2012, Godec et al., 2010].

Here, we consider random ferns as special instances of decision trees with the afore-

mentioned restriction that, for a certain depth level d of the tree, each split function φd(·)
performs the same test. Typically, split functions operate only on single feature channels

of the training data (as described for the classification trees in Section 2.6.1). This has

the effect that axis-aligned hyperplanes are employed in the split function, requiring ran-

dom ferns to be grown deeper in comparison to standard classification trees which may

partition the input space differently according to the selected path in the tree.

2.8 Summary

In this chapter we provided an introduction to supervised learning using random decision

trees. More specifically, we have given a general definition of binary, random decision

trees and forests by describing their composition, structure as well as a recursive way to

formalize training and testing processes, respectively. An important task when approach-

ing computer vision problems is to find suitable parameterisations in order to accomplish

classification, regression or mixed classification/regression problems. To this end, we have

introduced a general formalism that is able to account for all of the aforementioned pa-

rameterisations and provided specific instantiations for state-of-the-art algorithms like e.g.

Hough Trees.
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In this chapter we discuss contour-based object detection using random forests. The

focus is put on shape fragment based data representation and how we can effectively learn

it in a random forest model. In the learning phase, we interrelate local shape descriptions

(fragments) of the object contour with the corresponding spatial location of the object

centroid, using the Hough forest as introduced in the previous chapter in Section 2.6.3.

We introduce a novel shape fragment descriptor that abstracts spatially connected edge

points into a matrix consisting of angular relations between the points. Our proposed

descriptor fulfills important properties like distinctiveness, robustness and insensitivity to

clutter. During detection, we hypothesize object locations in a generalized Hough voting

33
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scheme. The back-projected votes from the fragments allow to approximately delineate the

object contour. We evaluate our method on well-known data bases like the ETHZ shape

data base or the INRIA horses, emphasizing on the importance of properly designed data

representation for the random forest learning framework.

3.1 Introduction

Object localization in cluttered images is a big challenge in computer vision. Typical

methods in this field learn an object category model, e.g. from a set of labeled

training images and use this model to localize previously unseen category instances

in novel images. The two dominating approaches in this field are either sliding

window [Felzenszwalb et al., 2010] or generalized Hough-voting [Ballard, 1981] based.

The final detection results are mostly returned as bounding boxes highlighting the

instance locations, but some methods also return accurate object outlines.

In general, the detection approaches can additionally be divided into appearance and

contour based methods. Appearance-based approaches first detect interest points and

then extract strong image patch descriptors from the local neighborhoods of the detected

points using versatile features like color, texture or gradient information. In contrast,

contour-based methods exhibit interesting properties like low sensitivity to illumination

changes or variations in color or texture. It is also well-established in visual perception

theory [Biederman and Ju, 1988] that most humans are able to identify specific objects

even from a limited number of contour fragments without considering any appearance

information.

3.1.1 Related Work

3.1.1.1 Appearance-based models

The main paradigm in this field is the bag-of-visual-words model introduced

in [Sivic and Zisserman, 2003] where the authors represent the object class as

a collection of orderless local image descriptors [Mikolajczyk and Schmid, 2005].

In [Lazebnik et al., 2006], this approach was extended by incorporating spatial

arrangements of features in a pyramidal matching setup and showed improved detection

performance. Another related, appearance based representative is the Implicit Shape

Model (ISM) [Leibe et al., 2004]. An ISM is a class-specific codebook of local appearance

descriptors where each descriptor additionally contains information about the relative

object centroid location. During recognition, extracted image patches are matched

to the codebook and cast probabilistic votes in the sense of the generalized Hough

transform [Ballard, 1981] to hypothesize object locations. However, unsupervised

integration of a large number of object parts in a generative codebook approach involves

a large-scale clustering problem and a time-consuming matching step. To avoid these

problems, some researches replaced the generative codebooks by discriminative learning
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of the object model parts. A very prominent representative for discriminative learning are

Hough Forests [Gall and Lempitsky, 2009] as described in the previous chapter. Another

approach incorporating the Hough transform in a discriminative learning approach was

introduced in [Maji and Malik, 2009]. They focus on identifying object parts showing

both, high repeatability and consistency in their locations and then assign higher weights

in the voting step. An extension of this work for the hypothesis verification phase was

presented in [Ommer and Malik, 2009] by extending conventional, spatial Hough voting

with a scale dimension. They analyze the voting space by clustering of voting lines to

reduce the initial candidate detection set.

3.1.1.2 Contour-based models

In [Fergus et al., 2003], the authors showed a learning approach which incorporates shape

(besides appearance information) as a joint spatial layout distribution in a Bayesian setting

for a limited number of shape parts. [Ferrari et al., 2006] partition image edges of the

object model into groups of adjacent contour segments. For matching, they find paths

through the segments which resemble the outline of the modeled categories. In a later

approach [Ferrari et al., 2008] they investigate how to define contour segments in groups

of k approximately straight adjacent segments (kAS) as well as how to learn a codebook

of pairs of adjacent contours (PAS) from cropped training images [Ferrari et al., 2007] in

combination with Hough-based center voting and non-rigid thin-plate spline matching.

[Ravishankar et al., 2008] use short line fragments, favoring curved segments over

straight lines allowing certain articulations by splitting edges at high curvature points.

In [Leordeanu et al., 2007], a recognition system that models an object category using

pairwise geometrical interactions of simple gradient features was introduced. The

resulting category shape model is represented by a fully connected graph with its edges

being an abstraction of the pairwise relationships. The detection task is formulated

as a quadratic assignment problem. [Shotton et al., 2005] and [Opelt et al., 2006]

simultaneously introduced similar recognition frameworks based on boosting

contour-based features and clutter sensitive chamfer matching. Both methods construct

a codebook and employ shape features in a star-constellation around the object centroid.

The contour fragments used in the codebook are selected by an AdaBoost learning stage

after clustering similar fragments. Each fragment is aware of its position along the object

contour and holds information about its spatial displacement to the object centroid. For

recognition, they compare contours learned from the training set to the edges found in

the test images using clutter sensitive Chamfer matching and cast probabilistic votes in

a generalized Hough space manner to find object hypotheses. The main differences are

that [Shotton et al., 2005] use a single fragment per weak detector and a grid structure to

localize the object center while [Opelt et al., 2006] have a variable number of fragments

and mean shift is applied to find the centroid localization where.

An approach using a cascade of boosted classifiers for object detection was proposed
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in [Smith et al., 2009]. They introduced a set of shape descriptors called Ray features,

designed to capture irregular shapes as e.g. occurring in biological cell image data

sets. A method for fragment grouping in a particle filter formulation was presented

in [Lu et al., 2009] and obtained consistent models for detection. In [Bai et al., 2009],

intra-class shape variations were captured within a certain bandwidth by a closed

contour object model called shape band. In [Zhu et al., 2008b], the authors formulated

object detection as a many-to-many fragment matching problem. They utilize a contour

grouping method to obtain long, salient matching candidates which are then compared

using standard shape context descriptors. The large number of possible matchings

is handled by encoding the shape descriptor algebraically in a linear form, where

optimization is done by linear programming. In a follow-up work [Srinivasan et al., 2010],

promising results are reported for models, automatically obtained from training data

instead of using a single category shape prototype. Again, their method relies on the

availability of long, salient contours and has high complexity with detection times in

the range of minutes per image. In [Riemenschneider et al., 2010], the authors perform

object detection by partially matching detected edges to a prototype contour in the

test images. In such a way, piecewise contour approximations and error-prone matches

between coarse shape descriptions at local interest points are avoided. Another approach

proposed in [Yarlagadda et al., 2010] aims on grouping mutually dependent object parts

of uniformly sampled probabilistic edges. In their Hough voting stage, object detection

is formulated as optimization problem which groups dependent parts, correspondences

between parts and object models and votes from groups to object hypotheses. Another

recent approach of [Payet and Todorovic, 2010] formulated object detection as mining

repetitive spatial configurations of contours in unlabeled images. Their contours are

represented as sequences of weighted beam angle histograms and are transferred into a

graph of matching contours, with the maximum a posteriori multicoloring assignment

being taken to represent the shapes of discovered objects. Moreover, we refer to the

approach in [Amit and Geman, 1997] where randomized trees are used to perform shape

recognition for handwritten digits. Opposed to our approach, the authors distinguish the

shapes by recursively partitioning the shape space by growing binary classification trees

using geometric arrangements among local topographic codes as splitting rules.

Lately, reasonable effort went into fusing appearance and contour based methods

like [Toshev et al., 2010, Li et al., 2010]. In these works, the authors incorporate appear-

ance information by either using superpixel segmentations together with statistics derived

from their boundaries [Toshev et al., 2010] or exploit multiple figure-ground segmentations

for the recognition task [Li et al., 2010].

3.1.2 Contributions

As can be seen in the comprehensive summary of related work in Section 3.1.1, many

approaches were proposed that exploit shape information for object detection. However,
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Figure 3.1: Illustration of our object category localization method. Local edge fragments
are discriminatively trained in a Hough Forest analyzing a triple per fragment {Λi,di, ci},
where Λi is our novel fragment descriptor matrix, di its corresponding center voting vector
and ci its class label. During testing descriptor matches vote for object centroid c to
hypothesize object locations in the image. Best viewed in color.

we observed that many researchers first put an enormous effort into learning a suitable ob-

ject model from training data [Shotton et al., 2005, Opelt et al., 2006, Ferrari et al., 2007,

Ravishankar et al., 2008] but then neglect to directly apply this gained knowledge in the

matching or verification phase. Instead, techniques like error-prone Chamfer matching are

used to decide whether an object is present or not. We are convinced that a detection

system benefits from an approach which inherently unifies the strengths of the individual

methods instead of either solely relying on a particular technique or serially concatenating

them. As a consequence, we propose to jointly learn a novel shape fragment description

with its spatial location information about the object contour. For recognition, we can

directly apply the learned knowledge in a generalized Hough voting manner.

A key issue of such an approach is to use a powerful local shape descriptor, which

should fulfill various requirements like distinctiveness, robustness to clutter and noise,

invariance and efficiency. Since common local shape descriptors are limited concerning

these requirements, we propose a novel contour fragment descriptor which describes rel-

ative spatial arrangements of sampled points by means of angular information. As it is

shown in the experiments in Section 3.3 our novel descriptor outperforms related methods

like shape context in this scenario.
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3.2 Discriminative Learning of Fragments

In this section we present our novel approach for object detection. As underlying repre-

sentation we use connected and linked edges as it is described in Section 3.2.1. From the

obtained edges we extract local fragment descriptions using a novel, discriminative de-

scriptor that captures local angular information along edges (see Section 3.2.2). To learn

a model from a set of labeled training images we train a Hough Forest on the obtained

descriptors storing the relative location and scale of the fragments with respect to the

object centroid for the positive training samples, as it is explained in Section 3.2.3. At

run-time, we cast probabilistic votes for possible center locations of the target objects in a

generalized Hough voting manner. The resulting local maxima in the Hough space serve

as detection hypotheses. In Figure 3.1 we illustrate our proposed method.

3.2.1 Edge Detection and Linking

As a first step we extract edges of the input image. We use the Berkeley edge detec-

tor [Martin et al., 2004] in all experiments and link the edges into oriented, connected

point coordinate lists. We want to explicitly stress the importance of point linking which

has great impact on the obtained fragments, since different splits of T-junctions or gap

closing yields very different fragments. The obtained lists of connected points state the

basis for all subsequent steps which is why we introduce the following terminology, used

throughout the rest of this chapter: We name all lists as edges, while we denote all ex-

tracted edge parts as fragments. In our method all analyzed fragments have the same

length, consisting of exactly N points.

3.2.2 Shape Fragment Descriptor

To be able to discriminatively learn the shape of local, equal sized fragments,

we need a powerful shape descriptor. Typical local fragment descriptors are

shape context [Belongie et al., 2002], turning angles [Chen et al., 2008], beam

angles [Payet and Todorovic, 2010], partial contours [Riemenschneider et al., 2010] or

contour flexibility [Xu et al., 2009]. We propose a novel descriptor which, as shown in the

experiments in Section 3.3, outperforms related methods. Our shape descriptor is related

to the descriptor of Riemenschneider et al. [Riemenschneider et al., 2010] which also uses

angles between fragment points. The major differences however are as follows: First,

we employ another sampling strategy to define the angles and second, we differ in the

selection of descriptor values. We analyze angles defined by lines connecting a reference

point and the fragments’ points. This is in contrast to [Riemenschneider et al., 2010]

where only relative angles between points on the fragments are considered and in addition

no fixed length of the fragment is assumed. Moreover, we are using a fragment-dependent

reference point which is defined by the fragments’ bounding box and therefore also

contributes to a discriminative and local description of each considered fragment (see
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Fig. 3.4). Our sampling strategy was carefully designed for usage within a discriminative

learning framework and is crucial for reasonable performance since otherwise we would

not be able to distinguish between different locations on regularly shaped object parts as

e.g. the semi-circles in Figure 3.3.

Figure 3.2: Illustration of fragment descriptor computation. Left: Apple-logo edge image
(from ETHZ data set) with fragment of interest in blue with bounding box. Center:
Zoomed edge fragment with construction sample for �(bibj ,bjp0). Right: Resulting
fragment descriptor (cf. Figure 3.4).

We first outline the main definitions for extracting the fragment descriptors and then

discuss the general properties of the obtained representation in detail. Let an individual

edge Bi be defined as a sequence of linked points Bi = {b1,b2, . . . ,bMi}, where Mi = |Bi|
is the total number of connected edge points and Mi ≥ N . We always analyze fragments

of the same length N . Therefore, we compute (Mi−N +1) fragment descriptors for every

individual edge Bi. For every fragment we define an N ×N descriptor matrix Λ

Λ =


0 α12 · · · α1N

α21 0 · · ·
...

...
. . .

...

αN1 · · · · · · 0

 (3.1)

with diag(Λ) = 0. Every entry αij(i 6= j) is defined by the angle between a line connecting

the points bi and bj and a line from bj to a reference point p0, which is defined by the

upper left corner of the fragments’ surrounding bounding box as illustrated in Figure 3.2.

In such a way, we define

αij = �(bibj ,bjp0) ∀i, j = 1, . . . , N (3.2)

where bi,bj are the ith and jth points on the respective fragment. Hence, we are map-

ping the fragment description onto the interval [0, π]. For a single fragment, the angles

are calculated over all possible point combinations, yielding the descriptor matrix. Our

proposed descriptor has a number of important properties which we discuss next.
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Distinctiveness Most importantly, descriptors calculated from locations on the target

object contour need to be discriminative to those generated from background data or

clutter. Furthermore, we want the descriptors to be distinguishable from each other when

they are calculated from the same object contour, but at different locations. This property

is of particular interest when features are trained together with their spatial support. On

the other hand, features that are computed at similar locations but from different training

samples should result in similar representations. In other words, the descriptor should be

able to capture intra-class variations and tolerate small perturbations in the training set.

In Figure 3.3, we show some fragments of geometric primitives like squares and circles

and their corresponding descriptor matrices. Please note how the resulting patterns differ

from each other. In Figure 3.4 we illustrate how our descriptor copes with intra-class

variations of similar locations on the contours. The given samples are scaled to the same

height while fixing the aspect ratios. All descriptors are computed on the fragments

highlighted by the blue circles. Despite significant changes in the object contours, the

resulting descriptors show similar patterns.

Figure 3.3: Selected contour fragment primitives (first row) and the corresponding, unique
angular abstractions into the proposed fragment descriptor matrices (second row).

Efficacy Another important property of our descriptor is the efficacy of data abstraction.

Using a measure to describe relations between connected points has multiple advantages

over considering each pixel independently. It assists to identify discriminative fragments

during training and simultaneously reduces noise since information is encoded in a redun-

dant way.

Invariance Features are often classified according to their level of invariance to certain

geometrical transformations. For example, features invariant to Euclidean transforms keep

unchanged after applying translation and rotation. Increasing the degree of invariance

generally decreases the distinctiveness and thus weakens the distinctiveness property. Our

proposed descriptor is invariant to translation and encodes orientational information. In

such a way it is not rotation invariant, which is however compensated in the discriminative

learning training process.
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Figure 3.4: Mappings of intra-class variations for similar locations on object contours to
descriptor matrices. Blue circles highlight the selected fragments and red squares indicate
their center position.

Efficiency Features should be computable in an efficient manner. In our case, we can

precompute the values for all possible pixel combinations, hence reducing actual feature

composition to a lookup-operation which can be done in constant time for any fragment.

Since the angular description in Equation (3.2) corresponds to a surjective mapping f :

Z ⊂ Z2 → [0, π], we can provide a lookup-table (LUT) for all possible point pairs (x, y) ∈ Z
as follows. The maximum Euclidean distance between the reference point p0 and any

fragment point bi is bounded by the fragment length N . Hence, the area under the lower

right quadrant with center p0 corresponds to the total number of possible fragment point

locations and defines I. Consequently, we can precompute a square matrix of size |Z|×|Z|
holding the angular descriptions according to Equation (3.2) for all tuples (x, y) ∈ Z. This

matrix then serves as LUT during feature calculation for arbitrary fragment points.

3.2.3 Discriminative Fragment Learning

For discriminatively learning our proposed contour fragment descriptor, we use the Hough

Forest as described in the previous Chapter. Each tree is constructed on a set of training

samples, where the input domain X is represented by pairs (u,Λ) ∈ Z2×RN×N , i.e. each

input sample consists of the fragment descriptor matrix Λ associated with the fragment

center u. The output space Y is, as already discussed in Section 2.6.3 of this Thesis,

defined by a set of pairs (cl,d), where cl ∈ {0, 1} is the class label and d is the offset

vector, describing the displacement to the object center hypothesis.

Once the entire Forest is constructed, the detection process can be started on the test

images. Edges are extracted from the test images and arranged into ordered, connected

edge lists Bi with |Bi| ≥ N . For each Bi, again a total number of (|Bi| −N + 1) fragment

descriptors {uj ,Λj} are computed and then classified into tree-specific leaf nodes. Please
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note that the descriptors are only computed along edges, which significantly reduces the

computational costs in comparison to a sliding window approach or dense sampling.

3.2.4 Ranking and Verification

The previous stages of our method provide object hypotheses in the test image

and a corresponding score obtained from the Hough votes. Similar to related

work [Ommer and Malik, 2009, Maji and Malik, 2009, Riemenschneider et al., 2010]

we additionally provide a ranking according to a pyramid matching kernel

(PMK) [Grauman and Darrell, 2005] where histograms of oriented gradients (HOG)

are used as features. The PMK classifier is trained on the same training examples as

used for the Hough forest. We use the classifier for ranking and for verification where

we additionally consider nearby locations and scales around the proposed hypotheses.

Including the local search is still efficient since our hypotheses generation stage delivers

only a few hypotheses per image, therefore an order of magnitude fewer candidates have

to be considered as in a sliding window approach.

3.3 Experimental Evaluation

In order to demonstrate the quality of our proposed method, we performed several

experiments: First, we demonstrate improved performance of our novel fragment

descriptor in comparison to several related shape descriptors as shown in Section 3.3.1.

Subsequently, we show the performance of our method on standard benchmark data

bases like the ETHZ shape data base [Ferrari et al., 2006] and the INRIA horses data

base [Jurie and Schmid, 2004] (Section 3.3.2). We compare our results to several

contour-based recognition approaches while we deliberately ignore methods additionally

using segmentations or appearance information as in [Toshev et al., 2010, Li et al., 2010].

3.3.1 Fragment Descriptor Evaluation

Due to the large variety of shape-based descriptors, it is vital to evaluate our proposed

descriptor in a quantitative experiment. Therefore, we designed an experiment

to evaluate different shape descriptors within different learning algorithms for a

classification task. In particular, we compared our proposed descriptor to five types

of descriptors, namely the chord angle (CA) [Donoser et al., 2009], beam angle

(BA) [Payet and Todorovic, 2010], partial contours (PC) [Riemenschneider et al., 2010],

turning angle (TA) [Chen et al., 2008] and shape context (SC) [Belongie et al., 2002].

The learning algorithms we used were random forest, linear SVM and a simple nearest

neighbor classifier.

We define a test setup where we classify individual edge pixels on Berkeley edges,

detected in the giraffe category test images of the ETHZ shape data base. Specifically, we

compare the per-pixel classification results to the ground-truth edge annotations. Hence,
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Fragment length l=51 l=41 l=31

Chord Angle (CA)
41.67 43.15 43.43

[Donoser et al., 2009]

Beam Angle (BA)
41.61 42.67 43.48

[Payet and Todorovic, 2010]

Partial Contours (PC)
41.13 42.68 42.99

[Riemenschneider et al., 2010]

Turning Angle (TA)
40.49 42.14 42.81

[Chen et al., 2008]

Shape Context (SC)
37.13 37.51 38.33

[Belongie et al., 2002]

Proposed method 33.60 35.93 38.58

Table 3.1: Evaluation of descriptor performances at several lengths, showing the per-pixel
classification error in % (see text for definition) for each descriptor when learned in a
random forest. Our descriptor yields to the classification error of 33.60% for a length of
51, lower than all compared shape descriptors.

we define a classification error, describing the ratio of false classifications to all edge pixels.

The protocol for the experiment uses 50% of the images for learning a classifier and 50%

for testing. We extracted fragments (or quadratic patches containing edges for SC) at

varying sizes from the images, such that for all images a reasonable number of foreground

edges remained in the test set.

In Table 3.1 we list some selected results for fragment lengths / patch sizes of 31, 41

and 51 pixels, when learning the individual descriptors in a random forest framework. As

shown, our proposed descriptor outperforms all of the other descriptors at length l = 51

and is hence well suited for use in a discriminative setting. Please note that increasing the

length even more may result in better classification scores, however, the number of edges

belonging to the object category contour might decrease. Using linear SVM or nearest

neighbors for classification results in approximately similar distributions of the scores.

However, the mean error is on average about 5− 10% higher which suggests that random

forest like classifiers are better suited for our task.

3.3.2 Object Detection

Object detection performance is evaluated on the ETHZ shape data

base [Ferrari et al., 2006], the INRIA horses data base [Jurie and Schmid, 2004] and for

serially sectioned paper fiber specimen. For all our experiments, we use the following

parameters. Our forest consists of 12 Hough trees, each with a maximum depth of 15.
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The fragment length is fixed to N = 51, as suggested from the classification task in

the previous section. We randomly extract 10 000 positive training samples from edges

within the bounding box annotation. The positive training images are all scaled to the

median height of the selected training data base and the aspect ratio is fixed. 10 000

negative training samples are extracted from the same training images, but outside of the

bounding boxes. Detection performance is evaluated using the PASCAL 50% criterion.

Since our method is not implicitly scale invariant, we run the detector on multiple

scales. However, this can be done efficiently since descriptor calculation takes constant

time due to the use of Look-Up-Tables and traversing the trees has logarithmic complexity.

ETHZ shape data base The ETHZ shape data base consists of five object classes and

a total of 255 images. The images contain at least one and sometimes multiple instances

of a class and have a large amount of background clutter. All classes contain significant

intra-class variations and scale changes. Therefore, we run the detector on 15 different

scales, equally distributed between factors of 0.2 and 1.6. We use the same test protocol

as specified in [Ferrari et al., 2009] where a class model is learned by training on half of

the positive examples from a class, while testing is done on all remaining images from the

entire data base.

In Table 3.2 and Table 3.3 we list the results of our described object detector for

each object class in comparison to [Ommer and Malik, 2009, Maji and Malik, 2009,

Riemenschneider et al., 2010, Yarlagadda et al., 2010] where divisions into voting,

ranking and verification stages are applicable. However, due to the large number of

competing methods, we only provide the scores of the initial Hough voting stage and the

PMK ranking stage in tabular form. Recognition performance is evaluated by ranking

the hypotheses according to their confidence scores. In the initial voting stage this

confidence corresponds to the accumulated values in the Hough space. For ranking,

the confidence scores are updated using the HOG-based verification as described in

Section 3.2.4. Both voting and ranking are evaluated at 1.0 FPPI. Ranking is quite

efficient since on average only 3.5(!) hypotheses are returned by our method. Finally, we

also show results of our method for the full verification step (where also nearby locations

and scales are tested around the returned hypotheses) at FPPI = 0.3/0.4, which is the

standard measure for comparing results on ETHZ data base.

As can be seen in Table 3.2 and Table 3.3, we outperform comparable methods

after both, Hough-voting and ranking stage. We achieve a performance boost

of 7.5% over [Yarlagadda et al., 2010], 18.1% over [Riemenschneider et al., 2010],

26.6% over [Ommer and Malik, 2009], 24.5% over [Maji and Malik, 2009] and

even 34.2% over [Ferrari et al., 2009]. After applying the learned HOG models

for ranking we are 11.0% better than [Riemenschneider et al., 2010] and 15.6%

better than [Ommer and Malik, 2009] ([Yarlagadda et al., 2010] has no scores for

ranking). Finally, our method also performs well with respect to the full verification

system, providing an average recognition score of 93.3/96.1 at 0.3/0.4 FPPI,
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Voting Stage (FPPI=1.0)

ETHZ Hough M2HT wac PC Group Hough Forest Our
Classes [Ferrari et al., 2009] [Maji and Malik, 2009] [Ommer and Malik, 2009] [Riemenschneider et al., 2010] [Yarlagadda et al., 2010] [Gall and Lempitsky, 2009] work

Apples 43.0 80.0 85.0 90.4 84.0 80.0 94.4
Bottles 64.4 92.4 67.0 84.4 93.1 70.8 90.9
Giraffes 52.2 36.2 55.0 50.0 79.5 60.5 86.7
Mugs 45.1 47.5 55.0 32.3 67.0 73.1 92.3
Swans 62.0 58.8 42.5 90.1 76.6 81.3 73.3

Average 53.3 63.0 60.9 69.4 80.0 73.1 87.5

Table 3.2: Hypothesis voting stage at 1.0 FPPI (using PASCAL50 criterion) for the
ETHZ shape data base [Ferrari et al., 2006]. Our coverage score increases the per-
formance by 7.5% [Yarlagadda et al., 2010], 18.1% [Riemenschneider et al., 2010],
24.5% [Maji and Malik, 2009], 26.6% [Ommer and Malik, 2009] and
34.2% [Ferrari et al., 2009].

which is approximately on par with scores reported from contour-based approaches

in [Srinivasan et al., 2010] (95.2/95.6). Please note however that their method has higher

computational complexity and detection takes minutes per image.

Another experiment compares our proposed descriptor with respect to the

Hough Forest learning environment, we trained and evaluated on the same number

of trees using appearance-based image features as available in the implementation

of [Gall and Lempitsky, 2009]. To have a fair comparison and accomplish each of the 15

considered scales in reasonable time, we evaluated on the same locations as we did for

our descriptor. As shown in Table 3.2, our single feature descriptor clearly outperforms

the standard Hough Forest using all 32 features (14.4% better).

We are aware and acknowledge higher scores reported in [Toshev et al., 2010]

(94.3/96.0) and [Li et al., 2010] (average precision of 90.25% at 0.02 FPPI) but also

explicitly stress their incorporation of segmentation information in the latter cases.

In Figure 3.5 we show the detection rate vs. FPPI plots for all ETHZ classes in com-

parison to all results provided by Ferrari et al. [Ferrari et al., 2008, Ferrari et al., 2009].

Figure 3.6 illustrates some results for different classes. We show the cluttered edge re-

sponses of the test images used for localization and the corresponding reprojections of the

classified fragments for an object hypothesis. In addition, they can be used to approxi-

mately delineate the object contour. The inpainted circles indicate the voting centers. The

degree of intensity along the edges corresponds to the weights of the extracted fragment

around this point, where darker is more important.

INRIA horses data base The INRIA horses data base [Jurie and Schmid, 2004]

contains a total number of 340 images where 170 images belong to the positive class

showing at least one horse in side-view at several scales and 170 images without horses.

The experimental setup is chosen as in [Ferrari et al., 2009] where the first 50 positive

examples are used for training and the rest of the images are used for evaluation



46 Chapter 3. Discriminative Learning of Contour Fragments for Object Detection

Ranking Stage (FPPI=1.0) Verification Stage (FPPI=0.3/0.4)

ETHZ [Ommer and Malik, 2009] [Riemenschneider et al., 2010] Ours Our work
Classes + PMK + PMK + PMK Verification

Apples 80.0 90.4 100.0 94.4/100
Bottles 89.3 96.4 95.5 100/100
Giraffes 80.9 78.8 93.3 91.1/93.3
Mugs 74.2 61.4 88.5 80.8/87.2
Swans 68.6 88.6 93.3 100/100

Average 78.6 83.2 94.2 93.3/96.1

Table 3.3: Ranking and verification stages showing detection rates (using PASCAL50
criterion) for the ETHZ shape data base. After ranking we achieve an improvement of
11.0% over [Riemenschneider et al., 2010] and 15.6% over [Ommer and Malik, 2009].

(120 + 170). We run the detector on 8 different scale factors between 0.5 and 1.5.

We achieve a competitive detection performance of 85.50% at 1.0 FPPI, compared

to presented scores in [Maji and Malik, 2009] (85.3%) and [Yarlagadda et al., 2010]

(87.3%). Please note that [Maji and Malik, 2009] additionally includes different aspect

ratios in the voting stage which is not the case in our system. Moreover, we outperform

the methods in [Riemenschneider et al., 2010] (83.72%), [Ferrari et al., 2008] (80.77%)

and [Ferrari et al., 2007] (73.75%).

Paper fiber cross section detection In the next experiment we evaluate the detection

of serially sectioned paper fiber specimen. Analyzing the cellulose fiber network in a

sheet of paper is of broad interest in academia and paper industry, because mechanical

paper material properties such as strength and stiffness are highly determined by the fiber

network and fiber-to-fiber bondings. Conventional paper basically consists of a network of

thousands of paper fibers, embedded in a filler medium and enclosed by a so-called coating

layer. The individual fibers follow no designated pattern when changing their morphology.

Additionally, a lack of significant appearance information makes edges the only reliable

cue for detection.

We evaluated our proposed method on microtomy images [Wiltsche et al., 2005] of

eucalyptus paper samples. The data set consists of three image sequences, where each

sequence contains 20 images. Paper technology experts manually segmented some fiber

cross sections in each image, yielding ground truth data for 7 327 individual fibers (some

exemplary shapes are shown in Figure 3.9). Out of this pool, we randomly selected 500

cross sections for training and computed 20 fragment descriptors per edge.

Please note, that the images were not entirely segmented, i.e. not all fibers were

extracted, such that there is a certain amount of label noise in the negative training data.

In Table 3.4 we list the detection scores for the three image sequences. We evaluated

the scores similar to the approach presented in [Shotton et al., 2005] and consider peak

hypotheses in the Hough space (obtained from standard non-maxima suppression) with
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deviations of ≤ 25 pixels from the ground truth bounding box centers as correct. On the

three image sequences, we obtain a promising average detection rate of 81.86%. Since the

data sets were not entirely segmented (many fibers were left non-annotated), we can only

provide the recall for the annotated ones. Also, we need to rely on qualitative examination

(see Figure 3.10), due to high efforts needed for the annotation procedure.

Sequence # Average detection in %

1 80.76
2 83.22
3 81.60

Average 81.86

Table 3.4: Detection scores on eucalyptus paper sequences.

Fig. 3.10 shows our detection results on two successive microtomy images containing

differently shaped and sized fiber cross sections. The qualities of the respective detection

hypotheses in the Hough image are visualized by superimposing the original images with

heat maps, where ’red’ corresponds to a strong indicator. As can be seen, fibers with

strong variations in their shapes are detected with high confidence. The regions of false

detections are small which allows to estimate another important quantity in paper science

- the local density of fibers in a paper sample.

3.4 Conclusion

In this chapter we investigated the use of contour fragment descriptors in a random forest

learner for the task of object detection. Our method discriminatively learns a number of

local contour fragment descriptors in combination with their spatial location relative to ob-

ject centroid in a Hough Forest classifier. We designed a fragment descriptor that abstracts

spatially connected edge points into angular relations in a matrix form and demonstrated

that our proposed descriptor shows distinctive patterns for differently shaped fragment

primitives, while tolerating small perturbations and intra-class variabilities. Experiments

demonstrated that the proposed descriptor outperforms related shape descriptors. We fur-

ther presented convincing results on the well-known ETHZ and INRIA horses data bases.

Moreover, we demonstrated the suitability of our method for the task of paper fiber cross

section detection. In addition, we demonstrated that back-projections of the fragments

voting for a hypothesis allows delineating the object outline.
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Ferrari et al. IJCV 09 Hough only (PASCAL)

Ferrari et al. PAMI 08 (PASCAL)

Ferrari et al. IJCV 09 (20% IoU)

Ferrari et al. IJCV 09 (PASCAL)

Ferrari et al. PAMI 08 (20% IoU)

Our detector (PASCAL)

Figure 3.5: Object detection performance on ETHZ in comparison to [Ferrari et al., 2008,
Ferrari et al., 2009]. Each plot shows curves for the 50% Pascal criterion and the 20%-
IoU criterion of the methods proposed in [Ferrari et al., 2008, Ferrari et al., 2009]. Our
results for 50% PASCAL criterion are shown in thick solid black. Note, that we mostly
outperform results of [Ferrari et al., 2008, Ferrari et al., 2009] consistently over all classes
although evaluating under the stricter 50% PASCAL criterion.
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Figure 3.6: Examples for successful object localizations for classes of ETHZ. The cluttered
edge responses (in blue) and the reprojected fragments (in red) for the object hypothesis
with the highest confidence per image are shown. Best viewed in color.
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Figure 3.7: Examples of reprojected contour fragments for a detected object hypothesis
for all five classes of ETHZ. As can be seen reprojections allow to approximately delineate
the object outline.

Figure 3.8: Example centroid detections, superimposed on images of INRIA horses data
base. Green points denote ground truth centroid, yellow points indicate detected maxima
identified by our method. Additionally, the corresponding bounding boxes of the respective
scales are provided.
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Figure 3.9: Selection of differently shaped fibers we want to detect in microtomy images.

Figure 3.10: Top row: Cropped detections of differently shaped fiber cross sections. Bot-
tom: Microtomy images of two successive eucalyptus paper samples superimposed with
heat maps of detections. Best viewed in color.
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In this chapter we address the important topic of non-maxima suppression (NMS),

i.e. a post-processing step that is typically applied on the output of a given predictor to

obtain final object location hypotheses. We propose a game-theoretic approach for finding

multiple instances of an object category as sets of mutually coherent votes in a generalized

Hough space. In particular, we analyze contextual relations of sample pairs by jointly con-

sidering their respective classification and regression predictions, stemming from a Hough

forest. Most Hough-voting based detection systems have to apply parameter-sensitive

NMSor mode detection techniques for finding object center hypotheses. Moreover, the

voting origins contributing to a particular maximum are lost and hence mostly bound-

ing boxes are drawn to indicate the object hypotheses. To overcome these problems, we

introduce a two-stage method, applicable on top of any Hough-voting based detection

53



54 Chapter 4. Evolutionary Hough Games for Coherent Object Detection

framework. First, we define a Hough environment, where the geometric compatibilities

of the voting elements are captured in a pairwise fashion. Then we analyze this environ-

ment within a game-theoretic setting, where we model the competition between voting

elements as a Darwinian process, driven by their mutual geometric compatibilities. In

order to find multiple and possibly overlapping objects, we introduce a new enumeration

method inspired by tabu search. As a result, we obtain locations and voting element

compositions of each object instance while bypassing the task of NMS. We demonstrate

the broad applicability of our method on data bases like the extended TUD pedestrian

crossing scene.

4.1 Introduction and Related Work

Due to its generality, the Hough concept has gained much attention in the field of

part-based object detection as e.g. in [Leibe et al., 2008, Gall and Lempitsky, 2009,

Maji and Malik, 2009, Gall et al., 2011]. Typically, such methods construct a codebook

from training data for the desired object category, containing local patch descriptors

(voting elements) together with their respective center vote information. Given

e.g. bounding box annotated training data, the center vote information is simply

obtained as offset vector between the voting element within the bounding box and

its respective center. Since the Hough space representation is decoupled from the

original image domain, there are no restrictions on how the voting elements have to

be obtained. For example, some methods use interest points [Leibe et al., 2008], dense

sampling [Gall and Lempitsky, 2009], boundary fragments [Opelt et al., 2006] or edge

groups [Yarlagadda et al., 2010]. In the detection step, the test image is matched to

the codebook and the corresponding voting elements are projected in the Hough space.

Traditionally, the resulting peaks are analyzed with respect to their confidence values

and furthermore treated as possible object location hypotheses. In such a way, analysis

of the Hough space should simply boil down to identifying true object locations and

discriminating them from wrong ones.

Unfortunately, this maxima detection is complicated by several problems arising in

practical Hough-voting detection systems. First, projections of voting elements in the

Hough space produce scattered and therefore smeared hypotheses such that there are no

unique observations of (local) maxima. Second, once the voting elements are cast to the

Hough space, their origin is lost due to the accumulative aggregation. Moreover, this

implies that re-associations (i.e. back-projections) between particular maxima and their

voting origins are questionable since noisy contributions from non-object votes cannot

be explained right away. Third, there is no evidence whether an object is present or

not since the number of objects in an image cannot be determined, based on the Hough

space alone. Of course, maxima in the Hough space should coincide with true object

centers but in practice very often all peaks are collected that exceed a certain, application-

specific threshold. Finally, for overlapping or strongly occluded objects, maxima analysis
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in the Hough space is largely undefined. Therefore, Hough space analysis should not be

performed as vanilla maxima thresholding but instead take all contributing voting elements

and their mutual agreement on the object centroid hypothesis into account.

To obtain meaningful object center hypotheses from the Hough space, NMS techniques

are typically applied to resolve at least the first of the above mentioned problems. For

instance, NMS aims for suppressing all hypotheses (or bounding boxes) within a certain

distance and quality with respect to each other. Various NMS techniques were introduced

but most of them turn out to be application-specific heuristics with significant effort

for parameter tuning. Recently, Barinova et al. [Barinova et al., 2010] came up with a

probabilistic interpretation of the Hough transform, reformulated into a facility location

problem in order to bypass the task of NMS. Since the resulting maximization problem

is NP-hard, optimization was tackled by iteratively applying a greedy algorithm together

with a NMS scheme. Their NMS strategy enforced to pick contributing voting elements

only within (a) a pre-defined range and (b) voting quality above a certain threshold. As

a result, they provided a bounding box delimited object detection.

In this work, we propose a novel method for finding (multiple) instances of an

object category, applicable on top of arbitrary Hough-voting based detection frameworks

like the Hough Forest [Gall and Lempitsky, 2009] or the Implicit Shape Model

(ISM) [Leibe et al., 2008]. More specifically, we detect and describe each object as the

set of geometrically coherent voting elements, meaning that each of our final object

hypotheses consists of all mutually compatible voting elements. This is in contrast to

bounding-box delimited object detections and makes additional NMS unnecessary. Our

method mainly consists of the following two steps.

First, we are analyzing the voting element information in a pairwise manner. Therefore,

we are introducing a compatibility function that transfers pairs of votes with respect

to their hypothesized object center location and their geometrical constellation into a

compatibility matrix representation. In such a way, we combine geometric information

like orientation and object center agreement between voting elements together in a novel

Hough environment formulation.

In the second step, we jointly assemble the individual object instances as geometrically

coherent sets by introducing a novel, game-theoretic detection approach. Specifically,

we model the competition between contributing voting elements as a Darwinian process

within the context of Evolutionary Game Theory (Egt) [Weibull, 1995], where the mutual

geometrical compatibilities drive the selection mechanism. This process imitates the well-

known principle of survival of the fittest, which in our case corresponds to identifying the

subset of voting elements that best possibly assemble the object category to be found. As

a result, we obtain precise information about presence, location and composition of an

object at reasonable computational time. The advantages of our method over standard

Hough space analysis are subsumed as follows:

• We exploit geometric information provided by the individual voting elements rather
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than analyzing the accumulative Hough space. Enforcing structural coherence

prunes away spurious location hypotheses.

• The proposed evolutionary game theoretical formulation identifies sets of mutually

compatible, coherent voting elements with respect to arbitrary, learned object cate-

gories.

• The nature of the evolutionary process can leave voting elements unassigned, i.e.

spurious contributions, noise and outliers are massively suppressed or even ignored.

• The proposed method is also capable of assigning voting elements to multiple objects.

This is particularly helpful when objects occlude each other.

A disadvantage of the proposed method (in its general formulation) can be found in

the quadratically growing compatibility matrix, holding the pairwise voting information.

However, we show ways to incorporate prior knowledge about the object category from

training data as well as sampling strategies to overcome this limitation and to keep the

matrix at a reasonable size.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the Hough

Environment, i.e. the space where our pairwise, geometric voting compatibilities live. In

Section 4.3 we explain some basics of Egt to understand what happens in the biologically

inspired voting selection process, before we show our definition of Hough Games and our

novel detection algorithm. Broad applicability and experimental results of our method are

demonstrated in Section 4.4 before we conclude in Section 4.5.

4.2 From Hough Space to Hough Environment

In this section we first introduce the additional notation, necessary in this chapter. Then,

we briefly review a probabilistic interpretation of the classical Hough transform, mainly

from [Barinova et al., 2010]. Finally, we describe our proposed Hough environment where

we include geometric information in a pairwise setting to incorporate a more holistic view

in the detection process.

We denote with S the set of N observations (voting elements) from an image. Each ob-

servation i ∈ S has a spatial origin yi in the image space, stemming from voting elements

and their respective descriptors Ii. We furthermore assume that we are given a classifica-

tion function h(i) for the class label assignment and a probability score p(h(i)|Ii) for each

voting element i ∈ S. In addition, each voting element i ∈ S obtains a voting vector di
after being classified, pointing towards its associated object center (see Figure 4.1). All of

the above parameters can be obtained from previous works like the ISM [Leibe et al., 2008]

or the Hough Forest [Gall and Lempitsky, 2009, Gall et al., 2011].

Within the generalized Hough transform [Ballard, 1981], object detection is formulated

by independently considering each voting element i ∈ S as being generated from some
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y
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Figure 4.1: Sketches of geometrical features used in proposed Hough environment. The
left figure shows the geometry used for voting center compatibility estimation while the
right one illustrates the features used to compute orientation compatibility.

object h ∈ H, where H is the Hough space, or from no object at all. Let H′ = H ∪ {0}
be the Hough space augmented with a special element {0} and let xi ∈ H′ be a random

variable indicating whether the voting element i ∈ S has been generated by object h ∈ H
or by no object {0}. In this way, votes can be considered as pseudo-densities V (xi =

h|Ii) conditioned on their respective descriptor Ii. Summing up the conditional (pseudo)-

densities over all observations is then supposed to establish local maxima in the Hough

space which can be analyzed for valid hypotheses.

Assuming complete independence between voting elements is clearly a very rough ap-

proximation, especially since adjacent locations are likely to belong to the same object in

the image. To bypass this per-sample independence assumption, we propose a new inter-

pretation of the Hough space, namely the Hough environment. Instead of accumulatively

combining center voting information in the Hough space, we aim for a joint combination

with additional pairwise constraints derived from respective origins and orientations. The

additional, geometric information helps to infer meaningful object locations, even in cases

where no dedicated peaks in the associated Hough space are available. For example, for

the task of pedestrian detection in crowded scenes it might suffice to identify votes stem-

ming from the feet or the head-torso combination alone when not all regions of the human

bodies are visible due to occlusion. Consequently, the independence assumption is now

assumed to hold for pairs of voting elements, providing a more discriminative nature as

opposed to single elements. However, pairwise analysis comes at the cost of increased

complexity.

In our proposed Hough environment, we explicitly stress the importance of geometry

and spatial relations among intra-object voting elements. Therefore, we are modeling

joint densities of pairs of voting elements i, j ∈ S with respect to their agreements on
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their mutually hypothesized center location cij in the Hough domain and their relative

angular orientation ϕij and in the image domain. See Figure 4.1 for respective illustrations.

Please note that our setup is not restricted to the above mentioned features but may also

be extended with context or object specific configuration information [Ren et al., 2005,

Leordeanu et al., 2007].

The pairwise compatibility for the object center certainty is modelled as a function

weighting the distance between the hypothesized centers of voting elements i, j ∈ S ac-

cording to

pcij = exp

(
−||(yi + di)− (yj + dj)||2

σ2
h

)
, (4.1)

where σh is a parameter to control the allowed deviation. This term may also be considered

as pairwise breakdown of the original Hough center projection.

The second component in the Hough environment models the orientational similarities

between the considered pair of votes and the actual relative orientation between the spatial

origins in the image domain. Hence, we define

pϕij = exp

(
−�(ŷij , d̂ij)

2

σ2
ϕ

)
, (4.2)

where �(·, ·) returns the enclosed angle between the normalized vectors ŷij =
yi−yj
||yi−yj || and

d̂ij =
di+dj
||di+dj || , mapped on the interval [0, π] (see Fig. 4.1, right). This orientation feature

penalizes differences between the observed geometric configuration in the image and the

provided voting information. σϕ allows to control the influence of the orientation feature.

By combining the terms in Equ. (4.1) and (4.2), we construct a compatibility function

C : S × S → [0, 1] defined as follows:

C(i, j) = p(h(i)|Ii)p(h(j)|Ij)pcijpϕij . (4.3)

Please note that a voting pair (i, j) has to satisfy not only the geometrical constraints

formulated in Equ. (4.1) and (4.2) but also needs to be classified as part of the object in

order to receive a non-zero compatibility value.

4.3 Non-cooperative Hough Games

Objects within the Hough environment are identified as sets of voting elements exhibiting

high mutual compatibilities. However, the characterization and the retrieval of those sets

is not a trivial task. Indeed, two objects may have, in general, some voting elements in

common (i.e., they may overlap) and, moreover, many voting elements are noisy, i.e., they

do not contribute to any object, and should thus be avoided.

Despite this challenging scenario, it turns out that game theory can provide an intrigu-

ing and effective solution to our problem. Indeed, we will show in the next section how
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mutually compatible sets of voting elements can be characterized in terms of equilibria

of what we call a Hough game. We will then also cope with the algorithmic problem of

extracting those equilibria in order to successfully detect multiple objects from a scene.

4.3.1 Game-theoretic background

Inspired by [Torsello et al., 2006], we define a Hough game, i.e., a non-cooperative two-

player symmetric game Γ = (S,A) [Weibull, 1995], where S is a finite set of pure strategies

(in the language of game-theory) available to the players, and A : S × S → R is a payoff

(or utility) function, where aij = A(i, j) gives the payoff that a player gains when playing

strategy i ∈ S against an opponent playing strategy j ∈ S. Note that in the sequel we will

treat the payoff function A as a matrix which is indexable using elements in S. Within

the context of Hough environments, the strategy set S coincides with the set of voting

elements, whereas the payoff matrix A = (aij) is defined as follows:

aij =

{
C(i, j) if i 6= j

−α if i = j ,
(4.4)

where C is defined in (4.3) and α ≥ 0 is a penalization constant, whose role will be

clarified later.

Two players with complete information about the Hough game play by simultaneously

selecting a voting element from the strategy set and, after disclosing their choices, each

player receives a reward proportional to the compatibility of the selected element with

respect to the one played by the opponent. Since it is in each players’ interest to maximize

his own payoff and since no player has prior knowledge about what the opponent is going

to choose, the best strategy for a player is the selection of voting elements belonging

to a common object. Those elements, indeed, exhibit high mutual compatibilities and

by selecting them the chance of earning a higher payoff is increased for both players.

Hence, a set of voting elements belonging to a common object arises from what is called

an equilibrium of the Hough game. Note that the penalization constant α in the payoff

matrix has the important role of preventing trivial solutions where the players select

exactly the same voting element. Indeed, we are searching for the configuration of voting

elements which yields the maximal coherency with respect to a common object centroid,

i.e. an object hypothesis in the Hough environment. In what follows, we provide a formal

characterization of game-theoretic equilibria and how they serve our purpose for object

detection.

A mixed strategy (or randomized strategy) x ∈ ∆S is a probability distribution over

the set of pure strategies S, i.e., an element of the standard simplex ∆S (or simply ∆, if
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not ambiguous), which is defined as

∆S =

{
x : S → [0, 1] :

∑
i∈S

xi = 1 and xi ≥ 0 ,∀i ∈ S

}
. (4.5)

This models a stochastic playing strategy for a player, where xi = x(i) denotes the prob-

ability that the player will select the voting element i ∈ S. Note that as for the payoff

function, we will treat x ∈ ∆S as a (column) vector, which is indexable by elements in

S. The support of a mixed strategy x ∈ ∆, denoted by σ(x), is the set of elements with

non-zero probability, i. e., σ(x) = {i ∈ S : xi > 0}. The expected payoff received by a

player playing mixed strategy y ∈ ∆ against an opponent playing mixed strategy x ∈ ∆

is

y>Ax =
∑
i,j∈S

aijyixj . (4.6)

An important notion in game theory is that of an equilibrium [Weibull, 1995]. A

mixed strategy x ∈ ∆ is a Nash equilibrium if it is best reply to itself, i.e., for all x ∈ ∆,

y>Ax ≤ x>Ax. Intuitively, if x ∈ ∆ is a Nash equilibrium then there is no incentive for

a player to play differently from x. A refinement of the Nash equilibrium pertaining to

Egt, which plays a pivotal role in this work, is that of an Evolutionary Stable Strategy

(Ess), which is a Nash equilibrium robust to evolutionary pressure in an exact sense

[Weibull, 1995]. A mixed strategy x is an Ess if x is a Nash equilibrium such that for all

y ∈ ∆ \ {x}, y>Ax = x>Ax⇒ y>Ax > y>Ay.

4.3.2 Relations to graph theory and optimization theory

Note that the concept of Ess has an interesting graph-theoretic characterization.

Indeed, it coincides with the idea of a Dominant Set, which has been introduced

in [Pavan and Pelillo, 2007, Torsello et al., 2006] and generalizes the notion of maximal

cliques to edge-weighted graphs. Another interpretation can be performed from an

optimization theoretic viewpoint. The detection problem as formulated here can be

considered as a quadratic optimization problem (QAP). In [Pavan and Pelillo, 2007],

the authors established a one-to-one correspondence between the equilibria of a

non-cooperative, two-player game as used in our work and the optima of a QAP. However,

the interpretation in terms of an optimization problem holds only true if the payoff

matrix fulfills certain properties (like symmetry). The game-theoretic interpretation does

not impose such constraints, but instead allows arbitrary compatibilities between the

pairs. For example, the advantages of using a game-theoretic formulation for computer

vision applications have been demonstrated in [Albarelli et al., 2009] for matching, shape

retrieval [Yang et al., 2011] and common visual pattern discovery [Liu and Yan, 2010].

In this line, we motivate the use of Ess for identifying sets of mutually coherent voting
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elements in the Hough space for performing object detection.

4.3.3 Dynamics for Coherent Object Detection

We will now focus on the computational aspects of our framework, i.e. the extraction of

the Ess of a Hough game Γ = (S,A). To this end, we undertake an evolutionary setting.

Consider a large population of non-rational players, each of which plays a pre-assigned

strategy from S, and let x(t) ∈ ∆ be the distribution of strategies in the population at

time t. Randomly, pairs of players are drawn from the population to play the game Γ and

a selection mechanism, where the reproductive success is driven by the payoff gathered by

the players, changes the distribution of strategies x(t) in the population over time. This

Darwinian process continues until an equilibrium is eventually reached.

Different dynamics modeling this process have been proposed in Egt and may po-

tentially serve our need of finding Ess of the Hough game. The most famous one is the

so-called Replicator Dynamics [Weibull, 1995], which are given by

xi(t+ 1) = xi(t)
[Ax(t)]i

x(t)>Ax(t)
. (4.7)

Figure 4.2 shows the result of running the Replicator Dynamics on a Hough game. Initially,

the population is uniformly distributed over the set of voting elements (patch samples)

and, as time passes, the evolutionary pressure drives the distribution mass on the target

object, namely the car, which in turn represents an equilibrium of the game. In this work

however, we will make use of a new class of dynamics called Infection and Immunization

Dynamics (InImDyn), which has recently been developed [Rota Bulò and Bomze, 2011,

Rota Bulò et al., 2011], and overcomes some limitations of the Replicator Dynamics. The

rest of this subsection provides a brief review of InImDyn, refers to the original works for

further details and states the limitations of Replicator Dynamics.

The InImDyn dynamics finds an equilibrium of a Hough game Γ = (S,A) by iteratively

refining an initial mixed strategy x ∈ ∆. The procedure is summarized in Algorithm 1.

The refinement loop (lines 2–6) continues until x is close to being a Nash equilibrium

according to a tolerance τ , i.e. until ε(x) < τ , where

ε(x) =
∑
i∈S

min{xi, (Ax)i − x>Ax}2 (4.8)

measures the deviation of x from being a Nash equilibrium and it yields zero if and only

if x is a Nash equilibrium.

If the execution enters the loop then x is not a Nash equilibrium and hence, there

exist strategies y ∈ ∆ such that (y − x)>Ax > 0 (called infective strategies according to

[Rota Bulò and Bomze, 2011]). In particular the following two infective strategies exist
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Figure 4.2: Proposed Hough game with its evolutionary process applied to car detection.
Starting from homogeneous initialization (top left) until convergence (bottom right) where
superimposed, reddish regions correspond to fitness of underlying importance with respect
to the sought object geometry. Best viewed in color.

Algorithm 1: InImDyn Algorithm for equilibrium selection

Input: A game Γ = (S,A), an initial mixed strategy x ∈ ∆ and a tolerance τ
Output: A Nash equilibrium of Γ

1 while ε(x) > τ do
2 y← S(x)
3 δ ← 1

4 if (y − x)>A(y − x) < 0 then

5 δ ← min
{

(x−y)>Ax
(y−x)>A(y−x)

, 1
}

6 x← δy + (1− δ)x
7 return x

[Rota Bulò and Bomze, 2011, Proposition 2]:

z+ = eu and z− =
xv

1− xv
(x− ev) + x , (4.9)

where u ∈ arg maxj∈S(Ax)j and v ∈ arg minj∈σ(x)(Ax)j . Intuitively, in z+ only the best

performing pure strategy (according to a myopic decision) is present in the mixed strategy,

while in z− the worst one is extinguished. The function S(x) at line 2 returns the strategy

between z+ and z− yielding the largest expected payoff against x, i.e.

y = S(x) ∈ arg max
z∈{z+,z−}

z>Ax . (4.10)

Finally, the original strategy x and the new one y are linearly combined at line 6 in
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a way to guarantee a maximum increase in the expected payoff. Indeed, under symmetry

assumption of A, the parameter δ computed at lines 3 – 5 can be regarded to as the

solution of

δ ∈ arg min
α∈R

{
z>αAzα : zα ∈ ∆

}
, (4.11)

where zα = (1− α)x + αy.

The InImDyn dynamics exhibits desired features in contrast to the Replicator Dynam-

ics. There is a one-to-one correspondence between fixed points of the dynamics and the set

of Nash equilibria [Rota Bulò and Bomze, 2011, Theorem 1]. Moreover, there are strong

convergence guarantees under symmetric payoff matrices [Rota Bulò and Bomze, 2011,

Theorems 3,4]: the limit points of the dynamics are Nash equilibria and ESS equilibria

are all and the only asymptotically stable points. From a computational perspective, itera-

tions are linear in the number of strategies [Rota Bulò et al., 2011, Theorem 8] in contrast

to the quadratic ones of the Replicator Dynamics and an equilibrium can be extracted

after finitely many iterations [Rota Bulò and Bomze, 2011, Theorem 7].

4.3.4 Enumeration of Multiple Objects

Since an evolutionary dynamics will find at most one equilibrium depending on the initial

population state, one problem to solve is how to enumerate multiple Ess in order to detect

multiple objects. A simple approach consists in starting multiple times the dynamics

from random initial points hoping to converge to different equilibria. However, this is an

inefficient way of exploring the solution space. Another naive method uses a peeling-off

strategy, i.e. one can iteratively remove the strategies in the support of newly extracted

equilibria from the game. However, this solution cannot find equilibria with overlapping

supports and since at each iteration the game is changed, one may potentially introduce

equilibria which do not exist in the original game. Due to the lack of a satisfactory solution,

we will present a novel heuristic approach for enumerating Ess in this section, which is

built upon the novel InImDyn dynamics.

Our enumeration approach is simple and makes use of both InImDyn as an equi-

librium selection algorithm and a strategy tabu-set in order to heuristically explore the

solution space and have a termination guarantee. The algorithm repeatedly interleaves an

exploratory and a validation phase. During the exploratory phase, an equilibrium is found

by prohibiting the players from using strategies appearing in the tabu-set. By limiting

the strategy set, we basically find an equilibrium of a sub-game and not of the original

Hough game, but this allows us to explore a new part of the solution space. A validation

phase then follows in order to derive an equilibrium of the original game starting from the

solution found in the exploratory phase. At each iteration, the tabu-set is increased and

this guarantees the termination.

A pseudo-code of our method is shown in Algorithm 2. It takes a game Γ = (S,A) as

input and returns a set X of Nash equilibria of Γ. The first two lines of code initialize the
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solution set X and our strategy tabu-set T ⊆ S to empty sets (lines 1-2). The algorithm

then iterates over the remaining lines of code until the tabu-set equals S. Consider now a

generic iteration k over the lines 4-12 and assume T (k) and X (k) to be the tabu-set and the

solution set at iteration k, respectively. In line 4, we create a sub-game Γ̃(k) = (S\T (k), A),

which is obtained from Γ by removing the strategies in the tabu-set T (k) (function Sub-

Game). In line 5, we initialize a mixed strategy b ∈ ∆S\T (k) to the slightly perturbed

barycenter of ∆S\T (k) (function Barycenter), i.e., bi ≈ 1/|S \ T (k)| for all i ∈ S \ T (k).

We then run InImDyn on Γ̃ starting the dynamics from b and obtain a Nash equilibrium

y ∈ ∆S\T (k) of Γ̃ (line 6). Note that, differently from a peeling-off strategy, we do not

insert y in our solution set X , because it may not necessarily be an equilibrium of the

original game Γ. Instead, we inject y ∈ ∆S\T (k) into ∆S through the following operator:

π(y)i =

{
yi if i ∈ S \ T (k)

0 else ,
(4.12)

and use the obtained mixed strategy as starting point of another InImDyn execution,

but this time on the original game Γ, from which we obtain an equilibrium of Γ (line 7).

We can now safely add z to X at line 8 with the only remark that z may already be in

X (we use the set-union to implicitly remove duplicates). The last step is to update the

strategy tabu-set. To this end we distinguish two possible scenarios: 1) the support of z

is contained in the tabu-set, i.e., σ(z) ⊆ T (k), or 2) it has at least one element in S \ T (k).

In the first case, we insert in the tabu-set all strategies in the support of y. In the second

case, we insert in T all strategies in the support of z. 1

Algorithm 2 will stay in the while-loop for at most |S| iterations as stated by the

following proposition. Moreover, at the end, it will return a set of Nash equilibria of Γ.

Proposition 1. Algorithm 2 terminates within |S| iterations of the while-loop.

Proof. Since T is initially empty and the while-loop terminates as soon as T = S, it suffices

to prove that T (k) ⊂ T (k+1) at each iteration k, where T (k) denotes the content of T at

iteration k ≥ 0 of the while-loop.

Note that σ(y) \ T (k) = ∅ by construction of the game Γ̃. Hence, if the algorithm

executes line 10 then clearly T (k+1) = T (k) ∪ σ(y) ⊃ T (k), whereas if it reaches line 12

then σ(z) \ T (k) 6= ∅ and therefore T (k+1) = T (k) ∪ σ(z) ⊃ T (k).

Proposition 2. Algorithm 2 is correct, i.e., X contains Nash equilibria of Γ.

Proof. The proposition holds by noting that we add to X only equilibira returned

by InImDyn when ran on Γ, and the fixed-points of InImDyn are Nash equilibria

[Rota Bulò and Bomze, 2011].

1Note that adding just one vertex from σ(y) for the first case, or σ(z) \ T for the second one, would be
enough as well. This indeed may lead to a better coverage of the solution space at the cost, however, of a
larger number of iterations.
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Algorithm 2: Nash equilibria Enumeration Algorithm

Input: Γ = (S,A)
Output: X a set of Nash equilibria of Γ

1 X ← ∅
2 T ← ∅
3 while T 6= S do

4 Γ̃ = Sub-Game(Γ, S \ T )
5 b = Barycenter(S \ T )

6 y← InImDyn(Γ̃,b)
7 z← InImDyn(Γ, π(y))
8 X ← X ∪ {z}
9 if σ(z) ⊆ T then

10 T ← T ∪ σ(y)

11 else
12 T ← T ∪ σ(z)

13 return X

4.4 Experiments

To demonstrate the quality of our proposed method, we conducted several experiments

on both, synthetic and real data sets where we compare to widespread spectral clustering

methods. In Section 4.4.1, we provide results for our cluster enumeration algorithm on a

synthetically generated data set. Then, we briefly describe how we integrated our Hough

game concept in the Hough forest framework [Gall and Lempitsky, 2009] before we show

qualitative and quantitative results on real data sets in Section 4.4.3.

4.4.1 Synthetic Data Experiment

First, we demonstrate the capability of robustly enumerating multiple, overlapping clus-

ters under severe amount of noise and outliers. Instead of deriving the payoff matrix as

proposed in Equation 4.3, we provide an artificially generated matrix simulating 5 coherent

clusters containing different numbers of elements in the range of 140 to 435. The matrix

has a size of 1500 × 1500 and 4 clusters have mutual overlaps in the range of 9 − 60%

of their elements. The internal cluster affinities were generated using 70% noise while

affinities to non-cluster elements were randomly set with 30% of noise. In addition, we

added 300% of uniformly distributed noise on top of the whole matrix. Figure 4.3 shows

the detected clusters, forming color-coded block-wise structures. Our method finds the

actual clusters with a mean accuracy of 99.33% in terms of F-measure while leaving the

rest unassigned. Please note that finding such overlapping clusters is of particular interest

since e.g. areas of overlapping objects like persons might be assigned to both individuals.
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Figure 4.3: Visualization of enumeration results on a synthetically generated payoff matrix
containing 5 clusters with varying sizes and overlaps.

4.4.2 Artificial Graph Matching Experiment

In our next experiment we assess the quality of our proposed system by interpreting it as

a graph matching problem. Indeed, we can consider the voting element pairs used in the

Hough environment as nodes in a graph and their edge weights as a measure for geometric

compatibility with respect to a learned reference model (see edge compatibility definitions

using Equations (4.1) and (4.2)).

With this experiment we want to stress the independence with respect to the underlying

reference model, i.e. our proposed approach can easily be adapted to work with different

model generators. Here, the reference graph was constructed from a set of randomly

distributed 2D points in a pre-defined region, simulating voting element origins in the

image domain. The query graph (i.e. the underlying points we used for the matching

task) was formed by independently disturbing the original point locations, followed by

randomly rotating and translating the whole point set. In this sense we also know about

the ground truth correspondences.

Given the graphs, we define a simple compatibility measure

C(ia, jb) = exp

(
−D(ia, jb)2

2σ2

)
using D(ia, jb) =

|di,j − da,b|
di,j + da,b

, (4.13)

where σ is a normalization parameter and d·,· is the Euclidean distance between point

pairs i, j and a, b from the reference and query graphs, respectively.

To demonstrate robustness, we show the noise tolerance of our method by consequently

adding outliers to our query graph (drawn uniformly and randomly within the pre-defined

region) while analyzing the number of correct matchings. We compare results of our

method to two methods for computing the principal eigenvector of C as it is required in
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spectral methods: power iteration and a variant of the Lanczos method. Each method

uses the same difference matrix D as input, analyzing the spatial distances between graph

nodes. Please note that the matching quality depends on the normalization of the com-

patibility matrix and that optimal normalization parameters (here: σ) vary for different

optimization approaches. Therefore, we optimized σ for all three methods by exhaustive

search over all matching test cases. We found a high variance in the optimal choice for σ,

i.e. 5 for our method, 150 for Lanczos and 200 for power iteration.

Figure 4.4 shows average percentage of correct assignments for matching 10 different

random reference graphs (each built on 30 points) to query graphs with an increasing

number of outliers. As can be seen, all methods can similarly handle a small amount of

outliers. However, once the number of outliers exceeds the number of points to match,

our proposed algorithm shows improved performance, because of its inherent search for

an assignment with maximum internal cohesiveness.
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Figure 4.4: Matching reference graphs (30 points) to query graphs with an increasing
number of randomly generated outliers (up to 150). The proposed method is compared
to two spectral methods: Lanczos and power iteration.
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4.4.3 Hough Game Results

We use the Hough forest [Gall and Lempitsky, 2009] for providing the required predictions

to construct the Hough environment as outlined in Section 4.2, and we set the parameters

σh = σϕ = 9. In every Hough tree t ∈ T , we reduce the set of voting vectors in the leaf

nodes to the median vote vector d. Since the Hough Forest provides multiple trees T for

classification, we update Equation (4.3) to C(i, j) =
∑

t∈T p
t(h(i)|Ii)pt(h(j)|Ij)ptcijp

t
ϕij for

computing the compatibilities.

As mentioned at the beginning of this chapter, pairs of voting elements provide better

discriminative properties as opposed to single elements, however at the cost of increased

computational complexity. Since we want to keep the processed payoff matrices at reason-

able size (< 7k × 7k), we constrain the number of considered voting elements to patches

with foreground probability ≥ 0.5. Additionally, we consider only pixels lying on a regular

lattice with a stride of 2 to reduce the amount of data to be processed. The penalization

constant has been empirically determined and was fixed to α = 10 for all experiments.

Please note that sparse implementation techniques are beneficial, since the pairwise inter-

actions are naturally bounded by the largest possible voting vectors obtained from training

data.

Unless otherwise stated, we always grow 15 trees with a maximum depth of 12 on 25 000

positive and negative training samples from the referenced data sets. The considered patch

size is 16× 16 and all training samples are resized to a similar scale.

We apply our Hough Game for localization of cars on the UIUC cars

dataset [Agarwal et al., 2004] and pedestrians on the extended TUD crossing

dataset [Barinova et al., 2010]. Additionally, we show qualitative results for enumerating

paper fibers in microtomy images, presented in the previous chapter.

UIUC car dataset In our first experiment we evaluate the proposed method on the

single scale UIUC car dataset [Agarwal et al., 2004]. The training dataset contains 550

positive and 450 negative images while the test dataset consists of 170 test images showing

210 cars. Although the silhouettes of the cars are mostly rigid, some cars are partially

occluded or have low contrast while being located in cluttered background. We achieve a

score of 98.5% in terms of equal error rate (EER), hence we are on par with state-of-the-

art methods [Lampert et al., 2008, Gall and Lempitsky, 2009] while identifying the set of

votes that are corresponding to the individual objects. In Figure 4.5 we show some sample

detections and the groups of votes producing the respective detections. Please note how

our method is able to deal with partial occlusions and successfully groups coherent object

votes.

Extended TUD crossing scene Next, we evaluated on the extended version of the

TUD crossing data base [Barinova et al., 2010], showing several strongly occluded pedes-

trians walking on a cross-walk. The extended version includes also overlapping pedestrians
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Figure 4.5: Car detections and their contributing votes on selected images of UIUC car
databset.

where head and at least one leg are visible. This results in a very challenging data set

consisting of 201 images with 1018 bounding boxes. We used the same training protocol

as described in [Andriluka et al., 2008]. Since we are not obtaining bounding boxes but

rather the sets of contributing voting elements for each person, we decided to evaluate

the detection results with the strict criterion introduced in [Shotton et al., 2005]. This

criterion accepts detections as correct when the hypothesized center is within 25 pixels of

the bounding box centroid on the original scale. In our case, we determined the centroid

by taking the median of the reprojected center votes for all detected voting elements. For

evaluation, we rescaled the images and the acceptance criterion by a factor of 0.55, such

that true positives were counted only within a radius of 13.75 pixels. After constructing

the payoff matrices, we played the Hough Game using our novel detection algorithm. To

provide a comparison, we handed the same matrices to the widespread normalized cut

(nCut) algorithm [Shi and Malik, 2000] and illustrate the results (F-measure per test im-

age) in the top row in Figure 4.6. Since nCut requires the number of clusters to obtain, we

evaluated by giving our number of detections as well as giving the ground truth number of

persons. As can be seen, our method outperforms the nCut algorithm, even when the true

number of objects is provided. We obtain a mean F-measure score of 79.88% compared

to 66.56% and 65.23% for nCut provided with ground truth or our detected number of

persons, respectively. Since nCut aims for partitioning the whole input into clusters, we

tried another setup where we give an additional cluster to the ground truth number and

the detected number of persons from our method, respectively. This should allow nCut
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for partitioning the non-person objects. Before computing the F-measure, we removed

the detection associated to the lowest eigenvalue. This resulted in F-measure scores of

61.94% and 58.79%, hence considerably lower than before and suggesting that nCut does

not group noise in an individual cluster but rather incorporates it in the individual detec-

tions. The bottom row in Figure 4.6 shows color-coded, qualitative results of individual
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Figure 4.6: Top row: Classification results on extended TUD crossing sequence per image
using single scale evaluation. We obtain a mean F-Measure score of 79.88% in comparison
to 66.56% and 65.23% for nCut [Shi and Malik, 2000] (provided with ground truth # or
our detected # of objects, respectively). Second and third rows: Successive and missing
(last image) detections of proposed method. White bounding boxes correspond to ground
truth annotations. Best viewed in color.

detections of our proposed Hough game. Please note the plausible assemblies of votes from

strongly overlapping persons to individual pedestrians, even in the rightmost image, where
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a person is missed due to assignment of votes to another person in the back. Moreover,

it is possible to hypothesize for the person’s center by detecting coherent votes of the feet

alone (green detection in first image, yellow detection in forth image).

Paper fiber enumeration In this experiment, we apply our method to detect and

enumerate individual paper fibers in microtomy images obtained from serially sectioning

a paper specimen (see previous Chapter for data set description). In case two (or multiple)

fibers are directly next to each other, the fiber walls can be considered as shared features,

making their individual detection a well-suited application for the proposed enumeration

algorithm. In Figure 4.7 we show qualitative results of fibers in a cross-section image of

eucalyptus paper where no ground truth data was available.

Figure 4.7: Enumerating paper fibers in a cross-section image of eucalyptus paper. Differ-
ently shaped fibers were successfully assembled using the proposed enumeration scheme.

4.5 Conclusions

In this chapter we showed a method to identify multiple, possibly overlapping instances of

an object category in a Hough-voting based detection framework. We identified individual

objects by their sets of mutually compatible voting elements, opposed to analyzing the

accumulative Hough Space. We proposed solutions for two challenging problems. First,

we introduced the Hough environment, where we mapped geometrical compatibilities of

votes in terms of mutual object center agreements and orientational similarities. In the
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second part, we introduced a novel, game-theoretic algorithm for finding multiple objects

by assembling pairs of mutually compatible voting elements in the Hough environment. To

this end, we designed a Hough Game where we modelled the competition of contributing

voting elements as Darwinian selection process, driven by geometrical compatibilities with

respect to the object category of interest. In contrast to existing methods, our novel

detection algorithm can identify several coherent sets with overlapping elements as well

as leave non-compatible elements completely unassigned which is particularly helpful in

strongly occluded or noisy scenarios. As shown in several experiments, our detection

algorithm can successfully cope with severe amounts of noise and outliers.



Chapter 5

Context-Sensitive Decision Forests

for Object Detection

Contents

5.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . 74

5.1.1 Early Use of Context in Computer Vision and Pattern Recognition 74

5.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Context-Sensitive Decision Trees . . . . . . . . . . . . . . . . . . 77

5.2.1 Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Prioritized node training. . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Application to Object Detection . . . . . . . . . . . . . . . . . . 80

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Evaluation using standard protocol training set . . . . . . . . . . 84

5.4.2 Evaluation with Crossing scene as training set . . . . . . . . . . 85

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

In the previous two chapters, we restricted to applying the available Hough forest

algorithm either for shape fragment descriptor learning (Chapter 3) or as generator for

modelling pairwise compatibilities of test samples with respect to the learned model cate-

gory (Chapter 4). In this chapter we directly alter the random forest learning algorithm by

introducing Context-Sensitive Decision Forests - A new perspective to exploit contextual

information in the decision forest framework for the object detection problem. Context-

sensitive trees are tree-structured classifiers with the ability to access intermediate pre-

diction information during training and inference time. This intermediate prediction is

available to each sample, which allows us to develop context-driven decision criteria, used

for refining the prediction process. In addition, we introduce a novel split criterion which

in combination with a priority based way of constructing the trees, allows more accurate

regression mode selection and hence improves the current context information. In the

73
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experiments, we demonstrate improved results for the task of pedestrian detection on the

TUD data set when compared to state-of-the-art methods.

5.1 Introduction and Related Work

We are again focusing on the task of object detection, i.e. the problem of localizing multiple

instances of a given object class in a test image. While in the previous chapters with have

applied Hough forests according to their definition in [Gall and Lempitsky, 2009], we will

now extend the underlying learning concept to make them context-sensitive. To this

end, we take advantage of the correlations between samples by exploiting their adjacency

on the pixel grid as additional feature cues in the learning and inference process. The

motivation to do so arises from shortcomings in the prediction process of standard Hough

forests, where we typically find non-distinctive object hypotheses in the Hough space,

requiring to perform non-maximum suppression (NMS) for obtaining the final results.

While this has been addressed in [Barinova et al., 2010] or the previous chapter of this

Thesis, another shortcoming is that standard (Hough) forests treat samples in a completely

independent way, i.e. there is no mechanism that encourages the classifier to perform

consistent predictions with respect to their context.

5.1.1 Early Use of Context in Computer Vision and Pattern Recognition

The importance of context in human visual processes and in our everyday judgments

and actions can hardly be stressed enough. It is a common-sense observation, in fact, that

objects in the real world do not live in a vacuum, and some thoughts have gone so far as to

maintain that all attributions of knowledge are indeed context-sensitive, a view commonly

known as contextualism [Cohen, 1986, Price, 2008]. The use of contextual constraints

in pattern recognition dates back to the early days of the field, e.g. [Abend et al., 1965]

presented an approach for classifying binary random variables, forming patterns on a two-

dimensional array. Moreover, at this time context was especially used in connection to

optical character recognition problems [Chow, 1962, Toussaint, 1978].

Early efforts to exploit context in computer vision considered contextual

dependencies as expert knowledge from a narrow domain, which was provided as a

priori information [Yakimovsky and Feldman, 1973, Fischler and Elschlager, 1973,

Hanson and Riseman, 1978]. These solutions were however limited due to the

inability of handling the uncertainty of real world data. This turned the attention of

researchers to developing more general and flexible tools for modeling context. An

important pioneering work in this respect appeared in 1976 by Rosenfeld, Hummel

and Zucker [Rosenfeld et al., 1976]. They introduced a class of parallel iterative

procedures which became a standard technique in the pattern recognition and machine

vision domains for many years. These algorithms, generally known as relaxation

labelling processes [Hummel and Zucker, 1983], attempted to exploit contextual
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information in order to provide consistent solutions in classification problems where

noise and uncertainty can affect the accuracy of classical non-contextual pattern

recognition algorithms. Notably, the work in [Pelillo, 1997] provides a formal

connection between the heuristics in [Rosenfeld et al., 1976] and the theoretical work

in [Hummel and Zucker, 1983].

In the following years, a promising stream of approaches based on Markov Random

Fields (MRF) appeared in the computer vision field and led the way to the use of graphical

models for modelling contextual relations. Among the most representative works, we

mention the one of Geman and Geman [Geman and Geman, 1984], who used a MRF

image model for image restoration, and also the book of Stan Li [Li, 1995].

Early works like the aforementioned ones, were focused on exploiting contextual

dependences rather than learning them from training samples, an exception

being [Pelillo and Refice, 1994], where the problem of learning contextual dependencies

within the relaxation labelling framework has been addressed. This is probably due to

the limited availability of data and storage capabilities at that time, and the limited

computational power. It is nowadays clear to researchers that providing an a priori

imprint of contextual relations on their algorithms limits the power of their approaches

due to their inability to cope with the variability and complexity of real-world data.

Hence, learning the parameters encoding contextual information has become an obliged

path to take.

Nowadays, the computer vision community is paying again increasing attention to

the role played by contextual information in visual perception, especially in high-level

problems such as object recognition or semantic scene segmentation, and neuro-scientists

have started understanding how contextual processing takes actually place in the visual

cortex. As Bar [Bar, 2004] puts it: ”contextual information can provide more relevant

input for the recognition of an object than can its intrinsic properties”, which is something

that psychologists working in visual perception know well (see, e.g. [Zusne, 1970]).

5.1.2 Contributions

In this chapter we are proposing that context information can be used to overcome some of

the aforementioned problems typically arising in Hough forests. Recently, contextual in-

formation has been used in the field of object class segmentation [Rabinovich et al., 2007],

however, mostly for high-level reasoning in random field models or to resolve contradicting

segmentation results. The introduction of contextual information as additional features

in low-level classifiers was initially proposed in the Auto-context [Tu, 2008] and Semantic

Texton Forest [Shotton et al., 2008b] models. Auto-context shows a general approach for

classifier boosting by iteratively learning from appearance and context information. In

this line of research [Montillo et al., 2011] augmented the feature space for an Entangle-

ment Random Forest with a classification feature, that is consequently refined by the class

posterior distributions according to the progress of the trained subtree. The training pro-
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Figure 5.1: Top row: Training image, label image, visualization of priority-based growing of tree
(the lower, the earlier the consideration during training.). Bottom row: Inverted Hough image
using [Gall and Lempitsky, 2009] and breadth-first training after 6 levels (26 = 64 nodes), Inverted
Hough image after growing 64 nodes using our priority queue, Inverted Hough image using priority
queue shows distinctive peaks at the end of training.

cedure is allowed to perform tests for specific, contextual label configurations which was

demonstrated to improve the segmentation results.

To this end, we are presenting Context-Sensitive Decision Forests - A novel and uni-

fied interpretation of Hough Forests in light of contextual sensitivity. Our work is inspired

by Auto-Context and Entanglement Forests, but instead of providing only posterior clas-

sification results from an earlier level of the classifier construction during learning and

testing, we additionally provide regression (voting) information as it is used in Hough

Forests. Another contribution of this work is related to how we grow the trees: Instead of

training them in a depth- or breadth-first way, we propose a priority-based construction

(which could actually consider depth- or breadth-first as particular cases). The priority

is determined by the current training error, i.e. we grow those parts of the tree where

we measure the highest training error. To this end, we introduce a unified splitting cri-

terion that estimates the joint error of classification and regression. The consequence of

using our priority-based training are illustrated in Figure 5.1: Given the training image

with corresponding label image (top row, images 1 and 2), the tree first tries to learn the

foreground samples as shown in the color-coded plot (top row, image 3, colors correspond

to index number of nodes in the tree). The effects on the intermediate prediction quality

are shown in the bottom row for the regression case: The first image shows the regression

quality after training a tree with 6 levels (26 = 64 nodes) in a breadth-first way while the

second image shows the progress after growing 64 nodes according to the priority based

training. Clearly, the modes for the center hypotheses are more distinctive which in turn
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yields to more accurate intermediate regression information that can be used for further

tree construction. Our third contribution is a new split function that allows to learn from

training images containing multiple training instances as shown for the pedestrians in the

example. We introduce a test that checks the centroid compatibility for pairs of training

samples taken from the context, based on the intermediate classification and regression

derived as described before. To assess our contributions, we performed several experiments

on the challenging TUD pedestrian data set [Andriluka et al., 2008], yielding a substantial

improvement of 9% in the recall at 90% precision rate in comparison to standard Hough

Forests, when learning from crowded pedestrian images.

5.2 Context-Sensitive Decision Trees

This section introduces the general idea behind the context-sensitive decision forest with-

out references to specific applications. Only in Section 5.3 we show a particular application

to the problem of object detection. Here, the notion of contextual information of a sam-

ple x is inherited from previous works like [Tu, 2008, Montillo et al., 2011] and it consists

of hypotheses about the prediction value that other samples related to x might have at

earlier stages of the inference process. As we will demonstrate, the idea of integrating

results from previous predictor outputs naturally fits to the hierarchical concept of tree-

structured predictors. According to our definition of decision trees in Chapter 2, we can

convert each internal node Nd () to a leaf node Lf (), allowing to make a prediction for

all data samples it is reached by. Keeping this idea in mind we can make predictions

at every growing state of the tree, allowing to establish a notion of context in terms of

class labels (classification information) or concentration of voting information (regression

information), which in turn can be used when continuing the tree growing process.

A context-sensitive (CS) decision tree is a decision tree in which split functions are

enriched with the ability of testing contextual information of a sample before taking a

decision about where to route it. We generate contextual information at each node of a

decision tree by exploiting a truncated version of the same tree as a predictor. This idea

is shared with [Montillo et al., 2011], however, we introduce some novelties by tackling

both, classification and regression problems in a joint manner and by leaving a wider

flexibility in the tree truncation procedure. For reasons of convenience, we denote the set

of CS decision trees as T . The main differences characterizing a CS decision tree t ∈ T
compared with a standard decision tree are the following:

• Every node (leaves and internal nodes) of t has an associated probability distribution

Q ∈ P(Y) representing the posterior probability of an element in Y given any data

sample reaching it.

• Internal nodes are indexed with distinct natural numbers n ∈ N in such a way as

to preserve the property that children nodes have a larger index compared to their

parent node.
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• The split function at each internal node, denoted by ϕ(·|t′) : X → {0, 1}, is bound

to a CS decision tree t′ ∈ T , which is a truncated version of t and can be used to

compute contextual information.

Similar to Section 2.2 we denote by Lf (Q) ∈ T the simplest CS decision tree con-

sisting of a single leaf node parametrized by the distribution Q, while we denote by

Nd (n,Q, ϕ, tl, tr) ∈ T , the rest of the trees consisting of a node having a left and a

right sub-tree, denoted by tl, tr ∈ T respectively, and being parametrized by the index n,

a probability distribution Q and the split function ϕ as described above.

Different from standard decision trees, we explicitly induce a total ordering on the

non-terminal nodes of a specific tree by indexing them with a natural number n ∈ N. The

indexing must satisfy the property that non-terminal children nodes have a larger index

as opposed to their parent node (see Figure 5.2). Additionally, also non-terminal nodes

have an associated probability distribution Q ∈ P(Y) reflecting the posterior probability

of elements in Y given any sample reaching it. Hence, besides leaves, a CS decision tree is

a node Nd (n, y, ϕ, tl, tr), where n ∈ N and y ∈ Y are the aforementioned index and output

value, respectively, ϕ is a split function that will be described later on and tl, tr ∈ T are

the left and right children of the node.

The split function that comes along with all non-terminal nodes of a CS decision tree,

takes the decision whether forwarding a sample to the left or the right child of a given node.

However, as opposed to the case of standard decision trees, the decision is influenced not

just by the single sample for which a decision has to be taken but also by the prediction

hypotheses for all samples in the context. Indeed, we stress that the CS decision tree

works given a set of samples, i.e. the context, and not simply a single sample. The split

function is thus defined as ϕ : X × 2X×Y → {0, 1}, where the first argument is a sample in

X and the second one is a subset of pairs in X × Y which represent the context samples

with the respective prediction hypotheses.

As shown in Figure 5.2, the truncation of a CS decision tree at each node is obtained

by exploiting the indexing imposed on the internal nodes of the tree. Given a CS decision

tree t ∈ T and m ∈ N, we denote by t(<m) a CS decision tree derived from t in which

only the internal nodes having index < m are kept and the internal nodes with index ≥ m
having a parent with index < m, or being the root node, are converted into leaves. Finally,

all nodes left-over are pruned away.

This procedure is inductively defined as follows:

(Lf (Q))(<m) = Lf (Q)

(Nd (n,Q, ϕ, tl, tr))
(<m) =

Lf (Q) if n ≥ m
Nd

(
n,Q, ϕ, t

(<m)
l , t

(<m)
r

)
if n < m .

(5.1)

The basic idea here is that we can use t(<m) to obtain the prediction hypotheses for the

context at a node indexed m.
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Figure 5.2: On the left, we find a CS decision tree t, where only the internal nodes are
indexed. On the right, we see the truncated version t(<5) of t, which is obtained by
converting to leaves all nodes having index ≥ 5 (we marked with colors the corresponding
node transformations).

5.2.1 Inference.

The inference process, given a CS decision tree t ∈ T , is equivalent to the one introduced

for standard decision trees, with the only difference that a split function in a node indexed

by n can use the truncated version of the same decision tree t(<n) to additionally exploit

contextual information while taking decisions about where to route samples. Specifically,

the posterior probability of y ∈ Y given a sample x ∈ X is inductively defined as:

P (y |x, t) =


Q(y) if t = Lf (Q)

P (y |x, tl) if t = Nd (n, ·, ϕ, tl, tr) and ϕ(x | t(<n)) = 0

P (y |x, tr) if t = Nd (n, ·, ϕ, tl, tr) and ϕ(x | t(<n)) = 1 .

(5.2)

The same posterior probabilities with respect to a forest F ⊆ T can be obtained as in

(2.8).

5.2.2 Prioritized node training.

The training process for CS decision forests consists in training an ensemble of CS decision

trees independently on random subsets of the training set D ⊆ X × Y. Each CS decision

tree is trained in an iterative way and, similar to the case of standard decision trees, a

decision about whether to branch new nodes or produce a leaf is taken based on a subset

of the training samples Z ⊆ D. However, in contrast to the standard setting, the learning

process depends on the order in which nodes of the tree are grown because split functions

depend on t(<m) which in turn is affected by the node ordering.

In other words, we impose here an explicit ordering on the recursive calls of function

g performed in Equation (2.5). This ordering is determined by means of a priority queue,

where the priority associated to each function call is determined according to a cost value.

This cost can for instance be the depth at which a new node will be grown by the recursive
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call, in which case we enforce a breadth-first ordering, or the negative loss −L(Z) defined

as in (2.2), Z being the subset of the training data argument of the function call. This

second option is particularly interesting because it forces the tree to split first the nodes

where the training error measured in terms of the loss function is the highest. This indeed

allows to reduce the uncertainty uniformly during the tree growth and thus have more

reliable contextual information.

Whenever a new node is grown, it takes the time at which it was extracted from the

priority queue as index. It is easy to see that the indexing deriving from this procedure

never violates the property that children of a node have an index larger than the parent

node. The split function selection is performed according to (2.6), the only difference being

the type of split functions that are generated, which can exploit t(<m) to test contextual

information.

We finally remark that the split functions might avoid explicit computations

of posterior probabilities from the truncated trees by adopting a strategy like in

[Montillo et al., 2011], in which the leaf where each training sample belongs to is tracked

while growing the tree and a nearest neighbor approximation is done if samples not

belonging to the training set are tested. A similar procedure can also be adopted during

inference. In this case multiple samples are evaluated at the same time, by keeping track

of their node position and by respecting a node evaluation order determined by the

node’s indices.

5.3 Application to Object Detection

In this section we employ the CS decision trees for the problem of object detection, fol-

lowing a solution setting similar to [Gall and Lempitsky, 2009]. Specifically, we adopt a

patch-based abstraction of an image and the aim of the tree-based predictor is to jointly

predict, for each patch, the foreground/background class it belongs to and a displacement

vector pointing to the object’s center. By collecting all the object position hypotheses

from all foreground patches, we can setup a Hough space in which objects can be detected

from the vote modes.

An image I : Z2 → F is a function mapping pixels to elements of a feature space

F . The feature space here may include a variety of image cues, like color information,

gradients, filter bank responses, etc. . We denote by I(u) ∈ F the feature vector associated

to pixel u and by I the set of images, and by I(u)k the kth element of the feature vector

associated to u. The input space X for our learning problem is a set of patches, each

represented as a pair (u, I) ∈ Z2 × I, pixel u being the center of the patch in image I.

The output space Y is a set of pairs (c,d), where c ∈ {0, 1} is a binary class label

indicating the presence of an object and d ∈ Z2 is the displacement of the object’s center.

Hence, if a training sample (u, I) ∈ X has (c,d) ∈ Y as the ground-truth prediction then

we have in image I at location u either a background pixel (c = 0) or a foreground pixel

(c = 1), i.e. belonging to an object and, if the second case holds, u + d is the center of



5.3. Application to Object Detection 81

the object to which the pixel belongs. Note that Y encodes both the classification and

regression part of the object detection task.

The loss function `(c,d|Q) that we employ for the computation of L(Z|Q) in (2.2) is

given by

`(c,d |Q) = E(c′,d′)∼Q
[
1
[
c 6= c′

]
+ 1

[
(c, c′) = (1, 1)

] (
1−Kσ(d− d′)

)]
(5.3)

where Kσ(x) = exp(−‖x‖2/σ2). This quantity measures the expected loss that we incur

by predicting (c′,d′) in place of (c,d), where (c′,d′) is sampled according to Q. The term

under expectation behaves as a 0/1 loss for all combinations of class labels, excepting the

case c = c′ = 1 where also the correct prediction of the displacement vector is taken into

account. Indeed, even if a pixel belonging to an object is correctly labelled, we incur in a

high loss if the object’s center position estimation is completely wrong. This is taken into

account with the second term.

The density estimation function π(Z), which generates the posterior distributions

stored in the tree leaves, is different depending on whether we are at an internal node or

at a leaf of the tree. In both cases it provides distributions that factorize in two marginal

distributions, for the class labels and the displacement vector, respectively. Moreover,

in both cases, the marginal over the class labels is a discrete distribution providing the

probability of drawing a sample of a given class from the set Z. The difference is with

respect to the marginal over the displacement vector. We have a point-wise and uni-modal

distribution at the internal nodes, while we keep track of multiple modes at the leaves.

Let q ∈ P({0, 1}) be the marginal distribution over the class labels defined as q(c) =

|Zc|/|Z|, where Z0 and Z1 are the set of background and foreground samples, respectively,

in Z. At the internal node level π(Z) returns a probability distribution Qn ∈ P(Y) defined

as

Qn (c,d) = q(c)δ(d− d∗) . (5.4)

Here, d∗ represents the single point-wise mode of the marginal distribution with respect

to d (i.e. the second term), which is determined in a way to minimize the loss L(Z|Qn)

over the training samples. A local solution of the minimization problem can be found by

iterating the following mean-shift [Comaniciu and Meer, 2002] procedure1

d∗ ←
∑

(c,d)∈Z1

dKσ(d− d∗)
/ ∑

(c,d)∈Z1

Kσ(d− d∗) . (5.5)

An illustration for this mode finding procedure is given in Figure 5.3. The first plot

shows the mean value (which would be used in the variance minimization objective of

the standard Hough forest, cf. Equation (2.50)) of three randomly drawn Gaussians.

Starting from this mean, the mode isolation procedure of Equation (5.5) selects one of the

distributions as illustrated in the second plot. Doing so enables us to separate coherent

1In the experiments conducted, we never exceeded 10 iterations for finding a mode.
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votes in a faster manner as opposed to the standard Hough forest in a small number of

iterations (here, approximately seven).
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Figure 5.3: Illustration of mean-shift procedure, used for mode isolation in our context-
sensitive decision trees. Left: Three Gaussians and mean (red) over all samples. Right:
Starting from the mean, the mode isolation procedure picks one center after some iterations
(green rectangle).

At the leaf level, instead, π(Z) returns a probability distribution Ql ∈ P(Y) defined

as:

Ql (c,d) = q(c)
∑

(c′,d′)∈Z1

δ(d− d′)/|Z1| . (5.6)

The second term, i.e. the marginal over d, is uniform over the set of displacement vectors

belonging to foreground samples reaching the leaf.

We define finally a novel type of split function, which performs a test by exploiting

the contextual information. This test is particularly interesting because it allows to check

whether two pixels are expected to belong to the same object instance. The new split

function ϕ(cs)(u, I|t,h1,h2, τ) takes as input a sample (u, I) ∈ X and it is parametrized

by a CS decision tree t ∈ T that is used for generating the contextual information, by two

relative displacement vectors h1,h2 ∈ R2 that identify the position of two pixels relative

to u and by a threshold τ . The definition of our context-sensitive split functions ϕ(cs) is

as follows:

ϕ(cs)(u, I|t,h1,h2, τ) = 1
[
E(c,d,c′,d′)∼P1·P2

[
1
[
(c, c′) = (1, 1)

]
Kσ(d− d′)

]
< τ

]
(5.7)

where Pj = P (·|(u + hj , I), t), with j = 1, 2, are the posterior probabilities obtained

from tree t given samples at position u + h1 and u + h2 of image I, respectively.

Please note that this test should not be confused with the regression split criterion

in [Gall and Lempitsky, 2009], which tries to partition the training set in a way to group

examples with similar voting direction and length. Besides the novel context-sensitive
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split function we employ also standard split functions performing tests on X as defined

in Equation (2.20).

5.4 Experiments

To assess our proposed approach, we have conducted several experiments on the task of

pedestrian detection. Detecting pedestrians is very challenging for Hough-voting based

methods as they typically exhibit strong articulations of feet and arms, yielding to non-

distinctive hypotheses in the Hough space. We evaluated our method on the TUD pedes-

trian data base [Andriluka et al., 2008] in two different ways: First, we show our detection

results with training according to the standard protocol using 400 training images (where

each image contains a single annotation of a pedestrian) and evaluation on the Cam-

pus and Crossing scenes, respectively (Section 5.4.1). With this experiment we show the

improvement over state-of-the-art approaches when learning can be performed with simul-

taneous knowledge about context information. In a second variation (Section 5.4.2), we

use the images of the Crossing scene (201 images) as a training set. Most images of this

scene contain more than four persons with strong overlap and mutual occlusions. How-

ever, instead of using the original annotation which covers only pedestrians with at least

50% overlap (1008 bounding boxes), we use the more accurate, pixel-wise ground truth

annotations of [Riemenschneider et al., 2012] for the entire scene that includes all persons

and consists of 1215 bounding boxes. Please note that this ground truth is even more

detailed than the one presented in [Barinova et al., 2010] with 1018 bounding boxes. The

purpose of the second experiment is to show that our context-sensitive forest can exploit

the availability of multiple training instances significantly better than state-of-the-art.

The most related work and therefore also the baseline in our experiments is the Hough

Forest [Gall and Lempitsky, 2009]. To guarantee a fair comparison, we use the same

training parameters for [Gall and Lempitsky, 2009] and our context sensitive forest: We

trained 20 trees and the training data (including horizontally flipped images) was sam-

pled homogeneously per category per image. The patch size was fixed to 30 × 30 and

we performed 1600 node tests for finding the best split function parameters per node.

The trees were stopped growing when < 7 samples were available. As image features,

we used the the first 16 feature channels provided in the publicly available Hough Forest

code of [Gall and Lempitsky, 2009] which include CIELab raw channel intensities, first

and second order derivatives as well as HOG-like features, computed on the L-Channel.

In order to obtain the object detection hypotheses from the Hough space, we use the

same Non-maximum suppression (NMS) technique in all our experiments as suggested

in [Gall and Lempitsky, 2009]: After smoothing is performed in the Hough scale space

frustum, maxima are extracted until the quality of the best hypothesis cannot exceed a

pre-specified threshold. Each detected maximum is removed and suppresses adjacent re-

gions with a certain window size in the scale space. To evaluate the obtained hypotheses,

we use the standard PASAL-VOC criterion which requires the mutual overlap between
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ground truth and detected bounding boxes to be ≥ 50%, using the publicly available Mat-

lab implementation of Dollár2. The additional parameter of (5.3) was set to σ = 7. For

performance reasons, we implemented our method in C++ and ran all experiments on a

standard desktop computer with 2.9 GHz and 2 GB RAM.

5.4.1 Evaluation using standard protocol training set

The standard training set contains 400 images where each image comes with a single

pedestrian annotation. For our experiments, we rescaled the images by a factor of 0.5

and doubled the training image set by including also the horizontally flipped images. We

randomly chose 125 training samples per image for foreground and background, result-

ing in 2 · 400 · 2 · 125 = 200k training samples per tree. For additional comparisons, we

provide the results presented in the recent work on joint object detection and segmen-

tation of [Riemenschneider et al., 2012], from which we also provide evaluation results of

the Implicit Shape Model (ISM) [Leibe et al., 2008]. However, please note that the re-

sults of [Riemenschneider et al., 2012] are based on a different baseline implementation.

Moreover, we show the results of [Barinova et al., 2010] when using the provided code and

configuration files from the first authors homepage. Unfortunately, we could not reproduce

their results of the original work.

First, we discuss the results obtained on the Campus scene. This data set consists

of 71 images showing walking pedestrians at severe scale differences and partial

occlusions. The ground truth we use has been released with [Barinova et al., 2010]

and contains a total number of 314 pedestrians. Figure 5.4, first row, plot 1 shows

the precision-recall curves when using 3 scales (factors 0.3, 0.4, 0.55) for our base-

line [Gall and Lempitsky, 2009] (blue), results from re-evaluating [Barinova et al., 2010]

(cyan, 5 scales), [Riemenschneider et al., 2012] (green) and our Context-Sensitive Forest

without and with using the priority queue based tree construction (red/magenta). In

case of not using the priority queue, we trained the trees according to a breadth-first

way. We obtain a performance boost of ≈ 6% in recall at a precision of 90% when using

both, context information and the priority based construction of our forest. The second

plot in the first row of Figure 5.4 shows the results when the same forests are tested on

the Crossing scene, using the more detailed ground truth annotations. The data set

shows walking pedestrians (Figure 5.5, top row images) with a smaller variation in scale

compared to the Campus scene but with strong mutual occlusions and overlaps. The

improvement with respect to the baseline is lower (≈ 2% gain at a precision of 90%) and

we find similar developments of the curves. However, this comes somewhat expectedly as

the training data does not properly reflect the occlusions we would like to have modelled

for this data set. With our next experiment we demonstrate the effect when learning

from training data with occluded training instances.

2http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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Figure 5.4: Precision-Recall Curves for Detections, Top row: Standard training (400 im-
ages), evaluation on Campus and Crossing (3 scales). Bottom row: Training on Crossing
annotations of [Riemenschneider et al., 2012], evaluation on Campus, 3 and 5 scales.

5.4.2 Evaluation with Crossing scene as training set

In our next experiment we trained the forests (same parameters) on the annotations

of [Riemenschneider et al., 2012] for the Crossing scene, reducing the training set to only

201 images. Qualitative detection results are shown in the bottom row images of Fig-

ure 5.5. From the first precision-recall curve in the second row of Figure 5.4 we can see,

that the margin between the baseline and our proposed method could be improved (gain

of ≈ 9% recall at precision 90%) when evaluating on the same 3 scales. With evaluation

on 5 scales (factors 0.34, 0.42, 0.51, 0.65, 0.76) we found a strong increase in the recall,

however, at the cost of loosing 2− 3% of precision below a recall of 60%, as illustrated in

the second plot of row 2 in Figure 5.4. While our method is able to maintain a precision

above 90% up to a recall of ≈ 83%, the baseline implementation drops already at a recall of

≈ 20%. From this experiment we conclude that the integration of contextual information

into the learning process leads to improved detection results, especially when the training

data contains multiple instances of the desired object category.
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Figure 5.5: Qualitative examples for Campus (Top row) and Crossing (Bottom Row)
scenes. (green) correctly found by our method (blue) ground truth (red) wrong association
(cyan) missed detection.

5.5 Conclusion

In this chapter we have presented Context-Sensitive Decision Forests with application

to the object detection problem. Our new forest has the ability to access intermediate

prediction (classification and regression) information about all samples of the training

set and can therefore learn from contextual information in the growing process. This is

in contrast to existing random forest methods used for object detection which typically

treat training samples in an independent manner. Moreover, we have introduced a novel

splitting criterion together with a mode isolation technique, which allows us to (a) perform

a priority-driven way of tree growing and (b) install novel context-based test functions to

check for mutual object centroid agreements. In our experimental results on pedestrian

detection we demonstrated superior performance with respect to state-of-the-art methods

and additionally found that our new algorithm can better exploit training data containing

multiple training objects.
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In this chapter, we propose a simple and effective way to integrate contextual infor-

mation in random forests, which is typically reflected in the structured output space of

semantic image labelling problems. By structural information we refer to the inherently

available, topological distribution of object classes in a given image. Different object class

labels will not be randomly distributed over an image but usually form coherently labelled

regions. We show how random forests can be augmented with structured label information

and be used to deliver structured low-level predictions. The learning task is carried out

by employing a novel split function evaluation criterion that exploits the joint distribution

observed in the structured label space. This allows the forest to learn typical label transi-

tions between object classes and avoid locally implausible label configurations. We provide

two approaches for integrating the structured output predictions obtained at a local level

from the forest into a concise, global, semantic labelling. We integrate our new ideas also

in the Hough-forest framework with the view of exploiting contextual information at the

classification level to improve the performances on the task of object detection.

6.1 Introduction

Given the importance of context as already discussed in Chapter 5 of this Thesis, the aim

of the current chapter is to enable the use of contextual information within the random

forest framework especially for the problem of semantic image labelling. However, before

providing more details about the contribution of this chapter in Section 6.1.2, we give

an overview on more recent works that are using context for semantic segmentation in

computer vision.

6.1.1 Related Work

In the last years, the mainstream of object categorization frameworks have

adopted graphical models to model context due to their flexibility in encoding

structure of local dependencies and incorporating contextual features with

appearance-based detectors. A few works are based on directed graphical

models [Russell et al., 2007, Shinghal et al., 2003, Torralba, 2003], while

the majority exploits undirected graphical models, such as Markov Ran-

dom Fields (MRF) [Carbonetto et al., 2004] or Conditional Random Fields

(CRF) [He et al., 2004b, Kumar and Hebert, 2005, Rabinovich et al., 2007,

Shotton et al., 2007, Torralba et al., 2004, Verbeek and Triggs, 2008,

Ladicky et al., 2010a, Ladicky et al., 2010b, Gonfaus et al., 2010]. The former

models assume the existence of a latent causal process that produced the

observed image, while the random field models are better suited to handle soft

constraints between image components with no natural causal relationship among

them. In the random field models, context dependencies are mostly provided
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in terms of higher-order parametric energies, which allow to specify spatial and

semantic constraints at the pixel-, object- and scene level. Recent state-of-the-art

approaches [Ladicky et al., 2010a, Ladicky et al., 2010b, Gonfaus et al., 2010] typically

incorporate complementary features at different levels. Low-level features are mostly

calculated on a per-pixel basis and incorporate local color or texture statistics or

outputs of weak classifiers, while mid-level features operate on regions or superpixels

to provide shape, continuity or symmetry information. Motivated by perceptual

psychology [Biederman, 1972], high-level features introduce global image statistics

and information about inter-object or contextual relations, seeking for proper scene

configurations on the image level. Interesting developments of the random field model

are the Decision Tree Fields (DTF) [Nowozin et al., 2011], where a conditional random

field instance is generated for each test image under the guidance of trained decision

trees, holding the CRF’s parameters. Further improvements of this work can be found

in [Jancsary et al., 2012]. Another example of combination of random forests with

random fields can be found in [Payet and Todorovic, 2012].

Probabilistic graphical models, and in particular random fields, fall within the

broader class of structured prediction models. Another approach based on structured

learning theory, which allows to learn contextual relations is proposed in our work

in [Rota Bulò et al., 2012]. We based our work on so-called structured local predictors,

i.e. parametrized functions that determine the class prediction of each pixel as a

function of relative position, appearance and class of neighboring pixels. Another work

is [Zhu et al., 2008a], where an approach to semantic segmentation is proposed trying

to fit templates of label configurations at different levels of details in order to capture

long-range dependencies and exploit different levels of contextual information. Finally,

we mention the work in [Yang et al., 2012], which introduces the concept of a label

descriptor guiding the alignment of label patches, which in turn are forced to mutually

agree and correlate with the local feature descriptors within an image. We refer to

[Nowozin and Lampert, 2011] for a comprehensive tutorial on structured learning and

prediction in computer vision.

A different way to effectively learn a contextual model has been presented in [Tu, 2008]

with an approach named Auto-context. In this work, the author trained a sequence of

classifiers in a boosting-fashion using both appearance-based features and contextual in-

formation obtained by the classifiers itself. The learning phase is however computationally

very demanding. Other approaches like boosted random fields [Torralba et al., 2005] or

SpatialBoost [Avidan, 2006] share both the disadvantage of significant computational com-

plexity when considering contextual beliefs as weak learners. Similar to [Tu, 2008], the

Texton forest of [Shotton et al., 2008b] introduced a model using context information, but

for the first time in the random forest framework.
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6.1.2 Contribution

In this chapter we show how to exploit structural information about the labelling output

space within the random forest framework. Despite their popularity, very few works

have tried to exploit contextual and structural information in random forests in order

to improve their performance. In [Montillo et al., 2011], the authors propose entangled

decision forests for semantic image labelling, which basically integrate an auto-context

model [Tu, 2008] into the random forest framework. In the previous chapter of this Thesis

we have shown how a related approach called context-sensitive forest can also improve the

performance for object detection tasks.

In the setting of this chapter, we depart from the standard classification setting, in

which a single (atomic) label is associated to each training sample, and we take structured

label information from each pixel’s neighborhood into account. As an example, consider

the problem of classifying pixels into semantic categories as shown in Figure 6.1. On

the bottom left, we can see some training samples that can be used to train a standard

random forest. Each sample consists of a patch of the image centered on a pixel and

the associated single, atomic class label. On the bottom right, we can see instead our

idea of incorporating structured information by retaining a whole patch of labels centered

on each sample. Differently from previous approaches, we are moving from an unstruc-

tured output space to a structured output space. We describe this transition in Section

6.2.1. From a methodological point of view, we show how random forests can be adapted

in order to take effectively and efficiently advantage of this additional information. In

Section 6.2.2, we provide a new test function selection criterion which allows to exploit

the information of structured label patches along the tree growing procedure, and in Sec-

tion 6.2.3 we show how to obtain a structured prediction for each pixel, from a trained

forest. In Sections 6.2.4 and 6.2.5 we propose also some mechanisms to integrate the

proposed structured predictions over pixels of an image into a coherent labelling.

In order to address object detection tasks with the proposed approach, we perform a

generalized Hough transform driven by our forest. The approach follows [Gall et al., 2011]

with the important difference that contextual information about the labelling is exploited

during training. Details can be found in Section 6.3. From the experimental perspective,

we show that by including contextual information at the classification level within the

random forest, the results improve for applications like semantic image labelling and ob-

ject detection. Indeed, the structured output space allows to counteract the assignment

of (semantically) meaningless label configurations, as experienced when using standard

random forests. This is due to the fact that our forest can learn the oriented, spatial

label distribution characterizing the ground-truth labellings and avoid implausible label

transitions during the inference stage. Section 6.4 is devoted to the experimental evalu-

ation of the proposed approach. In Sections 6.4.1 and 6.4.2 we perform experiments on

several semantic image labelling datasets like CamVid and MSRCv2 and in 6.4.3 we show

how to address the problem of inpainting by reconstructing occluded handwritten Chinese
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Figure 6.1: Comparison of class labels used in standard random forest and presented
structured class label random forest. Top: Example Training image with corresponding
label image and color-coded rectangles indicating training sample locations. Bottom:
Associated, atomic class labels used in standard random forests and proposed structured
class labels.

characters. Sections 6.4.4 - 6.4.6 are devoted to evaluating the performance of our forest

on the task of pedestrian detection on different TUD datasets.

6.2 Structured Learning in Random Forests

In traditional classification approaches like the one presented in Chapter 2.2 of this Thesis,

input data samples are assigned to single, atomic class labels, acting as arbitrary identifiers

without any dependencies among them. For many computer vision problems however, this

model is limited because the label space of a classification task inherently has a correlated

structure, rendering the class labels explicitly interdependent. Although this structured

label space is already present in the training data, it remains largely unexploited by

standard classification approaches, like the random forests introduced in the previous

sections. Consequently, when applying standard random forest classifiers for semantic

image labelling, the obtained results are quite noisy (e.g. see Figure 6.2). Indeed, a

random patch extracted from the labelled image will likely show a configuration which

never appeared in the ground-truth classification used to train the classifiers.

To overcome this limitation, we propose a novel way of enriching the standard random
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Original Ground truth

Conventional Classification Forest Our method

Figure 6.2: Examples of object class segmentations using unary classifiers. Best viewed in
color.

forest classifiers by rendering them aware of the local topological structure of the output

label space, as indicated in Figure 6.1. Towards this end, we depart from the traditional

classification paradigm and address the problem from a structured learning perspective

[Tsochantaridis et al., 2004] within the random forest framework.

6.2.1 Structured Label Space

Our structured label space P consists of patches of object class labels. In order to keep

the treatment simple we restrict the patch to a specific shape (e.g. square). Hence, we

model a patch as a function p : Z2 → Y ∪{⊥} providing a class label in Y, or ⊥ in case no

label is assigned, to every pixel. With p(d) we denote the entry of the label patch p ∈ P
located at d ∈ Z2. Additionally, we index the entries in a way that index (0, 0) takes the

central position. To distinguish between a patch x from the feature space X (see general
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notation in Chapter 2.3 on page 11) and a patch p from the structured label space P, we

refer to them as feature patch and label patch, respectively. Each training feature patch

x = (u, I) has an associated label patch p which holds the labels of all pixels of image

I within the neighborhood of u determined implicitly by the patch. Figure 6.3 shows an

example of a square feature patch x and an associated square label patch centered on pixel

u. The label patch holds labels in Y within the square boundaries and is assumed to be

⊥ outside the square. Please note that the label patch and the feature patch may have

different shapes and dimensions.

p

x

u

Figure 6.3: Training data example, as used in our proposed structured learning random
forest. While standard random forests associate only the center label at (u, v) to a patch x,
we incorporate the local label neighborhood p and learn valid labelling transitions among
adjacent object categories (here: person, building and bicycle).

In the next subsection we show how the split function selection strategy in the nodes

of the random forest will be adapted to account for the new label space. However, for the

moment we will simply assume that the training patches from D ⊆ X×P have been routed

through the tree to the leaves. Consider now a leaf t and let Pt ⊆ P be the set of label

patches present in the training data used to grow the leaf (see Figure 6.16). The class label

π parameterising the leaf is now a structured label from P and not just an atomic label

from Y as in the standard random forest. A good selection for the structured class label

should represent a mode of the joint distribution of the label patches in Pt. We compute

the joint probability by making a position-dependent pixel independence assumption as

P[p|Pt] =
∏
d

P(d)[p(d)|Pt] , (6.1)

where P(d)[·|Pt] represents the marginal class distribution over all the label patches in Pt
of labels located in position d and the product is taken over all positions d ∈ Z2 such

that p(d) 6= ⊥. In such a way, we keep the complexity of this step low but simultaneously
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consider the topological label statistics at absolute positions in the label patches. Finally,

the label patch π selected for leaf t is the one in Pt maximizing the joint probability, i.e.

the candidate in Pt that is closest to the location-dependent joint probability as defined

above:

π ∈ arg max
p∈Pt

P[p|Pt] . (6.2)

Selection of π based on joint probability

Figure 6.4: Example of label patches reaching a leaf during training. Based on the joint
probability distribution of labels in the leaf a label patch π is selected.

6.2.2 Test Function Selection for Structured Labels

The change introduced in the label space should be coupled with an adaptation of the way

a test function is selected in each node of the random forest during the training procedure

in order to account for the additional information carried by the structured labels. One

naive solution is to port the test selection criterion actually used in the standard random

forest to our context, e.g. by simply associating each patch with the label we find in the

center of the associated label patch p. This, however, results in a split of the training

set which is identical to what the standard random forest implementation does, without

properly exploiting the new label space.

In order to take advantage of the new label space, we propose to select the best

split function at each node based on the information gain with respect to a k-label joint

distribution. Specifically, we associate each training pair (x, p) with k labels that have been

uniformly drawn (once per node) from the patch p. By adopting this new test function

selection criterion, all entries of a label patch have the chance to actively influence the way

a feature patch is branched through the tree during the training procedure. Of course,

one drawback of this new test selection method is the increased complexity deriving from

the evaluation of the k-label joint distribution (|Y|k elements) instead of the simple, single

label distribution (|Y| elements). Note however that if we consider the special case k = 1,

which consists in associating each training pair (x, p) with just one label, we still have the

effect that all entries of the label patch influence the learning procedure, but at no higher

computational cost. This is due to the fact that we consider a label p(d) from a random

position d, which is generated once per node, instead of considering as usually done the

label of the central pixel.

In Figure 6.5 we provide an illustration when considering the case k = 2, i.e. we fix

the center label in the label patches and randomly select a second one. In the training
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process, the currently investigated split parameters determine the candidate sets for the

child nodes where both selected label positions generate the joint label distribution which

is used for quantifying the quality of the split. Therefore, using our proposed structured

class labels allows to additionally consider contextual constraints from the enhanced label

space.

Figure 6.5: Left: Ground truth label image with training sample locations. Right:
Schematic illustrations of resulting k = 2 joint label distributions evaluated on split can-
didate sets for different label positions.

6.2.3 Structured Label Predictions

The structured predictions gathered from the trees of a forest have to be combined into

a single label patch prediction. To this end, we follow a procedure which is similar to the

one adopted in order to select the label patch π in a leaf (see Section 6.2.1).

Consider a trained forest F , a test patch x = (u, I) and let PF be the set of predictions

for x gathered from each tree t ∈ F :

PF = {h(x|t) ∈ P : t ∈ F} . (6.3)

Similarly to (6.2), the label patch prediction of the forest F for feature patch x is given

by the one maximizing the patch label joint probability estimated from PF , i.e.

p∗ ∈ arg max
p∈PF

P[p | PF ] , (6.4)

where P[p|PF ] is defined as in (6.1).

6.2.4 Simple Fusion of Structured Predictions

As opposed to standard classification algorithms which, given a test image I, directly

assign an object class label to a each pixel, our classifiers cast a prediction for each pixel,

involving also the neighboring ones. Indeed, if p ∈ P is the patch label predicted for pixel
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.

.

.

ψ

ψ

ψ

ψ

ψ

Figure 6.6: Prediction of the structured label of a feature patch in a random forest. The
feature patch is routed through each tree in the forest according to the test functions ψ
in the tree nodes until a leaf is reached, holding the learned label transitions between
color-coded classes. The structured label in the leaf is then assigned to the feature patch.
Best viewed in color.

u in a test image then a pixel v in a neighborhood of u could be classified as p(v−u) ∈ Y.

Hence, for each test pixel we collect a set of class predictions cast from the neighboring

pixels, which have to be integrated into a single class prediction. This process is illustrated

in Figure 6.7. As we can see, assuming 3× 3 square-shaped label patches, each test pixel

receives 9 class predictions from the neighborhood, which have to be integrated into a

single class prediction. A simple way of performing this integration of votes consists in

selecting the most voted class per pixel. We refer to this operation as a simple fusion.

The outcome of this fusion step is a labelling ` from the set L of all possible labellings

for the image, `(u) ∈ Y being the class label associated with pixel u.

6.2.5 Optimizing the Label Patch Selection

A different and more principled approach to the computation of the final labelling can be

obtained by optimizing the label patch selection with respect to a given labelling rather

than solely taking (6.4) for each pixel. This allows to better exploit the label patch

diversity in the set of predictions PF obtained from (6.3).

We define the agreement of an individual label patch p centered on pixel u ∈ dom(I)

in image I with a given labelling ` ∈ L as the number of corresponding pixels sharing the

same label, i.e.

φ(v)(p, `) =
∑

u∈dom(I)

1 [p(u− v) = `(u)] . (6.5)
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Figure 6.7: Simple fusion of structured predictions using 3× 3 label patches. Each pixel
collects class hypotheses from the structured labels predicted for itself and neighboring
pixels, which have to be fused into a single class prediction. For clarity reasons, only 5/9
label patches are drawn. Best viewed in color.

Furthermore, let z ∈ ZI be an assignment of label patches to pixels in I, zv ∈ PF being a

label patch for pixel v taken from (6.3), where ZI denotes the set of all such assignments

for image I. Then, for a particular configuration z ∈ ZI and a labelling ` ∈ L, the total

agreement Φ(z, `) is defined as the sum of agreements of each label patch in z with the

labelling ` according to

Φ(z, `) =
∑

v∈dom(I)

φ(v)(zv, `) . (6.6)

As we want to find the label patch configuration that leads to the maximum total agree-

ment with the labelling of a test image I, we can write the optimal solution as a pair

(z∗, `∗) ∈ ZI × L, where

(z∗, `∗) ∈ arg max
(z,`)∈ZI×L

Φ(z, `) . (6.7)

The optimization problem in (6.7) underlying our image labelling approach is in gen-

eral non-trivial to solve. The algorithm we propose is a heuristic, which is simple and

effective as shown in the experiments conducted. It is based on an alternating optimiza-

tion technique, where we iteratively switch between optimizing the labelling variable ` ∈ L
given a configuration of label patches (we apply a simple fusion step) and optimizing the

configuration variable z ∈ ZI given a labelling for image I.

Let `(t) be the labelling of the image at a given time t ≥ 0. The configuration of label
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patches z(t+1) at time t+ 1 can be obtained according to the following updating scheme:

z
(t+1)
v ∈ arg max

p∈PF
φ(v)

(
p, `(t)

)
(6.8)

where PF is the set of label patches gathered from the forest F for pixel v according to

(6.3). This updating equation selects for each pixel v ∈ dom(I) a label patch in the set

PF of available patches maximizing the agreement with the labelling `(t). On the other

hand, given the configuration of patches z(t+1) ∈ ZI for image I at time t+1, we compute

the new labelling `(t+1) ∈ L by taking a majority vote over all label patches as follows:

`(t+1)(u) ∈ arg max
y∈Y

 ∑
v∈dom(I)

1

[
z

(t+1)
v (u− v) = y

] . (6.9)

The iterative process is started from an initial labelling `(0) ∈ L and, by repeatedly

applying rules (6.8) and (6.9), it will eventually converge towards a local solution of (6.7).

Theorem 3, indeed, guarantees that the iterative scheme never decreases the value of the

objective function Φ.

Proposition 3. Let I ∈ I be an image and let `(0) ∈ L be an initial labelling for I, and

let z(0) ∈ ZI be an initial configuration of label patches. Then for any t ≥ 0 we have

Φ
(
z(t+1), `(t)

)
≥ Φ

(
z(t), `(t)

)
(6.10)

and

Φ
(
z(t+1), `(t+1)

)
≥ Φ

(
z(t+1), `(t)

)
(6.11)

where z(t+1) and `(t+1) are computed according to (6.8) and (6.9), respectively.

Proof. By (6.8) we have for all t ≥ 0 and v ∈ dom(I):

φ(v)
(
z

(t+1)
v , `(t)

)
≥ φ(v)

(
z

(t)
v , `(t)

)
.

By summing up each side of this inequality for all pixels v ∈ dom(I) we obtain (6.10).

As for the second inequality, note that by (6.9) and (6.5) we have∑
v∈dom(I)

1

[
z

(t+1)
v (u− v) = `(t+1)(u)

]
≥

∑
v∈dom(I)

1

[
z

(t+1)
v (u− v) = `(t)(u)

]
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for all u ∈ dom(I). This together with a trivial re-ordering of the summations yields

Φ
(
z(t+1), `(t+1)

)
=

∑
u∈dom(I)

∑
v∈dom(I)

1

[
z

(t+1)
v (u− v) = `(t+1)(u)

]
≥

∑
u∈dom(I)

∑
v∈dom(I)

1

[
z

(t+1)
v (u− v) = `(t)(u)

]
= Φ

(
z(t+1), `(t)

)
from which the result derives.

As for the computational complexity of the solver, let N be the number of pixels,

K the average number of label patches per pixel, M the number of non-void elements

of a label patch, k the number of labels, and γ the number of iterations. An update

step for the pixel configuration z has complexity O(K ·M ·N), while an update step for

the labelling ` has complexity O ((k +M) ·N). The overall complexity is thus given by

O (γ · (k +M +KM) ·N). Note that in our experiments we stopped the iterative process

if either a fixed point or a maximum number γ = 75 of iterations was reached.

A simple way to speedup the entire optimization process is to keep track of areas

in the image where different label patches are selected and/or which positions are still

affected in the fusion step. When neither of the alternatingly executed processes induces

any changes, this particular region must not be updated any more and can therefore be

ignored throughout the rest of the optimization process.

6.3 Enhancing Object Detection with Structured

Class-Labels

As described in the first part of this Thesis, the random forest framework has been suc-

cessfully applied for object detection, i.e. the problem of localizing multiple instances of

a specific object class within an image. When using the Hough forest as in the previous

part, we restricted the categorical label space of the learner to single class labels for each

training sample. Here, we present a modification to cope with label patches instead of

atomic class labels. As we show in the experimental section, by exploiting the additional

information delivered by the label patches, we achieve a considerable improvement on the

generalization capabilities of the forest, achieving state-of-the-art on standard datasets.

We refrain from repeating the algorithmic underpinnings of the Hough forest here and

instead refer to Chapter 2.6.3 of this Thesis. Interestingly, we can leave the inference

process completely unchanged (as we do not care about the structured, categorical pre-

dictions), and instead simply exchange the objective function considering the class-label

uncertainty (see Equation (2.49)) with the one described in Section 6.2.2 of this chap-

ter. In such a way, the more sophisticated examination of structured label patches during

training is used to improve the detection results, as we demonstrate with our experiments

on pedestrian detection in Section 6.4.4.
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6.4 Experiments

In this section we evaluate our proposed structured learning random forest algorithm

for the task of semantic segmentation on the CamVid [Brostow et al., 2008],

MSRCv2 [Shotton et al., 2006] and KAIST Hanja21 databases and the task of object

detection on two TU Darmstadt pedestrian databases. For performance reasons, we

implemented our method in C++ and ran all experiments on a standard desktop

computer with 2.9 GHz and 2 GB RAM.

In all our experiments we show a comparison to a standard random forest implementa-

tion (denoted as ’Our Baseline RF’), which is actually a special instance of our method with

a label patch size of 1×1 and a fixed label center position. Where available, we list results of

state-of-the-art methods [Shotton et al., 2006, Brostow et al., 2008, Kluckner et al., 2009]

that are also using random forests (but not the same image features), in order to show

that our baseline random forest implementation achieves state-of-the-art performance.

Additionally, we compare to the results obtained when minimizing the energy term of

a pairwise, conditional random field (CRF) model with graph cuts, using the publicly

available GCO [Boykov et al., 2001] implementation2. To this end, we provide the class

label statistics of the baseline random forest as unary or data terms and use the standard,

contrast-sensitive Potts model as suggested in [Boykov and Jolly, 2001] for the pairwise or

smoothness term.

To show the impact of the respective stages of our method, we evaluate different

training [’Structure’ / ’k-Full’] and classification [’Simple Fusion’ / ’Optimized Selection’]

procedures as follows: ’Structure’ considers the structured label patches but only takes one

random label position, i.e. a single label distribution into account for training. ’k-Full’

considers structured label patches and k-label joint distributions in the split functions

(see Section 6.2.2 for more details). ’Simple Fusion’ and ’Optimized Selection’ refer to

the fusion methods of the structured output predictions as described in Sections 6.2.4

and 6.2.5, respectively.

We used the same low-level image features for training both, our baseline and our

novel structured learning random forests, since our primary intention is to show the im-

provement when the extended label space is taken into account: CIELab raw channel

intensities, first and second order derivatives as well as HOG-like features, computed on

the L-Channel. Moreover, we show results when additionally using correlation coefficients

between covariances of the RGB raw channel intensities and the first order derivatives

of the gray scale intensity image, similar to [Porikli et al., 2006, Kluckner et al., 2009].

Please note that our presented method is independent with respect to the number and

types of used feature cues. In all experiments on semantic segmentation we fixed the

feature patch size to 24× 24 and trained 15 trees, using 500 iterations for the node tests

and stopping when less then 10 samples per leaf were available.

1http://ai.kaist.ac.kr/Resource/dbase/Hanja/HanjaDB2.htm
2http://vision.csd.uwo.ca/code/

http://ai.kaist.ac.kr/Resource/dbase/Hanja/HanjaDB2.htm
http://vision.csd.uwo.ca/code/
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We list the scores of our experiments according to the same evaluation criteria as

used in [Shotton et al., 2006, Brostow et al., 2008, Kluckner et al., 2009] and additionally

include the more strict average intersection vs. union score as e.g. used in the PASCAL

VOC challenges [Everingham et al., 2010]. In particular, ’Global ’ refers to the percentage

of all pixels that were correctly classified, ’Avg(Class)’3 expresses the average recall over

all classes and ’Avg(Pascal)’4 denotes the average intersection vs. union score (sometimes

also referred to as Jaccard measure).

6.4.1 CamVid Database Experiments

The Cambridge-driving Labeled Video Database (CamVid) [Brostow et al., 2008] is a col-

lection of videos captured on road driving scenes. It consists of more than 10 minutes of

high quality (970×720), 30 Hz footage and is divided into four sequences. Three sequences

were taken during daylight and one at dusk. A subset of 711 images is almost entirely anno-

tated into 32 categories, but we used only the 11 commonly used categories with the same

splits for training and testing as presented in [Brostow et al., 2008, Sturgess et al., 2009].

We resized the training images by a factor of 0.5 and randomly collected training

samples on a regular lattice with a stride of 10, resulting in approximately 850k training

samples. The training time per tree is 23 minutes when using the single label test and 30

minutes with the joint label test. For the experiment where we only consider the labelling

transitions, we reduced the stride to 8. In order to correct the imbalance among samples

of different classes, we applied an inverse frequency weighting.

CamVid - 11 Classes. The standard protocol for evaluating on the CamVid database

considers the following 11 object categories, forming a majority of the overall labelled

pixels (89.16%): Road, Building, Sky, Tree, Sidewalk, Car, Column Pole, Sign-

Symbol, Fence, Pedestrian and Bicyclist. In Table 6.1 we list our results using a

label patch size of 13 × 13, clearly indicating the performance boost when using our

proposed structured learning method over the standard random forest. We can achieve

comparable results to the CRF implementation with the Simple Fusion approach and

significantly increase the scores using the Optimized Selection. We explain this by the

fact that our method is restricted to pick from a candidate set of semantically plausible

label patches provided by the trees, rather than allowing to propagate arbitray label

configurations in the associated graphical model.

In Figure 6.8 we show the influence of the label patch size during training and classi-

fication using the configuration ’2-Full + Simple Fusion’. It is clearly shown that even a

small neighborhood (≥ 5× 5) leads to a significant boost in the classification stage.

3 True Positives

True Positives + False Negatives
4 True Positives

True Positives + False Negatives + False Positives
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Method Global Avg(Class) Avg(Pascal)

RF using Motion and Structure cues [Brostow et al., 2008] 61.8 43.6 -
RF using Motion and Structure cues [Brostow et al., 2008] + Appearance features 69.1 53.0 -
Local label descriptors [Yang et al., 2012] 73.7 36.3 29.6

Our Baseline RF 69.9 42.2 30.6
Our Baseline RF + CRF 74.5 45.4 33.8

Our method (Structure + Simple Fusion) 74.8 45.0 34.1
Our method (2-Full + Simple Fusion) 76.8 46.1 35.4
Our method (2-Full + Optimized Selection) 79.2 46.0 36.2
Our method (2-Full + Optimized Selection) + Correlation coefficients 83.8 53.2 43.5
Our method (3-Full + Optimized Selection) + Correlation coefficients 82.0 52.1 41.6

Table 6.1: Classification results on CamVid database for label patch size 13 × 13 and
comparisons to related works.
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Figure 6.8: Classification results in terms of global, per-class average and average inter-
section vs. union scores on CamVid database as a function of the label patch size using
Simple Fusion.

Labelling Transition Evaluation. In this experiment we evaluate only the transitions

between object classes to demonstrate the impact of structured predictions on the label

border classification results. To perform this experiment, we discarded all labels in the

ground truth information when they were outside a radius of 24 pixels to a transition be-

tween two or more classes. This results in a drop to 41.9% of the original amount of labelled

pixels. In Table 6.2, the corresponding results are listed when using a label neighborhood

of 11 × 11. Although the global score has slightly dropped compared to the previous ex-

periment, we obtain improvements on the (stricter) Avg(Class) and Avg(Pascal) criteria.

This strengthens our assumptions that the proposed framework yields to superior results,

especially when classifying local label transitions of object classes.

6.4.2 MSRCv2 Database Experiments

To show that our method also yields to an improvement when the images

are not entirely labelled, we performed another experiment on the MSRCv2

Database [Shotton et al., 2006]. This database consists of 532 images containing 21



6.4. Experiments 105

Method Global Avg(Class) Avg(Pascal)

Our Baseline RF 63.8 44.2 29.8
Our Baseline RF + CRF 68.2 48.2 33.3

Our method (Structure + Simple Fusion) 69.9 50.4 35.0
Our method (2-Full + Simple Fusion) 71.6 50.1 35.8
Our method (2-Full + Optimized Selection) 72.5 51.4 36.4

Table 6.2: Classification results for labelling transitions on the CamVid database for label
patch size 11× 11.

Figure 6.9: Training data examples used for experiments on labelling transitions experi-
ment on the CamVid database. Left: Original image, right: Modified label image showing
areas of considered label transitions.

object classes and predefined splits into 276 training and 256 test images. We collected

the training samples on a regular lattice with a stride of 5, leading to approximately

500k training samples and training times of 13 and 17 minutes per tree using single

or joint label distributions, respectively. In contrast to the almost completely labelled

CamVid database, the labellings for MSRCv2 are only available for 71.9% of the pixels,

hence more roughly sketching the object classes of interest. In Figure 6.10 we show some

qualitative results and in Table 6.3, we provide the scores for a label neighborhood size

of 11 × 11 and again find an improvement with our structured learning algorithm. The

gain of using the joint statistics over the single label distribution seems to vanish in the

Simple Fusion approach, however, we explain this by the fact that our algorithm does

not see enough properly labelled transitions between different classes.

6.4.3 KAIST Hanja2 Database

In our next experiment we demonstrate that our proposed method can also be

used for reconstructing occluded regions in handwritten, Chinese characters of the
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Method Global Avg(Class) Avg(Pascal)

Texton forests näıve (supervised) [Shotton et al., 2008b] 49.7 34.5 -
Texton forests (Full system) [Shotton et al., 2008b] 72.0 67.0 -
RF using covariance features [Kluckner et al., 2009] 55.8 42.2 -

Our Baseline RF 54.8 43.4 28.3
Our Baseline RF + CRF 61.0 52.8 35.1

Our method (Structure + Simple Fusion) 60.8 51.0 33.8
Our method (2-Full + Simple Fusion) 60.8 51.1 33.9
Our method (2-Full + Optimized Selection) 63.9 55.6 37.6
Our method (2-Full + Optimized Selection) + Correlation coefficients 70.0 59.6 43.3

Table 6.3: Classification results on MSRCv2 database for label patch size 11× 11.

KAIST Hanja2 Database. To this end, we reproduced an experiment from the work

in [Nowozin et al., 2011], aiming to learn calligraphy properties. In their work, the

authors proposed a method for learning class-specific, distant contextual models by

combining random decision trees and random fields in a so-called decision tree field.

The purpose of this experiment is to show that inpainting results can be considerably

improved with structured class labels, as for the binary classification case they exhibit

the local shape information of interest.

We used the original training (300 images) and testing data (100 images)

of [Nowozin et al., 2011] and their respective, randomly generated occlusions for the

small occlusion dataset. As a baseline, we obtain an average per-tree, pixel-wise

classification result of 68.52% when evaluating 10 randomly trained decision trees (each

with a maximum depth of 15). During training of the forest, we used 2000 iterations per

node and simple pixel difference tests on the gray values, which were allowed to look

at most 80 pixels away. We used the identical setup within our proposed structured

class-label random trees, considering label patches of size 5× 5.

In Table 6.4, we compare the classification results when using only our single,

baseline decision tree, a tree ensemble of 10 trees and the Markov Random Field

(MRF), the Decision Tree Field (DTF), the Regression Tree Field (RTF) (using

regression trees with maximum depth 20) [Jancsary et al., 2012] results are taken

from [Nowozin et al., 2011, Jancsary et al., 2012]. Additionally, we compare to our

recent work in [Rota Bulò et al., 2012], where we introduced a new model denoted as

”Structured Local Predictors” (SLP). SLP are locally operating models, which provide a

per-pixel labelling by exploiting contextual relations, learned from complex interactions

between labels and a customizable intermediate representation of the image data.

When using structured class labels as introduced in this work, we can boost the initial

classification score of the single decision tree by almost 10%, outperforming sophisticated

methods like MRF, DTF or RTF. The result is approximately on par with SLP, however,

without the need for explicit parametrization of the pairwise interactions to be learned.
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Figure 6.10: Qualitative labelling results on images of the MSRCv2 database. Top row:
Original images with ground truth annotations. Second row: Labelling using our baseline
random forest classifier. Third row: 2-Full + Simple Fusion. Last row: 2-Full + Optimized
Selection. Best viewed in color.

6.4.4 Person Detection on TU Darmstadt Databases

To assess our proposed approach for the task of object detection as described in Section 6.3,

we have conducted experiments on the task of pedestrian detection. Detecting pedestri-

ans is very challenging for Hough-voting based methods alone, as they typically exhibit

strong articulations of feet and arms, yielding to non-distinctive hypotheses in the Hough

space. However, with our combined approach we also learn the local shape information by

analyzing the joint label statistics of the structured class-labels from the (binary) ground

truth labelling, expecting the trees to better capture the respective locations of the object

parts.
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Figure 6.11: Example reconstructions for experiment on occluded Chinese Characters.
Top row: Ground truth images. Center row: Test images with occlusions. Bottom row:
Restored characters using our method.

Model Global classification score [%]

Single Decision Tree (On average) 68.52

Entire Forest (10 trees) 74.95

Markov Random Field (MRF) [Nowozin et al., 2011] 75.18

Decision Tree Field (DTF) [Nowozin et al., 2011] 76.01

Regression Tree Field 1D (RTF 1D) [Jancsary et al., 2012] 76.39

Regression Tree Field 2D (RTF 2D) [Jancsary et al., 2012] 77.55

Structured Local Predictors (SLP) [Rota Bulò et al., 2012] 78.07

Our method 5× 5 label patch 78.09

Table 6.4: Reconstruction results for KAIST Hanja2 dataset in terms of global classifica-
tion score in [%] for occluded regions.

We evaluated our method on the TUD pedestrian databases [Andriluka et al., 2008],

showing our detection results with training according to the standard protocol using 400

training images (where each image contains a single annotation of a pedestrian) and eval-

uation on the Campus and Crossing scenes, respectively. For evaluation on the Crossing

scene, we used the annotations from [Riemenschneider et al., 2012], providing a total num-
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ber of 1216 bounding boxes. Please note that this annotation is even more detailed than

the one presented in [Barinova et al., 2010] with 1018 bounding boxes. For our experi-

ments, we rescaled the images by a factor of 0.5 and doubled the training image set by

including also the horizontally flipped images. We randomly chose 125 training samples

per image for foreground and background, resulting in 2 · 400 · 2 · 125 = 200k training

samples per tree.

The most related work and therefore also the baseline in our experiments is the Hough

Forest [Gall and Lempitsky, 2009]. To guarantee a fair comparison, we used the same

training parameters for [Gall and Lempitsky, 2009] and our enhanced, structured class-

label Hough forest: We trained 20 trees and the training data (including horizontally

flipped images) was sampled homogeneously per category per image. The patch size was

fixed to 20 × 20 and we performed 1600 node tests for finding the best split function

parameters per node. The trees were stopped growing when < 7 samples were available.

As image features, we used the first 16 feature channels provided in the publicly available

Hough Forest code of [Gall and Lempitsky, 2009]. In order to obtain the object detection

hypotheses from the Hough space, we use the same Non-maximum suppression (NMS)

technique in all our experiments as suggested in [Gall and Lempitsky, 2009]. To evaluate

the obtained hypotheses, we use the standard PASAL-VOC criterion which requires the

mutual overlap between ground truth and detected bounding boxes to be ≥ 50%.

For additional comparisons, we provide the results presented in the recent work on joint

object detection and segmentation of [Riemenschneider et al., 2012], from which we also

provide evaluation results of the Implicit Shape Model (ISM) [Leibe et al., 2008]. Please

note that the results of [Riemenschneider et al., 2012] are based on a different baseline

implementation. Additionally, we include the results obtained with the publicly available

code for the approach of [Barinova et al., 2010]. Finally, we also list the scores obtained in

our recent work [Kontschieder et al., 2012] being trained according to the same training

protocol and parameters as for our structured class-label Hough forest.

6.4.5 Evaluation on Campus scene

First, we discuss the results obtained on the Campus scene. This data set consists of 71

images showing walking pedestrians at severe scale differences and partial occlusions. The

ground truth we use has been released with [Barinova et al., 2010] and contains a total

number of 314 pedestrians. Figure 6.12 shows precision/recall curves when evaluating on

3 scales (factors 0.3, 0.4, 0.55) on the left and using 5 scale factors (0.34, 0.42, 0.51, 0.65,

0.76) on the right.

When considering 3 scales and a precision rate of 90%, we obtain an considerable

improvement of ≈ 8% over the Hough forest baseline implementation. Moreover, we also

improve on our recently presented results in [Kontschieder et al., 2012] by ≈ 2%. When

using 5 scales we get even better results, i.e. we improve by ≈ 16% over the baseline

Hough forest and still ≈ 5% over our earlier work [Kontschieder et al., 2012].
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Figure 6.12: Precision-Recall curves for pedestrian detection experiments on TUD Campus
scene.

We believe that the improvement over the standard Hough forest is due to better

voting vector separation abilities of foreground data in the split nodes. In addition to

using relative positions of the training samples to the object centroid, also the local shape

(e.g. human silhouette) encoded in the label information is exploited in the training

process. This hypothesis might also be supported by the fact that 5 scales yield to higher

detection rates than 3 scales. In fact, appearance and scale should of course be as close

to the ones observed during learning.

Even though the improvement over [Kontschieder et al., 2012] is smaller, we stress that

in the proposed approach we do not explicitly learn from nearby object entities as it is

possible in [Kontschieder et al., 2012]. However, such object-instance specific information

might also be included in here.

The visualizations in Figure 6.13 show exemplary results of our method. Yellow dashed

bounding boxes indicate ground truth and green solid boxes are our detected hypotheses.

Please note the high localization accuracy of the detected objects and especially. In

the second row we show false positive detections of our approach (cyan bounding boxes)

when using the most recent ground truth annotations of [Barinova et al., 2010]. Actually,

all provided illustrations contain true locations of pedestrians, however with significant

occlusion.

6.4.6 Evaluation on Crossing scene

Figure 6.15 shows the results when the same forests are tested on the Crossing scene,

using the ground truth annotations of [Riemenschneider et al., 2012]. The data set shows

walking pedestrians (Figure 6.14) with a smaller variation in scale compared to the Campus

scene but with strong mutual occlusions and overlaps. We still find an improvement with

respect to the baseline (≈ 2% gain at a precision of 90%) and are approximately on par
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Figure 6.13: Examplary detection results on Campus scene (evaluation with 5 scales).
Bounding box colors: Yellow dashed for ground truth, green for obtained detections and
red for missed detections. The second row shows false positive detections of our classifier
(in cyan) for given ground truth annotations. Please note the actual presence of persons
at hypothesized locations.

with our earlier work in [Kontschieder et al., 2012]. Please note that the training data only

contains single object instances, i.e. each training image contains exactly one annotated

person. In such a way, mutual occlusions cannot directly be learned from this data.

As in the previously shown qualitative results on the Campus scene we show ground

truth annotations in yellow dashed bounding boxes, our obtained detections in green and

missed detections in red boxes, respectively. The illustrations in Figure 6.14 show how we

are able to accurately outline the respective object locations, even in severely occluded

areas. The provided failure cases in the last two images illustrate that the annotations are

very strict and contain also highly occluded objects, making it a very challenging database.

Figure 6.14: Exemplary detection results on Crossing scene. Bounding box colors: Yellow
dashed for ground truth, green for obtained detections and red for missed detections.
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Figure 6.15: Precision-Recall curves for pedestrian detection experiments on TUD Cross-
ing scene when evaluating three scales.

6.5 Additional Discussion of Proposed Approach

One of the key contributions of our proposed approach is the way we process additional

information from the label space, that is inherently available in the ground truth informa-

tion at training time. Mainly, we are able to capture plausible, local label configurations

and information about the shape that separates them. In this sense, we can argue that

standard random forests are a special instance of our proposed learning method, which

only uses an atomic label neighborhood of size one.

When considering such an extended label neighborhood, the training process can be

driven in a way to account for k -label joint distributions, helping to better explore the

additional label information while trees are grown from the root to the respective leaf

nodes. An interesting observation resulting from this learning approach is visualized in

Figure 6.16, where we clearly see that there is high correlation among collected samples

in both, the input (or feature) space and the output space, which cannot be explicitly

forced in the training of standard classification trees. In other words, we can monitor

high similarities on the feature space but also on the label space regarding the topological

distribution of class labels.

This additional information can now be elegantly exploited for multiple purposes, as

demonstrated in our experiments: We start with discussing the effect for the task of

semantic image labelling. The use of structured label patches allows to perform more

robust labellings as each pixel in the label patch gets classified also from its neighborhood

(and may in turn classify its own neighborhood). This is helpful in the case when borders

between labels shall be continued, but also to compensate high intra-class variabilities (e.g.
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strong appearance changes) and clutter, typically leading to noisy labellings. In the latter

case, structured label patches have a smoothing effect in the label space which yields to

more consistent labellings. Please note that such smoothing effects can also be interpreted

in the light of the pairwise terms of a standard MRF energy formulation, encouraging

neighboring pixels to take on the same labels such that appropriately segmented regions

are obtained. However, in our case we will not propagate implausible label configurations,

as the structured label patches will only contain what is provided in the ground truth

information.

As a special, binary labelling case, we have conducted an experiment on Chinese char-

acter reconstruction where essentially the calligraphy (strokes, character outline and type)

in occluded regions has to be restored (see Section 6.4.3). Please note that for this task the

local shape development is of special interest as it captures many calligraphic properties.

However, here we show an additional benefit of our method arising from the optimized

label patch selection introduced in Section 6.2.5. Since the reconstruction task is only per-

formed in the occluded areas, our proposed selection mechanism can optimally select from

the provided label patch candidates of the forest in the sense the agreement function is

designed in Equation (6.5). Another interpretation is that the surrounding, non-occluded

regions in the image form an initial solution which is guiding the reconstruction process

in the occluded ones, given the alphabet provided by the trees.

When enhancing our approach to account also for the object detection problem

as described in Section 6.3, we can observe a clear improvement over the Hough

forest [Gall et al., 2011], i.e. the most related work which we have also taken as a

baseline. In our experiments on pedestrian detection we find similar behavior in the

leaf nodes of the trees as mentioned for the labelling task: Distinguished parts (in

this case along the silhouette) of the human body like legs, arms and head are better

clustered in both, the feature and label space, leading to more concentrated center

votes. Consequently, votes with less variance produce more distinctive peaks in the

Hough voting space and in turn can be better extracted in the subsequent non-maximum

suppression stage. In our experiments we also find favorable behaviour with respect to

the recent work in [Kontschieder et al., 2012] which also exploits context in random

forests, but in a different way: There, the context needs to be consequently updated and

analyzed in the way the feature space is exploited, while the proposed approach can

even discard the label information once the training process is finished. In this sense,

our method is computationally much more efficient than [Kontschieder et al., 2012] and

maintains the same computational complexity as the Hough forest during test time.

Please note that the work in [Kontschieder et al., 2012] offers several extensions which

may be applied to the proposed work as well, e.g. the way the the quality of the node

split is evaluated happens according to a different objective function, it provides a way

to simultaneously learn from multiple training instances of the same category and the

authors show a way to isolate individual modes of the Hough votes.

Finally, we conclude by mentioning that the major drawback of our method is probably
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Building Car Column/Pole

Road Sidewalk Sky

Figure 6.16: Illustration of feature patches with corresponding label patches, collected
from different leaf nodes when trained on CamVid database. Bottom rows: Label sets
and associated colors. Best viewed in color.

the need for densely labelled training data. However, this problem is shared with state-

of-the-art image labelling algorithms and the results of our experiments on the MSRCv2

database indicate that also rough labellings are well handled by our method.

6.6 Conclusion

In this chapter we presented a simple and effective way to integrate ideas from structured

learning into the popular random forest framework for the task of semantic image labelling

and object detection. In particular, we incorporated the local label neighborhood in the

training process and therefore intuitively learned valid labelling transitions among adja-

cent object categories. During the tree construction, we used joint label statistics of the

training data in the node split functions for exploring the structured label space. For

classification, we provided two possibilities for fusing the structured label predictions: A

simple method using overlapping predictions and a more principled approach, selecting

most compatible label patches in the neighborhood. Moreover, we have integrated the

concept of Hough voting for the task of object detection, showing how structured labels

support the learning process for offset regression. We provided several experiments for

both, semantic segmentation and object detection and found superior results when com-

pared to standard random forest and conditional random field (using pairwise potentials)

classification results.
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Conventional random forest based methods for image labelling tasks like object seg-

mentation make predictions for each variable (pixel) independently. This prevents them

from enforcing dependencies between variables and translates into locally inconsistent

pixel labellings. On the other hand, random field models or the semantic segmentation

approach presented in the previous chapter encourage spatial consistency of labels, how-

ever, at increased computational expense during inference. This chapter presents a novel

and efficient forest based model that achieves spatially consistent image segmentation by

encoding variable dependencies in the feature space the forests operate on. Such correla-

tions are captured via new long-range, soft connectivity features, computed efficiently via

generalized geodesic distance transforms. Our model can be seen as a generalization of

115
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the Semantic Texton Forest, Auto-Context, and Entangled Forest models that have pro-

duced convincing results on segmentation problems. Another extension of the standard

classification forest model presented in this chapter is the development of a novel objective

for training decision forests, encouraging predictions to be consistent with spatial context.

Our model is validated on the task of semantic image segmentation on four diverse image

datasets and compared to the approach presented in the previous chapter. Experimental

results show that the presented model improves over state-of-the-art forest based models

and also over the conventional pairwise CRF models for many datasets.

7.1 Introduction

Many problems in computer vision can be formulated in terms of structured output pre-

diction. Here, the term ”structured” relates to the presence of dependencies between

output variables. For instance, in image labelling problems such as object segmentation

or image denoising, the variables associated with neighboring pixels are more probable

to take the same labels. In recent years, random forests have become very popular for

the solution of a wide variety of image labelling problems - from organ segmentation

in medical images [Montillo et al., 2011] and semantic segmentation [Shotton et al., 2006,

Shotton et al., 2008b] to human pose estimation for KINECT [Shotton et al., 2012].

There are a number of reasons for the success of forest models, including scalability

to large amount of data, ability to learn long-range dependencies between features and

output variables, little tendencies to overfitting and finally, extreme efficiency in making

predictions. The last of these qualities is derived from the independence assumption made

by these methods. In fact, conventional decision forests ignore the structure in output

spaces and make predictions for each output variable independently. This assumption

prevents them from enforcing dependencies between variables, and for image segmentation

problems, translates into pixel labellings that do not follow object boundaries and are

inconsistent with spatial context.

To overcome these problems, Markov or Conditional random fields

(MRF/CRF) [Carbonetto et al., 2004, Lafferty et al., 2001, Blake et al., 2011] are used

as a post-processing step [Nowozin et al., 2011, Shotton et al., 2006]. For instance,

in [He et al., 2004a, Shotton et al., 2006] image segmentation is achieved by first

computing pixel-wise unaries via supervised classification, and then smoothing the labels

with a CRF. The more recent works in [Nowozin et al., 2011, Jancsary et al., 2012]

essentially present a CRF model, where the pairwise potentials (and not just the unaries)

are conditioned on the data and predicted via a single tree. Another way of mixing trees

and random field models is presented in [Payet and Todorovic, 2012], where again, the

underlying model is a CRF. Alternatively, with our random forest approach described in

the previous chapter, we obtain spatial smoothness by combining structured class-labels

that are learned by incorporating joint statistics from the label space neighborhood.

Although all of these approaches lead to better results, this comes at the cost of increased
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computational expense at test time.

What we present here is a computationally efficient random forest model for structured

output prediction. Our framework overcomes the above mentioned problem by incorpo-

rating learned spatial context directly within the forest itself. This leads to smooth and

correlated, pixel-wise labellings without the need for random-field-based post-processing.

Our framework achieves this by encoding variable-dependencies in the features where the

forest operates on. Such correlations are captured via a new type of long-range, soft con-

nectivity features which can be efficiently computed using generalized geodesic distance

transforms in the spatial and feature spaces. Another change with respect to the standard

classification forest is a novel training objective that encourages the trees to make pre-

dictions that are consistent with local context. We demonstrate the effectiveness of our

model on the task of segmenting four diverse image datasets: face images, medical scans,

depth images and driving videos of the CamVid dataset. Quantitative results demon-

strate the superiority of our model both in terms of accuracy and efficiency, with respect

to state-of-the-art forest based models and also conventional, grid-based pairwise CRF.

Our work is related to methods based on sequential classification.

The recent work on auto-context [Shotton, 2007, Tu and Bai, 2010], stack-

ing [Munoz et al., 2010, Wolpert, 1992] and entanglement [Montillo et al., 2011] has

shown how a sequence of classifiers using the output of the previous classifier as

input to the next can both, effectively capture spatial context (e.g. from medical

torso images it can learn that the heart is between the lungs) and improve accuracy.

In [Fröhlich et al., 2012], the relationship between anytime classification and intermediate

predictions within decision trees is shown. In [Ross et al., 2011] the authors show how

conventional message-passing inference on graphical models may be interpreted as a

sequential probabilistic inference algorithm.

Our model can be seen as a generalization of Semantic Texton For-

est [Shotton et al., 2008a], Auto-context [Shotton, 2007, Tu and Bai, 2010], and

Entanglement forests models [Montillo et al., 2011]. In fact, our algorithm builds upon

these models by using:

• long-range soft connectivity features that encode variable-dependencies and result

in consistent pixel-label predictions

• an objective for training forest models, which is inspired from the energy functions

used in random field models, and encourages our model to make predictions consis-

tent with local context.

7.2 Background and Problem Formulation

In addition to the notation defined in Chapter 2, we provide additional variables and their

symbols used in this chapter. The input or feature domain is denoted with X and the

output or label domain is denoted with Y. An image I is a multi-channel matrix mapping
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pixels u (i.e. elements of Z2) to m-dimensional feature vectors v(u) = {v1, . . . , vm} ∈ Rm.

We cast the semantic image segmentation problem as that of associating each pixel location

u with a discrete, categorical label cl from the output space Y = {c1, . . . , cC}.
As we deal with a classic supervised classification problem we assume to be provided

with a set of labelled training images D ⊆ X × Y from where we take the set of training

samples Z ⊆ D. Each individual sample zi = {xi, ci} comprises of a sample xi = (u, I)

taken in the feature space X and its associated label ci.

Let y = {yu|u ∈ Z2} denote the vector of variables yu predicted by our classifier for

pixel u. In tree-based classifiers we use yd to denote predictions obtained at depth d in

the tree. In a forest, D denotes the maximum tree depth and T = |T | is the number of

trees in the ensemble T .

Random field models. Given an image I, its most probable labelling can be inferred

by finding the most probable solution under the posterior distribution:

y∗ = arg max
y

P (y|I) = arg max
y

P (I|y)P (y) (7.1)

The conventional pairwise random field models assume that the posterior distribution

factorizes into a product of unary and pairwise potential functions as:

P (y|I) =
∏
u

ψ(yu,v(u))
∏

(u,q)∈N

ψ′(yu, yq,v(u),v(q)) (7.2)

where the set N of pixel pairs describes a neighbourhood system and is pre-defined. Al-

though this factorization assumption makes inference of the Maximum a Posteriori (MAP)

solution for many models tractable, it severely limits the expressive power of the model.

Further, inference and learning are quite computationally expensive.

Decision forest models. Random decision forests, on the other hand, assume that

the posterior decomposes over individual variables as: P (y|I) =
∏

u ϕ(yu,v(u)). This fac-

torization enables the model to ignore the dependency between output variables and makes

predictions independently and efficiently.

Predictions with decision forests. To make predictions, a series of feature tests starting

at the root node are applied to each pixel (i.e. patch) independently. For instance, at

the root node, a test is computed on the feature response for pixel u and, depending on

the results, the prediction process moves on to the left or right branch of the tree. The

procedure is repeated until the pixel reaches a leaf node. At this point the empirical class

distribution φ(yu|v(u)) associated with the leaf is read off. The MAP label for the pixel

is obtained as:

y∗u = arg max
yu

ϕ(yu,v(u)). (7.3)

Forest training. Training involves: i) selecting the feature tests at split nodes of the tree,

and ii) estimating the empirical class distributions ϕ(yu|v(u)) associated with each leaf

node. Traditionally, the structure of a decision tree is learned in a greedy fashion where
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Figure 7.1: Optimization procedure in a split node j of a tree. Split node training
seeks a node parametrization φj which maximizes the information gain (class purity) as
well as spatially compact pixel clusters.

for each internal node j in the tree the split parameters φj (see Fig. 7.1) that lead to

greater purity of class labels in the child nodes (greater information gain) are selected.

In a decision tree hierarchy, we assume split nodes to be indexed in breadth-first order

using integers j, where j = 0 corresponding to the root node. During training we have a

different subset Zj of training data associated with a different node j. Thus, we denote

the initial training set available to the root node with Z0.

7.2.1 Coupling Forest Predictions - Revealing Hidden Correlations

Although the independence assumption enables efficient training and rapid predictions

with random forests, it prevents the model from enforcing dependencies between variables

which for image segmentation problems, translates into pixel labellings that do not fol-

low object boundaries and are not consistent with local or global context. In the work

presented in this chapter, we overcome this problem and encourage forests to produce

spatially compact/coherent pixel labellings. In what follows, we will show how a learned

model of spatial context can be encoded within a decision forest framework. This leads to

smooth, pixel-wise image labellings without the need for post-processing steps.

One of the key theoretical insights of our work is the observation that although forests

make predictions for each variable independently, these predictions are related due to

correlations at the feature level. For instance, consider a semantic image segmentation task

and the class predictions of two pixels u and q. From (7.3) it is easy to see that the MAP

labels y∗u and y∗q are functions of the features responses v(u) and v(q) i.e. y∗u = f(v(u))

and y∗q = f(v(q)). This relationship implies that output-variable dependencies can be

encoded in the features that the forest operates on. We exploit this insight to couple

forest predictions in two ways:
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• We enable long-range geodesic features for soft connectivity between image regions

• We train entangled classification forests, where geodesically smoothed, intermediate

class posteriors estimated at higher levels in each tree influence the training of the

tree lower levels.

We describe details of these two contributions in the next three sections.

7.3 Long-range, soft connectivity features

The need for long-range connectivity features. In [Lepetit and Fua, 2006,

Shotton et al., 2012, Winn and Shotton, 2006] the authors have shown how simple

pixel comparison features can be effective in classification tasks when used within a

decision forest. Such features are extremely fast to compute (they involve just pixel-wise

read-outs), but not particularly expressive. This is illustrated in Figure 7.3 where

we compare simple pair-wise intensity difference features (left image) with a feature

response based on evaluating the geodesic path connecting the point pair (right image).

Shortest-path based features should be able to capture the idea of connectivity between

points which could be used within a learned segmentation algorithm to decide whether

two points should have the same class label or not. For example, the points r3 and p3

have identical intensity values. However, one is in the lungs and the other in the air

outside the body. Since the shortest path connecting them has a high geodesic length

(because it has to cross high image gradients) this provides some evidence that the two

points are not part of the same object/class. Similarly, the points r2 and p2, despite

being far from each other in terms of Euclidean distance, they are close in geodesic terms.

This provides evidence that they belong to the same object (the aorta, an elongated

tubular object, in this case). Of course, using this signal directly would be too fragile

and we need to find an efficient way of integrating it within a learning framework.

In theory these geodesic-based visual features could capture edge-aware spatial smooth-

ing, similar to CRF. However, these features need to be available at test time, for any pair

of pixels. But computing any-pair shortest paths within an image on the fly is infeasi-

ble. We circumvent this problem by proposing a novel set of visual features which are

computationally efficient and yet manage to capture the degree of connectivity between

probabilistically defined image regions. They are based on the use of generalized geodesic

distances, as introduced in [Criminisi et al., 2008, Criminisi et al., 2011] and summarized

next for completeness.

Generalized geodesic distances. Given a grey-valued image I, and a real-valued ob-

ject “soft mask” M(u) : Ψ ∈ Nd → [0, 1], weighted by an importance parameter ν, the

generalized geodesic distance Q is defined as follows:

Q(u;M,∇I) = min
u′∈Ψ

(
δ(u,u′) + νM(u′)

)
(7.4)
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Figure 7.2: Connectivity features. A 2D vertical slice through a 3D computed tomog-
raphy (CT) scan. (a) Commonly used feature responses are computed e.g. by looking at
the difference of intensities between pairs of pixels. These features ignore what happens
in between the two pixel positions. (b) Given a pair of pixels, computing the cost of the
shortest path connecting them carries richer information. Thus, for instance the points
r3 (within the lungs) and p3 (outside the body), despite having identical intensity, the
shortest connecting path has to go through regions of high gradient. This is an indication
that the two points belong to different classes. However, computing all-pairs of shortest
paths is clearly not feasible. See text for our proposed, efficient solution.

with the geodesic distance between two points u and q defined as:

δ(u,q) = inf
Γ∈Pu,q

∫ l(Γ)

0

√
1 + γ2(∇J(s) · Γ′(s))2ds . (7.5)

Γ is a path connecting the two points and Γ′(s) = ∂Γ
∂s is the spatial derivative. Pu,q is the

set of all possible paths, l (Γ) is the length of the path and γ ≥ 0 is a weighting parameter

controlling the influence of the image gradients. When setting γ = 0, (7.5) coincides with

the Euclidean distance, as the minimal distance is a straight line connecting the points u

and q. Consequently, (7.4) defines the distance of any point in the image to a region in

the image defined by the weighted ”soft belief” mask M .

Soft connectivity to a class region. Furthermore, we assume that we have an image

I and also the belief region M associated with a chosen class. Now we can compute

the distance of every point in the image to the given class region. Note that the class

region is defined in a soft way and we do not need to select hard seed positions. In the
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Figure 7.3: Generalized geodesic distances from probabilistic class regions. (a)
Ground truth body part labels for a depth image. (b, c) Approximate class probability
maps p(c|u); assumed given here. (b’, c’) Geodesic-smoothed probability maps g(c|u).
Notice how the function g can be interpreted as a diffused version of the noisier probabilities
p, where contast sensitivity is modulated by the geodesic weight γ in (7.5). The visual
features used in our forest model are simple pixel read-outs of the g maps. Thus, while
maintaining great efficiency, they capture long-range connectivity (of a pixel to a class
region) information.

existing literature distance transforms have been used for manually assisted segmentation

only (e.g. in [Gulshan et al., 2010] and [Criminisi et al., 2008]). Going from interactive to

automatic segmentation is challenging because of the seed selection problem, and runtime

efficiency issues.

The belief regions can be the output of a given, probabilistic classifier1. We can think

of having C such masks and thus C such distances associated with each input image.

To make this point clearer, Figure 7.3 shows an illustration. Given a depth image (e.g.

acquired with a laser range finder, or with Kinect), we assume we have a probabilistic

classifier which when tested produces the posterior probabilities p(c = torso) and p(c =

left leg). We can use those probabilities as our soft masks M for the generalized geodesic

distance transform and the corresponding distances will result as g(c = torso) and g(c =

left leg). Note how the g maps look like a smoothed version of the class probabilities p.

Contrast sensitivity is modulated by the parameter γ ≥ 0 in (7.5).

In the next section we will show how generalized geodesic distances can be used effec-

tively as long-range visual features via an entangled decision forest framework. Note that

we are not really solving the problem of computing all pairs of shortest paths, in fact, it

1e.g. for example, the map M could be given by the probability of a pixel belonging to the class sky or
pedestrian in an image.
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turns out that we do not need to. As it will become clearer later, computing only C gener-

alized geodesic distances per image (i.e. one per object category of interest) is sufficient to

generate discriminative, long-range connectivity features. Moreover, generalized geodesic

distance transforms can be computed in linear complexity with respect to the number of

pixels [Criminisi et al., 2011], using constant-time complexity lookup-table operations.

7.4 Entangled geodesic forests and their features

Here we are interested in extremely efficient semantic segmentation. Thus, we use a

variant of decision forests, because of their speed and flexibility [Amit and Geman, 1997,

Breiman, 2001, Criminisi and Shotton, 2013]. In what follows, we describe our extension

to obtain coherent segmentations.

Figure 7.4 gives an illustration of what was introduced in the work to entangled

forests [Montillo et al., 2011] and is also exploited in this work. All trees are trained

• in parallel

• in breadth-first order

• in sections.

When training the first section (section 0) only appearance-based features (e.g. raw in-

tensities) are available. However, when training the next section more derived features

become available. In fact, the output class posteriors p(c|I) of the previous section may

be used as input to the next [Montillo et al., 2011, Kontschieder et al., 2012]. Here, we

further augment such features by using the geodesically smoothed versions of the poste-

riors, g(c|I) (see Figure 7.3). In this sense, we can use connectivity features computed

with efficient geodesic transforms to couple output predictions of the forest for modelling

long-range semantic context directly within the feature space of the classifiers.

More formally, we are given an ordered set of sections (s0, s1, . . . , D), where si indicates

the maximum depth of the ith section and D is the maximum tree depth. Given a class

posterior psi(c|u) computed at the ith section (with i > 0), its geodesically smoothed

version is defined as

gsi (c|v(u)) =
1

W
psi(c|v(u)) e

−
Q (u; psi(c|I),∇I)2

σ2 (7.6)

with W a normalization factor to ensure probabilistic normalization:
∑

c gsi(c|u) = 1 and

Q(·) as defined in (7.4).

Feature responses for a reference pixel r are defined as a function of tree depth d,

and as sum, differences or absolute differences between two pixel probe values in different

channels, i.e. vdi (r) = F dk (u1) + F dk (u2), vdi (r) = F dk (u1) − F dk (u2) or vdi (r) = |F dk (u1) −
F dk (u2)| where k ∈ {0, 1, 2} denotes the channel where features are computed, and:
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Figure 7.4: An entangled geodesic forest. A forest with three entangled trees. The
trees are entangled because intermediate predictions of the top section are used (together
with raw intensity features) as features for the training of the bottom section. There is
only one entanglement section in this example.

• F d0 (u) = I(u), i.e. the raw image intensities,

• F d1 (u) = ps(d)(c|(u)), i.e. the intermediate forest posteriors computed in the section

s(d) defined by the depth d, and

• F d2 (u) = gs(d)(c|(u)), i.e. the geodesic-filtered posteriors, capturing connectivity of

point u to the seed region defined for class c.

The entangled feature channels k = 1, 2 are available only for section s1 and greater.

Furthermore, they can be computed very efficiently since they amount to little more than

table look-ups.

7.5 Random Field inspired Forest Training Loss Functions

This section describes the second main contribution of this chapter which constitutes of a

new loss function for the forest training procedure. In what follows, we depart from the

traditional information-theoretic training process typically used in classification forests and

derive a random-field inspired loss function. Moreover, we analyze both training functions

with respect to an important training-data dependent circumstance, i.e. whether the

training data is homogeneously distributed among the target categories (=balanced) or
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not (=imbalanced). Despite one can always sample from the training set in a way that the

balance criterion is fulfilled, this might result in suboptimal use of the available training

data where much available information is left unused.

7.5.1 Balanced classes

Implicitly, this case is also what we have introduced and assumed in the general notation

and terminology of classification trees in Chapter 2.6.1 on page 16, using information gain

as split node criterion. Here, we will walk through the maths in a more detailed way and

introduce a novel, random field-inspired training loss function.

Information-theory based forest training function. The most common approach

for training split nodes (see Figure 7.1) in classification trees tries to select the values of

parameters φj in each internal node j by maximizing an information gain criterion G,

defined as

G(Zj , φj) = H(Zj)−
∑

i∈{l,r}

|Z ij |
|Zj |

H(Z ij) , (7.7)

with the entropy being defined as H(Z) = −
∑

c∈Y p(c|Z) log p(c|Z). The first term

in (7.7) is constant with respect to the parameters φ.

From here we can see that the parameter learning concept, when driven by information

gain maximization, is intimately related to a more general energy minimization problem,

formulated as:

φj = arg min
φ′∈Ψ(Z)

E(Zj , φ′) , (7.8)

where Ψ(Z) is the set of randomly generated split parameters to be tested and E(·) is an

energy function to be defined.

When we now drop the first term and also the normalization constant in the second

term of (7.7), we may re-write it in terms of an information-theoretic energy

EIT(Zj , φj) =
∑

i∈{l,r}

|Z ij |H(Z ij)

=
∑

i∈{l,r}

−|Z ij |
∑
c∈Y

p(c|Z ij) log p(c|Z ij)

= −
∑

i∈{l,r}

∑
c∈Y

n(c,Z ij) log
n(c,Z ij)
|Z ij |

(7.9)

where

n(c,Z) =
∑

(xi,ci)∈Z

1 [ci = c] (7.10)

denotes the number of training samples of class c in Z and p(c|Z) = n(c,Z)
|Z| is the empir-

ically estimated probability for class c. This can be obtained by e.g. using a histogram
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representation.

Field-inspired forest training objective. Alternatively, we can think of training a

split node j in the trees by using an MRF-like energy ERF, which we define as

ERF(Zj , φj) =
∑

i∈{l,r}

 ∑
(xk,ck)∈Zij

ψ(ck;Z ij) + λ
∑

zk=(uk,ck)∈Zij ,q∈N (uk)

ψ′(zk,q)

 (7.11)

with N (uk) denoting a local neighborhood of the point uk. As unary potentials we choose

the commonly used log-loss

ψ(y;Z) = −
∑
c∈Y

1 [y = c] log p(y|Z) . (7.12)

If we ignore the pairwise term (by setting λ = 0) we get

ERF(Zj , φj) = −
∑

i∈{l,r}

∑
(xk,ck)∈Zij

∑
c∈Y

1 [ck = c] log p(ck|Z ij)

= −
∑

i∈{l,r}

(
n(c = 1,Z ij) log

n(c = 1,Z ij)
|Z ij |

+ . . .

+n(c = C,Z ij) log
n(c = C,Z ij)
|Z ij |

)

= −
∑

i∈{l,r}

∑
c∈Y

n(c,Z ij) log
n(c,Z ij)
|Sij |

. (7.13)

We discover that under the above assumptions (7.13) and (7.9) are identical. Thus, con-

ventional entropy-based tree training corresponds exactly to minimizing a field-like energy

which uses the log-loss as unary and no pairwise term. However, the more interesting

findings come when we consider the effect of having unbalanced classes in the training set,

which is discussed next.

7.5.2 Correcting class imbalance

For the case of unbalanced classes in the training data (the training samples are not homo-

geneously distributed across categories), introducing a global correction term was shown to

be effective, especially for the task of semantic image segmentation [Shotton et al., 2008a].

One of the reasons is that e.g. the pixels belonging to the background (or stuff ) class(es)

are much more numerous compared to ”object” (or thing) class(es). To this end, let us

consider the general case of a non-balanced training set Z0, (initially) available at a root

node of the tree construction process where n(ci,Z0) 6= n(cj ,Z0), ci, cj ∈ Y, i 6= j.

Similar to the previous section, we will analyze the respective objective functions (infor-
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mation theoretic and random field-inspired), but now using the following global, per-class

re-balancing weights

ωc =

∑
k∈Y n(k,Z0)

n(c,Z0)
=

|Z0|
n(c,Z0)

, (7.14)

where Z0 is the whole training data used to grow a tree, i.e. the data available to the root

node. Moreover, we will use the following, node-based normalization factor

W (Zj) =
∑
k∈Y

ωk n(k,Zj) . (7.15)

Information-theory based forest training function. When applying the reweighing

terms and performing some algebraic manipulation, the information-theoretic objective

straightforwardly changes to

EIT(Zj , φj) =
∑

i∈{l,r}

−W (Z ij)
∑
c∈Y

wc n(c,Z ij)
W (Z ij)

log
wc n(c,Z ij)
W (Z ij)

= −
∑

i∈{l,r}

∑
c∈Y

wc n(c,Z ij) log
wc n(c,Z ij)
W (Z ij)

. (7.16)

Field-inspired forest training objective. In contrast, for the proposed, field-inspired

training objective, class reweighing results in the following formulation:

ERF(Zj , φj) = −
∑

i∈{l,r}

W (Z ij)
∑

(xk,ck)∈Zij

∑
c∈Y

1 [ck = c] log p(ck|Z ij , ω)

= −
∑

i∈{l,r}

W (Z ij)

(
n(c = 1,Z ij) log

ωc=1n(c = 1,Z ij)
W (Z ij)

+ . . .

+ n(c = C,Z ij) log
ωc=Cn(c = C,Z ij)

W (Z ij)

)

= −
∑

i∈{l,r}

W (Z ij)
∑
c∈Y

n(c,Z ij) log
wc n(c,Z ij)
W (Z ij)

. (7.17)

Thus, after class re-balancing, the entropy-based energy in (7.16) and the field unary

in (7.17) are no longer the same. Interestingly, the per-class, global reweighing term ωc,

which induces the global importance weight for each sample in (7.16) vanishes from the

inner sum in the random field inspired version (7.17), while it still influences the way the

probability mass function is estimated. Consequently, we can observe that the node split

parameter optimization process is more directly guided by the factual number of samples

reaching a particular node, even though their global weights could suggest to diminish their

overall contribution. In this sense, we can notice an important transition in the paradigm
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of the training process: The conventional, information theoretic approach propagates the

global reweighing terms through the entire tree/forest growing process while the introduced

random-field inspired term puts stronger emphasis on the composition of the training data,

reaching the respective nodes.

In the next section we show the effect on accuracy of both: i) using entangled geodesic

features, and ii) training the forest by minimizing (7.17) rather than (7.16).

7.6 Results and Comparisons

This section assesses the accuracy and versatility of our segmentation approach. To this

end, we evaluate on the CamVid dataset as introduced in the previous chapter of this

Thesis and on three novel, labelled image datasets which we introduce and discuss in the

next sections, respectively.

7.6.1 Image datasets

An overview on the versatility of the data we have used in our experiments is shown in

Figure 7.5. Now, we give a short description on each dataset. LFW: Labelled Faces

in the Wild. This is an augmented version of the public dataset in [LFW, 2013], where

we have manually segmented a subset of 1250 images into the following 8 categories:

background, nose, mouth, L/R eye, L/R eyebrow and lower face. The contained faces

exhibit strong variations in pose and appearance. Furthermore, the mouth and eyes show

considerable articulation.

CT: Computed Tomography. We tested our algorithm also against a new dataset of

medical images. It comprises of 2D coronal slices taken at random positions of labelled,

3D CT scans. As ground truth, different anatomical entities have been segmented in 3D,

using an interactive segmentation tool. We have the following 9 classes: background (BG),

heart (HR), liver (LI), spleen (SP), left/right lung (LL/RL), left/right kidney (LK/RK)

and aorta (AO).

KinBG depth images. This is a newly created dataset, similar to the body-part Kinect

training dataset used in [Shotton et al., 2012], with the difference that the retargeted

MoCap characters have been inserted within a Kinect acquired, real background scene.

We are using ground truth labels for 12 body parts (L/R head side, neck, torso, L/R

arm, L/R hand, L/R leg, L/R foot) and three background classes. In fact, in contrast

to [Shotton et al., 2012], we do not assume a given FG/BG separation, and the background

is subdivided into: floor, back wall and general background. This yields a total of 15

categories.

7.6.2 Comparisons with related methods

We provide comparisons with various state-of-the-art decision forest based

approaches [Montillo et al., 2011, Kontschieder et al., 2011, Yang et al., 2012]. We
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Figure 7.5: Illustration of datasets where we have evaluated our proposed approach. From
left to right: Labelled Faces in the Wild, Computed Tomography, KinBG depth images
and CamVid road scene datasets with their corresponding ground truth annotations.

also compare against approaches using forest-based unaries followed by CRF

smoothing [Kolmogorov, 2006]. In the latter, as energy model, we used a log-loss in the

unary term and a contrast-sensitive Potts model in the pairwise term. Additionally, we

also implemented an auto-context [Tu and Bai, 2010] version of a random forest: A first

classification forest is trained using raw intensity features. A second forest is then trained

using as features both intensities and the class posteriors obtained from the first forest.

In order to ensure a fair comparison, we train all forest-based algorithms to the same

number of nodes. The parameters of all baseline algorithms have been optimized so as to

yield the highest Jaccard scores.

Quantitative results are summarized in Table 7.6.2 where we compare algorithms

both in terms of accuracy and runtime. Segmentation accuracy is computed via the

Jaccard score (as adopted also in the PASCAL VOC challenge [VOC, 2013]). Runtimes

are reported for similarly non-optimized C# implementations. However, decision forests

are well-suited for GPU implementations [Sharp, 2008]. For all forest based algorithms

we fix T = 10 and D = 20, except for the CamVid dataset where we use a maximum

depth D = 17 since the number of training samples is considerably smaller.

Labelled Faces in the Wild. The baseline forest 01 yields a mean Jaccard score of

only 38.1% as it produces noisy segmentations and overly bold segments for the smaller

objects such as the eyebrows (cf. Figure 7.6 (c)). CRF-based post-processing 02 boosts

the score to 45.2%, still lower than what our implemented auto-context forest 03 and
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Figure 7.6: The effect of geodesic entanglement on spatial coherence. (a, g,
j) Input test images, from the LFW, KinBG and CT datasets, respectively. (b, h, k)
Ground truth labels (different colors for different classes). (c) Segmentation results from
conventional pixel-wise classification forest. The lack of spatial smoothing produces noisy
labeling. Notice also the overly large eye/eyebrow segments. (d) Results from forest with
probability entanglement. Entangling the p channels only helps spatial coherence of the
output. (e) Results from forest with geodesic entanglement. Enabling the long-range
geodesic feature channels g helps spatial coherence further. The spurious hand region is
gone. (f, i, l) Results from forest with geodesic entanglement and field-inspired energy
term. Using our field-inspired energy term helps further still. e.g. notice the better
recovered eye shape in (f).

our proposed geodesic forests achieve ( 07 - 16 ). Both the use of geodesic features and

the field-inspired energy help achieve the highest accuracy in this dataset. As shown in

Figure 7.6 (f), our geodesic forests better delineate small structures.

Figure 7.7 plots the (testing) accuracy of algorithms ( 01 , 08 , 14 and 16 ) as a function

of the tree depth. Entangled geodesic forests using either of the two energy models ( 14 ,

16 ) work better than the conventional forest 01 . Using the field-inspired energy 16

works better than the conventional information gain 14 . Using two entanglement sections

works better than a single one on this data. Our auto-context geodesic forest 08 does

well, but interestingly the presence of a second forest does not seem to improve things

much compared to using one forest only.

In terms of runtime, the standard forest + CRF 02 takes ≈ 0.71s (per frame) versus

≈ 0.42s for a single-section entangled geodesic forest. Also, forest-based inference is simpler

and more easily parallelizable than using graph-cut algorithms for inference on CRF.

CT scans. Starting with baseline scores of 53.2% 01 and 68.3% 02 we find again that

providing geodesic features improves on all our compared methods. The auto-context

forest performs well too, even without these additional features. However, the best results

are achieved with one or two sections of entanglement in geodesic forests ( 12 , 16 ). The
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Figure 7.7: Accuracy as a function of tree depth D, for different forest variants,
evaluated on LFW dataset.

CRF approach 02 takes ≈ 1.2s per frame while geodesic forests 12 needs ≈ 0.72s.

KinBG depth images. In this dataset the best results are achieved by our auto-context,

geodesic forests ( 07 , 08 ) which provide strong improvements over the baseline (+6.8%

over 01 , + 3.9% over 02 ). However, note that using auto-context forest variants (e.g.

03 , 07 , 08 ) results in higher runtimes as two forests need to be evaluated (resulting in

≈ 1.39s/frame). The CRF approach 02 takes ≈ 1.35s per frame while entangled geodesic

forests are much faster (≈ 0.64s/frame). In contrast to [Shotton et al., 2012], we achieve

body part and background class labeling without the need for a preliminary background

separation stage.

CamVid videos. For this dataset we have followed the experimental setup described

in [Kontschieder et al., 2011], providing Lab raw channel intensities, first and second order

image gradients and HOG-like features. The baseline result for 01 is 33.3% which we are

able to considerably outperform with all our geodesic forest variants. The best performing

geodesic forest 16 improves over the recent work in [Kontschieder et al., 2011] (+2.1%)

and [Yang et al., 2012] (+8.7%). The highest score is obtained by the CRF 02 (41.7%),

but at the expense of twice the runtime: ≈ 1.07s/frame for 02 and ≈ 0.56s/frame for

geodesic forests.

Smoother energy models? In further experiments we have also tried training forests
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Image datasets
LFW CT KinBG CamVid

Number of training / testing images 1000 / 250 512 / 250 2500 / 250 367 / 233

Accuracy of existing algorithms

01 Classification forest (pixel-wise classification only, no spatial context, no geodesic features) 38.1 53.2 57.1 33.3

02 Classification forest + conditional random field (CRF) 45.2 68.3 60.0 41.7

03 Auto-context classification forest (energy EIT ; no geo. features) 48.1 65.9 61.9 35.2

04 Entangled classification forest (energy EIT ; no geo. features; single entgl. section depth=10) 43.2 58.3 55.7 35.5

05 Structured class-labels in random forests [Kontschieder et al., 2011] – – – 36.2

06 Local label descriptor [Yang et al., 2012] – – – 29.6

Accuracy of variants of proposed geodesic forests (GeoF)

(Two autocontext forests )

07 Auto-context geodesic forests (energy: EIT ; evaluation using raw class posterior p as output) 49.8 65.7 62.4 35.2

08 Auto-context geodesic forests (energy: EIT ; evaluation using smooth class posterior g as output) 50.4 69.2 63.9 36.6

(One entanglement section at depth=10. )

09 Entangled geodesic forests (energy EIT ; evaluat. p) 46.8 58.6 55.9 36.8

10 Entangled geodesic forests (energy EIT ; evaluat. g) 46.2 60.2 55.4 35.1

11 Entangled geodesic forests (energy ERF ; evaluat. p) 54.3 69.1 59.8 34.9

12 Entangled geodesic forests (energy ERF ; evaluat. g) 54.6 72.3 60.0 37.7

(Two entanglement sections, at depth=10 and depth=15.)

13 Entangled geodesic forests (energy EIT ; evaluat. p) 49.5 60.3 56.6 37.9

14 Entangled geodesic forests (energy EIT ; evaluat. g) 50.1 61.1 56.8 38.0

15 Entangled geodesic forests (energy ERF ; evaluat. p) 56.6 69.9 59.8 36.6

16 Entangled geodesic forests (energy ERF ; evaluat. g) 56.8 72.2 60.3 38.3

Table 7.1: Quantitative validation and comparison. Average Jaccard accuracy mea-
sures (in %, larger values are better) across all classes, for our geodesic forest algorithm as
compared to existing techniques (e.g. random classification forest, and forest + CRF), for
four different labelled image databases. Bold-face numbers indicate the top two algorithms
for each image dataset.

by adding pairwise terms or other global smoothness terms in the energy (7.17), but

without being able to consistently improve the accuracy further. These results suggest

that our long-range connectivity features may already do a good job at imposing spatial

smoothness.

Capturing semantic context via entangled geodesic features. Figure 7.8 illustrates

how geodesic forests capture long-range semantic context on the computed tomography

dataset. For a reference pixel of a given class (e.g. liver) the elements of each matrix

indicate the frequency of classes in the two automatically selected probes (e.g. probe 1

in the rows and probe 2 in the columns). For example, in Figure 7.8a we see that at

depth 10 (after first level of entanglement) when the reference pixel is in the liver, the two

probes tend to be selected (during training) to also be in the liver. This encourages local

context and label smoothing; and can be thought of a generalization of MRF where the

discriminative cliques are learned rather than being predefined. For deeper trees we start

to see the effect of longer-range semantic context. In fact, e.g. in Figure 7.8b we observe

that the probes tend to be selected frequently also in the heart and right lung regions.

This indeed makes sense when the goal is to identify liver pixels. Similar reasoning applies

to other classes (e.g. see Figure 7.8a’,b’,c’ for pixels in the l. kidney).
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Figure 7.8: Class co-occurrence matrices for the two feature probes (a,b,c) For
a reference point is in the liver. (a’,b’,c’) For a reference point is in the left kidney.
Co-occurrence matrices are shown for three different tree depths: D = 10, D = 13,
D = 17. In this dataset (CT) classes are: background (BG), heart (HR), liver (LI), spleen
(SP), l./r. lung(LL/RL), l./r. kidney (LK/RK) and aorta (AO). This figure demonstrates
capturing semantic context. e.g. in b’ when trying to identify the left kidney it helps to
use probes either in the spleen region (just above the left kidney) or in the left kidney
itself (encouraging local spatial smoothness).

7.6.3 More Qualitative Segmentation Results

Here, we provide further segmentation results on test images from the four datasets used

in this work, obtained by the introduced combination of entangled geodesic features and

the new training objective function used in the tree growing process. The results are

provided in tabular form where each row represents a different test image, arranged as

original image, ground truth and output probabilities g(c|I) as a function of the maximal

tree depth.

Labelled Faces in the Wild (LFW) (Table 7.6.3) We see that even shallow trees

(D = 10, 12, 14) capture the rough positions of the various facial features quite well.

However, as the depth increases we get both, more precise feature segmentation and better

handling of e.g. rotation of the head (see first two rows).
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Input test image Ground truth Output probability g(c|I), as function of tree depth

D=10 D=12 D=14 D=16 D=18 D=20

Table 7.2: Segmentation results obtained by GeoF on the faces dataset. See text
for details.

Computed Tomography Dataset (CT) (Table 7.6.3) As the forest depth increases

we get ever more accurate delineations of the internal organs such as the lungs, heart and

kidneys. Note that accurate and smooth segmentation is achieved also for the challenging,

thin and tubular-shaped aorta (orange label). In this sense, we demonstrate the general

applicability of our method and that there are no implicit assumptions about shape or

composition of objects to be segmented.

KinBG depth images Dataset (Table 7.6.3) This dataset is different from the one

used in [Shotton et al., 2011] in a sense that multiple, computer generated characters have

been realistically inserted within depth images of background scenes (containing floor, so-

fas, curtains etc.). The background itself has been partitioned into three ground-truth

classes: floor, back wall and everything else. In all cases GeoF produces convincing seg-

mentation results where all background and foreground classes are segmented automat-

ically and simultaneously. Notice how deeper trees produces more accurate delineation

and recognition of the smaller body parts such as hands and feet, and reduce “bleeding”

into the floor category.

CamVid Dataset (Table 7.6.3) Finally, we provide some qualitative results obtained

on the driving videos (CamVid) dataset. Once again, deeper forests produce increased

accuracy, especially for the smaller and more challenging objects.



7.7. Conclusion 135

Input test image Ground truth Output probability g(c|I), as function of tree depth

D=10 D=12 D=14 D=16 D=18 D=20

Table 7.3: Segmentation results obtained by GeoF on the computed tomography
dataset. See text for details.

7.7 Conclusion

This chapter has presented a new forest-based model for structured learning, applied to

the task of semantic image segmentation. Our model encourages spatial smoothness and

long-range, semantic context within the forest itself, via the use of new, soft connectivity

features which build upon entangled, generalized geodesic distances. In addition, we

showed how training forests by minimizing a random field-inspired energy yields higher

accuracy than information gain based approaches. Quantitative validation on four diverse

image datasets shows at par or better accuracy than state-of-the-art approaches including

pairwise conditional random fields, with faster runtimes.
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Input test image Ground truth Output probability g(c|I), as function of tree depth

D=10 D=12 D=14 D=16 D=18 D=20

Table 7.4: Segmentation results obtained by GeoF on the background-
augmented depth image dataset. See text for details.

Input test image Ground truth Output probability g(c|I), as function of tree depth

k

D=10 D=12 D=14 D=15 D=16 D=17

Table 7.5: Segmentation results obtained by GeoF on the driving videos
(CamVid) dataset. See text for details.
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8.1 Summary

In this Thesis we have undertaken a modern view on random decision forests. Decision

forests are ensembles of binary decision trees and provide a general framework for machine

learning problems. Here, we have dealt with their application for offline, supervised learn-

ing tasks, i.e. at the beginning of the training process all data is available together with

ground truth information. More specifically, we investigated their suitability for two fun-

damental computer vision problems, object detection and semantic image segmentation.

When applying random forests for these particular visual computing tasks, the under-

lying problems are typically reduced to classification or mixed classification and regression

problems for semantic segmentation and object detection, respectively. This is mainly due

to the fact that random forests are conveniently applicable and available as off-the-shelf

learners for such problems. Moreover, they were empirically shown to perform favourable

when compared to machine learning techniques like support vector machines (SVM), k -

nearest neighbors (k-NN) or boosting, especially on high-dimensional data. Other inter-

esting properties are their inherent ability to handle multi-label problems, little tendency

to overfitting while it is possible to parallelize training and evaluation procedures.

Although forests already hold many desired properties, we have investigated the ques-

tion on whether it is possible to improve their performance on problems where the data to

be processed is structured, as it is often the case in the visual computing domain. With

structured, we mean data where spatially adjacent samples typically exhibit a high degree

137
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of correlation. Since image data (like plain 2D-images, image sequences, video streams,

medical image data sets, etc.) is mostly organized on a regular pixel/voxel grid, we can

speak of directed adjacency, respecting the ordering of data samples. In fact, we recognize

that also certain semantic and dependency properties are ordered and therefore structured

in this data. From a more general point of view, one might declare this as contextual in-

formation which we propose to be subsequently exploited when using random forests in

computer vision.

The main goal of this Thesis was to render random forests context-aware, in order to

more efficiently exploit the previously described structure in the data. However, before

our contributions are described in the two main parts of the Thesis, we introduced the

general theory behind them in Chapter 2 and showed specific instantiations to perform

classification, regression and mixed classification and regression. Classification forests have

a discrete output space, yielding to categorical decisions while regression forests typically

predict continuous-valued outputs. Another briefly introduced variant of random forests

are random ferns, which are a non-hierarchical version in the sense that all binary tests

applied at the same level are identical.

8.1.1 Summary on Object Detection

The first main part of this Thesis is dedicated to the object detection problem, starting

with Chapter 3. There, we investigated the task of shape-based object detection and

discussed the problem of shape data representation when learned in random forests. To

this end, we introduced a novel shape fragment descriptor that abstracts and describes

local shape information by means of angular relations between connected edge points.

We have evaluated several properties of the descriptor including distinctiveness, efficacy,

invariance, efficiency and demonstrated its suitability to be learned in random forests

together with their relative offset position to the object centroid.

In the next Chapter (4), we have discussed the task of non-maximum suppression

(NMS), i.e. a post-processing step often necessary for predictor outputs using the con-

cept of generalized Hough-voting, such as Hough forests. We have introduced Evolutionary

Hough Games which describe an evolutionary game-theoretic approach for detecting (mul-

tiple) instances of an object category by the set of voting elements (pixels, patches, shape

fragments, etc.) they are composed by. The approach is twofold: First, we train a standard

Hough forest that stores object class distributions and offset voting information in the leaf

nodes of the trees. At test time, we construct a payoff matrix holding pairwise compati-

bilities of test samples, obtained by analyzing their mutual geometric compatibilities with

respect to the learned object category model. To this end, we exploit the available leaf

statistics and relate them with the respective test sample positions in the image under test.

Once the payoff matrix is constructed, we run an evolutionary game theoretic dynamics to

identify the set of mutually best compatible elements, forming an evolutionary stable set

of strategies (in the terminology of game theory). To obtain multiple object hypotheses,
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we proposed a novel enumeration scheme, inspired by tabu search. The basic idea is to

eliminate already found solutions from the search space when subsequent objects shall

be identified. However, instead of truncating or altering the payoff matrix (which would

result in a change of the game), we initialize subsequent search attempts on the original

matrix with solutions found on the restricted game. As a result, we provide detections

that are not defined by their enclosing bounding boxes but instead directly identify their

contributing samples from contextual relations.

While in the first two chapters of the detection part, the random forest model was con-

sidered as a black-box learning algorithm, we introduced Context-sensitive decision forests

in Chapter 5, which are a novel way to integrate contextual information into the training

and evaluation processes. We departed from the traditional approach where trees are used

as simple predictors and instead allowed them to access intermediate predictions for the

data of themselves during training and testing. From a methodological point of view, this

concept is similar to famous models like Auto-Context or feed-forward networks, however,

we have demonstrated that it can be efficiently encapsulated in the trees without the need

of several predictor stages. Moreover, we have introduced a novel loss function which

effectively handles classification and regression tasks in a joint formulation. Based on the

loss that is constantly monitored for the non-leaf nodes, we introduced prioritized tree

growing, i.e. a mechanism that continues tree growing where the error with respect to the

ground truth is currently the highest. In addition, the way we split data that is equipped

with regression information (we used object centroid voting vectors for foreground sam-

ples) follows a mode isolation technique in order to better separate multi modal data.

Finally, we introduced a new family of split functions which is able to exploit training

data containing several, possibly mutually occluding object instances. In such a way, we

provided a context-driven way of learning random decision trees, i.e. better context from

isolated modes obtained by joint loss consideration lead to better predictors.

8.1.2 Summary on Semantic Image Segmentation

The second main part of this Thesis is dedicated to the semantic image segmentation

problem. In semantic image segmentation, the task is to correctly assign a categorical

class label to each pixel in an image under test and therefore obtain coherently segmented

regions and objects. Starting in Chapter 6, we introduced a way to include local context in

the random forest training process by exploiting so-called structured class-labels, obtained

from ground truth information. Traditionally, each training sample of a random decision

tree is associated with a single, atomic class label and also the prediction step classifies

a single pixel. However, since for the semantic segmentation task the output domain is

obviously structured in the sense that neighboring pixels often have the same labels, we

proposed a variant that also takes structured class-labels into account for both, training

and testing. When learning the parameters in the split nodes, we evaluated joint statistics

of k -label joint distributions of randomly selected label positions within the structured
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class-labels. As a result, the trees were aiming to cluster together label patches, that al-

lowed to i) predict labels also for the neighbors covered by the label patches and ii) capture

valid label transitions of the ground truth in order to prevent from propagating semanti-

cally implausible labellings. We have introduced two ways for integrating structured label

predictions into concise per-pixel labellings. The first way decides for the final label with

a simple majority voting step that integrates predictions from neighborhoods covered by

the label patches. The second approach is based on this simple fusion: After generating a

new per-pixel labelling, we allow an alternative selection among the predictions provided

by the forest ensemble. Afterwards, the new labelling is again produced by another simple

fusion process. In this sense, this process is alternated until convergence.

With the approach presented in Chapter 6, we could show improved segmentation

results in terms of accuracy and introduced a mechanism for predicting structured labels

in random forests. However, the inference process requires additional computation for

producing the final labelling, therefore cutting back on the evaluation speed properties

of the trees. In Chapter 7 we investigate the semantic image segmentation problem from

yet another perspective within random forests, maintaining the original computational

complexity during test time: Their main reason for computational efficiency is the indi-

vidual (and therefore possibly parallel) treatment of all pixels. However, this approach

prevents them from interrelating per-pixel outputs although they are clearly linked to each

other when considering the segmentation task. This shortcoming is typically compensated

by employing random field like models as post-processors, which establish neighborhood

relations in terms of (mostly) parametric potential functions. In this chapter we have

introduced a novel method to encourage spatial consistency in the obtained labellings.

To this end, we revealed hidden correlations in the output space by encoding long-range,

soft-connectivity features between pixels in the feature space the trees learn from. These

features can be efficiently computed by using generalized geodesic distance transform,

i.e. the computation can be approximated by simple, linear forward- and backward-kernel

operations on the generated classifier outputs. Moreover, these geodesically smoothed pre-

dictor outputs are contrast-sensitive in terms of test image gradients and therefore mimic

a random field-like regularization as performed in conditional random fields. Feeding back

intermediate predictor outputs in the learning process in this way is another contribution

of this chapter as it allows the learner to compensate mis-labellings in the subsequent levels

of the trees. The second major contribution of this chapter is in the way the split functions

are designed. To enforce spatial consistency also in the way the trees are constructed, we

have established a rigorous connection between traditionally used, information-theoretic

objective functions and a simple Markov random field (MRF) energy. We have shown

their equality when choosing a particular energy type in the MRF, i.e. the prominent

negative log-loss in the unary term and no pairwise term. Finally, we presented how the

objective function is altered when non-balanced training data is processed, yielding to a

significant improvement in the output quality of the predictions.
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8.2 Conclusions and Outlook for Future Work

One of the most important take home messages of this Thesis is that machine learning on

computer vision data is supposed to exploit the data structure, inherently available to it.

This is in contrast to the widespread notion of considering learning algorithms as simple

black-box toolboxes. We have demonstrated that the choice of an effective learning method

like the random decision forest allows to efficiently integrate knowledge about this structure

or contextual information, without substantially increasing the computational complexity.

Furthermore, we have provided empirical evidence in terms of improved recognition and

segmentation scores on many and diverse standard benchmark datasets, when integrating

contextual cues within the random forest learner.

In our evaluations, we have hardly experienced limitations of the general learning

concept: While it has been shown that random forests scale well with an increasing

amount of data [Shotton et al., 2012], there is yet no study reporting performance on

prediction tasks with very high-dimensional output spaces. For example, an interesting

direction might be to see how learning of extremely large scale datasets like the ImageNet

dataset [Ima, 2012] can be performed, where the goal is to classify and label subsets of the

10.000.000 image-database into 10.000+ object categories. Currently top-ranked methods

like [Krizhevsky et al., 2012] employ deep learning strategies which also integrate contex-

tual cues over multiple layers and obtain excellent results.

Another potential future research direction could address the topic of choosing proper

loss functions in the split nodes and how to appropriately optimize them. While standard

entropy measures seem to do a reasonable job for non-structured data, specific computer

vision tasks demand customized solutions where the problem nature can directly guide the

objective function formulation, as we have shown e.g. in Chapters 5 and 7. In this line,

recent work [Schulter et al., 2013] focuses on the formulation of global loss functions via

maintaining an adaptive weight distribution over the training samples during the training

process. More complex loss functions have not yet been successfully reported for decision

trees, however, the work of [Tarlow and Zemel, 2012] introduces some interesting concepts

to be used within structured SVM. The problem of non-greedy node split optimization

is (to some extend [Nowozin et al., 2011, Montillo et al., 2013]) largely unexplored and

defines another interesting direction for future works. However, one of the major problems

to be solved here is the compromise between maintaining generalization properties and

avoid overfitting to the data.

Finally, proponents of random forests are often confronted with the lack of a clean

and crisp theory as e.g. available for SVM. This lack is mainly arising due to their non-

deterministic nature, however, [Breiman, 1996b] introduced a mechanism to determine

the so-called Out-of-Bag-Error (OOBE) which is an unbiased estimate for the gener-

alization error and can also be used for model parameter estimation. Another attempt

in [Lin and Jeon, 2002] points out the relations between random forests and approximated,

adaptively weighted k -nearest neighbors.
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A.4 Tracking by Detection / Augmented Reality

• Michael Donoser, Peter Kontschieder, and Horst Bischof. Robust Planar Target

Tracking and Pose Estimation from a Single Concavity. In Proc. Intern. Symposium

on Mixed and Augmented Reality (ISMAR), October 2011.

• Peter Kontschieder, Michael Donoser, and Horst Bischof. MSER Templates for 3D

Pose Tracking. 34th Workshop of the Austrian Association for Pattern Recognition

(AAPR/OAGM), May 2010.
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Matching as a non-cooperative game. In Proc. Intern. Conf. on Computer Vision

(ICCV).

[Amit and Geman, 1997] Amit, Y. and Geman, D. (1997). Shape quantization and recog-

nition with randomized trees. Neural Computation, 9:1545–1588.

[Andriluka et al., 2008] Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-

by-detection and people-detection-by-tracking. In Proc. Conf. on Computer Vision and

Pattern Recognition (CVPR).

[Avidan, 2006] Avidan, S. (2006). Spatialboost: Adding spatial reasoning to adaboost. In

Proc. European Conf. on Computer Vision (ECCV).

[Bai et al., 2009] Bai, X., Li, Q., Latecki, L. J., Liu, W., and Tu, Z. (2009). Shape band: A

deformable object detection approach. In Proc. Conf. on Computer Vision and Pattern

Recognition (CVPR).

[Ballard, 1981] Ballard, D. H. (1981). Generalizing the hough transform to detect arbi-

trary shapes. Pattern Recognition (PR), 13(2).

[Bar, 2004] Bar, M. (2004). Visual objects in context. Nat. Rev. Neurosci., 5:617–629.

145

http://www.image-net.org/challenges/LSVRC/2012/
http://vis-www.cs.umass.edu/lfw/
http://www.pascal-network.org/challenges/VOC/


146

[Barinova et al., 2010] Barinova, O., Lempitsky, V., and Kohli, P. (2010). On detection of

multiple object instances using hough transforms. In Proc. Conf. on Computer Vision

and Pattern Recognition (CVPR).

[Belongie et al., 2002] Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching

and object recognition using shape contexts. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 24:509–522.

[Biederman, 1972] Biederman, I. (1972). Perceiving real-world scenes. Science.

[Biederman and Ju, 1988] Biederman, I. and Ju, G. (1988). Surface vs. edge-based deter-

minants of visual recognition. Cognitive Psychology, 20:38–64.

[Blake et al., 2011] Blake, A., Kohli, P., and Rother, C. (2011). Markov Random Fields

for Vision and Image Processing. The MIT Press.

[Bosch et al., 2007] Bosch, A., Zisserman, A., and Muñoz, X. (2007). Image classification
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[Özuysal et al., 2007] Özuysal, M., Fua, P., and Lepetit, V. (2007). Fast keypoint recog-

nition in ten lines of code. In Proc. Conf. on Computer Vision and Pattern Recognition

(CVPR).

[Patterson and Niblett, 1983] Patterson, A. and Niblett, T. (1983). ACLS user manual.

MIRU.

[Pavan and Pelillo, 2007] Pavan, M. and Pelillo, M. (2007). Dominant sets and pairwise

clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

29(1):167–172.

[Payet and Todorovic, 2010] Payet, N. and Todorovic, S. (2010). From a set of shapes to

object discovery. In Proc. European Conf. on Computer Vision (ECCV).



154

[Payet and Todorovic, 2012] Payet, N. and Todorovic, S. (2012). Hough forest random

field for object recognition and segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI).

[Pelillo, 1997] Pelillo, M. (1997). The dynamics of nonlinear relaxation labeling processes.

Journal of Mathematical Imaging and Vision (JMIV), pages 309–323.

[Pelillo and Refice, 1994] Pelillo, M. and Refice, M. (1994). Learning compatibility coef-

ficients for relaxation labeling processes. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 16(9):933–945.

[Porikli et al., 2006] Porikli, F., Tuzel, O., and Meer, P. (2006). Covariance tracking using

model update based on lie algebra. In Proc. Conf. on Computer Vision and Pattern

Recognition (CVPR).

[Price, 2008] Price, A. W. (2008). Contextuality in Practical Reason. Oxford, UK.

[Quinlan, 1979] Quinlan, J. (1979). Discovering rules by induction from large collections

of examples. In Expert systems in the microelectronic age.

[Quinlan, 1983] Quinlan, J. (1983). Learning efficient classification procedures and their

application to chess endgames. In Machine learning: An artificial intelligence approach.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning

(ML).

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5. Programs for Machine Learning. Morgan

Kaufmann Publishers.

[Rabinovich et al., 2007] Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., and

Belongie, S. (2007). Objects in context. In Proc. Intern. Conf. on Computer Vision

(ICCV).

[Ravishankar et al., 2008] Ravishankar, S., Jain, A., and Mittal, A. (2008). Multi-stage

contour based detection of deformable objects. In Proc. European Conf. on Computer

Vision (ECCV).

[Razavi et al., 2011] Razavi, N., Gall, J., and Van Gool, L. (2011). Scalable multi-class

object detection. In Proc. Conf. on Computer Vision and Pattern Recognition (CVPR).

[Ren et al., 2005] Ren, X., Berg, A. C., and Malik, J. (2005). Recovering human body

configurations using pairwise constraints between parts. In Proc. Intern. Conf. on Com-

puter Vision (ICCV).

[Riemenschneider et al., 2010] Riemenschneider, H., Donoser, M., and Bischof, H. (2010).

Using partial edge contour matches for efficient object category localization. In Proc.

European Conf. on Computer Vision (ECCV).



BIBLIOGRAPHY 155

[Riemenschneider et al., 2012] Riemenschneider, H., Sternig, S., Donoser, M., Roth,

P. M., and Bischof, H. (2012). Hough regions for joining instance localization and

segmentation. In Proc. European Conf. on Computer Vision (ECCV).

[Rosenfeld et al., 1976] Rosenfeld, A., Hummel, R., and Zucker, S. W. (1976). Scene

labeling by relaxation operations. IEEE Trans. Syst. Man & Cybern., 6:420–433.

[Ross et al., 2011] Ross, S., Munoz, D., Hebert, M., and Bagnell, J. A. (2011). Learn-

ing message-passing inference machines for structured prediction. In Proc. Conf. on

Computer Vision and Pattern Recognition (CVPR).

[Rota Bulò and Bomze, 2011] Rota Bulò, S. and Bomze, I. M. (2011). Infection and immu-

nization: a new class of evolutionary game dynamics. Games and Economic Behaviour,

71:193–211.

[Rota Bulò et al., 2012] Rota Bulò, S., Kontschieder, P., Pelillo, M., and Bischof, H.

(2012). Structured local predictors for image labelling. In Proc. Conf. on Computer

Vision and Pattern Recognition (CVPR).
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